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Abstract

Augmented reality (AR) software attempts to track real-world objects 

while creating the illusion that virtual objects exist in real space.  To be 

convincing and relevant, AR software must be responsive—thus, 

efficient—and available ubiquitously wherever the tracked object is used. 

Difficulties arise because ubiquity demands a general, extensible model of 

the platform, while efficiency demands tailoring to a particular set of 

resources.

This thesis presents Illusion SDK: a general, extensible framework for 

AR.  Illusion provides loosely coupled or decoupled abstractions of 

sensors, trackers, and compositors.  Implementations are optimized for 

particular use cases.  Illusion’s architecture depends on only an event 

system and a 3D scene graph, so it is highly portable.  Wrapping of third-

party trackers is supported.

Illusion’s current implementation targets Flash 11.4 and integrates with 

the Alternativa3D 8 graphics engine.  To our knowledge, Illusion’s 

support for wrapping third-party trackers is unique among toolkits 

targeting the GPU-accelerated Web.  Illusion performs well on MacBook 

Pro 13" mid-2010, where an intensive camera application can exceed 45 

FPS.  Generally, Illusion should perform well on hardware that uses 

shared video memory.  Optimizations are needed for hardware that uses 

dedicated video memory.  These optimizations are problematic in Flash 

11.4 but should not generally be problematic in ports to other platforms.
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Chapter 1: Introduction

Mixed reality (MR) is an emerging medium that links arbitrary 

physical objects to arbitrary software content in (nearly) real time.  As a 

blanket term, MR includes both augmented virtuality (AV), in which the 

user experience focuses on virtual environments, and augmented reality 

(AR), in which the user experience focuses on real environments. 

Typically, in AR, the means of linking physical objects and software 

content is computer vision (CV), such that the application receives event 

data when physical objects appear, move, or disappear from the 

perspective of the computer’s video camera.  Then, for example, relevant 

graphics can be dynamically positioned atop the live video feed (Figure 1).

Computer vision, more generally, is the capture and analysis of data 

about color, brightness, or line-of-sight distance (depth).  For capture, CV 

uses light sensors, sometimes in combination with light emitters.  For 

analysis, CV often relies on measuring local contrast and simulating 

various perspectives to gauge what is being viewed and how it is posed in 

space.  If it runs continuously in real time, this process is known as 

tracking and the relevant software component is called a tracker.  

Outside controlled environments, robust CV tends to require running 

computationally expensive algorithms on big (video-quality) streams of 

sensor input (Comport, 2005).

Ubiquity is an essential concern in AR.  Wherever relevant physical 

objects are found, the user may want to run the application using 

whatever computer platform is on hand.  Kiosks, mobile devices, and the 

Web have the potential to make AR applications available to roving users. 

These deployment channels are crowded, so AR technology should have 
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low barriers to adoption for the sake of busy developers, promoters, and 

users.  For example, entry barriers can be kept low by modular, extensible 

designs or by leveraging an existing software platform that is popular. 

Figure 1: An Example of AR

A screenshot from “Apples and Goblets”, our demo project.  A live video 

background shows two sheets of paper.  An identifiable image is printed in the 

center of each sheet.  A tracker has found the images, and 3D models are being 

superimposed atop them.  The apple and goblet models are courtesy of Teinye 

Horsfall at WireCASE Ltd (http://www.wirecase.com) and Sven Dännart at 

Medievalworlds (http://www.medievalworlds.com), respectively.

Another essential concern is responsiveness, which requires 

efficiency.  Whenever presented with relevant physical changes, the 
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application should respond in (nearly) real time; otherwise, discrepancies 

between the real and virtual worlds become obvious and distracting.  A 

typical AR application spends most of its time in image capture, image 

processing, and rendering.  These tasks are slow when implemented 

naively but they can be accelerated by modern hardware if the software 

platform supports it.  Mobile users tend to have limited hardware and 

Web users tend to have limited software platforms, so AR’s efficiency 

requires special attention in these contexts.

These two concerns—ubiquity and efficiency—are somewhat at odds. 

A ubiquitous solution must achieve abstraction from the system features 

and resources that may be unavailable in relevant contexts; an efficient 

solution must work closely with the system to access appropriate 

resources.  This thesis attempts to reconcile concerns of ubiquity and 

efficiency, especially in AR applications that target the Web.

The combination of ubiquity and efficiency is critical in an industry-

grade AR engine—and finding or creating this combination is nontrivial. 

A good solution can potentially deliver this combination, provided that 

care is taken to use the strengths and avoid the weaknesses of a platform’s 

idiosyncrasies.

As a means to this end, the thesis presents a high-level AR framework 

that is agnostic about its platform’s I/O capabilities, yet is sufficiently 

modular and extensible to support optimized implementations for 

particular systems and use cases.  Agnosticism about I/O makes the 

framework portable, in principle, to a wide variety of ubiquitous 

computers that may have unconventional interfaces.  Also, it enables the 

framework to wrap any medium of AR: that is to say, any source of sensor 

data (visual or otherwise), any type of tracking, and any destination for 
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composited scenes.  Sensors, trackers, and compositors are the 

framework’s core abstractions.  The potential for modular optimizations 

makes it feasible, in principle, to adapt to various underlying performance 

characteristics as the need arises, without needing to re-architect the 

application.

A few specific features of the framework are worth noting.  Multiple 

trackers (potentially, wrappers for multiple third-party tracking libraries) 

may run at the same time, even if using the same source of sensor data. 

For efficiency, sensor data is shared by reference rather than by copy.  A 

tracker may, in principle, distinguish between duplicates of real-world 

objects (though most existing third-party trackers do not do so).  Trackers 

are agnostic about compositors and vice versa.  Thus, an application can 

use the framework’s tracking functionality with or without rendering a 

virtual scene atop a real scene.  This decoupling makes the framework 

applicable to non-AR scenarios, such as video games that use tracking to 

control purely virtual scenes.

The next two chapters—“Background” and “Exploratory Work”—deal 

with the context and motivation of our work in AR.  “Background” draws 

on published sources whereas “Exploratory Work” draws on the author’s 

experience in the AR industry.  One theme in these chapters is the 

fragmentation of AR solutions, leading (in industry) to redundant 

integration work that could be alleviated by a unifying framework.  The 

remaining chapters—“Design and Contribution”, “Evaluation”, and 

“Discussion”—deal with the new framework, called Illusion SDK, which 

the author has developed as a potential basis for efficient, ubiquitous AR 

applications.  “Design and Contribution” presents Illusion’s architecture, 

along with diagrams and code samples, and compares this architecture to 
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existing alternatives.  “Evaluation” quantifies the efficiency characteristics 

of two test applications built atop Illusion.  “Discussion” reviews the levels 

of ubiquity and efficiency currently achievable with Illusion, and proposes 

future work on optimizations, extensions, and ports.  Finally, appendices 

deal with Illusion’s availability and non-AR functionality.
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Chapter 2: Background

This chapter gives an overview of the obstacles faced in this thesis 

project.  Then, it proceeds with an explanation of the history, literature, 

and technology of several relevant domains: computer vision, augmented 

reality, ubiquity, efficiency, and Web platforms.

2.1: Problems in Web AR

A number of CV and AR libraries already target a Web platform such 

as Flash, Silverlight, Java, or (rarely) JavaScript.  (See “2.3.3: 

Frameworks”.)  Problems with the status quo include:

• Fragmentation: The libraries have dissimilar programming

interfaces for complementary functionality.  (Some track barcodes,

others track faces, and others track photos.)  They lack high-level

integration with game or graphics engines.  Due to the amount of

developer time required to study and integrate many different

interfaces, industry may have difficulty adapting to new technology.

(See “3.1.1: At Ad-Dispatch”.)

• Platforms in decline: Many Web users do not have Silverlight or

Java.  The market penetration of these platforms is declining.  (See

“2.6.2: Adoption”.)

• Immature platforms: Many Web users have browsers that lack

support  for the relevant features of JavaScript, such as WebRTC

(for camera access) and WebGL (for GPU acceleration).  (See

“2.6.1: System Access”.)

• Inefficiencies: Many libraries for Flash do not leverage recent

platform optimizations such as GPU acceleration.  They integrate
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most easily with code that also does not leverage these 

optimizations.  (See “3.2: Refinements”.)

Better designs are feasible.  Since 2003, mobile AR has benefitted from 

research toward an optimized, high-level toolkit supporting multiple 

tracking strategies and multiple operating systems.  Recent iterations, 

Studierstube ES and Vuforia, use GPU acceleration and integrate with 

game engines.  (See “2.3.3: Frameworks”.)

We argue that there is an untapped opportunity to unify and optimize 

AR- and game-related functionality in one toolkit capable of targeting the 

Web.  We use Flash 11 as our testbed.  To avoid contributing to 

fragmentation, this new toolkit facilitates the wrapping of existing AR 

libraries, which may implement many different tracking algorithms.  

Besides making the underlying libraries easily swappable, Illusion allows 

their functionality to be used simultaneously in one application, through 

one interface.  For example, two underlying tracking libraries could be 

used for different types of subjects in the environment or they could 

crosscheck each other’s results for one type of subject.

Unifying relevant functionality is non-trivial because AR technology 

and applications are evolving rapidly.  To be extensible and maintainable, 

the unified toolkit must provide abstractions that support current and 

foreseeable features and requirements.

Optimization is non-trivial because AR includes three expensive 

stages—image capture, image processing, and rendering—with competing 

data formats and resource requirements.  This problem is exemplified in 

Flash 11, which has three dissimilar graphics pipelines.  (See “2.6.4: Focus 

on Flash”.)  Here, a custom approach to compositing (mixing different 

pipelines’ content) is needed to leverage a GPU-enabled pipeline and a 
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camera-enabled pipeline in a way that supports rendering 3D models atop 

a live video that trackers can read.

The combination of unification and optimization is non-trivial because 

trackers from various vendors should share resources such as the camera 

feed.  To avoid duplicating resources, the wrappers around the trackers 

must be agnostic about the way sensor data (ex. image data) are obtained 

and managed.

2.2: Vision, Space, and Colorspace

“Did you see the stop sign, sir?” a police officer might ask a driver.  

The hypothetical stop sign is in plain view but the driver thinks he did not 

see it.

Seeing (or vision) implies more than just looking in the right direction 

and having one’s retinas stimulated.  Seeing may imply awareness, 

recognition, an appropriate reflex, or even an understanding of events.  (“I 

saw him cheat at cards.”)  Like human vision, CV is a multilayered 

concept that pertains to sensors, intelligence, and everything in between.

