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Abstract

This thesis is mainly focused on the equivalence problem for a subclass of Lorentzian
manifolds: the degenerate Kundt spacetimes. These spacetimes are not defined
uniquely by their scalar curvature invariants. To prove two metrics are diffeomor-
phic, one must apply Cartan’s equivalence algorithm, which is a non-trivial task: in
four dimensions Karlhede has adapted the algorithm to the formalism of General
Relativity and significant effort has been spent applying this algorithm to particular
subcases. No work has been done on the higher dimensional case. First, we study the
existence of a non-spacelike symmetry in two well-known subclasses of the N dimen-
sional degenerate Kundt spacetimes: those spacetimes with constant scalar curvature
invariants (CSI) and those admitting a covariant constant null vector (CCNV ). We
classify the CSI and CCNV spacetimes in terms of the form of the Killing vector
giving constraints for the metric functions in each case. For the rest of the thesis we
fix N = 4 and study a subclass of the CSI spacetimes: the CSIΛ spacetimes, in which
all scalar curvature invariants vanish except those constructed from the cosmological
constant. We produce an invariant characterization of all CSIΛ spacetimes. The
Petrov type N solutions have been classified using two scalar invariants. However,
this classification is incomplete: given two plane-fronted gravitational waves in which
both pairs of invariants are similar, one cannot prove the two metrics are equiva-
lent. Even in this relatively simple subclass, the Karlhede algorithm is non-trivial
to implement. We apply the Karlhede algorithm to the collection of vacuum Type
N V SI (CSIΛ=0) spacetimes consisting of the vacuum PP-wave and vacuum Kundt
wave spacetimes. We show that the upper-bound needed to classify any Type N vac-
uum V SI metric is four. In the case of the vacuum PP-waves we have proven that
the upper-bound is sharp, while in the case of the Kundt waves we have lowered the
upper-bound from five to four. We also produce a suite of invariants that characterize
each set of non-equivalent metrics in this collection. As an application we show how
these invariants may be related to the physical interpretation of the vacuum plane
wave spacetimes.
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Chapter 1

Introduction

How do we determine when two given Riemannian manifolds describe the same ge-
ometric object, so that they are equivalent under some coordinate transformation?
This is an interesting question with a complicated answer. Without going into tech-
nical details at this point, the answer lies in the components of the derived tensors
arising from the metric, such as the components of the Riemann tensor and its co-
variant derivatives. These quantities are invariant functions, and so any invariant
combination of these functions will retain the same form regardless of the coordinate
system.

The difficulty arises from the sheer number of invariants produced and how the
freedom of the frame bundle can be used to simplify these invariant quantities. To
cope with these problems algorithms have been developed to calculate these invariants
and their functional relationships. However, for particular manifolds these approaches
may still be computationally infeasible or non-algorithmic at some later stage. For
example, if one wishes to determine the exact coordinate transformation used, one
must solve an extensive list of equations and some of these equations may be tran-
scendental.

If one is interested in showing the inequivalence of two manifolds, one may avoid
such heavy mathematical machinery by examining the necessary conditions for the
two manifolds to be the same. If any of these conditions differ it may be concluded
the manifolds are distinct. The existence of symmetries like curvature collineations,
conformal motions, homothetic motions and Killing vectors are helpful as these are
geometric objects which exist independent of the coordinate system used. In the same
manner algebraic considerations like Segre type for the Riemann and Ricci tensor or
any other covariant formed from products of the Riemann tensor and its derivatives
with other tensors may be used to partially classify these spaces. As an example,
in the Lorentzian case one may use the Newman-Penrose formalism to work with
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the covariants of the Weyl spinor, ΨABCD with a spinor ξA to reproduce the Petrov
classification.

The covariants of the Riemann tensor and its derivatives are an effective means
of showing the inequivalence of two metrics. One particular set of covariants, the
polynomial scalar curvature invariants, are of particular importance (especially in the
context of Lorentzian geometry). These are produced by contracting the Riemann
tensor and its covariant derivatives in combinations that produce polynomial functions
in terms of the curvature and its derivative. They are remarkable because they allow
for a partial answer to the question of equivalence. In four dimensions it has been
shown that a Lorentzian manifold is either a degenerate Kundt spacetime or the
polynomial scalar curvature invariants are unique to the space [94, 92], namely they
are I-non-degenerate.

In higher dimensions it is believed this property will persist. Either the space will
be uniquely described by the scalar polynomial curvature invariants or the Lorentzian
manifold belongs to the class of higher-dimensional degenerate Kundt metrics where
the kinematic and curvature null frames are aligned so that the curvature tensor and
its covariant derivatives have vanishing positive boost-weight components [92]. If
the conjecture holds true, then the polynomial scalar curvature invariants provide a
straightforward answer to the equivalence problem for almost all spacetimes, except
the degenerate Kundt metrics. The study of degenerate Kundt spacetimes and the
equivalence problem will be important themes in this thesis.

For these spacetimes, the scalar curvature invariants provide necessary conditions
for equivalence but not sufficient conditions. As an example, the metrics describing
Minkowski space and a PP-wave spacetime both have vanishing scalar curvature in-
variants and yet are inequivalent as metrics. Of course by comparing the isometry
group of these two metrics we can show inequivalence by noting Minkowski space
admits a group with ten isometries while at most the PP-wave metrics may admit an
isometry group of dimension six - in the case of the plane-waves. How can we distin-
guish two PP-wave metrics with the same number of isometries, or more generally,
how do we distinguish between two degenerate Kundt spacetimes with the same geo-
metric quantities? To provide an answer one must work with Cartan invariants and
an appropriate algorithm suited to the geometry under study, namely the Karlhede
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algorithm.

Admittedly the full invariant classification of the degenerate Kundt spacetimes in
any dimension is too general of a question to answer. We instead concentrate on a
significant subclass of the degenerate Kundt metrics, the CSI spacetimes, where all
polynomial scalar curvature invariants are constant. Unlike in the Riemannian case,
where any CSI Riemannian metric is automatically a locally homogeneous space [46],
the CSI Lorentzian metrics are either locally homogeneous spaces (H) or degenerate
Kundt CSI spacetimes (CSIK) [94]. However, for every CSIK spacetime with a
particular set of constant invariants there exists at least one homogeneous spacetime
with the same constant invariants. Furthermore, it was conjectured that the CSI

spacetimes could be built from locally homogeneous spaces and the vanishing scalar
invariant (V SI) spacetimes ( i.e. the CSIR conjecture, this conjecture has been
shown to be true in three dimensions [89]).

From the perspective of differential geometry and invariant classification these
properties and the simplicity of the condition on the invariants make the CSI space-
times an ideal subclass to study. In addition, the CSI spacetimes have applications
to mathematical physics [91, 102]. The CSI spacetimes admit a subclass of space-
times which are solutions of supergravity, [85], including AdS × S spacetimes [23],
generalizations of AdS × S based on different V SI seeds [85] and the AdS gyratons
[75]. The conditions these CSI spacetimes must satisfy in order to preserve some
supersymmetry is not fully known. A necessary (but not sufficient) condition for
supersymmetry to be preserved is that the spacetime admits a Killing spinor, and
hence a null or timelike Killing vector.

Although the invariant classification of the CSI spacetimes is incomplete, those
CSI spacetimes which are candidates for solutions to supergravity admit an isom-
etry, and hence can be classified coarsely. Towards this end, in chapter (4) we use
the Killing equations to determine the form of all n-dimensional CSI spacetimes ad-
mitting at least one Killing vector. With this class of metrics written explicitly, we
determine the subset of these that admit a covariantly constant vector. If we are
given two of these CSI metrics, we may determine inequivalence by comparing the
constant scalar curvature invariants, the form of the Killing vector, and the existence
of a covariantly constant null vector.
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The existence of a covariantly constant null vector is relevant for the higher-
dimensional V SI solutions of type IIB supergravity [84]. Those V SI spacetimes in
which some supersymmetry is preserved belong to the set of spacetimes admitting
a covariantly constant null vector. In general the CCNV metrics are of Ricci type
N and Weyl type III or higher; the Weyl type N solutions are a well-know class of
metrics, the PP-waves. These were originally presented as a gravitational equivalent of
the electromagnetic plane-fronted waves [9], describing a non-expanding, non-rotating
gravitational wave in vacuum or admitting a null radiation as a matter-field. As such,
in General relativity, they are interpreted as gravitational radiation propagating at
great distances from the source; they are generally treated as toy models due to the
simplicity of their geometry and interpretation.

The condition for a null vector to be covariantly constant, �a;b = 0, implies the
metrics are geodesic, shear-free, non-expanding and non-twisting; they are a partic-
ular subclass of the Kundt metrics, and belong to the class of degenerate Kundt
metrics. It is known that the CSI metrics admit solutions which are CCNV as
well, one would expect that there are other degenerate Kundt CCNV metrics out-
side of the CSI class. The invariant classification of the N -dimensional degenerate
CCNV spacetimes (like the CSI spacetimes) is incomplete, and so one must resort
to comparing geometric objects to show inequivalence.

In the four dimensional case, Kundt and Ehlers exhaustively listed the admis-
sible symmetry groups for all vacuum PP-waves along with a corresponding list of
canonical forms for these metrics [11]. Presumably one could continue this process
for the remaining CCNV spacetimes to produce a broad equivalence classes based
on the number of elements in the isometry group and their commutator relations.
In application this is a difficult thing to do in N -dimensions due to the generality
involved. For example, a particular choice of two-dimensional transverse space may
offer additional spacelike isometries.

Towards this end, we examine the existence of N -dimensional CCNV spacetimes
admitting a second non-spacelike Killing vector in chapter (5), we produce an exhaus-
tive list of canonical forms and the resulting Killing Lie algebras. Noting that the
CCNV metrics belong to the degenerate Kundt class, and hence contains the CSI

metrics, we extend the work done in chapter (4) by determining the subclass of CSI
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CCNV spacetimes admitting a second Killing vector. The chapter concludes with
an exhaustive list of all CCNV spacetimes admitting a null or timelike Killing vector
on the entire manifold.

In the subsequent chapter, (6), we provide explicit examples of CCNV V SI met-
rics with applications to supersymmetric supergravity. Supersymmetric supergravity
solutions are of interest in the context of the AdS/CFT conjecture, the microscopic
properties of black hole entropy, and in the search for a deeper understanding of
string theory dualities [35, 44, 43]. In five dimensions, solutions preserving various
fractions of supersymmetry of N = 2 gauged supergravity have been studied. The
Killing spinor equations imply that supersymmetric solutions preserve 2, 4, 6 or 8 of
the supersymmetries. For each supersymmetry the space must admit a Killing spinor
and hence a null or timelike Killing vector, consequently the study of CCNV CSI

metrics with multiple non-spacelike Killing vectors is necessary.

Comparing symmetry groups only yields so much information. To provide more
necessary conditions for equivalence, one must produce further invariants. This is
a non-issue as there are a wealth of Cartan invariants to work with. However, if
one wishes to have a finer classification for inequivalence we need only pick a few
invariants. To illustrate this, we examine the four dimensional spaces with all non-zero
invariants expressed as polynomials in terms of a non-zero cosmological constant, the
CSIΛ spacetimes in chapter (7). We determine the conditions on the spin-coefficients
and curvature components as an analogue to the V SI theorem in [55]. Here we
may use Λ to differentiate between solutions while the remaining curvature scalars
Φ12, Φ22 and Ψ4 may be compared to provide necessary conditions for equivalence.

The CSIΛ spaces contain all plane-fronted gravitational waves: the PP-waves
and Kundt waves as CSI0 = V SI spacetimes along with their generalizations with
non-zero Λ as well all of the Type N CSIΛ spacetimes. Originally these were de-
fined for spaces in which the Ricci scalar vanished. In 1984, Ozsvath, Robinson and
Rozga (O.R.R.) [33] studied the plane-fronted gravitational waves in spaces with cos-
mological constant. In 1999 Bicak and Podolsky formally outlined the classification
introduced by O.R.R. [33] into six canonical subclasses depending on the sign of Λ and
the sign of an additional constant κ′: the sole component of the double Lie derivative
of the metric in the direction of �.
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According to this classification the rotating plane-fronted gravitational waves cor-
respond to Λ = 0 and κ′ = 1, denoted as the Kundt waves. Similarly the PP-wave
metric correspond to Λ = κ′ = 0. For non-zero Λ the situation is somewhat different:
if Λ > 0 there is only one class of plane-fronted waves. However, if Λ < 0 there are
three possibilities: κ′ less than, equal to or greater than zero; corresponding to the
generalized PP-waves, Kundt waves and Siklos waves, respectively [50].

To complete Chapter (7) we analyze the conditions for Type N CSIΛ spacetimes,
using the coordinates of [94], to reproduce all plane-fronted gravitational waves in
spacetimes with non-zero cosmological constant [33]. Using the six canonical forms
for the metrics we relate this classification to the one using Petrov and Segre type in
[55].

These comparisons between two CSIΛ metrics can only prove inequivalence. Pre-
sumably if one used enough invariants, one could show equivalence between two met-
rics. In order to determine the smallest set of invariants to prove equivalence one must
invariantly classify these spaces using the Karlhede algorithm. As in the CSI case
the CSIΛ classification is incomplete; with the exception of the vacuum Petrov type
D [37, 28] and the Petrov type O [34, 48, 38, 39] spacetimes with particular matter
conditions, one cannot determine the equivalence of two CSIΛ metrics. In fact the
Karlhede algorithm has yet to be fully implemented in the case of the PP-paves.

As an illustration of the utility of the Karlhede algorithm, in the remaining chap-
ters we will invariantly classify all of the vacuum Type N V SI spacetimes, the plane-
fronted gravitational waves. Although the zeroth order invariants are the same for
vacuum PP-waves and vacuum Kundt waves after normalization, i.e., Ψ4 = 1, the
analysis must be split into two cases depending on the vanishing of the Cartan invari-
ant τ = 1 relative to the new coframe. Due to the relative simplicity of the PP-waves
and their familiarity in the literature these are analyzed first by setting τ = 0.

In Chapter (8) we choose a special coordinate system adapted to the double ζ

derivatives of the metric function f(ζ, u) to better study the functional dependence
of the Cartan invariants that arise in the Karlhede classification. We accomplish this
by studying the degenerate cases of the algorithm where none, one, or two invariants
appear at the first iteration (the case where three invariants appear provides no
information for general analysis and hence must be treated as the non-degenerate case
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in the classification algorithm). Comparing our work with the symmetry classification
[11], we sub-classify the PP-wave metrics according to their symmetry groups and
invariant structure. It is also shown that the upper-bound on the number of iterations
of the Karlhede algorithm applied to the vacuum PP-waves is sharp.

The PP-waves contain a subclass providing many simple and non-trivial applica-
tions of the invariant classification, the plane waves. These were introduced by Ein-
stein and Rosen [3] relative to a coordinate system with a metric singularity (Rosen
coordinates), due to this they were ignored as unphysical until it was revealed that
a change of coordinates could make the metric components regular (Brinkmann co-
ordinates). Although physically reasonable, they are still toy models, but the plane
waves allow us to explore the relationship between the invariants and the physical
interpretation of the space. In Chapter (9) we restrict our classification to the plane
waves, which correspond to the PP-wave solutions with the α = 0 relative to the first
order coframe of the Karlhede algorithm. Unlike the PP-waves with α �= 0, the first
order coframe is not a canonical frame; however, it is not unique as a null rotation
about � leaves Ψ4 = 1 and γ invariant.

For a physical interpretation of these spaces, we review the formalism developed
to study the geodesic deviation equations [51] for an arbitrary timelike geodesic. This
is achieved by determining a unique coframe which is covariantly constant along any
timelike geodesic. This describes the gravitational field a timelike observer would
experience and may be decomposed into transverse, longitudinal and coulomb com-
ponents [15]. For Type N spacetimes, the physical situation is simpler as an arbitrary
timelike observer would only experience transverse waves. With these tools, we in-
variantly classify the weak-field circularly polarized plane waves in Rosen coordinates,
and discuss the physical interpretation of these spaces using Cartan invariants. Rela-
tive to Brinkmann coordinates, the metric form for the plane waves, f(ζ, u) = A(u)ζ2,
give rise to a simple form for the equations of geodesic of deviation. By imposing
conditions on the Cartan invariants we may produce plane wave spacetimes whose
physical interpretation in terms of polarization and magnitude of the wave may be
related to the Cartan invariants used. Chapter (9) concludes with some simple ex-
amples of this approach.



8

In Chapter (10) we examine the vacuum Kundt waves, which make up the remain-
der of the type N vacuum V SI spaces. These spaces lack a covariantly constant null
vector and hence an isometry; in general to classify these spaces one will need four
invariants as essential coordinates. This is reflected in the Karlhede algorithm where
the upper-bound on the number of iterations to classify the vacuum Kundt waves is
strictly less than six, but potentially greater than four [36, 47]. By examining the
conditions for which a Kundt wave in the Karlhede algorithm admits one, two, three
or four functionally independent invariants in the components of the curvature and
the its first order derivatives, we derive invariant conditions to differentiate between
these four cases. In fact, in the cases where only one or two invariants appear at first
order, i.e. with invariant counts (0, 1, ...) and (0, 2, ...), we may integrate to produce
canonical forms for the metrics.

Within this formalism we reproduce the result that the vacuum Kundt waves
upper-bound in the Karlhede algorithm is strictly less than six; this was originally
proven symbolically using the GHP formalism [47]. Although our approach requires
the choice of coordinates, the explicit metric forms for the vacuum Kundt waves
with invariant counts (0, n, ...) n = 1, 2 allow us to lower the upper-bound once
more, implying the vacuum Kundt waves require at most four covariant derivatives
to invariantly classify them. This is done by exhaustively listing the possible scenarios
of the Karlhede algorithm which admit q = 5, namely (0, 1, 2, 3, 4, 4) or (0, 2, 2, 3, 4, 4),
and showing that these metrics cannot exist. For example, those spaces with invariant
counts starting with (0, 1, 2, ...) must have (0, 1, 2, 2). This class of spacetimes is
notable as we recover the known Kundt wave admitting two symmetries [27], along
with a new Kundt wave with a distinct two dimensional symmetry group.

As the upper-bound for the Kundt waves is now the same as the PP-waves, we
address the question of sharpness. This can only occur for the vacuum Kundt waves
with invariant counts (0, 1, 3, 4, 4), (0, 2, 3, 4, 4) and (0, 3, 3, 4, 4). By working with
the Cartan invariants and their frame derivatives it is shown that the latter two cases
do not occur and that the vacuum Kundt waves with (0, 1, 3, 4, 4) are unique in that
they are the only Kundt waves require the fourth order derivatives of curvature in
the algorithm. The chapter concludes with an invariant classification of the vacuum
Kundt waves as a byproduct of the investigation of the upper-bound. As in the case of
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the vacuum PP-waves, we provide a table of distinct canonical forms for the vacuum
Kundt wave metrics along with the necessary invariants to classify the spaces.

We examine the symmetries of the vacuum Kundt waves with permitted matter-
fields using methods independent of invariants. Instead of examining the Killing
equations, we work with an invariant coframe and calculate the symmetries by re-
quiring the Lie derivatives of these one-forms vanish for a particular vector field. The
invariant coframe produced in the Karlhede algorithm is not well-suited to this anal-
ysis, and so we use an alternative invariant coframe where the parameters for spins
and null rotations about � are zero, i.e., θ = B = B̄ = 0. These two frames will differ
due to normalizing different components of the curvature tensor and its derivatives;
however, this fact ensures the new coframe is invariant. Using this invariant coframe
we recover the results of [27], illustrating the utility of invariant coframes.



Chapter 2

Differential Geometry

2.1 Non-coordinate Bases

Given a manifold equipped with a metric, (M, g), there is a unique connection for
which the metric is covariantly constant, the Levi-Civita connection, that simplifies
the calculation of the connection components and the curvature and torsion tensors.
Cartan introduced a method [4] which not only calculates the connection components
but also yields the torsion and curvature tensors as well. To begin, instead of the
usual coordinate basis for TpM , consider a basis for TpM :

ea = e α
a ∂xα e α

a ∈ GL(N,R),

such that {e α
a } is orthonormal with respect to the metric:

g(ea, eb) = e α
a e β

b gαβ = ηab.

Using this basis, we can express the original metric components, gαβ in terms of
ea

α, and its inverse:

gαβ = ea
αeb

βηab.

Choosing this as our coordinate basis we can re-express any vector V ∈ TpM , in the
usual way:

V α = V ae α
a V a = ea

αV α

To find a basis for T ∗
p M , let {ea} be a set of N linearly independent one-forms with

the property that < ea, eb >= δa
b, after a little thought we see that the basis covectors

must have the form: ea = ea
αdxα. Given an arbitrary one-form ω ∈ T ∗

p M ,

ωα = ωaea
α ωa = e α

a ωα,

10
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the metric expressed in this basis can be written in much simpler terms:

g = ηabe
a ⊗ eb.

In general this choice of basis for the tangent space will have a non-vanishing
commutator;

[ea, eb] = Cc
baec

We call {ea} a non-coordinate basis or frames for TpM and we will call the indices:
a, b, c, d, i, j, k, l, m, n, p, q frame indices while α, β, γ, δ, e, f, g, h, r, s, t, w will be the
coordinate indices. The metric will be used to raise and lower indices of the same
type; for example, eaα = gabe

a
α = ηabe

a
α while eα

a = gαβeaβ.
To determine the frame connection components relative to this new basis, consider:

∇aeb = Γc
baec,

but each ea is just a vector field and so,

∇aeb = eα
a ∇α(e α

b ∂xα). (2.1)

Thus the frame connection components can be expressed as:

Γc
ba = ec

γe α
a (∂αe β

b + e β
b Γγ

βα),

and the components of T and R in this basis become:

T c
ab = Γc

[ab] − Cc
ab (2.2)

Rd
cba = eb[Γd

ca] − ea[Γd
cb] + Γε

caΓd
εb − Γε

cbΓd
εa − Cε

abΓd
εc

Now introduce a matrix-valued one-form called the connection one-form {ωa
b}:

ωa
b = Γa

bce
c

which satisfies the Cartan Structure equations,

dea + ωa
b ∧ ea = T a (2.3)

dωa
b + wa

c ∧ ωc
b = Ra

b, (2.4)
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where T a and Ra
b are the torsion-two form and curvature two-form respectively,

T a = T a
bce

b ∧ ec, Ra
b = Ra

bcdec ∧ ed.

Taking the exterior derivative of the structure equations gives the non-coordinate
basis versions of the Bianchi identities:

dT a + wa
b ∧ T b = Ra

b ∧ eb, dRa
b + wa

c ∧ Rc
b − Ra

c ∧ ωc
b = 0

The non-coordinate basis and the resulting form for the metric is preserved only
under certain transformations. To see this consider at a point p in the manifold, a
new set of frames êa(p) = Λa

be
b(p) with the property that the simpler form of the

metric is preserved in the new basis. This implies

g = ηabe
a ⊗ eb = λc

agcdλd
be

a ⊗ eb,

in order to satisfy the above we must have Λ ∈ SO(N − 1, 1). Thus the coordi-
nate indices transform under coordinate changes GL(N,R) while the frame indices
transform under SO(N − 1, 1). As an example, the frame vectors transform in the
following way:

êa = Λb
aêb.

Therefore an arbitrary tensor with respect to the frames transforms in the normal
way under orthogonal rotations. Both the vector valued torsion two-form and matrix
valued curvature two-form transform homogeneously, this can be seen by comparing
the transformation rule for the usual formulation of the two tensors T a

bc and Ra
bcd

and comparing the results with their respective two form representation, we see that:

T̂ a = Λa
bT

b, R̂a
b = Λa

cR
c
dΛ d

b . (2.5)

Using (2.5) and (2.3), we know that

dêa + ω̂a
b ∧ êb = dea + ωa

b ∧ eb,

substituting êa = Λa
be

b and noting that d(Λa
c)Λ c

b + Λa
cd(Λ c

b ) = 0 we find:

ω̂a
b = Λa

cω
c
dΛd

b + Λa
cd(Λ−1)c

b.
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So far the connection has been left arbitrary. By choosing to use the Levi-Civita
connection the torsion tensor vanishes, and so we have:

Γc
ab − Γc

ba = Cc
ab.

The connection components with respect to the non-coordinate basis are no longer
symmetric with respect to the last two indices due to (2.1); instead the metric com-
patibility condition implies that

Γabc = −Γbac.

where Γabc = ηadΓd
bc are called the Ricci Rotation Coefficients. Hence the matrix

valued connection one-form is also anti-symmetric:

ωa
b = −ωb

a.

Lastly the Cartan Structure Equations now become:

dea = −ωa
b ∧ eb

dωa
b + ωa

c ∧ ωc
b = Ra

b.

To find the connection components expand out (2.3):

dea = −[Γa
bc − Γa

cb]mc ∧ mb

By explicitly exterior differentiating the frame one-forms we find:

dea = ma
i,jdxj ∧ dxi = [ma

i,jm
i

b m j
c − ma

i,jm
i

c m j
b ]mc ∧ mb.

Equating the coefficients of each mc ∧ mb we find at most N3−N2

2 linear equations
for the N3−N2

2 potential connection components; thus it is possible to solve for the
Γa

bc’s, and thus ωa
b. With the Cartan connection one-form known, we can use the

second Cartan Equation (2.4) to find the matrix valued curvature tensor, simply by
calculating dωa

b and adding the wedge product ωa
c ∧ ωc

b, then by comparing the
coefficients of ma ∧ mb the components of Rab are found easily.
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2.2 The Lorentz Group

In N -dimensional Minkowski space, the Lorentz group, L, is the isotropy subgroup
of the Poincaré group; that is, the Lorentz group is the subgroup of all isometries
in Minkowski space that leave the origin fixed. This is of particular interest because
once one moves away from a flat-spacetime, i.e., Minkowski space, to a spacetime
that is curved, it may not be sensible to consider translations from one point in the
spacetime to another, we are left with the isometries that leave a point fixed. Since it
is a Lie group, we can talk about its topological properties as a manifold; the Lorentz
group is a six-dimensional non-compact Lie group whose four connected components
are not simply connected (given a loop at a point p ∈ L, it is not homotopic to the
identity map). The four components of the Lorentz group are:

1. The elements that reverse the direction of time-like vectors.

2. The elements that reverse the orientation of the spatial vectors.

3. The elements that reverse both the direction of time and orientation of the
spatial vectors.

4. Those elements that do not reverse the direction of the vector basis for TpM .

If a Lorentz transformation preserves the direction of time we call it orthochronous;
on the other hand if a Lorentz transformation preserves the orientation of the spatial
vectors we call it proper. The component of the Lorentz group containing all of the
proper, orthochronous Lorentz transformations, will be called the Restricted Lorentz
group. We will ignore those transformations that are not proper and orthochronous.
The restricted Lorentz group is generated by ordinary spatial rotations, Lorentz
boosts which can be seen as hyperbolic rotations in a plane that includes a time-
like vector and a space-like vector. As an example, in four dimensions (t, x1, x2, x3) a
spatial rotation in the x1 − x2 plane is of the form:⎛⎜⎜⎜⎜⎜⎜⎜⎝

t̂

x̂1

x̂2

x̂3

⎞⎟⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 cos(θ) sin(θ) 0
0 −sin(θ) cos(θ) 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

t

x1

x2

x3

⎞⎟⎟⎟⎟⎟⎟⎟⎠ θ ∈ [0, 2π).
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While a boost in the t − x1 plane is given by:⎛⎜⎜⎜⎜⎜⎜⎜⎝

t̂

x̂1

x̂2

x̂3

⎞⎟⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

cosh(θ) −sinh(θ) 0 0
−sinh(θ) cosh(θ) 0 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

t

x1

x2

x3

⎞⎟⎟⎟⎟⎟⎟⎟⎠ θ ∈ [0, ∞).

There is a much easier way to describe the Lorentz transformations and in
particular the Lorentz boosts. By adopting a null frame, that is a basis for TpM

consisting of two null vectors �, n and N -2 spatial vectors mi, a Lorentz boosts now
becomes:

�̂ = λ�, n̂ = λ−1n, m̂i = mi, (2.6)

while spatial rotations or spins are now:

�̂ = �, n̂ = n, m̂i = X i
jm

j X i
j ∈ O(N − 2). (2.7)

Furthermore we can now rotate about the null vectors, for example a null rotation
about the n axis is:

�̂ = � + zim
i − 1

2zizi n, n̂ = n, m̂i = mi − zin (2.8)

while a rotation about the �-axis is of a similar form, except with n and � interchanged.

2.3 Killing Vectors

Given a Riemannian manifold with metric g, suppose we are given a vector field X
with the property that its flow is a one-parameter group of isometries, or more simply
by choosing coordinates, xα at a point p ∈ M , the infintesimal change from xα to
xα + εXα(p) preserves the metric:

∂(xα + εXα)
∂xβ

∂(xγ + εXγ)
∂xδ

gαγ(x + εX) = gβδ(x)

Then we say the vector field X is a Killing Vector field, while expanding out the above
equation, we find that gαβ and X satisfy the following:

Xα∂αgβγ + ∂βXαgαγ + ∂γXαgβα = 0
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This is called the Killing equation, and it can be written in the more compact form:

∇αXβ + ∇βXα = 0. (2.9)

This could be done in frame indices as well assuming one had the connection compo-
nents calculated with respect to the frame.

Returning to the matter of the integral curves of X, (2.9) tells us that the local
geometry does not change as we move along them; in this sense the Killing vector fields
represent the direction of the symmetries of the manifold. There may be more Killing
vector fields than the dimension of the manifold the maximum number of Killing
vectors is dependent on dimension. For example, flat N -dimensional Minkowski space
has N(N+1)

2 Killing vector fields, N of which generate translations, (N -1) are boosts
and (N−1)(N−2)

2 spatial rotations. Flat Minkowski and other spacetimes which have
N(N+1)

2 Killing vector fields are called Maximally symmetric spaces.

2.4 Classification Methods

We can classify exact solutions to Einstein’s field equations, by examining and clas-
sifying the corresponding Ricci and Weyl tensors which arise from the the metric
describing the exact solution. By doing so we can summarize many facts about a
spacetime into a compact form; for example, all those four dimensional spacetimes
that are vacuum solutions and admit gravitational radiation can be described as a
spacetime for which the Ricci tensor vanishes and the Weyl tensor is of a particular
canonical form. There are a variety of methods towards a classification for these
two tensors in four dimensional spacetimes however many do not generalize easily to
higher dimensions.

As such they will not be helpful in this instance and instead, we will focus on
dimension independent methods to classifying the Ricci and Weyl tensors. It is im-
portant to note that all of these methods reviewed in this thesis are in a neighborhood
of a point in the spacetime, as such, a spacetime may have a Weyl tensor of a certain
type in one region and an entirely different Weyl tensor at a point in another part of
the manifold. In the case of the characterization of geometries using invariants, equiv-
alence will be purely local in nature. Given two metrics which cover disjoint regions
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of a single analytic space it will be impossible to determine whether one is an ana-
lytic continuation of the other with these approaches alone. Alternatively topological
considerations can complicate matters by producing metrics which are locally equiva-
lent but globally inequivalent. We additionally assume that all classifying quantities,
discrete or continuous are respectively constant or sufficiently smooth in open open
neighborhoods.

2.4.1 Classification of the Weyl Tensor in N-Dimensions

The Petrov classification describes the possible invariant algebraic type of the Weyl
tensor at a point in a Lorentzian manifold. This classification was developed by Petrov
[56] and extended in [8]. If a spacetime has the same Petrov type at all points then
we say that the spacetime has a certain Petrov type. Petrov’s original classification
originated by treating the Weyl tensor as a symmetric matrix mapping bivectors into
bivectors and looking at the eigenvalues of this symmetric matrix. There are several
equivalent methods of obtaining the classification; for example, there is an approach
introduced by Penrose [8, 31] using two-spinors to decompose the Weyl tensor into
a totally symmetric spinor ΨABCD, which then can be decomposed in terms of four
principal spinors αA, βB, γC , δD

ΨABCD = α(AβBγCδD).

Petrov types now correspond to various multiplicities of principal spinors and the
following possibilities occur

I = {1111} : ΨABCD = α(AβBγCδD), (2.10)

II = {211} : ΨABCD = α(AαBγCδD), (2.11)

D = {22} : ΨABCD = α(AαBβCβD), (2.12)

III = {31} : ΨABCD = α(AαBαCβD), (2.13)

N = {4} : ΨABCD = αAαBαCαD. (2.14)

O = {−} : ΨABCD = 0 (2.15)

All Petrov types except that of type I are called algebraically special.
We have seen previously that in four dimensions every spinor gives rise to a null

vector, thus every principal spinor can be assigned to a null vector via vα = ξAξ̄A′ ;
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these will be called principal null vectors and the corresponding directions of the
vectors principal null directions (PNDs). Thus there are at most four distinct PNDs
at each point of a spacetime. In the tensorial form, PNDs corresponding to a vector
� satisfies three equivalent conditions [31], [22] given in Table (2.4.1 for the various
Petrov types.

�b�c�[eCa]bc[d�f ] = 0 � at least simple PND (I) Ψ0 = 0, Ψ1 �= 0
�b�cCabc[d�e] = 0 � at least double PND (II,D) Ψ0 = Ψ1 = 0, Ψ2 �= 0

�cCabc[d�e] = 0 � at least triple PND (III) Ψ0 = Ψ1 = Ψ2 = 0, Ψ3 �= 0
�cCabcd = 0 � quadruple PND (N) Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0,

Ψ4 �= 0

Table 2.1: Each line contains three equivalent conditions for various Petrov types
in four dimensions. Ψ0 . . . Ψ4 are complex components of the Weyl tensor in the
Newman-Penrose formalism. The third condition means a frame can be chosen in
which given components of the Weyl tensor vanish.

In some exact solutions there is a correspondence between the symmetries of the
solution and the Petrov type. For example, a static spherically symmetric spacetime
will be of type D with two double PND’s defining radially ingoing and outgoing null
congruences whereas the Friedmann-Robertson-Walker spacetime is of type O and it
is isotropic and does not contain any preferred null direction. In fact, in order to
find exact solutions of the Einstein equations it is usually necessary to assume some
symmetries or to assume a specific algebraically special type of a spacetime; by doing
so the field equations can also be considerably simplified and solved. Remember that
the Petrov type is defined at point, and so it is possible for a spacetime to have a
different Petrov type at distinct points or regions of spacetime, for example in four
dimensions, black holes of type I can have isolated or Killing horizons of type II [77].

While there are several distinct methods that lead to the Petrov Classification
in four dimensions only a few generalize to classifying the Weyl tensor in higher
dimensions. Given the recent interest in higher dimensional manifolds in gravity
theories, the classification of these manifolds is of particular importance and we would
like an dimension independent method that gives the Petrov classification in four
dimensions and in higher dimensions a partial classification for the Weyl tensor. The
alignment method introduced in [76] satsifies these two requirements; it is dimension
independent and in four dimensions it reproduces the Petrov classification.
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To introduce the alignment method, consider an N -dimensional Lorentzian man-
ifold and define a null frame: m0 = n, m1 = � and mi, with two null vectors n, � and
N − 2 spacelike vectors mi:

�a�a = nana = 0, �ana = 1,

miamj
a = δij, mia�a = 0 = miana.

The metric now has the form

gab = 2�(anb) + δijm
i
amj

b, (2.16)

which remains unchanged under Lorentz transformations consisting of null rotations
(2.8), spins (2.7), and boosts (2.6).

We say that a tensor-component T a1,...,am

b1,...,bm
has a boost weight b if it transforms

under boost according to T̂ a1,...,an

b1,...,bn
= λbT a1,...,an

b1,...,bn
. Furthermore we call the boost

order of a tensor T the maximum boost weight of its frame components. The boost
order of a tensor depends only on the choice of a null direction � and thus spins and
boost do not affect it [76]. We will denote the boost order of a given tensor T as b(�)
to indicate the dependence on the choice of �, while the identity of T should be clear
from the context.

Denote the maximum value of b(k) taken over all null vectors k as bmax. Then
we say a null vector k is aligned with the tensor T whenever b(k) < bmax. Then
the integer bmax − b(k) − 1 will be defined as the order of alignment. The Weyl
tensor aligned null vectors represent a natural generalization of the PND’s, so we will
call these higher-dimensional null vectors WANDs (Weyl aligned null directions). A
classification of the Weyl tensor in higher dimensions then depends on the existence
of WANDs of various orders of alignment. The Weyl tensor in an arbitrary dimension
has in general components with boost weights −2 ≤ b ≤ 2 and thus the order of
alignment of a WAND cannot exceed 3.

We will call the primary alignment type of the Weyl tensor G if there are no
WANDs and I,II,III, or N if the maximally aligned null vector has order of alignment
0, 1, 2, 3, respectively. Once a certain � is chosen as a WAND with maximal order
of alignment, it is possible to search for another vector n with maximal order of
alignment subject to the constraint n · � = 1. If such a n is found we can similarly
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N>4 dimensions 4 dimensions
Weyl type alignment type Petrov type

G G
I (1)
Ii (1,1) I
II (2)
IIi (2,1) II
D (2,2) D
III (3)
IIIi (3,1) III
N (4) N

Table 2.2: Classification of the Weyl tensor in four and higher dimensions. Note that
in four dimensions alignment type (1) is necessarily equivalent to the type (1,1), (2)
to (2,1) and (3) to (3,1) and since there is always at least one PND, type G does not
exist.

define secondary alignment type. Alignment type is a pair consisting of primary and
secondary alignment types. Possible alignment types are summarized in Table 2. We
also introduce Weyl type with notation emphasizing the link with the four dimensional
Petrov classification.

To express the Weyl tensor in terms of its components in the �, n, mi frame,
introduce the operation { } such that:

w{axbyczd} ≡ 1
2(w[axb]y[czd] + w[cxd]y[azb]). (2.17)

Now the Weyl tensor in arbitrary dimension can be written as

Cabcd =
2︷ ︸︸ ︷

4C1i1j n{ami
bncm

j
d } +

1︷ ︸︸ ︷
8C121i n{a�bncm

i
d } + 4C1ijk n{ami

bm
j
cm

k
d }

+
0︷ ︸︸ ︷

4C1212 n{a�bnc� d } + C12ij n{a�bm
i
cm

j
d } (2.18)

+

0︷ ︸︸ ︷
8C1i2j n{ami

b�cm
j
d } + Cijkl mi

{amj
bm

k
cm

(l)
d }

+
−1︷ ︸︸ ︷

8C212i �{anb�cm
i
d } + 4C2ijk �{ami

bm
j
cm

k
d } +

−2︷ ︸︸ ︷
4C2i2j �{ami

b�cm
j
d }

where summation over i, j, k, l indices is implicitly assumed, and the numbers over
the brackets indicate boost order.
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The number of independent frame components of various boost weights are,

2,−2︷ ︸︸ ︷
2
(

(m + 2)(m − 1)
2

)
+

1,−1︷ ︸︸ ︷
2
(

(m + 1)m(m − 1)
3

)
+

0︷ ︸︸ ︷
m2(m2 − 1)

12 + m(m − 1)
2 ,

with m = N − 2. This is in agreement with the number of independent components
of the Weyl tensor

(N + 2)(N + 1)N(N − 3)
12 . (2.19)

Specializing to four dimensions and using the standard complex null tetrad (�, n, m,
m̄) [31, 22] the Weyl tensor has five complex components:

• Ψ0 = −Cαβγδ�
αmβ�γmδ

• Ψ1 = −Cαβγδ�
αnβ�γmδ

• Ψ2 = −Cαβγδ�
αmβm̄γnδ

• Ψ3 = −Cαβγδ�
αnβm̄γnδ

• Ψ4 = −Cαβγδnαm̄βnγm̄δ

We notice that the components of the Weyl tensor Ψ0, Ψ1, Ψ2, Ψ3, Ψ4 have boost
weight -2,-1,0,1,2, respectively. When � coincides with a PND then Ψ0 vanishes, other
components can be transformed away only in algebraically special cases. Namely, as
can be seen from the Table 1, for types I, II, III, N one can transform away components
with boost weight greater or equal to 2,1,0,-1, respectively. Type D is a special subcase
of type II in which all components with non-zero boost weight can be eliminated.

2.4.2 Segre Classification for Rank Two Tensors

It was shown in [76] that Alignment allows for a partial classification of the Ricci
tensor in four dimensions, however alignment alone does not provide a fine enough
classification for the Ricci tensor; instead an older method called the Segre classifi-
cation will be discussed. Using the fact that the Ricci tensor can be interpreted as
a symmetric matrix we can classify any Ricci tensor by looking at its corresponding
eigenvalues and eigenvectors. Given any rank two tensor F on the N -dimensional
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manifold with signature (r,s) s.t r + s = N , the components Fij form a matrix of
functions from the manifold to R; where at an arbitrary point in M , the elements of
TpM and/or the elements of T ∗

p M act as vectors for the matrix, depending on the
type of the rank two tensor. It will be convenient to be able to classify rank two
tensors, so the question arises: How do we distinguish between a pair of arbitrary
rank two tensors F, and G?

By treating F and G as matrices at an arbitrary point p in the manifold this
problem is resolved using their respective Jordan Canonical Form. If instead of the
real numbers, an algebraically closed field like the complex numbers, C are used, then
there exists basis transformations P and Q such that FJ = PFP −1 and GJ = QGQ−1,
where FJ and GJ have the eigenvalues λf,i and λg,j of F and G respectively along the
diagonal and potentially 1’s along the off-diagonal [68] or equivalently both F and G
can be expressed as the matrix sum Dλ + Nil where Dλ is a N × N diagonal matrix
containing the eigenvalues, and Nil is a N × N nilpotent matrix.

In order to find the eigenvalues of a matrix F, the characteristic polynomial arising
from det[F − λIr

s ] must be solved; in a real vector space with signature (r,s) this can
cause problems because the characteristic polynomial may have irreducible factors
and since the real numbers are not algebraically closed the characteristic polynomial
may factor into irreducible polynomials of degree greater than one. If this happens the
Jordan Canonical for a real-valued matrix cannot be expressed without complexifying
the vector space. If the complex numbers are used every complex valued matrix can
be transformed into its Jordan canonical form because the characteristic polynomial
can always be factored into a product of degree one polynomials.

If the eignenvalues are distinct then the vector space can be divided into invariant
one dimensional subspaces, or eigenspaces. If an eigenvalue, λi is repeated p-times,
then depending on the dimension of the nullspace of F − λiId, there will be p eigen-
vectors or q eigenvectors and p−q pseudo-vectors. Given a real valued matrix with at
least one complex eigenvalue this defines an invariant two-dimensional real subspace,
which arise from the real and imaginary part of the complex eigenvector. Using these
ideas we will classify the matrices by the number and size of the invariant subspaces.

To describe this better, the particular form of the Jordan Canonical form must
be examined. We will assume that V is a vector space over the complex numbers,
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since real valued matrices are included and their complexifications record information
about the matrix in a convenient way. If F has M ≤ N eigenvalues the eigenvectors
and associated pseudo-vectors of a matrix F are linearly independent and span the
vector space, so this can be used as a basis for the matrix F; doing so the matrix is
re-expressed as:

F =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

A1

A2

...

Am.

⎞⎟⎟⎟⎟⎟⎟⎟⎠
where for i ∈ [1, M ], each Ai is a ai × ai diagonal block matrix made up of smaller
matrices, called Simple Jordan blocks, Bij, for P ≤ ai:

Ai =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Bi1

Bi2

...

BiP .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Where the Bij are bij ×bij matrices with λi down the diagonal and possibly one’s along
the above-off-diagonal. The bij satisfy bi1 + ...+ biP = ai, and are called the geometric
multiplicity, they correspond to the number of independent eigenvectors associated
with an eigenvalue. Each ai, i ∈ [1, N ] from the factorization of the characteristic
polynomial denotes the algebraic multiplicity of the eigenvalue, which in a sense tells
us the dimension of the entire eigenspace associated with an eigenvalue. Using the
Segre Classification this can be recorded in a more compact form:

{(b11, ..., b1,P1), ...., (bM,1, ..., bM,PM
)}

Where each round bracket is associated with a particular algebraic multiplicity and,
the bij are the geometric multiplicities. Naturally the Segre type of a matrix is unique
up to ordering of the algebraic and geometric multiplicities.

At times when discussing higher dimensional spacetimes it will be helpful nonethe-
less to use the alignment method with respect to the Ricci tensor in order to get a
broad classification, whence the Segre type is used for finer classification. In general
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the Ricci tensor is of the form:

Rαβ =
−2︷ ︸︸ ︷

R̂22�{α� β} +
−1︷ ︸︸ ︷

R̂i2m
i
{α� β} +

0︷ ︸︸ ︷
R12n {α� β} + Rijm

i
{αmj

β}

+
1︷ ︸︸ ︷

Ri1m
i
{αn β} +

2︷ ︸︸ ︷
R11n {αn β}

We will say a Ricci Tensor is of type I, II, III, N, or O respectively, if there exists an
aligned null vector � along which the Ricci tensor the highest boost order is 1,0,-1,-2
or all components vanish. We will call this rough classification, the Ricci type.

2.4.3 The Karlhede Classification Algorithm

The problem of determining whether or not two given spacetimes are locally equivalent
is vital to the classification of exact solutions in General Relativity. One approach to
show the inequivalence of two spacetimes is achieved by taking the Riemann tensor
and its covariant derivatives for each spacetime and contracting them to produce
scalar curvature invariants. If their invariants differ the spacetimes are distinct; in
the case that the invariants match can one conlude that the spacetimes are equivalent?

Consider any two vacuum PP-wave spacetimes, their scalar curvature invariants
both vanish, however if one picks a sufficiently distinct f(ζ, u) and fo(ζ, u) it is likely
that the spacetimes will not be diffeomorphic. The PP-wave spacetimes belong to
a class of spacetimes with vanishing curvature invariants, V SI, which are part of
a larger class of constant curvature invariants, CSI, which contains the (locally)
homogeneous spacetimes as well [94], [94]. For all of these spacetimes, we cannot use
the scalar curvature invariant approach to differentiate between them.

As an alternative we adapt a method introduced by Cartan, applicable to the
equivalence of sets of differential forms on manifolds under appropriate transformation
groups. [42]. Assuming the metric is smooth enough, this produces a unique local
characterization, well-suited for comparing metrics. To do so, we take construct
coframes from their respective metrics and calculate the exterior derivative of the
coframe for both respectively:

dωi = Ci
jkωj ∧ ωk.

If the metrics are equivalent, both of the first set of Cartan structure equations will
agree. Of course, this is necessary but not sufficient for showing equivalence.
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To provide sufficient conditions one must take the exterior derivative repeatedly,
starting with dCi

jk, until no new functionally independent functions appear. The
procedure terminates when differentiation produces no such new functions arise, as
any further derivatives will depend on the previous invariants. As these are invari-
ants any relationship between independent and dependent invariants will be the same
regardless of which coordinate system used. The number of functionally independent
invariants, k, is called the rank, and it will be assumed to be constant in a neighbor-
hood whose points are called regular. As the dimension of the manifold is N , k ≤ N

(where inequality occurs if the space admits symmetries), this procedure must end at
some finite step.

Finally one must equate the quantities in both manifolds and determine whether
the relations arising from this can be solved, although this may be formally undecid-
able. For manifolds admitting a metric, the Cartan equations show that the repeated
differentiation of the structure equations is equivalent to the repeated covariant dif-
ferentiation of the Riemann tensor viewed as members of F(M) And so, we may
characterize a metric uniquely by the components of the curvature and its covariant
derivatives. Denoting Rq as the set {Rabcd, Rabcd;e, Rabcd;e1...eq} of the components of
the curvature tensor and its derivatives up to the q-th order. If p is the last derivative
at which any new functionally independent quantities arise, we must calculate Rp+1

to determine all classifying functions and we say p is the order.
Christoffel was the first to work on the equivalence problem for Riemannian man-

ifolds [1] using the full coordinate frame bundle of dimension N(N + 1). This ap-
proach dealt only with metrics admitting no symmetries and implied that the twen-
tieth derivatives of the curvature would be required to determine equivalence of four
dimensional spacetimes; this is still computationally impractical. In 1946, Cartan re-
duced the upper-bound significantly using frames with constant metric components,
in which case the dimension of the space is reduced to 1

2N(N + 1), and so the maxi-
mum order for four dimensional spacetimes will be 10. Cartan also showed how this
approach could be expanded to metrics admitting symmetries, this was completed
by Sternberg [12]. For k < 1

2N(N + 1) there is an isometry group of dimension
N(N + 1) − k. Following this work, we have the following result [25]

Theorem 2.4.1. Let M and M̄ be spacetimes of differentiability class C13, x be a
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regular point of M and E be a frame at x and similarly for M̄ . Then there is an
isometry which maps (x, E) to (x̄Ē) if and only if Rp+1 for M is such that:

1. The set of indices of the corresponding components of Rp, A indexes quantities
Īα which are functionally independent in F(M),

2. Iα(x, E) = Īα(x̄, Ē) for α = 1, ..., k, and

3. the functions giving all other components of Rp+1 in terms of the Iα and Īα are
the same for M and M̄ .

The above theorem has been applied practically in [13, 19] where in the first
used a scheme using canonical forms chosen by lexicography of bases, while the later
considered canonical forms of the Weyl tensor at the first step. This is similar to the
algorithm introduced by Karlhede and implemented by Aman and others [21, 24, 41].
The Karlhede algorithm for classifying geometries has become a prefered method for
classification of spacetimes.

In this section we briefly review the various steps of the algorithm. We start by
calculating the Riemann tensor in a particular frame and its higher derivatives up to a
particular order, using the various frame transformations to simplify the components
at each order of differentiation until a complete classification of the geometry has been
obtained. We denote the frame components of the Riemann tensor and its covariant
derivatives up to the qth order by Rq, with this the algorithm may be written as:

1. Let q = 0.

2. Compute Rq.

3. Fix the frame as much as possible using frame transformations (spins, boosts,
rotations, null-rotations).

4. Find the invariance group Hq of the frame which leaves Rq invariant.

5. Find the number of functionally independent components tq amongst the set
Rq.

6. If tq �= tq−1 or dim(Hq) �= dim(Hq−1) then set q = q + 1 and go to step 2.
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7. Otherwise the set {Hp, tp, Rp}, p = 1, ..., q classifies the solution and the di-
mension of the isometry group I of the metric follows from the result [4]
dim(I) = dim(Hq) + N − tq.

If we wish to compare two metrics g and go for equivalence, we start by com-
pleting the above classification for each metric. The remainder of the algorithm
is summarized in the next two steps.

8. If the two sequences (H0, t0; H1, t1; ...; Hq, tq) for g and go differ, then so do the
metrics.

9. If the set of simultaneous algebraic or transcendental equations R0 = R0
o, R1 =

R1
o, ..., Rq = Rq

o admit a coordinate trnasformation xi
o = xi

o(xj) i, j = 1, ..., N as
a solution then the metrics are equivalent, otherwise they are inequivalent. We
note that this step is not algorithmic, as there is no constructive procedure for
solving simultaneous algebraic equations.

2.5 General Relativity in Brief

General Relativity is the theory of spacetime and gravitation, introduced in 1915
by Albert Einstein, which unified Special Relativity and Newton’s Law of Universal
gravitation. Unlike classical mechanics gravity is not treated as another force affect-
ing objects, but rather as the curvature of space and time caused by matter and/or
energy being present; so that an object affected by gravity is not being pushed to-
wards the ground, but rather is moving along the path of "least resistance" in the
curved geometry of space and time. This leads to another difference between Newto-
nian physics and General Relativity. Before we treated time as a distinct parameter
tracing curves in a three dimensional Riemannian manifold; time was an absolute,
independent of the observers velocity or acceleration and so two simultaneous events
happen at time t = t0 for all observers. On the other hand Special Relativity treats
space and time in a single Lorentzian manifold called a Minkowski space, it is worth
noting that we no longer have an idea of absolute time. General Relativity goes fur-
ther by allowing curved Lorentzian manifolds in lieu of Minkowski space as models
for our spacetime. Exactly how the spacetime becomes curved is described by the
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Einstein Field equations:

Gαβ = (8πC)Tαβ

where c is the speed of light, Guv = Ruv − 1
2Rguv is called the Einstein tensor which is

made up of the Ricci tensor Ruv, the Ricci Scalar R and the metric of the spacetime
guv, and Tuv is the stress-energy tensor. The stress-energy tensor is a symmetric rank
two tensor that essentially describes the density and flux of energy and momentum
in the spacetime; the most common stress-energy tensors used in General Relativity,
are those for perfect fluids, pure radiation fields, electromagnetic fields and vacuum
fields (A better summary of these stress-energy tensors and their properties is given
in [22].). Due to the symmetries of the tensors involved this gives rise to in general ten
non-linear partial differential equations which can be very difficult to solve. Often in
order to solve these solutions, assumptions must be made to simplify the equations.
The resulting solutions to the field equations are called Exact Solutions, and they
have played an important role in the discussion of physical problems. For example
Friedmann’s solution contributed to Cosmology by providing an argument for the
big bang, while the Kerr and Schwarzchild solutions gave theoretical evidence for the
existence of black holes.



Chapter 3

Degenerate Kundt Spacetimes

3.1 Kundt Spacetimes

In this section we introduce a complete local description of the general N -dimensional
Kundt spacetimes. This is done using a kinematic description, where the Kundt met-
rics are defined as those admitting a null vector, � which is geodesic, non-expanding,
shear-free and non-twisting. In four dimensions one recovers a well-known theorem
[92]

Theorem 3.1.1. A space M defines (locally) a Kundt geometry in 4 dimensions if
and only if there exists (locally) a family of frames {ea} = {�,n, m, m̄}, defined up to
null rotations about � and characterized by the conditions that

κ = ρ = σ = 0

for the spin connection coefficients. Also, the generic line element is given, in a local
coordinate system {xα} = {u, vζ, ζ̄}:

ds2 = 2du(Hdu + dv + Wdζ + W̄dζ̄) − 2P −2dζdζ̄, P,v = 0

In higher dimension the conditions involving the spin connection coefficients may be
replaced with the following invariants derived from the covariant derivative of �

�i�j;i = �i
;i = �i;j�(i;j) = �i;j�[i;j] = 0.

The existence of such a null vector � implies that there is a local coordinate system
(u, v, xi) such that [65, 92]

ds2 = 2du (dv + Hdu + Wedxe) + g̃ef (u, xg)dxedxf (3.1)

where H = H(v, u, xe), We = We(v, u, xf ). The coordinate transformations that
preserve this metric are:

29
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1. (v′, u′, x′e) = (v, u, f e(u; xf )), and Je
f ≡ ∂fe

∂xf .

H ′ = H + geff e
,uf f

,u − Wf

(
J−1

)f

e
f e

,u, W ′
e = Wf

(
J−1

)f

e
− geff f

,u

g′
ef = ggl

(
J−1

)g

e

(
J−1

)l

f
(3.2)

2. (v′, u′, x′e) = (v + h(u, xg), u, xe)

H ′ = H − h,u, W ′
e = We − h,e g′

ef = gef (3.3)

3. (v′, u′, x′e) = (v/g,u(u), g(u), xe)

H ′ = 1
g2

,u

(
H + v

g,uu

g,u

)
W ′

e = 1
g,u

We, g′
ef = gef (3.4)

The Kundt spacetimes are of particular relevance to the equivalence problem,
as they contain a subclass of metrics which are not uniquely determined by their
polynomial scalar curvature invariants. To elaborate on this point we introduce two
definitions:

Definition 3.1.2. For a spacetime (M, g), a metric deformationm, ĝτ ,τ ∈ [0, ε), is a
family of smooth metrics on M such that

1. ĝτ is continuous in τ ,

2. ĝ0 = g, and

3. ĝτ for τ > 0 is not diffeomorphic to g.

For any spacetime we define the set of all scalar polynomial curvature invariants

I = {R, RμνRμν , CμναβCμ,ν,αβ, Rμναβ;γRμναβ;γ, ...}.

In a sense the set of invariants acts a function of the metric and its derivatives. It is
of interest when this function has an inverse and to what extent.

Definition 3.1.3. Consider a spacetime (M, g) with a set of invariants I . If there
does not exist a metric deformation of g having the same set of invariants as g we call
the set of invariants non-degenerate, and the metric g will be called I-non-degenerate.
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Thus a metric which is I-non-degenerate will be uniquely characterized by the set
of invariants in I. Those metrics which are not I-non-degenerate cannot be classified
by their scalar curvature invariants, for these spacetimes one must compare Cartan
invariants using the Karlhede algorithm. In the Kundt class, those metrics for which
the kinematic frame and null curvature frame are aligned. That is, relative to the
kinematic frame, the Riemann tensor and its covariant derivatives have vanishing
positive boost-weight components; imposing this condition we find that W,vv = 0 and
H,vvv = 0 are necessary conditions for the degenerate Kundt metrics,

ds2 = 2du (dv + Hdu + Wedxe) + g̃ef (u, xg)dxedxf , W,vv = H,vvv = 0. (3.5)

Using the invariant and covariant quantities [92]

I0 = RabcdR e f
a c L�L�gbdL�L�gef,, Kab = L�L�gab

one may differentiate between the degenerate Kundt metrics and the remainder of
the Kundt class by combining Theorem 4.2 and Proposition 6.1 in [92]:

Proposition 3.1.4. Within the Kundt class, if I0 and Kab are identically zero, the
metric belongs to the degenerate Kundt class.

In four dimensions it has been shown that a spacetime is either I-non-degenerate, a
locally homogeneous space or a degenerate Kundt spacetime [94].

3.2 CSI Spacetimes

There is a class of spacetimes for which all polynomial scalar invariants constructed
from the Riemann tensor and its covariant derivatives are constant1, called CSI space-
times; those Lorentzian manifolds for which all curvature invariants vanish identically
are called V SI spacetimes, with V SI ⊂ CSI. The set of all locally homogeneous
spacetimes (denoted by H) are a subset of the class of CSI spacetimes (i.e., H ⊂ CSI)
as well. Let us denote by CSIR all reducible CSI spacetimes that can be built from
V SI and H by (i) warped products (ii) fibered products, and (iii) tensor sums. Sim-
ilarly we denote by CSIF those spacetimes for which there exists a frame with a null
vector � such that all components of the Riemann tensor and its covariant derivatives

1For brevity we will call these curvature invariants
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in this frame have the property that (i) all positive boost weight components (with
respect to �) are zero and (ii) all zero boost weight components are constant. Finally,
let us denote by CSIK , those CSI spacetimes that belong to the (higher-dimensional)
Kundt class (the form of its metric is given by (3.1)); the so-called Kundt CSI space-
times. By construction CSIR is at least of Weyl type II (i.e.„ of type II, III, N

or O [66]), and by definition CSIF and CSIK are at least of Weyl type II (more
precisely, at least of Riemann type II).

A Riemannian manifold with constant scalar invariants is immediately homoge-
neous, (CSI ≡ H). This is not true for Lorentzian manifolds, there are examples of
CSI spacetimes which consists of homogeneous spaces and a certain subclass of the
Kundt spacetimes [79]. Interestingly, for every CSI spacetime there is a homogeneous
spacetime (not necessarily unique) with precisely the same constant invariants. This
suggests that CSI spacetimes can be constructed from homogeneous spacetimes H

and V SI spacetimes using warped and fibered products (e.g., CSIR). In particular,
the relationships between CSIR, CSIF , CSIK and especially with CSI\H were stud-
ied in arbitrary dimensions and considered in more detail for the four dimensional
case in [79, 94]. A CSI spacetimes is either:

• (A) of Petrov (P)-type I or Plebanski-Petrov (PP)-type I, or

• (B) of P-type II and PP-type II.

It is plausible that in case A, since the spacetime is not of P-type II and PP-
type II, it is necessarily completely backsolvable (CB) [59]. Furthermore due to all
of the zeroth order scalar curvature invariants being constant, there exists a frame
in which the components of the Riemann tensor are all constant, and the spacetime
is curvature homogeneous of order 0, CH0. If the spacetime is also CH1, then it is
necessarily locally homogeneous H [78]; therefore, if it is not locally homogeneous,
it cannot be CH1. Then by considering differential scalar invariants, we can obtain
information on the spin coefficients in the CSI spacetime. Therefore, in this case
there are severe constraints on those spacetimes that are not locally homogeneous.
Necessarily the spacetime is of P-type I or PP-type I (and does not belong to CSIK ,
CSIF , or CSIR), it belongs to CSI0 ≡ CH0, but not CH1 with a number of further
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constraints arising from the non-CB conditions and the differential constraints; and
it is plausible that there are no such spacetimes.

In case B, we have that the spacetime is necessarily of P-type II and PP-type II. It
then follows from Theorem 7.1 in [79], that all boost weight zero terms are necessarily
constant. The spacetime is then either CB, in which case all of the results in case A
apply, or they are NCB and a number of further conditions apply (these conditions are
very severe [59]). In either case, there are a number of different classes characterized
by their P-type and PP-type (in each case at least of type II), and in each class there
are a number of further restrictions. By investigating the differential scalar invariants
we then find conditions on the spin coefficients, and it was conjectured that all of
these spacetimes are necessarily CSIK . In four dimensions the CSIR, CSIF and
CSIK spacetimes are closely related, and it is plausible that CSI\H is at most of
Weyl type II.

Motivated by these results, the authors of [79] proposed higher-dimensional ana-
logues of the CSIF , CSIR and CSIK conjectures. These conjectures have all been
proven in three and four dimensions [89, 94]. In higher dimensions, CSIF conjecture
has been proven as a corollary to the more general result for tensors whose scalar
curvature invariants do not uniquely characterize them [103, 104].

Theorem 3.2.1 (CSIF Theorem). A spacetime is CSI if and only if there exists a
null frame in which the Riemann tensor and its derivatives can be brought into one
of the following forms: either

1. The Riemann tensor and its derivatives are constant, in which case we have a
locally homogeneous space, or

2. The Riemann tensor and its derivatives are of boost order zero with constant
boost weight zero components at each order. This implies that the Riemann
tensor is of type II or less.

