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ABSTRACT 

 
Metagenomics, the sequencing of DNA from environmental samples, has enabled 

the study of cohabiting microorganisms with a single sequencing experiment. This 
requires algorithms and techniques specific to metagenomics: Since the environmental 
sample is not separated by organism before being sequenced, taxonomic classification is 
required to reveal the taxonomic composition of the sample. The metabolic function of 
the sample can be determined through functional annotation. Both of these analyses can 
be done through comparisons to a reference database of sequences with assigned 
taxonomy and function. Here new techniques for metagenomic analysis are developed. 
The KB-1 metagenome, representing a microbial community capable of converting toxic 
chlorinated ethenes into non-toxic ethene, is used as an example for these techniques to 
determine which KB-1 organism is capable of dechlorination and what metabolic support 
this organism gets from other community members to sustain its growth. 

A new rank-flexible taxonomic classification algorithm called SPANNER 
(Similarity Profile ANNotatER) is described. Traditional taxonomic classifiers are based 
on the similarity of a query sequence to sequences in a reference database. SPANNER 
uses all reference similarities as a feature vector of taxonomic affinities and classifies a 
query sequence based on affinity similarity. This approach is shown to be less sensitive to 
events such as lateral gene transfer which can confuse traditional classifiers. 
Classification using SPANNER is performed on the KB-1 metagenome. SPANNER 
offers greater control of the trade-off between precision and accuracy compared to other 
taxonomic classifiers; an appropriate level of precision can therefore be chosen based on 
the availability of closely related reference genomes. SPANNER classified many taxa at 
or within one or two ranks of the best possible rank. 

Cohabiting microorganisms may interact metabolically via “hand-off points,” the 
sharing of processed chemicals between organisms. Hand-off points could give an 
organism access to an otherwise inaccessible biochemical pathway or could split 
pathways between organisms. This can lead to a community forming where some 
community members depend on others to provide key metabolites that are essential for 
survival. A metabolic network representing KB-1 metabolism is reconstructed using 
newly proposed methods. The topology of this network is analyzed for metabolic 
interaction and dependencies between microbial organisms. The reconstruction of 
community metabolism suggests metabolic regions that are complementary or redundant 
between community members, and hand-off point identification suggests possible 
dependencies between organisms. This network has topological differences from 
metabolic networks of single organisms. 

Multiple events to the same genome that would normally confuse taxonomic 
classification, such as lateral gene transfer, create similar patterns of taxonomic affinity 
across that genome. SPANNER detects these patterns to avoid incorrect assignments 
from these events, for accurate KB-1 classification. The KB-1 metabolic network has 
high connectivity between metabolites caused by the complementarily of the metabolism 
of each community member. This network also identified several putative hand-off points 
between KB-1 community members, with accurate hand-off point detection being highly 
sensitive to missing or incorrect functional annotations. 
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GLOSSARY 

Entries are underlined at their first occurrence in the main text. Cross references in the 
glossary are underlined. 
 
 
annotate The process of assigning to a protein sequence the chemical 

reaction it performs. 

contig Several short reads of sequenced DNA joined into a longer contig 
(“contiguous sequence”) by a DNA assembly program. 

clustering coefficient The clustering coefficient C of a node is the proportion of 
connections between the node's neighbours. 

degree The degree k of a node is the number of edges connecting to it. 
The in-degree is the number of edges connecting into the node, 
the out-degree is the number of edges connecting away from the 
node. The degree equals the sum of the in- and out-degrees. 

diameter The diameter of a network is the longest of all shortest paths. 

DNA Deoxyribonucleic acid, a molecule found in all organisms. The 
DNA molecule is a polymer, made up of a linear sequence of 
nucleotide monomers. All genes in an organism are made of 
DNA. 

gene A subsequence of DNA in a genome. All proteins are encoded by 
genes. 

genome The entire set of DNA for an organism. 

hand-off point A metabolite (chemical) that is produced by one organism and 
then excreted into the environment. This metabolite is then 
acquired by a recipient organism and used as a nutrient. The 
recipient must not be able to make the metabolite itself. 

lineage The defined taxonomy for an organism, as a vector of labels at 
each descending rank. 

metabolic network A network representation of an organism’s metabolism: all 
metabolites (chemicals) it can use to live and all reactions it can 
perform to process those metabolites. 

metabolite A chemical compound used by an organism for growth or 
sustainment. Proteins convert metabolites (called substrates) into 
other metabolites (called products). 
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metagenome The combined genomes from an environmental sample. For 
example, all genomes from all organisms in a sample of ocean 
water form a metagenome. 

neighbourhood The neighbourhood of a node are the nodes connected to it by 
only one edge. 

nucleotide A molecule of adenine, guanine, cytosine, or thymine used as 
monomers in DNA. 

path A path from nodes a to b is series of connected edges and nodes 
starting at a and ending at b. The shortest path between two nodes 
is the path with the fewest edges. 

pathway A series of reactions related by a common biological function. 

product The metabolite (chemical) after a protein modifies it. 

protein A molecule produced by an organism to perform a specific 
chemical reaction. 

taxonomic rank A level in taxonomy (a hierarchical tree). Ranks at the top of the 
hierarchy differentiate organisms based on fundamental 
differences, the bottom ranks differentiate organisms based on 
lesser differences. The ranks in this thesis from top to bottom are: 
domain, phylum, class, order, family, genus, species. 

rank-flexible Any taxonomic classification algorithm that chooses the most 
appropriate rank to assign a sequence. 

rank-specific Any taxonomic classification algorithm that assigns all sequences 
at a predefined rank. 

read A string of {A, T, C, G} representing a DNA subsequence as 
produced by a DNA sequencer. 

seed set The metabolites in a network that cannot be produced and enable 
the production of all other metabolites. 

sink A node with an out-degree of zero. 

source A node with an in-degree of zero. 

substrate A metabolite (chemical) that a protein modifies. 

taxon (pl. taxa) A label at a specific taxonomic rank. This represents a known 
lineage from domain down to the taxon’s rank and unknown 
taxonomy below that rank. For example, the taxon “Mammalia” 
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is at the rank of class. Its lineage is “Eukarytoa, Chordata, 
Mammalia.” A taxon distinguishes the set of organisms beneath 
it, for example “Mammalia” distinguishes all mammals. In 
taxonomic classification the assigned taxon is the maximum level 
of detail for a sequence. For example a sequence classified as 
“Mammalia” is identified as a mammal but which mammal is 
unknown. 

taxonomic novelty The rank at which an organism has no siblings. For example, 
Homo sapiens (humans) are novel at the rank of genus, being the 
only living species of their genus Homo. 

taxonomy The differentiation of organisms using different labels at different 
taxonomic ranks. These ranks and labels form a tree. Taxonomy 
relates these organisms by their placement on this tree, through 
their shared ranks. For example, taxonomy defines humans and 
crows as sharing the ranks domain and phylum (organisms with 
cellular compartmentalization, tails, and spinal cords) but they do 
not share the next rank of class. The class differentiates humans 
(mammals) from birds (feathered creatures who lay amniotic 
eggs). 
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CHAPTER 1 INTRODUCTION 

Bioremediation is the process of cleaning polluted sites with microorganisms that are 

capable of converting pollutants into less harmful chemicals. In situ bioremediation 

involves adding the microorganisms directly to the polluted site where they metabolize 

the pollutant as part of their normal biological growth. An example toxin that has been 

cleaned by bioremediation is perchlorinated ethene (PCE), which is a common soil 

contaminant and is (along with its degraded form trichloroethene or TCE) carcinogenic 

and toxic to the liver and kidney [1]. KB-1 is a community of microorganisms capable of 

converting PCE into ethene through a series of biochemical reactions (Figure 1.1). KB-1 

is sold commercially by SiREM Labs and has been used successfully for bioremediation 

of sites contaminated with PCE [2]. This bioremediation involves drilling holes into the 

soil upstream from the contamination and injecting the KB-1 microbial community along 

with fermentable organic compounds such as acids or alcohols that stimulate the 

community’s growth; the downstream flow of the groundwater will carry KB-1 and the 

organic compounds into the contaminated soil. The alternative to in-situ bioremediation 

is excavation of the contaminated soil where it can be sent to a treatment plant; this 

process is often more expensive and time-consuming [3]. 

 

Figure 1.1 PCE degradation as performed by the KB-1 microbial community. 
Microorganisms in the community convert perchlorinated ethene into 
trichloroethene, which is then converted into dichloroethene, then into vinyl 
chloride, and finally vinyl chloride is converted into ethene. The chemical 
reactions that perform each conversion are named in red. 

 

For bioremediation applications a common interest in the use of microbial communities is 

identifying which microbial species are responsible for the removal of the pollutant. It is 

possible that more than one microbe can metabolize the pollutant, or several microbes 

could be required to work together. Algorithms and analysis pipelines are actively being 
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developed to help investigate microbial communities: understanding the community 

composition (which types of microbes are in the community and in what abundance), the 

biochemical abilities of each community member, and the ecological interactions 

between them are three questions addressed in this thesis through the development of 

new algorithms and in silico analysis techniques. Answering these questions is necessary 

to understand KB-1 and its bioremediation potential. For example, KB-1 analysis has 

shown that the primary community members responsible for the degradation of PCE 

exhibit poor growth when isolated in a lab culture [4], this suggests those members rely 

on other community members to sustain it. If these requirements were better understood 

the KB-1 community might be made more efficient or cost effective for bioremediation. 

 

1.1  MICROBIAL COMMUNITY ANALYSIS 
 
Microbial communities can be studied through DNA analysis to reveal a community’s 

biochemical and ecological information. DNA, or deoxyribonucleic acid, is a molecule 

used to store information about the development and function of an organism. DNA is a 

polymer, a large molecule composed of many repetitions of smaller molecules called 

monomers. In DNA monomers are repeated in a linear sequence on two anti-parallel 

strands; these strands are twisted into a double helix (Figure 1.2). DNA monomers can be 

one of four molecules called nucleotides: adenine, guanine, cytosine, or thymine. The 

entire set of all DNA molecules within a cell is called a genome. The genome follows a 

hierarchical organization: a genome may consist of several DNA molecules called 

chromosomes or plasmids, within these separate polymer molecules are subsections of 

monomers (sequences of nucleotides) called genes. Figure 1.2 shows the four genes from 

Figure 1.1 on a hypothetical plasmid; genes can be located on either DNA strand. Genes 

can be thought of as the functional encoding of life: they are translated into proteins, 

which themselves are the functional units of life: the chemical reactions that drive cell 

metabolism are performed by proteins. For example, in the conversion of PCE into 

ethene shown in Figure 1.1, each arrow represents a chemical reaction performed by a 

different protein. 
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Figure 1.2 Gene sequences on a hypothetical genome. The small grey double helix 

spanning the width of the figure shows a section of the genome, this section 
contains the four genes that encode proteins that degrade PCE into ethene 
(Figure 1.1). These genes could be located at any point on the genome and 
on either strand, and until identified these gene sequences have an unknown 
length. The expanded box shows the nucleotides for each helix strand: 
adenine or “A” in green, guanine or “G” in yellow, cytosine or “C” in blue, 
and thymine or “T” in red. 

 

DNA sequencing allows the “reading” of these sequences of nucleotides into a computer. 

Since DNA is composed of any of four nucleotides a DNA sequence can be represented 

as a string of letters from the alphabet {A G C T} (for adenine, guanine, cytosine, and 

thymine, respectively) as Figure 1.2 illustrates. This lends genomics, the study of 

genomes, particularly well to computational analysis. As sequencing technologies 

advance, the volume of DNA that can be sequenced at a given cost has increased 

exponentially [5]; this has motivated the development of new algorithms and techniques 

to study the ever-increasing amount sequenced DNA. 

 

DNA sequencing creates a computer file containing short substrings of the genome called 

reads which are between (approximately) 40 and 1000 nucleotides in length. The short 

length of reads poses an analytical problem: Identifying what gene a sequence belongs to 

becomes harder as the length of the sequence decreases, since the odds of a sequence 

appearing in multiple places in a genome increases as the length of the sequence 

decreases. A single read might span only a small percentage of a gene’s entire sequence 

making it difficult to identify what gene each read represents. Assembly is therefore done 

to increase the length of each read. DNA assembly is an algorithmic technique to join 

reads together, either using common overlapping regions found on two reads or using 
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longer reference DNA sequences from previous studies as an assembly template [6]. 

Assembly joins reads into contiguous sequences (contigs) whose length can be anywhere 

from hundreds to millions of nucleotides. The extent to which the entire genome is 

recovered by DNA sequencing depends on the coverage (how much of the DNA was 

sequenced) and depth (how many times any region of DNA was redundantly sequenced); 

insufficient coverage or depth means regions of the genome would have gone 

unsequenced or the assembly algorithm cannot join all reads, and the contigs will 

represent a subset of the genome. Recovering only a portion of a genome is common in 

sequencing, this will not hinder further analysis if the sequenced regions of the genome 

are the regions of analytical interest. Statistical techniques have been developed to predict 

how much DNA went unsequenced and how it will affect analysis [7]. Once a genome 

has been sequenced and assembled, the substrings that represent genes can be predicted. 

Not all of the DNA on a genome is in genes, and only a subset of the genes will encode 

proteins; protein-coding genes can range from 50 to thousands of nucleotides in length. 

Protein prediction typically uses models trained by machine learning that predict the 

location of protein-coding gene sequences on contigs and has an accuracy greater than 

90%  [8]. 

 

1.2  METAGENOMICS 
 
Metagenomics is the study of a collection of genomes (called the metagenome) from an 

environmental sample [9]. An environmental sample (soil, ocean water, etc) would 

normally contain a range of different of organisms, in metagenomics these organisms are 

sequenced together and then analyzed. Metagenomic DNA sequencing differs from 

single-genome sequencing. A single genome is sequenced by extracting DNA from an 

organism and sequencing as described above, whereas in metagenomics a filter is used to 

isolate the organisms of interest (e.g. viruses or microbes) from the environmental 

sample, and DNA is extracted and sequenced without prior knowledge of the organisms 

present in the sample. The sequenced DNA is still assembled as described above, 

however since at no point is the DNA in the environmental sample separated by organism 

the generated reads will represent a collection of unknown organisms. 
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The KB-1 community was sampled from Kitchener, Ontario, Canada and sequenced in 

2008 by the US Department of Energy Joint Genome Institute (Sample 10166: 

http://genomeportal.jgi-psf.org/aqukb/aqukb.download.html) and consists of 28506830 

nucleotides. JGI assembled these reads using the software programs Lucy [10] and 

Paracel Genome Assembler into 24990 scaffolds (a scaffold is a series of contigs that are 

known to be in the correct order, albeit with gaps between them).  

 

1.3  HOMOLOGY 
 
Once protein-coding gene sequences have been predicted from the sequenced 

metagenome DNA, comparative analysis can measure the similarity between them; 

sequence comparison forms the basis of the analysis in the next two sections. 

When organisms procreate random mutations can occur in the DNA sequence of their 

genes, causing an evolutionary divergence of the child gene sequence compared to the 

parental sequence. This mutated sequence will share a common ancestor with its sibling 

genes, which may be exact copies of the parental sequence or be versions of the gene 

sequence with unique mutations. All versions of a gene that share a common ancestor are 

said to be homologous. As mutations accumulate over time the sequence of each 

homologous gene will diverge; homologous sequences that are more similar are assumed 

to have diverged more recently and are therefore more closely related. Measuring 

sequence similarity as a proxy for divergence requires both sequences to be homologous. 

 
1.4  FUNCTIONAL ASSIGNMENTS 
 
Since proteins are the functional units of the cell, performing chemical reactions that 

drive cell metabolism and growth, they are often an interest in a metagenomic study. 

Cells that have unique metabolic properties (such as the degradation of toxic chemicals 

like PCE into non-toxic ones) derive these properties from the proteins they encode. The 

chemicals a protein reacts with are called metabolites; the metabolite a protein modifies 

is called a substrate, and after modification it is called a product. Proteins typically 

perform only one reaction that converts one or more substrates into one or more products. 

