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Abstract

We study orbifolds and strong maps of orbifolds. We begin with introducing a repre-
sentation for orbifolds that consists of internal categories in the category of topological
spaces. These categories are built from atlas charts and chart embeddings without
equivalence relation. They represent orbifolds and atlas maps, but do not work well
for general strong maps. We generalize the notion of category of fractions to internal
categories in the category of topological spaces. We find its universal property for an
internal category in the category of topological spaces. We apply this to the atlas cat-
egory to obtain an atlas groupoid. We give a description of strong maps of orbifolds
and the equivalence relation on them in terms of atlas groupoids. We define paths in
orbifolds as strong maps. We use our construction to give an explicit description of

the equivalence classes on such paths in terms of charts and chart embeddings.
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Chapter 1

Introduction

1.1 The Notion of Orbifolds

The concept of orbifolds is very important in many fields of Mathematics. It plays a
significant role in various areas such as geometry (moduli spaces), topology, algebraic
geometry (Deligne - Mumford algebraic stacks with proper diagonal), crystallography
(mathematics of crystals) as well as mathematical physics (moduli spaces in string
theory). The orbifolds are needed in all these cases to model finite symmetry.

The concept of orbifolds was first introduced by Satake [21] in 1956. He called them
V-manifolds. He described orbifolds as a generalization of manifolds. A manifold is
a space which is locally homeomorphic to the Euclidean space R", but an orbifold
is locally homeomorphic to the quotient space of a Euclidean space R™ under the
action of a finite group. Therefore, the quotient space of a manifold by a finite group
action is an example of an orbifold. Manifolds share with orbifolds that they can be
described by atlases and charts. However, a chart for an orbifold consists of an open
subset U of R™ with a finite group G which acts on U by homeomorphisms such that
we have a quotient space U /G which is homeomorphic to an open subset U of the
underlying space M of this orbifold. This means that an orbifold is determined by
a quotient space and an atlas. So, it is important to know the quotient space and
the atlas together to describe the orbifold. The quotient space does not completely
determine the orbifold because it does not have all the information. We can have
many distinct orbifolds with the same quotient space. For instance, when Z,,, acts on
the unit disk in R? by rotation, we get a cone shaped quotient. All these cones are
homeomorphic to the disk as topological spaces.

We see that any manifold is an orbifold but the opposite is not true, see the list of
examples in 2.5.5. The “V” in V-manifold is to suggest the possible presence of cone
points. Thurston [23] introduced the term “orbifold” in his course in 1976-77 when
he discussed 3-manifolds. He did not know about the concept of V-manifold at that
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point in time. The word “orbifold” refers to the orbit of a group action on a manifold.
The points of an orbifold correspond to the orbits of the group actions on the charts.
After that, the word “orbifold” has been used instead of “V-manifold”, especially
because people thought that a V-manifold is a special kind of manifold. Thurston
gave a great number of nice examples of orbifolds. We will talk about some of these.
The first example is what we usually do when we want to make a heart shape from
a piece of paper which is called a Valentine heart. We fold a paper in half and cut
out half a heart and then we open the paper to have the heart. This is actually an
orbifold. Tt consists of R? as a space and Z/2 as a group action which is generated
by reflection about the y- axis. Another example of an orbifold is the two parallel
mirrors with repeated reflection in a barber shop. When you look at the mirrors, you
see yourself from front and back. Also, you see reflections of your original pattern.
This orbifold consists of R? as a space and Z/2 x Z/2 as a group whose action is
generated by reflection about two parallel planes. From these examples we note that

we encounter orbifolds in our daily life.

1.2 Orbifolds Maps and Groupoids

A smooth map between manifolds can be described as a continuous map between the
underlying spaces such that for each point in the domain there is a lifting to a smooth
map between charts for a chart neighborhood of that point.

Satake generalized this notion to obtain what we usually call smooth maps of orb-
ifolds. We also call such maps weak maps of orbifolds. It was observed in [4] for
instance that these maps do not carry enough information for orbifold homotopy the-
ory. For example, if we have a unit disk in R? with Z/n acting on it. We obtain
a cone of order n. The weak maps give us the trivial group of homotopy classes of
loops in the cone, but the homotopy classes of loops defined by strong maps give the
group Z/n.

Maps between manifolds can also be described purely in terms of maps between atlas
charts that agree on their overlaps. However, in that case we need to work with
equivalence classes of maps due to the fact that a given manifold has many distinct
atlases. When we generalize this notion to orbifolds, we obtain what are called strong

maps or good maps of orbifolds.
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A strong map can be described in terms of orbifold groupoids. These groupoids were
introduced by Pronk in [18]. They represent orbifolds so well that some people suggest
that the study of orbifolds is simply the study of these groupoids. However, the con-
struction in [18] was rather ad hoc, and in this paper we want to construct them from
a more naturally defined object which is the orbifold atlas category. Maps between
orbifold atlases can be viewed as morphisms between these orbifold categories. How-
ever, they are not good enough to describe arbitrary strong maps between orbifolds.
The problem is that refinements of atlases do not always give homomorphism of atlas
categories and even when they do, these homomorphisms are not necessarily weak
equivalences. To solve this problem, we need to find a groupoid that contains the
atlas category. We construct this groupoid by introducing the notion of an internal
category of fractions and developing the conditions for its construction and its uni-
versal property for an arbitrary internal category in TOP. We then apply this to atlas
categories to obtain atlas groupoids. These are precisely the atlas groupoids intro-
duced in [18], except that we do this here for not necessarily effective orbifolds. Then
we will finish this paper by an application to morphisms of orbifolds that represent
paths in orbifolds giving an explicit description of the equivalence relation between

paths.

1.3 Overview

We have seen that an orbifold consists of a quotient space and an atlas. There-
fore, we will first review the classical definition of orbifolds in term of charts and
atlases. Subcharts and embeddings of charts play an important role. We will de-
scribe their properties in detail because they will be important later in this thesis.
Then in Chapter 3, we begin with the definition of morphisms between orbifolds from
Satake’s view. We also give the description of strong maps in terms of atlases. We
also introduce atlas categories and view maps of atlases as maps of atlas categories.
However, in order to study strong maps and be able to describe them effectively,
we need groupoids. In Chapter 4, we will have some background information about
group actions. It will also introduce information about groupoids and topological
groupoids, which are internal groupoids in the category TOP of topological spaces.

We will see homomorphisms between groupoids as internal functors. We will review
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the definition of natural transformation in order to translate it in terms of internal
groupoids. In this chapter, we will establish the relation between groupoids and indi-
vidual orbifold charts. We will view orbifold charts as groupoids. Then we will review
the definition of the calculus of fractions and the category of fractions which will be
in Chapter 5. Then we will prove some important facts related to its construction
which we will use later. The category of fractions is important for the purpose of
this paper because we are going to internalize it to construct the atlas groupoids.
After that, in the beginning of Chapter 6, we introduce surjective local homeomor-
phisms and prove some facts about them. They are important in the generalization
of the calculus of fractions conditions. We will generalize the category of fractions
conditions to internal categories in TOP. Finally, we will proceed to define the at-
las groupoids. In the beginning of Chapter 7, we will give the definition for strong
maps between orbifolds in terms of the language of groupoids. They correspond to
certain spans of homomorphisms between atlas groupoids. Then we will talk about
the equivalence relation on these maps. After that, we study strong maps and apply
our construction to describe orbifold paths which are strong maps of orbifolds from
the unit interval into an orbifold and find a simplified description, both of the paths

and their equivalence relation.



Chapter 2

Orbifolds

In this chapter, we are going to introduce all notions that we need to give the definition
of orbifolds. We will describe atlases, charts, and chart embeddings. In this chapter
we have the results about chart embeddings from [18] and [22] for effective actions,
but we generalize them to non-effective actions. However, before starting to talk

about orbifolds, we first define some terms that we are going to use.

2.1 Group Actions

Definition 2.1.1. Let G be a group and X be a set. An action of the group G on
the set X is given by amap f : G x X — X defined as (g,x) — gz, i.e, f(g,2) = gx
which satisfies for all z € X and g1, ¢g2,¢ € G,

® g1(927) = (g192)7.
e cr=1.

Definition 2.1.2. The action of a group G on a set X is called effective or faithful if

whenever gr = x for all x € X then g = e.
Definition 2.1.3. Let G be a group acting on a set X.

e For a given point x € X, the set G, = {g € G | gx = x} is called the isotropy

group.

e The set X9 = {x | gv = x forall ¢ € G} is called the set of fized points.
Moreover, if H C G, then X7 = {z | gv = x for all g € H}.

e The set ker G ={g € G | gr =z for all x € X} is the kernel of the action.

Remark 2.1.4. Such a group action can be described as a homomorphism ¢ : G —

Sx where Sx is the group of permutations of X. Then ker ¢) = ker G.
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Definition 2.1.5. Let X, Y be topological spaces. We say that X s homeomorphic
to Y if there is a continuous map ¢ : X — Y such that ¢ has a continuous inverse.

We denote a homeomorphism by X =Y.

Definition 2.1.6. Let X be a topological space. Then the homeomorphism group of
X is a group which consists of all homeomorphisms ¢ : X — X with composition

as multiplication. We denote the group of homeomorphisms of X by Homeo(X).

Definition 2.1.7. o The category SET of sets has all sets as objects and all func-

tions between these sets as arrows.

e The category of topological spaces TOP has all topological spaces as objects and

all continuous functions between these spaces as arrows.

Remarks 2.1.8. o If X € TOP and G is a topological group, then we say that

G acts continuously on X if the map f in Definition 2.1.1 is continuous.

e The action of an element g € G on X gives a bijective map v, : X — X where
Vy(z) = g(x) and (J,)~' = J,-1. When there is no confusion possible, we will

denote v, by g.

e If G acts continuously, then ¥, is a homeomorphism.

2.2 Charts

We are going to introduce the concept of a paracompact space because the underlying

space of an orbifold is required to be paracompact and Hausdorff.

Definition 2.2.1. A Hausdorff space X is a paracompact space if every open cover

has a locally finite open refinement that covers X.
We will first consider the structure of individual charts.

Definition 2.2.2. Let X be a paracompact Hausdorff space with fixed n > 0 and let
U C X be an open set. An orbifold chart for U is a triple {U, G, ¢} such that:

e U is a connected open subset of R™.
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e G is a finite group which acts on U by homeomorphisms, i.e., there is a group

homomorphism 6 : G — Homeo(U). We write g : U — U for 6(g).

e ¢ : U — U is a continuous map such that ¢ is G-invariant. Le., pog = ¢ for all
g € G. We require that the map ¢ gives rise to a homeomorphism ¢ : U /G — U
where U /G is the orbit space. So, U /G is the quotient space of U where z is
identified with 2’ if and only if there exists g € G such that gz = 2’. This space
U /G has the quotient topology.

Assumption 2.2.3. Since in this paper all groups are finite, it follows that each

element of G either
e acts like the identity, or
e has a set of fixed points of codimension greater than or equal to 1.

Examples 2.2.4. o {D,Z4,¢} is a chart where D is a disk and Z, acts by rota-

tion pz. The quotient space is a cone of order 4.

N
S,

For the quotient cone, any x € D will be identified with pg(:z:) We note that
every orbit has four points except for the center. We see that the center of the
disk has an isotropy group of order four. However, the other points in the disk
have the trivial isotropy group, i.e., p(x) # x for all x € D \ O where O is the

center point.

e {R? Dy, ¢} is a chart where Dy = Zy X Zy such that D, acts on R? by reflection
about the X - axis and about the Y - axis. In the quotient, these axes will

become a corner of order 2 and they become part of the boundary of the quotient



space. Such a boundary is called a silvered boundary (edge).

For the quotient, any x € D will be identified with its reflections about the X -
axis and Y- axis. We note that every orbit has four points except for the points
on the axes, which have orbits that contain two points, and the center which
is in an orbit by itself. That means that all points in the disk have the trivial
isotropy group except for the points on the axes, which have an isotropy group

of order 2 and the center of the disk has an isotropy group of order four.

2.3 Subcharts

Definition 2.3.1. Let {U,G, ¢} and {U’,G’,¢'} be two charts such that U’ C U.
Then a chart embedding (X, 0) : {U',G', @'} — {U, G, ¢} is defined by:

e \: U’ — U is a topological embedding such that ¢/ = ¢ o \.
e /:G" — G is a group homomorphism such that:

— Mg x)=40(¢) Mx) forz € U and ¢’ € G'.
— ¢ induces an isomorphism ker G’ = ker G.
Definition 2.3.2. A chart {U’,G’,¢'} is a subchart of {U,G, ¢} if there is a chart

embedding (X, ¢) : {U",G",¢'} < {U,G,¢}. When there is no chance of confusion,

we will write A for a chart embedding instead of (A, ¢).

Remark 2.3.3. In Satake’s definition of V-manifolds, he required the sets of fixed
points z € G to have dimension < n — 2. [21]

When we have an orbifold, we can always add smaller charts by the technique

which will be described in the following proposition.
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Proposition 2.3.4. Let {U,G, ¢} be a chart. Let V- C U be a connected open subset.
Then any connected component V- of o=V forms a subchart {V, Gy} of {U,G, ¢}
if we take Gy, to be the subgroup of G that keeps V invariant, i.e., gV =V for all
g € Gy, andw:goh;:f/—ﬂf.

Proof. Suppose V' C U is a connected open subset. Let V be a connected component
of 71(V) C U. Since the map ¢ is G - invariant, i.e., og = ¢ for g € G and g acts

as a homeomorphism, g(V') is also a connected component for all ¢ € G. Therefore,

we know from the definition of connected component that, either:

e g(V)=V, or

e V)NV =0.

So, we define Gy = {g € G | g(V) = V'}, the subgroup of G that keeps V invariant.
As a result, we have a chart {V, Gy} with ¢ = ¢l - V— V. ]

Proposition 2.3.5. Let {U,G, ¢} be a chart. Let W C U. Then we have a subchart
W = o'W with Gy, = Gs for z € W.

Proof. Suppose V C U is a connected open subset. Let V be a connected component
of (V) C U. Let z € V. Then we have a point & € V with ¢(Z) = z. Take
g € G such that gT # Z. Since the space is Hausdorff, there are f/g and Ug such that
V,NU, =0 with & € U, and g € V,. We have that # € U, N ¢g~'V,. Take W, =
U,Ng~V,. Then we get that W,NgW, € U,Ng~*V,NgU,Ngg~'V, C U,NV, = 0. So,
we find Wg containing Z. Let W; = ﬂgeg_Gin. Then we get that W = mgecing.

Since g is arbitrary, we can conclude that G5, = G;. O

Example 2.3.6. We saw in Example 2.2.4 that a chart { D, Zy X Zs, ¢} where Zg X Z
acts on R? by reflection about the X - axis and about the Y - axis gives us the quotient

space U which is a corner of order 2 as follows.
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If we take a subset V of U as,

Then its preimage would be in the chart D = U as

a
»,

Choose V to be the top component for instance. As a result, V contains orbits of
order 2 with group Gy = {p € G | p(V) = V} = {id, p} = Z,, which acts on R? by
reflection about the Y- axis, and ¢ = ¢|y : V—V.

Remarks 2.3.7. These remarks can be found in [22]. Let {U,G, ¢} be an orbifold
chart. Then:

e For any g € G there is a chart embedding from U into itself since g is a home-
omorphim. Le., g : U < U. That is as follows: for any ¢ € G , we define
g:U < U as x — gz is a one to one map. This is a part of a chart embedding
(9,¢0) : {U, G, 0} — {U,G, ¢} where ¢, is defined by c,(t) = gtg~! for t € G.
This is well defined because g(t - x) = ¢4(t) o g(x) because gt -z = g(t - ) and

1

cg(t)-g(x) =gtg™" - gx =gt - x.

e The composition of two chart embeddings is itself a chart embedding. Therefore,
for any X : {U,G, ¢} — {U’,G',¢'} we have ¢’ o X is a chart embedding for any
Jgeq.

If all group actions are effective, then the embedding part of a chart embedding

completely determines the group homomorphism.

Lemma 2.3.8. Let (M () : {U,G, ¢} — {U',G',¢'} be a chart embedding. If we have
g € G with N\U) N (¢ (MT))) # 0, then we have ¢ € Im (. We can conclude that
ANU) = ¢'(MU)).



11

Proof. Suppose A(U) N (¢'(A(U))) # 0. We want to show that ¢’ € Im A and \(U) =
g (NU)). Since A(U) N (¢'(A\(U))) is open, there is a y € AU) N (¢'(A\(U))) with
ker G' = G, Then there are z,2’ € U such that A(z) = y and ¢'(\(2')) = y. So,
(M) = ¢'(Ma")). We have that (A, £) is a chart embedding. That means that
we have p(z) = ¢(2’). Then there is g € G such that gz’ = z. So, by definition
of the chart embedding we have ((g)(A(z)) = A(gz’). As a result A(gz') = \(z) =
y = g'Aa'). Since G,y = ker G', we obtain that l(g)(¢g")"' € ker G'. Since ¢
gives the isomorphism f|q. g : ker G — ker G, there is an element h such that
((h) = £(g)(¢")". As aresult, ¢ = {(h~)l(g) = ¢(h~'g). So we can conclude that
¢ € Im £. Now we want to show that A\(U) = ¢/(M(U)). Let k € G such that ((k) = ¢
Then MN(U) = Ag(U) = L(k)MNU) = ¢’ M(U). So, we can conclude that \(T) = ¢’ \(U).

O]

Lemma 2.3.9. Let {U,G,p} and {U',G', @'} be charts. Given two embeddings \, 1 :
U < U’ such that p = @' o X and ¢ = ¢’ o p. Then:

1. There exists a g € G' such that p = g’ o \.

2. If G' acts effectively then there exists a unique ¢ € G’ such that p = g’ o \.

Proof. 1. Let € U such that ker G = G, . We have ¢'(u(z)) = ¢(z) = ¢’ (A\(z)).
Then there is ¢ € G’ such that p(z) = ¢’\(x). Let M C U be a connected open
subset containing x such that there is not any y € M that has a higher isotropy
group. Let N be a connected component of ¢ 'M. By Proposition 2.3.4, we
can have a subchart {N, Gy, ¥} C {U,G, ¢} such that Gy is a subgroup of G
that keeps N invariant and ¢ = ¢|ny : N — ¢(N). So, ¥ is a homeomorphism.
So, we have AN is open in U’ containing Az and pN is open in U’ containing
px. Since pu(x) = ¢’A(z), we obtain that ¢’ AN contains px. So, we have that
uN N g’ AN # (. We have a homeomorphism ¢'|,\n 1 ¢ AN — @ N. We have
¢'[an : AN — @N is a homeomorphism. We also have ¢'|,n : uN — ¢N is
a homeomorphism. So, we have that ¢ AN and pu/N are homeomorphic to ¢ N.
By Proposition 2.3.5, we obtain that ¢~ 'M = [[gN. So, ¢ *M = [[¢AN.
Since pN is connected, we have that uN C ¢’ AN for some ¢’ € G'. Therefore,
¢~ 'uN C AN. However, by Proposition 2.3.5, we also have that AN C W/'uN
for some W' € G'. We get that ¢ 'uN C WuN So, uN C ¢'h'uN. Therefore,
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gh € ker G and ¢ AN = puN. As a result, p and ¢’\ are equal pair wise on a
neighborhood of « because ¢'|,ny = ¢n. Since this collection is dense in U this

implies by continuity that ¢'\ = p.

