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Diffusion of Asymmetric Swimmers

Andrew D. Rutenberg, Andrew J. Richardson, and Claire J. Montgomery
Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5

(Received 19 February 2003; published 20 August 2003)
080601-1
Particles moving along curved trajectories will diffuse if the curvature fluctuates sufficiently in
either magnitude or orientation. We consider particles moving at a constant speed with either a fixed or a
Gaussian distributed magnitude of curvature. At small speeds the diffusivity is independent of the
speed. At larger particle speeds, the diffusivity depends on the speed through a novel exponent. We
apply our results to intracellular transport of vesicles. In sharp contrast to thermal diffusion, the
effective diffusivity increases with vesicle size and so may provide an effective means of intracellular
transport.
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normally distributed curvature that is spontaneously gen-
erated by fluctuations (Gaussian curvature, GC). In both where the unit vector v̂v � v=v, the Gaussian noise � has
The thermal Stokes-Einstein diffusivity of a sphere
decreases as the particle radius R increases [1]. For this
reason, while diffusive transport is used for individual
molecules within living cells [2], larger objects such as
vesicles and pathogens often use active means of trans-
port. While many intracellular vesicles appear to be
transported by molecular motors directed along existing
cytoskeletal tracks [2,3], undirected actin-polymeriza-
tion mediated vesicle transport has been reported in
some endosomes, lysosomes, other endogenous vesicles,
and phagosomes [4,5]. Active transport is also observed
in the actin-polymerization-ratchet motility of certain
bacteria [5,6] and virus particles [7] within host cells. It
is important to characterize the transport properties of
small motile particles that are not moving along preex-
isting cytoskeletal tracks.

Existing discussions of the motion of actively propelled
microscopic particles, or ‘‘swimmers,’’ assumes that in
the absence of thermal fluctuations particles would move
in straight trajectories [1,8]. In this case, thermal rota-
tional diffusion randomly reorients the trajectory [1], so
that over long times diffusive transport is observed.
However, in actin-polymerization based motility, par-
ticles appear to be attached to their long actin tails [9]
which in turn are embedded in the cytoskeleton [10].
While thermal fluctuations will thereby be severely re-
duced, the actin polymerization itself is a stochastic
process with its own fluctuations [2,11]. These intrinsic
fluctuations can explain the observed curved trajectories,
as well as the variation of the curvature over time [12].
The diffusivity of such particles has not been previously
explored.

In this Letter, we study asymmetric swimmers that
would move at a constant speed in perfect circles in
the absence of fluctuations. We examine both a ‘‘broken
swimmer’’ with a fixed curvature magnitude and an axis
of curvature that is reoriented by fluctuations (rotating
curvature, RC), and a ‘‘microscopic swimmer’’ with a
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of these systems, fluctuations lead to diffusion at long
times. We use computer simulations to measure the dif-
fusivity of these systems as a function of the root-mean-
squared curvature K0, the constant particle speed v, and
the time scale characterizing the curvature dynamics �.

We obtain some exact results from polymer systems,
where each polymer configuration represents a possible
particle trajectory. Indeed, a broken swimmer with a
fixed curvature magnitude in d � 3 is exactly analogous
to the hindered jointed chain discussed by Flory [13]. The
resulting exact diffusivity is independent of particle
speed v. For Gaussian curvatures and for systems in
restricted geometries (d � 2), the polymer analogy gives
us the diffusivity only in the limit of slow speeds. At
larger speeds, our simulations show that diffusivity D
depends on particle speed v with a nontrivial exponent
�, D� v�. The diffusivity appears to be dominated by
the occasional long nearly straight segments of trajectory
that occur when the curvature is small. Scaling arguments
based on this observation are consistent with the mea-
sured exponent �2d � 0:98� 0:02 in d � 2, but do not re-
cover our measured exponent�3d � 0:71� 0:01 in d � 3.

A curved path has a curvature magnitude K � 1=R,
where R is the instantaneous radius of curvature. For
uniform motion around a circle, R is the radius of the
circle, and K is oriented perpendicular to the circle along
the axis. If we describe a particle trajectory by the
instantaneous velocity v�t�, then the vector curvature is
defined by the cross product K � v� _vv=v3, where v �
jvj is the (constant) speed and the dot indicates a time
derivative. Equivalently, particles moving at a constant
speed will change direction only through the vector
curvature via _vv � 	vv�K.

