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Abstract

To control the lumber production in a sawmill, a three-stage system is proposed.
First, a quick program creates many cutting patterns and chooses the most

valuable pattern for each log within a log class given a price list. A combination
of a log class and a price list resulting in a set of lumber output proportions creates
a “campaign”.

Second, a Powers-of-Two optimization model calculates “campaign lot sizes”
to minimize inventory and meet deterministic demand. The goal is to develop a
minimum cycle stock inventory level for all the products over a time horizon.

Third, five control approaches are created based on the results of the PoT
model and evaluated using simulation environment to monitor inventory levels in
the case of stochastic demand.

This research indicates that in a divergent-stochastic environment such as a
sawmill, situations with noisy batch order arrivals do pose difficulties when Powers-
of-Two control approaches are used.
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Chapter 1

Introduction

This chapter presents an introduction to the sawmill operations as well as an

outline of the remainder of the thesis. Section 1.1 is a general description of the

sawmill processes, while Section 1.2 presents a description of the problem and the

objectives of the thesis.

1.1 Sawmill Operations

A sawmill is a capacity constrained facility with a divergent production system

where many products can be produced from a given set of logs. The basic processes

for producing lumber include logging, log-bucking, limbing, decking, debarking,

sawing, drying and planing. Logging is the process of cutting, skidding and loading

the tree logs onto trucks to transport them from the forest to the sawmill. Logs are

sometimes cut to length in the log-bucking process and their branches are removed

in the limbing stage. In the decking stage, the logs can be sorted based on a number

of characteristics including size, species or end use before their bark is removed in

the debarking process. Not all sawmills engage in all of these stages, depending

on facility capacity, technology and production policies, they may combine or

eliminate some stages.

Sawing is the process where the log is broken down into lumber pieces using
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several mills equipped with scanners and optimizers. Scanners are located in front

of the sawing machine and provide a detailed outline of the shape and dimensions of

a given log. The optimizer, a computer program, then calculates the best cutting

pattern among all available patterns, the one that results in maximum lumber

value with reference to a set of lumber prices (known as a “price list”). Logs

usually arrive in batches where they have been classified according to specifications

such as, length, diameter, species, etc. These batches are called “log classes”.

The sawing stage is typically broken down into two separate steps. First, logs

are cut into large flat pieces called cants. The cant will be broken down into lumber

pieces through a specific sawing machine such as gang saw. In addition to the

resulting lumber pieces, the remaining parts called flitches, are produced. These

flitches may go on to the edger, trimmer or re-sawing stages in which dimensional

lumber pieces can be produced.

The lumber produced in the sawing stage is divided into different batches based

on similarities such as moisture content, size, and species to feed a kiln where

they loose their moisture. In some cases the lumber might be air-dried before kiln

drying operations. Any necessary finishing is done on the planers. The drying

and planing processes are batch-based with consideration given to setup time and

capacity. APICS (American Production and Inventory Control Society) defines a

continuous process to be the one that has minimum number of interruptions for

any one production run or between different runs of similar processes (Fransoo and

Rutten [16]). By this definition sawmills are considered to be process industries.

Sawmill products can be classified into two categories: High-value products,

such as high quality lumber pieces, and low-value products, such as lower quality

lumber pieces, wood chips, saw dust and residual bark. The quality of lumber

pieces, known as grade, is based on the number and location of internal defects,

as well as final dimensions. The pieces are graded and from this grade their

value is derived. Though high-value products are more valuable, it is important

that sawmills produce low-value products to supply other sectors of the forestry
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industry, including the pulp and paper, pellet, and biofuel industries.

1.2 Problem Description

In the modern, competitive marketplace, companies are, by necessity, implement-

ing lean manufacturing concepts in their processes (Ray et al. [36]). Although

principles of lean production, such as setup time reduction, inventory reduction

and Just-in-Time (“JIT”) delivery, have been widely used in different sectors and

especially in discrete manufacturing sectors, these principles have not been as fully

implemented in process industries such as the sawmill industry.

In a sawmill, a given set of logs can be transformed into multiple products.

Consequently, one product may be produced from different log classes. One key

to the diversification of products from each log class (a set of logs classified based

on certain characteristics) is the product price list given to the cutting pattern

optimizers during the sawing process. The challenge lies in planning and executing

a lumber production process that can fulfill uncertain demands while keeping the

inventory requirements as low as possible.

This research proposes a 3-stage procedure (shown in figure 1.1). In the first

stage, a joint work with Sina Saadatyar1, a fast and novel algorithm is proposed

to find the best cutting patterns for each class of logs, based on a given price

list. The algorithm estimates the output of a certain class of logs with regard to

lumber recovery and is conducted prior to the actual sawing process. We define

a “campaign” as a choice of log classes with certain characteristics under a given

price list that results in a set of lumber outputs. The campaign concept is proposed

to simplify the joint production process. Thus, instead of working with individual

products, we will be working with campaigns.

The second stage involves an optimization model based on the Powers-of-Two

policy (a version of ELSP) to calculate how to fulfill constant deterministic de-

1See his thesis (Saadatyar [41])
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mands. This model is a campaign lot sizing model in which the objective is to

keep inventory levels to a minimum while being able to respond to demand and

capacity requirements.

The final stage examines various control approaches for campaign scheduling

by simulating how they respond to uncertainty in demand. The goal of the final

stage is to examine if it is possible to control inventory using the PoT lot sizes in

a situation of uncertain demands.

Figure 1.1: The proposed three-stage mechanism

To complete the objectives set forth, Chapter 2 presents a literature review

on the background and conventional approaches. Chapter 3 explains the proce-

dure used to create different campaigns. Chapter 4 sets forth the details of the

Powers-of-Two optimization model and Chapter 5 describes the simulation of the

control strategies under various scenarios. Finally, conclusions and further areas

of research are presented in Chapter 6.
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Chapter 2

Literature Review

This chapter presents a literature review on the three main areas to be discussed;

log breakdown, lumber production planning and ELSP (Economic Lot Scheduling

Problem) and Powers-of-Two.

2.1 Log Breakdown

Lumber is produced from the breaking down logs through a series of cutting oper-

ations. Sawmills apply various approaches based on the capabilities of their scan-

ners and optimizers to get the maximum yield from each log conversion. Steele

[45] identified seven major factors affecting lumber recovery: log specifications,

kerf width (the width of a notch or groove made by a saw), sawing variation,

product mix, management decision making, equipment maintenance and sawing

method. An investigation of the relationship between log specifications (log di-

ameter, length and taper) and the lumber yield of eight sawing systems using the

Best Opening Face (“BOF”) program (Lewis [29]) is conducted by Hallock et al.

[21] to propose a potential framework for sawing system selection when the log

input is known.

Although there are a large number of classifications for log sawing patterns,

they can be categorized into two general groups: common methods such as live-
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sawing, sawing with a breaking cut and quarter sawing and potential methods such

as sawing around 90 and 180-degree angles and tangential sawing (How et al. [24]).

Each cutting method has its own distinct advantages and disadvantages based on

its applicability to large or domestic sawmills, production speed, production cost,

ability to produce high quality lumber, shape of logs and degree of mechanization.

Most sawmills optimize their log cutting processes by only considering the

external shape of logs and the information regarding the desired final products

with no knowledge about any internal defects in the logs. By applying internal log

scanning tools such as Computed Tomography (“CT”) to detect internal defect

of logs, lumber yield can be improved. An extensive discussion of this type of

optimization can be found in the works done by Bhandarkar et al. [3] and Rinnhofer

et al. [38].

The majority of models involving sawing optimization use dynamic program-

ming (“DP”) principles. In 1981, Tejavibulya [48] proposed two DP approaches

for live-sawing and cant-sawing methods without consideration of log taper or de-

fects. Todoroki and Ronnqvist [51] developed a DP formulation that integrates

the primary (converting logs into slabs) and secondary (edging and trimming to

generate final boards) phases of the log breakdown based on live-sawing patterns

that consider interior defects. Reinders and Hendriks [37] proposed an optimiza-

tion approach based on nested DP sub-algorithms for the conversion of logs to

lumber. In addition to the DP optimization algorithms, heuristic algorithms such

as the Genetic Algorithm (“GA”) are also being used in the optimization of lumber

cutting patterns (Cook and Wolfe [12]).

Some challenges the sawmill industry faces, include variable demands, com-

petition and increased utilization of wood as a raw material (Björheden [5]). As

a result, sawmills commonly use computer simulation tools in different stages of

their operations. There are a number of simulation packages used to increase

lumber recovery and improve management decision-making such as BOF, SIM-

SAW (Singmin and Africa) [44]), SAW3D (Zeng [55]), SAW3DG (Zeng [56]) and
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AUTOSAW (Todoroki et al. [52]). Each has distinctive capabilities with regards

to log representation, internal defect considerations and the flexibility of the log

breakdown procedures (Todoroki and Ronnqvist [50]).

Another challenge facing the sawmill industry is the cutting stock problem that

tries to find the best way to cut lumber into dimension parts to fulfill their customer

(such as furniture companies) demand while being cost effective. This problem

has been widely discussed in the literature and solutions have proposed a number

of techniques, such as knapsack-based optimizations and heuristics (Carnieri et al.

[9], Carnieri et al. [8], Carnieri and Mendoza [7], Gilmore and Gomory [19]).

In summary, a number of techniques have been designed for and applied to

the process of breaking down logs to lumber pieces and dimensional parts. These

techniques have been developed and continue to evolve quickly as a result of the

dynamic and competitive nature of sawmilling technology and the lumber market

as a whole.

In this thesis, we do not consider the entire range of sawing techniques. Instead,

we focus on fairly simple patterns used in many commercial softwood sawmills.

These essentially consist of patterns that create a large cant suitable for subsequent

breakdown by a gang saw as well as flitches that can be broken down subsequently

in an edger. These patterns are discussed in more detail in chapter 3.

2.2 Lumber Production Planning

Important measures of sawmill performance include throughput and yield from

a sawmill’s cutting process. However, the ability of a sawmill to fulfill diverse

demands is crucial. Models that relate the customer needs to the log breakdown

optimization stage with the consideration of product value are crucial. An adaptive

control model called product-controlled optimization was proposed by Todoroki

and Ronnqvist [49] to fulfill the demand of different timber grades while dealing

with dynamic timber values. The model was implemented using AUTOSAW;
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the results demonstrated that optimization controlled by dynamic product values

better utilizes the log supply in fulfilling customer needs than when the production

is controlled by pure value-optimization or volume-optimization.

Mendoza et al. [34] developed an integration of optimization and simulation

which maximizes economic efficiency in optimization levels. This generates an

optimal mix of log inputs to fulfill demand while the simulation process checks

the feasibility of the plan for short-term operations, taking into account the flow

of raw materials and lumber inventory.

Most North American sawmilling companies use a “push production” strategy

for their lumber production planning to simplify their operations and allow for

continuous running of production (Gaudreault et al. [18]). This strategy attempts

to create maximum yield from available raw material and resources without sub-

stantial consideration of actual customer demand. In such an approach, the focus

is on making lumber efficiently and then attempting to sell it. Conversely, “pull

production” uses customer demand as input to the production process, adjusting

production to meet demand on schedule. However, due to the divergent nature

of the throughput and limitations on the accessibility of raw material, it is not

possible to implement pull production in its purest sense where the production

process begins only when a specific order is received. It is true that sawmills do

attempt to modify their log purchase and processing strategies to match demand.

However this is usually ad hoc and there are few formal procedures that facilitate

this. As a result, there is a need to implement an integrated push-pull system that

achieves the benefit of both.

To design such a system and investigate the impact of push-pull integration,

Gaudreault et al. [18] developed a platform that first models the production plan-

ning and scheduling of each stage of the lumber production process (sawing, drying

and planing) based on a Mixed Integer Programming (“MIP”) approach and then

proposed three coordination mechanisms to demonstrate the applicability of this

platform. This platform is also used by Cid-Yanez et al. [11] and Cid-Yanez et al.
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[10] to evaluate the impact of different decoupling point positions on lumber pro-

duction performance through a case study conducted in Quebec using simulation

tools.

Since production planning and scheduling in divergent production systems is

complex, it is necessary to implement a plan which reflects the details of the

processes. There have been a number of studies on this topic with regard to

sawmill operations. Gaudreault et al. [17] compared two modelling approaches

of MIP and Constraint Programming (“CP”) for the integration of production

planning and scheduling in drying and finishing operations. Kazemi Zanjani et al.

[27] proposed and compared two models based on robust optimization for sawmill

production planning considering uncertainty in logs as raw materials. Another

recent work (Alvarez and Vera [2]) discussed the application of robust optimization

in sawmill planning derived from a linear programming model that provides a tool

to investigate “tradeoff between robustness requirements and loss in optimality”.

To provide a dynamic model that proactively deals with uncertainty in sawmill

production planning, Maturana et al. [32] developed a scheduling model that deals

with uncertainties by using a rolling planning horizon and a heuristic that serves as

a benchmark. The advantage of their model is that it is solved for the first period

and is progressively updated for each of the following periods as unexpected events

arise.

The analytic work discussed above has generally been implemented with exam-

ples that consider only very limited representation of the product mix and sawing

options in the sawmill. The work that we discuss in this thesis is aimed at studying

problems at a more realistic scale and framework.

2.3 ELSP and Powers-of-Two

A significant challenge facing a multi-product manufacturing environment is how

to cyclically schedule production of a set of products, with different setup times,

9



on a single machine to minimize overall inventory and setup costs while meeting

customer demand. This is the essence of the Economic Lot Scheduling Problem

(“ELSP”) in which demand is deterministic and constant over an infinite horizon.

The ELSP has been widely studied since 1957 by Eilon [13] and Rogers [39] where

the Economic Order Quantity (“EOQ”) model was extended to the case of multiple

products produced on a single machine to find optimal lot sizes (batches) and their

run schedules. The complexity in solving an ELSP arises from this fact, that a

single machine can only process at most one production run at any point of time.

Thus, when two or more production runs compete for being processed on the

machine, “interference” may occur. The challenge is how to cyclically process

the production runs so that the associated cost is minimized (Elmaghraby [14]).

However, no optimal policy has been found to solve this problem. The existing

solution approaches are mainly based on heuristics and methods under specific

limitations and policies that provide near optimal solutions (Sun et al. [47]).

Economic lot scheduling problems, in the form of cyclic schedules known as

EPEI (“every product every interval”) have become a key focus of the lean man-

ufacturing literature (Kerber and Dreckshage [28]). Bicheno et al. [4] show that

it is possible to improve on a straightforward cyclic schedule.

The ELSP problems can be categorized according to three main approaches;

Common Cycle (“CC”) (Hanssmann [22]), Basic Period (“BP”) (Bomberger [6])

and Extended Basic Period (EBP) (Narro Lopez and Kingsman [35]). The simplest

and most restrictive policy is the CC policy in which the objective is to find a cycle

time where each production run can be fitted in, exactly once. This forces each

product to be produced once in each cycle. To illustrate the general form of ELSP

with the CC policy, we assume a single machine can process n different products.

The production rate of product i is pi and the associated sequence-independent

setup time is si. The demand rate for product i is set to be di. Related holding cost

per unit per unit time and setup cost for product i are hi and ai, respectively. The

problem seeks the best cycle (T ) that can accommodate the production run of each

10



product once, where the cycle length of all products are identical (Ti = T ). The

objective function is the minimization of total cost including setup and holding

cost. Formulation 2.1 demonstrates the total average cost per unit time.

Minimize TC =
n∑

i=1

(
ai
T

+
1

2
hi(diT − d2iT

pi
)) (2.1)

Subject to
n∑

i=1

(si +
di
pi
T ) ≤ T, (2.2)

The time of production run of product i in a cycle is diT
pi

to fulfill demand di.

Therefore, if initial inventory is zero at the beginning, the inventory of product i

will increase until amount (pi−di)
diT
pi
. After that point, the inventory will decrease

at rate di. Consequently, the average inventory is calculated as 1
2
(pi − di)

diT
pi
.

Constraint 2.2 indicates that the total setup time and production time for all

products should be less than or equal to the cycle time T . The optimal cycle time

is obtained by taking derivative of the TC function and setting it equal to zero.

It is calculated based on formulation 2.3.

T � =

√√√√(
n∑

i=1

ai)(
n∑

i=1

hidi(pi − di)

2pi
)−1 (2.3)

A simple example of ELSP with CC policy including 4 products with the given

production rate, demand rate, setup cost and holding cost, presented in Table 2.1,

is provided to show how the model works.

Products di pi hi ai
1 90 500 40 2000
2 100 450 10 2500
3 50 500 30 800
4 85 300 70 500

Table 2.1: Data for ELSP example

The optimal cycle time is T ∗ = 1.114 and the total cost per unit time is

TC = 10411.04. Figure 2.1 illustrates the cycle time and inventory level of each

product.
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Figure 2.1: Schedule for the ELSP example with zero setup times

If setup times are sequence-independent and the summation over them is less

than the idle time, the calculated T � is optimal. Otherwise, the optimum cycle

time is calculated based on formula 2.4 in which the production process uses the

maximum available capacity.

T � =

∑n
i=1 si

(1−∑n
i=1

di
pi
)

(2.4)

If setup times are sequence-dependent, the problem is solved by first finding the

sequence that minimizes total setup time and using these setup times in equation

2.4.

A key issue for any ELSP model, pure cyclic as illustrated in figure 2.1 or

otherwise, is the need to have a “just right inventory” of all the other products

when you begin production of any particular product. As can be seen in Figure

2.1, the inventory of products 2, 3, 4 when we begin production of product 1 must

be enough to supply demand of those products while they are not being produced.

As pointed out in Silver et al. [43], pure cyclic rotation policies are not neces-

sarily optimal. If the demand for some products is much larger than the demand

for others it may make sense to run the lower demand products less frequently.
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Bicheno et al. [4] illustrate this point.

The two other categories of the ELSP models deal with a time interval known

as a basic period (B), for the setup and production of all or most of the products.

The objective is to find the basic period (B) and a multipliers vector of K(B) =

{ki | B}ni=1 (Yao and Elmaghraby [54]), where each product’s (i) cycle time is

an integer multiple of a basic period (kiB). If the basic period is long enough to

accommodate all the production runs, the problem is categorized as BP.

However, in EBP, each basic period can accommodate only a number of pro-

duction runs. In both cases, each product’s (i) cycle time Ti will be equivalent

to kiB, where ki is an integer. The difference between BP and EBP is in how

the capacity constraint (formula 2.2 in CC approach) is represented. As Yao and

Elmaghraby [54] reported, the capacity constraint for the proposed General Inte-

ger (GI) BP approach can be presented by
∑n

i=1(si + ρikiB) ≤ B, where ρi =
di
pi
.

This constraint must be replaced with other sets of capacity constraints in the

EBP approach such as the one proposed by Sun et al. [46] in which the feasibility

constraint is represented as
∑n

i∈Sk
(si+ρikiB) ≤ B, where Sk is the set of products

produced within each basic period k. (1 ≤ k ≤ maxi{ki}).
It is sometimes desirable to restrict the multipliers of the basic period. One

such restriction is the Powers-of-Two (PoT) policy which sets the multipliers to

the powers of 2 (ki = 2p, p ≥ 0; integer). This policy has been widely used as it

presents economical and near optimal solutions in a number of contexts. Maxwell

and Muckstadt [33] demonstrated that the application of PoT is highly desirable

from an economic point of view and many schedulers have benefitted from its

application. Yao and Elmaghraby [54] investigated the optimality structure of the

unconstrained ELSP with BP approach under the PoT policy and proposed an

effective search algorithm that provided a global-optimal solution. They suggested

PoT framework provides researchers with the opportunity to apply more efficient

and easier heuristics to various ELSP problems. In another work by Sun et al.

[47], the problem of EBP under the PoT policy has been considered in which the
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optimality conditions were compared with Haessler’s Heuristic (“HH”) (Haessler

[20]). They demonstrated that their algorithm is faster and finds better feasible

solutions than HH. As presented by Jackson et al. [26], the basis of the PoT policy

is used to solve the problem of joint replenishment. They demonstrated even in

worst-case scenario situations, their model could respond in a bound of 94 percent

of optimality. The importance of identifying cost effective replenishment methods

in all the parts and stages of production/distribution systems is undeniable. PoT

has been successfully applied in these systems. For instance, Federgruen and Zheng

[15] and Maxwell and Muckstadt [33] researched the optimal PoT replenishment

methods for capacitated and uncapacitated systems respectively.

ELSP deals with constant and deterministic parameters. In the case of stochas-

tic demand, production rate or setup times, the ELSP problem is referred to as the

Stochastic Economic Lot Scheduling Problem (“SELSP”). There is an extensive

literature on these topics in Silver et al. [43]. The most common feature in the

literature is a search for quick and easy solutions to the problem. Many of the

proposed approaches are based on heuristics in attempt to find practical and near

optimal solutions.

In the research of this thesis, we cannot schedule production of individual

products separately because of the divergent nature of sawmill production where

many products are produced from a single log. Instead we show how to extend

the economic lot scheduling problem to consider campaign lot sizes, not product

lot sizes, and demonstrate that we can solve this problem using a Powers-of-Two

approach. The campaign concept is discussed in Chapter 3. The details of the

proposed PoT model is described in Chapter 4.
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Chapter 3

Creating Campaigns

1In the sawmilling process, one significant challenge is to estimate the production

of lumber from a given set of logs. This is closely related to the question of

what logs need to be sawed to meet a given demand for lumber. As previously

discussed, most sawmills sort their input logs according to certain specifications

prior to the sawing processes. This classification may be done according to size,

species, or any number of other characteristics to form “log classes”. Log sawing is

an automated process where logs are scanned and sawn in an attempt to maximize

value. One key factor to diversify outputs of a certain log class is the value list

(known as “price list”) of the outputs which directs implementing cutting patterns

on each log in the class. For a given log, with a specific price list, the cutting

pattern optimization results in a specific set of outputs. For a class of logs with a

characteristic distribution of diameters for that class, a specific price list will result

in a specific set of proportional product outputs for all the products that can be

produced from that class. A “campaign” is then considered as a combination

of a log class given a price list which yields a specific set of outputs through

implementation of a set of optimized cutting patterns.

This chapter first details the methodology and its assumptions for creating

1The work behind this chapter is a joint work with Sina Saadatyar. See also his thesis
(Saadatyar [41])
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campaigns through the following steps: 3.1.1) generating cutting patterns, 3.1.2)

generating log classes 3.1.3) creating price lists and 3.1.4) creating lumber output

fractions. Section 3.2 demonstrates the application of an algorithm to produce

different campaigns with a discussion of important parameters surrounding the

algorithm. Section 3.3 discusses some issues regarding the algorithm.

3.1 Methodology

This framework consists of four stages. The first stage provides an algorithm to

create a set of possible cutting patterns. These patterns are then stored in a

database for future use. In the second stage, log classes are simulated based on

certain characteristics. Price lists are then generated to feed the algorithm in the

third stage. In the last step, the algorithm uses these inputs to simulate how the

sawmill optimizers will perform to break down the logs and transform them into

lumber and thus generate product output proportions for the campaign. Figure 3.1

summarizes the methodology used for generating campaigns. The programming

language used for the algorithms is Python 2.6.6 (Rossum [40]). Details of the

Python code are provided in Appendix K. Python is an open-source programming

language and the intention is that our code is readily available and usable.
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Generating main cut

Generating all possible above-below

Finding "n" best combinations of

Creating the sorted database of final
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above-below and right-left cuts

Pr
ic
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lis
ts

L
og
cl
as
se
s Determine limits (size,

species) on logs in each class

Simulate logs

Lumber price list based on

- functions of dimensions
- actual market price list

Creating lumber

Filtering eligible patterns for each log

Calculating the length of each sub-cut of the given pattern

Finding the most valuable eligible pattern for each log

Creating campaigns

based on each price list

patterns

Figure 3.1: Methodology

The following considerations are key to our approach:

• The proposed methodology is implementable in softwood sawmills. This is

because hardwood sawmills typically have more complex sawing strategies.

• Logs are considered as truncated cones, without any defects and curves as

shown in figure 3.2. Although this assumption does not perfectly reflect the

real world situation, it provides a reasonable estimation of actual logs.

Figure 3.2: A typical log

• The main products are lumber pieces. We do not consider chips, dust and
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shaving as products that enter into the overall economic decision. However,

this is readily modified.

• The assumed sawing procedure includes the following processes: First, initial

cuts are made through a head saw in which a cant and two flitches are

produced; then the cant is broken down into dimensional lumber pieces and

flitches through a gang saw. If the flitches are capable of producing lumber,

they can go to a re-sawing process, presumably in an edger. Figure 3.3

illustrates the assumed sawing process.
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Figure 3.3: Assumed sawing process

• Wane on some pieces of lumber is allowed but limited (e.g. all the lumber

pieces are not necessarily premium. This is a parameter that the user can

set but in the work reported here, it is assumed that at most 25% of each

side can have wane). Figure 3.4 illustrates a piece of lumber with wane.

• The proposed cutting patterns consist of one main cant, two potential above-

below and two potential right-left sets of edge cuts. We assumed the cant’s

sub-cuts can be non-symmetric. However, above-below cuts are symmetric
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Figure 3.4: Lumber with wane

to each other as well as right-left cuts. This assumption is shown in figure

3.5.

�

Figure 3.5: A typical cutting pattern

• The main cut has vertical sub-cuts. However, above-below and right-left

cuts can have either vertical or horizontal sub-cuts..

• The dimensions of lumber are known in the format of “width x thickness x

length”. In the market, lumber is sold based on “nominal” dimensions not

“actual” ones. Due to the loss in the processes following sawing (kiln and

planner), “target” dimensions are used in sawing operations. The “target”

setting guarantees that final products end up with “actual” sizes. In other

words, the cuts are slightly larger than the desired finished dimensions, de-

pending on the sawmill. For instance, the actual dimensions of a “2x6x10”

product are “1.5x5.5x10”. To get this product, the target dimensions are

set as “1.66x5.875x10”. The 0.16 and 0.375 differences between actual and

target numbers are considered because of the shrinkage and loss in the kiln
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and planner respectively.

• We considered allowances, which is the difference between “target” and “ac-

tual”, for each dimension of the lumber except its length.

• Results of the final products are reported by “nominal” numbers.

3.1.1 Generating Cutting Patterns

Sawmills are highly automated manufacturing systems. This automation chooses

the best cutting pattern to apply to a given log. Scanners are available in front

of the head saw that allows a detailed outline of its dimensions. A computer then

uses this scan to choose from a set of allowable patterns, the pattern that will give

the maximum value to the lumber produced from that log, given a certain price

list for the types of lumber products produced. We use a simplifying assumption

that all logs are truncated cones. In a real scanner, the complexity and unique

shape of each log due to its biological nature affect the cutting pattern chosen.

The pattern minimizes waste during the sawing process and maximizes revenue

from each log. In an actual mill, there are multiple scanners, not just the head rig

but also at the gang saws and edgers. This permits the pattern to be re-adjusted

as more information is gained during sawing.

Our approach starts by pre-generating a large set of cutting patterns, sorting

these in a database and only later determining which of these cutting patterns

is best for each log. The procedure used in creating cutting patterns includes

the following steps: 3.1.1.1) Generating main cut; 3.1.1.2) generating all possible

above-below and right-left cuts; 3.1.1.3) finding “n” best combinations of above-

below and right-left cuts; and 3.1.1.4) creating a database of final patterns. We

make a number of assumptions about the properties of the patterns that we gener-

ate. Our purpose is not to generate all possible patterns, but to have a convenient

method to generate a reasonable set of patterns that can be used in our cam-

paign generation process. Others might legitimately question these and use other
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assumptions.

3.1.1.1 Generating Main Cut

The main cut is a rectangle (see figures 3.5 and 3.6) whose dimensions determine

the smallest diameter log that can accommodate this pattern. It is assumed its

thickness can be a choice from a set of allowable thicknesses of final lumber di-

mensions. This main cut can then be cut vertically along its width into individual

sub-cuts. We introduce a set of ratios representing the maximum proportions of

a main cut’s total width to its thickness. The main point of creating a cant is

to exploit most of the log’s volume via the gang saw. We restrict the width to

thickness ratio of the main cant to be less than or equal to 2, although again this is

a user definable parameter. Therefore, for each possible thickness, the maximum

total width of the cant is calculated. Then, we generate all possible combinations

of sub-cuts. The notations used to formulate this stage are presented as follows:

Notations:

W width set

Tm thickness set for the main cut

i index of the elements in W set

j index of the elements in Tm and wRatioMax sets

Tj
m thickness of the main cut when we choose the jth thickness

Wi width of the ith sub-cut

Wj
m total width of the main cut when thickness j is chosen

Xi,j number of sub-cuts with widthWi and thickness Tj
m in the main

cut

wRatioMax set of maximum ratios (of total width to the thickness of the
main cut)

wRatioMaxj maximum ratio when thickness j is chosen

21



kerf sawing kerf (width of the saw)

Wj
max maximum possible width for the main cut when Tj

m is chosen

R radius of the pattern

The calculations are shown in the following steps:

Step 1: For each thickness Tj
m, we find the maximum width Wj

max.

Wj
max = Tj

m ∗ wRatioMaxj (3.1)

Step 2: For each Xij find the maximum value according to the formula 3.2.

Xi,j ≤ Wj
max

Wi

(3.2)

Step 3: Find all possible combinations of sub-cuts and calculate Wj
m.

Wj
m = (

∑
i

Xi,j ∗ (Wi + kerf))− kerf, where Wj
m ≤ Wj

max (3.3)

The function used for this step is called “combos” in the Python code (Appendix

K).

Following, we present a simple example. Assume Tm = {3, 4}, W = {2, 4},
wRatioMax = {2, 2} and kerf = 0.

For j = 2, T2
m = 4 and wRatioMax2 = 2, according to 3.1, W2

max = 8.

Using formula 3.2, we have X1,2 ≤ 4, X2,2 ≤ 2.

Based on 3.3, Wm
2 can have all the values presented in Table 3.1:

Using this procedure we generate all possible main cuts to presumably obtain

several patterns for each main cut in the next step. In developing a proposed

order for each sub-cut in a pattern, we put the smallest sub-cut at the right end,

the next smallest at the left end and continue to get the largest sub-cut at the

center of the pattern. An example can be seen in figure 3.5. This procedure

ensures that the larger (generally most valuable) cuts are at the center of the log,
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X1,2 W1 X2,2 W2 Wm
2

1 2 0 4 2
2 2 0 4 4
3 2 0 4 6
4 2 0 4 8
0 2 1 4 4
1 2 1 4 6
2 2 1 4 8
0 2 2 4 8

Table 3.1: Values for Wm
2

therefore trying to avoid any wane that may reduce their value. Note that we are

basically assuming a softwood sawmill. In a hardwood sawmill the heartwood is

typically not the most valuable wood and, as a result, sawing patterns are not

usually based on a cant. For each given main cut, we then calculate its radius

based on its thickness and total width (considering its allowances and kerfs) as

shown in figure 3.6. This radius represents the circle in which a pattern can be

located.

R =

√
(
Tj

m

2
)2 + (

Wj
m

2
)2 (3.4)

�

R

T
m
j

W
m
j

Figure 3.6: Main cut
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3.1.1.2 Generating All Possible Above-below and Right-left Cuts

Based on the remaining area between the main cut and assumed pattern circle, it

is possible to calculate above-below and right-left cuts by the same procedure de-

scribed for the main cut. The only difference is in calculating maximum allowable

thickness and width. We consider both vertical and horizontal sub-cuts for above-

below and right-left cuts. As there are many numbers of different combinations

for them, only the best patterns are chosen. These are the “n” patterns for each

given main cut that have the highest area yields. By doing so, many undesirable

patterns are eliminated from further calculations; we use the most of the remain-

ing area and therefore most of the log volume. In figure 3.7, a typical pattern is

shown where Tj
m, Tk

AB and Tl
RL are the thicknesses for main, above-below and

right-left cuts, respectively. To keep consistency in formulations we assume that

sub-cuts are cut along the width parallel to the thickness of a rectangle (cant).

�

T
m
j

T
RL
l

T
AB
k

Figure 3.7: A pattern with above-below and right-left cuts
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Notations:

TAB thickness set for above-below cuts

TRL thickness set for right-left cuts

Tk
AB thickness of the above-below cut, when the kth element of TAB

is selected

Tl
RL thickness of the right-left cut, when the lth element of TRL is

selected

Wk
AB width of above-below cut when thickness is Tk

AB

Wl
RL width of right-left cut when thickness is Tl

RL

Yi,k number of sub-cuts with width Wi and thickness Tk
AB in the

above-below cut

Zi,l number of sub-cuts with width of Wi and thickness of Tl
RL in

the right-left cut

Knowing Tj
m, Wj

m and R from the previous section, we then find the poten-

tial above-below and right-left cuts. As it is possible to have both vertical and

horizontal sub-cuts for these cuts, we consider four categories including:

1. Vertical above-below sub-cuts

2. Horizontal above-below sub-cuts

3. Vertical right-left sub-cuts

4. Horizontal right-left sub-cuts

Due to the similarities in calculations among all these classifications, Table 3.2

shows only the details of categories 1 and 2. The rest are presented in Appendix

A.

The idea underlying calculations of all categories is similar. In the first stage,

based on each pattern’s radius, we find the maximum allowable space for above-

below cuts (formulas 3.5 and 3.6). In the second step all the combinations of

possible widths are generated by considering sawing kerf (formulas 3.7 and 3.8).

Meanwhile, the final width of each cut should be fitted in the allowable remaining

area (formulas 3.9 and 3.10).
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Vertical above-below sub-cuts Horizontal above-below sub-cuts

For each Tk
AB where: For each Tk

AB where:

Tk
AB ≤ R− (

Tj
m

2
+ kerf) (3.5) Tk

AB ≤ Wj
m (3.6)

We calculate all the combinations of pos-
sible widths and find Wk

AB.
We calculate all the combinations of pos-
sible widths and find Wk

AB.

Wk
AB = (

∑
i

Yi,k ∗ (Wi + kerf))− kerf

(3.7)

Wk
AB = (

∑
i

Yi,k ∗ (Wi + kerf))− kerf

(3.8)

Where: Where:

Wk
AB ≤ 2∗

√
R2 − (Tk

AB +
Tj

m

2
+ kerf)2

(3.9)

Wk
AB ≤

√
R2 − (

Tk
AB

2
)2 − Tj

m

2
− kerf

(3.10)

R

WAB
k

TAB
k

Tm
j

TAB
k +

Tm
j

2 + kerf

Wm
j

R

TAB
k

WAB
k

Tm
j

WAB
k +

Tm
j

2 + kerf

Wm
j

Table 3.2: Formulas for above-below cuts

3.1.1.3 Finding “n” Best Combinations of Above-below and Right-left

Cuts

For each given Tj
m, Tk

AB and Tl
RL the area percent yield of the pattern is calcu-

lated according to formula 3.11. By area percent yield, we mean the total area

of the target sizes of all the pieces of lumber making up the pattern divided by

the area of the circle of radius R. The terms of the numerator represent the area

of main, above-below and right-left cuts respectively. However, both above-below

and right-left areas should be multiplied by 2, because of the symmetry assump-
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tion. The denominator stands for area of the log.

Area Percent Y ield = Main cut area+ 2 ∗ above below area+ 2 ∗ right left area =

[(Wj
m − ((

∑
i

Xi,j)− 1) ∗ kerf) ∗ Tj
m+

2 ∗ (Wk
AB − ((

∑
i

Yi,k)− 1) ∗ kerf) ∗ Tk
AB+

2 ∗ (Wl
RL − ((

∑
i

Zi,l)− 1) ∗ kerf) ∗ Tl
RL]/(π ∗R2) ∗ 100

(3.11)

This area percent yield is calculated in terms of target dimensions versus the

area defined by the circular radius of the pattern.

For each main cut, we limit the number of total patterns generated so that

only the best “n” patterns based on their area percent yields are chosen. Note

that “n” is a user defined variable and its value can be set in the Python code

(Appendix K). A discussion on how to choose “n” value in our example is provided

in Section 3.2.1.

3.1.1.4 Creating A Sorted Database of Final Patterns

All generated patterns are exported into a file that can be used as a database

for future calculations. The information about each cutting pattern includes the

pattern number, its radius, all the thicknesses and widths of sub-cuts and the ori-

entations of above-below and right-left sub-cuts in terms of horizontal or vertical.

With this information, a specific cutting pattern is determined that will be used

in the log break down process. We export the information of each one into a list

as follows:

[R, Tj
m, [X1,j, X2,j, X3,j, ...], Tk

AB, [Y1,k, Y2,k, Y3,k, ...], Tl
RL, [Z1,l, Z2,l, Z3,l, ...],

H or V or N AB,H or V or N RL, [Pattern#]]

Where:
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R Pattern radius

Tj
m Thickness of the main cut

[X1,j, X2,j, X3,j, . . .] A list for number of each sub-cut in the main cant
with thickness Tj

m (in ascending order of widths
W1,W2,W3, . . .)

Tk
AB Thickness of the above-below cuts

[Y1,k, Y2,k, Y3,k, . . .] A list for number of each sub-cut in the above-below
cuts with thickness Tk

AB(in ascending order of widths
W1,W2,W3, . . .)

Tl
RL Thickness of the right-left cuts

[Z1,l, Z2,l, Z3,l, . . .] A list for number of each sub-cut in the right-left
cuts with thickness Tl

RL(in ascending order of widths
W1,W2,W3, . . .)

H Horizontal orientation of the above-below or right-left
cuts

V Vertical orientation of the above-below or right-left cuts

N No above-below or right-left cuts

AB Above-below cuts

RL Right-left cuts

For example, if W = {0.866, 1.66, 3.75, 5.875}, list [8.422, 11.875, [3, 5, 0, 0],
3.75, [2, 0, 0, 0], 2.75, [2, 0, 0, 0], H UD, V RL, [P 5087]] demonstrates that

pattern number 5087 has the radius of 8.422(in). The cant (main cut) thickness

is 11.875(in) and this includes 3 sub-cuts with width 0.866(in) and 5 sub-cuts

with width 1.66(in). Each of the above-below edges consists of two sub-cuts with

thickness 3.75(in) and width 0.866(in) which are horizontally cut. In each of

right-left edges there are two vertical sub-cuts with thickness 2.75(in) and width

0.866(in). We should re-emphasize that all thicknesses and widths are reported as

target values.

Eventually, the patterns are sorted according to their radii. This will simplify

the process of selecting eligible patterns for each log from the database.
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3.1.2 Generating Logs

In this section we discuss how logs are simulated using the characteristics of the

class to feed the algorithm. They can be categorized based on various characteris-

tics such as their geometry, species or other specifications. Since we assumed logs

as truncated, well-shaped cones without any defects, we specifically defined them

based on three basic factors; i) small-end radius, ii) taper and iii) length. Large

radius (of large end) is calculated based on the three previous factors (Equation

3.12). In our approach we generate log classes based on the following notation:

Class set including classes of logs {1,..., N}. Each class involves the domains
of the small end radius, taper and length random variables and the
distribution functions on these domains.

q index for the elements of Class

Rq
s small end radius of the log in the qth class

Rq
l large end radius of the log in the qth class

Lq length of the log in the qth class

Taperq taper of the log in length unit in the qth class

Rq
l = Rq

s + Taperq ∗ Lq (3.12)

Due to the random nature of log sizes in each class, distribution functions are

required to generate logs. If enough data are available, a distribution function can

be constructed directly from the actual data. This would be the case if the mill

had a reasonably large amount of scanner data available. For the classes without

enough data, assumed distribution functions are used. We had only one day’s

scanner data available and that we will discuss how it was used in Section 3.2.1.

In this case, Rq
s and Lq are generated from distribution functions. Rq

l is then

calculated as a function of these two elements considering the logs’ taper. Also

Taperq is assumed to be a random variable within a certain range that along with

the smaller radius of the log determines the log’s larger radius. Various log classes
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can be created according to different policies that a sawmill use for log sorting

process. For instance, they can be generated based on any of small end, large end,

length, taper, species or different combinations of these factors.

3.1.3 Creating Price Lists

If a sawmill intends to get the maximum value in terms of lumber yields, it at-

tempts to choose patterns that produce lumber with highest values. The price list

is a driving factor that cutting pattern optimizers consider to distinguish among

all possible choices of patterns and select the most valuable one. Since cutting

pattern selection is sensitive to the price list, it can be used as a tool to control the

outputs of the log breaking down process. Management can influence the output

of certain log classes by deliberately setting the appropriate price list.

We use two types of price lists: The first is based on actual market prices at a

certain point in time (Example: Appendix B) (ACE. [1]). This is the viewpoint

that prices are real indicators of lumber value. If lumber can be sold into an

infinite market with no requirements to meet any particular demand pattern, then

optimizing patterns against these price lists makes sense. The other viewpoint is

that prices are just signals to the optimizer of what to produce. In this viewpoint, a

variety of price sets gives a variety ways of influencing what the optimizer produces.

We can use price lists based on the dimensions of the lumber and a fixed unit price

(Example: equation 3.13). Optimizers that use such a price list will maximize

volume yields. However, as we will see below, other price lists can be created that

emphasize certain dimensions.

Lumber value($) = Lumber volume(ft3) ∗ unit price($/ft3) (3.13)

Even with market based prices, since the exact data are not always available for

all lumber pieces, it is necessary to find the relationship between lumber values

(i.e. relative prices). We have used only a set of “actual” market prices and this
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set was not complete for all the products. In Section 3.2.1 we demonstrate fitting

a price function to these values. This could be repeated for several sets of market

prices.

However, there are other possible methods to create additional price lists. One

approach, as we will discuss in chapter 4, is that, given an initial set of campaigns,

the linear programs will produce shadow prices on each product. These shadow

prices can then be used to generate additional campaigns. This idea is similar to

that in Maness and Norton [31].

3.1.4 Creating Lumber Output Fractions

After generating all patterns, classes of logs and price lists, the next step is imple-

menting patterns on logs to create final products (lumber). As shown in figure 1

this process is done through the following stages: 3.1.4.1) filtering eligible patterns

for each log, 3.1.4.2) calculating the length of each sub-cut of the given pattern,

3.1.4.3) finding the most valuable pattern for each log in each price list and 3.1.4.4)

creating campaigns.

