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Application of ab initio methods for calculations of voltage as a function of composition
in electrochemical cells
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Results of ab initio total-energy calculations are used to calculate efFective atom-atom interactions in a
lattice-gas model for the binary alloy Li Al for O~x ~ 1. The statistical mechanics is solved at finite
temperature to obtain the ab initio chemical potential of lithium in Li-Al alloys as a function of composi-
tion x. We compare our calculated results with the experimentally measured chemical potential from an
electrochemical cell. Predicting chemical potentials from first principles will be important for under-
standing technologically important intercalation compounds used for advanced battery applications.

I. INTRODUCTION

Ab initio total-energy calculations can be used to calcu-
late the cohesive energy, the lattice constant and the bulk
modulus of periodic solids. The stability of one structur-
al phase over another can be predicted, as can the phase
diagrams of alloy systems. ' Confidence in the theoreti-
cal predictions is attained when they are able to repro-
duce a wide body of experiments for a particular system.
Although chemical potentials can be calculated using ab
initio methods based on the cluster expansion method
just as phase diagrams can, to our knowledge there has
not yet been a comparison between calculated and experi-
mentally measured chemical potentials. The chemical
potential of one or more components of alloy systems or
the chemical potential of intercalated atoms in intercala-
tion compounds is easily measured using electrochemical
techniques, so such a comparison should be possible. Of
course, comparisons have been made for phenomenologi-
cal models based on lattice-gas models with atom-atom
interactions as adjustable parameters.

For an A -8 alloy system, the voltage V(y) of an elec-
trochemical cell with pure A as one electrode and A 8 as
the other electrode (and an electrolyte containing dis-
solved 2 + ions) is given by

where p'(y) is the chemical potential of A in A 8 and p„
is the chemical potential of A in pure A. To obtain this
result, we assume the reactions at the electrodes are

6y A ~6y A++6y e

at the A electrode and

A B+6y A++5y e ~A +& 8
at the A B electrode. The voltage of Li/Li Al cells as a
function of y has already been measured and can be used
to obtain the chemical potential of Li. Here we report
our own measurements on Li/Li„A1 cells, which agree
well with the earlier work.

To calculate the chemical potential [p'(y)] of A in an

A 8 alloy from first principles, one calculates total or
cohesive energies for a number of "suitable" stable and
metastable phases. From these energies, effective atom-
atom interactions are derived in the context of an Ising-
like or lattice gas model. Then statistical mechanics is
used to obtain an ab initio phase diagram, p'(y) and p„.
From the chemical potentials, the voltage of an A /2 8
electrochemical cell is obtained. Because the experiments
measure cell voltage, not chemical potential, we will cal-
culate the appropriate cell voltages.

Recently, intercalation compounds such as Li C6 (Ref.
8) and Li&Ni02 (Ref. 9), Li&Co02 (Ref. 10), or Li Mn204
(Ref. 11) have been proposed and used in prototype
high-energy-density rechargeable batteries. The search
for even better batteries of this type is generally acknowl-
edged to be a search for new materials with appropriate
ranges for the chemical potential of lithium. In our labo-
ratory, this search for new materials is made using chemi-
cal and physical intuition coupled with an active syn-
thesis program. However, we often find that new materi-
als, which we synthesize, give lithium chemical potentials
that are not technologically interesting. An ab initio cal-
culation done prior to synthesis, using methods similar to
those that will be outlined below, could save hundreds of
hours of experimental work and could point the way to
interesting classes of materials. Now that the cost of
computing is decreasing rapidly, while that of experiment
is increasing, it is possible that calculations similar to
those described below will be important in the selection
of electrode materials for the next generation of advanced
batteries.