Assuming that there exists such a preferred null frame, then

Conjecture 3.2.2 (CSIK conjecture). If a spacetime is CSI , then the spacetime is
either locally homogeneous or belongs to the higher dimensional Kundt CSI class.

And lastly,
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Conjecture 3.2.3 (CSIR conjecture). If a spacetime is CSI , then it can be con-
structed from locally homogeneous spaces and V SI spacetimes.

This construction can be done by means of fibering, warping and tensor sums.
From the results above and these conjectures, it is plausible that for CSI spacetimes
that are not locally homogeneous, the Weyl type is II, III, N or O, and that all boost
weight zero terms are constant. In four dimensions, these results have been verified
so that every CSI spacetime is immediately a member of the degenerate Kundt class
of metrics.

If a particular Kundt spacetime possesses a frame {�,n, mi
e} such that the com-

ponents of the Riemann are constant Rαβδγ = Rabcdma
αmb

βmc
δm

d
γ and all of its

covariant derivatives Rαβδγ;ε1,...εn = Rabcd;e1...enma
α...md

dem
e1
ε1 ...men

εn
∀n ∈ Z are con-

stant, then this spacetime lies in CSI ⊂ CSIF
⋂

CSIK . Furthermore there exists
(locally) a coordinate transformation such that the metric form is preserved and

g̃ef ≡ g̃′
gl

∂f g

∂xe

∂f l

∂xf
, g̃′

ef,u′ = 0 (3.6)

In the case of V SI spacetimes, from [79] we are assured of the existence of a coordinate
change (v′, u′, x′i) = (v, u, F i(u; xk)) such that the transverse metric components take
the form:

g̃ef ≡ g̃′
kl

∂F k

∂xe

∂F l

∂xf
, g̃′

ef = δef (3.7)

This agrees with (3.17), the canonical metric for V SI spacetimes. Moreover, in
the more general case of CSI spacetimes, Theorem 4.1 in [79], assures us that the
transverse space is locally homogeneous.

Given a Kundt metric satisfying (3.6) then it is CSI0 and the following Riemann
components are constant: with mi

emif = gef , the non-zero frame connection compo-
nents are:

Γ21i = D1Wi

2 , Γ212 = D1H, Γ2i2 = DiH − D2Wi, (3.8)

Γi12 = D1Wi

2 , Γi21 = D1Wi

2 , Γi2j = Aij

2 , Γij2 = Aij

2 , (3.9)

Γijk = −1
2 (Dijk + Djki − Dkij) (3.10)

where the tensors involved are written in terms of

mie, Dijk = 2mie,fm e
[j m f

k] , Aij = D[jWi] − DkjiW
k = 2W[i;j].
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The linearly independent components of the Riemann tensor with boost weight 1 and
0 may be written as:

R121i = −1
2Wi,vv

R1212 = −H,vv + 1
4 (Wi,v)

(
W i,v

)
,

R12ij = W[iWj],vv + W[i;j],v,

R1i2j = 1
2

[
−WjWi,vv + Wi;j,v − 1

2 (Wi,v) (Wj,v)
]

,

Rijîĵ = R̃ijîĵ.

The spacetime will be CSI0 if there exists a frame {�, n, mi}, a constant σ, anti-
symmetric matrix aîĵ, and symmetric matrix sîĵ such that:

Wî,vv = 0, (3.11)

H,vv − 1
4
(
Wî,v

) (
W î,v

)
= σ, (3.12)

W[̂i;ĵ],v = aîĵ, (3.13)

W(̂i;ĵ),v − 1
2
(
Wî,v

) (
Wĵ,v

)
= sîĵ, (3.14)

and the components R̃ijîĵ are all constants. That is, the tranverse metric dS2
H is

curvature homogeneous. Integrating the above constraints gives the following form
for the metric functions:

Wi(v, u, xe) = vW
(1)
i (u, xe) + W

(0)
i (u, xe), (3.15)

H(v, u, xe) = v2

8
[
4σ + (W (1)

i )(W (1)i)
]

+ vH(1)(u, xe) + H(0)(u, xe). (3.16)

If we further require that that our CSI0 Kundt spacetime is also CSI1 we have that

R121i;2 = −1
2

[
σWi,v − 1

2(sji + aji)W j,v
]

R1ijk;2 = −1
2
[
W n,vR̃nijk − Wi,vajk + (si[j + ai[j)Wk],v

]
are constant, that is,

σWi,v − 1
2(sji + aji)W j,v = αi

(sij + aij);k − (sik + aik);f = βijk

where the Ricci identity has been used to rewrite the latter condition.
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In the case where σ = 0 & aêf̂ = sêf̂ = 0, then the spacetime belongs to the
V SI0 class, and it will be of Ricci and Weyl type III, N, O. V SI1 spacetimes will
arise from the vanishing of certain linear combinations of the scalars derived from
�α;β; these spacetimes have been studied in four dimensions in [78]. Less is known
about these spacetimes in higher dimensions, but it is plausible that those spacetimes
that are properly V SI1 (i.e., zero and first order invariants vanish but spacetime is
not V SI) are of Weyl type N, Ricci-Type N or O and admit an aligned geodesic null
congruence.

3.3 V SI Spacetimes

There is more known about the subclass of CSI spacetimes in which all curvature
invariants vanish, the V SI spacetimes. From [65] we have the following theorem:

Theorem 3.3.1 (V SI Theorem). All curvature invariants of all orders vanish in
an N-dimensional Lorentzian spacetime if and only if there exists an aligned, non-
expanding, non-twisting, shear-free, geodesic null direction �α along which the Rie-
mann tensor has negative boost order.

To be precise, there exists a null vector � such that

�α;β = L11�α�β + L1i�αmi
β + Li1m

i
α�β

While if we choose a frame including � as a basis vector, the Riemann tensor will
be of type III, N or O, this implies that all V SI spacetimes belong to the Generalized
Kundt class. In fact it was shown in [80] that there is a canonical form for the metrics
of V SI spacetimes:

ds2 = 2du(dv + Hdu + Wedxe) + δefdxedxf , (3.17)

where the metric functions satisfy certain constraints that will be discussed in the
next subsection. The authors of [80] go further by classifying all higher-dimensional
V SI spacetimes according to their Weyl type, Ricci-type and whether W1 has v-
dependence or not.
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3.4 CCNV Metrics

As was noted in [80], in the case of a Kundt spacetime the aligned, repeated, null
vector of (3.17) is also a null Killing vector if and only if all of the metric functions
are independent of � = ∂

∂v
; that is, the metric takes the form:

ds2 = 2du
(
dv + H(u, xe)du + We(u, xf )dxe

)
+ g̃ef (u, xg)dxedxf (3.18)

This forces all of the components of Lab to vanish, which implies � is a covariantly
constant null vector, i.e., �a;b = 0. We will say that a spacetime admitting a covari-
antly constant null vector is a CCNV spacetime. From [80] all of the CCNV V SI

spacetimes were listed as special cases of the canonical Kundt metric (3.17), and there
are also CCNV CSI spacetimes. All CCNV V SI spacetimes are of Weyl type III
and Ricci Type III. In general, if there exists an � that is a CCNV then from the
Ricci identity �αRαβγδ = 0, we expect in CSI spacetimes the Riemann tensor to be
of type II or less.

To calculate the connection coefficients for the above CCNV metric, we define
the useful tensor

Bij = mie,um e
j . (3.19)

Then with the other two tensors given as Aij and Dijk the connection coefficients are:

Γ2i2 = (H,e − We,u)m e
i (3.20)

Γ2ij = −1
2Aij − B(ij) (3.21)

Γij2 = 1
2Aij − B[ij] (3.22)

Γijk = −1
2[Dijk + Djki + Dkji] (3.23)

the non-vanishing curvature components are then:

R2ij2 = Γ2i2,em
e

j − (Γ2ikmk
e),um e

j − Γ2a2Γaij + Γ2ajΓai2 (3.24)

R2ijk = (Γ2ilm
l
[e),f ](m f

j m e
k + Γ2ajΓaik − Γ2akΓaij (3.25)

Rijkl = (Γijîm
î
[ĵ),k̂]m

k̂
k m ĵ

l − ΓîilΓîjk − ΓîikΓîjl (3.26)

By calculating the curvature tensor of the metric (3.18), and its covariant derivatives,
we note that Rijkl = R̃ijkl, where the tilde refers to curvature tensors with respect
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to the spatial metric g̃ef (u, xg). This metric is Riemannian and depends on the
’parameter’ u. In particular, Rijkl is the Riemann tensor of the ’transverse space’.

The non-zero components of the Ricci tensor are:

R22 = Ri2i2 = −R2ii2 (3.27)

R2i = Rj2ji = −R2jji (3.28)

Rij = Rkikj (3.29)

We can express (3.28) in a convenient form by expanding (3.25) and replacing the
directional derivatives in terms of covariant derivatives we obtain

R2ijk = Γ2ik|j − Γ2ij|k + Γ2il(Γlkj − Γljk + Cljk − Clkj)

where |i = m e
i ∇e and Cijk = mij∗,lm

l
jm

j∗
k , this becomes

R2ijk = Γ2ik|j − Γ2ij|k. (3.30)

Therefore the boost weight -1 components of the Ricci tensor can be expressed in
terms of a covariant derivative and a divergence,

R2i = Γ2jj|i − Γ2jil|j

From the definition of Bij follows the identity

Bij + Bji = miemjf∂ugef (3.31)

by (3.21) this yields Γ2ii = −Bii = −1
2gij∂ugij and consequently

2R2i = −(gjk∂ugjk)|i − Ail|l + (Bil + Bli)|l (3.32)

We note that by contracting (3.31) with mi
em

jf gives B j
i + Bj

i = gik∂ugki in terms
of coordinate indices. This can be used to express the last term of (3.32) in terms of
a divergence over the coordinate index j.

3.4.1 Criteria for a CCNV Metric to be CSI or V SI

It has been shown that the line-element (3.18) for a spacetime admitting a covariantly
constant null vector has a Riemann curvature tensor with the following boost weight
decomposition:

Rαβγδ =
0︷ ︸︸ ︷

Rijklm
i
{αmj

βmk
γml

δ} +
−1︷ ︸︸ ︷

R2jkl�{αmj
βmk

γml
δ} +

−2︷ ︸︸ ︷
R2j2l�{αmj

β�γml
δ} (3.33)
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R2ij2 = Γ2i2,em
e

j − (Γ2ikmk
e),um e

j − Γ2a2Γaij + Γ2ajΓai2 (3.34)

R2ijk = (Γ2ilm
l
[e),f ](m f

j m e
k + Γ2ajΓaik − Γ2akΓaij

Rijkl = (Γijîm
î
[ĵ),k̂]m

k̂
k m ĵ

l − ΓîilΓîjk − ΓîikΓîjl

where all of the boost weight 0 components arise from the curvature of the Riemannian
transverse space. In order to take the covariant derivative of (3.33), we first consider
the covariant derivative of the frame components Rabcd:

∇εRabcd = � εD2Rabcd + mi
εDiRabcd (3.35)

where we have used the v-independence of (3.18) to set D1Rabcd = 0. The covariant
derivatives of the frame one-forms, mi & � are ∇ε�α = 0 and

∇εmiα = Γlinml
αmn

ε + Γli2m
l
α�ε + Γ2il�αml

ε + Γ2i2�α�ε . (3.36)

Thus (3.35) and (3.36) imply that ∇ does not raise boost weight because covariant
differentiation does not introduce the null vector n into the expressions; as a result
∇εRαβγδ will contain frame components whose highest boost weight is 0 and these will
correspond only to the covariant derivative of the curvature of the Riemannian trans-
verse space. Using an inductive argument, this can be shown to hold for any number
of covariant derivatives of the Riemann tensor. Let the kth covariant derivative of
(3.33) be represented symbolically as ∇kR, then we can say that ∇kR has frame
components whose highest boost weight is zero and � contracted with any index of
∇kR vanishes; i.e., ∇kR · � = 0.

It now follows that all curvature invariants of (3.18) will be completely equivalent
to the curvature invariants of the transverse space. Therefore, if we impose the CSI

condition on (3.18), we are requiring the transverse space to be a CSI Riemannian
metric. From a theorem of [F. Prufer from 1996] we conclude that the transverse
metric is locally homogeneous, which establishes the following,

Lemma 3.4.1. A generalized Kundt metric admitting a CCNV is CSI if and only
if the transverse metric is locally homogeneous.

Now, consider the Ricci invariant r2 = RabR
ab = RijR

ij, where the second equality
follows from the form of the Ricci tensor (3.28)-(3.29), which shows that the boost
weight 0 components arise solely from the transverse metric. Since r2 = ∑

i,j(Rij)2
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is a sum of squares, we have that if r2 = 0 then Rij = 0. A theorem of [ D.V.
Alekseevski 1975 ] states that a homogeneous Riemannian space that is Ricci-flat is
flat. Therefore, combining these with Lemma (3.4.1) gives the result:

Proposition 3.4.2. If a generalized Kundt metric admitting a CCNV is CSI and
RabR

ab = 0 then the metric is V SI.

Although Rαβγδ�
α = 0 = Rαβ�α, it does not follow that Cαβγδ�

α = 0. More
precisely, if we consider the decomposition of the Riemann tensor into its trace and
trace-free parts we obtain

C1bcd = 1
2(η1dRbc − η1cRbd) + 1

6(η1cηbd − η1dηbc)R . (3.37)

It is clear that there will exist boost weight 0 and -1 components of Weyl with
projections along � that do not vanish, namely

C1212 = −1
6R, C1i2j = −1

2Rij + 1
6δijR, C12i2 = 1

2Rij (3.38)

Assuming the conditions in proposition (3.4.2) are satisfied then the Weyl components
in (3.38) vanish and also Cijkl = 0 from [17], therefore the remaining non-vanishing
Weyl components of the V SI metric are C2jkl and C2j2l.

3.5 Kundt Spacetimes and Supergravity

A V SI spacetime admits an aligned shear-free, non-expanding, non-twisting, geodesic
null direction �a along which the Riemann tensor has negative boost order [65]. These
spacetimes can be classified according to their Weyl type (III, N, O), Ricci type
(III,N,O) and the vanishing or non-vanishing spin coefficients.

One particular subset of Ricci type N V SI spacetimes, the higher-dimensional
pp-wave spacetimes, have been studied extensively in the literature, and are known
to be exact solutions in string theory [35, 44, 43], in type IIB supergravity with an
R-R five-form [57], and with NS-NS form fields as well [58]. The pp-wave spacetimes
are of Weyl type N. However there are Ricci type N solutions of Weyl type III, like
the string gyratons and in fact all Ricci Type N V SI spacetimes are solutions to
supergravity [84].
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Moreover in [84] it was shown that there are V SI spacetime solutions of type
IIB supergravity which are of Ricci Type III, assuming appropriate source fields are
provided. In order for a V SI spacetime to be of Ricci type III, the dilation must
be a non-constant function of the light-cone coordinate, u and the metric will have
v-dependence. However it was shown in [84] that no null or timelike killing vectors
can exist in a V SI spacetime if the metric is dependent on v, thus the Ricci Type
III spacetimes do not preserve supersymmetry. Furthermore, while the Ricci type N,
Weyl type III solutions can be reduced to Weyl type N, the Ricci type III solution
can only have Weyl type III.

It has been shown that the plane wave spacetimes have the fascinating property
that all quantum corrections vanish in these spacetimes, [18, 16]; four dimensional
spacetimes which exhibit this property are called universal. The universal spacetimes
give important insights into the quantum theory, despite having actual knowledge
of this theory. It has been shown that all four-dimensional universal spacetimes are
actually CSI spacetimes [91, 102]. For these reasons the study of the subclass of
universal CSI spacetimes will be of great help in the pursuit of a theory of a more
general gravity theory.

In four dimensions V SI spacetimes are known to be exact string solutions to all
orders in the string tension α′, even in the presence of additional fields [54]. Similarly it
can be shown that higher-dimensional supergravity solutions supported by the proper
fields (for example, the dilation scalar field, Kalb-Ramond field, and form fields) are
also exact solutions in string theory using arguments from [35, 57, 58]. Thus it can be
analogously argued that the V SI supergravity spacetimes are exact string solutions
to all orders in the string tension α′ in the presence of the appropriate fields, and so
it is to be expected that the special V SI supergravity solution introduced in [84] will
be as well. From this we conclude that the Ricci type III solution may be of relevance
to string theory.

Since the Ricci Type III IIB-supergravity solutions do not preserve supersym-
metry, this leads to the question of what are the necessary conditions to preserve
supersymmetry? In a number of supergravity theories (e.g. D= 11 [73], type IIB
[69]), in order to preserve some supersymmetry it is a necessary, but not sufficient,
that the spacetime involved admit a Killing spinor εA which then yields a null or
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timelike Killing vector from its Dirac current, xα = ε̄A′
γα

AA′εA where the γα are the
higher dimensional analogues to the four-dimensional gamma matrices.

In the case of N-dimensional V SI spacetimes, the existence of Killing vectors
depends on whether the components of the metric function are independent of the
light-cone coordinate v. This requirement leads to the conclusion that all V SI space-
time solutions to type IIB supergravity preserving some supersymmetry are of Ricci
type N, Weyl type III(a) or N [80] Such spacetimes include not only pp-waves but
also spacetimes of Weyl type III(a), an example of which is the string gyratons [82].
Weyl type III(a) spacetimes like the vacuum solution or NS-NS solutions only preserve
some of the supersymmetry.

It is known that AdSd × S(D−d) (in short AdS × S) is an exact solution of super-
gravity (and preserves the maximal number of supersymmetries) for certain values of
(D,d) and for particular ratios of the radii of curvature of the two space forms. Such
spacetimes (with d = 5, D = 10) are supersymmetric solutions of IIB supergravity
(there are analogous solutions in D = 11 supergravity) [63]: AdS × S is an example
of a CSI spacetime [79]. There are a number of other CSI spacetimes known to
be solutions of supergravity and admit supersymmetries; namely, generalizations of
AdS × S (for example, see [81]) and (generalizations of) the chiral null models [44].
The AdS gyraton (which is a CSI spacetime with the same curvature invariants as
pure AdS) [75] is a solution of gauged supergravity [83] (the AdS gyraton can be cast
in the Kundt form [85]).

Other known CSI spacetimes may be investigated to determine whether they
contain solutions of supergravity. For example, we can consider the product manifolds
of the form M × K, where M is an Einstein space with negative constant curvature
and K is a (compact) Einstein-Sasaki spacetime. The warped product of AdS3 with
an 8-dimensional compact (Einstein-Kahler) space M8 with non-vanishing 4-form flux
are supersymmetric solutions of D=11 supergravity [81], while in [45] supersymmetric
solutions of D = 11 supergravity, where M is the squashed S7, were given.

A class of CSI spacetimes which are solutions of supergravity and preserve super-
symmetries, were built from a V SI seed and locally homogeneous (Einstein) spaces
by warped products fibered products, and tensor sums [79], yielding generalizations
of AdS × S or AdS gyratons [85]. In particular, solutions obtained by restricting
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attention to CCNV and Ricci type N spacetimes were considered, some explicit ex-
amples of CSI supergravity spacetimes were constructed by taking a homogeneous
(Einstein) spacetime, (MHom, g̃) of Kundt form and generalizing to inhomogeneous
spacetimes, (M, g) by including arbitrary Kundt metric functions (by construction,
the curvature invariants of (M, g) will be identical to those of (MHom, g̃)); a num-
ber of 5D examples were given, in which ds2

hom was taken to be Euclidean space or
hyperbolic space [64].

The question then is whether these CSI solutions preserve any supersymmetry. It
is known that for many supergravity theories, if the spacetime admits a Killing spinor,
it then admits a null or timelike Killing vector. We will be particularly interested in
spacetimes that admit a null covariantly constant vector.



Chapter 4

CSI Spacetimes with a Non-spacelike Isometry

This chapter is based on: D. McNutt, N. Pelavas, A. Coley (2010). Killing vectors in
higher-dimensional spacetimes with constant scalar curvature invariants. IJGMMP,
Vol 7, Issue 8, pp 1349-1369.

4.1 The Killing Equations

Let ζ = ζ1n+ζ2�+ζim
i be a Killing vector field in a CSI Kundt spacetime; it satisfies

the Killing equations for a, b ∈ [1, N ]

ζa,b + ζb,a − 2Γc
(ab)ζc = 0.

To simplify the analysis of these equations, we choose new coordinates where one
of the Killing vectors of the transverse space, Y , has been rectified so that locally
it behaves as a translation; i.e., Y = A ∂

∂x3 . In this coordinate system g33 will be
constant, and so it is possible to pick a coframe with an upper-triangular matrix mi

e

and m3
3 constant [20]. This choice of coframe causes Γ3ij and Γ3(ij) ∀i, j ∈ [3, N ] to

vanish. Rotating the frame so that the spatial component of ζ is locally aligned with
m3, ζ takes the form ζ = ζ1n + ζ2� + ζ3m

3

The components ζ1 and ζ3 may be partially integrated from the equations with
indices (11), (13), (3i):

ζ1 = ζ1(u, x3), ζ3 = −D3(ζ1)v + ζ
(0)
3 (u, xe), (4.1)

where ζ
(0)
3 satisfies the following differential equations from (3i):

Diζ
(0)
3 + W

(0)
i D3(ζ1) = 0, DiD3ζ1 − W

(1)
i D3ζ1 = 0 (4.2)

The tensors Γ2i2 = DiH − D2Wi and Amn = D[nWm] may be express in orders of v,
where σ∗ ≡ 4σ + W

(1)
i W (1)i and the metric functions H and Wi = m e

i we are of the

44
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form (3.15) and (3.16).

Γ2i2 =

Γ(2)
i︷ ︸︸ ︷

(Diσ
∗ − σ∗W (1)

i ) v2

8 +

Γ(1)
i︷ ︸︸ ︷

(DiH
(1) − 1

4W
(0)
i σ∗ − D2W

(1)
i ) v

+

Γ(0)
i︷ ︸︸ ︷

DiH
(0) − W

(0)
i H(1) − D2W

(0)
i + H(0)W

(1)
i , (4.3)

Aij =

A
(1)
ij︷ ︸︸ ︷

2D[jW
(1)
i] v +

A
(0)
ij︷ ︸︸ ︷

2D[jW
(0)
i] − 2W

(0)
[j W

(1)
i] .

Substituting these into the equation with indices (21) yields ζ2 in orders of v:

ζ2 =

ζ
(2)
2︷ ︸︸ ︷

(σ∗ζ1

4 − W
(1)
3 D3(ζ1)) v2

2 +

ζ
(1)
2︷ ︸︸ ︷

(W (1)
3 ζ

(0)
3 − D2ζ1 + H(1)ζ1) v + ζ

(0)
2 (u, xe). (4.4)

Our primary interest are those CSI spacetimes which do not admit covariantly
constant null vectors, since the existence of Killing vectors in CCNV spacetimes was
considered in [100]. The analysis will be restricted to non-spacelike Killing vectors,
|ζ| ≤ 0. Using the definition of the vector components given above the magnitude is
expanded into orders of v:

−σ∗
4 (ζ1)2 + W

(1)
3 D3(ζ1)ζ1 + (D3(ζ1))2 ≤ 0 (4.5)

ζ1(W (1)
3 ζ

(0)
3 − D2ζ1 + H(1)ζ1) + D3(ζ1)ζ(0)

3 = 0 (4.6)

(ζ(0)
3 )2 − 2ζ1ζ

(0)
2 ≤ 0. (4.7)

The remaining Killing equations, with indices 22, 23 and 2n are now expanded into
orders of v, giving the following set of equations:

Γ(2)
3 D3(ζ1) = 0, (4.8)

D2ζ
(2)
2 + 1

4σ∗ζ(1)
2 − H(1)ζ

(2)
2 − 1

4Γ(1)
3 D3(ζ1) + 1

4Γ(2)
3 ζ

(0)
3 = 0, (4.9)

D2ζ
(1)
2 + 1

4σ∗ζ(0)
2 − H(0)ζ

(2)
2 − Γ(0)

3 D3(ζ1) + Γ(1)
3 ζ

(0)
3 = 0, (4.10)

D2ζ
(0)
2 − H(0)ζ

(1)
2 + H(1)ζ

(0)
2 + Γ(0)

3 ζ
(0)
3 = 0, (4.11)

1
4σ∗D3(ζ1) + D3ζ

(2)
2 − W

(1)
3 ζ

(2)
2 − 1

4Γ(2)
3 ζ1 = 0, (4.12)

D2D3(ζ1) − H(1)D3(ζ1) − D3ζ
(1)
2 + W

(0)
3 ζ

(2)
2 + Γ(1)

3 ζ1 = 0, (4.13)

D2ζ
(0)
3 + H(0)D3(ζ1) + D3ζ

(0)
2 − W

(0)
3 ζ

(1)
2 − Γ(0)

3 ζ1 + W
(1)
3 ζ

(0)
2 = 0, (4.14)
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Dnζ
(2)
2 − W (1)

n ζ
(2)
2 − 1

4Γ(2)
n ζ1 + A

(1)
3n D3(ζ1) = 0, (4.15)

Dnζ
(1)
2 − W (0)

n ζ
(2)
2 − Γ(1)

n ζ1 − A
(1)
3n ζ

(0)
3 + A

(0)
3n D3(ζ1) = 0, (4.16)

Dnζ
(0)
2 − W (0)

n ζ
(1)
2 − Γ(0)

n ζ1 + W (1)
n ζ

(0)
2 − A

(0)
3n ζ

(0)
3 = 0. (4.17)

The analysis splits into subcases arising from (4.8) where either D3(ζ1) or Γ(2)
3 are

assumed to vanish seperately.

4.2 Implications of ζ[a;b] = 0

Before each case is analyzed it will be beneficial to examine the anti symmetrization
of ζa;b = 0 to determine the set of CSI spacetimes admitting a covariantly constant
non-spacelike vector. Non-spacelike Killing vectors in CCNV CSI spacetimes has
already been studied in [100] as such if a CSI spacetime is shown to be CCNV it may
be disregarded in the current analysis. Conversely it is of interest to determine when
a CSI spacetime admits a Killing vector but cannot admit a covariantly constant
vector.

Using the form of ζ given above, the vanishing of ζ[a;b], yields the following equa-
tions:

D2ζ1 − D1ζ2 − Γ1
12ζ1 = 0, (4.18)

D3ζ1 − D1ζ3 − 2Γ1
[13]ζ1 = 0, (4.19)

2Γ1
[1n]ζ1 = 0, (4.20)

D3ζ2 − D2ζ3 + Γ1
32ζ1 = 0, (4.21)

Dnζ2 + Γ1
n2ζ1 = 0, (4.22)

Dnζ3 − 2Γ1
[3n]ζ1 = 0, (4.23)

Γ1
[nm]ζ1 = 0. (4.24)

Assuming ζ1 �= 0 and expanding (4.20) implies Γ1
[1n] = W (1)

n = 0. Similarly 2Γ1
[13] =

W
(1)
3 and so equation (4.19) gives W

(1)
3 = 2D3ln(ζ1). Equation (4.24) implies that

Anm must vanish. Using (4.3) we may summarize these observations as

Lemma 4.2.1. For those spacetimes admitting a vector ζ such that ζ(a;b) = 0 and
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ζ[a;b] = 0 it is necessary that the metric functions Wi satisfy the following:

W
(1)
3 = 2D3ln(ζ1), W (1)

n = 0,

Anm = 2D[mW
(0)
n] = 0.

The remaining equations are:

D2ζ1 − D1ζ2 − Γ212ζ1 = 0, (4.25)

D3ζ2 − D2ζ3 + Γ232ζ1 = 0, (4.26)

Dnζ2 + Γ2n2ζ1 = 0, (4.27)

Dnζ3 − A3nζ1 = 0. (4.28)

These will be studied once the analysis of the Killing equations has been completed.

4.3 Case 1: D3(ζ1) = 0

Setting D3(ζ1) equal to zero we obtain

ζ1 = ζ
[0]
1 (u), ζ3 = ζ

(0)
3 (u) (4.29)

ζ2 =

ζ
(2)
2︷ ︸︸ ︷

(σ∗ζ1

4 ) v2

2 +

ζ
(1)
2︷ ︸︸ ︷

(W (1)
3 ζ3 − D2ζ1 + H(1)ζ1) v + ζ

(0)
2 (u, xe). (4.30)

The non-spacelike conditions are now

−σ∗(ζ1)2 ≤ 0, ζ1(W (1)
3 ζ3 − D2ζ1 + H(1)ζ1) = 0, (ζ3)2 − ζ1ζ

(0)
2 ≤ 0 (4.31)

so either ζ1 vanishes and ζ is a null Killing vector or ζ1 �= 0 and σ∗ ≥ 0.

4.3.1 Case 1.1 : ζ1 = 0

If ζ1 is allowed to vanish, the remaining non-spacelike conditions imply that ζ3 = 0
and so the Killing vector is of the form ζ = ζ2�. In light of the special form of ζ2 it
must be a function of only u and the spatial coordinates xe. The remaining Killing
equations are

σ∗ζ(0)
2 = 0 (4.32)

D2ζ
(0)
2 + H(1)ζ

(0)
2 = 0 (4.33)

D3ζ
(0)
2 + W

(1)
3 ζ

(0)
2 = 0 (4.34)

Dnζ
(0)
2 + W (1)

n ζ
(0)
2 = 0. (4.35)
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The vanishing of σ∗ in the first term (4.32) implies W
(1)
i W (1)i = −4σ where W

(1)
i =

m e
i w(1)

e and hence

W
(1)
i W (1)i = gefW (1)

e W
(1)
f = −4σ. (4.36)

Since the transverse metric is Riemannian, it is positive-definite and restricts the
value of σ to be less than or equal to zero.

4.3.2 Case 1.1.1:

If σ = 0, this implies W (1)
e = 0 for all e ∈ [3, N ]. The vector component ζ2 will be a

function of u only and the remaining equation (4.33) determines the metric function

H(1)(u) = −D2ln(ζ2). (4.37)

One may always make a coordinate transform of the form (3.4) to set H(1) = 0, so
the metric is independent of the null coordinate v and ζ = � = ∂

∂v
, implying that ζ is

a covariantly constant null vector.

4.3.3 Case 1.1.2:

If σ < 0, one may solve for the metric functions W
(1)
i and H(1) in terms of ζ(u, xe):

H(1)(u, xe) = −D2ln(ζ2), W
(1)
i (u, xe) = −Diln(ζ2).

These CSI spacetimes do not admit a covariantly constant vector. To see this, assume
σ < 0 and consider equations (4.25) - (4.27); the first two are automatically satsified
while the last implies that ζ2 is a function of u only. This forces the W

(1)
i to all vanish,

leading to the contradiction: 0 = σ∗ = σ < 0, hence these spacetimes do not admit a
CCNV .

Given a null vector of the form, ζ = ζ(u, xe)�, it will be a Killing vector for the
CSI spacetime with a locally homogeneous transverse space and metric functions:

H = −(lnζ),uv + H(0)(u, xe), We = −(lnζ),ev + W (0)
e (u, xf ). (4.38)

The vanishing of the function σ∗ leads to one last condition for the CSI spacetime.
Since W (1)

e = −(lnζ),e, the only constraint on the function ζ arises from (3.14).
N∑

i=3
[Diln(ζ2)]2 = −4σ, σ < 0 (4.39)
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gefW (1)
e W

(1)
f = −4σ.

The left-hand-side must be positive, and so it is necessary that σ = R1212 is a negative
real number.

4.3.4 Case 1.2 :

The remaining conditions from |ζ| ≤ 0 are

D2ζ1 − H(1)ζ1 = W
(1)
3 ζ3 (4.40)

(ζ3)2 ≤ ζ1ζ
(0)
2 . (4.41)

Expanding ζ2 and Γ(1)
3 , we find that the O(v2) terms, (4.12) and (4.15) are automat-

ically satisfied, while (4.9) and using (4.40) yield the following differential equation
for σ∗(u, xe):

ζ1D2σ
∗ + ζ3D3σ

∗ = 0. (4.42)

Using a coordinate transformation of the form (3.4), coordinates are chosen so
that ζ1 = 1 and the non-spacelike condition (4.40) determines a part of H

H(1) = −W
(1)
3 ζ3.

We can apply another coordinate transform of type (3.3) to eliminate H(0) as well.
In this coordinate system the Killing equations are:

σ∗(ζ(0)
2 − ζ3W

(0)
3 ) = 0, (4.43)

D2ζ
(0)
2 + ζ3D3ζ

(0)
2 + ζ3D2ζ3 = 0, (4.44)

D2W
(1)
i + ζ3D3W

(1)
i = 0, (4.45)

D2W
(0)
3 − ζ3W

(0)
3 W

(1)
3 = −D2ζ3 − D3ζ

(0)
2 − W

(1)
3 ζ

(0)
2 , (4.46)

D2W
(0)
n + ζ3D3W

(0)
n = (W (0)

3 W (1)
n + DnW

(0)
3 )ζ3 − W (1)

n ζ
(0)
2 − Dnζ

(0)
2 , (4.47)

If ζ3 is non-zero, equation (4.44) simplifies the differential equation for W
(0)
3 in (4.46).

Thus two subcases must be considered in which ζ vanishes or not.
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4.3.5 Case 1.2.1:

Setting ζ3 equal to zero causes H(1) to vanish while (4.44) and (4.45) imply

D2W
(1)
i = D2ζ

(0)
2 = 0. (4.48)

The remaining equations give constraints for the remaining metric functions:

σ∗(ζ(0)
2 ) = 0, (4.49)

D2W
(0)
3 = −D3ζ

(0)
2 − W

(1)
3 ζ

(0)
2 , (4.50)

D2W
(0)
n = −W (1)

n ζ
(0)
2 − Dnζ

(0)
2 . (4.51)

Thus there are two minor subcases to consider arising from (4.49).

4.3.6 Case 1.2.1a

Assuming σ∗ �= 0, ζ
(0)
2 vanishes and the set of spacetimes with metric functions:

H(v, xe) = σ∗ v2

8 , Wi(v, xe) = W
(1)
i (xe)v + W

(0)
i (xe) (4.52)

are CCNV spacetimes with ∂
∂u

as a covariantly constant null vector admitting a
Killing vector of the form:

ζ = n + σ∗v2

8 �.

If we suppose ζ is a covariantly constant vector; Lemma (4.2.1) and equations
(4.26) and (4.27) force the metric functions W

(1)
i and W (0)

n to vanish. However a
contradiction arises from (4.25) as it requires σ∗ = 0 but we have assumed that
σ∗ �= 0 and so the above spacetime cannot admit a covariantly constant vector.

Case 1.2.1b

For the other subcase, σ∗ is equal to zero, and the positive-definite signature of the
transverse metric restricts σ ≤ 0. For arbitrary ζ

(0)
2 (xe), and any choice of W

(1)
i (xe)

satisfying (4.36) with σ = R1212 ≤ 0, the CSI Kundt spacetime with a locally
homogeneous transverse space and metric functions:

H = 0, Wi(u, v, xe) = W
(1)
i v − (Diζ

(0)
2 + W

(1)
i ζ

(0)
2 )u + wi(xe) (4.53)
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admit a Killing vector of the form:

ζ = n + ζ
(0)
2 �

To preserve the non-spacelike requirement ζ
(0)
2 must always be greater than or equal

to zero. If this killing vector is covariantly constant, W
(1)
i = 0 and hence σ = 0,

equation (4.28) implies Aij = 0, and the remaining equations (4.26) and (4.27) force
ζ

(0)
2 to be constant. Thus ζ is the sum of the CCNV ’s � and n.

4.3.7 Case 1.2.2: ζ3 �= 0

Divide by ζ3 in (4.44) and substitute the result into (4.46) to simplify the differential
equation for W

(0)
3 :

D2W
(0)
3 − ζ3W

(0)
3 W

(1)
3 = D2ζ

(0)
2

ζ3
− W

(1)
3 ζ

(0)
2 (4.54)

then by multiplying the above by E(u, xe) = e−[
∫

W
(1)
3 ζ3du], integration by parts gives

the solution

W
(0)
3 = ζ

(0)
2
ζ3

+ e[
∫

W
(1)
3 ζ3du]

∫ ζ
(0)
2 D2ζ3

(ζ3)2e[
∫

W
(1)
3 ζ3du]

du.

From (4.43) there are two minor subcases to consider, depending upon whether σ∗

vanishes or not.

4.3.8 Case 1.2.2a :

Supposing that σ∗ does indeed vanish, the functions W
(1)
3 (xe) and W (1)

n must satisfy
(4.36) with σ ≤ 0. For arbitrary ζ3(u) and any solution of the following differential
equation

D2ζ
(0)
2 + ζ3D3ζ

(0)
2 = −ζ3D2ζ3 (4.55)

the Kundt CSI spacetime with a locally homogeneous transverse space and

H = −W
(1)
3 ζ3v

W3(u, v, xe) = W
(1)
3 (u, xe)v + ζ

(0)
2
ζ3

+ 1
E

∫ Eζ
(0)
2 D2ζ3
(ζ3)2 du, E = e

∫
H(1)du (4.56)

Wn(u, v, xe) = W (1)
n (u, xe)v + W (0)

n (u, xe)
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satisfying the following differential equations:

D2W
(1)
i + ζ3D3W

(1)
i = 0 (4.57)

D2W
(0)
n + ζ3D3W

(0)
n = ζ3W

(1)
n

E

∫ Eζ
(0)
2

(ζ3)2 du + Dn[ ζ3
E

∫ Eζ
(0)
2 D2ζ3
(ζ3)2 du] (4.58)

admits a Killing vector of the form

� + ζ
(0)
2 (u, xe)n + ζ3(u)m3

Requiring ζ to be a CCNV , the W
(1)
i must vanish, causing H = 0 and σ = 0.

This is an example of a CCNV metric, with � = ∂
∂v

as the CCNV , where ζ will be
a second CCNV . The additional constraints (4.25) - (4.28) imply Aij = 0 while the
remaining equations lead to two possible subcases for Kundt spacetimes admitting a
covariantly constant vector, either Dnζ2 = 0 or D2ζ3 = 0. The first case leads to the
following form for ζ and the metric functions

ζ = n + [−ζ2
3 ]� + ζ3(u)m3, 3ζ2

3 ≤ 0

H = 0, W3(u, xe) = −ζ3 + w3(xe), Wn(xe) =
∫

Dnw3dx3 + wn(xr).

The non-spacelike condition 3ζ2
3 ≤ 0 eliminates the above case, as we’ve assumed

ζ3 �= 0 this case is not admissible. In the second case ζ3 must be constant, scaling x3

so that ζ3 = 1,

ζ = n + ζ2(xr)� + m3, 1 ≤ 2ζ

H = 0, W3(xe) = w3(xe), Wn(xe) =
∫

Dn(w3)dx3 − 2Dn(ζ2)x3 + wn(xr),

The vanishing of A3j = D[jW
(0)
3] implies that Dnζ

(0)
2 = 0 and so ζ

(0)
2 must be constant.

If ζ is timelike, the constant ζ
(0)
2 > 1

2 while if ζ is null ζ
(0)
2 = 1

2 . These spacetimes
will automatically be CCNV spacetimes with � as another covariantly constant null
vector.

4.3.9 Case 1.2.2b:

If σ∗ is non-zero, it satisfies the differential equation (4.42)

D2σ
∗ + ζ3D3σ

∗ = 0
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and the identity ζ
(0)
2 = ζ3W

(0)
3 may be derived from (4.43), which causes (4.54) to

simplify, implying ζ
(0)
2 D2ζ3 = 0. Letting ζ

(0)
2 = 0, the differential equation (4.55) for

ζ
(0)
2 forces D2ζ3 = 0. In either case ζ3 must be constant and henceforth will be set to

one. For any solution ζ
(0)
2 to the differential equation

D2ζ
(0)
2 + D3ζ

(0)
2 = 0, (4.59)

the vector

n + [σ
∗

8 v2 + ζ
(0)
2 ]� + m3

will be a Killing vector for any CSI Kundt spacetime of the form

H = σ∗
8 v2 − W

(1)
3 ζ3v, (4.60)

W3(u, v, xe) = W
(1)
3 (u, xe)v + ζ

(0)
2 , Wn(u, v, xe) = W (1)

n (u, xe)v + W (0)
n (u, xe)

where the W
(1)
i and W

(0)
i satisfy the following equations:

D2W
(1)
i + D3W

(1)
i = 0, (4.61)

D2W
(0)
i + D3W

(0)
i = 0. (4.62)

If ζ is required to be covariantly constant, a contradiction arises from (4.25) as it
requires σ∗ = 0 despite the fact that we have assumed σ∗ �= 0. Thus there are no
CCNV spacetimes of the form (4.60).

4.4 Case 2 : Γ(2)
3 = 0

For the remainder of this case we shall assume D3ζ1 �= 0 to avoid the previous
subcases. Supposing W

(1)
3 = 0, this implies that D3D3ζ1 = 0 and σ∗ = σ. This

causes a contradiction to arise between the Killing equation (4.12) and the non-
spacelike condition (4.5):

2σD3(ζ1) = 0, (D3ζ1)2 ≤ σ(ζ1)2.

The first implies that σ = 0 as we have assumed D3ζ1 �= 0; however, by the second
inequality the vanishing of σ implies D3ζ1 = 0 which contradicts our original assump-
tion. Thus D3D3ζ1 is always non-zero, and using this fact we may derive another
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identity for σ∗ = 4σ + (W (1)
3 )2 in terms of ζ1 from the vanishing of Γ(2)

3 :

σ∗ = D3σ
∗

W
(1)
3

= 2W
(1)
3 D3W

(1)
3

W
(1)
3

= 2D3D3(lnD3ζ1). (4.63)

Using a coordinate transform of type (3.4) with g(u) = u√
|σ| , we may rescale σ in

(3.12) so that it equals σ = −1, 0, 1 depending on it’s sign. Doing so will scale all of
the metric functions and Killing vector components by a constant value, but otherwise
will leave them unchanged.

Dropping the primes and substituting (4.63) into the original identity for σ∗ yields
another differential equation for D3ζ1:

D3D3ln(D3ζ1) − 1
2(D3ln(D3ζ1))2 = 2σ.

Multiplication by exp(−1
2
∫

D3(lnD3ζ1)dx3) = (D3ζ1)− 1
2 leads to the simpler equation

D3D3[(D3ζ1)− 1
2 ] = −σ(D3ζ1)− 1

2 . (4.64)

There are three possible solutions to this equation depending on whether σ is positive,
negative or zero:

σ = −1 : (D3ζ1)− 1
2 = c1(u)cosh(x3) + c2(u)sinh(x3),

σ = 0 : (D3ζ1)− 1
2 = c′

1(u)x3 + c′
2,

σ = 1 : (D3ζ1)− 1
2 = c′′

1(u)cos(x3) + c′′
2(u)sin(x3).

Ignoring these facts for a moment, we recall that the metric functions Wi may be
expressed in terms of ζ

(0)
3 and ζ1 using (4.2) :

W
(0)
i = −Diζ

(0)
3

D3ζ1
, W

(1)
i = Diln(D3ζ1).

In this case, it is possible to set all but W
(1)
3 to zero by making a coordinate transform

of type (3.3) with h = − ζ
(0)
3

D3ζ1
. In these new coordinates, the metric functions take

the form:

W3 = D3ln(D3ζ1)v, Wn = 0. (4.65)

The following coefficient functions of H change in the new coordinate system:

H(1) = H ′(1) + ζ
(0)
3 σ∗

4D3ζ1
, H(0) = H ′(0) + ζ

(0)
3 H′(1)

D3ζ1
+ D2

(
ζ

(0)
3

D3ζ1

)
σ∗(ζ(0)

3 )2

8(D3ζ1)2 ,

H(1) = H ′(1) + ζ
(0)
3 σ∗

4D3ζ1
, H(0) = H ′(0) + ζ

(0)
3 H′(1)

D3ζ1
+ D2

(
ζ

(0)
3

D3ζ1

)
σ∗(ζ(0)

3 )2

8(D3ζ1)2 ,
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where primed functions denote the functions in the previous coordinate system.
As the original H ′(1) and H ′(0) were arbitrary functions of u and the spatial co-

ordinates, we may ignore the special form the v-coefficients take in this coordinate
system and treat them simply as new arbitrary functions. In this coordinate system
the tensor A3n given in (4.3) vanishes, and the connection coefficients Γ2i2 are of the
form:

Γ2i2 =

Γ(1)
i︷ ︸︸ ︷

(DiH
(1) − D2W

(1)
i ) v +

Γ(0)
i︷ ︸︸ ︷

DiH
(0) + H(0)W

(1)
i .

This choice of coordinate system simplifies the Killing equations considerably; for
example, the other two covector components are now

ζ2 =

ζ
(2)
2︷ ︸︸ ︷

(σ∗ζ1

4 − D3D3ζ1) v2

2 +

ζ
(1)
2︷ ︸︸ ︷

(H(1)ζ1 − D2ζ1) v + ζ
(0)
2 (u, xe),

ζ3 = −D3(ζ1)v.

Taking the magnitude of the vector and invoking the non-spacelike conditions yield

D3D3ln[(D3ζ1)− 1
2 ] + D3(ln(D3ζ1))D3ln(ζ1) + (D3ln(ζ1))2 ≤ 0, (4.66)

ζ1(H(1)ζ1 − D2ζ1) = 0, (4.67)

ζ1ζ
(0)
2 ≥ 0. (4.68)

Thus ζ
(1)
2 must vanish and we may solve for H(1) in terms of ζ1,

H(1) = D2ln(ζ1).

Further constraints on H involving H(0) may be found by taking those Killing equa-
tions involving the spatial derivatives of ζ

(0)
2 ; i.e., (4.14) and (4.17) and considering

integrability conditions. In this coordinate system (4.14) and (4.17) are

D3ζ
(0)
2 + H(0)D3ζ1 − ζ1D3H

(0) − ζ1H
(0)D3ln(D3ζ1) + ζ

(0)
2 D3ln(D3ζ1) = 0

Dnζ
(0)
2 − ζ1DnH(0) = 0

We note that the commutator applied to any function independent of v vanishes (i.e.
[D3, Dn]f(u, xe) = 0); thus differentiating the first equation by Dn and the latter by
D3 and subtracting the result gives the following constraint

2Dn(H(0))D3ζ1 = 0.
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Hence H(0) and ζ
(0)
2 are actually functions of u and the spatial coordinate x3.

In light of this fact the Killing equations (4.15) - (4.17) are automatically satisfied.
Similarly, equation (4.12) may be ignored as it gives the identity σ∗ = 2D3D3ln(D3ζ1),
which arose from the vanishing of Γ(2)

3 . The remaining Killing equations are now:

D2σ
∗ = 4D2

(
D3D3ζ1

ζ1

)
− 1

2D2[(D3ln(ζ1))2], (4.69)

D3H
(0) = σ∗

4D3ζ1
(ζ(0)

2 − H(0)ζ1), (4.70)

D2ζ
(0)
2 = −ζ

(0)
2 D2ln(ζ1), (4.71)

2D2D3ln(ζ1) = D2D3ln(D3ζ1), (4.72)

D3(ζ(0)
2 D3ζ1) = ζ2

1 D3[H(0)D3ln(ζ1)]. (4.73)

Differentiating (4.72) and using the fact that [D3, D2]f(u, xe) = 0, one finds the
following expression for D2σ

∗ = 2D2D3D3ln(D3ζ1):

D2σ
∗ = 4D2

⎡⎣D3D3ζ1

ζ1
−

(
D3ζ1

ζ1

)2
⎤⎦ .

Subtracting this from (4.69) yields the following constraint

D2 (D3ln(ζ1))2 = 0

implying that ζ1 must take the form:

ζ1 = eA(x3)eB(u). (4.74)

Apply a coordinate transform of type (3.4) with g =
∫

e−B(u)du will remove the u

dependence from ζ1. Rewriting (4.71) in terms of ζ ′(0)
2 = ζ

(0)
2 eB, it is easily shown that

this implies D2ζ
′(0)
2 = 0. Denoting ζ ′

1 = eA(x3) the Killing vector ζ = eAeBn+ζ2�+ζ3m
3

becomes:

ζ = ζ ′
1n

′ +
[(

σ∗ζ ′
1

4 − D3D3(ζ ′
1)
)

v′2

2 + ζ ′(0)
2 (x3)

]
�′ + [−D3(ζ ′

1)v′]m3.

In the remaining Killing equations, (4.70) and (4.73), the function H(0) in the new
coordinate system becomes H ′(0) = e2BH(0) and so we may remove eB entirely from
these two equations.

Dropping the primes and combining (4.70) with (4.73) yields the following alge-
braic equation for H(0):

H(0)
(

D3D3ln(ζ1) − σ∗

4

)
= D3(D3(ζ1)ζ(0)

2 )
ζ2

1
− σ∗ζ(0)

2
4ζ1
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The coefficient of H(0) cannot vanish, as the non-spacelike condition (4.66) would
imply

2(D3ln(ζ1))2 ≤ 0.

It is assumed that D3ζ1 �= 0 so the above constraint is impossible. Simplifying the
above expression H(0) may be written as

H(0) = D3(D3(ζ1)ζ(0)
2 ) + D3D3ln((D3ζ1)− 1

2 )ζ(0)
2 ζ1

ζ2
1 D3D3ln(ζ1(D3ζ1)− 1

2 )
(4.75)

Having exhausted the Killing equations, we look to the remaining non-spacelike con-
ditions (4.66) and (4.68).

4.4.1 Case 2.1: Null Killing Vectors

If ζ is required to be null ζ
(0)
2 must be zero, forcing H(0) to vanish as well. Using

(4.66) and (4.64) we find the following expression

D3(A) = D3ln[(D3ζ1)− 1
2 ] ±

√
2[D3ln((D3ζ1)− 1

2 )]2 + σ. (4.76)

Combining this with the solution to (4.64) for a particular σ = −1, 0, 1:

σ = −1 : (D3ζ1)− 1
2 = c1cosh(x3) + c2sinh(x3) (4.77)

σ = 0 : (D3ζ1)− 1
2 = c1x

3 + c2 (4.78)

σ = 1 : (D3ζ1)− 1
2 = c1cos(x3) + c2sin(x3) (4.79)

we may algebraically solve for ζ1 by noting that D3ζ1 = D3(A)eA = D3(A)ζ1:

σ = −1 : ζ1 = (c1cosh(x3)+c2sinh(x3))−1

c1sinh(x3)+c2cosh(x3)±
√

c2
1+c2

2+(c1sinh(x3)+c2cosh(x3))2 (4.80)

σ = 0 : ζ1 = 1
c1(1±√

2)(c1x3+c2) (4.81)

σ = 1 : ζ1 = (c1cos(x3)+c2sin(x3))−1

−c1sin(x3)+c2cos(x3)±
√

c2
1+c2

2+(−c1sin(x3)+c2cos(x3))2 (4.82)

Supposing that ζ is covariantly constant, the constraint in Lemma (4.2.1) on W
(1)
3

along with the identity (4.2) yields

D3ln(ζ1) = −D3ln[(D3ζ1)
1
2 ]. (4.83)



58

Since ln(ζ1) = A, the above simplifies (4.76) in the null case, giving

2D3ln[(D3ζ1)− 1
2 ] ±

√
2[D3ln((D3ζ1)− 1

2 )]2 + σ = 0

Multiplying both roots together the result must vanish

2[D3ln[(D3ζ1)− 1
2 ]]2 − σ = 0 (4.84)

Substituting the three posibilities of (ζ1)
1
2 gives the constraint:

3[c2
1 − c2

2]sinh2(x3) + 6c1c2sinh(x3)cosh(x3) + 2c2
2 + c2

1 = 0
c2

1
(c1x3+c2)2 = 0

σ = 1 : 3[c2
1 − c2]sin2(x3) − 6c1c2sin(x3)cos(x3) + 2c2

2 − c2
1 = 0

In each case this identity will only hold if c1 = c2 = 0; however, this will imply that
D3ζ1 = 0, which cannot happen. Thus the null killing vector ζ cannot be covariantly
constant.

4.4.2 Case 2.2: Timelike Killing Vectors

If we require ζ to be timelike, equation (4.68) along with the fact that ζ1 = eA forces
ζ

(0)
2 to be greater than or equal to zero for all values of x3. To find ζ1 we integrate

each of the three solutions to (4.64) given above

σ = −1 : ζ1 = sinh(x3)
c1(c1cosh(x3)+c2sinh(x3)) + c3 (4.85)

σ = 0 : ζ1 = −1
c1(c1x3+c2) + c3 (4.86)

σ = 1 : ζ1 = sin(x3)
c1(c1cos(x3)+c2sin(x3)) + c3. (4.87)

The inequality (4.66) restricts the choice of c3 depending on the choice of c1 and c2:

σ = −1 : [c2
1 + c2

2]ζ2
1 − 2

(
c1sinh(x3)+c2cosh(x3)
c1cosh(x3)+c2sinh(x3)

)
ζ1 + 1

(c1cosh(x3)+c2sinh(x3))2 < 0

σ = 0 : −c2
1ζ

2
1 − 2

(
c1

c1x3+c2

)
ζ1 + 1

(c1x3+c2)2 < 0 (4.88)

σ = 1 : −[c2
1 + c2

2]ζ2
1 − 2

(−c1sin(x3)+c2cos(x3)
c1cos(x3)+c2sin(x3)

)
ζ1 + 1

(c1cos(x3)+c2sin(x3))2 < 0

Notice in both the null and timelike case, the value of σ restricts the domain of x3.
When σ = 1, the domain of x3 is limited to a finite interval, x3 ∈ (x3

0, x3
0 + π), as

the value x3
0 = arctan(− c1

c2
) will cause (D3ζ1)− 1

2 to vanish. When σ = 0, x3 ≥ − c2
c1
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to avoid singularities. In the case with σ = −1, x3 > x3
0 = arctanh(− c1

c2
) when

c1/c2 ≤ 1, otherwise ζ1 is regular on the whole of the real line. Requiring ζ to be
covariantly constant, equation (4.83) may be rewritten as a function set to zero in
terms of ζ and (D3ζ1)

1
2 for the three subcases with σ = −1, 0, 1 respectively:

[c1 + 2c2
1c2c3]sinh2(x3) + [c2 + c3

1c3 + c1c
2
2c3]cosh(x3)sinh(x3) + [c2

1c2c3 + c1]

c1c3(c1x
3 + c2)

−[c1 + 2c2
1c2c3]sin2(x3) + [c2 − c3

1c3 + c1c
2
2c3]cos(x3)sin(x3) + [c2

1c2c3 + c1]

In both cases where σ = −1, 1 the vanishing of the first and third equation will hold
only if c1 and c2 both vanish, which violates the assumption D3ζ1 �= 0, and so there
are no timelike covariantly constant vectors in either of these two cases. When σ = 0,
setting the second equation to zero implies c3 = 0, the Killing vector of the form
(4.75) with ζ1 = −1/(c2

1x
3 + c1c2) satsifies the condition in (4.83). A problem arises

from the inequality (4.66)

−c2
1

(
1

c2
1(c1x3+c2)2

)
− 2

(
c1

(c1x3+c2)

) ( −1
c1(c1x3+c2)

)
+ 1

(c1x3+c2)2 < 0;

simplifying the above leads to the inequality 2 < 0 which is clearly impossible. We
conclude there are no covariantly constant timelike vectors in the spacetimes belong-
ing to Case 2.

4.5 Conclusions and Summary

To determine the subset of Kundt CSI spacetimes admitting a null or timelike isom-
etry, several choices were made to simplify the Killing equations. Local coordinates
were chosen so that one of the spacelike Killing vectors, Y , belonging to the (locally)
homogeneous transverse space has been rectified to act locally as a translation in the
x3 direction, i.e., Y = A ∂

∂x3 . The frame was then rotated so that the frame vector
m3 was aligned with the spatial part of ζ and, moreover, that the matrix mie was
upper-triangular with m33 = 1. This causes the connection components Γ3ij and Γij3

to vanish, simplifying the Killing equations considerably.
In this coordinate system we determined the special form for the components of ζ

in terms of arbitrary functions and in terms of H and the We; i.e., (4.1) and (4.4). All
of the functions involved (metric or otherwise) are expressed as polynomials in v with
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coefficient functions of u and xe. These are substituted into the remaining Killing
equations which are rearranged into the various orders of v to give (4.8) - (4.17), while
the non-spacelike conditions yield (4.5) - (4.7). The highest order equation (4.8) gives
two major subcases, either D3ζ1 = 0 or Γ(2)

3 = 0 in (4.3).
It is known that all V SI spacetimes admitting a non-spacelike isometry are

CCNV spacetimes with � as the covariantly constant vector [84]. As an analogue to
this result, the equations arising from ∇[aζb] = 0 were examined to determine which
CSI Kundt spacetimes admit a covariantly constant vector and which cannot.

The results of the analysis are summarized below:

Case 1.1.1: ζ = �

In this case R1212 = σ = 0, the metric functions in (3.1) takes the form: H(u, xk) and
Wi(u, xk). All CSI spacetimes in this subcase are clearly CCNV spacetimes with
� = ∂

∂v
covariantly constant

Case 1.1.2: ζ = ζ2(u, xe)�

With R1212 = σ < 0, the metric functions H and Wi = me
i We will be of the form

(4.38) while ζ2 must satisfy the further constraint (4.39). These CSI spacetimes do
not admit a covariantly constant vector.

Case 1.2.1a : ζ = n + σ∗v2

2 �

The metric (3.1) with H and Wi take the form (4.52), R1212 may be any value in R.
There are no CCNV spacetimes belonging to this subset of CSI spacetimes.

Case 1.2.1b : ζ = n + ζ2(xe)�, ζ2 ≥ 0 ∀xe.

For any ζ
(0)
2 (xe) > 0, ∀xe, and any choice of W

(1)
i (xe) satisfying (4.36) with σ =

R1212 ≤ 0; the CSI Kundt spacetime with H and Wi given in (4.53) will admit a
timelike Killing vector. If ζ

(0)
2 (xe) > 0, ∀xe, ζ = n will be a covariantly constant null

vector.
If this Killing vector is covariantly constant, W

(1)
i = 0 and hence σ = 0, equation

(4.28) and Lemma (4.2.1) imply Aij = 0, and the remaining equations (4.26) and
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(4.27) force ζ
(0)
2 to be constant. Thus ζ is the sum of the CCNV ’s � and n.

Case 1.2.2a : ζ = � + ζ2(u, xe)n + ζ3(u)m3

For any ζ3, and a particular choice of ζ2 such that it satisfies the inequality ζ2
3 ≤ 2ζ2

and the differential equation (4.55), the vector ζ will be a Killing vector for the CSI

spacetime with metric functions given in (4.56) where W (1)
n and W (0)

n are, respectively,
solutions (4.57) and (4.58). Due to the vanishing of σ∗ = 4σ + W

(1)
i W (1)i, the W

(1)
i

must also satisfy (4.36)
Requiring ζ to be a CCNV , the W

(1)
i must vanish, causing H = 0 and σ = 0 as

well; this is an example of a CCNV metric with � = ∂
∂v

as the CCNV and ζ acting
as a second CCNV . The additional constraints (4.25) - (4.28) require that Aij = 0
along with the following simplification of ζ and the metric functions:

ζ = n + ζ2� + m3, ζ2 ∈ R

H = 0, W3(xe) = w3(xe), Wn(xe) =
∫

Dn(w3)dx3 + wn(xr),

If ζ is timelike, then ζ2 > 1
2 , while if ζ is null, ζ2 = 1

2 . All of the CSI spacetimes
belonging to this subcase are automatically CCNV with � as another covariantly
constant vector.

Case 1.2.2b : n + [σ∗v2

2 + ζ2(u, xe)]� + m3

For a particular choice of ζ2 satisfying (4.59) the vector ζ is a Killing vector for
the CSI spacetime with the metric functions in (4.60) where the W (1)

n and W (0)
n

satisfy (4.61) and (4.62). The magnitude condition requires σ∗ > 0 implying that
R1212 = σ > 0. If ζ is now covariantly constant, a contradiction arises from (4.25),
as it requires D1H = σv = 0 despite the fact that we have assumed σ �= 0. Thus the
subset of CSI spacetimes associated with this subcase are never CCNV .

Case 2

Using a coordinate transform of type (3.4) with g(u) = u√
|σ| , σ in equation (3.12) is

rescaled so that it equals σ = −1, 0, 1. Another coordinate transform of type (3.3)
with h = − ζ

(0)
3

D3ζ1
causes all but one component to vanish:

W3(u, x3) = D3ln(D3ζ1)v, Wn = 0 .
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The other Killing vector components may be expressed entirely in terms of ζ1

ζ2 =

ζ
(2)
2︷ ︸︸ ︷

(σ∗ζ1

4 − D3D3ζ1) v2

2 +

ζ
(1)
2︷ ︸︸ ︷

(H(1)ζ1 − D2ζ1) v + ζ
(0)
2 (u, xe),

ζ3 = −D3(ζ1)v.

Making one final coordinate transform of type (3.4) with g =
∫

e−B(u)du removes
the u dependence from ζ1 and, in fact, removes all u dependence from the other
components of the Killing vector and the Killing equations, (i.e., (4.70) and (4.73))
involving H(0). Solving these yields the following algebraic equation for H(0)

H(0) = D3(D3(ζ1)ζ(0)
2 ) + D3D3ln((D3ζ1)− 1

2 )ζ(0)
2 ζ1

ζ2
1 D3D3ln(ζ1(D3ζ1)− 1

2 )

With all of the Killing equations satisfied, the non-spacelike conditions (4.68) and
(4.66) give two subcases depending on whether ζ is a null or timelike Killing vector.

Case 2.1: ζ = ζ1n +
[(

σ∗ζ1
4 − D3D3(ζ1)

)
v2

2

]
� + [−D3(ζ1)v]m3

If ζ is null, ζ1 takes the following form, depending on the sign of σ:

σ = −1 : ζ1 = (c1cosh(x3)+c2sinh(x3))−1

c1sinh(x3)+c2cosh(x3)±
√

c2
1+c2

2+(c1sinh(x3)+c2cosh(x3))2

σ = 0 : ζ1 = 1
c1(1±√

2)(c1x3+c2)

σ = 1 : ζ1 = (c1cos(x3)+c2sin(x3))−1

−c1sin(x3)+c2cos(x3)±
√

c2
1+c2

2+(−c1sin(x3)+c2cos(x3))2

There are no covariantly constant null vectors in this subcase as the constraint in
Lemma (4.2.1) on W

(1)
3 along with the identity (4.2) lead to a contradition with the

given form of ζ1.

