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Dicke narrowing as an example of line mixing
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In the preceeding paper it was shown that the general problem of spectral line shapes in multiline, IR spectra
may be determined by solving a transport relaxation equation for the off-diagonal elements of the density
matrix. This is a semiclassical equation at the Wang-Chang—Uhlenbeck level, i.e., it treats the quantized
internal states as nondegenerate. Here we apply the master equation to the case of Dicke narrowing, and by
discretizing the velocity distribution show that Dicke narrowing of a single line may be treated in exactly the
same manner as line mixing. Both effects lead to a narrowing of a spectral distribution. We indicate how the
numerical technique can be extended and used to calculate profiles in the general case of spectra with speed-
dependent broadening, shifting, and line mixip§1050-29479)11305-3

PACS numbd(s): 32.70.Jz

INTRODUCTION For completeness we begin with a brief summary of the

. L transport relaxation equation for the off-diagonal elements of
In the last few years, high-resolution infrared and Ramanye gensity matrix and its relation to IR absorption. This is

studies in low-density gas¢&—4] have revealed a remark- followed by an even briefer discussion of line mixing. Fi-
able fact. In spite of some 50 years and many papers on theally we come to the main subject of the paper, the treatment
subject(see, e.g., Refd5,6]), there is still no satisfactory of an isolated line undergoing Dicke narrowing. First we
theory of spectral profiles that includes one important physishow the equivalence between Dicke narrowing and line
cal property, namely, the speed dependence of the collisionanixing. Then, to illustrate our approach, we treat two cases:
relaxation processefl]. This lack of a calculable profile (i) Dicke narrowing with speed-independent collision broad-
which includes the speed dependence is a serious impediNing, and(ii) Dicke narrowing in the presence of speed-
ment to atmospheric physics where there is a need to mod@ePendent broadening and shifting. Proof of the equivalence
IR-absorption profiles accurately for an entire band over &5 @ccomplished by discretizing the velocity distribution and
range of temperature and pressure, in mixtures with foreig pplying t_he same matrix techmquEl_sO,l]] as used in the
gases. In the preceding pad&1, hereafter referred to as I, theory of “n? mixing. We c.on_clude_wnh some remarks about
one of us proposed a master equation suitable for a determtibe application of the matrix inversion method to the broader

nation of spectral line shapes under just those conditionsp.rOblem of speed-dependent effects in multiline spectra.

Here we apply the equation to the problem of an isolated line
to demonstrate the equivalence of Dicke narrowjBg to

line mixing [9]. In the process, we show, with a certain pro- In a semiclassical treatment of spectral profiles, what is
viso, how the problem of speed-dependent effects may beequired is an equation in the off-diagonal elements of the
handled numerically, even in the case of a multiline spectralensity matrixp,,, that treats the internal statdsg, etc. as
with both Dicke narrowing and line mixing. Existing meth- discrete and is classical in positianand velocityv. For
ods, theories, or model profiles are far from being able teelectric dipole interaction and a uniform fiefgl oscillating at
handle such a general case. a frequencyw, py,, is the solution of the equatiofsee )

A TRANSPORT RELAXATION EQUATION

[(9/3t) +i(wp— wa) +V-V]ppa=— Ybapa™ ; W(ba—dc)pgc— vppa

+fA(v<—v’)p,;ad3v’+i(,uba/ﬁ){Eexp[—i(wt—kz)]+c.c.}naf0(v), (1)

where p’ =p(r,v’,t), E is the amplitude of the field and function, normalized to unity. Here we have assumed that
fo(v) is the Maxwellian or equilibrium velocity distribution only the lower levela) is populated, witm, molecules per
unit volume. The off-diagonal elements of the density matrix
are often referred to as the optical coherence. Bheom-
* Author to whom correspondence should be addressed. Electronponent of the optical coherence has dimensions of per unit
address: dmay@physics.utoronto.ca volume, per unit of velocity space. Heyg, is the collisional
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relaxation or rate of removal of thg,, component of the their usual meaning. In Edl), the relaxation rates between
optical coherence with velocity to all other components of both velocity groups and components of the coherence,
the samev. In general,y,,, is complex and speed dependent, which we could designate iy (ba,v—dc,v"), are assumed
and is the source of broadening and shifting of an isolatedo be zero. The equilibrium population distribution function
line. W(ba«dc) is the return rate to the componepg, n,fo(v) appears in Eq(l) because the density matrix has
from the componenpy. and is the source of line mixing. been written only to first order in the optical fiefl as is
The sum ovedc does not extend tba. The relaxation rates appropriate for most IR spectroscopy.