2. Suppose G acts effectively. We have = ¢’ for ¢ € G. We want to show that
¢’ is unique. Suppose there is ' € G’ such that '\ = p. We want to show
that b’ = ¢’. We have that ¢'|,7 = P|,5. However, AU is open. From our
Assumption 2.2.3. It follows that ¢’ = A’ So, we conclude that ¢’ is unique.

O

Corollary 2.3.10. Let {U,G,¢} and {U',G,¢'} be two charts such that o(U) C
@' (U") . The number of chart embeddings (X, €) : {U, G, p} < {U', G, '} is the same
as the number of the elements of G'/ker G'. However, if G' acts effectively then the

number of chart embeddings is precisely the number of elements of G'.

Proof. Fix a chart embedding A : U < U’. Let E be the set of all chart embeddings
from U to U'. Define F : G — E by ¢ — ¢’X\. We want to prove the following

e Let 4 € E then from Lemma 2.3.9, there is ¢’ € G’ such that p = ¢’\. So, F is

surjective.

e Suppose that ¢’A = WA for ¢/,h' € G'. Then for all z € U we have ¢’\(z) =
W' A(z). That gives us h'~1¢’\(z) = A(x). So, W "tg'\ € ker G'.

Since we have that the kernel of the action isker G’ = {¢’ € G’ | /v = x for all z € X}
then we will have the number of the embeddings in F is equal to the number of the
elements in G/ kerG. However, if G" acts effectively then we have ker G’ = {id}. As
a result, we will have the number of the embeddings in E is equal to the number of

the elements in G'. O

Corollary 2.3.11. Let A : {U,G, ¢} — {U',G",¢'} be an embedding making the

following diagram commutative

727
‘

/

/

@
U?U’ 3
where i is an inclusion map. Then for each g € G, there is a ¢ € G' such that

Aog = ¢ oA Moreover, if G' acts effectively, ¢ is unique and there is precisely
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one group homomorphism { : G — G' such that (A, 0) : {U,G, o} — {U', G, ¢'}
forms (X, €) a chart embedding. I.e., the map X gives us a unique injective group

homeomorphism { : G — G'.

Proof. Let A : {U,G, o} < {U", G, ¢'} be an embedding. Let g € G. Since g : U — U
is an embedding of {U, G, ¢} into itself, Ag is an embedding. By Lemma 2.3.9, there
is ¢ € G’ such that A\g = ¢'\.

Now suppose G’ acts effectively. Let ¢ € G. We have Ag is an embedding. By Lemma
2.3.9, there is a unique ¢’ € G’ such that A\g = ¢’\. Now we show that A\ gives us an
injective group homeomorphism. Let ¢;,g2 € G. We want to show that A(g1¢92) =
Ag1)M\(g2). We have that ¢’A = p. Then we get ©'A(g192) = ¢(g192). Howevere,
¢ is a homeomorphism. So, we get that ¢(g192) = ¢(g1)¢(g2). So, we have that
©(91)¢(92) = ©'AMg1)#'A(g2). We have that ¢'A(g192) = ©’'A(g1)¢'A(g2). By taking
¢! we conclude that A(g1g2) = M(g1)A(g2). So, A gives us a group homeomorphism.

Since the action is effective, we obtain that the group homeomorphism is injective. [

2.4 Atlases

Definition 2.4.1. Let U be a collection of charts {f] , G, p} for a paracompact space
X, ie, U={{U,G, ¢}}. Then U is an orbifold atlas if

e U{ is a cover for the space X. le.,

X= |J o0.

{U,G,p}euU

e For any two charts {U,G, ¢} and {U’,G',¢'} with = € o(U) N ¢'(U’), there
exists an open subset Z C U N U’ with a smaller chart {Z, K, p} such that

repZ)=172.

e For any two charts {U,G, ¢} and {U’,G', @'} if ¢/(U’) C p(U) then there exists
a chart embedding \ : U’ — U.

Remark 2.4.2. For any two charts {U,G, ¢} and {U’, G, ¢'} with z € U N U’ there
is an open set W C U N U’ such that x € Wand a chart {W,H, ¢} with two chart
embeddings A; : W < U and Ao W s U
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Definition 2.4.3. Given two atlases U and U’, then U is a refinement of U’ if for
every chart {U,G, ¢} in U there is a chart embedding (), ) into a chart {U’, G, ¢'}
inU. Le., (N0 :{U,G, o} — {U,G, ¢}

Definition 2.4.4. Two atlases are equivalent if they have a common refinement.

Remarks 2.4.5. e For any orbifold atlas U on X there is a unique maximal atlas

which contains U.

e Let U and U’ be two atlases then U is equivalent to U’ if and only if they are

in the same maximal atlas.

The next lemma is generalization of Lemma 4.4.1 in [18]. Pronk in [18] gives this
lemma for effective group actions but, in this paper, we will prove it in general. The
lemmas in the previous chapter help us to adjust the proof for the non-effective group

actions.

Lemma 2.4.6. Suppose there are charts {Uy, Gy, 01}, {Us, Ga, 02}, and {Us, Gs, o3}
such that Ul and UQ are subcharts of Ug with chart embeddings A\ : (~]1 — (73 and
Ao : Uy = Us such that Al(Ul) ﬂ/\g(Ug) £ (. Then there is a chart Uy C Uy N Uy with
chart embeddings p : U4 — (71 and fis 04 — UQ such that \jjpy = Aojio.

Us
AN
U, Uy
N

Us .

Proof. Suppose there are charts Ul, (72, and 173 such that Ul and UQ - Ug with chart
embeddings \; : U; < Us and Ay : Uy < Us. Take z € /\1(171) N )\Q(UQ). Then
there are x; and x5 such that z; = A\ 'z € U, for i = {1,2}. Then p3(z) € Uy N Us.
Then there exists Uy C U; N Us; with y € 04 and chart embeddings p; : (~]4 — Ul
and g : U, — U, such that pi(y) = x1 and pse(y) = xe. Therefore, A\ (y) = o =
Aaio(y). So, by Lemma 2.3.9, there exists g3 € G3 such that gsA;p1 = Agpe. We have
that Api(y) = = = Xopa(y). S0, Aipea(Us) N Aopio(Us) # 0. However, we have that
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g3A1ft1 = Asflo. So, we obtain that )\l,ul(U4) N g3)\1u1(04) # (). By Lemma 2.3.8, we
have that Ay = g3\ However, gsAipg = Aopio. As a result, A\ = Aops.
O

2.5 Orbifolds

Definition 2.5.1. As in [21], an orbifold Q is a composite concept formed by para-

compact Hausdorff space X together with an equivalence class of atlases.

Notation 2.5.2. We will write Q@ = (Q,U) for an orbifold Q which consists of the
underlying space () and an atlas U.

Lemma 2.5.3. Let Q be an orbifold with x € Q. Then x has a well -defined isotropy

group up to isomorphism.

Proof. Let Q be an orbifold with z € Q. Let {Uy, Gy, 1} and {Us, Ga, 02} be two
charts such that z € U, N Uy. Take #; € U, for i = {1,2} such that ¢(%;) = = with
isotropy groups Gz, = {g; € G; | 9:(%;) = &;}. Then by Lemma 2.4.6 there is a chart
{W, H,} with z € W C U, N U, and chart embeddings (\;, 4;) : W < U; such that
Ai(z) = ;. We want to show that

o if he H, with H, = {h € H | h(z) = 2}, then {;(h) € G3,.
Let h € H,. Then £;(h)(z;) = €;(h)(N\i(2)) = Ai(h(2)) = Ni(2) = ;. So, ¢; send
Hz to Gfl

e The map ¢;|py. : H, — G, is surjective.
Let g; € Gz,. We want to show that there ia an h € H, such that ¢;|g_(h) = g
for g; € G;. Since \;(W) is a connected component of o }(W) in U; and since
Zi € gi(N(W))NA(W) we have g;(\;(W)) = X (W). Since the following diagram
commutes,
N -

% L%‘

W—Z>U,

by Corollary 2.3.11, there is an h € H; such that X\;(h) = g;A;. If the action
is effective this implies that ¢(h) = g;. If it is not, then £(h)g~' € ker (G;).
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We have that ¢ induces an isomorphism. Then we have an isomorphism from
ker (H) to ker (G;). It follows that there is an element h' € ker H such that
(W) = g;. As a result, the map (;|p, : H, — Gj, is surjective.

Definition 2.5.4. For an orbifold Q = (Q,U) the singular set is

Y(Q={reQ|G. #1}

Examples 2.5.5. e The orbifold Q = Z,-teardrop or p-teardrop
The underlying space is the sphere S?, and there is a chart with G = Z,, which
acts by rotation over 27 /p around the north pole. Then the underlying space

is S? with a singular point at the north pole of order p.

p

If we choose p = 4 we will have the following charts: U; with the group action
G, = Z, Uy with Gy = {id}. Also we have Vi for i = {1,2,3} with trivial
group actions. Finally, we have I/Tfl-j which is the intersection of V; with f/J The

following figure will have these charts.

] ]
o O,
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Now we will see the chart embeddings from f/l into Ul and UQ. It will be the
same idea for V4 and Vs. There will be four copies of V; in U; since G; = Z, and
one copy of V; in Us because Gy = {id}. There are a certain number of chart

embeddings. So, we get the following:

LW W [ W
v v [ v

NAX
& 0,

The orbifold Q = Z,-Z,-football or (p, q)-spindle

The space is S? and there is a chart with G; = Z, which acts by rotation over
%’T around the north pole. Also a chart with G, = Z, which acts around the
south pole by rotation p = 2?”. The quotient space is S? with two cone points.

One cone point of order p and the other of order q.

If we have p = 4, and ¢ = 2 we will have the following charts: U; with the group
Gy = Zy, Uy with Gy = Z,. Also we have V for i = {1, 2,3} with trivial groups.
Finally, we have VVU which is the intersection of V; with V] The following figure

will have these charts.

] ]
o @,
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Now we will see the chart embeddings from f/l into Ul and UQ. It will be the
same idea for Vs and Vi. There will be four copies of Vi in U; since G, = Zy4

and two copies of f/l in (72 because G, = Zs. We get the following:

LW W [ W
v v [ v

NAX
& D,

e The orbifold Q = Z,-football or p-spindle which is a special case of the previous

example when ¢ = p.

If we have p = ¢ = 4, we will have the following charts U; and U, with the
groups Gy = G, = Z,;. Also we have V; for i = {1,2,3} with trivial groups.
Finally, we have Wj; which is the intersection of V; with V;. The following

figure will have these charts.

] ]
o @,

Now we will see the chart embeddings from f/l into Ul and (72. It will be the
same idea for V, and ‘73 There will be four copies of Vi in U; and U, since

G1 = Go = Z4. We get the following:
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DWH Dng DWB
I 7 N B o I %

VAN
e )

Note: these examples are orbifolds but not manifolds because > (Q) consists of

two points.



Chapter 3

Morphisms Between Orbifolds

There are many ways to define maps between orbifolds. In [21], Satake defined the
first notion of orbifold map. However, there are other definitions for the maps between
orbifolds which have stronger properties. People have called Satake’s maps smooth
maps. We will study these maps at the beginning of this section. Satake’s notion
of maps is a straightforward generalization of the notion of smooth maps between
manifolds in that a smooth map is a map between quotient spaces with some lifting
properties with respect to the charts. For manifolds, one can also describe smooth
maps purely in terms of maps between atlases, but in that case one needs to talk
about equivalence classes of such maps. When we generalize the second description
to orbifolds, we obtain a stronger notion of morphisms called strong maps or good
maps, which we will introduce here. It turns out that for orbifold homotopy theory,
we need this stronger notion of maps as was obtained in [12] and [4] for instance.
Smooth maps do not carry enough information to distinguish between for instance
paths in fine moduli spaces as we will see in Chapter 7. That means we need to
consider a notion of morphisms that carries more information. It turns out that the
strong maps do carry enough information. In order to study these better we will
introduce orbifold atlas categories, and show how strong maps can be viewed as maps

between them.

3.1 Weak maps

Definition 3.1.1. Let Q = (Q,U) and R = (R,V) be two orbifolds. Then a con-
tinuous map f : Q — R is a weak orbifold map if for all x € @) there are charts
{U,G,¢} €U, and {V,H,¥} € V such that € p(U) and f(z) € (V) and there

is a continuous lifting map f from U into V with ¢ o f = f o ¢, as in the following

20
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commutative square,

U 1%
‘| I
U 7 V.
Remarks 3.1.2. e This kind of map is usually called a smooth map between

orbifolds as in [4] when we require that f : U — V is smooth.
o We will call this type of map a weak map.

e Since we do not require that the orbifold atlas forms a basis for the topology of
@, we may need to take a refinement of U to obtain small enough charts for Q

that will map into the charts in V.

Definition 3.1.3. Let Q = (Q,U) and R = (R, V) be two orbifolds. Then Q and R
are homeomorphic, if there are weak maps f : ) — R and g : R — () such that

fog=idr and go f =idg.

Satake’s definition of maps between orbifolds does not necessarily give rise to a
map between atlases. Our notion of strong maps below will do that. Then we will

prove that a strong map is also a weak map, but the converse is not true in general.

3.2 Strong Maps

Definition 3.2.1. Let Q = (Q,U) and R = (R, V) be two orbifolds. A map of atlases

f U —V consists of

1. For any chart {U,G, ¢} € U there is a continuous map fy : U — V into a
chart {V, 1,4} € V.

2. For any chart embedding X : U; — U, € U there is a chart embedding f(\) € V

such that the following square commutes,

0 —— T,
N 7o
U2 fu, ‘/27

and f(A1) o f(A2) = f(A10Az) and f(id) = id;.
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Definition 3.2.2. Let Q = (Q,U) and R = (R,V) be two orbifolds. A strong map
of orbifolds f : @ — R is represented by a refinement U’ of U with a map of atlases
fru—v.

Note that a weak map of orbifolds with a weak inverse can be turned into a strong
map with a strong inverse. We will define strong maps in terms of atlas gropuoids

and define the equivalence relation on these maps in Chapter 6.

Proposition 3.2.3. Let Q = (Q,U) and R = (R, V) be orbifolds. Any map of atlases
f=fu, f(N): U — V induces a weak map of orbifolds.

Proof. The only thing we need to prove is that there is a well defined continuous map

f : Q@ — R such that for each U € U the following square commutes.
1%
|v
R,
where fy is a component of f. Let x € U C Q and let # € ¢ (z). We define
f(x) = fu(Z). We want to show that f(x) does not depend on the choice of U and
#. Take U’ another chart with # € U’ with fy : U' — V' where ¢ : V! — R.
Since we have x € U N U’ there is W C U N U’ with a chart {W,H,T} and a point

§ € W with chart embeddings \; : W — U and Xy : W — U’ such that A\ (j) = &
and \y(7) = . Let {S, K, o} be the chart in V with continuous map fy : W — S.

fu

U
‘|
@

As a result from Condition 2 in the definition of map of atlases there is an embedding

f(\) : S — V for which the following square commutes.

fw

U

-

W
All f()
U

‘<z

Ju
Consequently, we have f(\1)fw(9) = fu(Z) because fy(A\ (7)) = fu(Z). From the

definition of an orbifold embedding we get
o(fw(9)) = ¥(fu(2)). (3.1)
Likewise for Ay we will have f(\2) fw (7)) = fu/(Z) and

o(fw (@) = ¥'(fu (T')). (3.2)
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From the equations (3.1) and (3.2) we get that ¢(fy (%)) = ¢'(fur(3')). So, f is well

defined and it makes the following diagram commute,

Ww_Iv_ .3
All lf(/\l)
U V.
fu

]

Remark 3.2.4. For atlas maps of manifolds, there is a notion of equivalence which
roughly says that two atlas maps are equivalent if they agree on a common refinement.
We want to generalize this to orbifolds and would call two morphisms equivalent if
there is a common refinement so that the maps agree on the refinement. Generally,
we will use a slightly weaker notion of equivalence. To make the notion of equivalence
precise we will need a description of strong maps in terms of morphisms between atlas
groupoids and the natural transformations between maps of atlas groupoids. We will

give a precise definition of this notion in Chapter 7.

3.3 Orbifold Atlas Categories

We are going to recall the notion of an internal category and then we will use it to

define orbifold atlas categories.
Definition 3.3.1. Let A to be a category. An internal category C in A is given by:

e An object Cy € A ( the object of objects).

An object Cy € A (the object of arrows).

Two morphisms, source and target, which are: s,t: Cy — Cy € A.

A morphism u : Cy — C; € A which represents the identity arrows.

e A composition morphism m : C} x¢g, C; — C} € A where C) x¢, Cy is the
pullback {(g, f) € C1 x¢, C1 | s(g) =t(f)},

g
4 X o C,——0

4 Co .

t
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We often write m(g, f) = go f.
These functions need to satisfy the following conditions:

e sou=idg, =tou,

Co—u>01 Co—u>01

NN

Co, Co.

e som=somy and tom =1om,

4 X o 4 l>C’1

Cl CO )

S

4 X 4 i>Cl

l lt

4 Co .

t
e mo (uxid) =m and mo (id x u) = 7y,

uxid
Co X¢, C1 —=C X¢, C4

S

Cla

idxXu
Cy X¢, Co—=C X¢, C4

S

Ch.
e mo (m xid) =mo (id x m),

mXidGl

Gy X Go Gy XGo Gy Gy XGo Gy

idGl Xml lm

G1 X G G1 G1 .

m

Note that if A = SET, the category of sets and functions, we get our usual
definition of a (small) category. Therefore, the notion of an internal category is a

generalization of the notion of a category.
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Definition 3.3.2. Let Q = (Q,U) be an orbifold. We define the orbifold atlas
category C(U) as an internal category in TOP as follows:

e The space of objects is

e The space of arrows is

o), = U, = ) x U, = {(\ )|z € U}

)\202‘4)0]' )\202‘4)0]' )\:UZ'*) i

With the disjoint union topology, where (X, z) denotes the point € U; in the
copy of \: U; — ﬁj and {A} x U; denotes the part for A : U; — Uj.
For \ : U; — Uj and z € U;, the structure maps are defined as follows:
e The source map s : C(U); — C(U)o is defined as s(\,z) = = € U,.
e The target map t : C(U), — C(U), is defined as t(\, 2) = A(z) € U
e The identity arrow u : C'(U)o — C(U), is defined as u(z) = (idg , ) for x € U;.

e Composition m : C(U), Xy, C(U)1 — C(Uy) is defined as: for any \ : U; — U
and g : U; — Uy, where t(\, ) = s(u,) we have that A\(x) = y and hence we
define m((1,), (0, 2)) = (1, 7).

It is clear that this satisfies the internal category conditions from Definition 3.3.1.