Case 2.2: ζ = ζ1n +
[(

σ∗ζ1
4 − D3D3(ζ1)

)
v2

2 + ζ
(0)
2 (x3)

]
� + [−D3(ζ1)v]m3

If ζ is to be timelike, depending on the sign of σ, ζ1 takes the form:

σ = −1 : ζ1 = sinh(x3)
c1(c1cosh(x3)+c2sinh(x3)) + c3

σ = 0 : ζ1 = −1
c1(c1x3+c2) + c3

σ = 1 : ζ1 = sin(x3)
c1(c1cos(x3)+c2sin(x3)) + c3.
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The inequality (4.66) restricts the choice of c3 depending on the choice of c1 and c2:

σ = −1 : [c2
1 + c2

2]ζ2
1 − 2

(
c1sinh(x3)+c2cosh(x3)
c1cosh(x3)+c2sinh(x3)

)
ζ1 + 1

(c1cosh(x3)+c2sinh(x3))2 < 0

σ = 0 : −c2
1ζ

2
1 − 2

(
c1

c1x3+c2

)
ζ1 + 1

(c1x3+c2)2 < 0

σ = 1 : −[c2
1 + c2

2]ζ2
1 − 2

(−c1sin(x3)+c2cos(x3)
c1cos(x3)+c2sin(x3)

)
ζ1 + 1

(c1cos(x3)+c2sin(x3))2 < 0

There are no timelike covariantly constant vectors in CSI spacetimes admitting ζ as
a Killing vector. Notice in both the null and timelike case, the value of σ restricts
the domain of x3. When σ = 1 the domain of x3 limited to a finite interval, x3 ∈
(x3

0, x3
0+π), as the value x3

0 = arctan(− c1
c2

) will cause (D3ζ1)− 1
2 to vanish. When σ = 0,

x3 ≥ − c2
c1

to avoid singularities. In the case with σ = −1 x3 > x3
0 = arctanh(− c1

c2
)

when c1/c2 ≤ 1, otherwise ζ1 is regular on the whole of the real line.



Chapter 5

CCNV Spacetimes Admitting a Two Dimensional

Isometry Group

This chapter is based on: D. McNutt, A. Coley, N. Pelavas (2009). Isometries in
higher-dimensional CCNV Spacetimes. IJGMMP, Vol 6, Issue 3, pp 419-450.

5.1 The Killing Equations

The Killing equations for X = X1n + X2� + Xim
i are:

D1X1 = 0 (5.1)

D2X1 + D1X2 = 0 (5.2)

D3X1 + D1X3 = 0 (5.3)

DmX1 = 0 (5.4)

D2X2 +
∑

i

JiXi = 0 (5.5)

DiX2 + D2Xi − JiX1 − ∑
j

(Aji + Bij)Xj = 0 (5.6)

DjXi + DiXj + 2B(ij)X1 − 2
∑

k

Γk(ij)Xk = 0 . (5.7)

To start, we make a coordinate transformation to eliminate Ŵ3 in (3.18)

(u′, v′, x′i) = (u, v + h(u, xk), xi), h =
∫

Ŵ3dx3. (5.8)

This choice of coordinates will be useful in order to write down the metric functions
and Killing covector components themselves or determining equations for them. For
any point in the manifold we may rotate the frame, setting X3 �= 0 and Xm = 0.

This can be done by taking the spatial part of the Killing form X = X1n + X2� +
Xim

i and choosing

m3 = 1
χ

Xim
i χ =

√∑
i

X 2
i . (5.9)
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Using Gram-Schmidt orthonormalization it is possible to determine the remaining
vectors for the frame basis. This is a local orthogonal rotation so the form of our
metric remains unchanged while X is now X = X1n + X2� + χm3. Henceforth it will
be assumed that the matrix mie is upper-triangular, due to the QR decomposition.

The frame derivatives are

� = D1 = ∂v

n = D2 = ∂u − H∂v (5.10)

mi = Di = m e
i (∂e − Ŵe∂v)

Thus (5.1) – (5.4) imply that the Killing vector components are of the form:

X1 = F1(u, xe)

X2 = −D2(X1)v + F2(u, xe) (5.11)

X3 = −D3(X1)v + F3(u, xe).

The remaining Killing equations ((5.5)- (5.7) involve Aij and Ji, if we define Wi =
m e

i Ŵe, we may write Γ2i2 = Ji and Aij in terms of frame derivatives

Ji = DiH − D2Wi − BjiW
j (5.12)

Aij = D[jWi] + Dk[ij]W
k. (5.13)

From the commutation relations

[D1, Da] = 0

[D2, Dj] = JjD1 − ∑
i

BijDi (5.14)

[Dk, Dj] = AkjD1 + 2
∑

i

Γi[kj]Di .

applied to the Killing equations the following can be derived:

DaD3X1 = Γ3naD3X1 = 0, a = 2, 3, ...N (5.15)

This leads to two cases either D3X1 = 0 or Γ3n2 = Γ3n3 = Γ3nm = 0 and X1 is
linear in x3. Supposing there exists another Killing vector X we will find further
constraints on its components Xa as well as the metric functions We and mie in the
ensuing subcases.
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5.1.1 Case 1: D3X1 = 0

Equation (5.4) implies X1 must be independent of all spacelike coordinates. Using
equation (5.5) and the definition of F2 from (5.11), we have that X1 must be of the
form

X1 = c1u + c2. (5.16)

If c1 �= 0 we may always use a type (3) coordinate transform from Chapter 3 to set
X1 = u, while if c1 = 0 we may choose c2 = 1 by scaling all coordinates by c2 in
both cases the functions F2, F3, H and We in the new coordinate system are just the
original functions multiplied by constants.

Equations (5.15) are identically satisfied, and (5.5)-(5.7) reduce to:

c1H + D2F2 + J3F3 = 0 (5.17)

−J3X1 + D3F2 + D2F3 − B33F3 = 0 (5.18)

c1Wn − JnX1 + DnF2 − (A3n + Bn3)F3 = 0 (5.19)

B33X1 + D3F3 = 0 (5.20)

2B(3n)X1 + DnF3 − Γ3n3F3 = 0 (5.21)

2B(nm)X1 − 2Γ3(nm)F3 = 0 . (5.22)

Setting c1 = c2 = F3 = 0, X reduces to a scalar multiple of the known Killing covector
�. We must consider the possibility where F3 vanishes.

5.1.2 Subcase 1.1: F3 = 0

Setting F3 = 0 in equations (5.20)-(5.22) imply that B(ij) = 0. Rewriting this as
B(ij) = m e

i m f
j gef,u, the metric is independent of u. By virtue of the upper-triangular

form of mie we see it must be independent of u also. Then assuming c1 �= 0, we make
the appropriate coordinate transformation to set X1 = u, equation (5.17) yields H

algebraically:

H = −D2F2.

Solving the resulting differential equation from (5.19), Wm is expressed as:

Wm = 1
u

[∫
−Dm(uD2F2 + F2)du + Bm(xe)

]
.
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Taking (5.18) with J3 = D3H we see that

D2D3(uF2) = 0,

implying that F2 must be of the form

F2 = f2(xe)
u

+ g2(u)
u

.. (5.23)

We rewrite the equations of H and Wm in terms of these two functions

H = f2(xe)
u2 − g′

2(u)
u

+ g2(u)
u2 (5.24)

Wm = Bm(xe)
u

(5.25)

where g′ denotes the derivative of g with respect to u

If c1 = 0, F2 must be independent of u, we rescale our coordinates so that X1 = 1,
the equations for H and Wn are

H = F2(xe) + A0(u, xr) (5.26)

Wn =
∫

DnA0du + Cn(xe). (5.27)

In either case, the only requirement on the transverse metric is that it be independent
of u. The arbitrary functions in this case are F2 and the functions arising from
integration.

5.1.3 Subcase 1.2: F3 �= 0

As a consequence of the upper triangular form of mie the system of equations (5.17)
– (5.22) decouples in the following order. Beginning with equation (5.20), we may
reduce this to an equation for m33 in terms of F3

m33,u

m33
= − 1

X1
D3F3, (5.28)

whose solution is

m33 = −
∫ 1

X1
F3,3du + A1(x3, xr). (5.29)

Next, consider the diagonal components of (5.22) followed by the off-diagonal com-
ponents to find the determining equation for mnr

mnr,u = −mnr,3
F3

m33X1
, (5.30)
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while equation (5.21) reduces to

m3r,u = −F3,r

X1
− m3[r,3]m

3
3 F3

X1
. (5.31)

With the transverse metric now determined and assuming c1 �= 0, we again choose
coordinates so that u′ = c1u + c2, equations (5.17) and (5.18) lead to the form of H

H = −D2F2 − D2(F 2
3 )

2u
− F3D3F2

u
− F3D3(F 2

3 )
2u2 . (5.32)

The form of Aij expressed in frame derivatives (5.13), along with equations (5.21)
and (5.22) simplify (5.19) to become the determining equation for the Wn

D2(uWn) + F3D3Wn + Dn(F2 − uH) = 0 . (5.33)

Given F2(u, xe) and F3(u, xe), we treat the equations (5.32) and (5.33) as constraining
equations for H and the Wn.

If c1 vanishes, rescale to make c2 = 1, from (5.17) and (5.18) F2 satisfies the
equation

D2F2 + F3D3F2 + 1
2D2(F 2

3 ) + 1
2F3D3(F 2

3 ) = 0. (5.34)

The metric function H may be written as

H =
∫

m33D2F3dx3 + F2 + 1
2F 2

3 + A2(u, xr). (5.35)

The only equation for Wn is

F3D3Wn + D2Wn = Dn(H). (5.36)

If c2 �= 0 the equation for mie holds, however if X1 = 0 they simplify. The
equations (5.28) and (5.30) become

F3,3 = 0, , mnr,3 = 0. (5.37)

A constraint on the function m33 arises from equation (5.18)

D2log(m33) = −D3F2

F3
− D2log(F3). (5.38)

From (5.19) Wn is found

Wn = −
∫ m33DnF2

F3
dx3 + En(u, xr), (5.39)
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while equation (5.17) gives H

H = −
∫ m33D2F2

F3
dx3 + A3(u, xr). (5.40)

There are two further subcases to consider, expanding and simplifying equation
(5.21)

m3r,3

F3
=

(
m33

F3

)
,r

(5.41)

and so, either m3r is a function of x3 or not. If m33,r �= 0 we may integrate (5.41) for
m3r

m3r =
∫ (

m33

F3

)
,r

F3dx3 + Gr(u, xs). (5.42)

Thus the above along with (5.37) and the requirement that mmr,3 = 0 are the
only conditions on the matrix mie. If m3r is independent of x3 then we must have
Dn

(
m33
F3

)
= 0. implying

m33,r = 0. (5.43)

Substituting m33(u, x3) into (5.38) yields a differential equation, whose solution is

m33 = 1
F3

∫
−F2,3du + A4(x3). (5.44)

5.1.4 Case 2: Γ3ia = 0

To investigate what constraints these requirements give, we expand the expressions
for the connection coefficients in question:

Γ3n2 = W[3,f ]m
3

3 m f
n − m3e,um e

n + mn3,um 3
3 ,

Γ3ni = −1
2 m3[e,f ]m

e
n m f

i + mn[f,3]m
f

i m 3
3 + mi[f,3]m

f
n m 3

3 .

These constraints lead to the following facts about the metric functions

Lemma 5.1.1. The vanishing of Γ3ia imply the metric functions of (3.18) must
satisfy the following constraints

Ŵ[3,r] = m3[3m
3

r],u (5.45)

m3[3,r] = 0 (5.46)

m3[r,s] = 0 (5.47)

grs,3 = 0. (5.48)
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Proof. To begin the proof consider Γ3n2, using the upper-triangular form for mie this
simplifies to be

Ŵ[3,r]m
3

3 m r
n − m3e,um e

n = 0.

Multiplying through by mn
s, we note that m e

n mn
s = δe

s − m e
3 m3

s and so the
above equation becomes

Ŵ[3,s]m
3

3 = m3s,u − m33,um3sm
3

3 .

Dividing through by m 3
3 = m−1

33 leads to the desired identity

Ŵ[3,s] = m3s,um33 − m33,um3s.

To show the next identity take Γ3n3 , the upper-triangular form leads to the
simpler expression

m3[r,3]m
r

n m 3
3 = 0.

Since m r
n is invertible, (5.46) follows from this identity. Finally, taking Γ3np

m3[e,f ]m
e

n m f
p + mnr,3m

r
p m 3

3 + mpr,3m
r

n m 3
3 = 0.

From the above identity m3[3,r] = 0 this simplifies to be

m3[r,s]m
r

n m s
p = −(mnf,3m

f
p + mpf,3m

f
n )m 3

3

but mnf,3m
f

p + mpf,3m
f

n = m r
n m s

p grs,3. Substituting this into the left-hand side
we have

m3[r,s]m
r

n m s
p = −m r

n m s
p grs,3m

3
3 .

The matrix m3[r,s] is anti-symmetric and grs is symmetric, by symmetrizing the above
we find (5.47) and (5.48) hold.

Equations (5.46) and (5.47) imply that m3e = M,e for some M(u, xk) which will be
at least a function of the spatial coordinate x3, otherwise the component m33 vanishes
and the matrix mie is no longer invertible. Interestingly, the matrix components mnr
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will be independent of x3 due to (5.48) and the fact that mnr,3m
r

p is upper triangular,
since for n < p we have

m r
n m s

p grs,3 = mnr,3m
r

p = 0.

In addition, the requirement that grs,3 = mnr,3 = 0 give further constraints on M ;
by expanding the metric grs = mirm

i
s and differentiating we see that

grs,3 = (M,rM,s),3 + (mnrm
n

s),3 = 0.

Choosing s = r this becomes M,r3M,r = 0 and so M must be a function of x3 and
possibly coordinate u. The vanishing of m3r = M,r along with (5.45) and (5.13) imply
that A3n = 0. This equation will be particularly helpful in the subsequent cases as
an equation for the Wn = me

nŴe, which in expanded form is

−D[3Wn] + W kDk3n = 0. (5.49)

However, by looking at the definition of Dk3n we see that it vanishes.
Collecting the above results we have the following proposition

Proposition 5.1.2. The vanishing of Γ3ia imply the upper-triangular matrix mie

arising from the transverse metric of (3.18) takes the form,

m33 = M,3(u, x3), m3r = 0, mnr = mnr(u, xr). (5.50)

While Wn must satisfy

D3(Wn) = 0. (5.51)

The remaining Killing equations are then:

D2X2 + J3X3 = 0 (5.52)

D3X2 + D2X3 − J3X1 − B33X3 = 0 (5.53)

DnX2 − JnX1 = 0 (5.54)

D3X3 + B(33)X1 = 0 (5.55)

DnX3 + 2B(3n)X1 = 0 (5.56)

B(mn)X1 = 0. (5.57)

From equation (5.57) we have two subcases to consider. Either X1 = 0 or B(mn) = 0.
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5.1.5 Case 2.1: X1 = 0, B(mn) �= 0

If F3 = 0, F2 becomes a constant and so X is some scaling of �, we will assume that
F3 �= 0. From the third equation (5.54)

DnF2 = m e
n F2,e = 0.

Multiplying by mn
f so that m e

n mn
f = δe

f − m e
3 m3

f

F2,r = m 3
3 m3

rF2,3. (5.58)

By Proposition (5.1.2) we see that m3
r = 0 and so the left hand side vanishes

implying that F2 is independent of all spacelike coordinates except possibly x3. Thus
the remaining components of X will be the following arbitrary functions,

X2 = F2(u, x3) (5.59)

X3 = F3(u). (5.60)

Expanding equation (5.53) we find that the constraining equation for m33 is

m33,u

m33
= −D3F2 − D2F3

F3
. (5.61)

While from (5.52) we have

H = −
∫ m33D2F2

F3
dx3 + A5(u, xr). (5.62)

Thus, (5.62) and (5.61) are equations for H and m33. The only constraint given for
the Wn comes from Proposition (5.1.2), i.e, they are all independent of x3. This is
just Case 1.2 with X1 = 0 and the additional constraints in Proposition (5.1.2).

5.1.6 Case 2.2: B(mn) = 0, X1 �= 0

By Proposition (5.1.2), we may repeat a similar calculation as Case 1.1 except with
B(np) to show that for n < p the vanishing of B(np) implies

mnr,u = 0. (5.63)

Furthermore, by proposition (5.1.2), the special form of mie implies that m 3
r = 0,

the only non-zero component of the tensor B is B33. Since v ∈ (−∞, ∞) we may
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expand the Killing equations into orders of v, using (5.11) and the definition of the
frame derivatives (5.10), to find a system of equations for F1.

D2D2F1 + J3D3F1 = 0 (5.64)

D3D2F1 + D2D3F1 − B33D3F1 = 0 (5.65)

DnD2F1 = 0 (5.66)

D3D3F1 = 0 (5.67)

DnD3F1 = 0. (5.68)

Along with another system of equations involving F2 and F3

HD2F1 + D2F2 + J3F3 = 0 (5.69)

HD3F1 + D3F2 + D2F3 − J3F1 − B33F3 = 0 (5.70)

DnF2 + WnD2F1 − JnF1 = 0 (5.71)

D3F3 + B33F1 = 0 (5.72)

WnD3F1 + DnF3 = 0. (5.73)

To begin, the special form of mie from Proposition (5.1.2) along with equation
(5.68) lead to the conclusion that F1 must be independent of x3 or xr . Note that
if F1,3 = 0 then we have Case 1, with the added constraints Γ3n2 = Γ3mi = 0. The
analysis is not difficult, Case 1.23 may be omitted since m3r = 0 while in Case 1.21
and 1.22, equation (5.30) is satisfied immediately, (5.31) now implies that F3,r = 0.
Only equation (5.29) still holds, these cases are given in the table at the end of this
section

It will be assumed that F1,3 �= 0, then by expanding equation (5.67) the following
relation between F1 and m33 is found

m33,3

m33
= F1,33

F1,3
. (5.74)

Rewriting the term D2D3(F1) in (5.65) using the commutation relations (5.14) with
i = 3 as

D2D3F1 = D3D2F1 − B33D3F1 (5.75)

this is substituted into (5.65) yielding

2(D3D2F1 − B33D3F1) = 0. (5.76)
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The expanded form of (5.76) gives another relation between m33 and F1

m33,u

m33
= F1,3u

F1,3
. (5.77)

Thus m33(u, x3) is entirely defined by F1.
We may solve for H and the Wn algebraically from (5.70) and (5.73)

H = D3D2F1

D3(F1)2 F3 − D2
2F1

D3(F1)2 F1 − 2D(2F3)

D3F1
(5.78)

Wn = −DnF3

D3F1
. (5.79)

Notice that by integrating (5.72), F3 is of the form:

F3 =
∫ m33F1D3D2F1

D3F1
dx3 + A6(u, xr) (5.80)

Substituting (5.79) and (5.78) into (5.69) and (5.71) yields several equations for F2

D2F2 − D2F1D3F2
D3F1

= D2(F3D2F1
D3F1

) − F3D3(D2F1)2

2(D3F1)2 + F1D2(D2F1)2

2(D3F1)2 (5.81)

D3(F1)D3(F1DnF2) = D3(F1D2F1)DnF3. (5.82)

Hence F2(u, xe) must depend on the choice of the arbitrary functions F1(u, x3) and
A6(u, xr).

5.1.7 Summary of Results

We have considered the possibility of an additional Killing form in a CCNV space-
time, where the metric functions H, Ŵi and gef are determined by the Killing vector.
Given the arbitrary form of the CCNV metric in equation (3.18), we used a coor-
dinate transformation (5.8) to eliminate Ŵ3; this is done to simplify the constraints
on the metric functions. Next the null frame was rotated so that m3 is parallel with
the spatial part of X. Due to the QR decomposition it is always possible to treat the
matrix, mie as an upper-triangular matrix, this is assumed through-out the paper.

The first four equations (5.1) – (5.4) imply that the components of the Killing
co-vector are given by (5.11). By applying the commutator relations for the frame
derivatives (5.10) to the Killing equation splits the analysis into two simpler cases,
depending on whether D3X1 = 0 or Γ3m2 = Γ3mj = 0. While the first case requires
that X1 is independent of x3, the implications of Γ3m2 = Γ3mj = 0 lead to the
constraints on the Wn and the matrix mie given in Proposition (5.1.2). Both cases
are summarized in the tables below.



75

Case X1 F2 F3 mie H Wn

1.11 u (5.23) 0 mie,u = 0 (5.24) (5.25)
1.12 1 F2,u = 0 0 mie,u = 0 (5.26) (5.27)
1.21 u F2 F3 (5.29) – (5.31) (5.32) (5.33)
1.22 1 (5.34) F3 (5.29) – (5.31) (5.35) (5.36)
1.23 0 F2 F3 (5.37), (5.38) (5.40) (5.39)

m3r,3 �= 0 (5.42)
1.24 0 F2 F3 (5.37), (5.44) (5.40) (5.39)

m3r,3 = 0

Table 5.1: Summary of analysis in Case 1

5.1.8 Killing Lie Algebra

In (5.1.7) we found that there are only three particular forms for the Killing vector
in those CCNV spacetimes admitting an additional Killing vector, depending on the
choice of X1. The three cases depend on whether X1 is linear in u, X1 is a constant
or X1 is a function of u and x3. The remaining functions involved with X2 and X3

are functions of u and xe, satisfying the appropriate equations in the above two tables
. We will label those spacetimes admitting an additional Killing vector by its type;
using (5.11) we may write the three possible types for the Killing vector X as

XA = cn + F2(u, xe)� + F3(u, xe)m3

XB = un + [F2(u, xe) − v]� + F3(u, xe)m3

XC = F1(u, x3)n + [F2(u, xe − D2F1v]� + [F3 − D3F1v]m3.

To see if these spacetimes admit even more Killing vectors we will examine each case
and consider the commutator with �. Using the frame formalism, the commutator of
two vector-fields X = Xaea, Y = Y beb is

[X, Y ] = Xaea(Y b) − Y aea(Xb) + 2XaY cΓb
[ac] (5.83)

When Y = � we have that Y c = δc
1 and from (5.14) Γb

1a = 0 so the commutator is

[X, �] = −�(Xb).
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Case X1 F2 F3 mie H Wn

2.1 0 F2,r = 0 F3,e = 0 (5.38) (5.40) (5.39)
2.21 u (5.23) 0 mie,u = 0 (5.24) (5.25)
2.22 1 F2,u = 0 0 mie,u = 0 (5.26) (5.27)
2.23 u F2 F3,r = 0 (5.29), (5.63) (5.32) (5.33)
2.24 1 (5.34) F3,r = 0 (5.29), (5.63) (5.35) (5.36)
2.25 0 F2 F3,e = 0 (5.38), (5.63) (5.40) (5.39)
2.26 F1,r = 0 (5.81) (5.80) (5.77), (5.74), (5.78) (5.79)

(5.82) (5.63)

Table 5.2: Summary of Case 2, where Proposition (5.1.2) implies D3(Wn) = 0 and
mie takes the special form (5.50)

Thus in the Type A spacetimes there are no other required Killing vectors except �

and X. Similarly in the Type B spacetimes, the commutator of � and X is

[XB, �] = −�

this is just a scaling of a known vector so we may conclude in general that Type B
Spacetimes contain no additional Killing vectors other than � and X.

The most general case is more interesting because the commutator of X and �

yields a new Killing vector

YC = [�, XC ] = D2F1� + D3F1m3. (5.84)

Clearly this will be a space-like Killing vector for all choices of F since its magnitude
is |YC | = (D3F1)2 > 0. The commutator of YC with � vanishes because F1 is a function
of u and x3, however the commutator of YC and XC cannot in general be set to zero.
A quick calculation gives ZC = [XC , YC ]

ZC = [F3D3D2F1 − D3F1D3F2 + (D2F1)2]�

−(D3F1)2n + [D2F1D3F1]m3 (5.85)

Thus because we assumed F1 �= 0 and D3F1 �= 0 we may never set ZC = 0 due to
the coefficients of n. The Type C spacetimes admit at least one additional spacelike
Killing vector.
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5.2 CSI CCNV Spacetimes Possessing an Additional Killing Vector

In section 3.4.1 it was shown that if a CCNV spacetime has constant scalar curva-
ture invariants to all orders its transverse metric gef must be locally homogeneous.
Applying this result we may write down the constraints for a CSI CCNV spacetime
to admit an additional Killing vector by choosing an appropriate locally homoge-
neous Riemannian manifold for the transverse space gef . This choice may affect the
components of the Killing vector X.

Due to the local homogeneity of gef one may perform a coordinate transformation
so that the matrix mie is independent of u. Looking at the tables in section 5.1.7 we
note that Cases 1.11 - 1.13 and 2.21 - 2.23 already require that mie be independent
of u and there are no constraints on the Killing vector components involving mie.
Therefore the CSI spacetimes are the subcases of these cases where the transverse
metric is a locally homogeneous. The remaining cases are more interesting since they
involve a non-zero spatial component of X.

5.2.1 Case 1

In Case 1.2 equation (5.28) implies that

F3,3 = 0 (5.86)

while from (5.30)

mnr,3 = 0. (5.87)

The remaining equations (5.30), (5.28), (5.31) arose from (5.21), this may be rewritten
as a differential equation for F3

Dn(logF3) = Γ3n3. (5.88)

It is possible to derive even more constraints on the transverse space through the
commutation relations [Di, Dn] applied to F3(u, xr). To start, we note that because
of (5.14) and the u-independence of mie, [D2, Dn](logF3) becomes

DnD2(logF3) = 0. (5.89)
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Next we consider [D3, Dn], since D3(logF3) = 0 and D3(m r
n ) = 0 the commutator is

[D3, Dn](logF3) = D3(Γ3n3) = 0.

However using (5.14) with k = 3 we find that

[D3, Dn](logF3) = Γm
[3n]Dm(logF3).

Thus we find two new constraints on the connection coefficients arising from the
transverse metric

D3(Γ3n3) = 0 (5.90)

Γm
[3n]Γ3m3 = 0. (5.91)

With k, j > 3 in (5.14) we find that

[Dn, Dm](logF3) = 2Γp
[nm]Γ3p3

whereas from (5.88) we have that

[Dn, Dm](logF3) = DnΓ3m3 − DmΓ3n3.

Equating the two gives another constraint on the transverse space,

Γp
[nm]Γ3p3 = DnΓ3m3 − DmΓ3n3. (5.92)

Thus if we require the Killing vector to have a spatial component the connection
coefficients arising from the transverse metric must satisfy the equations (5.87), (5.90),
(5.91) and (5.92). We will assume such a transverse metric has been found in order
to continue with the analysis.

Reconsidering (5.31) and solving for m3r,3 leads to another differential equation

m3r,3 = F3

(
m33

F3

)
,r

(5.93)

and two possibilities, either m3r,3 vanishes or not. If m3r,3 �= 0 we may integrate the
above equation to find an expression for m3r

m3r =
∫ (

m33

F3

)
,r

F3dx3 + Br(xs). (5.94)
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Differentiating with respect to u we must have(
F3,r

F3

)
,u

= 0. (5.95)

So that F3 is of the form

log(F3) = g3(u) + f3(xr). (5.96)

The form of log(F3) above agrees with the differential equation given in (5.88) and
(5.89), where we expect f3 is determined by the Γ3n3. In this case, (5.87) and (5.94) are
the only equations for the transverse metric so far. The remaining constraints on the
metric functions will vary for each subcase depending on the choice of X1 = c1u + c2.

If c1 �= 0, we see that H is given by

H = −1
u

(uD2F2 + F3D3F2 + F3D2F3). (5.97)

While the Wn satisfy the determining equation

D2(uWn) + F3D3Wn + Dn(F2 − uH) = 0 . (5.98)

If c1 = 0, F2 is no longer arbitrary it must satisfy the following equation

D2F2 + F3D3F2 + F3D2F3 = 0 (5.99)

H may be written as

H = F2 +
∫

m33D2F3dx3 + A1(u, xr), (5.100)

and the equation for Wn is now

D2Wn + F3D3Wn = DnF2 − DnH. (5.101)

If c1 = c2 = 0 then X1 vanishes, we know that this turns (5.29) – (5.31) into the same
set of differential equations (5.86), (5.87) and (5.88).

The remaining metric functions H and the Wn are

H = −
∫ m33D2F2

F3
dx3 + A2(u, xr), (5.102)

Wn = −
∫ m33DnF2

F3
dx3 + En(u, xr). (5.103)
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If m3r,3 = 0 we find the following expression for m33

Dn

(
m33

F3

)
= 0. (5.104)

. This leads to the following equality

Dn(logm33) = Dn(logF3) = Γ3n3 (5.105)

Expanding this out we find the constraint,

m33,3m
3
r = (m2

33),r (5.106)

The equations for the metric functions follow as above in the various cases arising
from X1 = c1u + c2.

5.2.2 Case 2

If mie,u vanishes, Case 2.1 and Case 2.26 are now the same case. Due to Proposition
5.1.2, equations (5.30) (5.28) (5.31) imply that

F3,e = 0. (5.107)

From (5.38) we find the familiar equation for F2:

F2,3 = −m33F3,u. (5.108)

The metric function H is given by equation (5.62) and Wn may be arbitrary functions
of u and xr.

In Cases 2.24 - 2.26 the vanishing of mie,u causes (5.29) and (5.31) to imply

F3,e = 0. (5.109)

So F3 is only a function of u. With this in mind the equations for the remaining
metric functions are the same as in (5.2.1), m3r,3 = 0, with the additional constraints
from Proposition (5.1.2).

In Case 2.27, equation (5.77) now implies

F1,u3 = 0. (5.110)
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The function F1 must be of the form

F1 = g1(u) + f1(x3) (5.111)

g1 is an arbitrary function of u however, f1 satisfies the differential equation in (5.74)

D3(logm33) = D3log(f1,3).

Letting c3 be arbitrary constant we have by integrating that

f1 = m33 + c3 (5.112)

Combining (5.111) and (5.112) yields

F1 = m33 + g1 + c3 (5.113)

From (5.80), F3 must be a function of u and xr, the equations (5.81) and (5.82)
are

D2F2 − D2F1
D3F1

D3F2 = (D2
2F1

D3F1
)F3 + D2F1

D3F1
D2F3 + F1D2F1D2

2F1
D3F 2

1
, (5.114)

D3(F1DnF2) = D2F1DnF3. (5.115)

Assuming g′
1 �= 0, dividing through (5.114) by g′

1
ḟ1

it is possible to solve for D2F3, while
dividing from g′

1 in (5.115) we have DnF3, hence it is possible to solve for F3 entirely
in terms of F2 and g′

1.
Simplifying (5.78) and (5.79) we find that,

H = − D2
2F1

D3(F1)2 F1 − D2F3

D3F1
− D3F2

D3F1
(5.116)

Wn = −DnF3

D3F1
. (5.117)

If D2F1 �= 0, dividing (5.114) by this then substituting this into the equation for H

gives,

H = (D2
2F1

D3F1
)F3 − D2F2. (5.118)

We note that F2 may be entirely an arbitrary function of u and x3.
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5.2.3 Summary of Constraints

As in the previous section we summarize our results for the existence of an additional
null Killing covector in a CSI CCNV spacetime. In order for a CCNV spacetime
to be CSI, we found in section 3.4.1 that the transverse space must be locally homo-
geneous. This allows one to choose a coordinate chart locally such that

mie,u = 0

so that many of the differential equations given in the previous section are simpler.
The results of this analysis are summarized below in the two tables. In all cases
the transverse metric is locally homogeneous, although it should be noted that in
subsection (5.2.1), if F3 �= 0 then the transverse space must satisfy the following
constraints

mnr,3 = 0

D3(Γ3n3) = 0

Γm
[3n]Γ3m3 = 0

Γp
[nm]Γ3p3 = DnΓ3m3 − DmΓ3n3. (5.119)

We also remind the reader that if m3r,3 = 0 equation (5.106) holds, so that m33 is inde-
pendent of xr. In the second case the matrix mie, related to the locally homogeneous
transverse metric, must satisfy (5.50) in Proposition (5.1.2).

Case X1 F2 F3 H Wn

1.11 u (5.23) 0 (5.24) (5.25)
1.12 1 F2,u = 0 0 (5.26) (5.27)

Table 5.3: Summary of Killing equations analysis in Case 1 for a CSI CCNV
spacetime, when F3 = 0

5.3 Application: Non-spacelike Isometries

The metric for CCNV spacetimes (3.18) must be independent of v, varying this
coordinate value leaves the metric unchanged. With regards to the set of CCNV
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Case X1 F2 F3 H Wn

1.21a u F2 (5.96) (5.97) (5.98)
1.22a 1 (5.99) (5.96) (5.100) (5.101)
1.23a 0 F2 F3 (5.102) (5.103)

m3r,3 �= 0 (5.94)

Table 5.4: Summary of Killing equations analysis in Case 1 for a CSI CCNV
spacetime, when F3 �= 0 and m3r,3 �= 0

Case X1 F2 F3 H Wn

1.21b u F2 F3,3 = 0 (5.97) (5.98)
1.22b 1 (5.99) F3,3 = 0 (5.100) (5.101)
1.23b 0 F2 F3,3 = 0 (5.102) (5.103)

Table 5.5: Summary of Killing equations analysis in Case 1 for a CSI CCNV
spacetime, when F3 �= 0 and m3r,3 = 0

spacetimes admitting an additional Killing vector, a good question to ask is: which
of these spacetimes admit a non-spacelike Killing vector for all values v? In [90] this
was considered for CSI CCNV spacetimes, however the approach taken differs from
the one presented in this paper.

While the frame was rotated so that the Killing covector X has one spatial com-
ponent X3 and the matrix mie is upper-triangular, a coordinate transformation was
made to eliminate H instead of W3. Regardless of these coordinate changes, the equa-
tions (5.1) – (5.4) lead to the same form for the Killing covector components given in
(5.11). The non-spacelike requirement for the Killing vector field maybe written as

D3(X1)2v2 + 2(D2(X1)X1 − D3(X1)F3)v + F 2
3 − 2X1F2 ≤ 0

Since v ∈ (−∞, ∞) this implies that D3(X1) must vanish and either X1 is independent
of u or X1 = 0.

Thus either X1 is constant or it vanishes entirely. This requirement along with
the u independence of mie from the CSI condition lead to a simpler set of equations
for the remaining components of X, as such the commutator relations were ignored
in [90] and the analysis was done using the coordinate basis instead of the frame
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Case X1 F2 F3 H Wn

2.1 0 F2,r = 0 F3,e = 0 (5.40) (5.39)
mie,u = 0

2.21 u (5.23) 0 (5.24) (5.25)
F2,3 �= 0

2.22 1 F2,u = 0 0 (5.26) (5.27)
2.23 u F2 F3,e = 0 (5.97) (5.98)
2.24 1 (5.99) F3,e = 0 (5.100) (5.101)
2.25 (5.113) (5.114) F3,3 = 0 (5.116) (5.117)

(5.115)

Table 5.6: Summary of Case 2 for a CSI CCNV spacetime - Proposition (5.1.2)
implies D3(Wn) = 0 and mei takes the special form (5.50)

formalism. As such the results of [90] agree with the results given in this paper, but
only as special subcases of 1.1 and 1.2 in the Table 5.3.2 given below.

Instead of the labour intensive approach given in [90] we may use the result of the
previous section to find an answer to the question of non-spacelike Killing vectors in
CCNV spacetimes. Since X1 must be constant from the non-spacelike requirement
we have that Cases 1.11, 1.21, 2.21, 2.23 and 2.26 are no longer admissible. In the
remaining cases the only constraint left is for F2 and F3 is

F 2
3 − 2X1F2 ≤ 0. (5.120)

Hence we will divide the analysis into two cases depending on whether the vector is
timelike or null.

5.3.1 Timelike Killing Vector Fields

If we allow X to be a timelike Killing vector field, we have the constraint that

F 2
3 < 2c2F2 (5.121)

and so the cases with X1 = 0 (1.23,1.24,2.1 and 2.25) are no longer valid since F3 is
a real-valued function and with F 2

3 < 0. which is impossible and so these cases will
be disregarded. In the remaining cases (1.12, 1.22, 2.22 and 2.24) equation (5.121) is



85

an additional constraint on F3 and F2. Thus the Killing vector field X will always be
of the form

n + F2(u, xe)� + F3(u, xr)m3. (5.122)

The requirement that F 2
3 < 2F2 does not affect the equations in the various cases.

5.3.2 Null Killing Vector Fields

If X is null, and c2 �= 0 we can rescale n so that (5.120) implies that 2F2 = F 2
3 , from

which we naturally find the helpful identity

Da(F2) = Da(F3)F3. (5.123)

If F3 vanishes as in Case 1.12, F2 must vanish as well, so X takes the form

X = n. (5.124)

the remaining equations for the metric functions are now

H = A0(u, xr) (5.125)

Wn =
∫

Dn(A0)du + Cn(xe). (5.126)

The transverse metric is unaffected by (5.120).
In Case 1.22, X is now

X = n + F 2
3

2 � + F3m
3 (5.127)

taking equation (5.34) we find a differential equation for F3

D2(F3) + D3(F3)F3 = 0. (5.128)

This allows us to rewrite H as

H = A2(u, xr). (5.129)

The constraining equation for the Wn is

D2(Wn) + D3(Wn)F3 = Dn(A2). (5.130)
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We may rewrite (5.28) in a simpler form using (5.128)

m33,u

m33
= D2(F3)

F3
. (5.131)

This may be integrated to find m33 in terms of F3, assuming m33,u = 0, however this
is more useful as a differential equation. The remaining two equations (5.30) and
(5.31) are unchanged. If c2 = 0, then X1 vanishes entirely and (5.120) implies that

F 2
3 = 0. (5.132)

If X1 = F3 = 0 then the Killing equations (5.17) – (5.22) implies F2 must be constant.
That is, our Killing covector is a scalar multiple of �, so we will disregard this as well
as Case 2.1 and 2.25.

The remaining cases 2.22 and 2.24 are just a repetition of the above equations
with the added constraints that Proposition (5.1.2) holds and mmn,u = 0. In the first
case where F3 = 0, this changes the Wn

Wn =
∫

Dn(A0)du + Cn(xr). (5.133)

No other metric functions are affected. When F3 �= 0, the additional constraints
imply that (5.30) is satisfied trivially and (5.31) becomes

F3,r = 0. (5.134)

Lastly since D3(Wn) = 0, equation (5.130) implies

Wn = −
∫

Dn(A2)du + A7(xr). (5.135)

We summarize these results in the following table.
If we wish to find CSI CCNV spacetimes admitting Killing vectors which are

non-spacelike for all values of v, the above table will be helpful. The CSI CCNV

spacetimes are the subcases of the above cases, where the transverse space is locally
homogenous, allowing for a choice of coordinates where mie is independent of u.

In case 1.1 and 2.1, none of the equations are affected by the vanishing of mie,u,
while in case 1.2 and 2.2 equation (5.131) is no longer applicable, instead we look to
(5.29) which implies that

F3,3 = 0. (5.136)
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Case X1 F2 F3 mie H Wn

1.1 1 0 0 mie,u = 0 (5.125) (5.126)
1.2 1 1

2F 2
3 F3 (5.131), (5.31) (5.129) (5.130)

(5.30)
2.1 1 0 0 mie,u = 0 (5.125) (5.133)

(5.50)
2.2 1 1

2F 2
3 F3,r = 0 (5.131), (5.50) (5.129) (5.135)

mnr,u = 0

Table 5.7: Constraints on CCNV metric in order to allow null isometry.

Unlike the previous cases, where no other function is affected by our choice of coor-
dinates, in case 1.2 (5.31) implies

mmr,3 = 0. (5.137)

From (5.30) we find the following differential equation for F3

Dn(logF3) = Γ3n3. (5.138)

The remaining constraints on the metric functions follows as in section 5.2 where the
Killing vector X is of type A with some minor modifications due to F2 = 1

2F 2
3 . We

will do a simple example to illustrate.

5.3.3 A Simple Example

To simplify matters, we will assume that the transverse space is locally homogeneous
and that Γ3n3, m3r,3 both vanish. By Lemma 3.4.1 this will be a CSI CCNV space-
time and since (5.87), (5.90), (5.91) and (5.92) are all satisfied, it will also admit a
null Killing vector X of the form

X = n + F 2
3

2 � + F3m
3 (5.139)

For brevity we will only consider the simpler subcase where it is assumed that the
components m3r are independent of x3. Expanding Γ3n3 in terms of the transverse
space frame matrix

Γ3n3 = m3[r,3]m
r

n m 3
3 = −m33,rm

r
n m 3

3 (5.140)
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Then by multiplying this by mn
r we find that

m33,r = 0. (5.141)

This and equation (5.106) then implies that

m33,3m
3
r = 0. (5.142)

So that either m33,3 or m3
r must vanish. If m3

r = 0, the matrix mie will take the form

m33 = m33(x3)

m3r = 0 (5.143)

mnr = mnr(xr).

On the other hand, if m33,3 = 0, it will be a constant, say M33, and then the matrix
mie is of the form

m33 = M33

m3r = m3r(xr) (5.144)

mnr = mnr(xr).

In either case, the choice does not affect the remaining metric functions and Killing
vector components. Noting (5.86) in (5.88), we may multiply by mn

s to see that F3

is at most a function of u. However, from equation (5.131) we see that it must be a
constant. By requiring X to be null, we obtain F2 = F 2

3
2 , and so (5.99) gives no new

information. The Killing vector may then be written as

n + 1
2� + m3, (5.145)

subtracting the known Killing vector 1
2� we find the spacelike Killing vector, Y =

n + m3. The metric function H is found to be an arbitrary function of u and xr by
(5.129), while Wn is determined by the linear partial differential equation in (5.130)

D3Wn + D2Wn = DnH. (5.146)

Rewritting the above in coordinate form

Ŵr,3 + Ŵr,u = H,r. (5.147)
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Applying the method of characteristics, the solution is written as

Ŵr = 1√
2

∫
L

H(u, xr)ds + g(x3 − u) (5.148)

where g is an arbitrary function of one variable and L is the characteristic line segment
from the u-axis to an arbitrary point (x3

0, u0).
Thus we have found that in the subset of CSI CCNV spacetimes where m33,r

and Γ3n3 both vanish, there are no null Killing vectors other than �. However, these
spacetimes always admit the space-like Killing vector

Y = n + m3. (5.149)



Chapter 6

CCNV Spacetimes and (Super)symmetries

This chapter is based on: D. McNutt, N. Pelavas (2013). CCNV spacetimes and
(Super) Symmetries . Submitted to MPAG. Copyright 2013, with kind permission
from Springer Science+Business Media B.V.

6.1 Supergravity and Supersymmetries

Supersymmetric supergravity solutions are of interest in the context of the AdS/CFT
conjecture, the microscopic properties of black hole entropy, and in a search for a
deeper understanding of string theory dualities. For example, in five dimensions so-
lutions preserving various fractions of supersymmetry of N = 2 gauged supergravity
have been studied. The Killing spinor equations imply that supersymmetric solu-
tions preserve 2, 4, 6 or 8 of the supersymmetries. The AdS5 solution with vanishing
gauge field strengths and constant scalars preserves all of the supersymmetries. Half
supersymmetric solutions in gauged five dimensional supergravity with vector multi-
plets possess two Dirac Killing spinors and hence two time-like or null Killing vectors.
These solutions have been fully classified, using the spinorial geometry method, in
[87]. Indeed, in a number of supergravity theories [73], in order to preserve some
supersymmetry it is necessary that the spacetime admits a Killing spinor which then
yields a null or timelike Killing vector from its Dirac current. Therefore, a necessary
(but not sufficient) condition for supersymmetry to be preserved is that the spacetime
admits a null or timelike Killing vector .

In this chapter we investigate the existence of additional Killing vectors in the
class of higher-dimensional Kundt spacetimes admitting a covariantly constant null
vector (CCNV ) [100], which is of interest in the study of supergravity solutions
preserving a non-minimal fraction of supersymmetries. CCNV spacetimes belong to
the Kundt class because they contain a null Killing vector which is geodesic, non-
expanding, shear-free and non-twisting. The existence of an additional Killing vector

90
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puts constraints on the metric functions and the vector components. Killing vectors
that are null or timelike locally or globally (for all values of the coordinate v) are of
particular importance. As an illustration we present two explicit examples.

The subset of CCNV spacetimes which are also CSI or V SI are of particular
interest. Indeed, it has been shown previously that the higher-dimensional V SI

spacetimes with fluxes and dilaton are solutions of type IIB supergravity [84]. A
subset of Ricci type N V SI spacetimes, the higher-dimensional Weyl type N pp-wave
spacetimes, are known to be solutions in type IIB supergravity with an R-R five-
form or with NS-NS form fields [44, 43]. In fact, all Ricci type N V SI spacetimes
are solutions to supergravity and, moreover, there are V SI spacetime solutions of
type IIB supergravity which are of Ricci type III, including the string gyratons,
assuming appropriate source fields are provided [84]. It has been argued that the
V SI supergravity spacetimes are exact string solutions to all orders in the string
tension.

Those V SI spacetimes in which supersymmetry is preserved admit a CCNV .
Higher-dimensional V SI spacetime solutions to type IIB supergravity preserving some
supersymmetry are of Ricci type N, Weyl type III(a) or N [80]. It is also known that
AdSd × S(D−d) spacetimes are supersymmetric CSI solutions of IIB supergravity.
There are a number of other CSI spacetimes known to be solutions of supergravity
and admit supersymmetries [79], including generalizations of AdS × S [81], of the
chiral null models [44], and the string gyratons [75]. Some explicit examples of CSI

CCNV Ricci type N supergravity spacetimes have been constructed [85].

6.2 Additional Isometries

Let us choose the coframe {ma}

m1 = n = dv + Hdu + Ŵedxe, m2 = �, mi = mi
edxe, (6.1)

where mi
emif = gef and miem

e
j = δij. The frame derivatives are given by

� = D1 = ∂v, n = D2 = ∂u − H∂v, mi = Di = m e
i (∂e − Ŵe∂v).

The Killing vector can be written as X = X1n + X2� + Xim
i.A coordinate transfor-

mation can be made to eliminate Ŵ3 in (3.18) and we may rotate the frame in order
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to set X3 �= 0 and Xm = 0 [100]. X is now given by

X = X1n + X2� + χm3.

Henceforth it will also be assumed that the matrix mie is upper-triangular.
The Killing equations can then be written as:

X1,v = 0, X1,u + X2,v = 0, m e
3 X1,e + X3,v = 0, m e

n X1,e = 0, (6.2)

which imply

X1 = F1(u, xe), X2 = −D2(X1)v + F2(u, xe), X3 = −D3(X1)v + F3(u, xe),

and

D2X2 +
∑

i

JiXi = 0 (6.3)

DiX2 + D2Xi − JiX1 − ∑
j

(Aji + Bij)Xj = 0 (6.4)

DjXi + DiXj + 2B(ij)X1 − 2
∑

k

Γk(ij)Xk = 0, (6.5)

where Bij = mie,um e
j , Wi = m e

i Ŵe, and Ji ≡ Γ2i2 = DiH − D2Wi − BjiW
j, Aij ≡

D[jWi] + Dk[ij]W
k, Dijk ≡ 2mie,fm e

[j m f
k] . Further information can be found by

taking the Killing equations and applying the commutation relations, which leads to
two cases; (1) D3X1 = 0, or (2) Γ3n2 = Γ3n3 = Γ3nm = 0.

6.2.1 Case 1: D3X1 = 0

Using equation (6.3) and the definition of F2 from (5.11), we have that X1 = c1u+c2.
If c1 �= 0 we may always choose coordinates to set X1 = u, while if c1 = 0 we may
choose c2 = 1.
Subcase 1.1: F3 = 0. (i) c1 �= 0, X1 = u; F2 must be of the form given in (5.23):

F2 = f2(xe)
u

+ g2(u)
u

.

H and Wm are given in terms of these two functions which arise from ((5.24) and
(5.25)) (where g′ ≡ dg

du
)

H = f2(xe)
u2 − g′

2(u)
u

+ g2(u)
u2 , Wm = Bm(xe)

u
.
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(ii) c1 = 0, X1 = 1; F2,u = 0, and H and Wn in ((5.26) and (5.27)) become

H = F2(xe) + A0(u, xr), Wn =
∫

DnA0du + Cn(xe).

In either case, the only requirement on the transverse metric is that it be independent
of u. The arbitrary functions in this case are F2 and the functions arising from
integration.
Subcase 1.2: F3 �= 0. The transverse metric is now determined by the constraints
(5.29) and (5.31):

m33 = − ∫ 1
X1

F3,3du + A1(x3, xr).

mnr,u = −mnr,3
F3

m33X1
,

m3r,u = −F3,r

X1
− m3[r,3]m

3
3 F3

X1
.

(i) c1 �= 0, X1 = u; Fi(u, xe) (i = 1, 2) are arbitrary functions, from (5.32) H is given
by

H = −D2F2 − D2(F 2
3 )

2u
− F3D3F2

u
− F3D3(F 2

3 )
2u2 ,

and Wn is determined by equation (5.33)

D2(uWn) + F3D3Wn + Dn(F2 − uH) = 0. (6.6)

(ii) c1 = 0, (c2 �= 0) X1 = 1; F2 and F3 must satisfy (5.34)

D2F2 + F3D3F2 + 1
2D2(F 2

3 ) + 1
2F3D3(F 2

3 ) = 0.

From equation (5.35) H may be written as

H =
∫

m33D2F3dx3 + F2 + 1
2F 2

3 + A2(u, xr).

The only equation for Wn is (5.36)

F3D3Wn + D2Wn = Dn(H).

(iii) X1 = 0:

F3,3 = 0, mnr,3 = 0, D2log(m33) = −D3F2

F3
− D2log(F3). (6.7)

Wn = −
∫ m33DnF2

F3
dx3 + En(u, xr), H = −

∫ m33D2F2

F3
dx3 + A3(u, xr). (6.8)

There are two further subcases depending upon whether m33,r = 0 or not, whence we
may further integrate to determine the transverse metric.
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6.2.2 Case 2: Γ3ia = 0

This implies the upper-triangular matrix mie takes the form: m33 = M,3(u, x3), m3r =
0, mnr = mnr(u, xr), while the Wn must satisfy D3(Wn) = 0. The remaining Killing
equations then simplify. In particular, B(mn)X1 = 0, leading to two subcases: (1)
X1 = 0, or (2) B(mn) = 0.
Case 2.1: X1 = 0, B(mn) �= 0. F2,r = 0, F3,e = 0; mie, H, Wn given by (6.7) and
(5.39).
Case 2.2: B(mn) = 0, X1 �= 0. This case is similar to the subcases dealt with
in Case 1.1 (see equations (5.23)-(5.29), (5.36)-(5.39)). For n < p the vanishing of
B(np) implies mnr,u = 0, the special form of mie implies that m 3

r = 0, and the only
non-zero component of the tensor B is B33.

If we assume that F1,3 �= 0 and F1 is independent of xr then it is of the form
(5.74):

m33,3

m33
= F1,33

F1,3
,

m33,u

m33
= F1,3u

F1,3
.

Thus m33(u, x3) is entirely defined by F1. We may solve for H and the Wn:

H = D3D2F1

D3(F1)2 F3 − D2
2F1

D3(F1)2 F1 − 2D(2F3)

D3F1
, Wn = −DnF3

D3F1
.

F3 is of the form:

F3 =
∫ m33F1D3D2F1

D3F1
dx3 + A6(u, xr)

There are differential equations for F2 in terms of the arbitrary functions F1(u, x3)
and A6(u, xr). These solutions are summarized in Table 2 in [100].

Killing Lie Algebra: There are three particular forms for the Killing vector in
those CCNV spacetimes admitting an additional isometry:

(A) XA = cn + F2(u, xe)� + F3(u, xe)m3

(B) XB = un + [F2(u, xe) − v]� + F3(u, xe)m3

(C) XC = F1(u, x3)n + [F2(u, xe) − D2F1v]� + [F3 − D3F1v]m3.

To determine if these spacetimes admit even more Killing vectors we examine
the commutator of X with � in each case. In case (A), [XA, �] = 0 and in case B
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[XB, �] = −�, and thus there are no additional Killing vectors. In the most general
case YC ≡ [XC , �] can yield a new Killing vector; YC = D2F1� + D3F1m3. However,
this will always be spacelike since (D3F1)2 > 0. Note that [YC , �] = 0, while, in
general, [YC , XC ] �= 0.

Non-spacelike isometries: Let us consider the set of CCNV spacetimes admitting
an additional non-spacelike Killing vector, so that

D3(X1)2v2 + 2(D2(X1)X1 − D3(X1)F3)v + F 2
3 − 2X1F2 ≤ 0

If the Killing vector field is non-spacelike for all values of v, then D3(X1) must vanish
and X1 is constant. Therefore, various subcases discussed above are excluded. In the
remaining cases equation (5.120) applies, that is:

F 2
3 − 2X1F2 ≤ 0.

In the timelike case, the subcases with X1 = 0 are no longer valid since F 2
3 < 0.

In the case that X is null and c2 �= 0 we can rescale n so that 2F2 = F 2
3 . We can then

integrate out the various cases: If F3 = 0, F2 must vanish as well and X = n. The
remaining metric functions are now H = A0(u, xr) and Wn =

∫
Dn(A0)du + Cn(xe).

The transverse metric is unaffected.
If F3 �= 0, H = A2(u, xr), D2(Wn) + D3(Wn)F3 = Dn(A2), and (logm33),u =

D2(logF3). If c2 = 0, F2 must be constant, and the Killing vector is a scalar multiple
of � and can be disregarded. The remaining cases are just a repetition of the above
with added constraints. The CSI CCNV spacetimes admitting Killing vectors which
are non-spacelike for all values of v are the subcases of the above cases where the
transverse space is locally homogenous.

6.3 Explicit Examples

I: We first present an explicit example for the case where X1 = u and F3 �= 0.
Assuming that F3(u, xi) = εum33 and ε is a nonzero constant, we obtain

mis,u + εmis,3 = 0 (6.9)

and the transverse metric is thus given by

mis = mis(x3 − εu, xn) . (6.10)
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We have the algebraic solution

Ŵ3 = −1
ε
(H + F2,u) − F2,3 − εm 2

33 , (6.11)

where F2(u, xi) is an arbitrary function and H is given by

H(u, xi) = 1
u

[
−
∫ u

S(z, x3 − εu + εz, xn)dz + A(x3 − εu, xn)
]

, (6.12)

where A is an arbitrary function and S is given by

S(u, x3, xn) = (uF2,u)u + εuF2,3u + ε2u(m 2
33 )u . (6.13)

Furthermore, the solution for Ŵn, n = 4, . . . , N is

Ŵn(u, xi) = 1
u

[
−
∫ u

Tn(z, x3 − εu + εz, xm)dz + Bn(x3 − εu, xm)
]

(6.14)

where Bn are arbitrary functions and Tn is given by

Tn(u, x3, xm) =
[
(uF2)u + εuF2,3 + ε2um 2

33

]
,n

+ εm3nm33 . (6.15)

In this example, the Killing vector and its magnitude are given by

X = un+ (−v + F2)� + εum33m3, XaXa = −2uv + 2uF2 + (εum33)2 . (6.16)

Clearly, the causal character of X will depend on the choice of F2(u, xi), and for
any fixed (u, xi) X is timelike or null for appropriately chosen values of v. Moreover,
(6.16) is an example of case (B); therefore the commutator of X and � gives rise
to a constant rescaling of � and, in general, there are no more Killing vectors. The
additional Killing vector is only timelike or null locally (for a restricted range of
coordinate values). However, the solutions can be extended smoothly so that the
Killing vector is timelike or null on a physically interesting part of spacetime. For
example, a solution valid on u > 0, v > 0 (with F2 < 0), can be smoothly matched
across u = v = 0 to a solution valid on u < 0, v < 0 (with F2 > 0), so that the Killing
vector is timelike on the resulting coordinate patch.

As an illustration, suppose the m3s are separable as follows

m3s = (x3 − εu)pshs(xn) (6.17)



97

and F2 has the form

F2 = − ε

2p3 + 1(x3 − εu)2p3+1h 2
3 + g(u, xn), (6.18)

where the ps are constants and hs, g arbitrary functions. Thus, from (6.12)

H = −ε2(x3 − εu)2p3−1[x3 − ε(p3 + 1)u]h 2
3 − g,u + u−1A(x3 − εu, xn), (6.19)

and hence from (6.11)

Ŵ3 = −ε2p3u(x3 − εu)2p3−1h 2
3 − (εu)−1A(x3 − εu, xn). (6.20)

Last, equation (6.14) gives

Ŵn = ε(x3 − εu)p3h3

{
2(x3 − εu)p3

2p3 + 1

[
x3 − ε

(
p3 + 3

2

)
u
]

h3,n

− (x3 − εu)pnhn

}
− g,n + u−1Bn(x3 − εu, xm) . (6.21)

II: A second example corresponding to the distinct subcase where X1 = 1 and as-
suming F3(u, xi) = εm33 gives the same solutions (6.10) for the transverse metric
(although, in this case, the additional Killing vector is globally timelike or null). In
addition, we have

Ŵ3 =
∫

H,3du + ε−1(F2 + f) (6.22)

where H(u, xi), F2(x3 − εu, xn) and f(xi) are arbitrary functions. Last, the metric
functions Ŵn are

Ŵn(u, xi) =
∫ u

Ln(z, x3 − εu + εz, xm)dz + En(x3 − εu, xm), (6.23)

with En arbitrary and Ln given by

Ln(u, x3, xm) = H,n + ε
∫

H,3ndu + f,n . (6.24)

The Killing vector and its magnitude is

X = n+ F2� + εm33m3, XaXa = 2F2 + (εm33)2 . (6.25)

Since F2 and m33 have the same functional dependence there always exists F2 such
that X is everywhere timelike or null. The Killing vector (6.25) is an example of case
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(A) and thus X and � commute and hence no additional Killing vectors arise. For
instance, suppose H = H(x3 − εu, xn) and f is analytic at x3 = 0 (say) then (6.22)
and (6.23) simplify to give

Ŵ3 = −ε−1(H − F2 − f), (6.26)

Ŵn = ε−1
∞∑

p=0
∂n∂ p

3 f(0, xm) (x3)p+1

(p + 1)! + En(x3 − εu, xm) . (6.27)

This explicit solution is an example of a spacetime admitting 2 global null or timelike
Killing vectors, and may be of importance in the study of supergravity solutions
preserving a non-minimal fraction of supersymmetries.



Chapter 7

Plane-fronted Gravitational Waves as CSIΛ Spaces

This chapter is based on: D. McNutt (2013). Spacetimes with all scalar curvature
invariants in terms of the Cosmological Constant. IJMPD Vol 22, Issue 2, pp 1350003-
1350014. Copyright 2013, World Scientific Publishing.

7.1 The CSIΛ Property

The plane-fronted waves in general relativity were originally derived by Kundt [9] in
1961 with vanishing cosmological constant. At the time, this was a reasonable con-
straint as it produced the simplest pure radiation solutions admitting a twist-free and
non-expanding null congruence. Although the plausibility of a non-vanishing cosmo-
logical constant had been addressed [5], it was not until the 1981 that the question of
the existence of Petrov type N solutions with cosmological constant was investigated
[[26],[27]]. and in particular whether there were plane-fronted gravitational waves in
spacetimes with cosmological constant [33] by Ozvath, Robinson and Rozga (O.R.R.).

In the O.R.R. paper, the resulting class of KN(Λ)[α, β] metrics were classified by
the sign of the cosmological constant Λ �= 0 and another invariant κ′ = 1

3Λα2 + 2ββ̄

arising from the metric,

ds2 = −2q2p−2du

((
−κ′

2 v2 + (lnq),uv + S(u, ζ, ζ̄)
)

du + dv

)
+ 2p−2dζdζ̄,

p = 1 + Λ
6 ζζ̄, (7.1)

q = (1 − Λ
6 ζζ̄)α(u) + ζβ̄(u) + ζβ(u).

Excluding, the λ = 0 cases, this produces four canonical classes, which were assumed
to have a canonical form by setting α and β to be particular values. It was not until
1991 that Bicak and Podolsky in their paper [50] provided the coordinate transforms
needed to produce canonical forms for the metric:

• κ′ > 0, Λ > 0 : KN(Λ+)[0, 1]

99
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• κ′ > 0, Λ < 0 : KN(Λ−)[0, 1]

• κ′ < 0, Λ < 0 : KN(Λ−)[1, 0]

• κ′ = 0, Λ < 0 : KN(Λ−)[1,
√

−λ
6 eiω(u)]

The plane wave spacetimes with Λ = 0 belong to the V SI class of spacetimes [55],
by adding a non-vanishing cosmological constant these spacetimes are now CSI. In
light of the results of [95] and [94] we may classify the above solutions by examining
the Segre type and comparing to the metric forms in [94]. The goal of this section
will be to derive a general characterization for the class of CSI spacetimes with all
non-zero scalar curvature invariants expressed in terms of the cosmological constant
Λ �= 0, as a parallel to the result in [55]. In general, these spacetimes will be of Petrov
type III or higher, however we will restrict our interests to the Petrov Type N case
and derive the metric of (7.1) in the Kundt coordinates used in [55],[95] and [94].

7.1.1 The CSIΛ Theorem

Our interest is to provide a general criteria for spacetimes in which the Ricci Scalar is
constant, and the only curvature invariants which are non-zero are the zeroth order
invariants expressed as various polynomials of the cosmological constant Λ.

Theorem 7.1.1. Given a spacetime, all invariants constructed from the traceless
Ricci tensor, Weyl tensor and their covariant derivatives vanish, if and only if the
following conditions are satisfied:

1. The spacetime possesses a non-diverging, shear-free geodesic null congruence.

2. Relative to this congruence, the Ricci Scalar is constant and all other curvature
scalars with non-negative boost-weight vanish.