v, and the so-called collision kern&(v—v'), are the analo- Within the rotating wave approximatiofRWA) the c.c.
gous terms for changes of speed classes for the single corterm in the field will not survive in the solution to E€) if
ponentp,,, of the optical coherence. It is common practice tolevel b is above levek. Furthermore, in the steady state all
assume that the transport of the optical coherence is the samemponents of the optical coherence will vary at the fre-
as the transport of the molecule and to treat the collisiouency of the field. It is thus convenient to writg, as
frequencyr and the collision kerneh\(v+V’) exactly as in »oE exd —i(wt—k2] and to set: equal to 1. In this case Eq.
the Boltzmann equatiofil2]. The rest of the symbols have (1) reduces to

[wpa— 0+ Kv ] rpa=i Y bg.ba™ i % W(ba—dc) gctivema—i f A(Ve=V Vapa(v ") AV’ +nafo(v) wpa, 2

where w,, equals p,—w,). (We label the states so that dependence of the relaxation rates are given, then the prob-
quantities likew,, are always a positive numbgihere is a lem of determining the spectral profile is well posed. How-
separate equation for each component of the optical cohegver, to pose a problem well is only an essential first step. It
ence ., , etc. Thus Eq(2) represents a set of coupled linear remains one of idle curiosity if no solutions can be found. As
integral equations- stated above, there are no knovphysically realisticsolu-

There is a direct connection between the components dfons for spectral profiles, either analytical or numerical,
the optical coherence and the spectral profile. The macroVhich include the effects of speed dependence. For empha-
scopic polarization(dipole moment per unit volumeP is SIS We repeat th_at one of_ the objectives of thls_ paper is to
given by, P=Tr{pu]. If we agree to writeP in complex s_how that n_umerlcal solutions may be_fou_nd using a rather
form hen withs e R, 5 eyt show s gen =7 MU procedure, Tre other abjectve i o o e
by P=Zpaphattab= 2 ba sbattanE €Xp-i(wt—kz). Thus,

within some constant that does not concern us here, the corﬁn—g'
plex susceptibility for the velocity clasg is given by y,
=2pa7baiapdVv. Of course, for an isotropic system such as
a dilute gasy, will only depend upon the speed of the active It is instructive at this stage to see how the problem of line
molecule. The total susceptibility is found by summing mixing is handled in the present formalism. Line mixing in-
(integrating over the velocity classes. For dilute systems, thevolves a band of lines and, as given in the literature, neglects
real part ofy is related to the index of refraction by — 1 all aspects of the translational motion, including the speed
=x,/2, while the corresponding absorption coefficient is,dependence of the relaxation rates. In this case, after inte-
within a constant, just the imaginary payt. If the speed grating over the velocity, Eq2) reduces to

LINE MIXING

[wpa— w]//ba: | Yba, 7 ba~ I % W(ba—dc),zqc+ Nattba,
(€©)

where by.4. now means the total component of the optical
coherence, not the component distributed betweemd v
+dv. Equation(3) represents a set of coupled linear, but no
longer integral, equations and they may be solved using stan-

Note thatbais to be read as a single index. We have deliberately
written the relaxation rateW as W(ba<dc) and not W(dc
—ba). Later we will write the coupled set of linear equations in
matrix form. There the components of the optical coherepgg,
Pdc, etc., will form a column vector anWV(ba<—dc) becomes a
relaxation matrixWy, 4. Thus the order of the indices carries in-

formation about the direction of the relaxation. It is a commond d trix techni | tri tati ths and W
practice in line mixing to contract the doubled indices, lid@®to a ard matrix techniques. In matrix notation, s an S