Example 3.3.3. Let Q be an orbifold with an atlas covering of three charts and
trivial groups: Uy, Uy C Q opens with W = U; N U, as follows

U1 U2
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Then we have the atlas U« = {Uy, Uy, W}. Then we have U, [[Us [[W as a space of
objects and ({A1} x W)U ({X} x W)U ({idy } x W)U ({idg, } x U1) U ({idg, } x Us)

as a space of arrows. We get the following diagram,

{idg, } x U, {ids} x W {idg, } x U,

t= idUI s t=1dy S
{)\2} X W

EANIEA

t= id02 s

Ul 02

Example 3.3.4. For a single chart orbifold {U, G, ¢} we have for each g € G a chart
embedding ¢ : U — U. So, the space of objects of the atlas category is U and the

space of arrows is

I] v=9x0,
g:U—)U
where G has the discrete topology. This internal category has the following structure

maps,

e The source map s: G x U — U where s(g,z) = .
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e The target map t : G x U — U where t(g,z) = gz.
e The identity map u: U — G x U where u(z) = (e, z).

e The composition is defined as m : (G x U) x5 (G x U) — (G x U) where

m((g2, ), (91, 2)) = (gag1, ) with gi(z) = y such that ((g2,y), (g1,2)) € (G X
U) x5 (G x U) with s(g2,y) = t(g1, 7).

Note that every arrow in this category has an inverse because G is a group. Moreover,

we have the inverse map which is defined as i : G x U —s g x U where i(g,z) =

(971, gz),

(9,)
T

(971.g7)

This satisfies the conditions to make C(U) an internal groupoid as we will see in
the next chapter. C(U) is called the translation groupoid of the action of G on U.

We are going to recall the definition of a functor between categories. Then we
will define the homomorphisms of internal categories which is similar to the functors

between categories but with the continuity condition.

Definition 3.3.5. Let C and D be categories. A functor F' from C to D is a map
that satisfies the following:

e For each object ¢ € C there is an object F(c) € D.

e For each map f: ¢y — ¢p € C thereis a map F(f): F(c1) — F(c2) € D such
that the following two conditions hold for all ¢ € C:

— F(id.) = idp(e).

— F(fog)=F(f)oF(g).
Definition 3.3.6. Let C and D be internal categories in TOP. A homomorphism of
internal categories or an internal functor F': C — D consists of a pair of continuous

functions Fy : Cy — Do and F; : C; — D; such that the following diagrams

commute,
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F1 ><F1

Cl X Co Cl Dl X Do Dl
mcl LmD
C & Dy,
Cy —2~ D,
t/uC‘)c t/uT S\
Cry R/
Co—5—Do.

Le., Fhosg =spoF|,tpo F| = Fyoty, and up o Fy = Fj o uc.

Example 3.3.7. A strong map between atlases Y — V corresponds precisely to a
morphism C(U) — C(V). If a refinement U’ of U is such that we have embeddings
Hu U < V such that for each chart embedding A : Ul — Ug € U’ that is a
corresponding chart embedding f(A) : Vi < V4 € V such that the following square

commutes
b, By "
J Lo

then this refinement induces a morphism C(U’) — C(U) which is faithful but not an
essentially surjective homomorphism (see Definition 7.1.1), and not necessarily full.

We would like refinements to correspond to weak equivalences of internal categories.
However, in order to accomplish that, we need to work with groupoids instead of
categories. We will get an atlas groupoid out of an atlas category by applying the
internal category of fractions’ construction. We will then see that a general strong

map of orbifolds will correspond to a diagram,
GU)«—gU") —GV).

We will see more in Chapter 7.



Chapter 4
Groupoids

Although groups and group actions form the building blocks to define the orbifold
charts for instance, we will need a more general concept to describe a whole orbifold
atlas. So, in this chapter we will talk about groupoids. We will define topological
groupoids which are a special kind of internal categories in the category TOP. We
will also define homomorphism between groupoids. While doing that, we will consider

some examples of groupoids that represent orbifolds.

4.1 Groupoids

Definition 4.1.1. A groupoid G is a category where all arrows are invertible. L.e.,
for each f:c — ¢ € G there exists an arrow f~!: ¢ — ¢ € G with ¢, € G such
that fo f~! =id, and f~'o f = idy.

The following example is the simplest example of a groupoid. It shows that we

can construct a groupoid from one object and the elements of a group.

Example 4.1.2. Let {x} be an object and G be a group. Then we can form a groupoid
by making the arrows as g : x — x for all g € G. l.e., *;}. The composition is
defined by g o h = g % h where * is the multiplication in G. We write Gy = * and
G, =g.

Example 4.1.3. Let R be an equivalence relation and X be a set. We can make a

groupoid G(R) from R on X as follows:
1. The set of objects is X.

2. The set of arrows is R considered as a subset of X x X. There is a unique arrow
(x,2") : @ — ' if and only if (z,2") € R with the first projection as the source

map and the second projection as the target map.

29
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Note that G(R) is a groupoid for the following reasons:

e There are identity arrows since the relation is reflexive.

e The arrows are invertible since the relation is symmetric.
e There is a composition map since the relation is transitive.

Example 4.1.4. Let X = {1,2,3,4}, and let
®={(1,1),(2,2),(3,3),(4,4),(2,3),(3,2),(3,4), (4,3),(2,4), (4,2)}.

Then the corresponding groupoid is:

C1

C?@?@

@)

Example 4.1.5. Let G be a group which acts on a set X. We can form a category

from this action as follows:
e The set of objects is X. L.e., we write Gy = X.

e The set of arrows is the product, i.e., G; = G x X. So, for any g € G we have

(9,x): x — y where y = g(z).
with the following structure maps
e The source map s: G x X — X where s(g,x) = 2. That means that s = 7.

e The target map ¢ : G x X — X where t(g,2) = gx. That means that t = f
where f is the group action map which is defined in 2.1.1. So, we can write

(g9, ) as an arrow from z to gx.

e The identity map u : X — G x X where u(z) = (e, x).
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e The inverse map i : G x X — G x X where i(g,7) = (g7, gx),

(g,x)
- —gr.

(g=1,gm)

T

o Let (G1 x X) xx (G1 x X) be the following pullback,

(G1 x X) xx (Gy x X) Gy x X (4.1)

G1XX X

s

Then composition is defined as m : (G x X) xx (G x X) — (G x X) where

m((92,), (91, %)) = (gag1, ) since gi1(z) = y as ((g2,9), (91, 7)) € (G x X) xx
(G x X)) with s(ga,y) = t(g1, z). This satisfies:

— Let (f,z), (g, f(z)),(h,g(f(x))) € Gy for x € X. Then the composition
m((h, g(f(x)), m((g, f(2)), (f,))) = m((h, g(f(x)), (9], ) = (M(gf), )
((hg) f,x) = m((hg, f(x)), (f,2)) = m(m(h, gf (x)), (g, f(2))), (f,)). As a
result, m((h, g(f (), m((g, f(2)), (f,2))) = m(m(h, g f(x)), (g, f(x))), (f, x)).

— Let (f,z) : * — y bean arrow in Gy withy = f(x). Then m((f, z),u(x)) =
m((f,x), (e, x)) = (fe,x) = (f,x) and m(u(y), (f,2)) = m((e,y), (f,2)) =
(e(f),z) = (f, ).

This groupoid is called the action groupoid of the action of G on a set X . It is
also called the translation groupoid which is the groupoid associated to the action of
a single group ¢ on X. We denote it by G x X. In the next section we will introduce
topological groupoids by translating the previous example in terms of topological

spaces.

Proposition 4.1.6. (G; x X) xx (G} x X) = Gy x Gy x X and m factors through
m' where m' : G1 x G; x X — G1 x X is a composition map which is defined by
(g2agl>$) = (92917:5)-

Proof. Let us consider the following square,

(m1,t(m2,m1))

Gy x Gy x X Gy x X (4.2)

(MJS)L ls

G1><X X.
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We want to prove that this square commutes. Let (go, g1, ) be an element in Gy x
G1 x X. When we calculate both sides of the composition in the square (4.2), we
have that s((my,t(ma, 71))(g2,91,2)) = s(g2,t(g1,2)) = s(g2, g12) = grx. Also, we
have that ¢((m2, m3)(92, g1,2)) = t(g1,2) = qrx. So, s((my,t(ma, m)) = t((me, m3) and
the square (4.2) commutes. Now we want to show that (G; x X) xx (G x X) =
G1 x G x X. We need to define an isomorphism ¢ from (G; x X) xx (G x X)
to G1 x G1 x X. Let ¢ : (G; x X) xx (G; x X) — G; x G; x X be defined as
©((92,9), (91,7)) = (g2, 91, 7). Let o' : G1 X Gy x X — (G1 X X) xx (G1 x X) be
the map where ¢'(g2, g1,2) = ((92, 91%), (g1, z)). Now we need to see that ¢ and ¢’
are inverses to each other. Let ((g2,v), (g1,7)) € (G1 x X) xx (G1 x X). Therefore,
¢ 0 o((92,9). (91,2)) = ¢'(92.91,2) = ((92,01%), (g1, %)). Since gz = y, we get
¢ 0 ¢((92,), (91.2)) = ((92,9),(91,%)). Then ¢'v = idGxx)xx(G1xx). Suppose
(92:91.7) € Gi x G1 x X. Then, ¢ 0 ¢'(92, 91,7) = ©((g2, 912), (91, 7)) = (92, 91, 7).
So, oy’ =idg, xa,xx- We can conclude that (G; X X) xx (G1 x X) =2 G x Gy x X.
Now we need to check that m = m/¢. Let ((g2,v), (91,2)) € (G x X) xx (G1 x X).
Therefore, m’' o ((g2,7), (g1,x)) = m/'(g2, g1, ) = (g291,x). We can conclude that

m = m’¢ which means that the composition is well defined,

(G x X) xx (G x X)—=G x Gy x X

G1XG1.

4.2 Topological Groupoids

A topological groupoid is an internal groupoid category in the category of topological

spaces. So, we will use Definition 3.3.1 to define topological groupoids.

Definition 4.2.1. A topological groupoid G is an internal groupoid category in the
category TOP with,

e A space of objects Gj.

e A space of arrows Gj.
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together with the following continuous maps:

e 5: (G — Gy represents the source and ¢ : G; — G represents the target of

g € Gy such that Vz,y € Gy. Le., if g: x — y then s(g) = x and t(g) = v.

o m: Gy xg,Gi — Gy where Gy x¢,G1 = {(9, f) € G1 X¢,G1]s(g) = t(f)} such
that m(g, f) = g o f is the composition of elements in G; with the following
condition. For all g1, g2,93 € G1 we have m(g1,m(gz2, 93)) = m(m(g1,g2), 93)
where m(g1, 92) = g1 © ¢o.

e u : Gy — (G represents the identity arrows and 7 : G; — G represents the

inverse arrows which satisfy the following,

So, we can form the following diagram,
Uyt

Gl X Go G@ Gl U GO .
™2 QZ)\

Example 4.2.2. A topological group is a topological groupoid with only one object

Go = {x}. The arrows are g : x — « for all g € G;. Le,, *3. The composition is
defined by g o h = g * h where * is the multiplication in G.

Example 4.2.3. Let X be a topological space. We can say that X is a topological
groupoid as follows. The space of objects is X. The space of arrows is also X.
Consequently, the space of composition pairs of arrows is X xx X = X. All the

structure maps s, t, u, i, m are the identities.

Example 4.2.4. Let X be a topological space and G be a topological group with a
continuous action of G on X. If we look again at the example 4.1.5, we see that the

structure maps are continuous. That is because of the following:
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e The map t is continuous since it is defined to be the group action f and f is

continuous.

e m is continuous because G is a topological group and it corresponds to multi-

plication in G.

e u,7 are continuous because G is a topological group and 7 corresponds to the

inverse in G.

As a result, the product, identity, and inverse arrows are continuous.

4.3 Homomorphisms Between Groupoids

We will use the definition of an internal functor to define the homomorphisms between
groupoids which is similar to the functors between categories but with the continuity

condition.

Definition 4.3.1. Let G and H be topological groupoids. A homomorphism F :
G — H consists of a pair of continuous functions Fy : Go — Hg and F; : Gy — H;
such that the following diagram commutes. I. e., Fyosg = syo Fy, tgo Fy = Fyotg,

and ug o Fy = Fy oug,

Gl HI
LN L
Tl A

Go———— Ho.

The next examples show the relation between orbifold charts and homomorphisms

between groupoids.

Examples 4.3.2. 1. Suppose that U and V' are G-spaces. Let x : U — V be a
map such that x(g-z) = g-x(z) for all x € U. This gives rise to a homomorphism
of action groupoids, id X x : G X U — G x V where x : U — V acts on the

objects and id X x : G x U — G x V acts on the arrows.
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2. Suppose {U,G, ¢} and {V,H, 9} are charts with a chart embedding (\,¢) :
{U,G, ¢} — {V,H,v}. Then we have A(g - z) = €(g) - M(z) for all z € U.
This chart embedding gives rise to a homomorphism of action groupoids, £x A\ :

G x U — H x V which is A on the objects and ¢ x X\ on the arrows.

We are going to define a natural transformation between topological groupoid

homomorphisms, but let us first recall the following definition from category theory.

Definition 4.3.3. If F,G : C' — D are functors then, a natural transformation
0 : FF — @ is defined by:

e For all ¢ € C there is 0. : Fc — Gc, an arrow in D.

e Forall f:c— ¢ € C, there is a commutative square,

We will now translate this definition into the language of internal groupoids in

the category of topological spaces, TOP.

Definition 4.3.4. Let F, F’' : G — H be two homomorphisms between topological

groupoids,

Fy

G, H,
F

tG sG tH SH

Fo

Go Hy.
Fy

A natural transformation @ : F — F'is given by a continuous function 0 : Go — H;

such that sy o0 = Fy and ty o0 = F|,

00—0>H1 00—9>H1

AL AN

HOa H07
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with the following naturality condition m(0tq, Fy) = m(Fy,0sq) : Gi — H;. le.,
the following square commutes in TOP,

(Ota,F1)

Gy Hy xXp, Hy
(F{,HSG)L lm
Hy X g, Hy = Hy,

where m : Hy, Xy, Hy — H; is the composition map.

Example 4.3.5. Suppose that {(7, g, ¢} and {V,H,w} are charts such that G and
H are discrete groups with chart embeddings (\, 0), (i, n) : {U,G, ¢} — {V,H, ¥}

Then we have the following square,

Ux@gG VxH
Ax L
p 1 st o
- A -
m
U—_ —=V.
W

Where p and p are the group actions. Then if A € H is an element such that y = ho ),
we can define a natural transformation o = (\,h) : U — V x H with g = ho X

where h € H. We obtain the following square,

e —
m

Now we want to check the commutativity. Take z € U then pa(z) = p/(\, h)(z) =
P(Ax),h) = h-(Az)) = p(x). Also, ma(x) = m (A h)(x) = m(A(z),h) = A(x).
We have proved that there is h € H such that 4 = h o A gives rise to a natural
transformation. Now we want to check the naturality. Let z € U and ¢ € G. We

want to check that the following diagram commutes in V x H.

M) === ()
Ry j l (@)
Ag) oz ilgz)
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We have

m((u(r),n(g)),a(z)) = m((u(z),n(9)), (Ax), h))

and we have that

m(a(gz), (A(x),€(9))) = m((Agz), h), (A(z), {(g)))
= (Agz),h)
= p(g).

So, m(u(x),n(g), a(x)) = m(a(gr), (M), £(g)))-

As a result, the previous square commutes. We have that U and V are connected
and H is discrete group. Since the space V x H has disconnected copies of V for all
h € H, and since the space is continuous, we can not jump from one copy to another.
So, for any A, we need an h € H to defined the corresponding copy in V x H. We
can conclude that each natural transformation between ¢ x A\ and m x p corresponds

to precisely one h € H such that A\ = p.

Remark 4.3.6. 1. Suppose we have two natural transformations ¢ : F — F’
and 0" : F' — F” such that F,F’, and F” are arrows from G to H. Then
there are families of arrows 0. : F, — F. and ¢/, : F. — F! € H; such that

m(6.,0.) = (0 o). So, they give a natural transformation from F' to F"”.

2. By using (1) we can conclude that every natural transformation between groupoids
is an isomorphism. Namely, let 6§ : F© — F’ with 0 : Gy — H; be a
natural transformation. Then 0 : F — F’ with 0 : Go — H; is an-
other natural transformation such that their composites are m(if,0) = idp,

and m(@, 28) = idF/.



Chapter 5
The Category of Fractions

We have already seen that we need an extra condition on an atlas refinement to
obtain a morphism of atlas categories, and in general, this morphism is not full. We
will solve this issue by replacing the atlas categories by atlas groupoids. We obtain
these groupoids by an internal version of the category of fractions construction. In
this chapter, we will review the classical conditions of the category of fractions which
have been introduced by Gabriel and Zisman [7]. Then we will review the classical
construction and spell out the details of the proofs for some of the lemmas involved

because they will help us in internalizing the process in the next chapter.

5.1 Calculus of Fractions

Definition 5.1.1. Let C be a category, and W C (' be a class of arrows. We say

that W admits a calculus of fractions if it satisfies the following conditions.

CF1 W contains all isomorphisms.

CF2 W is closed under composition. le., if w : A — B and v’ : B — FE are

arrows in W then w'w : A — E € W.

CF3 If there is a pair (w, f) € W Xy ¢,+ C1, then there is a pair (u,g) € W X, 0,5 C1
such that we have a commutative square. l.e., if there are f : F — B € (f,
and w: A — B €W then thereare g: D — A€ Cy,andu:D — FEeW

such that the following square commutes,

D2 A

CF4 If there are f,g: A — B and w : B — E € W such that wf = wg then
there exists v: D — A € W with fv = gv.

38
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5.2 The Category of Fractions

Definition 5.2.1. Let C be a category. Let W be a class of arrows that satisfies the

conditions of calculus of fractions. The category of fractions C[W '] is defined by:
e The class of objects C[W ™|y is C.

e The class of arrows C[W™!]; consists of equivalence classes of pairs (w, f) :
A— Bwherew: F — Aand f: E — Bwithw e W and f € C}, A, B,
and F € Cy, i.e., A< 1B wWe say that any two pairs, (w, f) and
(w', '), are equivalent if there is a pair (ry, r2) such that wr; = w'ry € W with

the following commutative diagram.

7N
N

e To define composition of arrows in C[W '] we need to make some choices. For
each pair (w, f) where f: F— B € C}, and w: A — B € W choose a pair
(u,9) : A — Ewithg: D — Ae (Cy,and u: D — E € W such that the
following square commutes,

D—2-A (5.1)
i .
E — B.

For the pair (w, id), we choose g = id and v = w. Similarly for the pair (id, f),

we choose © =id and g = f.

Now we can define the composition of two pairs (wy, f1) and (wse, fo) which fit in

a diagram as,

A D B E K .

w1 f1 w2 f2

Let the following square be a chosen square as in (5.1) above,

g

T—>E
D

f1 B,
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where g : F' — F and u : FF — D for F' € Cj. Then we have that the following

diagram commutes.
(5.2)

A K.

w

F
/ \
- D n B > E B
We can form the following definition, (ws, f3) o (w1, f1) := (w1 o u, fy 0 g).
Lemma 5.2.2. This composition does not depend on the choice of the commutative

square. ILe., if we have two pairs (u,g) and (v, g") with fiu = wyg and fiu' = wyg’

then (wy o u, fy 0 g) is equivalent to (wy o', faog').