The reactions performed by proteins can be chained together into a series of reactions, 



 

 6 

each one using the previous reaction’s product as a substrate for further conversion. This 

series (from a common source substrate through several reactions into a useful end 

product) is called a pathway. The four sequential reactions shown in Figure 1.1 represent 

the PCE degradation pathway, although some reactions in the pathway were omitted from 

the figure. The first reaction has PCE as a substrate and TCE as a product, the second 

reaction has TCE as a substrate so these reactions can be connected in series. Multiple 

pathways intersect to make a metabolic network. The metabolic network is the entire 

chemical capacity of a cell: all reactions it can perform on all substrates to produce all 

products. Figure 1.1 represents a small subset of an organism’s complete metabolic 

network of hundreds to thousands of metabolites and reactions [11]. 

 

Studying the reactions and pathways in a sequenced metagenome starts by annotating 

protein sequences with chemical reaction information: assigning a function (the chemical 

reaction it performs) to all metagenomic protein sequences whose function is unknown. 

A protein can be annotated with a function in two ways: manual curation involves 

experimentally verifying the protein’s function and is considered more reliable but unable 

to keep pace with the rate of data acquisition [12]; automated curation compares in silico 

a query sequence of unknown function to a reference database of sequences with 

assigned function. This comparison is based on sequence similarity or inferred using 

machine learning and attempts to assess the homology of the sequences. The query and 

reference sequences are assumed to be homologous if they are highly similar, in which 

case the query is assigned the function of the closest matching reference sequence. 

Several reference databases exist that annotate sequences with functional information: 

• The Kyoto Encyclopaedia of Genes and Genomes (KEGG) is a database of 

protein reactions, metabolites, and organism-specific pathways [13]. The 

reactions in KEGG are either manually curated or automatically inferred. KEGG 

also maps the relationships between diseases, drugs, organisms, and these 

metabolic reactions through a hierarchical ontology called BRITE [14]. KEGG 

also has visualizations for pathways and metabolites. 
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• SEED is a manually curated database of protein functions with tools for the 

automated construction of metabolic network models from sequenced genomes 

[15]. 

• BiGG is a manually curated database of protein function [16]. BiGG also provides 

visualizations for organism-specific metabolic network models. 

• UniProtKB encompasses two databases: TrEMBL, which is annotated using 

automatic inference, and Swiss-Prot, which is manually curated [17]. 

• Genbank NR is a large sequence database whose sequences are annotated using 

automated methods [18]. 

 

 
Figure 1.3 Functional propagation is the annotation of function by sequence similarity, 

across a series of sequences. Small differences between highly similar 
sequences can accumulate into a large difference between originally 
annotated sequence and the last sequence in the series. 

 
Many of these databases contain cross-references to other databases, connecting 

information between them for the metabolites, reactions, etc. Inferring function in silico 

suffers from several limitations: The first is measuring similarity between two sequences. 

If two sequences are identical it stands to reason they have the same function, but there is 

no rule for how similar they must be before function can be inferred. Sequence similarity 

is often measured by aligning the sequences using the Smith-Waterman dynamic 
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programming algorithm [19]. Smith-Waterman compares two sequences monomer by 

monomer to calculate similarity, taking into account possible mutations (deviations in 

either sequence) that have accumulated over generations of evolution. Programs like 

BLAST [20] use heuristics to approximate Smith-Waterman to compare a single query 

sequence against a database of many reference sequences. Each comparison of query to 

reference results in a similarity score (called a “bitscore”) and an expectation value or 

e-value. The e-value is a statistical property describing the number of matches with a 

bitscore as good or better that can be expected by chance given the size of the database 

used. (e.g. Doubling the size of the database will double the number of matches expected 

by chance.) Any measured similarity depends on the query sequence and reference 

database used and significant similarities could be artefacts of a poor reference database. 

The second issue is that the correlation between a protein sequence and a protein’s 

function is limited. Highly similar sequences can be assumed homologous and therefore 

share a common ancestor. These similar sequences have not substantially diverged from 

this ancestor and both likely retain the ancestor’s function. However a single nucleotide 

mutation can change the function [21], making a high bitscore and significant e-value 

misleading. This is in spite of the first problem: even with a high quality reference 

database a significant similarity does not indicate shared function. The third issue is 

function propagation (Figure 1.3), where the function of a newly sequenced protein in the 

database was inferred from another protein whose function was inferred from another and 

so on, until the start of the inference at the original experimentally verified protein. While 

the difference between any two proteins in function propagation may be small, the 

difference between the first experimentally verified protein and the protein last inferred in 

the propagation is large (as the differences accumulate along the chain of propagation). 

Schnoes et al. [12] showed that error rates ranged from 5%, 8%, 3%, 4% to 62%, 65%, 

66%, 16% for Genbank NR, TrEMBL, KEGG, and Swiss-Prot respectively across 

different families of reactions, although they acknowledge they chose protein families 

that are especially difficult to annotate and that a trade off exists between highly 

confident annotations for few sequences versus less accurate annotations for many 

sequences. Schnoes et al. [12] suggest researchers choose the acceptable level of 

“annotation confidence” for their study and use the appropriate reference database. Apart 
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from annotation errors a subset of the predicted proteins will not be annotated, either 

because there is no reference sequence similar enough or because the machine learning 

models returned no result. 

 
1.5  TAXONOMIC COMPOSITION 
 

1.5.1 Motivation 
 
Once functional assignments have been made to the sequenced metagenome proteins, the 

chemical capabilities of the microbes the metagenome represents can be studied and 

proteins of interest identified. Excluding proteins whose function could not be annotated, 

these reactions will represent the entire known chemical capacity of the metagenome (and 

therefore the microbes it represents). Since the metagenome represents a set of organisms 

from an environmental sample the annotated chemical functions will represent all 

organisms in that sample. To understand the role each organism plays the sequenced 

DNA contigs must be differentiable by organism: contigs need to be labeled with the 

organism the contig sequence originally came from. For example, functional assignment 

as outlined above can identify the PCE degradation pathway in KB-1 (Figure 1.1), but not 

the organism(s) capable of performing the pathway. Assigning a read or contig to an 

organism is called taxonomic assignment; performing assignment for the entire set of 

sequences can also be used to estimate the composition (who is present) and abundance 

(in what relative amounts) of a metagenome. 

 

1.5.2 Taxonomy 
 
Taxonomy is the categorization of life along a hierarchical tree, grouping organisms by 

physiological or genetic details. The taxonomy of an organism is its membership at each 

level, or rank, of the tree. Higher ranks separate organisms based on fundamental 

differences, lower ranks are based on lesser differences. This allows organisms to be 

described by a series of labels (one for each rank) identifying the categories of life it 

belongs to, from general to specific. As an example the taxonomy for humans, 

chimpanzees, common crows, jumping spiders, and the bacterium Escherichia coli are 
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shown in Table 1.1. There are several versions of taxonomy [22], each with different 

ranks and labels in each rank, so the taxonomic ranks in Table 1.1 are only the main 

ranks of one of the versions. Humans and chimpanzees share ranks from domain to 

family, but are assigned to different genera and species. Their lowest rank in common, 

the family Hominidae, separates the “great apes” (humans, chimps, gorillas, and 

orangutans) from the “lesser apes” (gibbons), which are largely similar animals but are 

smaller and do not build nests. All apes are members of the class Mammalia (mammals), 

sister to the class Aves (birds). At higher ranks, the difference between organisms 

increases: the lowest common rank between apes and crows is the phylum Chordata, 

which groups organisms with a tail extending behind the anus and a dorsal neural tube 

(which develops into a spinal cord). A sister phylum is Arthropoda, a group of organisms 

with an exoskeleton and segmented body parts, such as the jumping spider P. audax. At 

the highest rank, domain, the difference between organisms are fundamental and at the 

cellular level: E. coli shares no ranks with the others, belonging to the domain Bacteria 

(single-celled organisms with no internal cell compartmentalization) compared to the 

domain Eukaryota (organisms with cell compartmentalization). The taxonomy of an 

organism across all ranks forms a vector of labels, this is called a taxonomic lineage (e.g. 

the lineage for humans is Eukaryota, Chordata, Mammalia, Primates, Hominidae, Homo, 

Homo sapiens). 

 

Taxonomic novelty is defined as the highest rank at which a genome has no known or 

characterized siblings. If a genome is novel at the rank of class, for example, then there 

are no other members of that genome’s class, order, family, etc. although there could be 

other members of higher ranks (phylum or domain). In the lineages in Table 1.1 E. coli is 

novel at domain and Human is novel at genus. Novelty is always in relation to a set of 

known taxa: a genome could be novel at some rank with respect to all known organisms, 

or it could be novel in relation to a specific sequence database. Members of the same 

genus are termed “congeners” and “conspecific” organisms are members of the same 

species. 
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1.5.3 Defining and Determining Microbial Taxonomy 
 
The taxonomy of microorganisms is unique, and deserves special attention since the 

analysis in this thesis is applied to microbes. The “biological species concept” defines a 

species as individuals in populations that can potentially interbreed [23]. While 

interbreeding is helpful to distinguish animals it cannot delineate microbial species 

(exceptions also exist for animals). Microbes reproduce both asexually (one parent 

reproducing an exact duplicate offspring) and via genetic recombination (incorporating 

the DNA from another organism into its own genome), at various ratios of the two for 

different microbes [24]. Morphological characteristics, while useful for animal taxonomy 

(e.g. separating winged creatures from hoofed creatures), are difficult to determine for 

microorganisms given their small size. While microbial cell shape (rod-shaped, circular, 

etc) is visible under a microscope, this cannot differentiate all microbial species and other 

characteristics are too difficult or expensive to detect. DNA sequencing allows a genetic 

basis for microbial taxonomy; for a time organisms with genome DNA-DNA 

hybridization greater than 70% were considered the same species [24]. Hybridization is a 

molecular technique that measures sequence relatedness by its chemical binding affinity; 

more related sequences have stronger bonds. A taxonomy that relies on the entire genome 

is also problematic due to Lateral Gene Transfer (LGT), the sharing of DNA between 

microbes outside of sexual or asexual reproduction. In LGT sections of DNA are released 

by one organism and incorporated into another organism’s genome. This can occur 

between distantly related organisms making their dissimilar genomes appear more 

similar. The wide-spread occurrence of LGT makes it a substantial barrier to taxonomic 

classification by sequence similarity [25]. Some have proposed that microbial species 

therefore have fuzzy boundaries between overlapping clusters of similar genomes [26; 

24]. 

 

A newer technique uses a single gene or set of homologous genes present in all members 

of a group (in this case microbes) as the standard for measuring sequence similarity to 

define taxonomy. The most common microbial gene used, 16S (“16S ribosomal RNA 

subunit”), is used in the creation of proteins making it vital to life. 16S has both slow-



 

 13

evolving and fast-evolving regions, fast-evolving regions accumulate changes to the 

nucleotide sequence during reproduction fast enough to differentiate species, but slow 

enough that within any one species there is little genetic variation. Slower-evolving 16S 

regions can be used to differentiate higher taxonomic ranks. The 16S gene can be 

extracted and sequenced to determine ancestral relatedness and taxonomy; this differs 

from metagenomics where all DNA is sequenced regardless of what gene it encodes. 

LGT of 16S between distant organisms would make them appear as related species and 

distort the resulting taxonomy, however 16S is less likely to be transferred by LGT than 

other types of genes [27]. Since 16S is commonly used to identify microbial species, 

several 16S sequences databases exist and tools are available specifically for analyzing 

16S to determine taxonomy [28; 29]. Currently 16S similarity < 97% defines a new 

species [30]. 

 

Table 1.2 The 13 taxa in KB-1 identified using 16S sequencing, their relative 
abundance, and the taxonomic rank each taxon was identified at. 

 
Taxon in KB-1 Abundance Rank 

Dehalococcoides 56.60% Genus 

Geobacter 7.55% Genus 

Methanomethylovorans 1.33% Genus 

Methanomicrobiales 5.29% Order 

Methanosarcina 1.00% Genus 

Methanosaeta 1.00% Genus 

Sporomusa 4.33% Genus 

Acetobacterium 11.31% Genus 

Spirochaeta SA-8 1.99% Genus 

Spirochaeta SA-8 2 1.00% Genus 

Syntrophus 1.00% Genus 

Chlorobi SJA-28 4.74% Phylum 

OP5 1.00% Phylum (novel) 
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To determine taxonomic composition 16S was sequenced from KB-1 [31], this 16S 

profiling suggests there are 13 members in the microbial community. These are referred 

to as the “13 expected KB-1 taxa,” which are shown in Table 1.2, along with their 

predicted abundance in the metagenome and the taxonomic rank of the 16S assignment. 

Although 16S can differentiate species, this is limited by the database of reference 

sequences. Sequences that are similar but not identical to a species’ 16S reference 

sequence indicate the query sequence is from a higher rank such as genus or family. 

Hence the expected KB-1 taxa are ranks higher than species. OP5 is a novel phylum: no 

other genome from the same phylum is known, meaning reference genomes can only be 

related to OP5 at the rank of domain [32]. 

 

1.5.4 Assigning Taxonomic Information to Metagenome Sequences 
 
In metagenomic studies the DNA is not separated by organism so the taxonomic 

composition of the metagenome is unknown. While 16S genes can most likely be found 

in the assembled contigs it is not guaranteed that every organism’s 16S gene was 

sequenced. Furthermore the 16S gene will only be on some contigs; the remaining 

contigs cannot rely on 16S to determine its taxonomy. For this reason taxonomic 

assignments are made to all sequences (contigs and unassembled reads) in a metagenome 

without using 16S, although the 16S profiling in Table 1.2 provides an a priori 

understanding of what taxa the sequences should be assigned to and in what proportions. 

Classification of sequences without using 16S is a focus of research since many 

metagenomic studies attempt to describe the composition and taxonomic assignments of 

all reads and contigs are needed to study how the species might interact with each other 

in the community; this includes modeling the metabolic networks of microbial 

communities. This makes accurate taxonomic assignments of reads and contigs critically 

important to community-wide metabolic analysis [9]. 

 

Taxonomic classification exists in two categories, based on the type of learning or 

assignment procedure: unsupervised and supervised. Unsupervised classification is the 

clustering of sequences related by some measure into groups, without making 
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assignments to microbial taxonomy. These groups may represent more than one species 

or only part of a species depending on the clusters formed. Supervised classification is 

the comparison of unknown query sequences to a reference database of sequences with 

assigned taxonomy, which is the focus of Chapter 2. Two forms of supervised 

classification exist: rank-specific and rank-flexible [33]. In rank-specific classification the 

taxonomy of the closest matching sequence in the reference database becomes the 

taxonomy of the query sequence, from domain down to the rank being classified (i.e. all 

classifications will be at the same rank, e.g. species). In rank-flexible classification the 

reference sequence comparisons determine the best taxonomic rank to classify the query 

(i.e. deciding there is insufficient knowledge to classify a sequence at species but enough 

knowledge to classify at a higher rank such as family and leaving the taxonomy 

“unknown” at ranks below family). A sequence is classified as “unknown” at all ranks if 

it cannot even be classified at the rank of domain. Many classifiers add a rank above 

domain with the label “cellular organisms” to represent these unknown sequences. 