3.1.4.1 Filtering Eligible Patterns for Each Log

To reduce computational effort, it is useful, as a first step, to filter patterns under

consideration, based on the radius of each pattern and two end radii of each log.

We reject patterns for which the pattern radius is not within the range of two end

radii of each log (e.g. eligible R must satisfy RS ≤ R ≤ RL as shown in figure

3.8). This filtering is reasonable since patterns with R < RS will result in wasted

wood volume, as there might be a larger pattern which can completely fit to the

log and produce higher volume yield. On the other side, the patterns with RL >

R will cause excessive wanes and usually loss in the sub-cuts of the sides and even

in the main cut.
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Figure 3.8: Eligible pattern

3.1.4.2 Calculating the Length of Each Sub-cut of the Given Pattern

Because the logs are tapered, often not all pieces of lumber produced from the log

are the length of the log. In this stage by using geometric calculations we find

the touching point along the length where each sub-cut touches the edge of log.

This provides the information about the final length for each lumber piece when

a pattern is used on the log, based on a reasonable estimation of the allowable

wane.

The formulations presented in this section find the length of each sub-cut in

the main cut. As described earlier, the smallest sub-cut is located at the right

end of the main cut, the next smallest is at the left end. This process of locating

sub-cuts in ascending order of their widths continues till the largest cub-cut is the

last one located presumably in the middle of the main cut.

The procedure begins with the smallest (right-end) sub-cut and calculates its

length (touching point) according to the allowable wane. Then length of the next

smallest sub-cut at the left end is computed. This procedure continues till either

we reach a sub-cut with the same length as the log or the last sub-cut.

The following are the formulations to find the length of the main cut when

considering wane.
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Notations:

rWaneUD radius of sub-cuts by accepting the maximum wane from up and
down

rWaneSide radius of the sub-cuts by accepting the maximum wane from
sides

rWane maximum of the rWaneUD and rWaneSide

wanePrUD maximum allowable wane percentage from up and down

wanePrSide maximum allowable wane percentage from sides

Lwane length of the sub-cut by considering acceptance of the maximum
wane

Length set of lumber lengths

WR right half of the total width of the main cut

WL left half of the total width of the main cut

B,BR, BL binary variables for switching between WR and WL

Lk length of the lumber when the kth length is chosen from Length
set

Xijk number of lumber pieces in the main cut with the width Wi,
thickness Tj

m and length Lk

Yijk number of lumber pieces in each of the above-below cut with the
width Wi, thickness Tj

AB and length Lk

Zijk number of lumber pieces in each of the right-left cut with the
width Wi, thickness Tj

RL and length Lk

Seqj
m Set of sub-cuts widths of the main cut with Xi,j number of Wi

for each Tj
m

For example: the main cut includes two sub-cuts with width
0.866(in) and one sub-cut with width 3.75(in) so Seqj

m={0.866,
0.866, 3.75}

Wmin smallest value over the members of Seqj
m

We use the following algorithm and formulations for the main cut:

For each thickness Tj
m:

set WR = WL = Wj
m

2
, BR = 1, BL = 0 (starting from the right half), Xijk = 0

Step 1: Find Wmin = Min[Seqj
m]
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Step 2: Keep i if Wmin = Wi

Step 3: Calculate rWaneUD, rWaneSide and rWane

rWaneSide =

√
((WR ∗BR) + (WL ∗BL))

2 + ((
1− wanePrSide

2
∗ Tj

m)2 (3.14)

rWaneUD =

√
((WR ∗BR) + (WL ∗BL)− (wanePrUD ∗Wmin))2 + (

Tj
m

2
)2

(3.15)

As calculated above there can be two radii for wanes (rWaneSide, rWaneUD)

in the pattern. When one of them touches the edge of log we should stop, because

further than that the resulting cut will get more than allowable wane. So the

maximum of rWaneUD and rWaneSide is the determining factor to find the

lumber length. (Equation 3.16)

rWane = Maximum(rWaneUD, rWaneSide) (3.16)

� rWaneSide

rWaneUD

WRWL

Figure 3.9: rWaneUD and rWaneSide

Step 4: Calculate Lwane:

Lwane = �Min{L,L ∗ (1− rWane−RS

RL −RS

)}/2� ∗ 2 (3.17)

This calculation, with rounding down, assumes that allowable lumber lengths

are 8, 10, 12, 14, 16 (ft). Figure 3.10 demonstrates the touching point position.
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Figure 3.10: Touching point and lumber length

Step 5: If Lwane = L, set L as the length of remaining cuts (Xijk = Xijk +Xi,j

where Lk = L) and STOP.

Otherwise go to step 6.

Step 6: If Lwane = Lk, set Xijk = Xijk + 1 and Xi,j = Xi,j − 1

Step 7: Let WR = WR− (Wmin+kerf)∗BR and WL = WL− (Wmin+kerf)∗BL

Step 8: Update the set of width, [Seqj
m] = [Seqj

m]−[Wmin] and letB = BR, BR =

BL, BL = B (switch between WR and WL)

Step 9: If [Seqj
m] �= ∅ go to step 1.

Otherwise STOP.

By applying this algorithm we will find the length of each sub-cut in the main

cut and all Xijks. We use a similar approach for above-below and right-left cuts

to find Yijk and Zijk (Appendices C, D, E, F). There are just minor differences in

calculating rWaneSide and rWaneUD for these cuts.

3.1.4.3 Finding the Most Valuable Eligible Pattern for Each Log Based

on Each Price List

After calculating the outputs of all eligible patterns on each log, including lumber

dimensions and number of each piece, we are able to compute the value of lumber

pieces produced from each pattern on a specific log based on each price list. Among

all those patterns, the most valuable one is chosen for each price list. Formula
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3.18 shows the value of the best pattern for all given price lists.

MaxV alueu = Maxall patterns{
∑
i

∑
j

∑
k

P u
ijk(Xijk + 2 ∗ (Yijk + Zijk))}for all u

(3.18)

Where:

rMaxV alueu The maximum over the values of all eligible patterns on each log
based on price list u

P u
ijk Price of lumber with width Wi, thickness Tj and length Lk for

price list u

Xijk number of lumber pieces in the main cut with the width Wi,
thickness Tj

m and length Lk

Yijk number of lumber pieces in each of the above-below cut with the
width Wi, thickness Tj

AB and length Lk

Zijk number of lumber pieces in each of the right-left cut with the
width Wi, thickness Tj

RL and length Lk

3.1.4.4 Creating Campaigns

For each log in a specific log class, the most valuable cutting pattern is chosen

based on a given price list. We repeat this process for all the logs within the

log class. So, the number of optimal cutting patterns are equal to the number of

logs in the class. The resulting outputs of all logs in terms of lumber yields are

obtained and accumulated. A combination of a log class under a certain price list

resulting in a set of specific outputs, is considered as a “campaign”.

The goal is to determine, for a particular campaign, the expected outputs

of lumber. These include the number of each lumber piece (for each log and log

class), total lumber value (for each log and log class) and volume percent yield (for

each log class) (formula 3.19). This process enables us to estimate the expected

outputs of different log classes by applying various price lists and consequently

create diverse campaigns. In summary, campaigns can be generated through the

steps shown in figure 3.11.
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V olume percent yield =
Total lumber volume

Total volume of logs
∗ 100 (3.19)

Determine limits on logs in campaign

Simulate logs

Filter allowablw patterns for the log class

Choose optimal allowable pattern based on a price list for each log

Record outputs for campaign

Figure 3.11: Algorithm for generating campaigns

However, different log sorting decisions and additional price lists (e.g. the ones

based on shadow prices) would create more potential campaigns.

In the following section, different proposed campaigns resulting from applying

this algorithm are presented.

3.2 Example

To illustrate the performance of the proposed algorithm, various campaigns are

generated based on seven log classes and twenty price lists. The details of each

are presented in the following sections. Several comparisons are developed to

evaluate the effectiveness of the algorithm. In the first case, different log classes are

examined using the same price list, while the second case shows the effectiveness

of different price lists to create various products of the same log classes. All log

classes are assumed to be chosen from one species of tree.
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3.2.1 Data and Procedures

According to the previous notation, we used the following assumed data.

Sawing process and lumber specifications

There are 70 products presented in nominal lumber dimensions (W nom(in) x

T nom(in) x Lnom(ft)) as shown in Table 3.3.

1x3x8 1x3x10 1x3x12 1x3x14 1x3x16 2x3x8 2x3x10 2x3x12 2x3x14 2x3x16

1x4x8 1x4x10 1x4x12 1x4x14 1x4x16 2x4x8 2x4x10 2x4x12 2x4x14 2x4x16

1x6x8 1x6x10 1x6x12 1x6x14 1x6x16 2x6x8 2x6x10 2x6x12 2x6x14 2x6x16

1x8x8 1x8x10 1x8x12 1x8x14 1x8x16 2x8x8 2x8x10 2x8x12 2x8x14 2x8x16

1x10x8 1x10x10 1x10x12 1x10x14 1x10x16 2x10x8 2x10x10 2x10x12 2x10x14 2x10x16

1x12x8 1x12x10 1x12x12 1x12x14 1x12x16 2x12x8 2x12x10 2x12x12 2x12x14 2x12x16

4x4x8 4x4x10 4x4x12 4x4x14 4x4x16 6x6x8 6x6x10 6x6x12 6x6x14 6x6x16

Table 3.3: Nominal lumber dimensions

Nominal, target and actual data for lumber dimensions according to Harry

Freeman and Son Ltd reports (Harry Freeman and Son Ltd. [23]) are shown in

Table 3.4.

Nominal (in) Target (in) Actual (in)

1 0.866 0.75
2 1.66 1.5
3 2.75 2.5
4 3.75 3.5
6 5.875 5.5
8 7.875 7.25
10 9.875 9.25
12 11.875 11.25

Table 3.4: Nominal, target and actual data

Thickness, width, length and wRatioMax of allowable lumber are shown re-

spectively as:

Tm = TAB = TRL = {2.75, 3.75, 5.875, 7.875, 9.875, 11.875}(in)
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W = {0.866, 1.66, 3.75, 5.875}(in)
Length = {8, 10, 12, 14, 16}(ft)
wRatioMax = {2, 2, 2, 2, 1.5, 1.2}

From economic and technological points of view, most sawmills do not intend to

re-saw their in-process products (above-below and right-left sub-cuts). Therefore,

the intention to get the maximum yield from the main cut leads to generating

a somewhat square-shaped main cuts which decreases the chance of re-sawing

necessitated by multiple above-below and right-left sub-cuts.

wRatioMax provides a tool for controlling shape of the main cut. By adjust-

ing various values of this parameter, different outputs are obtained. In this specific

problem we assumed wRatioMax = 2 for smaller thicknesses (2.75, 3.75, 5.875, 7.875),

and for larger ones, it is assumed such that the resulting cant can be fit in the

largest possible log. Greater values for wRatioMax will result in a cant which

cannot be fit into even the largest log.

It is assumed that the saw kerf is 0.15(in). Also the number of best combi-

nations of above-below and right-left cuts for each main cant used in the filtering

process is 20, although this is a user defined parameter which can be changed.

Log Classes:

Because we did not have much access to real data on the distribution of log di-

mensions, we created various log classes through simulation. In actual application,

it should be possible to build up log distributions through scanner information.

If enough scanned data is available it can be used directly. Otherwise, a fitting

process, similar to that described below for the large log class, can be used. We

now describe how we generated seven log classes based on logs’ dimensions (small

end radius and length).

The first log class is called the small log class. Due to the lack of data for

this class, two distribution functions are assumed for the small end radius (with

average 2.5(in)) and length as follows:
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Rs
1 ∼ Uniform[2, 3]

L1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

P (8 ≤ L1 < 10(ft)) = 0.4

P (10 ≤ L1 < 12(ft)) = 0.4

P (12 ≤ L1 < 14(ft)) = 0.2

The second class is called large class. For this log class, we had access to the

data of a 9-hour work shift in which 9613 logs were sawn at Bowater Mersey Oakhill

sawmill (Sawmill [42]). Since we assumed the average radius of 3.5(in) for the

large log class, we scaled all the data to obtain this average. As the available data

were not enough for our experiment, we required to find their fitted distribution

functions. For the small end radius, the lognormal distribution function was a

satisfactory fit. Using the Minitab software, the suggested distribution for the

small end radius of the logs is Lognormal with the mean of 1.198 and standard

deviation of 0.323. The results of fitting the lognormal distribution function to

log class 2 data by using Minitab are shown in Figure 3.12. As can be seen from

the probability plot, the fit is reasonable over the mid range of the radii.

Figure 3.12: Minitab probability plot for small end radius

Rs
2 ∼ lognormal(1.198, 0.323)

Log lengths are classified in equal uniform intervals (with length 2(ft)) and
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the number of logs within each interval was counted to estimate the probability

of each interval.

The real data of logs length for log class 2 and our estimation by fitting the uni-

form distribution function within each interval are respectively shown in Figures

3.13 and 3.14.
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Figure 3.13: Real data for log class 2
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Figure 3.14: Fitted uniform distribution for log class 2

The following shows the mentioned distribution functions.

L2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (8 ≤ L2 < 10(ft)) = 0.012

P (10 ≤ L2 < 12(ft)) = 0.124

P (12 ≤ L2 < 14(ft)) = 0.237

P (14 ≤ L2 < 16(ft)) = 0.131

P (16 ≤ L2 < 18(ft)) = 0.496
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There is a relationship between the difference of small and large end diameters,

and the length of a tree. As a tree grows, the difference between these two end

diameters usually increases. Thus, we assume a log radius can change 0.05 to 0.2

inches per each foot of length. To reasonably estimate the larger end radius of a

log, by considering its taper (between 5% and 20% of the log’s length), we assume

the relationship between smaller radius and larger radius for both classes as follows:

RL
q = F (Rs

q, Lq)(in) = Rs
q + Uniform[0.05, 0.2](

in

ft
) ∗ Lq(ft), q = 1, 2 (3.20)

The number of logs within each class is required to be a large number to

ensure the stability of the campaign outputs. We assumed 100,000 logs within

each individual log class.

We combine small and large classes (200,000 logs) together and sort their logs

according to specific log lengths into 5 categories. This creates 5 more log classes.

The idea of sorting logs based on their lengths prior to the sawing process is often

used in most sawmills. This will simplify and accelerate their sawing processes.

Since, the optimal outputs of each log were calculated once, we do not need

to re-calculate them. Available logs are only sorted in specific lengths. Our clas-

sifications include the log length less than 10(ft) (creating log class 3 with 41255

logs), between 10(ft) and 12(ft) (creating log class 4 with 52394 logs), between

12(ft) and 14(ft) (creating log class 5 with 43769 logs), between 14(ft) and 16(ft)

(creating log class 6 with 12900 logs) and greater than 16(ft) (creating log class 7

with 49682 logs).

Price lists:

Two categories of price lists are considered. The first price list is derived

from Appendix B. Due to lack of data for some products such as lumber pieces

with width 1(in), a function is fitted to the available ones. To give an estimate

of relative prices for products without data. The fit function is computed as
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described in equation 3.21.

Fit function(W nom, T nom, Lnom) =

a+ b ∗W nom + c ∗ T nom + d ∗ Lnom + e ∗ (W nom ∗ T nom) + f ∗ (W nom ∗ T nom ∗ Lnom)

(3.21)

where a, b, c, d, e and f are constant coefficients and W nom, T nom, Lnom repre-

sent nominal width, thickness and length of the lumber piece, respectively.

Figure 3.15 demonstrates the difference between actual and fitted prices for

all the available patterns. We obtain the values of coefficients using the “Least

Squares” method (“LINEST” function in Excel). The fit function is then used to

calculate the prices for our assumed products. The appropriate fit function is as

equation 3.22.

Fit function(W nom, T nom, Lnom) =

2.498 + 1.047 ∗W nom + 0.198 ∗ T nom + 0.049 ∗ Lnom − 0.0357 ∗ (W nom ∗ T nom)

−0.0000278 ∗ (W nom ∗ T nom ∗ Lnom)

(3.22)

The MAPE (Mean Absolute Percentage Error) of this function is 4.15% which

illustrates the reasonable accurate performance of the fit function.
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Figure 3.15: Price fit results

The other price lists are based on emphasizing certain lumber nominal dimen-

sions. We create 19 price lists as follows:

43



• Price list 2: Since the unit price is the same for all products, this price list

emphasizes obtaining the most lumber volume out of the log (equation 3.23).

Lumber value($) = W nom(ft) ∗ T nom(ft) ∗ Lnom(ft) ∗ 1( $

ft3
) (3.23)

• Price list 3: This price list aims to focus on lumber with greater widths

(equation 3.24).

Lumber value($) = W nom
√
W nom(ft)1.5 ∗ T nom(ft) ∗ Lnom(ft) ∗ 1( $

ft3.5
)

(3.24)

• Price list 4: This price list emphasizing lumber with greater thicknesses

(equation 3.25).

Lumber value($) = W nom(ft) ∗ T nom
√
T nom(ft)1.5 ∗ Lnom(ft) ∗ 1( $

ft3.5
)

(3.25)

• Price list 5: This price list attempts to focus on lumber with greater lengths

(equation 3.26).

Lumber value($) = W nom(ft) ∗ T nom(ft) ∗ Lnom
√
Lnom(ft)1.5 ∗ 1( $

ft3.5
)

(3.26)

The remaining price lists (6-20) aim to obtain more lumber with a specific

width, thickness or length by multiplying the unit price of these special products

by a user defined positive coefficient (here it is assumed 20). Thus, price lists 6-9

emphasize lumber with specific widths. Since allowable lumber pieces are of four

different widths, four price lists are generated. The same procedure is used for

allowable thicknesses through price lists 10-15 and allowable lengths through price

lists 16-20.

In summary, twenty price lists are created to serve as driving factors to create
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126 various campaigns. By adding more price lists we get more diversified cam-

paigns, at the expense of increased program running time. Although we choose

20 price lists in this research, our program is flexible enough to easily create new

campaigns by taking new price lists.

3.2.2 Results

With 7 log classes and 20 price lists, we are able to create, at most, 140 campaigns.

According to the specifications of some log classes, 14 of the campaigns are re-

peated (see Section 3.3). Therefore, the total number of campaigns ends up with

126. In this section, the results of several campaigns used in five comparison cases

are provided to demonstrate the roles of price list and log class in diversifying

campaigns outputs.

3.2.2.1 Comparison Case 1 (Different Log Classes, Same Price List):

In this section two examples are presented to show how log class specifications

result in different lumber outputs. First, small and large log classes are compared

when price list 2 is applied. This price lists maximizes the lumber output volume.

The second example corresponds to log classes 3 to 7 when price list 1 is used.

Price list 1 is the actual market price list. Figure 3.16 shows the number of each

lumber piece for two campaigns in the first example.
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Figure 3.16: Price list 2, log classes 1-2

As can be seen in figure 3.16, the small log class never produces lumber pieces
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with length 14(ft) or more. This was expected, as the distribution function for log

lengths does not include logs with length 14(ft) or more. Also, most of the products

have length 8(ft) due to the probability distribution of log lengths. Regarding the

large log class, since the unit prices for all products are the same and there is no

advantage for bigger pieces over smaller ones, the algorithm prefers to choose from

smaller cuts because they create more flexibility in making various combinations.

Consequently, larger cuts are rarely produced.

Table 3.5 compares actual, target and nominal volume percent yields of the

two campaigns. Actual percent yield is the campaign yield when actual lumber

dimensions are considered. Target and nominal percent yields correspond to the

target and nominal lumber dimensions, respectively.

Actual (%) Target (%) Nominal (%)

Small log class, Price list 2 36.26 43.77 56.04
Large log class, Price list 2 44.25 53.00 65.55

Table 3.5: Volume percent yields in comparison case 1

The difference between volume percent yields of these two campaigns results

from the limitations on the number of eligible cutting patterns for the small log

class, due to their small radii. This causes more waste in comparison to the large

class in which more patterns are applicable. Sawmills use different standards

(actual, target or nominal) to report their percent yields.

Figure 3.17 demonstrates the difference in outputs of the campaigns in the

second comparison. As log classes are created by sorting logs in specifics lengths,

it can be seen that Log class 3 (blue), in which logs are with the length less than

10(ft), produce only the products with length 8(ft). This behaviour is similar for

the rest of classes. The only one that is capable of producing all lumber pieces is

log class 7(orange) which contains the logs with the length more than 16(ft). The

role of price list 1 in these campaigns is to emphasize larger lumber pieces, since

the unit prices for these products are often more than smaller ones.
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3.2.2.2 Comparison Case 2 (Different Price Lists, Same Log Class):

Three examples are provided to show how various price lists can result in different

campaign outputs from the same log class. The first example deals with price lists

6-9 in which the main focus is on the products with specific widths implemented

on log class 2. In the second example, price lists 10-13 are implemented on log

class 1 to show campaign sensitivity to different lumber thicknesses. In the last

example, the influence of applying price lists 16-20 on log class 2 is discussed. The

objective is to demonstrate the effectiveness of those price lists with highlighting

special lengths on creating lumber outputs. The number of lumber pieces in the

first comparison is illustrated in figure 3.18. Referring to the figure, most products

with width 1(in) are generated by applying price list 6 (blue). Lumber pieces with

width 2(in) are mainly resulted from price list 7 (red). Although one might expect

that this price list should have produced nothing but the products with width

2(in), some lumber pieces with width 1(in) can also be seen. The reason is that,

in many cases, if there is no possibility to get all lumber pieces with 2(in) width,

creating some lumber with smaller widths would be more beneficial than nothing.

It is obvious no products with width 4(in) or 6(in) are produced since they can

be easily transformed to sub-products with width 2(in). Price list 8 (green) and

9 (purple) mostly create products with width 4(in) and 6(in) respectively.

The second example is demonstrated via figure 3.19 in which the main focus

is on different thicknesses for the small log class. Due to specifications of the

logs lengths in this class we do not see products with length 14(ft) or more. Also

lumber pieces with thickness 10(in) and 12(in) never can be obtained from these

logs; therefore campaigns 14 and 15 are eliminated from consideration. Price lists

10 (blue), 11 (red), 12 (green) and 13 (purple) mainly produce products with

thickness 3(in), 4(in), 6(in) and 8(in) respectively.

In the last case (figure 3.20), when price lists focus on specific lengths, we see

most products with length 8(ft) are usually created by applying price list 16(blue).
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Consequently, Price lists 17 (red), 18 (green), 19 (purple) and 20 (orange) mostly

create lumber pieces with length 10(ft), 12(ft), 14(ft) and 16(ft), respectively.
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3.3 Discussion

The example discussed in this chapter demonstrated the features of the approach.

Using the proposed algorithm, one can create other campaigns with other desir-

able specifications. In this example, logs are created from one species of tree,

constituting 7 different log classes. By assuming 20 price lists, 140 campaigns are

created from which 14 are eliminated. The reason is that they regenerate some

existing campaigns. For instance, Price lists 14, 15, 19 and 20 in the small log

class (class 1) create the same results as price list 2. Since the small log class (1)

can not create some lumber pieces, these price lists, that emphasize large pieces,

are not effective. For example, price list 19 emphasizes pieces with length 14(ft).

These products can not be produced from the small log class, because, logs in

this class are shorter than 14(ft). The products that can be produced, all are

evaluated on volume. This leads to the same results for these campaigns. Also,

few price lists that force the creation of lumber pieces with non-sensical lengths

are discarded in log classes 3-7. For instance, log class 4 in which logs lengths

are less than 12(ft), price lists 18, 19 and 20 emphasizing length 12(ft), 14(ft) and

16(ft) respectively, are meaningless.

One important factor to evaluate the performance of sawmills, is the propor-

tion of the output (total lumber volume) to the input (total log volume). This

is represented by campaign volume yield in this work. As there are more candi-

date patterns to be implemented on large log classes rather than small ones, the

possibility of obtaining more output from large classes is higher. In all the cases

the nominal percent yield of implementing price list 2 is greater than other price

lists. The reason is that unit prices of all the products in price list 2 are the same;

therefore, value maximization is equivalent to volume maximization.

We have developed a fast algorithm that provides the possibility to rapidly

generate a number of alternative campaigns. These campaigns can be further

used in planning and operational stages in sawmill operations. This provides
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decision makers with the ability to exploit combinations of various campaigns for

planning and scheduling to fulfill demand requirements.

In the next chapter, the results of this algorithm are used as inputs to an MILP

problem to select and plan appropriate campaigns to fulfill deterministic-constant

demands of various products.
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Chapter 4

Powers-of-Two Model

The campaign generation procedure enables us to estimate output of different

configurations of campaign settings including various log classes and price lists.

Each product’s expected volume yield from a unit volume of the log under a

specific configuration is available. The question remains how to use these potential

campaigns to produce required products within capacity requirements to minimize

total inventory cost and setup time. This leads to the principles of the ELSP

problems. However, a key difference is “campaign lot sizes” need to be scheduled

instead of individual “lot sizes”.

To provide a fast and efficient approach that can be easily solved, we developed

a model based on the Extended Basic Period (“EBP”) with the Powers-of-Two

(“PoT”) policy. This approach seeks optimal campaign cycle times based on some

powers of two multipliers of a basic period, as well as campaign run durations.

We assume the basic period is known and fixed based on the information from

sawmill management. This makes the solution procedure simpler and closer to

reality. The cycle time of each campaign is thus equal to 2kτ0, where k is the

“campaign coverage” and can be a small integer (e.g. 0, 1, 2, 3...) and τ0 is the

basic period. This means for instance, if the coverage of a campaign is found to be

1 and the basic period is “one week”, the associated cycle time for that campaign

will be 21 = 2 weeks. In other words, this campaign is processed once every 2
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weeks.

The output of this model provides a selection of the appropriate campaigns,

the frequency with which they should be run and the resulting average cycle stock

inventory of each product. We use the term “appropriate” due to this fact that

not all the campaigns can be fit in the schedule. In other words, the algorithm

seeks a combination of campaigns that result in total production and setup time

less than available time; while the output meets the demand and results in keeping

inventory levels to a minimum. “Cycle stock” inventory is the amount of on-hand

inventory that is used for the regular demands and is replaced every cycle when

a new production run occurs. The objective of this model is thus to provide a

framework for organizing campaigns in a sawmill to fulfill annual constant demand

of different products while keeping inventory levels at a minimum.

This chapter begins with a description of the PoT model’s specifications and

assumptions. The model’s details are then presented through its mathematical for-

mulation. Two examples are created to demonstrate the results and performance

of this model.

4.1 Model Description

The main assumption underlying the model is that there is enough production

capacity to meet annual product demand while combining different campaigns to

produce the required products. As the model deals with campaigns, it is obvi-

ous that campaign setup times can restrict production capacity. The challenging

questions are: which campaigns should be taken into account, how often (cycle

time) and for how long (production time) should they be processed to minimize

inventory costs. To keep inventory minimum while meeting capacity requirements,

we use PoT modelling approach to determine the appropriate campaigns and their

run frequency. Additionally, the following assumptions are used in the modelling

approach:
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1. The amounts of input logs required to form a campaign are always available.

2. Demands are constant and deterministic over a planning horizon (e.g., one

year).

3. Setup times are sequence independent.

4. The sawmill can be thought of as a single machine facility.

5. No back-order cost is taken into account. All unfulfilled demands are con-

sidered as lost sales. The main focus is minimizing inventory and violations

of demand requirements.

6. The basic period (τ0) is known as a parameter in advance.

What is new about our modelling approach is that the powers of two are

applied to campaigns instead of being applied to products. The ELSP and powers

of two models discussed in chapter 2 are applied to products. In this model, the

campaigns are processed based on the integer powers-of-two multipliers of a basic

time period. This basic period can be a week ( 1
52

of a year), a day( 1
365

of a year) or

any other time period. Thus, cycle times might be 1, 2, 4, 8, 16, 32, ... multipliers

of the basic period. The objective is to find the optimal campaigns, their cycle

times and production (running) times while minimizing average inventory (cycle

stock inventory) and meeting customer demands. The mathematical formulation

is described in the following section.
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4.2 Mathematical Model

The following notation is used in the PoT optimization model:

Sets:

P set of products

C set of campaigns

K set of campaign coverages

Parameters:

p index for products (p ∈ P )

c index for campaigns (c ∈ C)

k index for campaign coverages (k ∈ K)

τ0 basic production period (year)

Tk available cycle time (year) if campaign coverage k is chosen (Tk = τ02
k)

Nk annual number of cycles if campaign coverage k is chosen (Nk =
1

τ02k
)

Dp annual demand for product type p (ft3)

αcp yield (fractional output) of product type p per unit input of campaign type c

Rc production input rate for campaign type c (ft3)

Sc setup time (year) for campaign type c

νp inventory value (associated to cycle stock) of product type p ( $
ft3

)

ρ penalty cost for the violation of meeting demand requirements ( $
ft3

)
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Variables:

tck production time per run (year) for campaign type c with coverage k.

yck campaign selection =1 if campaign coverage k is chosen for campaign type c

=0 otherwise

δp
+ amount by which annual production of product p exceeds its demand

δp
− amount by which annual production of product p fails to meet its demand

Δp the maximum violation of demand requirements of product p

Ip the cycle stock inventory of product p

The mathematical formulation of the problem is given as follows:

Minimize
∑
p

νpIp + ρ
∑
p

Δp(
Dp∑
p Dp

) (4.1)

subject to : ∑
k

yck ≤ 1 , ∀c ∈ C (4.2)

tck ≤ yckTk , ∀c ∈ C, ∀k ∈ K (4.3)

∑
c

∑
k

(Nktck +NkScyck) ≤ 1 (4.4)

∑
c

∑
k

(NktckRcαcp) = Dp + δp
+ − δp

− , ∀p ∈ P (4.5)

δp
+ + δp

− ≤ Δp , ∀p ∈ P (4.6)

Ip =
1

2

∑
c

∑
k

(tckRcαcp) , ∀p ∈ P (4.7)

tck, δp
+, δp

−,Δp ≥ 0, yck ∈ {0, 1}, ∀p ∈ P, ∀c ∈ C, ∀k ∈ K (4.8)

The objective function (4.1) aims to minimize the total cycle stock inventory

of all products while meeting demand requirements. The first term of the func-

tion represents cycle stock inventory of each product multiplied by the inventory

value. The second term, indicates that the violations of demand requirements are

penalized by enforcing a penalty cost for the products that are underproduced or

overproduced. We put more focus on minimizing the violation of demand fulfil-
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ment for the products that have higher demands by assuming weighted penalty

cost as ρ( Dp∑
p
Dp

) for each product p.

The first constraint (4.2) ensures at most one campaign coverage k for each

campaign type c, because ycks are binary. A campaign may or may not be selected,

but if it is, it has to have exactly one specific cycle time. For instance, if allowable

campaign coverages are 0, 1 and 2, this constraint enforces yc0 + yc1 + yc2 ≤ 1 for

the specific campaign c, which means either all the variables equal zero or only

one of them is equal to 1 and the rest equal zero. Assuming the basic period to

be “one week”, campaign c can only be processed every week (k=0) or every two

weeks (k=1) or every 4 weeks (k=2) or not at all.

The next constraint (4.3) ensures that the production time (duration of cam-

paign run) (tck) of campaign type c with coverage k can have a positive value, if

and only if coverage k has been chosen for campaign c and this value should be

less than the available cycle time Tck.

Each time a campaign is processed, it consumes a setup time of Sc and a

run time of tck. This occurs Nk times per year. The annual production and

setup time of campaign c with coverage k is Nktck +NkSc fraction of a year. For

instance, assume campaign c is set to be processed every 4 weeks (k=2) for tc2

units production time (yc2 = 1). This campaign has the setup time Sc. Assuming

that basic period is one week, and one year includes 52 weeks, N2 = 52
22

= 13

(number of runs per year) and total time occupied by campaign c with coverage

k = 2 is 13tc2 + 13Sc. The summation over all campaigns and all coverages gives

the total production plus setup time. Thus, constraint 4.4 is a capacity constraint.

Constraint 4.5 presents the demand requirements where the total amount of

each product resulting from all campaigns should meet its annual demand (by

considering failure to meet or exceed demand). δp
+ and δp

−, are surplus and

slack variables for deviations from demand fullfillment. The production rate of

product p resulted from processing campaign c is given by Rcαcp. Therefore, total

amount of product p produced from campaign c with coverage k over a single run
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is tckRcαcp. Consequently,
∑

c

∑
k (NktckRcαcp) is the total amount of product p

produced from processing all the eligible campaigns over all cycles.

The model allows overproduction and underproduction to occur but at the

same time, attempts to minimize them. This is done through the next constraint

(4.6) where the violation of demand fulfilment of each product should be less than

a relevant variable (Δp) which we try to minimize in the objective function. Thus,

overproduction (δp
+) or underproduction (δp

−) of product p will be minimized

through Δp by applying a penalty cost (ρ).

Equation 4.7 is an approximation of average cycle stock inventory of product

type p resulted from all possible campaigns. Ip is the average cycle stock inventory

if the production was instantaneous. It is equal to half of the total amount of

product p produced over all cycles of the related campaigns. It is calculated

through equations 4.9- 4.11.

Qcp =
∑
k

tckRcαcp , ∀c ∈ C, ∀p ∈ P (4.9)

Icp =
1

2
Qcp =

1

2

∑
k

tckRcαcp , ∀c ∈ C, ∀p ∈ P (4.10)

Ip =
1

2

∑
c

Qcp =
1

2

∑
c

∑
k

(tckRcαcp) , ∀p ∈ P (4.11)

Where,

Qcp: amount of product p produced from campaign c.

Icp: half of the production of product p due to campaign c.

To calculate the actual average inventory we would need to consider the de-

mand rate of each product due to campaign c (dcp) shown as equation 4.12.

dcp =
∑
k

NktckRcαcp , ∀c ∈ C, ∀p ∈ P (4.12)

Thus, the actual average inventory of product p can be calculated through equa-
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tions 4.13- 4.15.

Q̃cp =
∑
k

tckRcαcp −
∑
k

tckdcp , ∀c ∈ C, ∀p ∈ P (4.13)

Ĩcp =
1

2
Q̃cp =

1

2

∑
k

(tckRcαcp − tckdcp) , ∀c ∈ C, ∀p ∈ P (4.14)

Ĩp =
1

2

∑
c

Q̃cp =
1

2

∑
c

∑
k

(tckRcαcp − tckdcp) , ∀p ∈ P (4.15)

Where,

dcp: the amount of demand d produced using campaign c andDp =
∑

c dcp + δp
+ − δp

−,

(∀p ∈ P ).

Q̃cp: maximum amount of product p produced from campaign c (considering de-

mand rate).

Ĩcp: average inventory of product p due to campaign c.

The difference between Icp and Ĩcp is shown in figure 4.1.

tck

Q̃cp

Qcp

Ĩcp

Icp

Figure 4.1: Difference between Icp and Ĩcp

The second term in equation 4.15 is non-linear. To avoid dealing with non-

linear integer programming, we use the estimation of average cycle stock inventory

represented by equation 4.11 for the optimization model recognizing that this is

only an approximation. After the fact, we can calculate the actual average cycle

stocks using 4.15. We will present a numerical example of this estimation for

one product in Appendix J. The last set of constraints demonstrate the non-
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negativity requirements of all continuous decision variables and binary values for

the campaign selection variables (yck).

4.2.1 Strengthening Constraints

In this section, we suggest adding two more constraints to the model, called

“strengthening constraints” that enable us to solve the model quicker. Williams

[53] suggested to use tightening bounds to simplify the IP model as well as LP

models. However, in this research we work with a MIP model.

This PoT model is a mixed integer programming problem where both integer

and linear programming problems should converge to an optimum point. When

the size of problem is large (e.g. 70 demands with 126 campaigns) the model can

not converge with 0% gap. Our approach was to add two more constraints (4.16

and 4.17) that tighten constraints 4.5 and 4.6 and accelerate the optimization

process.

NktckRcαcp ≤ Dpyck + δp
+, ∀p ∈ P, ∀c ∈ C, ∀k ∈ K (4.16)

∑
p

ΔpDp ≤ μ
∑
p

Dp
2 (4.17)

Constraint 4.16 is always a true statement that greatly reduces the size of the

problem by forcing individual upper bounds for NktckRcαcp for each combination

of c, p and k. By putting an upper bound for each NktckRcαcp, we tighten the

bounds and thus, the model reaches the optimal solution faster.

In inequality 4.17, we dictate a limitation on each Δp such that the summation

of weighted Δps is always less than a value. This value is proposed to be a

coefficient (μ) multiplied by the summation of demand squared. In other words,

if we let Δp be Dp in the objective function, then we get the summation of Dps.

μ puts a limitation that this average weighted deviation should not be more that

μ percent of 100% for every product.
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We compare the model performance with and without these constraints by

using the data of example 2 (Section 4.3.2.2).

In Section 4.3, we present two examples to show the performance of the PoT

model in two different situations.

4.3 Examples

This section presents two examples to evaluate the performance of the PoT model

in an assumed sawmill production process where it faces two different demand

flows. In the first example, specific products (1x3s and 2x3s) have the highest

demand among other products. While, in the second example, we have the demand

for almost every product. The assumed data of two examples are presented in

Section 4.3.1. Results of the PoT model are described in Section 4.3.2.

4.3.1 Data

We consider a sawmill in which the assumed annual production capacity (nominal)

is 80,000,000 (fbm). The fbm unit represents the volume of lumber with 1 foot

length, 1 foot width and 1 inch thickness. However we convert the capacity unit

to ft3 to keep consistency in calculations. Thus the nominal production capacity

is equal to 6,666,666.67 (ft3).

126 campaigns were generated as candidate campaigns for demand of all or

some of the 70 products. The products are those discussed in Chapter 3, Section

3.2.1. The campaigns considered here are those discussed in Section 3.2.2.

Two examples of demand are considered. In the first example, special products

such as 1x3s and 2x3s have high demands. These products are not the most

economically important products. However, every log can produce these products.

We try to evaluate the performance of the PoT model with a given campaign

setting to fill the demand example where only few products need to be produced.

The demand generation procedure for this example is described as followings:
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First random numbers are created within ranges (1000-3000) (ft3) for products

1x3s and 2x3s and (0-100) (ft3) for other products. Then they are normalized

such that the amounts over all products add up to the production capacity of

the sawmill (6,666,666.67 (ft3)). The resulting values are assumed to form the

demand. Also, the inventory cost (νp) is assumed as %20 of the market unit price

of product p.

Table 4.1 illustrates the annual constant demand (nominal ft3) and value per

unit inventory ($/ft3) of each product.

Product Dimensions Dp νp Product Dimensions Dp νp
# (in)x(in)x(ft) (000ft3) ($/ft3) # (in)x(in)x(ft) (000ft3) ($/ft3)
1 1x3x8 688.47 0.884 36 2x4x8 27.87 1.098
2 1x3x10 646.98 0.904 37 2x4x10 6.23 1.117
3 1x3x12 330.43 0.923 38 2x4x12 22.94 1.136
4 1x3x14 445.06 0.943 39 2x4x14 25.25 1.156
5 1x3x16 565.17 0.962 40 2x4x16 19.55 1.175
6 1x4x8 10.18 0.917 41 2x6x8 3.27 1.148
7 1x4x10 3.65 0.936 42 2x6x10 29.23 1.168
8 1x4x12 17.38 0.956 43 2x6x12 14.73 1.187
9 1x4x14 15.82 0.975 44 2x6x14 9.41 1.206
10 1x4x16 28.24 0.995 45 2x6x16 6.65 1.226
11 1x6x8 12.39 0.982 46 2x8x8 5.96 1.199
12 1x6x10 9.08 1.001 47 2x8x10 22.17 1.218
13 1x6x12 11.25 1.021 48 2x8x12 29.40 1.238
14 1x6x14 15.95 1.040 49 2x8x14 26.60 1.257
15 1x6x16 21.58 1.060 50 2x8x16 16.56 1.276
16 1x8x8 11.38 1.047 51 2x10x8 2.51 1.250
17 1x8x10 3.86 1.066 52 2x10x10 19.27 1.269
18 1x8x12 1.58 1.086 53 2x10x12 7.06 1.288
19 1x8x14 27.81 1.105 54 2x10x14 15.88 1.307
20 1x8x16 27.21 1.125 55 2x10x16 22.03 1.327
21 1x10x8 8.63 1.112 56 2x12x8 11.50 1.300
22 1x10x10 26.41 1.131 57 2x12x10 5.36 1.320
23 1x10x12 7.99 1.151 58 2x12x12 14.71 1.339
24 1x10x14 13.26 1.170 59 2x12x14 22.68 1.358
25 1x10x16 25.88 1.190 60 2x12x16 26.94 1.377
26 1x12x8 26.46 1.177 61 4x4x8 29.12 1.459
27 1x12x10 0.16 1.196 62 4x4x10 13.20 1.478
28 1x12x12 12.30 1.216 63 4x4x12 25.19 1.497
29 1x12x14 23.70 1.235 64 4x4x14 12.06 1.517
30 1x12x16 9.84 1.255 65 4x4x16 12.75 1.536
31 2x3x8 832.59 1.072 66 6x6x8 3.78 1.813
32 2x3x10 556.50 1.092 67 6x6x10 24.63 1.832
33 2x3x12 690.47 1.111 68 6x6x12 20.19 1.851
34 2x3x14 333.64 1.131 69 6x6x14 15.00 1.871
35 2x3x16 632.53 1.150 70 6x6x16 3.12 1.890

Table 4.1: Product data for example 1

Figure 4.2 illustrates the annual demands.
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Figure 4.2: Demand of products, Example 1
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As shown in this figure, demand for 1x3 and 2x3 products is set to be higher

than others.

In the second example, the sawmill faces demand widely distributed among

different products. The demand generation procedure for this example is described

as followings:

The resulting volume (ft3) of each product (70 products) from every campaign

(126 campaigns) through processing 100,000 logs over 20 price list is accessible

from the cutting pattern generator. The average amount of each product over

all 126 campaigns is calculated and normalized such that the amounts over all

products add up to the production capacity of the sawmill (6,666,666.67 (ft3)).

The resulting values are assumed to form the demands. νp is again assumed to be

%20 of the market unit price of product p.

Table 4.2 shows the information about every product.