F
/ \
A DE—F— B~ —E———K
'lL/ F/ g/

Proof. Suppose we have two pairs (u, g) and (v, ¢') with fiu = wyg and fiu' = wyg'.

Note that we can draw the diagram as follows,

B
f1 w2
A D" L ZE K
w fa
\ /
F

By condition CF3 there exists an object M € Cy withry : M — F and ro : M —
F' such that

ury = u'rg € W, (5.3)
as in the following diagram,
B
f1 wa
A w1 D u’ / g’ E f2 K
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Also, since we have weg = fiu we get
wogry = frury. (5.4)
From (5.3) we have that fiur; = fiu'ry. Since we have wyg’ = fiu' we get
wag'ry = fru'rs. (5.5)

Now, from (5.4) and (5.5) we have arrows gri,¢'ro : M — Fand wy : E — B €W
with wogr; = wag'ro. By condition CF4 there exists an arrow w : M/ — M € W

such that griw = ¢g'row. As a result, we have the following commutative diagram,
K
f2]
E
/ \
D

N

A

Since w € W and urq, u'ro € W also we have uriw, u'row € W, we can conclude that

(wy o u, fy0g)is equivalent to (wy o, fo 0 ¢'). O
Composition lemma 5.2.3. The composition is well-defined on equivalence classes.

Proof. Suppose we have two pairs (wyq, f1) : Fi — D and (ws, f3) : D — Fy €
W Xs.cysC1 wWhere f1 : By — D, wy : By — F, fo: By — Fy, and wy : By — D.
with B; and By objects in Cy such that ¢(ws) = t(f1) Also, we have A; and A, with
wy A — Fy, ff i Ay — D, wh, Ay — D, and f}: Ay — F5. We will have the
following diagram,

(5.6)

Ay Ay
NG N
Fi< Bi——=D =B, ——F,.

We assume that (wq, f1) ~ (w], f1) and (ws, fo) ~ (wh, f5). Therefore, there exists
a pair (r;,¢;) : A — B; € W X, ¢,.s C1 such that r; : M; — B; and g; : M; — A,
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with M; € Cy where ¢ = {1,2} which gives us the following commutative diagram.

A Ay (5.7)

By D By

f1 w2

So, we have w;r; = wig; and fyr; = f!g; where i = {1,2}. From this diagram,we

have two pairs of arrows (we, f1), and (w), f]) in W x; ¢, Ci. Let

B =B
32j lfl

B2TQ>D7

and

be the chosen squares such that with E; and Fy € Cy. So, we have that fis; = waso

and f|s] = wjs,. We will have the following diagram,
(5.8)
g

Fy

2



If we add (5.7) to (5.8), we will have the following diagram,

E,
Ay A,
N
w) M, 11 w) M, f3
J Jf
Fi<— DB < D w/Q By = Fy
Ey

Then we find a new pair of arrows (firy, wars) € W Xy oyt Ch.
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(5.9)

Therefore, by

applying condition CF3, we get a pair (w, f) with K € Cy, w: K — M; € W and

f: K —> M, such that firw = wyrs f, and flgiw = wgggf,

Ay Ao
w J? fi wh 42 i
1 %y 1 r1f1 D T2W2 raf2 2
.
K

If we combine (5.9) and (5.10), we will have the following diagram,

E2

) \/\/JA )
A \
< g f .

1w1

(5.10)

(5.11)
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From the diagram (5.11), we obtain the following shape,

K
SN
% \
M, M,
J )
J h

F1 D B2 I F2
s2

w1 w2

By 7
E;

We proved in Lemma 5.2.2 that the composition does not depend on the choice of the
square. If we apply this lemma in the previous diagram, we will have the following

equivalence relation,
(wis1, fasa) ~ (wir, foraf) . (5.12)

We can see from diagram (5.11) that we have flg; = fir; and w}g; = w;r; which are

in the following shape,

Then we get (whry, fors) o (whry, firy) == (fw) gy, W f)g:). We also can see from the

diagram (5.11) the following,

Fy
A
K A

131 / \ J\2
s NT
M, Ms
) )
| h
R~y Bi——>D~ Bo—— .

Then by Lemma 5.2.2 we get the following equivalence relation,

(wir, fora f) ~ (wis), f355) - (5.13)
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From (5.12) and (5.13), we have (w1, fass) ~ (w]s], f3sh) as required. O

The following proposition expresses the universal property of C[W ] and is im-
mediate consequence of Lemma 1.2 and Proposition 2.4 in [7]. We will internalize it

in the next chapter.

Proposition 5.2.4. Composition with the inclusion function J,: C — C[W™!] in-
duses an isomorphism of categories homy, (C, D) = hom (C[W ], D) where homy (C, D) C
hom (C, D) is the full subcategory on the functors C — D which send arrows in W

to isomorphisms.



Chapter 6

Topological Categories of Fractions

This chapter will generalize the category of fractions conditions and construction
to internal categories in the category TOP. We will restrict ourselves to the case
where W = (1, the object of all arrows of C. We will see that surjective local
homeomorphisms play an important role in the new category of fractions’ conditions.

So, we will discuss their properties first.

6.1 Surjective Local Homeomorphisms

Definition 6.1.1. A function f: X — Y is a surjective local homeomorphism if
e f is surjective.

e For each x € X there is an open subset U, with x € U, such that

flu, : U — f(U,) is a homeomorphism.

Note that every surjective local homeomorphism is a continuous open map. The

following results are standard.
Proposition 6.1.2. Surjective local homeomorphisms are closed under composition.

Proof. Suppose f: X — Y and g : Y — Z are surjective local homeomorphisms.

We want to show that ¢gf : X — Z is a surjective local homeomorphism.
e Since f and g are surjective, gf is surjective.

e Take z € X. Since f is a surjective local homeomorphism, there exists an open
subset U, with x € U, such that f|y, : U, — f(U,) is a homeomorphism. g
is also a surjective local homeomorphism. So, there is an open set Vi) with
f(x) € Vi) such that glv, ., : Vi) — 9(Vy()) is a homeomorphism. We have
f(z) € f(Uy) N Vy@ which is open in f(U,) and in Y. Then
9lrwnnvie © FU:) N Vi — g(f(Uz) N Vi) is a homeomorphism. Since

46
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F(Ux) Wiy C Vi), we have that [~ (f(Uy) V@)U, = UpsNf~1 V() is open
in X which contains x. Since U, N f~'Vj() C U, we have that fly,qp-1v,,, :
Us N Wiy — f(Uz) N V() is a homeomorphism. Therefore,

we get g|f(u,)nv; e, © f’Umf—lvf(z) = gf’Usz—lvf(m) 2Ue O Vi) — (Vi@ N

f(Uy)) is a homeomorphism because it is a composition of two homeomorphisms.
Therefore, gf is a surjective local homeomorphism. O]
Proposition 6.1.3. Surjective local homeomorphisms are stable under pullback.

Proof. Suppose we have the following pullback with g a surjective local homeomor-

phism.
Xxz¥y —F oy
A l
X 7 Z

We want to show that h is a surjective local homeomorphism.

1. Let x € X then f(z) € Z. However, g is surjective. Therefore, there is y € YV
such that g(y) = f(x). As a result, we have (z,y) € X xz Y such that
h(x,y) = x. Thus, h is surjective.

2. Let (x,y) € X xzY. Then k(x,y) = y. The map ¢ is a surjective local
homeomorphism so, there is V,, € Y an open subset containing y such that
glv, + Vy; — g(V,) is homeomorphism. We write ¢’ : g(V,) — V}, for its
inverse. We have that g(V,) is open in Z and contains g(y) = f(x). This means
that z € f~'(g(V,)). There is a continuous map ¢'f : f~'(g(V,)) — V,. So,

we have the following commutative square,

fHg9(Vy) Vy
X——7Z,

where ¢ is the inclusion map. Let j : Vj, < Y be an inclusion map. However,

since X Xz Y is a pullback, there is a unique map r : f~1(g(V})) — X xz YV
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such that hr =i and kr = j¢'f. Le.,

We have W, = f~Y(g(V,)) xz V, = h(fH9(V,)) Nk~ (V,) C X xzY is an
open subset. We want to show that h restricted to this subset is a home-
omorphism with image f~'(g(V,)). We have from the Diagram (6.1) that
hr = i, we want to show that rh|y, = id. Note that r : f~*(g(V,)) —
=t w, (7 g(V))NEk™1(V,)) € X xzY is defined as r(z2') = (2/,y") where y =
39’ f(@). Let («/,y') € h™H|w, (f ' (9(V}))) NETH(V,)). We have rhlw, (2',y') =
r(z") = (2',y"). However, y" and y” € V,, with ¢g(y') = 2’ = g(y"). So, v = y".

Therefore, hly, is a homeomorphism.
We can conclude that h is a surjective local homeomorphism. O

Proposition 6.1.4. Each surjective local homeomorphism is the coequalizer of its

kernel pair.

Proof. Suppose f: X — Y is a surjective local homeomorphism. Let
ker (f) = {(z,2') | f(x) = f(2')} C X x X, and let r, 75 : ker (f) — X such that
ri(z,2') = x and ro(x,2") = 2’. We want to show that f is the coequalizer of r; and

Ta.

e We want to show that fr; = fry. Take (z,2') € ker (f). Then f(ri(z,2")) =
flx) = f(a') = f(ra(x, 2")) for (x,2") € ker (f). So, we have fry = fr.

e We are going to check the universal property of the coequalizer. We will define a

map h : Y — Z and check that it is well defined as well as that h is continuous.

— Suppose there is a map g : X — Z such that gr; = gro. We want to define
h:Y — Z such that g = hf. Take y € Y. We have f is a surjective, so
we choose x € X such that f(z) =y. Now we take h(y) = g(z).
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— We want to show that A is well defined. Suppose there are x and z’ such
that x, 2’ € f~'(y). Then (x,2') € ker (f), so g(z) = g(z'). So, h well
defined.

— Now we want to check that A is continuous. Take U an open subset in
Z. Since g is continuous, g~ *(U) is open in X. However, f is a surjective
local homeomorphism, so f(g~(U)) is open in Y. We claim that h=1(U) =
f(g7Y(U)). Let y € h"1(U). Then there is x € X such that f(z) =y and
g(z) € U. So, x € go'(U) and y € f(g7'(U)). As a result, h™'(U) C
f(g7*(U)). Suppose that there is y € f(g~*(U)). Then there is x € X
such that f(z) = y and = € g '(U). By the definition of h, we have
that h(y) € U . As a result, f(g~'(U)) € h™'(U). Therefore, h~1(U) =
f(g7'(U)). So, h is continuous.

— Finally, we need to check that h: Y — Z is unique and g = hf.
« First, we want to check the equality. We have defined that h(f(z)) =
g(z)for x € X. Then we can conclude that Af = g.

*x We need to see the uniqueness of h. Suppose thereis b’ : Y — Z such
that h' # h with g = h'f. We have g = hf so, hf = h'f. However, f

is an epimorphism. Hence, h = I'.
O

Lemma 6.1.5. In the diagram below, suppose that k is a surjective local homeomor-
phism, with qx and qy are quotient maps. Furthermore, if there are f : X — Y and
f: R — S continuous maps such that fhik = g;f fori={1,2},

- hy
R k R )‘( X~ X/R
ha
> I
/ o ¥
S Y ——Y/S,

then there is a unique continuous map f : X/R — Y/S such that the following

diagram commutes,
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R b R )‘( X~ X/R
ha |
i 7
F |
! g1 l A
S Y e Y/S.
g2

Proof. Take r € R. We want to show that gy fhy(r) = gy fha(r). Since k is surjective,
there is € R such that k(x) = r. We have that k is a surjective local homeomor-
phism. Then there is U, an open subset in R containing x such that k|, : U, —
k(U,) is a homeomorphism. As a result, there is (k|y, )™ : k&(U,) — U,. In addi-
tion, we have that fhik(z) = g;f(x), so fhi(r) = g;f(k|p,) *(r). That implies that
Gy fhi(r) = qvgif(klu,)"'(r). However, qy is the coequalizer of the g;. Therefore,
gy o1 f(klu,) " (r) = avgaf (Klu,) " (r). We have gy fhi(r) = qvgif (Klu,) " (r). Then
gy fhi(r) = qy fha(r). So, gy fhi = qy fhs since r was arbitrary. Since gx is the
coequalizer of h;, there is a unique map f : X/R — Y/S such that fgx = qy f. O

Notation 6.1.6. We will also call a surjective local homeomorphism an étale surjec-

tion.

6.2 The Internal Category of Fractions

We have defined an orbifold atlas category in Chapter 3. However, we want the
maps induced by refinements to become weak equivalences of categories. We want
a refinement to give us weak equivalences between the atlas groupoids. This can
be obtained if all arrows in the atlas category are invertible. Therefore, we need
an atlas groupoid instead of just an atlas category. In order to obtain a topological
groupoid for an orbifold atlas, we need to add inverse maps for the arrows in C(U);.
We will work to use the category of fractions conditions from Section 5.1 to obtain
these maps in a universal way. We will need to generalize the conditions to obtain an
internal version of the category of fractions which we will call the internal category of
fractions, and then we need to prove that our atlas category satisfies the conditions
of the internal calculus of fractions.

Since we want every arrow in C] to be invertible we will consider W = (' as a special

case in this paper. We can denote C[W™!] in this case by G(C) to indicate that
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this is a groupoid, i.e., the internal groupoid in T'OP such that there is an inclusion
C — G(C) which has the following universal property which we will prove at the end

of this section.

Theorem 6.2.1. Composition with the inclusion map j. : C — G(C) gives an
isomorphism hom(G(C), K) — hom(C, K) for any topological groupoid K.

C—g(C)

K.

Now we will generalize the conditions of the calculus of fractions for an internal
category C in TOP. Since we take W = ('} we obtain conditions CF1 and CF2 for
free because C contains all isomorphisms and is closed under composition. We only
need to translate conditions CF3 and CF4 to construct a groupoid of fractions for

an internal category in TOP.

6.2.1 The Topological Calculus of Fractions Conditions
TOP - CF3

Before we translate condition CF3, we introduce some notation which we will use
later. Denote the space Cy X4, C1 by esp(C), i.e., the space encoding diagrams in

C of the form

%h’

and the space of all not necessarily commutative squares (C Xyt C1) X (s,5),00xCo, (1)

(Cy X505 C1) » be allsq(C). Le., this space encodes diagrams in C' of the form

||

)

the subset of commutative squares of allsq(C) by csq(C). We obtain csq(C) as the
following equalizer diagram,

m(mame,mamy)

esq(C) —-allsq(C) =04
m(mime,m17T1)
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We get that j is a topological embedding. Note that allsq(C), csq(C), and csp(C)
will be objects in TOP. Now recall the condition CF3 which is that for any pair
(u, f) € W Xy 0y C1 there exists a pair (v,g) € W X, ¢, s C1 such that the following

square commutes,

Now we will generalize condition CF3. In the category SET, this is equivalent to
requiring the existence of a map ¢’ : ¢sp(C) — ¢sq(C) such that the following

diagram commutes,

csp(C) —e=allsq(C)

S b

esp(C).

However, in TOP to require the existence of ¢’ is too strong a condition which we
will find is not satisfied by our atlas category. Therefore, we will require a weaker
condition which says that the map ¢ = w075 : ¢sq(C) — ¢sp(C) is an étale surjection
so, there are local sections of ¢ but, we do not require a global map. We have the

following commutative diagram.

m(mame, w1 )

esq(C) —=allsq(C) = () (6.2)
(bj / m(mime,m1m1)
esp(C)

From here we can define condition CF3 for the internal calculus of fractions as follows.

Top-CF3 The map ¢ : csq(C) — csp(C) is a surjective local homeomorphism.

TOP - CF4

Before we translate condition CF4, we introduce some notation which we will use.

We will denote the space C X (s4),coxco,(s,) C1 that encodes pairs of parallel arrows
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by pall(C). Le., the space encoding diagrams of the form,

— T
~ = -

Note that pall(C)X iz, ¢,.sC1 is the space encoding diagrams of the form,

— T

~ @ @ .

So, we have two composition maps M; and My from pall(C)X iy, ¢,sC1 to Cy as

follows,
My
pa’ll(C)Xtﬂ'l,Co,SCl > Cl .
Mo
We define the space CEq(C) to be the equalizer of M; and M. T.e.,
My
CEq(C) —= pall(C)X iz, c0sCr = Ch.
Mo

We also have the space of the form C) X ¢, sr, pall(C), i.e., the space encoding dia-

grams of the form,

— T
~ -

Then we have two composition maps M| and M} from C) X ¢, sr, pall(C) as follows,
My
Cl Xt,C(),Sﬂ'l pall(O) > Cl .
M
We define the space Eq(C) to be the equalizer of M| and M. lLe.,

My
Eq(C) ——=C1 Xycosm pall(C) == C.
M;

Note that CEq(C) , Eq(C) , and pall(C) are objects in TOP. Let us recall the
classical condition CF4. For any two pairs (u, f), (u,g9) € W X4 ¢, C1 with s(f) =
s(g) such that m(u, f) = m(u,g) there exists an arrow v € W with (v, f), (v, g) €
W X .5 C1 such that m(f,v) = m(g,v).

Now we will generalize the condition CF4. Let C be an internal category in TOP.
For SET this is equivalent to require the existence of a map ¢ : CEq(C) — Eq(C)

such that the following diagram commutes,

CEq(C) ¢ Eq(C)

pall(C')
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However, this condition is too strong and we need to have a weaker condition which
requires a surjective local homeomorphism. We have the space Cy X ¢, s pall(C) X4 ¢y s

(1, of not necessarily commutative diagrams of the form,

— T
_— _

~ @

There are two ways of taking a triple composite here. Therefore, we will define P(C)

to be the following equalizer,

My

P(C)——=C1 X045 pall(C) X405 Ch ?Cﬁ .

Then we require that we have a surjective local homeomorphism ¢’ from P(C) to
CEq(C) which is defined by ¢/ = (m2,7m3). From here we can define the condition
CF4 as follows. Top-CF4 The map ¢’ : P(C) — CEq(C) in the following pullback

is a surjective local homeomorphism,

P(C) —2~ CEq(C)

‘| |

Eq(C) —=pall(C) .

where ¢ = (71, m2).

We have generalized the calculus of fractions’ conditions to obtain the internal
version of them. We have that CF1 and CF2 are satisfied because we took W = C}.
We generalize CF3, and CF4 to Top - CF3 and Top - CF4, the internal version

of the calculus of fractions’ conditions. As a result, we have the following definition.

Definition 6.2.2. Let C be an internal category in the category TOP, and W = C}
be the space of arrows. We say that W admits an internal calculus of fractions if it

satisfies the following conditions.

e Top - CF3 The map ¢ in the following diagram is a surjective local homeo-

morphism,

) m(mome,mam)
csq(C) —=allsq(C) —_____=Cy

m(m1m2,m171)
¢ ™
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e Top - CF4 The map ¢’ : P(C) — CEq(C) in the following pullback is a

surjective local homeomorphism,

P(C)—2~ CEq(C)
|
Eq(C) —=pall(C),

where ¢ = (71, 72).

