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Dicke narrowing as an example of line mixing

S. Dolbeau, R. Berman, J. R. Drummond, and A. D. May*
Department of Physics, University of Toronto, Toronto, Canada M5S 1A7

~Received 21 September 1998!

In the preceeding paper it was shown that the general problem of spectral line shapes in multiline, IR spectra
may be determined by solving a transport relaxation equation for the off-diagonal elements of the density
matrix. This is a semiclassical equation at the Wang-Chang–Uhlenbeck level, i.e., it treats the quantized
internal states as nondegenerate. Here we apply the master equation to the case of Dicke narrowing, and by
discretizing the velocity distribution show that Dicke narrowing of a single line may be treated in exactly the
same manner as line mixing. Both effects lead to a narrowing of a spectral distribution. We indicate how the
numerical technique can be extended and used to calculate profiles in the general case of spectra with speed-
dependent broadening, shifting, and line mixing.@S1050-2947~99!11305-2#

PACS number~s!: 32.70.Jz
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INTRODUCTION

In the last few years, high-resolution infrared and Ram
studies in low-density gases@1–4# have revealed a remark
able fact. In spite of some 50 years and many papers on
subject~see, e.g., Refs.@5,6#!, there is still no satisfactory
theory of spectral profiles that includes one important phy
cal property, namely, the speed dependence of the collisi
relaxation processes@1#. This lack of a calculable profile
which includes the speed dependence is a serious imp
ment to atmospheric physics where there is a need to m
IR-absorption profiles accurately for an entire band ove
range of temperature and pressure, in mixtures with fore
gases. In the preceding paper@7#, hereafter referred to as
one of us proposed a master equation suitable for a dete
nation of spectral line shapes under just those conditio
Here we apply the equation to the problem of an isolated
to demonstrate the equivalence of Dicke narrowing@8# to
line mixing @9#. In the process, we show, with a certain pr
viso, how the problem of speed-dependent effects may
handled numerically, even in the case of a multiline spec
with both Dicke narrowing and line mixing. Existing meth
ods, theories, or model profiles are far from being able
handle such a general case.
on
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For completeness we begin with a brief summary of
transport relaxation equation for the off-diagonal elements
the density matrix and its relation to IR absorption. This
followed by an even briefer discussion of line mixing. F
nally we come to the main subject of the paper, the treatm
of an isolated line undergoing Dicke narrowing. First w
show the equivalence between Dicke narrowing and l
mixing. Then, to illustrate our approach, we treat two cas
~i! Dicke narrowing with speed-independent collision broa
ening, and~ii ! Dicke narrowing in the presence of spee
dependent broadening and shifting. Proof of the equivale
is accomplished by discretizing the velocity distribution a
applying the same matrix techniques@10,11# as used in the
theory of line mixing. We conclude with some remarks abo
the application of the matrix inversion method to the broa
problem of speed-dependent effects in multiline spectra.

A TRANSPORT RELAXATION EQUATION

In a semiclassical treatment of spectral profiles, wha
required is an equation in the off-diagonal elements of
density matrixrba , that treats the internal states,b,a, etc. as
discrete and is classical in positionr and velocityv. For
electric dipole interaction and a uniform fieldE, oscillating at
a frequencyv, rba is the solution of the equation~see I!
@~]/]t !1 i ~vb2va!1v•“#rba52gbarba1(
dc

W~ba←dc!rdc2nrba

1E A~v←v8!rba8 d3v81 i ~mba /\!$E exp@2 i ~vt2kz!#1c.c.%naf 0~v !, ~1!
hat

rix

unit
where r85r(r ,v8,t), E is the amplitude of the field and
f 0(v) is the Maxwellian or equilibrium velocity distribution