Product Dimensions Dp νp Product Dimensions Dp νp
# (in)x(in)x(ft) (000ft3) ($/ft3) # (in)x(in)x(ft) (000ft3) ($/ft3)
1 1x3x8 54.33 0.884 36 2x4x8 156.40 1.098
2 1x3x10 48.44 0.904 37 2x4x10 185.51 1.117
3 1x3x12 27.95 0.923 38 2x4x12 164.84 1.136
4 1x3x14 21.79 0.943 39 2x4x14 120.40 1.156
5 1x3x16 33.24 0.962 40 2x4x16 379.48 1.175
6 1x4x8 113.46 0.917 41 2x6x8 108.67 1.148
7 1x4x10 100.36 0.936 42 2x6x10 124.79 1.168
8 1x4x12 87.58 0.956 43 2x6x12 192.11 1.187
9 1x4x14 63.25 0.975 44 2x6x14 218.21 1.206
10 1x4x16 134.93 0.995 45 2x6x16 721.34 1.226
11 1x6x8 56.01 0.982 46 2x8x8 39.99 1.199
12 1x6x10 39.69 1.001 47 2x8x10 57.25 1.218
13 1x6x12 39.15 1.021 48 2x8x12 96.75 1.238
14 1x6x14 40.35 1.040 49 2x8x14 97.32 1.257
15 1x6x16 99.98 1.060 50 2x8x16 378.92 1.276
16 1x8x8 20.37 1.047 51 2x10x8 31.59 1.250
17 1x8x10 14.55 1.066 52 2x10x10 38.96 1.269
18 1x8x12 18.82 1.086 53 2x10x12 56.87 1.288
19 1x8x14 16.75 1.105 54 2x10x14 52.63 1.307
20 1x8x16 56.72 1.125 55 2x10x16 160.55 1.327
21 1x10x8 16.11 1.112 56 2x12x8 16.68 1.300
22 1x10x10 10.87 1.131 57 2x12x10 21.40 1.320
23 1x10x12 11.35 1.151 58 2x12x12 34.59 1.339
24 1x10x14 7.87 1.170 59 2x12x14 30.54 1.358
25 1x10x16 23.08 1.190 60 2x12x16 98.48 1.377
26 1x12x8 7.84 1.177 61 4x4x8 97.12 1.459
27 1x12x10 6.61 1.196 62 4x4x10 122.72 1.478
28 1x12x12 7.67 1.216 63 4x4x12 109.17 1.497
29 1x12x14 7.36 1.235 64 4x4x14 71.70 1.517
30 1x12x16 19.43 1.255 65 4x4x16 164.24 1.536
31 2x3x8 95.63 1.072 66 6x6x8 88.36 1.813
32 2x3x10 68.87 1.092 67 6x6x10 157.49 1.832
33 2x3x12 61.64 1.111 68 6x6x12 193.89 1.851
34 2x3x14 40.46 1.131 69 6x6x14 166.17 1.871
35 2x3x16 120.60 1.150 70 6x6x16 318.41 1.890

Table 4.2: Product data for Example 2

Figure 4.3 demonstrates the annual demand of products.

If downtime is excluded, the actual input rate of each campaign can be cal-

culated from equation 4.18. The volume percent yield of each campaign was
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Figure 4.3: Demand of products, Example 2

calculated in Chapter 3. Appendix H provides input rate and setup time of each

campaign.

Input Rate =
Production Output

Campaign Percent Y ield
(4.18)

Total available hours per year is 1820 hours (i.e. 52(week/year)∗5(days/week)∗
7(hours/day)); therefore, a campaign’s setup time of 1 hour is 0.00055 year. The

fractional volume output of each product per unit input of each campaign (αcp)

is presented in Appendix I. The basic production period (τ0) in this problem is

assumed to be one week (i.e. 1
52

year). Also, the maximum value for the campaign

coverage (k) is set to 4. This means that if each campaign needs to be run, it

is processed at least once every 16 weeks. The assumed value for ρ is set to 50

$/ft3. This value is multiplied by Dp/
∑

p Dp of each product in the objective

function. Therefore, the products with higher demands have more violation-of-

demand costs. This helps the optimization problem minimize the violation of

those demand requirements prior to the others.

μ is found through trial and error and set to 0.22 for Example 1 and 0.8 for

Example 2. The optimization problem is coded in GNU Linear Programming Kit

(GLPK) environment (Makhorin [30]). The solution is then obtained by using

Gurobi Optimizer (Inc. [25]).
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4.3.2 Results

4.3.2.1 Example 1

The optimal solution of Example 1 is found in 11 seconds. It has an objective

function value of $6, 416, 042 with an optimality gap 0.000%. Details of the selected

campaigns with their production time and frequencies are shown in Table 4.3.

c k tck(hour) Nk Nktck NkSc Description
6 3 87.21 6.5 566.89 7.66 Every 8 weeks
10 3 53.08 6.5 345.03 4.79 Every 8 weeks
46 4 34.68 3.25 112.71 2.64 Every 16 weeks
79 3 32.05 6.5 208.30 4.65 Every 8 weeks
97 4 43.15 3.25 140.23 2.27 Every 16 weeks
116 3 64.45 6.5 418.92 5.91 Every 8 weeks

Table 4.3: PoT solution, Example 1

The model chooses 6 campaigns from 126 potential campaigns. Total pro-

duction time is 1792.08 hours (
∑

c

∑
k Nktck) and total setup time is 27.92 hours

(
∑

c

∑
k NkSc). Thus total capacity utilization is 100%.

The total approximate cycle stock inventory is demonstrated in figure 4.4.

Values of the approximate cycle stock inventory variables are provided in table

4.4.
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Figure 4.4: Total approximate cycle stock inventory, Example 1

Figure 4.5 compares the amount of each product produces by implementing

the PoT optimization (supply) with demand of products.

According to the nature of demand we would expect the model to choose from

the campaigns producing more of 1x3 and 2x3 products. Based on the campaigns
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Product Ip(ft
3) Product Ip(ft

3) Product Ip(ft
3) Product Ip(ft

3) Product Ip(ft
3)

1 47503.65 15 134.80 29 1089.88 43 1564.36 57 0.00
2 29184.52 16 2008.66 30 605.52 44 2899.63 58 207.37
3 20025.12 17 917.36 31 88869.09 45 3320.16 59 491.35
4 14665.39 18 885.45 32 45725.78 46 523.14 60 501.77
5 8490.06 19 1067.70 33 56380.17 47 601.61 61 221.09
6 60465.51 20 1959.44 34 41808.45 48 2345.06 62 9.93
7 43196.68 21 2230.52 35 48656.46 49 3579.71 63 141.50
8 27740.79 22 774.53 36 484.19 50 4854.38 64 93.59
9 60.83 23 262.00 37 31.95 51 63.10 65 3.40
10 19.28 24 134.69 38 199.38 52 30.22 66 20.04
11 2712.71 25 63.78 39 165.34 53 262.06 67 0.00
12 384.56 26 1386.00 40 34.02 54 92.17 68 40.32
13 471.72 27 1241.64 41 621.30 55 89.30 69 14.04
14 222.18 28 1190.68 42 159.25 56 8.91 70 15.31

Table 4.4: Total approximate cycle stock inventory of each product, Example 1
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Figure 4.5: Demand vs. supply, Example 1

definition (Appendix G) we expect to have campaigns created by price list 6

(focusing on lumber with width 1 (in)), price list 7 (focusing on lumber with

width 2 (in)) and price list 10 (focusing on lumber with thickness 3 (in)). From

the obtained results, campaign 6 produces lumber pieces with width 1 (in) and

the rest focus on lumber pieces with thickness 3 (in) (campaigns 10, 46, 79, 97 and

116). Since lumber pieces with thickness 3 (in) are just 1x3s and 2x3s, choosing

campaigns that use price list 10, results in both product types. This is why most

of the campaigns are the ones derived from price list 10.

Also, 2x3 lumber pieces (products 31-35) have higher demand. Thus, the model

intends to produce these products prior to the other ones. In addition, we see one

campaign of price list 6 (focusing on lumber with width 1 (in)) that can fill the

demand of 1x3s (products 1-5). Using this campaign results in having lumber

pieces, other than 1x3s, that have width 1 (in) (e.g. 1x4s, 1x6, 1x8s, 1x10s and

1x12s).

In this example, only 6 campaigns are chosen to fill the demand. As shown in

figure 4.5, the available campaigns can completely fill the demand of some prod-
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ucts such as 2x3s. However, we may have overproduction and underproduction

of other products such as 1x3s. To get a better solution, we need to design addi-

tional campaigns focusing on the underproduced products. This can be effectively

done through feeding back the shadow prices resulting from these products to the

campaign generating stage.

4.3.2.2 Example 2

The strengthening constraints discussed in Section 4.2.1 improved the model ef-

fectively. We compare the model with and without these constraints. The results

in terms of percentage gap between linear and integer solutions are presented in

figure 4.6.

Figure 4.6: Impact of strengthening constraints on model’s performance

As can be seen, the gaps for both models decrease rapidly over the first 50

seconds. The model with strengthening constraints reaches 5% gap in less than

20 seconds. At time 50, the model without constraints has 35% gap. After 100

seconds, both models converge with low speed, but at each point of time the model
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with strengthening constraint has less gap than the original model. We use these

strengthening constraints to let the model find the optimal solution faster.

In Example 2, the optimal solution is found in 17,433 seconds (4.8 hours) and

the objective function value is equal to $731, 710 with an optimality gap of 0.009%.

Details of the selected campaigns with their production time and frequencies are

shown in Table 4.5.

c k tck(hour) Nk Nktck NkSc Description
15 2 10.46 13 135.93 12.56 Every 4 weeks
19 1 17.10 26 444.65 30.62 Every 2 weeks
37 3 4.60 6.5 29.90 5.26 Every 8 weeks
70 3 1.54 6.5 9.99 3.80 Every 8 weeks
76 3 9.56 6.5 62.14 7.40 Every 8 weeks
87 3 10.21 6.5 66.36 9.06 Every 8 weeks
90 3 3.31 6.5 21.50 7.44 Every 8 weeks
106 2 8.32 13 108.19 7.85 Every 4 weeks
110 1 11.85 26 308.06 17.70 Every 2 weeks
114 2 4.88 13 63.44 9.68 Every 4 weeks
118 2 6.90 13 89.73 7.66 Every 4 weeks
126 2 26.41 13 343.33 17.75 Every 4 weeks

Table 4.5: PoT solution, Example 2

12 campaigns are selected from 126 campaigns. Total production time is

1683.22 hours (
∑

c

∑
k Nktck) and total setup time is 136.77 hours (

∑
c

∑
k NkSc).

Thus total capacity utilization is 99.9%.

The total approximate cycle stock inventory of each product is demonstrated

in figure 4.7. The details are provided in table 4.6.
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Figure 4.7: Total approximate cycle stock inventory, Example 2
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Product Ip(ft
3) Product Ip(ft

3) Product Ip(ft
3) Product Ip(ft

3) Product Ip(ft
3)

1 2236.29 15 1708.84 29 157.79 43 9844.15 57 110.37
2 1816.41 16 433.69 30 311.27 44 6783.11 58 570.59
3 1274.44 17 242.91 31 3919.40 45 22934.51 59 400.87
4 572.02 18 206.00 32 2791.59 46 1110.08 60 2054.55
5 1368.73 19 156.64 33 2748.76 47 944.07 61 6222.31
6 4950.10 20 454.15 34 1189.00 48 3549.99 62 3207.97
7 3683.55 21 218.39 35 3237.94 49 3183.47 63 2932.43
8 3484.81 22 154.95 36 6263.06 50 10515.43 64 2275.59
9 1912.64 23 171.56 37 7503.83 51 265.92 65 5111.71
10 4872.20 24 97.42 38 11624.72 52 163.51 66 1504.88
11 2882.19 25 101.49 39 4293.89 53 958.70 67 2964.23
12 1844.14 26 111.01 40 13249.57 54 838.78 68 4589.52
13 911.73 27 92.55 41 5038.99 55 3506.53 69 4870.94
14 752.21 28 155.39 42 3771.54 56 111.16 70 6375.68

Table 4.6: Total approximate cycle stock inventory of each product, Example 2

Figure 4.8 provides information about the amount of each product produced

by the PoT optimization (supply) and compares them with demand of products.
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Figure 4.8: Demand vs. supply, Example 2

The three high-demanded products are 45 (2x6x16), 50 (2x8x16) and 40 (2x4x16).

There are several considerations that need to be taken into account:

• All the high-demand products are with length 16 (ft). Thus, running cam-

paigns which emphasize 16 (ft) lumber pieces was expected. Campaign 126

is a reasonable choice as it consists of the largest logs with lengths between

16 and 18 (ft) and price list 20 which emphasizes 16 (ft) lumber pieces.

• Campaign 110 emphasizes the larger thicknesses and mainly produces the

three products mentioned plus a few others such as 55 (2x10x16) and 60

(2x12x16). As this campaign is generated from the logs with lengths between

16 and 18 (ft) its main products are with length 16 (ft).

• Demand of products 61-70 (4x4s and 6x6s), are mainly satisfied through

campaigns 19 and 90 which are from log classes with price list 3 (focusing
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on lumber pieces with larger widths).

• The only products with width 4 (in) are 4x4s. Campaign 114 focuses on

producing such products.

• Campaign 76 is from log class 5 in which logs are sorted based on length

between 12 (ft) and 14 (ft) and price list 7 (focusing on lumber pieces with

width 2 (in)). This campaign produces more products with width 2 (in)

and length 12 (ft).

• As can be seen in figure 4.8 by running each campaign, there is excess pro-

duction of a few products. This results in unnecessary inventory of some

products such as 11 and 41.

We can see campaigns from different log classes, and different price lists each

focusing on a particular sets of lumber pieces. The frequency and running time of

each campaign depend upon various factors, such as its production rate, fractional

outputs and setup time. Therefore, the PoT attempts to find an implementable

plan that responds well to the problem objectives within the PoT context. In this

example, 12 campaigns are selected among 126 campaigns that can fill 90% of the

demand requirements.

Various combinations of campaigns may be selected according to different

model settings. In all the cases the objective is to have a minimum level of in-

ventory for each product, while meeting its demand requirements under capacity

(available time) constraint. The two examples presented here show how the model

works for an assumed sawmill with quite different demand requirements.

The model does not produce an EPEI solution. Instead, it chooses several

campaigns with different cycle times based on a powers of two multipliers of a

basic period. The key feature of our model is that it is applied to campaigns

instead of products. Thus, it minimizes setup time and inventory cost over all

products.

71



In general, the PoT model enables sawmill management to manage several

campaigns based on desirable outputs and use them to fulfill demand of different

products over a planning horizon. If the designed campaigns were not enough

to fill all the demand requirements, one can generate more campaigns based on

other price lists. This can be done through inputting shadow prices of the demand

constraint (4.5) to a column generation approach. However, in the work reported

in this thesis we do not take this approach into account.

The main contribution of this model is that we can calculate the minimum

possible inventory levels that correspond to a constant annual demand for a com-

plex mix of products produced with the multiple product campaigns typical of a

sawmill. The model indicates the types of campaigns necessary to achieve this

inventory level and how frequently they should be run. However, the model does

not directly provide a production control strategy. The main thing that is miss-

ing is the recognition of the initial inventory for al products. As we discussed in

Chapter 2, any cyclic economic lot sizing strategy requires the right initial inven-

tory. Secondly, the model is based on constant demand for all products. Again,

as discussed in Chapter 2, this is a common assumption for all economic lot sizing

approaches. If we want to use this approach as a control mechanism, we need to

understand how it responds to uncertainty in demand.

In Chapter 5, the output of this model is used to examine how a few control

approaches, that were designed based on the PoT results, respond in a system

with stochastic demand.

72



Chapter 5

Control Approaches

The PoT model with annual deterministic demand provides the information about

appropriate campaign lot sizes, their running durations (production time) and fre-

quencies (cycle times) to both fulfill demand requirements and minimize inventory.

However, it does not give any detailed schedule for running campaigns. As dis-

cussed in Chapter 2, all economic lot scheduling approaches have an issue of the

effect due to the initial inventory. Also, the assumption of deterministic demand

is necessary for the optimization problem. In reality, most sawmills must deal

with stochastic demands which makes the campaign lot scheduling problem more

complex.

In this chapter, we investigate how some of these issues might affect a sawmill.

We examine a number of control approaches for campaign scheduling and simulate

the behaviour of inventory based on the results of the PoT. These approaches are

not optimization procedures, but present control mechanisms that simulate the

stochastic and dynamic nature of the production environment and attempt to

evaluate the performance of the PoT model in case of stochastic demands. If the

PoT model does not cause supply of each product to equal its demand, then the

control approaches can not do this either. Thus, in the remainder of this chapter,

we work on the basis that the annual demand is exactly the amount calculated as

supplied in the PoT approach.
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Instead of constant rate of demand arrival times and sizes in the PoT model,

demand may arrive stochastically in a real system. In the cases examined here,

demand size and inter-arrival times are assumed to have uniform and exponential

distribution functions, respectively; with the total product of expected demand

size and expected demand arrival rate equaling the deterministic annual demand

of the PoT model. However, the realized demand of a stochastic process is not

equal to its expected value so that, over any time interval the actual demand can

be at variance from the expected demand in that period.

The lean manufacturing approach of EPEI (see Chapter 2) attempts to control

production with constant lot sizes of each product. We investigate here various

approaches using the campaign lot sizes coming out of the PoT approach to see

how they might perform.

The control step starts with an idle sawmill that has information about cam-

paigns’ production times and number of runs (from the PoT solution) and the

future demands over a short horizon. The question is what campaign to run next

and how much to run. However, we have decided to always use the PoT lot sizes

(production time) so that the only control question is what campaign should be

processed next.

This chapter begins with the description of some possible control approaches

developed within a simulation environment and then evaluates their performance

by applying them to Example 2 presented in Chapter 4, over two cases. In Case

1, demand has large arrival frequencies with less variety in sizes to simulate near-

constant demand, while in Case 2, the batch order arrivals are “noisier” with

varying demand arrivals and sizes (“bulk” arrivals).
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5.1 Assumptions

In the approaches addressed here, it is assumed that the sales department always

provides the production section with the exact dates in which upcoming orders

should be filled. Moreover, it is assumed that demand needs to be satisfied exactly

at the date specified through a JIT delivery process. In other words, when the

production process faces a deadline, the inventory of related products will decrease

by the amount requested. If enough inventory is available, the requested product

will be delivered. Otherwise, we assume all the on-hand inventory is shipped to

the customer and the rest creates negative inventory levels in the form of “back-

orders”. When a back-order happens, customers will wait and receive their orders

as soon as the required product is produced.

A sawmill cannot know future demand exactly, In the work reported here, we

assume that orders that will be occurring within a certain time window of the

present are known precisely. This is equivalent to assuming that there is a fixed

lead time for each order. For orders outside this lead time window, we assume

that the mill has to forecast this demand based upon past demands. In the work

reported here, we used a simple exponential-smoothing forecasting method (Silver

et al. [43]) to estimate expected future due dates. Exponential smoothing relies

on the most recent observations and previous forecast level to estimate the next

observation. The simplest formulation of this method is presented in equation 5.1.

s1 = x0, st = αxt−1 + (1− α)st−1, t > 1 (5.1)

where st and xt are forecasted output and real observation at time t, respectively.

Since the demand process is assumed to be intermittent (Silver et al. [43],

Section 4.9.2), it is necessary to forecast both the size and delivery date of future

orders. Equations 5.2 and 5.3 demonstrate the process for forecasting the time

between arrivals and demand size, respectively.
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T imeFp = αTimeAp + (1− α)T imeF
′

p (5.2)

SizeFp = αSizeAp + (1− α)SizeF
′

p (5.3)

where, T imeFp is the current forecast for time between arrival. T imeAp repre-

sents the most recently observed time between arrival and T imeF
′

p is the previous

forecasted time between arrival for product p. Also, SizeFp is the new forecast

of the demand size. SizeAp represents the most recently observed order size, and

SizeF
′

p is the previous forecast for order size of product p.

For example, the initial values for T imeF
′

p and SizeF
′

p are set as 10 (days)

and 100 (cubic feet) for a given product p. If the first demand arrives in day 12

(T imeAp = 12) with size 120 (Cubic feet) (SizeAp =120), if α = 0.1, the forecasts

are updated as follows:

T imeFp = 0.1 ∗ 12 + (0.9) ∗ 10 = 10.2 (day)

SizeFp = 0.1 ∗ 120 + (0.9) ∗ 100 = 102 (cubicfeet)

The calculations demonstrate the next demand is forecasted to arrive in 10.2 days

ahead (in day 22.2) with size 102 (cubic feet). When the next actual demand

arrives, the two forecasts will be updated and the two numbers (10.2 and 102) will

become the old forecast values (T imeF
′

p and SizeF
′

p ) for the new forecast.

In developing out control approaches, we assume that the mill would have a

lead time window of “m” time units. Thus, the mill would know the orders that

are to occur within the next “m” time units and forecast the orders to arrive after

that. The mill can then base its control decision on the known and anticipated

orders. In an economic order quantity (EOQ) control setting, it is possible to have

the EOQ vary with the demand forecast (see Silver et al. [43]). This is not so easy

in the case considered here.

All the approaches use available lot sizes (production time of each campaign).

Some may also use the frequency of each campaign. The challenge lies in deciding

the next campaign to run based on information about available campaigns, lot-
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sizes, upcoming demands and on-hand inventory based on the PoT results.

We use simulation to represent inventory behaviour of each approach. From

simulation, information about each product‘s inventory is accessible and can be

calculated based on equation 5.4.

Invpt = Invpt−Tc
+RcαcpTc −Dp

Tc
(5.4)

where:

Invtp: Inventory of product p at the end of time t

Rc: Production input rate

αcp: Fractional output of product p from each unit of campaign c

Tc: Production time of campaign c

Dp
Tc
: Actual demand of product p simulated in time interval Tc

This equation calculates the inventory of each product p based on its inventory

at the beginning of the campaign run for campaign c plus the amount produced

over this time minus the demand.

All control strategies assume that the campaign selection decision is repeatedly

made at the end of each campaign run. A campaign selection criterion which

varies among the control approaches, determines what campaign should be run

next. Henceforth, when we say “campaigns”, we mean the eligible ones that have

been selected by the PoT model.

In simulation terms, there are two events. One is a demand arrival, which

reduces inventory of the relevant product p and also updates the forecasts of

demand size and demand rate (inter-arrival time). The other is the completion

of a campaign, which increases all relevant inventories and then chooses the next

campaign. We consider 5 control approaches.

Approach 1 attempts to find a campaign that produces maximum amount of
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the product that has minimum runout time over all the products.

Approach 2 chooses the best campaign based on minimum expected inventory

values (positive and negative estimated costs) at the end of the campaign produc-

tion run. Neither of the approaches considers allowable campaign frequencies but

uses the campaign production times (from the PoT model).

Approach 3 considers the campaign frequencies and their production times

without paying attention to the inventory positions and upcoming demands. It

schedules campaigns according to the frequencies determined by the PoT model.

Approach 4 is a combination of Approaches 2 and 3. The inventory estimation

process (Approach 2) provides a list of three ranked campaigns, based on minimum

expected future inventory values, while another list of three candidate campaigns

is generated using the campaign frequency requirements (Approach 3). The lists

are updated and compared at the end of each production run and the campaign

existing in both, is chosen. Each element of list 2 (i.e. more urgent campaigns in

terms of the required number of runs) is compared to the elements of list 1 (i.e.

campaigns that create less inventory value). Once a common campaign is found in

both lists, it is chosen. If no common campaign exists, the first ranked campaign

of list 2 will be chosen.

Approach 5, is another combination of Approaches 2 and 3 in which 2 lists are

created (same as Approach 4). Each element of list 1 is compared to list 2, and if

a common one appears, it will be chosen. In the case of no common campaigns,

the first element of list 1 (causing the least future inventory value) will be chosen.

For example list 1 suggests campaigns 3, 4 and 2 in the ascending order of

their estimated inventory values ([3,4,2]) and list 2 contains campaigns 2, 1, and 3

as the three most urgent campaigns ([2,1,3]). Campaigns 2 and 3 are common to

both lists, so are eligible to be chosen. Approach 4 chooses campaign 2 (the most

urgent) while Approach 5 picks up campaign 3 (causing the least future inventory

value).

Simulation is done using Python programming language and related code is
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presented in Appendix M. The following sections detail the proposed approaches.

5.2 Approach 1

In the first approach, the campaign selection criterion is based on the runout time

of products. The demands of “m” time units ahead are considered at the end

of each production run and the product that we are going to runout of first, is

selected. Then the campaign that is capable of producing more of the selected

product is chosen and processed. Therefore, a specific product is picked each time

and the appropriate campaign is processed. The algorithm is as following:

Step 1: At the end of a production run, we look at the inventory of all

products. Some products may currently have a zero or negative inventory. Thus

their run out time is zero. Other products may have an inventory less that the

demands in the next “m” time units. Their run out time is the time that the

sum of the demand sizes exceeds the inventory. In other cases that the current

inventory exceeds the sum of demands in the next “m” time units, the run out

time of each product is computed as formulation 5.5.

ROp
t = m+

(Invpt −∑t+m
t Dp

t )

(forecasted demand per unit time)
(5.5)

where ROp
t is the run out time of product p calculated at time t (i.e. end of a

production run). Invpt is the current inventory of product p while we are at time

t. The summation of demand from time t to the end of “m” time units ahead is

presented as
∑t+m

t Dp
t .

Based on the status of current inventory, we calculate the amount of time we

need for each product to consume what we have in terms of inventory on-hand.

Step 2: We find a product that has minimum runout time (the most urgent
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product). If there is more than one product with run out time equaling zero, we

pick the one that creates the most negative amount of inventory at the end of “m”

time units ahead. This product is the one that, if not produced, will result in a

large negative inventory in future.

Step 3: We select the campaign with maximum production rate (Rcαcp) of

the given product and process it for the related production time (Tc).

Step 4: At the end of the production run (time: t+Sc+Tc) new due times are

available for “m” more time units. So, the due times that were within (t+Sc+Tc,

t + m) are not changed. Again, we go to step 1 and do the calculations. This

procedure continues to the end of simulation time.

Figure 5.1 is a simple flowchart illustrating the steps of Approach 1.
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Figure 5.1: Approach 1 flowchart
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This approach does not consider the required campaign frequencies determined

by the PoT results as well as estimated inventory values. It only emphasizes the

product that will runout first considering the available inventory and demand over

time span of m time units.

5.3 Approach 2

This approach chooses the campaign that has minimum future inventory value at

the end of its production time. The campaigns are ranked based on their future

total inventory values at the end of their production runs and the one with mini-

mum value is selected and processed for the associated amount of time determined

by the PoT model (Tc). At the end of each production run, a new decision is made

and the procedure continues to the end of the simulation time. The algorithm is

described in the following steps:

Step 1: At time t (current time), for each campaign c (from the PoT model)

we calculate the final inventory of every product at the end of its production time

(Tc) while knowing the order arrivals of products over the campaign production

time. This can be done using equation 5.6.

INV cp
t = Invpt +RcαcpTc −

t+Sc+Tc∑
t

Dp
t (5.6)

where INV cp
t is the future inventory of product p at the end of campaign c pro-

duction run (i.e. time t+ Sc + Tc) when the decision is made at time t. Tc is the

running duration (production time) of campaign c resulting from the PoT model.

Dp
t is the actual demand of product p at time t and

∑t+Sc+Tc
t Dp

t represents the

summation of product p demands over campaign c setup and production time

(time interval (t, t + Sc + Tc)). If the production time of any campaign is longer

than “m”, we need to use the forecasted demands for Sc+Tc−m amount of time.
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Step 2: We consider a cost per unit of product p (Vp which is the inventory

value of product p) to calculate an estimated cost related to INV cp
t . Formulations

5.7 and 5.8 are the two possibilities.

Cost+INV cp
t = INV cp

t ∗ Vp if INV cp
t ≥ 0 (5.7)

Cost−INV cp
t = −INV cp

t ∗ Vp if INV cp
t ≤ 0 (5.8)

Step 3: For each campaign c, we calculate the total estimated inventory value

for all the products using equation 5.9. Then we find the campaign with minimum

total estimated inventory value and process it for its related amount of production

time (Tc).

Total Costct =
∑
p

(Cost+INV cp
t ∗ ycpt + Cost−INV cp

t ∗ (1− ycpt )) (5.9)

where ycpt is a binary variable which equals to 1, if calculated INV cp
t is positive.

Otherwise, it is zero.

Step 4: At the end of production run (time: t+ Sc + Tc) of campaign c, new

due times, inventories and forecasts are available for “m” time units ahead. Again,

we go to step 1 and do the calculations. This procedure continues to the end of

the simulation time.

Figure 5.2 is a simple flowchart illustrating the steps of Approach 2.

The campaign selection criterion for this approach is the campaign with mini-

mum estimated inventory value calculated at the end of each production run. This

approach also does not consider the allowable frequencies of campaign runs result-

ing from the PoT. It tries to eliminate extensive positive and negative inventories

over a short horizon.
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Figure 5.2: Approach 2 flowchart

5.4 Approach 3

This approach uses the outputs of the PoT model in terms of eligible campaigns,

their production times and frequencies. At the end of each production run, the

algorithm searches for the most urgent campaign based on its specified frequency

(from the PoT). Thus, it ensures at the end of the year all the campaigns have

been processed for the amount of time determined by the PoT model. The algo-

rithm can be described in the following steps:

Step 1: At current simulation time t (i.e. the end of a campaign production),
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we calculate the required number of runs up to that point of time for each campaign

c, based on equation 5.10.

Required Runsct =
Fc

Total T ime
∗ (t− t0) (5.10)

where Fc is the number of runs (frequency) of campaign c resulting from the

PoT model over a year and Total T ime is the time horizon of that model (e.g.

one year). t0 is the simulation start time. (t− t0( and Total T ime have the same

time units (e.g. hours).

Step 2: We calculate the difference between required and actual number of

runs up to the current time of the simulation (t) and find the campaign that

has maximum difference based on equation 5.11 and process it for the associated

amount of production time (Tc).

Differencect = Required Runsct − Actual Runsct (5.11)

Step 3: At the end of the production run (time: t+Sc+Tc) we go to step 1 and

do the calculations again. This procedure continues to the end of the simulation

time.

Figure 5.3 is a simple flowchart illustrating the steps of Approach 3.

In this approach, we only rely on the results of the PoT model and try to imple-

ment them without consideration for inventory positions and demand occurrence.

This resembles a “push system” in which the production runs are dictated by a

set of predefined schedules, which in this case are initiated by the given number

of campaign runs and their production durations .
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Figure 5.3: Approach 3 flowchart

5.5 Approach 4

As briefly described earlier, approach 4 combines the criteria of Approaches 2 and

3. The campaign selection criterion is based on both the campaign frequency re-

quirements and inventory value estimation by giving more priority to the former.

This approach is addressed in the following steps:

Step 1: At time t (the end of a production run), for each eligible campaign c

we estimate the final inventory of each product at the end of its production run

resulted from the PoT (based on Approach 2). This can be done through equation

5.6. Then the associated inventory value is calculated based on equations 5.7 and

5.8 for each product p from each campaign c. Also, the total estimated inventory

value resulting from each campaign c is calculated according to formulation 5.9. A

list of the 3 best campaigns is created based on ascending order of the estimated

future inventory costs (list 1).

85



Step 2: At the same time as Step 1, for each campaign c, we calculate the re-

quired number of runs up to that point of time based on equation 5.10 (Approach

3). Then we calculate the difference between the required and actual number of

runs for each campaign using equation 5.11 and prepare a list of the 3 most urgent

campaigns (list 2).

Step 3: For each campaign of list 2 starting from the first element, we check if

it exists in list 1. Once a common campaign is found, it is chosen. Otherwise, the

first element of list 2 (the most urgent campaign) will be selected and processed.

Step 4: At the end of the production run (time: t+ Sc + Tc) new due times,

inventories and forecasts are available for “m” time units ahead. Again, we go to

step 1 and find the next campaign. This procedure continues to the end of the

simulation time.

Figure 5.4 is a simple flowchart illustrating the steps of Approach 4. In this
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End of 
simulation 

time? 

End 

No 

Yes 

End

s 
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e
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Compare each element 
of List 2 with List 1 

each

Figure 5.4: Approach 4 flowchart

86



approach, we use the two criteria including minimum estimated inventory value

and meeting the campaign frequency requirement, by paying more attention to

the latter criterion. If a campaign is urgent (based on PoT frequencies) and also

it is one of the three best campaigns that creates less estimated inventory value

(regardless of its rank in list 1), it has the highest priority. If none of the three

urgent campaigns is one of the first three best campaigns (based on the future

inventory value), the campaign which needs to be processed first based on the

PoT campaign frequencies (ranked first in list 2) is chosen.

5.6 Approach 5

This approach is another combination of Approaches 2 and 3. The steps are the

same as Approach 4, with a difference in Step 3 where the campaign checking is

started from list 1, if any of the campaigns in list 1 also exists in list 2 (regardless

of its rank in list 2), it will be chosen. In the case of none common campaigns, the

first element of list 1 (causing the least future inventory value) will be selected.

Figure 5.5 is a simple flowchart illustrating the steps of Approach 5.

In this approach more weight is given to campaigns with less future estimated

inventory values, while simultaneously we consider the required campaign frequen-

cies. However, at the end of simulation, the frequency of campaign runs may not

be equal to the frequencies determined by the PoT model. It is because, more

priority is given to the campaigns with less future inventory values. This may

result in processing certain campaigns more or less than the times determined by

the PoT model.

The following section demonstrates an example to show the performance of

implementing these approaches in two stochastic environments.
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5.7 Example

This section demonstrates the application of the mentioned approaches through

two cases based on the data of Example 2 in chapter 4. In the first case, demand

enters the system in small batches and high frequencies. This procedure creates

near-constant demand over time, while in the second case, demands are assumed to

be more random, with different arrival rates and batch sizes (“bulk” arrivals). In

each case, the performances of control approaches are compared using simulation.

5.7.1 Data

70 products are produced from running 12 campaigns with the production time

and frequencies listed in Table 4.5. To create stochastic demand, we assume that

demand arrivals are based on specific rates over a year (number of arrivals per

year). The time between arrivals is exponentially distributed with mean 1/λp as

shown in equation 5.15. It is assumed that demand sizes are uniformly distributed
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within certain ranges (equation 5.12).

SizeAp ∼ U(Dmin
p , Dmax

p ) (5.12)

Dmin
p = 0.75 ∗ Dp

Ratep
, Dmax

p = 1.25 ∗ Dp

Ratep
(5.13)

T imeAp ∼ exp(λp) (5.14)

λp =
Total time

Ratep
, Meanp =

1

λp

(5.15)

where Dmin
p and Dmax

p are the minimum and the maximum amounts for the de-

mand size of product p at its arrival. Therefore when a demand arrives, it has a

size that fits within this range. If the number of orders of product p over a year

is Ratep, the average demand size is calculated as Dp

Ratep
in which Dp is the total

deterministic demand of product p resulting from the PoT model. The amount

by which each product’s demand size can vary from its mean, is assumed to be

a quarter of average demand size. λp is the average time between arrival and is

calculated as the total available time per year divided by the demand rate. It

is assumed that the time between arrivals has exponential distribution function

(equation 5.14) and the associated mean is represented by Meanp. Total time is

total available time per year.

Two cases are considered for demand arrivals. In the first case, demands arrive

in small batches (sizes) and high frequencies (1000 times per year) to create near-

constant demands. While in the second case, bulk arrivals create more stochastic

demand. Tables 5.1 and 5.2 present the data of deterministic demand (the amount

supplied by the PoT model), arrival rate, average time between arrival and the

mean for the exponential distribution function for each product in Case 1 and

Case 2, respectively. For each case, the average size of each product’s demand per

order is demonstrated in figures 5.6 and 5.7. As can be seen, the average time

between arrivals for Case 1 is 1.82 (hour) for all the products and the order sizes

are less than 722 (cubic ft). In Case 2, average time between arrivals are between
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38.72 and 303.33 (hours) and the maximum average order size is 42,165 (cubic ft).

Product Dp Ratep λp Meanp Product Dp Ratep λp Meanp

(ft3) (#/year) (hour) (1/hour) (ft3) (#/year) (hour) (1/hour)
1 57300.1 1000 1.82 0.549 36 153438.0 1000 1.82 0.549
2 53713.8 1000 1.82 0.549 37 185509.8 1000 1.82 0.549
3 26721.9 1000 1.82 0.549 38 164844.9 1000 1.82 0.549
4 16616.5 1000 1.82 0.549 39 120403.1 1000 1.82 0.549
5 38665.5 1000 1.82 0.549 40 379480.2 1000 1.82 0.549
6 133152.8 1000 1.82 0.549 41 162619.8 1000 1.82 0.549
7 116572.5 1000 1.82 0.549 42 124790.6 1000 1.82 0.549
8 82081.0 1000 1.82 0.549 43 191731.7 1000 1.82 0.549
9 55560.6 1000 1.82 0.549 44 213670.7 1000 1.82 0.549
10 134831.8 1000 1.82 0.549 45 721344.9 1000 1.82 0.549
11 100768.6 1000 1.82 0.549 46 40472.8 1000 1.82 0.549
12 64906.1 1000 1.82 0.549 47 30156.3 1000 1.82 0.549
13 27187.0 1000 1.82 0.549 48 69652.5 1000 1.82 0.549
14 23478.7 1000 1.82 0.549 49 104758.7 1000 1.82 0.549
15 49623.5 1000 1.82 0.549 50 378920.5 1000 1.82 0.549
16 18938.4 1000 1.82 0.549 51 12302.2 1000 1.82 0.549
17 10191.5 1000 1.82 0.549 52 7918.9 1000 1.82 0.549
18 6955.8 1000 1.82 0.549 53 22650.0 1000 1.82 0.549
19 6042.5 1000 1.82 0.549 54 30350.0 1000 1.82 0.549
20 14248.9 1000 1.82 0.549 55 138511.8 1000 1.82 0.549
21 8733.3 1000 1.82 0.549 56 3873.3 1000 1.82 0.549
22 5225.0 1000 1.82 0.549 57 5041.3 1000 1.82 0.549
23 5732.4 1000 1.82 0.549 58 13606.5 1000 1.82 0.549
24 3022.8 1000 1.82 0.549 59 13674.3 1000 1.82 0.549
25 3121.8 1000 1.82 0.549 60 89097.6 1000 1.82 0.549
26 4430.0 1000 1.82 0.549 61 93567.2 1000 1.82 0.549
27 3361.3 1000 1.82 0.549 62 96203.9 1000 1.82 0.549
28 4248.7 1000 1.82 0.549 63 81762.5 1000 1.82 0.549
29 4700.5 1000 1.82 0.549 64 68409.3 1000 1.82 0.549
30 10293.6 1000 1.82 0.549 65 164235.0 1000 1.82 0.549
31 86363.2 1000 1.82 0.549 66 56057.1 1000 1.82 0.549
32 73446.2 1000 1.82 0.549 67 134597.3 1000 1.82 0.549
33 42712.4 1000 1.82 0.549 68 193888.5 1000 1.82 0.549
34 31998.6 1000 1.82 0.549 69 166173.7 1000 1.82 0.549
35 88579.7 1000 1.82 0.549 70 318409.0 1000 1.82 0.549

Table 5.1: Case 1: Basic data of stochastic demand generation process

Product Dp Ratep λp Meanp Product Dp Ratep λp Meanp

(ft3) (#/year) (hour) (1/hour) (ft3) (#/year) (hour) (1/hour)
1 57300.1 23 79.13 0.013 36 153438.0 10 182.00 0.005
2 53713.8 13 140.00 0.007 37 185509.8 19 95.79 0.010
3 26721.9 41 44.39 0.023 38 164844.9 7 260.00 0.004
4 16616.5 27 67.41 0.015 39 120403.1 47 38.72 0.026
5 38665.5 18 101.11 0.010 40 379480.2 9 202.22 0.005
6 133152.8 13 140.00 0.007 41 162619.8 36 50.56 0.020
7 116572.5 20 91.00 0.011 42 124790.6 18 101.11 0.010
8 82081.0 22 82.73 0.012 43 191731.7 16 113.75 0.009
9 55560.6 46 39.57 0.025 44 213670.7 33 55.15 0.018
10 134831.8 35 52.00 0.019 45 721344.9 21 86.67 0.012
11 100768.6 15 121.33 0.008 46 40472.8 10 182.00 0.005
12 64906.1 29 62.76 0.016 47 30156.3 30 60.67 0.016
13 27187.0 13 140.00 0.007 48 69652.5 28 65.00 0.015
14 23478.7 23 79.13 0.013 49 104758.7 17 107.06 0.009
15 49623.5 23 79.13 0.013 50 378920.5 21 86.67 0.012
16 18938.4 11 165.45 0.006 51 12302.2 13 140.00 0.007
17 10191.5 21 86.67 0.012 52 7918.9 21 86.67 0.012
18 6955.8 26 70.00 0.014 53 22650.0 36 50.56 0.020
19 6042.5 28 65.00 0.015 54 30350.0 13 140.00 0.007
20 14248.9 30 60.67 0.016 55 138511.8 6 303.33 0.003
21 8733.3 39 46.67 0.021 56 3873.3 26 70.00 0.014
22 5225.0 41 44.39 0.023 57 5041.3 27 67.41 0.015
23 5732.4 14 130.00 0.008 58 13606.5 17 107.06 0.009
24 3022.8 11 165.45 0.006 59 13674.3 30 60.67 0.016
25 3121.8 22 82.73 0.012 60 89097.6 41 44.39 0.023
26 4430.0 21 86.67 0.012 61 93567.2 35 52.00 0.019
27 3361.3 46 39.57 0.025 62 96203.9 12 151.67 0.007
28 4248.7 40 45.50 0.022 63 81762.5 7 260.00 0.004
29 4700.5 9 202.22 0.005 64 68409.3 23 79.13 0.013
30 10293.6 27 67.41 0.015 65 164235.0 19 95.79 0.010
31 86363.2 37 49.19 0.020 66 56057.1 20 91.00 0.011
32 73446.2 46 39.57 0.025 67 134597.3 31 58.71 0.017
33 42712.4 17 107.06 0.009 68 193888.5 14 130.00 0.008
34 31998.6 43 42.33 0.024 69 166173.7 28 65.00 0.015
35 88579.7 9 202.22 0.005 70 318409.0 20 91.00 0.011

Table 5.2: Case 2: Basic data of stochastic demand generation process
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For simplicity, We present the inventory behaviour of just 7 products (products

10, 20, 30, 40, 50, 60 and 70). We use a lead time window of 4 weeks (“m” equals

4 weeks or 140 hours). As mentioned earlier, we assume actual demand inter-

arrival times and sizes are generated based on exponential and uniform distribution

functions respectively.