These spacetimes belong to the CSI class of spacetimes and we will say they are CSIΛ

spacetimes.

We choose the tangent vector to the null congruence to be �a and a spin basis so that
oAōȦ ↔ �a. The analytic conditions of (7.1.1) (1) for this spin basis is

κ = σ = ρ = 0, (7.2)
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and the second condition of (7.1.1) may be expressed as

Ψ0 = Ψ1 = Ψ2 = 0, (7.3)

Φ00 = Φ01 = Φ02 = Φ11 = 0 (7.4)

Λ ≡ constant (7.5)

Following the work done for V SI spacetimes, the definitions and results given in
the Necessity and Sufficiency proof of [55] may be used to generalize the case where
Λ �= 0 is constant.

7.1.2 Sufficiency of the Conditions

To prove this direction of Theorem (7.1.1) we will use the Newmann-Penrose (NP) and
the compacted (GHP) formalisms [29]. Throughout this paper we use a normalized
spin basis {oA, ιA} such that oAιA = 1 and oAoA = ιAιA = 0. From this we may build
the corresponding tetrad:

�a ↔ oAōȦ, na ↔ ιAῑȦ, ma ↔ oAῑȦ, m̄a ↔ ιAōȦ, (7.6)

with the usual non-zero scalar products −�ana = mam̄a = 1. The spinorial form of
the Riemann tensor Rabcd is

Rabcd ↔ χABCD ε̄ȦḂ ε̄ĊḊ + χ̄ȦḂĊḊεABεCD

+ ΦABĊḊ ε̄ȦḂεCD + Φ̄ȦḂCDεAB ε̄ĊḊ (7.7)

where

χABCD = ΨABCD + Λ(εACεBD + εADεBD) (7.8)

and Λ = R/24 with R the Ricci scalar. The Weyl spinor ΨABCD = Ψ(ABCD) is related
to the Weyl tensor by

Cabcd = ΨABCD ε̄ȦḂ ε̄ĊḊ + Ψ̄ȦḂĊḊεABεCD. (7.9)

Taking projections of this tensor onto the basis spinors oA, ιA give five complex scalar
quantities Ψi, i ∈ [0, 4]. Similarly the Ricci Spinor ΦABĊḊ = Φ(AB)(ĊḊ) = Φ̄ȦḂCD is
connected to the traceless Ricci tensor Sab = Rab − 1

4Rgab

ΦABĊḊ ↔ −1
2Sab. (7.10)



102

We denote the projections of ΦABĊḊ onto oA, ιA by Φ00 = Φ̄00, Φ01 = Φ̄10, Φ02 = Φ̄20,
Φ11 = Φ̄11, Φ12 = Φ̄21 and Φ22 = Φ̄22

The analytic expressions of Theorem (7.1.1) (1), (2) imply

ΨABCD = Ψ4oAoBoCoD − 4Ψ3o(AoBoCιD), (7.11)

ΦABĊḊ = Φ22oAoB ōĊ ōḊ − 2Φ12ι(AoB)ō ˙(C ōḊ) − 2Φ21o(AoB)ῑ ˙(C ōḊ). (7.12)

Following the convention used in [55] we will say a scalar η is a weighted quantity of
type {p, q} if for every non-vanishing scalar field λ, a transformation of the form

oA �→ λoA, ιA �→ λ−1ιA,

representing a boost in the �a − na plane and a spatial rotation in the ma − m̄a plane
transforms η in the following manner

λpλ̄qη

The boost weight, b, of a weighted quantity is defined by b = 1
2(p + q).

The frame derivatives are defined as

D = �a∇a = oAōȦ∇AȦ, δ = ma∇a = oAῑȦ∇AȦ

D′ = na∇a = ιAῑȦ∇AȦ, δ′ = m̄a∇a = ιAōȦ∇AȦ

and so the covariant derivative may be expressed in terms of the frame,

∇a = ∇AȦ = ιAῑȦD + oAōȦD′ − ιAōȦδ − oAῑȦδ′.

The GHP formalism introduces new derivative operators ð, þ, ð′ and þ′ which are
additive and obey the Leibniz rule. They act on scalars, spinors and tensors η of type
{p, q} as follows: þ

þ = (D + pγ′ + qγ̄′)η, ð = (δ + pβ + qβ̄′)η (7.13)

þ′ = (D′ − pγ − qγ̄)η, ð′ = (δ′ + pβ′ + qβ̄)η.

To show the sufficiency conditions we assume the analytic conditions of Theorem
(7.1.1) hold along with the requirement that oA, ιA are parallely propogated along �a

as well. Due to (7.2) we have the following relations on the spin coefficients

γ′ = 0, and τ ′ = 0. (7.14)
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The spin-coefficient equations, the Bianchi identities and commutator relations [29]
are greatly simplified by imposing (7.4), (7.3), (7.5). The non-trivial relations that
apply to proving the theorem are:

þτ = 0, (7.15)

þσ′ = 0, (7.16)

þρ′ = −2Λ, (7.17)

þκ′ = τþ′ + τσ′ − Ψ3 − Φ21, (7.18)

þΨ3 = 0, (7.19)

þΦ21 = 0, (7.20)

þΦ22 = ð
′Φ21 + (ð′ − 2τ)Ψ3, (7.21)

þΨ4 = ð
′Ψ3 + (ð′ − 2τ̄)Φ21, (7.22)

þþ′ − þ′þ = τ̄ð + τð′ + pΛ + qΛ, (7.23)

þð − ðþ = 0. (7.24)

To proceed we analyze the boost weights of the quantities involved in these rela-
tions. In particular we will use the idea of a balanced scalar.

Definition 7.1.2. Given a weighted scalar η with boost-weight b, we shall say it is
balanced if þ−bη = 0 for b < 0 and η = 0 for b ≥ 0.

Many of the Lemmas as given in [55] follow without change despite Λ’s non-
vanishing. The proof of Lemma 4 requires some modification due to (7.17). For that
reason, we will state each lemma leading to the main result without proof, unless
there is some required change due to Λ �= 0:

Lemma 7.1.3. If η is a balanced scalar then η̄ is also balanced.

Lemma 7.1.4. If η is a balanced scalar then,

τη, ρ′η, σ′η, κ′η

þη, ðη, ð′η, þ′η

are all balanced as well.
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p q b
oA 1 0 1

2
κ 3 1 2
σ 3 -1 1
ρ 1 1 1
τ 1 -1 0
Þ 1 1 1
ð 1 -1 0

Ψr 4-2r 0 2-r

p q b
ιA -1 0 −1

2
κ′ -3 -1 -2
σ′ -3 1 -1
ρ′ -1 -1 -1
τ ′ -1 1 0
Þ′ -1 -1 -1
ð′ -1 1 0
Φrt 2-2r 2-2t 2-r-t
Λ 0 0 0

Table 7.1: Boost weights of weighted quantities

Proof. Let b be the boost-weight of a balanced scalar η. Using Table (7.1) it is
clear that the scalars listed in the first row have boost-weights b, b − 1, b − 1, b − 2,
respectively.To show these are balanced we must prove that the following must vanish:

þ−b(τη), þ1−b(ρ′η), þ1−b(σ′η), þ2−b(κ′η).

while for the second row we require that four more quantities vanish to match their
boost-weight:

þ−(b+1)(þη), þ−b(ðη), þ−b(ð′η), þ−(b−1)(þ′η).

As the equations (7.17) and (7.23) are the only that differ from the V SI case, we
must only check to see if two conditions still hold

þ1−b(ρ′η) = þ1−b(þ′η) = 0

and the remaining six conditions hold automatically. The first condition follows using
the Leibniz rule and equations (7.17) and the fact that þ2ρ′ = 0. Since we may expand
this as

þ1−b(ρ′η) = þρ′þ−bη + ρ′þ(þ−bη),

Since η is a balanced scalar for which b < 0, these last two terms vanish. To prove
the second condition, we use the commutator relation (7.23) and the constancy of Λ
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to get

þ1−b(þ′η) = þ−b(þ′þη) + τ̄(þ−b
ðη) + τ(þ−b

ðη) + þ−b(pΛη + qΛη)

= þ−b(þ′þη)

Using induction one may show that þ1−bþ′η = þ′þ1−bη = 0.

Lemma 7.1.5. If η1, η2 are balanced scalars both of type {p, q} then η1 + η2 is a
balanced scalar of type {p, q} as well.

Lemma 7.1.6. If η1 and η2 are balanced scalars then η1η2 is also balanced.

Definition 7.1.7. A balanced spinor is a weighted spinor of type {0, 0} whose com-
ponents are all balanced scalars.

Lemma 7.1.8. If S1 and S2 are balanced spinors then S1S2 is also a balanced spinor

Lemma 7.1.9. A covariant derivative of an arbitrary order of a balanced sinpor S is
again a balanced spinor

Proof. Applying the covariant derivative to a balanced spinor S,

∇a = ∇AȦ = ιAῑȦD + oAōȦD′ − ιAōȦδ − oAῑȦδ′.

From table 1 in [55] it follows that ∇AȦS is a weighted spinor of type {0, 0}. By
virtue of how þ, ð, þ′ and ð′ act on the basis vectors, the components may be shown
to be balanced scalars using Lemmas (7.1.3), (7.1.4) and (7.1.5).

Lemma 7.1.10. A scalar constructed as a contraction of a balanced spinor is equal
to zero.

From table 1 in [55], and equations (7.19)- (7.22) it follows that the Weyl spinor
and Ricci spinor and their complex conjugates are balanced spinors (lemma (7.1.3)).
Their product and covariant derivatives of arbitrary orders are balanced spinors as
well (Lemmas (7.1.8) and (7.1.9)). At this point to prove the sufficiency of the
conditions of Theorem (7.1.1) we must state two more results:

Lemma 7.1.11. The product of a balanced spinor and a weighted constant of type
{0, 0} is a balanced spinor.
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Lemma 7.1.12. A scalar constructed as a contraction from the product of a balanced
spinor, εAB, εAB and their conjugates is equal to zero.

With these observations, and equations (7.7), (7.8), (7.9) and (7.10) imply that
any contraction of the product of N copies of the Riemann tensor with itself must
vanish except for the contraction of the term built exclusively out of the product of
N copies of

Λ(εACεBD + εADεBD ε̄ȦḂ ε̄ĊḊ.

Lemma 7.1.11 ensures all other terms are the products of balanced spinors, ε’s and
ε̄’s; these terms must vanish when contracted by Lemmas 7.1.10 and 7.1.12. To show
that all non-zero curvature invariants appear at zeroth order, we note that the nth

covariant derivative of the Riemann tensor is a balanced spinor for n > 0, as ∇εAB = 0
and Λ is a constant. Thus any product of the Riemann tensor with its nth covariant
derivative must vanish upon contraction by Lemma 7.1.12, while any contraction of
the product of the nth and mth covariant derivative of the Riemann tensor must vanish
necessarily by Lemma 7.1.10.

7.1.3 Necessity of the Conditions

To show that these conditions are necessary follows by repeating the proof from [55]
vertabim, this can be done because the particular Newman Penrose equations used
and the Bianchi Identities do not involve Λ, or the derivatives of Λ - since they vanish
if Λ is constant. Thus by requiring that all invariants vanish except those constructed
as polynomials of Λ which are assumed to be constant, one may prove conditions (1)
and (2) of Theorem (7.1.1) hold.

7.2 CSIΛ Spacetimes of Petrov Type N

To conform to the theme of plane-fronted waves, we will ignore those CSIΛ spacetimes
of Petrov type III, and instead focus on the Type N spacetimes. As a step towards a
metric form, as these CSIΛ spacetimes admit a non-diverging, shear-free and geodesic
null congruence, their corresponding metrics must be of Kundt form. As in [94], we
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may choose coordinates ζ, ζ̄, u, v such that the metric is of the form:

ds2 = 2dζdζ̄

P 2 − 2du[dv + Hdu + Wdζ + W̄dζ̄] (7.25)

where P (ζ, ζ̄, u), and H(ζ, ζ̄, u, v) are real-valued functions and W (ζ, ζ̄, u, v) is com-
plex valued. To work with this metric we choose the following complex null coframe:

ma = dζ
P

− Wdu, �a = du, na = dv + [H + P 2WW̄ ]du, (7.26)

expressed in this coframe the metric becomes

2m(am̄b) − 2�(anb).

Only certain coordinate transformations, (31.10)(a), (b), (c) in [22], can be performed
which preserves the Kundt form and corresponding null coframe.

The second part of Theorem (7.1.1) dictates that these spacetimes must be of
Petrov type III or higher, and Plebanksi Petrov type N or higher. Despite limiting
the scope of this paper to the plane-fronted waves, which belong to the class of non-
expanding pure radiation solutions [33] - Petrov type N and Plebanski-Petrov type
O, we will derive the metric form for all CSIΛ metrics inevitably. In these coordinates
it is not possible, in general, to simultaneously simplify the forms of the Ricci spinor
components in PP-types N and O by a boost and null and spatial rotations. In
most cases it is possible to specialize the solution form using an appropriate choice
of coordinates, further limiting the range of allowed coordinate transformations.

7.2.1 Plebanski-Petrov Type N, Φ12 �= 0 and Φ22 �= 0

• Petrov type III:

By requiring that the appropriate curvature scalars to vanish so that the space-
time is of PP-type N, P-type III we produce equations for the functions H, W

and P . In these coordinates Φ00 and Ψ0 vanish automatically. The scalars Ψ1

and Φ01 are equal and so requiring one to vanish, eliminates the other, and
forces the requirement that W must be linear in v

Φ01 = Ψ1 = 1
4PW,vv = 0. (7.27)
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The equations arising from Φ11 = 0 and Φ02 = 0 simplify to be

−1
2P,ζ̄P,ζ + 1

2P,ζ̄ζP + 1
8P 2W,vW̄,v + 1

4H,vv = 0, (7.28)
1
4P (4P,ζW,v − PW 2

,v + 2PW,vζ) = 0. (7.29)

The vanishing of Ψ2 gives another equation

1
3P,ζ̄P,ζ − 1

3P,ζ̄ζP + 1
3P 2W,ζ̄v − 1

6P 2W̄,vζ + 1
6H,vv = 0. (7.30)

Setting the equation for Λ equal to a constant, say λ/6 in the NP-formalism,
where λ is the cosmological constant (Note: For now we will just call Λ = λ/6)
we find

−P,ζ̄P,ζ

6 + P,ζ̄ζP

6 − P 2W,vW̄,v

8 + P 2W,ζ̄v

12 + P 2W̄,vζ

12 − H,vv

12 = Λ. (7.31)

Adding (7.30) and its conjugate together gives a differential relation between
W and W̄

W,vζ̄ = W̄,vζ (7.32)

Simplifying (7.30) and solving for H,vv,

H,vv = −2P,ζ̄P,ζ + 2P,ζ̄ζP − P 2W̄,vζ , (7.33)

we may substitute the result into (7.28) to find the following differential equation
for W,v and its conjugate

−P,ζ̄P,ζ + P,ζ̄ζP + 1
8P 2W,vW̄,v − 1

4P 2W̄,vζ = 0, (7.34)

this equation along with Φ02 = 0 will give the necessary constraints on W,v. For
now we will only use this to solve for P 2WW̄ and substitute it into (7.31) to
get a simple differential equation for P

−P,ζ̄P,ζ + P,ζ̄ζP = Λ. (7.35)

Using a type (I) transformation we may choose ζ, ζ̄ such that P takes the form
[33],

P (ζ, ζ̄) = 1 + Λζζ̄. (7.36)
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This choice of coordinates restricts the Type (I) transformations to the following
form [50]:

ζ ′ = b̄(u)+a(u)ζ
ā(u)−Λb(u)ζ

where a and b are arbitrary complex valued functions of retarded time u.

To solve for W , look at the simpler forms of (7.29) and (7.34),

2(P 2W,v),ζ = P 2W 2
,v, (7.37)

2P 2W̄,vζ = 8Λ + P 2W,vW̄,v (7.38)

From (7.37) we may integrate for the function 1/P 2W,v,

1
P 2W,v

= 1
2Λζ̄P

+ 1
ζ̄w(ζ̄,u) (7.39)

where w(ζ̄ , u) is a holomorphic function. To determine further constraints on
w̄(ζ, u) we solve for W,v from above and substitute into (7.38). After much
simplification, w̄ becomes,

w̄(ζ, u) = −2Λ(2P 2w,ζ̄Λζ̄−8P 2Λ2−2P 2Λw−4wP Λ−w2)
(2P w,ζ̄Λζ̄−8P Λ2−4wP Λ−2wΛ−w2 . (7.40)

As the right hand side is both a function of ζ and ζ̄ we take a first order Taylor
series expansion about ζ = 0,

w̄(z, u) − 2Λ +
(

4Λ3ζ̄(ζ̄w,ζ̄−2w−4Λ)
2w,ζ̄Λζ̄−6wΛ−8Λ2−w2

)
ζ + O(ζ2)

then by requiring that the ζ-linear piece is some complex valued function K ′(u)
we may rationalize both sides to find a differential equation for w. After some
simplification this equation takes the form,

(2Λ2ζ̄ + K ′)ζ̄w,ζ̄ − (4Λ2ζ̄ + 3K ′)w − K′w2

2Λ − 8Λ3ζ̄ − 4K ′Λ = 0. (7.41)

We know already that at ζ = 0, w = −2Λ and so setting ζ = 0 in the above
equation we find it is satisfied. Supposing ζ �= 0 or−K ′ we divide the above
equation by (2Λ2ζ̄ + K ′) to get

w,ζ̄ =
(

K′
2Λζ̄(2Λ2ζ̄+K′)

)
w2 +

(
4Λ2ζ̄+3K′)
ζ̄(2Λ2ζ̄+K′)

)
w + 4Λ

ζ̄
.
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This belongs to a special case of the Riccatti equations, 9, with

f(ζ) = K′
2Λζ̄(2Λ2ζ̄+K′) , g(ζ) = 4Λ2ζ̄+3K′)

ζ̄(2Λ2ζ̄+K′ , and a = −2Λ,

following the prescription given in [61], the solution may be written as

w(ζ̄ , u) = −2Λ((−C + 2K ′ζ̄ + Λζ̄2)
−C + K ′ζ̄)

where C is an arbitrary complex valued function of u. Dividing the numberator
by K ′, denoting k′ = 1/K ′ and absorbing the 1/K ′ term into C gives the simpler
form

w(ζ̄ , u) = −2Λ(−C+2ζ̄+k′Λζ̄2)
(−C+ζ̄) .

To determine C we substitute the above into (7.40), after much simplification
we find,

w̄ = −2Λ(−k′ + 2ζ̄ + CΛζ̄2)
(−k + ζ̄)

,

thus C = k̄′, and so w takes the final form

w(ζ̄ , u) = −2Λ(−k̄′+2ζ̄+k′Λζ̄2)
(−k̄′+ζ̄) . (7.42)

To calculate the form W substitute (7.42) into (7.39) and solve algebraically,
W may be written as,

W =
(

2(−k′+2Λζ̄+k̄′Λζ̄2)
P (2+k̄′ζ̄+k′ζ−P )

)
v + W (0)(ζ, ζ̄, u)

Defining the function

Q = 2 + k′ζ + k̄′ζ̄ − P (ζ, ζ̄), (7.43)

we may write W simply,

W = ln (P 2/Q2)),ζ v + W (0). (7.44)

In a similar manner H is found via (7.33):

H(ζ, ζ̄, u, v) =
( −2(Λ+k′k̄′)P 2

(2+k̄′ζ̄+ζk′−P )2

)
v2

2 + H(1)(ζ, ζ̄, u)v + H(0)(ζ, ζ̄, u). (7.45)
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To relate this to the notation in [33] and [50], we have found the form of
q(ζ, ζ̄) in the coordinate system where α(u) = 1 and β(u) = K ′, depending on
the sign of κ′ and Λ it may be possible to set α′ = 0 so that Q′ = K ′ζ̄ + K̄ ′ζ.
The remaining coordinate freedom preserving the form of P (ζ, ζ̄) is now

ζ ′ = f(ζ, u) = b̄(u)+a(u)ζ
ā(u)−Λb(u)ζ

P
′2 = P 2f,ζ f̄,ζ̄ , W ′ = W

f,ζ
− f̄,u

P 2f,ζ f̄,ζ̄
,

H ′ = H − 1
f,ζ f̄,ζ̄

(
f,uf̄,u

P 2 + Wf,uf̄,ζ̄ + W̄f,ζ f̄,u

)
;

v′ = v + g(ζ, ζ̄, u) , (7.46)

W ′(0) = W (0) − g,ζ − gW,v , H ′(1) = H(1) − 2H,vvg ,

H ′(0) = H(0) − H(1)g + H,vvg2 − g,u;

u′ = h(u) , v′ = v/h,u ,

W ′(0) = W (0)

h,u
, H ′(1) = H(1)

h,u
, H ′(0) = H(0)

h2
,u

− h,uu

h,u
.

The non-vanishing Ricci spinor components are:

Φ12 = P

4

⎛⎜⎝
⎛⎝Q2

⎡⎣(P 2W (0)

Q2

)
,ζ̄

−
(

P 2W̄ (0)

Q2

)
,ζ

⎤⎦⎞⎠
,ζ

⎞⎟⎠
−W̄ (0)P 3ln(Q),ζζ + W̄ (0)P (PP,ζ),ζ + W (0)P (PP,ζ̄),ζ

−2PP,ζP,ζ̄W (0) − 2P 2W̄ (0)P,ζln(Q),ζ − P 2

2 QW
(0)
,ζ̄

(P

Q
),ζ

+P 2

2 QW̄
(0)
,ζ (P

Q
),ζ + P

2 H
(1)
,ζ − P

4 W,vu (7.47)

Φ22 = P 2H
(0)
,ζ̄ζ

+ 1
2W,vH

(0)
,ζ̄

+ 1
2W̄,vH

(0)
,ζ

+v
(

P 2H
(1)
,ζ̄ζ

+ 1
2W,vH

(1)
,ζ̄

+ 1
2W̄,vH

(1)
,ζ

)
+v

(
H(1)(H,vv − 2P,ζζ̄) − P 2

2 (W,vζ̄u + W̄,vζu)
)
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The non-vanishing Weyl spinor components are

Ψ3 = P

4

⎛⎜⎝
⎡⎣Q2

⎛⎝(
P 2W (0)

Q2

)
,ζ̄

−
(

P 2W̄ (0)

Q2

)
,ζ

⎞⎠⎤⎦
,ζ̄

⎞⎟⎠
−W̄ (0)P 3ln(Q),ζζ̄ + P

2 H
(1)
,ζ̄

− P

4 W̄,vu

Ψ4 =
P 2(H(0)W̄,v),ζ̄ζ̄

W̄,v

+
6Λζ(H(0)P 2W̄,v),ζ̄

P 2W̄
− 3(P 2),ζ̄ζ̄H(0) (7.48)

+v

(
P 2(H(1)W̄,v),ζ̄ζ̄

W̄,v

+
6Λζ(H(1)P 2W̄,v),ζ̄

P 2W̄
− 3(P 2),ζ̄ζ̄H(1)

)

−v
(1

2H(1)W̄ 2
,vP 2 + (P 2W̄ ),vuζ̄

)
It will be worthwhile to know when it is possible to set W (0) to zero when we
specialize to the Petrov type N , Plebanski-Petrov type O.

Lemma 7.2.1. The metric function W (0) may be set to zero if and only if
W ′(0)

,ζ̄
= W̄ ′(0)

,ζ .

Proof. Using a type (II) transformation, v′ = v + g(ζ, ζ̄, u) such that

(P 2

Q2 g),ζ = P 2W (0)

Q2 , (P 2

Q2 g),ζ̄ = P 2W̄ (0)

Q2

Simplifying this gives

(P 2

Q2 g),ζ = P 2

Q2 W (0), (P 2

Q2 g),ζ̄ = P 2

Q2 W̄ (0)

The integrability conditions hold for g(z, bz, u) if and only if

W
(0)
,ζ̄

= W̄
(0)
,ζ

which was to be shown.

• Petrov type N and O: In light of the differing form of Φ12 and Ψ3 when W (0) �= 0,
we expect that there will be spacetimes of PP-type N and P-Type N or higher.
In this case we neglect extensive analysis and focus on the simpler case where
W

(0)
,ζ̄

= W
(0)
,ζ , as our interest lie in the plane-fronted waves and these may be

seen as precursors to these solutions. we may set W (0) = 0 and so Ψ3 = Φ12,

Corollary 7.2.2. For the metric with functions W and H written in terms of
P and Q [ (7.36), (7.43), (7.44) and (7.45)], if W

(0)
,ζ̄

= W̄
(0)
,ζ , those spacetimes

of Petrov Type N will be of Plebanski-Petrov type O or higher.
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7.2.2 Plebanski-Petrov Type O, Φ12 = 0 and Φ22 �= 0

• Petrov type III:

In general W (0) will be non-zero, and so the equation Φ12 = 0, (7.47), does
not readily give informtion about these spaces. Instead we state a simple result
about the pre-plane-fronted waves, where coordinates may be found in which
W (0) = 0

Corollary 7.2.3. For the metric with functions W and H written in terms of
P and Q [ (7.36), (7.43), (7.44) and (7.45)], and W (0) = 0 all spacetimes with
Plebanksi-Petrov Type O will be of Petrov type N or higher.

• Petrov type N : By calculating Φ12 − Ψ̄3 = 0, we produce a very complicated
expression which may be simplified to find the expression:⎡⎣(q3

p

)⎛⎝(
P 2W (0)

Q2

)
,ζ̄

−
(

P 2W̄ (0)

Q2

)
,ζ

⎞⎠⎤⎦
,ζ̄

= 0

Denoting ω′ =
(

q3

p

) ((
P 2W (0)

Q2

)
,ζ̄

−
(

P 2W̄ (0)

Q2

)
,ζ

)
, it is subject to a transformation

law under the Type (I) transformations. In these coordinates, the transforma-
tion law is rather complicated, we defer to the proof in [33]

Corollary 7.2.4. In Kundt coordinates, the metric function W (0) may be set to
zero for any Petrov type N, Plebanski-Petrov type O spacetime with the CSIΛ

property.

Proof. Consider the coframe,

e1 = dζ′
P

, 22 = dζ̄′
P

, e3 = du′, e4 = q2

p2 dv′ + Z̄dζ + Zdζ̄ − Fdu. (7.49)

with metric functions

P = 1 + Λζ ′ζ̄ ′, Q = (1 − Λζ ′ζ̄ ′)α(u′) + β̄(u′)ζ̄ ′ + β(u′)ζ ′

Z(, ζ, ζ̄, u), Z̄,ζ̄ = Z,ζ

F = 1
2κQ2

P 2 v2 − (Q2),u

P 2 v − Q
P

H, κ = 2(Λα + ββ̄)
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with the additional assumption that α = 1 and β = k′(u). This may always be
done using the coordinate transformation given in [50], in this coordinate system
q = Q. To transform the metric to Kundt form, keep ζ ′ = ζ, ζ̄ ′ = ζ̄ , u′ = u and

v′ = P 2

Q2 v.

In these new coordinates, examining e4 and noting ln(Q−2),u = Q2

P 2 (P 2

Q2 ),u, we
find the transformation law for the metric components

W (1) = Q2

P 2 (P 2

Q2 ),ζ , H(2) = −κP 2

Q2 ,

W (0) = Q2

P 2 Z̄ , H(1) = ι + ln(Q−2),u. (7.50)

With the various components in [33] identitied, ω′ is easily expressed and the
transformation law given by equation (4.26) in this paper. From this it is clear
for any choice of ω′(u), α(u) and β(u) one may set ω′ = 0. Transforming back
to the Kundt coordinates this implies,

(
P 2W (0)

Q2

)
,ζ̄

−
(

P 2W̄ (0)

Q2

)
,ζ

= 0,

as P and Q are real-valued, this implies W
(0)
,ζ̄

= W̄
(0)
,ζ and so we may apply

lemma (7.2.1), thus W (0) may be set to zero by the coordinate transformation.

In these coordinates, the metric functions are now

W =
(

2(−k+2Λζ̄+k̄Λζ̄2)
P (2+k̄ζ̄+ζk−P )

)
v, (7.51)

H(ζ, ζ̄, u, v) =
( −2(Λ+kk̄)P 2

(2+k̄ζ̄+ζk−P )2

)
v2

2 + H(1)(ζ, ζ̄, u)v + H(0)(ζ, ζ̄, u) (7.52)

With these simplifications the remaining coordinate freedom is restricted to
type (III). The non-vanishing Ricci spinor components are:

Φ12 = H
(1)
,ζ − 1

2W,vu (7.53)

Φ22 = P 2H
(0)
,ζ̄ζ

+ 1
2W,vH

(0)
,ζ̄

+ 1
2W̄,vH

(0)
,ζ (7.54)

+v
(

P 2H
(1)
,ζ̄ζ

+ 1
2W,vH

(1)
,ζ̄

+ 1
2W̄,vH

(1)
,ζ

)
+v

(
H(1)(H,vv − 2P,ζζ̄) − P 2

2 (W,vζ̄u + W̄,vζu)
)
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The non-vanishing Weyl spinor components are

Ψ3 = H
(1)
,ζ̄

− 1
2W̄,vu (7.55)

Ψ4 =
P 2(H(0)W̄,v),ζ̄ζ̄

W̄,v

+
6Λζ(H(0)P 2W̄,v),ζ̄

P 2W̄
− 3(P 2),ζ̄ζ̄H(0) (7.56)

+v

(
P 2(H(1)W̄,v),ζ̄ζ̄

W̄,v

+
6Λζ(H(1)P 2W̄,v),ζ̄

P 2W̄
− 3(P 2),ζ̄ζ̄H(1)

)

−v
(1

2H(1)W̄ 2
,vP 2 + (P 2W̄ ),vuζ̄

)
To integrate the equation arising from Φ21 = Ψ3 = 0, take (7.53) and use

(7.51) to rewrite the lefthand side

H
(1)
,ζ = 1

2 ln

(
P 2

Q2

)
,ζu

integrating with respect to z and expanding the left hand side yields

H(1) = −k,u(ζ + ζ̄)
1 + k(ζ + ζ̄) − Λζζ̄

+ h1(u).

where h1 is an arbitrary function of retarded time u. This may be removed by
making a type (III) transformation, exhausting the coordinate freedom given
in (7.46),

H(1) = −k,u(ζ + ζ̄)
1 + k(ζ + ζ̄) − Λζζ̄

.. (7.57)

Notice that in the P-Type N and PP-Type O case in the O.R.R. coordinates
[33], Z = 0 and ι = ln(Q),u = −1

2 ln(Q−2),u, H(1) becomes

H(1) = 1
2 ln(Q−2),u

which agrees with (7.53) and (7.55). The remaining curvature scalars are

Φ22 = P 2H
(0)
,ζ̄ζ

+ 1
2W,vH

(0)
,ζ̄

+ 1
2W̄,vH

(0)
,ζ (7.58)

Ψ4 =
P 2(H(0)W̄,v),ζ̄ζ̄

W̄,v

+
6Λζ(H(0)P 2W̄,v),ζ̄

P 2W̄
− 3(P 2),ζ̄ζ̄H(0) (7.59)

• Petrov type O:

Due to the choice of H(1), those terms linear in v in Ψ4 vanish. To analyze the
case when Ψ4 = 0 we consider a gauge transformation −ef(ζ,ζ̄,u)H ′(0) = H(0)
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and solve the first order differential equation arising from the vanishing of the
coefficient of H

(0)
,ζ .

f(ζ, ζ̄, u) = −2ln(P ) + ln(2 + kζ + k̄ζ̄ − P ).

Thus H(0) = QH′(0)

P 2 where H ′(0) satisfies Ψ4 = 0:

−H ′(0)
,ζ̄ζ̄

Q = 0, (7.60)

Implying that this function is linear in ζ and ζ̄:

H ′(0) = A(u)ζζ̄ + B(u)ζ + B̄(u)ζ̄ + C(u). (7.61)

The remaining curvature scalar Φ22 is

Φ22 =
−W (H ′(0)

,ζ̄ζ
P − P,ζ̄H ′(0)

,ζ − P,ζH ′(0)
,ζ̄

+ H ′(0)P,ζ̄ζ)
P

, (7.62)

or simpler yet

Φ22 = (ΛC + A)Q
P

. (7.63)

7.2.3 Vacuum Solutions

For those CSIΛ spacetimes where W (0) cannot be set to zero there will be non-trivial
solutions to the equations Φ12 = Φ22 = 0 of Petrov type III. As these spaces are
not of interest in the present work we neglect them. In the case that W (0) vanishes
in a particular coordinate system, these are automatically of type Petrov type N . In
the next section we will examine the vacuum solution as a particular subcase of the
Plebanski-Petrov type O.

7.3 Plane-fronted Waves in Vacuum or Admitting Either a Null

Einstein-Maxwell or Pure Radiation Field.

In terms of the Ricci spinor, these are expressed as Φ12 = 0 and either Φ22 = 0, Φ22 =
ff̄p

q
, or, Φ22 = P 2Φ(ζ, ζ̄, u). These spacetimes will be of P-type N or higher and so

the function H(1) is given by (7.57).
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• Petrov type N :

If Ψ4 does not vanish, we make another gauge transformation to simplify the
equation Φ22 = 0. From our original H (7.52), we assume −ef ′(ζ,ζ̄,u)H ′(0) = H(0)

and solve the first order differential equation arising from the coefficients of H
(0)
,ζ

being set to zero to find,

f ′(ζ, ζ̄, u) = −ln(P ) + ln(−2 − kζ − k̄ζ̄ + P ).

Thus H(0) = QH′(0)

P
where H ′(0) satisfies the following constraint,

H ′(0)
,ζ̄ζ

+ 2H ′(0)

P 2 = 0. (7.64)

Alternatively in the case of a null Einstein Maxwell field or pure radiation, the
same gauge transformation gives a non-homogenous version of (7.64)

H ′(0)
,ζ̄ζ

+ 2H′(0)

P 2 = ff̄p/q (7.65)

H ′(0)
,ζ̄ζ

+ 2H′(0)

P 2 = P 2Φ(ζ, ζ̄, u). (7.66)

To solve the vacuum case, we substitute our conjugate coordinates for po-
lar coordinates r, θ, assume H ′(0) is seperable, and takes the form, H ′(0) =
R(r)[en

2 iθ + e− n
2 iθ]. Simplifying the above equation yields a remaining equation

for R

r2R,rr + rR,r + R(8Λr2

P 2 − n2) = 0

using Maple we find the general solution,

R(r) = C1(
2
P

+ n − 1)rn + C2(
2
P

− n − 1)r−n

where C1 and C2 are real-valued functions of u. Substituting this into the form
of H ′(0)

H ′(0) = C1[
2ζn

P
− ζn + ζ(ζn),ζ + 2ζ̄n

P
− ζ̄n + ζ̄(ζ̄n),ζ̄ ]

+C2[
2ζ−n

P
− ζ−n + ζ(ζ−n),ζ + 2ζ̄−n

P
− ζ̄−n + ζ̄(ζ̄−n),ζ̄

Due to the linear nature of the above differential equation we may multiply a
solution by any complex constant and add arbitrary many solutions together.
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Thus for any analytic function, Φ(ζ, u) =
∑

n

anζn the combination,

H ′(0) = 2Φ
P

− Φ + ζΦ,ζ + 2Φ̄
P

− Φ̄ + ζ̄Φ̄,ζ̄

is a valid solution of (7.64). To match the expression in [33], let Φ = φ
ζ
, H ′(0)

becomes

H ′(0) = φ,ζ − 2Λζ̄φ

P
+ φ̄,ζ̄ − 2Λζφ̄

P
(7.67)

In the case of a null Einstein-Maxwell field, the solutions given in [33] is
the best approach. When k �= 0 the general solution may be found by taking a
function μ(ζ, ζ̄), and supposing the combination H ′(0) = μ,ζ − 2Λζ̄μ

P
satisfies

H ′(0)
,ζζ̄

+ 2ΛH ′(0)

P 2 = 1
2ff̄

P

Q
.

Integrating we find

μ = 1
2

∫ ζ̄

p2
∫ ζ

p−2
∫ ζ′ ff̄p

q
dζ ′′dζ ′dζ̄,

where ζ and ζ̄ are treated as independent complex variables involved in the
contour integrals, and the relationship between the two are incorporated into
the final formula for H ′(0) The end result is given as equation (7.7) in [33].

When k(u) may be set to zero, f is a polynomial function of ζ and ζ−1 with
coefficients dependent on u, [33] provides an alternative approach by choosing a
new variable t = Λζζ̄. Exploiting the linearity of the above differential equation
one may simplify the problem to a particular solution of equation (7.66) with the
right-hand side equal to (p/q)ζ̄nζn+k, n, k ∈ Z. The substitution of H = ζkY (t)

Λn+1

into (7.66) gives a second order differential equation for Y :

tY ′′ + (k + 1)Y ′ + 2Y

(1 + t)2 = 1 + t

1 − t
tn.

Given two independent solutions of the homogeneous problem, a solution to
the above equation may be found using the method of variations. The authors
of [33] graciously provide the two independent solutions to the homogeneous
equation in the Appendix, and explore the simplest cases where f = ζn, n ∈ Z
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• Petrov type O:

If Ψ4 = 0 we may make a gauge transformation as in the PP-type O, P-type O

case so that H(0) takes the form (7.61). In these coordinates, the simpler form
of (7.63) implies that A = ΛC in a vacuum and hence

H ′(0) = (1 − Λζζ̄)C + B̄ζ̄ + Bζ. (7.68)

Imposing the conditions of a null Einstein-Maxwell field, (7.63) implies
(ΛC + A)Q

P
= ff̄

P

Q
. (7.69)

Then solving for ff̄ = (ΛC + A)Q2

P 2 and noting that that log(ff̄) is harmonic
we find a contradition as ln(Q2

P 2 ) is not harmonic for any choice of k.

7.4 Canonical Forms of the Type N CSIΛ Metrics

From [33] and [50] we know that all P-Type N and PP-Type O spacetimes may be
classified by Λ and the sign of the sole component of the second Lie derivative of
the metric with respect to �, L′. It will be helpful to transform these metric into
our preferred coordinate system so the metric is of Kundt form. The aim of such
a coordinate transform will be to relate these spacetimes to the paper [94], where a
general metric form for the CSI spacetimes has been introduced and organized by
sign of the curvature of the transverse space and the Ricci tensor’s Segre type[71].
Case I, Λ > 0, L′ > 0 : Metrics in this class are equivalent to the ORR metric with
α = 0, β = 1 and hence in Kundt form, the coframe member na becomes

n = dv + v

⎛⎝ln

(
(1 + Λζζ̄)2

(ζ + ζ̄)2

)
,ζ

⎞⎠ dζ + v

⎛⎝ln

(
(1 + Λζζ̄)2

(ζ + ζ̄)2

)
,ζ̄

⎞⎠ dζ̄

+
(−(1 + Λζζ̄)2

(ζ + ζ̄)2 v2 + H(0)
)

du.

Opting for the dimensionless complex coordinate ζ ′ =
√

2Λζ, choosing

ζ ′ =
√

2tan(x

2 )eiy

yields a metric with the tranverse space is the usual form for the two dimensional
sphere,

ds2 = dx + sin2(x)dy

2Λ (7.70)
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the covector n transforms to become,

n = dv − 2cot(x)vdx + 2tan(y)vdy +
((

− tan2( x
2 )

4cos2(y)sin4( x
2 )

)
v2 + H(0)

)
du

These correspond to the Type N CSI spacetimes with Segre type {(1, 111)} or
{(2, 11)} for which the transverse space has the geometry of a sphere S2, and a
one-form W(1) of type 2 [94].
Case II, Λ < 0, L′ > 0 : Metrics in this class are equivalent to the ORR metric with
α = 0, β = 1 and hence in Kundt form, the coframe member na becomes

n = dv + v

⎛⎝ln

(
(1 + Λζζ̄)2

(ζ + ζ̄)2

)
,ζ

⎞⎠ dζ + v

⎛⎝ln

(
(1 + Λζζ̄)2

(ζ + ζ̄)2

)
,ζ̄

⎞⎠ dζ̄

+
((−(1 + Λζζ̄)2

(ζ + ζ̄)2

)
v2 + H(0)

)
du

Opting for the dimensionless complex coordinate ζ ′ =
√

2Λζ, choosing

ζ ′ =
√

2tanh(x

2 )eiy

yields a metric with the tranverse space is the usual form,
ds2 = dx + sinh2(x)dy

2Λ (7.71)

the covector n transforms to become,

n = dv − 2coth(x)vdx + 2tan(y)vdy +
((

− sec4( x
2 )

4cos2(y)tanh2( x
2 )

)
v2 + H(0)

)
du

These correspond to the Type N CSI spacetimes with Segre type {(1, 111)} or
{(2, 11)} for which the transverse space has the geometry of the hyperbolic plane H2,
and a one-form W(1) of a type not listed in the literature [94]. By calculating the
coefficient of the v2 term in Kundt coordinates [94], we expect these to belong to the
class where the one-form W(1) is of type (5), as these have σ̃ > 0 for all values of x

and y relative to the coordinates in which the metric takes the form

dx2 + cosh(x)2dy2.

Case III, Λ < 0, L′ < 0 : Metrics in this class are equivalent to the ORR metric
with α = 1, β = 0 and hence in Kundt form, the coframe member na becomes

n = dv + v

⎛⎝ln

(
(1 + Λζζ̄)2

(1 − Λζζ̄)2

)
,ζ

⎞⎠ dζ + v

⎛⎝ln

(
(1 + Λζζ̄)2

(1 − Λζζ̄)2

)
,ζ̄

⎞⎠ dζ̄

+
((−Λ(1 + Λζζ̄)2

(1 − Λζζ̄)2

)
v2 + H(0)

)
du
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Opting for the dimensionless complex coordinate ζ ′ =
√

2Λζ, choosing

ζ ′ =
√

2tanh(x

2 )eiy

yields a metric with the tranverse space is the usual form,

ds2 = dx + sinh2(x)dy

2Λ (7.72)

the covector n transforms to become,

n = dv − 2vtanh(x)dx +
((

− sec4( x
2 )

(1+tanh2( x
2 ))2

)
v2 + H(0)

)
du

These correspond to the Type N CSI spacetimes with Segre type {(1, 111)} or
{(2, 11)} for which the transverse space has the geometry of the hyperbolic plane
H2, and a one-form W(1) of type 3 [94].
Case IV0, Λ < 0, L′ = 0 : Metrics in this class are equivalent to the ORR metric with
α = 0, β = λ =

√−Λ and hence in Kundt form, the coframe member na becomes

n = dv + v
(

ln
(

(1+Λζζ̄)2

((1+λζ)(1+λζ̄))2

)
,ζ

)
dζ + v

(
ln

(
(1+Λζζ̄)2

((1+λζ)(1+λζ̄))2

)
,ζ̄

)
dζ̄ + H(0)du

Opting for the dimensionless complex coordinate ζ ′ =
√

2Λζ, choosing

ζ ′ =
√

2tanh(x

2 )eiy

yields a metric with the tranverse space is the usual form,

ds2 = dx + sinh2(x)dy

2Λ (7.73)

the covector n transforms to become,

n = dv − 2v
(

cosh(x)cos(y)+sinh(x)
sinh(x)cos(y)+cosh(x)

)
dx + 2v

(
sin(y)sinh(x)

sinh(x)cos(y)+cosh(x)

)
dy + H(0)du

These correspond to the Type N CSI spacetimes with Segre type {(1, 111)} or
{(2, 11)} for which the transverse space has the geometry of the hyperbolic plane H2,
and a one-form W(1) not listed in [94]. However, by calculating the coefficient of v2,
we expect these to correspond to the first type with ε = 0 and tranverse metric

dx2 + e2xdy2
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Case IV1, Λ < 0, L′ = 0 : Metrics in this class are equivalent to the ORR metric
with α = 0, β = λeiW (u), where λ =

√−Λ and hence in Kundt form, the coframe
member na becomes

v(ln( (1+Λζζ̄)2

((1+λζeiW (u))(1+λζ̄e−iW (u)))2 ),ζ)dζ + v(ln( (1+Λζζ̄)2

((1+λζeiW (u))(1+λζ̄e−iλu))2 ),ζ̄)dζ̄

+(vln( (1+Λζζ̄)2

((1+λζeiW (u))(1+λζ̄e−iW (u)))2 ),u + H(0))du

Opting for the dimensionless complex coordinate ζ ′ =
√

2Λζ, choosing

ζ ′ =
√

2tanh(x

2 )eiy

yields a metric with the tranverse space is the usual form,

ds2 = dx + sinh2(x)dy

2Λ (7.74)

the covector n transforms to become,

n = dv − 2v

(
cosh(x)cos(y − W (u)) + sinh(x)
sinh(x)cos(y − W (u)) + cosh(x)

)
dx

+2v

(
sin(y − W (u))sinh(x)

sinh(x)cos(yW (u)) + cosh(x)

)
dy

+
⎛⎝⎛⎝v

2
√

|Λ|W,utanh(x
2 )sin(y − W )

1 + 2|Λ|tanh2(x
2 ) + 2

√
|Λ|tanh(x

2 )cos(y − W (u))

⎞⎠ + H(0)

⎞⎠ du.

These correspond to the Type N CSI spacetimes with Segre type {(1, 111)} or
{(2, 11)} for which the transverse space has the geometry of the hyperbolic plane H2,
and a one-form W(1) not listed in [94]. However, by calculating the coefficient of v2,
we expect these to correspond to the first type with ε = 0 and tranverse metric

dx2 + e2xdy2

Notice that by translating the y coordinate all u dependence in W(1) may be elimi-
nated, recovering the form given in case IV0.



Chapter 8

The Karlhede Classification of the Vacuum

PP-waves

This chapter is based on: R. Milson, D. McNutt, A. Coley (2013). Invariant classi-
fication of vacuum PP-waves. . JMP Vol 54, Issue 2, pp 022502-022531. Copyright
2013, AIP Publishing LLC.

8.1 Introduction

In this paper we provide an invariant approach to characterizing the vacuum PP-
wave spacetimes, which may be summarized in a flow chart broken into three figures:
(8.1), (8.2) and (8.3). In these flowcharts, each end-node is a subclass of the PP-
wave spacetimes, with labels corresponding to those in the first column of the tables
(8.2) - (8.4). For each subclass these tables give a canonical form for f(ζ, u), the
independent invariants at each order, and the corresponding numbered lemma listing
the essential functionally dependent invariants used in sub-classification. Following
the work of Collins [36]; where an analysis of the Karlhede algorithm for Type N

vacuum spacetimes, a coframe is chosen with Ψ4 = 1 and for which the Cartan
invariants are expressed in terms of spin-coefficients. By examining the invariants
at each order we may express all possible sub-cases for the Karlhede algorithm and
determine when all isotropy may be eliminated. In this manner upper-bounds for all
vacuum Type N metrics were given, in particular the upper-bound for the PP-wave
spacetimes was q = 4. By choosing coordinates and analyzing the cases where q = 4
we produce four classes of metrics, proving the upper-bound is sharp. The following
theorem summarizes the work done in section (8.3):

Theorem 8.1.1. The metrics with f(ζ, u) taking either of the following canoncial
forms,

• Clogζ+keiZ(u)ζ
u2 , C, k ∈ R, and Z(u) is real valued,

123
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• (kζ)2ik0 + k1e
iZ(u)(1−2ik0)ζ, k, k0, k1 ∈ R and Z(u) is real valued,

• f(ζ, u) = ek0ζ + eik1eZ(u)ζ, k0, k1 ∈ R and Z(u) is real valued,

• f(ζ, u) = −eik0ln(ζ) + k1e
iZ(u)ζ, k0, k1 ∈ R and Z(u) is real valued,

require the fourth order covariant derivatives of the Weyl tensor to be fully classified
by the Karlhede algorithm. (8.2).

We also explore all of the G2 subcases arising as degenerate subcases of the Karl-
hede algorithm. These are all specific subcases of the G2 I, II and III cases arising
from the classification of symmetry groups having the same symmetry group but dis-
tinct geometric structure [11]. The following theorem and flowcharts summarize our
work.

Theorem 8.1.2. For those PP-wave spacetime admitting a two-dimensional isometry
group, the second Killing vector field V annihilates the invariant coframe and all
Cartan invariants. If dα∧dᾱ �= 0 the spacetime belongs to G2- I,II or III depending
on the form of the invariants, δ̄α and μ expressed in terms of α, ᾱ and μ:

G2 − I : δ̄α = α2;

G2 − II : δ̄α �= α2, Re(μα−2δ̄α − μ̄) = CIm(μδ̄α − μ̄);

G2 − III : δ̄α �= α2, Re(μα−2δ̄α − μ̄) = 0;

G2 − IIIk=0 : δ̄α �= α2, Re(μα−2δ̄α − μ̄) = 0, Δ(ν) = 0.

If dα ∧ dᾱ = 0, the spacetime belongs to one of the special subclasses given in table
(8.3). Further conditions for determining which subclass is given in the following
decision tree.

8.2 The Vacuum PP-wave Spacetimes

Following the work of [36] we choose the normalized dyad {oA, ιA} satisfying, oAιA = 1
and define the generic symbols ζA

a for the dyad:

ζA
0 = oA, ζA

1 = ιA, ζ̄A′
0′ = ōA′

, ζ̄A′
1′ = ῑA′

.
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Figure 8.1: The decision-tree for PP-wave spacetimes. Here ω = μ, ν or δ̄α. Two
branches have been cut off and written explicitely in Figures (8.2) and (8.3)

Figure 8.2: A branch of the decision tree in Figure (8.1)

Using the Newman-Penrose formalism [29], the type N vacuum spacetimes have Φij =
0 for all i, j ∈ [0, 2] and Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0 and Ψ4 = 1. Applying a boost and
a spatial rotation we may always set Φ4 = 1. The non-trivial Bianchi identities yield:

κ = σ = 0, ρ = 4ε, τ = 4β. (8.1)

The first covariant derivative is then defined by:

(DΨ)μf ′ = ΨABCD;EF ′ζA
a ζB

b ζC
c ζD

d ζE
e ζ̄F ′

f ′

where μ of the unprimed dyad vectors are ζA
1 ’s. The non-vanishing components are:

(DΨ)40′ = ρ, (DΨ)50′ = 4α, (DΨ)41′ = τ, (DΨ)51′ = 4γ.
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Figure 8.3: A branch of the decision tree in Figure (8.1)

Where (8.1) was used to express the spin coefficients in terms of α, γ, ρ and τ . Cal-
culating the second covariant derivative of the Weyl tensor, denoted as

(D2Ψ)μf ′;gh′ (μ = 0, 1, 2, 3, 4, 5; a, b, c = 0, 1).

In [36], it may be shown that the non-vanishing components will be for i = 3, 4, 5:

(D2Ψ)i0′;00′ , (D2Ψ)i0′;01′ , (D2Ψ)i0′;10′ , (D2Ψ)i0′;11′ ,

(D2Ψ)i1′;00′ , (D2Ψ)i1′;01′ , (D2Ψ)i1′;10′ , (D2Ψ)i1′;11′ .

Imposing the conditions for a pp-wave spacetime the spin-coefficients κ, σ, τ and
ρ vanish by definition. Applying the Bianchi identities (8.1) we see that ε and β

are zero as well. The remaining first order derivatives of the Weyl Tensor, Ψ for the
vacuum Type N spacetimes are

(DΨ)50′ = 4α, (DΨ)51′ = 4γ.

There are two cases to consider at this point, depending on whether or not α vanishes.
If α �= 0, we may use a null rotation about oA, to set γ = 0

α′ = α, γ′ = γ + Bα.
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• Vacuum PP-Wave spacetimes with α �= 0: The first order covariant derivative
of Ψ has only one component, as γ = 0,

(DΨ)50′ = 4α.

The NP field equations require that π = λ = 0, and so the non-trivial NP-
eqations become:

Dα = 0, δα = αᾱ, Δα = −μ̄α,

Dμ = 0, δ̄μ = −αμ, (8.2)

Dν = 0, δ̄ν = −3αν + 1, Δμ − δν = −μ2 + ᾱν.

The non-vanishing components of the second order derivative of Ψ from the
general case are simply,

(D2Ψ)50′;00′ = 4Dα, (D2Ψ)50′;01′ = 4δα − 4ᾱα,

(D2Ψ)50′;10′ = 4δ̄α + 20α2, (D2Ψ)50′;11′ = 4Δα,

(D2Ψ)51′;10′ = −4μ̄α, (D2Ψ)51′;11′ = −4ν̄α, (D2Ψ)41′;11′ = −ν̄α.

Further information may be obtained by using the NP field equations in con-
junction with the commutator identities if necessary.

• Vacuum PP-Wave spacetimes with α = 0: The non-zero component of the first
covariant derivative of the Weyl tensor Ψ is

(DΨ)51′ = 4γ.

The relevant Newman-Penrose equations for γ are

Dγ = 0, δγ = 0, δ̄γ = 0, (8.3)

and the second order covariant derivative of Ψ has only one non-zero component

(D2Ψ)51′;11′ = 4Δγ + 20γ2 + 4γ̄γ.

These metrics will in general have q = 2 due to the simple form of the sole
Cartan invariant γ as a single variable function of one coordinate.
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8.3 Vacuum PP-Wave Spacetimes - Degenerate Subcases of the

Karlhede Algorithm with q=4.

We are interested in the degenerate cases of the Karlhede algorithm, in particular
the case where the algorithm needs to calculate the fourth covariant derivative of the
Weyl tensor. From the previous section, we know that α �= 0 allows for γ to be set
to zero, and that the isotropy group has dimension 0. Thus the q = 4 bound can
only be reached if and only if, one functionally independent invariant appears at each
iteration. At first order the only invariants are α and its conjugate.

To construct a solution where only one new real-valued invariant appears at each
order, i.e., (0, 1, 2, 3, 3), ᾱ must be functionally dependent on α and so the wedge
product of their differentials vanishes. This yields three equations, one of which is
the complex conjugate of the other:

δαδ̄ᾱ − δ̄αδᾱ = 0, δαΔᾱ − δᾱΔα = 0, δ̄αΔᾱ − δ̄ᾱΔα = 0. (8.4)

There are two cases to consider, depending on whether or not Δᾱ is non-zero. For
the moment let us assume that it is non-zero, implying that μ �= 0 via the NP field
equations. Solving for δ̄α from (8.4)-B we find

δ̄α = μ̄

μ
α2. (8.5)

Looking at this relation and the NP field equations, we see that all frame derivatives
of α may be written as functions of α, ν and μ, and so we need only inspect ν, μ and
their conjugates. Applying the commutators to these three invariants yield further
relations:

δμ = −ᾱμ, Δμ
μ

= Δμ̄
μ̄

.

Now let us consider the case where Δᾱ = 0, the NP field equations become

δ̄ν = −3αν + 1, δν = −ᾱν, δα = αᾱ, Dα = 0, Dν = 0. (8.6)

The only equation from (8.4) is

δαδ̄ᾱ − δ̄αδᾱ = 0,

and the non-vanishing commutator relations yield

Δδ̄α = 0, δδ̄α = −2ᾱδα, δΔν = −2ᾱΔν, δ̄Δν = −4αΔν.
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8.3.1 Coordinate forms of the Cartan Invariants

To analyze the equations given by (8.4), we choose a different set of coordinates than
the usual (ζ, ζ̄, u, v) coordinates to derive the spin-coefficients, using the second ζ

derivative of f(ζ, u) instead:

a(ζ, u) = 1
4 ln(f,ζζ). (8.7)

We use a(ζ, u) and its conjugate as spatial coordinates, letting ζ = ζ(a, u) the arbi-
trary analytic function f becomes f ′(a, u) = f(ζ, u). The relation a = 1

4 ln(f,ζζ) gives
an important equation for f ′

,aa in these coordinates,(
f ′

,a

ζ,a

)
,a

= ζ,ae4a. (8.8)

The first order invariant α changes to

α = ea−ā

ζ̄,ā

(8.9)

and the dual of the coframe with Ψ4 = 1 becomes:

δ = ᾱ
(

∂
∂a

− ζ̄,uζ,a
∂
∂v

)
, D = ea+ā ∂

∂v
, Δ = e−a−ā

(
∂

∂u
− (Re(f ′) − ζ,uζ̄,u) ∂

∂v

)
.

In both subcases, it is possible that ζ,aa = 0. If this happens the second equation in
(8.4) vanishes; in the Δα �= 0 case the solution to ζ,a has the linear case as a special
subcase, while in Δα = 0 it must be explicitely considered.

Lemma 8.3.1. For those spacetimes with dα ∧ dᾱ = 0, the function ζ,a has two
possible forms. Supposing Δα �= 0,

ζ,a = (eiC2eR(u))eiC1 e−(e2iC1 +1)a, C1, C2 ∈ R. (8.10)

While if Δα = 0,

ζ,a = c4e
−2εa

1−i2C3 , C3, C4 ∈ R, ε = 0, 1. (8.11)

Proof. Assuming for a moment that Δα and ζ,aa �= 0, the equations (8.4) yields the
following separable equations

ζ̄,ā

ζ̄,uā
+ ζ,a

ζ,ua
+ ζ,aa

ζ,ua
= 0, ζ̄,ā

ζ̄,āā
+ ζ,a

ζ,aa
+ 1 = 0. (8.12)
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The first implies

ζ,a

ζ,ua

= −k1(u), ζ,a

ζ,ua

+ ζ,aa

ζ,ua

= k1(u),

combining these equations we have

ln(ζ,a),a = − k1

k1
− 1.

It is easily shown that (8.12)-B is automatically satisfied in this case. To summarize,
the function ζ(a, u) satisfies

ζ,a = k2(u)e
−
(

k1
k1

+1
)

a

, ln(ζ,a),u = − 1
k1

. (8.13)

We may write k1 = r(u)eiθ(u) and so

ln(ζ,a),u = −a(eiθ + 1),u + ln(k2),u = − 1
k1

.

If this holds, θ,u = 0 and ln(k′
2),u = − 1

k1
. Rewriting k1 = r(u)eiC1 , C1 ∈ R, the

second equation from (8.13) yields

ln(k2) = −
∫ eiC1

r
du + c2, c2 ∈ C.

As k2 is arbitrary, let us suppose k2 = (k′
2)eiC1 , then we may divide through by eiC1

and absorb the real part of the constant of integration by calling R(u) =
∫ 1

r
du + C ′

to write

k2 = (eiC2eR(u))eiC1

with this piece known we may write down the derivative of ζ,

ζ,a = (eiC2eR(u))eiC1 e−(e2iC1 +1)a, C1, C2 ∈ R.

We note when C1 = π/2, 3π/2 mod 2π causes ζ(a, u) to be linear in a. Now to
consider the form of ζ(a, u) when Δα = 0. In the linear case, ζ,aa = 0, the wedge
product of dα with its conjugate automatically vanishes, and so ζ,a = c4. Next we
assume ζ,aa �= 0, in this case we only get (8.12)-B, as this is separable we find two
constraints,

ζ,aa

ζ,a

= 1
c3

, c3 + c̄3 = −1.
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The second constraint implies c3 = −1
2 + iC3 and so integrating we find

ζ,a = c4e
−2a

1−i2C3 , C3 ∈ R, c4 ∈ C.

Introducing ε = 0, 1 we may write a general form for ζ(a, u) to differentiate between
the linear and exponential case,

ζ,a = c4e
−2εa

1−i2C3 , C3 ∈ R, c4 ∈ C, ε = 0, 1.

In the Δα = 0 case, the second order invariant δ̄α cannot be expressed using the
NP field equations or the commutators. However the above lemma yields a simple
expression for this invariant in terms of first order invariants

Corollary 8.3.2. If α �= 0 and Δα = 0 in a particular PP-wave spacetime, then

δ̄α = −α2
(

1 − ε
1
2 + iC3

)
. (8.14)

Proof. Using (8.11) and (8.9) we may explicitely calculate δ̄α,

δ̄α = −α2
(

1 − ε
1
2 + iC3

)
.

To continue we will calculate the second order invariants Δα and ν for the two
possible forms for ζ,a.

Corollary 8.3.3. In the case that dα ∧ dᾱ = 0 coordinates may always be chosen in
which the spin-coefficients Δα and ν take the following form:

Δα = eiC1R,ue−a−āα,

ν = − 1
α(e−2iC1 −3) − (ζ−Z1)

ζ,a

(
μ2

ᾱ
+ Δμ

ᾱ

)
− Z1,uue−a−3ā; (8.15)

Δα = 0, ν =
1
2 +iC3

α(2−ε+i4C3) − Z2,uue−a−3ā (8.16)

where Z1(u), Z2(u) are arbitrary functions arising from integrating (8.10) and (8.11)
respectively.
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Proof. From the NP field equations Δα = μα, so we may restrict our attention to μ

and ν. In the current coordinate system the remaining spin-coefficients are

μ = ζ,ua

ζ,a
e−a−ā, ν =

(
f̄ ′

,ā

ζ̄,ā
+ ζ,uu

)
e−a−3ā. (8.17)

As we must integrate ζ,a to determine ν, we define a new constant dependent on the
other constant C1 - in order to differentiate between the exponential and linear case
in (8.10)

Ċ(C1) = −1 if C1 = π/2, 3π/2 = mod 2Π

= e2iC1 + 1 otherwise. (8.18)

Integrating the conjugate of (8.8), we may write f̄ ′
,ā/ζ̄,ā in a simpler form

f̄ ′
,ā

ζ̄,ā
= − ζ̄,āe4ā

(e2iC1 −3) + f ′
1(u), or

f̄ ′
,ā

ζ̄,ā
= ζ̄,āe4ā

(
1
2 +iC3

2−ε+i4C3

)
+ f ′

2(u);

We note that in the (ζ, ζ̄, u, v) coordinate system the arbitrary functions of integra-
tion, f ′

i i = 1, 2 are the coefficients of the ζ-linear term in f(ζ, u) and hence may be
set to zero by the following coordinate transformation:

ζ ′ = ζ + Fi, v′ = v + 2Re(F̄i,uζ) + G(u), H ′ = H − f̄iζ − fiζ̄ (8.19)

Fi =
∫ ∫

f̄ ′
i(u)dudu, G(u) =

∫ | ∫ f ′
idu|2du

this is built out of (8.37) and (8.39). As this coordinate transformation does not affect
f,ζζ the alternative coordinate system (a, ā, u, v) is still valid, except that f ′(a, u) will
have Fi,uF̄i,u added to it - which will not affect the equations needed for analysis. The
arbitrary function of integration, Zi, may be redefined to absorb F1(u).

f̄ ′
,ā

ζ̄,ā
= − ζ̄,āe4ā

(e2iC1 −3) , or
f̄ ′

,ā

ζ̄,ā
= ζ̄,āe4ā

(
1
2 +iC3

2−ε+i4C3

)
, (8.20)

and so the remaining spin coefficients may be written in terms of invariants where
the last invariant is V = z,uue−a−3ā.