At the sensor level, vision is about light striking lenses and 

photoreceptors.  A lens is a curved, transparent surface that focuses 

(funnels) light toward a surface of a different size.  This second surface—a 

retina, film, or digital sensor—is covered with photoreceptors.  A 

photoreceptor has a chemical or electrical response to light: the more light 

striking the photoreceptor, the stronger the response.  A system typically 

contains several types of photoreceptors, each with a different spectral 

response: a function that maps the light’s wavelength (color) to the scale 

of the response.  Photoreceptors, in general, may respond to wavelengths 
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that are invisible to humans (the infrared and ultraviolet spectra) (Baines 

& Bomback, 1967).

By the time a photoreceptor responds to light, this light has already 

journeyed through space and colorspace.  It has bounced off surfaces (a 

motion in space) and, in doing so, has changed color and lost some 

intensity (a motion in colorspace).  (More precisely, only certain colors of 

light, in certain amounts, have bounced off each surface in a given 

direction.)  A particularly important waypoint in this journey is the last 

surface that the light bounces off before entering the lens.  Typically, we 

perceive this surface as a thing we “see”, though we may also perceive it as 

a thing we “see in” (ex. a mirror).  As users of vision, we may care about 

this waypoint’s position in space and about the way it transforms light in 

colorspace.  Where is the surface and what color is it?

Given a set of densely positioned photoreceptors, with various known 

spectral responses, we should be able to estimate a surface’s color by 

triangulating the photoreceptors’ responses.  We can imagine the various 

spectral responses as a “surround view”, consisting of multiple, 

simultaneous vantage points in colorspace.  However, in terms of regular 

space, we seldom have the luxury of a surround view: we have just one 

camera or two narrowly spaced eyes.  As such, estimating a surface’s 

spatial properties is a harder problem than estimating its colorspatial 

properties.  Even harder is the more abstract problem of reconstructing a 

relationship among surfaces: in other words, recognizing a shape or object.

There are two major theories about the means by which human vision 

achieves object recognition without a surround view in space.  One 

theory, pioneered by Marr and Nishihara (1978) and Biederman (1987), 

posits a “structural-description” approach.  Supposedly, we memorize an 
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object’s 3D structure and we mentally pose and draw such structures, as if 

they were models posing for an artist, until our mental drawing matches 

the actual projection in the eye.  The other theory, pioneered by Poggio 

and Edelman (1990), posits an “image-based” approach.  Supposedly, we 

memorize many 2D projections of an object from various vantage points 

and, like a witness looking through a set of mugshots, we search our 

memory for pictures that match the actual projection in the eye.

The two theories need not be mutually exclusive.  Tarr and Bülthoff 

(1998), surveying previous experimental work, conclude that the actual 

approach depends on viewing conditions, the subject, the viewer’s 

expertise, and the specificity of the recognition (ex. a man, a soldier, a 

lieutenant, Lieutenant Dan).

CV approaches to object recognition (and tracking) mirror the 

supposed approaches in human vision.  The image-based approach uses a 

2D image (or a 2D pattern that many images may match) as a ground 

truth for recognition.  The structural-description approach uses a 3D 

model as a ground truth.  Both approaches require transformations to be 

applied to the reference image/model and to the actual, captured image.  

These transformations make it possible to compare the arrangements of 

certain salient features (ex. vertices) in pseudo-3D space.  Techniques that 

build on the two general approaches are described further in “2.3.2: 

Techniques”.
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2.3: Augmented Reality

2.3.1: Origins and Examples

On January 24, 1990, Tom Caudell—a postdoctoral researcher at 

Boeing—proposed the idea of using head-mounted displays (HMDs) to 

project wiring schematics onto formboards (large electrical panels used in 

airplane manufacture).  He and a colleague, David Mizell, expanded this 

proposed application into a domain that they called “see-through virtual 

reality” or, later, “augmented reality” (Caudel & Mizell, 1992; Mizell, 

2001; Henn, 2010)—the superimposition of an interactive virtual space 

atop real space, in real time (Milgrim et al, 1994; Azuma, 1997).  The 

codification of AR helped inspire a wide range of workplace applications, 

especially in fields with low automation but high costs of failure.  

Examples include: a synchronized digital/paper interface to facilitate 

communication in air traffic control (Mackay et al, 1998); a set of 

handheld tools to help a surgeon measure a 3D virtual model of the 

patient’s liver (Reitinger et al 2005); a pharmaceutical pill recognition 

system (Hartl, 2010; Hartl et al, 2011); and a networked HMD allowing 

crime scene investigators to collaborate remotely with other experts 

(Poelman et al, 2012).

While they may have invented AR as a term, Caudell and Mizell 

acknowledge a long line of precedents.  Mizell comments (in Henn, 2010):

The technology is certainly older than the term.  Ivan Sutherland's 
first head-mounted display, in 1968, was see-through and tracked.  
Military helicopter pilots used see-through, tracked, helmet-
mounted gunsights in Vietnam.  When Tom Caudell and I worked 
on the technology at Boeing in the early 1990's, Steve Feiner at 
Columbia University was working on very similar ideas.  While 



 12

Tom and I were prototyping the wire bundle assembly formboard 
application, Steve was demonstrating a system that could be used to 
guide a user through a maintenance procedure on a photocopier.

Mizell alludes to two prominent features of AR in his description of its 

lineage.  First, AR involves tracking some identified target in the user’s 

environment.  Second, it provides the user with visual guide-marks that 

seem to exist in the same spatial context as the target.  These guide-marks 

may assist the user in some task of hand-eye coordination involving the 

target.

The first feature—automated identification and tracking—is quite an 

old idea.  An 1889 patent, pertaining to the problem of lost railcars, 

proposed an automated mechanism “to take the initials and numbers as 

the cars pass certain points…to form accurate information of the 

whereabouts of the cars” (in Collins, 2011).  This patent later served as an 

inspiration to David Collins, who invented computerized barcode 

tracking and successfully applied it to railcars in 1961 (Collins, 2011) 

(Figure 2).  Another well-established identification and tracking 

technology is the radio frequency identification (RFID) tag—a 

transponder that either emits or reflects a known radio frequency.  RFID 

originates in 1940, when the Luftwaffe and then the Royal Air Force 

adopted it to distinguish friendly aircraft on radar (Dobkin & Wandinger, 

2005).
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Figure 2: KarTrak Barcode

KarTrak, the first barcode system, was deployed on railcars in 1961.  Left: A 

KarTrak barcode, close-up.  Right: A KarTrak barcode and two railcars.  The 

barcode is the tall, dark rectangle near the photo’s center.
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Figure 3: Reflex Gunsights

By the 1930s, reflex sights such as these Royal Air Force models were being 

mass-produced.  Top: Prototypes, close-up.  Bottom: A gunner uses his reflex 

sight with both eyes open.  The reflex sight’s design makes the illusionary 

targeting guide-marks appear at infinity.  Thus, the illusion’s alignment with the 

firing path is viewpoint-invariant and it is usable by either eye, or both at once, 

from any angle (Clarke, 1994).



 15

The second feature—illusionary guide-marks—is likewise quite an old 

idea.  Sir Howard Grubb, in 1900, patented a “Gun Sight for large and 

small Ordnance” that used a light source and a mirror to project 

illusionary guide-marks into the gunner’s eye as he viewed his target 

through the scope.  This optical invention, known as the reflector sight or 

reflex sight, was deployed in German fighter planes in 1918 (Clarke, 

1994).  By the 1940s, it was common for heavy weaponry of all kinds to 

include reflex sights (Figure 3), which were sometimes part of “electrically 

operated, computing” systems that used gyroscopes to predictively 

reposition some of the targeting guide-marks as the gunner attempted to 

track his moving target (United States Army Air Forces, c. 1944).  These 

devices were known as gyro sights.

Clearly, AR’s technological genesis owes much to aeronautics, which—

along with other mechanized forms of transportation and warfare—has 

transformed mankind’s thinking about space, tracking, and targeting.  

However, AR’s cultural genesis goes beyond logistics and gunnery.  Since 

antiquity, people have pondered how to create and place illusions—and 

how to animate normally inert objects—for the sake of art, pomp, and 

awe.  Trompe-l’oeil murals are attributed to Greek painters of the fifth 

century BC (Pliny the Elder, c. 79 AD) and examples from the 70s AD 

are well preserved in the ruins of Pompeii.  Mechanical automata are 

attested by authors as early as Pindar (c. 464 BC/1830, p. 40).  He 

describes them as the pinnacle of human handiwork; as evidence of 

Athena’s wisdom being manifest in mortal men:

Meanwhile the maid with azure eye
Her favor’d Rhodians deign’d to grace
Above all else of mortal race,
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With arts of manual industry.
Hence framed by the laborious hand,
The animated figures stand,
Adorning every public street,
And seem to breathe in stone, or move their marble feet.

Wisdom true glory can impart
Without the aid of magic art.

By the first century AD, Hellenic special effects technology—involving 

mirrors, magnets, mechanics, and pneumatics—was sufficiently advanced 

for Hero of Alexandria to devise interactive experiences, such as: 

programmable automata that were flexible enough to enact scenes from 

mythology; an automatic door triggered by lighting an altar fire; and 

dispensers that exchanged coins for holy water, or water for wine (Hero, 

c. 60 AD/1851).  Although Hero wrote treatises on the construction of his 

devices, spectators would have seen only the miraculous facade.

Likewise in AR, technologically advanced interactions can be masked 

behind more traditional gestures and tokens.  Posters and toy figurines are 

common targets for creative AR.  They merge fantasy worlds into homes 

and public places much as trompe-l’oeil murals and automata did in 

antiquity (Figure Series 4).  Storybooks are another common target for 

creative AR (Billinghurst et al, 2001).  When used for entertainment 

purposes, the AR illusion may consist of elaborate 3D animations that are 

explorable from multiple perspectives and responsive to user input.  A 

proposed social role of AR in the home is to encourage children to 

integrate multiple media into their imagination and to share this creative, 

storytelling experience with family and friends, in person (Hee, 2012).  As 

such, AR entertainment is being contrasted (by its proponents) to purely 
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virtual entertainment that might not encourage as much interaction with 

one’s surroundings.

Without relying as much on traditional artifacts, digital media giants 

are also embracing AR.  The latest handheld game consoles, Nintendo 

3DS and PlayStation Vita, come bundled with applications that combine 

tabletop gaming and video gaming.  An arrangement of physical cards 

defines landmarks in the game world, while the device’s camera and 

touchscreen provide the means of interaction.  The player—or two players 

with separate devices—first build the game world by hand and then play 

in it via the device (Nintendo, “Nintendo 3DS - AR Cards at Nintendo”; 

Gutierrez, 2012).  19.2 million units of these devices (17.9 million of the 

3DS and 2.3 million of the Vita) have been sold worldwide as of July 

2012 (VGChartz, “Platform Totals”), so the bundled AR games are widely 

owned, whether or not they are widely played.