The forecasting procedure is based on equations 5.2 and 5.3 in which α = 0.4.

The procedure we used to simulate our demand is that once a demand arrival time

and size is available (within m=4 weeks), the next forecasted demand arrival time

and size are triggered. At the end of each production run, new demands and new

forecasts are available. Initial inventory of each product is assumed to be zero.
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5.7.2 Results and Discussion

For each case (Case 1 and Case 2), we implement simulation over 4 years. In each

case, stochastic demand is generated and fed into the system and all approaches

are examined. For comparison purposes, all approaches use the same demand data

during a simulation run. To demonstrate the behaviour of the system, figures in

this section present the data and results related to just 7 products (10, 20, 30, 40,

50, 60 and 70) over a simulation run.

Figures 5.8 and 5.9 illustrate the demands of the mentioned products over the

first year of the simulation for Case 1 and Case 2, respectively. As mentioned

earlier, demands in Case 1 are more frequent but with a correspondingly smaller

size than Case 2. Thus, the difference between realized demand and the average

demand for each product in a given time interval is less in Case 1. This will result

in obtaining stochastic demand that is near-constant and more consistent with

the demand obtained from the PoT model. Case 1 is used to examine the control

approaches when the system faces near-constant demand arrivals.

As opposed to Case 1, Case 2 represents a stochastic situation in which orders

arrive with different rates and more varying sizes (bulk arrivals). Case 2 poses more

difficulties because with bulk arrivals, the difference between realized demand and

its expected value increases. For example, in figure 5.9 we expected the demand

of product 40 to happen over 9 orders (Table 5.2) while we see 6 orders happened

in the actual process. These differences, however are unavoidable when we deal

with the stochastic environment.

Through the simulation, we can monitor the inventory status of each product

by using different control approaches. All the figures in this section present the

inventory of 7 particular products (10, 20, 30, 40, 50, 60, 70) over 4 years of one

simulation run.
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Figure 5.8: Case 1: Demands of 7 products over the first year
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Figure 5.9: Case 2: Demands of 7 products over the first year

Figures 5.10- 5.14 show the inventory of each of the 7 products using Approach

1 to Approach 5 for Case 1.

Figure 5.15 shows the schedules created by each approach for the first 16 weeks

of the simulation in Case 1.
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Figure 5.10: Case 1: Inventory status of 7 products using Approach 1
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Figure 5.11: Case 1: Inventory status of 7 products using Approach 2
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Figure 5.12: Case 1: Inventory status of 7 products using Approach 3
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Figure 5.13: Case 1: Inventory status of 7 products using Approach 4
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Figure 5.14: Case 1: Inventory status of 7 products using Approach 5
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Figure 5.15: Case 1: Weekly campaign schedules for the first 16 weeks of 5 Approaches

Figures 5.16- 5.20 demonstrate the inventory of each of the 7 products using

Approach 1 to Approach 5 over 4 years of a simulation run for Case 2.

Figure 5.21 shows the schedules created from each approach for the first 16

weeks of the simulation in Case 2.
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Figure 5.16: Case 2: Inventory status of 7 products using Approach 1
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Figure 5.17: Case 2: Inventory status of 7 products using Approach 2
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Figure 5.18: Case 2: Inventory status of 7 products using Approach 3
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Figure 5.19: Case 2: Inventory status of 7 products using Approach 4
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Figure 5.20: Case 2: Inventory status of 7 products using Approach 5
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Figure 5.21: Case 2: Weekly campaign schedules for the first 16 weeks of 5 Approaches

Figures 5.22 and 5.23 show the number of runs of each campaign over the first

year simulation in Case 1 and Case 2. Each figure compares the results of each

approach with the number of runs proposed by the PoT model.
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Figure 5.22: Case 1: Number of runs of each campaign over the first year of simulation
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Figure 5.23: Case 2: Number of runs of each campaign over the first year of simulation

Comparing two figures 5.10 and 5.16, we see when demand arrivals have high

frequencies (Case 1), Approach 1 can better control the inventory levels, so that

we do not see very large positive or negative inventories lasting for long periods

over the simulation time in Figure 5.10. As orders arrive with short inter-arrival

times and small sizes in Case 1, successive runs of a certain campaign to fulfill the

demand of a specific product is rarely required (Approach 1 of Figure 5.15). In

this case, the number of campaign runs over a year is close to the ones determined

by the PoT problem. This can be seen by comparing black and red bars in Figure

5.22. However, in Case 2, where demands have bulk arrivals (less frequent with

large order size), we usually need successive runs of a specific campaign to fill the

demand of a required product. This poses difficulties, because long runs of a chosen

campaign not only produces the most required product (with minimum runout

time) but it may simultaneously create significant amounts of other products which

already have high inventory levels. For example, Figure 5.21 illustrates successive

runs of campaign 110 over the first three weeks. Referring to Appendix I, this

campaign creates large inventories of products 45, 50, 55, 60 and 40 at the same

time. Thus, Approach 1 can perform more efficiently in the case of near-constant

demand arrivals.

Figures 5.11 and 5.17 provide the results of Approach 2 for Case 1 and Case 2,

respectively. In both cases, Approach 2 creates negative inventory of few products
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such as products 70. Referring to Figures 5.15 and 5.21, we see successive runs of

campaign 70. Moreover, the number of times that campaign 70 has been processed

over a year (i.e. 43 times in Case 1, and 127 times in Case 2) is much greater

than the one imposed by the PoT model (i.e. 6.5 times)(Figures 5.22 and 5.23).

Referring to Section 5.3, the selection criterion of Approach 2 is the campaign

with minimum total future inventory cost at the end of its production run. The

reason of having many runs of campaign 70 is that this campaign has the shortest

production time among other campaigns (i.e. 1.54 hours). This short production

time imposes less production and most of the time less excess inventory of unnec-

essary products at the end of the campaign’s production time. Thus the chance

of choosing campaign 70 is high at the decision making time as it usually creates

less inventory cost. However, this campaign does not produce some products such

as 50 and 70. Considering zero initial inventory for these products, processing

campaign 70 for a large number of times, results in more negative inventory of

such products. Although this approach seems to produce large positive or negative

inventory levels for some products, there are only 3 products in Case 1, with large

positive and negative inventories over all 70 products during 4 years. In Case 2,

the number of products with uncontrolled inventory levels is 6.

Approach 3 only uses the required campaign frequencies (number of times a

campaign is processed) determined by the PoT model, as its campaign selection

criterion, regardless of the inventory positions or order arrivals. As with the other

approaches, every time a campaign is chosen, it is processed for the amount of

time resulted from the PoT model.

Figures 5.12 and 5.18 show the inventory behaviour of the 7 products when

Approach 3 is applied to Case 1 and Case 2. As can be seen, in the near-constant

case (Case 1), the inventories of some products gradually increase (e.g. product

60) or decrease (e.g. product 70). However, in Case 2, we see large positive and

negative inventories lasting for long periods of time.

In both cases, a part of this problem arises from the stochastic nature of the de-
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mand arrivals which causes the realized demand to be different than the expected

value (deterministic demand). For instance, in Case 1, the annual deterministic

demand of product 60 over the first year is 89,097 (cubic feet). However the total

realized demand over this period is 86,912 (cubic feet). The actual demand is 2,185

(cubic feet) less than what is expected. Thus using the same PoT requirements

create excess inventory of this product over the first year. On the other side, the

expected demand of product 70 in Case 1, over the first year is 318,409 (cubic

feet), but the total actual demand ends up with 324,372 (cubic feet). The 5,606

(cubic feet) difference, results in negative inventory of this product when we use

the same campaigns and frequencies imposed the PoT model.

When demand has bulk arrivals (Case 2), the difference between actual de-

mand and its expected value increases. This results in large positive and negative

inventories of some products when Approach 3 is used. For example, the total ac-

tual demand of product 40 is 182,642 (cubic feet) less than its deterministic value

in the first 2 years. As shown in figure 5.18, this causes large positive inventory

of this product over this period. However, the total actual demand over the third

year is 309,635 (cubic feet) greater than the deterministic demand of the PoT.

This results in descending trend of the inventory of this product. Since Approach

3 does not violate the number of campaign runs determined by the PoT results,

it can not effectively control the process in the case of bulk demand arrival (Case

2).

Another issue underlying Approach 3 is the initial inventory. We always con-

sider zero initial inventory and constant demand for the PoT model. However,

due to the stochastic nature of demand, we may end up with positive or negative

inventories at the end of a year. If we do not adjust the new initial inventories

(which in this case we did not) for the new horizon, Approach 3, can not do it

either.

The resulting schedules of Approach 3 are shown in figures 5.15 and 5.21. The

number of each campaign run is based on the PoT campaign frequency require-
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ments (see figure 5.23). For instance, campaigns 19 (red) is processed every 2

weeks (26 times per year) and campaign 90 (light green) is run every 8 weeks (6.5

times per year). Thus, the number of campaign runs are the same as the PoT

model (figures 5.22 and 5.23).

Approach 4 (shown in figures 5.13 for Case 1 and 5.19 for Case 2), as a com-

bination of Approaches 2 and 3 with more emphasis on Approach 3, creates very

similar graphs and schedules to Approach 3. In figures 5.15 and 5.21 we see that

only the order of some campaigns in Approach 4 is different from Approach 3. The

two problems including the stochastic nature of demand and the initial inventory

(as mentioned for Approach 3) exist here because of the assumption underlying

this approach that forces to process campaigns for the same number of times as

determined by the PoT model. Figures 5.22 and 5.23 imply that Approach 4 has

the same number of campaign runs as the PoT model.

Figures 5.14 and 5.20 present the results of implementing Approach 5 in which

the two criteria of Approaches 2 and 3 are combined with more focus on Approach

2 (the campaign with minimum future inventory cost). The inventory behaviour

is similar to the situation when Approach 2 is applied. However, in both cases,

this approach can improve the inventory level of some products such as 70 (from

-100,000 to -50,000 (cubic feet) in Case 1 and from -600,000 to -500,000 (cubic

feet) in Case 2).

Similar to Approach 2, long runs of a specific campaign is possible (such as

campaign 70) but the number of each campaign run is influenced by the required

frequencies posed by the PoT model. Although, at the end of the year, the number

of each campaign run is different than the the PoT’s, it will cause more diverse

runs than Approach 2 (figures 5.22 and 5.23). For example the number of runs of

campaign 70 in Case 2, is reduced from 127 in Approach 2 to 73 in this approach.

The main objective was to examine how the campaign lot sizes developed

through the powers of two model might perform. In order to do so, we had to

develop some concept of how we might actually implement the PoT lot sizes. The
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5 approaches discussed here are some examples. However, what rapidly becomes

evident is that even if the average demand remains constant, the stochastic process

behind it matters. If the demand arrives as a poisson process with a high arrival

rate but small demand size and variance at each arrival, then variance of total

demand over time intervals such as a month can be small enough to be regarded

as effectively constant. However, if the same average demand arrives as a poisson

process with a slow arrival rate and a large mean demand size and variance for

each arrival, then the actual demand in a period can be quite different from the

expected demand. Over that period the lot sizes and frequencies computed by the

powers of two model will not perform well.

The PoT model does not consider initial inventory at the beginning of the time

horizon. Thus if a product ends up with large positive or negative inventory at the

end of a year, it poses difficulties in the next year’s plan. From our simulations,

it is obvious that such a situation is entirely possible, even given the constant

average demand that we have used. One possible approach might be to take

the initial excess (shortage) of inventory and subtract (add) it to the anticipated

annual demand for the coming year and re-calculate campaign lot sizes. However

it is dealt with, it appears that a process of periodic re-planning is necessary.
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Chapter 6

Conclusion

To better control the lumber production process through inventory minimization,

a 3-stage control mechanism was proposed.

At the first stage, a quick model was designed which would work as a simple

lumber value optimizer. This algorithm creates a large number of cutting patterns

once, evaluates the potential patterns for each log within a class of logs, and

chooses the pattern which would create an optimal breakdown and thus an optimal

value yield on each log based on a specified price list. A combination of a log class

and a price list defines a set of lumber outputs in the form of a “campaign”.

Thus lumber output proportions per unit volume of a campaign can be quickly

calculated through this process. The campaign concept gives a useful way of

dealing with the joint production process.

Although, in this study we generated 126 campaigns, this efficient model, coded

in Python, is capable of creating a wide range of campaigns through inputting new

classes of logs and price lists. We showed simple ways of generating price lists in

Chapter 3. For the most part these are adequate in allowing us to meet demand.

As we will discuss, there are other options that we have not yet experimented

with.

The second stage involves planning the campaigns in a sawmill. Due to the

divergent production nature of the sawing process, we needed an algorithm to ex-
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ploit lot-scheduling principles. In the classical setting, the economic lot-scheduling

takes into account holding costs and setup times to find a production strategy that

minimizes inventory while respecting capacity constraints. We used a Powers-of-

Two approach implemented as an MIP with the novelty of our approach being

that, instead of focusing on product lot sizes, we focus on campaign lot sizes. This

is appropriate for a sawmill because setup times occur for campaigns, not products

and because it is impossible to separate the production of individual products.

The model was developed to provide an assessment of the inventory levels

required to deal with a given set of annual demands in the simplest case when

demands are constant. The model uses the campaigns developed in Chapter 3 and

operates at a realistic scale with a reasonably large number of potential campaigns

and a complex product mix of 70 products. The model allows the calculation of

campaign lot sizes and the frequency with which campaigns would be run.

The campaigns that we defined and used appear to be adequate. However it is

possible to generate more campaigns in different ways. One is by using different

price lists. One way to obtain such prices is to solve the model as a linear program

without insisting on integer solutions. Then the shadow prices (see Williams [53]

on the demand constraints, Chapter 4, equations 4.5) provide a price list that

could be used in the campaign generation procedure of Chapter 3. An alternative

way is to first solve the MIP model of chapter 4 for an optimal or approximately

optimal solution. If the binary variables resulting from this solution are fixed

and the model solved again as a linear program, once again, shadow prices will

be available on the constraint 4.5 which can be used as price list in campaign

generation. It would be useful as further research to see if improved campaign

generation procedures would affect inventory levels.

The final stage speaks to scheduling campaigns and dealing with the stochastic

nature of demand. The Powers-of-Two model calculates campaign frequencies and

production levels. It does not address scheduling, although the history of powers

of two approaches, discussed in Chapter 2, suggest that scheduling is facilitated
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by a powers of two lot size. We did not look scheduling specifics in this section.

Instead, we were interested in how the scheduling might respond to different types

of stochastic demand. Through the PoT model, appropriate campaigns, associated

frequencies and running durations were available. Using a simulation environment,

we created five control approaches that would use the outputs of the PoT model

to examine the performance of the PoT model and schedule campaigns over short

time periods in the case of stochastic demand.

The stochastic demand was simulated through two cases. In the first case, de-

mand had high arrival frequencies and small demand batch sizes. This simulated a

near-constant demand. In the second case, demand had bulk arrivals with varying

sizes. Through the simulation, the performances of these approaches were evalu-

ated in the cases. The PoT based control approaches were reasonably effective,

when demand was near constant. Even here, there were some problems due to the

initial inventories not being as required and due to the demand realizations not

corresponding exactly to the expected constant demand levels. Bulk arrivals of

demand posed even more difficulties in the control processes. A part of these diffi-

culties was caused by the stochastic nature of demand arrivals. When demand has

bulk arrivals, the difference between realized demand and its expected value can

be quite substantial over quite long periods of time. Thus, using the requirements

imposed by the PoT model did not control the inventory levels efficiently.

A traditional lean manufacturing approach to a capacity constrained manufac-

turing facility is the use of a cyclic EPEI production strategy. Even with constant

demands and individually produced products, it isn’t clear that an EPEI strat-

egy makes sense because the demand for and value of specific products can be

quite variable. In this thesis we showed how to create campaigns to deal with

the joint production of many products. Using the campaign concept, the PoT

model developed in Chapter 4 allows us to calculate lot sizes and frequencies for

each product that can meet annual demands at minimal cycle inventory. Even

with the limited set of price lists we used in our campaign generation, we were
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able to come quite close to meeting demand for a large number of products using

appropriate lot sizes for a fairly small number of campaigns. In Chapter 5, we

investigated if these campaigns can be implemented in an automatic fashion that

can cope with demand that is constant in expected value but with significant vari-

ance. The simulations indicate that such an automatic pull process is not likely

to work well. This implies that a more activist production planning process with

frequent re-planning is necessary. We have not carried out such a process in this

thesis. An example of such a process can be found in Saadatyar [41].

There are many different possible areas of future research suggested by this

thesis.

Some of these involve looking at more and different types of campaigns. One

issue is multi-species issues. For example if we process both spruce and pine logs

then a given piece size in two different species may be two different products. At

one level, this makes little mathematical difference to the models of chapter 4.

However, when running a pine campaign, no spruce products are produced. This

means that planning and scheduling these campaigns may be more important.

Another involves different sorting strategies. We looked at sorting by length in

Chapter 3. It is also possible to sort by diameter. This may give greater control

of the size profile of the products. Finally, we can develop new price lists in order

to develop more appropriate campaigns. As discussed above one way to do this is

through the use of shadow prices.

A question we have not looked at is log buying strategies. Finished products

are not the only inventory in the sawmill. If we know what campaigns we are

running and when, this suggests which logs need to be bought and the directions

given to the harvesters in terms of log lengths and diameters. How campaign

processing affects log procurement and conversely how log procurement affects

campaign production needs study.

The main issue raised by this thesis is the nature of production planning.

Unless demand for products are constant then a pure pull process is unlikely to
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work for the reasons that we have seen above. Saadatyar [41] may provide some

answers.
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Appendix A

Formulas for Right-left Cuts

Vertical right-left sub-cuts Horizontal right-left sub-cuts

For each Tl
RL where: For each Tl

RL where:

Tl
RL ≤ Tj

m (A.1) Tl
RL ≤ R− (

Wj
m

2
+ kerf) (A.2)

We calculate all the combinations of possi-
ble widths and find Wl

RL.
We calculate all the combinations of possi-
ble widths and find Wl

RL.
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Appendix B

Market Price for Doug Fir Lumber

Lumber Market Lumber Market Lumber Market
dimension price($) dimension price($) dimension price($)

2x4x8 2.45 2x10x8 6.77 4x6x8 10.69
2x4x10 3.07 2x10x10 8.46 4x6x10 13.37
2x4x12 3.68 2x10x12 10.74 4x6x12 16.04
2x4x14 4.24 2x10x14 12.53 4x6x14 18.71
2x4x16 5.34 2x10x16 14.32 4x6x16 23.11
2x4x18 4.97 2x10x18 16.11 4x6x18 24.30
2x4x20 5.52 2x10x20 17.90 4x6x20 24.30
2x6x8 3.87 2x12x8 8.50 6x6x8 17.66
2x6x10 4.83 2x12x10 10.62 6x6x10 22.48
2x6x12 5.80 2x12x12 12.74 6x6x12 27.95
2x6x14 6.77 2x12x14 15.36 6x6x14 29.20
2x6x16 7.46 2x12x16 18.69 6x6x16 35.96
2x6x18 8.30 2x12x18 21.03 6x6x18 39.73
2x6x20 8.30 2x12x20 23.36 6x6x20 44.96
2x8x8 5.29 4x4x8 6.41 6x8x8 23.54
2x8x10 6.61 4x4x10 8.01 6x8x10 29.16
2x8x12 7.93 4x4x12 10.53 6x8x12 35.96
2x8x14 10.03 4x4x14 12.28 6x8x14 41.20
2x8x16 11.46 4x4x16 15.92 6x8x16 46.22
2x8x18 12.89 4x4x18 17.75 6x8x18 52.97
2x8x20 14.32 4x4x20 19.90 6x8x20 59.94
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Appendix C

Length of Sub-cuts for Horizontal Above-below

Seqj
AB: Set of sub-cuts widths of the above-below cut with Yi,j number of Wifor

each TAB
j For each thickness TAB

j when main cut with thickness Tm
f and width

Wm
f is fixed:

Set Yijk = 0

Step 1: Find Wmin = Min[Seqj
AB]

Step 2: Keep i if Wmin = Wi

Step 3: Calculate rWaneUD, rWaneSideandrWane

rWaneSide =

√
(
Tm
f

2
+ kerf +WAB

j

2

+ ((
1− wanePrSide

2
∗ Tj

AB)2 (C.1)

rWaneUD =

√
(
Tm
f

2
+ kerf +WAB

j − (wanePrUD ∗Wmin))2 + (
Tj

AB

2
)2 (C.2)

rWane = Maximum(rWaneUD, rWaneSide) (C.3)

Step 4: Calculate Lwane

Lwane = �Min{L,L ∗ (1− rWane−RS

RL −RS

)}/2� ∗ 2 (C.4)

Step 5: If Lwane = L, set L as the length of remaining cuts (Yijk = Yijk + Yi,j

where Lk = L) and STOP.

Otherwise go to step 6.

Step 6: If Lwane = Lk, set Yijk = Yijk + 1 and Yi,j = Yi,j − 1
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Step 7: Let WAB
j = WAB

j − (Wmin + kerf)

Step 8: Update the set of width, [Seqj
AB] = [Seqj

AB]− [Wmin]

Step 9: If [Seqj
AB] �= ∅ go to step 1.

Otherwise STOP.
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Appendix D

Length of Sub-cuts for Vertical Above-below

For each thickness TAB
j when main cut with thickness Tm

f and width Wm
f is fixed:

Set WR = WL
WAB

j

2
, BR = 1, BL = 0 (Starting from the right half), Yijk = 0

Step 1: Find Wmin = Min[Seqj
AB]

Step 2: Keep i if Wmin = Wi

Step 3: Calculate rWaneUD, rWaneSideandrWane

rWaneSide =

√
((WR ∗BR) + (WL ∗BL))

2 + ((
1− wanePrSide

2
) ∗ TAB

j + kerf +
Tm
f

2
)
2

(D.1)

rWaneUD =

√
((WR ∗BR) + (WL ∗BL)− (wanePrUD ∗Wmin))

2 + (
Tm
j

2
+ kerf + TAB

j )
2

(D.2)

rWane = Maximum(rWaneUD, rWaneSide) (D.3)

Step 4: Calculate Lwane

Lwane = �Min{L,L ∗ (1− rWane−RS

RL −RS

)}/2� ∗ 2 (D.4)

Step 5: If Lwane = L, set L as the length of remaining cuts (Yijk = Yijk + Yi,j

where Lk = L) and STOP.

Otherwise go to step 6.

Step 6: If Lwane = Lk, set Yijk = Yijk + 1 and Yi,j = Yi,j − 1

Step 7: Let WR = WR− (Wmin+kerf)∗BR and WL = WL− (Wmin+kerf)∗BL
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Step 8: Update the set of width, [Seqj
AB] = [Seqj

AB] − [Wmin] and let B =

BR, BR = BL, BL = B (switch between WR and WL)

Step 9: If [Seqj
AB] �= ∅ go to step 1.

Otherwise STOP.
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Appendix E

Length of Sub-cuts for Vertical Right-left

Seqj
RL: Set of sub-cuts widths of the right-left cut with Zi,j number of Wifor each

TRL
j For each thickness TRL

j when main cut with thickness Tm
f and width Wm

f is

fixed:

Set Zijk = 0

Step 1: Find Wmin = Min[Seqj
RL]

Step 2: Keep i if Wmin = Wi

Step 3: Calculate rWaneUD, rWaneSideandrWane

rWaneSide =

√
(
Wm

f

2
+ kerf +WRL

j

2

+ ((
1− wanePrSide

2
∗ Tj

RL)2 (E.1)

rWaneUD =

√
(
Wm

f

2
+ kerf +WRL

j − (wanePrUD ∗Wmin))2 + (
Tj

RL

2
)2 (E.2)

rWane = Maximum(rWaneUD, rWaneSide) (E.3)

Step 4: Calculate Lwane

Lwane = �Min{L,L ∗ (1− rWane−RS

RL −RS

)}/2� ∗ 2 (E.4)

Step 5: If Lwane = L, set L as the length of remaining cuts (Zijk = Zijk + Zi,j

where Lk = L) and STOP.

Otherwise go to step 6.

Step 6: If Lwane = Lk, set Zijk = Zijk + 1 and Zi,j = Zi,j − 1
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Step 7: Let WRL
j = WRL

j − (Wmin + kerf)

Step 8: Update the set of width, [Seqj
RL] = [Seqj

RL]− [Wmin]

Step 9: If [Seqj
RL] �= ∅ go to step 1.

Otherwise STOP.
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Appendix F

Length of Sub-cuts for Horizontal Right-left

For each thickness TRL
j when main cut with thickness Tm

f and width Wm
f is fixed:

Set WR = WL
WRL

j

2
, BR = 1, BL = 0 (Starting from the right half), Zijk = 0

Step 1: Find Wmin = Min[Seqj
RL]

Step 2: Keep i if Wmin = Wi

Step 3: Calculate rWaneUD, rWaneSideandrWane

rWaneSide =

√
((WR ∗BR) + (WL ∗BL))

2 + ((
1− wanePrSide

2
) ∗ TRL

j + kerf +
Wm

f

2
)
2

(F.1)

rWaneUD =

√
((WR ∗BR) + (WL ∗BL)− (wanePrUD ∗Wmin))

2 + (
Tm
j

2
+ kerf + TRL

j )
2

(F.2)

rWane = Maximum(rWaneUD, rWaneSide) (F.3)

Step 4: Calculate Lwane

Lwane = �Min{L,L ∗ (1− rWane−RS

RL −RS

)}/2� ∗ 2 (F.4)

Step 5: If Lwane = L, set L as the length of remaining cuts (Zijk = Zijk + Zi,j

where Lk = L) and STOP.

Otherwise go to step 6.

Step 6: If Lwane = Lk, set Zijk = Zijk + 1 and Zi,j = Zi,j − 1

Step 7: Let WR = WR− (Wmin+kerf)∗BR and WL = WL− (Wmin+kerf)∗BL
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Step 8: Update the set of width, [Seqj
RL] = [Seqj

RL] − [Wmin] and let B =

BR, BR = BL, BL = B (switch between WR and WL)

Step 9: If [Seqj
RL] �= ∅ go to step 1.

Otherwise STOP.
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Appendix G

Campaign Definitions

Log classes are categorized in three types: small, large and mix.

Small log class include logs with small radius in range (2-3) (in) and length in

range (8-14) (ft).

A large log class has small radius with lognormal(1.198,0.323) (in) distribution

and length in range (8-18) (ft).

The mix classes combine both small and large classes and sort the logs according

to specific lengths as shown in following figure.
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Campaign Log class Price list Campaign Log class Price list
1 Small 1 (actual price) 64 10 ≤ Length < 12ft 12 (thickness=6 in)
2 Small 2 (volume) 65 10 ≤ Length < 12ft 13 (thickness=8 in)
3 Small 3 (larger widths) 66 10 ≤ Length < 12ft 14 (thickness=10 in)
4 Small 4 (larger thicknesses) 67 10 ≤ Length < 12ft 15 (thickness=12 in)
5 Small 5 (larger lengths) 68 10 ≤ Length < 12ft 16 (length=8 ft)
6 Small 6 (width=1 in) 69 10 ≤ Length < 12ft 17 (length=10ft)
7 Small 7 (width=2 in)
8 Small 8 (width=4 in) 70 12 ≤ Length < 14ft 1 (actual price)
9 Small 9 (width=6 in) 71 12 ≤ Length < 14ft 2 (volume)
10 Small 10 (thickness=3 in) 72 12 ≤ Length < 14ft 3 (larger widths)
11 Small 11 (thickness=4 in) 73 12 ≤ Length < 14ft 4 (larger thicknesses)
12 Small 12 (thickness=6 in) 74 12 ≤ Length < 14ft 5 (larger lengths)
13 Small 13 (thickness=8 in) 75 12 ≤ Length < 14ft 6 (width=1 in)
14 Small 16 (length=8 ft) 76 12 ≤ Length < 14ft 7 (width=2 in)
15 Small 17 (length=10ft) 77 12 ≤ Length < 14ft 8 (width=4 in)
16 Small 18 (lenth=12 ft) 78 12 ≤ Length < 14ft 9 (width=6 in)

79 12 ≤ Length < 14ft 10 (thickness=3 in)
17 Large 1 (actual price) 80 12 ≤ Length < 14ft 11 (thickness=4 in)
18 Large 2 (volume) 81 12 ≤ Length < 14ft 12 (thickness=6 in)
19 Large 3 (larger widths) 82 12 ≤ Length < 14ft 13 (thickness=8 in)
20 Large 4 (larger thicknesses) 83 12 ≤ Length < 14ft 14 (thickness=10 in)
21 Large 5 (larger lengths) 84 12 ≤ Length < 14ft 15 (thickness=12 in)
22 Large 6 (width=1 in) 85 12 ≤ Length < 14ft 16 (length=8 ft)
23 Large 7 (width=2 in) 86 12 ≤ Length < 14ft 17 (length=10ft)
24 Large 8 (width=4 in) 87 12 ≤ Length < 14ft 18 (lenth=12 ft)
25 Large 9 (width=6 in)
26 Large 10 (thickness=3 in) 88 14 ≤ Length < 16ft 1 (actual price)
27 Large 11 (thickness=4 in) 89 14 ≤ Length < 16ft 2 (volume)
28 Large 12 (thickness=6 in) 90 14 ≤ Length < 16ft 3 (larger widths)
29 Large 13 (thickness=8 in) 91 14 ≤ Length < 16ft 4 (larger thicknesses)
30 Large 14 (thickness=10 in) 92 14 ≤ Length < 16ft 5 (larger lengths)
31 Large 15 (thickness=12 in) 93 14 ≤ Length < 16ft 6 (width=1 in)
32 Large 16 (length=8 ft) 94 14 ≤ Length < 16ft 7 (width=2 in)
33 Large 17 (length=10ft) 95 14 ≤ Length < 16ft 8 (width=4 in)
34 Large 18 (lenth=12 ft) 96 14 ≤ Length < 16ft 9 (width=6 in)
35 Large 19 (length=14 ft) 97 14 ≤ Length < 16ft 10 (thickness=3 in)
36 Large 20 (length=16 ft) 98 14 ≤ Length < 16ft 11 (thickness=4 in)

99 14 ≤ Length < 16ft 12 (thickness=6 in)
37 Length < 10ft 1 (actual price) 100 14 ≤ Length < 16ft 13 (thickness=8 in)
38 Length < 10ft 2 (volume) 101 14 ≤ Length < 16ft 14 (thickness=10 in)
39 Length < 10ft 3 (larger widths) 102 14 ≤ Length < 16ft 15 (thickness=12 in)
40 Length < 10ft 4 (larger thicknesses) 103 14 ≤ Length < 16ft 16 (length=8 ft)
41 Length < 10ft 5 (larger lengths) 104 14 ≤ Length < 16ft 17 (length=10ft)
42 Length < 10ft 6 (width=1 in) 105 14 ≤ Length < 16ft 18 (lenth=12 ft)
43 Length < 10ft 7 (width=2 in) 106 14 ≤ Length < 16ft 19 (length=14 ft)
44 Length < 10ft 8 (width=4 in)
45 Length < 10ft 9 (width=6 in) 107 16 ≤ Length < 18ft 1 (actual price)
46 Length < 10ft 10 (thickness=3 in) 108 16 ≤ Length < 18ft 2 (volume)
47 Length < 10ft 11 (thickness=4 in) 109 16 ≤ Length < 18ft 3 (larger widths)
48 Length < 10ft 12 (thickness=6 in) 110 16 ≤ Length < 18ft 4 (larger thicknesses)
49 Length < 10ft 13 (thickness=8 in) 111 16 ≤ Length < 18ft 5 (larger lengths)
50 Length < 10ft 14 (thickness=10 in) 112 16 ≤ Length < 18ft 6 (width=1 in)
51 Length < 10ft 15 (thickness=12 in) 113 16 ≤ Length < 18ft 7 (width=2 in)
52 Length < 10ft 16 (length=8 ft) 114 16 ≤ Length < 18ft 8 (width=4 in)

115 16 ≤ Length < 18ft 9 (width=6 in)
53 10 ≤ Length < 12ft 1 (actual price) 116 16 ≤ Length < 18ft 10 (thickness=3 in)
54 10 ≤ Length < 12ft 2 (volume) 117 16 ≤ Length < 18ft 11 (thickness=4 in)
55 10 ≤ Length < 12ft 3 (larger widths) 118 16 ≤ Length < 18ft 12 (thickness=6 in)
56 10 ≤ Length < 12ft 4 (larger thicknesses) 119 16 ≤ Length < 18ft 13 (thickness=8 in)
57 10 ≤ Length < 12ft 5 (larger lengths) 120 16 ≤ Length < 18ft 14 (thickness=10 in)
58 10 ≤ Length < 12ft 6 (width=1 in) 121 16 ≤ Length < 18ft 15 (thickness=12 in)
59 10 ≤ Length < 12ft 7 (width=2 in) 122 16 ≤ Length < 18ft 16 (length=8 ft)
60 10 ≤ Length < 12ft 8 (width=4 in) 123 16 ≤ Length < 18ft 17 (length=10ft)
61 10 ≤ Length < 12ft 9 (width=6 in) 124 16 ≤ Length < 18ft 18 (lenth=12 ft)
62 10 ≤ Length < 12ft 10 (thickness=3 in) 125 16 ≤ Length < 18ft 19 (length=14 ft)
63 10 ≤ Length < 12ft 11 (thickness=4 in) 126 16 ≤ Length < 18ft 20 (length=16 ft)
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Appendix H

Campaign Data

Campaign Rc(ft
3/year) Sc(year) Campaign Rc(ft

3/year) Sc(year) Campaign Rc(ft
3/year) Sc(year)

1 13045027.35 0.00080 43 12363715.01 0.00077 85 14329959 0.00039
2 11895443.61 0.00044 44 13428144.01 0.00052 86 13129040.8 0.00064
3 13149412.31 0.00082 45 12356046.52 0.00045 87 11432021.76 0.00077
4 12282394.24 0.00050 46 13998591.49 0.00045 88 11150603.74 0.00072
5 11951978.19 0.00047 47 13110858.55 0.00058 89 10172540.02 0.00061
6 13793080.76 0.00065 48 12959586.71 0.00043 90 11351201 0.00063
7 12370160.62 0.00058 49 12343090.74 0.00039 91 10541679.01 0.00079
8 13080949.4 0.00052 50 12336734.21 0.00054 92 10251669.47 0.00039
9 11996318.01 0.00045 51 12325277.24 0.00038 93 11259971.41 0.00067
10 13402767.38 0.00040 52 12316152.29 0.00076 94 10593096.97 0.00052
11 12408411.73 0.00076 53 12349549.24 0.00079 95 14498238.05 0.00070
12 13108847.6 0.00045 54 11244859.77 0.00035 96 11257343.81 0.00077
13 11907748.84 0.00056 55 12367801.94 0.00075 97 15286744.19 0.00038
14 13873641.39 0.00073 56 11773136.04 0.00045 98 13071015.14 0.00067
15 12864146.31 0.00053 57 11318475.9 0.00041 99 10866256.17 0.00073
16 12178323.95 0.00050 58 12901852.34 0.00032 100 11025857.14 0.00060
17 11150860.83 0.00080 59 11798619.74 0.00044 101 10923315.23 0.00071
18 10169367.33 0.00064 60 13252778.15 0.00062 102 10551548.32 0.00040
19 11298743.89 0.00065 61 11538586.35 0.00035 103 14724133.65 0.00029
20 10526248.76 0.00049 62 13853553.96 0.00075 104 13449712.83 0.00040
21 10250687.77 0.00059 63 12624364.49 0.00057 105 12475337.69 0.00032
22 11270405.54 0.00080 64 12180843.98 0.00073 106 10966737.27 0.00033
23 10547434.69 0.00071 65 11439393.17 0.00073 107 11058466.89 0.00036
24 14241369.53 0.00051 66 11402476.29 0.00070 108 10098381.81 0.00048
25 11253560.25 0.00081 67 11315538.42 0.00067 109 11231955.38 0.00076
26 15155627.68 0.00050 68 13924484.65 0.00057 110 10414007.61 0.00037
27 13090149.22 0.00044 69 11904103.57 0.00038 111 10195366.81 0.00037
28 10853134.6 0.00047 70 11804213.77 0.00032 112 11133989.9 0.00057
29 11047897.87 0.00040 71 10639857.1 0.00074 113 10439598.59 0.00032
30 10997428.3 0.00028 72 11904905.97 0.00073 114 14418333.5 0.00041
31 10609038.06 0.00055 73 11065372.64 0.00034 115 11283374.27 0.00081
32 14622230.88 0.00034 74 10692462.98 0.00081 116 15048129.08 0.00050
33 13317132.55 0.00071 75 11852102.41 0.00046 117 13110277.32 0.00047
34 12218625.69 0.00075 76 11158270.75 0.00063 118 10785180.95 0.00032
35 11448484.87 0.00055 77 13468372.12 0.00041 119 11116206.84 0.00075
36 10767660.36 0.00060 78 11410290.27 0.00028 120 11112374.85 0.00064
37 13136651.65 0.00044 79 14582336.18 0.00039 121 10656139.96 0.00058
38 12316152.29 0.00079 80 12584746.56 0.00070 122 15103480.14 0.00080
39 13322584.8 0.00077 81 11655862.8 0.00052 123 13939628.69 0.00057
40 12452713 0.00028 82 11116016.33 0.00065 124 12967443.42 0.00057
41 12316152.29 0.00076 83 11008588.67 0.00034 125 12191957.54 0.00077
42 14908973.01 0.00069 84 10810221.89 0.00069 126 11135430.64 0.00075
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Appendix I

Fractional Outputs (αcp)

Products
Campaigns 1 2 3 4 5 6 7 8 9 10

1 0.02485 0.01095 0.00082 0.00000 0.00000 0.02802 0.00721 0.00056 0.00000 0.00000
2 0.03419 0.02019 0.00405 0.00000 0.00000 0.04293 0.01501 0.00805 0.00000 0.00000
3 0.02312 0.01040 0.00076 0.00000 0.00000 0.02812 0.00720 0.00056 0.00000 0.00000
4 0.02189 0.00868 0.00125 0.00000 0.00000 0.04602 0.01686 0.00898 0.00000 0.00000
5 0.03373 0.02836 0.00368 0.00000 0.00000 0.03928 0.02055 0.01689 0.00000 0.00000
6 0.03991 0.03202 0.00409 0.00000 0.00000 0.18252 0.13059 0.08369 0.00000 0.00000
7 0.02042 0.00038 0.00022 0.00000 0.00000 0.02447 0.00415 0.00000 0.00000 0.00000
8 0.02393 0.01016 0.00062 0.00000 0.00000 0.03128 0.01071 0.00226 0.00000 0.00000
9 0.03421 0.02019 0.00405 0.00000 0.00000 0.04083 0.01181 0.00689 0.00000 0.00000
10 0.05758 0.05235 0.02303 0.00000 0.00000 0.00025 0.00007 0.00007 0.00000 0.00000
11 0.00815 0.00016 0.00000 0.00000 0.00000 0.07445 0.01623 0.01183 0.00000 0.00000
12 0.01494 0.02270 0.00319 0.00000 0.00000 0.02946 0.02685 0.00684 0.00000 0.00000
13 0.03426 0.02019 0.00405 0.00000 0.00000 0.04266 0.01506 0.00850 0.00000 0.00000
14 0.04052 0.00805 0.00247 0.00000 0.00000 0.02579 0.00434 0.00247 0.00000 0.00000
15 0.02184 0.02713 0.00263 0.00000 0.00000 0.02156 0.01110 0.00099 0.00000 0.00000
16 0.03315 0.01483 0.01016 0.00000 0.00000 0.03605 0.01016 0.00892 0.00000 0.00000
17 0.00442 0.00404 0.00248 0.00064 0.00077 0.01140 0.00987 0.00535 0.00226 0.00233
18 0.00429 0.00387 0.00239 0.00146 0.00111 0.02056 0.01974 0.01263 0.00734 0.00985
19 0.00436 0.00402 0.00181 0.00060 0.00084 0.01032 0.00869 0.00475 0.00126 0.00115
20 0.00604 0.00474 0.00295 0.00131 0.00129 0.01779 0.01813 0.01004 0.00440 0.00441
21 0.00434 0.00632 0.00230 0.00170 0.00203 0.01614 0.02107 0.01886 0.01448 0.01403
22 0.00550 0.00619 0.00511 0.00254 0.00252 0.02437 0.03498 0.04437 0.02864 0.05327
23 0.00141 0.00030 0.00020 0.00014 0.00019 0.01279 0.00928 0.00246 0.00088 0.00047
24 0.00316 0.00432 0.00253 0.00064 0.00053 0.00929 0.01037 0.00908 0.00526 0.00588
25 0.00453 0.00337 0.00199 0.00138 0.00232 0.01470 0.01116 0.00685 0.00374 0.00576
26 0.01103 0.01707 0.01860 0.01818 0.01888 0.00005 0.00005 0.00013 0.00004 0.00004
27 0.00084 0.00013 0.00000 0.00000 0.00000 0.01927 0.02159 0.02721 0.01894 0.02746
28 0.00335 0.00508 0.00323 0.00124 0.00077 0.00562 0.00720 0.00318 0.00131 0.00090
29 0.00589 0.00509 0.00257 0.00108 0.00077 0.01402 0.02238 0.01714 0.00800 0.00877
30 0.00332 0.00338 0.00201 0.00102 0.00078 0.02096 0.02198 0.01212 0.00807 0.00932
31 0.00391 0.00369 0.00227 0.00139 0.00108 0.02047 0.01941 0.01236 0.00701 0.00953
32 0.00665 0.00208 0.00200 0.00045 0.00030 0.00914 0.00498 0.00236 0.00180 0.00218
33 0.00282 0.00990 0.00262 0.00172 0.00053 0.00483 0.01316 0.00352 0.00140 0.00246
34 0.00332 0.00156 0.01061 0.00141 0.00189 0.01076 0.00823 0.01923 0.00145 0.00211
35 0.00356 0.00296 0.00155 0.00906 0.00242 0.01538 0.01475 0.00839 0.01388 0.00255
36 0.00344 0.00392 0.00200 0.00054 0.00885 0.01497 0.01871 0.01281 0.00312 0.03180
37 0.01737 0.00000 0.00000 0.00000 0.00000 0.02709 0.00000 0.00000 0.00000 0.00000
38 0.04940 0.00000 0.00000 0.00000 0.00000 0.03555 0.00000 0.00000 0.00000 0.00000
39 0.01224 0.00000 0.00000 0.00000 0.00000 0.02699 0.00000 0.00000 0.00000 0.00000
40 0.03070 0.00000 0.00000 0.00000 0.00000 0.05280 0.00000 0.00000 0.00000 0.00000
41 0.04944 0.00000 0.00000 0.00000 0.00000 0.03505 0.00000 0.00000 0.00000 0.00000
42 0.05638 0.00000 0.00000 0.00000 0.00000 0.35492 0.00000 0.00000 0.00000 0.00000
43 0.03502 0.00000 0.00000 0.00000 0.00000 0.01284 0.00000 0.00000 0.00000 0.00000
44 0.01459 0.00000 0.00000 0.00000 0.00000 0.02981 0.00000 0.00000 0.00000 0.00000
45 0.04965 0.00000 0.00000 0.00000 0.00000 0.03412 0.00000 0.00000 0.00000 0.00000
46 0.12957 0.00000 0.00000 0.00000 0.00000 0.00056 0.00000 0.00000 0.00000 0.00000
47 0.00908 0.00000 0.00000 0.00000 0.00000 0.07036 0.00000 0.00000 0.00000 0.00000
48 0.02375 0.00000 0.00000 0.00000 0.00000 0.06411 0.00000 0.00000 0.00000 0.00000
49 0.04960 0.00000 0.00000 0.00000 0.00000 0.03522 0.00000 0.00000 0.00000 0.00000
50 0.04929 0.00000 0.00000 0.00000 0.00000 0.03533 0.00000 0.00000 0.00000 0.00000
51 0.04938 0.00000 0.00000 0.00000 0.00000 0.03550 0.00000 0.00000 0.00000 0.00000
52 0.04942 0.00000 0.00000 0.00000 0.00000 0.03519 0.00000 0.00000 0.00000 0.00000
53 0.02338 0.01055 0.00000 0.00000 0.00000 0.02088 0.01293 0.00000 0.00000 0.00000
54 0.02313 0.02636 0.00000 0.00000 0.00000 0.03806 0.02685 0.00000 0.00000 0.00000
55 0.02307 0.01049 0.00000 0.00000 0.00000 0.02100 0.01275 0.00000 0.00000 0.00000
56 0.01387 0.01668 0.00000 0.00000 0.00000 0.02925 0.02596 0.00000 0.00000 0.00000
57 0.02316 0.03563 0.00000 0.00000 0.00000 0.02861 0.03505 0.00000 0.00000 0.00000
58 0.02859 0.04782 0.00000 0.00000 0.00000 0.08411 0.24283 0.00000 0.00000 0.00000
59 0.01011 0.00123 0.00000 0.00000 0.00000 0.02284 0.00723 0.00000 0.00000 0.00000
60 0.02287 0.01016 0.00000 0.00000 0.00000 0.02105 0.01741 0.00000 0.00000 0.00000
61 0.02266 0.02600 0.00000 0.00000 0.00000 0.03490 0.01895 0.00000 0.00000 0.00000
62 0.02710 0.08892 0.00000 0.00000 0.00000 0.00012 0.00027 0.00000 0.00000 0.00000
63 0.00526 0.00013 0.00000 0.00000 0.00000 0.05749 0.03213 0.00000 0.00000 0.00000
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Products
Campaigns 1 2 3 4 5 6 7 8 9 10

