
Illusion SDK: An Augmented Reality Engine for Flash 11

by

Joseph Howse

Submitted in partial fulfilment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

November 2012

© Copyright by Joseph Howse, 2012

ii

DALHOUSIE UNIVERSITY

FACULTY OF COMPUTER SCIENCE

The undersigned hereby certify that they have read and recommend to the Faculty of

Graduate Studies for acceptance a thesis entitled “Illusion SDK: An Augmented Reality

Engine for Flash 11” by Joseph Howse in partial fulfilment of the requirements for the

degree of Master of Computer Science.

Dated: November 20, 2012

Supervisor:

Readers:

iii

DALHOUSIE UNIVERSITY

DATE: November 20, 2012

AUTHOR: Joseph Howse

TITLE: Illusion SDK: An Augmented Reality Engine for Flash 11

DEPARTMENT OR SCHOOL: Faculty of Computer Science

DEGREE: MCSc CONVOCATION: May YEAR: 2013

Permission is herewith granted to Dalhousie University to circulate and to have copied
for non-commercial purposes, at its discretion, the above title upon the request of
individuals or institutions. I understand that my thesis will be electronically available to
the public.

The author reserves other publication rights, and neither the thesis nor extensive extracts
from it may be printed or otherwise reproduced without the author’s written permission.

The author attests that permission has been obtained for the use of any copyrighted
material appearing in the thesis (other than the brief excerpts requiring only proper
acknowledgement in scholarly writing), and that all such use is clearly acknowledged.

Signature of Author

iv

For the inspirational Dr. L. S. River, and Nummists everywhere.

Visit http://nummist.com/.

v

Table of Contents

List of Tables viii

List of Figures ix

Abstract x

List of Abbreviations Used xi

Acknowledgements xiii

Chapter 1: Introduction 1

Chapter 2: Background 6

2.1: Problems in Web AR 6

2.2: Vision, Space, and Colorspace 8

2.3: Augmented Reality 11

2.3.1: Origins and Examples 11

2.3.2: Techniques 20

2.3.3: Frameworks 28

2.4: Ubiquity 34

2.4.1: A Conflicted Concept 34

2.4.2: Relevance to an AR Framework 40

2.5: Efficiency 43

2.5.1: Factors 43

2.5.2: Measurement Techniques 50

2.6: Web Platforms 53

2.6.1: System Access 53

2.6.2: Adoption 58

2.6.3: Performance 60

2.6.4: Focus on Flash 60

Chapter 3: Exploratory Work 69

3.1: At Ad-Dispatch 70

 vi

3.1.1: Objectives and Problems 70

3.1.2: Approaches and Outcomes 73

3.2: Refinements 75

Chapter 4: Design and Contribution 86

4.1: AR Functionality 88

4.1.1: Centralizing Access to Sensor Data 92

4.1.2: Compositing 2D and 3D Scenes 97

4.1.3: Tracking Markers 102

4.2: Full Example Application 111

4.3: Comparison to Other Designs 119

Chapter 5: Evaluation 122

5.1: Questions 122

5.2: Methodology 125

5.2.1: Dependencies and Platforms 125

5.2.2: Application and Parameters 127

5.2.3: Sampling 136

5.3: Observations 136

5.3.1: Frame Lag 136

5.3.2: CPU Time Breakdown 137

5.3.3: Overall Performance 139

5.4: Analysis 141

Chapter 6: Discussion 146

6.1: Ubiquity 146

6.2: Efficiency 147

6.3 Conclusion 148

6.4: Future Work 149

Appendix A: Availability and Licensing 152

vii

Appendix B: Non-AR Functionality 154

B.1: Loading Binary or Text Files 154

B.2: Loading 3D Model Files 157

B.3: Creating Lighting Setups 162

B.4: Miscellaneous Static Functions 164

Bibliography 167

 viii

List of Tables

Table Series 1: Data Rates, FPS, and Transfer Time 46

Table 1A: Data Rates of Uncompressed Video 46

Table 1B: FPS and Latency of Uncompressed Video on
Peripheral Buses 47

Table 2: Browser Support for WebGL 53

Table 3: Plugin-based Web Platforms that Support Camera Access
and Multiprocessing 55

Table 4: Market Penetration of Selected Plugins 59

Table 5: Timeline of Recent Flash and AIR Versions 61

Table Series 6: Performance of FlareNFTAlternativa3D 81

Table 6A: Vienna Marker, 0 Virtual Buttons 81

Table 6B: Austria Marker, 1 Virtual Button 82

Table 6C: Graz Marker, 2 Virtual Buttons 83

Table 7: Test Machines 126

Table Series 8: Time Costs per Frame, MinimalProfiler 138

Table 8A: 1 Tracker, 1 Marker Pool, Varying Machine,
Varying Category of Cost 138

Table 8B: MacBook Pro 13" Mid-2010, Cost of Illusion
Functions Only, Varying Number of Marker Pools,
Varying Number of Trackers 139

Table 9: Total Time Cost per Frame of ApplesAndGoblets while
Tracking 1 Natural Feature Marker and Rendering 1
Spinning Apple 140

 ix

List of Figures

Figure 1: An Example of AR 2

Figure 2: KarTrak Barcode 13

Figure 3: Reflex Gunsights 14

Figure Series 4: AR Compared to Ancient Art 18

Figure 4A: AR Compared to Trompe-l’oeil Murals 18

Figure 4B: AR Compared to Automata 19

Figure Series 5: Unconventional Image Types 22

Figure 5A: Depth Image 22

Figure 5B: Time-differenced Image 23

Figure 5C: Long-exposure Image 24

Figure 6: Square Markers and Frame Markers 25

Figure 7: Depth Sorting: Per-pixel v. Per-triangle 65

Figure 8: Ordering of Stages in Flash 11 67

Figure Series 9: Overview of Illusion SDK 89

Figure 9A: Design of AR-related Classes and Interfaces 89

Figure 9B: Example of AR-related Data Flow 90

Figure 10: Design of AbstractSensor and Related Types 95

Figure 11: Design of ARViewportUsingStage 98

Figure 12: Design of ARViewportUsingStageVideo 100

Figure 13: Design of FlareBarcodeTracker and Related Types 105

Figure 14: Design of FlareNaturalFeatureTracker and Related
Types 108

Figure 15: A Test for Frame Lag or its Absence 135

x

Abstract

Augmented reality (AR) software attempts to track real-world objects

while creating the illusion that virtual objects exist in real space. To be

convincing and relevant, AR software must be responsive—thus,

efficient—and available ubiquitously wherever the tracked object is used.

Difficulties arise because ubiquity demands a general, extensible model of

the platform, while efficiency demands tailoring to a particular set of

resources.

This thesis presents Illusion SDK: a general, extensible framework for

AR. Illusion provides loosely coupled or decoupled abstractions of

sensors, trackers, and compositors. Implementations are optimized for

particular use cases. Illusion’s architecture depends on only an event

system and a 3D scene graph, so it is highly portable. Wrapping of third-

party trackers is supported.

Illusion’s current implementation targets Flash 11.4 and integrates with

the Alternativa3D 8 graphics engine. To our knowledge, Illusion’s

support for wrapping third-party trackers is unique among toolkits

targeting the GPU-accelerated Web. Illusion performs well on MacBook

Pro 13" mid-2010, where an intensive camera application can exceed 45

FPS. Generally, Illusion should perform well on hardware that uses

shared video memory. Optimizations are needed for hardware that uses

dedicated video memory. These optimizations are problematic in Flash

11.4 but should not generally be problematic in ports to other platforms.

xi

List of Abbreviations Used

AGAL Adobe Graphics Assembly Language

AIR Adobe Integrated Runtime

API application programming interface

AS3 ActionScript 3.0

AR augmented reality

AV augmented virtuality

AugCog augmented cognition

CPU central processing unit

CUDA Compute Unified Device Architecture

CV computer vision

DVI Digital Visual Interface

FPS frames per second

GPU graphics processing unit

GUI graphical user interface

HD high-definition

HDMI High-Definition Multimedia Interface

HMD head-mounted display

HITLab Human Interface and Technology Lab [at the University of

Washington]

ICGV Institute for Computer Graphics and Vision [at the Graz

University of Technology]

I/O input/output

LSO local shared object

MR mixed reality

NFT natural feature tracking

PB3D Pixel Bender 3D

xii

QCAR Qualcomm Augmented Reality

QR Quick Response [Code]

RAM random access memory

RFID radio frequency identification

RGB red, green, blue

RTMFP Real-Time Media Flow Protocol

SDK software development kit

SIFT scale-invariant feature transform

SURF speeded-up robust features

UbiComp ubiquitous computing

UC ubiquitous computing

UML Unified Modeling Language

URL uniform resource locator

USB Universal Serial Bus

VRAM video random access memory

VS visual servoing

VVS virtual visual servoing

xiii

Acknowledgements

This thesis has been written at odd hours: late nights at home, lunch

breaks at work, weekend visits to friends, and while lying in an emergency

ward, where time stops. People around me have shown support and

kindness no matter how distracted I have been in return.

My thesis supervisor, Dr. Alex Brodsky, has been a constant source of

good advice on research methods, editing, software architecture,

optimization, and getting things done. My directed studies supervisor,

Dr. Derek Reilly, suggested many useful readings on AR. Derek and Dr.

Stephen Brooks, as my thesis readers, have given thoughtful editing

comments leading to this final version.

Bernhard Jung and Imagination Computer Services GmbH have

provided free licenses and support for flare*tracker and flare*nft

(tracking libraries that are wrapped by Illusion).

My managers and coworkers at the IWK Health Centre, Ad-Dispatch,

and MindSea Development have encouraged my research and provided

valuable training and experience. Nathan Kroll of Ad-Dispatch suggested

my research goal: an efficient, ubiquitous AR Web framework.

Many people have helped me when my health has been bad. Among

them are: the staff of the QEII Health Sciences Centre; the staff of the

Mayo Clinic in Jacksonville; Dr. Jack Graham; Mirna and Jim; and Sue

and Phil.

My friends in my role-playing group have given me time to forget

reality and to be a minotaur, seraph, cowboy, smuggler, or spy.

My longtime friend Paul has been a model of dedication, patience, and

hard work.

xiv

My friend Vika, a fellow thesis writer, has commiserated from the

other side of the globe.

My cats—Plasma, Sanibel, Lambda, and Josephine—have created

simplicity. Plasma and Sanibel kept vigil over the writing of this thesis

every night for a year. For my benefit, Plasma developed a time

management tool using her chew-toys. At the start of our worknight, she

would bring me a fish patterned with purple flowers. At the end, she

would bring me a cushion patterned with cow spots. She would stand

over it and sing a dirge until I followed her to bed.

My parents, Jan and Bob, have given me a life and many new leases on

it. Listening about thesis progress is only the smallest part of what they

have done.

The memory of my brother Sam, and of the cats and people he loved,

sustains me every day.

1

Chapter 1: Introduction

Mixed reality (MR) is an emerging medium that links arbitrary

physical objects to arbitrary software content in (nearly) real time. As a

blanket term, MR includes both augmented virtuality (AV), in which the

user experience focuses on virtual environments, and augmented reality

(AR), in which the user experience focuses on real environments.

Typically, in AR, the means of linking physical objects and software

content is computer vision (CV), such that the application receives event

data when physical objects appear, move, or disappear from the

perspective of the computer’s video camera. Then, for example, relevant

graphics can be dynamically positioned atop the live video feed (Figure 1).

Computer vision, more generally, is the capture and analysis of data

about color, brightness, or line-of-sight distance (depth). For capture, CV

uses light sensors, sometimes in combination with light emitters. For

analysis, CV often relies on measuring local contrast and simulating

various perspectives to gauge what is being viewed and how it is posed in

space. If it runs continuously in real time, this process is known as

tracking and the relevant software component is called a tracker.

Outside controlled environments, robust CV tends to require running

computationally expensive algorithms on big (video-quality) streams of

sensor input (Comport, 2005).

Ubiquity is an essential concern in AR. Wherever relevant physical

objects are found, the user may want to run the application using

whatever computer platform is on hand. Kiosks, mobile devices, and the

Web have the potential to make AR applications available to roving users.

These deployment channels are crowded, so AR technology should have

2

low barriers to adoption for the sake of busy developers, promoters, and

users. For example, entry barriers can be kept low by modular, extensible

designs or by leveraging an existing software platform that is popular.

Figure 1: An Example of AR

A screenshot from “Apples and Goblets”, our demo project. A live video

background shows two sheets of paper. An identifiable image is printed in the

center of each sheet. A tracker has found the images, and 3D models are being

superimposed atop them. The apple and goblet models are courtesy of Teinye

Horsfall at WireCASE Ltd (http://www.wirecase.com) and Sven Dännart at

Medievalworlds (http://www.medievalworlds.com), respectively.

Another essential concern is responsiveness, which requires

efficiency. Whenever presented with relevant physical changes, the

3

application should respond in (nearly) real time; otherwise, discrepancies

between the real and virtual worlds become obvious and distracting. A

typical AR application spends most of its time in image capture, image

processing, and rendering. These tasks are slow when implemented

naively but they can be accelerated by modern hardware if the software

platform supports it. Mobile users tend to have limited hardware and

Web users tend to have limited software platforms, so AR’s efficiency

requires special attention in these contexts.

These two concerns—ubiquity and efficiency—are somewhat at odds.

A ubiquitous solution must achieve abstraction from the system features

and resources that may be unavailable in relevant contexts; an efficient

solution must work closely with the system to access appropriate

resources. This thesis attempts to reconcile concerns of ubiquity and

efficiency, especially in AR applications that target the Web.

The combination of ubiquity and efficiency is critical in an industry-

grade AR engine—and finding or creating this combination is nontrivial.

A good solution can potentially deliver this combination, provided that

care is taken to use the strengths and avoid the weaknesses of a platform’s

idiosyncrasies.

As a means to this end, the thesis presents a high-level AR framework

that is agnostic about its platform’s I/O capabilities, yet is sufficiently

modular and extensible to support optimized implementations for

particular systems and use cases. Agnosticism about I/O makes the

framework portable, in principle, to a wide variety of ubiquitous

computers that may have unconventional interfaces. Also, it enables the

framework to wrap any medium of AR: that is to say, any source of sensor

data (visual or otherwise), any type of tracking, and any destination for

4

composited scenes. Sensors, trackers, and compositors are the

framework’s core abstractions. The potential for modular optimizations

makes it feasible, in principle, to adapt to various underlying performance

characteristics as the need arises, without needing to re-architect the

application.

A few specific features of the framework are worth noting. Multiple

trackers (potentially, wrappers for multiple third-party tracking libraries)

may run at the same time, even if using the same source of sensor data.

For efficiency, sensor data is shared by reference rather than by copy. A

tracker may, in principle, distinguish between duplicates of real-world

objects (though most existing third-party trackers do not do so). Trackers

are agnostic about compositors and vice versa. Thus, an application can

use the framework’s tracking functionality with or without rendering a

virtual scene atop a real scene. This decoupling makes the framework

applicable to non-AR scenarios, such as video games that use tracking to

control purely virtual scenes.

The next two chapters—“Background” and “Exploratory Work”—deal

with the context and motivation of our work in AR. “Background” draws

on published sources whereas “Exploratory Work” draws on the author’s

experience in the AR industry. One theme in these chapters is the

fragmentation of AR solutions, leading (in industry) to redundant

integration work that could be alleviated by a unifying framework. The

remaining chapters—“Design and Contribution”, “Evaluation”, and

“Discussion”—deal with the new framework, called Illusion SDK, which

the author has developed as a potential basis for efficient, ubiquitous AR

applications. “Design and Contribution” presents Illusion’s architecture,

along with diagrams and code samples, and compares this architecture to

5

existing alternatives. “Evaluation” quantifies the efficiency characteristics

of two test applications built atop Illusion. “Discussion” reviews the levels

of ubiquity and efficiency currently achievable with Illusion, and proposes

future work on optimizations, extensions, and ports. Finally, appendices

deal with Illusion’s availability and non-AR functionality.

6

Chapter 2: Background

This chapter gives an overview of the obstacles faced in this thesis

project. Then, it proceeds with an explanation of the history, literature,

and technology of several relevant domains: computer vision, augmented

reality, ubiquity, efficiency, and Web platforms.

2.1: Problems in Web AR

A number of CV and AR libraries already target a Web platform such

as Flash, Silverlight, Java, or (rarely) JavaScript. (See “2.3.3:

Frameworks”.) Problems with the status quo include:

• Fragmentation: The libraries have dissimilar programming

interfaces for complementary functionality. (Some track barcodes,

others track faces, and others track photos.) They lack high-level

integration with game or graphics engines. Due to the amount of

developer time required to study and integrate many different

interfaces, industry may have difficulty adapting to new technology.

(See “3.1.1: At Ad-Dispatch”.)

• Platforms in decline: Many Web users do not have Silverlight or

Java. The market penetration of these platforms is declining. (See

“2.6.2: Adoption”.)

• Immature platforms: Many Web users have browsers that lack

support for the relevant features of JavaScript, such as WebRTC

(for camera access) and WebGL (for GPU acceleration). (See

“2.6.1: System Access”.)

• Inefficiencies: Many libraries for Flash do not leverage recent

platform optimizations such as GPU acceleration. They integrate

 7

most easily with code that also does not leverage these

optimizations. (See “3.2: Refinements”.)

Better designs are feasible. Since 2003, mobile AR has benefitted from

research toward an optimized, high-level toolkit supporting multiple

tracking strategies and multiple operating systems. Recent iterations,

Studierstube ES and Vuforia, use GPU acceleration and integrate with

game engines. (See “2.3.3: Frameworks”.)

We argue that there is an untapped opportunity to unify and optimize

AR- and game-related functionality in one toolkit capable of targeting the

Web. We use Flash 11 as our testbed. To avoid contributing to

fragmentation, this new toolkit facilitates the wrapping of existing AR

libraries, which may implement many different tracking algorithms.

Besides making the underlying libraries easily swappable, Illusion allows

their functionality to be used simultaneously in one application, through

one interface. For example, two underlying tracking libraries could be

used for different types of subjects in the environment or they could

crosscheck each other’s results for one type of subject.

Unifying relevant functionality is non-trivial because AR technology

and applications are evolving rapidly. To be extensible and maintainable,

the unified toolkit must provide abstractions that support current and

foreseeable features and requirements.

Optimization is non-trivial because AR includes three expensive

stages—image capture, image processing, and rendering—with competing

data formats and resource requirements. This problem is exemplified in

Flash 11, which has three dissimilar graphics pipelines. (See “2.6.4: Focus

on Flash”.) Here, a custom approach to compositing (mixing different

pipelines’ content) is needed to leverage a GPU-enabled pipeline and a

 8

camera-enabled pipeline in a way that supports rendering 3D models atop

a live video that trackers can read.

The combination of unification and optimization is non-trivial because

trackers from various vendors should share resources such as the camera

feed. To avoid duplicating resources, the wrappers around the trackers

must be agnostic about the way sensor data (ex. image data) are obtained

and managed.

2.2: Vision, Space, and Colorspace

“Did you see the stop sign, sir?” a police officer might ask a driver.

The hypothetical stop sign is in plain view but the driver thinks he did not

see it.

Seeing (or vision) implies more than just looking in the right direction

and having one’s retinas stimulated. Seeing may imply awareness,

recognition, an appropriate reflex, or even an understanding of events. (“I

saw him cheat at cards.”) Like human vision, CV is a multilayered

concept that pertains to sensors, intelligence, and everything in between.

At the sensor level, vision is about light striking lenses and

photoreceptors. A lens is a curved, transparent surface that focuses

(funnels) light toward a surface of a different size. This second surface—a

retina, film, or digital sensor—is covered with photoreceptors. A

photoreceptor has a chemical or electrical response to light: the more light

striking the photoreceptor, the stronger the response. A system typically

contains several types of photoreceptors, each with a different spectral

response: a function that maps the light’s wavelength (color) to the scale

of the response. Photoreceptors, in general, may respond to wavelengths

 9

that are invisible to humans (the infrared and ultraviolet spectra) (Baines

& Bomback, 1967).

By the time a photoreceptor responds to light, this light has already

journeyed through space and colorspace. It has bounced off surfaces (a

motion in space) and, in doing so, has changed color and lost some

intensity (a motion in colorspace). (More precisely, only certain colors of

light, in certain amounts, have bounced off each surface in a given

direction.) A particularly important waypoint in this journey is the last

surface that the light bounces off before entering the lens. Typically, we

perceive this surface as a thing we “see”, though we may also perceive it as

a thing we “see in” (ex. a mirror). As users of vision, we may care about

this waypoint’s position in space and about the way it transforms light in

colorspace. Where is the surface and what color is it?

Given a set of densely positioned photoreceptors, with various known

spectral responses, we should be able to estimate a surface’s color by

triangulating the photoreceptors’ responses. We can imagine the various

spectral responses as a “surround view”, consisting of multiple,

simultaneous vantage points in colorspace. However, in terms of regular

space, we seldom have the luxury of a surround view: we have just one

camera or two narrowly spaced eyes. As such, estimating a surface’s

spatial properties is a harder problem than estimating its colorspatial

properties. Even harder is the more abstract problem of reconstructing a

relationship among surfaces: in other words, recognizing a shape or object.

There are two major theories about the means by which human vision

achieves object recognition without a surround view in space. One

theory, pioneered by Marr and Nishihara (1978) and Biederman (1987),

posits a “structural-description” approach. Supposedly, we memorize an

 10

object’s 3D structure and we mentally pose and draw such structures, as if

they were models posing for an artist, until our mental drawing matches

the actual projection in the eye. The other theory, pioneered by Poggio

and Edelman (1990), posits an “image-based” approach. Supposedly, we

memorize many 2D projections of an object from various vantage points

and, like a witness looking through a set of mugshots, we search our

memory for pictures that match the actual projection in the eye.

The two theories need not be mutually exclusive. Tarr and Bülthoff

(1998), surveying previous experimental work, conclude that the actual

approach depends on viewing conditions, the subject, the viewer’s

expertise, and the specificity of the recognition (ex. a man, a soldier, a

lieutenant, Lieutenant Dan).

CV approaches to object recognition (and tracking) mirror the

supposed approaches in human vision. The image-based approach uses a

2D image (or a 2D pattern that many images may match) as a ground

truth for recognition. The structural-description approach uses a 3D

model as a ground truth. Both approaches require transformations to be

applied to the reference image/model and to the actual, captured image.

These transformations make it possible to compare the arrangements of

certain salient features (ex. vertices) in pseudo-3D space. Techniques that

build on the two general approaches are described further in “2.3.2:

Techniques”.

 11

2.3: Augmented Reality

2.3.1: Origins and Examples

On January 24, 1990, Tom Caudell—a postdoctoral researcher at

Boeing—proposed the idea of using head-mounted displays (HMDs) to

project wiring schematics onto formboards (large electrical panels used in

airplane manufacture). He and a colleague, David Mizell, expanded this

proposed application into a domain that they called “see-through virtual

reality” or, later, “augmented reality” (Caudel & Mizell, 1992; Mizell,

2001; Henn, 2010)—the superimposition of an interactive virtual space

atop real space, in real time (Milgrim et al, 1994; Azuma, 1997). The

codification of AR helped inspire a wide range of workplace applications,

especially in fields with low automation but high costs of failure.

Examples include: a synchronized digital/paper interface to facilitate

communication in air traffic control (Mackay et al, 1998); a set of

handheld tools to help a surgeon measure a 3D virtual model of the

patient’s liver (Reitinger et al 2005); a pharmaceutical pill recognition

system (Hartl, 2010; Hartl et al, 2011); and a networked HMD allowing

crime scene investigators to collaborate remotely with other experts

(Poelman et al, 2012).

While they may have invented AR as a term, Caudell and Mizell

acknowledge a long line of precedents. Mizell comments (in Henn, 2010):

The technology is certainly older than the term. Ivan Sutherland's
first head-mounted display, in 1968, was see-through and tracked.
Military helicopter pilots used see-through, tracked, helmet-
mounted gunsights in Vietnam. When Tom Caudell and I worked
on the technology at Boeing in the early 1990's, Steve Feiner at
Columbia University was working on very similar ideas. While

 12

Tom and I were prototyping the wire bundle assembly formboard
application, Steve was demonstrating a system that could be used to
guide a user through a maintenance procedure on a photocopier.

Mizell alludes to two prominent features of AR in his description of its

lineage. First, AR involves tracking some identified target in the user’s

environment. Second, it provides the user with visual guide-marks that

seem to exist in the same spatial context as the target. These guide-marks

may assist the user in some task of hand-eye coordination involving the

target.

The first feature—automated identification and tracking—is quite an

old idea. An 1889 patent, pertaining to the problem of lost railcars,

proposed an automated mechanism “to take the initials and numbers as

the cars pass certain points…to form accurate information of the

whereabouts of the cars” (in Collins, 2011). This patent later served as an

inspiration to David Collins, who invented computerized barcode

tracking and successfully applied it to railcars in 1961 (Collins, 2011)

(Figure 2). Another well-established identification and tracking

technology is the radio frequency identification (RFID) tag—a

transponder that either emits or reflects a known radio frequency. RFID

originates in 1940, when the Luftwaffe and then the Royal Air Force

adopted it to distinguish friendly aircraft on radar (Dobkin & Wandinger,

2005).

 13

Figure 2: KarTrak Barcode

KarTrak, the first barcode system, was deployed on railcars in 1961. Left: A

KarTrak barcode, close-up. Right: A KarTrak barcode and two railcars. The

barcode is the tall, dark rectangle near the photo’s center.

 14

Figure 3: Reflex Gunsights

By the 1930s, reflex sights such as these Royal Air Force models were being

mass-produced. Top: Prototypes, close-up. Bottom: A gunner uses his reflex

sight with both eyes open. The reflex sight’s design makes the illusionary

targeting guide-marks appear at infinity. Thus, the illusion’s alignment with the

firing path is viewpoint-invariant and it is usable by either eye, or both at once,

from any angle (Clarke, 1994).

 15

The second feature—illusionary guide-marks—is likewise quite an old

idea. Sir Howard Grubb, in 1900, patented a “Gun Sight for large and

small Ordnance” that used a light source and a mirror to project

illusionary guide-marks into the gunner’s eye as he viewed his target

through the scope. This optical invention, known as the reflector sight or

reflex sight, was deployed in German fighter planes in 1918 (Clarke,

1994). By the 1940s, it was common for heavy weaponry of all kinds to

include reflex sights (Figure 3), which were sometimes part of “electrically

operated, computing” systems that used gyroscopes to predictively

reposition some of the targeting guide-marks as the gunner attempted to

track his moving target (United States Army Air Forces, c. 1944). These

devices were known as gyro sights.

Clearly, AR’s technological genesis owes much to aeronautics, which—

along with other mechanized forms of transportation and warfare—has

transformed mankind’s thinking about space, tracking, and targeting.

However, AR’s cultural genesis goes beyond logistics and gunnery. Since

antiquity, people have pondered how to create and place illusions—and

how to animate normally inert objects—for the sake of art, pomp, and

awe. Trompe-l’oeil murals are attributed to Greek painters of the fifth

century BC (Pliny the Elder, c. 79 AD) and examples from the 70s AD

are well preserved in the ruins of Pompeii. Mechanical automata are

attested by authors as early as Pindar (c. 464 BC/1830, p. 40). He

describes them as the pinnacle of human handiwork; as evidence of

Athena’s wisdom being manifest in mortal men:

Meanwhile the maid with azure eye
Her favor’d Rhodians deign’d to grace
Above all else of mortal race,

 16

With arts of manual industry.
Hence framed by the laborious hand,
The animated figures stand,
Adorning every public street,
And seem to breathe in stone, or move their marble feet.

Wisdom true glory can impart
Without the aid of magic art.

By the first century AD, Hellenic special effects technology—involving

mirrors, magnets, mechanics, and pneumatics—was sufficiently advanced

for Hero of Alexandria to devise interactive experiences, such as:

programmable automata that were flexible enough to enact scenes from

mythology; an automatic door triggered by lighting an altar fire; and

dispensers that exchanged coins for holy water, or water for wine (Hero,

c. 60 AD/1851). Although Hero wrote treatises on the construction of his

devices, spectators would have seen only the miraculous facade.

Likewise in AR, technologically advanced interactions can be masked

behind more traditional gestures and tokens. Posters and toy figurines are

common targets for creative AR. They merge fantasy worlds into homes

and public places much as trompe-l’oeil murals and automata did in

antiquity (Figure Series 4). Storybooks are another common target for

creative AR (Billinghurst et al, 2001). When used for entertainment

purposes, the AR illusion may consist of elaborate 3D animations that are

explorable from multiple perspectives and responsive to user input. A

proposed social role of AR in the home is to encourage children to

integrate multiple media into their imagination and to share this creative,

storytelling experience with family and friends, in person (Hee, 2012). As

such, AR entertainment is being contrasted (by its proponents) to purely

 17

virtual entertainment that might not encourage as much interaction with

one’s surroundings.