 

Figure 1.4 Reference-based taxonomic classification. A: Reference-based taxonomic 
classification of a query sequence (black) starts with a comparison against a 
reference database whose sequences have an assigned taxonomy (red, grey, 
green, cyan, blue, yellow, and brown represent different taxonomic 
lineages). An example comparison algorithm is BLAST; poor BLAST 
matches are filtered at an e-value threshold. B: Best BLAST classification 
uses the best matching lineage from the BLAST comparison to assign the 
query sequence. C: LCA takes the lowest common ancestor of the top 
BLAST matches (filtered by p). D: SOrt-ITEMS filters matches at p, then 
performs another BLAST comparison of the best match (red) against the 
remaining matches (green, brown, blue) and the original query (black). The 
LCA of all matches better than the query is used to assign the query 
sequence. E: CARMA3 performs a reciprocal blast similar to SOrt-ITEMS, 
but does not filter at p. A bitscore range is defined for each rank: the lowest 
common rank for each matching reference lineage (green, blue, brown, 
cyan) to the reciprocal query (red) has a range from the lowest bitscore at 
that rank to the highest. For example, the LCA of both cyan and brown to 
red is the rank Phylum, so Phylum has a bitscore range from min(bitscore 
for cyan, bitscore for brown) to max (bitscore for cyan, bitscore for brown). 
Another example, the rank Genus has a bitscore range equal to the bitscore 
for green. The query sequence (black) is assigned to whichever rank has a 
range that encompasses the query’s bitscore. 
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At the heart of all taxonomic classification is the method of comparison between any two 

sequences. Two widely used classes of comparison techniques are alignment and 

composition. As two new species arise and diverge from their evolutionary ancestor, 

mutations to their homologous DNA sequences will accumulate. Highly similar 

sequences are assumed to be homologous and greater similarity implies less time since 

the sequences diverged (and therefore greater taxonomic relatedness between the 



 

 17

sequences). Alignment comparisons measure the dissimilarity (i.e. evolutionary distance) 

between two sequences while taking into account sequence mutations, using an algorithm 

such as Smith-Waterman. Compositional comparison uses the frequency distribution of 

substrings (called k-mers) in a sequence, which can provide a characteristic “signature” 

of a particular genome or taxonomic group [34]. Compositional classifiers have had more 

difficulty with shorter sequences, although recent classifiers can accurately classify 

sequences as short as 25 nucleotides [35]. Alignment classifiers are more accurate than 

composition classifiers, and hybrid classifiers have been built that use both alignment and 

composition together to make assignments that are more accurate than either type of 

classifier used in isolation [36]. 

 

To avoid the over-specific problem of rank-specific classifiers, rank-flexible classifiers 

estimate the level of novelty of a query sequence. The Lowest Common Ancestor 

algorithm (LCA, Figure 1.4c) is an extension to best BLAST [37]. Instead of taking the 

top match, the lowest common ancestor (the lowest or most precise shared taxonomic 

rank) of the BLAST matches is used as the assignment. For example if two BLAST 

matches share taxonomic ranks from domain to family and then diverge, the query 

sequence will only be assigned the taxonomy common to all matches (in this case from 

domain to family) and will be unspecified at lower ranks. The parameter p (0 ≤ p ≤ 1) 

defines how conservative this approach is: only BLAST matches whose bitscore is 

greater than the best match’s bitscore × p are used when taking the lowest common 

ancestor. This way p prevents the weakest homology matches from influencing the final 

taxonomic assignment and at very high values of p LCA approaches best BLAST (by 

removing all matches but the best). This rank-flexible approach avoids the over-specific 

problem of best BLAST but suffers from an under-specific problem: events like LGT 

between two distantly related organisms (brown and the red/green/blue lineage in Figure 

1.4c) will appear as strong homology matches, pushing the LCA assignment to the least 

common ancestor of the distantly related organisms, which would be at higher ranks such 

as domain or “cellular organisms.” 
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LCA has been used to classify many metagenomes since its development in 2007, 

however since it suffers from the under-specific problem described above, several 

extensions to LCA have been proposed. Monzoorul et al. [38] developed SOrt-ITEMS 

(Figure 1.4d), which like LCA uses p to trim low-scoring BLAST matches. Instead of 

taking the lowest common ancestor of the remaining matches, a reciprocal BLAST 

comparison is done using the best BLAST match as the query against a new reference 

database of the original query sequence and all matches greater than p. Using the 

coloured example in Figure 1.4d, if a query sequence Q is compared to a reference 

database of sequences {Sred, Sgrey, Sgreen, Scyan, Sblue, Syellow, Sbrown} and matches to Sred, 

Sgreen, Sbrown, Sblue are not filtered by the e-value threshold and are above the p threshold 

(in descending order: Sred being the most similar and Sblue being the least), the reciprocal 

BLAST would compare Sred to a reference database of {Sgreen, Sbrown, Sblue, Q}. The LCA 

of all reciprocal matches whose bitscore is better than the match to the original query is 

used in the assignment: in the example the reciprocal matches are Sgreen, Sblue, Q, Sbrown 

(in descending order) and the lowest common ancestor of Sgreen and Sblue will be assigned 

to Q, since they have more in common with the Q/Sred match than with Sbrown. 

SOrt-ITEMS includes additional details not covered here, such as what to do if there is no 

reciprocal match with a bitscore greater than that of the query. SOrt-ITEMS is an 

extension to LCA and still uses the lowest common ancestor for the assignment, but 

attempts to reduce the number of lineages that define the lowest common ancestor by 

filtering some lineages via a reciprocal BLAST. This reduction means SOrt-ITEMS is 

less likely to include distantly related taxa when taking the lowest common ancestor and 

the assigned rank should be more precise than that of LCA. SOrt-ITEMS shows an 

increase in specificity and reduction in false positives compared to LCA. 

 

CARMA3 [39] (Figure 1.4e) is similar to SOrt-ITEMS in that it uses a reciprocal BLAST 

of the best BLAST match against a new database which consists of the original query 

sequence and the matched reference sequences, except in CARMA3 all reference 

matches (except the best) are added to the new database (they are not trimmed to p). All 

sequences in the reciprocal database are then mapped to the taxonomy of the reciprocal 

query sequence, as shown on the right of Figure 1.4e. For each match in the reciprocal 
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BLAST except the original query sequence, the rank of the LCA against the reciprocal 

query is determined. At each rank with one or more LCAs, the minimum and maximum 

bitscores of the matches defines the bitscore range for that rank. Ranges for ranks with no 

assigned LCA are determined using linear interpolation from ranges with ranks. Each 

bitscore range then defines the minimum and maximum bitscore for assignment to that 

rank: if an unknown sequence matches the reciprocal query with a certain bitscore, that 

sequence is assigned the reciprocal query’s taxonomy from domain down to the rank 

whose range includes that bitscore (in Figure 1.4e, the query sequence matches the 

reciprocal query Sred with a bitscore that falls in the range for the rank order, this range 

was defined by linear interpolation between the Sbrown/Scyan match’s bitscores at phylum 

and the Sblue match’s bitscore at family). CARMA3 includes additional details, such as 

what to do if linear interpolation is not possible or if ranges overlap, which are not 

covered here. CARMA3 outperforms SOrt-ITEMS and LCA, having fewer false 

positives and increased specificity (queries are classified at lower taxonomic ranks). 

SOrt-ITEMS filters out reciprocal matches worse than the query, whereas CARMA3 uses 

information from all reciprocal matches to make an assignment. CARMA3 also does not 

rely on the lowest common ancestor (where distantly related sequences will decrease 

specificity by pushing the classification up to higher ranks), instead increasing precision 

by using bitscore ranges to find an appropriate rank to classify to. 

 

These rank-flexible algorithms for taxonomic classification attempt to assign the lowest 

rank possible without exceeding the estimated taxonomic novelty of the query sequence. 

Estimating the novelty for a query sequence is essential to avoid the over-specific 

assignment problem of rank-specific classification using best BLAST. 

 
1.6  RECONSTRUCTING METABOLIC NETWORKS 
 
With functional annotation and taxonomic assignments the PCE degradation pathway in 

Figure 1.1 can be identified in KB-1 and the organism(s) capable of performing the 

pathway known, but understanding its place in KB-1 metabolism requires a broader view 

of the metabolic networks of the KB-1 taxa. In silico reconstruction of a metabolic 

network attempts to model the chemical capacity of a cell: all reactions that can be 
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produced from its genome and all metabolites a cell can use during its life. Four of these 

reactions and five of these metabolites could be those shown in Figure 1.1; the 

reconstructed metabolic network should show what other reactions and metabolites they 

connect to revealing how the PCE degradation pathway fits into the organism’s 

metabolism. Since the metabolic network is reconstructed as a graph of chemical 

reactions and metabolites, the mathematics of graph theory can be applied to the network 

[40] enabling computational analysis and modeling of biochemical function and 

dependencies among pathways. 

 

1.6.1 Network Representation 
 
The metabolic networks developed here are metabolite-centric [41], with metabolites 

represented by nodes and reactions by edges, as seen in Figure 1.1. The network is 

reconstructed as described in section 1.3 by connecting the products of reactions as the 

substrates of others, forming a graph. The edges in a network can be directed or 

undirected. Since protein reactions have a direction (from substrates to products), 

directed edges are commonly used. Many protein reactions are bidirectional and can also 

use the products as substrates, performing the reaction in reverse. Bidirectional reactions 

can be represented as two anti-parallel directed edges. 

 

Reactions often convert more than one substrate into more than one product. Commonly 

a separate directed edge is used for each substrate-product pair in the reaction, over-

representing one edge as s × p edges, where s is the number of substrates and p is the 

number of products. The additional substrates and products in a reaction are often 

“currency metabolites,” these are cofactors used in many reactions (such as water or H+) 

[42], so that their inclusion in a metabolic network can skew analysis [43]. Currency 

metabolites under-represent the number of steps needed to convert substrates into 

products. For example, if ten reactions convert a substrate into a product but the first 

reaction also produces a currency metabolite that is consumed in the tenth, then the 

network will connect the substrate and product with only two edges (substrate → 
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currency metabolite → product) instead of ten. Removing currency metabolites helps 

correct the over-representation of edges. 

 

Hypergraphs have been used [44] for a more accurate representation of a network: 

multiple nodes can be represented by a single hypergraph edge, for example a single edge 

could simultaneously connect two substrates with three products, which would be six 

separate edges otherwise. The adaptation of network analysis algorithms for use with 

hypergraphs is ongoing [42]. If a hypergraph is not used the metabolic network is also 

naturally a multigraph, a graph which allows multiple parallel edges (“multi-edges”) 

between nodes. Multigraphs can be directed or undirected. Multiple proteins performing 

the same reaction or will create multi-edges between a pair of nodes. Multi-edges are 

created under even less strict criteria: since an edge is included in the network for every s 

× p substrate-product pair in a reaction, proteins performing different reactions will create 

multi-edges if a subset of the substrates and a subset of the products are shared between 

the reactions. The network analysis described in the next section applies to directed 

multigraphs. 

 

1.6.2 Analyzing Networks 
 

A network G=(V,E) contains a set of nodes (V) and edges (E). The notation eabn indicates 

the nth edge in a directed multi-edge from node va to vb. The directed multi-edge eab is the 

set of all edges it contains. A path between nodes va and vb is a series of edges and nodes 

starting with va and ending at vb; the shortest path between these nodes is the path with 

the fewest edges. The diameter of a network is the longest of all its shortest paths and 

represents the maximal distance to convert one metabolite into another. The degree ki of a 

node vi is the number of edges connecting to it and is the sum of its in-degree (the 

number of edges connecting into it) and its out-degree (the number of edges connecting 

away from it). The degree distribution p(k) of a network is the frequency of nodes with 

degree k=0,1,2,…. A node vi has a neighbourhood Ni which is the set of nodes connected 

to vi by one edge. The clustering coefficient of a node vi is defined by Equation 1, where 
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ejkn are all edges connecting nodes in the neighbourhood Ni and |Ni| is the size of the 

neighbourhood of vi. 

 

  (1) 

 

The clustering coefficient measures the ratio between the number of edges connecting 

nodes in the neighbourhood of vi to each other (numerator) and the maximum possible 

number of edges the nodes in the neighbourhood could have (denominator). This 

measures how connected the neighbourhood is, from 0 (no neighbours are connected) to 

1 (all neighbours are maximally connected). The clustering coefficient for the entire 

network is the average of the clustering coefficient for all nodes. The clustering 

coefficient distribution C(k) is the frequency of nodes with degree k=0,1,2,…, expressed 

as the average clustering coefficient for each k. The clustering coefficient of nodes with 

less than two neighbours is zero. 

 
 
 
 
 
 
Figure 1.5 Four network topologies. The number of nodes and edges is the same is 

each network. For visual clarity, the position of each node is the same as 
well. The expected degree and clustering coefficient distributions are shown 
on log-log plots. A: A network with randomly placed edges. B: A scale-free 
network. Darker nodes have a higher degree (hubs), lighter nodes have a 
lesser degree. Nodes are more likely to be attached to nodes of a similar 
degree (meaning hubs tend to attach to other hubs). C: A modular network. 
Three modules shown in blue, red, and green have a lesser number of 
connections between them than within them. D: A hierarchical network. 
Four structures are shown in green, purple, red, and cyan; darker nodes have 
a higher degree. The same connections (with minor variations) are found 
within each structure. Those connections are repeated between structures to 
form the next level of the hierarchy. This figure is adapted from [40] and 
[45]. 
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Metabolic networks have been suggested to be scale-free (Figure 1.5b) [43], a network 

topology that is characterized by short average path lengths and a high clustering 

coefficient; scale-free topologies are also seen in social networks [46] and the World 

Wide Web [47]. Scale-free networks can be identified by their degree distribution 

following a power law with a decreasing slope. A distribution fits a power law if it 

appears as a straight line on a log-log plot. Scale-free networks have a small number of 

hub nodes, which are node with a statistically significantly high degree. In scale-free 

networks these hubs tend to connect to other hubs. Scale-free networks are said to be 

robust to random perturbations since removing a node from the network at random is 

more likely to remove a node with a smaller degree. If a hub is removed, the lesser-

degree hubs surrounding it will remain connected. Jeong et al. [48] found that as many as 

60 randomly chosen substrates could be removed (representing mutations to the proteins 

that use them) from the metabolic networks of 43 different organisms with little effect on 

network diameter. 

 

A network topology can be described by comparing it to a random network (Figure 1.5b). 

A network having the same number of nodes and edges but with edges placed at random 

will have a degree distribution that follows the Poisson distribution, indicating nodes tend 

to have the similar numbers of links [40]. The clustering coefficient for each node in a 

random network is independent of its degree so its distribution will remain flat across all 

degrees, a property shared with scale-free networks. In contrast to this, previous studies 

of metabolic networks have shown that the clustering coefficient decreases as the degree 

increases, a characteristic of a modular topology [45]. A network with a modular 

topology is composed of modules that can be definitively and discretely partitioned from 

the network (Figure 1.5c) using an algorithm that identifies clusters of high connectivity. 

In metabolic networks these modules would perform separate biological functions. 

Discrete modules cannot exist if the high-degree hubs in scale-free networks connect 

uniformly to metabolites from every module; this would cause all modules to become 

interconnected. To reconcile this Ravasz et al. [45] proposed a hierarchical topology 

(Figure 1.5d) that does not consist of discrete modules but instead contains several small 

structures with hub nodes. The connections within each structure are similar, and the next 
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level of the hierarchy is formed by a repetition of these connections between structures. 

Hierarchical topologies can be identified by both a degree distribution and clustering 

coefficient distribution following a power law with a decreasing slope; these networks are 

also scale-free. 

 

Evolutionary models for metabolic networks that generate the observed topology have 

been proposed. Scale-free networks (whose degree distribution follows a power law) can 

be generated by “preferential attachment” process in which new nodes are more likely to 

be connected to nodes with a higher degree [49]. The Big Bang model of network 

evolution [50] assumes that proteins evolve from one or a few categories of function. In 

this model all pairs of edges are assigned distance values indicating their sequence 

similarity. At each time step, the model duplicates an edge and chooses a random number 

from the interval (0,1) to mutate it. If the mutation is less than a threshold w the new edge 

retains its functional category and is connected to one of the metabolites of the old edge, 

otherwise it is assumed to belong to a new functional category and is placed randomly in 

the network. At the end of each time step sequence mutation is represented by increasing 

all distances between edges. Any distance now exceeding w implies the proteins have 

diverged into different categories and the edge is relocated to a random place in the 

network. Przytycka and Yu [51] expanded this model to also include sequence mutation 

that can potentially decrease the distance between edges; this model uses preferential 

attachment which causes a power law degree distribution. While recent studies continue 

to show metabolic networks are scale-free and hierarchical, several argue the degree 

distribution does not follow a power law and is best fit by other models. Przytycka and 

Yu [51] showed that the degree distribution of the scale-free Big Bang model of [50] 

better fits a Yule distribution (a linear preferential attachment distribution). Stumpf et al. 

[52] tested the degree distributions of metabolic networks from KEGG (the same data as 

[43]) using log-likelihoods and a goodness of fit test against the power law, log-normal, 

stretched exponential, and gamma distributions; none were found to match the power law 

as [43] claimed. 
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The hierarchical structure of networks has also been a focus of research. Graph clustering 

is the detection of modules of high connectivity (“communities”) within the network. 