At room temperature the experimental phase dia-
gram' for Li„Al& indicates that the fcc aluminum
structure is only stable for 0 ~x + 0.01, beyond which a
phase coexistence between fcc Al and LiA1 exists for
0.01 ~x ~

—,'. LiA1 has the 832 (NaT1) structure [see Fig.
1(b)) with an underlying bcc lattice. Beyond x =

—,
' other

first-order transitions take place, to the so-called "inter-
loper" phases A12Li3 (space group R 3m) and A14Li9
(space group C2/m), which have neither the fcc nor bcc
underlying lattice type. Finally at x =1, bcc Li is ob-
served. Sluiter et al. have calculated cohesive energies
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The prefactors for the two-, three-, and four-body terms
result from periodic boundary conditions around the
cluster. Using the rule o.;=0 if site i is occupied by Al
and o; =1 for Li, the cohesive energies, listed in Fig. 1(a),
in terms of the five interaction parameters are

A14 E„h=4( —4.0127 eV) =4JO,

(b) bcc

A13Li E„h=4( —3.5477 eV) =4JO+J1,
A12Li2 E„h =4( —2.9929 eV) =4JO+2J1+4J2,
AlLi3 E„h=4( —2.3414 eV )

=4JP +3J& + 12J2 +8J3

(3)

A L&
—3.9501eV AI+i —3.4130eV A4L~(B2) —2.9956eV

Li4 E„h=4(—1.7009 eV)

=4J0+ 3J1+24J~ +32J3+8J4 .

A~~{832) —3.0799eV AEL~ —2.3863eV Li4 —1.6941e V

FIG. l. (a) Various atomic arrangements for one fcc unit cell
of Li Al, for x=0, 1/4, 1/2, 3/4, 1. (b) As in (a) for two bcc
unit cells. The ab initio cohesive energies {per atom) as calculat-
ed by Sluiter et al. (Ref. 3) are listed below each cluster.

Solving for the J's gives Jp = —4.012 70 eV, J, = 1.860 00
eV, J2 =0.089 80 eV, J3 =0.003 45 eV, and
J4= —0.057 30 eV.

A similar procedure must be carried out for the bcc
lattice for which a tetrahedral cluster is actually made up
of two unit cells and is distorted. The six distinct
configurations are shown in Fig. 1(b). Here, first- (J21)
and second- (J2 2 ) neighbor two-body interactions are in-
cluded corresponding to bond distances &3a/2 and c2 re-
spectively, where a is the unit-cell edge. The resulting en-
ergy expression and interaction parameters for the bcc
case are

for a number of four-site Li Al& „cluster configurations,
for both fcc and bcc lattice types, using the full-potential
linearized augmented-plane-wave (FLAP&) method. '

II. INVERSION METHOD
OF CONNOLLY AND WILLIAMS

Here we describe how effective atom-atom interactions
are obtained from total energies of extended systems with
various atom configurations. One unit cell of the fcc lat-
tice is represented by a tetrahedral cluster for which
there are five possible configurations, shown in Fig. 1(a),
along with the calculated cohesive energies (in eV per
atom) for the extended system. Superlattice structures,
which cannot be described within this " tetrahedron ap-
proximation, " such as the interloper phases mentioned
above, will not be considered. Following the inversion
method of Connolly and Williams, we will express these
energies in terms of a lattice-gas model with suitable in-
teraction parameters. In a lattice-gas model each site i is
occupied by either Al (cr; =0) or Li (o,. = 1). Then a gen-
eral expression for the cohesive energy (within the
tetrahedron approximation) for one unit cell of the fcc
lattice now follows:

E„h =4JO+ Ji(cr, +cr2+o,+04).
+4J2 1(o' io'2+ o'2o'3+ 0'3o 4+ o 4o'1)

+6J2 2(o,o 3+CT2CT4)

+12J3(CT1CT203+CT2CT3CT4+CT3o. 4o, +cr4o, o 2)

+24J4o. l
o.2o.30 4 (4)

III. SOLUTION QF THE STATISTICAL MECHANICS

A. Calculating voltage

The next step in determining the voltage curve of an
electrochemical cell is to solve the statistical mechanics
of the lattice gas model. Below we will describe the two
methods used in this work, the mean-field approximation
and the Monte Carlo method. The lattice gas model is

with Jp = —3 950 10 eV, J, =2 148 40 eV, J2,= —0.20400 eV, J22= —0.07980 eV, J3=0.16007 eV,
and J4= —0. 12630 eV.