Without relying as much on traditional artifacts, digital media giants

are also embracing AR. The latest handheld game consoles, Nintendo

3DS and PlayStation Vita, come bundled with applications that combine

tabletop gaming and video gaming. An arrangement of physical cards

defines landmarks in the game world, while the device’s camera and

touchscreen provide the means of interaction. The player—or two players

with separate devices—first build the game world by hand and then play

in it via the device (Nintendo, “Nintendo 3DS - AR Cards at Nintendo”;

Gutierrez, 2012). 19.2 million units of these devices (17.9 million of the

3DS and 2.3 million of the Vita) have been sold worldwide as of July

2012 (VGChartz, “Platform Totals”), so the bundled AR games are widely

owned, whether or not they are widely played.

Anecdotally, AR has even inspired body modifications. One Nintendo

3DS player has had the physical part of an AR game tattooed onto his

forearm (Shepherd, 2011). An earlier AR-enabled tattoo was demoed by

ThinkAnApp of Buenos Aires, Argentina (Civantos, 2010). It is unclear

whether ThinkAnApp had further plans or operations: its Twitter page

contains just four posts, along with a link to a defunct domain that was

once the company’s website (ThinkAnApp, “thinkanapp (thinkanapp) on

Twitter”).

AR is an oddball mix of technologies and arts: the applications of it and

its precursors run the gamut from deadly to constructive, and kitsch to

sublime. It should prove popular.

 18

Figure Series 4: AR Compared to Ancient Art

Figure 4A: AR Compared to Trompe-l’oeil Murals

Top: Marketing images from String Labs, an AR company. Viewed through the

mobile device’s camera, the posters turn into animated, interactive trompe-l’oeil

murals. Bottom: A trompe-l’oeil mural painted c. 70 AD in Pompeii.

 19

Figure 4B: AR Compared to Automata

Top: A prototype of an AR play-set from the Sesame Street franchise. Figurines

and props can be positioned however the child chooses. Viewed through the

mobile device’s camera, they animate and interact in ways that depend on the

physical setup (Hee, 2012). For example, Bert and Ernie might talk if they are

close to each other. Bottom: “Hercules and the Dragon”, an interpretation by

Giovanni Battista Aleotti (1589) of an automaton designed by Hero of Alexandria.

In this version, Hercules hits the dragon continually and the dragon spits water at

him. In an alternative version (Hero 60 AD/1851), Hercules’ attack is triggered by

a pullstring when someone tries to pick an apple.

 20

2.3.2: Techniques

A defining feature of AR is its use of markers—i.e. points of reference

on physical objects. The format of these markers may be natural (ex.

geography, anatomy), artistic (ex. logos, photos), or synthetic (ex.

barcodes, electromagnetic tags). For ubiquity’s sake, non-natural markers

need to integrate well with existing production processes. For example,

new images can be incorporated into printed products or packaging

without requiring new steps in procurement or manufacturing. RFID

tags can be inserted into layered products (ex. dresses, stuffed animals)

but do require new steps in procurement and manufacturing. Our

discussion focuses on image markers.

AR literature tends to apply the term natural feature tracking (NFT)

to natural and artistic markers alike. Arguably, this conflation is

appropriate: a live view of a face, a photo of a face, and an iconic smiley

face might all qualify as “a face”, for the purposes of a given AR

application.

Given a predefined set of markers and a stream of input, the AR

application must solve a classification problem: in each frame of input,

which markers are represented? Moreover, what is the pose (position

and orientation) of each represented marker? These questions,

respectively, represent the problems of recognition and tracking.

For camera input, approaches to this classification problem rely on

measures of local contrast. Our discussion focuses on local contrast in

terms of color or brightness values, sampled in short, isolated timeframes.

However, the same local contrast measures can also be considered in other

terms (Figure Series 5), such as: depth (ex. sensed using an infrared

camera and illuminator); time-differenced color, brightness, or depth (for

 21

tracking a particular motion signature); or time-averaged color,

brightness, or depth (for tracking a stationary marker in a motion-filled

scene, ex. a briefcase abandoned in a subway station). An image marker

in either the depth or time-differenced case would not look like a

conventional photo. An image marker in the time-averaged case would

look like a long-exposure photo.

Synthetic markers allow for very coarse contrast measures of local

contrast because the relevant color palette (usually binary black-or-white)

and edge patterns (usually right angles) are known a priori. Each frame of

camera input can be analyzed by thresholding its colors, searching for the

relevant edge patterns, comparing found edges to markers’ edges, and (for

any matches) iteratively refining an estimate of the transformation matrix

(Wagner & Schmalstieg, 2007).

A common synthetic format is the so-called square marker, which is

essentially a low-density 2D barcode: within a black-bordered square,

each of a number of sub-squares is either black or white. Another

common synthetic format is the frame marker, which is essentially a low-

density 1D barcode bent in four places to form a square border around

some arbitrary content. Also, a frame marker can be thought of as a

square marker that omits all but the peripheral sub-squares. Square

markers have appeared in AR literature since 1996 (Rekimoto, 1996) and

are predated by numerous other concepts for automated barcode

identification, going back to Collins’ 1961 KarTrak system for railcars

(Collins, 2011). However, most barcodes are not optimized for pose

estimation tasks. For example, quick response (QR) codes, invented in

1994 for tracking automobiles during manufacture (Kan et al, 2011), are

 22

high-density 2D barcodes that are commonly used in identification tasks

but not pose estimation tasks.

Figure Series 5: Unconventional Image Types

Figure 5A: Depth Image

“Self portrait with the Kinect. Robot in the back” (2011) by Martin Wojtczyk. This

depth image is captured using the Microsoft Kinect camera and its official SDK

(Wojtczyk, 2011). Bright areas may be interpreted as shallow (near) and dark

areas may be interpreted as deep (far). The camera does not truly measure

depth but rather infrared (IR) brightness. The source of IR light is an illuminator

attached to the camera (akin to the flash on an ordinary camera). Note that

areas shadowed from the IR illuminator, such as the wall behind the user, are

falsely interpreted as being very deep. So are IR-absorbent materials, such as

the frames of the user’s glasses.

 23

Figure 5B: Time-differenced Image

Top: Two consecutive frames from “The Horse in Motion” (1878) by Eadweard

Muybridge. The galloping horse is captured in midair and then as its left hind leg

lands. Bottom: The difference (later minus earlier) between the two frames. The

bright areas may be interpreted as motion or an outline of motion.

 24

Figure 5C: Long-exposure Image

“Office of Helmut Friedel” (1997) by Michael Wesley. This photo is an extremely

long exposure, lasting one year (Kazmierczak, 2005). Subjects that move

regularly, such as people, are not captured. Subjects that move occasionally,

such as furniture, are captured as if semitransparent. Subjects that move rarely,

or not at all, are captured as in normal photography. The same effects can be

achieved by averaging video frames over time.

 25

Figure 6: Square Markers and Frame Markers

Promotional images from the flare*tracker project. Top: Subtypes of square

markers, including frame markers. Datamatrix markers are sufficiently dense to

allow for URLs to be encoded. Bottom: Screenshots of the markers in use.

Haar-like features are more sophisticated local contrast measures,

suitable for NFT. They were first proposed by Papageorgiou et al (1998)

and then refined by Viola and Jones (2001). (Sometimes, Haar-like

feature classification is called Viola-Jones object detection, after these

authors.) Each Haar-like feature encodes differences in intensity among

two or more adjacent image areas. (For example, an image area could be

4x4 pixels and its intensity could be the sum of those pixels’ RGB

components.) Each frame of live video can be subsampled and each

 26

subsample’s Haar-like features can be compared to each marker image’s

Haar-like features in order to evaluate similarity. At some similarity

threshold, the live video subsample and the marker image are deemed to

match. Scale (magnification) differences between the live image and

marker image are handled by means of feature cascades, i.e. resampled

versions of the features. If a marker is far away from the camera, its video

image will match a low-resolution version of the feature set; if close, a

high-resolution version. Feature cascades also provide an efficient means

of screening out irrelevant image sections, using coarser comparisons first

(Viola and Jones, 2001).

Haar-like feature classification, of the type described above, tends to be

fast—capable of running at 15 FPS on Pentium III 700 MHz (Viola and

Jones, 2001)—but it has shortcomings. It is insensitive to hue. It is

sensitive to shadow edges and reflection edges. It is dependent on the

camera’s ability to expose the relevant contrasts (which are subtler than

those of synthetic markers) under unpredictable lighting conditions. It is

not necessarily robust to rotation and 3D transformations—though it can

be if additional feature sets are generated (Lienhart & Maydt, 2002;

Messom & Barczak, 2006).

An alternative to Haar-like feature classification is scale-invariant

feature transform (SIFT), first published by Lowe (1999). SIFT

attempts to identify points of local contrast that change only minimally

with respect to scale, rotation, illumination and 3D transformations. To

identify such features, SIFT resamples the input images, whereas Haar-

like feature classification resamples the features to potentially match input

images. SIFT tends to emphasize geometric edges, whereas Haar-like

 27

feature classification tends to emphasize an arrangement of darker and

lighter regions, such as the eyes and mouth versus the rest of the face.

Another notable technique, speeded-up robust features (SURF),

combines SIFT with Haar-like feature classification. First proposed by

Bay et al (2006/2008), SURF uses feature clusters, each consisting of one

SIFT-like feature surrounded by multiple Haar-like features. SURF is

demonstrated to be an advance in both performance and robustness,

compared to its constituent techniques. Moreover, it handles 3D subjects

relatively well by treating feature clusters as submarkers that may each be

oriented differently (Bay et al 2006/2008).

The same means of generalizing 2D image tracking to 3D object

tracking is found in earlier sources as well. Comport (2005) notes that

object tracking problems in AR are essentially the same as those in

robotics. A robot can estimate an object’s pose by incrementally moving

around the object in real space to find the perspective where the live 2D

image of that object best matches a 2D reference image. This process is

known as visual servoing (VS). Comport describes an analogous process,

for AR, as virtual visual servoing (VVS). Unlike VS, VVS does not rely

on camera movement. The change in perspective is virtualized by

incrementally reposing a 3D reference model to find the 2D projection of

the model that best matches the 2D live image. To simplify the

comparison, Comport (like others) relies on edge tracking, such that the

presence or absence of an expected feature can be confirmed by a “one

dimensional search to the normal of a contour” (2005).

 28

2.3.3: Frameworks

While the preceding works have advanced the algorithms that are

relevant to AR, other works have contributed more to the body of

available software components. Some of these components are suitable

for integration into higher-level frameworks; others are themselves high-

level frameworks to which we may compare Illusion. (See “4.3:

Comparison to Other Designs”.) For the moment, though, our focus is on

understanding the range of tracking algorithms and AR application

frameworks that are implemented on various platforms. The relative

merits of some of certain major platforms are discussed later. (See “2.6:

Web Platforms”).

Starting in the mid-1990s, several frameworks have attempted to

standardize and optimize AR interfaces across multiple platforms. Two

cornerstones of this evolution have been Studierstube (an application

framework) and ARToolKit (an image tracking component for square

markers). Studierstube is developed at the Institute for Computer

Graphics and Vision (ICGV) at the Graz University of Technology.

ARToolKit is developed at the Human Interface and Technology Lab

(HIT Lab) at the University of Washington and University of Canterbury

(New Zealand), though major branches of it have merged into the work of

the ICGV instead.

From 1995 to 2002, Studierstube focused on supporting collaborative

AR work environments on heterogenous multicomputers (Schmalstieg et

al, 2002). Using HMDs and numerous other I/O peripherals, these

multiuser environments attempted to create new modes of office work by

presenting physical tools and software tools in the same spatial context.

 29

Similarly, ARToolKit originated from an experiment in AR video

conferencing (Kato & Billinghurst, 1999).

These projects were put in another context in 2003, when elements of

Studierstube and ARToolKit were ported for standalone use on the

Pocket PC platform—the first mobile use of AR. The port’s proof-of-

concept application ran at just 5 FPS on iPAQ. It used CV and software

rendering to draw lines around the edges of 2D barcodes (Wagner &

Schmalstieg, 2003). A more performant and more useful application was

reported in 2005, when the framework’s authors were developing an AR

guide to museum exhibits. Displaying animated 3D models atop binary-

encoded markers, this prototype ran at 20 FPS on unspecified Pocket PC

hardware (Schmalstieg & Wagner, 2005).

Despite these improvements, the performance of the original mobile

port was deemed inadequate. A new port, Studierstube ES (Embedded

Subset), commenced in 2006, with the goal of wedding mobile AR to an

efficient, new, mobile game engine, including facilities for peer-to-peer

cooperative play. A sample game, Cows vs. Aliens (2007), demonstrated

the feasibility of running Studierstude ES’s features on the Gizmondo

mobile game console, which uses Windows CE (Mulloni, 2007).

Subsequent work has also brought Studierstube ES to smartphones:

Windows Phone and Android.

Besides these official ports of Studierstube, other libraries have

adapted certain components of it and ARToolKit. NyARToolkit (Java,

ActionScript, .NET, C++), FLARToolKit (ActionScript), SLARToolKit

(C#), and JSARToolkit (JavaScript) are ports of ARToolKit

(NyARToolkit, “Welcome to NyARToolkit.EN”; Heikkinen,

“JSARToolkit”). JavaCV wraps ARToolKit plus several AR and CV

 30

components from other parties (JavaCV, “JavaCV”). flare*tracker re-

implements ARToolKit functionality in an original codebase by

Imagination Computer Services GmbH, of Vienna, Austria (Imagination,

“flare*tracker”). flare*nft (ActionScript) is Imagination’s adaptation of

Studierstube’s NFT component (Imagination, “flare*nft”; Jung, 2011).

FLARManager provides integration of FLARToolKit, flare*tracker, and

flare*nft into the Papervision3D graphics engine (Socolofsky,

“FLARManager: Augmented Reality in Flash”). Vuforia (formerly

known as Qualcomm Augmented Reality or QCAR) is another adaptation

of Studierstube’s NFT component. Vuforia targets Android and iOS,

with optional integration into the Unity game engine (Qualcomm,

“Augmented Reality (Vuforia™)”).

For licensing reasons, Studierstube is unlikely to spawn other ports in

the near future. Equally, existing ports are unlikely to merge under an

umbrella project. One of the developers of flare*nft comments, “The

reason for flare* not being licensed to mobile devices [i.e. to mobile

developers using Adobe AIR] is a contractual one. The tracker source

that is also the basis of flare* has been sold to Qualcomm … (now

available as QCAR SDK) and we are limited to licensing for PC

platforms” (B. Jung, personal communication, September 14, 2011).

Studierstube ES and other recent Studierstube developments (post-2008)

are closed-source and not available for licensing (Studierstube,

“Availability of Augmented Reality Software”).

Independent of Studierstube, other proprietary solutions include

D’Fusion SDK, from Total Immersion, of Paris, France; String SDK,

from String Labs, of London, UK; IN2AR from Beyond Reality, of the

 31

Netherlands; and Beyond Reality Face, from Tastenkunst, of Leipzig,

Germany.

D’Fusion SDK, launched in 2004, implements various forms of NFT,

including Comport’s 3D object tracking (Comport, 2005). D’Fusion SDK

is available in several versions, targeting desktops, mobiles (iOS,

Android), the proprietary D’Fusion Web Player, or Flash. Some versions

feature optional integration with visual editing suites: the company’s own

D’Fusion Studio; or Unity (Total Immersion, “Augmented Reality

Software and Solutions by Total Immersion | Augmenting Your Reality”;

Geffroy, 2012).

String SDK combines features of square markers and NFT. Each

marker includes a freeform image but must be framed by a thick, black

border on a white background. This hybrid approach seems to be original

and unpublished. It might offer advantages in efficiency and robustness,

compared to pure NFT. String SDK supports iOS only, with optional

Unity integration (String Labs, “String™ Augmented Reality”).

IN2AR (Beyond Reality, “IN2AR”) offers NFT functionality, and

Beyond Reality Face (Tastenkunst, “Beyond Reality Face”) offers face

tracking functionality. They are new libraries, having emerged during the

writing of this thesis. They are written in ActionScript and include

samples targeting the current version of Flash.

Many non-proprietary packages, too, are also relevant to AR. An

influential, open-source library has been OpenCV (formerly, CVLib),

launched by Intel in 2000. OpenCV initially focused on providing low-

level optimizations to make CV functionality, including NFT, more

feasible on single-core, consumer CPUs. When running hand-optimized

MMX assembly, the library’s alpha version achieved speedup ratios

 32

ranging from 2.00 to 8.33, relative to its fallback of compiled C (Bradsky

& Pisarevsky, 2000).

Like Studierstube, OpenCV has been ported to mobile and embedded

platforms, and has suffered some performance setbacks in the process.

Notably, these ports have tended to rely on OpenCV’s single-threaded C

fallbacks rather than contributing original optimizations for new

architectures. No optimized port was completed until 2009, when the

CVCell project ported OpenCV to the Cell Broadband Engine

Architecture. Using up to six of the Cell’s eight coprocessor cores,

CVCell delivered mixed results—ranging from a 15.2 slowdown ratio to a

17.9 speedup ratio—in function-level benchmarks against OpenCV’s

optimized code for Intel Core 2 Duo E6850 3.00 GHz. However, an

application-level benchmark (of NFT) favored CVCell, with a 1.37

speedup ratio, from 8.12 FPS to 11.2 FPS (Sugano & Miyamoto, 2010).

Since 2010, OpenCV itself supports higher-order parallelism on NVIDIA

GPUs via CUDA (OpenCV, “OpenCV Change Logs”).

Besides being ported to other architectures, OpenCV has also been

ported or wrapped for use with high-level languages, including C++, Ch,

Python, and Java (OpenCV, “OpenCV Change Logs”; Yu et al, 2003;

JavaCV, “JavaCV”). Many of these ports have been merged back into

the main project. A small subset of OpenCV functionality, including facial

tracking, has been ported to ActionScript as the Marilena project

(Klingemann, 2009).

Tracking libraries sometimes build atop OpenCV. One example is an

open-source library called ALVAR, which tracks square markers (VTT,

“ALVAR Technical”). ALVAR is, in turn, wrapped by an open-source,

C# game engine called Goblin XNA. Goblin XNA is, in principle,

 33

designed to support other visual trackers as well, though it does not

currently do so (Oda et al 2012).

Another camp of other open-source library development centers on the

SURF algorithm specifically. The original implementation is patented but

its source code is publicly released. Other implementations include

OpenSURF (C++, C#) (Evans, 2009), Pan-o-Matic (C++), Parallel SURF

(multithreaded C++), Speeded-Up SURF (CUDA) (Furgale et al, 2009),

CUDA SURF, JavaSURF, ASSURF (ActionScript), and many more.

Evaluations of various implementations have been undertaken by Gossow

et al (2010) and by Abeles (2012). Notably, Pan-o-Matic has nearly

identical performance to the original SURF, while Parallel SURF

(adapted from Pan-o-Matic) offers large speedup ratios: 6.51 for 8 cores

and 3.62 for 4 cores (Gossow et al 2010). To some extent, these SURF

implementations are built with non-AR, non-real-time applications in

mind. For example, Pan-o-Matic is purpose-built for panoramic photo

stitching, i.e. merging multiple photos of adjacent, overlapping subjects

into one, wider-format photo.

All of the preceding libraries and frameworks offer programming

interfaces in general-purpose languages. However, some alternatives

instead offer markup languages or visual programming tools, which both

tend to treat applications as hierarchies of content. A notable example is

the Argon AR browser, an iOS application that is the reference

implementation for a proposed standard called KHARMA (Augmented

Environments Laboratory, “KHARMA”). This standard includes a

markup language, KARML, which allows 3D models and Web-like media

to be anchored to geolocations or square markers.

 34

Despite the range of relevant libraries and of library providers—

academia, industry, the open-source community—most AR functionality

is not yet widely known to application developers and consumers. Game

interfaces based on square markers—relatively old technology—still have

enough novelty value that they are heavily publicized in conjunction with

the releases of new platforms such as the Nintendo 3DS and PlayStation

Vita (Nintendo, “Nintendo 3DS - AR Cards at Nintendo”; Gutierrez,

2012). Thus, NFT remains one step ahead of the mainstream.

2.4: Ubiquity

AR, and the Web and mobile platforms it often targets, have evolved in

tandem with the concept of ubiquitous computing (UC, UbiComp, or

ubiquity). Broadly, the literature on ubiquity predicts a massive

proliferation of low-cost, networked, responsive computers that make use

of sensor data. It also imputes certain expectations and behaviors to the

people who will share an environment with these multitudinous

computers. Certainly, AR is one computerized medium that may pervade

an environment and change people’s expectations and behaviors. Let us

first survey the influences on UC and the different formulations that have

emerged, and then consider UC’s implications for an AR framework that

targets the Web. Ultimately, we are interested in the role that a Web-

based AR framework can play in furthering AR as a ubiquitous

technology.

2.4.1: A Conflicted Concept

On December 9, 1968, Douglas Engelbart demonstrated the tools that

he believed people would use to achieve augmented intelligence (to

 35

become “augmented intellectual worker[s]”), an aim he had characterized

in terms of (Englebart, 1962):

more-rapid comprehension, better comprehension, the possibility of
gaining a useful degree of comprehension in a situation that
previously was too complex, speedier solutions, better solutions, and
the possibility of finding solutions to problems that before seemed
insolvable. And by complex situations we include the professional
problems of diplomats, executives, social scientists, life scientists,
physical scientists, attorneys, designers—whether the problem
situation exists for twenty minutes or twenty years.

Engelbart’s demo introduced the public to the mouse, word processing,

collaborative editing, hypertext, email, video conferencing, and many

other future staples of personal computing and information technology

(Engelbart, 1968). A subset of these tools would begin to reach users in

1973, when Xerox Palo Alto Research Center (PARC) developed the

Alto, precursor to the Apple Macintosh.

If personal computing promised to augment our situational intelligence,

then ubiquitous computing takes the promise one step further: to augment

the situation (the reality) itself, with computers everywhere to quietly

inform and serve us. Steve Jobs, in 1987, referred to the Apple II as “a

ubiquitous computing resource that is powerful, reliable and flexible

enough to be used everywhere on campus” (in Ronzani, 2007). A more

nuanced meaning of the term “ubiquitous computing” was coined by Mark

Weisner, at Xerox PARC, in 1988. He and his colleagues foresaw a world

where networked computers would greatly outnumber human beings, and

the role of single-user workstations would diminish in favor of a more

diffuse, shared, peripheral, “invisible” (unobtrusive), and “calm” usership

of embedded devices (Weiser & Brown, 1996).

 36

Perhaps by the concept’s nature, the predictions surrounding ubiquity

are broad—lacking any monolithic prototype such as Englebart provided

for the personal computer. Among their technological artifacts, the UC

team at Xerox PARC made a handheld system called PARCTAB. It

offered wireless networking, a stylus interface, and applications including

a reverse pager (for mapping people’s locations), a universal remote

controller, and a weather forecast (Schilit et al, 1993). However, in

reference to this invention, Weisner later writes, “[UC] is not the same

thing as mobile computing, nor a superset nor a subset” (Weiser, March

17, 1996). Elsewhere, Weisner and John Seely Brown give the following

forecast of UC’s technological trajectory (1996):

[UC’s] cross-over point with personal computing will be around
2005-2020. The “UC” era will have lots of computers sharing each
of us. Some of these computers will be the hundreds we may access
in the course of a few minutes of Internet browsing. Others will be
imbedded in walls, chairs, clothing, light switches, cars—in
everything. … This will take place at a [sic] many scales, including
the microscopic.

… UC will see the creation of thin servers, costing only tens of dollars
or less, that put a full Internet server into every household appliance
and piece of office equipment. The next generation Internet
protocol, IPv6, can address more than a thousand devices for every
atom on the earth's surface. We will need them all.

Amid the prognostications, often the use cases are not pinned down. Why

will we need to fill these thousands of IP addresses per atom? What data

will be gathered and served by UC-enabled chairs and such?

Ubiquity’s subsequent proponents have defined subdomains that yield

more detailed prescriptions. One subdomain, proactive computing (also

called ambient intelligence or ubiquitous intelligence), aims to fulfill the

 37

criteria of invisibility and calmness by making computers measure,

predict, and answer to human needs without any active human input

(Tennenhouse, 2000). This concept has seen practical applications in

continuing care and assisted living: for example, motion sensor data can be

used to predict whether an individual is lost or incapacitated, in which

case an automated call for help can be made (Consolvo et al, 2004). The

same principle applies to security systems making automated calls.

Certain other proactive computing proposals resemble the Jetson family’s

appliances: for example, the proactive refrigerator would be able to

measure and classify the household’s consumption, and place orders

accordingly (Rogers, 2006).

Three main criticisms (Rogers, 2006) are levelled against proactive

computing. First, as an AI problem, the inference of human needs and

wants from sensor data is computationally difficult and perhaps ill-

conceived: the needs and wants might change anytime for reasons that do

not leave sensory artifacts. Second, the system’s proactivity is invisible

only to the person being monitored—and only until the help arrives. A

nurse, policeman, deliveryman, or other intervening human is typically

still assumed, such that the system is costlier and less private than implied.

Third, the system does not encourage skill development (or skill

maintenance) on the part of the person being served; this person may

develop a dependency or a false sense of security.

Responding to these perceived dangers, another UC subdomain

focuses on the concepts of “proactive people” and “engaging user

experiences” (Rogers, 2006). According to this school, UC’s best use

cases would actually be in play, learning, scientific exploration, and

persuasion—contexts that ostensibly demand an intense or excited

 38

attitude instead of calm. Example applications include: educational robots

for which students can write networked, sensory AI programs, with

aesthetically pleasing outputs (Resnick et al, 2000); environmental

monitoring systems consisting of distributed sensor nodes, which multiple

users can deploy (Lane et al, 2010); and health promotion apps that

monitor peer groups collectively, with the aim of generating positive peer

pressure (Rogers, 2006). The latter proposal—to generate peer

pressure—seems to risk compromising privacy and autonomous decision-

making just as badly as proactive computing might do.

Another subdomain proposes that the level of calm or engagement

should be context-aware, such that the computer automatically becomes

invisible when it has no relevant information but highly visible when it

does. Notification systems typify this approach (Rogers, 2006). An

extreme example of context-aware computing is the US military’s research

into augmented cognition (AugCog). This research consists of using

real-time neuroimaging (EEG and fMRI scans) to predict which of the

soldier’s faculties are currently overstimulated, and to target new

information at less stimulated faculties instead: for instance, by presenting

text instead of graphics (Shachtman, 2007).

Still other subdomains or reformulations, such as pervasive computing

and mobile computing, place less emphasis on invisibility; more on the

technologies, protocols, and infrastructure that enable users to access

information and electronic services “everywhere at anytime” (Hansmann

et al, 2002). The term “pervasive computing” was popularized by

representatives of Novell and then IBM in the 1990s (Ronzani, 2007).

Originally, the term had much the same connotations as mobile

computing. This conflation is clear in the book titled Pervasive Computing:

 39

The Mobile World, by managers at IBM and Nokia (Hansmann et al, 2002).1

Traditionally, in pervasive and mobile computing, the networks under

discussion consist of conventional servers, personal computers, and

personal phones, which do not seem to constitute shared or userless

environments as envisioned by Weisner. Even in work on mobile

sensing—exploring the use cases for continuously harvesting and

broadcasting sensor data from communities of smartphone users—the role

of the user is typically envisioned as active, hands-on, and computer-

centric: for instance, as an annotator who types comments about the data

for other users to read (Lane et al, 2010).

As this brief survey suggests, ubiquity and its successors are broad

concepts, debated with somewhat ambiguous semantics, conflicting aims,

and shifting technological focus. A study covering twenty years of

newspaper articles (Ronzani, 2007) suggests that in popular media, the

terms “ubiquitous computing”, “pervasive computing”, and “ambient

intelligence” are used almost synonymously—and are used less and less

since 2000, perhaps suggesting that the abstract and futuristic debates

have been superseded by shared concerns about implementations today.

Collectively, though, the literature on ubiquity and its kin still seems to

offer pertinent advice for developing technology that is future-proof—

technology that does not assume people’s needs are bound to a desktop or

a personal computer.

1 More recently, the connotations of “pervasive computing” have grown
to overlap with “ubiquitous computing” in general. The two fields’ major
conferences are merging as the 2013 ACM International Joint Conference on
Pervasive and Ubiquitous Computing.

 40

2.4.2: Relevance to an AR Framework

As noted earlier, AR emphasizes interaction with markers—low-tech

physical objects—that are identifiable and trackable by computers.

Although AR researchers formerly required controlled environments with

many processors and I/O devices handling few markers, the trend has

been toward recognizing many markers with unspecialized computer

systems that consumers can regularly access. (See “2.3.2: Techniques”

and “2.3.3: Frameworks”.) This trend seems to couple AR with ubiquity,

though low-tech markers rather than computers are the proliferating

element in this ubiquity.

Since our objective in this thesis is to develop an AR framework, not

applications, we will avoid prescribing one or another set of user

experience principles from the UC literature. The application developer is

better positioned to make such choices, whereas the framework developer

should provide underlying systems that let application developer to focus

on these choices, without restrictions.