Newman and Girvan [53] proposed an algorithm to find community structures in 

networks using shortest path edge betweenness, where at each iteration the shortest path 

between all pairs of nodes is calculated and the edge involved in the greatest number of 

shortest paths is removed. This algorithm has been implemented in a software package 

for analyzing metabolic networks [54]. Holme et al. [55] applied the edge betweenness 

algorithm to 43 metabolic networks and found a hierarchy of community structures which 

themselves are composed of smaller community structures. These structures were related 

to biological function. Ma et al. [56] also found substructures within a metabolic network 

of E. coli related to common biological function. 

 

In graph theory, a connected component is a set of nodes all of which are connected to 

each other by a path. Networks can have multiple connected components, each 

disconnected from the rest. A strongly connected component is a set of nodes where a 

path exists from each node to every other node in the set [43]. Any metabolite can be 

converted into any other metabolite within the strongly connected component. Substrates 

a network uses that it cannot produce itself are termed sources, these metabolites must be 

obtained from the environment (although it is worth noting that metabolites a cell can 

produce internally (non-sources) might also be available in the environment) (Figure 1.6). 

Products a cell produces that are not used as substrates for other reactions in the cell are 

termed sinks. Since sinks are not used for further reactions they are often the constituent 

chemicals that make up the cell itself (“biomass”), used to expand the cell during growth 

or reproduction. Sinks can also be waste chemicals a cell discards into the environment. 
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Figure 1.6 The “bow tie” topology structure. The substrate subset consists of sources 

and carrier metabolites, and supplies the giant strong component and 
isolated subset with substrates. The product subset consists of carrier 
metabolites and sinks. This figure is adapted from [56]. 

 

Metabolic networks have been described as a having a “bow tie” structure to their 

topology [43] (Figure 1.6), which is composed of four sets: the “giant strong component” 

(GSC), a strongly connected component consisting of the core metabolism needed for 

life, a “substrate subset” of metabolites supplying the network, a “product subset” of 

metabolites exiting the network, and an “isolated subset” of nodes that do not interact 

with the GSC. The bow tie analogy is derived from the large number of sources that are 

available from the environment and are converted by carrier metabolites into a smaller set 

of products passed to the GSC for use. The GSC itself represents around 30% of the 

network and performs metabolic functions vital for growth and sustainment [43]. A 

likewise smaller set of products in the GSC are then converted into a large number of 

sinks for the products subset, these are biomass metabolites or expelled as waste. 

 
1.7  IDENTIFYING MICROBIAL COMMUNITY INTERACTIONS 
 
Microbial communities are defined as “multi-species assemblages [of microbes], in 

which organisms live together in a contiguous environment and interact with each other” 

[57]. The organisms contained in an environmental sample and represented by a 

sequenced metagenome do not necessarily interact. Some organisms could be transient in 

the environment and not part of a stable community. An environment could also contain 
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multiple communities, with interactions within but not between them. Microbial 

community interactions can be metabolic: some organisms in microbial communities 

cannot survive on their own and rely on other community members to sustain it, perhaps 

through the removal of an environmental toxin that would otherwise negatively affect 

their metabolism [58] or by receiving metabolites needed for survival from other 

members [59]. 

 

A “hand-off point” is defined as the exchange of a produced metabolite from one taxon to 

another that could not otherwise produce it. A hand-off point could create variants of 

pathways: routing some of the pathway’s reactions through the metabolic network of 

another organism creates new and possibly more efficient versions of the pathway. Hand-

off points could also make available new metabolites for other organisms, passed off 

from organisms that don’t need the metabolite, don’t need as much of the metabolite as it 

produces, or who make the metabolite exclusively for handing off to support the growth 

of another organism. Communities exist where some microorganisms support the life of 

others who would otherwise die. One example is the glassy-winged sharpshooter 

(Homalodisca coagulata), an insect which hosts two bacterial species: Baumannia and 

Sulcia [59]. The sharpshooter provides nutrients to the bacteria who in turn synthesize 

vitamins and amino acids and provide them to the sharpshooter host; all three organisms 

depend on the others for survival. The set of potential hand-off metabolites for an 

organism has been described by [60]. This set is termed a “seed set” and is the minimum 

set of compounds that (1) an organism cannot produce itself and (2) enables the 

production of all other compounds in the network. The seed set defines the metabolites an 

organism needs from the environment, regardless of whether they are being handed-off 

by another organism. Borenstein and Feldman [61] showed that the seed set of a parasitic 

organism is more likely to be found in the metabolic network of its host (compared to 

finding the seed set of a non-parasitic organism). Hand-off points are therefore the subset 

of seed set metabolites that are produced by another organism, the remaining seed 

metabolites occurring naturally in the environment. 

 



 

 29

KB-1 community interactions have been previously described [62]. Dehaloccoides is 

capable of carrying out the PCE degradation pathway shown in Figure 1.1 and Geobacter 

can perform of the first two reactions. Dehaloccoides is anaerobic; although 

Dehaloccoides encodes two oxygen scavenging proteins and can survive small amounts 

of oxygen, significant exposure slows its growth and can kill pure Dehaloccoides cultures 

[63]. Dehaloccoides is less sensitive to oxygen exposure when part of the KB-1 

community, where other anaerobic members perform additional oxygen scavenging. 

Apart from increased oxygen sensitivity Dehaloccoides shows poor growth in isolation 

and improved growth when part of the KB-1 community. The observed reliance on other 

community members suggests two hand-off points: Dehaloccoides requires a cobalamin 

(vitamin B12) cofactor for growth yet encodes an incomplete pathway to produce it 

[62,64]. Dehaloccoides is capable of only the final part of the pathway and must acquire 

intermediate metabolites from other community members; proteins to acquire these 

intermediates from the environment have been located in the Dehaloccoides genome. In 

the second hand-off point Dehaloccoides requires methionine and is capable of acquiring 

it from the environment, but a pathway to produce it has not been identified [62]. 

 
1.8  OBJECTIVES OF THIS WORK 
 
Methods to identify and analyze the composition and pathways of a metagenome form 

the focus of this thesis. Using KB-1 as an example these methods are implemented and 

refined. In Chapter 2 a new alignment-based rank-flexible taxonomic classifier is 

developed that is tolerant to events that confuse classification and is used to classify 

KB-1. In Chapter 3 functional annotations are made to the proteins predicted in KB-1 and 

an in-silico model of the metagenome’s metabolic network is built from these 

annotations, this model is then labeled with the KB-1 taxonomic assignments. This 

allows a description of the KB-1 community metabolism. Possible metabolic interactions 

and dependencies between the community members in the form of hand-off points are 

also identified. 
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CHAPTER 2 TAXONOMIC CLASSIFICATION BY COMPARING 
AFFINITIES IN TWO DIMENSIONS 

 

To understand which organisms in KB-1 contribute to the PCE degradation pathway the 

KB-1 protein sequences need to be predicted and assigned a taxonomic classification. 

Homology-based taxonomic classifiers start with a set of significant homology matches 

to a database of reference sequences (Figure 1.4a), where each match is composed of (1) 

the reference lineage from domain to species and (2) a numerical score, which is both an 

e-value denoting the statistical confidence of the match and a bitscore denoting the 

number of nucleotides in the query sequence that match nucleotides in the reference 

sequence. The bitscore does not describe the likelihood of the match in regards to the 

entire reference database as the e-value does. Classifiers use these two dimensions in 

different ways to assign taxonomy, sometimes also estimating the query sequence’s level 

of novelty to make a rank-flexible assignment. LCA uses the e-value and bitscore to filter 

low quality matches and combines the matched lineages into a lowest common ancestor 

assignment. Only CARMA3 uses both dimensions concurrently to make an assignment 

by mapping bitscores from a reciprocal BLAST onto the best matching lineage.  

 

A new algorithm called SPANNER (Similarity Profile ANNotatER) is described to better 

integrate this two-dimensional set for greater assignment accuracy. SPANNER uses the 

set of all BLAST matches below an e-value threshold from an unknown protein sequence 

to a reference database of sequences whose taxonomy is known. This set of BLAST 

matches is termed an LCA Profile. Each match in the LCA Profile consists of the 

reference protein’s taxonomy and the e-value. A query LCA Profile is built for a query 

protein by comparing it to the reference database using BLAST (Figure 2.1a), likewise 

reference LCA Profiles are created by comparing every protein in the reference database 

to every other reference protein (Figure 2.1b). The bitscore range for inclusion of BLAST 

matches in an LCA Profile is based on setting a proportion p; only matches with bitscore 

≥ p × the highest bitscore in the LCA Profile are included in the LCA Profile (Figure 

2.1c, LCA Profiles are also seen in LCA and SOrt-ITEMS after matches are trimmed to 

p, see the start of Figure 1.4c and Figure 1.4d). 
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Figure 2.1 The SPANNER classification algorithm. A: Like other supervised 

classifications algorithms (see Figure 1.4a) SPANNER starts with a 
comparison of a query sequence (black) to a reference database of 
sequences with assigned taxonomy. Insignificant matches are filtered at an 
e-value threshold. B: Poor matches are again filtered at a bitscore threshold 
p, the remaining set of matches is termed a “LCA Profile.” C: Every 
reference sequence is also compared to the reference database using 
BLAST, these are also filtered at an e-value threshold and at p to create 
reference LCA Profiles. D: The Pyramid Match Kernel compares the query 
LCA Profile to the reference LCA Profiles creating a set of matches, poor 
matches are filtered at y. E: The lineages of the remaining matched 
reference LCA Profiles are compared and F: the query is assigned to their 
lowest common ancestor. 

 
Pairwise scoring of profile similarity is non-trivial, because profiles will have degrees of 

similarity in terms of both taxonomy and match quality. For example, two profiles may 

both contain matches to members of the same species, genus, or family, with ranges of 

e-value matches that are proportionately similar. An appropriate scoring scheme would 

assign maximum scores to pairs of profiles that are identical in both their taxonomic 

composition and the relative similarity of the different taxonomic hits. Weaker matches 

should be recognized but assigned a lower score. The Pyramid Match Kernel (PMK) [65] 

was adapted to calculate distances. To apply the PMK, match information is embedded in 

a two-dimensional grid. Genomes matched by the two profiles are placed along one axis 

(the taxonomy axis) in a manner that groups organisms by genus, family, and every 

additional rank up to domain, and all e-values, normalized to accommodate different rates 

of substitution in different genes, along the other (the e-value axis). The e-values in each 

profile are normalized separately before being placed on the axis. The key property of the 

PMK is a hierarchical subdivision of the grid. The taxonomy axis is naturally divided into 

an eight-level hierarchy (h=8), representing the taxonomic ranks from species to “cellular 

organisms,” while the continuous e-value axis is divided into 2h sections. Figure 2.2a 
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shows the initial configuration for the PMK, using a four-level hierarchy for simplicity. 

The algorithm runs in h iterations. At each iteration the number of multiset intersections 

between the two LCA Profiles in each section of the grid is counted and multiplied by the 

weight of that iteration; weights start at 1.0 for iteration one and are halved for each 

successive iteration (so a weight of 1/2i-1 for iteration i). The second iteration considers 

taxonomic matches at the rank of genus and subdivides the e-value axis by 2h-1 sections 

(so the e-value axis sections double in size); this is shown in Figure 2.2b. Again the 

intersections are counted and multiplied by a weight of ½. The iterations continue (Figure 

2.2c), increasing the size of the sections on both axes, counting the intersections and 

multiplying it by the weight, until at iteration h there is only one section spanning all of 

both axes (Figure 2.2d). The sum of all the weighted intersection counts is the similarity 

between the two LCA Profiles. 

 

Each query LCA Profile is compared against a set of reference LCA Profiles whose 

taxonomy is known, generating a list of PMK matches (Figure 2.1d). To preserve the 

rank-flexible nature of LCA, the lowest common ancestor of the top LCA Profile matches 

is used as the final assignment. The set of best-matching profiles is generated in a manner 

similar to the generation of the original LCA Profiles: the best-matching reference profile 

is identified, and all other profiles are included whose PMK score is greater than y × the 

score of the best-matching profile (Figure 2.1e-f). Taxonomic assignments are therefore 

based on the similarity between the homology matching pattern of a metagenomic read, 

and similarity patterns of proteins from the reference database of microbial genomes: if 

many proteins from a particular genome have unusual patterns of taxonomic similarity 

due to LGT or other evolutionary or statistical phenomena, then metagenomic reads with 

similar affinity patterns will be assigned in a manner that is not overly conservative. 
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Figure 2.2 Calculating LCA Profile similarity using the Pyramid Match Kernel. In this 

simplified example, taxonomy consists of only h=4 ranks instead of the 
usual 8. The green-star profile is being compared against the red-circle 
profile, each profile consisting of three homology matches at a given species 
and e-value. A: The initial configuration (iteration i=1) of the Pyramid 
Match Kernel: each species in both profiles is arranged along the taxonomy 
axis, the hierarchy axis is divided evenly to represent these species. The 
e-value axis is divided into 2h sections. The weight of an intersection at this 
level of granularity is 1; no intersections exist. B: Iteration 2 has the e-value 
axis sections double in size, the taxonomy axis is divided by genus. The 
weight of the one intersection found is ½. The overall similarity is now ½. 
C: Iteration 3 has the e-value axis sections again double in size, and the 
taxonomy axis is divided by the next higher rank of family. Two 
intersections are found at a weight of ¼, making the overall similarity (½) + 
(¼ + ¼) = 1. D: By iteration h the e-value axis sections have doubled until 
only one section consists of the entire axis, likewise the taxonomy axis has 
reached the root of the tree (the rank of order) so that axis consists of only 
one section. Three intersections are counted at a weight of ⅛, making the 
overall similarity (½) + (¼ + ¼) + (⅛ + ⅛ + ⅛) = 1.375. 
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2.1  VALIDATION OF SPANNER ALGORITHM 
 
In addition to classifying the KB-1 metagenome, two other datasets were used to assess 

the performance of SPANNER. All analyses were based on a reference database of 1210 

bacterial and archaeal genomes (the two microbial domains found in KB-1) acquired 

from Genbank in June 2010. SPANNER was first applied to a pseudometagenome (a 

simulated metagenome) with properties similar to those of KB-1. A small subset of the 

reference genomes comprised the pseudometagenome; these were chosen to mimic the 

taxonomic novelty of KB-1, where some community members have close relatives in the 

reference database of sequenced genomes, while others are members of novel classes or 

phyla. Simulated sampling of contigs from genomes included in the pseudometagenome 

was also performed to mimic the distribution of contig lengths and taxonomic abundance 

found in the KB-1 metagenome. SPANNER was also applied to the real KB-1 

metagenome in which the taxonomic affiliations of individual contigs is not known. 

 

For the third dataset, a subset of the reference database was used to generate simulated 

reads in a taxonomic “leave-one-out” framework similar to that of [66] and [36]. This 

framework classifies all protein sequences from a set of genomes as queries, using 

sequences from the remaining gnomes as a reference database. The leave-one-out 

framework is performed at a specified taxonomic novelty and classified only to ranks 

above this novelty. The novelty is enforced on query sequences by excluding from the 

reference database any genome related to the query at that rank or lower. For example, to 

perform leave-one-out classification at a novelty of family all proteins from each genome 

are classified in turn, against a reference database comprising all remaining genomes 

except those genomes that share the query’s family. This ensures that there is no 

reference genome related to the query at a rank lower than order, and assignments are 

made to the rank of order since correct assignments below this rank are not possible. 

While the “leave-one-out” trials do not generate entire simulated communities, they are 

useful to assess the performance of SPANNER at different levels of taxonomic novelty. 

 

Comparing the performance of rank-flexible classifiers is challenging, because each 

prediction has a taxonomic precision (the rank at which the classification is made) and 
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accuracy (the most-precise rank in the prediction that is correct). For example, a given 

sequence may be classified to the rank of genus, but accurately only to the rank of class, 

in which case the classification is partially correct and partially incorrect. The strategy 

used for comparing predictions is illustrated in Figure 2.4. Taxonomic precision, shown 

on the x-axis, is the number of taxonomic ranks assigned by SPANNER or another 

algorithm, whether correct or incorrect. The y-axis shows the number of assigned ranks 

that are incorrect. By treating each rank as a quantitative value from 0 (“cellular 

organisms”) to 7 (species), averages can be computed over all predictions made on a 

given data set. For example, an average of 3.5 ranks of taxonomic precision means that 

the central tendency of assignments for all proteins fell between the ranks of class and 

order. Since accuracy is expressed as the number of ranks that are correct, two 

classifications are referred to as having equivalent accuracy if they have the same number 

of ranks correct, whether the remaining ranks are unspecified or incorrect: in Figure 2.4, 

diagonal lines show equivalent accuracy across ranges of precision and incorrect ranks. 