64 0.00956 0.02788 0.00000 0.00000 0.00000 0.01480 0.04005 0.00000 0.00000 0.00000
65 0.02361 0.02717 0.00000 0.00000 0.00000 0.03463 0.02967 0.00000 0.00000 0.00000
66 0.02236 0.02604 0.00000 0.00000 0.00000 0.03762 0.02659 0.00000 0.00000 0.00000
67 0.02296 0.02632 0.00000 0.00000 0.00000 0.03806 0.02614 0.00000 0.00000 0.00000
68 0.02826 0.00987 0.00000 0.00000 0.00000 0.02093 0.01115 0.00000 0.00000 0.00000
69 0.00489 0.03600 0.00000 0.00000 0.00000 0.01169 0.02757 0.00000 0.00000 0.00000
70 0.01200 0.01108 0.00347 0.00000 0.00000 0.02061 0.00850 0.00571 0.00000 0.00000
71 0.01106 0.00983 0.00875 0.00000 0.00000 0.03599 0.02497 0.02764 0.00000 0.00000
72 0.01203 0.01039 0.00344 0.00000 0.00000 0.02028 0.00849 0.00521 0.00000 0.00000
73 0.01244 0.00605 0.00666 0.00000 0.00000 0.02967 0.01742 0.02206 0.00000 0.00000
74 0.01024 0.01823 0.00889 0.00000 0.00000 0.03462 0.02699 0.04978 0.00000 0.00000
75 0.01260 0.01313 0.01400 0.00000 0.00000 0.05080 0.03615 0.20132 0.00000 0.00000
76 0.00564 0.00004 0.00090 0.00000 0.00000 0.02241 0.00793 0.00289 0.00000 0.00000
77 0.01090 0.01054 0.00305 0.00000 0.00000 0.02343 0.01614 0.01758 0.00000 0.00000
78 0.01082 0.00954 0.00803 0.00000 0.00000 0.02774 0.01355 0.01858 0.00000 0.00000
79 0.01059 0.02445 0.05736 0.00000 0.00000 0.00017 0.00001 0.00046 0.00000 0.00000
80 0.00371 0.00027 0.00001 0.00000 0.00000 0.04523 0.02779 0.05597 0.00000 0.00000
81 0.00647 0.01482 0.00801 0.00000 0.00000 0.00580 0.01187 0.01371 0.00000 0.00000
82 0.01140 0.01097 0.00885 0.00000 0.00000 0.02924 0.02560 0.03754 0.00000 0.00000
83 0.01002 0.00951 0.00833 0.00000 0.00000 0.03519 0.02414 0.02730 0.00000 0.00000
84 0.01080 0.00967 0.00867 0.00000 0.00000 0.03606 0.02471 0.02704 0.00000 0.00000
85 0.01732 0.00605 0.00558 0.00000 0.00000 0.01292 0.00312 0.00824 0.00000 0.00000
86 0.00669 0.02031 0.00773 0.00000 0.00000 0.00973 0.01467 0.00655 0.00000 0.00000
87 0.00826 0.00033 0.02371 0.00000 0.00000 0.01822 0.00564 0.05246 0.00000 0.00000
88 0.00439 0.00381 0.00162 0.00198 0.00000 0.01281 0.01032 0.00505 0.00664 0.00000
89 0.00446 0.00414 0.00221 0.00332 0.00000 0.02225 0.01894 0.01189 0.01935 0.00000
90 0.00413 0.00400 0.00163 0.00190 0.00000 0.01051 0.00876 0.00294 0.00371 0.00000
91 0.00656 0.00539 0.00237 0.00412 0.00000 0.01965 0.01914 0.00795 0.01025 0.00000
92 0.00432 0.00545 0.00229 0.00517 0.00000 0.01744 0.01941 0.01686 0.03334 0.00000
93 0.00501 0.00542 0.00464 0.00743 0.00000 0.02494 0.02294 0.02533 0.11852 0.00000
94 0.00127 0.00004 0.00002 0.00044 0.00000 0.01400 0.00907 0.00169 0.00124 0.00000
95 0.00303 0.00446 0.00182 0.00191 0.00000 0.00973 0.01091 0.00861 0.01461 0.00000
96 0.00509 0.00367 0.00269 0.00351 0.00000 0.01538 0.01096 0.00642 0.01206 0.00000
97 0.01045 0.01264 0.01820 0.05253 0.00000 0.00000 0.00013 0.00000 0.00034 0.00000
98 0.00073 0.00008 0.00000 0.00001 0.00000 0.02008 0.01883 0.02265 0.05111 0.00000
99 0.00353 0.00454 0.00385 0.00264 0.00000 0.00596 0.00647 0.00357 0.00322 0.00000
100 0.00629 0.00630 0.00244 0.00274 0.00000 0.01370 0.02184 0.01414 0.02288 0.00000
101 0.00351 0.00360 0.00192 0.00261 0.00000 0.02294 0.02002 0.01100 0.01997 0.00000
102 0.00400 0.00399 0.00207 0.00314 0.00000 0.02198 0.01885 0.01151 0.01862 0.00000
103 0.00674 0.00171 0.00243 0.00109 0.00000 0.00879 0.00430 0.00139 0.00566 0.00000
104 0.00307 0.00958 0.00251 0.00394 0.00000 0.00509 0.01001 0.00286 0.00534 0.00000
105 0.00297 0.00093 0.01254 0.00495 0.00000 0.00996 0.00634 0.01137 0.00445 0.00000
106 0.00249 0.00223 0.00011 0.01661 0.00000 0.01428 0.01091 0.00139 0.05592 0.00000
107 0.00295 0.00300 0.00264 0.00064 0.00130 0.00968 0.00964 0.00552 0.00238 0.00393
108 0.00251 0.00262 0.00169 0.00174 0.00187 0.01622 0.01577 0.01010 0.00821 0.01663
109 0.00299 0.00298 0.00149 0.00060 0.00142 0.00854 0.00804 0.00521 0.00133 0.00194
110 0.00433 0.00266 0.00199 0.00133 0.00217 0.01694 0.01805 0.00981 0.00521 0.00745
111 0.00273 0.00367 0.00124 0.00175 0.00342 0.01201 0.01705 0.01401 0.01723 0.02369
112 0.00361 0.00342 0.00326 0.00269 0.00425 0.01699 0.02059 0.02095 0.02271 0.08992
113 0.00067 0.00024 0.00003 0.00014 0.00031 0.01085 0.00957 0.00240 0.00122 0.00079
114 0.00182 0.00329 0.00277 0.00067 0.00090 0.00672 0.00702 0.00633 0.00572 0.00992
115 0.00304 0.00216 0.00125 0.00157 0.00392 0.01203 0.00963 0.00521 0.00370 0.00971
116 0.00948 0.01104 0.01318 0.01932 0.03186 0.00000 0.00000 0.00004 0.00000 0.00007
117 0.00046 0.00011 0.00000 0.00001 0.00000 0.01427 0.01628 0.02096 0.02092 0.04636
118 0.00226 0.00307 0.00261 0.00152 0.00129 0.00456 0.00545 0.00194 0.00151 0.00151
119 0.00448 0.00337 0.00190 0.00123 0.00129 0.01147 0.01827 0.01274 0.00856 0.01481
120 0.00189 0.00219 0.00131 0.00116 0.00131 0.01734 0.01981 0.00961 0.00930 0.01573
121 0.00217 0.00245 0.00155 0.00166 0.00182 0.01611 0.01564 0.01002 0.00781 0.01608
122 0.00472 0.00115 0.00160 0.00053 0.00050 0.00758 0.00429 0.00114 0.00182 0.00367
123 0.00217 0.00698 0.00168 0.00206 0.00090 0.00360 0.00902 0.00275 0.00120 0.00415
124 0.00194 0.00090 0.00966 0.00131 0.00319 0.00690 0.00556 0.00994 0.00148 0.00357
125 0.00171 0.00150 0.00072 0.01170 0.00409 0.00921 0.00908 0.00523 0.01133 0.00431
126 0.00107 0.00272 0.00103 0.00019 0.01493 0.00679 0.01403 0.01041 0.00108 0.05367
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Products
Campaigns 11 12 13 14 15 16 17 18 19 20

1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
4 0.01236 0.00172 0.00021 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
5 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
6 0.00789 0.00085 0.00086 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
10 0.00024 0.00010 0.00001 0.00000 0.00000 0.00007 0.00000 0.00000 0.00000 0.00000
11 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
12 0.02663 0.00244 0.00020 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
13 0.00000 0.00000 0.00000 0.00000 0.00000 0.00006 0.00000 0.00000 0.00000 0.00000
14 0.00367 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
15 0.00043 0.00087 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
16 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
17 0.01381 0.00617 0.00220 0.00071 0.00071 0.00032 0.00019 0.00010 0.00007 0.00005
18 0.01482 0.00726 0.00345 0.00375 0.00338 0.00441 0.00105 0.00128 0.00066 0.00050
19 0.01148 0.00455 0.00155 0.00036 0.00057 0.00068 0.00018 0.00002 0.00000 0.00001
20 0.01655 0.01236 0.00670 0.00322 0.00296 0.00919 0.00384 0.00306 0.00169 0.00163
21 0.02065 0.00899 0.01007 0.00562 0.00639 0.00380 0.00152 0.00153 0.00078 0.00055
22 0.02763 0.02708 0.04587 0.03573 0.08338 0.01084 0.01128 0.02256 0.01647 0.05057
23 0.00246 0.00006 0.00001 0.00000 0.00000 0.00030 0.00003 0.00000 0.00000 0.00000
24 0.00022 0.00043 0.00033 0.00021 0.00034 0.00112 0.00063 0.00126 0.00102 0.00482
25 0.01652 0.00863 0.00579 0.00484 0.00480 0.00057 0.00026 0.00011 0.00011 0.00011
26 0.00017 0.00022 0.00028 0.00031 0.00030 0.00354 0.00196 0.00178 0.00103 0.00436
27 0.00000 0.00000 0.00000 0.00000 0.00000 0.00042 0.00033 0.00051 0.00032 0.00108
28 0.03366 0.01657 0.00823 0.00654 0.00787 0.00033 0.00035 0.00045 0.00048 0.00063
29 0.00150 0.00251 0.00092 0.00025 0.00013 0.02852 0.01063 0.00555 0.00325 0.00314
30 0.00829 0.00808 0.00396 0.00278 0.00271 0.00002 0.00000 0.00000 0.00000 0.00000
31 0.01239 0.00769 0.00400 0.00412 0.00341 0.00184 0.00229 0.00076 0.00048 0.00112
32 0.00919 0.00042 0.00033 0.00045 0.00078 0.00667 0.00026 0.00104 0.00058 0.00163
33 0.00266 0.01050 0.00039 0.00015 0.00104 0.00085 0.00556 0.00016 0.00049 0.00085
34 0.00547 0.00220 0.00914 0.00023 0.00090 0.00293 0.00041 0.00472 0.00013 0.00086
35 0.01081 0.00401 0.00219 0.00710 0.00089 0.00225 0.00164 0.00036 0.00310 0.00024
36 0.00921 0.00677 0.00267 0.00102 0.00899 0.00187 0.00074 0.00034 0.00015 0.00133
37 0.00048 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
38 0.00089 0.00000 0.00000 0.00000 0.00000 0.00018 0.00000 0.00000 0.00000 0.00000
39 0.00059 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000
40 0.00445 0.00000 0.00000 0.00000 0.00000 0.00057 0.00000 0.00000 0.00000 0.00000
41 0.00088 0.00000 0.00000 0.00000 0.00000 0.00015 0.00000 0.00000 0.00000 0.00000
42 0.02680 0.00000 0.00000 0.00000 0.00000 0.00434 0.00000 0.00000 0.00000 0.00000
43 0.00028 0.00000 0.00000 0.00000 0.00000 0.00004 0.00000 0.00000 0.00000 0.00000
44 0.00019 0.00000 0.00000 0.00000 0.00000 0.00010 0.00000 0.00000 0.00000 0.00000
45 0.00095 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000
46 0.00014 0.00000 0.00000 0.00000 0.00000 0.00027 0.00000 0.00000 0.00000 0.00000
47 0.00000 0.00000 0.00000 0.00000 0.00000 0.00006 0.00000 0.00000 0.00000 0.00000
48 0.00890 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
49 0.00026 0.00000 0.00000 0.00000 0.00000 0.00149 0.00000 0.00000 0.00000 0.00000
50 0.00094 0.00000 0.00000 0.00000 0.00000 0.00003 0.00000 0.00000 0.00000 0.00000
51 0.00105 0.00000 0.00000 0.00000 0.00000 0.00021 0.00000 0.00000 0.00000 0.00000
52 0.00090 0.00000 0.00000 0.00000 0.00000 0.00015 0.00000 0.00000 0.00000 0.00000
53 0.00374 0.00143 0.00000 0.00000 0.00000 0.00002 0.00006 0.00000 0.00000 0.00000
54 0.00457 0.00308 0.00000 0.00000 0.00000 0.00099 0.00014 0.00000 0.00000 0.00000
55 0.00315 0.00160 0.00000 0.00000 0.00000 0.00004 0.00000 0.00000 0.00000 0.00000
56 0.02039 0.00666 0.00000 0.00000 0.00000 0.00460 0.00143 0.00000 0.00000 0.00000
57 0.00418 0.00372 0.00000 0.00000 0.00000 0.00104 0.00032 0.00000 0.00000 0.00000
58 0.01351 0.05075 0.00000 0.00000 0.00000 0.00522 0.02842 0.00000 0.00000 0.00000
59 0.00118 0.00005 0.00000 0.00000 0.00000 0.00005 0.00000 0.00000 0.00000 0.00000
60 0.00011 0.00063 0.00000 0.00000 0.00000 0.00023 0.00133 0.00000 0.00000 0.00000
61 0.00429 0.00421 0.00000 0.00000 0.00000 0.00004 0.00004 0.00000 0.00000 0.00000
62 0.00079 0.00045 0.00000 0.00000 0.00000 0.00164 0.00146 0.00000 0.00000 0.00000
63 0.00000 0.00000 0.00000 0.00000 0.00000 0.00014 0.00061 0.00000 0.00000 0.00000
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Products
Campaigns 11 12 13 14 15 16 17 18 19 20

64 0.03235 0.00751 0.00000 0.00000 0.00000 0.00008 0.00037 0.00000 0.00000 0.00000
65 0.00076 0.00153 0.00000 0.00000 0.00000 0.00933 0.00424 0.00000 0.00000 0.00000
66 0.00368 0.00425 0.00000 0.00000 0.00000 0.00005 0.00000 0.00000 0.00000 0.00000
67 0.00455 0.00337 0.00000 0.00000 0.00000 0.00068 0.00147 0.00000 0.00000 0.00000
68 0.00589 0.00054 0.00000 0.00000 0.00000 0.00246 0.00117 0.00000 0.00000 0.00000
69 0.00067 0.00771 0.00000 0.00000 0.00000 0.00010 0.00115 0.00000 0.00000 0.00000
70 0.00595 0.00237 0.00177 0.00000 0.00000 0.00004 0.00011 0.00011 0.00000 0.00000
71 0.00763 0.00310 0.00423 0.00000 0.00000 0.00229 0.00040 0.00050 0.00000 0.00000
72 0.00526 0.00153 0.00176 0.00000 0.00000 0.00019 0.00001 0.00001 0.00000 0.00000
73 0.01331 0.00868 0.00882 0.00000 0.00000 0.00684 0.00198 0.00319 0.00000 0.00000
74 0.01225 0.00400 0.00678 0.00000 0.00000 0.00293 0.00086 0.00092 0.00000 0.00000
75 0.02130 0.01200 0.10317 0.00000 0.00000 0.00768 0.00391 0.05371 0.00000 0.00000
76 0.00124 0.00009 0.00000 0.00000 0.00000 0.00012 0.00000 0.00000 0.00000 0.00000
77 0.00024 0.00034 0.00090 0.00000 0.00000 0.00062 0.00014 0.00281 0.00000 0.00000
78 0.00874 0.00295 0.00573 0.00000 0.00000 0.00031 0.00007 0.00012 0.00000 0.00000
79 0.00015 0.00038 0.00054 0.00000 0.00000 0.00384 0.00097 0.00265 0.00000 0.00000
80 0.00000 0.00000 0.00000 0.00000 0.00000 0.00020 0.00011 0.00094 0.00000 0.00000
81 0.03525 0.01007 0.00813 0.00000 0.00000 0.00017 0.00017 0.00047 0.00000 0.00000
82 0.00082 0.00152 0.00123 0.00000 0.00000 0.01755 0.00476 0.00532 0.00000 0.00000
83 0.00549 0.00418 0.00439 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
84 0.00702 0.00310 0.00476 0.00000 0.00000 0.00152 0.00115 0.00079 0.00000 0.00000
85 0.00979 0.00023 0.00095 0.00000 0.00000 0.00473 0.00000 0.00252 0.00000 0.00000
86 0.00270 0.00805 0.00069 0.00000 0.00000 0.00075 0.00345 0.00058 0.00000 0.00000
87 0.00307 0.00055 0.00885 0.00000 0.00000 0.00032 0.00006 0.00235 0.00000 0.00000
88 0.01555 0.00492 0.00233 0.00118 0.00000 0.00040 0.00014 0.00016 0.00014 0.00000
89 0.01938 0.00532 0.00328 0.00661 0.00000 0.00477 0.00069 0.00112 0.00097 0.00000
90 0.01210 0.00294 0.00067 0.00158 0.00000 0.00063 0.00005 0.00004 0.00002 0.00000
91 0.02053 0.00993 0.00579 0.00608 0.00000 0.01135 0.00387 0.00336 0.00284 0.00000
92 0.02076 0.00756 0.00557 0.01182 0.00000 0.00450 0.00140 0.00134 0.00126 0.00000
93 0.02657 0.01842 0.02549 0.15046 0.00000 0.00990 0.00614 0.01034 0.08150 0.00000
94 0.00228 0.00002 0.00000 0.00000 0.00000 0.00025 0.00000 0.00000 0.00000 0.00000
95 0.00031 0.00024 0.00031 0.00062 0.00000 0.00124 0.00021 0.00057 0.00513 0.00000
96 0.01770 0.00641 0.00428 0.00908 0.00000 0.00065 0.00009 0.00007 0.00025 0.00000
97 0.00011 0.00010 0.00045 0.00068 0.00000 0.00430 0.00148 0.00069 0.00491 0.00000
98 0.00000 0.00000 0.00000 0.00000 0.00000 0.00045 0.00010 0.00032 0.00096 0.00000
99 0.04035 0.01467 0.00698 0.01377 0.00000 0.00040 0.00027 0.00041 0.00104 0.00000
100 0.00125 0.00228 0.00074 0.00049 0.00000 0.03240 0.00914 0.00439 0.00530 0.00000
101 0.01111 0.00746 0.00416 0.00611 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
102 0.01631 0.00621 0.00324 0.00777 0.00000 0.00221 0.00205 0.00094 0.00160 0.00000
103 0.00945 0.00030 0.00009 0.00163 0.00000 0.00695 0.00000 0.00052 0.00286 0.00000
104 0.00274 0.00995 0.00027 0.00104 0.00000 0.00095 0.00556 0.00000 0.00139 0.00000
105 0.00561 0.00208 0.00876 0.00053 0.00000 0.00404 0.00065 0.00491 0.00099 0.00000
106 0.01153 0.00261 0.00037 0.01533 0.00000 0.00112 0.00021 0.00005 0.00211 0.00000
107 0.01559 0.00767 0.00236 0.00095 0.00120 0.00043 0.00021 0.00009 0.00009 0.00009
108 0.01526 0.00845 0.00308 0.00489 0.00570 0.00491 0.00138 0.00167 0.00090 0.00084
109 0.01294 0.00570 0.00163 0.00027 0.00097 0.00090 0.00028 0.00003 0.00000 0.00001
110 0.01571 0.01304 0.00593 0.00412 0.00500 0.00793 0.00416 0.00291 0.00223 0.00276
111 0.02276 0.01022 0.01253 0.00693 0.01078 0.00361 0.00174 0.00186 0.00104 0.00093
112 0.02500 0.01736 0.02287 0.02777 0.14073 0.00968 0.00515 0.01004 0.01017 0.08536
113 0.00257 0.00003 0.00002 0.00000 0.00000 0.00037 0.00005 0.00000 0.00000 0.00000
114 0.00011 0.00027 0.00006 0.00022 0.00057 0.00122 0.00046 0.00066 0.00061 0.00814
115 0.01807 0.01018 0.00609 0.00620 0.00810 0.00065 0.00037 0.00011 0.00013 0.00019
116 0.00000 0.00006 0.00012 0.00037 0.00051 0.00258 0.00197 0.00158 0.00067 0.00735
117 0.00000 0.00000 0.00000 0.00000 0.00000 0.00045 0.00025 0.00035 0.00034 0.00183
118 0.03262 0.01854 0.00858 0.00805 0.01328 0.00035 0.00031 0.00045 0.00059 0.00106
119 0.00153 0.00243 0.00080 0.00032 0.00022 0.02894 0.01209 0.00587 0.00435 0.00531
120 0.00738 0.00841 0.00367 0.00337 0.00458 0.00000 0.00000 0.00000 0.00000 0.00000
121 0.01210 0.00888 0.00376 0.00527 0.00575 0.00161 0.00231 0.00071 0.00047 0.00190
122 0.00849 0.00033 0.00008 0.00040 0.00132 0.00653 0.00000 0.00044 0.00036 0.00274
123 0.00242 0.00930 0.00028 0.00003 0.00176 0.00079 0.00610 0.00000 0.00052 0.00144
124 0.00466 0.00185 0.00929 0.00027 0.00152 0.00350 0.00046 0.00577 0.00000 0.00146
125 0.01020 0.00356 0.00159 0.00867 0.00150 0.00205 0.00248 0.00036 0.00478 0.00041
126 0.00580 0.00763 0.00177 0.00029 0.01518 0.00061 0.00086 0.00008 0.00005 0.00224
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Products
Campaigns 21 22 23 24 25 26 27 28 29 30