Despite their differences, most schools of ubiquity agree that their

systems need to: be low-cost; leverage previous networking innovations

and infrastructure; be available, responsive, and interconnected at an

instant’s notice; support collection, analysis, and sharing of sensor data;

and not violate privacy expectations. Our framework for AR Web

applications should be consistent with these goals.

Cost needs to be considered end-to-end, and in the context that people

already have certain skills, software, and hardware: they need not invest

from scratch. At least in the short term, the least costly solution—and also

the least evangelical—is likely to be one that leverages commonplace

 41

developer proficiencies and commonplace consumer platforms. Also,

third-party dependencies must enter into the consideration of cost.

Here, it is worth noting that commonplace consumer platforms are

entirely capable of controlling sensor networks, appliances, kiosks, and

other hardware/interface configurations that do not match the

conventional personal computing paradigm. Examples include: the

Arduino family of electronic prototyping components, supporting wired or

wireless control from Flash, Unity, iOS, Android, and other platforms

(Arduino, “Interfacing with Other Software”); various smart TVs,

supporting Flash (Magni, 2012); and the Samsung SUR40 spill-proof

coffee table, running Windows 7 with APIs for collaborative touch input

and real-time scanning (Samsung, “Samsung SUR40 for Microsoft®

Surface®”).

For client-server networking, high-level functionality is widely

supported in Web platforms. For peer-to-peer networking, which is

critical to the multiuser vision of ubiquity, high-level support is less

widespread. Except in the situation where peers are discoverable on the

local network, peer-to-peer networking tends to rely on remote servers,

with proprietary protocols, to broker discovery of peers. The AR

application framework should be compatible with some peer-to-peer

networking service that is trusted: for example, one that is owned by the

platform provider.

The concerns of availability, responsiveness, and interconnectedness

are always fundamental to Web development and deployment. The

proliferation of smartphones and Internet service over cellular networks

has greatly extended the reach of Web applications. Unfortunately, at

present, Web-based AR is not generally deployable in the mobile context

 42

due to the lack of camera support in mobile Web browsers and plugins.

For operating systems originating in the desktop world, the range of

camera-enabled Web plugins has become quite broad. (See “2.6: Web

Platforms”.) Partly fulfilling the criteria for ubiquity, some of these

plugins are in widespread use even on public computers, and are capable

of fast load times and fast networking, such that they do not obtrude from

the rest of the Web browsing experience.

For application developers who need to work with sensor data, the AR

framework should generalize well in several respects. First, it should not

make assumptions about what type of sensor data is being handled (ex.

video, audio) or how the data are obtained (ex. camera, microphone, file).

Second, it should not internalize the source of sensor data. Client code

may need to read this source, preprocess it (affecting input to the tracking

algorithm), or postprocess it (ex. affecting output to the video renderer).

Third, it should expose an interface (which is needed internally anyway)

for sharing sensor data among multiple subscribers, which are notified as

data become available.

Privacy is problematic in Web-based AR. The user’s picture,

possession of an AR marker, and standard Web client data provide several

means of tracing an identity. Either the platform or the application

framework should insist on informed consent if there is the possibility that

the AR application will transfer data to the server or third parties. Also,

the platform should provide reasonable security against data theft on the

client side and in network transit, since the application may be running on

public computers or public networks where fellow users cannot trust each

other.

 43

We have described some ordinary (even pedestrian) computing

problems that apply to ubiquitous AR. Indeed, of all the heralded aspects

of ubiquity, the ones emphasized here are perhaps the least

revolutionary—but they matter with respect to reaching (and not

disappointing) the broadest audience, in diverse contexts, today. A good

lesson in features’ relative importance can be drawn from home appliances

(which seem to loom large in thought on ubiquity). The dishwasher,

refrigerator, washing machine, and dryer are subliminal parts of daily life

not because they are invisible and silent (indeed, they are big and loud),

nor because recent prototypes or luxury versions have AI and networking

add-ons, but rather because the convenience they provide is affordable

and reliable. At an exhibition in 1959, Nikita Khrushchev boasted of the

Soviet Union’s technological superiority over the United States; Richard

Nixon regrouped by showing off the kitchen appliances that were

affordable to the single-income family of the American worker (Safire,

2009).

2.5: Efficiency

2.5.1: Factors

Efficiency is the capability to do much using little. “Much of what?”

and “Little of what?” are questions that depend on the application’s

deliverables and the system’s resources, respectively. Alternatively, all

renewable resources can be abstracted as time. Efficiency in terms of

deliverables per time is also called throughput. A related concept is

latency: the amount of time between an event’s occurrence and the

completion of its handling.

 44

Typically, an AR application must deliver real-time video and graphics.

This deliverable can be measured in frames, i.e. redraw events that are

handled by the software. Throughput may be expressed in frames per

second (FPS). (Throughput, in this case, is also called frame rate).

Latency may be expressed in milliseconds (ms) or another unit of time.

Alternatively, latency may be expressed in number of frames, as frames

are convertible to time when the frame rate is known. When latency is

one frame or greater, the application is said to suffer from “frame lag”.

High throughput yields the impression of smooth motion. 60 FPS is

ideal for most computer screens. However, it is not imperative for AR to

run at 60 FPS. For comparison, consider the frame rates used in

cinematic productions that convincingly blend real and virtual footage.

Most feature films are shot at 24 FPS; Peter Jackson’s The Hobbit is shot

at 48 FPS; and some Disneyland rides are shot at 60 FPS (Jackson,

2011).

With live video, low latency yields the natural impression of seeing in

the present time. High latency yields the uncanny impression of seeing

into the near past. Consider that an eyeblink lasts 100 to 400 ms

(Schiffman, 2001). A latency of similar length can cause the viewer to see

his own eyelids close fully and reopen—an uncanny effect indeed.

With tracking, low latency helps the user correlate his (or the tracked

object’s) motions to immediate results, such that he sees which motions

are trackable and can quickly adapt to the tracker’s strengths. Thus, the

application seems to be responsive to the user and vice versa. High

latency creates the frustrating impression that the tracker is unreliable, as

the user tends not to see its successes until he has already moved again.

 45

Camera-based interfaces in console games have received criticism for

high latency. On Xbox 360, typical latency is about 150 ms to 200 ms in

games that use gesture recognition with 640x480 video at 30 FPS

(Leadbetter, 2010). For comparison, in Xbox 360 games that use

gamepad input alone, typical latency is about 4 frames, or 67 ms for 60

FPS (Leadbetter, 2009).

Video transfer contributes significantly to the time cost of AR. A

webcam, whether internal or external, typically sends its data via

Universal Serial Bus (USB). Alternatively, it might use another

peripheral bus such as FireWire, Ethernet, or Thunderbolt. Multiple

peripherals (ex. plugged into different ports) may compete for bandwidth

on the same bus. When competition for bandwidth is low, USB 2.0 can

support 640x480 uncompressed video at 60 FPS and USB 3.0 can support

1080p (1920x1080) uncompressed video at 60 FPS (Table Series 1). The

transfer time (the contribution to latency) would be about 15 ms and 10

ms in these respective cases.

 46

Table Series 1: Data Rates, FPS, and Transfer Time

Table 1A: Data Rates of Uncompressed Video

Resolution

Data rate
(MB/s) @ 30
FPS,
RGB565

Data rate
(MB/s) @ 30
FPS,
RGB888

Data rate
(MB/s) @ 60
FPS,
RGB565

Data rate
(MB/s) @ 60
FPS,
RGB888

320 x 240 4.4 6.6 8.8 13.2

640 x 480 17.6 26.4 35.2 52.7

1280 x 720 52.7 79.1 105.5 158.2

1920 x 1080 118.7 178.0 237.3 356.0

Notes: RGB565 is 2 bytes per pixel. RGB888 is 3 bytes per pixel.

 47

Table 1B: FPS and Latency of Uncompressed Video on Peripheral Buses

Type Year
Max
data rate
(MB/s)

Max FPS
@
640x480,
RGB888

Transfer
time
(ms) @
640x480,
RGB888

Max FPS
@
1920x1080,
RGB888

Transfer
time
(ms) @
1920x1080,
RGB888

USB 1.1 1996 1.5 1.7 585.9 0.3 3955.1

USB 2.0 2000 60.0 68.2 14.6 10.1 98.9

FireWire

800
2002 98.3 111.8 8.9 16.6 60.3

Gigabit

Ethernet
1999 125.0 142.2 7.0 21.1 47.5

USB 3.0 2010 625.0 711.1 1.4 105.3 9.5

Thun-

derbolt
2011 2,500.0 2,844.4 0.3 421.4 2.4

100

Gigabit

Ethernet

2008 12,500.0 14,222.2 0.1 2107.0 0.5

Note: Transfer time is per frame; thus, it is the minimum contribution to latency.

 48

Note that uncompressed video is the norm for webcams. However,

high-end models may feature H.264 encoding, which can yield excellent

image quality at compression ratios of 50:1 (Kane Computing,

“Compression Ratio Rules of Thumb”). For AR purposes, compression

may be counterproductive: the tracker probably cannot read compressed

video without it being decompressed again.

Depending on the camera, the programmer may be able to configure

the captured resolution and maximum frame rate. However, little else can

be done in software to control the costs of capturing video frames and

sending them via the peripheral bus. Optimization efforts must focus on

subsequent transfers and transformations instead. A typical application

loop might interleave manipulations to camera-derived data and purely

virtual data, as follows:

1. Capture the video frame, as previously discussed. Depending on

the system and the use of its graphics libraries, the captured video

frame may be stored in main memory, GPU memory, or both.

2. Analyze the video frame (in comparison to reference geometry and

textures) to obtain tracking results. This step is processor-intensive

because it involves many transformations of many vertices and

pixels.

3. Update the 3D (virtual) scene based on the tracking results.

Typically, few 3D transformations are directly dictated by the

tracking results and thus this step is inexpensive.

4. Update the 3D scene again according to its own dynamics (ex. AI,

physics, kinematics). This step is processor-intensive if there are

many interacting entities.

 49

5. Render the video frame. This step is bus-intensive if the approaches

to video capture and rendering dictate that the frame must now be

moved between different memory regions (i.e. main memory v.

GPU memory). It is not processor-intensive unless complex filters

are applied to the video (ex. to make it look more similar to the

purely virtual content).

6. Render the 3D scene. This step is processor-intensive because it

involves many transformations of many vertices and pixels. It is not

bus-intensive as long as resources (ex. geometry, textures) are

reused between frames.

7. Blend the 3D rendering and video rendering—if the video

rendering was not already the 3D rendering’s background during

(6). This step is bus-intensive if the two renderings are in different

memory regions (i.e. main memory v. graphics memory). It may be

somewhat processor-intensive if it involves blending many pixels

with transparency.

8. Display the rendered, composite scene. Like video capture, this

step is bus-intensive and not programmatically controllable.

Depending on the user’s monitor interface (ex. DVI, HDMI,

DisplayPort) and resolution settings, transfer times of about 5 ms to

10 ms can be expected. At non-native resolutions, LCD monitors

take additional time to interpolate between input pixels and output

dots. Combined transfer and interpolation time can be as much as

50 ms for some setups (Leadbetter, 2009).

To summarize, we find high, programmatically controllable costs in

(2), (4), (6), and perhaps either (5) or (7). Our focus in this thesis is on

steps (2) to (3), which concern tracking, and (5) to (7), which concern

 50

rendering. Step (4), which concerns dynamics, is not addressed further,

as the topic of optimizing dynamics is broad, somewhat application-

specific, and not necessarily specific to AR.

As an alternative to interleaved, sequential execution, the processing of

camera-derived data and purely virtual data can run in two parallel

streams, potentially leveraging multiple processors more efficiently. These

streams must synchronize at (3) and (7). However, it is not strictly

necessary that synchronizations occur on every iteration. One stream’s

latency and frame rate can be compromised to improve the other’s. For

example, video capture and tracking could run at 30 FPS while dynamics

and rendering ran at 60 FPS (or vice versa).

Given the wide variety of contributing factors, efficiency is difficult to

predict from a priori knowledge alone. That is to say, in high-level

programming, precise efficiency characteristics are not obvious from an

inspection of source code and hardware specifications. Rather, efficiency

must be measured at runtime, preferably in an itemized, modular fashion

such that shortcomings can be traced to one factor or another and

remedied in future revisions. We now turn our attention to these practical

issues of measurement.

2.5.2: Measurement Techniques

The developer should test software’s efficiency on systems that are

deemed typical of the target audience. Let us assume that the target

audience for Web AR applications is similar to the target audience for

Web games. According to one platform’s recent user survey (Unity, “Web

Player Hardware Statistics - 2012 Q2”), the typical Web gamer’s system

runs Windows 7 (51.0%) and has an Intel Core 2 CPU (33.3%), 2 GB

 51

RAM (33.5%), Intel GMA 950 GPU (14.4%), 64 MB VRAM (32.2%),

and 1366x768 desktop resolution (23.0%). At this desktop resolution, it is

unlikely that a 1280x720 video would be visible all at once in a windowed

Web application. Thus, 640x480 is more plausible as a “typical” video

resolution that an application developer would support for Web AR.

After choosing a testbed, the developer should itemize costs. To

measure the time cost of a block of code, the developer can

programmatically start a timer at the block’s beginning and stop the timer

at the block’s end. We may say that the block’s time use is a transparent

cost, since it is so readily measured. However, programmatic timers

cannot readily capture the full time cost of a process that includes

input/output (I/O) events. For such a process, some costs are hidden in

software and hardware that are beyond the programmer’s sandbox; some

are hidden in the non-computing world, where the user moves and sees.

We may say that time use in these contexts is an opaque cost.

An I/O process’s total latency or total time cost (transparent plus

opaque) can be estimated from a video recording of the user and I/O

devices. A certain frame may be deemed to show an input event and

another frame the corresponding output event. The interval between

these two frames is the estimated latency. Such an approach has become

popular in the gaming press and game development industry (West, 2008;

Leadbetter, 2009). The estimate’s precision is limited by the recording’s

frame rate. Its accuracy is limited by the difficulty of discretizing an input

event: it will take several frames for a user to execute a button-press, let

alone a gesture with an AR marker.

If we are willing to artificially omit some opaque costs, we may

discretize input events more precisely and more accurately by means of

 52

proxy. An input proxy is not regular input; rather, it is a stored or

programmatically generated data stream that is treated as if it were

regular input. For example, a video file or a live rendering could be a

proxy for live camera input. The proxy’s event timings are knowable

because its data can be recorded in laboratory conditions or programmed

deterministically.

For AR, an input proxy is especially useful in measuring latency

between capturing a physical marker’s appearance, motion, or

disappearance and making the corresponding update to the virtual

marker. These latencies affect the perceived responsiveness of the AR

interface, in a way that may be somewhat independent of frame rate.

Without use of an input proxy, another way to estimate these latencies

would be to include (as a baseline) a simple tracker that is highly tailored

to the marker and viewing conditions. For example, the coordinates of a

yellow tennis ball in a blue scene should be determined quickly by a

tracker that seeks a yellow region and considers its radius.

For applications that are bottlenecked by input, an estimate of opaque

costs can be obtained by measuring frame-to-frame time in a minimal

application that does little but gather input. For AR, this baseline

application could be a live camera feed, a readout of timings, and nothing

else.

 53

2.6: Web Platforms

2.6.1: System Access

Traditionally, client-side Web platforms have placed major restrictions

on system access. Some of these restrictions have made CV and AR either

infeasible or inefficient.

Table 2: Browser Support for WebGL

Browser Supports WebGL?

Internet Explorer 6+
Only via third-party add-on: Chrome

Frame or IEWebGL

Firefox 4.0+ Yes

Google Chrome 9+

Yes—but with significant platform

incompatibilities, including: Windows

XP; ATI on Linux

Safari 5.1+ Yes—but disabled by default

Opera 12+ Yes

Mobile Safari No

Google Android Depends on vendor’s implementation

Internet Explorer Mobile No

Sources: Google, “Google Chrome Frame”; Google, “WebGL and 3D graphics”;

IEWebGL, “IEWebGL - WebGL for Internet Explorer”; Opera, “An

introduction to WebGL”

JavaScript, as implemented in Web browsers, does not provide access

to multiple CPU cores. Camera access is just starting to gain support in

 54

JavaScript: a draft specification called WebRTC is implemented in

Firefox 17 (a development version), Chrome 21, and Opera 12 (Bidelman,

2012). The GPU may or may not be accessible from JavaScript via a

standard called WebGL. WebGL’s availability depends on the user’s

platform, browser, add-ons, and settings (Table 2).

Compared to JavaScript, plugin-based Web platforms are generally

less restrictive, at least when comparing recent stable versions (Table 3).

Most of these platforms can be characterized as either general-purpose

application runtimes or game engines. General-purpose application

runtimes tend to give client code full access to the system’s

multiprocessing capabilities. Game engines, on the other hand, tend to

multiprocess certain functionality internally (ex. rendering, physics),

while prescribing single-threaded client code. The most popular plugin

platform, Flash, has mixed characteristics. It has traditionally prescribed

single-threaded ActionScript code (with the possibility of hardware-

accelerated rendering behind the scenes), yet in recent years it has added

several programmable forms of multiprocessing: Pixel Bender shaders;

AGAL shaders; and, most recently, ActionScript Workers. (See “2.6.3:

Focus on Flash”.) Broadly, Flash can be characterized as a general-

purpose application runtime with roots as a scriptable media player.

As an alternative to building an application atop an existing plugin

platform, developers can roll their own plugin application or platform

using ActiveX for Internet Explorer (Microsoft, “ActiveX Controls”),

NPAPI for other browsers (Mozilla, “Gecko Plugin API Reference”), or

higher-level wrappers that may bridge the two (Mozilla, “External

resources for plugin creation”). Broadly, what can be achieved in writing

a desktop application or runtime, can be achieved in writing a plugin.

 55

However, the challenges of creating an original plugin platform—and

developer and user communities around it—are beyond the scope of this

thesis.

Table 3: Plugin-based Web Platforms that Support Camera Access and
Multiprocessing

Plugin Intent
Systems
with camera
access

Multiprocessing capabilities

Flash 10.0+
General-

purpose

Windows,

Mac, Linux

Accelerated 2D rendering.

General-purpose

multiprocessing is feasible

using Pixel Bender shaders

but not ActionScript alone.

Flash 10.2+
General-

purpose

Windows,

Mac, Linux
Accelerated video decoding.

Flash 11.0+
General-

purpose

Windows,

Mac, Linux

(Not applicable to Linux.)

Accelerated 3D rendering.

General-purpose

multiprocessing is feasible

using AGAL or Pixel Bender

3D shaders but not

ActionScript alone.

Flash 11.4+
General-

purpose

Windows,

Mac

General-purpose

multiprocessing is feasible

using ActionScript Workers.

continued on next page

 56

continued from previous page

Plugin Intent
Systems
with camera
access

Multiprocessing capabilities

Java
General-

purpose

Windows,

Mac, Linux
Unrestricted.

Silverlight 4.0+
General-

purpose

Windows,

Mac
Unrestricted.

Moonlight 4.0+

(in preview

release)

General-

purpose
Linux Unrestricted.

Shockwave

11.5.8+
Game engine

Windows,

Mac

Superset of Flash 10.0

capabilities, as Shockwave

can embed Flash 10.0

bytecode. Also, has its own

route for accelerated

rendering, physics, etc.

Unity Web

Player 3.5+
Game engine

Windows,

Mac

Unrestricted but, generally,

the Unity API is not thread-

safe. Accelerated rendering,

physics, etc.

ShiVa3D 1.9+ Game engine
Windows,

Mac, Linux

Via C++ plugins (1.9+),

unrestricted. Via Lua scripts,

general-purpose

multiprocessing is infeasible.

Accelerated rendering,

physics, etc.

continued on next page

 57

continued from previous page

Plugin Intent
Systems
with camera
access

Multiprocessing capabilities

Panda3D Game engine
Windows,

Mac, Linux

Unrestricted. Includes

multiprocessing extensions to

Python. Accelerated

rendering, physics, etc. Client

code, culling, drawing

optionally run parallel to each

other.

D’Fusion AR engine
Windows,

Mac

Accelerated rendering.

Maybe accelerated pixel

buffer manipulations.

General-purpose

multiprocessing is infeasible

via Lua scripts; no other kind

of client code allowed.

Sources: Adobe, “ActionScript Technology Center”; Adobe, “Director 11.5 Help”;

Adobe, “Flash Player Release Notes”; Adobe, “How Stage3D Works”;

Adobe, “Pixel Bender Technology Center”; Adobe, “What is AGAL”; Total

Immersion, “Augmented Reality Software and Solutions by Total

Immersion | Augmenting Your Reality”; Rose, 2011; Microsoft, “Silverlight”;

Novell, “Moonlight”; Oracle, “Lesson: Java Applets”; Panda3D,

“Documentation”; ShiVa3D, “Documentation”; ShiVa3D, “Documentation”;

Unity3D, “Documentation”.

 58

2.6.2: Adoption

General-purpose plugin platforms, including their recent versions, are

quite widely adopted, though some are in decline (Table 4). Special-

purpose plugin platforms, such as game engines, do not exhibit the same

potential in terms of market penetration. Within the latter category,

Shockwave (Table 4) remains far more widely adopted than the

alternatives. For comparison, consider that Unity Web Player had 113.3

million cumulative installations between its 2006 initial release and May

2012 (Unity, “Fast Facts”). Of this number, about 6 million or 5.3%

would have been downloads by developers (Unity, 2012, April 9),

suggesting that on average each developer has converted only 19 users to

the Unity Web Player. For other vendors’ special-purpose plugins, data

are completely unavailable—in which case, the market penetration is

presumably negligible.

Some special-purpose runtimes have been ported to run atop Flash,

rather than requiring a dedicated Web plugin. Flash deployment targets

are now offered by Unity and by Unreal Engine (a game engine geared

toward large studios).

A plugin’s market penetration is relevant to the initial user experience

of any application targeting that plugin. A user who does not already have

the plugin might not realize it is required, might not wish to install it, or

might fail to install and run it despite trying. Even on successfully

installing the plugin, the user might feel inconvenienced and be negatively

predisposed toward the app. For these reasons, the installation experience

becomes an increasingly crucial point of comparison where market

penetration is lower. Factors affecting the installation experience may

include: the size and hosting of the plugin download; system requirements;

 59

the inclusion of any third-party software that might be perceived as

adware; automated update checking; and the need for any restart/refresh

steps that may cause the user to lose the webpage (Helgason, 2008).

Table 4: Market Penetration of Selected Plugins

Plugin
Market penetration,
October 2011

Market
penetration,
April 2012

Flash 11.0+ 23.36% 68.86%

Flash 10.0+ 93.89% 94.39%

Java, any version 76.57% 68.70%

Silverlight 4.0+ 63.33% 59.16%

Shockwave 11.0+ 26.54% 26.42%

Source: StatOwl.com, “Statistical analysis and market research of Internet usage

trends”.

High market penetration does not necessarily imply that users are

proactive in installing the plugin and seeking content that uses it. The

plugin might come preinstalled on the user’s system or it might be

suggested to the user by websites that require it.

Another factor in initial user experience is loading time, which depends

partly on the plugin (and its standard libraries) and partly on the

application. Anecdotally, Flash and Silverlight offer much faster loading

times than Java and Shockwave do. However, no benchmarks of loading

times seem to be available.

 60

2.6.3: Performance

For performance benchmarks more generally, Ernst (2011) is an

excellent source, offering tests of JavaScript, Flash, Java, Silverlight, and

their standard libraries. However, even his work gives short shrift to the

multiprocessing capabilities of certain platforms—suggesting the extent to

which these capabilities remain immature or just underexploited. For

example, Flash’s and JavaScript’s 3D acceleration capabilities receive

mention but not testing, due to their unstable implementations as of 2010-

2011. Meanwhile, Flash’s shader-based multiprocessing capabilities,

despite being more mature, receive no mention at all.

Subject to such limitations, Ernst finds that there is no clear, cross-

category winner of his benchmarks. Java and Silverlight tend to lead in

numerical (number-crunching) benchmarks, while Flash holds the

advantage in 2D graphics and string manipulations, for example.

Moreover, Ernst finds that some performance advantage may be gainable

by mixing platforms in one application. He advocates the use of

Flash/JavaScript intercommunication, with JavaScript hopefully

compensating for weak numerical performance in single-threaded Flash

client code. Admittedly, this approach is fragile: depending on the

browser’s JavaScript implementation and security settings, the

intercommunication may adversely affect performance or fail (Ernst

2011).

2.6.4: Focus on Flash

Developments in the last three versions of the Flash platform are

especially important to our research. Existing AR and 3D rendering

libraries have emerged at various stages in the platform’s evolution, so

 61

multiple Flash versions are relevant to an understanding of the libraries’

design. Where not otherwise noted, our remarks on Flash are also

applicable to the corresponding versions of Adobe Integrated Runtime

(AIR), the non-Web platform that can typically be targeted from the same

codebase as Flash.

Table 5: Timeline of Recent Flash and AIR Versions

Date Flash version AIR version
Changes in
platform support

2012, August 11.4 3.4

2012, May 11.3 3.3 Flash drops Linux

2012, March 11.2 3.2
Flash drops

Android

2012

LG Smart TVs

released with

support for AIR

3.0

2011, November 11.1 3.1

2011, October 11.0 3.0

2011, June 2.7 AIR drops Linux

2011, May 10.3

2011, April

BlackBerry Tablet

OS released with

support for Flash

and AIR

continued on next page

 62

continued from previous page

Date Flash version AIR version
Changes in
platform support

2011, March AIR adds iOS

2011, February 10.2 2.6

2011, January
Flash adds

Android

2011

Samsung Smart

TVs released with

support for AIR

2.5

2010, October 2.5 AIR adds Android

2010, June 10.1

2009, November 2.0

2008, November 1.5

2008, October 10.0

2008, June 1.1

2008, February 1.0

2007, December 9 Update 3 1.0 Public Beta 3

(Windows, Mac,

and Linux already

supported)

Sources: Adobe, “Flash Player Release Notes”; Adobe, “Adobe AIR Release

Notes”; Magni, 2012; Samsung, 2011.

Flash 11.4 (the latest version) targets Windows and Mac. AIR 3.4 (the

latest version) additionally targets iOS and Android. Previous versions of

 63

Flash and AIR have targeted other platforms (Table 5), though not

necessarily with the same features as on Windows and Mac. For example,

Flash for Android lacked camera access, though AIR for Android has it

(Adobe, “Flash Player Release Notes”; Adobe, “Adobe AIR Release

Notes”). BlackBerry Tablet OS and certain television sets (Magni, 2012;

Samsung, 2011) have vendor-supported versions of Flash and AIR that

lag behind the official Adobe versions.

Flash applications are able to run automatically when a user with the

Flash plugin visits a webpage. To reduce the risks associated with auto-

running Web applications, Flash provides certain privacy and security

features (Adobe, “Flash Player security and privacy”). When an

application wants to access the user’s camera or microphone, the user is

prompted for permission. This permission is per-application and,

normally, per-use. Cross-domain scripting is prohibited, such that one

Flash application cannot launch another, remote Flash application.

Access to the user’s local filesystem is prohibited, except for locally hosted

applications that are not networked. Cookie-like data called local shared

objects (LSOs) may be stored on the user’s machine but, since Flash 10.1,

this functionality is disabled when Internet Explorer, Firefox, Chrome, or

Safari is in private browsing mode. Compared to Flash, AIR has looser

security restrictions but AIR applications do not run automatically; they

must be installed as regular desktop applications.

Despite the limitations imposed for privacy and security, Flash

supports peer-to-peer networking and thus is a viable platform for a broad

range of ubiquitous applications. (See “2.4.2: Relevance to an AR

Framework”.) Adobe’s official peer-to-peer service, available in Flash 10

and later, is called Cirrus (Adobe, “Cirrus”). Under Cirrus, an Adobe

 64

server helps peers discover each other and thereafter peers may

communicate directly, exchanging arbitrary data. These communications

use Adobe’s Real-Time Media Flow Protocol (RTMFP), which is

supposed to offer low latency, high reliability, and strong encryption

(Adobe, “RTMFP FAQ”).

For Flash 9 and later, applications are programmed primarily in

ActionScript 3.0 (AS3). ActionScript 3 is an object-oriented, event-

driven, reflective, imperative language, influenced by Java and

JavaScript. ActionScript 3 compiles to bytecode and, when used

reflectively, may emit bytecode or JavaScript. Types in AS3 may be

either static or dynamic. They may not be generic (except in the case of

vectors), nor may they overload the equality operator. Functions are first-

class citizens (Adobe, “ActionScript Technology Center”).

The standard libraries for AS3 emphasize GUIs, media

capture/playback, and 2D vector graphics. An AS3 application is

structured as a scene graph: a hierarchy of entities with spatial

coordinates (in this case, pixels coordinates). Each node in the graph may

dispatch and receive events. The scene graph may be laid out in MXML,

a markup language that is interoperable with AS3.

Flash 9 and later also include experimental (prerelease) support for

compiled C and C++. The Flash toolchain for these languages is known as

Alchemy. Recent prerelease versions of Alchemy are available only to

selected developers (Adobe, “Alchemy”).