Configurational entropy must now be considered along
with the energy expressions (2) and (4) to predict finite
temperature physical properties.
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most conveniently described in terms of the composition
x in Li Al, . On the other hand, experimental mea-
surements are carried out as a function of y in Li Al,
where y =x/(1 —x). In this section we describe how the
Li chemical potentials (and hence voltages) of the two
systems are related.

In an experimental Li/Li~A1 cell the amount of alumi-
num is fixed, and manipulations are required to obtain
the measured voltage V(y) in (1) as a function of p (for Li
in Li„A1& „).First we must introduce the Helmholtz po-
tential'

(14)

an
Bx;

=c;—p+kz Tln
1 —x;

=0, i=1, . . . , 4 (15)

or

is the average occupation by Li of all sites. We wish to
minimize the grand potential Q with respect to the aver-
age occupations x,. :

F(x, T)= (E„h ) —TS =Q(p, T)+Npx, x, = [ I+exp[(c, , p)/(kz T—)] j (16)

of Li Al, , where X is the number of available sites to
be filled by Li or Al. Similarly

The derivatives c, depend on lattice type and i, that is for
fcc

F'(y, T) =0'(p', T)+N'p'y', (6)
x)

for LiyA1, where X' is the number of Al atoms. Since
p'(y) = (1/N')(BF'/By ), we have +J, +4J2(x2+x3+x4)+8J3(x2x3+x3x4+x4x2)

e V(y) =pL;
—(1/N')(BF'/By ), (7) +8J4x2x3x4 (17)

where pL; is the chemical potential of lithium metal. The
free energies of

and for bcc

B(E„h)

(Li„A1, „) and Li q(, )Al

must be equal therefore, to

F(x, T)=F',T =F'(y, T) .
1 x 1 x

(8)
=J) +4J~ )(x~+x4)

+6J~ 2x3+ 12J3(x2x3+x3x4+x4x2)

+24J4xzx3x4 . (18)

Then

BF'
F(x, T) =(1—x) +F(x, T) .

By dy dx 1 —x ' Bx

The Helmholtz free energy of Li Al&

F(x, T) =Q(p, T)+Npx; therefore, using (7),

e V(y, T)=p„; 0(p, T ) /N——p .

is

We use Eq. (11) and y=x/(1 —x) to calculate voltage
curves, which can be compared with experiment.

B. Mean-field approximation

Mean-field theory approximates many-body correla-
tions as a product of one-body expectation values,
(xlxz. ) =(x;)(xj.). One can show that the mean-field
entropy for a lattice gas is'

S= —k~ g [x, lnx, +(1—x, )ln(1 —x;)], (12)

where k~ is Boltzmann's constant ( k~ =8.6173X 10
eV/K) and the summation is over the four sites in the
tetrahedral cluster. The grand potential 0 is

Q(p, T)= (E„h ) Npx —TS, — (13)

where X is the number of lattice sites, p is the chemical
potential of Li in Li„A1, „and

Other derivatives are obtained by cyclic permutation of
the indices.

The system of equations (16) is nonlinear and must be
solved numerically. For simplicity we chose a simple
iterative scheme, which stops when the system of equa-
tions (16) is self-consistent to within a prescribed numeri-
cal tolerance (in our case ~hx~=~x, )d

—x„, ~
&1O ).