*Author to whom correspondence should be addressed. Electr
address: dmay@physics.utoronto.ca
function, normalized to unity. Here we have assumed t
only the lower level~a! is populated, withna molecules per
unit volume. The off-diagonal elements of the density mat
are often referred to as the optical coherence. Theba com-
ponent of the optical coherence has dimensions of per
volume, per unit of velocity space. Heregba is the collisional
ic
3506 ©1999 The American Physical Society
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PRA 59 3507DICKE NARROWING AS AN EXAMPLE OF LINE MIXING
relaxation or rate of removal of therba component of the
optical coherence with velocityv to all other components o
the samev. In general,gba is complex and speed depende
and is the source of broadening and shifting of an isola
line. W(ba←dc) is the return rate to the componentrba
from the componentrdc and is the source of line mixing
The sum overdc does not extend toba. The relaxation rates
n, and the so-called collision kernelA(v←v8), are the analo-
gous terms for changes of speed classes for the single c
ponentrba of the optical coherence. It is common practice
assume that the transport of the optical coherence is the s
as the transport of the molecule and to treat the collis
frequencyn and the collision kernelA(v←v8) exactly as in
the Boltzmann equation@12#. The rest of the symbols hav
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their usual meaning. In Eq.~1!, the relaxation rates betwee
both velocity groups and components of the coheren
which we could designate byM (ba,v←dc,v8), are assumed
to be zero. The equilibrium population distribution functio
naf 0(v) appears in Eq.~1! because the density matrix ha
been written only to first order in the optical fieldE, as is
appropriate for most IR spectroscopy.

Within the rotating wave approximation~RWA! the c.c.
term in the field will not survive in the solution to Eq.~1! if
level b is above levela. Furthermore, in the steady state a
components of the optical coherence will vary at the f
quency of the field. It is thus convenient to writerba as
pbaE exp@2i(vt2kz)# and to set\ equal to 1. In this case Eq
~1! reduces to
@vba2v1kvz# pba5 ig bapba2 i(
dc

W~ba←dc!pdc1 inpba2 i E A~v←v8!pba~v8!dv81naf 0~v !mba , ~2!
rob-
w-
. It
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where vba equals (vb2va). ~We label the states so tha
quantities likevba are always a positive number.! There is a
separate equation for each component of the optical co
ence,pba , etc. Thus Eq.~2! represents a set of coupled line
integral equations.1

There is a direct connection between the component
the optical coherence and the spectral profile. The ma
scopic polarization~dipole moment per unit volume! P is
given by, P5Tr@rm#. If we agree to writeP in complex
form then within the RWA, it is easy to show thatP is given
by P5(barbamab5( ba pbamabE exp2i(vt2kz). Thus,
within some constant that does not concern us here, the c
plex susceptibility for the velocity classv is given by xv
5(ba pbamabdv. Of course, for an isotropic system such
a dilute gas,xv will only depend upon the speed of the acti
molecule. The total susceptibilityx is found by summing
~integrating! over the velocity classes. For dilute systems,
real part ofx is related to the index of refraction by,n21
5x r /2, while the corresponding absorption coefficient
within a constant, just the imaginary partx i . If the speed

1Note thatba is to be read as a single index. We have deliberat
written the relaxation rateW as W(ba←dc) and not W(dc
→ba). Later we will write the coupled set of linear equations
matrix form. There the components of the optical coherence,rba ,
rdc , etc., will form a column vector andW(ba←dc) becomes a
relaxation matrixWba,dc . Thus the order of the indices carries in
formation about the direction of the relaxation. It is a comm
practice in line mixing to contract the doubled indices, likeba to a
single index, 1, and to misleadingly describer1 as a ‘‘line.’’ In fact,
line mixing is much more the effect, on one resonance, by
off-resonance of other lines and arises because collisions c
transitions between the components of the optical coherence, m
as they cause the transfer between the diagonal parts of the de
matrix, i.e., between the populations of the states. Nevertheless
will adhere to common practice and will continue to describe
effect as line mixing.
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dependence of the relaxation rates are given, then the p
lem of determining the spectral profile is well posed. Ho
ever, to pose a problem well is only an essential first step
remains one of idle curiosity if no solutions can be found.
stated above, there are no known,physically realisticsolu-
tions for spectral profiles, either analytical or numeric
which include the effects of speed dependence. For emp
sis, we repeat that one of the objectives of this paper is
show that numerical solutions may be found using a rat
simple matrix procedure. The other objective is to show
intimate connection between Dicke narrowing and line m
ing.