However, by mapping accuracy in two dimensions, this evaluation scheme can 

nonetheless distinguish predictions that are precise but somewhat incorrect, versus less-

precise predictions that are completely correct. 

 

2.2  METHODS 
 

2.2.1 KB-1 Analysis 
 
Protein-coding sequences were predicted using MetaGeneMark [8] and compared using 

BLASTP (a variant of BLAST) with an e-value threshold of 10-3 against all 1210 

reference genomes to create a set of KB-1 LCA Profiles. Reference proteins were 

compared against one another to generate reference LCA Profiles. Only the highest (by 

bitscore) match to a given taxon was kept in any LCA Profile, with lesser matches to the 

same taxon ignored. The KB-1 LCA Profiles were compared to the reference LCA 

Profiles (p=0.85 and y=0.95) to obtain rank-flexible assignments. KB-1 was also 

classified using best BLAST and LCA for comparison. 
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2.2.2 Pseduometagenome Analysis 
 
A pseudometagenome is an artificial metagenome created specifically to model a real 

metagenome. This was used for validation purposes: results from analysis on the KB-1 

metagenome cannot be validated in silico so to validate KB-1 analysis a 

pseudometagenome was created from 13 microbial genomes to model the KB-1 

metagenome as closely as possible (Table 2.1). For each organism found in KB-1 a proxy 

was chosen from a similar taxonomic group with the same degree of taxonomic novelty 

as the true KB-1 member. For example, a proxy for a KB-1 methanogen novel at the rank 

of family would be another methanogen also novel at the family level. The complete 

genome for all 13 proxies used was retrieved from Genbank. Like KB-1, the 

pseudometagenome included a genome novel at the phylum level (Opitutus), a mix of 

archaeal and bacterial genomes, four methanogens (all from the same order and three 

from the same class), and two members from a genus in the Spirochaetaceae family 

(Treponema denticola and Treponema pallidum). 

 
Table 2.1 List of the expected KB-1 taxa and the corresponding proxy taxon in the 

KB-1 pseudometagenome. 
 

Taxon in KB-1 Proxy in pseudometagenome 
Dehalococcoides Dehalococcoides CBDB1 

Geobacter Geobacter lovleyi 

Methanomethylovorans Methanohalobium evestigatum 

Methanomicrobiales Methanoregula boonei 

Methanosarcina Methanosarcina barkeri 

Methanosaeta Methanosaeta thermophile 

Sporomusa Veillonella parvula DSM 2008 

Acetobacterium Moorella thermoacetica ATCC 39073 

Spirochaeta SA-8 Treponema denticola ATCC 35405 

Spirochaeta SA-8 2 Treponema pallidum subsp. pallidum SS14 

Syntrophus Syntrophus aciditrophicus 

Chlorobi SJA-28 Chlorobaculum parvum NCIB 8327 

OP5 Opitutus terrae PB90-1  
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A subset of the 1210 completed microbial genomes was used as the reference database 

for classification purposes. The thirteen genomes used to build the pseudometagenome 

were excluded from the reference set, as were genomes from the phylum 

Verrucomicrobia, which was necessary to make Opitutus unique at the phylum level 

when comparing it to the reference database. BLASTP version 2.2.18 was used to 

perform all-versus-all comparisons among reference proteins, with a maximum e-value 

threshold of 10-3 for inference of putative homologs. LCA Profiles for the reference 

genomes were created by using the p=0.85 bitscore threshold used by [37]. Genomic 

fragments from each pseudometagenome taxon were sampled in proportion to the 

estimated abundance of that taxon in the KB-1 culture (see Table 1.2) as well as the 

average contig length. Proteins and protein fragments were predicted on these sampled 

fragments using MetaGeneMark version 2.7d and compared to the reference protein set 

to generate query LCA Profiles. Only the highest (by bitscore) match to a genome was 

kept in an LCA Profile, all lesser matches to the same genome were discarded. Query and 

reference LCA Profiles were compared using the PMK, with y, the parameter controlling 

the number of reference profiles included when choosing a taxonomic rank and label, set 

to 0.5, 0.6, 0.7, 0.8, and 0.9 in separate trials. 

 

2.2.3 Leave-One-Out Analysis 
 
334 microbial genomes were selected from the larger set of 1210 reference genomes 

(selecting at least three representatives per genus). To create a query dataset, 1000 

fragments of lengths 200 and 1000 bp were sampled from random locations in each of the 

334 microbial genomes. Proteins were predicted from these fragments and compared 

against one another in the same manner as described above to create query LCA Profiles, 

with secondary matches to particular taxonomic groups ignored. The reference and query 

LCA Profiles were compared using a range of parameter settings (p=0.65, 0.75, 0.85, 

0.95 and y=0.65, 0.75, 0.85, 0.95) to generate taxonomic assignments at three levels of 

taxonomic novelty: species, genus, and class. The accuracy of SPANNER was assessed 

by using a “leave-one-out” strategy to classify predicted proteins at different levels of 

taxonomic novelty. To use LCA Profiles at a species level of novelty, all BLAST 
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matches to the same species were removed in both query and reference LCA Profiles. 

Assignments were then made at the genus level, since it is impossible to assign to the 

correct species. For a genus level of novelty, all BLAST matches to the same genus were 

removed and assignments were made at the family level. For a class level of novelty, all 

BLAST matches to the same class were removed and assignments were made at the 

phylum level. 

 

2.3  RESULTS 
 

2.3.1 KB-1 
 
LCA assigned proteins to a rank between class and order on average, while SPANNER 

assigned proteins to a rank between family and genus. Best BLAST predictions, being 

rank-specific, were interpreted at the level of genus since it is likely that no conspecific 

genomes were present in the reference database. The taxonomic assignments of LCA, 

SPANNER, and best BLAST are summarized in Figure 2.3a, b, and c respectively, which 

highlights assignments to the 13 expected KB-1 taxa at all ranks. LCA assigned 10% of 

the proteins to “cellular organisms”, compared to 0.4% using SPANNER. LCA also 

assigned more proteins to the rank of domain than SPANNER (28% vs 5% for Bacteria, 

assignments to Archaea was less than 1% for both). SPANNER assigned more proteins 

than LCA at the rank of class and below. Although SPANNER had greatly increased 

taxonomic precision relative to LCA, SPANNER had a higher proportion of assignments 

to taxonomic groups that are not expected to be present in the KB-1 metagenome (labeled 

as "other" in Figure 2.3a, b, and c). The increased taxonomic precision comes at the cost 

of an increased number of incorrectly assigned ranks. For example, at the genus level, 

approximately 37% of LCA assignments were to genera not known to be present in 

KB-1, while the corresponding number was approximately 54% for SPANNER and 63% 

for BLAST. 
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Figure 2.3 Taxonomic predictions of the KB-1 metagenome by SPANNER, LCA, and 

best BLAST. The predicted taxonomic rank from genus (G) to domain (D) 
is shown, with all best BLAST assignments made at the rank of genus. The 
lineages of the 12 expected taxa in KB-1 are shown at the rank predicted; all 
other predictions are labelled ‘other.’ Left-hand panels show the distribution 
of assigned labels and ranks for LCA (A), SPANNER (B) and best BLAST 
(C). Right-hand panels show the lowest correctly assigned rank for LCA 
(D), SPANNER (E) and best BLAST (F). 

 
These predictions were also evaluated by considering the lowest correct rank for each 

prediction made by the three algorithms (Figure 2.3d, e, and f for LCA, SPANNER, and 

best BLAST, respectively). In this case, the assignments based on best BLAST matching 

resemble those of the rank-flexible classifiers because the lowest correct rank of any 

BLAST assignment can be anywhere between genus and "cellular organisms". LCA 
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overall had more assignments that were correct only at the level of domain or "cellular 

organisms" (i.e., no classification was made, or even the predicted domain was incorrect). 

SPANNER and BLAST yielded similar distributions of predictions, although SPANNER 

had more assignments that mapped to "cellular organisms" and fewer correct assignments 

at the rank of genus. 

 

To assess the accuracy on the metagenome, a “gold standard” of assignments was 

produced for validation. A reduced reference database of only the closest proxies to the 

13 expected KB-1 taxa was created. For example, at least one strain of Dehalococcoides 

is present in KB-1, so all five Dehalococcoides genomes from the original reference 

database were included in the reduced reference database (since the exact 

Dehalococcoides species is unknown all species were included). This reduced reference 

database consisted of 43 closest proxies to KB-1. Best BLAST results of KB-1 contigs 

against the reduced database created the “gold standard” of results: best BLAST could 

only match contigs in the metagenome to one of the 13 expected taxa. Note that this 

differs from the normal use of best BLAST to classify a metagenome, since the reference 

database has been limited only to what taxa are a priori assumed to be present. Since the 

reference database has been reduced, a higher confidence can be taken in the best BLAST 

gold standard for these contigs if they are also long. SPANNER assignments of proteins 

on contigs 50,000 bp or longer matched the gold standard for 98% of the total 

Dehalococcoides ranks, and 93% of non-Dehalococcoides ranks. 
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2.3.2 Pseudometagenome 
 

 
Figure 2.4 SPANNER classification of the KB-1 pseudometagenome to the genus 

level. Diagonal lines extending from the LCA and best BLAST points 
connect all other points considered equivalent in terms of overall accuracy: 
anything on these lines introduces as many assigned ranks as incorrectly 
assigned ranks, so any point along these lines has the same number of 
correctly assigned ranks. The inset shows the data relative to all taxonomic 
ranks, from domain (D) to species (S). 

 
Since none of the species used to build the pseudometagenome had conspecific 

organisms in the reference database, correct assignments could only be made at the genus 

level or higher. Although BLAST matches query sequences with targets from specific 

strains, the taxonomic precision of BLAST matches was limited to the genus level to 

account for this level of taxonomic novelty; otherwise all BLAST predictions would have 

been guaranteed at least one incorrect rank (species). Since the use of best matches yields 

a rank-specific classifier, all predictions were made at the genus level, even for organisms 

that were novel at much higher taxonomic ranks. Best BLAST matches were on average 

0.995 ranks too precise (on average predictions were accurate to just below the level of 

family), as seen in Figure 2.4. LCA with p=0.85 assigned proteins 1.35 ranks above 

genus (i.e. the “average” prediction rank was between order and family), with essentially 
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no incorrect ranks (not over-specific) since the lowest common ancestor almost always 

encompassed the source of the protein being assigned. LCA avoided the over-specific 

problem of BLASTP by assigning to higher ranks, decreasing the number of incorrect 

ranks at a cost of taxonomic precision. SPANNER results for a range of parameter 

settings (p=0.85 and y=0.5, 0.6, 0.7, 0.8, 0.9) are shown in Figure 2.4, which on average 

assigned reads between 0.21 (y=0.9) and 0.83 (y=0.5) ranks above genus, and between 

0.77 (y=0.9) and 0.34 (y=0.5) ranks incorrect. Unlike best BLAST, rank-flexible 

classifiers LCA and SPANNER are not guaranteed to have incorrectly assigned ranks for 

taxa novel at ranks higher than genus since assignments can be made at higher ranks. 

SPANNER was both less over-specific than best BLASTP and more precise than LCA, 

although only for a stringent setting of y=0.9 were the SPANNER predictions better 

overall than those of best BLAST. 

 

 
Figure 2.5 SPANNER assignments of the six most abundant taxa in the KB-1 

pseudometagenome (p=0.85). The dotted lines represent the maximum 
possible score for taxa at different levels of novelty. The chosen strains of 
Dehalococcoides, Chlorobaculum, and Geobacter are novel at the species 
level, Moorella and Veillonella are novel at the genus level, and 
Methanoregula is novel at the family level. 
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The six most abundant taxa (all taxa above 4% in Table 1.2) covered a wide range of 

taxonomic novelty with respect to the reference database, and accuracy of SPANNER 

predictions (Figure 2.5). Taxa that were only novel at low ranks (e.g. species-level 

novelty; having members of the same genus in the reference database) had higher 

accuracy than taxa novel at higher ranks. Increasing y improved accuracy for some taxa 

(e.g. Geobacter y ≤ 0.6 versus y ≥ 0.7) but not others (e.g. Moorella and Veillonella 

showed similar performance across all values of y). Figure 2.6 shows the precision of the 

assignment of each taxon, with pseudometagenome constituents sorted by taxonomic 

novelty. Taxa novel at ranks above species are more difficult to classify, with the 

exception of Opitutus (novel at the rank of phylum), which was always classified to the 

correct domain. Although Geobacter had an average of 1.1 ranks incorrectly assigned at 

y=0.9 (Figure 2.5), Figure 2.6 shows most of those incorrect ranks belonged to only 1.8% 

of Geobacter proteins, which suggests a small number of misclassifications of Geobacter 

sequences that are incorrect at high ranks such as phylum, with many of the remainder 

being correctly assigned to the rank of genus or family. This could be because Geobacter, 

while having congeners, has few or no taxonomic siblings at higher ranks of genus or 

family, forcing incorrect Geobacter predictions to be incorrect up to much higher ranks. 

 



 

 44

 
Figure 2.6 SPANNER assignments for each taxon in the KB-1 pseudometagenome 

(p=0.85, y=0.9). The taxonomic novelty is for each taxon is shown at the 
top. All genes for each taxon are shown as the percentage of genes correctly 
assigned (blue), the percentage of genes correctly assigned to a higher rank 
(green), and the percentage of genes incorrectly assigned (orange). For taxa 
novel at the species level, for example, assignments correct at the rank of 
genus are blue; any assignment higher than genus but still within the correct 
lineage would be green. For taxa novel to the order level, correct 
assignments to the rank of class are blue. 

 
 
 
 
 
Figure 2.7 Average taxonomic rank assigned for leave-one-out dataset at three different 

levels of taxonomic novelty. Panels show ranks assigned for leave-one-out 
fragments novel at the rank of species (A), genus (B) and class (C). As p 
increases LCA assignments approach best BLAST, likewise as p and y 
increases SPANNER assignments approach best BLAST. SPANNER 
outperformed LCA at all y values and outperformed best BLAST at high 
values of p and y on genus and class levels of novelty. 
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2.3.3 Leave-One-Out Analysis 
 
When results were averaged over all training genomes, best BLAST outperformed LCA 

at all levels of taxonomic novelty, having more incorrectly assigned ranks but not enough 

to offset the increased taxonomic precision. SPANNER had higher accuracy than LCA at 

all levels of novelty over all combinations of parameters p and y, and outperformed best 

BLAST at high values of p and y. SPANNER was always more precise than LCA and 

less than best BLAST, since all best BLAST matches were assigned at the lowest 

taxonomic rank possible. The relationship seen between LCA, SPANNER and best 

BLAST was consistent for fragments of length 200 nt and 1000 nt, overall accuracies 

were better (1.03, 1.09, and 1.04 times better for species, genus, and class levels of 

novelty, respectively) on 1000 bp fragments. 

 

Figure 2.7a shows analysis at a species level of novelty (where assignments are made to 

the rank of genus or higher). Best BLAST assigned proteins to the rank of genus and had 

on average 0.1 ranks incorrect for fragment lengths of 1000. LCA on the same fragments 

had an average taxonomic precision between family and genus, with between 0.04 and 

0.06 incorrectly assigned ranks. SPANNER at y=0.65 had similar accuracy as LCA at the 

same p, and increased both precision and incorrect ranks as y increased. The most 

accurate SPANNER parameters were p=0.95 and y=0.95 with taxonomic precision 5.97 

and 0.075 incorrect ranks, 0.005 ranks less accurate than best BLAST. 