For ‘‘rotating curvature’’dynamics we fix the curvature
magnitude jKj � K0 but allow the curvature to randomly
rotate around the direction of motion:

_KK RC � �v̂v�K; (1)
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FIG. 1. (a) Particle trajectory with GC dynamics in d � 2
with ~vv � 0:1. The particle does not complete a circular loop
before K changes significantly. (b) With ~vv � 100. The particle
can complete many circular loop before K changes; however,
straight segments are seen when jKj is small. The result is a
characteristic ‘‘knotty wool’’ appearance. In both cases K0 � 1.
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zero mean, and h��t���t0�i � 2
�t	 t0�=� with a charac-
teristic time scale �. This represents the simplest descrip-
tion of a mesoscopic swimmer that has a ‘‘locked-in’’
curvature due to, e.g., an asymmetric shape. For
‘‘Gaussian curvature’’ dynamics the curvature magnitude
changes as well:

_KK GC � 	K=�
 �; (2)

where the Gaussian noise � is perpendicular to vwith zero
mean. In this case, the noise amplitude must satisfy h��t� �
��t0�i � 
�t	 t0�K2

0=� so that hK2i � K2
0 . This represents

the simplest description of a microscopic swimmer ‘‘try-
ing’’ to swim in a straight line subject to intrinsic fluc-
tuations in the motion. The resulting curvatures are
Gaussian distributed in each component. For particles
restricted to two dimensions with either RC or GC dy-
namics, we use only the normal (ẑz) component of the
vector curvature to update the velocity within the plane,
i.e., _vv � 	vv� ẑzKz in d � 2 [14].

There are two natural time scales. We explicitly intro-
duce �, which controls the noise correlation and so sets the
time scale over which the curvature changes. There is also
the inverse of the angular rotation rate, tc � 1=�vK0�.
Diffusion will be observed only for elapsed times t
much greater than any other time scale in the system,
i.e., t� tc and t� �. The diffusivity of a particle is
given by D � hr2i=�2dt� in the limit as the elapsed time
t! 1, in spatial dimension d.

A polymer chain with fixed bond lengths (‘) and angles
(�f), and with independent bond rotation potentials
[V��f�] [13] is statistically identical to the continuous
RC trajectory in 3d if we take ‘ � v
t for a discrete time
step 
t. The end-to-end distance for a long n-bond poly-
mer is hr2i � n‘2Cn. The correspondence is complete as
the elapsed time t � n
t! 1. The bond and dihe-
dral angles determine C1 � �1
 cos�f��1
 hcos�fi�=
��1	 cos�f��1	 hcos�fi�� [13]. Swimmers follow con-
tinuous paths, so we take the limit of small 
t and fix the
polymer rotation angle from the curvature in that limit by
�f � K0v
t, and rotate the curvature by h�2

fi � 2
t=�
in agreement with Eq. (1). In the limit 
t! 0 we recover
the exact resultD � 1=�3K2

0�� in d � 3. Remarkably,D is
independent of v.

For a GC trajectory in d � 3, there is no obvious
polymer analogy since the curvature magnitude evolves
with time. In the limit of �! 0, however, the curvature is
independently Gaussian distributed at every point along
the trajectory and the diffusivity can be extracted from
the ‘‘wormlike chain’’ polymer model originally solved
by Kratky and Porod [15]. The result is D � 1=�3K2

0�� in
the limit of small �. Note that the diffusivity diverges
as 1=� so this is the leading asymptotic dependence for
small �. We obtain the same diffusivity for both RC and
GC dynamics for small �.
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We use these exact results to define natural dimension-
less scaling functions for the diffusivity of microscopic
swimmers:

~DD Rd;Gd�~vv� � DK2
0�; (3)

where the index Rd or Gd indicates both the dynamics
(RC or GC) and the spatial dimensionality d, and

~vv � vK0� (4)

is a dimensionless speed. In terms of these scaling
functions we have ~DDR3�~vv� � ~DDG3�0� � 1=3. The same
Kratky-Porod approach in d � 2 gives ~DDR2�0� �
~DDG2�0� � 1.