Anecdotally, AR has even inspired body modifications.  One Nintendo 

3DS player has had the physical part of an AR game tattooed onto his 

forearm (Shepherd, 2011).  An earlier AR-enabled tattoo was demoed by 

ThinkAnApp of Buenos Aires, Argentina (Civantos, 2010).  It is unclear 

whether ThinkAnApp had further plans or operations: its Twitter page 

contains just four posts, along with a link to a defunct domain that was 

once the company’s website (ThinkAnApp, “thinkanapp (thinkanapp) on 

Twitter”).

AR is an oddball mix of technologies and arts: the applications of it and 

its precursors run the gamut from deadly to constructive, and kitsch to 

sublime.  It should prove popular.
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Figure Series 4: AR Compared to Ancient Art

Figure 4A: AR Compared to Trompe-l’oeil Murals

Top: Marketing images from String Labs, an AR company.  Viewed through the 

mobile device’s camera, the posters turn into animated, interactive trompe-l’oeil 

murals.  Bottom: A trompe-l’oeil mural painted c. 70 AD in Pompeii.
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Figure 4B: AR Compared to Automata

Top: A prototype of an AR play-set from the Sesame Street franchise.  Figurines 

and props can be positioned however the child chooses.  Viewed through the 

mobile device’s camera, they animate and interact in ways that depend on the 

physical setup (Hee, 2012).  For example, Bert and Ernie might talk if they are 

close to each other.  Bottom: “Hercules and the Dragon”, an interpretation by 

Giovanni Battista Aleotti (1589) of an automaton designed by Hero of Alexandria.  

In this version, Hercules hits the dragon continually and the dragon spits water at 

him.  In an alternative version (Hero 60 AD/1851), Hercules’ attack is triggered by 

a pullstring when someone tries to pick an apple.
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2.3.2: Techniques

A defining feature of AR is its use of markers—i.e. points of reference 

on physical objects.  The format of these markers may be natural (ex. 

geography, anatomy), artistic (ex. logos, photos), or synthetic (ex. 

barcodes, electromagnetic tags).  For ubiquity’s sake, non-natural markers 

need to integrate well with existing production processes.  For example, 

new images can be incorporated into printed products or packaging 

without requiring new steps in procurement or manufacturing.  RFID 

tags can be inserted into layered products (ex. dresses, stuffed animals) 

but do require new steps in procurement and manufacturing.  Our 

discussion focuses on image markers.

AR literature tends to apply the term natural feature tracking (NFT) 

to natural and artistic markers alike.  Arguably, this conflation is 

appropriate: a live view of a face, a photo of a face, and an iconic smiley 

face might all qualify as “a face”, for the purposes of a given AR 

application.

Given a predefined set of markers and a stream of input, the AR 

application must solve a classification problem: in each frame of input, 

which markers are represented?  Moreover, what is the pose (position 

and orientation) of each represented marker?  These questions, 

respectively, represent the problems of recognition and tracking.

For camera input, approaches to this classification problem rely on 

measures of local contrast.  Our discussion focuses on local contrast in 

terms of color or brightness values, sampled in short, isolated timeframes.  

However, the same local contrast measures can also be considered in other 

terms (Figure Series 5), such as: depth (ex. sensed using an infrared 

camera and illuminator); time-differenced color, brightness, or depth (for 
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tracking a particular motion signature); or time-averaged color, 

brightness, or depth (for tracking a stationary marker in a motion-filled 

scene, ex. a briefcase abandoned in a subway station).  An image marker 

in either the depth or time-differenced case would not look like a 

conventional photo.  An image marker in the time-averaged case would 

look like a long-exposure photo.

Synthetic markers allow for very coarse contrast measures of local 

contrast because the relevant color palette (usually binary black-or-white) 

and edge patterns (usually right angles) are known a priori.  Each frame of 

camera input can be analyzed by thresholding its colors, searching for the 

relevant edge patterns, comparing found edges to markers’ edges, and (for 

any matches) iteratively refining an estimate of the transformation matrix 

(Wagner & Schmalstieg, 2007).

A common synthetic format is the so-called square marker, which is 

essentially a low-density 2D barcode: within a black-bordered square, 

each of a number of sub-squares is either black or white.  Another 

common synthetic format is the frame marker, which is essentially a low-

density 1D barcode bent in four places to form a square border around 

some arbitrary content.  Also, a frame marker can be thought of as a 

square marker that omits all but the peripheral sub-squares.  Square 

markers have appeared in AR literature since 1996 (Rekimoto, 1996) and 

are predated by numerous other concepts for automated barcode 

identification, going back to Collins’ 1961 KarTrak system for railcars 

(Collins, 2011).  However, most barcodes are not optimized for pose 

estimation tasks.  For example, quick response (QR) codes, invented in 

1994 for tracking automobiles during manufacture (Kan et al, 2011), are 
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high-density 2D barcodes that are commonly used in identification tasks 

but not pose estimation tasks.

Figure Series 5: Unconventional Image Types

Figure 5A: Depth Image

“Self portrait with the Kinect.  Robot in the back” (2011) by Martin Wojtczyk.  This 

depth image is captured using the Microsoft Kinect camera and its official SDK 

(Wojtczyk, 2011).  Bright areas may be interpreted as shallow (near) and dark 

areas may be interpreted as deep (far).  The camera does not truly measure 

depth but rather infrared (IR) brightness.  The source of IR light is an illuminator 

attached to the camera (akin to the flash on an ordinary camera).  Note that 

areas shadowed from the IR illuminator, such as the wall behind the user, are 

falsely interpreted as being very deep.  So are IR-absorbent materials, such as 

the frames of the user’s glasses.
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Figure 5B: Time-differenced Image

Top: Two consecutive frames from “The Horse in Motion” (1878) by Eadweard 

Muybridge.  The galloping horse is captured in midair and then as its left hind leg 

lands.  Bottom: The difference (later minus earlier) between the two frames.  The 

bright areas may be interpreted as motion or an outline of motion.
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Figure 5C: Long-exposure Image

“Office of Helmut Friedel” (1997) by Michael Wesley.  This photo is an extremely 

long exposure, lasting one year (Kazmierczak, 2005).  Subjects that move 

regularly, such as people, are not captured.  Subjects that move occasionally, 

such as furniture, are captured as if semitransparent.  Subjects that move rarely, 

or not at all, are captured as in normal photography.  The same effects can be 

achieved by averaging video frames over time.
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Figure 6: Square Markers and Frame Markers

Promotional images from the flare*tracker project.  Top: Subtypes of square 

markers, including frame markers.  Datamatrix markers are sufficiently dense to 

allow for URLs to be encoded.  Bottom: Screenshots of the markers in use.

Haar-like features are more sophisticated local contrast measures, 

suitable for NFT.  They were first proposed by Papageorgiou et al (1998) 

and then refined by Viola and Jones (2001).  (Sometimes, Haar-like 

feature classification is called Viola-Jones object detection, after these 

authors.)  Each Haar-like feature encodes differences in intensity among 

two or more adjacent image areas.  (For example, an image area could be 

4x4 pixels and its intensity could be the sum of those pixels’ RGB 

components.)  Each frame of live video can be subsampled and each 
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subsample’s Haar-like features can be compared to each marker image’s 

Haar-like features in order to evaluate similarity.  At some similarity 

threshold, the live video subsample and the marker image are deemed to 

match.  Scale (magnification) differences between the live image and 

marker image are handled by means of feature cascades, i.e. resampled 

versions of the features.  If a marker is far away from the camera, its video 

image will match a low-resolution version of the feature set; if close, a 

high-resolution version.  Feature cascades also provide an efficient means 

of screening out irrelevant image sections, using coarser comparisons first 

(Viola and Jones, 2001).

Haar-like feature classification, of the type described above, tends to be 

fast—capable of running at 15 FPS on Pentium III 700 MHz (Viola and 

Jones, 2001)—but it has shortcomings.  It is insensitive to hue.  It is 

sensitive to shadow edges and reflection edges.  It is dependent on the 

camera’s ability to expose the relevant contrasts (which are subtler than 

those of synthetic markers) under unpredictable lighting conditions.  It is 

not necessarily robust to rotation and 3D transformations—though it can 

be if additional feature sets are generated (Lienhart & Maydt, 2002; 

Messom & Barczak, 2006).

An alternative to Haar-like feature classification is scale-invariant 

feature transform (SIFT), first published by Lowe (1999).  SIFT 

attempts to identify points of local contrast that change only minimally 

with respect to scale, rotation, illumination and 3D transformations.  To 

identify such features, SIFT resamples the input images, whereas Haar-

like feature classification resamples the features to potentially match input 

images.  SIFT tends to emphasize geometric edges, whereas Haar-like 
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feature classification tends to emphasize an arrangement of darker and 

lighter regions, such as the eyes and mouth versus the rest of the face.

Another notable technique, speeded-up robust features (SURF), 

combines SIFT with Haar-like feature classification.  First proposed by 

Bay et al (2006/2008), SURF uses feature clusters, each consisting of one 

SIFT-like feature surrounded by multiple Haar-like features.  SURF is 

demonstrated to be an advance in both performance and robustness, 

compared to its constituent techniques.  Moreover, it handles 3D subjects 

relatively well by treating feature clusters as submarkers that may each be 

oriented differently (Bay et al 2006/2008).

The same means of generalizing 2D image tracking to 3D object 

tracking is found in earlier sources as well.  Comport (2005) notes that 

object tracking problems in AR are essentially the same as those in 

robotics.  A robot can estimate an object’s pose by incrementally moving 

around the object in real space to find the perspective where the live 2D 

image of that object best matches a 2D reference image.  This process is 

known as visual servoing (VS).  Comport describes an analogous process, 

for AR, as virtual visual servoing (VVS).  Unlike VS, VVS does not rely 

on camera movement.  The change in perspective is virtualized by 

incrementally reposing a 3D reference model to find the 2D projection of 

the model that best matches the 2D live image.  To simplify the 

comparison, Comport (like others) relies on edge tracking, such that the 

presence or absence of an expected feature can be confirmed by a “one 

dimensional search to the normal of a contour” (2005).