LINE MIXING

It is instructive at this stage to see how the problem of l
mixing is handled in the present formalism. Line mixing i
volves a band of lines and, as given in the literature, negle
all aspects of the translational motion, including the spe
dependence of the relaxation rates. In this case, after i
grating over the velocity, Eq.~2! reduces to

@vba2v# pba5 ig ba p ba2 i(
dc

W~ba←dc! pdc1namba ,

~3!

where bypdc now means the total component of the optic
coherence, not the component distributed betweenv and v
1dv. Equation~3! represents a set of coupled linear, but
longer integral, equations and they may be solved using s
dard matrix techniques. In matrix notation, theg’s andW’s
are combined to become a relaxation matrix~still written as
W! and the componentspba , pdc , etc. are treated as a colum
vector r. The band profile is proportional to the imagina
part of(bapbamab , and can also be expressed in matrix for
As pointed out by Baranger@9# and refined by Gordon and
McGinnis @10#, a solution for the band profile is easily ob
tained if one employs a matrix diagonalization and invers
technique~see below!. This method of solving for a band

y

e
se
ch
sity
we
e



-
his
pr
th
i-
g
hi
-

ow
el
ity

f

a

-
om
ly,

e
by
d
in

the
-

-
ns-
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profile is well known to the line mixing community. To com
plete the list of well-known results that are relevant to t
paper, we remind the reader that all relaxation rates are
portional to the density of perturbers, and that one of
signatures of line mixing is the blending together of ind
vidual lines and the collapse of the entire band to a sin
narrow profile at high densities. Now let us see how t
formalism for line mixing may be applied to Dicke narrow
ing.

DICKE NARROWING

The spectral profile of an isolated line, at densities so l
that all collisional relaxation may be neglected, has the w
known Doppler profile.2 This arises because each veloc
class maintains its integrity~no transitions to other velocity
classes! and has its own Doppler shifted frequency. O
course, the Doppler shift arises from the free streamingkvz
term in Eq. ~2!. As the density increases, the translation
l-

ve
p
n
-
th
b
t

re
.

-

on
o-
e

le
s

l-

l

relaxation ratesn and A(v←v8) become important. Physi
cally, at high densities, the molecules perform a rand
walk or diffusive motion. Thus one expects, perhaps naive
a linewidth~decay rate! which varies ask 2D, whereD is the
mass diffusion constant.3 SinceD varies inversely with den-
sity r, the contribution of the translational motion to th
width decreases with increasing density. As first noted
Dicke @8#, if the broadening is sufficiently small an isolate
line may actually narrow. This effect is well documented
the literature~see, for example, Ref.@13#!. Two models of
the translational motion are commonly used to describe
narrowing, all the way from the Doppler limit to the diffu
sion narrowed regime. These are the soft collision@14# and
hard collision~HC! @15# models. We now turn to the ques
tion of how Dicke narrowing can be treated using the tra
port relaxation equation.

For an isolated line the line mixing terms@W’s in Eq. ~2!#
may be neglected. Thus Eq.~2! reduces to,
,

@vba2v1kvz# pba5 igbapba1 inpba2 i E A~v←v8!pba~v8!dv81naf 0~v !mba , ~4!

wheregba andn may both be functions of the speed of the active molecule. Sincepba represents a distribution over velocity
thenpbadv is the amount of optical coherence per unit volume that lies betweenv andv1dv. If we multiply Eq. ~4! by dv,
the three dimensional element of velocity space, it may then be written as

~vba2v1kvz!pba5 igbapba1 inpba2 i( W~v←v8!pba~v8!1naf 0~v !mba , ~5!
ly
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where nowpba(v) is to be interpreted as the number of mo
ecules per unit volume with an optical coherencepba that lie
in a velocity cell centered aroundv. More important is the
fact that we have written the usual integral overv8 as a sum
over velocity classesv8 and replacedA(v←v8)dv by W(v
←v8), the rate at which the coherence is transferred from
‘‘ v8 cell’’ to a ‘‘ v cell.’’ Physically, the collision kernel
A(v←v8) describes both the rate at which molecules with
velocity v8 are transferred and how they are distributed o
v. Thus the larger the box, the more that are transferred
second. ThusW(v←v8) really is a rate of transfer betwee
discrete cells just asW(ba←dc) is the rate of transfer be
tween discrete components of the optical coherence in
case of line mixing. That the analogy is complete may
seen by comparing Eq.~3! ~which is for a single componen
of the optical coherence! to Eq. ~5! ~which is for a single
speed class!. Note in particular that the discrete resonant f
quenciesvba in Eq. ~3! for line mixing are replaced in Eq
~5! by the Doppler shiftskvz . In matrix form,2v in Eq. ~3!
becomes a diagonal matrix2vI ~see I!. In the matrix form
of Eq. ~5! the equivalent diagonal matrix is (vba2v)I , since
vba is a constant for the isolated line.Thus we have estab