We start with a small p and an initial guess x;=0 and
iterate Eq. (16) until convergence is achieved. p is then
increased by some suitable increment hp, and the itera-
tion is repeated using the preceding solution as an initial
guess. This ramping up of p and using the previous solu-
tion as an initial guess can lead to complications if the
grand potential Q develops multiple minima, since the
iteration scheme will only find the nearest minimum to
the initial guess. At small p we know that all x,- =0 is the
only minimum of Q. In order to find the global minimum
at each p, we carry out the whole calculation twice by
first ramping up in p as described above and then ramp-
ing down starting with x; = 1 as an initial guess at large p.
The results for both calculations for each p are com-
pared, and the one with the lowest grand potential Q is
selected as the equilibrium solution.

As an example of the results of such a calculation we
show the average sublattice occupations x; and the total
occupation x as functions of the chemical potential p at
T=300 K for the fcc lattice in Fig. 2. The numbers next
to each line indicate the number of sublattices with that
composition. As p increases, more and more sublattices
become predominantly occupied by lithium.
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FIG. 4. The grand potential A(p, T) form both fcc and bcc
lattice types, calculated using mean field theory.

FICJ. 2. (a) The overall average occupation of Li [Eq. (14)] in
Li Ali „as a function of the chemical potential p. (b) As in (a)
except for the four individual sublattices.

0.8

@ 0.6

~ 0.4
0

0.2

CC

MFT
MC

300'K

In Fig. 3 we show the ab initio voltage vs composition
(y =x/[1 —x]) curves for the fcc and bcc lattices ob-
tained by iteratively solving (16) for a suitable range of
chemical potentials p at T=300 K. The fcc curve is very
steep at y= —,

' and y=1, which corresponds to ordered
phases' at x =

4 and x =
—,', respectively. The bcc curve

exhibits a wide plateau from 0 ~y ~ 1, which results from
the phase coexistence of bcc Al and B32 LiAl.

The final step is to combine the fcc and bcc results by
selecting the lattice with the lowest 0 at constant p. The
grand potentials for both lattices are shown in Fig. 4,
where some hysteresis for the bcc lattice is evident.
Below p=1.9 eV the fcc structure is preferred, and for
p&1.9 eV the bcc structure is preferred. The switch
from fcc to bcc at @=1.9 eV involves a large change in
composition, by = 1. The final mean-field-theory voltage
curve is shown in Fig. 5(a) for T =300 K.

C. Monte Carlo method

O.S

0.5-
(a)

T = 300 K T = 300 K
(c)

T = 303 K

The mean-field approximation often distorts the results
near critical points and more importantly, for our pur-
pose, it shifts critical points from their true values.

'Therefore, we have recalculated all quantities using the
Monte Carlo technique. ' Monte Carlo makes no ap-
proximations for the many-body correlations but does
suffer from finite-size effects and statistical noise. These
problems are most severe when calculating Auctuation
quantities such as heat capacity and susceptibility. For
our purposes no fluctuation quantities are required, just
the free energy and x. Calculation of the free energy by
Monte Carlo is complicated because the free energy can-
not be expressed as the expectation value of an observ-
able. ' We use Ferrenberg's and Swendsen's multiple his-
togram method, ' which allows one to obtain accurate es-
timates of the free energy and all other quantities as con-
tinuous functions of p. Histograms where calculated for
171 values of p in the range 1.5 ~ p ~ 3.2, which encom-
passes the whole range of 0 x ~1 (or 0 y oo) for
both lattices. The simulation lengths were 10000 Monte
Carlo steps per site for each p. As in the mean-field cal-
culations, the simulations were done twice by ramping p
both up and down in order to find the equilibrium behav-
ior.

The calculations were carried out for a 4 X4X4 unit-
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FIG. 3. Equilibrium voltage curves for fcc (a) and bcc (b)
Li~A1 as calculated using mean-field theory and Monte Carlo at
300 K.