 28

2.3.3: Frameworks

While the preceding works have advanced the algorithms that are 

relevant to AR, other works have contributed more to the body of 

available software components.  Some of these components are suitable 

for integration into higher-level frameworks; others are themselves high-

level frameworks to which we may compare Illusion.  (See “4.3: 

Comparison to Other Designs”.)  For the moment, though, our focus is on 

understanding the range of tracking algorithms and AR application 

frameworks that are implemented on various platforms.  The relative 

merits of some of certain major platforms are discussed later.  (See “2.6: 

Web Platforms”).

Starting in the mid-1990s, several frameworks have attempted to 

standardize and optimize AR interfaces across multiple platforms.  Two 

cornerstones of this evolution have been Studierstube (an application 

framework) and ARToolKit (an image tracking component for square 

markers).  Studierstube is developed at the Institute for Computer 

Graphics and Vision (ICGV) at the Graz University of Technology.  

ARToolKit is developed at the Human Interface and Technology Lab 

(HIT Lab) at the University of Washington and University of Canterbury 

(New Zealand), though major branches of it have merged into the work of 

the ICGV instead.

From 1995 to 2002, Studierstube focused on supporting collaborative 

AR work environments on heterogenous multicomputers (Schmalstieg et 

al, 2002).  Using HMDs and numerous other I/O peripherals, these 

multiuser environments attempted to create new modes of office work by 

presenting physical tools and software tools in the same spatial context.  
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Similarly, ARToolKit originated from an experiment in AR video 

conferencing (Kato & Billinghurst, 1999).

These projects were put in another context in 2003, when elements of 

Studierstube and ARToolKit were ported for standalone use on the 

Pocket PC platform—the first mobile use of AR.  The port’s proof-of-

concept application ran at just 5 FPS on iPAQ.  It used CV and software 

rendering to draw lines around the edges of 2D barcodes (Wagner & 

Schmalstieg, 2003).  A more performant and more useful application was 

reported in 2005, when the framework’s authors were developing an AR 

guide to museum exhibits.  Displaying animated 3D models atop binary-

encoded markers, this prototype ran at 20 FPS on unspecified Pocket PC 

hardware (Schmalstieg & Wagner, 2005).

Despite these improvements, the performance of the original mobile 

port was deemed inadequate.  A new port, Studierstube ES (Embedded 

Subset), commenced in 2006, with the goal of wedding mobile AR to an 

efficient, new, mobile game engine, including facilities for peer-to-peer 

cooperative play.  A sample game, Cows vs. Aliens (2007), demonstrated 

the feasibility of running Studierstude ES’s features on the Gizmondo 

mobile game console, which uses Windows CE (Mulloni, 2007).  

Subsequent work has also brought Studierstube ES to smartphones: 

Windows Phone and Android.

Besides these official ports of Studierstube, other libraries have 

adapted certain components of it and ARToolKit.  NyARToolkit (Java, 

ActionScript, .NET, C++), FLARToolKit (ActionScript), SLARToolKit 

(C#), and JSARToolkit (JavaScript) are ports of ARToolKit 

(NyARToolkit, “Welcome to NyARToolkit.EN”; Heikkinen, 

“JSARToolkit”).  JavaCV wraps ARToolKit plus several AR and CV 
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components from other parties (JavaCV, “JavaCV”).  flare*tracker re-

implements ARToolKit functionality in an original codebase by 

Imagination Computer Services GmbH, of Vienna, Austria (Imagination, 

“flare*tracker”).  flare*nft (ActionScript) is Imagination’s adaptation of 

Studierstube’s NFT component (Imagination, “flare*nft”; Jung, 2011).  

FLARManager provides integration of FLARToolKit, flare*tracker, and 

flare*nft into the Papervision3D graphics engine (Socolofsky, 

“FLARManager: Augmented Reality in Flash”).  Vuforia (formerly 

known as Qualcomm Augmented Reality or QCAR) is another adaptation 

of Studierstube’s NFT component.  Vuforia targets Android and iOS, 

with optional integration into the Unity game engine (Qualcomm, 

“Augmented Reality (Vuforia™)”).

For licensing reasons, Studierstube is unlikely to spawn other ports in 

the near future.  Equally, existing ports are unlikely to merge under an 

umbrella project.  One of the developers of flare*nft comments, “The 

reason for flare* not being licensed to mobile devices [i.e. to mobile 

developers using Adobe AIR] is a contractual one.  The tracker source 

that is also the basis of flare* has been sold to Qualcomm … (now 

available as QCAR SDK) and we are limited to licensing for PC 

platforms” (B. Jung, personal communication, September 14, 2011).  

Studierstube ES and other recent Studierstube developments (post-2008) 

are closed-source and not available for licensing (Studierstube, 

“Availability of Augmented Reality Software”).

Independent of Studierstube, other proprietary solutions include 

D’Fusion SDK, from Total Immersion, of Paris, France; String SDK, 

from String Labs, of London, UK; IN2AR from Beyond Reality, of the 
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Netherlands; and Beyond Reality Face, from Tastenkunst, of Leipzig, 

Germany.

D’Fusion SDK, launched in 2004, implements various forms of NFT, 

including Comport’s 3D object tracking (Comport, 2005).  D’Fusion SDK 

is available in several versions, targeting desktops, mobiles (iOS, 

Android), the proprietary D’Fusion Web Player, or Flash.  Some versions 

feature optional integration with visual editing suites: the company’s own 

D’Fusion Studio; or Unity (Total Immersion, “Augmented Reality 

Software and Solutions by Total Immersion | Augmenting Your Reality”; 

Geffroy, 2012).

String SDK combines features of square markers and NFT.  Each 

marker includes a freeform image but must be framed by a thick, black 

border on a white background.  This hybrid approach seems to be original 

and unpublished.  It might offer advantages in efficiency and robustness, 

compared to pure NFT.  String SDK supports iOS only, with optional 

Unity integration (String Labs, “String™ Augmented Reality”).

IN2AR (Beyond Reality, “IN2AR”) offers NFT functionality, and 

Beyond Reality Face (Tastenkunst, “Beyond Reality Face”) offers face 

tracking functionality.  They are new libraries, having emerged during the 

writing of this thesis.  They are written in ActionScript and include 

samples targeting the current version of Flash.

Many non-proprietary packages, too, are also relevant to AR.  An 

influential, open-source library has been OpenCV (formerly, CVLib), 

launched by Intel in 2000.  OpenCV initially focused on providing low-

level optimizations to make CV functionality, including NFT, more 

feasible on single-core, consumer CPUs.  When running hand-optimized 

MMX assembly, the library’s alpha version achieved speedup ratios 
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ranging from 2.00 to 8.33, relative to its fallback of compiled C (Bradsky 

& Pisarevsky, 2000).

Like Studierstube, OpenCV has been ported to mobile and embedded 

platforms, and has suffered some performance setbacks in the process.  

Notably, these ports have tended to rely on OpenCV’s single-threaded C 

fallbacks rather than contributing original optimizations for new 

architectures.  No optimized port was completed until 2009, when the 

CVCell project ported OpenCV to the Cell Broadband Engine 

Architecture.  Using up to six of the Cell’s eight coprocessor cores, 

CVCell delivered mixed results—ranging from a 15.2 slowdown ratio to a 

17.9 speedup ratio—in function-level benchmarks against OpenCV’s 

optimized code for Intel Core 2 Duo E6850 3.00 GHz.  However, an 

application-level benchmark (of NFT) favored CVCell, with a 1.37 

speedup ratio, from 8.12 FPS to 11.2 FPS (Sugano & Miyamoto, 2010).  

Since 2010, OpenCV itself supports higher-order parallelism on NVIDIA 

GPUs via CUDA (OpenCV, “OpenCV Change Logs”).

Besides being ported to other architectures, OpenCV has also been 

ported or wrapped for use with high-level languages, including C++, Ch, 

Python, and Java (OpenCV, “OpenCV Change Logs”; Yu et al, 2003; 

JavaCV, “JavaCV”).  Many of these ports have been merged back into 

the main project.  A small subset of OpenCV functionality, including facial 

tracking, has been ported to ActionScript as the Marilena project 

(Klingemann, 2009).

Tracking libraries sometimes build atop OpenCV.   One example is an 

open-source library called ALVAR, which tracks square markers (VTT, 

“ALVAR Technical”).  ALVAR is, in turn, wrapped by an open-source, 

C# game engine called Goblin XNA.  Goblin XNA is, in principle, 
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designed to support other visual trackers as well, though it does not 

currently do so (Oda et al 2012).

Another camp of other open-source library development centers on the 

SURF algorithm specifically.  The original implementation is patented but 

its source code is publicly released.  Other implementations include 

OpenSURF (C++, C#) (Evans, 2009), Pan-o-Matic (C++), Parallel SURF 

(multithreaded C++), Speeded-Up SURF (CUDA) (Furgale et al, 2009), 

CUDA SURF, JavaSURF, ASSURF (ActionScript), and many more.  

Evaluations of various implementations have been undertaken by Gossow 

et al (2010) and by Abeles (2012).  Notably, Pan-o-Matic has nearly 

identical performance to the original SURF, while Parallel SURF 

(adapted from Pan-o-Matic) offers large speedup ratios: 6.51 for 8 cores 

and 3.62 for 4 cores (Gossow et al 2010).  To some extent, these SURF 

implementations are built with non-AR, non-real-time applications in 

mind.  For example, Pan-o-Matic is purpose-built for panoramic photo 

stitching, i.e. merging multiple photos of adjacent, overlapping subjects 

into one, wider-format photo.

All of the preceding libraries and frameworks offer programming 

interfaces in general-purpose languages.  However, some alternatives 

instead offer markup languages or visual programming tools, which both 

tend to treat applications as hierarchies of content.  A notable example is 

the Argon AR browser, an iOS application that is the reference 

implementation for a proposed standard called KHARMA (Augmented 

Environments Laboratory, “KHARMA”).  This standard includes a 

markup language, KARML, which allows 3D models and Web-like media 

to be anchored to geolocations or square markers.
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Despite the range of relevant libraries and of library providers—

academia, industry, the open-source community—most AR functionality 

is not yet widely known to application developers and consumers.  Game 

interfaces based on square markers—relatively old technology—still have 

enough novelty value that they are heavily publicized in conjunction with 

the releases of new platforms such as the Nintendo 3DS and PlayStation 

Vita (Nintendo, “Nintendo 3DS - AR Cards at Nintendo”; Gutierrez, 

2012).  Thus, NFT remains one step ahead of the mainstream.