2Essentially, throughout this paper we will ignore the contributi
of the natural line width to the spectral profiles.
a
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lished that line mixing and Dicke narrowing are not mere
related but are in fact mathematically equivalent.Further-
more they are almost physically identical since most of
quantities appearing in the equations have the same or s
lar physical meaning.

Writing the equation for one line in terms of discrete v
locity groups allows us to use the same numerical diago
ization technique as that commonly used to solve the
mixing problem. Just as line mixing leads at high densities
a collapsed band, here we expect the exchange betwee
velocity groups to lead to a collapse of the Doppler profile
profile which can always be considered as a band wit
continuous distribution of ‘‘discrete’’ lines.

If we wish to illustrate this treatment of Dicke narrowing
we require a concrete expression for the collision kern
A(v←v8). We chose the hard collision model since it is t
only known case where an analytical expression for a sp
tral profile has been found when the relaxation rate of
optical coherencegba is either speed dependent or spe

3One expectsD to be the mass diffusion constant ifA(v←v8)ba

for the off-diagonal element is real, and the same asA(v←v8)aa for
the population~diagonal element of the density matrix!. In principle
A(v←v8)ba could be complex, indicating a correlation between t
evolution of the phase and the transport ofrba @16#. Here we take
A(v←v8)ba as real.
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independent@17#. The hard collision model takes a collisio
kernel that distributes allv8 classes over the same Maxwe
ian in v. This does not correspond to any known physi
situation. Nevertheless, the hard collision model has the
rect low- and high-density limits, satisfies detailed balan
is well behaved mathematically, and~what is important!
leads to a benchmark profile, calculable by standard m
ods, against which we can compare solutions obtained
velocity discretization and matrix inversion. We consid
two cases:~i! pure Dicke narrowing~negligible broadening!
from the Doppler to the Dicke limit, and~ii ! Dicke narrow-
ing, near the minimum in the width, with a speed depend
broadening and shifting.

Pure Dicke narrowing „almost…

We wish to illustrate Dicke narrowing in the absence
collision broadening, from the low-density Doppler profile
the Dicke-narrowed profile at high densities. However,
the Doppler limit, it is not possible simply to setgba andn to
zero in Eq.~5! ~see I!. In the absence of spontaneous rad
tion, setting the relaxation rate for the optical coherence
zero results in zero absorption. A correct treatment of D
pler broadening results from setting the kinetic collision f
quencyn equal to zero, calculating the profile, and taking t
limit as gba approaches zero. For convenience, we shall t
gba as finite but small and speed independent. We co
regard a small constantgba as the natural width of the line

For the hard collision model,n is speed independent an
the collision kernel is given byA(v←v8)5n f 0(v), where
an
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f 0(v) is the normalized Maxwellian (1/Apv0)3 exp

2(v/v0)
2, andv0 is the mean speed (2kT/m)182. With A(v

←v8) given by the HC model andgba independent ofv, Eq.
~5! can be integrated over thex and y components of the
velocity. This leads to an equation for a one dimensio
distribution function, p(vz)5*pdvxdvy . Here we have
dropped the superfluous indexba on pba since we are dealing
with an isolated line. The normalized Maxwellianf 0(v) ap-
pearing inA(v←v8), and the term involvingna also become
one dimensional. When discretized, the elements of the
laxation matrix, off-diagonal invz , can be written as

Wi j 5W~vzi←vz j!5~nK/Apv0!exp@2~vzi /v0!2#, ~6!

whereK is a normalizing constant, determined by the size
the velocity cell. The subscriptsi and j identify post-
collisional and precollisional values. As stated above, a
shown by Eq.~6!, the kernel for the hard collision model i
independent of the velocity of the active molecule (v8) be-
fore a collision, i.e., independent of the subscriptj. Thus the
off-diagonal elements in the same row of the relaxation m
trix are equal. The diagonal elements are written4 as,

Wii 52gba2n$12~K/Apv0!exp@2~vzi /v0!2%, ~7!