Let fork(C) be the space Cy X ¢,.s C1 Xs.0y4 C1 encoding diagrams of the form,

Y

and spn(C) be the space Cy X, ¢, s C1 encoding diagrams of the form,

Then we obtain the following coequalizer diagram which will give us the object of
arrows G(C)q,

1,72
/(_)\ q
fork(C') spn(C) ——G(O); .
—_—
(m(m1,m3),m(m2,m3))

Definition 6.2.3. Let C be a topological category which satisfies the internal calculus

of fractions conditions. Define the topological groupoid G(C') as follows:
e The space of objects G(C)g = Cp.

e Space of arrows G(C'); which is the coequalizer of M and N in the following

diagram,
M q
fork(C) spn(C) ——G(C)y,
N
where
M = (m(my,m3), m(me, ms3))
and

N = (71'1,7'('2).
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Such that for (A, A2) € spn(C) the structure maps are defined as follows:
e The source map s : G(C); — G(O)y is defined as s(A1, Ay) = t(\q).
e The target map ¢ : G(C); — G(C)o is defined as t(A1, Aa) = t(\2).

e Since Cy = G(C), and G(C)1 = C Xs¢,s C1/ ~, we will use the identity
map u : Cp — (4 in the internal category C to define the identity map o’ :
G(C)y — G(C);. We have u : Cy — 4 is the identity map in the internal
category. This gives us a map (u,u) : Co — C} X;.¢,.s C1 which is the identity
map in spn(C). Since G(C); = spn(C)/ ~ and ¢ is the coequalizer, we can
define the identity map in the topological groupoid as

u' = q(u, u),
where u is the identity map in the internal category
e The inverse map i : G(C); — G(C); is defined as (A1, Aa) = (A2, A1).

We need to check that the structure maps that we have defined are well defined.
We need to see that for any (A1, Aa, A3) € fork(C'), we obtain the following

e We need to see that sM = sN.

- SM()\l,)\Q,)\g) = S(m(>\1,>\3>,m()\2,)\3)) = S(/\1>\3,>\2>\3) = t()\l)\g) =
t\).
- 3N()\1,)\2,)\3) = 8()\1,)\2) = t()\l)

As a result, sM = sN.
e We need to see that tM =tN.

- tM()\l, )\2, )\3) = t(m()\l, )\3), m()\g, )\3)) = t()\1>\3, )\2)\3) = t(>\2)\3) = t()\g)
N Aoy Ag) = H, Ae) = E(N).

So, we have that tM = tN.
e We need to see that iM = iN.

- ZM()\l, )\2, )\3) = Z(m(>\1, )\3), m()\g, )\3)) = i()\l)\g, )\2)\3) = ()\2)\3, )\1)\3).
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- ZN(AD )\27 )\3) - i()\la )\2) - <)\27 )‘1)

We know that in G(C);, we have that [AoAs, \As] ~ [A2, \1]. As a result,
tM =1iN.

We need to define the composition for G(C) to have the complete conditions for an
internal category. Therefore, in the next subsection, we will define the composition
in the internal category of fractions. After that we will check that G(C) satisfies the

conditions for an internal category and prove its universal property.

6.2.2 The Composition in the Internal Category of Fractions

Before starting to talk about the composition we note that any coequalizer in TOP
is a quotient map which we will use when we define the composition. The following

proposition is stated in [14].
Proposition 6.2.4. In TOP, the coequalizer of any pair of arrows is a quotient map.

Let C be a topological category. We want to talk about composition in G(C), but
we need to define the composition as in Section 5.2 in terms of continuous functions.
Recall that we define fork(C) and spn(C) as

Jork(C) = (C1 Xs.cp.s C1) Xs.004 Ch s

spn(C) = Cy Xscp5 C1
We have defined that G(C'), = spn(C)/fork(C), the coequalizer of N and M as in
the following diagram,

M

fork(C) spn(C) ——G(C); .

N

where N, M from fork(C) to spn(C) are defined as:
N = (7T177T2)

and

M = (m(my,m3), m(ms, 73)).

The domain of the composition map is G(C)y X5, G(C)1. We can obtain this space

as part of the following commutative diagram,
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MXCOM %
fork(C) Xscou fork(C) _— ~spn(C) Xs.cpu spn(C)qLoi (C)1 X500 G(O)y .
NXCON

The maps in this diagram act on diagrams of arrows in C as follows,

MxcyM axXcyq / \
—

—

. NSNS N

Also,

NxcyN X coq

L A

We claim that this diagram is again a coequalizer. To prove this, we need to

define the notion of a reflexive coequalizer and we are going to prove that G(C'); is

the reflexive coequalizer for M and N.

Definition 6.2.5. Two parallel arrows f, g : A = B form a reflexive pair if they have
a common section. l.e., there exists an arrow w : B — A such that fw = gw = idp.

A coequalizer of a reflexive pair is a reflexive coequalizer.
Lemma 6.2.6. The product of reflexive coequalizers is a coequalizer.

Proof. See for instance, [2]. For more a detailed proof see [5] which gives a proof in
the special case of tensor products. This proof generalizes in a straightforward way

to our case. L]

Proposition 6.2.7. G(C), X;.¢,:G(C), is the coequalizer of M x¢c, M and N x¢, N,

MXCOM %
fork(C) Xs o fork(C) _— ~spn(C) X400 spn(C’)q&i (C)1 X500 G(O)1 -

NXCON
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Proof. Recall that we have defined G(C'); as the coequalizer of N and M from fork(C)
to spn(C) as in the following diagram,
M

fork(C)

N

spn(C)LG(C)l .

We want to prove that G(C'), X ¢, :G(C), is the coequalizer of M x ¢, M and N x¢, N.
We will show that G(C'), is a reflexive coequalizer. We need to define a map
w : spn(C) — fork(C) such that Mw = Nw = idgn(c). So, we define w : C} Xy
C1 — (C1 X505 C1) Xs.00¢ C1 by w = (u,uosom).

Now we want to see that Mw = Nw = idg, (). Take (f,g) € C1 X505 C1. We
have Muw(f, g) = M(u,uo s(f)) = M(f, g,u(s(1)) = (m(f,u((1))), m(g, u(s(f))))-

Since u(s(f)) = u(s(g)), we get (m(f,u(s(f))),m(g,u(s(f)))) = (f,g9). Also, we
have that Nw(f,g) = N(u,uo s(f)) = N(f,g,u(s(f))) = (f,g9) We conclude that

Nw = Mw = idgnc)
As a result, G(C), is a reflexive coequalizer. So, G(C), X5 c,+ G(C), is the co-
equalizer of M x¢, M and N X, N. Therefore, by Lemma 6.2.6 we have the following

coequalizer,
MXCOM q q
[ X
fork(C) Xs.cou fork(C) " spn(C) Xs,¢p4 spn(C) —> G(O)1 %5000 G(Ch
NXCON

The Extension of the Composition map

In order to be able to talk about composition in the internal category of fractions,

we define the space df(C) to be the space encoding non commutative diagrams of the

SN
AN

Let tts : (C1 X, C1) X, C1 — (Cp x Cp) x Cy be the map defined as

form,

(6.3)

tts = ((txt)oﬂ'l,so’ﬂ‘g):(tOT{‘l’toﬂ‘l’soﬂ'g).
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SO, df(c) - ((Ol Xs,Co,s Ol) Xs7r1,Co,t Cl) ><tts,(C’o><C’0)><C'0,tts ((Cl Xs,Co,s Ol) XSTI’l,C(),t Ol) .

Now we can define dbifork(C) to be the following equalizer,

Momq

dblfork(C) ——df (C) spn(C) .

Moo

So, dblfork(C) is the subspace of df(C) encoding commutative diagrams of the form

(6.3).
We have three maps from dbifork(C) to spn(C) which are:

ny = (7T17T1,7Tz7T1),

Le.,
J e
Ny = (7T17T2,7T27T2),
Le.,

AN . >N

M1 = (TTL(7T17T1,7T37T1),m(7T27T1,7T37T1)) = (m(ﬂ'lﬂ'g,7T37T2>,771<7T27T2,7T37T2)) = MQ.

Le.,

A1 Jl A2 1AL H1A2
| M,
Also we have,
A1 Jl A2 p2 ] paX,
| My
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Since we have that dblfork(C) is the space of commutative diagrams of the form

we obtain that pyA; = pe A and pyde = oy, So, My = M.
In Section 5.2, we used chosen squares to define composition in the category of frac-

tions. This means for us that we will need to use the étale surjection
spnesq(C) BN spn(C) Xs.c0t spn(C),

which can be obtained from condition TOP-CF3, and the fact that étale surjections
are stable under pullbacks. We have that spncsq(C) is a space of the form Cy X, ¢,

csq(C) X¢y.s C1. Le., this encodes diagrams of arrows in C' of the form,

AN

Defining the composition map h will involve an extension of the following diagram.

spn(C) Xs.cpt spn(C) spnesq(C) spn(C)
NxN| | MxMm N| M <>
Jork(C) Xs.cou fork(C) ker(g) fork(C).

Figure 6.1: The composition in terms of coequalizers

However, we would like to change the codomain coequalizer because fork(C) is

a relation, but not an equivalence relation. We need an equivalence relation that
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generate the relation in the codomain. Then we will use the following fact to define

the composition in 6.2.12.

Proposition 6.2.8. The coequalizers of

dblfork(C) spn(C)

and

fork(C) spn(C)

are homeomorphic.

Proof. Suppose there are the following coequalizers,

M

fork(C) spn(C)LG(C)l,

N

and
ni

dblfork(C) spn(C) —L=q(CY, .

ng
We want to show that G(C'); and G(C')} are homeomorphic and that this homeomor-

phism fits in a diagram,

GO,
We will find a map from G(C'); to G(C')} and a map from G(C); to G(C);.

e We need to find a map from G(C); to G(C);. We define w : fork(C) —
dblfork(C') by
w = (u,uosom,m(m,ns), m(my,m3)). Take (f,g,h) € fork(C). We have

w(f,g,h) = (u,uos(f),m(f,g),m(g,h)) = (f,g,h,u(s(f)), fh, gh).

Then we have the following diagram,

forkL(C) . spn‘w)LG(c)l
dblfork(C') - spn(C) — G(O)}.
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We want to show that njw = N and now = M. Take (f,g,h) € fork(C) Then

we have

mw(f,g,h) =ni(f, g, h,u(s(f)), fh,gh) = (f,9) = N(f,g,h).

Also we have that

now(f, g, h) =na(f, g, h,u(s(f)), fh,gh) = (fh,gh) = M(f,g,h).

As a result nyw = N and nyw = M. So, ¢ N = ¢'M. By the universal property
of the coequalizer, there is a unique map y : G(C); — G(C)] such that

q¢ = xq.

e We need to find a map from G(C)} to G(C');. Note that we can define dblfork(C)
as fork(C) X spn(cym fork(C). Take (Fy, Fy) € fork(C) X spn(cym fork(C)
where F; = (f;, gi, h;) with i = {1,2}. We want to show that gn; = gny. We
have n; = Nm; for i = {1,2}. Now we have gn,(Fy, ) = qNm(Fy, ) =
gN(F;). However, the map ¢ is the coequalizer of N and M so, ¢N(F}) =
qM(Fy). Since (F1,Fy) € fork(C) X spn(cym fork(C), we have M(F)) =
M(F3). So, ¢M(Fy) = qM(F) but, M (Fy) = gN(F»). So, gN(F1) = ¢N(F3).
We can conclude that gny; = gns. As a result, since ¢’ is the coequalizer of n,

and ng, there is a unique map x’ : G(C)} — G(C'); such that ¢ = x'¢.

e We have that x o X' = idg(c), and x' o x = idg(c), by the universal property of

the coequalizers.

As a result we obtain the following diagram,

M

fork(C) spn(C) ——=G(C),
N
dblfork(C') spn(C’)TG(C')’l.
We can conclude that G(C'); and G(C)] are homeomorphic. O

Remark 6.2.9. In this paper, we will mostly use dbifork(C) instead of fork. How-
ever, we will still use fork(C) x fork(C) in Diagram (6.1). This is just because we
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want to define a map between coequalizers. We want to use the universal property
for the coequalizer and it is easier to map out of fork(C) x fork(C) and map into
dblfork(C). Therefore, we want to use a smaller space on the domain side which has
less information and encodes a relation that generates the equivalence relation rather
than the full equivalence relation and we need a space which has more information

and the full equivalence relation on the side of the codomain. Then we adjust (6.1)

as follows.
G(C)1 X 5,0 G(C) v T -G(C)
f
axq q
spn(C) Xs.cpt spn(C) spnesq(C) . spn(C)
NxN M x M No N1 ni na
Jork(C) Xs.cyt fork(C) ker(g) dblfork(C) .

We are now going to define the remaining spaces and maps. First, we define the

spaces ker (g) = C1 X6, (¢5¢(C) X (mymy mam),(C1x 0y C1).(wsmamams) €8G(C)) X co,5 C1- L,

it is the space that encodes commutative diagrams of arrow in C' of the form,

£

Now we are going to define the arrows. We have (m m) spnesq(C) — spn(C)

which is defined as (m,m) = (m(my, m3), m(ms, 76)). Le.,

(m,m)
J5 B < /
A1p1 A2
A2 ™ X,

Also, we have g : spncsq(C) — spn(C') X eyt spn(C) which is defined as

g = ((m1,m9), (m4,75)). Le.,
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K2 M1 9 S
A1 A2 " X,
At A2 AT A

There is also f = g(m,m) and Ny, Ny : ker(g) — spncsq(C) which are defined

by N; = (my, 7w, m3m;, Ty, W5, Te;) Where i = {1,2}.

p 13 RN I 1
2/ N\ 2
M1 M3
A1 A2 A A, A1 A2 ™ N,

Now we want to define cker(g), which encodes commutative diagrams of arrows

in C' of the form,

A1 A2 N X, ’

where piv; = pivy and Nyudn € = Myuseé as well as Aopt = Ny for i = {1,2}.
Then we will have a projection map ¢ : cker(g) — ker (g) which is defined by
g = ((n(my, m), m3my, n(my, 5), 1), (N1, m2), M3ma, N(TM4, 75), Me2)). We can see it

as follows : let (A1, Ao, i, pa, Ny, Ny, 2, 13, v1, 19, &) € cker(g). Then we have

g(()‘la >‘2a /Liv M%v )‘,17 )‘,27 M%v ,u%, Vi, V2, g)) -
((/\17 /\2)7 ,LL%, (/\/17 /\/2)7 M;)» ()‘17 /\2>7 u%a ()‘/la )‘/2)a ﬂ%))

Le.,
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Im

a2 /N
M1 ) M1 Mo
A1 A2 ™ X, A1 A2 ™ X,

Now we want to check that g is an étale surjection.
Lemma 6.2.10. The map g : cker(g) — ker (g) is an étale surjection.

Proof. We have that ker(g) encodes commutative diagrams of arrows in C of the

I I
/
pi 13
A1 A2 " PYA
2

I I

we obtain a projection map from ker(g) to c¢sp(C) = ——= <—— . By TOP-CF3,

form,

we have an étale surjection map from csq(C) to csp(C). Define dker(g) encodes com-

mutative diagrams of arrows in C' of the form,

A1 A2 ™ PV
where pijvy = pivy and Ny, = Nypsvs as well as Agpt = Ny for i = {1,2}. As

a result, dker(g) is the following pullback,

dker(g) — csq(C)

L

ker(g) —— csp(C).
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We have a projection map from dker(g) to CEq(C) where

131

CE(C)= < > "~
pav2

By TOP-CF4, we have an étale surjection map for a space P(C) which encodes

diagrams of arrows in C of the form,

1
1%
I3 A AL
T~ T,
V2

to CEq(C). Then we obtain that cker(g) is the following pullback,

cker(g) —— P(C)

i i

dker(g) — CEq(C).

Therefore, g is an étale surjection.

Now we define a map f : cker(g) — dblfork(C) as

[ = ((m(my, m3m1), (m(m1, mame), m(ma, wm1), m(Ta, Tem2), m (77, T9), m(7s, T9) ).
Therefore, take (Mg, Ao, fuh, u2, NNy, g, 2,11, 19, €) € cker(g). Then f is defined as

f~()\17 A?aﬂ%mu%? )\3)\&,,&%,,&%, 1, V?af) = ()\1#%7)\1#%7)\27)\/2N;>/\/2N37 Vlgv V2€)'

¢ ]}1 ) Al%¢¥#é
| i |
wh )y \ ylg
f ANV
/N
M1 o
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We also have 71,7 : ker(g) — spn(C) defined by 7; = (m, m)N;. This can be
written as,

(A1, A2), 11, (VL A2), ), (A, A2, ity (AL, Ag), 413)

(m, m) NG (((Ars Az), s (A1, A9), ), (Ar, Aa), o, (N, Xy), )

(m, m) (A1, A, 1, A, Ay, i)

(M, Aoty

where i = {1,2}. Now we want to check that n;f = 7;§ and for i = {1,2}. Take
(A1 Az, g, 113, Ny Xy, iy, 13, 01, v, €) € cher(g). Then

)
)

nifN()‘lv)‘27/&7”%7>‘,1)\,27:u%7:u%7y17y2a€) = nz‘O\lMia)\1,“%,)\Qa)\lzﬂéa)\lzﬂgalflfawf)
= (A, Nopis)

ie.,
Aut AN Aok
. V1§
s | P g Nyt
|
V2§
>\1;Ai Xy
A1 X,

Also we have,
ﬁ-ig()\l? )‘27 ,LL%, M%a )‘/1)‘/27 :uéa ,uga vy, Vo, 6) =
7:I'i(()\la )\2)7 :ui ()‘/17 )‘/2)7 ,u%a <)\1’ >\2)a M%a <)‘/17 )‘/2)7 Mg) =
(A, Aopis)

3
1
| s i, 1y 1
i\ I I
ll - —_
/N /N, A X,
251 2] 251 o,

A1 A2 ™ A, A1 A2 ™ A
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As a result, n,f = 7;g. By Lemma 6.1.5 and the fact that § is a surjective local

homeomorphism, there is a unique continuous map
k:spn(C) x spn(C) — G(U),
with kg = f = q(m,m). Consequently, we get the following diagram.

€l (o) PN €l (o) PE— e ~G(0),

spn(C) Xs.cpt spn(C) spnesq(C) o spn(C')
NxN| |MxM No| | M > ) ni | |ne
fork(C) X ¢yt fork(C) ker(g) dblfork(C)
i f
cher(g)

Now we are going to do with fork(C') X ¢, .+ fork(C') what we have we done above
with ker (g). We will define an étale surjection for fork(C') x, ¢, +fork(C) by CF3 and
Lemma 5.2.3. Then we will use Lemma 6.1.5 to find & : G(C), X5.¢,:G(C), — G(C),
which gives us the composition map. Recall that fork(C) x; ¢, ¢ fork(C') is the space

encoding diagrams of the form,

L

Let ¢f(C) be the space that encodes diagrams of arrows in C' of the following form,
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where pi&ivy = pivg and Nypdlovik = MNypdver as well as Aopiél = N and
Xopi? = N3 Let define a map h : ¢f (C) — fork(C) xgcy4 fork(C) as h =
(71, T, w371, (74, 05, TTT1))-

Take ()\17AZ?M}?N%)\/D)\/%N%?H%)V171/2>€1>£27’%) € Cf(C> then

E()‘lv >‘27 :ui M%v )‘,17 )‘,27 :uéa ,Ug, Vi, Va, 517 527 K) = (()‘1’ )‘2’ N%)’ (>‘/1’ )‘/2’ M%))

In term of diagrams of arrows in C' we have that h is given by:

Lemma 6.2.11. The map h : c¢f (C) — fork(C)x ;. co.1fork(C) is an étale surjection.