 

At a genus level of novelty (Figure 2.7b) for 1000 bp fragments, best BLAST had an 

average of 1.36 ranks incorrect, while LCA assigned proteins on average between class 

and family with between 0.57 and 0.83 incorrect ranks. For both fragment lengths 200 bp 

and 1000 bp SPANNER accuracy was similar to LCA at the same p and y=0.65; as y 

increased SPANNER approached the accuracy of best BLAST, surpassing it when  

p=0.95 and y=0.85 or 0.95. Similar trends were seen at a phylum level of novelty (Figure 

2.7c), with SPANNER surpassing best BLAST at p=0.95 and y=0.95 for both fragment 

lengths. 
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2.4  CLASSIFICATION OF LATERALLY TRANSFERRED GENES 
 
Evidence of lateral gene transfer was found in the leave-one-out results by searching for 

LCA Profiles (at p=0.85) where the taxonomic precision of LCA was phylum or higher, 

while SPANNER assigned to the rank of family or lower. One example is a 

sodium/glutamate symporter from Bacillus pseudofirmus OF4. This example was taken 

from analysis at a genus level of novelty, where all other genera within the same family 

are excluded and the taxonomic assignment was at the family level (since it was 

impossible to correctly assign to the genus level). After removing matches to its own 

genus from its LCA Profile and removing matches below the threshold of p=0.85, the 

two remaining matches are to the archaeon Methanosarcina mazei and the bacterium 

Geobacillus sp. Y412MC10. LCA assigned a rank of “cellular organisms,” while 

SPANNER correctly detected the similarities between this LCA Profile and other 

Bacillaceae LCA Profiles, making the correct assignment of Bacillaceae at the family 

level. This assignment is 5 ranks more precise than LCA. 

 

 

 

 

 

 

 

Figure 2.8 Classification of a simulated metagenomic read from Thermoanaerobacter 
pseudethanolicus. A: Taxonomic tree of all genera in a Thermoanaerobacter 
pseudethanolicus LCA Profile at p=0.85 (after removing all matches to its 
own species). The LCA Profile contained 48 species total with e-values 
ranging from 10-109 to 10-93. LCA classified this as a “cellular organism” 
while SPANNER correctly identified the genus Thermoanaerobacter by 
matching it to a similar LCA Profile from Thermoanaerobacter sp. X514. 
The best BLAST match was to Thermococcus onnurineus, an archaeon. B: 
Phylogenetic tree of all sequences in the LCA Profile from A. Although the 
best BLAST match was to Thermococcus onnurineus, the 
Thermoanaerobacter pseudethanolicus sequence is placed more closely to 
its taxonomic neighbours in the Clostridia. 
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An example from the species level of novelty (assigning proteins to the genus level) is a 

protein from Thermoanaerobacter pseudethanolicus, whose LCA assignment at p=0.85 is 

again “cellular organisms” (Figure 2.8a). Only one reference LCA Profile scored above 

the y threshold, from Thermoanaerobacter sp. X514, making a correct assignment to the 

genus level. This assignment is 6 ranks more precise than LCA. The best BLAST match 

for this protein is Thermococcus onnurineus, which is 6 ranks incorrect (domain to 

genus). SPANNER was able to match the LCA Profile from Thermoanaerobacter 

pseudethanolicus with a similar profile from Thermoanaerobacter sp. X514, matching the 

same lateral gene transfer events in both profiles. A phylogenetic tree (created using the 

UPGMA algorithm [67] on a Smith-Waterman distance matrix of all sequences) of the 

query sequence as well as the sequences in its LCA Profile is shown in Figure 2.8b, 

placing the query sequence closer to its taxonomic neighbours instead of with 

Thermococcus onnurineus. The dotted line shows the phylogenetic distance between the 

query sequence and its best BLAST match. 

 

2.5  CONCLUSIONS 
 
Homology comparisons of a query sequence can identify the closest proxy (best match) 

in a reference database. This is a rank-specific assignment, identifying the query 

sequence as being most similar to a target sequence in the reference genome. This 

assignment can only be correct if genomes that share the taxonomic label of the query 

genome at the target rank are represented in the reference database. Otherwise, the best 

match will be overly specific, choosing the species of a relative of the query sequence’s 

genome. Rank-flexible classifiers do not suffer from this limitation, since they can assign 

to any taxonomic rank based on the weight of evidence. Forcing assignments to ranks 

below the novelty of the query genomes caused best BLAST to have more incorrectly 

assigned ranks than LCA and SPANNER (at most parameters) in the results. An 

alternative would be to perform rank-specific classifications at a higher rank, for example 

Hess et al. [68] who classified all sequences to the rank of order. However, using a higher 

rank forces fragments which could otherwise be assigned precisely to a less-precise 

category. LCA avoids the over-specific problem by providing a rank-flexible approach, 

using the top few matches instead of the single best match. However, overly broad 
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taxonomic matches can unnecessarily reduce the taxonomic precision of a fragment’s 

assignment, and a single LGT event from a distant group can raise the lowest common 

ancestor to taxonomic ranks as high as phylum, domain, or even “cellular organisms,” 

making the assignment under-specific. In the results LCA had fewer incorrect ranks than 

best BLAST or SPANNER (at the same p) but at the cost of less precision. 

 

SPANNER exploits the situation where many genes from the same genome and from 

closely related genomes are expected to have similar patterns of homology matches (i.e., 

LCA Profiles). In this manner, a gene with a broad set of BLAST matches need not 

generate an overly broad taxonomic prediction, if the overall similarity pattern is 

characteristic of the correct taxonomic group. Instead of forcing all these matches to 

contribute to the assignment (causing the under-specific problem in LCA) they can be 

used as features in an LCA Profile for comparison. The SPANNER approach considers 

the same set of matches, but does not necessarily need to apply them to the final 

taxonomic assignment. 

 

There is a trade-off between precision and incorrect ranks among LCA, SPANNER, and 

best BLAST. LCA is the most conservative classifier, with the fewest incorrectly 

assigned ranks but the least precision: for example, LCA assigned 25 times more 

sequences to the “cellular organisms” level than did SPANNER on the KB-1 

metagenome, but had fewer assignments to “other” taxa (i.e., those not expected to occur 

in KB-1). Using best BLAST scores in a rank-specific manner yields high taxonomic 

precision but many incorrectly assigned ranks. SPANNER spans these two approaches 

based on the parameters p and y. The best choice of approach in a given situation might 

depend on the expected degree of taxonomic novelty: for example, metagenomes with 

many taxa novel at high ranks might be better classified with a conservative approach 

such as LCA, while metagenomes with close proxies could be confidently assigned using 

SPANNER. Perhaps alarmingly, Figure 2.3 shows that the three approaches assigned 

"expected" taxonomic labels at all ranks more precise than domain in only ~50% 

(SPANNER and best BLAST) and < 50% (LCA) of cases. Although this problem is 

partially due to the presence of taxa that are novel at high ranks, and the presence in the 



 

 51

dataset of short fragments of predicted coding sequences, it is nonetheless clear that 

improvements are needed if reliable predictions are to be made by any of the three 

approaches. 

 

Several types of improvement to SPANNER can be envisioned. Many approaches such 

as MetaPhyler [69] use lineage-specific scoring thresholds to achieve higher precision; 

such an approach could also be used here to distinguish lineages with highly variable 

affinities from those whose LCA Profiles are more similar to one another. Hybrid 

classifiers [66; 36] currently use the top-scoring homology assignment (e.g., best BLAST 

matches) in combination with compositional information. The distributional approach of 

SPANNER would likely decrease the number of false positive predictions, particularly if 

both SPANNER and the compositional approach were used to define "probable sets" 

from which intersecting information could be extracted. SPANNER is also 

complementary to other refinements of LCA such as SOrt-ITEMS [38] which use the 

degree of orthology in the BLAST and PMK matches to determine the appropriate rank 

to make an assignment. 
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CHAPTER 3 KB-1 METABOLIC RECONSTRUCTION AND 
TAXONOMIC DEPENDENCY ANALYSIS 

 

3.1  INTRODUCTION 
 
Once functional annotation and taxonomic assignments are complete, the pathway of 

reactions performing PCE degradation shown in Figure 1.1 can be identified, as well as 

the taxon (or taxa) responsible for them. Metabolic networks can be modeled for each of 

the expected KB-1 taxa to reveal their functional capabilities. These are referred to as the 

“member networks.” To identify connections between the metabolism of each KB-1 taxa 

(hand-off points, see Chapter 1) a metabolic network can be constructed that represents 

the entire KB-1 community, containing all metabolites and edges from the network of 

each member. This network is referred to as the “community network” or “KB-1 

network.” To distinguish the functions of each member all edges are labeled with the 

taxon its protein sequence was assigned to. This network CN=(V,E,T) contains a set of 

nodes and edges (V and E) as defined in Chapter 1 and a set of taxa (T). For a taxon t  T 

the edge eabn  t if the nth edge from va to vb has been labeled with t. The following 

pseudocode shows a proposed method to construct a community network CN from the 

union of Ĝ, the set of all member networks; to avoid ambiguity VX and EX are nodes V 

and edges E of the network X. 

 
V, E, T = set 
for G in Ĝ 
 V = V ∪ VG 
 t = set 
 for eab in EG 
  i = |eab| in E 
  i++ 
  E ← eabi 
  t ← eabi 
 T ← t 
return (V,E,T) as CN 
 

In the pseudocode, all nodes (metabolites) for all networks are added to the community 

network. Each node is added only once. All edges (reactions) in each member’s network 

are then added to the union of nodes. A metabolic network representing multiple 
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organisms is expected to contain multiple proteins performing the same reaction, more so 

for closely related organisms whose overall metabolism is similar. For this reason all 

edges are added even if an edge connecting the same nodes was already created from 

another taxon, making the community network a directed multi-graph (see section 1.6). 

The following pseudocode defines detecting hand-off points vt in a community network 

of metabolite v for taxon t. In the pseudocode, the producers of each metabolite is 

subtracted from the consumers. Any metabolite consumed by a taxon that cannot produce 

that metabolite is considered a hand-off point. 

 
HP, producers, consumers = set 
for v in V 
 for t in T 
  if eav in t 
   producers ← t 
  if evb in t 
   consumers ← t 
 for t in consumers – producers 
  HP ← vt 
return HP 
 

Rank-flexible classification does not always identify a single organism at the species 

level, for this reason the KB-1 “members” and their reconstructed networks may 

represent either more than one organism that classification was not able to differentiate or 

only a subset of reactions for one organism. Furthermore, incorrect functional annotation 

can identify reactions that are not actually present or miss reactions that are. Another 

caveat is that a community metabolic network presumes that all metabolites in all 

organisms can be shared with all other organisms. Small lipophilic (dissolvable in lipids, 

the primary molecule that composes the cell membrane) and uncharged metabolites 

permeate cell membranes naturally; transporters (special proteins on cell membranes that 

selectively acquire or excrete metabolites) are needed for large or charged metabolites 

[70]. 

 

In this chapter a community metabolic model for the KB-1 metagenome is described. 

This network is compared to the member networks and network reconstructions from 

other studies. The union of multiple metabolic networks for multiple organisms is 
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expected to affect topology although common characteristics should remain. For 

example, the bow tie topology should still be detectable since some members should be 

able to use substrates that others cannot and produce products that others cannot. The 

degree distribution is still expected to show hubs of highly connected metabolites, 

although no assumptions are made for which distribution it matches and if the network is 

scale-free or hierarchal. Clustering is performed on the community network. Clusters 

have been shown in previous studies on the networks of single organisms to form based 

on shared biological function (i.e. grouping reactions by pathway). Hand-off points and 

clusters in the KB-1 network are identified. 

 

3.2  METHODS 
 
16S profiling of KB-1 provided a list of 13 taxa expected to be present in the 

metagenome. Since it is assumed that genes in KB-1 can come only from one of these 

taxa, the reference database was restricted to only contain the closest proxies to these taxa 

to reduce the number of incorrect assignments. All protein-coding sequences from all 

organisms belonging to each taxon in KB-1 were added to the database (Table 3.1). For 

example the organism identified in KB-1 as a member of the genus Dehalococcoides 

could be any of the 31 already described Dehalococcoides species or a novel one, so all 

sequences from all 31 species were used. Each KB-1 taxon therefore represents a set of 

reference organisms and a sequence assigned to any organism in a set is considered an 

assignment to its representative. The sequences were obtained from Genbank 

(http://www.ncbi.nlm.nih.gov/protein) in May 2012. Reference protein-coding sequences 

need to represent at least one complete genome per KB-1 taxon, since the contigs could 

contain any protein from the KB-1 genomes. If no complete genomes were available for a 

taxon, the rank of that taxon was increased until a complete genome was available (Table 

3.1 “Taxon representing reference set”). If two reference sets were merged and 

represented by a single taxon if they overlapped. The novel phylum OP5 would require 

including all species under the domain Bacteria which would overlap with seven other 

taxa, it was not included and OP5 sequences will be incorrectly assigned to other taxa. 

This is not expected to cause substantial errors as OP5 represents an estimated 1% of the 
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metagenome. In total ten taxa represent the sets of protein-coding sequences in the 

reference database. SPANNER was used to assign KB-1: the same KB-1 protein 

sequences predicted in Chapter 2 were compared using BLASTP against all sequences in 

the new reference database at an e-value threshold of 10-3, producing a set of KB-1 LCA 

Profiles. Reference sequences were compared (also with BLASTP at the same threshold) 

against each other to produce reference LCA Profiles. As in Chapter 2, only the highest 

(by bitscore) match to a given taxon was kept in an LCA Profile, matches with lesser 

bitscores to the same taxon were ignored. The KB-1 and reference LCA Profiles were 

compared (p=0.9, y=0.9) to produce rank-flexible assignments. 

 
Table 3.1 The 13 KB-1 taxa predicted using 16S profiling and the corresponding ten 

taxa used in the reduced reference database to represent each set of 
reference sequences. The rank of each representative taxon is given along 
with the number of complete genomes in each set. 

 

Taxon in KB-1 
Taxon 

representing 
reference set 

Representative 
taxon rank 

Number of 
complete 

genomes in 
set 

Dehalococcoides Dehalococcoides Genus 5 

Geobacter Geobacter Genus 10 

Methanomethylovorans Methanosarcinaceae Family 11 

Methanomicrobiales Methanomicrobiales Order 7 

Methanosarcina Merged with Methanosarcinaceae 

Methanosaeta Methanosaeta Genus 3 

Sporomusa Veillonellaceae Family 35 

Acetobacterium Eubacteriaceae Family 14 

Spirochaeta SA-8 Spirochaeta Genus 5 

Spirochaeta SA-8 2 Merged with Spirochaeta 

Syntrophus Syntrophus Genus 2 

Chlorobi SJA-28 Chlorobi Phylum 14 

OP5 Not represented 
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Functional annotation of KB-1 genes used the results of the BLASTP comparison to the 

reduced reference database: For each KB-1 protein sequence the Refseq GI number (a 

unique database key for proteins in Genbank) of the best BLASTP match was converted 

into a gene id (another database key) using gene2accession, a mapping file provided by 

Genbank. Each gene id was then converted into Enzyme Commission (EC) numbers 

using the Genbank records for that gene. An EC number is a hierarchical designation 

representing different types of reactions [71]. A gene could have zero, one, or multiple 

EC numbers. Each EC number was converted into a set of reactions in the KEGG 

database and the substrates and products for each reaction were retrieved. Currency 

metabolites in the KB-1 network (Table 3.2; these metabolites were chosen from the 

relevant currency metabolites used in [42]) were filtered from the results. Ten metabolite-

centric networks, one for each of the ten representative taxa, were created as described in 

Chapter 1. Edges were labeled with the SPANNER taxonomic predictions. Edges 

assigned to a higher rank were included in any of the ten networks if any of the PMK 

matches that contributed to the classification were represented by the taxon for that 

network. For example, a sequence with PMK matches to Dehalococcoides (phylum 

Chloroflexi) and Geobacter (phylum Proteobacteria) above y=0.9 would be classified as 

Bacteria at the rank of domain. The edge(s) representing the sequence would be added to 

the Dehalococcoides and Geobacter networks, but not the other Bacteria networks. A 

KB-1 community network was created from the union of the ten member networks as 

described in section 3.1. The networks were visualized in Cytoscape [72] and analyzed 

with the Cytoscape plug-ins Network Analyzer [73] for topology metrics, BiNoM [74] 

for network component analysis, and the GLay [54] implementation in clusterMaker [76] 

for network clustering. Node degree distributions were analyzed and plotted using the 

netZ package [77] in R to test their fit to a power-law distribution model and to other 

models. Hand-off points were identified in the KB-1 network by searching for any 

metabolite that is a source of one taxon and is produced by a different taxon. 