Adobe acknowledges that in Flash 10 and earlier, the platform was

incapable of supporting high-performance 3D rendering. The company

suggests that with “acceptable performance”, Flash 10 applications could

render at most 4,000 triangles per frame. Furthermore, depth sorting was

 65

only feasible per-triangle rather than per-pixel; thus, portions of triangles

would sometimes appear to be misplaced (Adobe, “How Stage3D

Works”) (Figure 7).

Figure 7: Depth Sorting: Per-pixel v. Per-triangle

Left: Per-pixel depth sorting, yielding the correct rendering of four cubes that are

close to each other. Right: Per-triangle depth sorting, yielding an incorrect

rendering. For performance reasons, implementations of depth sorting targeting

Flash 10 are typically per-triangle (Adobe, “How Stage3D Works”; Chúťka, 2010).

The screenshots are from Chúťka (2010).

An API called Stage is Flash’s default rendering pipeline—and was,

until recently, its only rendering pipeline. Stage is highly portable: all

features can run on one CPU core—and many features can only run in this

manner. By the same token, Stage is suboptimal for anything but low-end

hardware. However, since Flash 9, Adobe has been adding platform-

specific optimizations to Stage, such that some functionality has become

well optimized, at least relative to other Web-based alternatives (Ernst,

 66

2011). Flash Player 9 Update 3 introduced optimizations for multicore

CPUs, with the effect of improving the speed of built-in rendering

functions for vectors, bitmaps, filters, and video (Adobe, “Flash Player

Release Notes”; Ulloa, June 14, 2007). Video decoding is GPU-

accelerated since Flash 10.1 (Adobe, “Flash Player Release Notes”).

Flash 10.0 enabled developers to program their own optimizations for

multicore CPUs via the Pixel Bender shader language, which parallelizes

vector operations (Adobe, “Flash Player Release Notes”; Uro, 2008).

Since Flash 11.4, clients can also do CPU multiprocessing in ActionScript

by programmatically launching multiple “Workers” or virtual instances of

the Flash runtime, each with its own thread of execution. Workers have

high overhead cost but may cheaply communicate with each other via

shared memory or message passing (Adobe, “Worker”).

Starting in Flash 10.2, applications may be able to offload streaming

video rendering to the GPU via an API called StageVideo. StageVideo is

always rendered behind Stage—a suitable ordering for “the most common

use case, which is a video player application” (Adobe, “Getting started

with stage video”). There may be zero or more StageVideos available to

an application, depending on the underlying platform. As each

StageVideo is full-window and does not support transparency or other

blending (Adobe, “Getting started with stage video”), the use case for

multiple StageVideos would seem to be limited to multi-window or multi-

display AIR applications.

For reasons of efficiency, previous versions of Flash made the contents

of StageVideo write-only: the frames of video data could not be read by

client code (Adobe, “Getting started with stage video”). Moreover,

StageVideo did not support camera input. Without camera input or

 67

readable video frames, StageVideo was doubly ill-suited to the needs of

AR. However, a solution was previewed in a beta version of Flash in

October 2011 (Imbert, 2011). Ten months later, StageVideo gained

client-readable camera input in the release version of Flash 11.4.

Figure 8: Ordering of Stages in Flash 11

At the front (nearest the viewer), there is exactly one Stage, rendered via the old,

CPU-bound, programmable pipeline. Behind it, there are zero or more

Stage3Ds, rendered via the new, GPU-accelerated, programmable pipeline. At

the rear, there are zero or more (though typically one) StageVideos, rendered via

another GPU-accelerated pipeline, which is fixed-function. The diagram is from

Adobe (“How Stage3D Works”).

Since Flash 11.0, the original Stage and StageVideo are supplemented

by an alternative called Stage3D (formerly, Molehill), which is GPU-

accelerated. Stage3D supports parallel programming on the GPU via

Adobe Graphics Assembly Language (AGAL) or the higher-level Pixel

Bender 3D (PB3D) language, though the future of the latter language is

uncertain (Adobe, “What is AGAL”; Adobe, “Preview 3 and the future of

PB3D”). There may be zero or more Stage3Ds available to an

 68

application, depending on the underlying platform (Adobe, “How

Stage3D Works”). Windows and Mac can use Stage3D since Flash 11.0,

while iOS and Android AIR applications can use it since Flash 11.2

(Adobe, “Flash Player Release Notes”; Adobe, “Adobe AIR release

notes”). Stage3Ds are sandwiched between the Stage and StageVideo

(Figure 8) (Adobe, “How Stage3D Works”). Stage3D does not yet

support background transparency so if one Stage3D is visible, it obscures

further-back Stage3Ds and StageVideo. Background transparency for

Stage3D was previewed in a beta version of Flash in summer 2011.

However, there is no news about further development of this feature.

Stage3D does not have any functionality for camera input or streaming

video rendering. Therefore, in itself, Stage3D is an insufficient canvas for

AR. To use Flash for GPU-accelerated 3D rendering in front of live

video, one must make use of another graphics pipeline as well. Two

approaches are feasible:

1. Marshall camera frames from Stage to Stage3D, and render them

on Stage3D as a textured plane behind the virtual scene.

2. Marshall the virtual scene’s frames from Stage3D to Stage, and

render them as a bitmap in front of a live video that resides on either

Stage or StageVideo.

Neither approach is ideal: it would be more efficient to have camera input

stored to a Stage3D texture in the first place, or to have a transparent

background in Stage3D so that StageVideo could show through. Thus,

compositing is problematic for AR in Flash.

 69

Chapter 3: Exploratory Work

The original motivation for this thesis grew out of the author’s work at

Ad-Dispatch, Inc. (Dartmouth, NS), an AR company, in the period of

July 2011 to March 2012. During this time, Ad-Dispatch saw the need to

transition away from its main third-party software dependency, which,

though efficient, was expensive, fragile, and troublesome to Web users.

The company sought alternatives that would be equally efficient but more

ubiquitous: practical even for low-budget projects, varying host

environments, and novice users. For certain platforms, Ad-Dispatch

found an off-the-shelf, integrated solution to its problem. For other

platforms, including the Web, there was no such readymade engine,

though there were relevant off-the-shelf components.

As part of his employment, the author integrated available AR,

rendering, media, and GUI components in Flash (plus AIR) to test several

alternative concepts of an AR engine targeting the Web (plus other

platforms). The results of these efforts are detailed in the next section,

“3.1: At Ad-Dispatch”. Broadly, the concepts proved functional and

deployable, though efficiency and workflow (particularly, turnaround

time for testing art assets) were problematic to varying extents. Ad-

Dispatch suspended its plans to develop an engine in-house.

Thereafter, the author entered into an informal collaboration with

Bernhard Jung, one of the developers of flare*nft, to start assessing

another round of integration concepts, with an emphasis on reducing

marshalling costs, utilizing the GPU via thinner wrappers, and supporting

asset imports more simply. The results of this dialogue are detailed in the

“Refinements” section. Broadly, the consensus was that the new approach

yielded improvements in efficiency and workflow, relative to the author’s

 70

and Jung’s previous models. Further validating the use of thin wrappers,

the author tried unsuccessfully to attain the same performance when

adding AR atop an existing, high-level game engine.

There are two takeaway lessons from this exploratory work. First, the

combination of ubiquity and efficiency is critical in an industry-grade AR

engine—and finding or creating this combination is nontrivial. Second,

Flash (or AIR) solutions can potentially deliver this combination,

provided that care is taken to use the strengths and avoid the weaknesses

of the platform’s multiple graphics pipelines. Particularly, complications

arise in sharing data among components. These lessons influence the

architecture and choice of dependencies that we discuss in the next

chapter, “Design and Contribution”.

3.1: At Ad-Dispatch

3.1.1: Objectives and Problems

Ad-Dispatch specializes in rapid development of multi-platform NFT

applications with 3D content. The purpose of its applications is to add

interactive value to clients’ physical products, advertisements, and venues.

Users include media technicians, commercial salespeople, retail

salespeople, and consumers.

Within this business context, reusable application frameworks (both

code and interface principles) are important for the sake of meeting the

short timelines while still ensuring robustness, responsiveness, usability,

and polish for the multiple platforms, contexts, and audiences. Of course,

not all application frameworks fulfill these needs equally well.

 71

As of 2011, Ad-Dispatch was heavily invested in the D’Fusion SDK

but was encountering problems with this framework. First, D’Fusion

carried high recurring costs per application and per revision of an

application. This cost structure was prohibitive to many of the small-scale

and recurring contracts that would have suited Ad-Dispatch’s specialty in

rapid development. Second, D’Fusion does not truly provide uniform

development and deployment experiences across the supported platforms.

For D’Fusion Web Player, many end users complained of installation

failures. On iOS and Android, the application developer must write glue

code to manage D’Fusion’s proprietary runtime. The vendor-provided

samples of glue code proved to be unreliable (in the author’s attempts to

adapt them)—suffering from memory leaks, camera resource leaks, and

graphics resource leaks in certain situations where the runtime needed to

be paused and resumed.

The residual appeal of D’Fusion lay in its convenient visual toolchain,

and its consistent graphical features and performance across Web and

desktop platforms. Ad-Dispatch’s artists, in particular, were satisfied with

D’Fusion because it could reliably import their 3D animations and show

previews that corresponded well to runtime results (at least on the Web

and desktops).

 72

To understand the importance of previewing 3D animations early and

often, let us look at the typcial steps in Ad-Dispatch’s workflow:

1. Managers and salespeople establish project specifications in

consultation with clients. These specifications are then

communicated to artists and programmers.

2. Artists create content while programmers work on implementing

other aspects of the application.

3. Artists send content to programmers, who attempt to incorporate

the content into the application. The application or an in-editor

simulation of it may be shown to artists for review. If there are

problems at this stage and there does not seem to be any convenient

programmatic solution, programmers and artists meet to discuss

possible causes and solutions. These discussions may result in

rework for the artists, in which case the workflow returns to (2).

4. A demo build of the application is sent to the client for review. This

demo may be work-in-progress. The client may request changes.

Depending on the client’s requests and whether the demo is work-

in-progress, the workflow might return to (1) or (2).

5. A client-approved application is tested by various staff and deployed

by programmers.

If timelines for incorporating content are not met, then artists and

programmers are tied up in the effort to resolve the technical problems,

while managers and salespeople may be tied up in client-relations

problems because there is no new demo content for the client to see.

Ad-Dispatch decided to try to replace D’Fusion with one or more

alternative frameworks, which would need to be less costly and more

robust but would ideally offer the same type of workflow, and at least

 73

equal graphical features and performance. A comparison of mobile

alternatives led to the adoption of Vuforia plus Unity as an obvious choice

for iOS and Android projects, with Vuforia providing the NFT

functionality and Unity providing the game engine functionality and visual

toolchain. A comparison of Web and desktop alternatives did not produce

any obvious match to the criteria, so the author was assigned to

investigate further and to work on developing better matches.

3.1.2: Approaches and Outcomes

At different times, the author explored possible Flash 10, Flash 11, and

equivalent AIR solutions using flare*nft. As discussed in “2.3.3:

Frameworks”, flare*nft belongs to the same evolutionary group as

Vuforia, so the choice of flare*nft would facilitate cross-platform feature

parity for Ad-Dispatch. The scope of the explorations included

identifying integration issues among the platform’s standard libraries,

various third-party rendering libraries, and flare*nft itself.

Performance profiling was done on Mac OS X 10.7, 2.4 GHz Core 2

Duo, 4 GB RAM, GeForce 320M. Functional testing was done on

multiple platforms.

One proposed approach—the most conservative—was to closely follow

flare*nft’s demo application code, which integrated the Papervision

renderer. As the pioneering 3D renderer for Flash, Papervision was first

publicly released in 2007 (Ulloa, July 7, 2007). The latest stable version,

dating to 2009, is optimized for Flash 9 (Ulloa, October 13, 2009). As

such, Papervision is highly suboptimal for today’s Flash audience. On

Flash 10.3, it was possible to produce an NFT application that ran at 12

FPS with an animated, 20,000 polygon model and 640x480 video.

 74

However, to achieve this frame rate, it was necessary to use an inaccurate

depth-sorting algorithm, which is actually the default in Papervision

(Chúťka, 2010). This option caused an inordinate amount of rework for

the animator, since the model’s geometry needed to be sliced up in unusual

ways to compensate for the algorithm’s flaws. With accurate depth-

sorting, the application ran at only 4 FPS.

Other proposed approaches involved more up-to-date renderers, such

as Away3D and Alternativa3D. These two renderers are available in both

Flash 10-optimized and Flash 11-optimized versions. Away3D is forked

from Papervision so may offer the easiest upgrade path for legacy code.

Alternativa3D is an original library with an impressive portfolio, including

Adobe’s official launch demo for Stage3D and several massively

multiplayer online games (MMOGs) (AlternativaPlatform, “Showcase”).

Approaches using either of these two renderers were not explored very

far, due to Ad-Dispatch’s concerns about the time investment that might

be required for programmers and animators to troubleshoot another new

rendering pipeline.

A final proposed approach—the most radical—was to integrate

flare*nft with Unity via interprocess communication, such that artists and

front-end developers would only need to deal with the known Unity

workflow. (This effort predated Unity’s built-in support for targeting

Flash). This approach was explored mainly with respect to AIR

deployment for kiosks running Windows or Mac. Testing revealed an

AIR incompatibility in flare*nft, so an AIR-compatible custom version

was obtained from the vendor. An open-source demo application called

UnityFlashCam (Rooney, 2011) was studied as an example of marshalling

video frames from AIR’s input to Unity’s output via asynchronous socket

 75

communication. Extending and optimizing this example, the author’s

demo marshalled both video frames and NFT pose estimates from AIR to

Unity. The asynchronous communication had the desirable effect of

decoupling the camera/NFT frame rate in Flash from the faster rendering

frame rate in Unity, such that the animated foreground did not skip

frames even when the video background and tracking did. On AIR 3.1

and Unity 3.4, rendering at 60 FPS was possible for millions of polygons,

while a 320x240 live video ran at high frame rates in the background.

However, video lag was somewhat noticeable, and at higher video

resolutions the background’s frame rate deteriorated, becoming unusable

in the case of HD video. Ultimately, the bottleneck was not the socket

communication (the marshalling between application contexts) but rather

the upload of video frames from main memory to GPU memory (the

marshalling between hardware contexts).

The company did not reach any decision on its technological strategy

for the Web and desktop-based kiosks. For the short term, flare*nft plus

Papervision saw small-scale use, while D’Fusion continued to be the

mainstay. The investigation of other alternatives was shelved in

December 2011, pending possible new information in Q1 2012 about the

flare*nft roadmap, Unity roadmap, and business opportunities for the

Web and kiosks. Ultimately, in that quarter, no new information proved

conclusive with respect to Ad-Dispatch’s criteria.

3.2: Refinements

The idea of integrating flare*nft with an up-to-date, Flash 11 renderer

continued to seem plausible, except that the timeline differed from the

expectations in an application development company specializing in rapid

 76

turnaround. The author undertook to develop an integration demo for his

own research purposes, and then validate this work in consultation with

Bernhard Jung, one of flare*nft’s developers.

The integration demo is simply called FlareNFTAlternativa3D. It is an

optimized and parameterized port of flare*nft’s “Austrian Cubes” demo

(which integrates flare*nft and Papervision). “Austrian Cubes” uses three

marker images: of Austria, Vienna, and Graz. When the user holds a

marker in front of the webcam, a cube bearing the flag or crest of the

given place is rendered over the marker in the video feed. On two of the

markers, certain regions are enabled as virtual buttons that trigger a

logging function when physically touched (or when otherwise occluded).

To exercise the superior rendering efficiency of Alternativa3D, the port

uses additional 3D content: atop each cube sits a 13,470-triangle apple.2

The port’s virtual buttons are not responsible for logging but instead for

causing certain apples to disappear/reappear, or stop/start rotating.

Four main problems are addressed in the optimized port of “Austrian

Cubes”. These problems relate to:

1. rendering the 3D content in front of the video;

2. calibrating the virtual camera’s perspective to match the video

camera’s supposed perspective;

3. sanity-checking assumptions about the video camera’s perspective;

4. supporting HD video without additional burden on the tracking

algorithm.

2 The apple model is courtesy of Teinye Horsfall at WireCASE Ltd
(http://www.wirecase.com).

 77

Some elements of these problems arise from shortcomings in the original

(Papervision) “Austrian Cubes”; others arise from differences between

Papervision and Alternativa3D, or between Stage and Stage3D. The

particular complications and solutions are as follows.

First, like the Flash 11 platform in general, Alternativa3D suffers from

the rendering order problem described in “2.6.4: Focus on Flash”: content

that fully utilizes the GPU-accelerated Stage3D pipeline cannot be

rendered in front of content that fully utilizes the CPU-bound Stage

pipeline, where camera input resides. Moreover, Alternativa3D does not

offer any built-in functionality for streaming video frames from Stage to

Stage3D. However, the opposite route is well supported: Alternativa3D

can do partially GPU-accelerated rendering to bitmaps residing on

Stage—in our case, to an otherwise transparent bitmap in front of the

video. This convenient approach proved to offer good enough

performance to validate the choice of Alternativa3D over Papervision

(Table Series 6).

Second, flare*nft assumes that certain values it provides will be written

to the virtual camera’s projection matrix, with the intent of matching the

video camera’s perspective. Papervision permits direct editing of the

projection matrix, while Alternativa3D instead provides high-level

functions that abstract the editing of the the projection matrix. To

determine the correspondence between the raw matrix exposed by

flare*nft and the abstractions exposed by Alternativa3D, it was necessary

to reverse engineer the derivation of each, mostly via black-box testing.

(Alternativa3D was closed-source at this time, though now it is open-

source.) Notable parameters of flare*nft’s projection matrix derivation

are described below in relation to the third problem. A notable parameter

 78

of Alternativa3D’s projection matrix derivation is documented as “fov” or

“Field of view” (AlternativaPlatform, “Camera3D - API Documentation”)

but more precisely it represents diagonal field of view. This meaning was

unexpected because OpenGL and Direct3D use vertical field of view

(OpenGL, “gluPerspective”; Microsoft, “D3DXMatrixPerspectiveFovLH

function”).

Third, flare*nft relies on the video camera’s optical and digital

characteristics being defined in a configuration file, in a format specified

by the ARToolKitPlus project. The required data in this config file

include the pixel dimensions of the captured video and the lens’s focal

length divided by the pixel pitch (B. Jung, personal communication,

December 28, 2011; Christian Doppler Laboratory, “ARToolKitPlus”).

The latter datum relies on a priori knowledge of the video camera’s

engineering specs. As such, the true value is unknowable except in

controlled setups such as kiosks. The original “Austrian Cubes”

invariably uses a configuration that represents a 320x240 video feed with

a 72° diagonal field of view (medium-wide, equivalent to a 30mm focal

length in 35mm photography). Testing revealed that flare*nft’s tracking

accuracy degrades drastically as the video feed’s actual aspect ratio

diverges from the configuration. FlareNFTAlternativa3D addresses this

problem by choosing among multiple config files based on runtime

measurements of the camera’s aspect ratio. Generating the config file

itself at runtime would be another option. Meanwhile, misconfiguration of

focal length per pixel pitch produces lesser variances in tracking accuracy:

across the ranges tested, this misalignment was barely noticeable in

Austrian Cubes.3 FlareNFTAlternativa3D does not do any runtime

3 Other, less contrived scenarios might highlight misalignment more

 79

validation of focal length per pixel pitch. Such validation could be done

via user-assisted calibration exercises that would yield an estimate of the

video camera’s field of view.

Fourth, the cost of flare*nft’s tracking algorithm increases with the

resolution of the video being processed. Capturing HD video frames for

display may be desirable in some contexts, yet processing them with

flare*nft proved to be impractical in real time. (The original “Austrian

Cubes” does not attempt it.) FlareNFTAlternativa3D addresses this

problem by applying efficient downscaling (via the Stage pipeline) to the

video data that is sent to flare*nft (while the rendered frame is not

downscaled). Thus, the cost of the tracking algorithm remains constant

regardless of the video resolution used in capture and display.

Table Series 6 summarizes FlareNFTAlternativa3D’s performance,

varying with respect to the marker, number of virtual buttons, video input

resolution, and 3D content. “Seeking”, in the table, refers to periods

when no marker is recognized and, consequently, no 3D content is being

rendered. “Tracking” refers to periods when one of the markers is

recognized and, consequently, one of the sets of 3D content is being

rendered. “Video only” refers to the NFT algorithm and 3D rendering

both being turned off, for comparative purposes. Performance is capped

at 60 FPS due to camera hardware limitations and Flash’s synchronous

processing of the video input frames. Between seeking and tracking, the

cost of video rendering should stay constant, the cost of the NFT

algorithm should decrease, and the cost of 3D rendering should increase

clearly. There is no particular reason for a user to expect a cube to sit
dead-center atop a picture of Austria. However, in a virtual cutaway view
of a medical drawing, a user would expect a particular alignment.

 80

(from nothing). If the solution to the fourth problem is effective, the cost

of the NFT algorithm should not vary with respect to the video input

resolution. The cost of the 3D rendering may vary with respect to the

video input resolution because the resolution of the 3D rendering is

increased to match. The performance results suggest that resolution

rather than triangle count is the dominant factor in the ranges tested. The

solution to the fourth problem is validated, as performance during seeking

remains constant across several video input resolutions.

We believe that in Web use, an AR application with these performance

capabilities can meet or exceed consumer expectations. 640x480 and

1280x720 are large canvases in the context of Web design, and speeds

approaching 60 FPS or 30 FPS are typical in games. For comparison, the

popular Wii game console is limited to exactly 640x480 resolution at either

60 FPS or 30 FPS (depending on the television). One Wii developer

claims that the system is capable of rendering approximately 80,000

polygons at 60 FPS (Richardson, 2009). Again, the performance seen in

FlareNFTAlternativa3D comes close to this level.

 81

Table Series 6: Performance of FlareNFTAlternativa3D
System: Flash 11.2, Firefox 11.0, Mac OS X 10.7, MacBook Pro 13" mid-2010.

Built-in iSight camera for 320x240 and 640x480 resolutions; USB Logitech

HD Pro C920 for 1280x720 and 1920x1080 resolutions.

Table 6A: Vienna Marker, 0 Virtual Buttons

Resolution of
video input
and canvas

Triangles FPS, seeking
FPS,
tracking

FPS, video
only

320 x 240 12 23 60 60

320 x 240 13,482 23 60 60

640 x 480 12 † 23 † 50 60

640 x 480 13,482 23 44 60

1280 x 720 12 23 22 60

1280 x 720 13,482 23 19 60

1920 x 1080 12 13 9 35

1920 x 1080 13,482 13 9 35

† Baseline (original “Austrian Cubes”): 24 FPS, seeking; 60 FPS, tracking

 82

Table 6B: Austria Marker, 1 Virtual Button

Resolution of
video input
and canvas

Triangles FPS, seeking
FPS,
tracking

FPS, video
only

320 x 240 12 23 55 60

320 x 240 13,482 23 55 60

640 x 480 12 † 23 † 43 60

640 x 480 13,482 23 40 60

1280 x 720 12 23 22 60

1280 x 720 13,482 23 19 60

1920 x 1080 12 13 9 35

1920 x 1080 13,482 13 8 35

† Baseline (original “Austrian Cubes”): 24 FPS, seeking; 50 FPS, tracking

 83

Table 6C: Graz Marker, 2 Virtual Buttons

Resolution
of video
input and
canvas

Triangles
Rotating
content

FPS,
seeking

FPS,
tracking

FPS, video
only

320 x 240 12 No 23 38 60

320 x 240 13,482 No 23 37 60

320 x 240 13,482 Yes 23 37 60

640 x 480 12 No † 23 † 30 60

640 x 480 13,482 No 23 30 60

640 x 480 13,482 Yes 23 30 60

1280 x 720 12 No 23 19 60

1280 x 720 13,482 No 23 19 60

1280 x 720 13,482 Yes 23 19 60

1920 x 1080 12 No 13 9 35

1920 x 1080 13,482 No 13 8 35

1920 x 1080 13,482 Yes 13 8 35

† Baseline (original “Austrian Cubes”): 24 FPS, seeking; 40 FPS, tracking

By comparison, the original “Austrian Cubes” renders 12 triangles and

640x480 video at 40 FPS to 60 FPS (depending on the marker and

number of virtual buttons), with visible rendering flaws such as distorted

and non-antialiased textures, as well as noticeable lag in both the video

and the tracking. Based on the author’s Papervision-based work at Ad-

Dispatch, as well as comments from Adobe (“How Stage3D Works”) and

the Papervision community (Grden, 2011), it is clear that Papervision’s

 84

performance deteriorates rapidly as the triangle count increases into the

1,000s or 10,000s, especially if accurate depth sorting is used. Although

Alternativa3D seems to have greater overhead (handicapping it for small

triangle counts), it does not suffer from these rendering flaws nor from

such severe falloff of performance. Moreover, FlareNFTAlternativa3D

does not suffer from any noticeable lag when using 640x480 video, and

even when it uses 1280x720 video, its lag is less than that of the original

“Austrian Cubes” (using 640x480 video). The reduction in lag is

attributable to the efficient resampling of video frames for flare*nft’s

purposes.

For practical purposes, 1920x1080 video input proved to be unusable

on the test system. Video lag exceeded 15 seconds, even when the video

was the only content running.

The source code of FlareNFTAlternativa3D was provided to Jung,

who confirmed that the approach and the output were valid (B. Jung,

personal communication, January 3, 2012). Based on the demo and

further experimentation of his own, Jung also noted that Alternativa3D’s

content pipeline is simpler and more robust than Papervision’s (B. Jung,

personal communication, January 16, 2012). As the result of these

explorations, the development version of flare*nft now supports closer

integration with Alternativa3D (B. Jung, personal communication, April

12, 2012), so further improvements in performance and workflow can be

expected.

As an alternative to using Alternativa3D, the author also retested the

concept of integrating flare*nft with Unity. By this time, new features in

Unity 3.5 allowed for Unity applications to be embedded within Flash,

making interprocess communication unnecessary. Unfortunately, the

 85

author’s efforts at merging Unity’s 3D content with with video input from

Stage degenerated into the same bottleneck as in the previous integration

attempt. Overall performance actually worsened; the interprocess

approach had, in its favor, the ability to place video capture and NFT

tracking on separate threads.

Going forward, all of this exploratory work is important in suggesting

that a renderer built from the ground up for Stage3D—specifically,

Alternativa3D—is viable for use in a gaming-quality AR framework for

the Web. By comparison, several alternatives are not as viable, due to

problems of either performance (Papervision, Unity for Flash) or

reliability (Papervision, D’Fusion).

 86

Chapter 4: Design and Contribution

We present an AS3 solution targeting Flash 11. This solution, called

Illusion SDK, draws on existing third-party libraries to provide the

foundations of its tracking and graphics engine functionality. (See

“Appendix A: Availability and Licensing” for information on obtaining

Illusion and dependencies.) However, compared to its dependencies and

other previous work, Illusion offers greater generality and extensibility by

virtue of a high-level, modular design.

General and extensible solutions are motivated by a desire to avoid

rework, particularly in the event that the use case changes or a given

implementation proves to be too limited. Relevant anecdotes of rework

are offered in the previous chapter, “Exploratory Work”. Although

Illusion is not the only framework that attempts to abstract AR

functionality, the alternatives miss some foreseeable types of rework. For

example, they may obstruct the programmer from changing the source of

sensor data, changing the tracking algorithm, using multiple tracking

algorithms at once, tracking duplicates of physical markers, or changing

or removing the rendering functionality. (See “4.3: Comparison to Other

Designs”.)

Illusion’s design includes abstractions for sensors, trackers, and

compositors. Via a simple wrapper, any tracker can integrate with any

source of sensor data and—optionally—with any technique for

compositing and rendering an AR scene.

Ubiquitous applications can be built atop Illusion, as its abstractions do

not assume any I/O pattern that is specific to personal computing. For

example, a sensor need not be a camera or any other local peripheral; it

 87

could be a network of peers. The tracking results need not be rendered

atop a video; indeed, they need not be rendered at all.

At the same time, applications built atop Illusion can be efficient. The

abstractions are not tightly coupled to each other, so the client is free to

pick and choose among possible implementations and interactions based

on their optimality for the given application and platform. For example,

multiple trackers can read from one sensor without caveats. The sensor

and compositor can be selected independently of the tracker. (See the rest

of this chapter.) Empirically, Illusion proves to be efficient insofar as it

adds no frame lag and negligible time cost relative to the underlying

library functions of the trackers, graphics engine, and Flash. (See the

“Evaluation” chapter.)

Illusion is modular: it can be compiled as multiple libraries with sparse

interdependencies. Thus, client code can use just part of the functionality

without having to pay overhead for the whole. We provide an example

application that uses camera input, multiple types of trackers, lighting, and

textured models loaded from external files. Another application might use

only one type of tracker, or might analyze a virtual drawing canvas

instead of a camera feed. Yet another application might use only Illusion’s

model loading functionality. All of these use cases are intended (and none

is handicapped) by Illusion’s design.