2.4: Ubiquity

AR, and the Web and mobile platforms it often targets, have evolved in 

tandem with the concept of ubiquitous computing (UC, UbiComp, or 

ubiquity).  Broadly, the literature on ubiquity predicts a massive 

proliferation of low-cost, networked, responsive computers that make use 

of sensor data.  It also imputes certain expectations and behaviors to the 

people who will share an environment with these multitudinous 

computers.  Certainly, AR is one computerized medium that may pervade 

an environment and change people’s expectations and behaviors.  Let us 

first survey the influences on UC and the different formulations that have 

emerged, and then consider UC’s implications for an AR framework that 

targets the Web.  Ultimately, we are interested in the role that a Web-

based AR framework can play in furthering AR as a ubiquitous 

technology.

2.4.1: A Conflicted Concept

On December 9, 1968, Douglas Engelbart demonstrated the tools that 

he believed people would use to achieve augmented intelligence (to 
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become “augmented intellectual worker[s]”), an aim he had characterized 

in terms of (Englebart, 1962):

more-rapid comprehension, better comprehension, the possibility of 
gaining a useful degree of comprehension in a situation that 
previously was too complex, speedier solutions, better solutions, and 
the possibility of finding solutions to problems that before seemed 
insolvable.  And by complex situations we include the professional 
problems of diplomats, executives, social scientists, life scientists, 
physical scientists, attorneys, designers—whether the problem 
situation exists for twenty minutes or twenty years.

Engelbart’s demo introduced the public to the mouse, word processing, 

collaborative editing, hypertext, email, video conferencing, and many 

other future staples of personal computing and information technology 

(Engelbart, 1968).  A subset of these tools would begin to reach users in 

1973, when Xerox Palo Alto Research Center (PARC) developed the 

Alto, precursor to the Apple Macintosh.

If personal computing promised to augment our situational intelligence, 

then ubiquitous computing takes the promise one step further: to augment 

the situation (the reality) itself, with computers everywhere to quietly 

inform and serve us.  Steve Jobs, in 1987, referred to the Apple II as “a 

ubiquitous computing resource that is powerful, reliable and flexible 

enough to be used everywhere on campus” (in Ronzani, 2007).  A more 

nuanced meaning of the term “ubiquitous computing” was coined by Mark 

Weisner, at Xerox PARC, in 1988.  He and his colleagues foresaw a world 

where networked computers would greatly outnumber human beings, and 

the role of single-user workstations would diminish in favor of a more 

diffuse, shared, peripheral, “invisible” (unobtrusive), and “calm” usership 

of embedded devices (Weiser & Brown, 1996).
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Perhaps by the concept’s nature, the predictions surrounding ubiquity 

are broad—lacking any monolithic prototype such as Englebart provided 

for the personal computer.  Among their technological artifacts, the UC 

team at Xerox PARC made a handheld system called PARCTAB.  It 

offered wireless networking, a stylus interface, and applications including 

a reverse pager (for mapping people’s locations), a universal remote 

controller, and a weather forecast (Schilit et al, 1993).  However, in 

reference to this invention, Weisner later writes, “[UC] is not the same 

thing as mobile computing, nor a superset nor a subset” (Weiser, March 

17, 1996).  Elsewhere, Weisner and John Seely Brown give the following 

forecast of UC’s technological trajectory (1996):

[UC’s] cross-over point with personal computing will be around 
2005-2020.  The “UC” era will have lots of computers sharing each 
of us.  Some of these computers will be the hundreds we may access 
in the course of a few minutes of Internet browsing.  Others will be 
imbedded in walls, chairs, clothing, light switches, cars—in 
everything. … This will take place at a [sic] many scales, including 
the microscopic.

… UC will see the creation of thin servers, costing only tens of dollars 
or less, that put a full Internet server into every household appliance 
and piece of office equipment.  The next generation Internet 
protocol, IPv6, can address more than a thousand devices for every 
atom on the earth's surface. We will need them all.

Amid the prognostications, often the use cases are not pinned down.  Why 

will we need to fill these thousands of IP addresses per atom?  What data 

will be gathered and served by UC-enabled chairs and such?

Ubiquity’s subsequent proponents have defined subdomains that yield 

more detailed prescriptions.  One subdomain, proactive computing (also 

called ambient intelligence or ubiquitous intelligence), aims to fulfill the 
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criteria of invisibility and calmness by making computers measure, 

predict, and answer to human needs without any active human input 

(Tennenhouse, 2000).  This concept has seen practical applications in 

continuing care and assisted living: for example, motion sensor data can be 

used to predict whether an individual is lost or incapacitated, in which 

case an automated call for help can be made (Consolvo et al, 2004).  The 

same principle applies to security systems making automated calls.  

Certain other proactive computing proposals resemble the Jetson family’s 

appliances: for example, the proactive refrigerator would be able to 

measure and classify the household’s consumption, and place orders 

accordingly (Rogers, 2006).

Three main criticisms (Rogers, 2006) are levelled against proactive 

computing.  First, as an AI problem, the inference of human needs and 

wants from sensor data is computationally difficult and perhaps ill-

conceived: the needs and wants might change anytime for reasons that do 

not leave sensory artifacts.  Second, the system’s proactivity is invisible 

only to the person being monitored—and only until the help arrives.  A 

nurse, policeman, deliveryman, or other intervening human is typically 

still assumed, such that the system is costlier and less private than implied.  

Third, the system does not encourage skill development (or skill 

maintenance) on the part of the person being served; this person may 

develop a dependency or a false sense of security.

Responding to these perceived dangers, another UC subdomain 

focuses on the concepts of “proactive people” and “engaging user 

experiences” (Rogers, 2006).  According to this school, UC’s best use 

cases would actually be in play, learning, scientific exploration, and 

persuasion—contexts that ostensibly demand an intense or excited 
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attitude instead of calm.  Example applications include: educational robots 

for which students can write networked, sensory AI programs, with 

aesthetically pleasing outputs (Resnick et al, 2000); environmental 

monitoring systems consisting of distributed sensor nodes, which multiple 

users can deploy (Lane et al, 2010); and health promotion apps that 

monitor peer groups collectively, with the aim of generating positive peer 

pressure (Rogers, 2006).  The latter proposal—to generate peer 

pressure—seems to risk compromising privacy and autonomous decision-

making just as badly as proactive computing might do.

Another subdomain proposes that the level of calm or engagement 

should be context-aware, such that the computer automatically becomes 

invisible when it has no relevant information but highly visible when it 

does.  Notification systems typify this approach (Rogers, 2006).  An 

extreme example of context-aware computing is the US military’s research 

into augmented cognition (AugCog).  This research consists of using 

real-time neuroimaging (EEG and fMRI scans) to predict which of the 

soldier’s faculties are currently overstimulated, and to target new 

information at less stimulated faculties instead: for instance, by presenting 

text instead of graphics (Shachtman, 2007).

Still other subdomains or reformulations, such as pervasive computing 

and mobile computing, place less emphasis on invisibility; more on the 

technologies, protocols, and infrastructure that enable users to access 

information and electronic services “everywhere at anytime” (Hansmann 

et al, 2002).  The term “pervasive computing” was popularized by 

representatives of Novell and then IBM in the 1990s (Ronzani, 2007).  

Originally, the term had much the same connotations as mobile 

computing.  This conflation is clear in the book titled Pervasive Computing: 



 39

The Mobile World, by managers at IBM and Nokia (Hansmann et al, 2002).1  

Traditionally, in pervasive and mobile computing, the networks under 

discussion consist of conventional servers, personal computers, and 

personal phones, which do not seem to constitute shared or userless 

environments as envisioned by Weisner.  Even in work on mobile 

sensing—exploring the use cases for continuously harvesting and 

broadcasting sensor data from communities of smartphone users—the role 

of the user is typically envisioned as active, hands-on, and computer-

centric: for instance, as an annotator who types comments about the data 

for other users to read (Lane et al, 2010).

As this brief survey suggests, ubiquity and its successors are broad 

concepts, debated with somewhat ambiguous semantics, conflicting aims, 

and shifting technological focus.  A study covering twenty years of 

newspaper articles (Ronzani, 2007) suggests that in popular media, the 

terms “ubiquitous computing”, “pervasive computing”, and “ambient 

intelligence” are used almost synonymously—and are used less and less 

since 2000, perhaps suggesting that the abstract and futuristic debates 

have been superseded by shared concerns about implementations today.  

Collectively, though, the literature on ubiquity and its kin still seems to 

offer pertinent advice for developing technology that is future-proof—

technology that does not assume people’s needs are bound to a desktop or 

a personal computer.

1 More recently, the connotations of “pervasive computing” have grown 
to overlap with “ubiquitous computing” in general.  The two fields’ major 
conferences are merging as the 2013 ACM International Joint Conference on 
Pervasive and Ubiquitous Computing.
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2.4.2: Relevance to an AR Framework

As noted earlier, AR emphasizes interaction with markers—low-tech 

physical objects—that are identifiable and trackable by computers.  

Although AR researchers formerly required controlled environments with 

many processors and I/O devices handling few markers, the trend has 

been toward recognizing many markers with unspecialized computer 

systems that consumers can regularly access.  (See “2.3.2: Techniques” 

and “2.3.3: Frameworks”.)  This trend seems to couple AR with ubiquity, 

though low-tech markers rather than computers are the proliferating 

element in this ubiquity.

Since our objective in this thesis is to develop an AR framework, not 

applications, we will avoid prescribing one or another set of user 

experience principles from the UC literature.  The application developer is 

better positioned to make such choices, whereas the framework developer 

should provide underlying systems that let application developer to focus 

on these choices, without restrictions.

Despite their differences, most schools of ubiquity agree that their 

systems need to: be low-cost; leverage previous networking innovations 

and infrastructure; be available, responsive, and interconnected at an 

instant’s notice; support collection, analysis, and sharing of sensor data; 

and not violate privacy expectations.  Our framework for AR Web 

applications should be consistent with these goals.

Cost needs to be considered end-to-end, and in the context that people 

already have certain skills, software, and hardware: they need not invest 

from scratch.  At least in the short term, the least costly solution—and also 

the least evangelical—is likely to be one that leverages commonplace 
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developer proficiencies and commonplace consumer platforms.  Also, 

third-party dependencies must enter into the consideration of cost.

Here, it is worth noting that commonplace consumer platforms are 

entirely capable of controlling sensor networks, appliances, kiosks, and 

other hardware/interface configurations that do not match the 

conventional personal computing paradigm.  Examples include: the 

Arduino family of electronic prototyping components, supporting wired or 

wireless control from Flash, Unity, iOS, Android, and other platforms 

(Arduino, “Interfacing with Other Software”); various smart TVs, 

supporting Flash (Magni, 2012); and the Samsung SUR40 spill-proof 

coffee table, running Windows 7 with APIs for collaborative touch input 

and real-time scanning (Samsung, “Samsung SUR40 for Microsoft® 

Surface®”).