When Eqs.~6! and ~7! are introduced into Eq.~5!, the
transport relaxation problem, in the case of a speed indep
dentgba , reduces to a set of coupled linear equations of
form,
~vba2v1kvzi!pi5 igba pi1 in$12~K/Apv0!exp@2~vzi /v0!2#%pi

2 i( ~nK/Apv0!exp@2~vzi /v0!2# pj~vz j!1naf 0~vzi!mba , ~8!
the
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where the sum( is, over j, not equal toi. If we define a
column vectorr, where the elements are the values ofp for
the different ‘‘vz cells,’’ then the set of equations can be c
be written as

@v01 iW2vI #r5Nm, ~9!

wherev0 is a diagonal matrix of Doppler transition freque
cies,vba1kvzi , I is the unit matrix,N is a diagonal matrix
of populations in the ‘‘vz cells,’’ andm is a column vector of
dipoles, all equal because the transition dipole is indepen
of the molecular velocity. Equation~9!, for Dicke narrowing,
is identical to Eq.~15! of I for line mixing, and may be
solved in the same manner. For completeness, we repea
treatment given there.

Briefly, to solve Eq.~9!, we look for a transformationA
such thatG5@v01 iW# becomes diagonal, i.e., we solve th
equationL5A21GA. This transformation also diagonalize
@v01 iW2vI #. Then Eq.~9! can be written

A21@v01 iW2vI #AA21r5@L2vI #A215A21@Nm#,
~10!
nt

the

which has as a solution

r5A@L2vI #21A21@Nm#. ~11!

As the susceptibility is proportional tom†r, the spectral pro-
file can be determined by multiplying Eq.~11! by the row
vectorm† and taking the imaginary part. Thus, as stated,
spectral profile may be determined directly from the set
coupled linear equations, using matrix techniques. The pr
lem is easily handled on a desk top computer. In the pres
case, the diagonal elements of the relaxation matrixW con-
tain a constant part, (gba1n)I which could be separated ou

4The presence of the term inK is understandable. Even in th
integral form the collision kernel contains a diagonal compone
viz. A(v←v85v)dv8. It is of course infinitesimally small. For a
finite number of cells, we must take it into consideration and ad
to the usual diagonal term.K is determined by the sum rule
( iWi j 52gba .
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and treated in the same manner asvI . We do not labor the
reader with this and other minor points, but rather proce
directly to the results.

Figure 1 shows the computed line profile~solid lines! for
gba equal to 3 MHz andn equal to 0, 15, 300, and 150
MHz. The mean speedv0 and the Doppler parameterkv0
were chosen to represent a rovibrational line of CO at ro
temperature. We have deliberately chosen the spacing
tween thevz cells to be large, so that discrete but fictitio
‘‘lines’’ appear when the kinetic collision frequency is low
A total of 25 speed groups were used, although Fig. 1
plotted over a frequency range that displays the presenc
only nine of them. Atn equal to zero, the widths of th
spectral components@half width at half maximum~HWHM!#
is just the constant relaxation rate,gba53 MHz. We see, as
the collision frequency is increased, that the fictitious lines
our band, broaden, overlap, and collapse to a narrow si
line; these details of Dicke narrowing, which are identical
those observed in line mixing, would not have been appa
if we had binned thevz speed classes on a scale fine co
pared to the collisional widthgba . This example is very
reminiscent of Dicke’s original paper. There he considere
one-dimensional problem, and described the system in te
of just two vz classes.