1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
10 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
11 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
12 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
13 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
14 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
15 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
16 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
17 0.00057 0.00014 0.00012 0.00002 0.00001 0.00053 0.00038 0.00040 0.00031 0.00067
18 0.00099 0.00040 0.00048 0.00017 0.00010 0.00010 0.00018 0.00034 0.00035 0.00082
19 0.00018 0.00006 0.00001 0.00000 0.00000 0.00005 0.00013 0.00029 0.00029 0.00065
20 0.00326 0.00123 0.00130 0.00038 0.00032 0.00178 0.00090 0.00089 0.00058 0.00088
21 0.00069 0.00034 0.00039 0.00018 0.00007 0.00009 0.00016 0.00038 0.00033 0.00078
22 0.00340 0.00366 0.00786 0.00562 0.01995 0.00055 0.00109 0.00204 0.00135 0.00599
23 0.00000 0.00000 0.00000 0.00000 0.00000 0.00004 0.00012 0.00029 0.00029 0.00065
24 0.00512 0.00485 0.00379 0.00152 0.00041 0.00213 0.00255 0.00231 0.00193 0.00181
25 0.00050 0.00022 0.00023 0.00010 0.00005 0.00009 0.00018 0.00034 0.00035 0.00082
26 0.00407 0.00150 0.00047 0.00019 0.00014 0.00253 0.00235 0.00207 0.00157 0.00135
27 0.00096 0.00067 0.00043 0.00026 0.00118 0.00244 0.00271 0.00242 0.00228 0.00172
28 0.00007 0.00020 0.00018 0.00009 0.00020 0.00005 0.00029 0.00068 0.00041 0.00141
29 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00008 0.00024 0.00023 0.00063
30 0.01608 0.00489 0.00293 0.00125 0.00182 0.00001 0.00007 0.00023 0.00023 0.00062
31 0.00000 0.00000 0.00000 0.00000 0.00000 0.00756 0.00229 0.00095 0.00069 0.00102
32 0.00515 0.00015 0.00068 0.00024 0.00045 0.00355 0.00047 0.00122 0.00095 0.00172
33 0.00488 0.00461 0.00028 0.00042 0.00040 0.00233 0.00310 0.00073 0.00091 0.00193
34 0.00414 0.00431 0.00425 0.00012 0.00055 0.00272 0.00166 0.00240 0.00041 0.00214
35 0.00151 0.00291 0.00269 0.00260 0.00047 0.00086 0.00203 0.00136 0.00175 0.00149
36 0.00052 0.00016 0.00033 0.00015 0.00046 0.00008 0.00013 0.00029 0.00027 0.00087
37 0.00001 0.00000 0.00000 0.00000 0.00000 0.00009 0.00000 0.00000 0.00000 0.00000
38 0.00010 0.00000 0.00000 0.00000 0.00000 0.00008 0.00000 0.00000 0.00000 0.00000
39 0.00000 0.00000 0.00000 0.00000 0.00000 0.00008 0.00000 0.00000 0.00000 0.00000
40 0.00004 0.00000 0.00000 0.00000 0.00000 0.00015 0.00000 0.00000 0.00000 0.00000
41 0.00010 0.00000 0.00000 0.00000 0.00000 0.00008 0.00000 0.00000 0.00000 0.00000
42 0.00151 0.00000 0.00000 0.00000 0.00000 0.00032 0.00000 0.00000 0.00000 0.00000
43 0.00000 0.00000 0.00000 0.00000 0.00000 0.00007 0.00000 0.00000 0.00000 0.00000
44 0.00023 0.00000 0.00000 0.00000 0.00000 0.00014 0.00000 0.00000 0.00000 0.00000
45 0.00010 0.00000 0.00000 0.00000 0.00000 0.00008 0.00000 0.00000 0.00000 0.00000
46 0.00026 0.00000 0.00000 0.00000 0.00000 0.00013 0.00000 0.00000 0.00000 0.00000
47 0.00026 0.00000 0.00000 0.00000 0.00000 0.00018 0.00000 0.00000 0.00000 0.00000
48 0.00014 0.00000 0.00000 0.00000 0.00000 0.00015 0.00000 0.00000 0.00000 0.00000
49 0.00000 0.00000 0.00000 0.00000 0.00000 0.00006 0.00000 0.00000 0.00000 0.00000
50 0.00104 0.00000 0.00000 0.00000 0.00000 0.00006 0.00000 0.00000 0.00000 0.00000
51 0.00000 0.00000 0.00000 0.00000 0.00000 0.00022 0.00000 0.00000 0.00000 0.00000
52 0.00010 0.00000 0.00000 0.00000 0.00000 0.00008 0.00000 0.00000 0.00000 0.00000
53 0.00003 0.00000 0.00000 0.00000 0.00000 0.00033 0.00040 0.00000 0.00000 0.00000
54 0.00031 0.00024 0.00000 0.00000 0.00000 0.00003 0.00048 0.00000 0.00000 0.00000
55 0.00001 0.00000 0.00000 0.00000 0.00000 0.00003 0.00037 0.00000 0.00000 0.00000
56 0.00112 0.00036 0.00000 0.00000 0.00000 0.00076 0.00062 0.00000 0.00000 0.00000
57 0.00037 0.00025 0.00000 0.00000 0.00000 0.00002 0.00050 0.00000 0.00000 0.00000
58 0.00148 0.00965 0.00000 0.00000 0.00000 0.00036 0.00365 0.00000 0.00000 0.00000
59 0.00000 0.00000 0.00000 0.00000 0.00000 0.00003 0.00037 0.00000 0.00000 0.00000
60 0.00192 0.00116 0.00000 0.00000 0.00000 0.00078 0.00134 0.00000 0.00000 0.00000
61 0.00021 0.00015 0.00000 0.00000 0.00000 0.00003 0.00048 0.00000 0.00000 0.00000
62 0.00176 0.00061 0.00000 0.00000 0.00000 0.00068 0.00085 0.00000 0.00000 0.00000
63 0.00032 0.00056 0.00000 0.00000 0.00000 0.00121 0.00117 0.00000 0.00000 0.00000
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64 0.00020 0.00055 0.00000 0.00000 0.00000 0.00006 0.00105 0.00000 0.00000 0.00000
65 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00035 0.00000 0.00000 0.00000
66 0.00409 0.00102 0.00000 0.00000 0.00000 0.00000 0.00032 0.00000 0.00000 0.00000
67 0.00000 0.00000 0.00000 0.00000 0.00000 0.00221 0.00071 0.00000 0.00000 0.00000
68 0.00173 0.00033 0.00000 0.00000 0.00000 0.00104 0.00099 0.00000 0.00000 0.00000
69 0.00009 0.00035 0.00000 0.00000 0.00000 0.00000 0.00057 0.00000 0.00000 0.00000
70 0.00022 0.00000 0.00003 0.00000 0.00000 0.00050 0.00016 0.00093 0.00000 0.00000
71 0.00103 0.00020 0.00093 0.00000 0.00000 0.00017 0.00005 0.00099 0.00000 0.00000
72 0.00011 0.00002 0.00000 0.00000 0.00000 0.00003 0.00004 0.00087 0.00000 0.00000
73 0.00200 0.00070 0.00059 0.00000 0.00000 0.00110 0.00044 0.00128 0.00000 0.00000
74 0.00077 0.00021 0.00039 0.00000 0.00000 0.00020 0.00005 0.00110 0.00000 0.00000
75 0.00259 0.00109 0.02195 0.00000 0.00000 0.00042 0.00023 0.00570 0.00000 0.00000
76 0.00000 0.00000 0.00000 0.00000 0.00000 0.00003 0.00004 0.00087 0.00000 0.00000
77 0.00381 0.00324 0.00214 0.00000 0.00000 0.00131 0.00142 0.00241 0.00000 0.00000
78 0.00045 0.00007 0.00051 0.00000 0.00000 0.00012 0.00005 0.00099 0.00000 0.00000
79 0.00298 0.00108 0.00069 0.00000 0.00000 0.00149 0.00111 0.00172 0.00000 0.00000
80 0.00061 0.00026 0.00117 0.00000 0.00000 0.00135 0.00206 0.00221 0.00000 0.00000
81 0.00004 0.00018 0.00040 0.00000 0.00000 0.00006 0.00013 0.00218 0.00000 0.00000
82 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00086 0.00000 0.00000
83 0.00924 0.00218 0.00372 0.00000 0.00000 0.00000 0.00000 0.00080 0.00000 0.00000
84 0.00000 0.00000 0.00000 0.00000 0.00000 0.00366 0.00114 0.00118 0.00000 0.00000
85 0.00371 0.00002 0.00081 0.00000 0.00000 0.00210 0.00017 0.00228 0.00000 0.00000
86 0.00239 0.00295 0.00064 0.00000 0.00000 0.00120 0.00171 0.00208 0.00000 0.00000
87 0.00002 0.00013 0.00052 0.00000 0.00000 0.00000 0.00000 0.00119 0.00000 0.00000
88 0.00065 0.00008 0.00011 0.00000 0.00000 0.00072 0.00033 0.00014 0.00186 0.00000
89 0.00116 0.00028 0.00028 0.00026 0.00000 0.00011 0.00009 0.00009 0.00203 0.00000
90 0.00024 0.00004 0.00001 0.00000 0.00000 0.00003 0.00006 0.00006 0.00181 0.00000
91 0.00403 0.00124 0.00108 0.00042 0.00000 0.00186 0.00074 0.00050 0.00223 0.00000
92 0.00066 0.00030 0.00023 0.00024 0.00000 0.00010 0.00009 0.00009 0.00204 0.00000
93 0.00311 0.00166 0.00208 0.03135 0.00000 0.00040 0.00031 0.00042 0.00802 0.00000
94 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002 0.00004 0.00006 0.00181 0.00000
95 0.00537 0.00515 0.00422 0.00143 0.00000 0.00176 0.00218 0.00247 0.00422 0.00000
96 0.00047 0.00010 0.00012 0.00006 0.00000 0.00011 0.00009 0.00009 0.00203 0.00000
97 0.00448 0.00131 0.00041 0.00039 0.00000 0.00249 0.00218 0.00211 0.00310 0.00000
98 0.00126 0.00035 0.00018 0.00171 0.00000 0.00221 0.00231 0.00321 0.00402 0.00000
99 0.00001 0.00010 0.00009 0.00043 0.00000 0.00000 0.00006 0.00003 0.00261 0.00000
100 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00181 0.00000
101 0.01689 0.00444 0.00175 0.00225 0.00000 0.00000 0.00000 0.00000 0.00181 0.00000
102 0.00000 0.00000 0.00000 0.00000 0.00000 0.00730 0.00200 0.00071 0.00227 0.00000
103 0.00531 0.00012 0.00049 0.00083 0.00000 0.00353 0.00027 0.00059 0.00350 0.00000
104 0.00566 0.00540 0.00009 0.00103 0.00000 0.00253 0.00342 0.00014 0.00372 0.00000
105 0.00505 0.00438 0.00512 0.00096 0.00000 0.00341 0.00190 0.00206 0.00263 0.00000
106 0.00000 0.00008 0.00018 0.00071 0.00000 0.00000 0.00000 0.00000 0.00229 0.00000
107 0.00071 0.00021 0.00016 0.00003 0.00001 0.00035 0.00034 0.00020 0.00013 0.00113
108 0.00080 0.00042 0.00030 0.00024 0.00017 0.00004 0.00007 0.00009 0.00016 0.00139
109 0.00020 0.00008 0.00002 0.00000 0.00000 0.00003 0.00005 0.00007 0.00009 0.00109
110 0.00324 0.00133 0.00168 0.00055 0.00055 0.00175 0.00092 0.00079 0.00050 0.00148
111 0.00049 0.00032 0.00042 0.00024 0.00012 0.00000 0.00004 0.00009 0.00012 0.00132
112 0.00298 0.00166 0.00227 0.00271 0.03368 0.00045 0.00028 0.00062 0.00055 0.01011
113 0.00000 0.00000 0.00000 0.00000 0.00000 0.00003 0.00004 0.00005 0.00009 0.00109
114 0.00488 0.00509 0.00446 0.00226 0.00069 0.00227 0.00264 0.00220 0.00234 0.00305
115 0.00043 0.00026 0.00012 0.00016 0.00008 0.00004 0.00007 0.00009 0.00016 0.00139
116 0.00376 0.00150 0.00038 0.00024 0.00024 0.00273 0.00265 0.00220 0.00198 0.00227
117 0.00088 0.00072 0.00012 0.00007 0.00199 0.00250 0.00265 0.00232 0.00298 0.00290
118 0.00000 0.00002 0.00009 0.00005 0.00034 0.00001 0.00002 0.00009 0.00013 0.00237
119 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00107
120 0.01730 0.00586 0.00278 0.00163 0.00307 0.00000 0.00000 0.00000 0.00000 0.00105
121 0.00000 0.00000 0.00000 0.00000 0.00000 0.00855 0.00262 0.00088 0.00067 0.00172
122 0.00509 0.00010 0.00065 0.00023 0.00076 0.00382 0.00028 0.00084 0.00085 0.00291
123 0.00581 0.00506 0.00015 0.00049 0.00067 0.00279 0.00346 0.00021 0.00073 0.00325
124 0.00575 0.00617 0.00582 0.00000 0.00093 0.00382 0.00220 0.00304 0.00013 0.00361
125 0.00192 0.00471 0.00405 0.00423 0.00080 0.00135 0.00322 0.00182 0.00245 0.00252
126 0.00000 0.00002 0.00005 0.00020 0.00077 0.00000 0.00000 0.00000 0.00002 0.00147
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1 0.02429 0.00406 0.00111 0.00000 0.00000 0.02173 0.00384 0.00142 0.00000 0.00000
2 0.08729 0.03092 0.01522 0.00000 0.00000 0.12178 0.11636 0.05588 0.00000 0.00000
3 0.01796 0.00381 0.00053 0.00000 0.00000 0.02009 0.00372 0.00046 0.00000 0.00000
4 0.03315 0.00403 0.00103 0.00000 0.00000 0.14955 0.11909 0.05683 0.00000 0.00000
5 0.08426 0.04253 0.01341 0.00000 0.00000 0.09273 0.11303 0.05894 0.00000 0.00000
6 0.00034 0.00000 0.00000 0.00000 0.00000 0.00056 0.00000 0.00000 0.00000 0.00000
7 0.04624 0.00506 0.00299 0.00000 0.00000 0.18658 0.16602 0.07219 0.00000 0.00000
8 0.01873 0.00359 0.00054 0.00000 0.00000 0.01668 0.00322 0.00022 0.00000 0.00000
9 0.08668 0.03092 0.01522 0.00000 0.00000 0.12059 0.11597 0.04701 0.00000 0.00000
10 0.15242 0.14119 0.06778 0.00000 0.00000 0.00042 0.00016 0.00007 0.00000 0.00000
11 0.00000 0.00000 0.00000 0.00000 0.00000 0.18716 0.15410 0.07718 0.00000 0.00000
12 0.05671 0.01355 0.00711 0.00000 0.00000 0.08909 0.06095 0.01136 0.00000 0.00000
13 0.08685 0.03092 0.01542 0.00000 0.00000 0.12179 0.11636 0.05468 0.00000 0.00000
14 0.06950 0.00231 0.00107 0.00000 0.00000 0.14420 0.00581 0.00341 0.00000 0.00000
15 0.05415 0.06502 0.00120 0.00000 0.00000 0.08132 0.15151 0.00459 0.00000 0.00000
16 0.07677 0.02833 0.03265 0.00000 0.00000 0.11382 0.09902 0.06957 0.00000 0.00000
17 0.00280 0.00073 0.00046 0.00043 0.00040 0.00915 0.00346 0.00302 0.00134 0.00177
18 0.00843 0.00683 0.00532 0.00295 0.00375 0.01067 0.01564 0.02352 0.01962 0.04067
19 0.00331 0.00151 0.00206 0.00124 0.00277 0.00950 0.00426 0.00279 0.00150 0.00153
20 0.00063 0.00044 0.00041 0.00022 0.00038 0.00820 0.00922 0.01085 0.00993 0.02210
21 0.00398 0.00532 0.00549 0.00348 0.00545 0.00553 0.01386 0.02315 0.02066 0.05628
22 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000
23 0.01161 0.00682 0.00381 0.00185 0.00266 0.01758 0.02286 0.03098 0.02250 0.04594
24 0.00243 0.00700 0.00606 0.00197 0.00122 0.00781 0.01129 0.00707 0.00220 0.00134
25 0.00432 0.00345 0.00492 0.00324 0.00456 0.00931 0.01045 0.01132 0.00838 0.01238
26 0.02466 0.04176 0.06266 0.04400 0.10819 0.00008 0.00026 0.00038 0.00012 0.00008
27 0.00004 0.00004 0.00002 0.00001 0.00000 0.01330 0.02849 0.05115 0.03988 0.12023
28 0.00223 0.00092 0.00145 0.00083 0.00124 0.00123 0.00286 0.00170 0.00126 0.00124
29 0.00563 0.00400 0.00448 0.00235 0.00321 0.00736 0.02223 0.01969 0.01444 0.02641
30 0.00828 0.00648 0.00478 0.00231 0.00288 0.00836 0.01720 0.02474 0.02231 0.04448
31 0.00835 0.00644 0.00482 0.00237 0.00302 0.01063 0.01538 0.02331 0.01898 0.04050
32 0.00911 0.00051 0.00080 0.00048 0.00077 0.02153 0.00081 0.00209 0.00167 0.00416
33 0.00046 0.01311 0.00069 0.00048 0.00081 0.00273 0.03425 0.00177 0.00146 0.00491
34 0.00198 0.00199 0.01609 0.00041 0.00082 0.00387 0.01024 0.05175 0.00110 0.00447
35 0.00526 0.00335 0.00340 0.01214 0.00092 0.00748 0.01384 0.01998 0.04101 0.00390
36 0.00632 0.00495 0.00390 0.00153 0.02190 0.00878 0.01461 0.02131 0.01137 0.08666
37 0.06920 0.00000 0.00000 0.00000 0.00000 0.04167 0.00000 0.00000 0.00000 0.00000
38 0.16546 0.00000 0.00000 0.00000 0.00000 0.25345 0.00000 0.00000 0.00000 0.00000
39 0.05395 0.00000 0.00000 0.00000 0.00000 0.04147 0.00000 0.00000 0.00000 0.00000
40 0.09229 0.00000 0.00000 0.00000 0.00000 0.30340 0.00000 0.00000 0.00000 0.00000
41 0.16546 0.00000 0.00000 0.00000 0.00000 0.25262 0.00000 0.00000 0.00000 0.00000
42 0.00104 0.00000 0.00000 0.00000 0.00000 0.00176 0.00000 0.00000 0.00000 0.00000
43 0.13521 0.00000 0.00000 0.00000 0.00000 0.33465 0.00000 0.00000 0.00000 0.00000
44 0.05671 0.00000 0.00000 0.00000 0.00000 0.03515 0.00000 0.00000 0.00000 0.00000
45 0.16492 0.00000 0.00000 0.00000 0.00000 0.25083 0.00000 0.00000 0.00000 0.00000
46 0.33728 0.00000 0.00000 0.00000 0.00000 0.00163 0.00000 0.00000 0.00000 0.00000
47 0.00010 0.00000 0.00000 0.00000 0.00000 0.39880 0.00000 0.00000 0.00000 0.00000
48 0.11891 0.00000 0.00000 0.00000 0.00000 0.21626 0.00000 0.00000 0.00000 0.00000
49 0.16524 0.00000 0.00000 0.00000 0.00000 0.25311 0.00000 0.00000 0.00000 0.00000
50 0.16554 0.00000 0.00000 0.00000 0.00000 0.25363 0.00000 0.00000 0.00000 0.00000
51 0.16546 0.00000 0.00000 0.00000 0.00000 0.25336 0.00000 0.00000 0.00000 0.00000
52 0.16555 0.00000 0.00000 0.00000 0.00000 0.25348 0.00000 0.00000 0.00000 0.00000
53 0.00241 0.00745 0.00000 0.00000 0.00000 0.01308 0.01093 0.00000 0.00000 0.00000
54 0.04179 0.05199 0.00000 0.00000 0.00000 0.05915 0.19752 0.00000 0.00000 0.00000
55 0.00299 0.00936 0.00000 0.00000 0.00000 0.01294 0.01117 0.00000 0.00000 0.00000
56 0.00526 0.00714 0.00000 0.00000 0.00000 0.06761 0.17187 0.00000 0.00000 0.00000
57 0.04127 0.07278 0.00000 0.00000 0.00000 0.01512 0.20937 0.00000 0.00000 0.00000
58 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
59 0.00425 0.01084 0.00000 0.00000 0.00000 0.09941 0.27123 0.00000 0.00000 0.00000
60 0.00308 0.01195 0.00000 0.00000 0.00000 0.01284 0.01435 0.00000 0.00000 0.00000
61 0.03970 0.05204 0.00000 0.00000 0.00000 0.05772 0.17950 0.00000 0.00000 0.00000
62 0.06503 0.26258 0.00000 0.00000 0.00000 0.00019 0.00141 0.00000 0.00000 0.00000
63 0.00011 0.00009 0.00000 0.00000 0.00000 0.08571 0.28884 0.00000 0.00000 0.00000
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64 0.02192 0.02241 0.00000 0.00000 0.00000 0.02944 0.08821 0.00000 0.00000 0.00000
65 0.04017 0.05246 0.00000 0.00000 0.00000 0.05821 0.19366 0.00000 0.00000 0.00000
66 0.04169 0.05149 0.00000 0.00000 0.00000 0.05853 0.20163 0.00000 0.00000 0.00000
67 0.04175 0.05131 0.00000 0.00000 0.00000 0.05905 0.19682 0.00000 0.00000 0.00000
68 0.02264 0.00441 0.00000 0.00000 0.00000 0.08866 0.01226 0.00000 0.00000 0.00000
69 0.00003 0.10812 0.00000 0.00000 0.00000 0.00000 0.23593 0.00000 0.00000 0.00000
70 0.00375 0.00098 0.00256 0.00000 0.00000 0.01081 0.00201 0.00676 0.00000 0.00000
71 0.02241 0.00795 0.03017 0.00000 0.00000 0.01817 0.03297 0.13720 0.00000 0.00000
72 0.00183 0.00107 0.00533 0.00000 0.00000 0.00837 0.00215 0.00549 0.00000 0.00000
73 0.00040 0.00066 0.00238 0.00000 0.00000 0.01934 0.03449 0.09768 0.00000 0.00000
74 0.01334 0.00711 0.03076 0.00000 0.00000 0.00783 0.01709 0.14858 0.00000 0.00000
75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
76 0.01212 0.00267 0.00730 0.00000 0.00000 0.04280 0.04427 0.16554 0.00000 0.00000
77 0.00184 0.00710 0.00522 0.00000 0.00000 0.01146 0.00726 0.00572 0.00000 0.00000
78 0.01700 0.00542 0.03234 0.00000 0.00000 0.01652 0.03057 0.08763 0.00000 0.00000
79 0.04188 0.04805 0.22007 0.00000 0.00000 0.00000 0.00000 0.00144 0.00000 0.00000
80 0.00002 0.00007 0.00005 0.00000 0.00000 0.02393 0.03895 0.23423 0.00000 0.00000
81 0.00882 0.00184 0.01295 0.00000 0.00000 0.00161 0.01370 0.01841 0.00000 0.00000
82 0.01880 0.00609 0.03046 0.00000 0.00000 0.01635 0.03922 0.11905 0.00000 0.00000
83 0.02228 0.00778 0.02906 0.00000 0.00000 0.01674 0.03465 0.13962 0.00000 0.00000
84 0.02235 0.00777 0.02920 0.00000 0.00000 0.01813 0.03257 0.13650 0.00000 0.00000
85 0.01428 0.00032 0.00297 0.00000 0.00000 0.03592 0.00014 0.01070 0.00000 0.00000
86 0.00008 0.01673 0.00290 0.00000 0.00000 0.00123 0.06422 0.01165 0.00000 0.00000
87 0.00017 0.00004 0.06856 0.00000 0.00000 0.00067 0.00000 0.19150 0.00000 0.00000
88 0.00304 0.00007 0.00058 0.00159 0.00000 0.00855 0.00401 0.00113 0.00399 0.00000
89 0.00857 0.00653 0.00336 0.01167 0.00000 0.00815 0.00349 0.01032 0.08869 0.00000
90 0.00352 0.00104 0.00125 0.00578 0.00000 0.00982 0.00304 0.00207 0.00428 0.00000
91 0.00040 0.00028 0.00024 0.00092 0.00000 0.00689 0.00344 0.00682 0.03937 0.00000
92 0.00158 0.00365 0.00362 0.01500 0.00000 0.00448 0.00117 0.00491 0.11169 0.00000
93 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
94 0.01209 0.00836 0.00270 0.00522 0.00000 0.01678 0.01209 0.02001 0.09783 0.00000
95 0.00146 0.00442 0.00333 0.00353 0.00000 0.00572 0.00799 0.00452 0.00472 0.00000
96 0.00405 0.00187 0.00245 0.01784 0.00000 0.00687 0.00168 0.00650 0.03458 0.00000
97 0.02573 0.03221 0.03606 0.17819 0.00000 0.00000 0.00000 0.00000 0.00091 0.00000
98 0.00001 0.00002 0.00001 0.00001 0.00000 0.00967 0.00988 0.02908 0.20540 0.00000
99 0.00194 0.00009 0.00117 0.00369 0.00000 0.00039 0.00026 0.00103 0.00452 0.00000
100 0.00528 0.00285 0.00239 0.01235 0.00000 0.00449 0.01304 0.00961 0.06355 0.00000
101 0.00841 0.00628 0.00309 0.00937 0.00000 0.00527 0.00327 0.01260 0.09456 0.00000
102 0.00848 0.00625 0.00309 0.00988 0.00000 0.00801 0.00332 0.01009 0.08719 0.00000
103 0.00891 0.00039 0.00038 0.00210 0.00000 0.02033 0.00004 0.00038 0.00808 0.00000
104 0.00026 0.01215 0.00047 0.00180 0.00000 0.00198 0.02599 0.00007 0.00912 0.00000
105 0.00009 0.00007 0.01245 0.00187 0.00000 0.00114 0.00002 0.04070 0.00816 0.00000
106 0.00169 0.00016 0.00001 0.03954 0.00000 0.00167 0.00001 0.00000 0.15216 0.00000
107 0.00211 0.00028 0.00006 0.00038 0.00067 0.00803 0.00212 0.00242 0.00141 0.00298
108 0.00454 0.00455 0.00252 0.00245 0.00632 0.00695 0.00252 0.00377 0.01393 0.06865
109 0.00284 0.00049 0.00096 0.00085 0.00468 0.00866 0.00344 0.00188 0.00161 0.00259
110 0.00027 0.00001 0.00010 0.00016 0.00064 0.00576 0.00220 0.00267 0.00824 0.03730
111 0.00135 0.00189 0.00144 0.00263 0.00920 0.00403 0.00126 0.00061 0.01072 0.09499
112 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
113 0.01035 0.00726 0.00407 0.00200 0.00449 0.01159 0.00830 0.01005 0.01681 0.07754
114 0.00169 0.00502 0.00732 0.00256 0.00206 0.00450 0.01029 0.00834 0.00269 0.00227
115 0.00172 0.00105 0.00101 0.00161 0.00769 0.00608 0.00186 0.00270 0.00666 0.02090
116 0.01479 0.02299 0.03132 0.03573 0.18262 0.00000 0.00000 0.00000 0.00000 0.00013
117 0.00000 0.00000 0.00001 0.00001 0.00000 0.00819 0.00734 0.01203 0.02289 0.20294
118 0.00079 0.00003 0.00006 0.00060 0.00210 0.00011 0.00011 0.00034 0.00114 0.00209
119 0.00265 0.00129 0.00129 0.00129 0.00542 0.00346 0.01003 0.00549 0.01063 0.04458
120 0.00440 0.00429 0.00220 0.00187 0.00487 0.00458 0.00286 0.00418 0.01720 0.07507
121 0.00447 0.00429 0.00220 0.00187 0.00510 0.00699 0.00258 0.00380 0.01318 0.06836
122 0.00646 0.00029 0.00046 0.00036 0.00129 0.01594 0.00003 0.00027 0.00106 0.00702
123 0.00023 0.00824 0.00037 0.00042 0.00137 0.00197 0.01986 0.00003 0.00049 0.00829
124 0.00009 0.00008 0.01035 0.00029 0.00138 0.00081 0.00001 0.02666 0.00009 0.00754
125 0.00067 0.00005 0.00002 0.01194 0.00155 0.00298 0.00024 0.00002 0.03630 0.00658
126 0.00097 0.00138 0.00014 0.00005 0.03696 0.00377 0.00080 0.00003 0.00000 0.14627
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1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
2 0.00073 0.00001 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
4 0.03465 0.01455 0.00781 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
5 0.00000 0.00008 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
7 0.00641 0.00048 0.00333 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
9 0.00072 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
10 0.00104 0.00017 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
11 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
12 0.09783 0.02809 0.00822 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
13 0.00072 0.00000 0.00000 0.00000 0.00000 0.00052 0.00000 0.00000 0.00000 0.00000
14 0.03147 0.00381 0.00170 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000
15 0.00000 0.01528 0.00065 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
16 0.00072 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
17 0.01975 0.01738 0.01774 0.01660 0.02387 0.00194 0.00342 0.00350 0.00298 0.01062
18 0.02882 0.03058 0.04081 0.04035 0.11138 0.00879 0.01075 0.01832 0.01450 0.05103
19 0.02289 0.01766 0.01776 0.01608 0.02342 0.00170 0.00319 0.00533 0.00540 0.01655
20 0.02392 0.02606 0.03564 0.02778 0.06232 0.01877 0.01797 0.02888 0.02585 0.05557
21 0.01350 0.01640 0.04020 0.03561 0.11975 0.00319 0.00876 0.01466 0.01267 0.04398
22 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
23 0.04925 0.04715 0.05654 0.04182 0.10957 0.01327 0.01598 0.01896 0.01507 0.04719
24 0.00023 0.00053 0.00077 0.00031 0.00088 0.00073 0.00184 0.00385 0.00291 0.01182
25 0.01639 0.01158 0.01311 0.01501 0.02824 0.00061 0.00196 0.00282 0.00205 0.00698
26 0.00028 0.00162 0.00330 0.00230 0.00738 0.00145 0.00395 0.00454 0.00344 0.01079
27 0.00000 0.00000 0.00000 0.00000 0.00000 0.00008 0.00060 0.00131 0.00128 0.00685
28 0.05939 0.06708 0.08687 0.06668 0.18181 0.00007 0.00098 0.00247 0.00211 0.00957
29 0.00003 0.00001 0.00051 0.00003 0.00009 0.06186 0.05050 0.06592 0.04814 0.11795
30 0.01274 0.02474 0.03112 0.02368 0.04515 0.00011 0.00006 0.00006 0.00004 0.00000
31 0.02747 0.03046 0.04009 0.03699 0.09911 0.00437 0.00700 0.01012 0.00823 0.01312
32 0.04310 0.00287 0.00641 0.00492 0.00940 0.03001 0.00199 0.00666 0.00562 0.01484
33 0.00238 0.06370 0.00463 0.00376 0.00951 0.00063 0.03460 0.00374 0.00408 0.01289
34 0.00701 0.01325 0.06896 0.00288 0.00858 0.00202 0.00631 0.03680 0.00196 0.01121
35 0.01244 0.02057 0.03146 0.05381 0.00756 0.00465 0.00815 0.01534 0.02756 0.00795
36 0.01634 0.01951 0.03316 0.02391 0.08668 0.00561 0.00843 0.01625 0.01057 0.04210
37 0.00305 0.00000 0.00000 0.00000 0.00000 0.00102 0.00000 0.00000 0.00000 0.00000
38 0.00667 0.00000 0.00000 0.00000 0.00000 0.00549 0.00000 0.00000 0.00000 0.00000
39 0.00316 0.00000 0.00000 0.00000 0.00000 0.00112 0.00000 0.00000 0.00000 0.00000
40 0.02871 0.00000 0.00000 0.00000 0.00000 0.00687 0.00000 0.00000 0.00000 0.00000
41 0.00700 0.00000 0.00000 0.00000 0.00000 0.00529 0.00000 0.00000 0.00000 0.00000
42 0.00002 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000
43 0.01639 0.00000 0.00000 0.00000 0.00000 0.00375 0.00000 0.00000 0.00000 0.00000
44 0.00092 0.00000 0.00000 0.00000 0.00000 0.00194 0.00000 0.00000 0.00000 0.00000
45 0.00290 0.00000 0.00000 0.00000 0.00000 0.00120 0.00000 0.00000 0.00000 0.00000
46 0.00255 0.00000 0.00000 0.00000 0.00000 0.00194 0.00000 0.00000 0.00000 0.00000
47 0.00000 0.00000 0.00000 0.00000 0.00000 0.00052 0.00000 0.00000 0.00000 0.00000
48 0.07512 0.00000 0.00000 0.00000 0.00000 0.00008 0.00000 0.00000 0.00000 0.00000
49 0.00002 0.00000 0.00000 0.00000 0.00000 0.01265 0.00000 0.00000 0.00000 0.00000
50 0.00590 0.00000 0.00000 0.00000 0.00000 0.00056 0.00000 0.00000 0.00000 0.00000
51 0.00676 0.00000 0.00000 0.00000 0.00000 0.00360 0.00000 0.00000 0.00000 0.00000
52 0.00706 0.00000 0.00000 0.00000 0.00000 0.00455 0.00000 0.00000 0.00000 0.00000
53 0.00736 0.01748 0.00000 0.00000 0.00000 0.00155 0.00629 0.00000 0.00000 0.00000
54 0.01260 0.05280 0.00000 0.00000 0.00000 0.00601 0.02824 0.00000 0.00000 0.00000
55 0.00807 0.01692 0.00000 0.00000 0.00000 0.00170 0.00762 0.00000 0.00000 0.00000
56 0.04262 0.05992 0.00000 0.00000 0.00000 0.01073 0.04180 0.00000 0.00000 0.00000
57 0.00772 0.05441 0.00000 0.00000 0.00000 0.00257 0.03005 0.00000 0.00000 0.00000
58 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
59 0.01775 0.07571 0.00000 0.00000 0.00000 0.00838 0.02648 0.00000 0.00000 0.00000
60 0.00049 0.00149 0.00000 0.00000 0.00000 0.00065 0.00649 0.00000 0.00000 0.00000
61 0.00838 0.01640 0.00000 0.00000 0.00000 0.00071 0.00437 0.00000 0.00000 0.00000
62 0.00078 0.00664 0.00000 0.00000 0.00000 0.00344 0.01220 0.00000 0.00000 0.00000
63 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00257 0.00000 0.00000 0.00000
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64 0.10237 0.13765 0.00000 0.00000 0.00000 0.00009 0.00368 0.00000 0.00000 0.00000
65 0.00120 0.00004 0.00000 0.00000 0.00000 0.02453 0.07603 0.00000 0.00000 0.00000
66 0.00805 0.04247 0.00000 0.00000 0.00000 0.00007 0.00026 0.00000 0.00000 0.00000
67 0.01232 0.05522 0.00000 0.00000 0.00000 0.00429 0.01727 0.00000 0.00000 0.00000
68 0.03780 0.00922 0.00000 0.00000 0.00000 0.01127 0.00689 0.00000 0.00000 0.00000
69 0.00000 0.06981 0.00000 0.00000 0.00000 0.00000 0.02970 0.00000 0.00000 0.00000
70 0.01291 0.01312 0.02915 0.00000 0.00000 0.00043 0.00222 0.00986 0.00000 0.00000
71 0.01915 0.01885 0.10676 0.00000 0.00000 0.00785 0.00581 0.05387 0.00000 0.00000
72 0.01407 0.01280 0.02786 0.00000 0.00000 0.00086 0.00220 0.01547 0.00000 0.00000
73 0.02537 0.02394 0.09501 0.00000 0.00000 0.01268 0.01049 0.07388 0.00000 0.00000
74 0.01202 0.00671 0.12129 0.00000 0.00000 0.00200 0.00460 0.04775 0.00000 0.00000
75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
76 0.03964 0.02113 0.13795 0.00000 0.00000 0.01241 0.01521 0.04282 0.00000 0.00000
77 0.00004 0.00060 0.00241 0.00000 0.00000 0.00056 0.00040 0.01266 0.00000 0.00000
78 0.01153 0.01081 0.02733 0.00000 0.00000 0.00031 0.00177 0.00923 0.00000 0.00000
79 0.00059 0.00055 0.01086 0.00000 0.00000 0.00071 0.00364 0.01359 0.00000 0.00000
80 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00003 0.00437 0.00000 0.00000
81 0.09002 0.06714 0.21985 0.00000 0.00000 0.00012 0.00049 0.00833 0.00000 0.00000
82 0.00000 0.00000 0.00179 0.00000 0.00000 0.04490 0.03057 0.13329 0.00000 0.00000
83 0.01036 0.01425 0.08149 0.00000 0.00000 0.00001 0.00001 0.00023 0.00000 0.00000
84 0.01854 0.01816 0.10598 0.00000 0.00000 0.00562 0.00454 0.03013 0.00000 0.00000
85 0.05492 0.00474 0.01691 0.00000 0.00000 0.02001 0.00042 0.01518 0.00000 0.00000
86 0.00115 0.05886 0.01301 0.00000 0.00000 0.00000 0.02125 0.01179 0.00000 0.00000
87 0.00012 0.00000 0.10523 0.00000 0.00000 0.00001 0.00000 0.05056 0.00000 0.00000
88 0.01979 0.01186 0.01628 0.04465 0.00000 0.00190 0.00130 0.00137 0.01634 0.00000
89 0.02918 0.01132 0.02137 0.18655 0.00000 0.00781 0.00341 0.00698 0.08252 0.00000
90 0.02301 0.01527 0.01540 0.04159 0.00000 0.00143 0.00181 0.00146 0.02672 0.00000
91 0.01952 0.01495 0.02695 0.10826 0.00000 0.01786 0.00555 0.01825 0.10669 0.00000
92 0.01322 0.00464 0.01150 0.19821 0.00000 0.00217 0.00022 0.00469 0.07773 0.00000
93 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
94 0.05148 0.03233 0.02683 0.19300 0.00000 0.00856 0.01090 0.01557 0.06787 0.00000
95 0.00000 0.00017 0.00018 0.00203 0.00000 0.00067 0.00032 0.00059 0.01911 0.00000
96 0.01650 0.00667 0.01137 0.04682 0.00000 0.00061 0.00065 0.00077 0.01109 0.00000
97 0.00000 0.00029 0.00060 0.01509 0.00000 0.00044 0.00039 0.00239 0.01646 0.00000
98 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00001 0.00013 0.00869 0.00000
99 0.05950 0.03190 0.05351 0.31423 0.00000 0.00001 0.00007 0.00056 0.01401 0.00000
100 0.00001 0.00000 0.00000 0.00023 0.00000 0.06083 0.02938 0.04592 0.20104 0.00000
101 0.01262 0.01193 0.01503 0.10396 0.00000 0.00004 0.00000 0.00000 0.00028 0.00000
102 0.02773 0.01156 0.02103 0.17080 0.00000 0.00495 0.00264 0.00508 0.03607 0.00000
103 0.04468 0.00153 0.00386 0.01968 0.00000 0.02940 0.00053 0.00335 0.02321 0.00000
104 0.00185 0.05602 0.00226 0.01748 0.00000 0.00002 0.02990 0.00059 0.01840 0.00000
105 0.00585 0.00181 0.05905 0.01375 0.00000 0.00032 0.00002 0.03219 0.01519 0.00000
106 0.00197 0.00003 0.00000 0.15119 0.00000 0.00025 0.00000 0.00000 0.07570 0.00000
107 0.01951 0.01389 0.01243 0.01837 0.04030 0.00188 0.00207 0.00088 0.00149 0.01792
108 0.02755 0.02027 0.01299 0.02775 0.18800 0.00606 0.00399 0.00355 0.00663 0.08613
109 0.02326 0.01398 0.01327 0.01814 0.03954 0.00129 0.00107 0.00126 0.00334 0.02794
110 0.02241 0.01510 0.01320 0.02348 0.10520 0.01638 0.00838 0.00932 0.02055 0.09380
111 0.00991 0.00302 0.00712 0.01723 0.20213 0.00197 0.00123 0.00080 0.00457 0.07423
112 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
113 0.04684 0.03424 0.02531 0.02884 0.18494 0.01072 0.00735 0.00807 0.01075 0.07964
114 0.00000 0.00001 0.00010 0.00009 0.00148 0.00020 0.00039 0.00030 0.00079 0.01995
115 0.01528 0.00675 0.00655 0.01520 0.04766 0.00025 0.00068 0.00017 0.00105 0.01178
116 0.00000 0.00001 0.00023 0.00062 0.01246 0.00035 0.00024 0.00063 0.00224 0.01822
117 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002 0.00004 0.00009 0.00027 0.01156
118 0.04762 0.03848 0.03421 0.04459 0.30687 0.00001 0.00003 0.00004 0.00054 0.01616
119 0.00001 0.00000 0.00000 0.00000 0.00015 0.05834 0.03561 0.03733 0.03776 0.19908
120 0.01006 0.01636 0.01016 0.01748 0.07620 0.00003 0.00000 0.00000 0.00000 0.00000
121 0.02596 0.01943 0.01224 0.02550 0.16728 0.00130 0.00257 0.00151 0.00608 0.02214
122 0.03927 0.00096 0.00285 0.00404 0.01586 0.02958 0.00045 0.00322 0.00447 0.02504
123 0.00179 0.04968 0.00146 0.00257 0.01605 0.00001 0.03056 0.00053 0.00290 0.02176
124 0.00491 0.00212 0.05310 0.00188 0.01448 0.00001 0.00002 0.03088 0.00003 0.01892
125 0.00578 0.00581 0.00184 0.05813 0.01277 0.00071 0.00034 0.00003 0.03014 0.01342
126 0.00647 0.00158 0.00009 0.00000 0.14631 0.00070 0.00009 0.00005 0.00000 0.07106
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1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
10 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
11 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
12 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
13 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
14 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
15 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
16 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
17 0.00127 0.00172 0.00279 0.00268 0.01213 0.00107 0.00292 0.00482 0.00308 0.01043
18 0.00111 0.00287 0.00500 0.00335 0.01115 0.00014 0.00061 0.00148 0.00079 0.00357
19 0.00082 0.00152 0.00271 0.00174 0.00594 0.00018 0.00089 0.00127 0.00091 0.00396
20 0.00616 0.00662 0.00994 0.01066 0.02631 0.00227 0.00446 0.00851 0.00575 0.02031
21 0.00047 0.00284 0.00492 0.00246 0.00876 0.00010 0.00052 0.00121 0.00074 0.00323
22 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00008 0.00020 0.00021 0.00057
23 0.00077 0.00129 0.00136 0.00099 0.00372 0.00024 0.00116 0.00189 0.00118 0.00567
24 0.00046 0.00183 0.00272 0.00122 0.00348 0.00129 0.00083 0.00166 0.00090 0.00364
25 0.00046 0.00182 0.00278 0.00182 0.00703 0.00012 0.00061 0.00136 0.00079 0.00356
26 0.00007 0.00038 0.00056 0.00007 0.00020 0.00001 0.00015 0.00046 0.00035 0.00112
27 0.00075 0.00228 0.00355 0.00219 0.00582 0.00090 0.00197 0.00359 0.00287 0.00707
28 0.00007 0.00045 0.00057 0.00018 0.00056 0.00013 0.00065 0.00127 0.00057 0.00259
29 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00021 0.00058 0.00031 0.00124
30 0.03935 0.02873 0.03629 0.02523 0.05464 0.00001 0.00012 0.00035 0.00031 0.00105
31 0.00004 0.00000 0.00000 0.00000 0.00000 0.01752 0.01414 0.01656 0.01051 0.02340
32 0.04214 0.00594 0.00982 0.00571 0.01191 0.02265 0.00480 0.01034 0.00589 0.01107
33 0.00058 0.03984 0.00679 0.00716 0.01149 0.00103 0.02076 0.00594 0.00708 0.01191
34 0.00145 0.00247 0.03249 0.00423 0.01193 0.00066 0.00133 0.01609 0.00383 0.01272
35 0.00088 0.00290 0.00452 0.02186 0.01003 0.00038 0.00107 0.00211 0.01182 0.01121
36 0.00075 0.00276 0.00461 0.00256 0.01139 0.00014 0.00060 0.00143 0.00070 0.00348
37 0.00113 0.00000 0.00000 0.00000 0.00000 0.00114 0.00000 0.00000 0.00000 0.00000
38 0.00106 0.00000 0.00000 0.00000 0.00000 0.00052 0.00000 0.00000 0.00000 0.00000
39 0.00054 0.00000 0.00000 0.00000 0.00000 0.00068 0.00000 0.00000 0.00000 0.00000
40 0.00282 0.00000 0.00000 0.00000 0.00000 0.00155 0.00000 0.00000 0.00000 0.00000
41 0.00104 0.00000 0.00000 0.00000 0.00000 0.00068 0.00000 0.00000 0.00000 0.00000
42 0.00000 0.00000 0.00000 0.00000 0.00000 0.00007 0.00000 0.00000 0.00000 0.00000
43 0.00045 0.00000 0.00000 0.00000 0.00000 0.00052 0.00000 0.00000 0.00000 0.00000
44 0.00057 0.00000 0.00000 0.00000 0.00000 0.00077 0.00000 0.00000 0.00000 0.00000
45 0.00051 0.00000 0.00000 0.00000 0.00000 0.00052 0.00000 0.00000 0.00000 0.00000
46 0.00047 0.00000 0.00000 0.00000 0.00000 0.00007 0.00000 0.00000 0.00000 0.00000
47 0.00103 0.00000 0.00000 0.00000 0.00000 0.00137 0.00000 0.00000 0.00000 0.00000
48 0.00042 0.00000 0.00000 0.00000 0.00000 0.00077 0.00000 0.00000 0.00000 0.00000
49 0.00000 0.00000 0.00000 0.00000 0.00000 0.00007 0.00000 0.00000 0.00000 0.00000
50 0.00558 0.00000 0.00000 0.00000 0.00000 0.00007 0.00000 0.00000 0.00000 0.00000
51 0.00038 0.00000 0.00000 0.00000 0.00000 0.00255 0.00000 0.00000 0.00000 0.00000
52 0.00147 0.00000 0.00000 0.00000 0.00000 0.00068 0.00000 0.00000 0.00000 0.00000
53 0.00049 0.00403 0.00000 0.00000 0.00000 0.00138 0.00870 0.00000 0.00000 0.00000
54 0.00131 0.01022 0.00000 0.00000 0.00000 0.00020 0.00249 0.00000 0.00000 0.00000
55 0.00062 0.00476 0.00000 0.00000 0.00000 0.00037 0.00328 0.00000 0.00000 0.00000
56 0.00469 0.01695 0.00000 0.00000 0.00000 0.00163 0.01239 0.00000 0.00000 0.00000
57 0.00074 0.01111 0.00000 0.00000 0.00000 0.00010 0.00225 0.00000 0.00000 0.00000
58 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00034 0.00000 0.00000 0.00000
59 0.00035 0.00432 0.00000 0.00000 0.00000 0.00017 0.00305 0.00000 0.00000 0.00000
60 0.00082 0.00666 0.00000 0.00000 0.00000 0.00042 0.00366 0.00000 0.00000 0.00000
61 0.00075 0.00664 0.00000 0.00000 0.00000 0.00020 0.00249 0.00000 0.00000 0.00000
62 0.00009 0.00141 0.00000 0.00000 0.00000 0.00000 0.00068 0.00000 0.00000 0.00000
63 0.00119 0.00703 0.00000 0.00000 0.00000 0.00088 0.00699 0.00000 0.00000 0.00000
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Products
Campaigns 51 52 53 54 55 56 57 58 59 60

64 0.00010 0.00178 0.00000 0.00000 0.00000 0.00020 0.00286 0.00000 0.00000 0.00000
65 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00092 0.00000 0.00000 0.00000
66 0.01346 0.03617 0.00000 0.00000 0.00000 0.00000 0.00055 0.00000 0.00000 0.00000
67 0.00000 0.00000 0.00000 0.00000 0.00000 0.00489 0.01552 0.00000 0.00000 0.00000
68 0.01246 0.00683 0.00000 0.00000 0.00000 0.00694 0.00758 0.00000 0.00000 0.00000
69 0.00000 0.00756 0.00000 0.00000 0.00000 0.00000 0.00345 0.00000 0.00000 0.00000
70 0.00053 0.00064 0.00788 0.00000 0.00000 0.00126 0.00130 0.01492 0.00000 0.00000
71 0.00073 0.00156 0.01565 0.00000 0.00000 0.00012 0.00009 0.00498 0.00000 0.00000
72 0.00081 0.00077 0.00872 0.00000 0.00000 0.00006 0.00020 0.00410 0.00000 0.00000
73 0.00341 0.00502 0.02514 0.00000 0.00000 0.00264 0.00238 0.02290 0.00000 0.00000
74 0.00017 0.00119 0.01669 0.00000 0.00000 0.00000 0.00004 0.00412 0.00000 0.00000
75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00072 0.00000 0.00000
76 0.00035 0.00026 0.00448 0.00000 0.00000 0.00034 0.00032 0.00566 0.00000 0.00000
77 0.00033 0.00091 0.00872 0.00000 0.00000 0.00092 0.00007 0.00580 0.00000 0.00000
78 0.00025 0.00095 0.00907 0.00000 0.00000 0.00007 0.00009 0.00458 0.00000 0.00000
79 0.00000 0.00024 0.00191 0.00000 0.00000 0.00000 0.00000 0.00162 0.00000 0.00000
80 0.00087 0.00170 0.01011 0.00000 0.00000 0.00071 0.00139 0.01172 0.00000 0.00000
81 0.00001 0.00017 0.00199 0.00000 0.00000 0.00000 0.00002 0.00445 0.00000 0.00000
82 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00205 0.00000 0.00000
83 0.02457 0.01491 0.06140 0.00000 0.00000 0.00000 0.00000 0.00122 0.00000 0.00000
84 0.00000 0.00000 0.00000 0.00000 0.00000 0.01010 0.00638 0.02689 0.00000 0.00000
85 0.02596 0.00274 0.01515 0.00000 0.00000 0.01242 0.00158 0.01505 0.00000 0.00000
86 0.00015 0.02383 0.01354 0.00000 0.00000 0.00072 0.01221 0.01309 0.00000 0.00000
87 0.00000 0.00000 0.01611 0.00000 0.00000 0.00000 0.00000 0.00529 0.00000 0.00000
88 0.00119 0.00029 0.00089 0.01442 0.00000 0.00072 0.00111 0.00155 0.01877 0.00000
89 0.00107 0.00029 0.00124 0.02001 0.00000 0.00000 0.00013 0.00009 0.00545 0.00000
90 0.00054 0.00029 0.00065 0.00904 0.00000 0.00001 0.00018 0.00018 0.00542 0.00000
91 0.00498 0.00186 0.00598 0.04463 0.00000 0.00143 0.00181 0.00310 0.03053 0.00000
92 0.00026 0.00015 0.00065 0.01558 0.00000 0.00000 0.00004 0.00007 0.00524 0.00000
93 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00165 0.00000
94 0.00081 0.00015 0.00007 0.00620 0.00000 0.00015 0.00046 0.00051 0.00715 0.00000
95 0.00025 0.00029 0.00057 0.00831 0.00000 0.00168 0.00000 0.00004 0.00664 0.00000
96 0.00016 0.00020 0.00050 0.01022 0.00000 0.00000 0.00013 0.00009 0.00545 0.00000
97 0.00000 0.00000 0.00009 0.00049 0.00000 0.00000 0.00000 0.00000 0.00271 0.00000
98 0.00026 0.00103 0.00133 0.01029 0.00000 0.00062 0.00009 0.00139 0.01482 0.00000
99 0.00000 0.00003 0.00002 0.00123 0.00000 0.00000 0.00000 0.00000 0.00447 0.00000
100 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00245 0.00000
101 0.03976 0.01895 0.02677 0.09050 0.00000 0.00000 0.00000 0.00000 0.00245 0.00000
102 0.00000 0.00000 0.00000 0.00000 0.00000 0.01657 0.01035 0.01149 0.03685 0.00000
103 0.04305 0.00503 0.00784 0.01950 0.00000 0.02140 0.00297 0.00815 0.01790 0.00000
104 0.00058 0.04089 0.00391 0.02139 0.00000 0.00089 0.01976 0.00252 0.02255 0.00000
105 0.00050 0.00006 0.03485 0.01722 0.00000 0.00069 0.00118 0.01913 0.01769 0.00000
106 0.00000 0.00000 0.00000 0.01455 0.00000 0.00000 0.00000 0.00000 0.00759 0.00000
107 0.00123 0.00101 0.00073 0.00140 0.02047 0.00031 0.00080 0.00064 0.00113 0.01761
108 0.00060 0.00019 0.00067 0.00132 0.01883 0.00000 0.00001 0.00009 0.00016 0.00603
109 0.00055 0.00035 0.00024 0.00098 0.01002 0.00000 0.00014 0.00013 0.00036 0.00669
110 0.00537 0.00198 0.00341 0.00834 0.04442 0.00135 0.00133 0.00270 0.00309 0.03427
111 0.00018 0.00001 0.00016 0.00079 0.01479 0.00000 0.00000 0.00005 0.00011 0.00546
112 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00097
113 0.00074 0.00040 0.00014 0.00034 0.00628 0.00004 0.00055 0.00035 0.00045 0.00957
114 0.00014 0.00008 0.00028 0.00026 0.00587 0.00106 0.00000 0.00000 0.00008 0.00615
115 0.00024 0.00007 0.00023 0.00086 0.01187 0.00000 0.00001 0.00009 0.00016 0.00600
116 0.00000 0.00000 0.00000 0.00001 0.00034 0.00000 0.00000 0.00000 0.00000 0.00188
117 0.00014 0.00016 0.00085 0.00147 0.00982 0.00045 0.00001 0.00013 0.00164 0.01192
118 0.00000 0.00000 0.00001 0.00003 0.00094 0.00000 0.00000 0.00000 0.00000 0.00437
119 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00209
120 0.03990 0.02363 0.02598 0.02301 0.09222 0.00000 0.00000 0.00000 0.00000 0.00177
121 0.00000 0.00000 0.00000 0.00000 0.00000 0.01882 0.01272 0.01256 0.00978 0.03950
122 0.04438 0.00504 0.00761 0.00542 0.02010 0.02489 0.00384 0.00847 0.00608 0.01869
123 0.00058 0.04411 0.00412 0.00746 0.01939 0.00110 0.02360 0.00319 0.00708 0.02010
124 0.00165 0.00032 0.03957 0.00342 0.02013 0.00079 0.00106 0.02047 0.00264 0.02146
125 0.00044 0.00030 0.00012 0.03374 0.01692 0.00041 0.00083 0.00117 0.01831 0.01893
126 0.00000 0.00000 0.00000 0.00000 0.01922 0.00000 0.00000 0.00000 0.00000 0.00587
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Products
Campaigns 61 62 63 64 65 66 67 68 69 70

1 0.14187 0.15090 0.07743 0.00000 0.00000 0.01157 0.00039 0.00000 0.00000 0.00000
2 0.00723 0.00054 0.00005 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
3 0.14672 0.15364 0.07692 0.00000 0.00000 0.01260 0.00039 0.00000 0.00000 0.00000
4 0.00384 0.00023 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
5 0.00708 0.00315 0.00005 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 0.14352 0.15866 0.08551 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
9 0.00723 0.00035 0.00005 0.00000 0.00000 0.01260 0.00039 0.00000 0.00000 0.00000
10 0.00030 0.00005 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
11 0.00707 0.00092 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
12 0.00174 0.00002 0.00000 0.00000 0.00000 0.00064 0.00000 0.00000 0.00000 0.00000
13 0.00723 0.00054 0.00005 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
14 0.11702 0.00000 0.00000 0.00000 0.00000 0.01290 0.00000 0.00000 0.00000 0.00000
15 0.00707 0.05051 0.00000 0.00000 0.00000 0.00000 0.00039 0.00000 0.00000 0.00000
16 0.00723 0.00048 0.00557 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
17 0.00310 0.01024 0.01649 0.01263 0.02577 0.01212 0.04386 0.06427 0.04762 0.10645
18 0.00016 0.00072 0.00038 0.00047 0.00121 0.00000 0.00000 0.00029 0.00014 0.00167
19 0.00333 0.01076 0.01655 0.01127 0.02163 0.01761 0.04631 0.06483 0.04814 0.11031
20 0.00003 0.00007 0.00000 0.00013 0.00099 0.00001 0.00018 0.00040 0.00126 0.00026
21 0.00025 0.00086 0.00036 0.00047 0.00253 0.00000 0.00000 0.00047 0.00051 0.00319
22 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
23 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
24 0.02071 0.05030 0.06919 0.05157 0.09820 0.00000 0.00000 0.00000 0.00000 0.00000
25 0.00016 0.00042 0.00038 0.00047 0.00119 0.02547 0.04637 0.06514 0.04852 0.11243
26 0.00010 0.00029 0.00030 0.00007 0.00001 0.00002 0.00010 0.00009 0.00001 0.00003
27 0.00379 0.00997 0.01616 0.01374 0.03818 0.00000 0.00000 0.00000 0.00000 0.00000
28 0.00000 0.00000 0.00000 0.00000 0.00000 0.00035 0.00048 0.00077 0.00072 0.00239
29 0.00016 0.00071 0.00038 0.00047 0.00121 0.00000 0.00000 0.00000 0.00000 0.00000
30 0.00016 0.00072 0.00038 0.00047 0.00121 0.00000 0.00000 0.00029 0.00007 0.00039
31 0.00016 0.00072 0.00038 0.00047 0.00121 0.00000 0.00000 0.00029 0.00007 0.00041
32 0.01974 0.00013 0.00034 0.00021 0.00098 0.06718 0.00006 0.00007 0.00013 0.00120
33 0.00013 0.02261 0.00023 0.00013 0.00055 0.00000 0.07752 0.00016 0.00022 0.00070
34 0.00016 0.00070 0.02608 0.00011 0.00053 0.00000 0.00000 0.06781 0.00015 0.00091
35 0.00016 0.00072 0.00037 0.02586 0.00044 0.00000 0.00000 0.00029 0.06173 0.00039
36 0.00016 0.00072 0.00038 0.00038 0.00515 0.00000 0.00000 0.00029 0.00014 0.00310
37 0.33422 0.00000 0.00000 0.00000 0.00000 0.01102 0.00000 0.00000 0.00000 0.00000
38 0.02242 0.00000 0.00000 0.00000 0.00000 0.00003 0.00000 0.00000 0.00000 0.00000
39 0.34821 0.00000 0.00000 0.00000 0.00000 0.01135 0.00000 0.00000 0.00000 0.00000
40 0.01090 0.00000 0.00000 0.00000 0.00000 0.00010 0.00000 0.00000 0.00000 0.00000
41 0.02351 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
42 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
43 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
44 0.35535 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
45 0.02241 0.00000 0.00000 0.00000 0.00000 0.01135 0.00000 0.00000 0.00000 0.00000
46 0.00122 0.00000 0.00000 0.00000 0.00000 0.00015 0.00000 0.00000 0.00000 0.00000
47 0.02672 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
48 0.00529 0.00000 0.00000 0.00000 0.00000 0.00053 0.00000 0.00000 0.00000 0.00000
49 0.02241 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
50 0.02242 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
51 0.02242 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
52 0.02264 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
53 0.05027 0.24197 0.00000 0.00000 0.00000 0.01461 0.07808 0.00000 0.00000 0.00000
54 0.00040 0.00387 0.00000 0.00000 0.00000 0.00000 0.00002 0.00000 0.00000 0.00000
55 0.05077 0.24200 0.00000 0.00000 0.00000 0.01461 0.07932 0.00000 0.00000 0.00000
56 0.00050 0.00067 0.00000 0.00000 0.00000 0.00000 0.00080 0.00000 0.00000 0.00000
57 0.00001 0.00866 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
58 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
59 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
60 0.05597 0.30519 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
61 0.00040 0.00228 0.00000 0.00000 0.00000 0.01461 0.07961 0.00000 0.00000 0.00000
62 0.00030 0.00136 0.00000 0.00000 0.00000 0.00000 0.00043 0.00000 0.00000 0.00000
63 0.00360 0.03202 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
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Products
Campaigns 61 62 63 64 65 66 67 68 69 70