FIG. 5. The final mean field (a), Monte Carlo (b), and mea-
sured (c) voltage curves for LiyA1 at room temperature. Mea-
sured charge and discharge cycles are labeled by the arrows.
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cell lattice, which corresponds to 256 and 128 sites for
the fcc and bcc lattices, respectively. The bcc lattice is
dominated by a very strong first-order transition for
which there can be no finite-size effects. On the other
hand, the fcc lattice exhibits three apparently continuous
transitions, which will suffer from finite-size effects in our
simulations. The discrepancy in calculated voltages be-
tween 4 X4 X4 and 8 X 8 X 8 fcc lattices was found to be
less 0.005 V. Also none of these continuous transitions
are relevant to our final result, as they are preempted by a
transition to the bcc underlying lattice.

The fcc and bcc Monte Carlo voltage curves are shown
as dashed lines in Fig. 3. For the bcc lattice, mean-field
theory and Monte Carlo give essentially identical results.
The final Monte Carlo equilibrium voltage curve is shown
in Fig. 5(b).

IV. COMPARISON WITH EXPERIMENT

The final test is to compare these results with experi-
ment. Accurate voltage measurements were carried out
on a Li/Li Al coin cell' using l M LiN(CF3SO2)2 in a
50:50 volume mixture of propylene carbonate and
ethylene carbonate. The cell was charged and discharged
using a constant current cycler and thermostated at
30'C. Data were logged whenever the cell voltage
changed by more than 0.002 V. The charging and
discharging currents corresponded to a change of Ay =1
in Li Al in 200 h. The aluminum anode surface was
scraped in an argon atmosphere in an attempt to remove
the AlzO3 passivation layer. A typical charge-discharge
cycle is shown in Fig. 5(c). Values of y were obtained us-
ing the mass of Al initially incorporated in the cell, the
constant current and the duration of current Aow.

The comparison with the measured voltage curve is
complicated by the fact that the experimental system ex-
hibits strong hysteresis in the fcc Al-B32 LiA1 coex-
istence region. The agreement between the theory and
measured recharge is remarkable, the plateau voltage be-
ing accurate to within =10 mV. For 0(y ~0.2 the cal-
culations predict an fcc structure, and for 0.2(y ~1.0
there is a phase coexistence between fcc and bcc struc-
tures. The narrow plateau at y=1. 1 in the measured
data is due to the A12Li3 interloper phase, which was not
included in the calculations. However, if total or
cohesive energies were available for various atom

configurations of the rhombohedral A12Li3 structure,
then inclusion of this phase in the calculation would be
straightforward. The calculation also predicts that the
charge curve is near equilibrium, suggesting that strain or
interface energies (which to our knowledge have not been
calculated ab initio) are suppressing nucleation of the
B32 LiA1 phase from fcc Li Al on discharge.

This could be tested experimentally using a battery
calorimeter. If a cell is charged or discharged with a con-
stant current in a sensitive, isothermal, calorimeter, the
heat How out of the cell due to hysteresis is equal to the
difference between the cell voltage and the equilibrium
voltage multiplied by current. There is unfortunately, a
second term in the calorimeter heat Aow, which is pro-
portional to the current. This term depends on the
change of the partial molar entropy with y in Li Al. If
the entropy of B32 LiA1 and fcc Al are accurately
known, one can separate the hysteresis and entropy con-
tributions thus obtaining the equilibrium voltage. If the
entropy term is small, and if there is no hysteresis present
during the charging of the Li/Li Al cell, the charge
should show much less heat output than the discharge.

V. CONCLUSIONS

We have shown that accurate ab initio calculations of
voltage curves for electrochemical cells are possible. The
rate limiting step is the calculation of total energies from
which the effective atom-atom interactions are derived.
Such calculations on technologically important intercala-
tion compounds, such as graphite, boronated graphite,
LiNiOz, LiCoOz, ' and LiMnz04, " would provide
deeper insight into the physical properties of the host ma-
terial that determine electrochemical behavior. As more
experience and confidence is gained in these calculations,
ab initio methods may also provide a useful presynthesis
screening mechanism for candidate electrode materials to
be used in advanced battery applications.
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