single index, 1, and to misleadingly descripgas a “line.” Infact, ~ '€ combined to become a relaxation matssll written as
line mixing is much more the effect, on one resonance, by the/\) @nd the componentg.,, #qc, etc. are treated as a column
off-resonance of other lines and arises because collisions caud&ctor p. The band profile is proportional to the imaginary
transitions between the components of the optical coherence, mud¥t 0f 2y, partan, and can also be expressed in matrix form.
as they cause the transfer between the diagonal parts of the densfys pointed out by Barangd®] and refined by Gordon and
matrix, i.e., between the populations of the states. Nevertheless, wdcGinnis [10], a solution for the band profile is easily ob-
will adhere to common practice and will continue to describe thetained if one employs a matrix diagonalization and inversion
effect as line mixing. technigue(see beloyw This method of solving for a band
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profile is well known to the line mixing community. To com- relaxation ratesr and A(v«—V’) become important. Physi-
plete the list of well-known results that are relevant to thiSCa”y, at h|gh densities, the molecules perform a random
paper, we remind the reader that all relaxation rates are proga|k or diffusive motion. Thus one expects, perhaps naively,
portional to the density of perturbers, and that one of they linewidth(decay ratgwhich varies a% 2D, whereD is the
signatures of line mixing is the blending together of indi- ya55 diffusion constatSinceD varies inversely with den-
vidual Ilnes_and th? collaps_e_of the entire band to a S'ng_l%ity p, the contribution of the translational motion to the
Parrovl\_/ pr?cﬂlel_at h'gh densmebs. NOV:’_ Igt us _seke how th'swidth decreases with increasing density. As first noted by
ir(?;malsm or line mixing may be applied to Dicke narrow- p; .o [8], if the broadening is sufficiently small an isolated

' line may actually narrow. This effect is well documented in
the literature(see, for example, Ref13]). Two models of
the translational motion are commonly used to describe the

The spectral profile of an isolated line, at densities so lownarrowing, all the way from the Doppler limit to the diffu-
that all collisional relaxation may be neglected, has the wellsion narrowed regime. These are the soft collidib4] and
known Doppler profilé This arises because each velocity hard collision(HC) [15] models. We now turn to the ques-
class maintains its integritgno transitions to other velocity tion of how Dicke narrowing can be treated using the trans-
classes and has its own Doppler shifted frequency. Of port relaxation equation.
course, the Doppler shift arises from the free streanking For an isolated line the line mixing termé/s in Eq. (2)]
term in Eq.(2). As the density increases, the translationalmay be neglected. Thus E) reduces to,

DICKE NARROWING

(0= @+ KL= Yogmat 110a=1 | AV Va0 )V + gfol0) e @

wherey,, and v may both be functions of the speed of the active molecule. Sipceepresents a distribution over velocity,
then,»,,dv is the amount of optical coherence per unit volume that lies betwesmdv+dv. If we multiply Eq. (4) by dv,
the three dimensional element of velocity space, it may then be written as

(wpa— @+ Kvz)rpa=i Yba.baT T 2 W(vev' )//ba(U ")+ nafo(v) ba, 5

where now,,(v) is to be interpreted as the number of mol- lished that line mixing and Dicke narrowing are not merely
ecules per unit volume with an optical coherepggthat lie  related but are in fact mathematically equivalefurther-
in a velocity cell centered around More important is the more they are almost physically identical since most of the
fact that we have written the usual integral ovéras a sum quantities appearing in the equations have the same or simi-
over velocity classes’ and replacedd(v«—v’)dv by W(v  lar physical meaning.
«—V'), the rate at which the coherence is transferred from a Writing the equation for one line in terms of discrete ve-
“v' cell” to a “v cell.” Physically, the collision kernel locity groups allows us to use the same numerical diagonal-
A(v—V") describes both the rate at which molecules with aization technique as that commonly used to solve the line
velocity v/ are transferred and how they are distributed ovefmixing problem. Just as line mixing leads at high densities to
v. Thus the larger the box, the more that are transferred pe Collapsed band, here we expect the exchange between the
second. ThusV(vVv') really is a rate of transfer between velo_C|ty groups to lead to a collapse_ of the Doppler profll_e, a
discrete cells just ag/(ba—dc) is the rate of transfer be- Profile which can always be considered as a band with a
tween discrete components of the optical coherence in thgontmuou; dlstr_|but|on of Q|screte lines. . .
case of line mixing. That the analogy is complete may be If we WISh to illustrate this treatment of chke.n.arrowmg,
. S . we require a concrete expression for the collision kernel,

seen by comparing E@3) (which is for a single component , L . o

: S . A(v—V'"). We chose the hard collision model since it is the
of the optical coherengeo Eg. (5) (which is for a single