 
 
 
 
 
 



 

 57

Table 3.2 The currency metabolites removed from the KB-1 metabolic network prior 
to analysis. 

 
 

  
 
Equations 2 and 3 were developed to quantify pathway and taxonomic cohesion in the 

network clusters generated by ClusterMaker. Equation 2 expresses the number of 

pathways in a cluster while Equation 3 expresses the number of taxa, both as a score from 

zero to one. Clusters with many pathways/taxa receive a lower cohesion score than 

clusters whose reactions all belong to a single pathway. The equations favour dominant 

pathways/taxa, for example in a cluster of two pathways and eight reactions, a higher 

cohesion score will be given if seven reactions belong to one pathway and one to the 

other than if the reactions are evenly split between the two pathways (four reactions 

each). In the equations p is the set of each pathway pi in a cluster, t is the set of each taxa 

ti in a cluster, e is the edges within a cluster, and count(pi) or count(ti) is the number of 

edges from pathway pi or taxon ti. 

 

Currency metabolites 
ADP 

ATP 

NAD 

NADP 

NADPH 

Phosphate 

H2O 

H+ 

Diphosphate 

Cytidine monophosphate 

CO2 

O2 
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(2)

 

  

(3)

 
 
3.3  RESULTS 
 
SPANNER assigned 85.9% of the KB-1 genes at the lowest possible rank for each clade 

and only 1.33% to cellular organisms (Figure 3.1). The taxonomic affinities (represented 

in the LCA Profile) of KB-1 genes assigned at higher ranks were not distinct enough for 

SPANNER to differentiate between clades. For example, 5.12% of the KB-1 genes were 

assigned as Firmicutes (the rank of phylum). SPANNER identified these were either 

Sporomusa or Acetobacterium but could not distinguish between them. All of the 13 

expected KB-1 taxa belong to two domains: Bacteria and Archaea. SPANNER assigned 

6.7% of the genes to the domain Bacteria, suggesting there were only enough differences 

in the LCA Profiles of those genes to determine they were not Archaea. 



  
59

 
 Figure 3.1 
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Figure 3.2 
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The KB-1 metabolic network consists of 1065 metabolites (nodes) and 2259 reactions 

(edges) in 148 connected components (Figure 3.2). Edges in Figure 3.2 are coloured 

based on the taxa assigned to them. Since protein sequences from different taxa could 

have the same function a colour scheme was chosen to visualize reactions that multiple 

taxa can perform (see figure legend). 

 

One of the network components is the PCE degradation pathway in Figure 1.1, however 

the final “VC reductive dehalogenase” reaction was not identified. All of the reactions 

were correctly assigned to Dehalococcoides, although Geobacter is known to encode 

proteins for the first two reactions [62] but these were not identified. This highlights the 

possibility of erroneous taxonomic assignments and functional annotations, as well as 

incomplete sequencing of KB-1. To estimate incomplete sequencing, all known genome 

sizes of the taxa in the reduced reference database were averaged to estimate the sizes of 

each KB-1 genome (OP5 was assumed to be the average of the other KB-1 genome 

sizes). At 28.5 M the KB-1 metagenome is 74% of the estimated 38.69 M nucleotides. 

 

Table 3.3 compares the ten member networks with the KB-1 community network. The 

largest member network is Eubacteriaceae with 1075 edges. This network has a larger 

diameter than the KB-1 network, which shows the networks of other organisms would 

connect distant metabolites in Eubacteriaceae and create new shortest paths between 

them. The Syntrophus network has only 33 nodes and 36 edges, a strong indication of 

problems annotating its 619 assigned genes. The shortest path length distribution is for 

the KB-1 community network is shown in Figure 3.3. 
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Figure 3.3 KB-1 metabolic network path length distribution. 
 
In the KB-1 community network, the largest connected component contains 679 nodes 

and 1841 edges, the remaining 147 connected components contained 13 or fewer nodes. 

Focusing on the largest connected component, ten strongly connected components were 

found. Similar to the results of [43] one strong connected component was much larger 

(562 nodes) than the others (5 or fewer nodes), this component is referred to as the “giant 

strong component” (GSC). Sources and sinks were identified in the largest connected 

component, 52 and 50 were found respectively. By definition of strongly connected 

component none of the sources or sinks are part of the GSC. Besides the GSC, [43] 

characterized three other structures that form a bow-tie topology: The “substrates subset” 

includes all sources and carrier metabolites entering the GSC, 53 metabolites comprise 

this set. The “products subset” includes all carrier metabolites exiting the GSC and all 

sinks, 59 of these were found. The “isolated subset” is the set of nodes that are not in the 

other three bow-tie groups; 5 of these were found. The KB-1 metabolic network GSC is 

larger than any found by [43], who analyzed metabolic networks for 65 organisms and 

found each GSC was less than 300 nodes. Comparing relative sizes of the KB-1 subsets 

to the subsets [43] found in E. coli, the GSC in KB-1 is much larger (79% versus 34% in 
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E. coli), the substrate subset is smaller (8.5% versus 11% in E. coli), the product subset is 

smaller (8.5% versus 20%), and the isolated subset is smaller (3% versus 35%). Previous 

studies have suggested the GSC includes the most important pathways of an organism 

[43]. The KB-1 GSC has similar functional pathway groups as Zhao et al. [78] and Ding 

et al. [79] found in E. coli and B. thuringiensis, such as Carbohydrate Metabolism, 

Amino Acid Metabolism, Nucleotide Metabolism, and Energy Metabolism. Pathways 

involved in DNA Translation were only found in the product subset and GSC. The 

pathway groups Biosynthesis of Other Secondary Metabolites, Xenobiotics 

Biodegradation and Metabolism, and Glycan Biosynthesis and Metabolism were only 

found in the GSC. The isolated subset contained a reaction from the pathway Methane 

metabolism assigned to Dehalococcoides, and pathways Glutathione metabolism, 

Porphyrin and chlorophyll metabolism, Selenoamino acid metabolism, and 

Glycerophospholipid metabolism, mostly assigned to Archaea. 

 

The GSC of each KB-1 member network was contained in the community network GSC. 

The union of multiple member networks increased the connectivity of nodes in each 

member’s substrate, product, and isolated subsets potentially adding them to the 

community GSC. For example, since the GSCs of each member are part of the 

community GSC, any metabolite in the product subset of one member and the substrate 

subset of another are both produced and consumed by the GSC in the community 

network and therefore are a part of it. While the exclusion of the 148 smaller connected 

components could explain the disproportionately small sizes of the substrate, product, 

and isolated subsets, the KB-1 GSC would still be comparatively larger than in E. coli 

(51% of the KB-1 network if all connected components were included). 

 

The average clustering coefficient for the KB-1 network is 0.055, substantially less than 

previously reported for the bacterium E. coli at 0.48 and other microbial networks with 

similar values [43]. Three of the ten member networks had an average clustering 

coefficient of zero (Chlorobi, Methanomicrobiales, and Syntrophus), the remainder 

ranged from 0.005 (Spirochaeta) to 0.1 (Dehalococcoides) with a mean of 0.039. The 

low clustering is likely due to missing edges from absent annotations, however the 
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metabolism of a microbial community does have higher clustering due to members 

increasing each other’s connectivity. Figure 3.4 shows the KB-1 average clustering 

coefficient for nodes by degree on a log-log plot with a straight line of fit. The average 

clustering coefficient C(k) scales with k-1 showing that as the number of neighbours for a 

node increases the connections between that node’s neighbours decreases, implying the 

network topology has a hierarchical structure. 

 

 
Figure 3.4 Distribution of the average clustering coefficient categorized by the number 

of neighbours for the KB-1 metabolic network (black). The straight line on 
this log-log plot is an indicator of a hierarchical structure in the network. 
The average clustering coefficients for seven other member networks are 
shown. 

 
The in-degree and out-degree distributions for the community network are shown in 

Figure 3.5, along with the trend lines for the distributions of the ten member networks. 

These distributions are an indicator of network topology: The number of nodes decreases 

with increasing degree and a straight line of fit on a log-log scale suggests the distribution 
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follows a power law, this would indicate the network topology is scale-free in addition to 

being hierarchical. The ten member networks follow a similar slope as the community 

network but with fewer nodes and lower degree. 

 

 
Figure 3.5 The in-degree and out-degree distributions of the KB-1 metabolic network 

shown on a log-log plot. The straight trend line suggests the data follows a 
power law distribution and the network has a scale free topology. The trend 
lines for the metabolic networks for each of the ten different taxa predicted 
in KB-1 are also shown for comparison. 

 
To test if another model better fits the degree distribution, the netZ R package was used 

to calculate the maximum likelihood of five model distributions: power law, stretched 

exponential, Poisson, exponential, and log-normal; the results are in Table 3.4. netZ was 

then used to apply the Akaike-information criterion (AIC) to each likelihood to determine 

the best model. AIC chooses the model that best fits the distribution while favouring 

models with fewer parameters [52]. The AIC tests show the log-normal model best fits 

the data. Exponential and stretched-exponential distributions fit the KB-1 degree 
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distribution better than the power law. The ten member networks also best fit a 

log-normal distribution. 

 
Table 3.4 Each model the KB-1 network degree distribution was fitted to, the 

maximum likelihood of the fit, and the Akaike weights generated by the 
netZ R package [77]. The AIC test uses the maximum likelihoods to choose 
a model that best fits the degree distribution (in this case log normal). 

 
Model Likelihood log(Akaike Weight) 

Power law -1743.438 -152.30 

Stretched Exponential -1603.598 -13.46 

Poisson -1759.513 -168.38 

Exponential -1605.915 -14.78 

Log normal -1590.136 -1.80 
 

The hierarchical topology of the KB-1 network was assessed using GLay to see if 

community structures within the hierarchy correlate to taxonomy or biological function. 

Previous studies on single-organism networks have shown that networks cluster by 

related biological function, identifying pathways [78; 79] and suggesting that metabolites 

within a pathway have a higher connectivity to each other than to metabolites in other 

pathways. GLay is a software package that decomposes a network into clusters based on 

shortest path edge betweenness removal, where at each iteration the edge involved in the 

greatest number of shortest paths is removed; this is repeated until a modularity score is 

maximized [53]. This identified 20 clusters. The reactions in each cluster were mapped to 

the pathway(s) they belong to. Each cluster contained between one and four dominant 

pathways that covered most reactions, the remaining reactions belonging to other 

pathways. The clusters occasionally showed preference for a particular taxonomic group, 

such as a mostly Firmicutes cluster containing pathways “Folate biosynthesis” and 

“Valine, leucine and isoleucine biosynthesis,” however some clusters were represented 

by a scattered collection of taxa. A cluster containing multiple taxa contained within it a 

subcluster of Archaeal reactions also from the “Folate biosynthesis” pathway. GLay 

splitting the same pathway into two clusters based on taxonomy suggests that the network 

hierarchy is driven by both pathway and taxonomy together. The pathways within some 



 

 68

clusters did not show this taxonomic cohesion. Table 3.5 shows the pathway and 

taxonomic cohesion for the 20 KB-1 clusters. Nine of the 20 clusters are more related by 

taxonomy than by pathway. Clusters 8 and 9 were described above: Cluster 8 contains the 

Folate biosynthesis and Valine, leucine and isoleucine biosynthesis pathways assigned 

mostly to Firmicutes and Cluster 9 contains mostly Folate biosynthesis reactions assigned 

to Archaea. The Folate biosynthesis reactions of each taxonomic group created more 

connectivity to other pathways in the same taxonomy than to each other, even though 

they are two versions of the same pathway. Cohesion therefore identifies a lack of Folate 

biosynthesis interconnectivity between the two taxa and may serve as an indicator of 

pathway interaction. Pathways in Table 3.5 are also summarized by a higher level 

category provided by the KEGG database (Pathway Group Cohesion) that groups related 

pathways. Clusters containing multiple pathways from the same group will have high 

pathway cohesion but low pathway group cohesion. Some clusters, such as 12, have less 

pathway cohesion than taxonomic cohesion, however grouping pathways into common 

categories increases pathway cohesion above taxonomy. These clusters suggest that while 

taxonomic  connectivity can be greater than pathway connectivity, the connected 

metabolites may be still be related by a higher level of biological function. 
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Table 3.5 
The 20 clusters identified by G

Lay and their pathw
ay and taxonom

ic cohesion as m
easured by Equations 2 and 3. 
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1 
0.156 

0.209 
0.405 

92 
2 

0.450 
0.473 

0.264 
42 

3 
0.122 

0.296 
0.245 

97 
4 

0.142 
0.271 

0.192 
187 

5 
0.291 

0.672 
0.611 

9 
6 

0.136 
0.288 

0.287 
124 

7 
0.319 

0.499 
0.262 

175 
8 

0.213 
0.304 

0.607 
53 

9 
0.293 

0.422 
0.767 

71 
10 

0.325 
0.490 

0.510 
26 

11 
0.111 

0.180 
0.267 

127 
12 

0.110 
0.372 

0.369 
233 

13 
0.152 

0.243 
0.264 

66 
14 

0.221 
0.314 

0.466 
31 

15 
0.217 

0.359 
0.380 

19 
16 

0.126 
0.286 

0.289 
132 

17 
0.148 

0.281 
0.326 

61 
18 

0.310 
0.493 

0.324 
37 

19 
0.523 

0.608 
0.241 

18 
20 

0.207 
0.380 

0.251 
19 
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A total of 69 hand-off points using 53 different metabolites were detected in the KB-1 

network. False positives were eliminated from this list: The protein-coding sequence for 

all reactions producing the handoff point were retrieved from KEGG and compared to 

KB-1 using TBLASTN (a variant of BLAST). The BLAST bitscores of matches to 

KEGG were compared to the BLAST bitscore that lead to the original functional 

annotation for that KB-1 gene; if the KEGG-matching bitscore was equal or greater the 

gene function was re-assigned to that of the KEGG protein. This re-assignment meant the 

KB-1 protein now produces a hand-off point metabolite; if the SPANNER assignment for 

that gene was the same taxon that received the hand-off point, the hand-off point was 

considered a false positive. This reduced the set to 30 hand-off points using 18 different 

metabolites, shown in Table 3.6. None of these metabolites are used in the cobalamin 

synthesis or methionine pathways (where it is suspected Dehalococcoides receives hand-

offs) and no hand-off points were found with Dehalococcoides as the recipient. 

 

Table 3.6 Hand-off points in the KB-1 community network not ruled out as false 
positives. 

 
Hand-off point Recipient taxon 

3'-AMP Firmicutes 

3'-UMP Firmicutes 

4-Aminobutanoate Methanomicrobia 

beta-Alanine Methanomicrobia 

Cytidine 3'-phosphate Firmicutes 

D-Mannitol 1-phosphate Firmicutes 

Deoxyuridine Methanomicrobia 

Folinic acid Firmicutes 

Glycerophosphocholine Firmicutes 

Glycerophosphoethanolamine Firmicutes 

Guanosine 3'-phosphate Firmicutes 

L-Histidine Chlorobi 

Manninotriose Firmicutes 

Melibiose Firmicutes 
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Hand-off point Recipient taxon 
N-Acetyl-D-glucosamine 6-phosphate Firmicutes 

Selenite Chlorobi 

Trehalose 6-phosphate Firmicutes 

XTP Methanomicrobia 
 

To determine if hand-off point detection failed due to inaccurate functional annotation, 

the cobalamin pathway was reconstructed as a metabolic network. All genes for all 

cobalamin reactions identified in KB-1 by [62] were retrieved from KEGG and compared 

to the KB-1 metagenome using TBLASTN. A matched subsection of a KB-1 contig was 

annotated with the function of the KEGG gene if it matched at least 70% of the 

nucleotides. If multiple matches overlapped on a contig, the match with the highest 

bitscore was used. The same SPANNER taxonomic classifications as before were used. 