64 0.00000 0.00004 0.00000 0.00000 0.00000 0.00055 0.00156 0.00000 0.00000 0.00000
65 0.00040 0.00386 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
66 0.00040 0.00387 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
67 0.00040 0.00387 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
68 0.13167 0.00059 0.00000 0.00000 0.00000 0.03494 0.00025 0.00000 0.00000 0.00000
69 0.00000 0.01431 0.00000 0.00000 0.00000 0.00000 0.00032 0.00000 0.00000 0.00000
70 0.00693 0.02253 0.13879 0.00000 0.00000 0.03424 0.02809 0.13956 0.00000 0.00000
71 0.00000 0.00013 0.00137 0.00000 0.00000 0.00000 0.00000 0.00103 0.00000 0.00000
72 0.00693 0.02688 0.13654 0.00000 0.00000 0.03821 0.02809 0.14152 0.00000 0.00000
73 0.00000 0.00000 0.00003 0.00000 0.00000 0.00000 0.00000 0.00141 0.00000 0.00000
74 0.00000 0.00000 0.00134 0.00000 0.00000 0.00000 0.00000 0.00165 0.00000 0.00000
75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
76 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
77 0.02654 0.04615 0.24925 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000 0.00000
78 0.00000 0.00013 0.00137 0.00000 0.00000 0.03821 0.02809 0.14261 0.00000 0.00000
79 0.00000 0.00000 0.00108 0.00000 0.00000 0.00000 0.00000 0.00031 0.00000 0.00000
80 0.00329 0.00502 0.05136 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
81 0.00000 0.00000 0.00000 0.00000 0.00000 0.00096 0.00045 0.00271 0.00000 0.00000
82 0.00000 0.00013 0.00137 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
83 0.00000 0.00013 0.00137 0.00000 0.00000 0.00000 0.00000 0.00103 0.00000 0.00000
84 0.00000 0.00013 0.00137 0.00000 0.00000 0.00000 0.00000 0.00103 0.00000 0.00000
85 0.06147 0.00000 0.00112 0.00000 0.00000 0.07245 0.00000 0.00024 0.00000 0.00000
86 0.00000 0.07752 0.00082 0.00000 0.00000 0.00000 0.06961 0.00055 0.00000 0.00000
87 0.00000 0.00000 0.01702 0.00000 0.00000 0.00000 0.00000 0.00218 0.00000 0.00000
88 0.00139 0.00365 0.00899 0.05771 0.00000 0.00790 0.03406 0.03706 0.19640 0.00000
89 0.00000 0.00000 0.00007 0.00300 0.00000 0.00000 0.00000 0.00000 0.00108 0.00000
90 0.00177 0.00445 0.00925 0.04750 0.00000 0.02072 0.03406 0.03706 0.20086 0.00000
91 0.00000 0.00000 0.00000 0.00071 0.00000 0.00000 0.00000 0.00000 0.00972 0.00000
92 0.00000 0.00000 0.00000 0.00365 0.00000 0.00000 0.00000 0.00000 0.00395 0.00000
93 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
94 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
95 0.02952 0.03541 0.04187 0.18603 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
96 0.00000 0.00000 0.00007 0.00300 0.00000 0.02574 0.03406 0.03706 0.20384 0.00000
97 0.00000 0.00000 0.00000 0.00052 0.00000 0.00000 0.00000 0.00000 0.00008 0.00000
98 0.00362 0.00288 0.00717 0.07307 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
99 0.00000 0.00000 0.00000 0.00000 0.00000 0.00029 0.00000 0.00000 0.00558 0.00000
100 0.00000 0.00000 0.00007 0.00300 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
101 0.00000 0.00000 0.00007 0.00300 0.00000 0.00000 0.00000 0.00000 0.00054 0.00000
102 0.00000 0.00000 0.00007 0.00300 0.00000 0.00000 0.00000 0.00000 0.00054 0.00000
103 0.01889 0.00000 0.00003 0.00141 0.00000 0.07022 0.00000 0.00000 0.00101 0.00000
104 0.00000 0.02756 0.00000 0.00090 0.00000 0.00000 0.08838 0.00000 0.00170 0.00000
105 0.00000 0.00000 0.04120 0.00084 0.00000 0.00000 0.00000 0.10061 0.00116 0.00000
106 0.00000 0.00000 0.00000 0.01117 0.00000 0.00000 0.00000 0.00000 0.00968 0.00000
107 0.00051 0.00156 0.00384 0.00884 0.04350 0.00136 0.02403 0.03346 0.03789 0.17967
108 0.00000 0.00000 0.00000 0.00014 0.00204 0.00000 0.00000 0.00000 0.00000 0.00282
109 0.00075 0.00174 0.00468 0.00875 0.03651 0.00649 0.02769 0.03346 0.03780 0.18619
110 0.00000 0.00000 0.00000 0.00006 0.00168 0.00000 0.00000 0.00000 0.00003 0.00044
111 0.00000 0.00000 0.00000 0.00000 0.00427 0.00000 0.00000 0.00000 0.00000 0.00538
112 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
113 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
114 0.00950 0.03166 0.03729 0.04681 0.16575 0.00000 0.00000 0.00000 0.00000 0.00000
115 0.00000 0.00000 0.00000 0.00014 0.00201 0.01866 0.02769 0.03346 0.03780 0.18976
116 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00006
117 0.00164 0.00228 0.00107 0.00738 0.06444 0.00000 0.00000 0.00000 0.00000 0.00000
118 0.00000 0.00000 0.00000 0.00000 0.00000 0.00013 0.00000 0.00000 0.00001 0.00403
119 0.00000 0.00000 0.00000 0.00014 0.00204 0.00000 0.00000 0.00000 0.00000 0.00000
120 0.00000 0.00000 0.00000 0.00014 0.00204 0.00000 0.00000 0.00000 0.00000 0.00065
121 0.00000 0.00000 0.00000 0.00014 0.00204 0.00000 0.00000 0.00000 0.00000 0.00069
122 0.01325 0.00000 0.00003 0.00005 0.00165 0.05771 0.00000 0.00000 0.00000 0.00203
123 0.00000 0.01869 0.00000 0.00003 0.00092 0.00000 0.07841 0.00000 0.00000 0.00118
124 0.00000 0.00000 0.03014 0.00000 0.00090 0.00000 0.00000 0.09165 0.00000 0.00154
125 0.00000 0.00000 0.00000 0.04122 0.00075 0.00000 0.00000 0.00000 0.10210 0.00066
126 0.00000 0.00000 0.00000 0.00000 0.00869 0.00000 0.00000 0.00000 0.00000 0.00523
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Appendix J

Example of Cycle Stock Inventory Estimate

After solving the PoT model, we calculate the inventory of product 31 from Ex-

ample 1. We consider the model is run and the optimal solution is found. The

actual average inventory (Ĩ31) of this product is calculated based on equation 4.15

and is compared to the estimated cycle stock inventory (I31). Calculations are

presented in the following table:

c k tck(hour) Nk Rc(year) αc31 dc31 Rcαc31 Rcαc31 − dc31 I31 Ĩ31
6 3 87.21 6.5 13793080.76 0.00034 1,460.66 4,689.65 3,228.99 112.36 77.36
10 3 53.081 6.5 13402767.38 0.15242 387,273.25 2,042,849.80 1,655,576.55 29,790.25 24,142.76
46 4 34.68 3.25 13998591.49 0.33728 292,392.34 4,721,444.94 4,429,052.60 44,983.44 42,197.68
79 3 32.04 6.5 14582336.18 0.04188 69,882.47 610,708.24 540,825.77 5,375.57 4,760.46
97 4 43.14 3.25 15286744.19 0.02573 30,300.30 393,327.93 363,027.63 4,661.58 4,302.48
116 3 64.44 6.5 15048129.08 0.01479 51,221.02 222,561.83 171,340.81 3,940.08 3,033.30

Total 88,863.28 78,514.03

The difference between actual and estimated cycle stock inventory is 10, 349.25

which is 13% of the actual cycle stock inventory.

We used this estimation to avoid dealing with non-linear programming.
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Appendix K

Cutting Pattern Code

First, the code creates all possible combination of the main cut through following

functions; “nwMaxCalc”, calculates the maximum value for the number of each

width according to the chosen thickness in a list called “nWmx”. Then “combos”

generates all combinations of the widths values which are equal or less than the the

maximum number calculated in “nWmx” and creates a list called “r”. Function

“wcalc” calculates the total width given the list according to the given widths

and kerf and returns the total width by “TotW”. Thus, for each thickness, as

discussed in chapter 3, we are able to find all combinations of widths which create

all possible main cuts.

Then for each main cut, “FinalCalcUD”, first calculates the remaining area of

the assumed circle (the circle whose diameter equals the diagonal of the created

main cut) and in the same procedure for the main cut, finds all combinations for

above below cuts and save them in “seqUDVer” (for vertical cuts). If the com-

bination could be fit into the remaining area of the circle, “List” (including area

and combinations of widths) will be pushed into a heap called “CattingPattern”.

A Same method used for above-bellow horizontal cuts. Right-left vertical and

right-left horizontal cuts are generated by “FinalCalcRL”. All generated cuts are

then saved in “CattingPattern”. The best “n” patterns with the highest area yield

are chosen and kept in the list called “Best”. All created patterns by their spec-

ification including radius of the pattern, thickness of the main cut, widths of the

143



sub-cuts in the main cut, and width and thickness of above-bellow and rightleft

cuts are stored and sorted based on the cutting pattern radius in a list called “xx”.

Logs are simulated according to their distribution functions through “Logs”

function. The user can easily change the settings for new log classes. The created

logs are stored in a list called “log” by three specifications: small radius, large

radius and length. However, the logs are then saved in a list called “SLogs”.

For each log, the patterns which their radiuses are between small and large ra-

dius of the log are chosen. The length of each sub cut resulting from implementing

the patterns on the log are calculated by functions “CutPattern1” (for main cut

and vertical above-bellow and horizontal right-left cuts) and “CutPattern2” (for

horizontal above-bellow and vertical right- left cuts). Then for each price list the

value of each pattern on each log is calculated and the most valuable pattern is

saved in the “BestPatternS”. The resulting pieces are then stored in a list called

“LogSolutions”. The user should then dump information of the resulting pieces

(list “LogSolutions”) and logs (list “SLogs”) into a pickle file through running

“pickle.dump(obj, file[, protocol])” instruction. The saved pickle file is then used

by two other pieces of codes; “Run” and “RunSort”.

The second code called “PieceMaps” is another file that creates the price of

each piece, based on each price list and should be available prior to the main code.

This file is where the user defines the price lists. The main code then imports and

uses the price information of each piece based on the “PiceMaps” results.

The third code called “Run”, loads the picked file and calculates actual, target

and nominal percent yields and fractional outputs of each piece over all the logs

and for all the price lists and writes them in an excel file.

As we assumed the first 2 log classes are generated once, and other 5 classes

are just different sorts of these two classes, the forth code called “RunSort”, first

loads the pickled files of the first 2 log classes, combines and sorts the logs to create

more classes and same as “Run” code, then it calculates and writes the outputs

of the new campaigns in an excel file.
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PieceMaps 
 
# generating dictionaries of lumbers and their corresponding values based on three 
formulas 
ThickSell=[3., 4., 6., 8., 10., 12.] 
ThickTarg= [2.5, 3.5, 5.5, 7.25, 9.25, 11.25] 
ThickAllow=[.25,.25,.375,.625,.625,.625] 
ThickSaw=[] 
for i in range(len(ThickSell)): 
    ThickSaw.append(ThickTarg[i]+ThickAllow[i]) 
 
WidthSell=[1., 2., 4., 6.] 
WidthTarg=[0.75, 1.5, 3.5, 5.5] 
WidthAllow=[.116, .160, .25, .375] 
WidthSaw=[] 
for i in range(len(WidthSell)): 
    WidthSaw.append(WidthTarg[i]+WidthAllow[i]) 
 
LengthSell=[8., 10., 12., 14., 16.] 
u=1 
 
def getVol_byType(ptyp): 
    vNom=PieceNomVolume[ptyp] 
    vSaw=PieceSawVolume[ptyp] 
    vTarg=PieceTargVolume[ptyp] 
    return (vNom,vSaw,vTarg) 
 
PieceSizes=[] 
PieceSizeDict={} 
PieceNomVolume=[] 
PieceTargVolume=[] 
PieceSawVolume=[] 
PriceLists=[] 
TempPriceList=[] 
 
location=0 
 
for i in range(len(WidthSell)): 
    for j in range(len(ThickSell)): 
        for k in range(len(LengthSell)): 
               allowable=True 
               if(WidthSell[i]>=4) and ThickSell[j]<>WidthSell[i]: 
                   allowable=False 
               if allowable: 
                   piece=(int(WidthSell[i]), int(ThickSell[j]),int(LengthSell[k])) 
                   nomVol=WidthSell[i]*ThickSell[j]*LengthSell[k]/144. 
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                   sawVol=WidthSaw[i]*ThickSaw[j]*LengthSell[k]/144. 
                   targVol=WidthTarg[i]*ThickTarg[j]*LengthSell[k]/144. 
                   PieceSizes.append(piece) 
                   PieceSizeDict[piece]=location 
                   PieceNomVolume.append(nomVol) 
                   PieceTargVolume.append(targVol) 
                   PieceSawVolume.append(sawVol) 
                   location+=1 
 
TempPriceList=[] 
for i in range(len(PieceSizes)): 
    TempPriceList.append(PieceNomVolume[i]) 
PriceLists.append(TempPriceList) 
 
for dim in range(3): 
    TempPriceList=[] 
 
    for i in range(len(PieceSizes)): 
        (w,t,l)=PieceSizes[i] 
        if dim ==0: 
            vol=pow(w,1.5)*t*l/144. 
        elif dim==1: 
            vol=pow(t,1.5)*w*l/144. 
        elif dim==2: 
            vol=pow(l,1.5)*w*t/144. 
        TempPriceList.append(vol) 
    PriceLists.append(TempPriceList) 
 
TempPriceList=[] #fit function 
for i in range(len(PieceSizes)): 
    (w,t,l)=PieceSizes[i] 
    vol=(w*t*l/144.)*(1.0468*w+ 0.19851*t + 0.0487*l +2.49827 - (0.0357*w*t)- 
(0.00002781*w*t*l)) 
    TempPriceList.append(vol) 
PriceLists.append(TempPriceList) 
 
for j in range (len(WidthSell)): #emphasize on specific width 
    TempPriceList=[] 
    for i in range(len(PieceSizes)): 
        (w,t,l)=PieceSizes[i] 
        if w == WidthSell[j]: 
            vol = 20*w*t*l/144. 
        else: 
            vol = w*t*l/144. 
        TempPriceList.append(vol) 
    PriceLists.append(TempPriceList) 
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for k in range (len(ThickSell)): #emphasize on specific Thickness 
    TempPriceList=[] 
    for i in range(len(PieceSizes)): 
        (w,t,l)=PieceSizes[i] 
        if t == ThickSell[k]: 
            vol = 20*w*t*l/144. 
        else: 
            vol = w*t*l/144.    
        TempPriceList.append(vol) 
 
    PriceLists.append(TempPriceList) 
 
for m in range (len(LengthSell)): #emphasize on specific length 
    TempPriceList=[] 
    for i in range(len(PieceSizes)): 
        (w,t,l)=PieceSizes[i] 
        if l == LengthSell[m]: 
            vol = 20*w*t*l/144. 
        else: 
            vol = w*t*l/144.  
        TempPriceList.append(vol) 
    PriceLists.append(TempPriceList) 
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Run 
 
import pickle 
from xlwt import Workbook, easyxf 
 
import math 
from PieceMaps import * 
 
Z=open('tt.pkl','rb') 
Cuts=pickle.load(Z) 
Logs=pickle.load(Z) 
#print Logs 
PercentYield=[0 for i in range(20)] #List for average percent yield 
Value=[0 for i in range(20)] 
TotVolSaw=[0 for i in range(20)] 
TotVolTarg=[0 for i in range(20)] 
TotVolNom=[0 for i in range(20)] 
TotProducts={} 
TotVol={} 
PerVol={} 
 
Volume=0 #total log volume 
pi=math.pi 
for a in range(len(Logs)): 
    r1=Logs[a][1]/12. 
    r0=Logs[a][0]/12. 
    lenlog=Logs[a][2] 
    Volume+=pi*lenlog*(pow(r0,2)+r0*r1+pow(r1,2))/3. 
#print "Log volume:", Volume 
 
for i in range((20)): #each pricelist 
    TotProducts[i]={} 
    TotVol[i]={} 
    PerVol[i]={} 
    for j in range(0,len(Cuts)): #each log 
        #PercentYield[i]+=(Cuts[j][i][1]) 
        Value[i]+=Cuts[j][i][0] 
 
        for k in Cuts[j][i][3].keys(): 
            #print k, Cuts[j][i][3][k] 
            if k in TotProducts[i].keys(): 
                TotProducts[i][k]+=Cuts[j][i][3][k] 
            else: 
                TotProducts[i][k]=Cuts[j][i][3][k] 
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        #print "***" 
    for u in TotProducts[i].keys(): 
        TotVol[i][u]=(TotProducts[i][u]*PieceNomVolume[u]) 
        TotVolSaw[i]+=(TotProducts[i][u]*PieceSawVolume[u]) 
        TotVolTarg[i]+=(TotProducts[i][u]*PieceTargVolume[u]) 
        TotVolNom[i]+=(TotProducts[i][u]*PieceNomVolume[u]) 
 
        PerVol[i][u]=TotVol[i][u]/Volume 
    TotVolSaw[i]=TotVolSaw[i]/Volume #Saw percent Yield 
    TotVolTarg[i]=TotVolTarg[i]/Volume #Target Percent yield 
    TotVolNom[i]=TotVolNom[i]/Volume 
 
TotLog=len(Cuts) 
##for i in range(len(PercentYield)):#average percent yield 
##    PercentYield[i]=PercentYield[i]/TotLog 
#print "PercentYiled:", PercentYield 
 
book=Workbook() 
sheet1 = book.add_sheet('Sheet 1') 
style1=easyxf('pattern: pattern solid, fore_colour light_green') 
style2=easyxf('pattern: pattern solid, fore_colour light_orange') 
 
sheet1.write(0,71,"PercentYieldSaw",style2) 
sheet1.write(0,72,"PercentYieldTarg",style2) 
sheet1.write(0,73,"PercentYieldNom",style2) 
sheet1.write(0,74,"Value",style2) 
sheet1.write(0,75,"LogVolume",style2) 
 
for i in range(len(PieceSizes)): 
    sheet1.write(0,i+1,i+1,style1) 
    sheet1.write(1,i+1,str(PieceSizes[i]),style1) 
for j in range(20): 
    for k in range(2): 
        sheet1.write(2*j+k+2,0,j+1,style1) 
for i in range(len(TotProducts)): 
    sheet1.write(2*i+2,71,TotVolSaw[i]*100) 
    sheet1.write(2*i+2,72,TotVolTarg[i]*100) 
    sheet1.write(2*i+2,73,TotVolNom[i]*100) 
    sheet1.write(2*i+2,74,Value[i]) 
    sheet1.write(2*i+2,75,Volume) 
    for j in (TotProducts[i]): 
        sheet1.write(2*i+2,j+1,TotProducts[i][j]) 
        sheet1.write(2*i+3,j+1,PerVol[i][j]*100) 
 
book.save('simple.xls') 
print "Go to the excel file" 
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RunSort 
 
import math 
from PieceMaps import * 
from xlwt import Workbook, easyxf 
pi=math.pi 
 
 
Z=open('Small.pkl','rb') 
Y=open('Large.pkl','rb') 
CutsS=pickle.load(Z) 
LogsS=pickle.load(Z) 
CutsL=pickle.load(Y) 
LogsL=pickle.load(Y) 
 
nn=100000 #number of logs within a class 
##PerYieldA=[0 for i in range(20)] #List for average percent yield 
##PerYieldB=[0 for i in range(20)] #List for average percent yield 
##PerYieldC=[0 for i in range(20)] #List for average percent yield 
##PerYieldD=[0 for i in range(20)] #List for average percent yield 
TotProductsA={} 
TotProductsB={} 
TotProductsC={} 
TotProductsD={} 
TotProductsE={} 
TotVolA={} 
TotVolB={} 
TotVolC={} 
TotVolD={} 
TotVolE={} 
PerVolA={} 
PerVolB={} 
PerVolC={} 
PerVolD={} 
PerVolE={} 
TotVolSawA=[0 for i in range(20)] 
TotVolTargA=[0 for i in range(20)] 
TotVolNomA=[0 for i in range(20)] 
TotVolSawB=[0 for i in range(20)] 
TotVolTargB=[0 for i in range(20)] 
TotVolNomB=[0 for i in range(20)] 
TotVolSawC=[0 for i in range(20)] 
TotVolTargC=[0 for i in range(20)] 
TotVolNomC=[0 for i in range(20)] 
TotVolSawD=[0 for i in range(20)] 
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TotVolTargD=[0 for i in range(20)] 
TotVolNomD=[0 for i in range(20)] 
TotVolSawE=[0 for i in range(20)] 
TotVolTargE=[0 for i in range(20)] 
TotVolNomE=[0 for i in range(20)] 
CampA={} 
CampB={} 
CampC={} 
CampD={} 
CampE={} 
Camp={} 
ValA=[0 for i in range(20)] 
ValB=[0 for i in range(20)] 
ValC=[0 for i in range(20)] 
ValD=[0 for i in range(20)] 
ValE=[0 for i in range(20)] 
VolA=0 
VolB=0 
VolC=0 
VolD=0 
VolE=0 
 
Def 
func(Camp,totProducts,totVol,perVol,TotVolSaw,TotVolTarg,TotVolNom,Value,Volum
e): 
    #print Camp 
    Value=[0 for i in range(20)] 
    #PerYield=[0 for i in range(20)] 
    Volume=0 
    for m in (Camp): #each log Volume 
        if m<nn: 
            r1=LogsS[m][1]/12. 
            r0=LogsS[m][0]/12. 
            lenlog=LogsS[m][2] 
            Volume+=pi*lenlog*(pow(r0,2)+r0*r1+pow(r1,2))/3. 
            #print "Volume1:", Volume 
        else: 
            r1=LogsL[m-nn][1]/12. 
            r0=LogsL[m-nn][0]/12. 
            lenlog=LogsL[m-nn][2] 
            Volume+=pi*lenlog*(pow(r0,2)+r0*r1+pow(r1,2))/3. 
            #print "Volume2:", Volume 
    print "Volume:", Volume         
    for i in range((20)): #each pricelist 
        totProducts[i]={} 
        totVol[i]={} 
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        perVol[i]={}        
        for j in (Camp): #each log 
 
            #PerYield[i]+=(Camp[j][i][1]) 
            Value[i]+=Camp[j][i][0] 
 
            for k in Camp[j][i][3].keys(): 
                #print k, CampA[j][i][3][k] 
                if k in totProducts[i].keys(): 
                    totProducts[i][k]+=Camp[j][i][3][k] 
 
                else: 
                    totProducts[i][k]=Camp[j][i][3][k] 
        for u in totProducts[i].keys(): 
            totVol[i][u]=(totProducts[i][u]*PieceNomVolume[u]) #volume of each product in 
each campaign (pricelist 
            TotVolSaw[i]+=(totProducts[i][u]*PieceSawVolume[u]) 
            TotVolTarg[i]+=(totProducts[i][u]*PieceTargVolume[u]) 
            TotVolNom[i]+=(totProducts[i][u]*PieceNomVolume[u]) 
            perVol[i][u]=totVol[i][u]/Volume 
        #PerYield[i]=PerYield[i]/len(Camp) 
        TotVolSaw[i]=(TotVolSaw[i]/Volume)*100 #Saw percent Yield 
        TotVolTarg[i]=(TotVolTarg[i]/Volume)*100 #Target Percent yield 
        TotVolNom[i]=(TotVolNom[i]/Volume)*100 
        Len=len(Camp) 
    return 
totProducts,totVol,TotVolSaw,TotVolTarg,TotVolNom,perVol,Value,Volume,Len 
 
 
for i in range(len(CutsS)): 
    #Camp[i]={} 
    if LogsS[i][2]<10: 
        CampA[i]=CutsS[i] 
    elif (LogsS[i][2]<12 and LogsS[i][2]>=10): 
        CampB[i]=CutsS[i] 
    elif (LogsS[i][2]<14 and LogsS[i][2]>=12): 
        CampC[i]=CutsS[i] 
    elif (LogsS[i][2]<16 and LogsS[i][2]>=14): 
        CampD[i]=CutsS[i] 
    else: 
        CampE[i]=CutsS[i] 
 
for i in range(len(CutsL)): 
    if LogsL[i][2]<10: 
        CampA[i+nn]=CutsL[i] 
    elif (LogsL[i][2]<12 and LogsL[i][2]>=10): 
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        CampB[i+nn]=CutsL[i] 
    elif (LogsL[i][2]<14 and LogsL[i][2]>=12): 
        CampC[i+nn]=CutsL[i] 
    elif (LogsL[i][2]<16 and LogsL[i][2]>=14): 
        CampD[i+nn]=CutsL[i] 
    else: 
        CampE[i+nn]=CutsL[i] 
 
TotalProductA,TotalVolumeA,TotVolSawA,TotVolTargA,TotVolNomA,PerVolA,Value
A,VolumeA,LenA=func(CampA,TotProductsA,TotVolA,PerVolA,TotVolSawA,TotVol
TargA,TotVolNomA,ValA,VolA)        
TotalProductB,TotalVolumeB,TotVolSawB,TotVolTargB,TotVolNomB,PerVolB,Value
B,VolumeB,LenB=func(CampB,TotProductsB,TotVolB,PerVolB,TotVolSawB,TotVolT
argB,TotVolNomB,ValB,VolB)     
TotalProductC,TotalVolumeC,TotVolSawC,TotVolTargC,TotVolNomC,PerVolC,Value
C,VolumeC,LenC=func(CampC,TotProductsC,TotVolC,PerVolC,TotVolSawC,TotVolT
argC,TotVolNomC,ValC,VolC) 
TotalProductD,TotalVolumeD,TotVolSawD,TotVolTargD,TotVolNomD,PerVolD,Value
D,VolumeD,LenD=func(CampD,TotProductsD,TotVolD,PerVolD,TotVolSawD,TotVol
TargD,TotVolNomD,ValD,VolD) 
TotalProductE,TotalVolumeE,TotVolSawE,TotVolTargE,TotVolNomE,PerVolE,ValueE
,VolumeE,LenE=func(CampE,TotProductsE,TotVolE,PerVolE,TotVolSawE,TotVolTarg
E,TotVolNomE,ValE,VolE)  
book=Workbook() 
 
style1=easyxf('pattern: pattern solid, fore_colour light_green') 
style2=easyxf('pattern: pattern solid, fore_colour light_orange') 
style3=easyxf('pattern: pattern solid, fore_colour yellow') 
 
def 
report(z,TotProducts,PerVol,TotVolSaw,TotVolTarg,TotVolNom,Value,Volume,Len): 
    sheet1 = book.add_sheet("%r"%z,cell_overwrite_ok=True)  
    sheet1.write(0,71,"PercentYieldSaw",style2) 
    sheet1.write(0,72,"PercentYieldTarg",style2) 
    sheet1.write(0,73,"PercentYieldNom",style2) 
    sheet1.write(0,74,"Value",style2) 
    sheet1.write(0,75,"LogVolume",style2) 
    sheet1.write(0,76,"number of logs",style3) 
    sheet1.write(1,76,Len,style3) 
    for i in range(len(PieceSizes)): 
        sheet1.write(0,i+1,i+1,style1) 
        sheet1.write(1,i+1,str(PieceSizes[i]),style1) 
    for j in range(21): 
        for k in range(2): 
            sheet1.write(2*j+k+2,0,j+1,style1) 
    for i in range(len(TotProducts)): 
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        sheet1.write(2*i+2,71,TotVolSaw[i]) 
        sheet1.write(2*i+2,72,TotVolTarg[i]) 
        sheet1.write(2*i+2,73,TotVolNom[i]) 
        sheet1.write(2*i+2,74,Value[i]) 
        sheet1.write(2*i+2,75,Volume) 
        for j in (TotProducts[i]): 
            sheet1.write(2*i+2,j+1,TotProducts[i][j]) 
            sheet1.write(2*i+3,j+1,PerVol[i][j]*100) 
 
    book.save('simple.xls') 
    print "Go to the excel file" 
A=report(1, 
TotalProductA,PerVolA,TotVolSawA,TotVolTargA,TotVolNomA,ValueA,VolumeA,Le
nA) 
B=report(2, 
TotalProductB,PerVolB,TotVolSawB,TotVolTargB,TotVolNomB,ValueB,VolumeB,Len
B) 
C=report(3, 
TotalProductC,PerVolC,TotVolSawC,TotVolTargC,TotVolNomC,ValueC,VolumeC,Len
C) 
D=report(4, 
TotalProductD,PerVolD,TotVolSawD,TotVolTargD,TotVolNomD,ValueD,VolumeD,Le
nD) 
E=report(5, 
TotalProductE,PerVolE,TotVolSawE,TotVolTargE,TotVolNomE,ValueE,VolumeE,Len
E) 
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Appendix L

GLPK Code

 
/* initial Parameters */ 
param nProducts, integer; /* Maximum number of products*/ 
param nCampaigns, integer; /* Maximum number of campaigns*/ 
param T0;  /*base production period*/ 
param Kmax, integer; /*maximum of K*/ 
 
/* sets */ 
set Products, default {1..nProducts}; /* set of products */ 
set Campaigns, default {1..nCampaigns}; /* set of campaigns */ 
set K, default {0..Kmax}; /* set of campaign coverages */ 
set L dimen 2; 
 
/* parameters */ 
param Tk{k in K}, default T0*2^k; 
param Nk{k in K}, default 1./Tk[k]; 
param Dp1 {p in Products}; /* annual demand for product p */ 
param Alpha {c in Campaigns, p in Products}; /* fraction output of product p per unit input of campaign 
c */ 
param Rc1 {c in Campaigns}; /* production input rate for campaign type c */ 
param Sc {c in Campaigns}; /* setup time for campaign c */ 
param Tcmax {c in Campaigns}; /* maximum cycle length */ 
param Vp {p in Products}; /* value per unit for inventory of product p */ 
param Dp {p in Products}, default Dp1[p]/10000; /* annual demand for product p */  
param TotDem, default sum{p in Products} Dp[p]; 
param Rc {c in Campaigns}, default Rc1[c]/10000; /* production input rate for campaign type c*/ 
 
table data IN "CSV" "Demand1.csv": 
 Products <- [Product], Dp1 ~ Demand, Vp ~ Price; 
table data IN "CSV" "Campaign1.csv": 
 Campaigns <- [Campaign], Rc1 ~ Rate, Sc ~ Setup; 
table data IN "CSV" "Alpha1.csv": 
 L <- [c,p], Alpha ~ alpha; 
 
/* variables */ 
var tck {c in Campaigns,  k in K}>=0; /* production time per cycle for campaign c with coverage k */ 
var yck {c in Campaigns, k in K}>=0, binary; /* campaign decision */ 
var DevPos{ p in Products} >=0; /* amount by which annual production of product p exceeds the 
demand for p*/ 
var DevNeg{ p in Products}>=0; /* amount by which annual production of product p fails to meet the 
demand for p*/ 
var IpAverage{p in Products}; /*Average inventory */ 
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var Delta{p in Products}>=0; 
var MaxDelta, >=0; 
 
/*constraints */ 
s.t. OneCoverageForEachC {c in Campaigns}: sum{k in K} yck[c,k] <=1; 
s.t. ProTimeIfCovK {c in Campaigns, k in K} :Nk[k]*tck[c,k]<=yck[c,k]; 
s.t. TimeAvailability : sum{c in Campaigns, k in K} (Nk[k]*tck[c,k]+Nk[k]*Sc[c]*yck[c,k]) <= 1; 
s.t. DemandMeet {p in Products} : sum{c in Campaigns, k in K} Nk[k]*tck[c,k]*Rc[c]*Alpha[c,p] = 
Dp[p]+DevPos[p]-DevNeg[p]; 
s.t. DemandCuts {p in Products, c in Campaigns, k in K}: 
Nk[k]*tck[c,k]*Rc[c]*Alpha[c,p]<=Dp[p]*yck[c,k]+DevPos[p]; 
s.t. DeviationPos{p in Products}: DevPos[p]+DevNeg[p] <= Delta[p]; 
s.t. AvgInventory{p in Products} : IpAverage[p] = 0.5* sum{c in Campaigns, k in K} 
(tck[c,k]*(Rc[c]*Alpha[c,p])); 
s.t.  Deviation: sum{ p in Products} Delta[p]*Dp[p] <=0.8* sum{ p in Products} Dp[p]**2; 
 
/* Objective Function */ 
minimize z: sum{p in Products} 1* (Vp[p]*IpAverage[p]) + 50 * sum{p in Products} 
(Delta[p]*(Dp[p]/TotDem)) ; 
 
solve; 
display Dp; 
display Nk; 
display Tk; 
printf "Total Cost: %4.2f\n", 
    (sum{p in Products} (Vp[p]*IpAverage[p]) + 50 * sum{p in Products} (Delta[p]* (Dp[p]/TotDem))); 
printf "    \n";  
printf "CAMPAIGNS\n"; 
printf " c   N       t         t(weeks)\n"; 
for {c in Campaigns} 
    printf "%2i%6.2f%s%e%8.4f\n", c,(sum{k in K} (yck[c,k]*Nk[k]))," ",(sum{k in K} (tck[c,k])), 
(sum{k in K} (tck[c,k]*52)); 
printf "    \n"; 
printf "PRODUCTS\n"; 
printf " p  Demand   IpAverage    DevPos   DevNeg    Delta\n"; 
for {p in Products} 
 printf "%2i%8.2f%8.2f%12.2f%9.2f%10.2f\n", p, Dp[p], IpAverage[p], 
DevPos[p],DevNeg[p],MaxDelta; 
 
data; 
param nProducts :=70; 
param nCampaigns :=126; 
param T0 := 0.019230769230769; 
param Kmax := 4; 
 
end; 
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Appendix M

Simulation Codes

Approach 1 
 
import random 
from xlrd import open_workbook 
bookD=open_workbook('SimFile.xls') 
sheetD=bookD.sheet_by_index(0) 
 
nP=70 #number of productsp 
nC=12 # number of campaigns 
 
P=[i for i in range(nP)] 
C=[j for j in range(nC)] # Here We do not bring the campaigns with N=0 and T=0 
 
Demand=[] 
V=[] # Inventory cost per time unit. 
BackCost=[] 
for i in range(nP): 
    d=sheetD.cell(i+1,0).value 
    v=sheetD.cell(i+1,1).value 
    bb=sheetD.cell(i+1,1).value/.2 
    Demand.append(d) 
    V.append(v) 
    BackCost.append(bb) 
 
print "Enter each Product's demand arrival rate for C1...C6" 
DemandArrRate=[23, 13, 41, 27, 18, 13, 20, 22, 46, 35, 15, 29, 13, 23, 23, 11, 21, 26, 28, 30, 39, 41, 
14, 11, 22, 21, 46, 40, 9, 27, 37, 46, 17, 43, 9, 10, 19, 7, 47, 9, 36, 18, 16, 33, 21, 10, 30, 28, 17, 21, 
13, 21, 36, 13, 6, 26, 27, 17, 30, 41, 35, 12, 7, 23, 19, 20, 31, 14, 28, 20] 
print DemandArrRate 
Dev=[(Demand[i]/float(DemandArrRate[i])*.25) for i in range(nP)] 
MaxDem=[] 
MinDem=[] 
for i in range(len(Demand)): 
    MaxDem.append(Demand[i]/DemandArrRate[i]+Dev[i]) 
    MinDem.append(Demand[i]/DemandArrRate[i]-Dev[i]) 
 
tDay=7 #number of hours per day 
nDay=5 #number of days per week 
nWeek=52 #number of weeks per year 
TotTime= nDay*tDay*nWeek #Total available time per year 
SimTime=6*TotTime 
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LamArrTime=0.4 
LamDemSize=0.4 
#------------------------------------------- 
# FORECASTED and Actual Demand based on hour time base 
#------------------------------------------- 
Forecast=[[]for k in range(len(P))]     
Time=[0 for i in range(len(P))] 
random.seed(111111111) 
Due=[[]for k in range(len(P))] 
TimeActual=[0 for i in range(len(P))] 
for i in range(len(P)): 
    AvgDTime=TotTime/float(DemandArrRate[i]) 
    AvgDSize=(MaxDem[i]+MinDem[i])/2. 
    Time[i]+=AvgDTime 
    #print "AvgDTime:", AvgDTime 
    #print "AvgDSize:", AvgDSize 
    while Time[i]<SimTime and TimeActual[i]<SimTime: 
        #print "TIME BET:", TimeBetArr 
        ArrTimeD=float(random.expovariate(float(DemandArrRate[i]/float(TotTime)))) 
        DSize=random.uniform(MinDem[i], MaxDem[i]) 
        TimeActual[i]+=ArrTimeD         
        TimeForecast=LamArrTime*ArrTimeD+(1-LamArrTime)*AvgDTime 
        AvgDTime=TimeForecast 
        DSizeForecast=LamDemSize*DSize+(1-LamDemSize)*AvgDSize 
        AvgDSize=DSizeForecast 
        Time[i]+=AvgDTime 
        if Time[i]>SimTime and TimeActual[i]>SimTime: 
            break 
        Due[i].append([(int(TimeActual[i])),DSize,i,"A"]) 
        Forecast[i].append([(int(Time[i])),AvgDSize,i,"F"]) 
 
############################### INVENTORY ########################### 
from xlwt import Workbook 
sheetC=bookD.sheet_by_index(1) 
sheetA=bookD.sheet_by_index(2) 
 
tunit=1 #hour 
SimTimeP=4*TotTime #(run for 4 years) 
 
 
N=[] 
T=[] 
R=[] 
ST=[] 
for i in range(nC): 
    nn=sheetC.cell(i+1,1).value 
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    N.append(nn) 
     
    tp=sheetC.cell(i+1,2).value 
    T.append(tp) 
 
    rp=sheetC.cell(i+1,3).value 
    R.append(rp) 
     
    st=sheetC.cell(i+1,4).value 
    ST.append(st) 
    
K=[0,1,2,3,4] 
 
Alpha=[[] for i in range(nC)] 
for i in range(len(Alpha)):   
    for j in range(nP): 
        ss=sheetA.cell(i+1,j+1).value 
        Alpha[i].append(ss) 
 
Inv=[0 for i in range(len(P))] 
 
m=input("How many weeks ahead of actual demands? ") 
print " " 
 
def ActualDem(t): # Demands for m periods  
    Dema=[[] for i in range(len(P))] 
    IndxDem=[0 for i in range(len(P))] 
    for i in range(len(Demand)): 
        for tt in range(len(Due[i])): 
            if ((Due[i][tt][0])>t) and (Due[i][tt][0] <= (t+m*nDay*tDay)): 
                Dema[i].append(Due[i][tt]) 
        if len(Dema[i])!=0: 
            IndxDem[i]=Due[i].index(Dema[i][len(Dema[i])-1]) 
            Dema[i].append(Forecast[i][IndxDem[i]]) 
   
    return Dema 
 
def Func1(Inv,t): # calculate runout time  
    ProdSelect=0 
    NegInv={} 
    Runout=[1000 for i in range(len(Demand))] 
    ActDem=ActualDem(t) 
    Sum=[0 for i in range(len(Demand))] 
    Rlist=[] 
    for i in range(len(ActDem)): 
        for j in range(len(ActDem[i])-1): 
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            Sum[i]+=ActDem[i][j][1] 
        if Inv[i]<=0: 
            RO=0 
            NegInv[i]=Inv[i]-Sum[i] 
             
        elif Inv[i]>0 and Inv[i]<=Sum[i]: 
            j=0 
            ff=ActDem[i][j][1] 
            while ff<=Inv[i]: 
                          ff+=ActDem[i][j+1][1] 
                          j+=1 
            RO=ActDem[i][j][0]-t 
                           
        elif Inv[i]>0 and Inv[i]>Sum[i]: 
            hh=len(ActDem[i])-1 
            if len(ActDem[i])==0: 
                RO=1000 
            elif ActDem[i][hh][0]==ActDem[i][hh-1][0]: 
                RO=m*nDay*tDay+((Inv[i]-Sum[i])/(ActDem[i][hh][1]/0.1)) 
            else: 
                RO=m*nDay*tDay+((Inv[i]-Sum[i])/(ActDem[i][hh][1]/(ActDem[i][hh][0]-
ActDem[i][hh-1][0]))) 
             