Due to the NP field equations (8.2) and the commutator relations arising from
dα∧dᾱ �= 0 and equations [(8.6), (8.5)] or [(8.6), (8.14)] we may exclude all derivatives
of α as functionally independent invariants if we treat μ and ν as potential functionally
independent invariants. Of course, for the degenerate case of the Karlhede algorithm
with q = 4 we must have only one new invariant at this iteration, hence dα∧dμ∧dν =
dα ∧ dν ∧ ν̄ = 0 at least, although there are further constraints.
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Lemma 8.3.4. Those PP-wave metrics with dα ∧ dᾱ = 0, Δα �= 0 and dα ∧ dμ �= 0
require at most the third order derivatives of the Weyl tensor to be classified invari-
antly.

Proof. To start we will consider the linear case when C1 = π/2or3π/2, the two-form
we will use in terms of α and μ is

−dα∧dμ
e−iC1 αμ

= i2sin(C1)da ∧ dā + 2Re
([

R,u − eiC1 R,uu

R,u

]
da ∧ du

)
. (8.21)

Instead of ν we pick only a piece of it which cannot be expressed in terms of previous
invariants,

V = −eiC1(ζ − Zi)Ċ
ζ,aμ2

(
Δμ + μ2

)
− Z1,uuᾱe−a−3ā eiC1Ċ

μ2

=
[
−(ζ − Zi)Ċ

ζ,a

(
R,uu

R2
,u

+ eiC1

)
− Ċ

eiC1

Z1,uu

ζ,aR2
,u

]
. (8.22)

Where Ċ(C1) = −1 if C1 = π/2, 3π/2 mod 2π and Ċ(C1) = e2iC1 + 1 otherwise. It
will be helpful to pick out the subcase when C1 = π/2, 3π/2 mod 2π, as Ċ(ζ−Zi)

ζ,a
= a.

In the case of C1 = π/2 mod 2π, taking the wedge product of the above two-form
with the differential of V yields the following equation:

−2aR2
,u

(
R,uu

R2
,u

)
,u

−
(

R4
,u + R2

,uu − 2eC2−iRZ1,uuR2
,u + 2ieC2−iRR2

,u

(
Z1,uu

R2
,u

))
.

This must vanish if we require V to be functionally dependent on α and μ. Notice that
by setting this to zero we get two separate equations, the coefficient of the a-linear
term gives a differential equation for R(u) while the remaining piece gives constraints
on Z1. Solving for R(u) yields two possibilities, depending on whether R,uu vanishes
or not:

Ra(u) = C5u, Rb(u) = C5ln(u), C5 ∈ R. (8.23)

If Z1,uu = 0 it follows that C5 = 0 which cannot happen as we have assumed R,u �= 0.
Plugging each possibility into the remaining equation gives a special form for Z1

respectively,

Z1a = −(c6 − iC5u
2 ) eiC5u

eC2 , Z1b = −(c6 − (1+iC5)
2 ln(u))uiC5

eC2 , c6 ∈ C (8.24)
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The case with C1 = 3π/2 mod 2π is similiar to the above except the constants now
have a negative sign. These both correspond to known G2 metrics given in table
[22], the first case belonging to f(ζ, u) = Ce4eC2 (ζ+c)e−iC5u

C ∈ C, and the second
corresponding to f(ζ, u) = Ce4eC2 (ζ+c)u−iC5 /u2. At the third iteration of the Karhlede
algorithm the only potentially functionally independent invariant is Δμ/μ2, which is
constant: (

Δμ

μ2

)
a

= 0,

(
Δμ

μ2

)
b

= iC−1
5 .

Assuming C1 �= π/2, 3π/2 mod 2π, we take the wedge product of (8.21) with the
differential of (8.22) and require that this must vanish. Doing so we find a complicated
expression from which one may obtain,

sin(C1)e−(e2iC1 +1)a (R,uR,uuu − 2R,uu) = F (u) (8.25)

where F (u) is a complicated expression involving the functions R(u), Z1,uu(u) and
their derivatives. This can only happen when either C1 = 0 or π mod 2π or R is
either of the form

Ra(u) = C7u or Rb(u) = ln(C7u) + C8, C7 ∈ R. (8.26)

Let us assume C1 = 0 mod 2π, the right hand side of (8.25) gives a useful constraint,

Z1,uu(R2
,u − R,uu) = 0

If Z1,uu = 0 we may transform the coordinates to set Z1 = 0; this subcase corresponds
to the known G2 metric with f(ζ, u) = −e4Rln(ζ). Instead, if we assume that the
differential equation for R vanishes, we find a simple form for R(u):

R(u) = −ln(C7u), C7 ∈ R.

Notice that in this case (8.21) vanishes, implying that α and μ are functionally de-
pendent. This cannot happen as we have assumed that dα ∧ dμ �= 0. All of these
spacetimes have at most two functionally independent invariants and hence have q = 3
in the Karlhede algorithm. In the case that C1 �= 0mod 2π, R is of the above form
(8.26), and the vanishing of the left hand side of (8.25) gives a differential equation
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for Z1,uu:

Ra : Z1,uuu + −C7

sin(C1)
Z1,uu = 0 (8.27)

Rb : uZ1,uuu + C7 + eiC1 + isin(C1)
isin(C1)

Z1,uu (8.28)

These are G2 spacetimes since Δμ = 0 in the first case and Δμ = −C−1
7 μ2 in the

second case, so that at third order there are no new functionally independent invari-
ants.

As a byproduct we have proved another lemma that will help narrow down the
class of Δα �= 0 pp-wave spacetimes for which q = 4 in the Karlhede algorithm

Lemma 8.3.5. In the case that Δα �= 0 the wedge product dα ∧ dμ ∧ dν vanishes if
and only if C1 = 0 or π modulo 2π in equation (8.10) and R(u) is of the form

R(u) = eiC1ln(C7u), C7 ∈ R. (8.29)

In general, dα ∧ dν ∧ dν̄ �= 0 for arbitrary complex-valued Z1,uu(u).

Using this result, we examine the lone coefficient of the triple wedge product of the
differentials of α, ν and ν̄, to pin down those spacetimes with Δα �= 0 and q = 4 by
requiring this to vanish. Doing so we find the following differential equation

Z1,uuZ̄1,uu + u(Z1,uuZ̄1,uuu + Z1,uuuZ̄1,uu = 0,

substituting Z1,uu = eR(u)eih(u) we find that R(u) = −2ln(u) + C and that there are
no conditions on h(u):

Z1,uu = eCeih(u)

u2

In general these spacetimes will have α, ν and Δν as three functionally independent
invariants, however for particular h(u) only two will be functionally independent. To
determine the form for h(u) we take the triple wedge product of the differentials of
these three invariants and look at the only non-zero coefficient:

h,uuu + h,u = 0.
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Solving this simple ordinary differential equation we find that if Z1,uu is of the form

Z1,uu = Cu−2+iC0eiC1 ,

these will be G2 spacetimes. Summarizing these results in a lemma we have proven
one-fourth of Theorem (8.1.1) by taking (8.10) and solving for f(ζ, u).

Lemma 8.3.6. Those spacetimes with Δα �= 0 and q = 4 in the Karlhede algorithm
have the following form:

f(ζ, u) = 1
u2 (ln(z) + Ceih(u)ζ), h(u) �= C0ln(u) + C1, C ∈ R

Next, suppose that μ = 0, the vanishing of μ leaves ν and its conjugate as possible
candidates for the second functionally independent invariant. To ensure there is only
one invariant at this stage we require that dα ∧ dν ∧ dν̄ = 0. Yet again, we pick off
the piece of ν that cannot be written in term of previous invariants, V

V = Z2,uue−a−3ā.

With this invariant we will be able to prove the final lemma from which Theorem
(8.1.1) follows trivially:

Lemma 8.3.7. Those PP-wave spacetimes with dα ∧ dᾱ = μ = 0, with coordinates
chosen such that ν takes the form given in (8.15), will have three functionally depen-
dent invariants {α, V, ΔV } for an arbitrary choice of a real-valued function B(u) if
and only if Z2,uu �= 0 and

C3 �= 0, ε = 1 : Z2,uu = ceB(u)(−4C3+I)B(u) �= ln(u)
2C3

, (8.30)

C3 = 0, ε = 1 : Z2,uu = eiB(u), Z2,uu �= ceiCu, C ∈ R, (8.31)

ε = 0 : Z2 = B(u), Z2,uu �= Cu−2. (8.32)

Proof. Using this invariant, we construct a purely imaginary two-form by scaling
dV ∧ dV̄ ,

dV ∧ dV̄

V V̄
= −8da ∧ dā − 2iIm(3[ln(Z2,uu)],u − [ln(Z̄2,uu)],u)da ∧ du)

and next we wedge product this with the one-form,

dα

α
= da −

(
1 − ε

1
2 + iC3

)
dā,
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then by denoting Z ′ = ln(Z2,uu), the above becomes

ε
(
2Z ′

,u + 2iIm(Z ′
,u)

)
− 4iIm(Z ′

,u) + 8C3Im(Z ′
,u) = 0.

There are two cases to consider here, depending on Z2,uuu. If this vanishes, the above
equation is satisfied and these spacetimes admit G2’s since Δ(V ) is the only invariant
that could be functionally independent and it vanishes. These belong to the third
entry in the table 24.2 in [22]. Choosing Z ′ = A(u) + iB(u), we find that in the case
with ε = 0 the imaginary piece of the equation implies B(u) is a constant and hence

Z2,uu = eA(u).

Supposing that ε = 1 we find that

A = −4C3B, and B = B

and we may write this constraint as

Z2,uu = c(eB(u))−4C3+i, c ∈ C.

To determine the functional independence of α, V and ΔV , in the case that ε = 1,
we will work with a different third order invariant

W = ΔV

V 2(1 − 4C3)
= B4C3−1−iB,ue2ā

. Taking the triple wedge product of α, V and W we wish to find and avoid all B

such that this 3-form vanishes, i.e. all B satisfying,

(1 + i4C3)B,uu + (2C3 + i8C2
3)B,u = 0 (8.33)

When C3 �= 0 we may solve this equation to find the following form for B

B(u) = ln(u)
2C3

, C4 ∈ R,

by translating and scaling u, the form of Z2,uu is then

Z2,uu = c(u)−2+ I
2C3 . (8.34)

Those spacetimes in this class with C3 = 0 admit a subclass of G2 spacetimes. Setting
C3 = 0 in (8.33)

B,uu = 0. (8.35)
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Solving this equation, and noting that Z2,uu = (eB(u))i we find that

Z2,uu = ceiC11u, C11 ∈ R.

Spacetimes satisfying the above constraints are G2’s since the wedge product of dα,
dν and dΔ(ν) vanishes automatically. These correspond to the third entry of the
Kundt-Ehlers’ table with κ = iC11. Thus if we allow Z2(u) to satisfy (8.31), these
spacetimes will be G1’s with the possibility of q = 4 in the Karlhede algorithm. Now
to consider the ε = 0 case. There is a subcase containing G2’s, supposing the triple
wedge products of dα, dν, and dΔ(ν) vanish, Z2 satisfies

2Z2,uuuuZ2,uu = 3Z2
2,uuu (8.36)

integrating yields

Z2,uu = C12u
−2.

These correspond to the second entry in the Kundt-Ehlers’ table with κ = 0. Again,
by restricting Z2 to be any other class of functions, the spacetimes described by (8.32)
will admit a G1, and they will have q = 4 in the Karlhede algorithm.

8.4 The Invariant Classification of All Vacuum PP-wave Spacetimes

During the investigation of the G1 spacetime with q = 4 in the Karlhede algorithm we
have calculated a list of Cartan invariants for the degenerate subcases of the vacuum
PP-wave spacetimes with α �= 0. To list these we define notation, (t1, t2, t3, ...tn),
where ti denotes the number of functionally independent invariants at i-th iteration
of the Karlhede algorith, and n denotes the last iteration of the algorithm required
to determine the canonical form for the spacetime. Listing all possibilities for the
various isometry groups admitted by the PP-wave spacetimes, we denote those found
in the previous analysis by a star:

• G1 spacetimes: (0, 2, 3, 3), (0, 1, 3, 3)∗ and (0, 1, 2, 3, 3)∗;

• G2 spacetimes: (0, 2, 2) and (0, 1, 2, 2);

• G3 spacetimes: (0, 1, 1);
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• G5 spacetimes: (0, 1, 1);

• G6 spacetimes: (0, 0);

These invariants are the spin-coefficients of a particular coframe (8.15), found by
boosting and spatially rotating the standard null coframe so that the Weyl curvature
component Ψ4 = 1 and then determining which spin-coefficient α or γ may be set
to zero. In the cases dealt with in section (8.3) α was non-zero and by null rotating
about oA we may always set γ = 0. This approach may be applied to the remaining
subcases of the Karlhede classification of PP-wave spacetimes with α �= 0 and α = 0
Gn, n > 3.

8.4.1 α �= 0 Case:

In this case, one may simplify the components of the first and second derivatives of
the Weyl tensor to only a few spin-coefficients:

D1Ψ : (α, ᾱ), D2Ψ : (μ, μ̄, ν, ν̄, δ̄α, δᾱ).

As all spin coefficients are used in the first and second derivatives of Ψ, we conclude
that for all n > 3, the n-th derivatives will only involve the spin coefficients and their
frame derivatives up to m-th order m < n. It will be helpful to pick coordinates,
(ζ, ζ̄, u, v) to express the frame derivatives and their corresponding spin-coefficients.
The class of coordinate transformations that preserve the form of this metric are:

ζ ′ = eiα′
ζ + h(u), v′ = v + 2Re(h,uuζ̄) H ′ = H − 2Re(h,uuζ̄) + h̄,uhu; (8.37)

u′ = (u+u0)
a′ , v′ = a′v, H ′ = a

′2H; (8.38)

v = v + g(u), H ′ = H − g,u (8.39)

where a′, u0 ∈ R. Denoting a = 1
4 ln(f,ζζ), we apply the following boost and spatial

rotation to the standard Kundt coframe,

m′ = ea−ām, �′ = ea+ā�, n′ = e−a−ān, (8.40)

in this coframe the first order invariants α and γ become:

α = ea−āā,ζ̄ , γ = e−a−āā,u. (8.41)
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Let us first suppose that α �= 0, then by making a null rotation with E = e−2ā a,u

aζ

m′′ = m′ + Ē�′, �′′ = �′, n′′ = n′ + Em̄′ + Ēm′ + EĒ�′ , (8.42)

we may eliminate γ and leave α unchanged. In this coframe the frame derivatives
and the remaining spin-coefficients may be written in terms of α, f and a, and their
conjugates:

δ = 1
α

(
āζ̄

∂
∂ζ

− ā,u
∂
∂v

)
, D = ea+ā ∂

∂v
,

Δ = e−a−ā

|α|2
(
|a,ζ |2 ∂

∂u
− a,uā,ζ̄

∂
∂ζ

− ā,ua,ζ
∂
∂ζ̄

+ (|a,u|2 − (f + f̄)|a,ζ |2) ∂
∂v

)
. (8.43)

The second order invariants may now be written as

μ = e−2a

ᾱ

(
a,uζ − a,ua,ζζ

a,ζ

)
,

ν = e−4a

ᾱ3

(
f̄,ζ̄(a,ζ)3 + 2a,ua,ζa,ζu − a,uu(a,ζ)2 − a,ζζ(a,u)2

)
, (8.44)

δ̄α = ᾱ−1(−|a,ζ |2α + a,ζ ā,ζ̄ζ̄ea−ā).

All non-zero spin coefficients and δ̄α are now involved as invariants. Thus at each
iteration of the Karlhede algorithm we may reduce this set to all of the n-th order
frame derivatives of α, μ, ν, δ̄α and their conjugates. By taking the arbitrary
form of the vacuum PP-wave spacetime and picking which invariants are functionally
dependent at each iteration of the Karlhede algorithm it is possible to recreate the
various entries in table 24.2 in [22] along with special subcases of the G2 metrics and
G1 metrics. The results of this analysis is summarized in tables (8.2) - (8.4), where
the work involved has been relegated to the sections (8.7), (8.8) and (8.9).

8.4.2 α = 0 Case:

In a similar manner those vacuum PP-wave spacetimes with α = 0 may be classified.
By choosing the same boosted and spatial rotated null coframe in which Ψ4 = 1, the
components of the covariant derivatives of the Weyl tensor Ψ will be expressed in
terms of the spin-coefficient γ and its invariants:

D1Ψ : (γ, γ̄), D2Ψ : (δ̄γ, δγ̄, Δγ).
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f(ζ, u) 1st 2nd Classifying
order order Functions

G1 f(ζ, u) (α, ᾱ) ω: = (8.87)
μ, ν or δ̄α

G1-I-0 g1(u)lnζ + g2(u)ζ (α, ᾱ) V (8.90)
G1-II-0 F (g1(u)ikζ)g1(u)2 + g2(u)ζ (α, ᾱ) X, (8.50) (8.88)
G1-II-1 F (uikζ)u2 + g1(u)ζ (α, ᾱ) X, (8.50) (8.91), (8.92)
G1-III-0 F (eig1(u)ζ) + g2(u)ζ (α, ᾱ) X, (8.50) (8.89)
G1-III-1a F (eiuζ) + g1(u)ζ (α, ᾱ) X, (8.50) (8.93), (8.94)
G1-III-1b F (ζ) + g1(u)ζ (α, ᾱ) X, (8.50) (8.95)

G2-I g(u)ln(ζ) (α, ᾱ); (8.109)
G2-II u−2F (ζuik) (α, ᾱ); (8.110), (8.111)

G2-IIIa F (ζeiku) (α, ᾱ); (8.112), (8.113)
G2-IIIb f(ζ) (α, ᾱ); (8.114), (8.115)

Table 8.1: Summary of analysis in Case with α �= 0 and dα ∧ dᾱ �= 0. Here a, k ∈ R

and A(u) is a complex valued function.

It may be shown by direct calculation or manipulation of the NP equations that γ

must be a function of the retarded time coordinate u. As no new functions are intro-
duced in covariant differentiation of the Weyl tensor q = 2 at most in the Karhlede
algorithm. in fact there are only two cases 1 (0, 1, 1) and (0, 0). We revert to the
coframe found by boosting and spatially rotating the Kundt coframe, (8.42). The
vanishing of α in (8.41) requires that ā,ζ̄ = 0, so that f̄,ζ̄ζ̄ζ̄ = 0, giving a solution of
the form

f(ζ, u) = A(u)ζ2. (8.45)

Rewriting γ in (8.41),

γ = 1
4
√

AĀ
ln(Ā),u

1We note that only in the case that α = 0 is (0, 0) possible.
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1st 2nd 3rd Classifying
f(ζ, u) order order order Invariants

G1-a-0 e
eC eiR′(u)
(ζ−z(u)) α (W,X) (8.96)

G1-b-0 (C0e
iR′(u)(ζ − z(u)))2iC1 α (U,X) (8.97)

G1-c-0 eC(ζ−z(u)) α (W0,X) (8.98)
G1-d-0 [C(ζ − z(u))]4iC0 α (R,P) (8.99)
G1-d0-0 eiC ln(ζ − z(u)) α (R0,P) (8.100)

G1-b-1 C2eiC0
u2 lnζ − eC1 eiZ(u)

u2 ζ α W1 Y (8.101)
G1-c-1 eCζ + eiC0eR(u)ζ α U0 Y0 (8.102)
G1-d-1 (Cζ)4iC0 + c1e

(−4C0+I)Z(u)ζ α V W2 (8.103)
G1-d0-1 eiC ln(ζ) + eC0eiR(u)ζ α Z Y1 (8.106)

Table 8.2: Summary of all G1 spacetimes arising in the case, α �= 0 and dα ∧dᾱ = 0.
These are in addition to the NP equations (8.2) and equations ((8.6), (8.5)) or ((8.6),
(8.14)).

and supposing that γ(u) = γ1(u) + iγ2(u) with A = r(u)eiθ(u) we may solve for A in
terms the invariant real-valued functions in γ,

r,u

r2 − i θ,u

r
= 4γ1 + 4iγ2.

By integrating we find the expressions for r and θ which may be summarized as a
lemma.

Lemma 8.4.1. For any pp-wave spacetime expressed in terms of a canonical coframe
with α = 0 and γ = γ1 + iγ2, �= 0 we may express the canonical form for f(ζ, u) as

A = reiθ; r(u) = [C0 − ∫
4γ1du]−1, θ(u) = − ∫

4rγ2du + C1, C0, C1 ∈ R.(8.46)

Here, γ is the only functionally independent invariant and the essential classifying
functions are γ̄(u) and Δγ(u) expressed in terms of γ. If γ is constant, there are two
possibilities for A(u) depending on where γ lies in the complex plane, these are given
in (8.5).

To show equivalence for two metrics in this class g, go we just need to examine the
classifying manifolds (γo; γ̄o, Δγo) and (γ; γ̄, Δγ), if they overlap the spacetimes must
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1st 2nd Classifying
f(ζ, u) order order Invariants

G2-a-0-0 (C0ζeiu)2iC + C1e
iuζ α μ (8.116)

G2-a-0-1 (C0u
−iCζ)2iC1 + C4u

−iCζ)u−2 α μ (8.117)

G2-a-0-2 eC(ζ+eiC0 )eiu
α μ (8.118)

G2-a-0-3 u−2e4eC0 (ζ+c)uiC1 α μ (8.119)
G2-b-0 −eR(u)ln(ζ) α μ (8.120)
G2-b-1 u−2(CeiC0lnζ − c1u

−iC2ζ) α V (8.121)
G2-c-0 eCζ + c0ζ α V (8.122)
G2-c-1 eCζ + c0u

−2ζ α U1 (8.123)
G2-d-0 (Cζ)2iC1 + c0ζ α W4 (8.124)

G2-d-1 (Cζ)2iC1 + c0u
−2− i

2C1 ζ α V (8.125)
G2-d0-1 −eiC ln(ζ) − ζeiC0u α W5 (8.126)

Table 8.3: Summary of all G2 spacetimes arising in the case, α �= 0 and dα ∧dᾱ = 0.
These are in addition to the NP equations (8.2) and equations ((8.6), (8.5)) or ((8.6),
(8.14)).

be equivalent, and inequivalent otherwise. Any two equivalent Kundt metric with α =
0, γ non-constant, may be transformed using the coordinate transformations (8.37)
and (8.39). The only freedom left are rotations of ζ and rescaling and translating
u. Supposing u′ = 1

c
(u + d), ζ ′ = eiaζ we find in the new coordinates that A′(u′) =

(eiac)2A(cu′ − d) and

γ′ = 1
|c|γ(cu′ − d) (8.47)

Thus if two vacuum Kundt metrics with α = 0 are equivalent, we may equate the
invariant γ for both spacetimes and determine c and d. This can be used for diffeo-
morphisms that do not preserve Kundt form, like the one used in equation (24.49) in
[22] to switch from Kundt form to Rosen form, our invariant approach gives equiv-
alence and provides a complete integration of the metric function A(u). In light of
the results in [[98], [99]], where a general formalism is introduced for studying arbi-
trary polarization states of pp-wave spacetimes with α = 0 expressed in Rosen-form.
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1st Classifying
f(ζ, u) order Invariants

G3-b-0 u−2eCe2iC0lnζ α (8.126)
G3-c-0 e2Cζ α (8.127)
G3-d-0 (Cζ)iC1 α (8.128)
G3-d0-0 eiC lnζ α (8.130)

Table 8.4: Summary of all G3 spacetimes arising in the case, α �= 0 and dα ∧dᾱ = 0.
These are in addition to the NP equations (8.2) and equations ((8.6), (8.5)) or ((8.6),
(8.14)).

f(ζ, u) 1 2

G5
(A(u))4

2 ζ2, (8.46) γ; (8.47) Δγ

G6-a u
iC1
C0

−1

16C2
0

ζ2 γ = C0 + iC1

G6-b eiC1uζ2 γ = iC1
4

Table 8.5: Summary of cases with α = 0. Here, C0, C1 ∈ R, A(u) is a complex
valued function.

Lemma (8.4.1) allows for any novel solution found by this formalism to be expressed
in Kundt coordinates.

8.5 Symmetry Methods for PP-wave Spacetimes with dα ∧ dᾱ �= 0

For this class of spacetimes, an analysis of the vanishing of the necessary wedge
products does not readily produce tractable equations. However if one considers the
fact that a killing vector must annihilate all invariants, and that all invariants may
be expressed in this subcase in terms of α and ᾱ : the normalization Δ̂α → 0 via a
null rotation about � will be a helpful choice as it will then be a linear combination
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of Killing vectors.

A = δ̄α

α2 , (8.48)

B = μA − μ̄, (8.49)

X = B/(AĀ − 1), (8.50)

Y = (3 − A)ν − 1/α + (Δμ + μ2)/ᾱ, (8.51)

ν̂ = ν + X(μ + 2X̄)/ᾱ, AĀ �= 1, (8.52)

Υ̂ = Δ(ν̂/X̄) − 2ν̂ + 1/α − 4iXX2/ᾱ, (8.53)

Δ̂ = Δ + X

ᾱ
δ + X̄

α
δ̄ + |X|2

|α|2 D (8.54)

Using the coordinates a = 1
4 lnf,ζζ , we will specify the form of invariants and the

invariant coframe

Proposition 8.5.1. Suppose that α �= 0. If the normalization Ψ4 = 1 and γ = 0
holds then

α = ea−ā

Z̄ā

, ζ = Z(a, u), (8.55)

μ = e−a−āLu, L = logZ,a, (8.56)

M = e−2ā

Z̄,ā

Lu, (8.57)

ν = e−a−3ā

(
Z,uu + Φ̄ā

Z̄ā

)
, Φ(a, u) = f(ζ, u) (8.58)

A = −1 − L̄ā, (8.59)

ω1 = da

ᾱ
(8.60)

ω2 = ea+ādu, (8.61)

ω4 = e−a−ā((f + f̄ + Z,uZ̄,u)du + dv − Z,udζ̄ + Z̄,udζ); (8.62)

we also have the relations

μ = XĀ + X̄, (8.63)

δA = 0. (8.64)

Given Q(a, u) then

δQ = ᾱQ,a, ΔQ = e−a−āQ,u (8.65)
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For our purposes we will study those spacetimes where AĀ �= 1 B �= 0 Expressing
our vector field relative to a frame

V = V 1δ + V̄ δ̄ + V 3Δ + V 4D, V̄ 3 = V 3, V̄ 4 = V 4 ;

the following proposition gives the constraints for the invariant coframe with Δα = 0
additionally.

Proposition 8.5.2. Suppose that AĀ �= 1, then every vector field satisfying

LV α = LV ᾱ = 0, V 3 �= 0. (8.66)

has the form V = aΔ̂ + bD, a �= 0. If AĀ = 1, but B �= 0 then (8.66) does not have
a solution. If AĀ = 1 and B = 0, then there is a 1-paramater family of solutions to
(8.66).

Proof. Applying a null rotation, Δ̂ = Δ + Ēδ + Eδ̄ + EĒD, we produce the following
linear system: ⎡⎣ Aα ᾱ

α Āᾱ

⎤⎦⎛⎝ E

Ē

⎞⎠ =
⎛⎝ μ

μ̄

⎞⎠ . (8.67)

In the case that AĀ �= 1, the solution is

E = Āμ̄ − μ

(AĀ− 1)α
= X̄

α
.

If AĀ = 1, the system has rank 1, the system will be consistent if and only if,∣∣∣∣∣∣ Aα μ̄

α μ

∣∣∣∣∣∣ = αB = 0

To study the existence of Killing vectors distinct from � = ∂
∂v

, we use the fact that
along such a vector the invariant coframe ωa = {m, m̄, �, n} is covariantly constant,
that is V 1 �= 0, V 3 �= 0 and

LV ω1 = LV ω2 = 0 (8.68)

LV ω4 = 0 (8.69)

To continue we first study the implications of (8.68), and then relate this fact back
to the vanishing of wedge products:
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Proposition 8.5.3. The vanishing of the Lie derivatives LV ω1 = LV ω2 = 0 will
occur if and only if C = ᾱV 1 is a constant while V 3 satisfies

V 3μ̄ = C + C̄A, (8.70)

δV 3 = ᾱV 3, (8.71)

ΔV 3 = −C − C̄. (8.72)

Proof. To prove this, consider the Lie derivatives

LV α = α(C + C̄A − V 3μ̄), (8.73)

LV (ᾱω1) = d(LV da) = dC, (8.74)

LV ω3 = (δV 3 − ᾱ − ᾱV 3)ω1 + (δ̄V 3 − αV 3)ω2 + (ΔV 3 + C + C̄)ω3.(8.75)

The vanishing of these quantities lead to the above identities as the coframe is linearly
independent.

Proposition 8.5.4. If B �= 0 then (8.68) is equivalent to the conjunction of

dα ∧ dᾱ ∧ dμ = 0, (8.76)

and the condition

d(B/B̄) = 0. (8.77)

Proof. If we require (8.68), then LV α = LV ᾱ = LV μ = 0, as they are involved in the
structure equations:

dω1 = αω1 ∧ ω2 − μω1 ∧ ω3, (8.78)

dω3 = (ᾱω1 + αω2) ∧ ω3, (8.79)

dω4 = (μ̄ − μ)ω1 ∧ ω2 + (ν̄ω1 + νω2) ∧ ω3 − (ᾱω1 + αω2) ∧ ω4. (8.80)

So, if 3 functions on a 4 dimensional manifold are annihilated by 2 independent
vector fields, they must be functionally dependent and hence (8.76) holds. To show
the constancy of the ratio, consider (8.70) and its conjugate. This function is real
valued, equating the two yields

C(μ − Āμ̄) = C̄(Aμ − μ̄). (8.81)



148

from this fact it follows that B/B̄ is constant. Conversely suppose that (8.76) and
(8.77) hold. By assumption C/C̄ = B/B̄ = XX̄ for some constant C. Hence C/X is
real and by setting V = C/XΔ̂ (where Δ̂ comes from Proposition (8.5.2)) we obtain
a real vector field such that LV α = 0 and so LV μ = 0. For this choice V 1 = C/ᾱ and
so by Propostion (8.5.3) LV ω1 = 0, applying this fact to the differential of ω1:

0 = LV dω1 = −μω1 ∧ LV ω3.

Thus LV ω3 must vanish as dLV ω1 = LV dω1 = 0.

8.5.1 The G1 Spacetimes

To continue we study the conditions imposed by the form of the vector field.

Proposition 8.5.5. There exists a vector field such that

LV ω1 = LV ω3 = 0, V 1 = 0, V 3 �= 0; (8.82)

if and only if μ = 0. This class of metrics has the form f(ζ, u) = F (ζ) + gζ.

Proof. Suppose that (8.82) holds, by (8.73): LV α = −V 3αμ = 0. Thus μ = 0. To
prove the converse consider the component V 3 = ea+ā by (8.65) the relations (8.71)
and (8.72) follow. To prove the second part, consider the form of μ above in (8.56),
if this were to vanish Zua = 0, and so Z = F (a) for some arbitrary function of ζ.
Solving for a and integrating yields the desired form:

Proposition 8.5.6. There exists a vector field such that

LV ω1 = LV ω3 = 0, V 1 �= 0, V 3 = 0; (8.83)

if and only if A = 1.

Proof. Suppose that (8.83) holds, by (8.73), C + C̄ − 0 and hence C = ᾱV 1 is
imaginary. Applying (8.70), C + C̄A = 0 implying A = 1. Alternatively if A = 1,
(8.70)-(8.73) to hold, it suffice to set V 1 = i/ᾱ, V 3 = 0.

In the more general cases where V 1 and V 3 are both non-zero, the above analysis
will not give up results so easily. Instead we will first consider the G1 spacetimes
where either A = 1 and B = 0, AĀ �= 1 and B1 = 0, or AĀ = 1 and B/B̄ is constant.
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Proposition 8.5.7. Suppose that B1 �= 0 and ĀA �= 1, the following are equivalent:
(i) B2

B1
= k is a real constant and (ii) f(ζ, u) = F (hikζ)h2 + gζ

Proof. Let C = 1 + ik then

B

B̄
=

1 + iB2
B1

1 − iB2
B1

(8.84)

implying that B/C is real valued. Supposing that (i) holds, the equations (8.49),
(8.56) and (8.59) this becomes

C
B

(AĀ − 1) = C
μ̄

(
1 + B̄

B
A
)

= C+C̄A
μ̄

= (−2k−CL,a

L,u
)ea+ā.

The piece inside brackets is real and holomorphic in a, thus it must be independent
of this complex coordinate,

L,u + (1 + ik)h1L,a = −2ikh1, (8.85)

where h1 = h1(u) �= 0 is real-valued. Conversely, (8.85) with h1 �= 0 implies condition
(i). Solving for f,ζζ and integrating yields:

L = F (a − (1 + ik)h2) − 2ikh2, h′
2 = h1

Z = F (a − (1 + ik)h2)e−2ikh2

a = (1 + ik)h2 + F (e2ikh2ζ)

f,ζζ = h2+2ikF (hikζ), h = e2h2

f = F (hikζ)h2 + gζ.

Proposition 8.5.8. Suppose that A �= 1, the following are equivalent (i) B1 = 0 and
(ii) f(ζ, u) = F (eihζ) + gζ.

Proof. By (8.49), (8.56) and (8.59), condition (i) is equivalent to

ea+ā((L,a + 2)L̄,u + L,u(L̄,ā + 2)) = 0.

where L,a �= −2 by assumption. To satisfy this, it must equal some real function
multiplied by i, simplification gives

L,uih1L,a = 2h1
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Solving for f,ζζ and integrating twice yields the desired form:

L = F (a + ih2) + 2ih2, h′
2 = h1

Z = F (a + ih2)e2ih2

a = −ih2 + F (e−2ih2ζ)

f,ζζ = e−4ih2F (ζe−i2h2)

f = F̃ (ζe−2ih2) + gζ, F̃ ′′ = F.

Proposition 8.5.9. The following are equivalent: (i) A = 1 and (ii) f(ζ, u) =
g1logζ + g2ζ

Proof. By (8.59) condition (i) is equivalent to L = −2a + g, hence

Z = e−2a+g, − 2a = logζ − g, f,ζζ = e2gζ−2, f = g1logζ + g2ζ.

in this case B = μ − μ̄, hence B1 automatically vanishes in this case.

Proposition 8.5.10. Suppose that B1 �= 0, AĀ �= 1, the following are equivalent: (i)
condition (8.68) holds, (ii) B2/B1 = k, ΔX1 = 2X2

1 , and (iii) f(ζ, u) = F (uikζ)u−2 +
gζ.

Proof. Suppose that (i) holds, then the reality of V 3 in (8.5.3)

CB̄ = C̄B

as B �= 0 we have μ �= 0 as well. Solving for the ratio and factoring out B1 we find

C

C̄
=

1 + iB2
B1

1 − iB2
B1

.

Furthermore since X/X̄ = B/B̄ it follows by (8.70)

1
X1

= C

X
= C(B + B̄A)

Bμ̄
= C + C̄A

μ̄
= V 3

condition (ii) follows by using (8.72) on this expression. To show (ii) implies (iii), we
know by assumption that f(ζ, u) = F (uikζ)u−2 + gζ belongs to a particular G1 class
given in proposition (8.5.7) the equation below (8.84) yields

1
X1

= ea+ā

h1
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where h1 is real valued, applying Δ to this yields

Δ( 1
X1

) =
(

1
h1

)′

(1/h1)′ + 2 = 0

h1 = −1
2u

Therefore,

L,u −
(

1 + ik

2u

)
L,a = ik

u

by following the same method in proposition (8.5.7) we find h = u−1 which specializes
the form of the metric in proposition (8.5.7). Lastly we show (iii) leads to (i), to do
this, set V 1 = C/ᾱ with C = 1 + ik while for V 3,

V 3 = 1
X1

= −2uea+ā

Conditions (8.70) and (8.71) follow by (8.65).

Proposition 8.5.11. Suppose that B1 = 0 μ �= 0 and AĀ �= 1. The following are
equivalent: (i) (8.68) holds, (ii) ΔX2 = 0, and (iii) f(ζ, u) = F (eiuζ) + gζ.

Proof. To show (i) leads to (ii), notice thatC = ᾱV 1 �= 0 is a constant such that
Im(B/C) = 0.Since B1 = 0 we have C = i, without loss of generality. Thus V 3 = 1

X2

and ΔX2 = 0 by (8.71). Next, (ii) implies (iii), by assumption f(ζ, u) = F (eiuζ) + gζ

belongs to the class given in proposition (8.5.8), since B = iB2 we have

−i

X2
= 1

X̄
= B̄ + AB̄

B̄μ
= 1 − Ā

μ
.

By proposition (8.5.8)

e−a−ā/X2 = −i(2 + L,a)/L,u = −1/h1

where h1 = −2h′ �= 0 is real. Since ΔX2 = 0 this implies that h1 is a constant.
Lastly to show (iii) implies (i), set V 1 = C/ᾱ where C = i and V 3 = 1

X2
= −2kea+ā,

conditions (8.70) and (8.71) follow by (8.65).

Proposition 8.5.12. Suppose that AĀ �= 1, the following are equivalent: (i) (8.68)
holds with V 1 = 0, (ii) ΔX2 = 0 and μ = 0, and (iii) f(ζ, u) = F (ζ) + gζ.
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Proof. To show (i) leads to (ii), we invoke (8.5.5) and note that μ = 0 in this case;
next notice that C = ᾱV 1 �= 0 is a constant such that Im(B/C) = 0.Since B1 = 0
we have C = i, without loss of generality. Thus V 3 = 1

X2
and ΔX2 = 0 by (8.71).

Next, (ii) implies (iii), by assumption f(ζ, u) = F (ζ) + gζ belongs to the class given
in proposition (8.5.8), since B = iB2 we have

−i

X2
= 1

X̄
= B̄ + AB̄

B̄μ
= 1 − Ā

μ
.

By proposition (8.5.8)

e−a−ā/X2 = −i(2 + L,a)/L,u = −1/h1

where h1 = −2h′ �= 0 is real. Since ΔX2 = 0 this implies that h1 is a constant. The
vanishing of μ implies L,u = 0 so that by integrating for L in the proof of (8.5.8) give
the required form for fζ, u). Lastly to show (iii) implies (i), set V 1 = C/ᾱ where
C = i and V 3 = ea+ā, conditions (8.70) and (8.71) follow by (8.65).

8.5.2 The G2 Spacetimes

To recover the solutions introduced by Kundt and Ehlers, we impose the condition
(8.69), which will be equivalent to the vanishing of the last triple wedge product
dα ∧ dᾱ ∧ dν. By Proposition (8.82) the (0,2,...) solution with V 3 = 0 belongs to
some particular form of the metric given in Proposition (8.5.9), while the V 1 = 0
vector field is given by the metric given in Proposition (8.5.12). The remaining (0,2)
solutions are special cases of the metrics in Propositions (8.5.10), (8.5.11). This
specialiation arises from the vanishing of the invariants Y and Υ̂ which are defined
above.

Proposition 8.5.13. The class of metrics of the form g1logζ + g2ζ have dα ∧ dᾱ ∧
dν = 0 if and only if: (i) Y = 0 and (ii) g2 = 0

Proof. By Proposition (8.5.6), V = Im(α−1δ̄) annihilates ω1, ω2 α and μ. Hence the
vanishing of the wedge product is equivalent to LV ν = 0. By direct calculation (8.51)

(δν)/α − (δ̄ν)/ᾱ = −1/α + 2ν + (μ2 + Δμ)/ᾱ = Y

thus (i) follows from the vanishing of the wedge product. A direct calculation yields

αȲ = −g2(g1ḡ1)−1/2
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proving that (i) is equivalent to (ii).

Proposition 8.5.14. The class of metrics with f(ζ, u) = F (u−ikζ)u−2 + g−2−ikζ,
k �= 0 have dα ∧ dᾱ ∧ dν = 0 if and only if: (i) Υ̂ = 0 and (ii) g′ = 0.

Proof. By proposition (8.5.7) V = X−1
1 Δ̂ annihilates ω1, ω3, α and μ the Newman-

Penrose equations imply

dlogα = ᾱω1 + Aαω2 − μω3. (8.86)

Thus LV A = LV X = 0 as well. Let ν̂ be the invariant defined in (8.52), by proposition
(8.5.3) and Newman-Penrose equations:

δX = −ᾱX, δ̄X = −αX, ΔX = 2XX1,

δ(ν̂/X̄ = −4iX2, δ̄(ν̂/X̄) = (1 − 2ν̂α)/X̄

Δ̂(ν̂/X̄) = Δ(ν̂/X̄) − 4iXX2/ᾱ + (1 − 2ν̂α)/α = Υ̂ .

where the latter is the invariant defined in (8.53). This proves the equivalence of
the vanishing of the wedge product and (i). A direct calculation shows the final
equivalence of (i) and (ii):

¯̂Υ = 4u
X2

1
X

g′
1F

′′(u−ikζ)−1/2

Notice that if g′ = 0 this a constant and the term, Cu−2−ikζ may be absobed into
F (u−ikζ). Furthermore ν̂ arises as the transformed invariant made by a null rotation
to set Δ̂α = 0.

Proposition 8.5.15. The class of metrics with f(ζ, u) = F (eiuζ) + geiuζ have dα ∧
dᾱ ∧ dν = 0 if and only if (i) Υ̂ = 0 and (ii)g′ = 0.

Proof. By proposition (8.5.8) V = X−1
1 Δ̂ annihilates ω1, ω3, α and μ the Newman-

Penrose equations imply

d(logα) = ᾱω1 + Aαω2 − μω3.

Thus LV A = LV X = 0 as well. Let ν̂ be the invariant defined in (8.52), by proposition
(8.5.3) and Newman-Penrose equations:

δX = −ᾱX, δ̄X = −αX, ΔX = 0,

δ(ν̂/X̄ = −4iX2, δ̄(ν̂/X̄) = (1 − 2ν̂α)/X̄

Δ̂(ν̂/X̄) = Δ(ν̂/X̄) − 4iXX2/ᾱ + (1 − 2ν̂α)/α = Υ̂ .
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where the latter is the invariant defined in (8.53). This proves the equivalence of
the vanishing of the wedge product and (i). A direct calculation shows the final
equivalence of (i) and (ii):

¯̂Υ = 4uX̄g′
1F

′′(eiuζ)−1/2

Proposition 8.5.16. The class of metrics of the form f(ζ, u) = F (ζ) + g(u)ζ have
dα ∧ dᾱ ∧ dν = 0 if and only if: (i) Δν = 0 and (ii) g′ = 0.

Proof. By proposition (8.5.5) a multiple of Δ annihilates ω1, ω2, α and μ. Thus the
vanishing of the triple wedge product is equivalent to (i). Using the metric form given
in (8.5.5), a direct calculation of Δν gives

Δν̄ = e−2ag′/F ′′

showing the equivalence (i) and (ii).

8.6 Conclusions

In our search for those vaccuum PP-wave spacetimes in which the fourth-order co-
variant derivatives of Ψ are required to classify them entirely we have produced an
invariant classification of the vacuum PP-wave spacetimes, which will be finer than
the analysis of each spacetime’s isometry group alone. The summary of this invariant
approach to classification is given in tables (8.1), (8.2) - (8.4) and (8.5) which relate
the invariant classes determined in Figure (8.1) to an appropriate lemma in the sec-
tions (8.7), (8.8) and (8.9). Each lemma gives a canonical form for the metric along
with the functionally independent invariants arising at each order and the essential
functionally dependent invariants that are required for the sub-equivalence problem.
Although a particular coordinate system has been chosen for the lemmas and their
proofs to express the functionally independent invariants at each order, their clas-
sifying functions - the essential and non-essential functionally dependent invariants
given in the proof - will hold regardless of the coordinate system chosen as long as
the canonical coframe is used.
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To find the canonical coframe for any PP-wave metric with arbitrary fo(ζ, u), one
chooses a null coframe, then by applying an appropriate spin and boost one may
always set Ψ4 = 1. At zeroeth order this reduces the dimension of the isotropy group,
dim(H0) = 2 and eliminates all functionally independent invariants available from
the Weyl tensor Ψ. At second order, the covariant derivatives of Ψ involve the spin-
coefficients {α, γ} and their conjugates. There are two cases here depending on α

vanishing or not.

• If α �= 0 we may use a null rotation to set γ = 0, this reduces dim(H0) to zero
and this will be the canonical coframe. Using the decision tree in Figure (8.1)
one may use the wedge product on the differentials of the spin-coefficients to
determine which invariant subclass the metric belongs to.

• The vanishing of α produces a differential equation for fo(ζ, u), so that it must
be of the form (8.45). As null-rotations about � will not affect the invariant
structure, we note the dimension of the isotropy group will be two, dim(H0) = 2.
Thus we have many choices for our canonical frame in this case. In general these
spacetimes will only require up to second order for the Karlhede algorithm, while
in the special case that γ ≡ Constant only first order is required, as depicted
in Figure (8.1).

With the invariant subclass of fo(ζ, u) found one may use tables [(8.1), (8.4)] for those
spacetimes with α �= 0 and table (8.5) when α = 0. To find the canonical form of the
metric and determine the coordinate transformation used to switch between it and
the original fo. Here are some simple examples that illustrate the approach:

1. Consider fo(ζ, u) = e4eC0 (ζ+c)eiCu and another metric f(ζ, u) = f(ζeiku) where
f(Z), Z = ζeiku is some analytic function belonging strictly to G2 − III,
i.e., when δ̄ �= ±α2. By inspection of either table 24.2 in [22] or table (8.1)
it is apparent that fo belongs to this class as well. Is there some coordinate
transform that changes fo to f? To answer this question we need only look at
the first order invariants α0 and α in both coordinate systems. From (8.112)
and (8.118): ᾱo = αo while ᾱ �= α, implying that the spacetimes are distinct.

2. As we require f(Z) in G2 − III to be analytic we may always expand this
function as a power series where the coefficients an of Zn, n ≥ 0 are functions
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of u. In light of this fact, consider the almost trivial example f(Z) = (ζeiku)n

for n ≥ 0.

• If n = 0 or 1, it is always possible to set f(Z) to zero using the coordinate
transformations (8.37) - (8.39). This would violate the constraint that
Ψ4 �= 0 and so these cases cannot occur.

• If n = 2 this metric belongs to the G6 − b class with C1 = 2k, these space-
times have no functionally independent invariants and only two essential
constants Φ4 = 1, γ = ik

2 .

• If n = m + 2, m ≥ 0, we see by inspection that this belongs to G2 − III.
Using (8.112) we may calculate α

α = m

4 Z
m
4 Z̄− m

4 −1

Taking α and its conjugate we construct simpler invariants

A = m2

16 (αᾱ)−1 = ZZ̄, B = (α/ᾱ)
4

2m+4 = Z/Z̄

we see that Z may be written as

Z =
(

m2

16 α
−2m

2m+4 ᾱ
−2(2m+4)

2m+4

) 1
2

.

Solving for f(Z) in terms of α and its conjugate the second order invariants
μ and ν in (8.112) imply k and m are essential constants.

3. Consider another metric from G2 − III, with the analytic function f(Z) =
Zm+2 +cZ, c ∈ C, and Z = ζeiku. These spacetimes have exactly the same form
for α and its conjugate. Naturally Z(α, ᾱ) will be the same, implying m is an
essential constant. Only by looking at the second order invariant ν does one
find that k and c are essential constants.

4. For any contrived example constructed by taking a canonical form for f(ζ, u)
and applying the permitted Kundt-coordinate transformations in some arbitrary
way, we may always use the above flow-chart to determine its original canonical
form in some coordinate system. And then by comparing the Cartan invariants
in either system determine the constant and functions involved in the coordinate
transformation.
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8.7 G1 Spacetimes

By classifying the G1 spacetimes according to Cartan invariants instead of the isom-
etry groups, we find several interesting examples. In particular four subclasses of the
PP-wave spacetimes require the fourth covariant derivatives of the Weyl tensor. Prov-
ing that the upper-bound introduced by Collins [36] for vacuum PP-wave spacetimes
is sharp.

The largest and most general G1 case, (0, 2, 3, 3), where f(ζ, u) is any analytic
function not listed below has the following invariant structure. The first order invari-
ants, α and its conjugate are functionally independent, at second order there can be
at most one new functionally independent invariant. We find one real-valued func-
tion and two complex-valued classifying functions by writing the remaining second
order invariants in term of the three invariants. At third order, regardless of which
invariant is chosen, there will only be one new classifying function not arising from
the NP field equations (8.2) at second and third order respectively:

Dα = 0, Δα = −μ̄α, δα = αᾱ,

Dμ = 0, δ̄μ = −αμ, Δμ − δν = −μ2 + ᾱν.

Dν = 0, δ̄ν = −3αν + 1.

Thus, at third order the only new information comes from δμ or Δν or δ̄δ̄α respectively
if μ, ν or δ̄α, is chosen to be the third functionally independent invariant. In total
these spacetimes require at most seven non-trivial real-valued classifying functions in
terms of the three invariants. For each of the possible triples we find the following
classification functions which are not generic to type N vacuum spacetimes:

(α, ᾱ, μ) : (μ̄, ν, δ̄α, δμ),

(α, ᾱ, ν) : (ν̄, μ, δ̄α, Δν), (8.87)

(α, ᾱ, δ̄α) : (δᾱ, μ, ν, δ̄δ̄α).

For spacetimes with (0, 1, 3, 3), there are two cases to consider, with two subcases
each. These arise from Δα being zero or otherwise, looking at (8.10) and (8.11), we
note that the subcases of each differentiate between a linear or an exponential form
for ζ(a, u). This will be reflected in the classifying functions.
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8.7.1 (0, 2, 3, 3); Δα �= 0 case:

Lemma 8.7.1. The PP-wave metric belonging to the G1 − II − 0 class will have the
canonical form

f(ζ, u) = F (g1(u)ikζ)g1(u)2 + g2(u)ζ

where g1 and g2 are arbitrary complex functions. The functionally independent in-
variants are α, its conjugate and any one of the second order invariants δ̄α, μ, ν and
their conjugates - we will work with X = μδ̄αα−2 − μ̄ from (8.50). These invariants
are expressed in the (a, ā) coordinates,

α = −1
2

ea−ā

Z,a
, X = e−a−ā

(
L,u+L,uL̄,ā+L̄,u

L,a+L̄,ā+L,aL̄,ā

)
where ζ = Z(a, u) = (F ′′)−1(a − (1+ik)

2 ln(g1))g−2ik
1 and L = ln(Z,a).The essential

classifying functions are the remaining second order invariants

μ = e−a−ālog(Z,a),u,

δ̄α = ᾱ

(
−1

2
ea−ā

Z,a

)
,a

,

ν = e−a−3ā

(
Z,uu + Φ̄ā

Z̄ā

)
, Φ(a, u) = f(ζ, u), (8.88)

and the third order invariants δX, δ̄X and ΔX.

Proof. See the proof to Proposition (8.5.7).

Lemma 8.7.2. The PP-wave metric belonging to the G1 − III − 0 class will have
the canonical form

f(ζ, u) = F (eig1(u)ζ) + g2(u)ζ

where g1 and g2 are arbitrary complex functions. The functionally independent in-
variants are α, its conjugate and any one of the second order invariants δ̄α, μ, ν and
their conjugates - we will work with X = μδ̄αα−2 − μ̄ from (8.50). These invariants
are expressed in the (a, ā) coordinates,

α = −1
2

ea−ā

Z,a
, X = e−a−ā

(
L,u+L,uL̄,ā+L̄,u

L,a+L̄,ā+L,aL̄,ā

)
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where ζ = Z(a, u) = F (a − ig1)e−2ig1 and L = ln(Z,a). The essential classifying
functions are the remaining second order invariants

μ = e−a−ālog(Z,a),u,

δ̄α = ᾱ

(
−1

2
ea−ā

Z,a

)
,a

,

ν = e−a−3ā

(
Z,uu + Φ̄ā

Z̄ā

)
, Φ(a, u) = f(ζ, u), (8.89)

and the third order invariants δX, δ̄X and ΔX.

Proof. See the proof to Proposition (8.5.8).

Lemma 8.7.3. The PP-wave metric belonging to the G1 − I − 0 class will have the
canonical form

f(ζ, u) = g1(u)lnζ + g2(u)ζ

where g1 and g2 are arbitrary complex functions. The functionally independent in-
variants are α, its conjugate and V where these invariants are expressed in the (a, ā)
coordinates

α = −1
2ea+āḡ

− 1
2

1 , V = e−a−3a

The essential classifying functions are then

μ = −1
4

g1,u

g
3
2
1

α−1,

δ̄α = α2, (8.90)

ν = 1
2α−1 + 1

2

(
μ2

ᾱ
+ Δμ

ᾱ

)
− g2V,

and the third order invariants δV, δ̄V and ΔV.

Proof. See the proof to Proposition (8.5.9).

Lemma 8.7.4. The PP-wave metric belonging to the G1 − II − 1 class will have the
canonical form

f(ζ, u) = F (uikζ)u2 + g(u)ζ
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where g is an arbitrary complex function. The functionally independent invariants
are α, its conjugate and any one of the second order invariants δ̄α, μ, ν and their
conjugates - we will work with X = μδ̄αα−2 − μ̄ from (8.50). These invariants are
expressed in the (a, ā) coordinates,

α = −1
2

ea−ā

Z,a
, X = e−a−ā

(
L,u+L,uL̄,ā+L̄,u

L,a+L̄,ā+L,aL̄,ā

)
where ζ = Z(a, u) = (F ′′)−1(a − (1+ik)

2 ln(u))u−2ik and L = ln(Z,a).The essential
classifying functions are the remaining second order invariants

μ = e−a−ālog(Z,a),u

δ̄α = ᾱ

(
−1

2
ea−ā

Z,a

)
,a

ν = e−a−3ā

(
Z,uu + Φ̄ā

Z̄ā

)
, Φ(a, u) = f(ζ, u). (8.91)

At third order,

δX = ᾱX, δ̄X = αX,

and Re(ΔX) = ΔX1 has the particular form

ΔX1 = 2X2
1 . (8.92)

Proof. See the proof to Proposition (8.5.10).

Lemma 8.7.5. The PP-wave metric belonging to the G1 − III − 1a class will have
the canonical form

f(ζ, u) = F (eiuζ) + g(u)ζ

where g is an arbitrary complex function. The functionally independent invariants
are α, its conjugate and any one of the second order invariants δ̄α, μ, ν and their
conjugates - we will work with X = μδ̄αα−2 − μ̄ from (8.50). These invariants are
expressed in the (a, ā) coordinates,

α = −1
2

ea−ā

Z,a
, X = e−a−ā

(
L,u+L,uL̄,ā+L̄,u

L,a+L̄,ā+L,aL̄,ā

)
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where ζ = Z(a, u) = F (a − ig1)e−2ig1 and L = ln(Z,a). The essential classifying
functions are the remaining second order invariants

μ = e−a−ālog(Z,a),u

δ̄α = ᾱ

(
−1

2
ea−ā

Z,a

)
,a

ν = e−a−3ā

(
Z,uu + Φ̄ā

Z̄ā

)
, Φ(a, u) = f(ζ, u) (8.93)

At third order

δX = ᾱX, δ̄X = αX,

and Re(ΔX) = ΔX1 has the particular form

ΔX1 = 0. (8.94)

Proof. See the proof to Proposition (8.5.11).

8.7.2 (0, 2, 3, 3); Δα = 0 case:

Lemma 8.7.6. The PP-wave metric belonging to the G1 − III − 1b class will have
the canonical form

f(ζ, u) = F (ζ) + g(u)ζ

where g is an arbitrary complex function. The functionally independent invariants
are α, its conjugate and any one of the non-zero second order invariants δ̄α, ν and
their conjugates - we work with δ̄α . These invariants are expressed in the (a, ā)
coordinates,

α = −1
2

ea−ā

Z,a
, ν = e−a−3ā

(
Φ̄ā

Z̄ā

)
, Φ(a, u) = f(ζ, u)

where ζ = Z(a, u) = F (a − ig1)e−2ig1 and L = ln(Z,a). The essential classifying
functions are the remaining second order invariants

μ = 0,

δ̄α = barα

(
−1

2
ea−ā

Z,a

)
,a

, (8.95)

and the third order invariants δν, δ̄ν and Δν.

Proof. See the proof to Proposition (8.5.12).
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8.7.3 (0, 1, 3, 3); Δα �= 0 case:

Lemma 8.7.7. The PP-wave metric belonging to the G1 − a − 0 class in figure (8.1)
will have the canonical form for f(ζ, u),

f(ζ, u) = 1
16e2C

e4eCe−iR′(u)(ζ−z(u)), C ∈ R.

The functions R′(u) and z(u) may be any function except those listed in (8.23) and
(8.24) respectively. Using the special coordinates in (8.3), the functionally independent
invariants are

α = ea−āeCeiR′(u), W′ = R′(u) − i

2 ln (z,uu/z̄,uu) , X = ea+ā.

The essential classifying functions are

ᾱ = e2Cα−1,

δ̄α = −α2,

μ = iR′
,u(W)X−1, (8.96)

ν = (4α)−1 − a

(
μ2

ᾱ
+ Δμ

ᾱ

)
− z,uu(W)αe−iR′(W)e−CX−2.

Proof. In the (a, ā, u, v) coordinate system used in the previous section, these solutions
correspond to those metrics with ζ(a, u) of the form (8.10) with C1 = π/2 or 3π/2
mod 2π. By solving for a and integrating with respect to ζ in the coordinate system
where the ζ-linear piece of f(ζ, u) has been set to zero we find the canonical form for
the metric. The first order invariants are

α = ea−āeCeiR′(u), ᾱ = e2Cα−1.

The second order invariants are then

μ = iR′
,ue−a−ā, V = z,uue−a−3ā,

μ̄ = −μ, ν = (4α)−1 − a
(

μ2

ᾱ
+ Δμ

ᾱ

)
−V, δ̄α = −α2.

To continue we construct an appropriate pair of second order invariants, by first
making a gauge transformation R′(u) = R(u) + Ψ(u) such that eiΨ = (z,uu/z̄,uu) 1

2

W = iln

⎡⎣√V

V̄

eC

α

⎤⎦ = R(u).
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Notice that z,uu(u) may locally be written in terms of W and hence is a function-
ally dependent invariant, which will be a classifying function for the spacetime. To
determine the second invariant, we use this fact and eliminate this term in V ,

X =
∣∣∣∣∣ V
z,uu(W)

∣∣∣∣∣
− 1

2

= ea+ā.

The third order invariants are now

δW = 0, ΔW = R,u(W)X−1, δX = ᾱX, ΔX = 0.

We note that no new classifying functions are introduced at this stage. With the
analysis complete, we may write down the non-trivial classifying functions

ᾱ = e2Cα−1

μ = iR′
,u(W)X−1,

ν = (4α)−1 − a

(
μ2

ᾱ
+ Δμ

ᾱ

)
− z,uu(W)αe−iR′(W)e−CX−2.

Lemma 8.7.8. The PP-wave metric belonging to the G1 − b − 0 class in figure (8.1)
will have the canonical form for f(ζ, u),

f(ζ, u) = (e2iC1 +1)2

2(e2iC1 −3)(e2iC1 −1)

(
− (eiC0 eR′(u))eiC1

e2iC1 +1

) 4
e2iC1 +1 (ζ − z(u))−2itan(C1), C0 ∈ R.

If C1 �= 0, π/2, π, 3π/2 mod 2π the real-valued functions R′(u) and z(u) are arbitrary.
If C1 = 0, π mod 2π, R′(u) and z(u) with z,uu �= 0 may be any functions except
those in (8.29) and (8.30) respectively. Using the special coordinates in (8.3), the
functionally independent invariants are

α =
(

eeiC1 a+e−iC1 āeiC0

eR′(u)

)e−iC1

, U =
(

R
′2
,u

|z,uu|
)2

, X = ea+ā.
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The essential classifying functions are

ᾱ = αe2iC1 e−2ieiC1 C0 ,

δ̄α = e−2iC1α2,

μ = eiC1R′
,u(U)X−1,

ν = − 1
α(e−2iC1 − 3) − (ζ − Z1)

ζ,a

(
μ2

ᾱ
+ Δμ

ᾱ

)
(8.97)

−z,uu(U)
[
e−iC0−R′(U)αe−2iC1 X−1

]−2e2iC1
X−1,

ΔU = U,uX−1.

Proof. Opting for the (a, ā, u, v) coordinates, these solutions correspond to those met-
rics with ζ(a, u) of the form (8.10) with C1 �= π/2or3π/2mod2π. By solving for a

and integrating with respect to ζ in the coordinate system where the ζ-linear piece of
f(ζ, u) has been set to zero we find the canonical form for the metric. The particular
choice of R′ and Z in the instances that C1 = 0, π/2, π or 3π/2mod2π are necessary
to avoid those PP-wave spacetimes with invariant count (0, 1, 2, 3, 3).

The first order invariant α and its conjugate become

α =
(

eeiC1 a+e−iC1 āeiC0

eR′(u)

)e−iC1

, ᾱ = αe2iC1 e−2ieiC1 C0 .