This targeted search for the cobalamin pathway found 44 reactions (shown as thick 

arrows in Figure 3.6); the initial functional annotation only found 18. The three 

cobalamin hand-off points suggested by Hug et al. [62] allow Dehalococcoides to 

synthesize Adenosylcobalamin from three precursors produced by other organisms and 

transported into the Dehalococcoides cell; the transport of these precursors are labeled in 

Figure 3.6 as A, B, and C. The targeted annotation of the cobalamin pathway identified 

hand-off points A and B, however C was not identified as a hand-off point because no 

reaction from Cob(I)alamin to Adenosylcobalamin was assigned to Dehalococcoides. 

 

 

 

 

 

 

Figure 3.6 The cobalamin pathway, ending with the synthesis of Adenosylcobalamin 
(shown in yellow). The coloured edges are taxon-labeled reactions 
suggested by [62] to be in KB-1, these edges are thick if the were identified 
in the TBLASTN analysis described above. A, B, and C are known 
Dehalococcoides transporters. 
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3.4  CONCLUSION 
 
The KB-1 community network follows a similar structure to metabolic networks of 

microorganisms described previously. The KB-1 network retains the bow tie topology 

albeit with a larger GSC and smaller substrate and product subsets and an almost 

nonexistent isolated subset. This is due to the merger of all members’ GSCs which 

connect via the hub metabolites that each member has in common; this increased pool of 

strongly connected metabolites increases the chances that members of an individual 

member’s substrate, product, or isolated subsets will be added to the community GSC. 

The GSC represents core metabolism in the network of a single organism [43]; in a 

community network the larger GSC represents every member’s core metabolism as well 

as all metabolites produced by one member’s core metabolism and consumed by 

another’s. The dominant pathways found in the KB-1 GSC were similar to those found in 

previous studies [78; 79]. The increased size of the GSC demonstrates that if community 

members shared all metabolites via hand-off points they would have access to a far wider 

variety of substrates. 

 

Many metabolic networks that were first shown to be scale-free (via a power law degree 

distribution and hypothesized to be generated by preferential attachment) have since been 

shown to follow a Yule or log-normal distribution. The KB-1 metabolic network agrees 

with this finding and shows the need to rigorously identify the correct model of a 

distribution. Unfortunately no evolutionary models have yet been described that produce 

a log-normal distribution, although models such as Big Bang [50] offer an alternative to 

preferential attachment. Joining the networks of multiple organisms increases the degree 

but does not change the overall distribution. Clusters can still be detected within a 

metagenomic metabolic network, which largely correlate with biological function and to 

a lesser degree taxonomy. Further work is required to understand why some clusters are 

based on pathway and taxonomy, some on pathway only, and some on taxonomy only. 

  

While a community-wide metabolic model can give insights to the role each member 

plays in metabolism, detecting details like hand-off points requires sequencing with good 

coverage, accurate taxonomic assignments, and accurate functional annotations. The 
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annotations of the KB-1 network failed to reconstruct member networks of sufficient size 

and detail, from these hand-off points could be detected but showed no relevance to 

known KB-1 interactions. Annotating function by searching the metagenome for 

homologs of genes in a specific pathway is more likely to identify putative reactions; a 

search for the cobalamin pathway allowed a better network reconstruction than a search 

using a broad database like Genbank. With improved pathway reconstruction expected 

hand-off points were detected. 
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CHAPTER 4 CONCLUSIONS 

 
4.1  COMMUNITY ANALYSIS THROUGH METAGENOMICS 
 
This thesis describes common techniques and presents new approaches for 

metagenomics, the exploratory analysis of environmental samples of microorganisms 

through DNA sequencing. This analysis typically involves taxonomic classification to 

determine the constituent taxa of the sample and functional annotation to describe the 

chemical reactions of the proteins the metagenome encodes. Each member’s metabolism 

can be reconstructed as a network of metabolites and the reactions that process them. The 

KB-1 metagenome demonstrates the practical applications of this analysis: this work 

attempts to identify its bioremediation pathway, which taxa perform key bioremediation 

reactions, and the taxonomic dependencies of these community members. 

 

4.1.1 Taxonomic Classification 
 

Rank-flexible classification estimates the taxonomic novelty of a sequence, since a 

sequence can only be correctly assigned to ranks above its level of novelty; ranks at and 

below this level are not present in the reference database and assignment to these ranks 

will be incorrect. Rank-specific classification does not estimate novelty and tends to be 

over-specific, having high precision and many incorrect assignments. LCA tends to be 

under-specific, having low precision and few incorrect assignments by defining novelty 

as the lowest common ancestor of all taxonomies that show strong affinity to the query. 

 

In Chapter 2 the algorithm SPANNER was proposed that uses these affinities (the “LCA 

Profile”) as a single unit in comparisons to estimate novelty and assign taxonomy. 

SPANNER uses a “global” approach to taxonomic affinities by comparing each query 

LCA Profile against all reference Profiles. This allows SPANNER to assign a query to a 

taxon not actually present in the LCA Profile of a query. The classifiers described in 

Chapter 1 use a “local” approach to affinity, comparing the affinities in a LCA Profile to 
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one another. This limits query assignment to only one of the taxa contained within the 

LCA Profile. 

 

Genes from closely related genomes are expected to have greater similarity in their LCA 

Profiles enabling classification using Profile similarity. Events such as LGT between 

distant organisms would push classification using LCA to higher ranks, however multiple 

events to the same genome would create a detectable pattern in those LCA Profiles. If 

this pattern is greater than the natural differences between LCA Profiles on a genome that 

arise due to mutation, SPANNER will detect it and make an assignment using more 

information than just the LCA Profile’s contents, as other classifiers do. By not relying 

on the taxa within a LCA Profile to make an assignment, SPANNER can classify a query 

to a genome that is not part of its LCA Profile, an impossibility for the other classifiers. 

The PMK is a suitable measure for the similarity between two LCA Profiles, comparing 

them on their two dimensions: taxonomy and strength. By evaluating the similarity at 

decreasing levels of granularity the PMK is robust to minor dissimilarities between two 

otherwise similar LCA Profiles and naturally accommodates the hierarchical nature of 

taxonomic data. 

 

4.1.2 Metabolic Networks 
 

Combining taxonomic classifications and functional annotation allows the reconstruction 

of metabolic networks for each member and describes their metabolism: what chemicals 

a taxon processes and in what order. Network topology has been used to describe the 

robustness and high connectivity of metabolism [40]. Topology also guides theories of 

metabolic network evolution; evolutionary models have been proposed that recreate the 

observed topologies [49-51]. Nutritional requirements have been described via the “seed 

set” of a network, which is the set of substrates an organism cannot produce itself and 

must acquire from the environment [61]. 

 

A common approach to describing a metagenome is comparative analysis of the 

organisms it represents. The topologies of metabolic networks have been compared in 
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previous studies, finding attributes common to all microorganisms such as scale-freeness 

and a hierarchical modularity that forms clusters correlating to biological function [43]. If 

a metagenome represents an interacting community of microbes these interactions should 

be detectable in the reconstructed networks. Comparing the seed set of one organism to 

the products of another identifies possible hand-off points in which one organism 

provides nutrients to another; prior work showed a correlation between the seed set of 

parasitic microbes and the metabolic production of the hosts they feed off [61]. 

 

In Chapter 3 a method for reconstructing a metabolic network that represents an entire 

microbial community was proposed. This network is constructed by combining the 

metabolic networks of each member. This network allows topological comparisons of the 

community to each individual member, since the networks constructed for each member 

exclude community interactions, therefore representing it in isolation. Edges in the 

community network can be labeled with the taxon capable of performing that reaction, 

from this putative hand-off points between community members can be identified. 

 

4.2  SUMMARY OF RESULTS AND CONCLUSIONS 
 

The results of Chapter 2 show SPANNER spans the precision and incorrect ranks of LCA 

and best BLAST. SPANNER classified more KB-1 genes to the rank of genus than LCA. 

At this rank SPANNER assigned more genes to the 13 expected taxa than did LCA, 

however SPANNER had many more assignments than LCA to unexpected taxa. An 

increase in the number of incorrect assignments is a trade off for increased precision; the 

rank-specific classifier best BLAST has maximal precision but assigned the most genes 

(63%) to unexpected taxa (taxa other than the 13 expected in KB-1). Many of these 

unexpected taxa assignments were correct at higher ranks, highlighting the advantage of 

rank-flexible classifiers to choose the appropriate rank for each gene sequence. This is 

shown in the pseudometagenome where at the highest values for p and y SPANNER 

outperforms best BLAST: SPANNER chose higher ranks than best BLAST to classify 

some proteins which resulted in an overall decrease in incorrectly assigned ranks, and this 

was greater than the decrease in precision caused by choosing those higher ranks. 
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The accuracy of classifying a sequence depends on its taxonomic novelty. The most 

precise rank possible for an assignment is the rank above the novel rank; assignments to 

more precise ranks will be incorrect. On average SPANNER assignments reached this 

maximally precise rank in some organisms (Dehalococcoides, Chlorobaculum), while 

others averaged assignments two (Geobacter, Methanoregula) or three (Veillonella, 

Moorella) ranks above their maximal rank. Leave-one-out analysis shows that 

SPANNER spans LCA and best BLAST at all levels of taxonomic novelty, based on the 

parameters p and y. The optimal parameter settings for a metagenome are determined by 

the expected novelty of the query sequences. For example metagenomes with high 

novelty have no close relative in the reference database, this prevents accurate 

classification at lower ranks and low values for p and y should be used for conservative 

assignments. Metagenomes who have close relatives in the reference database are best 

classified at high values of p and y. 

 

Chapter 3 reconstructs ten metabolic networks and a community network representing 

KB-1. The degree distribution and clustering coefficient distribution of the community 

network resembles other microbial networks from previous studies: The network is 

hierarchical and a goodness of fit test shows it is not scale-free; this is also seen in the ten 

member networks and networks from previous studies [52]. Previous studies have 

assumed network topology is an indication of the evolutionary forces acting on an 

organism, and while no evolutionary model has been described that generates networks 

with these distributions, the similar topology seen in the interacting community could 

mean the forces acting on it are similar. In previous studies organism networks form 

clusters based on biological function [54]. The community network forms clusters based 

on biological function or taxonomy, or a combination of the two. 

 

Chapter 3 also proposes a method to detect hand-off points. While putative hand-off 

points were detected many were identified as false positives and the remainder did not 

correspond to any suspected KB-1 interaction. This was due to poor functional 

assignments which resulted in incomplete organism networks and missing reactions. 
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Targeted searching for the cobalamin pathway in the metagenome did find enough 

reactions to identify some hand-off points that were suggested previously [62], showing 

that with sufficient functional annotations community metabolic interactions can be 

detected. 

 

4.3  FUTURE WORK 
 

4.3.1 Taxonomic Classification 
 

The use of LCA Profiles and their additional comparison step in SPANNER could be 

integrated into other rank-flexible classification algorithms. SOrt-ITEMS uses a 

reciprocal BLAST of the best BLAST sequence against the query and the remaining LCA 

Profile sequences. The lowest common ancestor is taken of all sequences with a stronger 

homology match than the query. SPANNER could be extended by SOrt-ITEMS by 

defining LCA Profiles as all reciprocal BLAST matches with a stronger homology match 

than the query. These LCA Profiles would then be used in the SPANNER algorithm. 

Both CARMA3 and SOrt-ITEMS could use taxonomic affinity (instead of homology) to 

make assignments by using LCA Profiles compared using the PMK instead of sequences 

compared using BLAST. The structure of these algorithms would otherwise be the same 

and this would eliminate the parameter y from SPANNER. SPANNER has shown that 

assignments using taxonomic affinity are more tolerant to events such as LGT and it 

should be tested if this improvement applies to other rank-flexible classifiers. 

 

4.3.2 Metabolic Networks 
 

The KB-1 topology showed similar degree and clustering coefficient distributions to the 

networks of each KB-1 member and networks from prior studies [43]. The objective was 

to show whether the interactions and dependencies within a community integrate the 

community’s metabolism enough that evolution will treat it as a single organism or treat 

the member organisms differently. Such inferences were limited due to the incomplete 
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reconstruction of each member’s network. The networks of communities known to 

interact should be compared to pseudo-communities of randomly chosen microbes to 

determine if topology correlates to interaction, and evolutionary models that produce the 

observed topology need to be described. The observed differences between the KB-1 

community network and organism networks from previous studies, such as the larger 

GSC and reduced isolated subset, should provide a basis for comparing communities 

against other community networks as well as networks for individual organisms. 

 

Metabolic networks are naturally hypergraphs, where hyperedges of multiple substrates 

connect multiple products. Metabolic networks have been built using hypergraphs but the 

appropriate definitions of properties such as shortest path and clustering coefficient are 

the subject of debate [80]. Zhou and Nakhleh [80] analyzed different versions of the same 

network using the proposed hypergraph definitions. They found that different definitions 

produce different degree and clustering coefficient distributions, and that these 

distributions are different between multigraphs and hypergraphs of the same network, 

making them products of graph representation and casting doubt their ability to describe 

fundamental metabolic evolution attributes. Before claims can be made on the evolution 

of a metabolic network, work is needed to develop a suitable network representation. 

 

The composition of community network clusters could provide insights into the 

differences and connectivity of pathways between members and needs further analysis. 

Single organism networks tend to cluster based on related biological function; in 

community networks clusters are based on related function, taxonomy, or a combination 

of the two. Many pathways are found in more than one organism in the community; it is 

possible that different versions of the same pathway will exist as each organism 

implements the pathway through a different set of reactions. The composition of a cluster 

measures pathway redundancy or complementarity between organisms: Versions of the 

same pathway in different organisms are redundant if their reactions use the same 

substrate and product (they “overlap” in the community network forming multi-edges) 

and are complementary if they have a high degree of interconnectivity (each reaction uses 

different substrates and products but the same substrates and products are found in each 
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version; each version increasing connectivity within the pathway). Both redundancy and 

complementarity increase the likelihood versions from different organisms will be 

clustered together, causing high pathway cohesion. If however a pathway’s connectivity 

to other pathways from the same organism is greater than the connectivity to versions of 

the same pathway from other organisms, pathways will cluster based on taxonomy and 

have high taxonomic cohesion. This measure of pathway redundancy/synergy between 

organisms should be explored. 

 

The reconstructed networks for each KB-1 member suffered from incomplete functional 

annotations. This weakened the confidence in the analysis performed in Chapter 3, 

although expected topological features were still detected. The process of annotating 

function using best BLAST is error-prone and needs development. Hand-off point 

interactions between community members were detected although on further inspection 

many were ruled out as false positives and none of the remaining hand-off points were 

those suggested in KB-1 by previous work. By definition a hand-off point could be 

erroneously detected for any missing reaction, whether due to poor sequencing coverage 

or incorrect annotations: if a single reaction is missing in an otherwise complete pathway 

it will be indentified as a hand-off point. Methods have been published that 

parsimoniously identify unannotated reactions by searching for “gaps” in pathways [81]; 

this approach could potentially decrease the misidentification rate without requiring 

improvements to functional annotation. 

 

In a similar fashion to how the reduced reference database improved SPANNER results, 

identifying function using a reduced reference database (e.g. the cobalamin pathway in 

Chapter 3) improves the chance of finding homologous reactions. This could be because 

there are many similar sequences in Genbank that confuse annotation. More complete 

reference annotation databases would help correct this problem, although annotation 

methods beyond the standard “best BLAST” are needed for reliable hand-off point 

detection. Hug et al. [62] used the online analysis pipeline MG-RAST [82] to annotate 

KB-1. MG-RAST annotates metagenomes by identifying subsystems (manually curated 

sets of related biological function, i.e. a pathway) likely to be found in the metagenome, 
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this guides construction of a taxonomically reduced reference database. All subsystems 

known to exist in the genomes in this reduced database are searched for to annotate the 

metagenome, any remaining unannotated protein sequences are searched against all 

subsystems from all reference genomes. This subsystem approach to annotation would 

provide better functional assignments and reduce the number of false positive hand-off 

points. 

 

Hand-off point identification has the assumption that any organism’s products can be 

released from its cell into the environment and acquired by another organism. False 

positive hand-off points could be filtered with membrane permeability information and 

identifying transporters in the metagenome, since a hand-off point must be acquired by a 

cell any metabolites that are not permeable or transported are unlikely candidates. 
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