Also shown in Fig. 1 are the curves for the HC mod
~dotted line!, calculated numerically, but using the standa
analytic solution@17#. What is surprising is how quickly the
coarse-grained matrix solutions approach the full solution

FIG. 1. Solid curve: Dicke narrowing of an isolated line, calc
lated by the matrix technique using 25 classes ofvz and a constant
broadening of 3 MHz. The collision frequencyn was ~a! 0, ~b! 15
MHz, ~c! 300 MHz, and~d! 1.5 GHz. Dashed curve: as abov
except calculated numerically from the analytical expression@17#.
d
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the density~collision frequency! is increased. This has
practical consequence. The more severe the Dicke narr
ing, the coarser the speed graining can be. This reduces
size of the matrix that must be diagonalized. The down s
of this is the fact that the lower the density, i.e., the clo
one is to the Doppler limit, the finer the speed graining m
be to capture the spectral line shape accurately.

The practical choice of bin size is also determined by
value of gba . Figure 2 shows the matrix solution forgba
53 MHz ~the same as for Fig. 1! andn50. Even with 200
bins, spanning the same range ofvz as above, the resul
~oscillating line! is not an accurate representation of the st
dard solution~smooth curve!. The latter is actually a Voigt
profile, and is nearly a pure Gaussian under the chosen
ditions. By comparing the change in the calculated profi
for n changing from 0@Fig. 1~a!# to 15 MHz @Fig. 1~b!#, it is
clear that 200 channels andn515 MHz would simulate rea-
sonably well the full solution in Fig. 2.

As a final demonstration of the matrix solution in th
nearly pure Dicke narrowing case, in Fig. 3 we show a p
of the width~HWHM! as a function of the kinetic raten, for

FIG. 2. Oscillating curve: Dicke narrowing of an isolated lin
calculated by the matrix technique using 200 classes ofvz with a
broadening of 3 MHz and kinetic collision frequency of zer
Smooth curve: calculated numerically from the analytical expr
sion @17#.

FIG. 3. HWHM of a line calculated using the matrix techniqu
with a constant broadening of 3 MHz and varying kinetic collisi
frequency.
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PRA 59 3511DICKE NARROWING AS AN EXAMPLE OF LINE MIXING
the 25 bin case andn varying from 0.3 to 90 GHz. The
HWHM were measured directly from the profiles. We s
the inverse dependence on the density (n;density), charac-
teristic of Dicke narrowing, and the asymptotic approach
the fixed relaxation rategba .

In the examples above, the relaxation rate of the opt
coherence was kept constant and small. This was conven
for illustrating the well-known properties of Dicke narrow
ing, but not realistic. Physically, bothg and n scale with
density and maintain a fixed ratio, one with respect to
other. The same procedure for establishing the matrix eq
tion as outlined above may be used to generate spectra,
vided bothg andn remain speed independent. We have co
puted spectral profiles for several ratios ofg/n over a range
of the kinetic collision frequency or what is equivalent
range of density. In all cases there was agreement betw
the matrix and standard profile, provided the binning of
vz classes was fine enough. In the case ofg small compared
to n a plot of the HWHM of the profiles as a function o
kinetic collision frequency~density! showed the characteris
tic Dicke minimum@13#. In summary, by considering a con
crete example, we have shown that the matrix inversion te
nique, as used in the theory of line mixing, is a viab
numerical method of solving the transport relaxation eq
tion for an isolated line with speed-independent broaden

Dicke narrowing with speed-dependent
broadening and shifting

In the case of speed-independent broadening it was
sible to integrate over thex andy components of the velocity
before discretizing the distribution. Wheng is speed depen
dent, then a slightly different treatment is required. In
isotropic system, such as a gas in equilibrium, the vari
relaxation rates can depend at most upon the magnitud
the velocity. Due to the appearance of thekvz term in the
master equation, it therefore becomes convenient to ch
spherical coordinates (v,u,f) for the velocity withz as the
polar axis. Then we can integrate overf before dividing the
velocity distribution overv and u. In practice, we find that
discretizing inu rather than invz ~another option! reduces
the irregularities in the computed profile arising from t
coarseness of the binning. Such irregularities are plainly
ible in Figs. 1~a! and 1~b!. Previously, the distribution func
tion was only divided overvz . Now it is divided overu and
v. Consequently,r is a longer column vector~more ele-
ments!. The number of elements in the relaxation matrix
creases quadratically with the length ofr. Nevertheless, the
resulting equation takes on the same form as Eq.~9!, and
may be solved in the identical manner.