The second order invariants are,

μ = eiC1R′
,ue−a−ā, V = z,uue−a−3ā,

μ̄ = e−2iC1μ, ν = − 1
α(e−2iC1 −3) − (ζ−Z1)

ζ,a

(
μ2

ᾱ
+ Δμ

ᾱ

)
−V, δ̄α = e−2C1α2 .

For ease of calculating the third order invariants, we will pick two new second order
invariants. The first arises from a ratio

U = |μ|2
|V| =

(
R

′2
,u

|z,uu|
)2

.

As before we may express z,uu in terms of U, and using this we find the second
invariant at this iteration:

X =
⎛⎝eiC1

√
|z,uu|U 1

4

μ

⎞⎠ = ea+ā.
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Calculating the third order invariants,

δU = 0, ΔU = U,uX−1, δX = ᾱX, ΔX = 0.

The remaining functionally dependent invariant arises at third order by expressing
U,u in terms of U. The essential functionally dependent invariants are

ᾱ = αe2iC1 e−2ieiC1 C0

μ = eiC1R′
,u(U′)X−1,

ν = − 1
α(e−2iC1 − 3) − (ζ − Z1)

ζ,a

(
μ2

ᾱ
+ Δμ

ᾱ

)

−z,uu(U)
[
e−iC0−R′(U)αe−2iC1X−1

]−2e2iC1
X−1,

ΔU = U,uX−1

8.7.4 (0, 1, 3, 3); Δα = 0 case:

Lemma 8.7.9. The PP-wave metric belonging to the G1 − c − 0 class in figure (8.1)
will have the canonical form for f(ζ, u),

f(ζ, u) =
(

C

4

)2
e

4
C

(ζ−z(u)), z̄ �= z, C ∈ R.

The function z(u) may be any complex-valued function with z̄ �= z. Using the special
coordinates in (8.3), the functionally independent invariants are

α = ea−ā

C
, W0 = −iln

[
z,uu

z̄,uu

]
, X = ea+ā.

while the essential classifying functions are

ᾱ = (C2α)−1,

δ̄α = −α2,

ν = (4α)−1 − z,uu(W0)CαX−2, (8.98)

ΔW0 = W1,u(W0)X−1.

Proof. In the (a, ā, u, v) coordinate system, these solutions correspond to those met-
rics with ζ(a, u) of the form (8.11) with ε = 0. By solving for a and integrating with
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respect to ζ in the coordinate system where the ζ-linear piece of f(ζ, u) has been
set to zero, we find the canonical form for the metric. The constant in (8.11) is c4,
which is complex, however by using the coordinate freedom this C may be set to be
real. Equivalently if C is left as c4 our invariants imply that the phase of c4 is not a
required constant, unlike its magnitude - to see this replace C → c4 in the following
proof. The first order invariants are

α = ea−ā

C
, ᾱ = (C2α)−1.

The second order invariants are then

δ̄α = −α2, μ = 0, V = Z,uue−a−3ā, ν = (4α)−1 −V, δ̄α = −α2.

To continue we construct an appropriate pair of second order invariants from V and
V̄, the first will be a function of u only

W0 = −iln

[
(Cα)−2

(
V
V̄

)]
= −iln

[
z,uu

z̄,uu

]
.

With this invariant we see that locally z,uu may be written in terms of W0 and we
may solve for the remaining invariant from V,

X =
(

V

z,uu(W0)Cα

)− 1
2

= ea+ā.

At third order the invariants are:

δW0 = 0, ΔW0 = W1,u(W0)X−1, δX = ᾱX, ΔZ = 0.

The non-trivial classifying functions are then,

ᾱ = (C2α)−1,

δ̄α = −α2,

ν = (4α)−1 − z,uu(W0)CαX−2,

ΔW0 = W1,u(W0)X−1
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Lemma 8.7.10. The PP-wave metric belonging to the G1 −d−0 class in figure (8.1)
will have the canonical form for f(ζ, u),

f(ζ, u) = C−4iC0(ζ − z(u))4iC0

(2 − 16C2
0 − 12iC0)

, C, C0 ∈ R

with C, C0 �= 0 and z,uu �= eiB(u)(1+iC0). Using the special coordinates in (8.3), the
functionally independent invariants are

α = e
a+( 1+2iC0

1−2iC0 )ā

C
, R = |z,uu|e−2(a+ā), P =

√
z,uu

z̄,uu
e(a−ā).

The essential classifying functions are

ᾱ = (C̄)
(

1+2iC0
1−2iC0

)
(C)−1α

(
1+2iC0
1−2iC0

)
,

δ̄α = α2
(1 − i2C0

1 + i2C0

)
,

ν = (4α)−1 − RP, (8.99)

ΔR = R 1
2

Ru(α, R, P)√
|z,uu(α, R, P)|

,

ΔP = R 1
2

Pu(α, R, P)√
|z,uu(α, R, P)|

Proof. In the (a, ā, u, v) coordinate system, these solutions correspond to those met-
rics with ζ(a, u) of the form (8.11) with ε �= 0 and C0 �= 0. By solving for a and
integrating with respect to ζ in the coordinate system where the ζ-linear piece of
f(ζ, u) has been set to zero, we find the canonical form for the metric. The constant
in (8.11) is c4, which is complex, however the form of f(ζ, u) allows for either the
magnitude or phase of c4 to be removed - in this case we opt for the magnitude.
This arises from the fact that there are only two essential classifying functions for the
three constants. To avoid the subclass of these spacetimes with an invariant count
(0, 1, 2, 3, 3) we require that z(u) �= eiB(u)(1+iC0), C0 ∈ R

α = e
a−( 1−2iC0

1+2iC0 )ā

C̄
,

ᾱ = (C̄)
(

1+2iC0
1−2iC0

)
(C)−1α

(
1+2iC0
1−2iC0

)
.

The second order invariants are then

δ̄α = α2
(

1−i2C
1+i2C

)
, μ = 0, V = z,uue−a−3ā, ν = (4α)−1 −V.
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To construct a set of invariants with the simplest third order functionally dependent
invariants, we look at the polar representation of V

R = |z,uu|e−2(a+ā), P =
√

z,uu

z̄,uu

e(a−ā) ;

At third order we find the following relations,

δR = −2Rᾱ, ΔR = R
1
2 Ru(α,R,P)√

|z,uu(α,R,P)| ,

δP = Pᾱ, δ̄R = −αR, ΔP = R
1
2 Pu(α,R,P)√

|z,uu(α,R,P)|

In summary the non-trivial classifying functions are,

ᾱ = (C)
(

1+2iC0
1−2iC0

)
(C̄)−1α

(
1+2iC0
1−2iC0

)
,

δ̄α = α2
(1 − i2C0

1 + i2C0

)
,

ν = (4α)−1 −R
1
2P,

ΔR = R
1
2

Ru(α,R,P)√
|z,uu(α,R,P)|

,

ΔP = R
1
2

Pu(α,R,P)√
|z,uu(α,R,P)|

Lemma 8.7.11. The PP-wave metric belonging to the G1 − d0 − 0 class in figure
(8.1) will have the canonical form for f(ζ, u),

f(ζ, u) = e−iC ln(ζ − z(u)), C, ∈ R

and z̄ �= z−1. Using the special coordinates in (8.3), the functionally independent
invariants are

α = ea+ā

e−iC , R0 = |z,uu|, P =
√

z,uu

z̄,uu
e(a−ā).

The essential classifying functions are

ᾱ = e−2iCα,

δ̄α = α2,

ν = (4α)−1 − RP, (8.100)

ΔR0 = (eiCα)−1Ru,

ΔP = (eiCα)−1Pu
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Proof. In the (a, ā, u, v) coordinate system, these solutions correspond to those met-
rics with ζ(a, u) of the form (8.11) with ε �= 0 and C0 �= 0. By solving for a and
integrating with respect to ζ in the coordinate system where the ζ-linear piece of
f(ζ, u) has been set to zero, we find the canonical form for the metric. The constant
in (8.11) is c4, which is complex, however the form of f(ζ, u) allows for magnitude of
c4 to be removed, but not the phase. This arises from the fact that the term c4/c̄4 is
involved in the classifying functions. To avoid the subclass of these spacetimes with
an invariant count (0, 1, 2, 3, 3) we require that z(u) �= z̄(u)

α = ea+ā

c4
,

ᾱ = (c4)(C̄4)−1α.

The second order invariants are then

δ̄α = α2, μ = 0, V = z,uue−a−3ā, ν = (4α)−1 −V.

To construct a set of invariants with the simplest third order functionally dependent
invariants, we construct an invariant dependent on u only,

W2 =
√
VV̄(e−iCα)−2 = |z,uu|.

To construct a set of invariants with the simplest third order functionally dependent
invariants, we look at the polar representation of V, however in this case R may be
scaled to be a function of u only

R0 = |z,uu|, P =
√

z,uu

z̄,uu

e(a−ā) ;

At third order we find the following relations,

δR0 = 0, ΔR0 = (eiCα)−1Ru,

δP = Pᾱ, δ̄R = −αR, ΔP = (eiCα)−1Pu

In summary the non-trivial classifying functions are,

ᾱ = c4c̄
−1
4 α,

δ̄α = α2,

ν = (4α)−1 −RP,

ΔR0 = (eiCα)−1Ru,

ΔP = (eiCα)−1Pu



170

8.7.5 (0, 1, 2, 3, 3); Δα �= 0:

Lemma 8.7.12. The PP-wave metric belonging to the G1 − b−1 class in figure (8.1)
will have the canonical form for f(ζ, u).

f(ζ, u) = C−2e2iC0
4u2 lnζ + eC1 e−iZ(u)

u2 ζ, C, C0, C1 ∈ R

where Z �= C2ln(u).Using the special coordinates in (8.3), the functionally independent
invariants are

α = Cue−iC0ea+ā, W1 = Z(u) − i(a − ā), ΔY = Z,u.

The essential classifying functions are

ᾱ = e2iC0α,

μ = (eiC0α)−1,

ν = 1
2α

+ 1
2

(
μ2

ᾱ
+ Δμ

ᾱ

)
(8.101)

−eC1C2eiW1

e2iC0α2 ,

ΔY = CuY,u(eiC1α)−1X−1.

Proof. Opting for the (a, ā, u, v) coordinates, these solutions correspond to those met-
rics with ζ(a, u) of the form (8.10) with C1 = 0 or π mod2π given in lemma (8.3.6),
the coordinate transformation (8.19) was used to remove Z and set the ζ-linear term
of f(ζ, u) to be z,uu. The first order invariant α and its conjugate become

α = Cue−iC0ea+ā, ᾱ = e2iC0α.

The second order invariants are,

μ = (eiC0α)−1, V = eC2 eiZ(u)

u2 e−a−3ā,

ν = − 1
−2α

− 1
2

(
μ2

ᾱ
+ Δμ

ᾱ

)
−V, δ̄α = α2 .

Instead of V we use the following second order invariant

W1 = −iln

⎛⎝√
V
V̄

⎞⎠ = Z(u) − i(a − ā),
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from which we have the following third order invariants

δW1 = iᾱ, ΔW1 = CuZ,u(eiC0α)−1.

Solving for Y = uZ,u produces the last candidate for the third functionally indepen-
dent invariant. In general this will be the case, except when the triple wedge product
of α W1 and Y vanish. Calculating this condition we find a differential equation for
Z:

Z = C2ln(u) + C3,

implying that Y = C so that these are G2 spacetimes, and so we must avoid this
particular Z to have the desired invariant count. The remaining functionally depen-
dent invariant arises at fourth order by expressing Y,u in terms of Y.The essential
functionally dependent invariants are then

ᾱ = αe2iC0 α,

μ = (eiC0α)−1,

ν = 1
2α

+ 1
2

(
μ2

ᾱ
+ Δμ

ᾱ

)

−eC1C2eiW1

e2iC0α2 ,

ΔY = Y,u(eiC0α)−1X−1.

8.7.6 (0, 1, 2, 3, 3) ; Δα = 0:

Lemma 8.7.13. The PP-wave metric, expressed in terms of a canonical coframe and
belonging to the G1−c−1 class in figure (8.1) will have the canonical form for f(ζ, u),

f(ζ, u) = C2

16 e
4
C

(ζ) + eiC0eZ(u)ζ, C, C0 ∈ R,

and eZ �= C0ln(u), C0 ∈ R. Using the special coordinates in (8.3), the functionally
independent invariants are

α = ea−āC−1, U0 = e
Z
2 e−a−ā, Y0 = (Z,ue− Z

2 ),u.
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The essential classifying functions are

ᾱ = C−2α−1,

ν = (4α)−1 − eiC0eZ(Y0)CαU2
0, (8.102)

ΔY0 = (Z,ue− Z
2 ),ue− Z

2 U0.

Proof. This corresponds to Δα = 0 case in Section (8.3) when ε = 0 from the proof of
Lemma (8.3.7) where the coordinate transformation (8.19) was used. By a rotation
in the (ζ, ζ̄)-plane the complex constant in equation (8.11) may always set to be real.
The first order invariants are

α = ea−āC−1, ᾱ = C−2α−1.

The second order invariants will be,

μ = 0, V = eZe−a−3ā, ν = (4α)−1 − eiC0V, δ̄α = −α2,

from V we construct another real-valued invariant

U0 = (V̄V) 1
4 = e

Z
2 e−a−ā.

The original invariant V must be expressed in terms of α, U0 and some third order
invariant arising from the frame derivatives of U0:

δU0 = −ᾱU0, ΔU0 = 1
2Z,ue− Z

2 U2
0;

so that at third order the last real-valued invariant will be,Y0 = Z,ue− Z
2 . Taking the

frame derivatives of this yields the final set of classification functions

δY0 = 0, ΔY0 = (Z,ue− Z
2 ),ue− Z

2 U0

The non-trivial classifying functions are:

ᾱ = C−2α−1

ν = (4α)−1 − eiC0eZ(Y0)CαU2
0

ΔY0 = (Z,ue− Z
2 ),ue− Z

2 U0.



173

Lemma 8.7.14. The PP-wave metric belonging to the G1 −d−1 class in figure (8.1)
will have the canonical form for f(ζ, u),

f(ζ, u) = C−4iC0(ζ)4iC0

(2 − 16C2
0 − 12iC0)

+ c1e
(−4C0−I)Z(u)ζ, C, C0 ∈ R, c1 ∈ R

with C, C0 �= 0. Using the special coordinates in (8.3), the functionally independent
invariants are

α = e
a+( 1+2iC0

1−2iC0 )ā

C
, V = e(−4C0+I)Z(u)e−a−3ā, W2 = Z,ue−a−ā.

The essential classifying functions are

ᾱ = (C)
(

1+2iC0
1−2iC0

)
(C)−1α

(
1+2iC0
1−2iC0

)
,

δ̄α = α2
(1 − i2C0

1 + i2C0

)
,

ν = (4α)−1 − c1V, (8.103)

ΔW2 = z,uu

Z2
,u

W2.

(8.104)

Proof. In the (a, ā, u, v) coordinate system, these solutions correspond to those met-
rics with ζ(a, u) of the form (8.11) with ε �= 0 and C0 �= 0 produced in the proof
of Lemma (8.3.7) where the coordinate transformation (8.19) was used. It is always
possible to make C real-valued, using a rotation in the (ζ, ζ̄) plane.

α = e
a−( 1−2iC0

1+2iC0 )ā

C̄
,

ᾱ = (C̄)
(

1+2iC0
1−2iC0

)
(C)−1α

(
1+2iC0
1−2iC0

)
.

The second order invariants are then

δ̄α = α2
(

1−i2C0
1+i2C0

)
, μ = 0, V = e(−4C0+I)Z(u)e−a−3ā, ν = (4α)−1 − c1V.

At third order the frame derivatives of V are

δV = −ᾱV, δ̄V = −3αV, ΔV = (−4C0 + I)W2V.

Solving for W2, its frame derivatives produce the fourth order invariants

δW2 = −ᾱW2, ΔW2 = z,uu

Z2
,u

W2.



174

Thus the essential classifying functions are

ᾱ = (C̄)
(

1+2iC0
1−2iC0

)
(C)−1α

(
1+2iC0
1−2iC0

)
,

δ̄α = α2
(1 − i2C0

1 + i2C0

)
,

ν = (4α)−1 − c1V,

ΔW2 = z,uu

Z2
,u

W2.

(8.105)

Lemma 8.7.15. The PP-wave metric belonging to the G1 − d0 − 1 class in figure
(8.1) will have the canonical form for f(ζ, u),

f(ζ, u) = − e2iC

4 ln(ζ) + eC0eiZ(u)ζ, C, C0 ∈ R

and Z(u) �= C1u, C1 ∈ R. Using the special coordinates in (8.3), the functionally
independent invariants are

α = ea+āeiC , Z = eiZ(u)e−2ā, Y1 = Z,u .

The essential classifying functions are

ᾱ = e−2iCα

ν = (4α)−1 − eC0Z(Cα)−1, (8.106)

ΔY1 = Y1,u(Cα)−1.

Proof. This belongs to the final case in Section (8.3) with ε = 1 and C3 = 0, where we
have used the coordinate transform (8.19). A rotation of (ζ, ζ̄) the complex constant
in equation (8.11) may always set to be real-valued and positive. The first order
invariants are

α = ea+āeiC , ᾱ = e−2iCα.

The second order invariants will be,

μ = 0, ν = (4α)−1 − eC0V, V = eiZe−a−3ā, δ̄α = α2,
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from V we construct another functionally independent invariant,

Z = CαV = eiZe−2ā.

The only relevant third order invariants arise from the frame derivatives of X

δZ = 0, δ̄Z = −2αZ, ΔZ = iZ,u(Cα)−1 .

Finally, we produce the third functionally independent invariant as a real-valued
function of u, Y1 = Z,uu. Frame derivatives of Y yield the non-trivial fourth order
invariants

δY1 = 0, ΔY1 = Z,uu(Cα)−1.

8.8 All G2 Spacetimes

8.8.1 (0, 2, 2); Δα �= 0:

For this class of spacetimes, an analysis of the vanishing of the necessary wedge
products does not readily produce tractable equations. However if one considers the
fact that a killing vector must annihilate all invariants, and that all invariants may
be expressed in this subcase in terms of α and ᾱ : the normalization Δ̂α → 0 via a
null rotation about � will be a helpful choice as it will then be a linear combination
of Killing vectors.

A = δ̄α

α2 , B = μA − μ̄, (8.107)

X = B/(AĀ − 1), (8.108)

The X invariant will only be applicable in the case AĀ �= 1 B �= 0, implying that
μ �= 0. We study the case where A = 1, μ �= 0 first, and study the μ = 0 case last.

Lemma 8.8.1. The PP-wave metric belonging to the G2 − I class in figure (8.1) will
have the canonical form for f(ζ, u),

f(ζ, u) = g(u)ln(ζ),
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where g(u) is complex valued. Using the special coordinates in (8.3), the functionally
independent invariants are α and its conjugate,

α = −1
2ea+āḡ− 1

2 .

The essential classifying functions are

μ = −1
4

g,u

g
3
2

α−1,

δ̄α = α2, (8.109)

ν = 1
2α−1 + 1

2

(
μ2

ᾱ
+ Δμ

ᾱ

)
.

Proof. See the proof to Proposition (8.5.13).

Lemma 8.8.2. The PP-wave metric belonging to the G2 − II class in figure (8.1)
will have the canonical form for f(ζ, u),

f(ζ, u) = u−2F (ζuik),

where F is a complex valued function of one variable and k ∈ R. Using the spe-
cial coordinates in (8.3), the two functionally independent invariants are α and its
conjugate,

α = −1
2

ea−ā

Z,a
,

where ζ = Z(a, u) = (F ′′)−1(a − (1+ik)
2 ln(u))u−2ik and L = ln(Z,a). The essential

classifying functions are the second and third order invariants

μ = e−a−ālog(Z,a),u

δ̄α = ᾱ

(
−1

2
ea−ā

Z,a

)
,a

ν = e−a−3ā

(
Z,uu + Φ̄ā

Z̄ā

)
, Φ(a, u) = f(ζ, u). (8.110)

At third order, there is another constraint aside from

δX = ᾱX, δ̄X = αX, Re(ΔX) = ΔX1

that determines this class, given ν̂ given in (8.52) one requires that Υ̂ (8.53) must
vanish:

Υ̂ = Δ(ν̂/X̄) − 2ν̂ + 1/α − 4iXX2/ᾱ = 0. (8.111)
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Proof. See the proof to Proposition (8.5.10).

Lemma 8.8.3. The PP-wave metric belonging to the G2 − IIIa class in figure (8.1)
will have the canonical form for f(ζ, u),

f(ζ, u) = F (ζeiku),

where F is a complex-valued function of one variable and k ∈ R. Using the special
coordinates in (8.3), the two functionally independent invariants are α and its conju-
gate,

α = −1
2

ea−ā

Z,a
,

where ζ = Z(a, u) = F (a − ig1)e−2ig1 and L = ln(Z,a). The essential classifying
functions are the remaining second order invariants

μ = e−a−ālog(Z,a),u

δ̄α = ᾱ

(
−1

2
ea−ā

Z,a

)
,a

ν = e−a−3ā

(
Z,uu + Φ̄ā

Z̄ā

)
, Φ(a, u) = f(ζ, u) (8.112)

At third order, there is another constraint aside from

δX = ᾱX, δ̄X = αX, Re(ΔX) = 0

that determines this class, given ν̂ given in (8.52) one requires that Υ̂ (8.53) must
vanish:

Υ̂ = Δ(ν̂/X̄) − 2ν̂ + 1/α − 4iXX2/ᾱ = 0. (8.113)

Proof. See the proof to Proposition (8.5.11).

8.8.2 (0, 2, 2); Δα = 0:

Lemma 8.8.4. The PP-wave metric belonging to the G2 − III − 1b class will have
the canonical form

f(ζ, u) = F (ζ)
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The functionally independent invariants are α, expressed in the (a, ā) coordinates,

α = −1
2

ea−ā

Z,a

where ζ = Z(a, u) = F (a − ig1)e−2ig1 and L = ln(Z,a). The essential classifying
functions are the remaining second order invariants

μ = 0,

δ̄α = ᾱ

(
−1

2
ea−ā

Z,a

)
,a

, (8.114)

ν = e−a−3ā

(
Φ̄ā

Z̄ā

)
, Φ(a, u) = f(ζ, u)

At third order there is one more invariant that determines this class

Δν = 0. (8.115)

Proof. See the proof to Proposition (8.5.16).

8.8.3 (0, 1, 2, 2):

Lemma 8.8.5. The PP-wave metric belonging to the G2 − a − 0 − 0 class in figure
(8.1) will have the canonical form for f(ζ, u)

f(ζ, u) = (e2iC1 +1)2

(e2iC1 −3)(e2iC1 −1)

[
−(eiC0 eCu)eiC1

e2iC1 +1

] 4
e2iC1 +1

ζ2itan(C1) + c2e
−iCu

sin(C1) ζ,

where C, C0, C1 ∈ R and c2 ∈ C. Using the special coordinates in (8.3), the two
functionally independent invariants are α and μ

α = ea+e−2iC1 ā
(
e−iC0eCu

)−e−iC1
, μ = Ce−iC1e−a−ā.

The essential classifying functions are

ᾱ = (e−2C0α)e2iC1 ,

μ̄ = e2iC1μ,

ν = 1
4α

+ 1
e2iC1 +1

(
μ2

ᾱ
+ Δμ

ᾱ

)
−
[
((e−iC0)e−iC1 αe−iC1C−1μ)3(eiC0)eiC1 ᾱeiC1C−1μ̄

]− 1
2sin(C1) , (8.116)

Δμ = 0.
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Proof. This metric function arises in the analysis in section (8.3) from (8.10) where
R,uu = 0, C1 �= 0, π/2, 3π/2, π mod 2π and Z1 = Z1a in (8.27). By direct inspection
we find that for this f(ζ, u) at first order the invariants are:

α = ea+e−2iC1 ā
(
e−iC0eCu

)−e−iC1
, ᾱ = (e−2C0α)e2iC1 .

while at second and third order we have,

μ = Ce−iC1e−a−ā, δ̄α = α2,

ν = 1
4α

+ 1
e2iC1 +1

(
μ2

ᾱ
+ Δμ

ᾱ

)
−
[
((e−iC0)e−iC1 αe−iC1C−1μ)3(eiC0)eiC1 ᾱeiC1C−1μ̄

]− 1
2sin(C1) ,

δμ = −ᾱμ, Δμ = 0.

Lemma 8.8.6. The PP-wave metric belonging to the G2 − a − 0 − 1 class in figure
(8.1) will have the canonical form for f(ζ, u)

f(ζ, u) = (e2iC1 + 1)2

(e2iC1 − 3)(e2iC1 − 1)

[−(eiC0C3u
C)eiC1

e2iC1 + 1

] 4
e2iC1 +1

ζ2itan(C1)

+c2u
i(sin(C1)+iln(C3)+ieiC1 )

sin(C1) ,

where C, C0, C1, C3 ∈ R and c2 ∈ C. Using the special coordinates in (8.3), the two
functionally independent invariants are α and μ

α = ea+e−2iC1 ā
(
e−iC0eCu

)−e−iC1
, μ = Cu−1eiC1e−a−ā.

The essential classifying functions are

ᾱ = (e−2C0α)e2iC1 ,

μ̄ = e2iC1μ,

ν = 1
4α

+ 1
e2iC1 +1

(
μ2

ᾱ
+ Δμ

ᾱ

)
−
[
((e−iC0)e−iC1 αe−iC1C−1μ)3(eiC0)eiC1 ᾱeiC1C−1μ̄

]− 1
2sin(C1) , (8.117)

Δμ = C−1eiC1μ2.
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Proof. This metric function arises in the analysis in section (8.3) from (8.10) where
R = Cln(u) + C3, C1 �= 0, π/2, 3π/2, π mod 2π and Z1 = Z1b in (8.28). By direct
inspection we find that for this f(ζ, u) at first order the invariants are:

α = ea+e−2iC1 ā
(
e−iC0eCu

)−e−iC1
, ᾱ = (e−2C0α)e2iC1 .

while at second and third order we have,

μ = Cu−1e−iC1e−a−ā, δ̄α = α2,

ν = 1
4α

+ 1
e2iC1 +1

(
μ2

ᾱ
+ Δμ

ᾱ

)
−
[
((e−iC0)e−iC1 αe−iC1C−1μ)3(eiC0)eiC1 ᾱeiC1C−1μ̄

]− 1
2sin(C1) ,

δμ = −ᾱμ, Δμ = C−1eiC1μ2.

Lemma 8.8.7. The PP-wave metric belonging to the G2 − a − 0 − 2 class in figure
(8.1) will have the canonical form for f(ζ, u)

f(ζ, u) = 1
16e2C0

e4eC0 (ζ+C)eiC1u

,

where C, C0, C1 ∈ R. Using the special coordinates in (8.3), the two functionally
independent invariants are α and μ

α = ea−āe−iC1u+C0 , μ = iC1e
−a−ā.

The essential classifying functions are

ᾱ = e2C0α−1,

ν = 1
4α

+ μ2

2ᾱ
(ln(−iμᾱ

C1
) − ln(16ce3C0)), (8.118)

Δμ = 0.

Notice that the constant found from ν is the ratio C1
C

, reflecting the coordinate freedom
in u for fixing constants. This allows one to either scale C1 or C to be equal to one.

Proof. This metric function arises in the analysis in section (8.3) from (8.10) where
R,uu = 0, C1 = π/2, 3π/2 mod 2π and Z1 = Z1a in (8.24)- fixing these constants we
relabel the remaining constants to have lower index numbering. By translating u we
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may set c ∈ C below to be real-valued. By direct inspection we find that for this
f(ζ, u) at first order the invariants are:

α = ea−āe−iC1u+C0 , ᾱ = e2C0α−1.

while at second and third order we have,

μ = iC1e
−a−ā, δ̄α = −α2,

ν = 1
4α

+ μ2

2ᾱ
(ln(−iμᾱ

C1
) − ln(16ce3C0)),

δμ = −ᾱμ, Δμ = 0.

Lemma 8.8.8. The PP-wave metric belonging to the G2 − a − 0 − 3 class in figure
(8.1) will have the canonical form for f(ζ, u),

f(ζ, u) = 1
16e2C0u2 e4eC0 (ζ+C)uiC1 .

Using the special coordinates in (8.3), the two functionally independent invariants are
α and μ

α = ea−āeC0u−iC1 , μ = iC1e
−a−ā

u
.

The essential classifying functions are

ᾱ = e2C0α−1,

ν = 1
4α

+ μ2

2ᾱ

C1 + i

2C1
(ln(−μᾱ

C1
) − ln(16c) + 2C0), (8.119)

Δμ = iμ2

C1
.

Proof. This metric function arises in the analysis in section (8.3) from (8.10) where
R,uu �= 0, C1 = π/2, 3π/2 mod 2π and Z1 = Z1b in (8.24) - fixing C1 we relabel the
remaining constants to have lower index numbering. By scaling u and translating
z and v appropriately one may set the complex constant c in the following proof to
be real-valued. By direct inspection we find that for this f(ζ, u) at first order the
invariants are:

α = ea−āeC0u−iC1 , ᾱ = e2C0α−1.
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while at second and third order we have,

μ = iC1e−a−ā

u
, δ̄α = −α2,

ν = 1
4α

+ μ2

2ᾱ
C1+i
2C1

(ln(−μᾱ
C1

) − ln(16c) + 2C0);

δμ = −ᾱμ, Δμ = iμ2

C1
.

Lemma 8.8.9. The PP-wave metric belonging to the G2 − b − 0 class in figure (8.1)
will have the canonical form for f(ζ, u),

f(ζ, u) = −e2iCe−2R(u)lnζ,

where R(u) is real-valued. Using the special coordinates in (8.3), the two functionally
independent invariants are α and μ

α = −e−iCea+āeR, μ = −R,ue−a−ā.

The essential classifying functions are

ᾱ = e2iCα

ν = 1
2α

+ 1
2(μ2

ᾱ
+ Δμ

ᾱ
), (8.120)

Δμ = −R,uue−2a−2ā.

Proof. This metric function arises in the analysis in section (8.3) from (8.10) where
Z1,uu = 0, C1 = 0, π mod 2π and R is arbitrary. For this f(ζ, u) at first order the
invariants are:

α = −e−iCea+āeR, ᾱ = e2iCα.

while at second and third order we have,

μ = −R,ue−a−ā, δ̄α = α2

ν = 1
2α

+ 1
2(μ2

ᾱ
+ Δμ

ᾱ
);

Δμ = −R,uue−2a−2ā.
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Lemma 8.8.10. The PP-wave metric belonging to the G2 − b−1 class in figure (8.1)
will have the canonical form for f(ζ, u),

f(ζ, u) = u−2
(

e2iC0lnζ

4C2 + C1u
−2+iC2eiC3

)
.

Using the special coordinates in (8.3), the two functionally independent invariants are
α and V

α = ea+āCe−iC0u, V = e−a−3āu−2−iC2 .

The essential classifying functions, are

ᾱ = e2iC0 , α

μ = C

eiC0α
,

ν = (2α)−1 + C1e
iC3V, (8.121)

ΔV = −(2 + iC3)V
C

eiC0α
.

Proof. By direct inspection we find that for this f(ζ, u) at first order the invariants
are:

α = e−iCea+āCu, ᾱ = e2iC0α.

while at second and third order we have,

V = e−a−3āu−2−iC2 , μ = C
eiC0 α

, ν = (2α)−1 + C1e
iC3V, δ̄α = α2;

δV = −ᾱV, δ̄V = −3αV, ΔV = −(2 + iC2)V C
eiC0 α

.

Lemma 8.8.11. The PP-wave metric belonging to the G2 − c−0 class in figure (8.1)
will have the canonical form for f(ζ, u),

f(ζ, u) = C2 e
4
C

ζ

16 + c0ζ.

Using the special coordinates in (8.3), the two functionally independent invariants are
α and V

α = ea−āu

C
, V = e−a−3ā.



184

The essential classifying functions, distinguishing one spacetime in this class from
another, will be:

ᾱ = 1
C2α

, ν = (4α)−1 − c0V. (8.122)

Proof. This metric function arises in the analysis in section (8.3) from (8.11) where
ε = 0 and Z1,uuu = 0, then by translating ζ one may absorb the phase of the complex
constant c4 and make it real-valued. By direct inspection we find that for this f(ζ, u)
at first order the invariants are:

α = ea−āu

C
, ᾱ = 1

C2α
.

while at second and third order we have,

V = e−a−3ā, δ̄α = −α2,

μ = 0, ν = (4α)−1 − c0V,

δV = −ᾱV, δ̄V = −3αV, ΔV = 0.

Lemma 8.8.12. The PP-wave metric belonging to the G2 − c−1 class in figure (8.1)
will have the canonical form for f(ζ, u),

f(ζ, u) = C2e
4ζ
C

16 + c0ζ

u2 .

Using the special coordinates in (8.3), the two functionally independent invariants are

α = ea−ā

C
, U1 = u−1e−a−ā.

The essential classifying functions are

ᾱ = 1
C2α

, ν = (4α)−1 − c0CU2
1α. (8.123)

Proof. This metric function arises in the analysis in section (8.3) from (8.11) where
ε = 0 and Z1,uu = Cu−2, by rotating the ζ coordinates, we may shift the phase of c4

onto the ζ-linear term. By direct inspection we find that for this f(ζ, u) at first order
the invariants are:

α = ea−ā

C
, ᾱ = 1

C2α
.
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At second order we have the usual invariant V = u−2e−a−3ā, however instead of V
we work with the invariant U1 =

√
|V|,

U1 = u−1e−a−ā.

We may write V = CU2
1α. The functionally dependent invariants are

μ = 0, ν = (4α)−1 − c0CU2
1α, δ̄α = −α2,

while at third order we find,

δU1 = ᾱU1, ΔU1 = −U2
1.

Lemma 8.8.13. The PP-wave metric belonging to the G2 −d−0 class in figure (8.1)
will have the canonical form for f(ζ, u),

f(ζ, u) = c2

4C2
1 + 2iC1

(
ζ

c

)2iC1

+ C0ζ,

where C0, C1 ∈ R, c ∈ C and C1 �= 0. Using the special coordinates in (8.3), the two
functionally independent invariants are

α = eae
( 1+i2C1

1−2iC1
)ā

c̄
, W4 = ea−ā.

The essential classifying functions are

ᾱ = (c̄α)
1−2iC1
1+2iC1

c
,

ν = (
(1 + 2iC1

1 − 2iC1

)
(4α)−1 − C0Vα, (8.124)

δ̄α =
(1 − 2iC1

1 + 2iC1

)
α2.

ΔW4 = 0

Proof. This metric function arises in the analysis in section (8.3) from (8.11) where
ε �= 0 and Z1,uuu = 0. For this metric function f(ζ, u), at first order the invariants
are

α = eae
( 1+i2C1

1−2iC1
)ā

c̄
, ᾱ = ᾱ = (c̄α)

1−2iC1
1+2iC1
c

.
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At second order we have the usual invariant V = e−a−3ā, however instead of V we
work with the invariant W4 =

√
|V|,

W4 =
√
V
V̄

= ea−ā.

We may write V = (αW4)
−(1−2iC1)

2 ( ᾱ
W4

)
−(1−2iC1)

2 . The functionally dependent second
order invariants are

μ = 0, ν =
(

1+2iC1
1−2iC1

)
(4α)−1 − C0Vα, δ̄α =

(
1−2iC1
1+2iC1

)
α2.

Taking the frame derivatives of W4, the third order invariants are

δW4 = ᾱW4, ΔW4 = 0.

If C1 = 0 in the above case, the form of f(ζ, u) changes slightly, f(ζ, u) = −C2ln( ζ
C

)+
c0ζ. However, by direct inspection, we see that this is a particular instance of the
next subcase.

Lemma 8.8.14. The PP-wave metric belonging to the G2 −d−1 class in figure (8.1)
will have the canonical form for f(ζ, u),

f(ζ, u) = c2

4C2
1 + 2iC1

(
ζ

c

)2iC1

+ c0u
−2− i

2C1 ζ,

Using the special coordinates in (8.3), the two functionally independent invariants are

α = eae
( 1+i2C1

1−2iC1
)ā

c̄
, V = u

−2+ i
2C1 e−a−3ā.

The essential classifying functions are

ᾱ = (c̄α)
1−2iC1
1+2iC1

c
,

ν = (
(1 + 2iC1

1 − 2iC1

)
(4α)−1 − c0Vα, (8.125)

δ̄α =
(1 − 2iC1

1 + 2iC1

)
α2.

ΔV = −
(

2 + i

2C1

)
V(VV̄)− 1

4
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Proof. This metric function arises in the analysis in section (8.3) from (8.11) where
ε �= 0 and Z1,uu = c0u

−2− i
2C1 . For this metric function f(ζ, u), at first order the

invariants are

α = eae
( 1+i2C1

1−2iC1
)ā

c̄
, ᾱ = ᾱ = (c̄α)

1−2iC1
1+2iC1
c

.

At second order we have the usual invariant V = e−a−3ā. The functionally dependent
second order invariants are

μ = 0, ν =
(

1+2iC1
1−2iC1

)
(4α)−1 − C0Vα, δ̄α =

(
1−2iC1
1+2iC1

)
α2.

Taking the frame derivatives of V, the third order invariants are

δV = −ᾱV, δ̄V = −3αV, ΔV = −(2 + i
2C1
V(VV̄)− 1

4 .

Lemma 8.8.15. The PP-wave metric belonging to the G2 − d0 − 1 class in figure
(8.1) will have the canonical form for f(ζ, u),

f(ζ, u) = e−2iC lnζ + C1e
iC0uζ.

Using the special coordinates in (8.3), the two functionally independent invariants are

α = e−iCea+ā, W5 = eiC0uea−ā;

the essential classifying functions are

ᾱ = e2iCα,

ν = (4α)−1 + C1V,

ΔW5 = iC0W5

c̄α

Proof. This metric function arises in the analysis in section (8.3) from (8.11) where
ε �= 0, C3 = 0 and Z,uu = c0e

iC0u, a scaling of u sets the magnitude of c4 equal to 1
and a rotation in the ζ-plane sets C1 to be real-valued. For this f(ζ, u) at first order
the invariants are:

α = eiCea+ā, ᾱ = e2iCα .
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At second order we have the usual invariant V = eiC0ue−a−3ā, however instead of V
we work with the invariant,

W5 =
√
V
V̄

= eiC0uea−ā.

We may write V = W5
e2iCα2 . The functionally dependent second order invariants are

μ = 0, ν = (4α)−1 + C1V, δ̄α = α2,

Taking the frame derivatives of W5, the third order invariants are

δW5 = ᾱW5, ΔW5 = iC0W5
eiCα

.

8.9 All G3 Spacetimes with α �= 0

By imposing the condition that only that the invariant arising at second order is
functionally dependent, a subset of the G2 solutions produce G3 solutions: G3-c-0
arises from G2-a-0-2, G2-c-0 and G2-c-1; G2-b-0 and G2-b-1 yield G3-b-0; G2-d-0,
G2-d-1 reduce to G3-d-0; and G2-d0-0 gives G3-d0-0. Thus we have found the four
subcases introduced by Kundt and Ehlers, although with different constants in two
cases.

8.9.1 (0, 1, 1) :

Lemma 8.9.1. The PP-wave metric belonging to the G3 − b − 0 class in figure (8.1)
will have the canonical form for f(ζ, u),

f(ζ, u) = u−2
(

e2iC0lnζ

4C2

)
.

Using the special coordinates in (8.3), the functionally independent invariant is

α = ea+āCe−iC0u.

The essential classifying functions, are

ᾱ = e2iC0 , α, μ = C

eiC0α
. (8.126)
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Proof. By direct inspection we find that for this f(ζ, u) at first order the invariants
are:

α = e−iCea+āCu, ᾱ = e2iC0α.

while at second order we have,

μ = C
eiC0 α

, ν = (2α)−1, δ̄α = α2.

Lemma 8.9.2. The PP-wave metric belonging to the G3 − c − 0 class in figure (8.1)
will have the canonical form for f(ζ, u),

f(ζ, u) = C2 e
4
C

ζ

16 .

Using the special coordinates in (8.3), the two functionally independent invariant is

α = ea−āu

C
.

The essential classifying function, distinguishing one spacetime in this class from
another, will be:

ᾱ = 1
C2α

. (8.127)

Proof. By direct inspection we find that for this f(ζ, u) at first order the invariants
are:

α = ea−āu

C
, ᾱ = 1

C2α
.

while at second and third order we have,

δ̄α = −α2, μ = 0, ν = (4α)−1.

Lemma 8.9.3. The PP-wave metric belonging to the G2 − d − 0 class in figure (8.1)
will have the canonical form for f(ζ, u),

f(ζ, u) = c2

4C2
0 + 2iC0

(
ζ

c

)2iC0

,
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where C0 ∈ R, c ∈ C and C0 �= 0. Using the special coordinates in (8.3), the
functionally independent invariant is

α = eae
( 1+i2C1

1−2iC1
)ā

c̄
.

The essential classifying functions are

ᾱ = (c̄α)
1−2iC1
1+2iC1
c

, δ̄α =
(

1−2iC1
1+2iC1

)
α2. (8.128)

Proof. For this metric function f(ζ, u), at first order the invariants are

α = eae
( 1+i2C1

1−2iC1
)ā

c̄
, ᾱ = ᾱ = (c̄α)

1−2iC1
1+2iC1
c

.

At second order we have the usual invariant

μ = 0, ν =
(

1+2iC1
1−2iC1

)
(4α)−1, δ̄α =

(
1−2iC1
1+2iC1

)
α2.

Notice that there are two invariant classifying constants, this is due to the fact that
by bringing in the constant into the bracketed term one may absorb the phase of this
constant by making a coordinate transformation

Lemma 8.9.4. The PP-wave metric, expressed in terms of a canonical coframe and
belonging to the G3 − d0 − 0 class in figure (8.1) will have the canonical form for
f(ζ, u),

f(ζ, u) = e−2iC lnζ,

Using the special coordinates in (8.3), the one functionally independent invariant is

α = α = e−iCea+ā.

The only classifying function is then

ᾱ = e2iCα (8.129)

Proof. By direct computation, the first order and second order invariants are:

α = e−iCea+ā, ᾱ = e2iCα,

μ = 0, ν = 1
4α

, δ̄α = α2 .
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Lemma 8.9.5. The PP-wave metric belonging to the G2 − d0 − 1 class in figure (8.1)
will have the canonical form for f(ζ, u),

f(ζ, u) = e−2iC lnζ.

Using the special coordinates in (8.3), the functionally independent invariant is

α = e−iCea+ā.

The essential classifying functions is

ᾱ = e2iCα.

Proof. For this f(ζ, u) at first order the invariants are:

α = eiCea+ā, ᾱ = e2iCα .

At second order we have the usual invariants

μ = 0, ν = (4α)−1, δ̄α = α2,
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9.1 The Plane wave spacetimes and Cartan Invariants

The plane waves were introduced by Rosen [3] in 1937 to describe wave-like solutions
to the Einstein equations. However, due to the choice of coordinates, Rosen concluded
that these metrics were unphysical due to singularities in the metric components.
Upon further analysis these singularities were shown to be coordinate dependent
and easily eliminated by a change in coordinates, [6, 7]. In 1961 the plane waves
were shown to belong to the class of PP-wave spacetimes1 [9, 11] describing pure
radiation far from an isolated source; these were originally studied by Brinkmann
in 1925 as a special case of those Einstein spaces which are related by conformal
transformations, with the Ricci scalar vanishing [2]. In fact the complete family of
PP-waves were outlined in this paper for arbitrary dimension. Despite certain global
problems, like closed null geodesic curves [14], these spacetimes have been studied in
classical Relativity as well as its generalizations [50, 33, 54].

In a PP-wave spacetime, all polynomial scalar invariants vanish [55]; therefore, to
classify such spacetimes we need to apply the Karlhede equivalence method [95, 94].
To calculate the Cartan invariants for a given spacetime one chooses a canonical
null tetrad where the Weyl tensor component has been normalized (i.e., Ψ̃4 = 1) by
making a specific spin and boost. The first order Cartan invariants in the Karlhede

1These are Petrov type N spacetimes admitting a covariantly constant null vector, �.
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algorithm arise as components of the first and second order covariant derivatives of
the Weyl tensor Ψ. As Ψ4 is constant, these additional invariants take the form of the
spin-coefficient α, γ, and their conjugates ᾱ, γ̄ which are introduced at first order as
components of the covariant derivative of the Weyl tensor. To study the plane waves,
we assume α = 0. It should be noted that the canonical frame is not unique, as a
null rotation about � leaves Ψ4 = 1 and γ invariant. We add a subscript c to indicate
the fact that these are spin coefficients relative to this class of canonical coframes (in
which Ψ4 = 1), and hence Cartan invariants as well.

Following the analysis in the previous section, at second order the plane waves offer
only one new Cartan invariant, Δγc as all of the remaining second order invariants
vanish, i.e. μc = νc = δ̄αc = 0. This is reflected in the Newman Penrose equations,
where by setting these invariants to zero one may show that δγc = Dγc = 0 implying
that γc is a function of u only. From these facts we have a helpful proposition to
classify the plane wave spacetimes

Proposition 9.1.1. A plane wave spacetime may be locally described in an invariant
manner, using the triplet of Cartan invariants {γc, γ̄c, Δγc}, where the remaining two
invariants are expressed in terms of γc and hence do not change in any coordinate
system.

In the cases where γc is non-zero and constant,then relative to Brinkmann coordinates,
one may show that these are the G6 spacetimes given in table 9.1. Assuming γc is non-
constant, we note that γc is a function of the null coordinate u only, so that instead
of γc we may take the real or imaginary component of gamma as the functionally
independent invariant and the classifying invariants γ̄c and Δγc are replaced with
real valued functions.

For example if γ1 = Re(γc) �= 0 then the remaining invariants become γ2 = Im(γc)
and Δγ1. Locally we may take the inverse of this real-valued function and express u

in terms of γ1, of course if γ2 = Im(γc) is non-zero one could repeat this procedure.
From this argument we have a helpful corollary:

Corollary 9.1.2. If γ1 = Re(γc) (or γ2 = Im(γc)) is non-constant and non-zero, one
may write the null coordinate, u, in terms of γ1 ( or γ2) , i.e. u = U(γ1) (or Ũ(γ2)).
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To see this, consider the Brinkmann form for the vacuum plane wave metric [50],

−2dudv − 2H(u)du2 + 2dζdζ̄, H(u, ζ, ζ̄) = Re(f(ζ, u)). (9.1)

In this coordinate system the sole non-zero Weyl tensor component takes the form:

Ψ4 = 1
2H,ζζ = 0. (9.2)

Defining a = 1
4 lnH,ζζ , we may write α as

α = ea−āā,ζ̄ζ̄ = 0, (9.3)

clearly ā,ζ̄ = 0, so that f̄,ζ̄ζ̄ζ̄ = 0, giving a solution of the form

f(ζ, u) = A(u)ζ2. (9.4)

Expressing γc in these coordinates:

γc = 1
4
√

AĀ
ln(Ā),u. (9.5)

While a particular coordinate system is being used, regardless of which coordinate
system is used, we may calculate γc in the canonical coframe, as only Lorentz trans-
formations are used. Supposing that γc = γ1 + iγ2 with A = r(u)eiθ(u), one may solve
for A in Brinkmann coordinates, in terms of the real-valued functions involved in γ,
using the lemma:

Lemma 9.1.3. For any pp-wave spacetime expressed in terms of a canonical coframe
with αc = 0 and γc = γ1 + iγ2, �= 0 we may express the canonical form for f(ζ, u)
as

A = reiθ; r(u) = [C0 − ∫
4γ1du]−1, θ(u) = − ∫

4rγ2du + C1, C0, C1 ∈ R.(9.6)

Here, γc gives rise to the only functionally independent invariant and the essential
classifying functions are γ̄c(u) and Δγc(u) expressed in terms of γc. If γc is constant,
there are two possibilities for A(u) depending on where γc lies in the complex plane
these are given in table 9.1.
All of the remaining Cartan invariants involved depend on γc and hence are classifying
functions invariantly describing the space.
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f(ζ, u) 1 2

G5
A(u)

2 ζ2, (9.4) γc; (9.6) Δγc

G6-a u
iC1
C0

−1

16C2
0

ζ2 γc = C0 + iC1

G6-b eiC1uζ2 γc = iC1
4

Table 9.1: Summary of cases with αc = 0. Here, C0, C1 ∈ R, and A(u) is a complex
valued function.

As an example we provide an invariant description for the class of spacetimes for
which all timelike geodesic observers produce a linear polarization in terms of the
equations of geodesic deviation [50], which will be discussed in the next section. For
now we make the following definition in terms of Cartan invariants

Definition 9.1.4. A vacuum plane wave spacetime is linearly polarized when the
Cartan invariant, γc, is real-valued.

Applying lemma (9.1.3) we find a particular form for the linearly polarized waves:

Corollary 9.1.5. Given a vacuum plane wave spacetime, relative to the class of
canonical coframes where Ψ4 = 1 suppose γ̄c = γc. The metric expressed in Brinkmann
coordinates has A real-valued and

A = [C0 − ∫
4γcdu]−1.

In the canonical coframe, we will say the plane wave is ′+′ linearly polarized. Making
a rotation in the spatial coordinates ζ ′ = eiπ/4ζ (equivalently a spin in the transverse
plane), the metric function is multiplied by i so that Ψ4 = i, and we say this is
′ × ‘ linearly polarized. For more general polarization states the triplet of invariants
{γc(u), γ̄c(u), Δγc(u)} describes how the ′+′ and ′×′ polarization states mix.

9.2 The Equations of Geodesic Deviation - Polarization Modes for all

PP-wave Spacetimes

To study the polarization modes of gravitational waves in vacuum spacetimes with
cosmological constant, a particular null tetrad is introduced relative to the Brinkmann
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coordinates . This null tetrad arises from the choice of an orthonormal frame in which
the equations of geodesic deviation take a simpler form:

d2Zμ

dτ 2 = Z̈μ = −Rμ
αβγuαZβuγ. (9.7)

Here ẋ = dx/dτ , |x|2 = −1 is the four velocity of a timelike geodesic curve corre-
sponding to a free test particle, τ is the proper time along this curve and Z(τ) is a
displacement vector transverse to ẋ. To construct the desired null tetrad, one first
produces an orthogonal frame with ẋ = e1 and the remaining vectors {e2, e3, e4} from
the local hypersurface orthogonal to e1 (so that < ea, eb >= gαβeα

a eβ
b = ηab). The

dual basis will be e1 = −ẋ and ei = ei, i = 2, 3, 4. This will hold at a point along
the timelike geodesic xμ(τ). If we wish to have this hold on the entire curve the
coframe must be parallely transported along the curve, yielding further conditions on
the components of the metric and the four-velocity ẋ(τ).

Choosing Kundt coordinates, the metric takes the form (9.1)

2dζdζ̄ − 2dudv − 2Hdu2, H = Re(f(ζ, u));

the plane waves are further constrained, as the analytic function must be of the form,
f(ζ, u) = A(u)ζ2. These solutions admit an isometry group of dimension five or six,
which is reflected in the form of the complex function A(u). Alternatively, in terms
of Cartan invariants: the first order scalar, α, must vanish and the isometry group is
six dimensional if and only if γ is constant, otherwise it is five dimensional.

Briefly, in Brinkmann coordinates the PP-wave spacetimes belong to the subclass
of KN(Λ)[α′, β′] [33] with Λ = 0 and where the arbitrary functions α′ and β′ may be
set to α′ = 1, β′ = 0 via an appropriate coordinate transform preserving the metric
form. We project the geodesic deviation equations onto this orthonormal frame in
the case Λ = 0 and Ψ4 �= 0:

Z̈1 = 0, Z̈2 = −A+Z2 + A×Z3, Z̈3 = A+Z3 + A×Z2, Z̈4 = 0 (9.8)

Where the dot above a function denotes differentiation with respect to the proper
time τ of the geodesic and

A+ ≡ 1
4(Ψ4 + Ψ̄4), A× ≡ i

4(Ψ̄4 − Ψ4). (9.9)
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Using the null tetrad,

mi = 1√
2

(e2 + ie3), ni = 1√
2

(e1 − e4), �i = 1√
2

(e1 + e4), (9.10)

and denoting Z = Z0�i + Z1ni + z2mi + z3m̄i with z̄2 = z3, the equations of geodesic
deviation become:

Z̈0 = 0, Z̈1 = 0,

z̈2 = −(A+ + iA×)z3 = −1
2Ψ4z

3. (9.11)

To determine the form of the null tetrad (9.10) for the PP-wave spacetimes one
must choose � to be the preffered null direction along which the Weyl tensor has one
non-vanishing component, Ψ4. With this null direction, one may prove the following
proposition

Proposition 9.2.1. Let ẋ be the four velocity of a timelike geodesic, and � some
null vector. Then there exists a unit spacelike vector e4 which is the projection of the
null direction given by � into the hypersurface orthogonal to ẋ. This spatial vector
is unique (up to reflections) and is given by e4 = −ẋ +

√
2�, where < �, ẋ >= − 1√

2 .
Another null vector n in the (ẋ, e4) plane such that < �, n >= −1 is then given by
n =

√
2ẋ− �. The only remaining freedom are rotations in the (e2, e3) plane.

In Kundt coordinates (ζ, ζ̄, u, v), we have two more propositions the first giving the
form of the null tetrad:

Proposition 9.2.2. In Kundt coordinates, the null tetrad tied to the 4-velocity of the
geodesic, ẋ = (ζ̇ , ˙̄ζ, u̇, v̇), takes the simple form

mμ
i =

(
− ζ̇

u̇
, 0, −1, 0

)
, m̄μ

i =
(
− ζ̇

u̇
, −1, 0, 0

)
,

�μ
i =

(
1√
2u̇

, 0, 0, 0
)

, nμ
i =

(√
2v̇ − 1√

2u̇
,
√

2ζ̇ ,
√

2 ˙̄z,
√

2u̇
)

. (9.12)

where the function H in the metric (9.1) is hidden away by the identity

2ζ̇ ˙̄ζ − 2u̇v̇ − Hu̇2 = −1.

Remark: The null vector � is no longer a covariantly constant null vector, as
∇ ∂

∂xμ
�i = −u̇

(
1
u̇

)
,μ

�i; however, it is a recurrent null vector and there is a covari-
ant constant null vector proportional to the original vector �.
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Of course, for an arbitrary unit timeike geodesic, ẋ = (ζ̇ , ˙̄ζ, u̇, v̇), one may reconstruct
the usual metric coframe

mμ
n = (1, 0, 0, 0), m̄μ

n = (0, 1, 0, 0), �μ
n = (0, 0, 0, 1), nμ

n = (0, 0, 1, −H) (9.13)

from the interpretation tetrad {mi, m̄i, �i, ni} in (9.12) by applying the following
Lorentz transformation

�n = A�i, nn = A−1(�i + BeiV m̄i + B̄e−iVmi + BB̄ni), mn = e−iVmi + B�i

A =
√

2u̇, B = −√
2ζ̇ , V = π (9.14)

To relate this to a physical description, one must have a tetrad that will be defined
on all points along the timelike geodesic curve, and not just one point. In the more
general KN(Λ)[α′, β′] class this requirement imposes further differential constraints
on the metric functions. Luckily in the case of the PP-waves, these constraints vanish
and we have a final proposition.

Proposition 9.2.3. For any timelike geodesic xμ(τ) = (ζ, ζ̄, u, v) in a PP-wave space-
time, the null tetrad given by (9.12) is parallely transported along this geodesic.

Proof. From Proposition 3 in [50], the tetrad arising from setting Λ = 0, α = 1 and
β = 0 2 via a coordinate transform gives the following conditions for the null tetrad
A4 in [50] to be parallel transported along the timelike geodesic:(

q

p

)
,ζ

=
(

q

p

)
,ζ̄

= 0, V̇(τ) = i

(
p,ζ

p
ζ̇ − p,ζ̄

p
˙̄ζ
)

. (9.15)

In these coordiates, p = q = 1 and so the above vanishes, implying V must be a
constant as its dot derivative is zero.

The interpretation tetrad (9.12) (up to constant spins and boosts) is the only
tetrad which is parallel transported along the arbitrarily chosen timelike geodesic
and provides the simplest form from which one can determine the polarization of a
wave along that timelike geodesic. However, the geodesic deviation equations are
frame dependent. As a simple example of this one may show that the magnitude of

2These are defined in [50] and are not to be confused with the spin-coefficients
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the wave is dependent on the timelike observer. By applying a boost in an arbitrary
direction with constant velocity (v1, v2, v3), it is easily shown that

Ψ′
4 = (1 − v3)2

1 − v2
1 − v2

2 − v2
3
Ψ4 (9.16)

the magnitude of the plane wave is dependent on the timelike observer as well. This
can cause problems, as an observer travelling with a higher velocity relative to the
original timelike geodesic will measure a smaller value for the magnitude of the wave.
In fact, setting v1 = v2 = 0 and taking the limit v3 → 1 causes Ψ′

4 → 0.

A more elaborate example arises when we wish to express the geodesic deviation
equations in terms of the canonical tetrad. To construct the canonical null tetrad
from (9.12) one must apply a spin and boost to normalize Ψ̃4 = 1:

�̃ = eX�i, ñ = e−Xni, m̃ = eiP mi

e2X = |Ψi
4|, e2IP = Ψi

4/Ψ̄i
4. (9.17)

As long as we are concerned with points on the timelike geodesic the Weyl tensor com-
ponent Ψ4 will be a function of τ , because one may substitute xμ = (ζ(τ), ζ̄(τ), u(τ), v(τ))
to make everything dependent on proper time. In this sense, the two frames may be
related to each other along an arbitrary timelike geodesic,

Ψi
4 = A2Ψn

4 = u̇2f,ζζ , (9.18)

where Ψi
4 and Ψn

4 are the Weyl tensor components relative to the interpretation tetrad
(9.12) and natural tetrad (9.13) respectively.

The interpretation tetrad is best suited to give a physical description of a plane
wave spacetime. If one is interested in the classification of the plane waves the canon-
ical coframe and Cartan invariants provide a general classification that complements
the study of the geodesic deviation equations. As an illustration of this, we will show
that those spacetimes for which all timelike geodesics the equations of geodesic devi-
ation are linearly polarized may be defined in an invariant fashion, and that the ’+’
and ’×’ linear polarization modes arise as a choice of coordinates.

Looking back at (9.17) and (9.18), ei2P = Ψ4/Ψ̄4 is an invariant that is independent
of the choice of timelike geodesic - as it lacks u̇ and all of the other components of
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the timelike geodesic 4-velocity 3. Any constant boost leaves this quantity invariant
while a constant spin, m′ = eiCm, produces the net affect of adding a constant to Y ,
i.e. P ′ = P + C, C mod 2π. Rewriting e2iP it is easily shown that there is only one
real function involved, assuming A+ �= 0,

Ψ4/Ψ̄4 =
1 + iA×

A+

1 − iA×
A+

.

While if A+ = 0 the phase is already determined, i.e. P = π/2 mod 2π. Now if we
apply lemma (9.1.3) and equation (9.6) from the previous section, we note that in
the case of ′+′ linear polariation, A+ = A = r(u) and A× = 0 while in the ′×′ linear
polarization A+ = 0, and A× = ir(u). If the phase of Ψ4 is constant in the complex
plane this is called a linearly polarized wave ([50, 98, 22], etc).

Lemma 9.2.4. Relative to the null tetrad (9.12), if the phase P of Ψ4, defined as

P = 1
2arctan

(
A×
A+

)
∈ (−π

4 ,
π

4 ), (9.19)

is constant or A+ = 0 (implying Y = ±π
4 ), then the vacuum plane wave spacetime is

linearly polarized with constant phase 2P and γc must be real valued. In particular,
if P = 0 the wave is in a ′+′ linear polarization, and if P = ±π

4 the wave is in the
′×′ linear polarization; each of these linear polarization modes are equivalent to each
other via a spatial rotation.

Proof. To start we take the interpretation null tetrad (9.12) and apply a spin and
boost to produce the canonical coframe in which Ψ4 = 1. For any point along the
arbitrarily chosen timelike geodesic, we may express the Cartan invariant γc (relative
to the class of canonical frames) in terms of τ , as all of the coordinates may be replaced
with functions of τ . Then by expressing Ψ4 relative to the original interpretation
coframe (9.12) and imposing the particular form for the plane waves: f = A(u)ζ2,
the non-vanishing Weyl tensor component (9.18) along the timelike geodesic becomes:

Ψ4 = u̇A(u(τ)).

3Glossing over the fact that the coordinates (ζ, ζ̄, u, v) may be written as function of τ for some
timelike geodesic with proper time.
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Imposing the condition that P = 1
2arctan

(
A×
A+

)
is constant so that Ψ4 = S(τ)eiP , S

is a real valued function and

Ψi
4

Ψ̄i
4

= Ψn
4

Ψ̄n
4

= A

Ā
.

Since u̇ is real valued already this implies that A must have constant phase P in the
complex plane, by direct substitution into (9.5) one shows γc is real-valued, so that
this is indeed a linearly polarized plane wave. Rotating the coordinates (ζ, ζ̄) by θ/2 4

we may set P = 0, the plane wave is now ’+’ linearly polarized. Another rotation by
π/4 will give the ’×’ linear polarization, P = π/2. One can differentiate between these
choices of coordinates by comparing Ψ4 in the differing coordinate systems relative
to (9.12).

Thus, the two defining physical properties for the linearly polarized waves are
the unchanging phase of the wave as u(τ) varies and the fact that the magnitude an
observer measures depends on two functions: the value of u̇2 and the function,

|Ψ4|
u̇2 = A+(u(τ))

as u(τ) varies along the worldline of the observer.

9.3 The Vacuum Plane Waves and the Rosen Form

As another application of the classification we will consider a diffeomorphism that
does not preserve Kundt form. We will use the transformation given in equation
(24.49) in [22] to switch from Kundt form to Rosen form. In light of the results in
[98, 99], where a general formalism was introduced for studying arbitrary polarization
states of pp-wave spacetimes with α = 0 in Rosen coordinates, we would like to apply
Lemma (9.1.3) so that any novel solution found by this formalism may be expressed
in Kundt coordinates.