For client-server networking, high-level functionality is widely 

supported in Web platforms.  For peer-to-peer networking, which is 

critical to the multiuser vision of ubiquity, high-level support is less 

widespread.  Except in the situation where peers are discoverable on the 

local network, peer-to-peer networking tends to rely on remote servers, 

with proprietary protocols, to broker discovery of peers.  The AR 

application framework should be compatible with some peer-to-peer 

networking service that is trusted: for example, one that is owned by the 

platform provider.

The concerns of availability, responsiveness, and interconnectedness 

are always fundamental to Web development and deployment.  The 

proliferation of smartphones and Internet service over cellular networks 

has greatly extended the reach of Web applications.  Unfortunately, at 

present, Web-based AR is not generally deployable in the mobile context 
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due to the lack of camera support in mobile Web browsers and plugins.  

For operating systems originating in the desktop world, the range of 

camera-enabled Web plugins has become quite broad.  (See “2.6: Web 

Platforms”.)  Partly fulfilling the criteria for ubiquity, some of these 

plugins are in widespread use even on public computers, and are capable 

of fast load times and fast networking, such that they do not obtrude from 

the rest of the Web browsing experience.

For application developers who need to work with sensor data, the AR 

framework should generalize well in several respects.  First, it should not 

make assumptions about what type of sensor data is being handled (ex. 

video, audio) or how the data are obtained (ex. camera, microphone, file).  

Second, it should not internalize the source of sensor data.  Client code 

may need to read this source, preprocess it (affecting input to the tracking 

algorithm), or postprocess it (ex. affecting output to the video renderer).  

Third, it should expose an interface (which is needed internally anyway) 

for sharing sensor data among multiple subscribers, which are notified as 

data become available.

Privacy is problematic in Web-based AR.  The user’s picture, 

possession of an AR marker, and standard Web client data provide several 

means of tracing an identity.  Either the platform or the application 

framework should insist on informed consent if there is the possibility that 

the AR application will transfer data to the server or third parties.  Also, 

the platform should provide reasonable security against data theft on the 

client side and in network transit, since the application may be running on 

public computers or public networks where fellow users cannot trust each 

other.
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We have described some ordinary (even pedestrian) computing 

problems that apply to ubiquitous AR.  Indeed, of all the heralded aspects 

of ubiquity, the ones emphasized here are perhaps the least 

revolutionary—but they matter with respect to reaching (and not 

disappointing) the broadest audience, in diverse contexts, today.  A good 

lesson in features’ relative importance can be drawn from home appliances 

(which seem to loom large in thought on ubiquity).  The dishwasher, 

refrigerator, washing machine, and dryer are subliminal parts of daily life 

not because they are invisible and silent (indeed, they are big and loud), 

nor because recent prototypes or luxury versions have AI and networking 

add-ons, but rather because the convenience they provide is affordable 

and reliable.  At an exhibition in 1959, Nikita Khrushchev boasted of the 

Soviet Union’s technological superiority over the United States; Richard 

Nixon regrouped by showing off the kitchen appliances that were 

affordable to the single-income family of the American worker (Safire, 

2009).

2.5: Efficiency

2.5.1: Factors

Efficiency is the capability to do much using little.  “Much of what?” 

and “Little of what?” are questions that depend on the application’s 

deliverables and the system’s resources, respectively.  Alternatively, all 

renewable resources can be abstracted as time.  Efficiency in terms of 

deliverables per time is also called throughput.  A related concept is 

latency: the amount of time between an event’s occurrence and the 

completion of its handling.
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Typically, an AR application must deliver real-time video and graphics.  

This deliverable can be measured in frames, i.e. redraw events that are 

handled by the software.  Throughput may be expressed in frames per 

second (FPS).  (Throughput, in this case, is also called frame rate).  

Latency may be expressed in milliseconds (ms) or another unit of time.  

Alternatively, latency may be expressed in number of frames, as frames 

are convertible to time when the frame rate is known.  When latency is 

one frame or greater, the application is said to suffer from “frame lag”.

High throughput yields the impression of smooth motion.  60 FPS is 

ideal for most computer screens.  However, it is not imperative for AR to 

run at 60 FPS.  For comparison, consider the frame rates used in 

cinematic productions that convincingly blend real and virtual footage.  

Most feature films are shot at 24 FPS; Peter Jackson’s The Hobbit is shot 

at 48 FPS; and some Disneyland rides are shot at 60 FPS (Jackson, 

2011).

With live video, low latency yields the natural impression of seeing in 

the present time.  High latency yields the uncanny impression of seeing 

into the near past.  Consider that an eyeblink lasts 100 to 400 ms 

(Schiffman, 2001).  A latency of similar length can cause the viewer to see 

his own eyelids close fully and reopen—an uncanny effect indeed.

With tracking, low latency helps the user correlate his (or the tracked 

object’s) motions to immediate results, such that he sees which motions 

are trackable and can quickly adapt to the tracker’s strengths.  Thus, the 

application seems to be responsive to the user and vice versa.  High 

latency creates the frustrating impression that the tracker is unreliable, as 

the user tends not to see its successes until he has already moved again.
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Camera-based interfaces in console games have received criticism for 

high latency.  On Xbox 360, typical latency is about 150 ms to 200 ms in 

games that use gesture recognition with 640x480 video at 30 FPS 

(Leadbetter, 2010).  For comparison, in Xbox 360 games that use 

gamepad input alone, typical latency is about 4 frames, or 67 ms for 60 

FPS (Leadbetter, 2009).

Video transfer contributes significantly to the time cost of AR.  A 

webcam, whether internal or external, typically sends its data via 

Universal Serial Bus (USB).  Alternatively, it might use another 

peripheral bus such as FireWire, Ethernet, or Thunderbolt.  Multiple 

peripherals (ex. plugged into different ports) may compete for bandwidth 

on the same bus.  When competition for bandwidth is low, USB 2.0 can 

support 640x480 uncompressed video at 60 FPS and USB 3.0 can support 

1080p (1920x1080) uncompressed video at 60 FPS (Table Series 1).  The 

transfer time (the contribution to latency) would be about 15 ms and 10 

ms in these respective cases.
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Table Series 1: Data Rates, FPS, and Transfer Time

Table 1A: Data Rates of Uncompressed Video

Resolution

Data rate 
(MB/s) @ 30 
FPS, 
RGB565

Data rate 
(MB/s) @ 30 
FPS, 
RGB888

Data rate 
(MB/s) @ 60 
FPS, 
RGB565

Data rate 
(MB/s) @ 60 
FPS, 
RGB888

320 x   240 4.4 6.6 8.8 13.2

640 x   480 17.6 26.4 35.2 52.7

1280 x   720 52.7 79.1 105.5 158.2

1920 x 1080 118.7 178.0 237.3 356.0

Notes: RGB565 is 2 bytes per pixel.  RGB888 is 3 bytes per pixel.
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Table 1B: FPS and Latency of Uncompressed Video on Peripheral Buses

Type Year
Max 
data rate 
(MB/s)

Max FPS 
@ 
640x480, 
RGB888

Transfer 
time 
(ms) @ 
640x480, 
RGB888

Max FPS 
@ 
1920x1080, 
RGB888

Transfer 
time 
(ms) @ 
1920x1080, 
RGB888

USB 1.1 1996 1.5 1.7 585.9 0.3 3955.1

USB 2.0 2000 60.0 68.2 14.6 10.1 98.9

FireWire 

800
2002 98.3 111.8 8.9 16.6 60.3

Gigabit 

Ethernet
1999 125.0 142.2 7.0 21.1 47.5

USB 3.0 2010 625.0 711.1 1.4 105.3 9.5

Thun-

derbolt
2011 2,500.0 2,844.4 0.3 421.4 2.4

100 

Gigabit 

Ethernet

2008 12,500.0 14,222.2 0.1 2107.0 0.5

Note: Transfer time is per frame; thus, it is the minimum contribution to latency.
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Note that uncompressed video is the norm for webcams.  However, 

high-end models may feature H.264 encoding, which can yield excellent 

image quality at compression ratios of 50:1 (Kane Computing, 

“Compression Ratio Rules of Thumb”).  For AR purposes, compression 

may be counterproductive: the tracker probably cannot read compressed 

video without it being decompressed again.

Depending on the camera, the programmer may be able to configure 

the captured resolution and maximum frame rate.  However, little else can 

be done in software to control the costs of capturing video frames and 

sending them via the peripheral bus.  Optimization efforts must focus on 

subsequent transfers and transformations instead.  A typical application 

loop might interleave manipulations to camera-derived data and purely 

virtual data, as follows:

1. Capture the video frame, as previously discussed.  Depending on 

the system and the use of its graphics libraries, the captured video 

frame may be stored in main memory, GPU memory, or both.

2. Analyze the video frame (in comparison to reference geometry and 

textures) to obtain tracking results.  This step is processor-intensive 

because it involves many transformations of many vertices and 

pixels.

3. Update the 3D (virtual) scene based on the tracking results.  

Typically, few 3D transformations are directly dictated by the 

tracking results and thus this step is inexpensive.

4. Update the 3D scene again according to its own dynamics (ex. AI, 

physics, kinematics).  This step is processor-intensive if there are 

many interacting entities.
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5. Render the video frame.  This step is bus-intensive if the approaches 

to video capture and rendering dictate that the frame must now be 

moved between different memory regions (i.e. main memory v. 

GPU memory).  It is not processor-intensive unless complex filters 

are applied to the video (ex. to make it look more similar to the 

purely virtual content).

6. Render the 3D scene.  This step is processor-intensive because it 

involves many transformations of many vertices and pixels.  It is not 

bus-intensive as long as resources (ex. geometry, textures) are 

reused between frames.

7. Blend the 3D rendering and video rendering—if the video 

rendering was not already the 3D rendering’s background during 

(6).  This step is bus-intensive if the two renderings are in different 

memory regions (i.e. main memory v. graphics memory).  It may be 

somewhat processor-intensive if it involves blending many pixels 

with transparency.

8. Display the rendered, composite scene.  Like video capture, this 

step is bus-intensive and not programmatically controllable.  

Depending on the user’s monitor interface (ex. DVI, HDMI, 

DisplayPort) and resolution settings, transfer times of about 5 ms to 

10 ms can be expected.  At non-native resolutions, LCD monitors 

take additional time to interpolate between input pixels and output 

dots.  Combined transfer and interpolation time can be as much as 

50 ms for some setups (Leadbetter, 2009).