This chapter proceeds by describing, in a top-down fashion, the design

and usage of Illusion’s AR-related functionality. Illusion’s more general-

purpose functionality (ex. for loading files and setting up 3D scenes) is

described in “Appendix B: Non-AR Functionality” instead. After

describing AR functionality, this chapter presents an example application.

 88

Last, Illusion is compared to other designs in terms of generality and

extensibility.

4.1: AR Functionality

This section illustrates the functionality of Illusion SDK through class

diagrams and snippets of client code. The diagrams conform to the

Unified Modeling Language (UML) standard (Object Management

Group, “Unified Modeling Language”). Most of the code snippets are

adapted from an example application that is listed in full in the next

section, “4.2: Full Example Application”. Each diagram and snippet are

accompanied by brief remarks on the functionality’s motivation, interface,

implementation, and design patterns.

Our taxonomy of design patterns comes from Gamma et al (1995).

Particularly, Illusion uses the observer pattern, mediator pattern, and

adapter pattern. The observer pattern, also known as event-driven

programming, relates one object (the observee) to many others (the

observers) such that all observers receive notifications about changes to

the observee’s state. The mediator pattern relates many objects (the

mediatees) to one object (the mediator) such that the mediator handles

interactions among the mediatees. Often, the mediator pattern makes use

of delegation: the mediator (a delegate) implements an interface that is

called by at least one of the mediatees (a delegator). The adapter pattern,

also known as the wrapper pattern, relates one object (the adaptee) to

another (the adapter) such that the adapter’s interface masks the adaptee’s

interface.

 89

Figure Series 9: Overview of Illusion SDK

Figure 9A: Design of AR-related Classes and Interfaces

 90

Figure 9B: Example of AR-related Data Flow

Our discussion of Illusion focuses on the components that are most

specific to AR. Key concepts include (Figure 9A):

• A sensor that captures data about the real world. This concept is

represented by the AbstractSensor class, which has specializations

dealing with visual data: AbstractVisualSensor,

VisualSensorFromDisplayObject (capturing data from a 2D scene

node such as a video), and VisualSensorFromCamera (capturing

data directly from a camera). Other classes may implement an

interface called ISensorSubscriber, which allows instances to

subscribe to updates about one or more sensors’ data.

 91

• A tracker that updates a 3D scene based on a sensor’s data. This

concept is represented by the AbstractTracker class, which

implements ISensorSubscriber. (Specializations of AbstractTracker

are introduced later in this chapter.) Client code provides a

delegate and (optionally) event handlers to customize the contents

of the tracker’s 3D scene. The delegate must implement an

interface called ITrackerDelegate, which allows it to receive and

populate lists of virtual markers. These lists are of type

MarkerPool. Tracked nodes in the 3D scene may receive events of

type MarkerEvent.

• A viewport that composites a sensor’s visual data and a tracker’s 3D

scene. This concept is represented by the AbstractARViewport

class, which extends Sprite (a type of 2D scene node in Flash). The

specializations of AbstractARViewport are ARViewportUsingStage

(typically used alongside VisualSensorFromDisplayObject) and

ARViewportUsingStageVideo (typically used alongside

VisualSensorFromCamera).

For a visual AR application, a typical data flow among these components

is (Figure 9B):

1. Flash updates a 2D node or camera.

2. An AbstractVisualSensor stores the node or camera's pixels.

3. An AbstractTracker reads the AbstractVisualSensor's pixels.

4. The AbstractTracker selects 3D nodes that it holds in MarkerPool

instances. If it runs out of nodes to select, it asks an

ITrackerDelegate to (optionally) supply more.

5. The AbstractTracker updates the selected 3D nodes. The nodes end

up sharing a common parent while tracked.

 92

6. The AbstractTracker fires MarkerEvent instances from newly

found or lost 3D nodes. Listeners handle the events. The

ITrackerDelegate may be a listener.

7. An AbstractARViewport composites the AbstractTracker's root 3D

node and AbstractVisualSensor's 2D node or camera.

8. Flash displays the AbstractARViewport.

The design and usage of these components are detailed in the rest of this

chapter.

For 3D scene graph functionality and 3D graphics functionality,

Illusion interfaces with the Alternativa3D 8 graphics engine. All

relationships between Illusion classes and Alternativa3D classes are

achieved by composition, not inheritance. Therefore, Illusion’s

implementation is independent of Alternativa3D’s.

For tracking functionality, Illusion interfaces with flare*nft and

flare*tracker. However, Illusion provides abstractions to facilitate the

future development of other trackers and tracker wrappers. As such,

dependencies between Illusion’s implementation and third-party trackers’

implementations are localized in leaf nodes of Illusion’s inheritance tree.

Moreover, all relationships between Illusion classes and flare*nft or

flare*tracker classes are achieved by composition, not inheritance.

4.1.1: Centralizing Access to Sensor Data

For visual tracking (and image processing in general), access to pixel

data is essential. Often, the relevant data are unstable because they

correspond to an input device (ex. a camera), or to a branch of the 2D

scene (ex. a video) that is being re-rendered continually. For efficiency’s

sake, when multiple trackers (or other image processing entities) need to

 93

access the same unstable pixel data, they should do so through a shared

manager that minimizes acquisition and copying of data. Similar issues

apply to non-visual trackers and their access to data. For example, the

audio data read from a microphone or a playing sound clip are unstable,

too.

We have seen (in “3.2: Refinements”) that a source of pixel data may

be associated with a priori knowledge such as a field of view, and

configuration values such as a resolution. These factors may affect the

way the data are processed (ex. by trackers) and the way its source is

presented (ex. by a compositor).

To represent a configurable stream of input, Illusion provides the

AbstractSensor class (Figure 10). To more specifically represent a

configurable stream of pixel data, Illusion provides a subclass,

AbstractVisualSensor. AbstractVisualSensor has two implementations:

VisualSensorFromDisplayObject (Code Sample 1) and

VisualSensorFromCamera (Code Sample 2).

VisualSensorFromDisplayObject captures pixels from a DisplayObject (a

standard 2D scene node in Flash), which is specified at instantiation. For

example, the DisplayObject could be a live video in the 2D scene.

VisualSensorFromCamera captures data directly from a Camera, which is

likewise specified at instantiation. The Camera need not be attached to a

live video in the 2D scene. Optionally, a FOV and processing resolution

may be specified at instantiation of an AbstractVisualSensor subclass;

otherwise, certain default values are assumed.

Client code may implement an interface called ISensorSubscriber and

subscribe to any AbstractSensor to receive notifications about new sensor

data. The subscriber (or other code) may access a ByteArray representing

 94

the current sensor data (ex. the current pixels of the DisplayObject or

Camera). As such, AbstractSensor may be considered a mediator between

some stream-like class (ex. DisplayObject or Camera) and ByteArray.

Internally, AbstractSensor implementations use the observer pattern to

coordinate the mediatees.

Typically, client code does not access an AbstractSensor’s properties

directly or subscribe to its notifications directly. Rather, an

AbstractSensor is used in instantiating other types, which internalize the

reading of the AbstractSensor’s properties and the subscription to its

notifications. (See the next two sections: “Compositing 2D and 3D

Scenes” and “Tracking Markers”.)

 95

Figure 10: Design of AbstractSensor and Related Types

 96

Code Sample 1: Usage of VisualSensorFromDisplayObject
class MyVisualSensorFromDisplayObjectSubscriber
implements ISensorSubscriber
{

var sensor_:VisualSensorFromDisplayObject;

public function MyVisualSensorFromDisplayObjectSubscriber(
source:DisplayObject)

{
// Create the sensor with the default values for the
// FOV and resolution arguments.
sensor_ = new VisualSensorFromDisplayObject(source);

}

// The ISensorSubscriber implementation.
public function onSensorDataUpdated(

sensor:AbstractSensor):void
{

// Get the FOV and resolution values.
var diagonalFOV:Number = sensor_.diagonalFOV;
var width:uint = sensor_.width;
var height:uint = sensor_.height;

// Get the latest frame of pixel data from the sensor.
var pixels:ByteArray = sensor_.pixels;

}
}

Code Sample 2: Usage of VisualSensorFromCamera
class MyVisualSensorFromDisplayObjectSubscriber
implements ISensorSubscriber
{

var sensor_:VisualSensorFromCamera;

public function MyVisualSensorFromDisplayObjectSubscriber(
source:Camera)

{
// Create the sensor with the default values for the
// FOV and resolution arguments.
sensor_ = new VisualSensorFromCamera(source);

}

// The ISensorSubscriber implementation.
public function onSensorDataUpdated(

sensor:AbstractSensor):void
{

// Get the FOV and resolution values.

 97

var diagonalFOV:Number = sensor_.diagonalFOV;
var width:uint = sensor_.width;
var height:uint = sensor_.height;

// Get the latest frame of pixel data from the sensor.
var pixels:ByteArray = sensor_.pixels;

}
}

4.1.2: Compositing 2D and 3D Scenes

We have discussed the difficulties of overlaying 3D content atop 2D

content in Flash, particularly where the 2D content is a camera feed. (See

“2.6.4: Focus on Flash” and “3.1.2: Approaches and Outcomes”.) To

varying extents, the feasible solutions may promote efficiency by

leveraging GPU acceleration but hurt efficiency by requiring data to be

marshalled between main memory and graphics memory. One approach

is to marshall the GPU-rendered 3D content into the 2D context. Illusion

provides two implementations of this approach, with one implementation

being general-purpose and the other being optimized for camera input.

Both implementations of 3D-to-2D marshalling are concrete subclasses

of the AbstractARViewport class. AbstractARViewport extends Sprite (a

type of node in Flash’s standard 2D scene graph), so client code can add

its instances to the Stage (alongside other standard 2D nodes). An

AbstractARViewport is constructed using a Stage3D and an

AbstractVisualSensor. Internally, the AbstractARViewport creates a 3D

root node, adds it to the Stage3D, and continually manages the 3D scene’s

rendering to a bitmap that is the child of the AbstractARViewport. This

bitmap’s background is transparent. Beneath the bitmap lies a

representation of the 2D scene.

 98

For the general-purpose compositor, which is called

ARViewportUsingStage, the representation of the 2D scene is a

DisplayObject residing on Stage. This DisplayObject is obtained from a

VisualSensorFromDisplayObject that is provided when instantiating the

ARViewportUsingStage (Figure 11; Code Sample 3).

Figure 11: Design of ARViewportUsingStage

 99

Code Sample 3: Usage of ARViewportUsingStage
var scene2D:DisplayObject;
var stage3D:Stage3D;
var sensor:VisualSensorFromDisplayObject;
…

// Create the AR viewport.
var arViewport:ARViewPortUsingStage =

new ARViewportUsingStage(stage3D, sensor);

// Display profiling statistics such as FPS.
arViewport.showProfilingDiagram = true;

// Make the AR viewport mirrored (horizontally flipped).
arViewport.mirrored = true;

// Add the AR viewport to the 2D scene.
scene2D.addChild(arViewport);

// Get the 3D scene from the AR viewport.
var scene3D:Object3D = arViewport.scene3D;

For the camera-specific compositor, which is called

ARViewportUsingStageVideo, the representation of the 2D scene is a

StageVideo with an attached Camera. The Camera is obtained from a

VisualSensorFromCamera that is provided when instantiating the

ARViewportUsingStageVideo. The StageVideo is also provided at

instantiation (Figure 12; Code Sample 4).

The 3D root node of an AbstractARViewport is exposed to client code,

which is responsible for populating it with children. The 3D root node’s

type is Object3D—a building block of scene graphs in the Alternativa3D

graphics engine. Object3D is analogous to Sprite: both are types of

positional nodes that have event dispatching functionality.

 100

Figure 12: Design of ARViewportUsingStageVideo

 101

Code Sample 4: Usage of ARViewportUsingStageVideo
var scene2D:DisplayObject;
var stageVideo:StageVideo;
var stage3D:Stage3D;
var sensor:VisualSensorFromCamera;
…

// Create the AR viewport.
var arViewport:ARViewPortUsingStageVideo =

new ARViewportUsingStageVideo(stageVideo, stage3D, sensor);

// Display profiling statistics such as FPS.
arViewport.showProfilingDiagram = true;

// Add the AR viewport to the 2D scene.
scene2D.addChild(arViewport);

// Get the 3D scene from the AR viewport.
var scene3D:Object3D = arViewport.scene3D;

Both implementations of AbstractARViewport are optimized to do

nothing (i.e. just show the 2D scene) when the 3D scene contains no

meshes. This optimization is important because compositing is expensive

and, in AR, the 3D scene may be empty much of the time (when no

physical markers are found).

At the design level, AbstractARViewport can be considered an adapter

from AbstractVisualSensor to both Sprite and Object3D. Internally, it

uses the observer pattern to coordinate with its adaptee.

Note that AbstractARViewport does not interface with Illusion’s

tracking system. Conversely, Illusion’s tracking system does not interface

with AbstractARViewport. Thus, 2D/3D compositing is decoupled from

tracking. For example, clients are free to roll their own compositor for use

with the tracking system, or to use the tracking system without rendering

any underlying 2D content.

 102

4.1.3: Tracking Markers

We have discussed a variety of trackers available in AS3 and other

languages. (See “2.3.3: Frameworks”.) None of these trackers provides a

superset of the others’ functionality, so clients might want to use multiple

trackers in one project or at least across projects. However, interface

differences are an obstacle. A naive approach—one that treats trackers’

interfaces as non-generalizable—produces code that is difficult to maintain

and perhaps inefficient due to duplicated processing and storage of sensor

data.

Illusion provides a streamlined interface for wrapping (creating

adapters for) existing and future trackers. This interface is called

AbstractTracker. Currently, wrappers for flare*tracker and flare*nft are

implemented. These wrappers are called FlareBarcodeTracker (Figure

13, Code Sample 5) and FlareNaturalFeatureTracker (Figure 14, Code

Sample 6).

AbstractTracker and its implementations rely on a mediator pattern

with delegation. The client-defined delegate must implement an interface

called ITrackerDelegate, which provides callbacks for situations where

the client probably wants to supply new virtual markers. The delegate can

supply virtual markers to the AbstractTracker via mediatees of type

MarkerPool. Specifically, MarkerPool exposes a Vector.<Object3D>

whose elements are virtual markers that may represent a like number of

tracked instances of a physical marker. The AbstractTracker has one

MarkerPool per type of physical marker. For example, if an

AbstractTracker can track three different images but only one instance of

each image at a time, then it would have three MarkerPool objects, which

client code should populate with one Object3D each.

 103

AbstractTracker subclasses are instantiated with an ITrackerDelegate,

an AbstractSensor (often, an AbstractVisualSensor representing the input

images and their projection data), and an Object3D (representing the root

node to which virtual markers will be attached). An optional boolean

argument specifies whether the tracker should start automatically or wait

for an instruction from client code. Automatic starting is the default.

Depending on the subclass, the constructor may take additional

arguments. FlareBarcodeTracker must be instantiated with a

configuration object of type FlareBarcodeFeatureSet, which specifies the

quantity, patterns, and sizes of barcodes to be used. This configuration

class serves to provide default values in a manner that is independent of

constructor signatures.

FlareNaturalFeatureTracker reads its configuration from a file whose

path may be provided as an optional constructor argument; otherwise, a

default path is used. Both types of flare* wrappers need a license file for

the underlying library. The license file’s path may be provided as an

optional constructor argument; otherwise, a default path is used.

Internally, the flare* wrappers’ file loading is performed using the

Loader class and ILoaderDelegate interface that are described in “B.1:

Loading Binary or Text Files”. The same approach to file loading is

recommended for client implementations of AbstractTracker.

Internally, an AbstractTracker implementation should update the

position and orientation of virtual markers based on the position and

orientation of corresponding physical markers. Also, when physical

markers are found or lost, corresponding virtual markers should be added

to or removed from the root node, and each virtual marker should

dispatch an event of type MarkerEvent, specifying its change in tracking

 104

status. Client code may listen for a MarkerEvent on any marker, and may

handle the event appropriately.

Optionally, the client-defined delegate for FlareBarcodeTracker may

implement an interface called IFlareDataMatrixDelegate, which provides

a callback for handling a barcode decoding event. The decoded message

(ex. a URL) is provided to the callback as an argument. This callback is

fired even if no virtual marker is provided.

Similarly, the client-defined delegate for FlareNaturalFeatureTracker

may implement an optional interface called IFlareVirtualButtonDelegate,

which provides a callback for handling occlusion events. An occlusion

event is fired when a specified part of the physical marker is covered or

uncovered. For example, such an event might happen when the user

starts or stops touching the specified part of the physical marker. These

events allow the specified part of the marker to be treated like a button.

Besides supporting its current implementations, AbstractTracker is

designed to be extensible by future versions of Illusion and by client code.

Illusion assumes only that the underlying tracker can take sensor data as

input and give 3D spatial data as output. The sensor data need not be

visual. A minimal wrapper requires just three method implementations:

start, stop, and updateTrackedMarkers.

 105

Figure 13: Design of FlareBarcodeTracker and Related Types

 106

Code Sample 5: Usage of FlareBarcodeTracker and Related Types
class MyFlareBarcodeTrackerDelegate
implements ITrackerDelegate, IFlareDataMatrixDelegate
{

var markers_:Vector.<Object3D>;
var tracker_:FlareBarcodeTracker;

public function MyFlareBarcodeTrackerDelegate(
sensor:AbstractVisualSensor,
scene3D:Object3D,
markers:Vector.<Object3D>)

{
markers_ = markers;

// Create the feature set.
var featureSet:FlareBarcodeFeatureSet =

new FlareBarcodeFeatureSet();

// Let there be one simple ID marker.
flareBarcodeFeatureSet.numSimpleIDs = 1;

// Let there be one BCH marker.
flareBarcodeFeatureSet.numBCHs = 1;

// Let there be one frame marker.
flareBarcodeFeatureSet.numFrames = 1;

// Let there be one data matrix marker.
flareBarcodeFeatureSet.numDataMatrices = 1;

// Create the barcode tracker with the default
// file path for the license.
tracker_ = new FlareBarcodeTracker(this,
 sensor,

 scene3D,
 featureSet);

}

// Part of the ITrackerDelegate implementation.
public function onTrackerStarted(

tracker:AbstractTracker,
markerPools:Vector.<MarkerPool>):void

{
// Add one marker to each marker pool (as long as
// enough markers were specified). Also add event
// listeners to each marker.
for(var i:uint = 0;
 i < markerPools.length && i < markers_.length;
 i++)
{

var marker:Object3D = markers_[i];

 107

// Add the marker to the pool.
markerPools[i].markers.push(marker);

// Listen for the marker being found.
marker.addEventListener(MarkerEvent.FOUND,
 onMarkerFound);

// Listen for the marker being lost.
marker.addEventListener(MarkerEvent.LOST,
 onMarkerLost);

}
}

// Part of the ITrackerDelegate implementation.
public function onMarkerPoolHasExcessDemand(

tracker:AbstractTracker,
markerPoolIndex:uint,
markerPool:MarkerPool):void

{
// Do nothing. We do not add virtual markers
// dynamically in this sample. Anyway,
// FlareBarcodeTracker cannot detect multiple
// instances of each physical marker.

}

// The IFlareDataMatrixDelegate implementation.
public function onDataMatrixMessage(

tracker:FlareBarcodeTracker,
markerID:uint,
message:String):void

{
// Do something with the decoded message.
…

}

public function onMarkerFound(event:MarkerEvent):void
{

// Do something with the found marker or its
// marker pool.
var markerPool:MarkerPool = event.markerPool;
…

}

public function onMarkerLost(event:MarkerEvent):void
{

// Do something with the lost marker or its
// marker pool.
var markerPool:MarkerPool = event.markerPool;
…

}
}

 108

Figure 14: Design of FlareNaturalFeatureTracker and Related Types

 109

Code Sample 6: Usage of FlareNaturalFeatureTracker and Related Types
class MyFlareNaturalFeatureTrackerDelegate
implements ITrackerDelegate, IFlareVirtualButtonDelegate
{

var markers_:Vector.<Object3D>;
var tracker_:FlareBarcodeTracker;

public function MyFlareBarcodeTrackerDelegate(
sensor:AbstractVisualSensor,
scene3D:Object3D,
markers:Vector.<Object3D>)

{
markers_ = markers;

// Create the natural feature tracker with the
// default file paths for the license and feature
// set.
tracker_ = new FlareBarcodeTracker(this,
 sensor,
 scene3D);

}

// Part of the ITrackerDelegate implementation.
public function onTrackerStarted(

tracker:AbstractTracker,
markerPools:Vector.<MarkerPool>):void

{
// Add one marker to each marker pool (as long as
// enough markers were specified). Also add event
// listeners to each marker. Finally, add one
// virtual button corresponding to each type of
// physical marker.
for(var i:uint = 0;
 i < markerPools.length && i < markers_.length;
 i++)
{

// Add the marker to the marker pool.
markerPools[i].markers.push(markers_[i]);

// Listen for the marker being found.
marker.addEventListener(MarkerEvent.FOUND,
 onMarkerFound);

// Listen for the marker being lost.
marker.addEventListener(MarkerEvent.LOST,
 onMarkerLost);

// Add a virtual button with its upper-left
// corner at (128, 128) pixels and its
// lower-right corner at (384, 384) pixels, in
// terms of the marker type’s source image.

 110

tracker_.addVirtualButton(i,
 128, 128, 384, 384);

}
}

// Part of the ITrackerDelegate implementation.
public function onMarkerPoolHasExcessDemand(

tracker:AbstractTracker,
markerPoolIndex:uint,
markerPool:MarkerPool):void

{
// Do nothing. We do not add virtual markers
// dynamically in this sample. Anyway,
// FlareNaturalFeatureTracker cannot detect
// multiple instances of each physical marker.

}

// The IFlareVirtualButtonDelegate implementation.
public function onVirtualButtonEvent(

tracker:FlareNaturalFeatureTracker,
markerID:uint,
buttonID:uint,
press:Boolean):void

{
if (press)
{

// Handle the button press.
…

}
else
{

// Handle the button release.
…

}
}

public function onMarkerFound(event:MarkerEvent):void
{

// Do something with the found marker or its
// marker pool.
var markerPool:MarkerPool = event.markerPool;
…

}

public function onMarkerLost(event:MarkerEvent):void
{

// Do something with the lost marker or its
// marker pool.
var markerPool:MarkerPool = event.markerPool;
…

}
}

 111

4.2: Full Example Application

An example application called ApplesAndGoblets (Code Sample 7)

exercises most of Illusion’s functionality in unison. flare*tracker seeks 6

barcode markers (2 each from 3 families of barcode patterns) while

flare*nft seeks 3 natural feature markers. Each nature feature marker has

a “virtual button” (a separately tracked subregion) in its center.

Two high-polygon 3D models—an apple (13,470 triangles) and a

goblet (3,324 triangles)—are loaded into the application.4 (See “B.2:

Loading 3D Model Files”.) Each marker is given either a clone of the

apple or a clone of the goblet as its virtual representation. For each

natural feature marker, the corresponding apple or goblet clone

starts/stops spinning when the user obscures the virtual button. A three-

point lighting setup illuminates the scene. (See “B.3: Creating Lighting

Setups”).

The trackers analyze data from a live video. This live video is

composited with the rendered apples and goblets. The code can be

configured to use either the combination of VisualSensorFromCamera and

ARViewportUsingStageVideo or the combination of

VisualSensorFromDisplayObject and ARViewportUsingStage.

4 The apple and goblet models are courtesy of Teinye Horsfall at
WireCASE Ltd (http://www.wirecase.com) and Sven Dännart at
Medievalworlds (http://www.medievalworlds.com), respectively.

 112

Code Sample 7: ApplesAndGoblets
[SWF(width='640', height='480', frameRate='60')]
public class ApplesAndGoblets extends Sprite implements

IExternalModelPrefabLoaderDelegate,
ITrackerDelegate,
IFlareVirtualButtonDelegate

{
private const ACCELERATE_WITH_STAGE_VIDEO:Boolean = true;

private var stageFrameRate_:Number;
private var stage3D_:Stage3D;
private var sensor_:AbstractVisualSensor;
private var arViewport_:AbstractARViewport;
private var flareBarcodeTracker_:FlareBarcodeTracker;
private var flareNFT_:FlareNaturalFeatureTracker;
private var applePrefab_:ExternalModelPrefab;
private var gobletPrefab_:ExternalModelPrefab;
private var rotatingMarkers_:Vector.<Object3D> =

new Vector.<Object3D>();
private var lastMilliseconds_:int;

public function ApplesAndGoblets()
{

if (stage)
{

onAddedToStage();
}
else
{

// Listen for being added to the 2D stage.
addEventListener(Event.ADDED_TO_STAGE,

 onAddedToStage);
}

}

private function onAddedToStage(event:Event = null):void
{

if (hasEventListener(Event.ADDED_TO_STAGE))
{

removeEventListener(Event.ADDED_TO_STAGE,
 onAddedToStage);

}

// Configure the 2D stage.
stage.align = StageAlign.TOP_LEFT;
stage.scaleMode = StageScaleMode.NO_SCALE;

// Store the 2D stage's frame rate for use in
// pausing/unpausing.

 113

stageFrameRate_ = stage.frameRate;

// Create the video camera.
var videoCamera:Camera = Camera.getCamera();

// Get the 3D stage.
stage3D_ = stage.stage3Ds[0];

// Configure the video camera.
videoCamera.setMode(640, 480, 60); // 640x480 @ 60 FPS

if (ACCELERATE_WITH_STAGE_VIDEO &&
 stage.stageVideos.length > 0)
{

var stageVideo:StageVideo =
stage.stageVideos[0];

// Create the visual sensor that draws data from
// the camera.
sensor_ =

new VisualSensorFromCamera(videoCamera);

// Create the AR viewport.
arViewport_ = new ARViewportUsingStageVideo(

stageVideo,
stage3D_,
sensor_ as VisualSensorFromCamera);

}
else
{

// Create and configure the video.
var video:Video = new Video(videoCamera.width,
 videoCamera.height);
video.attachCamera(videoCamera);

// Create the visual sensor that draws data from
// the video.
sensor_ =

new VisualSensorFromDisplayObject(video);

// Create and configure the AR viewport.
arViewport_ = new ARViewportUsingStage(

stage3D_,
sensor_ as VisualSensorFromDisplayObject

);
(arViewport_ as ARViewportUsingStage).mirrored =

true;
}

// Add the AR viewport to the 2D scene.
addChild(arViewport_);

 114

// Get the 3D scene from the AR viewport.
var scene3D:Object3D = arViewport_.scene3D;

// Add lights to the 3D scene.
scene3D.addChild(SceneUtils.newThreePointLighting());

// Listen for and request the 3D stage's graphics
// context.
stage3D_.addEventListener(Event.CONTEXT3D_CREATE,
 onContextCreate);
stage3D_.requestContext3D();

// Listen for keystrokes.
stage.addEventListener(KeyboardEvent.KEY_UP, onKeyUp);

}

private function onContextCreate(event:Event):void
{

stage3D_.removeEventListener(Event.CONTEXT3D_CREATE,
 onContextCreate);

// Create the model loader.
var loader:ExternalModelPrefabLoader =

new ExternalModelPrefabLoader(this, "data");

// Load the models.
loader.loadExternalModelPrefabs("apple.3ds",
 "goblet.3ds");

// Listen for frame updates.
addEventListener(Event.ENTER_FRAME, onEnterFrame);

// Initialize the time.
lastMilliseconds_ = getTimer();

}

public function onLoadExternalModelPrefabError(
loader:ExternalModelPrefabLoader,
filename:String,
errorEventType:String):void

{
throw new Error("Failed to load \"" +
 loader.basePath + filename + "\": " +
 errorEventType);

}

public function onLoadExternalModelPrefabComplete(
loader:ExternalModelPrefabLoader,
filename:String,
externalModelPrefab:ExternalModelPrefab):void

{

 115

if (filename == "apple.3ds")
{

// Store the apple model.
applePrefab_ = externalModelPrefab;

// Set the apple model's scale.
applePrefab_.scale = 2.5;

// Load the resources for the apple model.
applePrefab_.loadResources(stage3D_.context3D);

}
else // filename == "goblet.3ds"
{

// Store the goblet model.
gobletPrefab_ = externalModelPrefab;

// Set the goblet model's scale.
gobletPrefab_.scale = 1000;

// Load the resources for the goblet model.
gobletPrefab_.loadResources(stage3D_.context3D);

}

if (loader.numLoadsPending > 0)
{

// The other model is still loading.

// Wait for the other model to load.
return;

}

// Both models have loaded.