In Rosen coordinates the metric is written in the simple form:

ds2 = −2dudr + gAB(u)dxAdxB, A, B ∈ [1, 2]

4Equivalently applying a spin to the frame vectors m and m̄.
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where the three functions involved in the symmetric gAB are tied together by the
vanishing of the only non-zero Ricci tensor component arising from

RAB = −
(1

4g′′
AB − 1

4g′
ACgCDg′

DB

)
,

where differentiation with respect to u is denoted by primes. For a vacuum plane
wave with arbitrary polarization we need two arbitrary functions of u. A particular
form of the Rosen metric was introduced by Bondi, Pirani and Robinson [6, 7] to
study gravitational plane waves:

ds2 = −e2Y dudr + u2cosh2Z(dx2 + dy2) (9.20)

+u2sinh2Zcos2W (dx2 − dy2) − u2sinh2Zsin2W (dxdy)].

where Y, Z, W are functions of u satisfying,

2Y ′ = u(Z ′2 + W
′2sinh2W ).

By examining the two independent components of the Riemann tensor: σ and ω

defined in [7], the fixed plane polarization mode occurs if and only if W = 0. In this
case the metric simplifies to be

ds2 = −e2Y dudr + u2[e2Zdx2 + e−2Z ]dy2.

Choosing a new null coordinate ũ =
∫

e2Y (u)du this becomes the usual Rosen metric
for + linear polarization,

ds2 = −dũdr + Ỹ (ũ)2[e2Zdx2 + e−2Zdy2]

where Ỹ denotes the inverse function of e2Y . One may apply a rotation of the (ζ, ζ̄)
coordinates to produce × linear polariation or any other linear polarization mode of
fixed phase. With that observation we have proven a helpful lemma

Lemma 9.3.1. In Rosen form, a vacuum plane wave is linearly polarized if and only
if coordinates exist in which W ′ = 0.

From which the results of the previous section imply:

Corollary 9.3.2. Relative to the canonical coframe, if γc is real-valued, coordinates
may be found in which W = 0.



203

Even in the simpler form (9.20), the plane waves in Rosen form are much more
complicated than their Kundt counterparts. For example, in the case of linear polar-
ization modes, the equations connecting Ỹ and Z require considerably more analysis.
In [98] and [99] this problem was studied. Using the metric form (9.20) along with
the coordinate transformation u′ =

∫
e2Y du, the metric is now

ds2 = −2dudr + S2(u)[A′(u)dx2 + 2B′(u)dxdy + C ′(u)dy2],

A′ = cosh[X ′(u)] + cos[θ′(u)]sinh[X ′(u)], B′ = sin[θ′(u)]sinh[X ′(u)], (9.21)

C ′ = cosh[X ′(u)] − cos[θ′(u)]sinh[X ′(u)].

If θ = 0 this metric describes linearly + polarized waves, while if it is constant one
has a linear polarization of along the axes produced by rotating by an angle θ0. For
example, setting θ = π

2 yields the linearly × polarized waves.

Noting that A > 0 for all values of u we may construct a null tetrad from this
metric:

� = du, n = dr, m = S(u)
⎡⎣√C − B2

A
dy + i

√
A
(

dx + B

A
dy

)⎤⎦ (9.22)

We boost and rotate this null tetrad to construct an invariant coframe for which Ψ4 =
1 and γc is the only functionally independent invariant. In Kundt coordinates the
metrics describing + and × polarizations produce a real value and purely imaginary
value for γc respectively; this fact holds true in the Rosen coordinates and so we may
use lemma (9.1.3) to solve for the metric function A used to describe this spacetime
in Kundt coordinates. An arbitrarily polarized wave will have γ̄c �= ±γc, however
given γc in one coordinate system one may integrate to solve for A in the Kundt
coordinates using lemma (9.1.3) .

9.4 An Example: The weak-field Circularly Polarized Waves

The circularly polarized waves were originally introduced as a weak-field solution,
using the metric anzatz (9.21) and requiring that X,u = 0, θ,u �= 0 and θ,uu = 0.
By imposing the final constraint that X << 1 we satisfy the weak-field vacuum
condition. These metrics were generalized to a class of strong field solutions [98], [99]
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by requiring that X = X0 and θ = θ0u and the metric becomes

ds2 = −2dudv + S2(u)[A(u)dx2 + 2B(u)dxdy + C(u)dy2],

A = cosh[X0] + cos[θ0u]sinh[X0], B = sin[θ0u]sinh[X0], (9.23)

C = cosh[X0] − cos[θ0u]sinh[X0].

Remark 9.4.1. Notice that if X0 = 0 this metric reduces to the Minkowski metric
which cannot happen as we have assumed Ψ4 �= 0. Similarly by inspecting the Ricci
and Weyl spinor components displayed below, we see that θ0 �= 0 as well.

In these coordinates the sole non-vanishing Ricci tensor component is,

R00 = −1
2

(
4S,uu

S
+ sinh2(X0)θ2

0

)
(9.24)

Imposing vacuum conditions we find a form for S

S = S0cos

(
sinh(X0)θ0(u − u0)

2

)
.

In the strong field regime the construction of the Cartan invariants is considerably
more involved. To provide a simple application of our work, we examine the weak
field conditions by imposing X0 << 1 so that X2 = 0.

Thus for an arbitrarily long interval of u the function S may be approximated to
be a constant

S ≈ S0.

Without loss of generality we may always set S0 = 1 and so the metric is approxi-
mately of the form

ds2 = −2dudv + dx2 + dy2 + X0[cos(θ0u)(dx2 − dy2) + 2sin(θ0u)dxdy].

Defining the following combinations of the functions A, B, C in (9.23),

D = C − B2

A
= − −1+X2

0
1+cos(θ0)X0

= 1
1+cos(θ0)X0

E = B
A

= sin(θ0u)X0
1+cos(θ0)X0

,

we may construct a null tetrad from the metric

� = du, n = dv, m = D
1
2 dy + iA

1
2 (dx + Edy).
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To see that this is approximately a vacuum spacetime we calculate the sole component
of the Ricci spinor which does not automatically vanish

Φ22 = −1
4

X2
0 θ2

0(2cos(θ0u)X0+X2
0 +1)

1+2cos(θ0u)X0+cos(θ0u)2X2
0
,

imposing the weak-field condition it is clear that this does indeed vanish as X2
0 = 0.

For the remainder of this section we will assume this implicitely.
To produce the Cartan invariants for these spaces we must normalize Ψ4. Relative

to the natural coframe metric this component is:

Ψ4 = (isin(θ0u) − cos(θ0u))θ2
0X0

2(1 + cos(θ0u)X0)2 . (9.25)

We introduce a new function, a = 1
4 lnΨ4, to produce the class of canoncial null tetrads

for which Ψ4 = 1,

�′ = ea+ā�, n′ = e−a−ān, m′ = ea−ām

By direct calculation using the transformation laws for spin-coefficients we calculate
γ relative to this frame. We add a subscript ′′c′′ to indicate the fact that this is a
Cartan invariant and a spin-coefficient as well:

γc = 1
2
√

2
√

X0

(
iX0cos(θ0u) + 2X0sin(θ0u)

(1+cos(θ0u)X0)3 + (1 + cos(θ0u)X0)
)

(9.26)

Differentiating with respect to u

γc,u = θ0

(
iX0sin(θ0u) + 2X0sin(θ0u)

(1 + cos(θ0u)X0)3 + sin(θ0u)X0) + O(X2
0 )
)

and multiplying by

e−a−ā =
√

X0

2

(
1 + cos(θ0u)X0

θ0

)

we produce the second order invariant needed to fully classify the space:

Δγc = 1
4

(
iX0sin(θ0u) + 2X0sin(θ0u)

(1 + cos(θ0u)X0)3 + sin(θ0u)X0

)
+ O(X2

0 ). (9.27)

By necessity X0 and θ0 must both be non-zero, and so the combination Y =√
2

X0
(γc − γ̄c) is a real-valued invariant with the simple form

Y = cos(θ0u). (9.28)
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We may locally express γc and the second order invariant Δγc in terms of Y . Treating
the null coordiate u as an invariant in some open subset we write u in terms of Y ,
u = θ−1

0 arccos(Y ). In this local region these will be classifying constants for the
space. Substituting this into the original Cartan invariants at first and second order
we find

γc = 1
2
√

2
√

X0

(
iX0Y + 2X0

√
1 − Y 2

(1 + Y X0)3 + (1 + Y X0)
)

,

Δγc = 1
4

(
iX0

√
1 − Y 2 + 2X0

√
1 − Y 2

(1 + Y X0)3 +
√

1 − Y 2X0

)
.

We have expressed all of the original Cartan invariants in terms of the imaginary part
of γc scaled by some real-valued constant,

2Im(γc) =
√

X0

2 Y.

These two non-vanishing constants uniquely determine the circularly polarized waves
in the weak-field approximation.

To provide a physical description, we use the coordinate independent formalism
developed in [50]. As these two spaces are equivalent, there is a diffeomorphism
between the two coordinate systems. That is, the null tetrad built from the metric
(9.13) in Kundt coordinates is mapped to the null tetrad (9.22). Therefore we may
use (9.25) to express the equations of geodesic deviation. The real-valued functions
A+ and A× are

A+ = θ2
0X0sin(θ0u)

4(1+cos(θ0u)X0)2 , A× = −θ2
0X0cos(θ0u)

4(1+cos(θ0u)X0)2

Along an arbitrary timelike geodesic, the coordinates may be expressed in terms
of the proper time, τ , then by applying a boost, spin and null rotation about � one
produces the coframe which is parallely transported along the curve [50]. Taking the
spatial plane and using the null tetrad (9.10) with z̄2 = z3, (9.11) becomes:

z̈2 = −iu̇2X0θ
2
0e−iθ0u

4(1 + cos(θ0u)X0)2 z3. (9.29)

Here the u̇ and u are (the only) functions of τ which identity the geodesic solution in
the geodesic deviation equations, i.e. the particular timelike congruence. In this form
we see that the phase of the gravitational wave, e−iC0u, varies in a circular manner for
any timelike geodesic, with θ0 dictating how quickly the phase spins as u(τ) changes.
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It is clear that the magnitude of the wave depends on the the timelike geodesic
chosen. Given a particular timelike geodesic and corresponding interpretation frame,
one may apply a boost in the positive direction of the wave to produce a new coframe
in which the magnitude of Ψ4 is changed [50]. However, along a particular timelike
geodesic if the value of u̇2 were taken into account, the observer would notice the
magnitude of the gravitational wave measured along the curve will additionally vary
as u(τ) changes:

|Ψ4|
u̇2 = θ2

0X0

4(1 + cos(θ0u)X0)2 .

These two properties: the change of phase moving in a circular motion and the addi-
tional change in magnitude as u(τ) varies along the worldline, determine the physical
properties of the weak-field vacuum circularly polarized waves. As a comparison, re-
call the case of linear ′′+′′ polarization modes where the phase of the wave is constant,
and the magnitude of the wave depends on the value of u̇2 and the function,

|Ψ4|
u̇2 = A+(u(τ)).

9.5 One Last Application: The Plane Wave Spacetimes

with γ̄c = −γc

In section (9.2) we saw that the class of plane waves with the invariant, γc, a real
valued scalar, corresponds to those plane waves in which any timelike geodesic gives
rise to a linear polarization mode in the form of the geodesic deviation equations
along the geodesic. We now consider the plane waves with the classifying function,
γ̄c = −γc, by expressing the metric in Kundt coordinates using Lemma (9.1.3). With
a particular metric form we then examine the geodesic deviation equations relative
to the complex null tetrad {�, n, m, m̄} in the form of (9.11).

Assuming γc = ig(u) where g is real-valued, Lemma (9.1.3) implies f(ζ, u) =
A(u)ζ2 has the following form for A = r(u)eiθ(u):

r(u) = 1
C2

0
, θ(u) = 4

C2
0

∫
gdu + C1.

If we apply the transformation u′ = C0u, v′ = v
C0

, ζ ′ = e− C1
2 ζ, these functions
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become,

r′ = 1, θ′ = 4
C0

∫
g̃(u′)du′

As A′ = C2
0e−C1A we note that γc has the following transformation rule γ′

c = γc

C0
:

equating the two we find that in the primed coordinate system,

g′(u′) = g̃(u′)
C0

.

Thus without loss of generality the form of the metric function for these plane waves
is

A(u) = e4
∫

ig(u)du = e4
∫

γcdu. (9.30)

Relative to the metric coframe, the non-vanishing Weyl tensor component is

Ψ4 = e4
∫

ig(u)du

Applying a frame transformation of the form (9.14) to take the metric coframe to
the interpretation coframe, the equations of geodesic deviation are now

Z̈2 = − u̇2

2 cos(4
∫

gdu)Z2 + u̇2

2 sin(4
∫

gdu)Z3, (9.31)

Z̈3 = u̇2

2 cos(4
∫

gdu)Z3 + u̇2

2 sin(4
∫

gdu)Z2, (9.32)

or relative to the complex null tetrad,

z̈2 = u̇2

2 e4
∫

ig(u)duz3. (9.33)

The sole components of the geodesic curve u, u̇ are involved in the above form, from
which we see that the magnitude of the wave is directly related to u̇(τ)2 as

|Ψ4|
u̇2 = 1.

How the wave polarization varies is directly related to P , defined by the equation
(9.19), now a function of τ along the timelike geodesic:

P (τ) = 1
2arctan(tan(4

∫
gdu)) = 2

∫
g(u(τ))u̇dτ
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As u(τ) varies the polarization mode will vary as well. Thus the characteristic physical
properties of these spaces consist of a magnitude entirely dependent on the compoe-
nent u̇(τ) of the timelike geodesic observer’s 4-velocity, and that the phase, e

∫
γdu is

determined by γ(u) as u(τ) varies along the curve.
Imposing conditions on γc = ig(u) can yield further conditions. As an example

suppose consider the subcase where γ = iC0u
n, n ∈ Z and C0 ∈ R, in this case the

metric form is A = eiC0u(τ)n+1 . Tthe magnitude of the wave measured is influenced
by the value of u̇ alone, while the phase changes in a circular motion, with a certain
orientation and rate of speed as determined by C0 and n, as u(τ) varies along the
worldline.



Chapter 10

The Karlhede Classification of the Vacuum

Kundt Waves

This chapter is based on: D. McNutt, R. Milson, A. Coley (2013). Vacuum Kundt
Waves. CQG Vol 30, Issue 5, 055010-055039. c© IOP Publishing. Reproduced by
permission of IOP Publishing. All rights reserved

10.1 Introduction

The Kundt waves, were originally defined by Kundt in 1961 [9], as a special subcase of
the class of pure radiation solutions of Petrov type III or higher and Plebanski-Petrov
(PP) type O or vacuum, admitting a non-twisting, non-expanding null congruence,
�, that is

�a�a = 0, �a
;a = 0, �(a;b)�

a;b = 0, �[a;b]�
a;b = 0.

These conditions restrict the Petrov type for the the plane-fronted waves to Petrov
type N or O. The pp-waves are defined as the non-twisting plane-fronted waves, so
that � is a covariantly constant null vector �a;b = 0; the Kundt waves are then the
class of twisting plane-fronted waves. Choosing Kundt coordinates, the metric for the
Kundt waves is

ds2 = dζdζ̄ − du
(
dv − 2v

ζ+ζ̄
dζ − 2v

ζ+ζ̄
dζ̄ +

(
4H(ζ, ζ̄, u)(ζ + ζ̄) − v2

(ζ+ζ̄)2

)
du

)
,(10.1)

where u, v are null coordinates, ζ, ζ̄ are complex coordinates for the transverse space[22].
All polynomial curvature invariants, built from contracting the Riemann tensor

and covariant derivatives with each other, vanish for these spacetimes. Thus, the
plane-fronted belong to the collection of V SI spacetimes where all polynomial curva-
ture invariants vanish [55]; this is in turn a subclass of the CSI spacetimes in which all
polynomial curvature invariants are constant [95]. These spaces have been explored
in four dimensions and shown to belong to the class of degenerate Kundt metrics [92].

210
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These are the Kundt metrics where the frame used to classify the Riemann tensor
(i.e., Petrov or Riemann type [66]) and the kinematic frame are aligned, i.e., they are
the same; it is expected that this is the case in higher dimensions as well [65, 92].

For a given spacetime in four dimensions, either a spacetime is uniquely deter-
mined by its polynomial scalar curvature invariants, a (locally) homogeneous space,
or a degenerate Kundt spacetime [92]. For the degenerate Kundt spacetimes, the
equivalence problem is particularly relevant, given that one cannot determine the
inequivalence of two metrics of this class by comparing polynomial scalar curvature
invariants [55, 95, 94]. To invariantly classify these spacetimes, one must use an al-
ternative tool, the Karlhede algorithm, which utilizes the Cartan equivalence method
[4] adapted to the case of Lorentzian manifolds [24] .

The first and second stages of the Karlhede algorithm were analyzed for all type
N vacuum spacetimes with Λ = 0 by Collins [36], who produced a theoretical upper
bound on the highest order, q, of the covariant derivatives of the curvature tensor
required for each of the various subclasses of the type N spacetimes. Interestingly,
this gives a hard upper bound for the V SI spacetimes [55, 95], as the pp-waves and
vacuum Kundt waves make up the entirety of type N V SI spacetimes [33, 55, 50].
Collins has shown that the pp-waves require q ≤ 4 while the vacuum Kundt waves
need at most q ≤ 6. We have shown that the pp-wave upper bound is sharp, and that
the Kundt-wave’s actual upper bound is five [47]. However, in 2000, Skea produced
a non-vacuum Kundt wave in which q = 5, suggesting that there might be vacuum
solutions for which q = 5 [52].

In this paper, we discuss the upper bound for the vacuum Kundt waves in the
Karlhede algorithm or, equivalently, the highest order, q, covariant derivative of the
curvature required to invariantly classify these spaces. We show that the upper bound
may be lowered to be less than or equal to four by exploring all possible outcomes
of the Karlhede algorithm (see figures (10.2), (10.3) and (10.4)). Out of all possible
invariant counts only one actual vacuum Kundt wave may be integrated; namely, the
class with invariant count (0, 1, 3, 4, 4). Due to the exhaustive nature of this analysis
we examine the remaining branches of possibilities in the algorithm to produce an
invariant classification of all vacuum Kundt waves. This classification is summarized
into two tables describing each of the non-diffeomorphic vacuum Kundt wave metrics
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arising by the choice of the metric function f(ζ, u). We present twelve propositions
relating the form of the metric function f(ζ, u) to the essential Cartan invariants
characterizing each spacetime. The final section contains all of the potential subcases
of the Karlhede algorithm applied to the vacuum Kundt wave spacetimes prior to
examining the geometric structure of these spacetimes.

10.2 Geometric Structure of the Vacuum Kundt Waves

If we wish to preserve the form of the metric, the permitted coordinate transforma-
tions will be [55]:

ζ ′ = ζ + iC̃, u′ = h(u), v′ = v
h,u

− (ζ + ζ̄)2 h,uu

2h2
,u

, (10.2)

H ′ = H
h2

,u
+ (ζ+ζ̄)

4h4
,u

(−3h2
,uu + 2h,uh,uuu),

where C̃ is a real constant and h(u) is an arbitrary real function. Taking the met-
ric (10.1), we work with the Newman-Penrose formalism [29] to calculate the non-
vanishing curvature components of the Ricci (Φ) and Weyl (Ψ) spinors, respectively:

Φ22 = xH,ζζ̄ ; Ψ4 = 2H,ζ̄ζ̄ .

To impose vacuum conditions, H must be harmonic and real-valued; as in the pp-
waves, this will be the real part of an analytic function, 2H = f(ζ, u) + f̄(ζ̄ , u). To
examine the geometric structure of these spaces, we work with the class of coframes
in which Ψ4 = 1. These are found by applying an appropriate spin and boost to the
natural metric coframe.

Without imposing the vacuum condition, the non-vanishing Bianchi identities
imply the relationship between the spin-coefficients and the components of the Ricci
and Weyl spinors [29] and their frame derivatives D, Δ, δ, δ̄:

κ = σ = ρ = 4ε = 0, DΦ22 = 0,

δ̄Φ22 = (4β − τ)Ψ4 + (τ̄ − 2β̄ − 2α)Φ22.
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Imposing the vacuum conditions, we see that β = τ
4 . The non-vanishing Newman-

Penrose field equations for the vacuum Kundt waves are

Dτ = 0, Dα = 0 (10.3)

Dγ = 5
4τπ + τα + π̄α + 1

4τ τ̄ , (10.4)

Dλ − δ̄π = π2 + απ − 1
4 τ̄π, (10.5)

Dμ − δπ = ππ̄ − πᾱ + 1
4πτ, (10.6)

Dν − Δπ = πμ + τ̄μ + π̄λ + τλ + γπ − γ̄π, (10.7)

Δλ − δ̄ν = −μλ − μ̄λ − 3γλ + γ̄λ + 3αν + πν − 3
4 τ̄ ν − Ψ4, (10.8)

δα − 1
4 δ̄τ = αᾱ + 1

16τ τ̄ − 1
2ατ, (10.9)

δλ − δ̄μ = μπ − μ̄π + μα + 1
4μτ̄ + λᾱ − 3

4λτ, (10.10)

δν − Δμ = μ2 + λλ̄ + γμ + γ̄μ − ν̄π + 1
4τν − ᾱν, (10.11)

δγ − 1
4Δτ = 1

2τγ − ᾱγ + 5
4μτ + 1

4τ γ̄ + αλ̄, (10.12)

δτ = 5
4τ 2 − τ ᾱ, (10.13)

−δ̄τ = −3
4 τ̄ τ − ατ, (10.14)

Δα − δ̄γ = −5
4τλ + γ̄ᾱ − μ̄ᾱ − 3

4τγ, (10.15)

while the commutator relations are

(ΔD − DΔ)f = [(γ + γ̄)D − (τ + π̄)δ̄ − (τ̄ + π)δ]f,

(δD − Dδ)f = [(ᾱ + τ

4 − π̄)D]f,

δΔ − Δδ)f = [−ν̄D + (3τ

4 − ᾱ)Δ + λ̄δ̄ + (μ − γ + γ̄)δ]f,

(δ̄δ − δδ̄)f = [(μ̄ + μ)D − (ᾱ − τ

4)δ̄ − ( τ̄

4 − α)δ]f.

The benefit of working in the class of coframes for which Ψ4 = 1 becomes apparent
once one takes frame derivatives of the Weyl tensor, as only spin-coefficients and their
derivatives appear as components of the Weyl tensor and its covariant derivatives. To
illustrate, the first order derivatives of the Weyl tensor are

(DΨ)50′ = 4α, (DΨ)51′ = 4γ, (DΨ)40′ = 0,

(DΨ)41′ = τ, (DΨ)30′ = 0, (DΨ)31′ = 0.
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At first order, one still has 2 degrees of frame freedom, using null rotations with
complex parameter B, which affects the first order invariant γ and leaves α and τ

unchanged:

γ′ = γ + Bα + 5
4B̄τ. (10.16)

If |α| �= 5
4 |τ | it is always possible to set γ′ = 0. However, if equality holds, only one

degree of freedom can be fixed, and there are three subcases for the form of γ′ [36]:

• ᾱ = −5
4τ : Im(γ′) = 0;

• ᾱ = 5
4τ : Re(γ′) = 0;

• ᾱ �= ±5
4τ : Re(γ′) or Im(γ′) = 0, but not both.

Without fixing the frame freedom, the non-zero second order derivatives of the Weyl
tensor are:

(D2Ψ)50′;00′ = 4Dα,

(D2Ψ)50′;01′ = 4(δα + 5βα − ᾱα),

(D2Ψ)50′;10′ = 4(δ̄α + 5α2),

(D2Ψ)50′;11′ = 4(Δα + 5γα − γ̄α + τ̄ γ),

(D2Ψ)51′;00′ = 4(Dγ − 5πβ − π̄α),

(D2Ψ)51′;01′ = 4(δγ − 5μβ + 5βγ − λ̄α + ᾱγ),

(D2Ψ)51′;10′ = 4(δ̄γ − 5λβ + 5αγ − μ̄α + β̄γ),

(D2Ψ)51′;11′ = 4(Δγ − 5νβ + 5γ2 − ν̄α + γ̄γ),

(D2Ψ)40′;11′ = 4(τα + τ̄β),

(D2Ψ)41′;00′ = 4Dβ,

(D2Ψ)41′;01′ = 4(δβ + 3β2 + ᾱβ),

(D2Ψ)41′;10′ = 4(δ̄β + 3αβ + β̄β),

(D2Ψ)41′;11′ = 4(Δβ + 3γβ + τγ + γ̄β),

(D2Ψ)31′;11′ = 8τβ.

If |α| = 5
4 |τ |, it is always possible to fix the last parameter of the frame freedom to fix

Δτ so that Re(Δτ) = 0. Manipulating the spin-coefficients and the remaining degrees
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of freedom, Collins produced a theoretical upper bound for these spaces [36], requiring
at most six covariant derivatives. This bound was lowered to five covariant derivatives
by Machados Ramos and Vickers [47] using the generalized GHP formalism. In both
papers a particular choice of coordinates was avoided so that these bounds were not
shown to be sharp.

10.3 An Alternative Proof That The Upper Bound for the Karlhede

Algorithm is Less than Six

The Karlhede algorithm terminates if and only if the dimension of the isotropy group
and number of functionally independent invariants do not change between two con-
secutive iterations using the invariant count notation, it is possible to map out all
possibilities for the Karlhede algorithm. The case where the invariant count begins
with (0, 0, ...) is not permitted as the invariant τ must be non-constant at first order;
if we assume τ is a constant we find from (10.13) and (10.14) that τ = 0, which
cannot be true since we are studying the vacuum Kundt waves. With this in mind, it
is easily shown that there is only one scenario where q = 6 at most, (0,1,1,2,3,4,4)1.

This invariant count would occur for the class of vacuum Kundt waves in which
at first order only one functionally independent invariant appears and further that
|α| = 5|τ |

4 . By choosing a particular coordinate system we may produce differential
constraints on the metric function H(ζ, ζ̄, u) = Re(f(ζ, u)) by imposing the vanishing
of the wedge products of the differentials of the spin-coefficients of α, τ and their
conjugates. As the spins and boosts have been fixed to set Ψ4 = 1, and since these
two invariants α and τ are unchanged under the remainder of the isotropy group
(null rotations about �), these are already Cartan invariants. With a little effort and
a change of coordinates we intend to prove the following theorem:

Theorem 10.3.1. The vacuum Kundt waves require at most q = 5 iterations of the
Karlhede algorithm to completely classify the spacetimes.

To this end we introduce a new complex coordinate a = 1
4 ln(f,ζζ). Relative to

this new coordinate system, ζ = ζ(a, u) and we find a differential constraint for the
1This notation is adopted in section D to summarize possible states of the Karlhede algorithm

compactly.
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metric function f̃ , (
f̃,a

ζ,a

)
,a

= e4aζ,a. (10.17)

The metric coframe becomes:

m = ζ,ada + ζ,udu,

� = du, (10.18)

n = dv − 2v

ζ + ζ̄
(ζ,ada + ζ,udu) − 2v

ζ + ζ̄
ζ̄,ādā + ζ̄,udu)

+
(

2Re(f̃(a, u))(ζ + ζ̄) − v2

(ζ + ζ̄)2

)
du.

In these coordinates the non-zero component of the Weyl tensor is now

Ψ4 = 2(ζ + ζ̄)e4b.

Applying a spin and boost with p = 1
4 ln(|Ψ̄4|) = a + 1

4 ln(2(ζ + ζ̄)) to the metric
coframe (10.18), we produce a new coframe:

m′ = ep−p̄m, �′ = ep+p̄�, n′ = e−p−p̄n. (10.19)

Relative to this coframe, the non-vanishing Weyl tensor component has been normal-
ized Ψ′

4 = 1 and the spin-coefficients α and τ are already Cartan invariants as they
are unaffected by the remaining isotropy.

By direct calculation we produce the following spin coefficients relative to this
coframe:

Proposition 10.3.2. The spin-coefficients relative to the class of coframes (10.19),
in which Ψ4 = 1, may be expressed as

τ = 4β = −π̄ = − eā−a

ζ+ζ̄
,

μ = λ = 0,

α = τ̄
4 +

√
τ̄
τ
(ζ̄,ā)−1, (10.20)

γ = − e−a−ā|τ | 5
2√

2

(
v + ζ̄,u(ζ̄,a)−1

|τ |2
)

,

ν = e−a−3ā
(∫

ζ̄,āe4ādā + f1 − (f + f̄)|τ |
)

.
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Before we fix any more frame freedom to set all or a part of γ to zero, we may
determine the explicit form of the metric function f(ζ, u) for the class of vacuum
Kundt waves where only one functionally independent invariant arises in the set
{α, τ, ᾱ, τ̄}:

Lemma 10.3.3. Those spacetimes in which the spin-coefficients α, ᾱ, τ and τ̄ are
functionally dependent on one invariant will have the following form for the metric
function f(ζ, u):

f(ζ, u) = C2
0

16 e
−4i(ζ−iG(u)+C1)

C0 + f1(u)ζ + f2(u). (10.21)

Relative to the coordinates a = 1
4 ln(f,ζζ), the Cartan invariants α and τ are now

τ = −eā−a

iC0(a−ā)+2C1
, α = τ̄

4 + i
C0

√
τ̄
τ
. (10.22)

Proof. Taking τ in (10.20), we calculate the double wedge product of dτ and dτ̄ to
get,

dτ ∧ dτ̄ = 2
(ζ+ζ̄)3

[
(ζ,a + ζ̄,ā)da ∧ dā + (ζ,u + ζ̄,u)da ∧ du + (ζ,u + ζ̄,u)dā ∧ du

]
.

Requiring that this must vanish gives a set of equations:

ζ,a = −ζ̄,ā, ζ,u = −ζ̄,u.

Thus ζ(a, u) is of the form

ζ(a, u) = i(C0a + G(u)) + C1. (10.23)

Plugging this into the expressions for τ and α in (10.20) we recover (10.22), then
solving for a and noting that e4a = f,ζζ we may integrate twice to recover the function
in the usual coordinate system.

The vacuum Kundt wave spacetimes with this property will potentially contain
at most two functionally independent invariants at first order: τ and γ which will
simplify the search for those vacuum Kundt waves with only one functionally inde-
pendent invariant at first order. Furthermore, as the necessary conditions for fixing
the remaining isotropy is dependent on the Cartan invariants α and τ we may use
the explicit form of these invariants from lemma 10.3.3 to show all isotropy may be
fixed at first order i.e. |α| �= 5

4 |τ |, and that no vacuum Kundt wave requires q = 6 in
the algorithm.
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Corollary 10.3.4. The invariant count (0, 1, 1, 2, 3, 4, 4) cannot occur in the Karlhede
classification of the vacuum Kundt waves.

Proof. From lemma 10.3.3 we calculate the equality |α| = 5
4 |τ | using equation (10.22).

We assume the equality holds and multiply both sides by |α|, then |α|2 = 25
16 |τ |2.

Expanding this we have:

25
16 |τ |2 = 1

16 |τ |2 + 1
C2

0
.

Using the a, ā coordinates and simplifying the resulting equation yields

3
2C2

0 = (iC0(a − ā) + 2C1)2.

Differentiating with respect to a or ā implies that C0 = 0 which cannot happen as
ζ,a = C0 must be non-zero. This is a contradiction and so |α| �= |τ | .

As this is the only permitted state in the Karlhede algorithm for the vacuum
Kundt waves with q = 6, and this case cannot occur, we conclude that the upper-
bound for the vacuum Kundt waves may be lowered to less than or equal to five.

10.4 Reducing the Upper Bound to Less than Five

The goal of this section is to provide the necessary lemmas to prove the following
theorem:

Theorem 10.4.1. The vacuum Kundt wave spacetimes require, at most, four deriva-
tives (i.e., q = 4) to classify these spaces using the Karlhede algorithm.

To study the sharpness of the upper bound, we examine the possible iteration scheme
for the Karlhede algorithm applied to the vacuum Kundt waves as tree diagrams.
This may be done exhaustively for the cases where there are at least one invariant at
the first iteration of the algorithm.

Lemma 10.4.2. The vacuum Kundt wave spacetimes for which the Karlhede algo-
rithm requires five iterations have invariant counts

(0, 1, 2, 3, 4, 4), and (0, 2, 2, 3, 4, 4) .
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Proof. The trees for the various possibilities are included in section D.

To prove theorem 10.4.1 we must examine the constraints on the vacuum Kundt waves
to produce the invariant counts in lemma 10.4.2. To do so we break up the analysis
into two subsections to examine the distinct subclasses of vacuum Kundt waves with
either one or two functionally independent invariants appearing at first order.

10.4.1 Vacuum Kundt waves with (0, 1, 2, ..)

Applying the results of lemma 10.3.3 and corollary 10.3.4, we are able to say something
about the upper bound in the first case, as the invariant coframe is produced from
(10.19) by making a null rotation (10.16) to set γ′ = 0. We must determine the form
of the parameter B for the null rotation taking the coframe (10.19) to the invariant
coframe required for the Karlhede algorithm:

�′ = �, n′ = n + B̄m + Bm̄ + |B|2�, m′ = m + B�. (10.24)

To achieve this, we equate (10.16) to zero and solve for B,

B = −√
2|τ | 5

2 e−a−ā
√

τ
τ̄

(
C2

0 |τ |−iC0
3C2

0 |τ |2−2

) (
v + G,u

C0|τ |2
)

. (10.25)

Using the dual of the invariant coframe, {δ′, δ̄′, Δ′, D′}, we may compute the
second order Cartan invariants as the frame derivatives of the first order Cartan
invariants along with the following transformed spin coefficients:

π′ = π + DB̄,

λ′ = B̄τ̄

2 +
√

τ̄

τ

2B̄

ζ̄,ā

+ B̄π + B̄DB̄ + δ̄B̄,

μ′ = B̄τ

2 + Bπ + BDB̄ + δB̄,

ν ′ = ν + 2B̄γ + 3
2B̄2τ + BB̄(π + 2α) + ΔB̄ + B̄δB̄ + Bδ̄B + BB̄DB̄.

(10.26)

These remaining invariants are expressed in terms of the coframe (10.19), the original
spin coefficients (10.20), and the frame derivatives of B relative to the original coframe
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(10.19) with Ψ4 = 1:

D =
√

2
|τ |e

a+ā ∂

∂v

,

Δ =
√

|τ |
2 e−a−ā

(
∂

∂u

−
(

2(f + f̄)
|τ | − v2|τ |2

)
∂

∂v

− ζ,u

ζ,a

∂

∂a

− ζ̄,u

ζ̄,ā

∂

∂ā

)
, (10.27)

δ = ea−ā

ζ̄,ā

∂

∂ā

− 2vτ̄
∂

∂v

.

Noting that π̄ = −τ in (10.20) we subtract −τ from π̄′, it is clear that DB is an
invariant; a quick calculation confirms that it is functionally dependent on τ

DB = −2|τ |2
√

τ

τ̄

(
C2

0 |τ | − iC0

3C2
0 |τ |2 − 2

)
.

We now examine the second order invariant arising from the frame derivative of |τ |−1

Δ′(|τ |−1) = eā−aB + ea−āB̄ =
√

|τ |
2 Re(eā−aDB)

(
v + G,u

C0|τ |2
)

.

Removing all expressions involving τ leaves the helpful invariant:

ξ = e−a−ā

(
v + G,u

C0|τ |2
)

. (10.28)

As |α| �= 5
4 |τ |, the remaining invariants at second order may be simplified to the spin-

coefficients μ′, λ′ and ν ′. These spin-coefficients involve B and the remaining frame
derivatives of this function:

δ̄B = τe−a−ā

√
|τ |
2

[1
2 + B0

]
DB

(
v + G,u

C0|τ |2
)

,

δB = τ̄ e−a−ā

√
|τ |
2

[
1
2 + B0 − 2

iC0|τ |
]

DB

(
v + G,u

C0|τ |2
)

ΔB = e−2a−2ā

[ |τ |G,u

C0

(
v + G,u

C0|τ |2
)

− (f + f̄) + v2|τ |3
2 + G,uu

2C0|τ |
]

DB,

where B0 is the following complex rational function of τ ,

B0 = 2
iC0|τ | + C2

0 |τ |
C2

0 |τ |−iC0
− 6C2

0 |τ |2
3C2

0 |τ |2−2 .

Combining these functions, it is clear that both μ′ and λ′ are expressed entirely in
terms of τ and ξ.

At this point we are able to prove that at second order, at least two functionally
independent invariants are produced if we wish to produce a vacuum Kundt wave
with q ≥ 4 in the algorithm.
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Lemma 10.4.3. All vacuum Kundt waves with the metric function f(ζ, u) of the form
(10.21) and an invariant count starting with (0, 1, 2, ...) in the Karlhede algorithm must
end at third order; i.e., with an invariant count (0, 1, 2, 2).

Proof. The last invariant given in (D2Ψ)51′;11′ gives one new candidate for a function-
ally independent invariant: 5

4τν ′ + ν̄ ′α. Applying the transformation law for ν ′ it is
seen that we may remove the majority of the terms in ν ′ and instead study the new
invariant: 5

4τ(ν + ΔB̄) + α(ν̄ + ΔB). As |α| �= 5
4 |τ |, we may always combine this and

the conjugate to produce a simpler invariant

ν + ΔB̄. (10.29)

To start on this calculation we denote Fx = Re(f1) and Fy = Im(f1) and use the
special form on ν in (10.20). We first simplify f + f̄ using the functions in (10.21)
and (10.23) to produce

f + f̄ = C2
0

16 (e4a + e4ā) + 2FxC1 − 2GFy + Re(f2),

−FyC0(a + ā) + iFxC0(a − ā).

Integrating the remaining term and substituting this into ν in (10.20) to get√
τ

τ̄
ν = −iC0

4
τ

τ̄
+ f̄1(u)e−2a−2ā

−
(

C2
0

16
τ̄

τ
+ C2

0
16

τ

τ̄
+ (Fx(ζ + ζ̄) + iFy(ζ − ζ̄) + 2Re(f2))e−2a−2ā

)
|τ |.

We may remove several terms in ν which are already functionally dependent on τ .
Plugging f + f̄ into ΔB̄ we find similar terms that may be removed from ν + ΔB̄:

ΔB̄

DB̄
= e−2a−2ā

[ |τ |G,u

C0

(
v + G,u

C0|τ |2
)

+ v2|τ |3
2 + G,uu

2C0|τ |
]

−e−2a−2ā
[
Fx(ζ + ζ̄) + iFy(ζ − ζ̄) + 2Re(f2)

]
− C2

0
16

τ̄

τ
− C2

0
16

τ

τ̄
.

With this in mind we may remove even more terms from ν̃, to produce a new invariant:

N =
√

τ̄
τ
(f̄1|τ |−1e−2a−2ā − N ′

0)|τ | + DB̄(N ′
1 − N ′

0)

N ′
0 =

(
Fx(ζ + ζ̄) + iFy(ζ − ζ̄) + 2Re(f2)

)
e−2a−2ā, (10.30)

N ′
1 =

[ |τ |G,u

C0

(
v + G,u

C0|τ |2
)

+ v2|τ |3
2 + G,uu

2C0|τ |
]

e−2a−2ā.
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Multiplying
√

τ̄
τ

= ea−ā to N and taking the difference of this new quantity with
its conjugate,

−4iC0|τ |2(N ′
1 − N ′

0)
3C2

0 |τ |2 − 2 − 2iFye−2a−2ā = ea−āN − eā−aN̄ .

Removing this term from N leaves

N ′
2 = (Fx|τ |−1e−2a−2ā − N ′

0)|τ | + C0|τ |Fye−2a−2ā. (10.31)

Scaling N ′
2 by |τ |−1, we calculate the triple wedge product of this invariant with

the previous invariants; the coefficients of the triple wedge product relative to the
coordinate 3-form basis are extensive. However, only one is necessary if we wish that
the triple wedge product vanishes: the da ∧ dā ∧ dv coefficient yields the equation

−e−3a−3ā[4(−C0Fy + iFy(ζ − ζ̄) + 2Re(f2)) + 2C0Fy] = 0.

As ζ − ζ̄ is linear function in a + ā, Fy must vanish and hence Re(f2) = 0 as well.
These constraints cause (Fx|τ |−1e−2a−2ā − N ′

0) to vanish and so we work with the
remaining invariant N ′ = N ′

1 − N ′
0 = (N ′

1 − Fx|τ |−1e−2a−2ā)|τ |−3,

N ′ =
[

G,u

C0|τ |2
(

v + G,u

C0|τ |2
)

+ v2

2 + G,uu − 2C0Fx

2C0|τ |4
]

e−2a−2ā.

Using the same procedure of equating the triple wedge product of ā − a, ξ and N ′,
we produce a very large 3-form which will not be included. Instead we examine the
da ∧ du ∧ dv-component:

e−3a−3ā 2G,uuG,u + C0G,uuu − 2C2
0Fx,u

2C2
0 |τ |4 .

Integrating we find that Fx = G,uu

2C0
+ G2

,u

2C2
0

+ C2 and that

N ′ = ξ2

2 +
[

C2

|τ |4
]

e−2a−2ā.

To continue, we eliminate the parts of this invariant expressed in terms of previous
invariants, by denoting N ′′ = N ′ − ξ2

2 . We take the triple wedge product of this
invariant with a − ā and ξ to produce the following equation in the da ∧ dā ∧ du

component:

e−3a−3ā G,uu

C2
0 |τ |4 = 0.
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Denoting G,u = C2, the remaining invariant becomes N ′′ = C2e
−2a−2ā(C2

0 |τ |4)−1. If
we wish to have only two functionally independent invariants at second order, C2 = 0.
This is generically the case, since if G,u �= 0 we may always set G = C2u + C3 to zero
using the coordinate transformation, (10.2) of the form:

u′ = h(u), v′ = v

h,u

+ h,uu

2h2
,uτ |2 , h,u = e

− 2
C0

G
.

Applying this transformation, the analytic function f(ζ, u) becomes

f ′(ζ, u) = C2
0

16 e
−4i(ζ+C1)

C0 .

At third order there are no candidates for a third functionally independent invari-
ant, Δ′ξ, as the unprimed frame derivatives yield

Dξ =
√

2
|τ | , δξ =

√
τ̄
τ

(
ξ

iC0
+ 2|τ |ξ

)
, Δξ =

√
|τ |
2 ξ2|τ |2.

The Karlhede algorithm terminates with an invariant count (0, 1, 2, 2).

Thus we have shown that vacuum Kundt waves with an invariant count of (0, 1, 2, 3, 4, 4)
in the Karlhede algorithm cannot occur as the metrics with invariant counts starting
with (0, 1, 2, ...) must have (0, 1, 2, 2) at the next order.

10.4.2 Vacuum Kundt waves with (0, 2, 2, ...)

To begin this section we prove a more general result for the vacuum Kundt waves
with invariant count (0, n, ...) 1 ≤ n ≤ 4 and |α| = 5

4 |τ |.

Lemma 10.4.4. For those vacuum Kundt waves with at least one functionally inde-
pendent invariant appearing at first order and such that |α| = 5

4 |τ | then ᾱ �= eiθ 5
4τ ,

θ ∈ R.

Proof. Expanding the conjugate of α using (10.20) we find
τ

4 + eā−aζ̄−1
,ā = −5

4eiθτ.

Upon simplification this leads to the equation

1 + 5eiθ

4 ζ̄,ā = ζ(a, u) + ζ̄(ā, u).

A contraction arises here, as we may differentiate with respect to a giving ζ,a = 0,
which cannot be so.
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Recalling the comment after equation (10.16) there are three cases to consider de-
pending on the phase of the conjugate of α. This lemma implies that the first two
cases where ᾱ = ±5

4τ cannot occur.
To start narrowing the possibilities for f(ζ, u) we consider the wedge products

of invariants built out of α, τ and their conjugates. As T = eā−a =
√

τ/τ̄ , and
A = ζ,a = (ea−ā(ᾱ − τ))−1 are both invariants it will be helpful to consider the triple
wedge product:

dA ∧ dĀ ∧ dT = −T (ζ̄,āāζ,au − ζ̄,āuζ,aa)da ∧ dā ∧ du. (10.32)

Alternatively, using the invariant M = |τ |−1 = ζ(a, u) + ζ̄(ā, u), we have another
equation as the coefficient of the triple wedge product:

dT ∧ dM ∧ dA = −T (ζ̄,āāζ,u + ζ̄,āāζ̄,u − ζ̄,āuζ̄,ā − ζ̄,āuζ,a)da ∧ dā ∧ du. (10.33)

Equating these two wedge products to zero, we have sufficient information to solve for
f(ζ, u) in the vacuum Kundt wave metrics with invariant count (0, 2, ...), and hence
narrow down the possibilities for those spacetimes with invariant count (0, 2, 2, ...).

Lemma 10.4.5. The vacuum Kundt wave metrics for which the triple wedge product
of α, τ and their conjugates vanish have the following form:

f̃(ζ, u) = −F (u)2

16 e
4(ζ−f0(u))

iF (u) + g(u)ζ + g0(u) (10.34)

f̃(ζ, u) = c2

16e
4(ζ−f1(u))

c + g1(u)ζ + g2(u), Re(C) �= 0 (10.35)

f̃(ζ, u) = f2(ζ − c0 − iF3(u)) + g3(u)ζ + g4(u) (10.36)

f̃(ζ, u) = e−
∫

F5(u)duf6

(
ζ − i

∫
F4(u)du

)
+ g5(u)ζ + g6(u). (10.37)

Proof. Equating equations (10.32) and (10.33) to zero, we have two differential equa-
tions for ζ(a, u) and its conjugate. There will be four cases depending on whether
ζ,aa and ζ,ua are zero or not.
Case 1 - ζ,aa = 0, ζ,ua �= 0:

Equation (10.32) vanishes entirely while (10.33) implies ζ,a = −ζ̄,ā, so that

ζ = iF (u)a + f0(u) (10.38)
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Solving for a and integrating f̃,ζζ = e4a:

f̃,ζζ = e
4(ζ−f0)

iF

we find the form (10.34).
Case 2 - ζ,aa = 0, ζ,ua = 0:

Here the constraints immediately imply

ζ = ca + f1(u). (10.39)

Solving for a and integrating f̃,ζζ = e4a:

f̃,ζζ = e
4(ζ−f1)

c ,

which yields the analytic function (10.35).
Case 3 - ζ,aa �= 0, ζ,ua = 0:

These assumptions cause (10.33) to become ζ,u + ζ̄,u = 0, implying ζ takes the
form:

ζ = ḟ−1
2 (a) + iF3(u) + C0. (10.40)

Solving for a and assuming ḟ2 = 1
4 lnf̈2, the expression f̃,ζζ = e4a becomes,

f̃,ζζ = f̈2(ζ − C0 − iF3).

As ḟ2 and f̈2 are arbitrary functions of u, we make one more assumption, f̈2 = f2,ζζ .
Integrating twice yields the desired metric function (10.36).
Case 4 - ζ,aa �= 0, ζ,ua �= 0

Re-arranging the functions we find

ζ,au

ζ,aa

= ζ̄,āu

ζ̄,āā

which is equivalent to ζ,au − F5(u)ζ,aa = 0. Integrating with respect to a yields

ζ,u − F5(u)ζ,a = f4(u).

Substituting this into (10.33) we find that f4 = iF4, so that ζ takes the form

ζ = ḟ−1
6

(
a +

∫
F5du

)
+ i

∫
F4du. (10.41)
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Solving for a and assuming ḟ6 = 1
4 lnf̈6 we find

f̃,ζζ = e−
∫

f5duf̈6

(
ζ − i

∫
F4du

)
.

Assuming f̈6 = f6,ζζ and integrating twice, we recover (10.37).

These metrics do not yet belong to the (0, 2, ...) class as we must determine whether
γ may be set to zero or not. If γ is non-zero, the various triple wedge products
involving γ with α, τ and their conjugates give further conditions on the metric
function f(ζ, u). By lemma 10.4.4 we see that ᾱ �= ±τ and hence we may eliminate the
real or imaginary part of γ but not both as the ratio of the real part to the imaginary
part of the quantity,αB + 5

4B̄τ , is tan[1
2(arg(α) + arg(τ))] = tan(arg(eiC)) = C �= 0

[36].
Opting to eliminate the real part of γ, we note that the purely imaginary invariant

γ′ is invariant under any null rotation preserving Re(γ) = 0 due to the proportionality
of the real and imaginary part of αB + 5

4B̄τ . Thus, without fixing the frame any
further, the transformed scalar γ′ is a Cartan invariant:

γ′ = i(Im(γ) − CRe(γ))

= i

√
|τ |

2
√

2

[
iζ,u

ζ,a

− iζ̄,u

ζ̄,ā

+ C

(
|τ |2v + ζ,u

ζ,a

+ iζ̄,u

ζ̄,ā

)]
e−a−ā,

and so we may consider the triple wedge product of the differentials of three invariants
constructed from γ′, τ , α and their complex conjugates.

Lemma 10.4.6. The class of vacuum Kundt waves with an invariant count beginning
with (0,2,2,...) and |α| = 5

4 |τ | cannot occur.

Proof. Using the invariants eā−a, ζ,a along with γ′ the triple wedge product produced
has a considerable number of terms in each coefficient of the coordinate basis for
three-forms. Taking the coefficients of da ∧ dā ∧ dv, da ∧ du ∧ dv and dā ∧ du ∧ dv

and equating these coefficients to zero we find two constraints:

iC|τ | 5
2 e−2a

2
√

2 ζ,aa = 0,

iC|τ | 5
2 e−2a

2
√

2 ζ,au = 0.



227

Immediately we see that the metric function must be of the form (10.35) with the
corresponding form of ζ(a, u) given in (10.39). Expressing α and τ in terms of this
function the required equality |α| = 5

4 |τ | implies

24
16 |τ |2 − |τ |

4 (c−1 + c̄−1) − |c|−2 = 0,

where |τ | = (C0(a + ā) + iC1(a − ā) + 2Re(f0))−1 with either C0 or C1 non-zero.
Multiplying by |τ |−2|c|2 the above equation is now

24|c|2
16 − C0|τ |−1

2 − |τ |−2 = 0,

then by expanding |τ |−1 and differentiating twice with respect to a we find a constant
that must vanish:

C0 + iC1 = 0.

This produces a contradiction as we have assumed ζ,a �= 0, thus there are no vacuum
Kundt wave spacetimes with an invariant count (0, 2, ...) where the first order Cartan
invariants satisfy |α| = 5

4 |τ |.

We have shown that the collection of vacuum Kundt waves must have either an
invariant count (0, 2, 2) with all isotropy fixed at first order, or an invariant count of
(0, 2, 3...) with |α| = 5

4 |τ | implying all isotropy is fixed at second order. Regardless of
either case, none of the potential spacetimes arising from these subclasses produce an
invariant count with q = 5. This lemma completes the proof of theorem 10.4.1 as we
have shown the two possibilities for the Karlhede algorithm requiring q = 5 cannot
occur.

10.5 Sharpness of the q ≤ 4 Upper Bound

In this section we will show that the new upper bound is indeed sharp by producing
an explicit metric function f(ζ, u).

Theorem 10.5.1. The vacuum Kundt waves with invariant count (0, 1, 3, 4, 4) are of
the form

f(ζ, u) = C2
0

16 e
−4i(ζ+C1)

C0 + f1(u)ζ + f2(u)
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where f1 and f2 are non-constant and satisfy either

f1 = (C2 + i)Fy, Re(f2) = C3 + C0
2 ln(Fy)Fy, Fy �= Cu−2,

or (10.42)

f1 = Fx, Re(f2) = C3Fx, Fx �= Cu−2.

Proof. To prove this fact we calculate the quadruple wedge product of the differentials
of a − ā, ξ and two new invariants arising in N where the invariant N2 in (10.31) is
now denoted as N0, and N1 arises from the imaginary part of N ,

N =
√

τ̄
τ

(
N0|τ | + DB(DB + DB̄)−1

(
N0 + |τ |2ξ2

2 + N1
))

N0 =
(
−C0Fy + iFy(ζ − ζ̄) + 2Re(f2)

)
e−2a−2ā, (10.43)

N1 =
[

(G2
,u+G,uuC0−2C2

0 Fx)
2C2

0 |τ | + [C0|τ |2−1]Fy

C0|τ |2
]

e−2a−2ā.

In these coordinates, the invariants are a bit complicated; one may make a coordi-
nate transformation to remove G(u) in the function f(ζ, u) in (10.21). Applying a
coordinate transformation (10.2) of the form:

u′ = h(u), v′ = v

h,u

+ h,uu

2h2
,uτ |2 , h,u = e

− 2
C0

G
, (10.44)

the analytic function f(ζ, u) becomes

f ′(ζ, u) = C2
0

16 e
−4i(ζ+C1)

C0 + e
4

C0
G

f1(u)ζ + e
4

C0
G

f2(u) + e
4

C0
G

(G2
,u+C0G,uu)ζ
C2

0
.

Finally, noting that f1 = Fx + iFy and f2 are arbitrary functions of u, we may just
relabel the quantities and write the function as:

f ′(ζ, u) = C2
0

16 e
−4i(ζ+C1)

C0 + f ′
1(u′)ζ + f ′

2(u′). (10.45)

Dropping the primes and repeating the calculations in lemma 10.3.3 and subsec-
tion (10.4.1) with this new function, one finds that N0 and N1 are now

N0 =
(
−C0Fy + iFy(ζ − ζ̄) + 2Re(f2)

)
e−2a−2ā, (10.46)

N1 =
[−2C2

0 Fx

2C2
0 |τ | + [C2

0 |τ |2−1]Fy

C0|τ |2
]

e−2a−2ā.
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From the quadruple wedge product d(a−ā)∧dξ∧dN0∧dN1 we find the sole coefficient
is:

(N0,a + N0,ā)N1,u − (N1,a + N1,ā)N0,u = 0.

Expanding this equation we find three essential equations whose vanishing is necessary
and sufficient for the 4-form to vanish

(Re(f2) + C0
4 Fy)Fx,u − Re(f2),uFx = 0

(Re(f2) + C0
4 Fy)Fy,u − Re(f2),uFy = 0

FyFx,u − Fy,uFx = 0.

To solve these equations we must consider two cases depending on whether Fy = 0
or not. In the case that Fy does vanish, we find that Re(f2) may be expressed in
terms of derivatives Fx, an arbitrary function:

Re(f2) = C3Fx. (10.47)

While if Fy �= 0 and arbitrary, we find that

Fx = C2Fy, Re(f2) = [C3 + C0

4 ln(Fy)]Fy. (10.48)

The choice of these functions is reflected in the structure of the invariants. Supposing
that Fy = 0, we may express N1 in terms of N0 = Re(f2)e−2a−2ā,

N1 =
[

C3
|τ |
]

N0.

In the case that Fy �= 0 we find that N0 and N1 may be expressed in terms of N2,

N2 = Fye−2a−2ā,

N0 = N2(C0|τ |−1 + 2C1 + ln(N2/2)), (10.49)

N1 =
[

C2
|τ | + C2

0 |τ |2−2
C0|τ |2

]
N2.

Regardless of whether Fy �= 0 or not, the third second order invariant arising here
is of the form

Ñ = F0(u)e−2a−2ā.
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The frame derivatives of this invariant produce only one new functionally independent
invariant, √

2
|τ |ΔÑ = F0,ue−3a−3ā

To determine the full class of (0, 1, 3, 4, 4) vacuum Kundt waves, we must avoid those
functions F0 which give the invariant count (0, 1, 3, 3), this can only happen if F0 is
constant or when it satisfies the following differential equation,

F0,u = −2
√

C−1
4 F

3
2

0

by integrating one finds that F0 = C4u
−2.

In the case that F0 is constant, all of the metric functions in (10.45) are indepen-
dent of u and hence this is a G1 metric with no u-dependence. In the other case, we
may make a coordinate transformation,

u′ = h(u), v′ = v

h,u

+ h,uu

2h2
,uτ |2 , h,u = u−1, . (10.50)

Dropping the primes, in these new coordinates the (0, 1, 3, 3) metrics with Fy = 0 are
now of the form

f(ζ, u) = C2
0

16 e
−4i(ζ+ iC0u

2 +C1)
C0 + C2ζ + C3 (10.51)

while those metrics with Fy �= 0 are now

f(ζ, u) = C2
0

16 e
−4i(ζ+ iC0u

2 +C1)
C0 + C2ζ + iC3

(
ζ + iC0u

2

)
+ C4. (10.52)

From [27] we conclude these are all G1 spacetimes.

We conclude this section with the result that the sharpness of the upper bound has
been confirmed.

10.6 Uniqueness of the Vacuum Kundt Waves with q = 4 in the

Karlhede Algorithm

Applying lemma 10.7.2 it is easily proven that the vacuum Kundt waves with invariant
count (0, 3, 3, 4, 4) cannot occur. Thus we need only investigate the existence of the
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(0, 2, 3, 4, 4) vacuum Kundt waves to determine the uniqueness of the vacuum Kundt
waves with q = 4.

By examining the remaining admissible branches in figure (10.1), it is clear the
only possibility of a vacuum Kundt waves attaining q = 4 in the Karlhede algorithm
lies in the cases with invariant count (0, 1, 3, ...) and (0, 2, 3, ...). In both of these cases
γ may be set to zero and the invariant coframe is entirely fixed.

Instead of working with the spin-coefficients relative to the invariant coframe with
Ψ4 = 1 and γ = 0, we examine the second order invariants found by decomposing
the invariants α and τ to construct the simpler invariants: a − ā = 1

2 ln
(

τ̄
τ

)
, ζ,a =√

τ̄
τ
(ᾱ−4τ)−1 and ζ+ζ̄ = |τ |−1. To produce higher order invariants we apply the frame

derivatives of the invariant coframe �′ = �, n′ = n+ B̄m+Bm̄+ |B|2�, m′ = m+B�

to these invariants. By choosing coordinates, the frame derivatives take the form
(10.27)

By direct calculation with this simpler set of invariants and the invariant coframe
we may prove the following proposition.

Proposition 10.6.1. For all vacuum Kundt waves with |α| �= 5
4 |τ |, the second order

Cartan invariants with no functional dependence on the previous invariants consist
of the following frame-derivatives of the first order invariants:

√
|τ |
2 Z0 = |ζ,a|2Δ(a −

ā),
√

|τ |
2 Z1 = ζ,aΔζ,a,

√
|τ |
2 Z2 = Δ(ζ + ζ̄) = and

√
τ
τ̄
Z3 = ζ,aδ̄ζ,a, along with the

spin-coefficients μ′, λ′, ν ′:

Z0 = −e−a−ā(ζ,uζ̄,ā − ζ̄,uζ,a) + τ

τ̄
B′ζ̄,ā − τ̄

τ
B̄′ζ,a,

Z1 = e−a−ā(ζ,auζ,a − ζ,uζ,aa) + τ

τ̄
B′ζ,aa,

Z2 = τ

τ̄
B′ + τ̄

τ
B̄′,

Z3 = ζ,aa,

λ′ = B̄τ̄

2 +
√

τ̄

τ

2B̄

ζ̄,ā

+ B̄π + B̄DB̄ + δ̄B̄,

μ′ = B̄τ

2 + Bπ + BDB̄ + δB̄,

ν ′ = ν + 2B̄γ + 3
2B̄2τ + BB̄(π + 2α) + ΔB̄ + B̄δB̄ + Bδ̄B + BB̄DB̄

where the unprimed spin-coefficients are defined in (10.20) and B′ =
√

τ̄
τ

√
2

|τ |B is the
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complex-valued function

B′ = e−a−ā
[
DB′v − 5

4

(
ζ̄,u

ζ̄,ā
− ζ,u

ζ,a

)
+ ζ̄,u

ζ̄,ā|τ |2 DB′
]

,

DB′ = 16|τ |2
25|τ |2−16|α|2

(
|τ | + 1

ζ̄,ā

)
.

To inquire into the uniqueness of the q = 4 vacuum Kundt waves, we classify the
vacuum Kundt waves with invariant count beginning with (0, 2, 3, ...). This class of
spacetimes is noteworthy as it contains the majority of metrics admitting one Killing
vector, and will provide an invariant expression to differentiate those vacuum Kundt
waves with invariant count (0, 2, 3, 4, 4) from those with (0, 2, 4, 4). To find such an
expression we consider the quadruple wedge products of

d(a − ā) ∧ dζ,a ∧ dZi ∧ dZj, and d(a − ā) ∧ d|τ |−1 ∧ dZi ∧ dZj.

If there are only three functionally independent invariants at second order, all twelve
quadruple wedge products must vanish, giving twelve equations:

Zi,uZj,v − Zi,vZj,u = ζ,au[Zj,v(Zi,a + Zi,ā) − Zi,v(Zj,a + Zj,ā)]
ζ,aa

,

Zi,uZj,v − Zi,vZj,u = (|τ |−1),u[Zj,v(Zi,a + Zi,ā) − Zi,v(Zj,a + Zj,ā)]
ζ,a + ζ̄,ā

.

Fortunately the cases where ζ,au �= 0 may be studied directly without resorting to
wedge products:

Lemma 10.6.2. The vacuum Kundt wave metrics with an analytic function of the
form (10.34),

f̃(ζ, u) = −F (u)2

16 e
4(ζ−F0(u))

iF (u) + g(u)ζ + g0(u)

have the invariant count (0, 2, 4, 4).

Proof. To start, we make a coordinate transformation to remove the imaginary part
of f0 in (10.34) using the coordinate transformation:

u′ = h(u), v′ = v
h,u

− h,uu

2h2
,u|τ |2 , h,u = e− 2Im(f0)

F (u) .
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Writing ζ(a, u) = iF (u)a + F0(u), we find that the first order invariants arising from
τ and α are

1
2 ln(τ̄ /τ) = a − ā, ζ,a = iF (u), |τ |−1 = iF (a − ā) + F0. (10.53)

As F ′ �= 0, so as to avoid metrics of the form (10.35), we may take its inverse locally
and express all other functions of u in terms of it.