. ) . only known case where an analytical expression for a spec-
speed clags Note in particular that the discrete resonant fre'tral profile has been found when the relaxation rate of the

quencieswy, in Eq. (3,) for line mixir)g are replaped in Eq. optical coherencey,, is either speed dependent or speed
(5) by the Doppler shift&v,. In matrix form, —w in Eq. (3)

becomes a diagonal matrix wl (see ). In the matrix form
of Eg. (5) the equivalent diagonal matrix isf,— w)!, since

. . . )
wp, IS @ constant for the isolated linghus we have estab- , One €Xpectd to be the mass diffusion constantAf{v—v’)pa

for the off-diagonal element is real, and the samé@s—Vv') ., for

the population(diagonal element of the density mairixn principle

A(v—V"),, could be complex, indicating a correlation between the
2Essentially, throughout this paper we will ignore the contribution evolution of the phase and the transportpgf, [16]. Here we take

of the natural line width to the spectral profiles. A(v—V'),, as real.
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independenf17]. The hard collision model takes a collision f () is the normalized Maxwellian (¥rvo)3exp
kernel that distributes all’ classes over the same Maxwell- —(ulvg)?, anduy is the mean speed KA/m)*'2. With A(v

ian inv. This does not correspond to any known physical ", ™. .
situation. Nevertheless, the hard collision model has the cory.” ) given by the HC model an,, independent of, Eg.

rect low- and high-density limits, satisfies detailed balance(S) can be integrated over theandy components of the

is well behaved mathematically, an@vhat is important v.eloqty.. This Ieapls to an _equatlon for a one dimensional
distribution function, ~(v,) = [.dv,dv,. Here we have

leads to a benchmark profile, calculable by standard meths : . .
ods, against which we can compare solutions obtained b r_opped. the supgrfluous |ndbaon/zba sihce we are dealing
velocity discretization and matrix inversion. We considerpggn‘zg Iiic,;l?\58d\/ll’r)]eél—z(?[hneotren:g:Iin?vdoll\\jliﬂawealllgg(l;e)cﬁfr;e
two cases{i) pure Dicke narrowingnegligible broadenin . S . . a

(W) p gneglig 9 one dimensional. When discretized, the elements of the re-

from the Doppler to the Dicke limit, andi) Dicke narrow- i trix. off-di ¥ b i
ing, near the minimum in the width, with a speed dependenk""xa lon matrix, ofi-diagonal iv,, can be written as

broadening and shifting. Wij=W(vzi<—vzj)=(vK/\/;vo)eX[:[—(vzi/vo)z], 6)

Pure Dicke narrowing (almosy whereK is a normalizing constant, determined by the size of
We wish to illustrate Dicke narrowing in the absence ofthe velocity cell. The subscripts and j identify post-
collision broadening, from the low-density Doppler profile to collisional and precollisional values. As stated above, and
the Dicke-narrowed profile at high densities. However, forshown by Eq.(6), the kernel for the hard collision model is
the Doppler limit, it is not possible simply to sgt, andvto  independent of the velocity of the active moleculé)(be-
zero in Eq.(5) (see ). In the absence of spontaneous radia-fore a collision, i.e., independent of the subscjipthus the
tion, setting the relaxation rate for the optical coherence t®ff-diagonal elements in the same row of the relaxation ma-
zero results in zero absorption. A correct treatment of Doptrix are equal. The diagonal elements are writtas,
pler broadening results from setting the kinetic collision fre-
guencyv equal to zero, calculating the profile, and taking the Wi = — ypa— v{1— (KIVmvo)exd — (v,ilve)?),  (7)
limit as y,, approaches zero. For convenience, we shall take
Ypa @s finite but small and speed independent. We could When Egs.(6) and (7) are introduced into Eq(5), the
regard a small constant,, as the natural width of the line. transport relaxation problem, in the case of a speed indepen-
For the hard collision model, is speed independent and denty,,, reduces to a set of coupled linear equations of the
the collision kernel is given bA(v—Vv')=vfy(v), where  form,

(wpa— @+ kUzi)/’izi')’ba//i_"iV{l_(K/\/;UO)eXn:_(Uzi/UO)Z]}///i

—i 2 (VKImvo)exi] — (v,i/v0)2] (7)) + Nafo(v2i) ba ®

where the sun® is, overj, not equal toi. If we define a which has as a solution
column vectorp, where the elements are the valueg,dbr
the different v, cells,” then the set of equations can be can i
be written as p=AlA—wl]*ATNu]. (12)