To summarize, we find high, programmatically controllable costs in 

(2), (4), (6), and perhaps either (5) or (7).  Our focus in this thesis is on 

steps (2) to (3), which concern tracking, and (5) to (7), which concern 
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rendering.  Step (4), which concerns dynamics, is not addressed further, 

as the topic of optimizing dynamics is broad, somewhat application-

specific, and not necessarily specific to AR.

As an alternative to interleaved, sequential execution, the processing of 

camera-derived data and purely virtual data can run in two parallel 

streams, potentially leveraging multiple processors more efficiently.  These 

streams must synchronize at (3) and (7).  However, it is not strictly 

necessary that synchronizations occur on every iteration.  One stream’s 

latency and frame rate can be compromised to improve the other’s.  For 

example, video capture and tracking could run at 30 FPS while dynamics 

and rendering ran at 60 FPS (or vice versa).

Given the wide variety of contributing factors, efficiency is difficult to 

predict from a priori knowledge alone.  That is to say, in high-level 

programming, precise efficiency characteristics are not obvious from an 

inspection of source code and hardware specifications.  Rather, efficiency 

must be measured at runtime, preferably in an itemized, modular fashion 

such that shortcomings can be traced to one factor or another and 

remedied in future revisions.  We now turn our attention to these practical 

issues of measurement.

2.5.2: Measurement Techniques

The developer should test software’s efficiency on systems that are 

deemed typical of the target audience.  Let us assume that the target 

audience for Web AR applications is similar to the target audience for 

Web games.  According to one platform’s recent user survey (Unity, “Web 

Player Hardware Statistics - 2012 Q2”), the typical Web gamer’s system 

runs Windows 7 (51.0%) and has an Intel Core 2 CPU (33.3%), 2 GB 
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RAM (33.5%), Intel GMA 950 GPU (14.4%), 64 MB VRAM (32.2%), 

and 1366x768 desktop resolution (23.0%).  At this desktop resolution, it is 

unlikely that a 1280x720 video would be visible all at once in a windowed 

Web application.  Thus, 640x480 is more plausible as a “typical” video 

resolution that an application developer would support for Web AR.

After choosing a testbed, the developer should itemize costs.  To 

measure the time cost of a block of code, the developer can 

programmatically start a timer at the block’s beginning and stop the timer 

at the block’s end.  We may say that the block’s time use is a transparent 

cost, since it is so readily measured.  However, programmatic timers 

cannot readily capture the full time cost of a process that includes 

input/output (I/O) events.  For such a process, some costs are hidden in 

software and hardware that are beyond the programmer’s sandbox; some 

are hidden in the non-computing world, where the user moves and sees.  

We may say that time use in these contexts is an opaque cost.

An I/O process’s total latency or total time cost (transparent plus 

opaque) can be estimated from a video recording of the user and I/O 

devices.  A certain frame may be deemed to show an input event and 

another frame the corresponding output event.  The interval between 

these two frames is the estimated latency.  Such an approach has become 

popular in the gaming press and game development industry (West, 2008; 

Leadbetter, 2009).  The estimate’s precision is limited by the recording’s 

frame rate.  Its accuracy is limited by the difficulty of discretizing an input 

event: it will take several frames for a user to execute a button-press, let 

alone a gesture with an AR marker.

If we are willing to artificially omit some opaque costs, we may 

discretize input events more precisely and more accurately by means of 
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proxy.  An input proxy is not regular input; rather, it is a stored or 

programmatically generated data stream that is treated as if it were 

regular input.  For example, a video file or a live rendering could be a 

proxy for live camera input.  The proxy’s event timings are knowable 

because its data can be recorded in laboratory conditions or programmed 

deterministically.

For AR, an input proxy is especially useful in measuring latency 

between capturing a physical marker’s appearance, motion, or 

disappearance and making the corresponding update to the virtual 

marker.  These latencies affect the perceived responsiveness of the AR 

interface, in a way that may be somewhat independent of frame rate.  

Without use of an input proxy, another way to estimate these latencies 

would be to include (as a baseline) a simple tracker that is highly tailored 

to the marker and viewing conditions.  For example, the coordinates of a 

yellow tennis ball in a blue scene should be determined quickly by a 

tracker that seeks a yellow region and considers its radius.

For applications that are bottlenecked by input, an estimate of opaque 

costs can be obtained by measuring frame-to-frame time in a minimal 

application that does little but gather input.  For AR, this baseline 

application could be a live camera feed, a readout of timings, and nothing 

else.
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2.6: Web Platforms

2.6.1: System Access

Traditionally, client-side Web platforms have placed major restrictions 

on system access.  Some of these restrictions have made CV and AR either 

infeasible or inefficient.

Table 2: Browser Support for WebGL

Browser Supports WebGL?

Internet Explorer 6+
Only via third-party add-on: Chrome 

Frame or IEWebGL

Firefox 4.0+ Yes

Google Chrome 9+

Yes—but with significant platform 

incompatibilities, including: Windows 

XP; ATI on Linux

Safari 5.1+ Yes—but disabled by default

Opera 12+ Yes

Mobile Safari No

Google Android Depends on vendor’s implementation

Internet Explorer Mobile No

Sources: Google, “Google Chrome Frame”; Google, “WebGL and 3D graphics”; 

IEWebGL, “IEWebGL - WebGL for Internet Explorer”; Opera, “An 

introduction to WebGL”

JavaScript, as implemented in Web browsers, does not provide access 

to multiple CPU cores.  Camera access is just starting to gain support in 
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JavaScript: a draft specification called WebRTC is implemented in 

Firefox 17 (a development version), Chrome 21, and Opera 12 (Bidelman, 

2012).  The GPU may or may not be accessible from JavaScript via a 

standard called WebGL.  WebGL’s availability depends on the user’s 

platform, browser, add-ons, and settings (Table 2).

Compared to JavaScript, plugin-based Web platforms are generally 

less restrictive, at least when comparing recent stable versions (Table 3).  

Most of these platforms can be characterized as either general-purpose 

application runtimes or game engines.  General-purpose application 

runtimes tend to give client code full access to the system’s 

multiprocessing capabilities.  Game engines, on the other hand, tend to 

multiprocess certain functionality internally (ex. rendering, physics), 

while prescribing single-threaded client code.  The most popular plugin 

platform, Flash, has mixed characteristics.  It has traditionally prescribed 

single-threaded ActionScript code (with the possibility of hardware-

accelerated rendering behind the scenes), yet in recent years it has added 

several programmable forms of multiprocessing: Pixel Bender shaders; 

AGAL shaders; and, most recently, ActionScript Workers.  (See “2.6.3: 

Focus on Flash”.)  Broadly, Flash can be characterized as a general-

purpose application runtime with roots as a scriptable media player.

As an alternative to building an application atop an existing plugin 

platform, developers can roll their own plugin application or platform 

using ActiveX for Internet Explorer (Microsoft, “ActiveX Controls”), 

NPAPI for other browsers (Mozilla, “Gecko Plugin API Reference”), or 

higher-level wrappers that may bridge the two (Mozilla, “External 

resources for plugin creation”).  Broadly, what can be achieved in writing 

a desktop application or runtime, can be achieved in writing a plugin.  
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However, the challenges of creating an original plugin platform—and 

developer and user communities around it—are beyond the scope of this 

thesis.

Table 3: Plugin-based Web Platforms that Support Camera Access and 
Multiprocessing

Plugin Intent
Systems 
with camera 
access

Multiprocessing capabilities

Flash 10.0+
General-

purpose

Windows, 

Mac, Linux

Accelerated 2D rendering.  

General-purpose 

multiprocessing is feasible 

using Pixel Bender shaders 

but not ActionScript alone.

Flash 10.2+
General-

purpose

Windows, 

Mac, Linux
Accelerated video decoding. 

Flash 11.0+
General-

purpose

Windows, 

Mac, Linux

(Not applicable to Linux.)  

Accelerated 3D rendering.  

General-purpose 

multiprocessing is feasible 

using AGAL or Pixel Bender 

3D shaders but not 

ActionScript alone.

Flash 11.4+
General-

purpose

Windows, 

Mac

General-purpose 

multiprocessing is feasible 

using ActionScript Workers.

continued on next page
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continued from previous page

Plugin Intent
Systems 
with camera 
access

Multiprocessing capabilities

Java
General-

purpose

Windows, 

Mac, Linux
Unrestricted.

Silverlight 4.0+
General-

purpose

Windows, 

Mac
Unrestricted.

Moonlight 4.0+ 

(in preview 

release)

General-

purpose
Linux Unrestricted.

Shockwave 

11.5.8+
Game engine

Windows, 

Mac

Superset of Flash 10.0 

capabilities, as Shockwave 

can embed Flash 10.0 

bytecode.  Also, has its own 

route for accelerated 

rendering, physics, etc.

Unity Web 

Player 3.5+
Game engine

Windows, 

Mac

Unrestricted but, generally, 

the Unity API is not thread-

safe.  Accelerated rendering, 

physics, etc.

ShiVa3D 1.9+ Game engine
Windows, 

Mac, Linux

Via C++ plugins (1.9+), 

unrestricted.  Via Lua scripts, 

general-purpose 

multiprocessing is infeasible.  

Accelerated rendering, 

physics, etc.

continued on next page
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continued from previous page

Plugin Intent
Systems 
with camera 
access

Multiprocessing capabilities

Panda3D Game engine
Windows, 

Mac, Linux

Unrestricted.  Includes 

multiprocessing extensions to 

Python.  Accelerated 

rendering, physics, etc.  Client 

code, culling, drawing 

optionally run parallel to each 

other.

D’Fusion AR engine
Windows, 

Mac

Accelerated rendering.  

Maybe accelerated pixel 

buffer manipulations.  

General-purpose 

multiprocessing is infeasible 

via Lua scripts; no other kind 

of client code allowed.