We have simulated the trajectories of large numbers of
independent particles with RC and with GC dynamics.
For fixed v and K0, we varied � to explore the scaled
velocity ~vv � vK0� over 5 orders of magnitude. For each
~vv, we averaged over the trajectories of at least 1000
particles. We explicitly integrated the dynamical equa-
tions using a Euler update with a small time step 
t. In all
cases t� �� 
t and t� tc � 
t, with separation of
time scales by factors of 10–100. Systematic errors due to

t and t are below our noise levels, and statistical errors
(when not shown) are smaller than the size of our plotted
points. We illustrate the trajectories that we observe in
d � 2 in Fig. 1, with both small and large scaled speeds ~vv.
In both cases the curvature K0 � 1, but particles com-
plete loops only at large ~vv. Qualitatively similar trajec-
tories are seen in d � 3 with GC curvature dynamics.

In d � 2, shown in Fig. 2, both rotating curvature
(open circles) and Gaussian curvature (filled circles) ap-
proach their asymptotic value of ~DDR2�0� � ~DDG2�0� � 1 at
small ~vv. At ~vv � 1 there is a sharp crossover to a large-~vv
power-law regime, characterized by an exponent �2d
where ~DDR2 � ~DDG2 � ~vv�2d for large ~vv. We show the effec-
tive exponents �eff � 
 log�DK2

0��=
 log~vv between con-
secutive points in the inset of Fig. 2, as well as the best-fit
exponent �2d � 0:98� 0:02. We fit �2d from the large-~vv
080601-2
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FIG. 2. Dimensionless diffusivities ~DD � DK2
0� for rotating

(open circles, ~DDR2) and Gaussian (filled circles, ~DDG2) curvature
dynamics in d � 2, plotted against dimensionless particle
speed ~vv � vK0�. Also shown with solid lines are the small ~vv
asymptote ~DD � 1 and the large ~vv best-fit asymptote ~DD� ~vv�2d .
The inset shows the effective exponents, with the solid line
indicating the best-fit �2d � 0:98� 0:02.
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GC data only, due to the systematic crossover remaining
in the RC data even at large ~vv.

Simulations in d � 3 with RC dynamics leads to a
diffusivity in excellent agreement with the exact result
from polymer physics, ~DDR3 � 1=3, as shown by open
circles in Fig. 3. Gaussian curvature dynamics ( ~DDG3, filled
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FIG. 3. Dimensionless diffusivities ~DD � DK2
0� for rotating

(open circles, ~DDR3) and Gaussian (filled circles, ~DDG3) curvature
dynamics in d � 3, plotted against dimensionless particle
speed ~vv � vK0�. Solid lines show the exact result ~DDR3 �
1=3, as well as the large ~vv power-law asymptote ~DDG3 � ~vv�3d .
The inset shows effective exponents between sequential points,
with a solid line indicating the best-fit �3d � 0:71� 0:01.
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circles) has the same behavior for small ~vv, but exhibits a
sharp crossover at ~vv � 1 to a power-law regime ~DDG3 �
~vv�3d for large ~vv. We find the best-fit exponent is �3d �
0:71� 0:01, as shown by the solid line in the inset of
Fig. 3. Because �3d < 1, this scaling curve may be used to
uniquely identify the dynamical time scale � if D, K0,
and v are measured experimentally.

Can we qualitatively understand the asymptotic behav-
ior of ~DD? For RC dynamics in d � 3 the instantaneous
curvature does not change in magnitude even while the
curvature axis wanders. The particle will go in a circular
trajectory, not contributing to diffusivity, until the cur-
vature axis wanders significantly. The result is a random
walk with step size given by the radius of curvature 
r�
1=K0 and an interval between steps of �, leading to D�
1=�K2

0��. This explains why the exact result ~DDR3 � 1=3 is
independent of ~vv.

It is more difficult to understand the ~DD� ~vv� behavior
for large ~vv in the other systems. We start with a scaling
argument based on the assumption that the relatively
straight segments shown in Fig. 1(b) dominate the dif-
fusivity. The interval between periods of small curvature
should be on the order of the autocorrelation time �. The
length 
r of the straight segments are determined by how
long the interval of small curvature lasts, 
t, since 
r �
v
t. For the segment to be straight, the curvature must be
less than the inverse length, i.e., Kmax & 1=
r. The frac-
tion of the time we have small curvature below Kmax in
magnitude should be proportional to the probability of
having curvature below Kmax. In d � 2 only the normal
component of curvature affects the dynamics, so that
P�K� � const for K � K0. This applies both to GC and
RC. We therefore expect 
t� �Kmax=K0. We maximize
Kmax to maximize the contribution toD � 
r2=� and find
~DDG2 � ~DDR2 � ~vv as ~vv! 1. This indicates that �2d � 1,
which is consistent with our best-fit value �2d � 0:98�
0:02. However, in d � 3 for GC dynamics the same argu-
ment leads to �3d � 2=3 since two Gaussian distributed
components of the curvature gives P<�Kmax� �RKmax
0 dKP�K� � K2