[wotIW=awllp=Ngu, ©) As the susceptibility is proportional ta'p, the spectral pro-
wherew, is a diagonal matrix of Doppler transition frequen- file can Tbe determined by multiplying E¢L1) by the row
cies, wp,+kvy;, | is the unit matrix,N is a diagonal matrix  Vectoru' and taking the imaginary part. Thus, as stated, the
of populations in the %, cells,” and . is a column vector of spectral proflle may'be detgrmlned dlrectly .from the set of
dipoles, all equal because the transition dipole is independeffPUPled linear equations, using matrix techniques. The prob-
of the molecular velocity. Equatiof®), for Dicke narrowing, €M is €asily handled on a desk top computer. In the present
is identical to Eq.(15) of | for line mixing, and may be €€ the diagonal elements of the relaxation matfigon-

solved in the same manner. For completeness, we repeat tfin @ constant part,y,,+ »)1 which could be separated out
treatment given there.

Briefly, to solve Eq.(9), we look for a transformatior
such thailG=[ wy+iW] becomes diagonal, i.e., we solve the “The presence of the term K is understandable. Even in the
equationA =A~1GA. This transformation also diagonalizes integral form the collision kernel contains a diagonal component,

[wo+iIW—wl]. Then Eqg.(9) can be written viz. A(ve—Vv'=v)dVv’. It is of course infinitesimally small. For a
finite number of cells, we must take it into consideration and add it
A Y wo+tiW—wl]JAA I p=[A—ol JA =AY Nu], to the usual diagonal termK is determined by the sum rule

(10 ZiWij =~ ¥pa-
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4 FIG. 2. Oscillating curve: Dicke narrowing of an isolated line
calculated by the matrix technique using 200 classes,afith a
broadening of 3 MHz and kinetic collision frequency of zero.
Smooth curve: calculated numerically from the analytical expres-
sion[17].

Absorption (arb. units)

the density(collision frequency is increased. This has a
@ practical consequence. The more severe the Dicke narrow-
ing, the coarser the speed graining can be. This reduces the
, , , . size of the matrix that must be diagonalized. The down side
of this is the fact that the lower the density, i.e., the closer
Frequency (Ghz) one is to the Doppler limit, the finer the speed graining must
be to capture the spectral line shape accurately.

FIG. 1. Solid curve: Dicke narrowing of an isolated line, calcu-  The practical choice of bin size is also determined by the
lated by the matrix technique using 25 classes pénd a constant value of y,,. Figure 2 shows the matrix solution foy,,
broadening of 3 MHz. The collision frequeneywas(a) 0, (b) 15 =3 MHz (the same as for Fig.)land v=0. Even with 200
MHz, (C) 300 MHz, and(d) 1.5 GHz. Dasheq curve. as abOVe, b|nS, Spanr"ng the same range lﬂ; as above' the result
except calculated numerically from the analytical expresflafh.  (oscillating ling is not an accurate representation of the stan-
dard solution(smooth curvg The latter is actually a Voigt

rofile, and is nearly a pure Gaussian under the chosen con-
itions. By comparing the change in the calculated profile,
for v changing from QFig. 1(a)] to 15 MHz[Fig. 1(b)], it is
clear that 200 channels and= 15 MHz would simulate rea-

and treated in the same mannerasls We do not labor the
reader with this and other minor points, but rather procee
directly to the results.

Figure 1 shows the computed line profiolid lineg for
Ypa €qual to 3 MHz andv equal to 0, 15, 300, and 1500 sonably well the full solution in Fig. 2.
MHz. The mean speed, and the Doppler parametéw As a final demonstration of the matrix solution in this

were chosen to represent a rovibrational line of CO at rO0MYearly pure Dicke narrowing case, in Fig. 3 we show a plot

temperature. We have deliberately chosen the spacing bgs ihe width(HWHM) as a function of the kinetic rate for
tween thev, cells to be large, so that discrete but fictitious

“lines” appear when the kinetic collision frequency is low.
A total of 25 speed groups were used, although Fig. 1 is

plotted over a frequency range that displays the presence of 1
only nine of them. Atv equal to zero, the widths of the

spectral componentsalf width at half maximun(HWHM)] ”
is just the constant relaxation ratg,,= 3 MHz. We see, as ©
the collision frequency is increased, that the fictitious linesin £
our band, broaden, overlap, and collapse to a narrow single 3z ¢
line; these details of Dicke narrowing, which are identical to E
those observed in line mixing, would not have been apparent ’
if we had binned the), speed classes on a scale fine com- at
pared to the collisional widthy,,. This example is very
reminiscent of Dicke’s original paper. There he considered a i

one-dimensional problem, and described the system in terms
of just twowv, classes.