        Rlist.append(RO) 
    if NegInv=={}:   
        MinP=Rlist[0] 
        for j in range(len(Runout)): 
            if Rlist[j]<=MinP: 
                MinP=Rlist[j] 
                BestP=j 
        ProSelect=BestP 
    else: 
        #print NegInv 
        ProSelect=min(NegInv.items(), key=lambda x: x[1])[0] 
    return ProSelect 
 
def NextC(t): # finds the next campaign to be run based on the max RAlpha for p 
    Prod=Func1(Inv,t) 
    MaxC=R[0]*Alpha[0][Prod] 
    for c in range(len(C)): 
        intC=R[c]*Alpha[c][Prod] 
        if intC>=MaxC: 
            MaxC=intC 
            BestC=c 
    CampSelect=BestC 
return CampSelect  
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Wbook = Workbook() # writing output 
sheet1 = Wbook.add_sheet('Inventory') 
sheet2 = Wbook.add_sheet('Cost') 
sheet3= Wbook.add_sheet('LostSale') 
 
r=0 
t=0 
Nums=[0 for i in range(len(C))] 
List=[] 
CampList=[] 
 
#u=0 
##v=1 
 
for j in range(nP): 
    sheet1.write(0,j+1,j+1) 
     
while t<=SimTimeP: 
    Camp=NextC(t) 
    ProT=round((t+ST[Camp]+T[Camp]),0) # time at the end of producing campaign 
    for j in range(len(Inv)): 
        Inv[j]-=R[Camp]*Alpha[Camp][j]*ST[Camp] 
    List.append(Camp) 
    while t<ProT: # calculates Inventory over production time 
        Dem=[0 for k in range(len(Demand))] 
        for i in range(len(Due)): 
            for j in range(len(Due[i])): 
                if int(Due[i][j][0]) == (t+1): 
                    Dem[i]+= Due[i][j][1] 
                    if Dem[i]<0: 
                        print Dem 
                                     
        for j in range(len(Inv)): 
            Inv[j]+=R[Camp]*Alpha[Camp][j]-Dem[j] 
            #print "InvStep:", [j], Inv[j], t 
            if Inv[j]>=0: 
                InvCosts=HoldingCost*Inv[j]*V[j]/(TotTime) 
                sheet1.write(r+1,j+1,Inv[j]) 
                sheet2.write(r+1,j+1,InvCosts) 
            else: 
                InvCosts=10*HoldingCost*Inv[j]*V[j]/(TotTime) 
                sheet3.write(r+1,j+1,InvCosts) 
                sheet1.write(r+1,j+1,Inv[j])     
        if t==TotTime: 
            print "Number of campaigns in the first year:", Nums 
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        if t==2*TotTime: 
            print "Number of campaigns in the second year:", Nums 
        if t==3*TotTime: 
            print "Number of campaigns in the third year:", Nums 
        sheet1.write(r+1,0,t+1)         
        t+=tunit        
        r+=1 
    CampList.append(ProT) 
         
    Nums[Camp]+=1 
print "Number of campaigns running over the simulation time:", Nums 
#print "List:", List 
Wbook.save("SchedulingRunOut.xls") 
Wbook = Workbook() 
sheet1 = Wbook.add_sheet('SimDemand') 
kkk=0 
mmm=1 
for j in range(len(Due)): 
 
 for i in range(len(Due[j])): 
  sheet1.write(i+1,kkk,Due[j][i][0]) 
  sheet1.write(i+1,mmm,Due[j][i][1]) 
 
 mmm+=2 
 kkk+=2 
Wbook.save("Demand-SchedulingRunOut.xls") 
print "Go to the excel file" 
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Approach 2 
 
import random 
from xlrd import open_workbook 
bookD=open_workbook('SimFile.xls') 
sheetD=bookD.sheet_by_index(0) 
 
nP=70 #number of products 
nC=12 # number of campaigns 
 
P=[i+1 for i in range(nP)] 
C=[j+1 for j in range(nC)] # Here We do not bring the campaigns with N=0 and T=0 
 
Demand=[] 
V=[] # Inventory cost per time unit. 
for i in range(nP): 
    d=sheetD.cell(i+1,0).value 
    v=sheetD.cell(i+1,1).value 
    Demand.append(d) 
    V.append(v) 
 
a=0 
for i in range(len(Demand)): 
    a+=Demand[i] 
 
print "Enter each Product's demand arrival rate for C1...C6" 
DemandArrRate=[23, 13, 41, 27, 18, 13, 20, 22, 46, 35, 15, 29, 13, 23, 23, 11, 21, 26, 28, 30, 39, 41, 
14, 11, 22, 21, 46, 40, 9, 27, 37, 46, 17, 43, 9, 10, 19, 7, 47, 9, 36, 18, 16, 33, 21, 10, 30, 28, 17, 21, 
13, 21, 36, 13, 6, 26, 27, 17, 30, 41, 35, 12, 7, 23, 19, 20, 31, 14, 28, 20] 
print DemandArrRate 
Dev=[(Demand[i]/float(DemandArrRate[i])*.25) for i in range(nP)] 
MaxDem=[] 
MinDem=[] 
for i in range(len(Demand)): 
    MaxDem.append(Demand[i]/DemandArrRate[i]+Dev[i]) 
    MinDem.append(Demand[i]/DemandArrRate[i]-Dev[i]) 
tDay=7 #number of hours per day 
nDay=5 #number of days per week 
nWeek=52 #number of weeks per year 
TotTime= nDay*tDay*nWeek #Total available time per year 
SimTime=6*TotTime 
 
 
LamArrTime=0.4 
LamDemSize=0.4 
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#------------------------------------------- 
# FORECASTED and Actual Demand based on hour time base 
#------------------------------------------- 
Forecast=[[]for k in range(len(P))]     
Time=[0 for i in range(len(P))] 
random.seed(123456789) 
Due=[[]for k in range(len(P))] 
TimeActual=[0 for i in range(len(P))] 
for i in range(len(P)): 
    AvgDTime=TotTime/float(DemandArrRate[i]) 
    AvgDSize=(MaxDem[i]+MinDem[i])/2. 
    Time[i]+=AvgDTime 
    while Time[i]<SimTime and TimeActual[i]<SimTime: 
        #print "TIME BET:", TimeBetArr 
        ArrTimeD=float(random.expovariate(float(DemandArrRate[i]/float(TotTime)))) 
        DSize=random.uniform(MinDem[i], MaxDem[i]) 
        TimeActual[i]+=ArrTimeD 
        TimeForecast=LamArrTime*ArrTimeD+(1-LamArrTime)*AvgDTime 
        AvgDTime=TimeForecast 
        DSizeForecast=LamDemSize*DSize+(1-LamDemSize)*AvgDSize 
        AvgDSize=DSizeForecast 
        Time[i]+=AvgDTime 
        if Time[i]>SimTime and TimeActual[i]>SimTime: 
            break 
        Due[i].append([int(TimeActual[i]),DSize,i,"A"]) 
        Forecast[i].append([int(Time[i]),AvgDSize,i,"F"]) 
 
############################### INVENTORY ########################### 
from xlwt import Workbook 
sheetC=bookD.sheet_by_index(1) 
sheetA=bookD.sheet_by_index(2) 
 
tunit=1 #1 hour 
SimTimeP=4*TotTime #(run for 1 year) 
 
N=[] 
T=[] 
R=[] 
ST=[] 
for i in range(nC): 
    nn=sheetC.cell(i+1,1).value 
    N.append(nn) 
     
    tp=sheetC.cell(i+1,2).value 
    T.append(tp) 
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    rp=sheetC.cell(i+1,3).value 
    R.append(rp) 
     
    st=sheetC.cell(i+1,4).value 
    ST.append(st) 
    
K=[0,1,2,3,4] 
 
Alpha=[[] for i in range(nC)] 
for i in range(len(Alpha)):   
    for j in range(nP): 
        ss=sheetA.cell(i+1,j+1).value 
        Alpha[i].append(ss) 
         
Inv=[0 for i in range(len(P))] 
 
def ActualDem(t,Sc,Tc): # sumation of demands for Tc+Sc duration of each campaign run 
    Dem=[[] for i in range(len(P))] 
    Sum=[0 for i in range(len(Demand))] 
    for i in range(len(Demand)): 
        for tt in range(len(Due[i])): 
            if ((Due[i][tt][0])>t) and (Due[i][tt][0] <= (t+Sc+Tc)): 
                Dem[i].append(Due[i][tt]) 
    #print "Dem:", Dem 
    for i in range(len(Dem)):  
        for j in range(len(Dem[i])): 
            Sum[i]+=Dem[i][j][1] 
    SumD=Sum 
    #print SumD 
    return SumD 
      
def NextC(Inv,t): # finds the next campaign to be run based on the final Inventory  
    DP=[] 
    TotalCost=[] # Cost of inventory at the end of the t+(m+q) horizon 
    SUM=[] 
    print Inv 
    for c in range(len(C)): 
        SUM=ActualDem(t,ST[c],T[c]) 
        #print "     " 
        HCost=0 
        BCost=0 
        CostInv=0 
        for p in range(len(P)): 
            #print "Inv[p]:", Inv[p] 
            INV=Inv[p]+R[c]*Alpha[c][p]*T[c]-SUM[p] 
            #print "   " 
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            #print "P:", p, "INV:", INV 
            if INV>0: 
                HCost=V[p]*INV #inventory value 
                CostInv+=HCost 
                #print "HCost:", HCost 
            else: 
                BCost=V[p]*(-INV) #lost sale value 
                CostInv+=BCost 
                #print "BCost:", BCost 
        TotalCost.append(CostInv) 
        #print "c:", c, "Cost:", CostInv 
     
    A=list(TotalCost) 
    A.sort() 
    CampSelect=TotalCost.index(A[0]) 
    return CampSelect  
 
Wbook = Workbook() # writing output 
sheet1 = Wbook.add_sheet('Inventory') 
sheet2 = Wbook.add_sheet('HoldingCost') 
sheet3= Wbook.add_sheet('Backorder') 
 
r=0 
t=0 
Nums=[0 for i in range(len(C))] 
List=[] 
CampList=[] 
tt=0 
u=0 
v=1 
 
for j in range(nP): 
    sheet1.write(0,j+1,j+1) 
     
#print "X:", X 
while t<=SimTimeP: 
    #print "ActDemand:", ActDemand 
    Camp=NextC(Inv,t) 
    ProT=round((t+ST[Camp]+T[Camp]),0) # time at the end of producing campaign 
    for j in range(len(Inv)): 
        Inv[j]-=R[Camp]*Alpha[Camp][j]*ST[Camp] 
    List.append(Camp) 
    while t<ProT: # calculates Inventory over production time 
         
        Dem=[0 for k in range(len(Demand))] 
        for i in range(len(Due)): 
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            for j in range(len(Due[i])): 
                if int(Due[i][j][0]) == (t+1): 
                    Dem[i]+= Due[i][j][1] 
                    if Dem[i]<0: 
                        print Dem 
                                     
        for j in range(len(Inv)): 
            Inv[j]+=R[Camp]*Alpha[Camp][j]-Dem[j] 
            #print "InvStep:", [j], Inv[j], t 
            if Inv[j]>=0: 
                InvCosts=HoldingCost*Inv[j]*V[j]/(TotTime) 
                sheet1.write(r+1,j+1,Inv[j]) 
                sheet2.write(r+1,j+1,InvCosts) 
            else: 
                InvCosts=10*HoldingCost*Inv[j]*V[j]/(TotTime) 
                sheet1.write(r+1,j+1,Inv[j]) 
                #print j, InvCostNeg[j] 
                sheet3.write(r+1,j+1,InvCosts) 
 
        if t==TotTime+1: 
            print "Number of campaigns in the first year:", Nums 
        if t==2*TotTime+1: 
            print "Number of campaigns in the second year:", Nums 
        if t==3*TotTime+1: 
            print "Number of campaigns in the third year:", Nums 
        sheet1.write(r+1,0,t+1)         
        t+=tunit        
        r+=1 
             
    Nums[Camp]+=1 
print "Number of campaigns running over the simulation time:", Nums 
Wbook.save("SchedulingCost.xls") 
Wbook = Workbook() 
sheet1 = Wbook.add_sheet('SimDemand') 
kkk=0 
mmm=1 
for j in range(len(Due)): 
 
 for i in range(len(Due[j])): 
  sheet1.write(i+1,kkk,Due[j][i][0]) 
  sheet1.write(i+1,mmm,Due[j][i][1]) 
 
 mmm+=2 
 kkk+=2 
Wbook.save("Demand-SchedulingCost.xls") 
print "Go to the excel file" 
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Approach 3  
 
import random 
from operator import itemgetter 
from xlrd import open_workbook 
bookD=open_workbook('SimFile.xls') 
sheetD=bookD.sheet_by_index(0) 
 
Runs=[13, 26, 6.5, 6.5, 6.5, 6.5, 6.5, 13, 26, 13, 13, 13] 
 
nP=70 #number of products 
nC=12 # number of campaigns 
 
P=[i+1 for i in range(nP)] 
C=[j+1 for j in range(nC)] # Here We do not bring the campaigns with N=0 and T=0 
 
Demand=[] 
V=[] # Inventory cost per time unit. 
BackCost=[] 
for i in range(nP): 
    d=sheetD.cell(i+1,0).value 
    v=sheetD.cell(i+1,1).value 
    bb=sheetD.cell(i+1,1).value/.2 
    Demand.append(d) 
    V.append(v) 
    BackCost.append(bb) 
a=0 
for i in range(len(Demand)): 
    a+=Demand[i] 
 
print "Enter each Product's demand arrival rate for C1...C6" 
DemandArrRate=[23, 13, 41, 27, 18, 13, 20, 22, 46, 35, 15, 29, 13, 23, 23, 11, 21, 26, 28, 30, 39, 41, 
14, 11, 22, 21, 46, 40, 9, 27, 37, 46, 17, 43, 9, 10, 19, 7, 47, 9, 36, 18, 16, 33, 21, 10, 30, 28, 17, 21, 
13, 21, 36, 13, 6, 26, 27, 17, 30, 41, 35, 12, 7, 23, 19, 20, 31, 14, 28, 20] 
print DemandArrRate 
Dev=[(Demand[i]/float(DemandArrRate[i])*.25) for i in range(nP)] 
MaxDem=[] 
MinDem=[] 
for i in range(len(Demand)): 
    MaxDem.append(Demand[i]/DemandArrRate[i]+Dev[i]) 
    MinDem.append(Demand[i]/DemandArrRate[i]-Dev[i]) 
 
tDay=7 #number of hours per day 
nDay=5 #number of days per week 
nWeek=52 #number of weeks per year 
TotTime= nDay*tDay*nWeek #Total available time per year 
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SimTime=6*TotTime 
 
nRuns=[] 
for i in range(len(Runs)): 
    nRuns.append(Runs[i]/float(TotTime)) 
 
LamArrTime=0.4 
LamDemSize=0.4 
#print "SS:", SS 
 
#------------------------------------------- 
# FORECASTED and Actual Demand based on hour time base 
#------------------------------------------- 
Forecast=[[]for k in range(len(P))]     
Time=[0 for i in range(len(P))] 
random.seed(111111111) 
Due=[[]for k in range(len(P))] 
TimeActual=[0 for i in range(len(P))] 
for i in range(len(P)): 
    AvgDTime=TotTime/float(DemandArrRate[i]) 
    AvgDSize=(MaxDem[i]+MinDem[i])/2. 
    Time[i]+=AvgDTime 
    #print "AvgDTime:", AvgDTime 
    #print "AvgDSize:", AvgDSize 
    while Time[i]<SimTime and TimeActual[i]<SimTime: 
        #print "TIME BET:", TimeBetArr 
        ArrTimeD=float(random.expovariate(float(DemandArrRate[i]/float(TotTime)))) 
        DSize=random.uniform(MinDem[i], MaxDem[i]) 
        TimeActual[i]+=ArrTimeD         
        TimeForecast=LamArrTime*ArrTimeD+(1-LamArrTime)*AvgDTime 
        AvgDTime=TimeForecast 
        DSizeForecast=LamDemSize*DSize+(1-LamDemSize)*AvgDSize 
        AvgDSize=DSizeForecast 
        Time[i]+=AvgDTime 
        if Time[i]>SimTime and TimeActual[i]>SimTime: 
            break 
        Due[i].append([(int(TimeActual[i])),DSize,i,"A"]) 
        Forecast[i].append([(int(Time[i])),AvgDSize,i,"F"]) 
 
############################### INVENTORY ########################### 
from xlwt import Workbook 
sheetC=bookD.sheet_by_index(1) 
sheetA=bookD.sheet_by_index(2) 
 
tunit=1 #hour 
SimTimeP=4*TotTime #(run for 4 years) 
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N=[] 
T=[] 
R=[] 
ST=[] 
for i in range(nC): 
    nn=sheetC.cell(i+1,1).value 
    N.append(nn) 
     
    tp=sheetC.cell(i+1,2).value 
    T.append(tp) 
 
    rp=sheetC.cell(i+1,3).value 
    R.append(rp) 
     
    st=sheetC.cell(i+1,4).value 
    ST.append(st) 
    
K=[0,1,2,3,4] 
 
Alpha=[[] for i in range(nC)] 
for i in range(len(Alpha)):   
    for j in range(nP): 
        ss=sheetA.cell(i+1,j+1).value 
        Alpha[i].append(ss) 
 
Delta=[] 
for i in range(nP): 
    Delta.append(Demand[i]/a) 
 
Inv=[0 for i in range(len(P))] 
 
def ActualDem(t): # Demands for m+q periods including actual and forecasted demands 
    Dem=[[] for i in range(len(P))] 
    for i in range(len(Demand)): 
        for tt in range(len(Due[i])): 
            if ((Due[i][tt][0])>t) and (Due[i][tt][0] <= (t+m*nDay*tDay)): 
                Dem[i].append(Due[i][tt]) 
            if ((Forecast[i][tt][0]) >(t+m*nDay*tDay)) and ((Forecast[i][tt][0])<= 
(t+(m+q)*nDay*tDay)): 
                Dem[i].append(Forecast[i][tt]) 
    #print "Dem:", Dem 
    return Dem 
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def Func0(t): # sumation of demands for m+q periods  
    Sum=[0 for i in range(len(Demand))] 
    ActDem=ActualDem(t) 
    for i in range(len(ActDem)):  
        for j in range(len(ActDem[i])): 
            Sum[i]+=ActDem[i][j][1] 
    SumD=Sum 
    return SumD 
 
def NumC(number,t): 
    #print "time:", t 
    NoCalc=[0 for i in range(nC)] 
    for i in range((nC)): 
        NoCalc[i]=nRuns[i]*t 
    DifCalc=dict([(i, NoCalc[i]-number[i])for i in range((nC))]) 
    q=sorted(DifCalc.items(), key=itemgetter(1)) 
    CampSort=q[nC-1][0] 
    #print "sort2:", CampSort 
    return CampSort 
 
def NextC(t): 
    Camp2=NumC(Nums, t) 
    NextCamp=Camp2 
    return NextCamp 
    
Wbook = Workbook() # writing output 
sheet1 = Wbook.add_sheet('Inventory') 
sheet2 = Wbook.add_sheet('HoldingCost') 
sheet3= Wbook.add_sheet('LostSale') 
 
r=0 
t=0 
Nums=[0 for i in range(len(C))] 
List=[] 
CampList=[] 
tt=0 
u=0 
v=1 
 
for j in range(nP): 
    sheet1.write(0,j+1,j+1) 
     
#print "X:", X 
while t<=SimTimeP: 
    Camp=NextC(t) 
    ProT=round((t+ST[Camp]+T[Camp]),0) # time at the end of producing campaign 
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    for j in range(len(Inv)): 
        Inv[j]-=R[Camp]*Alpha[Camp][j]*ST[Camp] 
    List.append(Camp) 
    while t<ProT: # calculates Inventory over production time 
        Dem=[0 for k in range(len(Demand))] 
        for i in range(len(Due)): 
            for j in range(len(Due[i])): 
                if int(Due[i][j][0]) == (t+1): 
                    #print t, Dem[i] 
                    Dem[i]+= Due[i][j][1] 
                    #print "after", Dem[i] 
                    #print "   " 
                    if Dem[i]<0: 
                        print Dem 
                                     
        for j in range(len(Inv)): 
            Inv[j]+=R[Camp]*Alpha[Camp][j]-Dem[j] 
            if Inv[j]>=0: 
                InvCosts=HoldingCost*Inv[j]*V[j]/(TotTime) 
                sheet1.write(r+1,j+1,Inv[j]) 
                sheet2.write(r+1,j+1,InvCosts) 
            else: 
                InvCosts=10*V[j]*(Inv[j])/(TotTime) 
                sheet3.write(r+1,j+1,InvCosts) 
                #print j, InvCostNeg[j] 
                sheet1.write(r+1,j+1,Inv[j]) 
 
        if t==TotTime+1: 
            print "Number of campaigns in the first year:", Nums 
        if t==2*TotTime+1: 
            print "Number of campaigns in the second year:", Nums 
        if t==3*TotTime+1: 
            print "Number of campaigns in the third year:", Nums 
        sheet1.write(r+1,0,t+1)         
        t+=tunit        
        r+=1 
 
    Nums[Camp]+=1 
print "Number of campaigns running over the simulation time:", Nums 
Wbook.save("SchedulingNum.xls") 
Wbook = Workbook() 
sheet1 = Wbook.add_sheet('SimDemand') 
kkk=0 
mmm=1 
for j in range(len(Due)): 
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 for i in range(len(Due[j])): 
  sheet1.write(i+1,kkk,Due[j][i][0]) 
  sheet1.write(i+1,mmm,Due[j][i][1]) 
 
 mmm+=2 
 kkk+=2 
Wbook.save("Demand-SchedulingNum.xls") 
print "Go to the excel file" 
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Approach 4 
 
import random 
from operator import itemgetter 
from xlrd import open_workbook 
bookD=open_workbook('SimFile.xls') 
sheetD=bookD.sheet_by_index(0) 
Yes=0 
Runs=[13, 26, 6.5, 6.5, 6.5, 6.5, 6.5, 13, 26, 13, 13, 13] 
 
nP=70 #number of products 
nC=12 # number of campaigns 
 
P=[i+1 for i in range(nP)] 
C=[j+1 for j in range(nC)] # Here We do not bring the campaigns with N=0 and T=0 
 
Demand=[] 
V=[] # Inventory cost per time unit. 
BackCost=[] 
for i in range(nP): 
    d=sheetD.cell(i+1,0).value 
    v=sheetD.cell(i+1,1).value 
    Demand.append(d) 
    V.append(v) 
a=0 
for i in range(len(Demand)): 
    a+=Demand[i] 
 
print "Enter each Product's demand arrival rate for C1...C6" 
DemandArrRate=[23, 13, 41, 27, 18, 13, 20, 22, 46, 35, 15, 29, 13, 23, 23, 11, 21, 26, 28, 30, 39, 41, 
14, 11, 22, 21, 46, 40, 9, 27, 37, 46, 17, 43, 9, 10, 19, 7, 47, 9, 36, 18, 16, 33, 21, 10, 30, 28, 17, 21, 
13, 21, 36, 13, 6, 26, 27, 17, 30, 41, 35, 12, 7, 23, 19, 20, 31, 14, 28, 20] 
print DemandArrRate 
Dev=[(Demand[i]/float(DemandArrRate[i])*.25) for i in range(nP)] 
MaxDem=[] 
MinDem=[] 
for i in range(len(Demand)): 
    MaxDem.append(Demand[i]/DemandArrRate[i]+Dev[i]) 
    MinDem.append(Demand[i]/DemandArrRate[i]-Dev[i]) 
tDay=7 #number of hours per day 
nDay=5 #number of days per week 
nWeek=52 #number of weeks per year 
TotTime= nDay*tDay*nWeek #Total available time per year 
SimTime=6*TotTime 
 
nRuns=[] 
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for i in range(len(Runs)): 
    nRuns.append(Runs[i]/float(TotTime)) 
LamArrTime=0.4 
LamDemSize=0.4 
 
#------------------------------------------- 
# FORECASTED and Actual Demand based on hour time base 
#------------------------------------------- 
Forecast=[[]for k in range(len(P))]     
Time=[0 for i in range(len(P))] 
random.seed(111111111) 
Due=[[]for k in range(len(P))] 
TimeActual=[0 for i in range(len(P))] 
for i in range(len(P)): 
    AvgDTime=TotTime/float(DemandArrRate[i]) 
    AvgDSize=(MaxDem[i]+MinDem[i])/2. 
    Time[i]+=AvgDTime 
    while Time[i]<SimTime and TimeActual[i]<SimTime: 
        ArrTimeD=float(random.expovariate(float(DemandArrRate[i]/float(TotTime)))) 
        DSize=random.uniform(MinDem[i], MaxDem[i]) 
        TimeActual[i]+=ArrTimeD         
        TimeForecast=LamArrTime*ArrTimeD+(1-LamArrTime)*AvgDTime 
        AvgDTime=TimeForecast 
        DSizeForecast=LamDemSize*DSize+(1-LamDemSize)*AvgDSize 
        AvgDSize=DSizeForecast 
        Time[i]+=AvgDTime 
        if Time[i]>SimTime and TimeActual[i]>SimTime: 
            break 
        Due[i].append([(int(TimeActual[i])),DSize,i,"A"]) 
        Forecast[i].append([(int(Time[i])),AvgDSize,i,"F"]) 
  
 
############################### INVENTORY ########################### 
from xlwt import Workbook 
sheetC=bookD.sheet_by_index(1) 
sheetA=bookD.sheet_by_index(2) 
 
tunit=1 #hour 
SimTimeP=4*TotTime #(run for 4 years) 
 
 
N=[] 
T=[] 
R=[] 
ST=[] 
for i in range(nC): 
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    nn=sheetC.cell(i+1,1).value 
    N.append(nn) 
     
    tp=sheetC.cell(i+1,2).value 
    T.append(tp) 
 
    rp=sheetC.cell(i+1,3).value 
    R.append(rp) 
     
    st=sheetC.cell(i+1,4).value 
    ST.append(st) 
    
K=[0,1,2,3,4] 
 
Alpha=[[] for i in range(nC)] 
for i in range(len(Alpha)):   
    for j in range(nP): 
        ss=sheetA.cell(i+1,j+1).value 
        Alpha[i].append(ss) 
          
Inv=[0 for i in range(len(P))] 
 
def ActualDem(t,Sc,Tc): # sumation of demands for Tc+Sc duration of each campaign run 
    Dem=[[] for i in range(len(P))] 
    Sum=[0 for i in range(len(Demand))] 
    for i in range(len(Demand)): 
        for tt in range(len(Due[i])): 
            if ((Due[i][tt][0])>t) and (Due[i][tt][0] <= (t+Sc+Tc)): 
                Dem[i].append(Due[i][tt]) 
    for i in range(len(Dem)):  
        for j in range(len(Dem[i])): 
            Sum[i]+=Dem[i][j][1] 
    SumD=Sum 
    return SumD 
 
def Func1(Inv,t): # finds the next campaign to be run based on the final Inventory  
    INV=0 
    CampSelect=[] 
    DP=[] 
    TotalCost=[] # Cost of inventory at the end of the t+(m+q) horizon 
    SUM=[] 
    for c in range(len(C)): 
        SUM=ActualDem(t,ST[c],T[c]) 
        HCost=0 
        BCost=0 
        CostInv=0 
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        for p in range(len(P)): 
            INV=Inv[p]+R[c]*Alpha[c][p]*T[c]-SUM[p] 
            if INV>0: 
                HCost=V[p]*INV#inventory value 
                CostInv+=HCost 
                #print "HCost:", HCost 
            else: 
                BCost=V[p]*(-INV) #lost sale value 
                CostInv+=BCost 
                #print "BCost:", BCost 
        TotalCost.append(CostInv) 
        #print "c:", c, "Cost:", TotalCost 
     
    A=list(TotalCost) 
    A.sort() 
    CampSelect.append(TotalCost.index(A[0])) 
    CampSelect.append(TotalCost.index(A[1])) 
    CampSelect.append(TotalCost.index(A[2])) 
    return CampSelect  
 
def NumC(number,t): 
    CampSort=[] 
    NoCalc=[0 for i in range(nC)] 
    for i in range((nC)): 
        NoCalc[i]=nRuns[i]*t 
    DifCalc=dict([(i, NoCalc[i]-number[i])for i in range((nC))]) 
    q=sorted(DifCalc.items(), key=itemgetter(1)) 
    CampSort.append(q[nC-1][0]) 
    CampSort.append(q[nC-2][0]) 
    CampSort.append(q[nC-3][0]) 
    return CampSort 
 
def NextC(t): 
    Yes=0 
    Camp1=Func1(Inv,t) 
    Camp2=NumC(Nums, t) 
    NextCamp=Camp2[0] 
    for i in range(len(Camp2)): 
        for j in range(len(Camp1)): 
            if Camp2[i]==Camp1[j]: 
                    NextCamp=Camp1[j] 
                    Yes=1 
    return NextCamp 
 
     
Wbook = Workbook() # writing output 
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sheet1 = Wbook.add_sheet('Inventory') 
sheet2 = Wbook.add_sheet('Holding') 
sheet3= Wbook.add_sheet('BackOrder') 
 
r=0 
t=0 
Nums=[0 for i in range(len(C))] 
List=[] 
CampList=[] 
tt=0 
u=0 
v=1 
 
for j in range(nP): 
    sheet1.write(0,j+1,j+1) 
     
#print "X:", X 
while t<=SimTimeP: 
    #print "ActDemand:", ActDemand 
    Camp=NextC(t) 
    ProT=round((t+ST[Camp]+T[Camp]),0) # time at the end of producing campaign 
    #print "Camp:", Camp 
    #print "ProT:", ProT 
    for j in range(len(Inv)): 
        Inv[j]-=R[Camp]*Alpha[Camp][j]*ST[Camp] 
    List.append(Camp) 
    while t<ProT: # calculates Inventory over production time 
        #print "t:", t 
        #print "    " 
        Dem=[0 for k in range(len(Demand))] 
        for i in range(len(Due)): 
            for j in range(len(Due[i])): 
                if int(Due[i][j][0]) == (t+1): 
                    Dem[i]+= Due[i][j][1] 
                    if Dem[i]<0: 
                        print Dem 
                             
        #print "Dem", Dem 
         
        for j in range(len(Inv)): 
            Inv[j]+=R[Camp]*Alpha[Camp][j]-Dem[j] 
            #print "InvStep:", [j], Inv[j], t 
            if Inv[j]>=0: 
                InvCosts=HoldingCost*Inv[j]*V[j]/(TotTime) 
                sheet1.write(r+1,j+1,Inv[j]) 
                sheet2.write(r+1,j+1,InvCosts) 
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            else: 
                InvCosts=10*V[j]*(Inv[j])/(TotTime) 
                sheet3.write(r+1,j+1,InvCosts) 
                #print j, InvCostNeg[j] 
                sheet1.write(r+1,j+1,Inv[j]) 
        if t==TotTime+1: 
            print "Number of campaigns in the first year:", Nums 
        if t==2*TotTime+1: 
            print "Number of campaigns in the second year:", Nums 
        if t==3*TotTime+1: 
            print "Number of campaigns in the third year:", Nums 
        sheet1.write(r+1,0,t+1)         
        t+=tunit        
        r+=1 
 
         
    Nums[Camp]+=1 
    #print Nums 
print "Number of campaigns running over the simulation time:", Nums 
Wbook.save("SchedulingMixCostNum.xls") 
Wbook = Workbook() 
sheet1 = Wbook.add_sheet('SimDemand') 
sheet2= Wbook.add_sheet('ForecastDemand') 
kkk=0 
mmm=1 
nnn=0 
lll=1 
for j in range(len(Due)): 
 
 for i in range(len(Due[j])): 
  sheet1.write(i+1,kkk,Due[j][i][0]) 
  sheet1.write(i+1,mmm,Due[j][i][1]) 
 mmm+=2 
 kkk+=2 
  
Wbook.save("Demand-MixCostNum.xls") 
#print "Number of adaptation:", Yes 
print "Go to the excel file" 
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Approach 5 
 
import random 
from operator import itemgetter 
from xlrd import open_workbook 
bookD=open_workbook('SimFile.xls') 
sheetD=bookD.sheet_by_index(0) 
Yes=0 
Runs=[13, 26, 6.5, 6.5, 6.5, 6.5, 6.5, 13, 26, 13, 13, 13] 
 
nP=70 #number of products 
nC=12 # number of campaigns 
 
P=[i+1 for i in range(nP)] 
C=[j+1 for j in range(nC)] # Here We do not bring the campaigns with N=0 and T=0 
 
Demand=[] 
V=[] # Inventory cost per time unit. 
BackCost=[] 
for i in range(nP): 
    d=sheetD.cell(i+1,0).value 
    v=sheetD.cell(i+1,1).value 
    bb=sheetD.cell(i+1,1).value/.2 
    Demand.append(d) 
    V.append(v) 
    BackCost.append(bb) 
a=0 
for i in range(len(Demand)): 
    a+=Demand[i] 
print "Enter each Product's demand arrival rate for C1...C6" 
DemandArrRate=[23, 13, 41, 27, 18, 13, 20, 22, 46, 35, 15, 29, 13, 23, 23, 11, 21, 26, 28, 30, 39, 41, 
14, 11, 22, 21, 46, 40, 9, 27, 37, 46, 17, 43, 9, 10, 19, 7, 47, 9, 36, 18, 16, 33, 21, 10, 30, 28, 17, 21, 
13, 21, 36, 13, 6, 26, 27, 17, 30, 41, 35, 12, 7, 23, 19, 20, 31, 14, 28, 20] 
print DemandArrRate 
Dev=[(Demand[i]/float(DemandArrRate[i])*.25) for i in range(nP)] 
MaxDem=[] 
MinDem=[] 
for i in range(len(Demand)): 
    MaxDem.append(Demand[i]/DemandArrRate[i]+Dev[i]) 
    MinDem.append(Demand[i]/DemandArrRate[i]-Dev[i]) 
 
tDay=7 #number of hours per day 
nDay=5 #number of days per week 
nWeek=52 #number of weeks per year 
TotTime= nDay*tDay*nWeek #Total available time per year 
SimTime=6*TotTime 
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nRuns=[] 
for i in range(len(Runs)): 
    nRuns.append(Runs[i]/float(TotTime)) 
 
LamArrTime=0.4 
LamDemSize=0.4 
 
#------------------------------------------- 
# FORECASTED and Actual Demand based on hour time base 
#------------------------------------------- 
Forecast=[[]for k in range(len(P))]     
Time=[0 for i in range(len(P))] 
random.seed(111111111) 
Due=[[]for k in range(len(P))] 
TimeActual=[0 for i in range(len(P))] 
for i in range(len(P)): 
    AvgDTime=TotTime/float(DemandArrRate[i]) 
    AvgDSize=(MaxDem[i]+MinDem[i])/2. 
    Time[i]+=AvgDTime 
    while Time[i]<SimTime and TimeActual[i]<SimTime: 
        ArrTimeD=float(random.expovariate(float(DemandArrRate[i]/float(TotTime)))) 
        DSize=random.uniform(MinDem[i], MaxDem[i]) 
        TimeActual[i]+=ArrTimeD         
        TimeForecast=LamArrTime*ArrTimeD+(1-LamArrTime)*AvgDTime 
        AvgDTime=TimeForecast 
        DSizeForecast=LamDemSize*DSize+(1-LamDemSize)*AvgDSize 
        AvgDSize=DSizeForecast 
        Time[i]+=AvgDTime 
        if Time[i]>SimTime and TimeActual[i]>SimTime: 
            break 
        Due[i].append([(int(TimeActual[i])),DSize,i,"A"]) 
        Forecast[i].append([(int(Time[i])),AvgDSize,i,"F"]) 
     
############################### INVENTORY ########################### 
from xlwt import Workbook 
sheetC=bookD.sheet_by_index(1) 
sheetA=bookD.sheet_by_index(2) 
 
tunit=1 #hour 
SimTimeP=4*TotTime #(run for 4 years) 
 
N=[] 
T=[] 
R=[] 
ST=[] 
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for i in range(nC): 
    nn=sheetC.cell(i+1,1).value 
    N.append(nn) 
     
    tp=sheetC.cell(i+1,2).value 
    T.append(tp) 
 
    rp=sheetC.cell(i+1,3).value 
    R.append(rp) 
     
    st=sheetC.cell(i+1,4).value 
    ST.append(st) 
    
K=[0,1,2,3,4] 
 
Alpha=[[] for i in range(nC)] 
for i in range(len(Alpha)):   
    for j in range(nP): 
        ss=sheetA.cell(i+1,j+1).value 
        Alpha[i].append(ss) 
          
Inv=[0 for i in range(len(P))] 
 
def ActualDem(t,Sc,Tc): # sumation of demands for Tc+Sc duration of each campaign run 
    Dem=[[] for i in range(len(P))] 
    Sum=[0 for i in range(len(Demand))] 
    for i in range(len(Demand)): 
        for tt in range(len(Due[i])): 
            if ((Due[i][tt][0])>t) and (Due[i][tt][0] <= (t+Sc+Tc)): 
                Dem[i].append(Due[i][tt]) 
    for i in range(len(Dem)):  
        for j in range(len(Dem[i])): 
            Sum[i]+=Dem[i][j][1] 
    SumD=Sum 
    return SumD 
 
def Func1(Inv,t): # finds the next campaign to be run based on the final Inventory  
    INV=0 
    CampSelect=[] 
    DP=[] 
    TotalCost=[] # Cost of inventory at the end of the t+(m+q) horizon 
    SUM=[] 
    for c in range(len(C)): 
        SUM=ActualDem(t,ST[c],T[c]) 
        HCost=0 
        BCost=0 
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        CostInv=0 
        for p in range(len(P)): 
            INV=Inv[p]+R[c]*Alpha[c][p]*T[c]-SUM[p] 
            if INV>0: 
                HCost=V[p]*INV#inventory value 
                CostInv+=HCost 
            else: 
                BCost=V[p]*(-INV) #lost sale value 
                CostInv+=BCost 
        TotalCost.append(CostInv) 
     
    A=list(TotalCost) 
    A.sort() 
    CampSelect.append(TotalCost.index(A[0])) 
    CampSelect.append(TotalCost.index(A[1])) 
    CampSelect.append(TotalCost.index(A[2])) 
    return CampSelect 
 
def NumC(number,t): 
    CampSort=[] 
    NoCalc=[0 for i in range(nC)] 
    for i in range((nC)): 
        NoCalc[i]=nRuns[i]*t 
    DifCalc=dict([(i, NoCalc[i]-number[i])for i in range((nC))]) 
    q=sorted(DifCalc.items(), key=itemgetter(1)) 
    CampSort.append(q[nC-1][0]) 
    CampSort.append(q[nC-2][0]) 
    CampSort.append(q[nC-3][0]) 
    #print "sort2:", CampSort 
    return CampSort 
 
def NextC(t): 
    Yes=0 
    Camp1=Func1(Inv,t) 
    Camp2=NumC(Nums, t) 
    NextCamp=Camp1[0] 
    for i in range(len(Camp1)): 
        for j in range(len(Camp2)): 
            if Camp1[i]==Camp2[j]: 
                    NextCamp=Camp1[i] 
                    Yes=1 
    return NextCamp 
 
     
Wbook = Workbook() # writing output 
sheet1 = Wbook.add_sheet('Inventory') 
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sheet2 = Wbook.add_sheet('Holding') 
sheet3= Wbook.add_sheet('BackOrder') 
 
r=0 
t=0 
Nums=[0 for i in range(len(C))] 
List=[] 
CampList=[] 
tt=0 
u=0 
v=1 
 
for j in range(nP): 
    sheet1.write(0,j+1,j+1) 
     
while t<=SimTimeP: 
    Camp=NextC(t) 
    ProT=round((t+ST[Camp]+T[Camp]),0) # time at the end of producing campaign 
    for j in range(len(Inv)): 
        Inv[j]-=R[Camp]*Alpha[Camp][j]*ST[Camp] 
    List.append(Camp) 
    while t<ProT: # calculates Inventory over production time 
        Dem=[0 for k in range(len(Demand))] 
        for i in range(len(Due)): 
            for j in range(len(Due[i])): 
                if int(Due[i][j][0]) == (t+1): 
                    Dem[i]+= Due[i][j][1] 
                    if Dem[i]<0: 
                        print Dem 
                             
        for j in range(len(Inv)): 
            Inv[j]+=R[Camp]*Alpha[Camp][j]-Dem[j] 
            #print "InvStep:", [j], Inv[j], t 
            if Inv[j]>=0: 
                InvCosts=HoldingCost*Inv[j]*V[j]/(TotTime) 
                sheet1.write(r+1,j+1,Inv[j]) 
                sheet2.write(r+1,j+1,InvCosts) 
            else: 
                InvCosts=10*V[j]*(Inv[j])/(TotTime) 
                sheet3.write(r+1,j+1,InvCosts) 
                sheet1.write(r+1,j+1,Inv[j]) 
 
        if t==TotTime+1: 
            print "Number of campaigns in the first year:", Nums 
        if t==2*TotTime+1: 
            print "Number of campaigns in the second year:", Nums 
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        if t==3*TotTime+1: 
            print "Number of campaigns in the third year:", Nums 
        sheet1.write(r+1,0,t+1)         
        t+=tunit        
        r+=1 
 
         
    Nums[Camp]+=1 
print "Number of campaigns running over the simulation time:", Nums 
#print "List:", List 
Wbook.save("SchedulingMixCostNum.xls") 
Wbook = Workbook() 
sheet1 = Wbook.add_sheet('SimDemand') 
sheet2= Wbook.add_sheet('ForecastDemand') 
kkk=0 
mmm=1 
nnn=0 
lll=1 
for j in range(len(Due)): 
 
 for i in range(len(Due[j])): 
  sheet1.write(i+1,kkk,Due[j][i][0]) 
  sheet1.write(i+1,mmm,Due[j][i][1]) 
 mmm+=2 
 kkk+=2 
  
Wbook.save("Demand-MixCostNum.xls") 
print "Go to the excel file" 
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