For illustrative purposes, we have again used the
model to describe the translational dynamics of the distri
tion function. For speed-dependent broadening and shift
we now need an explicit model forgba . For convenience
we have used the simple, inverse power, straight line co
sion model described in Ref.@18#. In this case, the spee
dependence of the broadening and shifting rates are give

gba5g~v !1 id~v !

5~11l!bM @b, 3
2 ,2l~v/v0!2#^g~v !1 id~v !&,
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by

where l is the perturber to absorber mass ratio,b52(q
23)/(2q22), andM is a confluent hypergeometric func
tion. The brackets indicate an average over the Maxwel
speed distribution, andr 2q describes the radial dependen
of the intermolecular interaction responsible for the broad
ing and shifting. For such a simple collision model, no phy
cal meaning should be attached to the value ofq. It is a
parameter that allows one to alter the speed dependenc
the broadening and shifting. Dugganet al. @1# used a speed
dependent broadening determined by the same collis
model, and an empirical spectral profile to fit their CO da
broadened by Ar and He. Forq, they found that a value nea
6 fitted their data. For no other reason we have chosen
value ofq to illustrate the use of the matrix technique for th
combined effects of Dicke narrowing and speed-depend
broadening and shifting. Forl51 andq56, the calculated
width g(v) varies approximately quadratically withv over
the range ofv from 0 to 2v0 , being some 50% larger at 2v0
as compared to the value atv equal to zero. We have chose
the kinetic collision frequency,n such that̂ g(v)&/n is equal
to 1

5. This produces a well-defined Dicke minimum. A spe
tral profile was computed forn near the Dicke minimum
where the two contributions to the width of an isolated li
are about equal. Figure 4 shows a plot of the profile co
puted by the matrix technique. Only five bins inv andu, for
a total of 25, were used. That a smooth curve results ill
trates again that only coarse graining of the velocity is
quired in the line narrowing region. In line mixing it is rec
ognized that the details of the relaxation matrix are n
important in determining the band profile in the case ofse-
vere mixing. The present work suggests that details of t
free molecule line position, etc., are also not critical in th
region. Also shown in Fig. 4 is the profile~dashed curve!,
computed numerically from the known analytical solution
the same model@17#. The high level of agreement betwee
the two spectra, in spite of the coarse graining of the vel
ity, illustrates the two main points of this paper;~i! that the
matrix technique may be used to solve the transport re
ation equation for isolated lines; and~ii ! that there is an
intimate relationship between line mixing and Dicke narro
ing. Our treatment of narrowing and broadening is to

FIG. 4. A comparison of spectral profiles for a Dicke-narrow
line including speed-dependent broadening and shifting. S
curve, calculated by discretizing the velocity. Dashed line; cal
lated by direct numerical calculation from the analytical form@17#.
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contrasted with treatments based on the generalized W
mann Snider equation@19,20#.

SUMMARY AND CONCLUDING REMARKS

By discretizing the translational motion we have be
able to establish the close relationship that exists betw
Dicke narrowing and line mixing. Furthermore, borrowin
matrix techniques from the mixing has allowed us to tr
numerically the general problem of combined Dicke narro
ing and speed-dependent broadening and shifting. There
one all-important proviso, and that that is we must be able
calculate or model the speed dependence of the variou
laxation rates. Our treatment of Dicke narrowing provide
valuable lesson. By binning or boxing the speed classes
cells, even the most general multiline speed-dependent
may be expressed as a set of coupled linear equations
need simply restore the indexba, suppressed in the treatme
of an isolated line. In the multiline case, the relaxation ra
and the specification of the boxes for the distribution fun
tion will carry three indices: one for the component of t
optical coherence, one for the speed class, and one fo
angular orvz class. Preliminary calculations along these li
were reported in Ref.@21#.