Also shown in Fig. 1 are the curves for the HC model
(dotted ling, calculated numerically, but using the standard  FIG. 3. HWHM of a line calculated using the matrix technique
analytic solution17]. What is surprising is how quickly the with a constant broadening of 3 MHz and varying kinetic collision
coarse-grained matrix solutions approach the full solution agequency.

0 10 20 30 40 50 60 70 80 90
v (Gha)
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the 25 bin case and varying from 0.3 to 90 GHz. The 0
HWHM were measured directly from the profiles. We see

the inverse dependence on the density- flensity), charac- a0k
teristic of Dicke narrowing, and the asymptotic approach to
the fixed relaxation ratey,, .

In the examples above, the relaxation rate of the optical
coherence was kept constant and small. This was convenient
for illustrating the well-known properties of Dicke narrow-
ing, but not realistic. Physically, botly and v scale with
density and maintain a fixed ratio, one with respect to the
other. The same procedure for establishing the matrix equa- sof
tion as outlined above may be used to generate spectra, pro-
vided bothy andv remain speed independent. We have com-
puted spectral profiles for several ratios @i over a range o o1 o0 o 005 o a5
of the kinetic collision frequency or what is equivalent a Frequency (GHe]
range of density. In all cases there was agreement between gy 4. A comparison of spectral profiles for a Dicke-narrowed
the matrix and standard profile, provided the binning of thejne including speed-dependent broadening and shifting. Solid
v, classes was fine enough. In the caseysall compared curve, calculated by discretizing the velocity. Dashed line; calcu-
to v a plot of the HWHM of the profiles as a function of |ated by direct numerical calculation from the analytical fdit].
kinetic collision frequencydensity showed the characteris-
tic Dicke minimum([13]. In summary, by considering a con- where \ is the perturber to absorber mass rais —(q
crete example, we have shown that the matrix inversion tech—3)/(2g—2), andM is a confluent hypergeometric func-
nigue, as used in the theory of line mixing, is a viabletion. The brackets indicate an average over the Maxwellian
numerical method of solving the transport relaxation equaspeed distribution, and™ 9 describes the radial dependence
tion for an isolated line with speed-independent broadeningof the intermolecular interaction responsible for the broaden-

ing and shifting. For such a simple collision model, no physi-
cal meaning should be attached to the valuegolt is a
Dicke narrowing with speed-dependent parameter that allows one to alter the speed dependence of
broadening and shifting the broadening and shifting. Dugganal.[1] used a speed-

In the case of speed-independent broadening it was pc,§i_ependent broadening determined by the same collision

sible to integrate over theandy components of the velocity model, and an empirical spectral profile to fit their CO data
before discretizing the distribution. Whenis speed depen- broadened by Arand He. Far they found that a value near
dent, then a slightly different treatment is required. In and fitted their data. For no other reason we have chosen this

isotropic system, such as a gas in equilibrium, the varioué’alue.qu to illustrate the use of thg matrix technique for the
relaxation rates can depend at most upon the magnitude §PMbined effects of Dicke narrowing and speed-dependent
the velocity. Due to the appearance of te, term in the Proadening and shifting. For=1 andq=86, the calculated
master equation, it therefore becomes convenient to chosfidth y(v) varies approximately quadratically with over
spherical coordinatesy(,¢) for the velocity withz as the ~ the range ob from 0 to 2, being some 50% larger avg
polar axis. Then we can integrate ovgibefore dividing the @S compared to the valueatequal to zero. We have chosen
velocity distribution over and 6. In practice, we find that the kinetic collision frequency such tha(y(v))/ v is equal
discretizing in ¢ rather than inv, (another option reduces 0 5. This produces a well-defined Dicke minimum. A spec-
the irregularities in the computed profile arising from thefral profile was computed for near the Dicke minimum
coarseness of the binning. Such irregularities are plainly vishere the two contributions to the width of an isolated line
ible in Figs. 1a) and Xb). Previously, the distribution func- are about equal. Figure 4 shows a plot of the profile com-
tion was only divided ovep,. Now it is divided overdand ~ Puted by the matrix technique. Only five binsurand 6, for