Proof. We have a projection map from fork(C) X ¢, s fork(C) to ¢sp(C). By TOP-
CF'3, we have an étale surjection map from csq(C) to c¢sp(C). Define dfork(C) encodes

commutative diagrams of arrows in C' of the form,

where \pu? = N 3.
As a result, dfork(C) is the following pullback,

dfork(C) csq(C)

i :

Jork(C) Xscy.s fork(C) —esp(C).

We have a projection map from dfork(C) to csp(C) By TOP-CF3, we have an étale

surjection map from csq(C) to csp(C). Define cfork(C) encodes commutative diagrams
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of arrows in C' of the form,

&2
3
u%l lu%
A1 A2 N X,
w3 13

Y

where A\opiél = Npdé&s and Xop? = Np3. As a result, dfork(C) is the following
pullback,
cfork(C) —— csq(C)
i i
dfork(C) —csp(C) .
We have a projection map from cfork(C) to esp(C) By TOP-CF3, we have an étale
surjection map from ¢sq(C) to csp(C). Define efork(C) encodes commutative diagrams

of arrows in C' of the form,

where pi& vy = pive and Aoptél = N pdés and \opd = N3, As a result, efork(C) is
the following pullback,

efork(C) — csq(C)

i i

cfork(C) — csp(C).
We have a projection map from efork(C) to CEq(C) By TOP-CF4, we have an étale
surjection map from P(C) to CEq(C). Then we obtain that ¢f(C) is the following
pullback,

cf(C) P(C)

: i

efork(C) —— CEq(C) .
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Therefore, h is an étale surjection. O]
Now we are going to define a map k : ¢f (C') — ker(g) which is
k = ((my, 9, m(mymy, Tg), T4, Ts, M(T6T1, T10)), (71, o, T3Ta, Ta, Ts, TGT2) ).
Take (Mg, Ao, b, 12, N, Xy, ik, 12, 01, 109, &4, €0, k) € ¢f (C). Then k is defined as,

I;/‘(Alu )\27 ,ui; /"L%J )‘/17 )‘/27 ,Uéa ,U/; V1, V27§17§27 K) -
((/\17 /\27 /L%éla /\/17 /\/27 Még2>7 ()‘17 /\27 /Jﬁv )‘117 )‘/27 /1’3))

&2
& Vi
u%l IJ2 lp% ~ #%El l’é£2
k
—
A1 A2 N X, VRN

2 2
5 5 M1 M3

M1 M

A1 A2 ™ X,

We also have g : spncsq(C') — spn(C) X0, spn(C) which is defined by,
g = (n(m, me),n(my, m5). Then if we take (A1, Ao, p1, N, NS, p2) € spnesq(C) we have

g(>\17 >\27 M1, >‘/17 >‘/27 MQ) = (()‘17 )‘2)7 (Alla )‘/2))

Le.,

V Y
g
—
A2 ™ X,

Now we want to check that (M x¢, M)h = gNik and (N x¢, N)h = gNok.
Take (AlaAQ)MLM%)‘ID/\I%M%?M%VMV27§17§27’%) € Cf(C) then

A1 A1 A2 ™ X,

(M XCO M)B(Alj)\2,%,#?7)\/17)\/27#%7#37V17V2751,f2a/€) =
(M XCo M)(()‘lv AQaM%)v (>‘,17 >\/27/Jé)) =
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Now we see the composition in the diagram language. We have
(Ats Mgy ik g2 NN, b pi2 00, 00, €4, &5, K) € ¢f (C). Then we apply h to get the foll-

wing diagram,

(6.4)

Then we apply M X, M and it gives us the following,

1 1 S AN 1 / 1/ Aoty
Hy M3 Aapy Aipg
MXCOM \/

—

and

gN k(A1 Ao, it 115, N5 X, i, 415,01, v, €1, 6o, ) =
9N1((>\17>\2,M151)7 (>‘,17>‘,27:u§€2))7 ()\1)\27#%»)\,17)\,2:#%)) =
915 A2, 1161), AL, N, pi36o) =

(A1, A2), (A1, A9)).

Now we see the composition in the diagram language. We have
(/\17 A27 ML M%v /\,17 /\,27 M%) M%? vy, Vo, 517 §27 K) S Cf<0) Then we a’pply l;: to get the fol-

lowing diagram,

(6.5)
BN
,u}l ng lu% ~ N}fl /1552
k
| —
A A2 N, A N\,
9 5 M1 o
M1 H3
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Then we apply N; and it gives us the following,

pié 12 ,L pié piéa
2/ N\ 2
M1 Ha
A1 A2 N X,

A1 A2 N A,

Finally, we apply g to obtain,

pié nE2
g
A2 ™ A,

We have that (A1, A2) = (A1, Aep) € G(C), Xs.c00 G(C),, as well as (N}, Ny) =
(N pd, Nypid). Then we can conclude that (M x¢, M)h = gNik. Similarly,

A1 A1 A2 ™ A,

(N XCO N)il()\laAQaM%aM%a)‘,17)‘éauéaﬂgaylvy%glﬂf%’%) =
(N XCO N)((Ah)\%:u%)a ()‘,17)‘,27:[%)) =
(()‘17>\2)7()\,17)\,2))

Now we see the composition in the diagram language. We have applied h in (6.4) and

now we apply N x¢, N to the result to get the following,

1 1
1 p
1L QL NxgyN

A1 A2 ™ X, A1 A2 ™ X,

Also we have

gNok(Ar, Mo, i1, 115, N1y N, i, 415,01, v, €1, 6o, 1) =

gN2 (A, A, 11161), (N1, A, 1153)), (A, Mg, i, A, X, 115)) =
ICSIPENTHPIPDYNTES

((A1; A2), (AL, AS))-

Now we see the composition in the diagram language. We have applied & in (6.5)
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Then we apply N, and it gives us the following,

pié piéa NQ; It “3
2/ N\ 2
M1 2P
A1 A2 ™ X,

finally, we apply g to obtain that,

It 13
g
A2 ™ X,

—

A1 A1 A2 ™ X,

We conclude that (N x¢, N)h = gNok. By Lemma 6.1.5, and the fact that & is a

surjective local homeomorphism, there is a unique continuous map
h: G(C)l X 5,00t G(C)l — G(C)l

with h(q x¢, ¢) = k. Consequently, we get the following diagram.

G(C)1 Xs 000 G(O); h G(C),

spn(C) X500t spn(C) spnesq(C) o spn(C')
NxN| |MxM No| | M o ) ni| |ne
fork(C) X ¢yt fork(C) ker(g) dblfork(C)
; k : f
of (C) cker(g)

Therefore, we have defined the composition map of the internal category of frac-

tions G(C) which is the map
h: G(C)l X s,Co,t G(O)l — G(O)l

in this diagram.
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6.2.3 The Internal Category of Fractions

We have started to define the topological groupoid G(C) in 6.2.3. However, we needed
to find the composition map h : G(C)1 X5+ G(C)1 — G(C')1. Now we will recall

the definition of the topological groupoid and add the composition map.

Definition 6.2.12. Let C be a topological category which satisfies the internal cal-

culus of fractions conditions. Define the topological groupoid G(C') as follows:
e The space of objects G(C)g = Cp.

e Space of arrows G(C'); which is the coequalizer of M and N as follows

M

fork(C) spn(C)LG(C)l,

N

where is defined as M = (m(my, 73), m(mg, m3)) and N = (7, 7o)
such that for (A1, A\2) € spn(C') the structure maps are defined as follows:
e The source map is s : G(C'); — G(C), defined as s(Ay, A2) = t(A1).
e The target map is t : G(C'); —> G(C)g defined as t(A1, A2) = t(A2).

e The identity arrow is v’ : G(C)y — G(C'); defined as v’ = q(u, u), where u is
the identity map in the internal category C.

e The inverse arrow is i : G(C'); — G(C'); defined as i(A1, A2) = (A, A1).
e The composition map is h : G(C) X, G(C); — G(CO);.

Remark 6.2.13. If we want to calculate the composition for a specific pair of spans.
Le., h([A1, A2], (11, p2]) where [A1, o] and [u1, 2] € G(C);. It is sufficient to find an
element p € spnesq(C') such that g(p) = (A1, A2), (p1, p2)) € spn(C) Xscy.5 spn(C)
and calculate f(p) since f(p) = f(p') for any p’ € g7 (A1, A2), (1, p2))-

Now we want to check that G(C) satisfies the conditions to be an internal category.
e We want to show that su’ = id = tu’. We have that

— su' = sq(u,u) = tu = id.
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— tu' =tq(u,u) = tu = id.
Then su' = tu'.
We want to show that
h([A1, Ao, u's[ A1, Aa]) = h(u't[A1, Aa], [A1, Aa))-

First we want to define the composition on the left side, h([A1, A2], u's[A1, Aa]).
We find that (A1, A2), u's(A1, A2)) encoding diagrams of the form,

The square p, we choose is

As a result, we have that,

h([Ar, Aol W's[Ar, Ao]) = A([Ar, A, [ut (M), ut(A)])
= f(p)
= qo (m,m)(A1, Az, usAa, ut g, ut Aa, \s)
= q(Aushg, utAa\y)
= q(M,A2)
= ([M, A2]).

Now we want to define the composition on the right side, h(u't[A1, Ao, [A1, A2]).
We find that (ut(A1, A2), (A1, A2)) encoding diagrams of the form,

The square p, we choose is

As a result, we have that,
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h(u't[Ar, Al [A, Ao))
= h(fut(Ae), ut(A)], [A1, Aa])
= f(p)
= g o (m,m)(uthy, utAy, A1, A1, Ag, us)
= q(utA A1, Aqus)y)
= q(A\, \2)
= (A, ).

Therefore, h([/\h /\2], U/S[)\l, )\2]) = [)\1, )\2] = ]’L(Ult[)\l, )\2], [)\1, )\2])
e We want to show that
h([)\l, )\2], i[)\l, )\2]) = (u't[)\l, )\2])

First we want to define the composition on the left side, h([A1, Aa], i[A1, Ao]). We
find that ((A1, A2),i(A1, A2)) encoding diagrams of the form,

A1 A2 A2 A1

The square p, we choose is

As a result, we have that,

h([A1, Aolsi[Ar, Ao]) = B([A1, Az, [Ae, Ad)))
= flp)
= qo (m,m)(A1, Az, usA2, Ag, A1, usAz)
= q(Musha, A\jushy)
= q(M, M)
= ([A, Ad])
= d.
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Also, we have that,

’U/tp\l, )\2)] =
([ut(A2), ut(X2)]) =
q((ut(X2), ut(A2)) =
1d.
Therefore, h([A1, Aa],i[A1, Aa]) = (w't[ A1, Ag]).
e We want to show that
h(l[)\l, )\2], [)\1, )\2]) = (U/S[)\l, )\2])

First we want to define the composition on the left side h(i[A1, Ao, [A1, A2]). We
find that (i(A1, A2), (A1, A2)) encoding diagrams of the form,

A2 A1 A1 A2

The square p, we choose is

As a result, we have that,

h(i[Ar, Ao], [A1s Ae]) = B([Az, Adl, [Ar, Ag]))
= flp)
= qo (m,m)(Ag, A1, usA1, A1, Ao, usAq)
= q(Aaushi, Agus)
= (A2, \2)
= ([A2,22])
= id.

Also, we have that,
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U/S[)\l,)\g)] =
([ut(M), ut(M)]) =

q((ut(A), ut(M)) =
id.

Therefore, h(i[A1, Ao, [A1, Aa]) = (u's[A1, Aa]).
o 1(1[A1, Ao]) = t[Ao, A1) = tA(L) = s[A1, Ao
o s(i[A1, Aa] = s[Aa, M| =ty = t[A1, Ao

e The associativity can be checked by a rather long but relatively straightforwards

calculation. We omit it here.

After checking that G(C) satisfies the conditions of an internal groupoid, we have the
following diagram,
T

G(C)1 X500 G(C)1 —h G(O) ———=

= W t

G(C) .

Proposition 6.2.14. There inclusion map J. : C' — G(C) is a well-defined homo-

morphism.

Proof. Recall that J. is the following map of internal categories

Oy x Oy —22~ G(O), x G(C), (6.6)
I
Cy ’ G(C)l
t/ 3\ SG/C) tG\(C)
OF VY
OO id G(C)0>

where j is defined as j(\) = (id, A) for all A € C;. We want to check the commuta-
tivity of the previous diagram and then show that J* : hom(G(C),K) — hom(C,K)
defined as F' —— F o J, for all F' € hom(G(C),K) is an isomorphism. Now we want
to check the commutativity of Diagram (6.6). Suppose A € C is defined as A : © — v.
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So, we have that idsc(\) = id(x) = x and we have that sg)j(A) = sqe)(id, \) = x
so, we can conclude that idsc = sg(cyj. Also, we have that idtc(\) = id(y) = y
and we have that tg)j(A) = tee)(id, N) = tee)(N) = y so, we can conclude that
idtc = teeyj. Also, let € Cy, we have that ju(xr) = j(id,) = (id,,1id;). So,
ju = (id,id). We have that v = q(u,u) = (id, id). So, we can conclude that ju = u'.
Now we need to check that the composition commutes. Le., h(j X j) = jom. Let
(A1, Ag) € C1 x C1. We have that h(j x 7)(A1, A2) = h((id, \1), (id, A2)). By Remark
6.2.13, we find that ((id, \1), (id, \2)) encoding diagrams of the form,

_ s = >
A1 A2
The square p, we choose is
A1
——
A1

As a result, we have that,

h(lid, Ml [id, do]) = f(p)
= qo (m,m)(id, A1, id, id, A1, \s)
= q(id, id, M1, \s)
= q(id, M)
= ([id, M Xa)).-

Also, we have j om(A, A2) = j(A1A2) = (id, \1A2). As a result, the Diagram (6.6)

commutes. OJ

Now we want to prove the universal property which we have stated in Theorem

6.2.1.

Theorem 6.2.15. Composition with the inclusion map J. : C — G(C) gives an
isomorphism J¥ : hom(G(C), K) — hom(C, K) for any internal groupoid IC in TOP.
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Proof. e We want to show that J is surjective.
Suppose we have F' : C — K. We want to construct F' : G(C) — K such
that I/ = F o J.. We can define F’ on objects as F] = Fj since J., = id.
Now to define F : G(C); — K, we first define w : spn(C) — K as
w(A1, Ag) = m(F{(A2),iF] (1)), for all (A1, Ay) € spn(C). Then we obtain the
following diagram,

M

fork(C) spn(C) ~— K .

N

Now we need to check that wM = wN. Let (A1, Ao, A\3) € fork(C). Then we

have
WM()\l, )\2, )\3) = w(m()\l, )\3), m()\g, )\3
W()\l)\g, )\2/\3) = m(F{()\Q)\g), ZF{()\l)\g
m(m(F(A2), F{(A3)), m(iFy(A3), iF (A1)

~—  ~—

We also have,
wN (A1, A2, As3) = w(Ai, A2) = m(F{(A2), iF{ (A1)

So, wM = wN. Therefore, this gives rise to a unique map F; : G(C); — K,
because of the universal property of the coequalizer. We need to show that

Fyoh=mo (F, x F}) as in the following diagram,

G(C)l Xs,Co,s G(C)l G(C)l

FlXFlj jFl

Kl Xs,Ko7s Kl Kl-

Since we have that ¢ : spn(C) — G(C); is a coequalizer map, it is enough to
check the equality on spn(C) by using the map w : spn(C') — K. So, we need
to prove commutitive of the following diagram,

(m,m)

5pn(C) Xac0 s91(C) spncsq(C) spn(C)
WwXw w
Kl Xs,Ko,s Kl m Kl'
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Since g is a coequalizer of its kernel pair, it is also enough to check the equality

on spnesq(C). So, we need to check commutitive of the following diagram,

spnesq(C) spn(C)

(wxw)gl Lw

Ky X 1,8 K1 —; K.

Now let (A1, Ag, p1, Ap, Ny, pi2) € spnesq(C). Then we have the folowing,

w o (m,m) (A1, A, fin, N1, Ay, pi2) - = w(m(Ay, i), m(Ay, pi2))
= w(Aip, Aopiz)
= m(F Aopi, i A i)
= m(Fi(id, \ypz), 55 (id, Avpun))
= Fim((id, \ypz), i(id, Avpur))
= Fim((id, Ayp2), (Mpa, id))
= Fi(Aip, Aopa).

Also, we have that

m(w X w)g(Ar, Az, i1, Ay, Ay, o)

m(w x w)((Ar, Az2), (AL, A3))

m(m(F{Xa, i), m(F{ Ny, i FTA]))
m(m(Fy(id, No),iFy (id, A1), m(Fy(id, Ny),iFy (id, N)))) =

m(Fim((id, A2), (A1, id)), Fym((id, Ay), (XY, id)))

mEi((A1, A2), (AL, A)))

Fym((Ar, A2), (A1, A9))

Fi(Apun, Agpo).

We conclude that w(m, m) = m(w x w)g.

Now we need to check that the following diagram commutes,

C—=G(O)

BN

K.
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We have that FyJ.o = Fy = F). Let A € C;. We have that FyJ.(\) =
Filid, \] = w(id,\) = m(F[(N),iF|(id)) = F[{(\). So, FJJ. = F'. We can
conclude so F] = Fjos and t o F| = Fjot as well as F] om = h(F] x F]). So,

J} is surjective.

e We want to show that J is injective
Suppose there is F' and H : G(C) — K such that J*(F) = J*(H). So, we
have that Fy(id, \) = Hy(id, \) for all A € C;. Take (A, ) € G(C);. We want
to show that Fy(\, ) = Hy(\, ). We have that Fy(\, p) € K;. Then we have
that

Fy(A\p) = m(F{p,iF})
= m(Fi(id, n),iF(id, \))
= m(H(id, p),iHy(id, \))
= Hi(m((id, p), (A, id)))
= Hy(\p).
We can conclude that ' = H. Therefore, J is injective.
We can conclude that J7 is an isomorphism on objects.

Now we need to check that J¥ is an isomorphism of categories.

Let F,H:G(C) — K.

e Let o : F" = H’ be a natural transformation. Then o' : FoJ, = HoJ.. We
need to find a natural transformation o : F' = H such that o/ = «oJ.. Since we
have o’ : Cp — K and we have that o : G(C')g — K7 and a0 J. = o (J),.

Since we have that (J.)o = id, we get @« = /. We can conclude that avo J. = /.

e Let o =" : F = H'. So, we have that o J. = o J.. We want to show
that a = 5. We have that o J.,f 0 J. : Cy — K;. We also have that
aoJ.=ao(J),=aand foJ. = fo(J.),=p. Since ao J, = o J., we have
that a = 3.