The master equation proposed in I excluded transiti
between boxes that differed both in the component of
optical coherence and in the velocity. However, it is cle
from the discussion that no difficulty will arise if the relax
ation matrix has a general formW( l ,v,u←I 8,v8,u8) where,
R

o

f
e,
ld-

en

t
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as

to
re-
a
to
se
e

s
-

he

s
e
r

in standard line mixing terminology,l stands for line or tran-
sition. ~Such terms are the source of statistical correlat
between the evolution of the internal and translational
grees of freedom.! With the apparently unending growth i
computer memory and power, the numerical solution by m
trix techniques becomes easier, almost on a daily basis.
present calculations were carried out on a desktop compu
The biggest problem solved involved diagonalizing a 3
3350 matrix, and required about 10 min. Most of the pr
files only required on the order of 1 min of computer tim
Computing power is then not a serious bottleneck to
general application of the ideas expressed in this paper. W
presently represents an impediment is the lack of any ph
cally realistic models of the speed dependence of the var
relaxation rates. Microscopic, semiclassical calculatio
could be used to create such models. At that stage one c
begin to look for signatures in the spectral profiles of spec
aspects of the speed dependence of the various relax
rates or of the presence of statistical correlation. Hopefu
the signatures will be unique.

ACKNOWLEDGMENTS

A.D.M. wishes to acknowledge a number of very fruitf
discussions with F. R. McCourt, S. Hess, and W.-K. L
Financial support by the Natural Sciences and Enginee
Research Council of Canada is also gratefully ackno
edged.
J.

sc.

nd
o
e-
@1# P. Duggan, P. M. Sinclair, R. Berman, A. D. May, and J.
Drummond, J. Mol. Spectrosc.186, 90 ~1997!.

@2# R. L. Farrow, L. A. Rahn, and G. O. Sitz, Phys. Rev. Lett.63,
746 ~1989!.

@3# J. Ph. Berger, R. Saint-Loup, and H. Berger, Phys. Rev. A49,
3396 ~1994!.

@4# B. Lance, G. Blanquet, J. Walrand, and J.-P. Bouanich, J. M
Spectrosc.185, 262 ~1997!.

@5# S.-Y. Chen and M. Takeo, Rev. Mod. Phys.29, 20 ~1957!.
@6# A. Ben Reuven, Adv. Chem. Phys.33, 235 ~1975!.
@7# A. D. May, preceding paper, Phys. Rev. A59, 3495~1999!.
@8# R. H. Dicke, Phys. Rev.89, 472 ~1953!.
@9# M. Baranger, Phys. Rev.111, 481 ~1958!; 111, 494 ~1958!;

111, 855 ~1958!.
@10# R. G. Gordon and R. P. McGinnis, J. Chem. Phys.49, 2455

~1968!.
@11# A. Levy, N. Lacome, and C. Chackerian, inSpectroscopy of

the Earth’s Atmosphere and Interstellar Medium, edited by K.
N. Rao and A. Weber~Academic, Boston, 1992!.

@12# S. Chapman and T. G. Cowling,The Mathematical Theory o
Nonuniform Gases~Cambridge University Press, Cambridg
.

l.

1952!.
@13# J. W. Forsman, P. M. Sinclair, A. D. May, P. Duggan, and

R. Drummond, J. Chem. Phys.97, 5355~1992!.
@14# L. Galatry, Phys. Rev.122, 1218~1961!.
@15# M. Nelkin and A. Ghatak, Phys. Rev. A135, 4 ~1964!.
@16# L. Demeio, S. Green, and L. Monchick, J. Chem. Phys.102,

9160 ~1995!.
@17# S. G. Rautian and I. I. Sobelman, Usp. Fiz. Nauk90, 209

~1967! @Sov. Phys. Usp.9, 701 ~1967!#.
@18# J. Ward, J. Cooper, and E. W. Smith, J. Quant. Spectro

Radiat. Transf.20, 275 ~1978!.
@19# G. C. Corey and F. R. McCourt, J. Chem. Phys.81, 2318

~1984!.
@20# R. Blackmore, S. Green, and L. Monchick, J. Chem. Phys.91,

3846 ~1989!.
@21# S. Dolbeau, undergraduate report, University of Toronto a

University of Rennes. A copy is available by writing t
ENSSAT, 6 rue de Kerampont, BP 447, 22305 Lannion C
dex, France. Request the report by S. Dolbeau,Cycle Optron-
ique, 1998.