v. Consequentlyp is a longer column vectofmore ele- 2 total of 25, were used. That a §mooth curve I’eSl.,I|tS' illus-
ments. The number of elements in the relaxation matrix in- €S again that only coarse graining of the velocity is re-

creases quadratically with the length @fNevertheless, the quired in the line narrowing region. In line mixing it is rec-

resulting equation takes on the same form as (@y. and ognized that the details of the relaxation matrix are not
may be solved in the identical manner. important in determining the band profile in the casesef

For illustrative purposes, we have again used the HCY€re mixing The present work suggests that details of the

model to describe the translational dynamics of the distribuff€® molecule line position, etc., are also not critical in this

tion function. For speed-dependent broadening and shifting€9ion. Also shown in Fig. 4 is the profilelashed curve
we now need an explicit model foy,,. For convenience, computed numerically from the known analytical solution of

we have used the simple, inverse power, straight line colli{n® same mod€|17]. The high level of agreement between
sion model described in Ref18]. In this case, the speed the two spectra, in spite of the coarse graining of the veloc-

dependence of the broadening and shifting rates are given Hfy: illustrates the two main points of this papéi} that the
matrix technique may be used to solve the transport relax-

Yoa=Y(v)+id(v) ation equation for isolated lines; and) that there is an
intimate relationship between line mixing and Dicke narrow-
=(1+)\),8M[,8,§,—)\(v/vo)z](y(v)+i5(v)>, ing. Our treatment of narrowing and broadening is to be

150~

100

Absorption (arb. units)
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contrasted with treatments based on the generalized Waldh standard line mixing terminology,stands for line or tran-

mann Snider equatiof19,20. sition. (Such terms are the source of statistical correlation
between the evolution of the internal and translational de-
SUMMARY AND CONCLUDING REMARKS grees of freedom.With the apparently unending growth in

. o . ) computer memory and power, the numerical solution by ma-

By discretizing the translational motion we have beenyiy techniques becomes easier, almost on a daily basis. The

able to establish the close relationship that exists betweegresent calculations were carried out on a desktop computer.
Dicke narrowing and line mixing. Furthermore, borrowing The piggest problem solved involved diagonalizing a 350
matrix techniques from the mixing has allowed us to treaty 350 matrix, and required about 10 min. Most of the pro-
numerically the general problem of combined Dicke narrow-fjjeg only required on the order of 1 min of computer time.
ing and speed-dependent broadening and shifting. There W&S%mputing power is then not a serious bottleneck to the

one all-important proviso, and that that is we must be able tQeneral application of the ideas expressed in this paper. What
calcu_late or model the speed dep_endence of_ the various rtesently represents an impediment is the lack of any physi-
laxation rates. Our treatment of Dicke narrowing provides &g|ly realistic models of the speed dependence of the various
valuable lesson. By binning or boxing the speed classes intRy|axation rates. Microscopic, semiclassical calculations

cells, even the most general multiline speed-dependent cagg|q be used to create such models. At that stage one could
may be expressed as a set of coupled linear equations. Wgin to look for signatures in the spectral profiles of specific

need simply restore the indée, suppressed in the treatment ggpects of the speed dependence of the various relaxation

of an isolated line. In the muliline case, the relaxation ratesates or of the presence of statistical correlation. Hopefully,
and the specification of the boxes for the distribution func-ipe signatures will be unique.

tion will carry three indices: one for the component of the
optical coherence, one for the speed class, and one for the
angular orv, class. Preliminary calculations along these line
were reported in Ref21].

The master equation proposed in | excluded transitions A.D.M. wishes to acknowledge a number of very fruitful
between boxes that differed both in the component of thaliscussions with F. R. McCourt, S. Hess, and W.-K. Liu.
optical coherence and in the velocity. However, it is clearFinancial support by the Natural Sciences and Engineering
from the discussion that no difficulty will arise if the relax- Research Council of Canada is also gratefully acknowl-
ation matrix has a general foriW(l,v,6—1",0’,6") where, edged.
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