// Create and configure the barcode tracker's feature
// set.
var flareBarcodeFeatureSet:FlareBarcodeFeatureSet =

new FlareBarcodeFeatureSet();
flareBarcodeFeatureSet.numSimpleIDs = 2;
flareBarcodeFeatureSet.numBCHs = 2;
flareBarcodeFeatureSet.numFrames = 2;

// Create the barcode tracker.
flareBarcodeTracker_ =

new FlareBarcodeTracker(this,
 sensor_,
 stage,
 arViewport_.scene3D,

 flareBarcodeFeatureSet);

// Create the natural feature tracker.
flareNFT_ =

new FlareNaturalFeatureTracker(

 116

this,
sensor_,
stage,
arViewport_.scene3D);

}

public function onTrackerStarted(
tracker:AbstractTracker,
markerPools:Vector.<MarkerPool>):void

{
// Add either an apple or a goblet to each marker
// pool.
for (var i:uint = 0; i < markerPools.length; i++)
{

var marker:Object3D;
if (i % 2 == 0)
{

marker = applePrefab_.newObject3D();
}
else
{

marker = gobletPrefab_.newObject3D();
}
marker.addEventListener(MarkerEvent.LOST,
 onMarkerLost);
markerPools[i].markers.push(marker);

}

if (tracker == flareNFT_)
{

// Set up a 48x48 pixel virtual button in the
// center of each physical marker.

// The Austria physical marker is 480x256.
flareNFT_.addVirtualButton(

0, 216, 104, 264, 152);

// The Vienna physical marker is 480x288.
flareNFT_.addVirtualButton(

1, 216, 120, 264, 168);

// The Graz physical marker is 336x480.
flareNFT_.addVirtualButton(

2, 144, 216, 192, 264);
}

}

public function onMarkerPoolHasExcessDemand(
tracker:AbstractTracker,
markerPoolIndex:uint,
markerPool:MarkerPool):void

{

 117

// Do nothing, such that the supply of markers is
// inelastic.

}

public function onVirtualButtonEvent(
tracker:FlareNaturalFeatureTracker,
markerID:uint,
buttonID:uint,
press:Boolean):void

{
if (!press)
{

// The virtual button was released.

// Do nothing.
return;

}

// The virtual button was pressed.

// Get the marker corresponding to the virtual button.
var marker:Object3D =

tracker.markerPools[markerID].markers[0];

var i:int = rotatingMarkers_.indexOf(marker);
if (i == -1)
{

// The marker was not rotating.

// Start rotating the marker.
rotatingMarkers_.push(marker);

}
else
{

// The marker was rotating.

// Stop rotating the marker.
rotatingMarkers_.splice(i, 1);

}
}

private function onMarkerLost(event:MarkerEvent):void
{

var marker:Object3D = event.target as Object3D;

var i:int = rotatingMarkers_.indexOf(marker);
if (i != -1)
{

// The marker was rotating.

// Stop rotating the marker.

 118

rotatingMarkers_.splice(i, 1);
}

}

private function onEnterFrame(event:Event):void
{

// Update the time.
var milliseconds:int = getTimer();
var deltaMilliseconds:int =

milliseconds - lastMilliseconds_;
lastMilliseconds_ = milliseconds;

for each (var marker:Object3D in rotatingMarkers_)
{

// Rotate the marker at 45 degrees per second.
marker.getChildAt(0).rotationZ +=

deltaMilliseconds * 0.00025 * Math.PI;
}

}

private function onKeyUp(event:KeyboardEvent):void
{

if (event.keyCode == 32) // spacebar
{

// Show or hide the Alternativa3D profiling
// diagram.
arViewport_.showProfilingDiagram =

!arViewport_.showProfilingDiagram;
}
else if (event.keyCode == 80) // 'p'
{

// Pause/unpause the 2D stage.
if (stage.frameRate == stageFrameRate_)
{

stage.frameRate = 0.0001;
}
else
{

stage.frameRate = stageFrameRate_;
}

}
}

}

 119

4.3: Comparison to Other Designs

Illusion’s design is most closely paralleled in FLARManager

(Socolofsky, “FLARManager: Augmented Reality in Flash”).

FLARManager is an attempt at providing universal glue between tracking

libraries and non-GPU-accelerated 3D graphics engines for Flash 10. The

supported trackers are FLARToolkit, flare*tracker, and flare*nft. The

supported graphics engine is Papervision (plus other options for

FLARToolkit only). FLARManager internally creates one camera feed

per tracker.

Compared to FLARManager, Illusion has the advantages of being

more up-to-date in its choice of 3D graphics engine and more general in

its design of trackers’ data sources or sensors. Sensors in Illusion need not

be based on camera feeds and may be shared among multiple trackers.

FLARManager is more general in its design of 3D scenes, since there is a

bridge layer between a tracker and a graphics engine. However, in

practice, this bridge layer might make FLARManager harder to extend

and maintain, as it introduces a degree of interaction among extensions.

(The existence of a bridge from tracker “x” to graphics engine “y” may

make a client expect that other supported trackers also have a bridge to

“y”.)

Goblin XNA (Oda et al, 2012), which targets Windows and Windows

Phone, is another glue layer that can wrap trackers from multiple vendors.

Goblin XNA implements an original game engine atop existing graphics

and physics libraries. The game scene may have camera components

attached to it and may contain markers as children. At a given time, only

one camera may be active for tracking purposes and only one pose may be

tracked per physical marker. The ALVAR tracker, for square markers, is

 120

supported on Windows. No trackers are supported on Windows Phone.

Certain HMDs, which can sense the wearer’s head pose, are supported on

Windows.

Compared to Goblin XNA, Illusion is again more general in its design

of sensors. Illusion’s sensors need not be based on camera input and need

not be shared among all active trackers. Also, Illusion currently supports

a natural feature tracker, while Goblin XNA does not. However, Goblin

XNA has a broader range of game engine functionality and supports

HMDs.

KHARMA (Augmented Environments Laboratory, “KHARMA”), the

specification of the Argon mobile AR browser, is vendor-neutral insofar as

it is offered as an open standard. However, this standard specifies a

(limited) set of supported tracking functionality, so it is not broadly

inclusive of existing and future trackers from third parties. KHARMA

does offer a markup-based 3D scene graph in which any node may be

anchored to a geolocation or a visually tracked square marker. An

iPhone-like set of sensors is assumed.

Argon and KHARMA, being a dedicated AR platform and its

specification, are not directly comparable to Illusion. Illusion is “just” a

toolkit targeting a multipurpose Web platform and is designed for

portability to other multipurpose platforms and for extensibility by any

tracker developer. On the other hand, Argon and KHARMA integrate

markers into a high-level markup language and support geolocation-based

tracking.

While there are only a few attempts to provide a third-party-extensible

glue layer between tracking libraries and graphics engines, there are

numerous vendor-specific solutions for integrating tracking with a

 121

graphics engine. For example, flare*tracker and flare*nft come with

samples of Papervision integration. D’Fusion comes with a dedicated

graphics engine for some platforms, as well as a sample of Away3D

integration for Flash. Vuforia comes with a wrapper for Unity integration

and a sample of raw OpenGL ES integration.

The typical vendor-specific offering is “just” an application framework,

readymade for a fixed set of trackers. By contrast, Illusion is a toolkit that

the client may extend for an arbitrary set of sensors, trackers, and

compositing techniques. As seen in the “Evaluation” chapter, Illusion’s

generality and extensibility come at negligible cost in processing time.

Moreover, due to its generality and extensibility, Illusion has the potential

to reduce duplication of development effort (i.e. increase code reuse) in an

organization where multiple sensors, trackers, or compositing techniques

are used. For example, it can help an organization experiment with

diverse approaches to ubiquitous computing. Conversely, some

organizations might need to work with multiple game engines but only one

tracking technology. Then, vendor-specific glue layers might reduce

duplication of development effort, while Illusion would not.

From experience at Ad-Dispatch (“3.1: At Ad-Dispatch”), we know

that the time cost of experimenting with multiple trackers, in the absence

of a general and extensible framework, is indeed a practical problem. This

problem arose even when targeting just one type of sensor (webcams) on

conventional personal computers. Illusion’s design addresses a superset of

the fragmentation problem that was present in the author’s frameworks at

Ad-Dispatch.

 122

Chapter 5: Evaluation

We seek to evaluate the efficiency of Illusion. This concept is distinct

from the efficiency of any particular tracking libraries that Illusion wraps,

or of any particular I/O systems that underlie its sensors and compositors.

That is to say, we are primarily concerned with the cost that Illusion adds

atop the tracking algorithm and platform-specific function calls. If this

overhead cost is low in the Flash implementation, then in general it should

be low in ports, too. To lesser extents, we are concerned with assessing

optimization opportunities in Illusion’s use of Flash-specific function calls,

and with subjectively describing the performance of an interactive demo.

To address these evaluation goals, this chapter poses questions about

Illusion’s performance in various use cases. Methods for capturing

performance data are discussed. Based on these methods, measurements

and impressions are presented. From these observations, we are able to

conclude that Illusion’s overhead cost is negligible even when there are

hundreds of simultaneously active trackers or marker pools. However,

the compositing implementation for Flash is expensive on some hardware.

5.1: Questions

For any given application, quantitive measures of efficiency include

CPU usage,5 frame rate, and latency. Frame rate and latency relate to

subjective qualities such as the AR scene’s smoothness (continuity of

motion) and its responsiveness (timeliness of motion, i.e. synchronization

with real-world events). (See “2.5: Efficiency” for a broader discussion of

5 GPU usage is of course another measure of efficiency. However,
Illusion does not directly use the GPU; rather, it integrates with
Alternativa3D and Flash functionality that may be GPU-accelerated.

 123

efficiency’s meaning and its determining factors in the context of AR.) To

capture these quantitative and qualitative characteristics over a variety of

application configurations, our evaluation includes four sets of questions:

1. How many whole frame-lengths of latency does Illusion add in an

application that uses tracking with

VisualSensorFromDisplayObject and ARViewportUsingStage?6

i.e. By how many frames does the tracker’s output scene lag behind

the input? An answer of “0” (“no frame lag”) implies that the 3D

rendering for the current frame can use tracking results based on

the 2D rendering for the current frame (if the underlying tracker

permits). In this case, total latency would depend on frame rate and

on components other than Illusion.

2. How much CPU time per frame does Illusion add? i.e. How much

time is spent in functions belonging to Illusion’s namespace? This

measure excludes the time spent in underlying tracker functions and

underlying Alternativa3D and Flash functions. How does this

measure of Illusion’s cost vary with respect to tracking resolution,

number of trackers, and number of markers?

3. How much CPU time per frame is spent in underlying

Alternativa3D and Flash functions whose use is peculiar to Illusion?

(i.e. An alternative implementation of an AR framework for Flash

6 An application using VisualSensorFromCamera and
ARViewportUsingStageVideo effectively has two frame rates: one for the
video background and another for everything else. We have no tools to
measure the former, and the difference between the two appears to be
unstable. Thus, the effect of Illusion on latency is not easily isolated in
this case.

 124

would not necessarily use these functions.) How does this cost vary

across hardware configurations?

4. Given some specification of an AR scene with “good” graphics and

trackers, what frame rate is achievable and what is the author’s

subjective impression of the smoothness and responsiveness of this

scene? How do the frame rate and impression vary across systems?

How do they vary between an implementation that uses StageVideo

(i.e. VisualSensorFromCamera and ARViewportUsingStageVideo)

and one that does not (i.e. VisualSensorFromDisplayObject and

ARViewportUsingStage)?

The first three sets of questions are explored in controlled conditions.

A minimal test application, called MinimalProfiler, uses an image stream

and tracking algorithm that are contrived for repeatability, low time cost,

and low latency, rather than realism. (See the next section, “5.2:

Methodology”, for details on MinimalProfiler and its dependencies.)

These controlled conditions make it easier to assess possible causes of

variation in the quantitative data on Illusion’s efficiency.

To address the fourth set of questions, we provide observations on the

performance of our full-featured demo application, ApplesAndGoblets.

(See “4.2: Full Example Application”.) This exploration is less controlled

but more realistic, as it exercises industry-grade trackers, complex artistic

content, camera input, and human interaction. These realistic conditions

give a sense of context (a likeness to the author’s previous experience in

using AR applications), such that it is easier to form subjective

impressions about the application’s performance.

 125

5.2: Methodology

5.2.1: Dependencies and Platforms

To measure CPU time costs (hereafter, “time costs”), we rely on third-

party solutions. A tool called The Miner (Sociodox, “The Miner”) is

integrated into MinimalProfiler. The Miner provides detailed logs and

statistics pertaining to time costs, which can be broken down by event

type or function, per frame. At least some of the costs of running The

Miner are measurable, and are excluded from our reporting.

The Miner requires the Flash runtime’s debug version, which might

run less efficiently than the release version. For comparison, we evaluate

the performance of ApplesAndGoblets using both the debug runtime and

the release runtime. This comparison is conducted using a basic

measurement tool that is included in Alternativa3D. This tool does not

require the debug runtime but does not provide breakdowns by event

type, or function. It simply measures the time elapsed between frames.

This value may exceed the time cost of the application per se, as the

application may be throttled by I/O bottlenecks or may have to yield the

processor to other processes.

Below the level of the Flash runtime, factors affecting performance also

include the user’s operating system and hardware. As discussed in “2.5.2:

Measurement”, a “typical” user might be running Windows 7 on a

machine with an Intel Core 2 CPU, 2 GB RAM, Intel GMA 950 GPU, 64

MB VRAM, and 1366x768 desktop resolution (Unity, “Web Player

Hardware Statistics - 2012 Q2”). The closest match available to us as a

test machine is a Dell Inspiron 9400. We also have a MacBook Pro 13"

mid-2010 and a custom gaming desktop (Table 7). Measurements are

 126

taken on each machine. A 640x480 Flash canvas (and 640x480 camera

feed) is used because this resolution seems to be most practical for

embedding in web pages on typical desktop resolutions. An external

webcam—a Microsoft LifeCam VX-2000—is used with all machines.

Flash 11.4 and Firefox 15 (the latest stable versions) are used.7

Table 7: Test Machines

Description
CPU;
main memory

GPU;
graphics
memory

Operating
system

Dell Inspiron 9400

2 GHz Intel Core

2;

2 GB DDR2

ATI Mobility

Radeon X1400;

128 MB dedicated

DDR3 plus 128

MB shared DDR2

Windows 7 32-bit

MacBook Pro 13"

mid-2010

2.4 GHz Intel

Core 2 Duo;

8 GB DDR3

NVIDIA GeForce

320M;

256 MB shared

DDR3

Mac OS X Lion

Custom gaming

desktop

3.41 GHz AMD

Phenom II X4

965;

4 GB DDR3

ATI Radeon HD

5870;

1 GB dedicated

DDR5

Windows 7 64-bit

7 During development, preliminary tests were conducted with Flash
11.3 and Flash 11.4 Beta. The stable version of Flash 11.4 seems to yield
worse performance, especially on the Dell Inspiron 9400.

 127

5.2.2: Application and Parameters

MinimalProfiler (Code Sample 8), our contrived test application, has a

predictable source of image data, a simple (non-realistic) tracking

algorithm, a configurable number of trackers and marker pools, and an

option to pause when a known frame number is reached. For any frame,

the output includes a list of timing statistics and a composited scene based

on the latest image data and tracking results. By pausing and inspecting

the composited scene, we determine whether (and how much) the

tracking results lag behind the image source (thus answering our first

evaluation question). By configuring the number of trackers and marker

pools, and then inspecting the timing statistics, we determine how CPU

time costs scale with respect to the configured variables (thus answering

our second and third evaluation questions). Details of these methods are

given below.

MinimalProfiler uses VisualSensorFromDisplayObject and

ARViewportUsingStage. It requires a tracker with the following

characteristics:

1. The tracking algorithm is transparent. i.e. For any given input

image, the virtual markers’ correct transformations are known. This

characteristic enables us to determine which frame of the input

stream corresponds to the current frame of tracking results. Thus,

we can measure the latency as a whole number of frame-lengths.

2. An arbitrary number of tracker instances can run at once. This

characteristic enables us to scale the application.

3. Each tracker instance can have an arbitrary number of marker

pools. This characteristic, too, enables us to scale the application.

 128

We fulfill these characteristics in a contrived tracker called DebugTracker

(Code Sample 9). DebugTracker creates one marker pool per pixel of

input resolution and it transforms one marker from each non-empty pool.

The tracking algorithm reinterprets a pixel’s RGB color coordinates as a

marker’s spatial coordinates: red is x, green is y, and blue is z, with a color

range of [0, 255] being mapped onto a spatial range of [-128, 127]. For

example, the color red—RGB triplet (255, 0, 0)—is interpreted as the

position (127, 0, 0).

Code Sample 8: MinimalProfiler
[SWF(width='640', height='480', frameRate=’60')]
public class MinimalProfiler extends Sprite
 implements ITrackerDelegate
{

private const UPDATE_EVENT:String = Event.ENTER_FRAME;
private const START_PAUSED:Boolean = true;
private const NUM_TRACKERS:uint = 1;
private const NUM_MARKER_POOLS_PER_TRACKER:uint = 1;

private var stageFrameRate_:Number;
private var background_:Shape;
private var stage3D_:Stage3D;
private var sensor_:VisualSensorFromDisplayObject;
private var arViewport_:ARViewportUsingStage;
private var trackers_:Vector.<DebugTracker> =

new Vector.<DebugTracker>();
private var lastMilliseconds_:int;

public function MinimalProfiler()
{

if (stage)
{

onAddedToStage();
}
else
{

// Listen for being added to the 2D stage.
addEventListener(Event.ADDED_TO_STAGE,
 onAddedToStage);

}

 129

}

private function onAddedToStage(event:Event = null):void
{

if (hasEventListener(Event.ADDED_TO_STAGE))
{

removeEventListener(Event.ADDED_TO_STAGE,
 onAddedToStage);

}

// Configure the 2D stage.
stage.align = StageAlign.TOP_LEFT;
stage.scaleMode = StageScaleMode.NO_SCALE;

// Store the 2D stage's frame rate for use in
// pausing/unpausing.
stageFrameRate_ = stage.frameRate;

// Get the 3D stage.
stage3D_ = stage.stage3Ds[0];

// Integrate TheMiner profiling tools.
addChild(new TheMiner());

// Create the background and fill it with a color that
// the debug tracker will interpret as xyz
// coordinates: (0, 64, 127).
background_ = new Shape();
background_.graphics.beginFill(0x80c0ff);
background_.graphics.drawRect(0,
 0,
 stage.stageWidth,
 stage.stageHeight);
background_.graphics.endFill();

// Create the visual sensor that draws data from the
// shape.
sensor_ = new VisualSensorFromDisplayObject(

background_, /* source */
1.2566370614359172, /* fov: 72 degrees */
NUM_MARKER_POOLS_PER_TRACKER, /* width */
1 /* height */);

// Create the AR viewport.
arViewport_ = new ARViewportUsingStage(stage3D_,
 sensor_);

// Add the AR viewport to the 2D scene.
addChild(arViewport_);

// Listen for and request the 3D stage's graphics

 130

// context.
stage3D_.addEventListener(Event.CONTEXT3D_CREATE,
 onContextCreate);
stage3D_.requestContext3D();

// Listen for keystrokes.
stage.addEventListener(KeyboardEvent.KEY_UP, onKeyUp);

}

private function onContextCreate(event:Event):void
{

stage3D_.removeEventListener(Event.CONTEXT3D_CREATE,
 onContextCreate);

// Create the tracker.
for (var i:uint = 0; i < NUM_TRACKERS; i++)
{

trackers_.push(new DebugTracker(
this,
sensor_,
stage,
arViewport_.scene3D));

}

// Listen for frame updates.
addEventListener(UPDATE_EVENT, raiseMarker);

// Initialize the time.
lastMilliseconds_ = getTimer();

}

public function onTrackerStarted(
tracker:AbstractTracker,
markerPools:Vector.<MarkerPool>):void

{
// Create the marker.
var marker:GeoSphere = new GeoSphere(

25, /* radius */
2, /* segments */
false, /* reverse */
new FillMaterial(0xffff80) /* material */);

// Upload the marker's resources to the 3D context.
for each (var resource:Resource
 in marker.getResources())
{

resource.upload(stage3D_.context3D);
}

markerPools[0].markers.push(marker);
}

 131

public function onMarkerPoolHasExcessDemand(
tracker:AbstractTracker,
markerPoolIndex:uint,
markerPool:MarkerPool):void

{
// Do nothing, such that the supply of markers is
// inelastic.

}

private function raiseMarker(event:Event):void
{

removeEventListener(Event.ENTER_FRAME, raiseMarker);

// Update the time.
var milliseconds:int = getTimer();
var deltaMilliseconds:int =

milliseconds - lastMilliseconds_;
lastMilliseconds_ = milliseconds;

// Fill the background with a color that the debug
// tracker will interpret as xyz coordinates:
// (0, 0, 127).
background_.graphics.beginFill(0x8080ff);
background_.graphics.drawRect(0,
 0,
 stage.stageWidth,
 stage.stageHeight);
background_.graphics.endFill();

if (START_PAUSED)
{

// Pause the 2D stage.
stage.frameRate = 0.0001;

}
}

private function onKeyUp(event:KeyboardEvent):void
{

if (event.keyCode == 32) // spacebar
{

// Show or hide the Alternativa3D profiling
// diagram.
arViewport_.showProfilingDiagram =

!arViewport_.showProfilingDiagram;
}
else if (event.keyCode == 80) // 'p'
{

// Unpause/repause the 2D stage.
if (stage.frameRate == stageFrameRate_)
{

 132

stage.frameRate = 0.0001;
}
else
{

stage.frameRate = stageFrameRate_;
}

}
}

}

Code Sample 9: DebugTracker
public class DebugTracker extends AbstractTracker
{

public function DebugTracker(delegate:ITrackerDelegate,
 sensor:AbstractVisualSensor,
 stage:Stage,
 scene3D:Object3D,
 autoStart:Boolean=true)
{

super(delegate, sensor, stage, scene3D, autoStart);
}

override public function start():void
{

super.start();

var visualSensor:AbstractVisualSensor =
sensor_ as AbstractVisualSensor;

var numPixels:uint =
visualSensor.width * visualSensor.height;

// Unfix the number of marker pools.
markerPools.fixed = false;

// Create the marker pools.
for (var i:uint = 0; i < numPixels; i++)
{

markerPools.push(new MarkerPool());
}

// Fix the number of marker pools.
markerPools.fixed = true;

// Notify the delegate that the marker pools have been
// created and tracking has started.
delegate_.onTrackerStarted(this, markerPools);

 133

}

override public function stop():void
{

super.stop();

// Release the marker pools.
markerPools.fixed = false;
markerPools.splice(0, markerPools.length);
markerPools.fixed = true;

}

override protected function updateTrackedMarkers(
markerPoolIterators:Vector.<MarkerPoolIterator>,
pixels:ByteArray):void

{
for (var i:uint = 0; i < markerPools.length; i++)
{

// Skip the alpha value.
pixels.readUnsignedByte();

// Interpret the RGB values as xyz coordinates.
var x:int = pixels.readUnsignedByte() - 128;
var y:int = pixels.readUnsignedByte() - 128;
var z:int = pixels.readUnsignedByte() - 128;

var marker:Object3D =
markerPoolIterators[i].nextMarker();

if (!marker)
{

continue;
}

marker.x = x;
marker.y = y;
marker.z = z;

if (marker.parent != scene3D_)
{

// The marker is newly found.

// Add the marker to the 3D scene.
scene3D_.addChild(marker);

// Notify the marker that it has been
// found.
marker.dispatchEvent(new MarkerEvent(

MarkerEvent.FOUND,
markerPoolIterators[i].markerPool));

}

 134

}
}

}

When feeding DebugTracker a predetermined stream of pixel data, we

can correctly predict the virtual markers’ positions as a function of time

and latency, both measured in whole frames. When time is a given value

and the stream of images contains no duplicates, this function is invertible

such that we solve for latency. i.e. By inspecting the tracking results, we

know what the pixels of the input image were. Then, we can search for

this input image and find that it is a certain number of frames old (ex. 0

for the current frame of input or 1 for the previous frame). This number

of frames is the latency.

Our search for the latency value is bounded. Based on a priori

knowledge about Illusion and Flash, we can infer that Illusion’s latency is

at most 1 frame. The rationale is as follows. Illusion’s trackers are

updated every frame in an event-driven manner. So are the currently

supported image sources (DisplayObject and Camera). Event dispatching

in Flash is a single-threaded loop and Illusion’s event handlers are likewise

single-threaded. Therefore, a given frame’s image source update must

finish before the next frame’s tracker update begins.

The up-to-dateness of a DebugTracker result can be observed visually

in a screenshot or paused frame. Our experiment uses a contrived image

source: a rectangle whose color changes sharply from one frame to the

next. The experimenter can tell whether the position of a rendered 3D

marker and the color of the rendered background match, according to

DebugTracker’s known algorithm. If they do match, the tracker has

evaluated up-to-date input and thus the lag is 0 frames (“no frame lag”).

 135

If they do not match, the tracker has evaluated outdated input and thus

the lag is 1 frame (Figure 15).

Figure 15: A Test for Frame Lag or its Absence

The contrived image source transitions from a cyan rectangle (upper left image)

to a blue rectangle (upper right image). According to the contrived tracker, the

cyan color corresponds to a lower point in space (a lesser y coordinate) than the

blue color. If there is a lag of one frame, the tracker evaluates the cyan rectangle

in the frame when the blue rectangle is being rendered; thus, the blue rectangle

is rendered at the same time as a low 3D marker (lower left image). If there is no

frame lag, the tracker evaluates the blue rectangle in the frame when the blue

rectangle is rendered; thus, the blue rectangle is rendered at the same time as a

high 3D marker (lower right image).

 136

The presence or absence of frame lag is necessarily affected by the

client code’s approach to updating the 2D scene. Where in the Flash

event cycle is the client code’s update registered: near the start of the

frame; near the end of the frame; with a high priority; with a low priority?

How tardy can the client code’s update be before a frame lag is

introduced, i.e. before the tracker misses the opportunity to evaluate the

updated data in the same frame? To find the answer, we vary our

implementation of the test, incrementally delaying the 2D scene update’s

position in the Flash event cycle until a frame lag is introduced.

To evaluate scalability, we use up to 1000 marker pools and 1000

trackers. We consider 1000 marker pools to be an extreme case—at least

for Web-based AR—due to the physical and computational complexity of

seeking so many different markers simultaneously.

5.2.3: Sampling

When measuring various per-frame time costs in a given scenario, we

take a sample consisting of 20 observations. Each observation consists of

average per-frame costs in a 5-minute run of the application.

5.3: Observations

5.3.1: Frame Lag

Lag is measured to be 0 frames (i.e. the blue rectangle is rendered at

the same time as a high 3D marker) as long as the 2D scene update occurs

before the Flash runtime’s EXIT_FRAME event. Typical practice among

Flash developers is that application code performs 2D scene updates in

response to the runtime’s ENTER_FRAME event, which does precede

 137

the EXIT_FRAME event. (ENTER_FRAME is followed by

FRAME_CONSTRUCTED, which is followed by EXIT_FRAME.)

Thus, 0 frames of lag are introduced by typical use of Illusion. Atypical

use, involving 2D scene updates in response to EXIT_FRAME or

subsequent events, can introduce a lag of 1 frame.

5.3.2: CPU Time Breakdown

The amount of time that MinimalProfiler spends inside all Illusion

functions, combined, remains less than 1 ms in every case and less than 10

μs in most cases (Table Series 8). With a single marker pool and tracker,

the per-frame cost of Illusion functions ranges from 0.45 μs to 1.1 μs,

depending on the test machine. With 100 marker pools, the cost is at

worst 8.5 μs; with 1000, at worst 940 μs. For a given number of marker

pools, the cost is lowest when the ratio of marker pools to trackers is about

10:1.

Similarly, our tests of MinimalProfiler spend less than 10 μs per frame

inside Alternativa3D functions. With a single marker pool and tracker,

these functions’ per-frame cost ranges from 3.6 μs to 7.5 μs, depending on

the test machine.

Rather, an overwhelming proportion of the time cost in MinimalProfiler is

associated with Illusion’s and Alternativa3D’s calls to lower-level

functions provided by the Flash standard library. Depending on the test

machine, 10.2 ms to 106 ms per frame (86% to 99% of the total time cost)

is associated with Flash’s Context3D.drawToBitmapData() function

alone. This function is essential to the 2D/3D compositing technique used

by ARViewportUsingStage and ARViewportUsingStageVideo. Another

 138

0.73 ms to 3.4 ms (0.86% to 13%) is associated with Flash rendering

functionality that is not specific to the compositing technique.

Table Series 8: Time Costs per Frame, MinimalProfiler

Table 8A: 1 Tracker, 1 Marker Pool, Varying Machine, Varying Category of
Cost

Category
Dell Inspiron
9400

MacBook Pro
13" mid-2010

Custom gaming
desktop

Total, excluding

TheMiner

Mean: 110 ms

StD: 0.72 ms

Mean: 11.8 ms

StD: 0.50 ms

Mean: 84.6 ms

StD: 0.22 ms

Illusion SDK

Mean: 1.0 μs

(0.00091%)

StD: 0.47 μs

Mean: 1.1 μs

(0.0093%)

StD: 0.077 μs

Mean: 0.45 μs

(0.00053%)

StD: 0.29 μs

Alternativa3D

Mean: 7.5 μs

(0.0068%)

StD: 3.8 μs

Mean: 3.6 μs

(0.031%)

StD: 0.34 μs

Mean: 5.3 μs

(0.0035%)

StD: 3.0 μs

Flash rendering

Mean: 3.4 ms

(3.1%)

StD: 0.44 ms

Mean: 1.5 ms

(13%)

StD: 0.063 ms

Mean: 0.73 ms

(0.86%)

StD: 0.040 ms

flash.display3D.