We can conclude that J is an isomorphism in terms of natural transformations. [
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6.3 Atlas Groupoids

We have defined the internal category of fractions for any topological category. L.e., an
internal category in TOP. Now we apply this to the special case of the atlas category
of an orbifold and construct the atlas groupoid as an internal category of fractions.
So, we will describe the spaces and maps in term of charts and chart embeddings.
First, we want to check that the atlas category of an orbifold satisfies the internal

calculus of fraction conditions as defined in 6.2.2.

1. Now we check the condition TOP - CF3
e The space allsq(U) is defined by

all5(1<u) = H W = H[:U’h >\17 W? M2, )\2]

R,
W Vo—=U
e The equalizer,
. A1pa
csqU) —=allsqU) >,
A2 12
is defined by
csq(U) = H W= H (11, At W,MQ, Ao
WV U, W Vo—U, WV, U, W Vo U,
ALH1=A202 ALH1=A2p2

e The space csp(U) is defined by

cspU) = ] M) N A(V2) = [T A(V2) N Aa(V2), Ao

)\1:\71<—>l7,
/\2:\_/2<—>U

e The map ¢ : csqd) — esp(U). Le.,

Qb: | | [/’LIJ)\IJW7M27>\2] 7 | | [Al,)\l(%)ﬂ)\Q(%),)\Q]
Wes V) U, Wes Vo U, AV U,
A1 =Aguo )\2:\72‘—%7

is defined by ¢([p1, A, W, 2, 112, X)) = [A, M(Vi) N Aa(Va), Mg (), o]
where 2 € W.

We need to check that ¢ is an étale surjection. We need to see that,
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e ¢ is surjective
Let [A1, A (V)N A2(Va), 1, Xo] € esp(U). Then y € U with A (V)N A(Va) €
U. By Lemma 2.4.6, there is a smaller chart W with € W and chart
embeddings y; : W < V; where i = {1,2} such that A\ju; = Agus and
Nipii(z) = y for i = {1,2}. Therefore, there is [u1, A\, W, , i, Ag] with
([, A1, W,a:,ug,)\g]) = [, )\1(‘71)ﬂ)\2(‘~/2), Ap (), Ag]. So, we conclude

that ¢ is surjective.

e We want to show that for each & € U there is an open subset U with 2z € U
such that ¢|; : U — ¢(U) is a homeomorphism.
We have that ¢([uy, A\, W, 2, iz, A2]) = [A1, Md(V2) N Ao (Va), Adypia (), A
where 2 € W. By Lemma 2.4.6, we can conclude that ¢|s : W — (W)

is homeomorphism.
2. Now we check condition TOP - CF4

e The space CEq(U) is defined by

CEqU) = 1T W= 11 (01, pra, W, Al
Ml,u2ZW‘—)V,>\:V;}U, ul,MQ:W‘%V,/\:(/"—)T},
Ap1=Apg Ay =Apg

e The space Fq(U) is defined by

Eq(U) = I w= T W)

A:W%U,ul,MQ:OHV, A:W‘—)U,ul,uzzl}'—)f/,
B1A=po A wiA=poA

e The space P(U) which is the pullback defined by

PU) = H W= H [)\»WMM,M,V]

AW U, pq,pup:U—V, AW U, pq,pu9:0—V,
u:V*—}V’,upl)\:u/,LQ)\ I/:V‘—>V’,u,u1/\:u,ug)\

e The map ¢’ : P(U) — CEqU). Le.,

. T T
T2 H [/\7W7N1au2ay] } H [MlaMQawa)‘]’
A:W‘—)U,HI,MQ:U%V, Mlvl‘?:W‘—)V,A:V‘—)U,
V:\~/<—>\;’,U,u,1/\:1/,u2)\ Apg=Apg

is defined as @' ([\, W, z, ju1, pio, v]) = [p1, i, (W), M), v]. By using the
same argument to prove that ¢ is étale surjection, we can conclude that

¢ is étale surjection.
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Before defining the orbifold atlas groupoid, we need to define some terms in the

language of charts.

spn(U) = H U= H[M,Ul,/\ﬂ,

XI:(}‘—H}L
)\2:[7‘—>\72

fork(U) = 1T W =[] v W1

Alzlj‘—)\}l,kgzﬁ‘—}VQ,
viWes U

Then we have two maps N, M from fork(U) to spn(U) which are defined as fol-
lows: for [Ay, Ao, v, W] € fork(Ud) we have N[\, Ay, v, W] = [Ay, v(W), Xo] € spn(U)
and M[A, Ay, v, W] = [A\iv, W, \av] € spn(U). Now we can define the orbifold atlas
groupoid.

Definition 6.3.1. Let Q = (Q,U) be an orbifold. Define the orbifold atlas groupoid
G(U) as follows:

e The space of objects is

e The space of arrows is

gy, = [T vi/~

A1:\~/~>Ul,
)\2:\7—»02

We denote the span of G(U), as [\, V, \o] and individual points of this space
are denoted by [\, V,z, \s] where z € V. Te., G(U), is the coequalizer of M
and N as follows

M

fork(U) spn(U) —— G(U),

N

Therefore, we will define the equivalence relation on G(U) = spn(U)/fork(U)
which is defined by [)\1,‘7,#(3:),)\2] ~ A, Wox, dopt] for [Ay, Ao, p, W, 2] €
fork(U) .

such that for [\, V,z, \y] € spn(U) the structure maps defined as follows:
e The source map s : G(U), — G(U), is defined as s([A, V,z, Xa]) = A\i(2).

e The target map ¢ : G(U), — G(U), is defined as t([A;, V,z, Xa]) = Ao(2).
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The identity map u : G(U), — G(U), is defined as for z € V we have u(x) =
idy, V,z,idg].

The inverse map i : G(U), — G(U), is defined asi([A, V, 2, Xa]) = [N, V, 2, A1].

Before defining the composition, note that s[Ay, V,x, o] = t[A], vV, Ab] if and
only if A\ (z) = Xy(z') for z € V and 2/ € V'

Then the composition map h : G(U), x¢, GU), — G(U), is defined as:
R, Vo, ol IV V7 2, M) = Pags, Wy, o] where V< W~ 77 with
w(y) =z, ' (y) = 2" and Aop = Ay

Proposition 6.3.2. Let U be a chart in an orbifold atlas U with a group G. Then

sTHU) Nt=U) C GU),, is homeomorphic to G x U and each element in this space

is of the form [idg, U, x, g] for some g € G.

Proof. Let E be the space s~ ()Nt~ (U). We want to show that G x U = E. Define
amap w: G x U — E as follows, w(g, U) = [id, U,x,g]. We want to show that w

is surjective and injective.

e w is surjective.

Let [A1, V., o] € E. Then we get the following diagram,

.
7 0

Since A1, Ay Vo U, by Lemma 2.3.9, there is an element g € G such
that gA\y = Xg. So, in particular, g\i(z) = Ay(x). We want to show that
(A, Vo2, No] = [idg, U, \i(2), g]. We have the following diagram,

1%
N
U U
A

U )
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Since Ay = g1, we can define (idy, A1) € spn(C) such that following commu-

V
N

U V U
NA

U
Therefore, [\, V, 2, Ay] = lid g, U, M\ (z), g]. So, we can conclude that w(g, U) =

tative diagram,

(A1, U, x, \y]. Therefore, w is surjective.

e w is injective
Suppose that (g1, 1) and (g2, 25) € G x U such that w(gy, z1) = w(gs, x2). So,
we have that [id, U,21,q1] = [id 7, U, %2, gs]. This means that, we have (i1, yi2)
such that g, ps : V < U with y € V such that p1(y) = xp and pso(y) = xg such

that the following diagram commutes,

We have from the diagram that pu; = pe. So, we have that ui(y) = p(y).
Therefore, 1 = x5. Also, we have that g1 = gopts = gopt1. Therefore, g1 = go.

So, we conclude that (g1, x1) = (ge, z2). Therefore, w is injective.



Chapter 7

Paths in Orbifolds

We have defined a weak map between orbifolds in Chapter 3, but it does not carry
enough information. So, in the same chapter, we have defined a strong map between
atlases. However, we do not want the notion of strong map between orbifolds to be
dependent on the choice of the atlas. In order to solve this problem, we will define
a strong map of orbifolds in terms of groupoids and weak equivalences. We will see
that strong maps between orbifolds correspond to certain spans of maps between atlas
groupoids. Then we are going to look at paths and equivalence classes of paths, and
we will see the equivalence relation between them.

We will see that atlas refinements for orbifolds correspond to weak equivalences be-
tween the corresponding atlas groupoids. So we begin by defining what weak equiv-

alences are.

7.1 The Strong Maps Between Orbifolds

7.1.1 Weak Equivalences

Definition 7.1.1. Let G and H be topological groupoids. Let F': G — H be a map

between them. Then we say that

e F'is open if I is open

o F'is essentially surjective on objects if tmy in the following diagram is open and

surjective,

Go X Hy H,y ik H, L H,

Go H,

Fo

90
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o F'is fully faithful if the following square is a pullback,

Gy ————H,
(Si)t l(sat)
GO X GO Fox Fo HQ X HQ .

Note that if F' is essentially surjective, then for each object d € Hy there is an
object ¢ € Gy such that F(c) = d € Hy. So, for all d € Hy there is (¢, h) € Gy X g, Hy
such that tme(c, h) = t(h) = d.

Definition 7.1.2. Let G and H be topological groupoids. A homomorphism F' :

G — H is a weak equivalence if it is essentially surjective and fully faithful.

Proposition 7.1.3. Let U and W be atlases such that U C W. Then the inclusion

map U — W gives rise to a weak equivalence G(U) — G(W).

Proof. Suppose we have that U and W are atlases such that U/ CW. Letw : G(U) —
G(W) be a map defined on objects and on arrows by inclusion. Then w is well defined
on equivalence relation because the equivalence relation on G(U) is a subset of the
equivalence classes on G(W). Now we want to show that w is a weak equivalence. We

need to show that it is essentially surjective and fully faithful.

e w is fully faithful

— We want to show that w is faithful.
Let U; and U, be charts in U such that (A1, Ul,xl,)\g] = [ul,ffg,xg,,ug] €
G(W),. We want to show that [\, Uy, 21, \o] = [u1, Us, To, p2] € G(U),.
Since [y, Ui, 21, o] = [p1, Us, Tg, o] € W, there is a smaller chart Wew
with y € W and chart embeddings vy : W — Ul and vy : W — UQ
such that v;(y) = z; and \jvy = pe for @ = {1,2}. This implies that
01(x1) = po(x) € Uy N Uy where ¢; : U —s U for i = {1,2}. Since
U, U, € U with U; N Uy # 0, there is a chart Uy € U with z3 € U and
chart embeddings & : Uy < U; and & : Us < Us such that &i(x3) = x;
and \& = & by Lemma 2.4.6. We want to show that A& = pos.
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Since Us, W € W, there is a smaller chart W' € W with v/ € W’ and
chart embeddings v/} : W’ < W and v/, : W’ — Us such that v|(y') = v,
vh(y') = x3 and v, = &b for i = {1,2}. We have that \ovy = povs,
So, we obtain that Aovyv] = sy, We also have that v;1/] = &1/, Then
we get that \o& vy = po&orh. Therefore, M\o& = poés since they agree on
an open subset. So, [)\1,[71,:151,)\2] = [Ml,UQ,LEQ,Mz] € G(U),. We can
conclude that w is faithful.

— We want to show that w is full.
Let [A\, V., 2, \o] € G(OW), where J; : V s U, for i = {1,2} and U; € U.
Since Uy N Uy # 0, there is U € U with y € U and chart embeddings
py 2 U < Uy and py : U < Uy such that p;(y) = \i(z) for i = {1,2} by
Lemma 2.4.6. Since U,V € W with UNV # 0, there is a chart W € W
with 2 € W and chart embeddings vy : W < V and Uy - W < U such
that v1(2) = z, 1a(z) = y and \jv; = pyre. We want to adjust ps to make

the other side of the diagram commutative.

We have Aoy, piovs : W < Us. So. by Lemma 2.3.9, there is g € G,

where G is the group that acts on (72, such that \ovy = gusvs. So,
AL, V@, Xo] = [p1, U, y, gpia]. As a result, w is full.

So, we can conclude that w is fully faithful

e We want to show that w is essentially surjective.

We have the following diagram,

GU)o xaowy, GOV)1 ——=G(W),

“l l

G(U)o

G(W)o

wo
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Since U C W and from the definition of w, we have that G(U)y C G(W)y. So,
we have that wg is an inclusion map. So, we have that tm, is open because all
the maps in the previous diagram are open. Now we want to show that tmo
is surjective. Let W € W. with © € W. Let U € U with y € U such that
ow(r) = @u(y). Then U € W. So, there is [\, V, 2, Xo] € G(W), such that
AM(z) = y and Ao(z) = x. As a result, tmy is surjective. So, w is essentially

surjective.

We can conclude that w is a weak equivalence. O]

7.1.2 The Strong Maps

If U and W are atlases such that &/ C W, then there is an induced strong map of
atlases. This gives a morphism C(U) — C(W) which is in general not essentially
surjective. However, we have shown that the induced morphism w : G(U) — G(W)
is essentially surjective which implies that w is a weak equivalence G(U) — G(W).
However, weak equivalences do not necessarily have inverses. To solve this, we use the
fact that the class of weak equivalences satisfies the conditions to form a bicategory of
fractions by Theorm 6.2.1. We can invert them by making a bicategory with arrows
of the form

DUN N (7.1)

where w is a weak equivalence. A category of fractions takes equivalence classes of

them. The spans <=—— T and < Lo are equivalent if there are u and u’

such that we the following diagram commutes up to isomorphism,

AR
> I, =~
'LU/ ,ll f/
and such that wu and w'u’ are weak equivalences. We will work with these equivalence

classes. Since we have defined a weak equivalence, we can define a strong map between

orbifolds as an equivalence class of spans of groupoid homomorphisms as in (7.1).

Definition 7.1.4. e Let Q = (Q,U) and R = (R, V) be two orbifolds. A strong

map of atlas groupoids f : Q@ — R is an equivalence class represented by a



94

pair of groupoid homomorphisms (w, f’), also called a generalized map

S

G(U) K—2 g (7.2)

where w is a weak equivalence and K is an étale groupoid. l.e., the source and

target maps in K are local homeomorphisms.

e Let (w,g) and (w',g") be spans of groupoid homeomorphisms with w and w’
weak equivalences. Then these two spans are equivalent if there exist a groupoid
M with weak equivalences v and «/, and natural transformations o and [ as in

the following diagram,

(7.3)

Z/[) ~f j\|/l ~o
l
Proposition 7.1.5. Fach equivalence class of generalized maps contains a represen-

tative consisting of maps of atlas groupoids,

GU) <o) -L~gv),

where w 1s weak equivalence. Also, two such representatives are equivalent if there

exists a grupoid G(U") fitting in a diagram of the form,

G(Ur)

N

gu") = G

~o) 7

G(Us) :

where U, for i = {1,2} are refinements of U and U" is a common refinement of U.

1%

GgU)

Proof. Pronk, in [18], showed that for any étale groupoid K with a weak equivalence

K — G(U), there is an atlas U’ with a weak equivalence G(U') — K. This gives us
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the following diagram,

GU) <G L~g(v)
K
We have that w is weak equivalence. So, we can replace in (7.3) K by G(U)', and t/
by G(U)', as well as M by G(U)". O

Remark 7.1.6. In this remark, we discuss the relation between the strong maps of

atlas groupoids and the strong maps of atlases defined in 3.2.2.

1. Since w : G(U') — G(U) is a weak equivalence, it gives us that U’ is a refine-

ment of U.

2. We have from the previous proposition that two strong maps of atlas groupoids

are equivalent if there is G(U”) with maps into G(U’)_ and G(U")_ as in the

€
following diagram,
Gg(u)

N

gu") = Gv)

N7

G(Us) ,

where U for i = {1,2} are refinements of & and U” is a common refinement

IR

Ggu)

of the U]. This gives us the equivalence relation between two strong maps of

atlases since Y” is a common refinement of the U, as follows,

w/ \
N, /

Definition 7.1.7. Let Q@ = (Q,U), R = (R,V), and S = (S, W) be orbifolds. Let
f:Q— R and g: R — S be strong maps of orbifolds which correspond to pairs
of groupoid homomorphisms (w, f’) and (w',¢'). Le.,

w I’ w’ g
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Then the composition of strong maps is defined by choosing a pair of groupoid ho-
momorphisms (u,h) where u is weak equivalence such that the following diagram

commutes up to isomorphism,

so, the composition is (wu, g'h).

7.2 Paths in an Orbifold Atlas

A path in the space is a map from the unit interval to that space. The unit interval
I is a manifold with boundary. Therefore, it is an orbifold with boundary. We may

represent it by its unit groupoid

A=
t
where the soure and the target maps are the identity maps. This implies that paths
in an orbifold @ = (Q,U) can be represented as a strong map of atlas groupoids

I — G(U). This can be represented by spans of groupoid homomorphisms
<Y g(u) 7

where w is a weak equivalence. It follows that we may assume that [ consists of a
collection of open subsets of I which covers I and I} = I X;«; (1,9 X L), together
with the necessary maps to make this groupoid weakly equivalent to I. A path in
an orbifold can be represented by a sequence of paths in charts connected by jumps.
This implies that we get a continuous path in the quotient space. However, there
may be more than one orbifold path corresponding to the same path in the quotient

space.

7.2.1 Paths Consisting of Open Intervals

We translate this to groupoid language I <—— I, —*=G(U) where the space of ob-

jects of the unit interval Iy = the space of arrows [; = the unit interval I where
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the source and the target are the identity maps. We may assume that I,o = []u;
where u; C I are open such that Uu; = I. Since we take disjoint unions, we assume
that each u; is connected, i.e., an interval of the form (a,b), (a,b], or [a,b). Since I
is compact, we may assume that we have just finitely many u;, and that they are

ordered as below,

IO'O = [0, (11) H(bl, CLQ) H(bQ, (13) H C H(bn7 1]

such that 0 < by < ay < ... <b, <a, <1. This makes that I,; = I Xy (I, X I,0)

because it is a weak equivalence since it is fully faithful. So, we can define I,; as

Iy = 1y H H:;l(bh a;).

Now we can say that a path consists of

follows

(673N (bi,alqu) — Ui,

Qg [0,@1) — 00,

and

ap (b, 1] — U, .

together with jump maps j; : (b, a;r1) — (AL, Wi, Ab).

7.2.2 Paths Consisting of Closed intervals

Observation, if we take points ¢; € (b;, a;) in the overlaps, since the paths consisting
of open intervals are one to one correspondence, we can make paths in closed interval.
Also, we can make paths in open interval from paths in closed interval because the
atlas groupoids are étale. We will define paths in closed interval in the following

definition.
Definition 7.2.1. An atlas path in an orbifold (Q,U) is represented by:

e A subdivision of the unit interval I into [t;_1,t;] , 1 < i < n,

t()I:O t|1 t|2 tn=1"

Let o = (0,t1,ts,...,t,); we write I, for the unit interval with this subdivision.
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e A family of paths a; : [t;_1,t;] — U; with U; € U.
e Foreachie {1,2,...,n— 1}, a jump
Ji = N Wiy, M) € GU),
defined by:

- W, CUNUi1 CQ

— Chart embeddings i : W; < U; and X, : W; < U4, such that there is a
point x; € W; with chart embeddings N (z;) = o4 (t;) and Ny(z;) = g (t:).