max=K
2
0 for Kmax � K0. This is incon-

sistent with our measured value of �3d � 0:71� 0:01,
with a significant 4� variation.

At what radius Rc does a small spherical particle
achieve a higher diffusivity by actively swimming, as
compared to passive thermal diffusion characterized by
DT � kBT=�6� R� [1]? We can answer this question
within the context of actin-polymerization based motility
of small intracellular particles, since the size dependence
of K0, v, and � is known, at least approximately. With the
approximation that n propulsive actin filaments are ran-
domly distributed over a particle of size R, the curvature
of the trajectory will be K0 / 1=�R

���
n

p
� [12]. With a size-

independent surface density of filaments we obtain K0 �
A=R2, with a constant of proportionality A. By observa-
tions of Listeria monocytogenes we estimate A � 0:1 "m
[12]. We also conservatively assume size-independent
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P H Y S I C A L R E V I E W L E T T E R S week ending
22 AUGUST 2003VOLUME 91, NUMBER 8
values for cytoplasmic viscosity  � 3 Pa � s [1,12],
speed v � 0:1 "m=s, and autocorrelation decay time � �
100 s [16]. We find that the micron-scale bacterium L.
monocytogenes has ~vv � 1, so that smaller particles will
have ~vv > 1. Using the large ~vv asymptotic behavior of ~DDG3
shown in Fig. 3,D � 0:41~vv�3d=�K2

0��, and the size depen-
dence K0 � A=R2, we obtain

DG3 � R4	2�3dv�3d=�A2	�3d�1	�3d�; (5)

where we can use our measured �3d � 0:71� 0:01. In
dramatic contrast to thermal diffusion, D increases with
increasing particle size. Comparing with DT we find that
for all sizes above Rc � 80 nm a particle will have a
higher diffusivity by actively swimming by the actin-
polymerization mechanism than by passive thermal dif-
fusion. While substantial experimental uncertainty
underlies this estimate of Rc, it provocatively lies in the
middle of the vesicle-size distribution seen in neural
systems [17].

Our treatment of microscopic swimmers has ignored
thermal fluctuations. A particle traveling straight at speed
v that is reoriented only by thermal effects will have
Du � 4� R3v2=�3kBT� [1]. In comparison with our re-
sults for D, we find that D<Du for particles larger than
Ru � 0:07 nm. For actin-polymerization based motility,
intrinsic fluctuations appear to be the dominant limita-
tion to particle transport at the particle sizes where active
transport is advantageous.

In summary, we find that diffusivities of asym-
metric microscopic swimmers depends on whether the
swimmers are restricted to 2d or 3d, and whether they
have fixed asymmetries (RC) or the asymmetries are
spontaneously generated (GC). Diffusivities are indepen-
dent of particle speed at low speeds, in agreement with
analogous polymer systems. At higher speeds an anoma-
lously large diffusivity is observed that depends on the
particle speed by ~vv� where �2d � 0:98� 0:02, in agree-
ment with a scaling argument for �2d � 1. However,
�3d � 0:71� 0:01, which significantly differs from our
scaling result in d � 3. We apply our results to intra-
cellular bacteria, virus particles, and vesicles that move
via actin polymerization. We find that diffusivities due to
asymmetric swimming exceed thermal diffusivities for
particles larger than approximately 80 nm. As a result
asymmetric swimming may provide a viable intracellular
transport mechanism even for vesicle-sized particles. We
find that for the relevant dynamics (GC in d � 3), dif-
fusivities should increase with particle size, speed, and
filament turnover rate, and also with smaller curvatures
for a given size. It is interesting that the bacterium
080601-4
Rickettsiae rickettsii exhibits actin-polymerization intra-
cellular motility with smaller intracellular speeds but
straighter trajectories [6,12]—raising the question of
whether maximal diffusivity is selected in this biological
system.
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