Context3D.

drawToBitmap()

Mean: 106 ms

(96%)

StD: 0.70 ms

Mean: 10.2 ms

(86%)

StD: 0.57 ms

Mean: 83.8 ms

(99%)

StD: 0.19 ms

Note: The breakdowns are not exhaustive, so they do not sum to the totals.

 139

Table 8B: MacBook Pro 13" Mid-2010, Cost of Illusion Functions Only,
Varying Number of Marker Pools, Varying Number of Trackers

Marker pools
Trackers

1 10

100 1000

1
Mean: 1.1 μs

StD: 0.077 μs

Mean: 1.0 μs

StD: 0.42 μs

Mean: 8.5 μs

StD: 1.4 μs

Mean: 940 μs

StD: 210 μs

10
Mean: 1.0 μs

StD: 0.33 μs

Mean: 3.0 μs

StD: 1.1 μs

Mean: 140 μs

StD: 41 μs

100
Mean: 3.6 μs

StD: 0.81 μs

Mean: 48 μs

StD: 8.9 μs

1000
Mean: 63 μs

StD: 7.6 μs

Note: The stated number of marker pools is the total; it is not per tracker.

5.3.3: Overall Performance

Subjectively, ApplesAndGoblets is choppy but usable on the Dell

Inspiron and the custom gaming desktop. The application runs more

smoothly on the MacBook Pro. Regardless of the test machine, use of

StageVideo makes ApplesAndGoblets seem more responsive.

Particularly, the video background runs more smoothly and with less lag,

so the user can watch his own motions more comfortably. The

improvement when using StageVideo is most pronounced on the

MacBook Pro, where the StageVideo version runs very fluidly.

Timings of ApplesAndGoblets (Table 9) are consistent with the

subjective impressions. The Dell Inspiron runs the application at

 140

approximately 6 FPS; the custom gaming desktop, approximately 8 FPS.

The MacBook Pro can exceed 17 FPS without StageVideo, or 46 FPS

with StageVideo. These frame rates refer to the 3D scene; the video may

run at another (higher) frame rate when using StageVideo.

The Flash release runtime consistently yields better performance than

the debug runtime does. The release runtime's speedup ratio in

ApplesAndGoblets ranges from 1.08 to 1.27, depending on the test

machine and whether StageVideo is used.

Table 9: Total Time Cost per Frame of ApplesAndGoblets while Tracking 1
Natural Feature Marker and Rendering 1 Spinning Apple

Flash version
Context of
video
background

Dell Inspiron
9400

MacBook
Pro 13" mid-
2010

Custom
gaming
desktop

11.4 debug Stage
Mean: 177 ms

(5.65 FPS)

StD: 2.9 ms

Mean: 72.8 ms

(13.7 FPS)

StD: 1.5 ms

Mean: 138 ms

(7.25 FPS)

StD: 0.78 ms

11.4 debug StageVideo
Mean: 182 ms

(5.49 FPS)

StD: 2.0 ms

Mean: 23.5 ms

(42.6 FPS)

StD: 1.7 ms

Mean: 142 ms

(7.04 FPS)

StD: 1.2 ms

11.4 release Stage
Mean: 164 ms

(6.10 FPS)

StD: 1.6 ms

Mean: 57.5 ms

(17.4 FPS)

StD: 1.7 ms

Mean: 124 ms

(8.06 FPS)

StD: 1.1 ms

11.4 release StageVideo
Mean: 161 ms

(6.21 FPS)

StD: 1.5 ms

Mean: 21.6 ms

(46.3 FPS)

StD: 0.50 ms

Mean: 128 ms

(7.81 FPS)

StD: 0.65 ms

Note: For StageVideo, the video runs at an independent (higher) frame rate.

 141

5.4: Analysis

Within the tested range, Illusion’s time cost seems to grow at a less-

than-linear rate with respect to number of trackers but at a linear or

greater-than-linear rate with respect to number of marker pools. (See

Table 8B in “5.3.2: CPU Time Breakdown”.) Moreover, the time cost

seems to grow with the number of marker pools per tracker. The

differences in growth characteristics might be due to differences in

iteration approaches. Illusion internally creates an iterator object each

frame for each marker pool, whereas it does not use iterator objects for

trackers. Moreover, a dynamically sized vector is created each frame for

each tracker and is populated with the tracker’s marker pool iterators.

Here are some examples of the per-frame operations associated with these

iterators and vectors:

• Each iterator is allocated, has its iteration function invoked multiple

times, and is garbage collected.

• Each vector may be resized multiple times. The number of times

the vector is resized depends on the number of iterators added to

the vector—thus, the number of marker pools per tracker. The cost

of each resizing depends on the same thing.

Thus, there is room for optimizing iteration over marker pools.8 However,

even in the worst test case, Illusion’s per-marker cost is only 1.1 μs, which

is likely to be negligible relative to the underlying tracker’s per-marker

cost.

Even if Illusion were ported to other platforms, we expect that its

overhead costs, like iteration, would remain negligible relative to the

8 To test the hypothesis that the iteration approach affects Illusion’s
scalability, we conducted some preliminary tests with revisions that do not

 142

underlying costs of sensing, tracking, and compositing. For example, on

any platform, it should be possible to achieve iteration costs that grow

only linearly with respect to the number of elements. Two commonplace

approaches with this characteristic are linked lists and indexing into fixed-

size arrays.

The standard deviation of Illusion’s time cost also seems to increase

with the number of marker pools per tracker. This pattern might reflect

underlying variations in the cost of resizing vectors.

Illusion’s time cost is similar on the Dell Inspiron and MacBook Pro,

yet is less on the custom gaming desktop. (See Table 8A in “5.3.2: CPU

Time Breakdown”.) This result is unsurprising because the former two

machines have relatively similar CPUs, while the latter machine’s CPU is

clocked faster and has twice as many cores. (See Table 7 in “5.2.1:

Dependencies and Platforms”.)

Given its low cost at multiple scales and on multiple machines, Illusion

proves to be lightweight despite its high-level architecture. That is to say,

calls to Illusion’s functions pass through to underlying platform and

tracker functions at negligible cost in time. Moreover, an inspection of

paused frames reveals that Illusion introduces no frame lag (in normal

usage, i.e. when client code adheres to typical event handling practices).

(See “5.3.1: Frame Lag”.) Thus, latency is as good as possible for the

given I/O systems, tracker, and overall frame rate.

Alternativa3D also seems to be lightweight, as far as we can judge from

the simple 3D scene in MinimalProfiler. Alternativa3D’s cost in

use iterator objects. These tests suggest that the time cost can be reduced
by a factor of two or more in the case of a single tracker with 1000 marker
pools. Note that in absolute terms this difference is still small.

 143

MinimalProfiler is at worst 7.5 μs, which is negligible. Moreover, we

know that Alternativa3D does not introduce frame lag (in normal usage);

otherwise, Illusion would introduce frame lag too.

The time cost of Alternativa3D is lower on the MacBook Pro than on

the Dell Inspiron or the custom gaming desktop. The reason for this

difference is not apparent to us. However, in absolute terms, the

difference is negligible—again, as far as we can judge from the simple 3D

scene in MinimalProfiler.

The time cost of Illusion’s 2D/3D compositing technique (as

implemented in ARViewportUsingStage and

ARViewportUsingStageVideo) is high and has surprising variations

across the test machines: the MacBook Pro outperforms the custom

gaming desktop. Differences in memory architecture are probably the

cause. Whereas the desktop uses dedicated graphics memory (and the

Dell Inspiron may use dedicated graphics memory, depending on the

circumstances), the MacBook Pro uses shared memory. Shared memory

would make GPU rendering results more cheaply accessible to the CPU,

as the compositing technique demands.

The rationale for the current compositing technique is peculiar to the

limitations of Flash. (See “2.6.4: Focus on Flash”.) The current technique

marshals the 3D rendering results from graphics memory to main

memory. An alternative implementation could marshal camera data from

main memory to graphics memory, though this approach would preclude

the use of StageVideo. A GPU-accelerated compositing technique that

avoids marshalling is currently infeasible in Flash because Stage3D

supports neither camera input nor background transparency.

 144

On future versions of Flash, or on other platforms, it is important that

Illusion evolve to support fully GPU-accelerated compositing.

Techniques that avoid reading back graphics memory (or, conversely,

uploading video buffers to graphics memory each frame) should be both

faster and more predictable, as they eliminate an entire category of bus

costs.

For camera input, StageVideo (via ARViewportForStageVideo) offers

some advantages over Stage (via ARViewportForStage). (See Table 9 in

“5.3.3: Overall Performance”.) StageVideo is categorically more efficient

on the MacBook Pro, while on the other test machines it seems to improve

the smoothness and responsiveness of the video background only. Even in

the latter case, the user might perceive an overall improvement. Real-

world objects are the focus of interactivity in AR, so the user might first

watch for a real-world event in the live video scene, and only then watch

for a virtual-world event in the 3D scene.

It is surprising that StageVideo improves the overall frame rate on the

MacBook Pro but not on the other test machines. A possible explanation

relates back to the compositing inefficiency, albeit indirectly. Recall that

CPU time cost on the Dell Inspiron and the custom gaming desktop is

dominated by compositing, more so than on the MacBook Pro. Use of

StageVideo does not offload compositing to the GPU, though it does

offload some rendering, which accounts for a higher proportion of CPU

time cost on the MacBook Pro than on the other machines. Thus, the

MacBook Pro should realize a greater speedup ratio from the use of

StageVideo.

Note that the higher proportional cost of Flash rendering on the

MacBook Pro does not imply a higher absolute cost. The absolute cost is

 145

greater on the Dell Inspiron, though less on the custom gaming desktop.

This ordering is consistent with the machines’ relative processing power.

Both CPU and GPU capabilities might be relevant in this case if Flash

conditionally offloads some rendering to the GPU.

With some caveats, Illusion and its flare* wrappers are already usable

in real-world applications. Graphically intensive AR applications—for

example, using high-polygon models and dynamic lights—perform well on

at least some hardware that uses shared graphics memory. Applications

that do not use the compositing functionality—for example, games that

use tracking to control purely virtual scenes—should perform well on

diverse hardware.

 146

Chapter 6: Discussion

This chapter reviews the motivations behind this thesis project and the

extent to which they are resolved by Illusion SDK. We conclude that

Illusion’s design can support efficient implementations for many platforms

and many ubiquitous applications. For Flash, the current compositing

implementations are inefficient on some hardware, though otherwise

efficiency is not problematic.

Continued development of Illusion is proposed. Optimizations of the

current compositing implementations are planned in anticipation of new

features in Flash. Also, the author and other parties should be able to port

and extend Illusion to cover more platforms and more techniques for

sensing, tracking, and compositing.

6.1: Ubiquity

AR’s potential for ubiquity was one of the motivations behind this

thesis project. Illusion SDK addresses this potential by providing an

extensible, modular, portable, high-level architecture that includes

abstractions of sensors, trackers, and compositors. These abstractions are

agnostic about the platform’s I/O capabilities: they can support various

sources of sensor data and destinations for composited scenes. Moreover,

trackers and compositors have no dependency on each other. A notable

consequence is that compositing can be omitted—or handled by a non-

Illusion module—if the platform or application so requires. (See the

“Design and Contribution” chapter.) For these reasons, Illusion’s

abstractions are portable to ubiquitous computers that may have

unconventional interfaces.

 147

Illusion’s zlib license is friendly to third-party ports. For example,

device manufacturers could make proprietary ports to their platforms.

Our intent is to encourage the adoption of Illusion’s design, even if our

own implementation is inappropriate to a given ubiquitous computing

platform.

Illusion’s current implementation, targeting Flash, is not in itself

ubiquitously deployable. However, it is easily deployable to Web users on

Windows and Mac. (No incompatibilities were encountered in informal

testing on our own and colleagues’ machines.) Deployment in the form of

desktop applications, via Adobe AIR, should also work (though this path

is not yet tested). Besides being available on Windows and Mac, the AIR

runtime might have a future on proprietary appliances that could be

characterized as ubiquitous computers. For example, recent LG Smart

TVs run AIR 3.0, which is equivalent to Flash 11.0 (Magni, 2012).

Flash’s security and privacy features, along with its support for peer-to-

peer networking, may make it a suitable platform for applications that rely

on a network of ubiquitous computers. (See “2.6.4: Focus on Flash”.)

6.2: Efficiency

The need for AR applications to be responsive—and therefore

efficient—was another motivation behind this thesis project. Illusion

SDK’s design is capable of supporting efficient implementations that have

low time cost per frame and do not introduce any whole frames of latency.

(See the “Evaluation” chapter.)

Most of Illusion’s implementation for Flash is efficient. There is one

major efficiency problem in Illusion’s compositing implementation for

Flash: the compositor may marshall data between main memory and

 148

graphics memory every frame, at high cost in time. This problem arises

from Flash’s use of multiple graphics contexts, some of which cannot

capture camera input and some of which cannot be layered in front of

another context. (See “2.6.4: Focus on Flash” and “5.4: Analysis”.)

Generally, ports of Illusion to other platforms should not suffer from the

same compositing problem.

On systems that use shared graphics memory, Illusion’s current

compositing implementation runs efficiently. Also, in applications that do

not require compositing, the current efficiency problem is irrelevant. For

example, client code could use Illusion’s sensing and tracking functionality

to control nodes in a pure 3D scene with no video background. Though it

might not fit the definition of AR, this use case is envisioned by Illusion’s

modular design.

6.3 Conclusion

This thesis has contemplated the statement that ubiquity and efficiency

are critical in an industry-grade AR engine—and that finding or creating

this combination is nontrivial. A good solution, we have argued, can

deliver this combination, provided that care is taken to use the strengths

and avoid the weaknesses of a platform’s idiosyncrasies.

Our proof and practical contribution lie in the design, implementation,

and evaluation of Illusion SDK. Illusion is an AR engine whose modular,

extensible design can potentially support ubiquitous and efficient

applications. The Flash implementation takes account of certain platform

peculiarities, strengthening its performance results on some hardware.

The design is portable to other platforms regardless of I/O capabilities,

and implementations are expected to have low overhead cost regardless of

 149

platform. Compared to previous solutions by the author and others,

Illusion has the potential to reduce rework in certain industry-relevant

situations, as needs and technologies change.

6.4: Future Work

This thesis project has coincided with significant developments in Flash

and other Web application runtimes. Flash 11.4 offers GPU-accelerated,

readable camera input, increasing the platform’s suitability for AR. More

generally, Flash 11’s prospects as a game platform are being bolstered by

support from cross-platform engines such as Unity and Unreal. Where

the latest Flash versions are supported (i.e. on Windows and Mac), they

continue to see strong rates of adoption.

On the other hand, Flash has failed to address the problem of

increasing fragmentation in Web clients’ operating systems. It lacks iOS

support and has recently dropped Android and Linux support. Silverlight

and Java have similarly failed to support the mobile Web. Instead, it is

likely that WebRTC (for camera access) and WebGL (for GPU

acceleration) will make JavaScript a viable solution for cross-platform AR

in future versions of mobile and desktop browsers.

A reexamination of target platforms is the first priority in future work

on Illusion. Although Illusion’s abstractions come at negligible

performance cost (and so do Alternativa3D’s), they are implemented atop

Flash platform functions that may carry an undue cost. We want to

optimize Illusion for future Flash versions and also port it to other Web

application runtimes in order to determine how the overall performance of

AR scenes is affected by the platform.

 150

Beyond Flash 11.4, the platform might evolve to support transparent

backgrounds in Stage3D, thus enabling a GPU-accelerated compositing

solution. There is a precedent for this feature in a beta version of Flash

11.0. (See “2.6.4: Focus on Flash”.) ARViewportUsingStageVideo is

written in a way that anticipates this feature, so adopting it should require

only a one-line change to the code.

We have not yet studied the challenges of porting Illusion to

JavaScript (or any other target in particular). The range of third-party

trackers will differ greatly: Flash is quite mature in this respect, while

JavaScript (and some other targets) are not. Illusion and all its ports

should share at least one functionally equivalent tracker for testing

purposes. ARToolkit derivatives are a likely choice, since they are already

available for Flash (FLARToolkit), JavaScript (JSARToolkit), and many

other targets.

Another priority is the improvement of Illusion’s content pipeline.

Animations should be supported in the 3D model importer. (There is

some underlying support for animation import in Alternativa3D but

Illusion’s higher-level importer does not provide any abstractions of it.)

As the content pipeline is closely integrated with the underlying game or

graphics engine, it might differ greatly across ports of Illusion. For

example, a port that integrated with Unity would already get a high-level

content pipeline as part of the Unity toolchain.

An ongoing concern is to expand the number of concrete tracker

interfaces in Illusion, either by wrapping existing trackers or

implementing new ones. Facial tracking and 3D object tracking are not

covered by Illusion’s current tracking wrappers, so these types of tracking

could be priorities. Non-visual (ex. audio) sensing and tracking also

 151

remains to be explored. Original trackers should take advantage of GPU

acceleration and other forms of multiprocessing, where available. An

eventual goal is for Illusion to support AR applications that are GPU-

accelerated at the three costly stages of tracking, rendering, and

compositing.

 152

Appendix A: Availability and Licensing

For the latest version of Illusion, visit

https://github.com/JoeHowse/Illusion/. The latest version may have

refinements over the version described in this thesis. (See “6.4: Future

Work”.)

Illusion is available under zlib license, a liberal open-source license that

permits both open-source and closed-source extensions, for

noncommercial or commercial use. For example, anyone is free to make

and sell an application that interfaces with Illusion, a tracker that extends

Illusion, or an authoring environment that embeds Illusion.

We believe that a liberal open-source license helps make a software

library relevant to a broad audience and broad problem set. Open-source

code fosters knowledge transfer among software architects: without it,

students and even professionals would have relatively few opportunities to

study large codebases (Brown and Wilson 2012). It can be audited—a

requirement in critical applications such as military simulations

(McDowell et al, 2006; McDowell, 2008) and forensic tools (Carrier,

2002). It can be forked and redistributed by anyone, so vendor lock-in is

avoided—also a requirement in critical and long-term applications

(McDowell et al, 2006; McDowell, 2008). It is available without cost,

without embargo against any user group, and (under “liberal” licenses)

without prohibition against any use case.

Compared to the Flash-based alternatives—notably, FLARManager

and vendor-specific offerings—Illusion is available under a more liberal

license, making it extensible by the broadest possible developer

community. (See “4.3: Comparison to Other Designs” for more

differences that pertain to extensibility and generality.) FLARManager is

 153

open-source under GNU Public License (GPL) but this license prohibits

closed-source extensions. For the latter purpose, FLARManager offers an

alternative, paid license. Vendor-specific offerings are typically closed-

source, paid, or both. Illusion’s zlib license encourages both open-source

and closed-source extensions, for noncommercial or commercial use.

Note that while Illusion is open-source under zlib license,

implementations of its AbstractTracker type may wrap libraries that fall

under other licenses. (See “4.1.3: Tracking Markers”.) Clients who use

or make such wrappers must abide by the tracking libraries’ licenses. For

example, flare*tracker and flare*nft are closed-source, commercial

libraries that can be licensed from Imagination Computer Services GmbH

(http://www.imagination.at/en/?Products:Augmented_Reality).

Imagination provides demo licenses, with no expiry, for use on localhost.

Alternativa3D (Illusion’s dependency for 3D scene graph functionality

in Flash) is open-source under Mozilla Public License. Alternativa3D’s

latest source code is available from

https://github.com/AlternativaPlatform/Alternativa3D and the latest

precompiled binary is available from

http://alternativaplatform.com/en/download8/.

 154

Appendix B: Non-AR Functionality

B.1: Loading Binary or Text Files

The Flash standard library provides an event-driven (observer) pattern

for asynchronous file loading. The Flex standard library provides an

alternative pattern of static prototypes, whereby arbitrary files may be

embedded at compile-time as classes.

Neither of these pre-existing patterns is appropriate to Illusion’s

internal needs. Under the observer pattern, synchronizing multiple file

loads is cumbersome. Under the static prototype pattern, Illusion and the

client application become bloated (due to the Flex dependency and static

data) and more tightly coupled (due to the lack of dynamic data).

As a substitute, Illusion provides a mediator pattern, with delegation,

for asynchronous file loading (Figure A; Code Sample A). The delegator

class, Loader, is instantiated with a delegate and a base file path. The

delegate must implement an interface called ILoaderDelegate, which has

functions for handling load successes and load errors. The delegator has

functions for requesting that one or more file paths (relative to the

specified base path) be loaded as either binary data or text. The delegator

can be polled (ex. by the delegate, on a load success) to determine the

number of pending loads: 0 pending loads indicates that a synchronization

point has been reached. The delegator can be told (ex. by the delegate, on

a load error) to cancel all pending loads.

Internally, Loader still uses the observer pattern. The particular

implementation of this pattern ensures that a Loader and its delegate are

never garbage-collected while there are pending loads.

 155

Illusion already uses Loader and ILoaderDelegate internally, so client

code does not necessarily need access to general-purpose file loading

functionality. Also, client code is free to use either of the two standard file

loading patterns, or some other alternative; Illusion just provides Loader

as an option.

Figure A: Design of Loader and ILoaderDelegate

 156

Code Sample A: Usage of Loader and ILoaderDelegate
public class MyLoaderDelegate implements ILoaderDelegate
{

var binaryData_:ByteArray;
var textData_:String;

public function MyLoaderDelegate()
{

// Create a loader with this delegate and a base
// path of "data".
var loader:Loader = new Loader(this, "data");

// Load a binary file.
loader.loadBinary("stuff.bin");

// Load multiple binary files.
//loader.loadBinaries("stuff.bin", "dreams.bin");

// Load a text file.
loader.loadText("prose.txt");

// Load multiple text files.
//loader.loadTexts("prose.txt", "verse.txt");

}

// Part of the ILoaderDelegate implementation.
public function onLoadError(loader:Loader,

 filename:String,
 errorEventType:String):void

{
// Cancel any remaining loads.
loader.close();

// Throw an error, saying which load failed and
// what the failure was.
throw new Error("Failed to load \"" +
 loader.basePath + filename + "\": " +
 errorEventType);

}

// Part of the ILoaderDelegate implementation.
public function onLoadComplete(loader:Loader,

 filename:String,
 data:*):void

{
if (filename == "stuff.bin")
{

binaryData_ = data as ByteArray;
}
else // filename == "prose.txt"
{

 157

textData_ = data as String;
}

if (loader.numLoadsPending > 0)
{

return;
}

// Both files have loaded. Now we can do something
// that requires both files' data.
…

}
}

B.2: Loading 3D Model Files

Alternativa3D provides functionality for parsing certain binary and

text formats as 3D scene graph branches (ex. 3D models), containing

references to any external resources (ex. textures) that need to be loaded

before render-time. However, this functionality falls short of being an

asset pipeline. On one end, it does not facilitate loading the original

binary or text data from files, nor does it generate any materials (just

resource references and metadata). On the other end, it does not

aggregate resource references so as to facilitate efficient uploading to the

GPU and efficient disposal from the GPU. To find resource references

and generate appropriate materials, client code must walk the parsed

scene branch. Naively implemented client code might generate duplicate

materials and make redundant resource uploads to the GPU, especially if

the scene contains multiple copies of the branch.

To address these shortcomings and pitfalls, Illusion provides higher-

level functionality via a builder class, ExternalModelPrefab. This class is

instantiated with a prototype of a 3D scene graph branch. Client code

 158

typically does not instantiate a builder directly but instead gets one from a

file loader of type ExternalModelPrefabLoader (Figure B; Code Sample

B), which internalizes the steps of loading the 3D data file, parsing it as a

prototype, and instantiating an ExternalModelPrefab with the prototype.

ExternalModelPrefabLoader uses the mediator pattern and delegation to

provide an interface that is similar to Loader’s. The delegate must

implement an interface called IExternalModelPrefabLoaderDelegate,

which is similar to ILoaderDelegate. (See the previous section, “Loading

Binary or Text Files”.)

Internally, ExternalModelPrefabLoader creates a Loader and acts as

its delegate. Being a Loader’s delegate, an ExternalModelPrefabLoader is

never garbage-collected while there are pending loads.

Supported file formats are .dae (COLLADA), .3ds (3D Studio), and

.a3d (Alternativa3D). Meshes are imported, and materials are generated

with the following components: diffuse, normal, specular, gloss, and

alpha. Each component uses a texture map if one is specified by the data;

failing that, a uniform color if one is specified by the data; and failing that,

a default uniform color. The current version of ExternalModelPrefab

does not parse non-mesh nodes, nor does it parse animations.

 159

Figure B: Design of ExternalModelPrefabLoader and Related Types

 160

Code Sample B: Usage of ExternalModelPrefabLoader and Related Types
public class MyExternalModelPrefabLoaderDelegate
implements IExternalModelPrefabLoaderDelegate
{

var stage3D_:Stage3D;
var scene3D_:Object3D;

var applePrefab_:ExternalModelPrefab;
var orangePrefab_:ExternalModelPrefab;

var littleApple:Object3D;
var bigApple:Object3D;
var orange:Object3D;

public function MyLoaderDelegate(stage3D:Stage3D,
scene3D:Object3D)

{
stage3D_ = stage3D;
scene3D_ = scene3D;

// Create a loader with this delegate and a base
// path of "data".
var loader:ExternalModelPrefabLoader =

new ExternalModelPrefabLoader(this, "data");

// Load a model file.
//loader.loadExternalModelPrefab("apple.3ds”);

// Load multiple model files.
loader.loadExternalModelPrefabs
(

"apple.3ds",
"orange.3ds"

);
}

// Part of the IExternalModelPrefabLoaderDelegate
// implementation.
public function onLoadExternalModelPrefabError(

loader:ExternalModelPrefabLoader,
filename:String,
errorEventType:String):void

{
// Cancel any remaining loads.
loader.close();

// Throw an error, saying which load failed and
// what the failure was.
throw new Error("Failed to load \"" +
 loader.basePath + filename + "\": " +
 errorEventType);

 161

}

// Part of the IExternalModelPrefabLoaderDelegate
// implementation.
public function onLoadExternalModelPrefabComplete(

loader:ExternalModelPrefabLoader,
filename:String,
data:*):void

{
if (filename == "apple.3ds")
{

applePrefab_ = data as ByteArray;
}
else // filename == "orange.3ds"
{

orangePrefab_ = data as String;
}

if (loader.numLoadsPending > 0)
{

return;
}

// Both prefabs have loaded. Now we can do
// something that requires both prefabs, such as
// populating a scene with models.

// Make models.

littleApple = applePrefab_.newObject3D();

applePrefeb_.scale = 2.5;
bigApple = applePrefab_.newObject3D();

orange = orangePrefab_.newObject3D();

// Upload resources to the GPU.
applePrefab_.loadResources(stage3D_.context3D);
orangePrefab_.loadResources(stage3D_.context3D);

// Populate the scene.
scene3D_.addChild(littleApple);
scene3D_.addChild(bigApple);
scene3D_.addChild(orange);
…

}

public function dispose():void
{

// Depopulate the scene.
scene3D_.removeChild(littleApple);
scene3D_.removeChild(bigApple);

 162

scene3D_.removeChild(orange);

// Unload resources from the GPU.
applePrefab_.unloadResources();
orangePrefab_.unloadResources();
…

}
}

B.3: Creating Lighting Setups

The author’s experience is that developers often begin a project with

naive or lazy approaches to lighting. As such, the application prototype

might give a misleadingly poor impression of the 3D artwork—

particularly the materials. When lacking a more deliberate lighting

design, developers should pick a standard cinematic setup that tends to

produce a variety of hard and soft highlights and shadows (Arnold, 2011).

One such setup is three-point lighting, consisting of a key light, a fill

light, and a back light. The key light is a bright light facing the subject

from above-front-left or above-front-right. It provides broad illumination

of the subject, though with partial shadow. The fill light is a dim light

facing the subject from above-front-right or above-front-left. It softens

the shadows on the subject. The back light is a bright light facing the

subject from back-left or back-right. It highlights the subject’s silhouette.

Illusion facilitates the use of a three-point lighting setup by providing a

static factory method in the SceneUtils class (Figure C, Code Sample C).

The constructee is a 3D node with three directional lights as children. As

the lights are directional, their position relative to the subject is irrelevant,

and usage is extremely simple (albeit inflexible).

 163

This implementation of a three-point lighting setup is intended only for

rapid prototyping of simple scenes, where light rays’ points of origin are

not of particular concern. Multiple directional lights, as used in this

implementation, may produce strange-looking results in complex scenes.

SceneUtils also provides a static function for checking whether a

specified 3D node or any of its subnodes are instances of a specified class.

Such information can be useful for optimization purposes. For example, if

an entire scene contains no meshes, it need not be rendered. The latter

optimization is used internally by Illusion’s compositors.