-
A

Figure 7.1: Atlas path with one jump.

When we take a point = € [t;_1,1;], we can form I, = [T [tic1 ) — Ino. We

have a pullback,

Iy ————1In

| |

INUO X jao(—> IUO X IUO

Therefore, I, = I,g | T A ji_l

foO X [aolol - [crl —s Ia’O

)

IJO(—> ]0'0

The map fc, — 1, is fully faithful because we we choose I:,l to be the pullback. If we
have I, — G, we can extend the map I, — G. We use I, instead of I,. So, a path
o : I — G corresponds to a groupoid homomorphism I, —s G for some subdivision

o of I, where I, is the groupoid of the subdivision. This has



99
e Space of objects : (I,)o = [/ [ti 1, ti]

e Space of arrows : (I,); = [[/_4[ti_1, %] as identity arrows with
jumps {Je,, jegs - - - o, } and their inverses {j;.*,j.', ..., 4.  } such that
s(Ji,) = t; € [ti—1,ti] and t(jy,) = t; € [ti, tir1]. We will denote the identity arrow
on x by id,. When there is potential confusion, we write ¢! for ¢; € [t;_1,t;] and
tr for t; € [t;, ti1]. For instance, the identity arrow on ¢} in the space of arrows

will be ldt: = tl S [t“ ti+1] - ([o)l-

e Composition : since all arrows are invertible, j;, o j,- ! —id, and Ji, Yoj, = idyr.
K2

Also, there are idy o j;, = j;, and ji, oidy = jy,.

je, gt P e PP
[ ] [} _— [ J [ ] e [ ] [ ]
to t1 t1 to tn—1
S S S S
t 1 % t
to t1 t1 to T th—1
This means that a path in a groupoid is defined by a map I, — G for some subdi-
vision ¢. This consists of
e On objects by o : [ti—1,t;] — G fori=1,2,... ,n.
e On arrows by a sequence of paths with jumps (ay, jit, as, ji. ..., jf |, &) such

that:

— On the identity arrows «; agrees with the a; on the objects.

— For each jump j;, we obtain ji € G with s(jf) = a;_1(t;) and t(j§) =

We translate the equivalence relation on the strong maps to an equivalence relation on
orbifold paths which is defined as follows. If we have subdivisions I, = TT= [tz t]

with a; and I, = H;”Zl[rj_l, Ji] with f;, then we can find another subdivision [:Y =

tn

tn
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[Tyt 6] TTTIZ [rj-1, 5i] such that a;|z, = Bilf,- So, we have the following com-

positions,
~v
/ T \ny
L gw
\J Af
I,
and

\'w

G(U)

N

Nlh\é\uéé\ﬂ

NS

So, we have that a@ = oz|I~7 and [ = ﬁ|fw' As a result, it is enough to study when two

paths with the same subdivision are equivalent.

7.3 Natural Transformations Between Paths

Suppose there is a second path 3 : I, — G. If there is a natural transformation 0
from a to [, then we can consider a and [ as equivalent paths because 6 is invertible
since G is a groupoid. Therefore, o and  are isomorphic. Recall that, a natural
transformation 6 is given by a function from the space of objects of I, [T [t tal,

to Gl. I.e.,

eﬁzla —>G1

=1
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This means that 6 consists of a family of functions, 6; : [t;_1,t;] — G; such that
sof; =a; and tol; = 3.

/ )
J

Also, we need to check the naturality. So, for each y € (.fs)l, we need to have that

m(0t, B)(y) = m(a, 0s)(y). This is trivially true whenever y = u(z) for some x € (Iy)o.
So, we just need to check the naturality at the jumping arrows jfi Dki(t) — ki ()
where k is a or . This means that we require that m(0;,1(t:),j5) = m(jt/’;, 0:(t)),
le.
ailts) — 1 pi(t,) (7.4)
i) 1
i1 (t:) o) Biv1(ts)

commutes in G

Example 7.3.1. Let § = Z4 and let U = D be the unit disk. Suppose G acts on

U by rotation over 7. Recall that we write G x U for the translation groupoid of
the action. The space of objects is U and space of arrows is G x U. We will denote
the different copies of U in Gy by Gy = [[,.o{(7,id,7)|z € U}. For each 7 € G,
define the source map by s(z,id,7) = z, and the target map by ¢(z,id, 7) = 7(z).
Let I, = [0, %], 5, 1], and let (al,jg, ap) and (51,j§, f2) be paths on this subdivision.
Le, o, : (0,3 — U and oy, 35 3,1 — U. Now let (o, j§, a2) : [0, G 1] —
Gy with jg = (a1(3),id, id) be the path in Figure (7.2), and (ﬁl,Qj’g, B) : (0,35 11[5,1] —
Gy with j7 = (a1 (3), id, p) be the path in Figure (7.3).

Note tflat a; = {1 but By = pas. By the previous discussion, (aq, jg, ap) is equiva-

lent to (1, jf , B2) when there is a natural transformation represented by a continuous
2



I
Wy,

Figure 7.2: The paths a; and ay

f S
=\

Figure 7.3: The paths ; and [
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function 6 : [0, 3] [1[5,1] — G1 which is defined by 6, (t) = (o (t),id, id) , 02(t) =

(@s(t),1d, p).

Since, s(01(t)) = s(aq(t),id,id) = a;(t) and s(02(t)) = s(aa(t),id, p) = as(t),

ar(t) if 0<t<2
s(0(t)) =
ag(t) if 3 <t<1
Analogously,
o (t) =pi(t) if 0<t<g
t(0(t)) =
pas(t) = Bao(t) if 5 <t <1

Finally we check naturality at j%

since we have 05 o j¢ = poid and jf o 0, = poid, the following square commutes.
2 2
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In general: let (aq,J%, as) and (Bl,jf,ﬁg) be paths on the subdivision I, =
0, %] H[%, 1] such that 041,251 . 0, %] —U ;nd g, B [%, 1] — U with jump Ja such
that j¢ = (a1(3),id, 7o) with 7, € G where 74((3)) = a2(3) and 5P = (B1(3),id, 75)
with 7?/5 € G where 73(81(3)) = B2(3). Then, (al,jg,OzQ) and (51,;'?,52) are equiv-
alent if 3g1,92 € G such that gi1(aq(t)) = Bi(t) and ga(aa(t)) = B2(t). This gives
us a natural transformation represented by 6,(t) = (ay(t),id,g1) if 0 < ¢t < % and
02(t) = (as(t), id, go) if 3 < ¢ < 1 such that there is naturality at jump j1 which gives

a commutative square

So, we need that gy o735 = 7,002 in G.

Remark 7.3.2. We can always find such a natural transformation when oy (t1) is
not a fixed point. For example, the center O of the disk is not a good point because
in this case there is only one arrow from ay(3) to 52(3) in the groupoid G x X. If
oq(%) = ﬁg(%) = O, then it is possible to have non equivalent paths that map to the

same path in the quotient orbifold as the following example shows.

Example 7.3.3. Let G = Z, and let U = D be the unit disk. Suppose G acts on U

by rotation over 7. Let I, = [0, %], [%, 1], and let (a1, j%, az) and (Bl,jf,ﬁg) be paths

on this subdivision.

Le, ov, 1 : 03] — U and ay, 3, : 3,1] — U. Let (aq,5¢, as) : [0, 15,1 —
Gy with jg = (a1(3),id, p) be the path in Figure 7.4. (ﬁl,jg, 522) [0, 4115, 1] — Go
with j7 = (e1(}),id, p?) be the path in Figure (7.5). Note that a;(3) = 8i(3) = 0
and afz B1 but By = pas.

Let 6 : [0,1] [1[5,1] — G represent a natural transformation which is defined

by 6, (t> = (041 (t)’ id, Zd) ) 92(t) = (042(t)7 id, 10)'
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(D
J

Figure 7.4: The paths a; and ay

[
N

Figure 7.5: The paths ; and s

Similarity,

now we check naturality at j%
since we have 6, 0 j¢(t1) = poid and j% o 61(t) = p? o id, the following square does
2 2

not commute.

So that the paths a and § are not equivalent.
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7.4 The Equivalence Relation on Paths

Let a = (a8, a, ..., o) = ([an, N, W, o, AL, o, X Wy, A, i, AT L))
where

a; : [tiog, ti] — U, for U; € U, and

B = (B1,dt, Bay s Bu) = ([Buy i, Wiy, b, -, By 1t W i, gty B ™ Bal)
where f; : [ti—1,ti] — V; for V; € U be paths in the atlas groupoid G(U). We want to
discuss what a natural transformation 6 from « to [ looks like. The simplest way to
see a natural transformation consists of map. As we discussed before, there is a chart

S; and a natural transformation 6; : [t;1,t;] — S; with embeddings v} : S, — U,

and 14 : S; — V; such that 1/ 0 6; = o; and v 0 6; = ;.

Remark 7.4.1. If o/, §’ are open paths and «, /3 are the corresponding closed paths.
Then the natural transformations o/ = ' are in one to one correspondent with the

natural transformation o = .

Lemma 7.4.2. Let o and B : I — U be paths in one chart. Then « and (3 are
equivalent if and only if there is a group element g € G such that ga = .

Proof. Suppose there is a group element ¢ € G such that gow = 3. Let 8 : I — G x U
be a map defined as 0(z) = [idg, U, a(x), g] for = € I. We want to show that 6 is
a natural transformation from a to 5. We have that sf(z) = slidg, U, a(z),g] =
t(idg(a(x))) = a(z) So, we can conclude that s = «. Also, we have that t(x) =
tlidg, U, a(z), g] = t(g(a(z))) = B(z) So, we can conclude that t = 3. Since there
are not jumps, we have the naturality. Now suppose that o and 3 are equivalent. We
need to show that there is a group element g € G such that ga = . Since we have
that « and 3 are equivalent, there is a natural transformation 6 : I —s G x U. Since
I is connected, there is an element g € G such that 6(1) C {g} x U. So, theta is of
the form 0(x) = [idg, U, a(s), g]. We have t = ga. Since t§ = j3, we can conclude
that 5 = ga. O]

Proposition 7.4.3. Let o and (8 be paths such that o = (a1,j7,ag,...,0n) =
(Jog, AL W, @y, AL N W g, A iy, XL an)) where o : [ty t)] — U
forU; eU, and

B = (Bu,de, Bos - Bu) = (Brs ity Wisyn, by, Bis ph, Wiy i, B, ™ )
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where [B; : [ti_1,t;] — Vi for Vi e U. « and B are equivalent if and only if for all
1 < i < n, there exist charts T; with embeddings v : Ty, — S; and ~% = T, — W,
such that the diagram of chart embeddings in (7.6) commutes.

Figure 7.6: equivalent paths

Proof. We will use the atlas path and the natural transformation definitions to prove
this lemma. Since we have that o is a path such that o = ([ag, AL, Wy, 21, AL, g, - .. an])
where «; @ [t;i1,t;] — U, C Gy and W; C G with embeddings A W, — U, and
A W, —» Ui+1- From the definition of an atlas path we get the following diagram.

2,
/X
.

Similarly with 8 = (81, ut, W', yi, pib, B2, - . ., B,) we have the following diagram

G
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We have paths «; and §; for each 1 < i < n, so we can define a natural transformation
0; : [ti_1, ;] — Gy with chart S; and embeddings v : S; — U; and v : S; — V;

such that v{(6;)0 = a; and v4(0;)0 = 5;. Therefore, we get the following diagram.

G

=
=

From these three diagrams we get the following figure

&

From this diagram there exist U} and U? in U; with U} N U? # (). Then we need
to check the naturality. We need to use Lemma 2.4.6. Therefore, there exist Til
with point z! € 7' and embeddings &' : T — S; and &' : T' — W; such that

K3 3
gt = et
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1

T,
gl/\él@ﬁ/i
SR @

Ui

Similarly with each pair of charts (S,, I/f/’i), (S’Hl, WZ), (SiH,Vf/’i) for each 1 <

1 < n. Therefore, we find four atlas charts with points and embeddings which are

R i1 il 1 #i1 171
(Si7 1 7T'7Z@'7 2 7Wi)7

(2

(5276127T2 22 i W/i)a

7971982
X i3 3 3 ¢i3 Y1
(Si—‘rl? 1 71—; y %5 1S9 7VVi>7

and

_Q 4 a4 #1417
(Si—f—la 1 aT' y %i 1S9 7W/i)

(2

such that
ieid _ileid i ei2 i 2 i¢i3 i+l ed3
Aoy = v &, &yt = &7, and psdy = vy &

These points represent the components.

=

From the same Lemma 2.4.6 we can find 7, with embeddings (! : T, — Ty,
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CoiTy— T, G Ty — Tigand ¢ Ty — Ty

Vit
iy
W,
Juik
V;

If we define vi = &1¢i | vh = &4, A = €8¢ and 45T = €2¢L. We can have a
chart 7; with embeddings ¢ : T, — S; and 7% : Ty — W such that the diagram 7.6

- AUV ES WU R S S Y S Y R By i \inai
commutes with 17" 7" = Xpvs , vyy1 = pyys, ot T = My and vy = Ay

O

Let a and § be paths in the atlas groupoid G(U). In the following proposition,

we will show the equivalence relation between o and 8 where «; and f; € U..

Proposition 7.4.4. If o = ([ag, AL, Wy, 1, AL, . aphi, Wi @, Mo, i, XL L))
and

B = (i, B Bu) = (B ptk, Wiy, b, ., By ik, WY ya, i, Bir, i Bal)
where

o, Bi t [ticy, ti] — U, where {Ui,gi,goi} € U, are paths in the atlas groupoid G(U),
they are equivalent if and only if there exists a family of g; € G; such that g;a; = f;
and there is a family of charts SZ with z; € S’Z and chart embeddings i : S’Z — I/T/Z
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and ~ S; < W/ such that the following diagram commutes,

)

(7.5)

Le., (2:) = 2 and v5(z:) = yi as well as Ny} = pins and gia Nyt = pibs.

Proof. Suppose that o and [ are equivalent. So, there is a natural transformaion
0 :1 — GU). We want to show that there are g; € G; such that the previous
diagram commutes. Since I = [[;_,[ti—1,t;], there is a family of natural trasformation
O; : [tio1, ti] — U;. Now we have two paths o, 53; : [tio1,ti] — U, in the same chart,
Since we have that by Lemma 7.4.2 there is a g; € G; such that 3; = g;«; for all i € N.
So 6;(t;) = (gi, ;(t;)). Then we have the following diagram,

Ui—i—l

U;

Now the naturality of 6 gives us m(6;41(t;), j*) = m(j”,0;(t;)). We calculate these
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composites with chosen squares in the following diagram,

Uz-‘,—l

/ N
N S N
\/\/“
m AL

Therefore, we have that [Aﬁ,m,xi,giﬂ/\g] = g7 i, Wy, ] So, there is achart

S with z; € S and chart embeddings 7/ : S < W; and ~4 : S < W/ such that

7

Xyt = g; s and gi Ayl = piys. So, we get the following,

Le., vi(2) = x; and V4(z) = y;
gAY = 1176 and gin AT = 1.

Suppose the Diagram (7.5) commutes, we define 0 : [[}_,[ti-1,t;] — G(U); for
x € [tiaty] as O;(x) = [z’dUi,Ui,ai(m),gi]. We have proved in Lemma 7.4.2 that
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st; = a; and t0; = B;. So, we can conclude that s# = o and t0 = [.
Now we need to check the naturality at the jumps. We want to show that
m(Bi1(t:), j¢) = m(j,0:(t:). By the Diagram (7.5), we get that g;\ivi = pir
and g;, 1Ayt = pbvys. We can have the following diagram,

H—l
/ \i Zd~y &1
1+1 2+
ld\ / \ /
gz N:%\ /

1

This means that m(]t 05(t:) = g7 i, S, zi, piyi]. Also, we have that m(6;41(t;), J) =

(NYE, S, 21, gii AbYE]. Since [g:NAE, S, 21, pyya] ~ (i3, S, zi, giv1AbYi], we can con-
clude that m(0;11(t;), j&) = m(j,, 0:(t:)).
O

In the Proposition 7.4.3, we have characterized when two paths o and S in the
atlas groupoid G(U) are equivalent in general. Then, we discussed in Proposition
7.4.4, the special case when the components of o and § are paths in the same chart.

Now we will derive a more specific case, namely when we have that W; = VT/{ .

Corollary 7.4.5. If a = ([og, AL, Wy, 21, AL, oo o XD Wi, 2, NS, o, XL L))

and

B=(Bu,dns Bos -y Bu) = ([Bu, k. Wryn, 13, Be -, By i, Wi i, i, Bier, 15 - Bal)
where

o, Bi  [tic1, i) — {Ui, Gi, i} for U; € U, are paths in the atlas groupoid G(U), they

are equivalent if and only if there exists a group element k; € G such that g;\ = pik;

and gi1 Ny = pioki.

Proof. Suppose a and [ are two equivalent atlas paths. We want to show that there

is a group element k; € G such that g;\! = pik; and g 1 Ny = pbk;.
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We have g\, u} : WZ — ﬁz Then by Lemma 2.3.9, there exists k; € G such that
wik; = g;\i. We want to show that g; 11\ = pbk;. Since a and (3 are equivalent, we

get the following commutative diagram,

Sz

(7.6)

We have that g;Aiy; = 1y and g\ = utk;. Therefore, puik;yy = p1v. Since pt is
an embedding, we have that k;v; = 5. Therefore, we have that

gi+1)\§71 = Mé% = Méki%-

Since 7; is monomorphism, we can conclude that g; 1\, = pbk;. As a result, if @ and
3 are equivalent, then there exists k; € G such that ptk; = gAY and g, 1 \s = pbk;.
Now we want to show that if there exists k; € G such that ptk; = g;\} and g; ;1 \s =

pbk;, then o and S are equivalent. Since utk; = ¢;:\ and g;, 1 A5 = pbk;, we can form
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the following commutative diagram,

Sz

We have the naturality at jumps since this corollary is a special case of Propositian

7.4.4. [l

Note that from this proposition, we can conclude that if we have two paths in
the same chart such that the jumps are in the same chart, we can find a natural

transformation between the paths from a group element.



Chapter 8

Conclusion

We have defined two kinds of maps for orbifolds. A weak notion of map which does
not give us a map between atlases. So, we defined a strong map between atlases
corresponding to a morphism between these orbifold categories but this map is not
essentially surjective. So, we have defined atlas groupoids and give a useful tool to
define a strong maps of orbifolds corresponding to weak equivalences. This is impor-
tant since the maps between orbifolds play a main role in orbifold homotopy theory.
We also constructed the notion of an internal category of fractions and developed
the conditions for its construction and its universal property for an arbitrary inter-
nal category in TOP. Hopefully it can be generalized to other internal categories in
other categories, such atlas categories for different type of geometric orbifolds. In
this thesis we just focused on topological orbifolds. Finally, we finished this paper
by using the definition of morphisms between orbifolds to define paths and obtained
a nice description of the equivalence relation on paths. Hopefully this result can be

generalized to other types of orbifolds, for example differentiable orbifolds.
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