F0 = F0(F ).

Thus we are left with a − ā and ζ,a as invariants. Noting that Z1 = Z ′
1 + Z2, where

Z1 is

Z ′
1 = e−a−āFF,u = e−a−āF(F ).

Removing the u-dependent piece, we may solve for a − ā as a third functionally inde-
pendent invariant. Taking Z2 in proposition 10.6.1 we eliminate all terms dependent
on a, ā and u leaving v as the last invariant at second order to complete the set
{a − ā, a + ā, F (u), v} with the spin-coefficients at first and second order acting as
the classifying manifold along with the frame derivatives of v and a + ā.

Applying the lesson learned from section (10.5), we note that any Kundt wave
metric with a function of the form (10.37) may be transformed into one of the form
(10.36) using the coordinate transformation

u′ = h(u), v′ = v
h,u

− h,uu

2h2
,u|τ |2 , h,u = e−

∫
F5du

2 . (10.54)

The division of the case with ζ,aa �= 0 cannot be made by ζ,au vanishing or not; it is a
coordinate-dependent distinction. We may ignore the ζ,au �= 0 in Lemma 10.4.5 case
and study the simpler case.

With these two cases eliminated, we may set ζ,au = 0, giving only six equations

Zi,uZj,v − Zi,vZj,u = 0. (10.55)

Lemma 10.6.3. The vacuum Kundt wave metrics with analytic function of the form
(10.35)

f̃(ζ, u) = c2

16e
4
(

ζ
c

− iF1(u)
|c|2

)
+ g1(u)ζ + g2(u), Re(c) �= 0,
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have the invariant count (0, 2, 4, 4) except in the subclass of these metrics with

f̃(ζ, u) = c2

16e
4(ζ−C0−iC1u)

c + c2ζ + Im(c2)C1u + C3

which have the invariant count (0, 2, 3, 3)

Proof. We first examine the possibility of invariant counts of the form (0, 2, 3, ...)
using the metric function (10.35). In this case the function is ζ(a, u) = ca + f1(u),
we find that the first order invariants arising from τ and α are

a − ā, ζ,a = c, |τ |−1 = Re(c)(a + ā) + iIm(c)(a − ā) + Re(f1). (10.56)

At second order, Z3 = Z1 = 0, thus there is only one quadruple wedge product giving
constraints on the metric functions. Mutiplying cZ2 and adding it to Z0 gives a useful
invariant

Z ′
0

c + c̄
= −e−a−ā

c + c̄
Im(ζ,uc̄) + τ

τ̄
B′.

To calculate the wedge product we scale Z ′
0 and Z2 and use the following quantities:

Z ′′
0 = Z ′

0
25|τ |2−16|α|2
16|τ |2(c+c̄) Z ′

2 = Z2
τ
τ̄

DB′+ τ̄
τ

DB̄′ .

Substituting into equation (10.55) and differentiating the whole expression by v to
get

Z ′
2,vZ ′′

0,uv − Z ′′
0,vZ ′

2,uv = |τ |,u.

Requiring this to vanish, we find that Re(f ′
1) = 0 implying that a − ā and a + ā are

the only first order invariants.
Returning to the original invariants Z ′

0 and Z2, substituting into equation (10.55)
and denoting Im(f1) = F1 we find that this becomes,

iF1,uu

[
τ

τ̄
DB′ + τ̄

τ
DB̄′ + 5(c + c̄)

4|c|2 (τ

τ̄
DB′ + τ̄

τ
DB̄′) + c + c̄|DB′|2

|c|2|τ |2
]

.

As before, setting this equation to zero we find that F1 = Im(f1) = C1u. Substituting
the form of f1 = C0 + iC1u into B′ in proposition 10.6.1 it is clear that one may peel
away the terms and coefficients of the v-linear term in Z2 to produce v as the last
invariant.
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It is clear that the only new functionally independent invariant arises in ν in
(10.26), as this is the only function retaining u-dependence. Due to the formula for
ν in (10.20) we may work with the simpler invariant,

V = |τ |−1g1 + g1ζ + ḡ1ζ̄ + 2Re(g2) (10.57)

Denoting g1 = Gx+iGy. Taking the wedge product da∧dā∧dv∧dV and and equating
this to zero we find that g1 = Gx + iIm(c2), Re(g2) = Im(c2)C1u and Gx,u = 0 and
so g1 = c2 ∈ C. As all u-dependence has been removed from the invariants, it is clear
this is a G1 space; the classifying manifold consists of the first order and second order
invariants in terms of a, ā and v along with the frame derivatives of v.

In the (0, 2, 4, 4) case, we may replace the complex-valued f1 in (10.35) with a
real-valued function of u. To do so, we apply the following coordinate transformation

u′ = h(u), v′ = v
h,u

− h,uu

2h2
,u|τ |2 , h,u = e

− 2
|c|2 (Re(f1)Re(c)+Im(f1)Im(c))

.

Then by making the gauge transformation, F1 = −Re(f1)Im(c) + Im(f1)Im(c), we
recover the desired form.

Lemma 10.6.4. The vacuum Kundt wave metrics with analytic function of the form
(10.36)

f̃(ζ, u) = f2(ζ − C − iF3(u)) + g3(u)ζ + g4(u)

have the invariant count (0, 2, 4, 4) except in the subclass of these metrics with

f̃(ζ, u) = f2(ζ − C − iC0u) + c1ζ + Im(c1)C0u) + C2

which have the invariant count (0, 1, 3, 3).

Proof. We first examine the possibility of invariant counts of the form (0, 2, 3, ...). In
this case the metric function is ζ(a, u) = Z(a) + C + iF3(u), we find that the first
order invariants arising from τ and α are

ζ,a, |τ |−1 = ζ(a) + ζ̄(ā). (10.58)

Locally we may take the inverse of ζ,a to solve for a and use it as an invariant.
Similarly we may do this for the conjugate, and hence at first order a and ā may be
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treated as invariants. At second order, Z3 = ζ,aa gives no new information. If we
define a new invariant Z ′

1 = Z1Z
−1
3 , Z2 = Z1 + Z̄1 and Z0 = ζ̄,āZ ′

1 − ζ,aZ̄ ′
1, there is

only one quadruple wedge product giving constraints on the metric functions.
Taking the quadruple wedge product with Z ′

1 and its conjugate and substituting
into equation (10.55), we obtain

−iF3,uu

[
τ

τ̄
DB′ + τ̄

τ
DB̄′ + 5(ζ,a + ζ̄,ā)

4|ζ,a|2
τ

τ̄
DB′ + τ̄

τ
DB̄′ + ζ,a + ζ̄,ā|DB′|2

|ζ,a|2|τ |2
]

.

As before, setting this equation to zero we find that F3 = C0u. Substituting F3(u) into
B′ in proposition 10.6.1 it is clear that one may peel away the terms and coefficients
of the v-linear term in Z2 to produce v as the last invariant.

From the remaining second order invariants, (10.26) it is clear that the only new
functionally independent invariant arises in ν as this is the only function retaining
u-dependence. Denoting g3 = gx + igy we may work with the simpler invariant V in
(10.57):

V = |τ |−1g3 + g3ζ + ḡ3ζ̄ + 2Re(g4)

Repeating the calculation of the wedge product da ∧ dā ∧ dv ∧ dV and equating this
to zero we find that g3 = Gx + iIm(c1), Re(g4) = Im(c1)C0u andg3 = c1 ∈ C. As all
u-dependence has been removed from the invariants, it is clear this is a G1 space, the
classifying manifold consists of the first order and second order invariants in terms of
a, ā and v along with the frame derivatives of v.

10.7 An Invariant Classification of Vacuum Kundt Waves

In proving the sharpness of the lowered upper bound we exhausted all of the branches
of the invariant-count tree starting with (0, 1, ...). Employing the first order Car-
tan invariants, α, τ and γ, we may eliminate several branches from the remaining
invariant-count trees in (10.4).

Using the results in this section the possible scenarios for the invariant classifi-
cation of the vacuum Kundt waves can be narrowed down further to the following
diagrams in figure (10.1)
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10.7.1 Vacuum Kundt waves with |α| = 5
4 |τ |

In the most general case, where a vacuum Kundt wave admits the following invariant
counts, (0, 4, ...), we may eliminate the scenario where q = 2 by counting coordinates
involved in the first order invariants.

Lemma 10.7.1. All vacuum Kundt waves with invariant count (0, 4, ...) must have
|α| = 5

4 |τ |.

Proof. Choosing Kundt coordinates, we calculate the quadruple wedge product of the
differentials of the first order Cartan invariants α, τ and their conjugates. As they
are all functions of a, ā and u relative to the special coordinate system, it is clear that

dα ∧ dᾱ ∧ dτ ∧ dτ̄ = 0.

If the magnitudes of α and τ were not proportional we would always be able to set
γ = 0, contradicting our assumption that four invariants appear at first order.

With the upper bound q ≤ 4 shown to be sharp in the subclass of the vacuum Kundt
waves with invariant count (0, 1, 3, 4, 4), we would like to determine whether vacuum
Kundt waves with q = 4 exist in the other subclasses of the vacuum Kundt waves with
invariant count begining with (0, 2, ..) and (0, 3, ...) respectively. Using the approach
from the previous section, it is possible to show the q = 4 branch in (10.4) cannot
occur in the (0, 3, ...) case.

Lemma 10.7.2. For all vacuum Kundt wave spacetimes with invariant count (0, 3, ...)
the magnitude of α is never proportional to that of τ ; i.e., |α| �= 5

4 |τ |. All remaining
frame freedom is exhausted at first order by setting γ = 0.

Figure 10.1: All permissible invariant-count trees for the vacuum Kundt waves
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Proof. Let us assume that the two magnitudes are equal, then by lemma 10.4.4,
α �= ±τ and we may set either the real or imaginary part of γ to zero. As before, we
eliminate the real part of γ. The purely imaginary invariant γ′ is invariant under any
null rotation preserving Re(γ) = 0 due to the proportionality of the real and imagi-
nary part of αB + 5

4B̄τ . Thus, without fixing the frame any further, the transformed
scalar γ′ is a Cartan invariant:

γ′ = i(Im(γ) − C(a, ā, u)Re(γ))

= i

√
|τ |

2
√

2

[
iζ,u

ζ,a

− iζ̄,u

ζ̄,ā

+ C

(
|τ |v + ζ,u

ζ,a

+ iζ̄,u

ζ̄,ā

)]
e−a−ā,

and so we may consider the quadruple wedge product of the differentials of three
invariants constructed from γ′, τ ,α and their complex conjugates: |τ |−1, eā−a, ζ,a and
γ′. Doing so we find the sole coefficient of da ∧ dā ∧ du ∧ dv is:

ie2a|τ | 3
2 C

2
√

2

(
ζ̄,āāζ,u + ζ̄,āāζ̄,u − ζ̄,āuζ̄,ā − ζ̄,āuζ,a

)
.

If we wish to have three functionally independent invariants at first order, this wedge
product must vanish; however, this is exactly equation (10.33) used to determine the
class of vacuum Kundt wave metrics with invariant count (0, 2, ...). This contradicts
our assumption and so |α| �= 5

4 |τ |.

With this result we see that for all metrics with an invariant count (0, n, ...), n < 4,
we may always set γ = 0 as 5

4 |τ | �= |α|.

10.7.2 Vacuum Kundt waves with |α| �= 5
4 |τ |

To complete the classification of those spacetimes with invariant count (0, 2, ...), we
show that the class of vacuum Kundt waves with invariant count (0, 2, 2) cannot
occur.

Lemma 10.7.3. If a vacuum Kundt wave spacetime admits a two-dimensional isom-
etry group it must belong to the (0, 1, 2, 2) class.

Proof. Supposing that only two functionally independent invariants appear at first
order, we require that the wedge products of d(a − ā) ∧ dζ,a ∧ dZi and d(a − ā) ∧
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d|τ |−1 ∧ dZi all vanish. Calculating the wedge products in a particular coordinate
system gives

d(a − ā) ∧ dζ,a ∧ dZi = [ζ,aaZi,u − ζ,au(Zi,a + Zi,ā)]da ∧ dā ∧ du

+ Zi,vζ,aada ∧ dā ∧ dv

+ Zi,vζ,au(da ∧ du ∧ dv − dā ∧ du ∧ dv),

d(a − ā) ∧ d|τ |−1 ∧ dZi = [(ζ,a + ζ̄,ā)Zi,u − (|τ |−1),u(Zi,a + Zi,ā)]da ∧ dā ∧ du

+ Zi,v(ζ,a + ζ̄,ā)da ∧ dā ∧ dv

+ Zi,v(ζ,u + ζ̄,u)(da ∧ du ∧ dv − dā ∧ du ∧ dv).

If these wedge products are to vanish then either ζ,a + ζ̄,ā = ζ,u + ζ̄,u = ζ,au = ζ,aa = 0
or Zi,v = 0. As in the proof of Lemma 10.7.4 we may use the same argument for
metrics (10.34), (10.36) and (10.37) to show Zi,v �= 0, i = 0, 1, 2. In the case of the
metric function (10.35) where ζ,aa = 0 and ζ,a = −ζ̄,ā, Z2,v = 0 occurs if and only
if ζ,a = 0 which is not possible. If these wedge products do vanish, we must have
ζ,a + ζ̄,ā = ζ,u + ζ̄,u = ζ,au = ζ,aa = 0, implying that this metric belongs to the (0, 1, ...)
class.

To illustrate the utility of these invariants over the usual set of invariants arising
from the spin coefficients relative to the invariant coframe, we prove that the class of
vacuum Kundt waves with invariant count (0, 3, 3) cannot occur.

Lemma 10.7.4. If a vacuum Kundt wave spacetime admits three functionally in-
dependent invariants at first order of the Karlhede algorithm, it must belong to the
(0, 3, 4, 4) class.

Proof. Supposing that we do have the invariant count (0, 3, 3) we will show there is
a contradiction. Denoting the triple wedge product Ω3 = d(a − ā) ∧ dζ,a ∧ d(ζ + ζ̄),
we note

Ω3 = −(ζ̄,āā(ζ,u + ζ̄,u) − ζ̄,āu(ζ̄,ā + ζ,a))da ∧ dā ∧ du.

We recall from equation (10.33) that if this equation vanishes only two functionally
independent invariants appear at first order of the algorithm; thus this must be non-
zero if we wish to have three invariants at first order. To impose the condition that
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no new functionally independent invariants appear at second order, we require the
vanishing of all quadruple wedge products with ZI , I = 1, 2, 3, 4

Ω3 ∧ dZI = −ZI,v(ζ̄,āā(ζ,u + ζ̄,u) − ζ̄,āu(ζ̄,ā + ζ,a))da ∧ dā ∧ du ∧ dv.

This can only occur if and only if Zi,v = 0, i = 1, 2, 3. The v-coefficient of the first
three Zi yields two cases, depending on whether ζ,aa = 0 or not.

• If ζ,aa �= 0, the vanishing of Ω3 ∧ Z1 implies Z1,v = 0; this can only occur if
DB = 0which is not possible; otherwise one would have |τ | = −ζ−1

,a . If one
were to impose this constraint, it immediately implies, ζ,a = 0 which cannot be
true.

• If ζ,aa = 0, the vanishing wedge products Ω3 ∧ Z0 and Ω3 ∧ Z2 give the following
equations

τ̄
τ
DB̄′ζ,a − τ

τ̄
DB′ζ̄,ā = 0,

τ
τ̄
DB′ + τ̄

τ
DB̄′ = 0.

As DB �= 0, we may solve one equation and substitute into the other,[
ζ̄,ā

ζ,a

+ 1
]

DB
τ

τ̄
= 0.

This will only vanish if ζ,a = −ζ̄,ā; however, if this is the case, then (10.33)
is satisfied and this spacetime belongs to the (0, 2, ...) class, contradicting our
assumption, and so it cannot occur.

Effectively we may differentiate those vacuum Kundt waves with invariant count
(0, 3, 4, 4) and (0, 4, 4, 4) by the non-vanishing of the first order invariant |α| − 5

4 |τ |.
The Newman-Penrose field equations provide further classifying functions.

10.8 Conclusions

In this paper we have invariantly classified all of the vacuum Kundt waves by exhaus-
tively listing all invariant counts that appear as states in the Karlhede algorithm.
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Using the invariants produced by this method, we examine each invariant count to
determine if the spacetime is integrable. In many cases whole branches do not occur
or are significantly simplified; the results of this analysis are summarized in table
form in the following two tables (10.1) and (10.2).

This analysis was motivated by previous work on the upper bound of the Karlhede
algorithm applied to type N spacetimes; it was conjectured that q ≤ 5 [36, 47] for the
vacuum Kundt waves; however, this upper bound was not shown to be sharp. We
have lowered the upper bound to q ≤ 4 and produced an example by integrating the
class of vacuum Kundt waves with (0, 1, 3, 4, 4) proving the sharpness of the bound.
Furthermore, we proved this class is unique as it is the only class requiring the fourth
derivative of the curvature to invariantly classify its members.

10.9 Vacuum Kundt Waves Admitting No Symmetry

In this section we collect all of necessary invariants required to sub-classify the vacuum
Kundt waves admitting no Killing vectors, by identifying the functionally independent
invariants and those functionally dependent invariants that are not generic to all
vacuum Kundt waves. These functions constitute the essential classifying manifold,
as all other curvature components to any order may be expressed in terms of these
functions and their derivatives. In each list the use of a semi-colon indicates those
elements arise from the next order covariant derivative of the curvature tensor than
the predecessors in the list.

Proposition 10.9.1. The metrics belonging to the (0, 4, 4, 4) class may contain any
analytic function, f(z, u), not listed in the class of vacuum Kundt waves with invariant-
counts beginning with (0, n, ...), n < 3.

Using the special coordinates a = 1
4 ln(f,ζζ), the four functionally independent in-

variants may be constructed from the spin-coefficients in (10.20):

i(a − ā), ζ,a, |τ |−1, v.
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The classifying functions at first and second order are:

a + ā = Z̃0(i(a − ā), ζ,a, |τ |−1), ζ,u = z̃1(i(a − ā), ζ,a, |τ |−1),
24|ζ,a|2

16 + |ζ,a||τ |−1(ζ,a + ζ̄,ā) + |τ |−2;

ζ,aa = z̃2(i(a − ā), ζ,a, |τ |−1), f̃(a, u) = z̃3(i(a − ā), ζ,a, |τ |−1).

The invariant coframe arises from the coframe (10.19) by using the null rotation
parameters B′ and B′′ to satisfy the conditions at first and second order respectively:

Im
(

γ + B′α + 5
4B̄′τ

)
= 0; iΔ′′(a − ā) = 0.

Proposition 10.9.2. The metrics belonging to the (0, 3, 4, 4) class may contain any
analytic function,f(z, u), not listed in the class of vacuum Kundt waves with invariant-
counts beginning with (0, n, ...), n < 3.

Using the special coordinates a = 1
4 ln(f,ζζ), the four functionally independent in-

variants may be constructed from the spin-coefficients in (10.20) even though the last
invariant appears at second order:

ζ,a, ζ̄,ā, |τ |−1; v.

The classifying functions at first and second order are:

a = z̃0(ζ,a, ζ̄,ā, |τ |−1);

ζ,u = z̃2(ζ,a, ζ̄,ā, |τ |−1), ζ,aa = z̃3(ζ,a, ζ̄,ā, |τ |−1), f̃(a, u) = z̃4(ζ,a, ζ̄,ā, |τ |−1).

The invariant coframe is found at first order by applying a null rotation to the coframe
(10.27) with parameter B satisfying the conditions: γ + B′α + 5

4B̄′τ = 0 which is
explicitly given in proposition 10.6.1.

Proposition 10.9.3. The metric belonging to the (0, 2, 4, 4)−0 class has the canonical
form for f(ζ, u)

−F (u)2

16 e
4(ζ−F0(u))

iF (u) + g(u)ζ + g0(u),

where F , f0, g and g0 are arbitrary functions of u.
Using the special coordinates a = 1

4 ln(f,ζζ), the four functionally independent in-
variants may be constructed from the spin-coefficients in (10.20) even though the last
two invariants arise at second order:

a − ā, ζ,a = iF (u) with F,u �= 0; a + ā, v.
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The classifying functions at first and second order are:

|τ |−1 = iζ,a(a − ā) + F0(u);

ζ,aa = 0, F,u(u), g(u), ḡ(u), Re(g0)(u).

The invariant coframe is found at first order by applying a null rotation to the coframe
(10.27) with parameter B satisfying the conditions: γ + B′α + 5

4B̄′τ = 0 which is
explicitly given in proposition 10.6.1.

Proposition 10.9.4. The metric belonging to the (0, 2, 4, 4)−1 class has the canonical
form for f(ζ, u)

f(ζ, u) = c2

16e
4(ζ

c
− iF (u)

|c|2 + g1(u)ζ + g2(u), Re(c) �= 0

where F1, g1, and g2 are arbitrary functions of u.
Using the special coordinates a = 1

4 ln(f,ζζ), the four functionally independent in-
variants may be constructed from the spin-coefficients in (10.20) even though the last
two invariants arise at second order:

a − ā, |τ |−1; Z0, Z2

where Z0 and Z2 are defined in proposition 10.6.1. The classifying functions at first,
second and third order are:

ζ,a = c;

ζ,aa = 0, a + ā = Z̃0(a − ā, |τ |−1, −iZ0, Z2), v = Z̃1(a − ā, |τ |−1, Z0, Z2);

ΔZ0 = iZ̃2(a − ā, |τ |−1, Z0, Z2), ΔZ3 = Z̃4(a − ā, |τ |−1, Z0, Z2).

The invariant coframe is found at first order by applying a null rotation to the coframe
(10.27) with parameter B satisfying the conditions: γ + B′α + 5

4B̄′τ = 0 which is
explicitly given in proposition 10.6.1.

Proposition 10.9.5. The metric belonging to the (0, 2, 4, 4)−2 class has the canonical
form for f(ζ, u)

f(ζ, u) = f2(ζ − c0 − iF3(u)) + g3(u)ζ + g4(u)

where F3, g3, and g4 are arbitrary functions of u.
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Using the special coordinates a = 1
4 ln(f,ζζ), the four functionally independent in-

variants may be constructed from the spin-coefficients in (10.20) even though the last
two invariants arise at second order:

a − ā, |τ |−1; Z ′
1, Z̄ ′

1

where Z ′
1 = Z1Z

−1
3 as defined in proposition 10.6.1. The classifying functions at first,

second and third order are:

ζ,a = iz̃0(a − ā, |τ |−1);

a + ā = Z̃1(a − ā, |τ |−1), v = Z̃2(a − ā, |τ |−1, Z ′
1, Z̄ ′

1);

ΔZ ′
1 = iz̃3(a − ā, |τ |−1, Z ′

1, Z̄ ′
1).

The invariant coframe is found at first order by applying a null rotation to the coframe
(10.27) with parameter B satisfying the conditions: γ + B′α + 5

4B̄′τ = 0 which is
explicitly given in proposition 10.6.1.

Proposition 10.9.6. The metric belonging to the (0, 1, 4, 4) class has the canonical
form for f(ζ, u)

f(ζ, u) = C2
0

16 e
−4i(ζ+C1)

C0 + f1(u)ζ + f2(u).

where f1 and f2 may be any set of functions except those listed in the remaining
invariant classes (0, 1, 3, 4, 4), (0, 1, 3, 3) and (0, 1, 2, 2).

Using the special coordinates a = 1
4 ln(f,ζζ), the four functionally independent in-

variants may be constructed from the spin-coefficients in (10.20) even though the last
three invariants arise at second order:

a − ā; v, N0, N1

where N0 and N1 are defined in equation (10.46). The classifying functions at first,
and second order are:

ζ,a = iC0, |τ |−1 = iC0(a − ā) + 2C1;

a + ā = Z̃0(a − ā, N0, N1);

ΔN0 = Z̃1(a − ā, v, N0, N1), ΔN1 = Z̃2(a − ā, v, N0, N1).
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The invariant coframe is found at first order by applying a null rotation to the coframe
(10.27) with parameter B satisfying the conditions: γ + B′α + 5

4B̄′τ = 0 which is
explicitly given in proposition 10.6.1.

Proposition 10.9.7. The metric belonging to the (0, 1, 3, 4, 4)−0 class has the canon-
ical form for f(ζ, u)

f(ζ, u) = C2
0

16 e
−4i(ζ+C1)

C0 + Fy[(C2 + i)ζ + 2C3 + ln(F
C0
2

y )]

where Fy may be any function except Cu−2.
Using the special coordinates a = 1

4 ln(f,ζζ), the four functionally independent in-
variants may be constructed from the spin-coefficients in (10.20) even though the last
three invariants arise at second order:

a − ā; v, N2; F (u) = Fy,u

Fy
3
2

where N2 is defined in equation (10.49). The classifying functions at first, and second
order are:

ζ,a = iC0, |τ |−1 = iC0(a − ā) + 2C1;

N1 =
[

C2
|τ | + C2

0 |τ |2−2
C0|τ |2

]
N2;

Fy = Z̃0(F ), a + ā = 1
2 ln

(
N2
Fy

)
.

The invariant coframe is found at first order by applying a null rotation to the coframe
(10.27) with parameter B satisfying the conditions: γ + B′α + 5

4B̄′τ = 0 which is
explicitly given in proposition 10.6.1.

Proposition 10.9.8. The metric belonging to the (0, 1, 3, 4, 4)−1 class has the canon-
ical form for f(ζ, u)

f(ζ, u) = C2
0

16 e
−4i(ζ+C1)

C0 + Fx(ζ + C2)

where Fx may be any function except Cu−2.
Using the special coordinates a = 1

4 ln(f,ζζ), the four functionally independent in-
variants may be constructed from the spin-coefficients in (10.20) even though the last
three invariants arise at second order:

a − ā; v, N0; F (u) = Fx,u

Fx
3
2
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where N0 is defined in equation (10.49). The classifying functions at first, and second
order are:

ζ,a = iC0, |τ |−1 = iC0(a − ā) + 2C1;

N1 = −N2
C2|τ | ;

Fx = Z̃0(F ).

The invariant coframe is found at first order by applying a null rotation to the coframe
(10.27) with parameter B satisfying the conditions: γ + B′α + 5

4B̄′τ = 0 which is
explicitly given in proposition 10.6.1.

10.10 Vacuum Kundt Waves Admitting a Symmetry

In this section we collect all of necessary invariants required to sub-classify the vacuum
Kundt waves admitting one Killing vectors, by identifying the functionally indepen-
dent invariants and those functionally dependent invariants that are not generic to all
vacuum Kundt waves. These functions constitute the essential classifying manifold,
as all other curvature components to any order may be expressed in terms of these
functions and their derivatives. In each list the use of a semi-colon indicates those
elements arise from the next order covariant derivative of the curvature tensor than
the predecessors in the list

Proposition 10.10.1. The metric belonging to the (0, 2, 3, 3)−1 class has the canon-
ical form for f(ζ, u)

c2

16e
4(ζ−C0−iC1u)

c + c2ζ + Im(c2)C1u + C3

where c, c2 and C0, C1, C3 are arbitrary complex-valued and real-valued functions re-
spectively.

Using the special coordinates a = 1
4 ln(f,ζζ), the four functionally independent in-

variants may be constructed from the spin-coefficients in (10.20) even though the last
two invariants arise at second order:

a − ā, a + ā; v
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where Z0 and Z2 are defined in proposition 10.6.1. The classifying functions at first,
second and third order are:

ζ,a = c, |τ |−1 = Re(c)(a + ā) + Im(c)(a − ā) + C0;

C1, c2, C3.

The invariant coframe is found at first order by applying a null rotation to the coframe
(10.27) with parameter B satisfying the conditions: γ + B′α + 5

4B̄′τ = 0 which is
explicitly given in proposition 10.6.1.

Proposition 10.10.2. The metric belonging to the (0, 2, 3, 3)−2 class has the canon-
ical form for f(ζ, u)

f2(ζ − C − iC0u) + c1ζ + Im(c1)C0u + C2

where C, C0, C2,and c1 are arbitrary real-valued and complex-valued constants. Using
the special coordinates a = 1

4 ln(f,ζζ), the four functionally independent invariants may
be constructed from the spin-coefficients in (10.20) even though the last two invariants
arise at second order:

ζ,a, ζ̄,ā; v.

The classifying functions at first, second and third order are:

a − ā = iZ̃0(ζ,a, ζ̄,ba), ζ + ζ̄ = Z̃1(ζ,a, ζ̄,ā), C;

a + ā = Z̃2(ζ,a, ζ̄,ā), c1, C2.

The invariant coframe is found at first order by applying a null rotation to the coframe
(10.27) with parameter B satisfying the conditions: γ + B′α + 5

4B̄′τ = 0 which is
explicitly given in proposition 10.6.1.

Proposition 10.10.3. The metric belonging to the (0, 1, 3, 3, 3) class has the canon-
ical form for f(ζ, u)

C2
0

16 e
−4i(ζ−iC0u+C1)

C0 + c3ζ + Im(c3)C2u + iC2

where C0, C1, C2, and c3 are arbitrary real and complex valued constant, respectively.
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Using the special coordinates a = 1
4 ln(f,ζζ), the four functionally independent in-

variants may be constructed from the spin-coefficients in (10.20) even though the last
three invariants arise at second order:

a − ā; v, u−2e−2a−2ā

The classifying functions at first, and second order are:

ζ,a = iC0, |τ |−1 = iC0(a − ā) + 2C1;

C2, c3.

The invariant coframe is found at first order by applying a null rotation to the coframe
(10.27) with parameter B satisfying the conditions: γ + B′α + 5

4B̄′τ = 0 which is
explicitly given in proposition 10.6.1.

10.11 Vacuum Kundt Waves Admitting Two Symmetries

In this section we collect all of necessary invariants required to sub-classify the vacuum
Kundt waves admitting two Killing vectors, by identifying the functionally indepen-
dent invariants and those functionally dependent invariants that are not generic to all
vacuum Kundt waves. These functions constitute the essential classifying manifold,
as all other curvature components to any order may be expressed in terms of these
functions and their derivatives. In each list the use of a semi-colon indicates those
elements arise from the next order covariant derivative of the curvature tensor than
the predecessors in the list

Proposition 10.11.1. The metric belonging to the (0, 1, 2, 2) class has the canonical
form for f(ζ, u)

f(ζ, u) = C2
0

16 e
−4i(ζ−iC2+C1)

C0

where C0 and C1 are arbitrary real-valued constants.
Using the special coordinates a = 1

4 ln(f,ζζ), the four functionally independent in-
variants may be constructed from the spin-coefficients in (10.20) even though the last
three invariants arise at second order:

a − ā; e−a−āv.
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The classifying functions at first and second order are:

ζ,a = iC0, |τ |−1 = iC0(a − ā) + 2C1.

The invariant coframe is found at first order by applying a null rotation to the coframe
(10.27) with parameter B satisfying the conditions: γ + B′α + 5

4B̄′τ = 0 which is
explicitly given in proposition 10.6.1.

10.12 All Potential Invariant Counts for the Vacuum Kundt Waves

To write down a potential case of the Karlhede algorithm up to a given iteration, p,
we will use the following notation, (t1, t2, ..., tp, ...), where ti, i ∈ [1, p] denotes the
number of functionally independent invariants at the i-th iteration of the Karlhede
algorithm. We may map out all potential cases of the Karlhede algorithm, by using
each potential invariant count as a node in a tree diagram where the existence of a
non-trivial isotropy group from one iteration to the next will be denoted by a dashed
line, while a solid line denotes a trivial isotropy group.

Figure 10.2: Potential invariant-count trees for the case where one functionally inde-
pendent invariant appears at first order of the algorithm
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Figure 10.3: Potential invariant-count tree for the case where two functionally inde-
pendent invariants appear at first order of the algorithm

Figure 10.4: Potential invariant-count trees for the case where three or four func-
tionally independent invariants appear at first order of the algorithm
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Invariant Count f(ζ, u)

(0, 4, 4, 4) f(ζ, u), |α| − 5
4 |τ | = 0

(0, 3, 4, 4) f(ζ, u), |α| − 5
4 |τ | �= 0

(0, 2, 4, 4) − 0 −F (u)2

16 e
4(ζ−F0(u))

iF (u) + g(u)ζ + g0(u)

(0, 2, 4, 4) − 1 c2

16e
4
(

ζ
c

− iF1(u)
|c|2

)
+ g1(u)ζ + g2(u)

(0, 2, 4, 4) − 2 f2(ζ − c0 − iF3(u)) + g3(u)z + g4(u)

(0, 1, 4, 4) C2
0

16 e
−4i(ζ+C1)

C0 + f1(u)ζ + f2(u)

(0, 1, 3, 4, 4) C2
0

16 e
−4i(ζ+C1)

C0 + fy[(C2 + i)ζ + 2C3 + ln(f
C0
2

y )],
fy(u) �= Cu−2

(0, 1, 3, 4, 4) C2
0

16 e
−4i(ζ+C1)

C0 + fx(ζ + C2),
fx(u) �= Cu−2

Table 10.1: All Vacuum Kundt waves admitting no symmetries

Invariant Count f(ζ, u) Killing vector

(0, 2, 3, 3) c2

16e
4(ζ−C0−iC1u)

c + c2ζ + Im(c2)C1u + C3 U − C1T

(0, 2, 3, 3) f2(ζ − C − iC0u) + c1ζ + Im(c1)C0u + C2 U − C0T

(0, 1, 3, 3) C2
0

16 e
−4i(ζ−iC0u+C1)

C0 + c3ζ + Im(c3)C0u + C2 U − C0T

(0, 1, 2, 2) C2
0

16 e
−4i(ζ+C1)

C0 U and
T + C−1

0 R

Table 10.2: All Vacuum Kundt waves admitting symmetries; the Killing vectors are:
U = ∂

∂u
,R = i

(
∂
∂ζ

− ∂
∂ζ̄

)
and T = u

2
∂

∂u
.



Chapter 11

All Kundt Waves Admitting Isometries

11.1 An Invariant Coframe to Calculate Isometries

We are interested in the collection of Petrov Type N Kundt spacetimes with τ �= 0, the
so called rotating plane fronted waves. In this paper our interest lies in the collection of
these spacetimes admitting one or more isometries. Kundt had previously investigated
these spacetimes [9], however we will use the notation in [22]. In the Newman-Penrose
formalism, these spacetimes have σ = ρ = 0 and hence are Kundt spacetimes with
τ �= 0; they admit vacuum, Null Einstein-Maxwell and Pure radiation as energy
conditions.

Using the metric form (31.38) in [22], these spacetimes describe those vacuum
Kundt spacetimes with τ �= 0. To restrict these to Petrov Type N , we set W 0 = 0.
In these spacetimes, the vacuum condition implies H0 is harmonic, if we relax this
condition the spacetimes will have Φ22 �= 0 and hence allow for an energy tensor
describing pure raditation or a null Einstein-Maxwell field. The metric will be

ds2 = 2dζdζ̄ − 2du(dv − 4v
ζ+ζ̄

Re(dζ) + Hdu, H = H0(ζ, ζ̄, u) − v2

(ζ+ζ̄)2 ). (11.1)

More conveniently this may be described by the coframe,

m = dζ, � = du, n = dv − 4v
ζ+ζ̄

Re(dζ) + Hdu,

H = H0(ζ, ζ̄, u) − v2

(ζ+ζ̄)2 .

Using this coframe and applying the appropriate Lorentz transformations to normal-
ize particular Cartan invariants related to the Kundt waves, producing an invariant
coframe well-suited to the geometry of these spaces.

The coframe approach to the metric provides another method to calculating the
isometries of the spacetime using the Lie derivative, L by exploiting the fact that any
coordinate transformation, Φ, maps each member of the coframe to its equivalent in

252



253

the new coordinate system. That is for ωA
i = {m, m̄, �v} and ωA′

i = {m′, m̄′, �′n′} in
the new coordinates:

Φ∗ωA′
i = ωA

i . (11.2)

In the typical situation where one is using a coframe which is not invariant, Φ∗ωA′
i =

Aj
i (ζ, ζ̄, u, v)ωA

j where Aj
i belongs to the Lorentz group.

Theorem 11.1.1. Given a Lorentzian metric gij, i, j ∈ [1, 4] admitting an invariant
coframe ωA

i A, B ∈ [1, 4] such that gij = ωA
i ωB

j ηAB. Every vector-field X which
annihilates the invariant coframe, LXωA

i = 0 ∀A ∈ [1, 4], will be a Killing vector,
LXgij = 0, and vice versa.

Proof. Denoting Φ[X]ε as the flow of X through a neighborhood of a particular point
in the manifold, the vanishing of the Lie Derivative implies Φ[X]∗εωA = ωA. Vector
fields belonging to this class give rise to the symmetries of a coframe. In the case of
the invariant coframe these symmetries coincide with those of the metric.

Assuming such a vector field exists, we use the fact that gij = ωA
i ωB

j ηAB and the
Leibnitz property of the Lie derivative to find

LXgij = LXωA
i ωB

j ηAB + ωA
i LXωB

j ηAB = 0

Thus X is a Killing vector for the metric.
To prove the converse, we choose coordinates in which the Killing vector is part

of the coordinate basis, i.e., X = ∂
∂x1 . Relative to these coordinates, the coordinate

transformation x̃1 = x1+C, x̃i = xi, i > 1 is an isometry with the additional property
dx̃a = dxa, a ∈ [1, i]. Supposing R(xa) is an invariant function, for any coordinate
transformation, R̃(x̃a) = R(xa), in particular for an isometry this implies

R(x1 + C, xi) = R(x1, xi)

implying that R,x1 = 0. Now if we consider an invariant coframe, ωα = ωα
a dxa, the

pullback of each member of the coframe is mapped to its equivalent in the x̃ system,
i.e. ω̃α = ωα. As dx̃a = dxa each component of the coframe member will be left
invariant by the isometry:

ω̃α
a = ωα

a ;
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we conclude that in general ωα
a,x1 = 0. Taking the Lie derivative of the invariant

coframe ωα
a in the direction of X = ∂

∂x1 we find:

LXωα
a = ωα

a,1 = 0,

X annihilates the invariant coframe.

11.2 Kundt Spacetimes with τ �= 0 Admitting a G1 Isometry Group

Potentially this approach can lead to very complicated expressions involving the com-
ponents of the Killing vector and coframe, and their first order coordinate derivatives.
However by varying the isotropy to fix certain invariants we may produce a coframe
for which these equations are much simpler.

To continue we make a simple gauge transformation H0 = 4xh0(ζ, ζ̄, u) and apply
a boost to the coframe so that the Cartan invariant, Ψ4 = xh0

,ζ̄ζ̄
, satisfies |Ψ4| = 1:

m′ = m, �′ = e
a
2 �, n′ = e− a

2 n, a = 1
2

(
ln(x2) + ln(|h0

,ζ̄ζ̄
|)
)

. (11.3)

Fixing the form of Ψ4 reduces the dimension of the isotropy group by 1 so that
dim(Ho) = 3. In the context of the Karlhede algorithm, this is a bad choice of
coframe as the algorithm would continue longer than necessary for classification.
However we wish to produce a different invariant coframe to study the class of Kundt
waves admitting symmetries.

To produce the necessary invariant coframe so we require that the remaining frame
freedom be exhausted by setting the remaining parameters for a spin and null rotation
to be set to zero, i.e., θ = B = B̄ = 0. This choice is reflected in the components
of the Weyl tensor and its derivatives where at zeroeth order |Ψ4| = 1, at first order
τ̄ = τ and finally at second order the invariants 5μβ − λ̄α and 5λβ − μ̄α both vanish.

Thus the coframe stated in (11.3) is indeed an invariant coframe as it normalizes
these invariant combinations of the Cartan invariants. It is in this coframe that we
prove the following lemma.

Lemma 11.2.1. If a Kundt spacetime with τ �= 0 admits an isometry it must be of
the form,

X = B ∂
∂y

+ f(u) ∂
∂u

− [f ′v + 2x2f ′′] ∂
∂v

, (11.4)
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and the metric function h0 satisfies the differential equation,

2Bh0
,y + 2fh0

,u + 4f ′h0 − xf ′′′ = 0. (11.5)

Proof. Supposing the Killing vector field takes the form,

X = X1(ζ, ζ̄, u, v) ∂
∂ζ

+ X2(ζ, ζ̄, u, v) ∂
∂ζ̄

+ f(ζ, ζ̄, u, v) ∂
∂u

+ X4(ζ, ζ̄, u, v) ∂
∂v

,

where X̄1 = X2, X1 is C-valued and X3 and X4 are R-valued. We drop the primes
in equation (11.3) and calculate the Lie derivative of m in the direction of X, using
the Cartan formula LXω = iXdω + diXω:

dX1 = 0.

The component X1 and its conjugate X2 are constant, X1 = C, C ∈ C. Applying
the Lie derivative to � in the direction of X yields,

LX� =
[
2Re(C(ea

2 ),ζ) + (ea
2 X3),u

]
du + e

a
2 X3

,vdv + 2Re(ea
2 X3

,ζdζ)

This will vanish if X3 = f(u) and the quantity a satisfies the following partial differ-
ential equation

2Re(C(ea
2 ),ζ) + (ea

2 f),u = 0. (11.6)

To summarize the work so far, for arbitrary f and choice of C ∈ C, if a in equation
(11.3) satisfies the above differential equation (11.6) the local diffeomorphism related
to the vector field

X = C ∂
∂ζ

+ C̄ ∂
∂ζ̄

+ f(u) ∂
∂u

+ X4(ζ, ζ̄, u, v) ∂
∂v

,

leaves the covectors m, m̄ and � invariant. We wish to have n vanish under the action
of LX as well, however to continue we will switch back to the real spatial coordinates
involved in ζ = x + iy to simplify the process. Supposing C = A + iB, A, B ∈ R, the
vector field and differential equation become

X = A ∂
∂x

+ B ∂
∂y

+ f(u) ∂
∂u

+ X4(ζ, ζ̄, u, v) ∂
∂v

, (11.7)

(ea
2 f),u + A(ea

2 ),x + B(ea
2 ),y = 0
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The coframe transforms to be,

m = dx + idy, � = e
a
2 du, n = e− a

2 (dv − 2v
x

dx + [x4h0(x, y, u) − v2

4x2 ]du).

We note that a = 1
2

(
ln(x2) + ln(|h0

,ζ̄ζ̄
|)
)

may be expressed in real coordinates, but
that for now we will continue to express it in the complex coordinate system.

Calculating the lie derivative of n in the direction of X,

LXn =
[
vAe− a

2

(
a,x

x
+ 2

x2

)
+ e− a

2

x
(Ba,y + fa,uv − 2X4) + e− a

2 X4
,x

]
dx

+
⎡⎣(fe− a

2

(
2hx −

(
v

2

)2
))

,u

+ A

(
e− a

2

(
2hx −

(
v

2

)2
))

,x

⎤⎦ du (11.8)

+
⎡⎣B

(
e− a

2

(
2hx −

(
v

2

)2
))

,y

− X4e− a
2 v

2x2 + e− a
2 X4

,u

⎤⎦ du

+
[
e− a

2 X4
,y

]
dy +

[
e− a

2 X4
,v − e− a

2

2 (Aa,x + Ba,y + fa,u)
]

dv.

It is easily seen that X4 = G(x, u, v) from the vanishing of the dy component. At
this point it will be helpful to rework the differential equation (11.7)-B:

(e− a
2 ),uf + A(−e

a
2 ),x + B(ea

2 ),y − e− a
2 f ,u = 0.

Using this we find the dv component of LXn simplifies to be G,v + f,u. Setting this
to zero gives,

G = −f,uv + g′(x, u).

Substitution of this form for G(x, u, v) into the dx component along with another
application of (11.7)-B gives further restrictions on G as a differential equation for
the aribtrary function g′

,x = 2g′x−1, the solution of which is now substituted into G

G = −f,uv + x2g(u)

Finally, substituting (11.7)-B and the above G into the du component we find the
following polynomial in terms of v that must vanish,

Av2 + (g + 2f,uu)v + 4x(Ah0
,x + Ah0 + Bh0

,y + fh0
,u + 2f,uh0) − 2x2f,uuu

Thus, (11.5) follows from the vanishing of the v0 coefficient. It is easily shown that
equation (11.6) with A = 0 may be derived from (11.5).
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We actually can do better than this, with a bit more work choosing the right
coordinate system for X. Our goals will be to eliminate the arbitrary function f and
provide a simple form for the metric function h0(x, y, u).

Theorem 11.2.2. If a Kundt spacetime with τ �= 0 admits a Killing vector X. Then
depending on the magnitude of X and the vanishing of iXdu coordinates may be chosen
in which the metric and vector field X takes the following forms:

• |X| > 0 and iXdu �= 0: X = ∂
∂y

+ ∂
∂u

ds2 = dx2 + dy2 − du

(
dv − 2v

x
dx +

(
4xh0(x, y − u) − v2

4x2

)
du

)
. (11.9)

• |X| > 0 and iXdu = 0: X = ∂
∂y

ds2 = dx2 + dy2 − du

(
dv − 2v

x
dx +

(
4xh0(x, u) − v2

4x2

)
du

)
. (11.10)

We note these spacetimes cannot describe vacuum solutions as

Φ22 = x(h0
,xx) = 0

implies h0
,xx = 0; this causes a contradiction as Ψ4 = h0

,xx �= 0.

• |X| = 0 and iXdu �= 0: X = ∂
∂u

ds2 = dx2 + dy2 − du

(
dv − 2v

x
dx +

(
4xh0(x, y) − v2

4x2

)
du

)
. (11.11)

Proof. There are two cases to consider, depending on the vanishing of f . If f ≡ 0, we
find immediately that X = ∂

∂y
and the metric function h0 must satisfy the differential

equation, Bh0
,y = 0, and the metric takes the form

ds2 = dx2 + dy2 − du

(
dv − 2v

x
dx +

(
4xh0(x, u) − v2

4x2

)
du

)
.

Next we assume that f �= 0. We may choose coordinates so that f(u) ≡ 1 in (11.4),

ũ =
∫ 1

f
du = F (u), ṽ = f(u)v − x2f ′

2f
, x̃ = x, ỹ = y, (11.12)

so that the metric becomes (dropping the tildes)

dx2 + dy2 − du
(

dv +
[
f 24h0x −

(
x2f ′

f

)
,u

− x2f
′2

4f2 − v2

4x2

]
du − 2v

x
dx

)
.
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As h0(x, y, u) was arbitrary we may make a gauge transformation to absorb the extra
v0-terms in the du component in n, h̃0 = f 24h0x−

(
x2f ′

f

)
,u

− x2f
′2

4f2 . Dropping the tilde
yields a Kundt metric for which the killing vector

X̃ = B ∂
∂y

+ ∂
∂u

,

and the metric function h0 satisfies the differential equation,

2Bh0
,y + 2h0

,u = 0.

We again have two subcases, depending on whether or not B = 0. If B = 0 it
is clear that the metric must be independent of the retarded time coordinate u, and
that the metric takes the form

ds2 = dx2 + dy2 − du

(
dv − 2v

x
dx +

(
4xh0(x, y) − v2

4x2

)
du

)
.

If B �= 0, without lost of generality we scale the y coordinate so that B = 1 and so
X = ∂

∂y
+ ∂

∂u
. The differential constraint on h0 in (11.5) is now

h,y + h,u = 0.

This is easily solved, giving the final form for the metric

ds2 = dx2 + dy2 − du

(
dv − 2v

x
dx +

(
4xh0(x, y − u) − v2

4x2

)
du

)
.

11.3 Kundt Spacetimes with τ �= 0 Admitting a G2 Isometry Group

Taking the metric for each case in theorem (11.2.2), we analyze the Killing equations
for a new Killing vector Y �= X. In each case the form of X will determine the nature
of Y and (11.5) with Y switched with X determines h0 up to constant.

Theorem 11.3.1. If a Kundt spacetime admits a two dimensional group of isome-
tries, then for some C0 ∈ R the metric will belong to one of two classes. Writing
V = C1X + C2Y, C1, C2 ∈ R, depending on whether iV � �= 0 or not, the metrics will
be

ds2 = dx2 + dy2 − du(dv − 2v
x

dx +
(
4xhA(x)eC0(y−u) + C2

0 x2

4 + v2

4x2

)
du),(11.13)

ds2 = dx2 + dy2 − du
(
dv − 2v

x
dx +

(
4xhB(x)e−C0y − v2

4x2

)
du

)
, (11.14)
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admitting the following Killing vectors with commutation relations [XA, YA] = C0
2 YA

and [XB, YB] = C0
2 XB respectively:

XA = ∂
∂y

+ ∂
∂u

, YA = e
C0
2 u

[
∂

∂u
−

(
C0v

2 + C2
0

4

)
∂
∂v

]
, (11.15)

XB = ∂
∂u

, YB = ∂
∂y

+ C0u
2

∂
∂u

. (11.16)

Proof. We will go through each case and analyze the Killing equations:

• If X = ∂
∂y

+ ∂
∂u

the second Killing vector, Y , must have B = 0, as it may be
removed by adding an appropriate scaling of X. Setting B = 0 and h0(x, y − u)
in (11.4) and (11.5)

Y = f(u) ∂

∂u
− [f ′v + 2x2f ′′] ∂

∂v
,

and h0(x, y − u) must satisfy the additional differential equation

2fh0
,u + 4f ′h0 − xf ′′′ = 0.

Differentiating the above identity with respect to y, yields a seperable equation

2f ′

f
= −h0

,uy

h0
,y

≡ C0, C0 ∈ R,

we find a simple differential equation for f(u) for which the solution is f =
C1e

C0
2 u,C1 ∈ R. Substituting this into the original equation (11.5) with B = 0

and h0(x, y − u) another differential equation is found

C3
0x

16 − h0
,u − C0h

0 = 0

Denoting w = y − u, we note that h,u = −h,w and so we may write the above
equation as

(eC0wh0),w = C3
0x

16 eC0w

from which h0(x, y − u) is easily found by integrating and introducing one ar-
bitrary function h(x). We conclude that the metric

ds2 = dx2 + dy2 − du(dv − 2v
x

dx +
(
4x

(
h(x)eC0(y−u) + C2

0 x

16

)
− v2

4x2

)
du).
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admits the following Killing vectors with commutator, [X, Y ] = C0
2 Y ,

X = ∂
∂y

+ ∂
∂u

, Y = e
C0
2 u

[
∂

∂u
−

(
C0v

2 + C2
0

4

)
∂
∂v

]
.

In these coordinates Φ22 = x(h0
,xx +h0

,yy) �= 0 and so in general these spacetimes
will describe pure radiation or null Einstein-Maxwell fields. In the special case
that Φ22 we find h,xx + C2

0h = 0, the most general solution of which is

h(x) = C1cos(C0x) + C2sin(C0x), C1, C2 ∈ R.

• If X = ∂
∂y

we may always scale X and add this to the second Killing vector
Y to set B = 0, thus f �= 0, and we may fix coordinates to set f(u) equal to
some fixed constant. Using the same coordinate transformation as in the proof
of (11.2.2) we find that (11.4) and (11.5) become

Y = ∂

∂u
, h,u = 0

and hence the metric takes the form

ds2 = dx2 + dy2 − du

(
dv − 2v

x
dx +

(
4xh0(x) − v2

4x2

)
du

)
. (11.17)

This admits two commuting Killing vectors X = ∂
∂y

and Y = ∂
∂u

. We note that
this metric can be found from the first metric (11.13) by setting C0 = 0.

• If X = ∂
∂u

we find that

Y = B
∂

∂y
+ f(u) ∂

∂u
− [f ′v + 2x2f ′′] ∂

∂v

where h0(x, y) satisfies

Bh0
,y + 2fh0 = xf ′′′

2

There are two cases here, depending on whether B = 0 or not. Let us suppose
B = 0 f ′ �= 0 otherwise X = Y . Assuming this we may solve for h0 algebraically
from (11.5) with B = 0 and h0(x, y) and so the metric is of the form

h0 = −xf ′′′

4f ′ .



261

However this implies Ψ4 = 0 and so the constant B cannot vanish. Taking the
original identity and differentiating with respect to y a separable equation is
found

−h0
,yy

h0
,y

= 2f ′

B
≡ C0 ∈ R.

Thus f(u) = BC0
2 u and a rescaling of y sets B = 1, substituting this into the

differential equation simplifies to be

h,y + C0h = 0.

Solving this we find that the metric

ds2 = dx2 + dy2 − du

(
dv − 2v

x
dx +

(
4xh(x)e−C0y − v2

4x2

)
du

)
.

admits the Killing vectors satisfying the commutator relation [X, Y ] = C0
2 X

X = ∂

∂u
, Y = ∂

∂y
+ C0u

2
∂

∂u

Requiring these to be vacuum forces h,xx + C2
0h = 0, the most general solutions

of which are h = C2cos(C0x) + C3sin(C0x) C2, C3 ∈ R. Notice that for C0 = 0
we recover the second metric (11.17).

To show that the class of Kundt spacetimes with τ �= 0 cannot admit any sym-
metry group larger than a G2, there are two approaches. Either we may construct
our standard fixed coframe and show that all invariants are written in terms of x and
v, implying that there are two functionally independent invariants. We may use the
result from [22], Chapter 9, relating then number of functionally independent invari-
ants to the dimension of the symmetry group to show that dim(I) − dim(Ho) = 0
where Ho denotes the isotropy group. Alternatively we may suppose Z �= X, Y and
analyze the Killing equations once more. In either case we find that Z takes the same
form as Y except C ′

0 �= C0

hA(x)eC0(y−u) + C2
0 x2

16 = h′
A(x)eC′

0(y−u) + C
′2
0 x2

16

or hb(x)eC0y = h′
b(x)eC′

0y;

this immediately causes a contradiction as both of these can give a seperable equation
for which C0 = C ′

0 must hold.
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Proposition 11.3.2. The class of Kundt spacetimes with τ �= 0 admit at most a
two-dimensional group of isometries.



Chapter 12

Concluding Remarks

In this thesis we have examined several aspects of the equivalence problem for the
degenerate Kundt spacetimes in arbitrary dimension. This is a particularly relevant
question, as the straightforward approach of computing polynomial scalar curvature
invariants to classify such spacetimes is no longer applicable, even in principle. In
fact, in four dimensions the degenerate Kundt spacetimes constitute all of the space-
times with this property, while in higher dimensions the degenerate Kundt class may
not make up the entirety of the spacetimes whose polynomial scalar curvature invari-
ants do not uniquely determine the spacetime. This is in contrast with the case of
Riemannian manifolds where the polynomial scalar curvature invariants for a given
metric uniquely characterize the space uniquely, independent of dimension.

In order to solve the equivalence problem for Lorentzian manifolds of any di-
mension, we must employ Cartan’s equivalence algorithm in order to construct a
set of scalar curvature invariants, the Cartan invariants, that uniquely characterize
the spacetimes. In theory, this algorithm would provide a complete answer to the
equivalence problem; in practice, this algorithm is not easily implemented. For exam-
ple, in four dimensions Cartan’s algorithm was adapted to the formalisms of General
Relativity by Karlhede, and significant effort has gone into applying the Karlhede
algorithm to a large subset of all four dimensional spacetimes, although there are
still many spacetimes for which the Karlhede algorithm is not feasible in practice. In
higher dimensions there has been no work towards applying Cartan’s algorithm.

With the higher dimensional equivalence problem for spacetimes in mind, we
consider necessary conditions for two degenerate Kundt metrics to be diffeomorphic.
As the ultimate goal is to implement Cartan’s algorithm in arbitrary dimension, we
will look at invariant conditions that are related to the properties of the set of Cartan
invariants. The existence of isometries in a spacetime influence the dimension of the
isotropy group and the number of functionally independent invariants; for example,
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in an N dimensional space where all isotropy is exhausted in Cartan’s algorithm the
existence of an isometry decreases the number of functionally independent invariants
by one.

In analogy with Kundt and Ehlers’ classification of the symmetry groups of the
vacuum PP-waves in four dimensions, we study two well-known subclasses of the
degenerate Kundt spacetimes: the CSI spacetimes, those metrics for which all poly-
nomial scalar curvature invariants are constant, and the CCNV spacetimes, where
the metrics admit a covariantly constant null vector �. Both of these spacetimes are
generalizations of the PP-wave spacetimes which belong to the class of V SI space-
times in which all polynomial scalar curvature invariants vanish, and which constitute
all of the four dimensional CCNV spacetimes. For both classes of spacetimes, we
present the possible forms for the non-spacelike Killing vector and the constraints on
the metric functions for each case. By fixing the dimension and making a choice of
locally transverse space we can use these conditions to determine the maximal sym-
metry group on a case by case basis. To illustrate this, in the eleventh chapter of
this thesis we use the conditions for the vacuum Kundt waves to admit an isometry
to prove the maximal symmetry group is two dimensional.

As an illustration of the importance of the degenerate Kundt spacetimes in higher
dimensions and the utility of the study of symmetry groups, we take an aside into
an alternative gravity theory: supergravity. If we wish to preserve some fraction
of symmetry, one requires the existence of a Killing spinor which give rise to non-
spacelike Killing vectors. For this reason we examine the CCNV spacetimes and
produce two specific examples that preserve a non-minimal fraction of supersymmetry.
More generally, it has been shown that CSI spacetimes, when provided with the
appropriate sources, are solutions to other gravity theories as well. In fact, in four
dimensions there are classical solutions in general relativity, the universal spacetimes,
for which all quantum corrections are multiples of the metric and hence are solutions
to all quantum gravity theories; it has been shown that these spacetimes belong to
the CSI subclass.

Although all four dimensional universal spacetimes have been shown to be belong
to the CSI subclass, they have yet to be fully identified; e.g., it is still unknown if
every CSI spacetime is universal. Originally this property was discovered in the class
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of the PP-waves, where the vanishing of the polynomial scalar curvature invariants
ensured that all quantum corrections vanished; generalizing this idea one can show
that the V SI spacetimes are universal as well. To push this further we considered
the class of spacetimes in which all polynomial invariants vanish or are expressed
as polynomials in terms of the cosmological constant Λ, which we have named the
CSIΛ spacetimes, which are universal also. To describe this broad class of metrics
we provide conditions on the Newman Penrose curvature scalars, which provides an
invariant characterization for the whole class.

Using these conditions we integrated the metric functions and related these metrics
to the standard metric form in Kundt coordinates. Although the CSIΛ spacetimes
are of Petrov type III, N or O, we focus on the Petrov type N metrics for two reasons:
physically they describe all plane-fronted gravitational waves in spacetimes with cos-
mological constant, and they provide an alternative classification in terms of the sign
of two invariants, Λ and the sole component of the second Lie derivative of the metric
in the direction of the null coframe vector �, denoted by τ . This classification divides
the plane-fronted gravitational waves into five distinct subclasses; however, it cannot
prove the equivalence of two Type N CSIΛ metrics with the same values for Λ and
τ . Applying the Karlhede algorithm to the entire collection of Petrov type N CSIΛ

spacetimes is still a significant task, one that is outside the scope of this PhD thesis.
In order to present an example of the Karlhede algorithm in use, we focus on the
collection of all vacuum Petrov Type N CSIΛ=0 = V SI spacetimes, consisting of the
vacuum PP-waves and vacuum Kundt waves.

In each class the Karlhede algorithm allows us to classify each distinct subclass
first by discrete quantities like the invariant count at each order and the dimension
of the isotropy group. Within each broad subclass determined by these discrete
quantities, the functionally independent and dependent Cartan invariants produce a
classifying manifold which allows for a complete classification for each subclass. This
analysis answers two important questions relating to the upper-bound on the covariant
derivatives of curvature required for the Karlhede algorithm to invariantly classify the
vacuum PP-waves and Kundt waves, proving that the fourth covariant derivative is
the maximum required. Furthermore, a collection of PP-waves was found that was
missing from Kundt and Ehler’s original classification using symmetry groups.
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In the context of General Relativity, the measurements of physical properties are
independent of the coordinates used and thus are invariants. It is a reasonable ques-
tion to ask if the Cartan invariants of a spacetime are connected to physical properties
in it, since the Cartan invariants give a complete characterization of the spacetime
locally. The actual relationship between the classifying manifold and physical prop-
erties in the spacetime is unknown.

To this end we examine a particularly simple and well-known subcase of the PP-
wave spacetimes, the vacuum plane wave spacetimes; these spacetimes are ideal due to
their simple form in Brinkmann coordinates, the small number of Cartan invariants,
{γ(u), γ̄(u), Δγ(u)} where γ is a spin coefficient relative to the coframe with Ψ4 = 1
and Δ belongs to the dual of this coframe, and the direct relationship between the
choice of γ and the sole metric function A(u) in terms of an integral. We showed that
the magnitude and phase of a plane wave spacetime are related to the form of the
classifying manifold; imposing the condition that γ̄ = ±γ we produce two classes of
spacetimes in which an arbitrary time-like observer would measure: i) a fixed value
for the magnitude of Ψ4 and a varying phase, ii) a fixed value for the phase with
the magnitude of Ψ4 varying. As a final example we examine the weak-field vacuum
circularly polarized plane waves and determine the form of the classifying functions
in terms of the simplest Cartan invariants.

In the future, I hope to continue my work on the equivalence problem for Lorentzian
manifolds in four dimensions and in higher dimensions. In four dimensions there is
still a considerable amount of work required to apply the Karlhede algorithm to the re-
maining degenerate Kundt spacetimes; in particular, the CSI spacetimes are largely
unexplored in four dimensions. By applying the Karlhede algorithm to these four
dimensional spacetimes we will gain insight into implementing Cartan’s algorithm
for the higher dimensional CSI and CCNV spacetimes and the four dimensional
degenerate Kundt spacetimes as well.

Independent of the analysis of the four dimensional CSI and degenerate Kundt
spacetimes, the class of V SI CCNV spacetimes in N dimensions offer a chance to
apply the equivalence algorithm to these higher dimensional spacetimes. Furthermore
since there is now a formalism for the physical interpretation of higher dimensional
spacetimes, it is hoped that this formalism along with the invariant classification of
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these spacetimes will provide a generalization of the work done relating the Cartan
invariants of the vacuum gravitational plane waves and their physical properties.
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