Figure C: Design of SceneUtils

Code Sample C: Usage of SceneUtils
var scene3D:Object3D = new Object3D();
sceneContainsClass(scene3D, Light3D); // false
…
var threePointLighting:Object3D =

LightingUtils.newThreePointLighting();
scene3D.addChild(threePointLighting);
sceneContainsClass(scene3D, Light3D); // true

 164

B.4: Miscellaneous Static Functions

Certain math functions are provided statically in the MathUtils class

(Figure D; Code Sample D). Specifically, these functions relate to powers

of 2 and angle conversions.

Figure D: Design of MathUtils

Code Sample D: Usage of MathUtils
MathUtils.nextPowerOf2(3); // 4
MathUtils.nextPowerOf2(4); // 4

MathUtils.isPowerOf2(3); // false
MathUtils.isPowerOf2(4); // true

MathUtils.toRadians(180); // approximately Math.PI

MathUtils.toDegrees(Math.PI); // approximately 180

 165

Certain functions for parsing strings are provided statically in the

StringUtils class (Figure E; Code Sample E). Specifically, most of these

functions relate to parsing file paths. Classes in Illusion already use these

functions internally to parse file path arguments; client code does not need

to pre-parse file paths when interfacing with Illusion.

Figure E: Design of StringUtils

Code Sample E: Usage of StringUtils
var loadee:DisplayObject;
// Can get information about the application's loading path.
// Suppose the loading path is "http://nummist.com".
…

StringUtils.absolutePath("data/cat.gray.PNG", loadee);
// http://nummist.com/data/cat.gray.PNG

StringUtils.lowercaseFileExtension("cat.gray.PNG"); // ".png"

StringUtils.slashTerminate("data"); // "data/"

StringUtils.trim(" \t\ngrayspace \t\n"); // "grayspace"

Logging functionality is provided in the Logger class (Figure F; Code

Sample F). Logger exposes a static, constant instance that may be treated

as if it were a singleton. Alternatively, client code may create its own

instances of Logger for the sake of independent configurability. A

 166

Logger’s verbosity level can be set, and log requests can be made with a

specified tag (such as a class name), priority level, and message. A log

request will be fulfilled (using ActionScript’s standard trace function) if its

priority level is less than or equal to the verbosity level.

Figure F: Design of Logger

Code Sample F: Usage of Logger
Logger.mainLogger.log("My tag", 0, "My priority 0 message");
// Gets logged as "My tag [0]: My priority 0 message".

Logger.mainLogger.log("My tag", 1, "My priority 1 message");
// Does not get logged because verbosity defaults to 0.

// Increase verbosity to 1.
Logger.mainLogger.verbosity = 1;

Logger.mainLogger.log("My tag", 1, "My priority 1 message");
// Gets logged as "My tag [1]: My priority 1 message".

 167

Bibliography

Abdeles, P. (2012). Resolving Implementation Ambiguity and Improving
SURF. Retrieved February 24, 2012, from
http://arxiv.org/pdf/1202.0492v1.

Adobe. ActionScript Technology Center. Retrieved February 1, 2012,
from http://www.adobe.com/devnet/actionscript.html.

Adobe. Adobe AIR Release Notes. Retrieved March 29, 2012, from
http://www.adobe.com/support/documentation/en/air/releasenotes.h
tml.

Adobe. Alchemy. Retrieved August 10, 2012, from
http://labs.adobe.com/technologies/alchemy/.

Adobe. Cirrus. Retrieved September 28, 2012, from
http://labs.adobe.com/technologies/cirrus/.

Adobe. Director 11.5 Help. Retrieved February 1, 2012, from
http://help.adobe.com/en_US/Director/11.5/UsingScripting/index.ht
ml.

Adobe. Flash Player security and privacy. Retrieved September 27,
2012, from http://www.adobe.com/security/flashplayer/.

Adobe. Flash Player Release Notes. Retrieved March 29, 2012, from
https://www.adobe.com/support/documentation/en/flashplayer/relea
senotes.html.

Adobe. Getting started with stage video. Retrieved March 28, 2012, from
http://www.adobe.com/devnet/flashplayer/articles/stage_video.html.

Adobe. How Stage3D Works. Retrieved March 27, 2012, from
http://www.adobe.com/devnet/flashplayer/articles/how-stage3d-
works.html.

 168

Adobe. Pixel Bender Technology Center. Retrieved February 1, 2012,
from http://www.adobe.com/devnet/pixelbender.html.

Adobe. Preview 3 and the future of PB3D. Retrieved March 31, 2012,
from http://blogs.adobe.com/pixel-bender/2011/09/22/preview-3-
and-the-future-of-pb3d/.

Adobe. RTMFP FAQ. Retrieved October 1, 2012, from
http://www.adobe.com/products/flash-media-enterprise/rtmfp-
faq.html.

Adobe. What is AGAL. Retrieved April 1, 2012, from
http://www.adobe.com/devnet/flashplayer/articles/what-is-
agal.html.

Adobe. Worker. Retrieved October 1, 2012, from
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/
3/flash/system/Worker.html.

AlternativaPlatform. Camera3D - API Documentation. Retrieved April
8, 2012, from http://alternativaplatform.com/en/docs/8.27.0/.

AlternativaPlatform. Showcase. Retrieved March 25, 2012, from
http://alternativaplatform.com/en/showcase/.

Arduino. “Interfacing with Other Software”. Retrieved April 6, 2012,
from http://arduino.cc/playground/Main/InterfacingWithSoftware.

Arnold, D. (2011). CSCI 4167/6608: Advanced Computer Animation.
(Lecture slides). Dalhousie University.

Azuma, R. (1997). A Survey of Augmented Reality. Presence: Teleoperators
and Virtual Environments, 6(4), 355-385.

 169

Baines, H., & Bomback, E. (1967). The Science of Photography (3rd ed.).
Fountain Press.

Bay, H., Tuytelaars, T., & Van Gool, L. (2006/2008). SURF: Speeded-
Up Robust Features. Proceedings from ECCV 2006: The 9th
European Conference on Computer Vision. Reprinted in Computer Vision
and Image Understanding, 110(3), 346-359.

Beyond Reality. IN2AR. Retrieved July 12, 2012, from
http://www.in2ar.com/.

Bidelman, E. (2012, July 20). Capturing Audio & Video in HTML5.
Retrieved August 17, 2012, from
http://www.html5rocks.com/en/tutorials/getusermedia/intro/.

Billinghurst, M., Kato, H., & Poupyrev, I. (2001). The Magic-Book—
Moving Seamlessly between Reality and Virtuality. IEEE Computer
Graphics and Applications, 21(3), 2-4.

Bradsky, G., & Pisarevsky, V. (2000). Intel’s Computer Vision Library:
Applications in calibration, stereo, segmentation, tracking, gesture,
face and object recognition. Proceedings from CVPR 2000: 2000
Conference on Computer Vision and Pattern Recognition.

Brown, A., & Wilson, G. (Eds.) (2012). The Architecture of Open Source
Applications. Lulu.com.

Carrier, B. (2002, October). Open Source Digital Forensic Tools: The
Legal Argument. @stake Research Report.

Caudell, T., & Mizell, D. (1992). Augmented Reality: an application of
heads-up display technology to manual manufacturing processes.
Proceedings from HICSS 1992: The 25th Hawaii International
Conference on Systems Science(2), 659-669. Kauai, Hawaii.

Christian Doppler Laboratory. ARToolKitPlus. Retrieved April 8, 2012,
from http://handheldar.icg.tugraz.at/artoolkitplus.php.

 170

Chúťka, J. (2010, March 4). Fixing Z-sorting in Papervision 3D
(update). Retrieved March 25, 2012, from
http://blog.yoz.sk/2010/03/fixing-z-sorting-in-papervision-3d/.

Civantos, D. (2010, February 14). Por el amor de Dios: los tatuajes
vivientes. Retrieved March 9, 2012, from
http://www.cookingideas.es/por-el-amor-de-dios-los-tatuajes-
vivientes-20100214.html.

Clarke, R. (1994). British Aircraft Armament Vol. 2: RAF Guns and Gunsights
from 1914 to the Present Day. UK: Patrick Stephens.

Collins, D. (2011). Bar Codes: The 50th Anniversary of the First Bar
Code Scanner. Retrieved March 12, 2012, from
http://www.aimglobal.org/members/news/templates/template.aspx?a
rticleid=3827&zoneid=46.

Comport, A. (2005). Towards a Computer Imagination: Robust Real-time 3D
Tracking of Rigid and Articulated Objects for Augmented Reality and
Robotics. (Unpublished dissertation). University of Rennes 1.

Consolvo, S., Roessler, P., Shelton, B., LaMarca, A., Schilit, B., & Bly, S.
(2004). Technology for care networks for elders. Pervasive
Computing, 3, 22-29.

Dobkin, D., & Wandinger, T. (2005, June). A Radio-Oriented
Introduction to Radio Frequency Identification. High Frequency
Electronics, 46-54.

Engelbart, D. (1962). Augmenting Human Intellect: A Conceptual Framework.
Menlo Park, CA: Stanford Research Institute.

Engelbart, D. (1968). A Research Center for Augmenting Human
Intellect. (Lecture). Video republication retrieved April 2, 2012,
from http://sloan.stanford.edu/MouseSite/1968Demo.html.

 171

Ernst, T. (2011). Performance Analysis and Acceleration for Rich Internet
Application Technologies. (Unpublished diploma thesis). University
of Ulm.

Evans, C. (2009, January 18). Notes on the OpenSURF Library.
Retrieved February 17, 2012, from
http://sites.google.com/site/chrisevansdev/files/opensurf.pdf.

Furgale, P., Tong, C., & Kenway, G. (2009). Speeded-Up Speeded-Up
Robust Features. (Unpublished project report). University of
Toronto.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995.) Design
Patterns: Elements of Reusable Object-Oriented Software. Boston:
Addison-Wesley.

Geffroy, M. (2012, February 27.) Total Immersion to Demo D’Fusion
AR Solutions on New Intel Ultrabook Platform at GDC 2012.
Retrieved February 27, 2012, from http://www.t-
immersion.com/blog.

Google. Google Chrome Frame. Retrieved February 10, 2012, from
http://code.google.com/chrome/chromeframe/.

Google. WebGL and 3D graphics. Retrieved January 21, 2012, from
http://support.google.com/chrome/bin/answer.py?hl=en&answer=12
20892.

Gossow, D., Paulus, D., & Decker, P. (2010). An Evaluation of Open
Source SURF Implementations. Proceedings from RoboCup 2010:
The 14th Annual RoboCup International Symposium, 169-179. Singapore.

Grden, J. (2011, September 22, 1:08 a.m.) Re: Optimizing scene with
animated DAE model. Message posted to
http://papervision3d.758870.n4.nabble.com/Optimizing-scene-with-
animated-DAE-model-td3832292.html.

 172

Gutierrez, R. (2012, February 8). Dive Into PS Vita’s Augmented
Reality Suite. Retrieved February 29, 2012, from
http://blog.eu.playstation.com/2012/02/08/dive-into-ps-vitas-
augmented-reality-suite/.

Hartl, A. (2010). Computer-Vision based Pharmaceutical Pill
Recognition on Mobile Phones. Proceedings from CESCG 2010:
The 14th Central European Seminar on Computer Graphics.

Hartl, A., Arth, C., Schmalstieg, D. (2011). Instant Medical Pill
Recognition on Mobile Phones. Proceedings from CV 2011:
IASTED International Conference on Computer Vision.

Hee, S. (2012, January 11). Qualcomm Brings Sesame Street to Mobile
Devices Through AR. Retrieved March 21, 2012, from
http://www.hardwarezone.com/tech-news-qualcomm-brings-
sesame-street-mobile-devices-through-ar.

Heikkinen, I. JSARToolkit. Retrieved August 17, 2012, from
https://github.com/kig/JSARToolKit.

Helgason, D. (2008, March 31). Thoughts On Browser Plugin
Penetration. Retrieved January 30, 2012, from
http://blogs.unity3d.com/2008/03/31/thoughts-on-browser-plugin-
penetration/.

Henn, S. (2010, October 11). Augmented Reality: drones attack Jimmy
Fallon, Marketplace newsroom. Marketplace. Retrieved February
28, 2012, from http://www.marketplace.org/topics/tech/news-
brief/augmented-reality-drones-attack-jimmy-fallon-marketplace-
newsroom.

Hero of Alexandria. (1851). The Pneumatics of Hero of Alexandria. (B.
Woodcroft, Trans.). London, UK: Taylor Walton and Maberly.
(Original work written c. 60 AD).

 173

IEWebGL. IEWebGL - WebGL for Internet Exlporer. Retrieved
February 10, 2012, from http://iewebgl.com/.

Imagination. flare*nft. Retrieved February 13, 2012, from
http://www.imagination.at/en/?Products:Augmented_Reality_for_Fl
ash:flare*nft.

Imagination. flare*tracker. Retrieved March 25, 2012, from
http://www.imagination.at/en/?Products:Augmented_Reality_for_Fl
ash:flare*tracker.

Imbert, T. (2011, October 28). Flash 11.2 and AIR 3.2 beta builds
hidden gems. Retrieved March 27, 2012, from
http://www.bytearray.org/?p=3684.

Jackson, P. (2011, April 11). 48 Frames Per Second. Retrieved July 4,
2012, from https://www.facebook.com/notes/peter-jackson/48-
frames-per-second/10150222861171558.

JavaCV. JavaCV. Retrieved February 12, 2012, from
http://code.google.com/p/javacv/.

Kan, T., Teng, C., & Chen, M. (2011). QR Code Based Augmented
Reality Applications. In Furht, B. (Ed.), Handbook of Augmented
Reality (339-354). New York, NY: Springer.

Kane Computing. Compression Ratio Rules of Thumb. Retrieved July 8,
2012, from
http://www.kanecomputing.co.uk/pdfs/compression_ratio_rules_of_
thumb.pdf.

Kato, H., & Billinghurst, M. (1999). Marker Tracking and HMD
Calibration for a Video-based Augmented Reality Conferencing
System. Proceedings from IWAR 1999: The 2nd IEEE and ACM
International Workshop on Augmented Reality.

 174

Kazmierczak, M. (2005, March 14). Photo Book Review: Open Shutter
by Michael Wesely. Retrieved March 11, 2012, from
http://mkaz.com/photography/photo-book-review-open-shutter-by-
michael-wesely.html.

Augmented Environments Laboratory. KHARMA. Retrieved November
23, 2012, from https://research.cc.gatech.edu/kharma/.

Klingemann, M. (2009, March 14). Optimizing Flash Based Face
Detection. Retrieved February 12, 2012, from
http://www.quasimondo.com/archives/000687.php.

Lane, N. D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., &
Campbell, A. T. (2010). A Survey of Mobile Phone Sensing. IEEE
Communications Magazine, September 2010, 140-150.

Leadbetter, R. (2009, September 5). Console Gaming: The Lag Factor.
Retrieved July 7, 2012, from
http://www.eurogamer.net/articles/digitalfoundry-lag-factor-article.

Leadbetter, R. (2010, June 15). Tech Analysis: Kinect. Retrieved July
5, 2012, from http://www.eurogamer.net/articles/digitalfoundry-
kinect-tech-analysis.

Lienhart, R., & Maydt, J. (2002). An extended set of Haar-like features
for rapid object detection. Proceedings from ICIP 2002: The 2002
International Conference on Image Processing, 900-903.

Lowe, D. (1999). Object Recognition from Local Scale-Invariant
Features. Proceedings from ICCV 1999: The 7th International
Conference on Computer Vision, 1150-1157. Corfu, Greece.

Mackay, W., Fayard, A., Frobert, L., & Medini, L. (1998). Reinventing
the Familiar: Exploring an Augmented Reality Design Space for Air
Traffic Control. Proceedings from CHI 1998: SIGCHI Conference on
Human Factors in Computing Systems 1998, 558-565.

 175

Magni, S. (2012, June 23). LG SmartTVs, Adobe AIR 3.0 and App Test.
Retrieved September 25, 2012, from http://www.noriste.com/lg-
smarttvs-adobe-air-3-0-and-app-test/.

Marr, D., & Nishihara, H. (1978). Representation and recognition of the
spatial organization of three-dimensional shapes. Proceedings of the
Royal Society of London B, 200, 269–294.

McDowell, P. (2008, April 29). Delta3D and Open Source Software.
Presentation at GameTech 2008: Defense GameTech Users Conference
2008.

McDowell, P., Darken, R., Sullivan, J., & Johnson, E. (2006, July).
Journal of Defense Modeling & Simulation, 3(3), 143-154.

Messom, C., & Barczak, A. (2006). Fast and Efficient Rotated Haar-like
Features Using Rotated Integral Images. Proceedings from ACRA
2006: The Australasian Conference on Robotics and Automation 2006, 1–6.

Microsoft. ActiveX Controls. Retrieved February 10, 2012, from
http://msdn.microsoft.com/en-
us/library/aa751968%28v=vs.85%29.aspx.

Microsoft. D3DXMatrixPerspectiveFovLH function. Retrieved April 8,
2012, from http://msdn.microsoft.com/en-
us/library/windows/desktop/bb205350%28v=vs.85%29.aspx.

Microsoft. Silverlight. Retrieved February 1, 2012, from
http://msdn.microsoft.com/en-
us/library/cc838158%28v=vs.95%29.aspx.

Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1994).
Augmented Reality: A class of displays on the reality-virtuality
continuum. SPIE Vol. 2351: Telemanipulator and Telepresence
Technologies, 282-292.

 176

Mizell, D. (2001). Boeing’s Wire Bundle Assembly Project. In W.
Barfield & T. Caudell (Eds.), Fundamentals of wearable computers and
augmented reality (457-468). Mahwah, NJ: Lawrence Erlbaum
Associates.

Mozilla. External resources for plugin creation. Retrieved February 10,
2012, from
https://developer.mozilla.org/en/Plugins/External_resources_for_pl
ugin_creation.

Mozilla. Gecko Plugin API Reference. Retrieved February 10, 2012,
from
https://developer.mozilla.org/en/Gecko_Plugin_API_Reference.

Mulloni, A. (2007). A collaborative and location-aware application based on
augmented reality for mobile devices. (Unpublished master’s thesis).
University of Udine.

Nintendo. Nintendo 3DS - AR Cards at Nintendo. Retrieved March 11,
2012, from http://www.nintendo.com/3ds/ar-cards.

Novell. Moonlight. Retrieved February 1, 2012, from http://www.mono-
project.com/Moonlight.

NyARToolkit. Welcome to NyARToolkit.EN. Retrieved February 15,
2012, from http://nyatla.jp/nyartoolkit/wp/?page_id=198.

Object Management Group. Unified Modeling Language. Retrieved
May 31, 2012, from http://uml.org/.

Oda, O., MacAllister, C., & Feiner, S. (2012, February 2). Goblin XNA
User Manual. Columbia University.

OpenCV. OpenCV Change Logs. Retrieved February 12, 2012, from
http://opencv.willowgarage.com/wiki/OpenCV%20Change%20Logs
.

 177

OpenGL. gluPerspective. Retrieved April 8, 2012, from
http://www.opengl.org/sdk/docs/man/xhtml/gluPerspective.xml.

Opera. An introduction to WebGL. Retrieved February 10, 2012, from
http://dev.opera.com/articles/view/an-introduction-to-webgl/.

Oracle. Lesson: Java Applets. Retrieved February 2, 2012, from
http://docs.oracle.com/javase/tutorial/deployment/applet/index.html.

Panda3D. Documentation. Retrieved February 1, 2012, from
http://www.panda3d.org/documentation.php.

Papageorgiou, C., Oren, M., & Poggio, T. (1998). A General Framework
for Object Detection. Proceedings from ICCV 1998: The 6th
International Conference on Computer Vision, 555-562. Bombay, India.

Pindar. (1830). Seventh Olympic Ode. In C. Wheelwright (Trans.),
Pindar (pp. 36-43). London, UK: Henry Colburn and Richard
Bentley. (Original work written c. 464 BC).

Pliny the Elder. (1857). The Natural History of Pliny. (J. Bostcock and H.
Riley, Trans.). London, UK: H.G. Bohn. (Original work written c.
77 AD).

Poelman, R., Akman, O, & Lukosch, S. (2012). As if Being There:
Mediated Reality for Crime Scene Investigation. Proceedings from
CSCW 2012: The 2012 ACM Conference for Computer Supported
Collaborative Work. Seattle, WA.

Poggio, T., & Edelman, S. (1990.) A network that learns to recognize
three-dimensional objects. Nature, 343, 263 – 266.

Qualcomm. Augmented Reality (Vuforia™). Retrieved February 13,
2012, from https://developer.qualcomm.com/develop/mobile-
technologies/augmented-reality.

 178

Reitinger, B., Werlberger, P., Bornik, A., Beichel, R., & Schmalstieg, D.
(2005). Spatial Measurements for Medical Augmented Reality.
Proceedings from ISMAR 2005: International Symposium on Mixed
and Augmented Reality 2005.

Rekimoto, J. (1996). Augmented Reality Using the 2D Matrix Code.
Proceedings from WISS 1996: Workshop on Interactive Systems and
Software 1996.

Resnick, M., Berg, R., & Eisenberg, M. (2000). Beyond Black Boxes:
Bringing Transparency and Aesthetics Back to Scientific
Investigation. Journal of the Learning Sciences, 9(1), 7-30.

Richardson, N. (a.k.a. “Richy2k”). (2009, October 2, 10:21 a.m.). Re:
Realistic Wii Polygon Counts. Message posted to
http://www.gamedev.net/topic/549131-realistic-wii-polygon-counts/.

Rogers, Y. (2006). Moving on from Weiser’s Vision of Calm Computing:
Engaging UbiComp Experiences. Proceedings from UbiComp
2006: The 8th International Conference of Ubiquitous Computing.

Ronzani, D. (2007). The Battle of Concepts: Ubiquitous Computing,
Pervasive Computing and Ambient Intelligence in Mass Media.
Ubiquitous Computing and Communication Journal, 4(2), 9-19.

Rooney, C. (2011). UnityFlashCam. Retrieved March 18, 2012, from
https://github.com/rooch84/UnityFlashCam.

Rose, D. (a.k.a. “drwr”). (2011, September 29). Triple your frame rate?
Retrieved January 23, 2012, from
http://www.panda3d.org/blog/?p=206.

Safire, W. (2009, July 23). The Cold War’s Hot Kitchen. The New York
Times. Retrieved April 7, 2012, from
http://www.nytimes.com/2009/07/24/opinion/24safire.html?_r=1&pa
gewanted=all.

 179

Samsung. Samsung SUR40 for Microsoft® Surface®. Retrieved April 6,
2012, from
http://www.samsunglfd.com/product/feature.do?modelCd=SUR40.

Samsung. (2011, January 6). SAMSUNG And Adobe Bring Adobe Air
[sic] To Smart TVS [sic]. Retrieved October 1, 2012.

Shachtman, N. (2007, March 21). Pentagon’s PCs Bend to Your Brain.
Wired. Retrieved April 27, 2012, from
http://www.wired.com/dangerroom/2007/03/the_us_military/.

Schiffman, H. (2001). Sensation and Perception: An Integrated Approach.
New York, NY: John Wiley and Sons.

Schilit, B., Adams, N., Gold, R., Tso, M., & Want, R. (1993). The
PARCTAB Mobile Computing System. Proceedings from WWOS-
IV: The Fourth Workshop On Workstation Operating Systems.

Schmalstieg, D., & Wagner, D. (2005). A Handheld Augmented Reality
Museum Guide. Proceedings from ML 2005: IADIS International
Conference on Mobile Learning 2005, 34-39.

Schmalstieg, D., Fuhrmann, A., Szalavári, G., Encarnação, L., Gervautz,
M., & Purgathofer, W. (2002). The Studierstube Augmented
Reality Project. Presence: Teleoperators and Virtual Environments, 11(1),
33-54.

Shepherd, O. (a.k.a. “cranberryzero”). (2011, May 2). Nintendo 3DS
augmented reality tattoo is awesome, real. Retrieved March 9,
2012, from http://www.iheartchaos.com/post/5134010603/nintendo-
3ds-augmented-reality-tattoo-is-awesome-real.

ShiVa3D. Documentation. Retrieved February 1, 2012, from
http://www.stonetrip.com/developer/doc/.

Sociodox. The Miner. Retrieved August 3, 2012, from
http://www.sociodox.com/theminer/.

 180

Socolofsky, E. FLARManager: Augmented Reality in Flash. Retrieved
August 13, 2012, from http://words.transmote.com/wp/flarmanager/.

StatOwl.com. Statistical analysis and market research of Internet usage
trends. Retrieved January 28, 2012, from http://www.statowl.com/.

String Labs. String™ Augmented Reality. Retrieved February 27, 2012,
from http://www.poweredbystring.com/.

Studierstube. Availability of Augmented Reality Software. Retrieved
February 15, 2012, from
http://studierstube.icg.tugraz.at/availability.

Sugano, H., & Miyamoto, R. (2010). Highly optimized implementation
of OpenCV for the Cell Broadband Engine. Computer Vision and
Image Understanding, 114, 1273–1281.

Tarr, J. & Bülthoff, H. (1998). Image-based object recognition in man,
monkey and machine. Cognition, 67, 1-20.

Tastenkunst. Beyond Reality Face. Retrieved July 12, 2012, from
http://www.beyond-reality-face.com/.

Tennenhouse, D. (2000). Proactive Computing. Communications of the
ACM, 43(5), 43-50.

ThinkAnApp. (2010). thinkanapp (thinkanapp) on Twitter. Retrieved
March 9, 2012, from https://twitter.com/#!/thinkanapp.

Total Immersion. Augmented Reality Software and Solutions by Total
Immersion | Augmenting Your Reality. Retrieved February 28,
2012, from http://www.t-immersion.com/.

Ulloa, C. (2007, June 14). Need for speed. Retrieved March 18, 2012,
from http://blog.papervision3d.org/2007/06/14/need-for-speed/.

 181

Ulloa, C. (2007, July 7). Papervision3D Public Beta. Retrieved March
18, 2012, from
http://blog.papervision3d.org/2007/07/07/papervision3d-public-
beta/.

Ulloa, C. (2009, October 13). Papervision3D is Shifting Gears.
Retrieved March 18, 2012, from
http://blog.papervision3d.org/2009/10/13/papervision3d-is-shifting-
gears/.

United States Army Air Forces. (c. 1944). Aircrewman’s Gunnery
Manual. Reprint retrieved March 18, 2012, from
http://www.liberatorcrew.com/Manuals/AGM.htm.

Unity. Documentation. Retrieved February 1, 2012, from
http://unity3d.com/support/documentation/.

Unity. Fast Facts. Retrieved July 10, 2012, from
http://unity3d.com/company/fast-facts.

Unity. (2012, April 9). Unity Reaches One Million Registered
Developers. Retrieved July 10, 2012, from
http://www.marketwire.com/press-release/unity-reaches-one-
million-registered-developers-1641486.htm.

Unity. Web Player Hardware Statistics - 2012 Q2. Retrieved July 10,
2012, from http://unity3d.com/webplayer/hwstats/pages/web-
2012Q2.html.

Uro, T. (2008, May 20). Adobe Pixel Bender in Flash Player 10.
Retrieved March 29, 2012, from
http://www.kaourantin.net/2008/05/adobe-pixel-bender-in-flash-
player-10.html.

VGChartz. Platform Totals. Retrieved February 29, 2012, from
http://www.vgchartz.com/analysis/platform_totals/.

 182

Viola, P., & Jones, M. (2001). Rapid Object Detection using a Boosted
Cascade of Simple Features. Proceedings from CVPR 2001: 2001
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 511-518.

VTT. Alvar Technical. Retrieved November 23, 2012, from
http://virtual.vtt.fi/virtual/proj2/multimedia/alvar/technical.html.

Wagner, D. & Schmalstieg, D. (2003). First Steps Towards Handheld
Augmented Reality. Proceedings from ISWC 2003: The 7th
International Conference on Wearable Computers.

Wagner, D. & Schmalstieg, D. (2007). ARToolKitPlus for Pose
Tracking on Mobile Devices. Proceedings from CVWW 2007:
Computer Vision Winter Workshop 2007.

Weisner, M. (1996, March 17). Ubiquitous Computing. Retrieved April
2, 2012, from http://sandbox.xerox.com/ubicomp/.

Weisner, M., & Brown, J. (1996, October 5). The Coming Age of Calm
Technology. Retrieved April 4, 2012, from
http://www.ubiq.com/hypertext/weiser/acmfuture2endnote.htm.

West, M. (2008, July 16). Measuring Responsiveness in Video Games.
Retrieved July 11, 2012, from
http://www.gamasutra.com/view/feature/3725/measuring_responsiv
eness_in_video_.php.

Wojtczyk, M. (2011, January 17). Creating Depth Images with the
Kinect Sensor. Retrieved March 11, 2012, from
http://www.bing.com/images/search?q=kinect+depth+image&view=
detail&id=B3ED8D7E8B010D08FAFE5F624E5515EDA0AA2567
&first=0&FORM=IDFRIR.

Yu, Q., Cheng, H., Cheng, W., & Zhou, X. (2003). Interactive Open
Architecture Computer Vision. Proceedings from ICTAI 2003: The
15th IEEE International Conference on Tools with Artificial Intelligence.