Sources: Adobe, “ActionScript Technology Center”; Adobe, “Director 11.5 Help”; 

Adobe, “Flash Player Release Notes”; Adobe, “How Stage3D Works”; 

Adobe, “Pixel Bender Technology Center”; Adobe, “What is AGAL”; Total 

Immersion, “Augmented Reality Software and Solutions by Total 

Immersion | Augmenting Your Reality”; Rose, 2011; Microsoft, “Silverlight”; 

Novell, “Moonlight”; Oracle, “Lesson: Java Applets”; Panda3D, 

“Documentation”; ShiVa3D, “Documentation”; ShiVa3D, “Documentation”; 

Unity3D, “Documentation”.
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2.6.2: Adoption

General-purpose plugin platforms, including their recent versions, are 

quite widely adopted, though some are in decline (Table 4).  Special-

purpose plugin platforms, such as game engines, do not exhibit the same 

potential in terms of market penetration.  Within the latter category, 

Shockwave (Table 4) remains far more widely adopted than the 

alternatives.  For comparison, consider that Unity Web Player had 113.3 

million cumulative installations between its 2006 initial release and May 

2012 (Unity, “Fast Facts”).  Of this number, about 6 million or 5.3% 

would have been downloads by developers (Unity, 2012, April 9), 

suggesting that on average each developer has converted only 19 users to 

the Unity Web Player.  For other vendors’ special-purpose plugins, data 

are completely unavailable—in which case, the market penetration is 

presumably negligible.

Some special-purpose runtimes have been ported to run atop Flash, 

rather than requiring a dedicated Web plugin.  Flash deployment targets 

are now offered by Unity and by Unreal Engine (a game engine geared 

toward large studios).

A plugin’s market penetration is relevant to the initial user experience 

of any application targeting that plugin.  A user who does not already have 

the plugin might not realize it is required, might not wish to install it, or 

might fail to install and run it despite trying.  Even on successfully 

installing the plugin, the user might feel inconvenienced and be negatively 

predisposed toward the app.  For these reasons, the installation experience 

becomes an increasingly crucial point of comparison where market 

penetration is lower.  Factors affecting the installation experience may 

include: the size and hosting of the plugin download; system requirements; 
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the inclusion of any third-party software that might be perceived as 

adware; automated update checking; and the need for any restart/refresh 

steps that may cause the user to lose the webpage (Helgason, 2008).

Table 4: Market Penetration of Selected Plugins

Plugin
Market penetration,
October 2011

Market 
penetration,
April 2012

Flash 11.0+ 23.36% 68.86%

Flash 10.0+ 93.89% 94.39%

Java, any version 76.57% 68.70%

Silverlight 4.0+ 63.33% 59.16%

Shockwave 11.0+ 26.54% 26.42%

Source: StatOwl.com, “Statistical analysis and market research of Internet usage 

trends”.

High market penetration does not necessarily imply that users are 

proactive in installing the plugin and seeking content that uses it.  The 

plugin might come preinstalled on the user’s system or it might be 

suggested to the user by websites that require it.

Another factor in initial user experience is loading time, which depends 

partly on the plugin (and its standard libraries) and partly on the 

application.  Anecdotally, Flash and Silverlight offer much faster loading 

times than Java and Shockwave do.  However, no benchmarks of loading 

times seem to be available.
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2.6.3: Performance

For performance benchmarks more generally, Ernst (2011) is an 

excellent source, offering tests of JavaScript, Flash, Java, Silverlight, and 

their standard libraries.  However, even his work gives short shrift to the 

multiprocessing capabilities of certain platforms—suggesting the extent to 

which these capabilities remain immature or just underexploited.  For 

example, Flash’s and JavaScript’s 3D acceleration capabilities receive 

mention but not testing, due to their unstable implementations as of 2010-

2011.  Meanwhile, Flash’s shader-based multiprocessing capabilities, 

despite being more mature, receive no mention at all.

Subject to such limitations, Ernst finds that there is no clear, cross-

category winner of his benchmarks.  Java and Silverlight tend to lead in 

numerical (number-crunching) benchmarks, while Flash holds the 

advantage in 2D graphics and string manipulations, for example.  

Moreover, Ernst finds that some performance advantage may be gainable 

by mixing platforms in one application.  He advocates the use of 

Flash/JavaScript intercommunication, with JavaScript hopefully 

compensating for weak numerical performance in single-threaded Flash 

client code.  Admittedly, this approach is fragile: depending on the 

browser’s JavaScript implementation and security settings, the 

intercommunication may adversely affect performance or fail (Ernst 

2011).

2.6.4: Focus on Flash

Developments in the last three versions of the Flash platform are 

especially important to our research.  Existing AR and 3D rendering 

libraries have emerged at various stages in the platform’s evolution, so 
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multiple Flash versions are relevant to an understanding of the libraries’ 

design.  Where not otherwise noted, our remarks on Flash are also 

applicable to the corresponding versions of Adobe Integrated Runtime 

(AIR), the non-Web platform that can typically be targeted from the same 

codebase as Flash.

Table 5: Timeline of Recent Flash and AIR Versions

Date Flash version AIR version
Changes in 
platform support

2012, August 11.4 3.4

2012, May 11.3 3.3 Flash drops Linux

2012, March 11.2 3.2
Flash drops 

Android

2012

LG Smart TVs 

released with 

support for AIR 

3.0

2011, November 11.1 3.1

2011, October 11.0 3.0

2011, June 2.7 AIR drops Linux

2011, May 10.3

2011, April

BlackBerry Tablet 

OS released with 

support for Flash 

and AIR

continued on next page
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continued from previous page

Date Flash version AIR version
Changes in 
platform support

2011, March AIR adds iOS

2011, February 10.2 2.6

2011, January
Flash adds 

Android

2011

Samsung Smart 

TVs released with 

support for AIR 

2.5

2010, October 2.5 AIR adds Android

2010, June 10.1

2009, November 2.0

2008, November 1.5

2008, October 10.0

2008, June 1.1

2008, February 1.0

2007, December 9 Update 3 1.0 Public Beta 3

(Windows, Mac, 

and Linux already 

supported)

Sources: Adobe, “Flash Player Release Notes”; Adobe, “Adobe AIR Release 

Notes”; Magni, 2012; Samsung, 2011.

Flash 11.4 (the latest version) targets Windows and Mac.  AIR 3.4 (the 

latest version) additionally targets iOS and Android.  Previous versions of 
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Flash and AIR have targeted other platforms (Table 5), though not 

necessarily with the same features as on Windows and Mac.  For example, 

Flash for Android lacked camera access, though AIR for Android has it 

(Adobe, “Flash Player Release Notes”; Adobe, “Adobe AIR Release 

Notes”).  BlackBerry Tablet OS and certain television sets (Magni, 2012; 

Samsung, 2011) have vendor-supported versions of Flash and AIR that 

lag behind the official Adobe versions.

Flash applications are able to run automatically when a user with the 

Flash plugin visits a webpage.  To reduce the risks associated with auto-

running Web applications, Flash provides certain privacy and security 

features (Adobe, “Flash Player security and privacy”).  When an 

application wants to access the user’s camera or microphone, the user is 

prompted for permission.  This permission is per-application and, 

normally, per-use.  Cross-domain scripting is prohibited, such that one 

Flash application cannot launch another, remote Flash application.  

Access to the user’s local filesystem is prohibited, except for locally hosted 

applications that are not networked.  Cookie-like data called local shared 

objects (LSOs) may be stored on the user’s machine but, since Flash 10.1, 

this functionality is disabled when Internet Explorer, Firefox, Chrome, or 

Safari is in private browsing mode.  Compared to Flash, AIR has looser 

security restrictions but AIR applications do not run automatically; they 

must be installed as regular desktop applications.

Despite the limitations imposed for privacy and security, Flash 

supports peer-to-peer networking and thus is a viable platform for a broad 

range of ubiquitous applications.  (See “2.4.2: Relevance to an AR 

Framework”.)  Adobe’s official peer-to-peer service, available in Flash 10 

and later, is called Cirrus (Adobe, “Cirrus”).  Under Cirrus, an Adobe 
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server helps peers discover each other and thereafter peers may 

communicate directly, exchanging arbitrary data.  These communications 

use Adobe’s Real-Time Media Flow Protocol (RTMFP), which is 

supposed to offer low latency, high reliability, and strong encryption 

(Adobe, “RTMFP FAQ”).

For Flash 9 and later, applications are programmed primarily in 

ActionScript 3.0 (AS3).  ActionScript 3 is an object-oriented, event-

driven, reflective, imperative language, influenced by Java and 

JavaScript.  ActionScript 3 compiles to bytecode and, when used 

reflectively, may emit bytecode or JavaScript.  Types in AS3 may be 

either static or dynamic.  They may not be generic (except in the case of 

vectors), nor may they overload the equality operator.  Functions are first-

class citizens (Adobe, “ActionScript Technology Center”).

The standard libraries for AS3 emphasize GUIs, media 

capture/playback, and 2D vector graphics.  An AS3 application is 

structured as a scene graph: a hierarchy of entities with spatial 

coordinates (in this case, pixels coordinates).  Each node in the graph may 

dispatch and receive events.  The scene graph may be laid out in MXML, 

a markup language that is interoperable with AS3.

Flash 9 and later also include experimental (prerelease) support for 

compiled C and C++.  The Flash toolchain for these languages is known as 

Alchemy.  Recent prerelease versions of Alchemy are available only to 

selected developers (Adobe, “Alchemy”).

Adobe acknowledges that in Flash 10 and earlier, the platform was 

incapable of supporting high-performance 3D rendering.  The company 

suggests that with “acceptable performance”, Flash 10 applications could 

render at most 4,000 triangles per frame.  Furthermore, depth sorting was 
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only feasible per-triangle rather than per-pixel; thus, portions of triangles 

would sometimes appear to be misplaced (Adobe, “How Stage3D 

Works”) (Figure 7).

Figure 7: Depth Sorting: Per-pixel v. Per-triangle

Left: Per-pixel depth sorting, yielding the correct rendering of four cubes that are 

close to each other.  Right: Per-triangle depth sorting, yielding an incorrect 

rendering.  For performance reasons, implementations of depth sorting targeting 

Flash 10 are typically per-triangle (Adobe, “How Stage3D Works”; Chúťka, 2010).  

The screenshots are from Chúťka (2010).

An API called Stage is Flash’s default rendering pipeline—and was, 

until recently, its only rendering pipeline.  Stage is highly portable: all 

features can run on one CPU core—and many features can only run in this 

manner.  By the same token, Stage is suboptimal for anything but low-end 

hardware.  However, since Flash 9, Adobe has been adding platform-

specific optimizations to Stage, such that some functionality has become 

well optimized, at least relative to other Web-based alternatives (Ernst, 
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2011).  Flash Player 9 Update 3 introduced optimizations for multicore 

CPUs, with the effect of improving the speed of built-in rendering 

functions for vectors, bitmaps, filters, and video (Adobe, “Flash Player 

Release Notes”; Ulloa, June 14, 2007).  Video decoding is GPU-

accelerated since Flash 10.1 (Adobe, “Flash Player Release Notes”).  

Flash 10.0 enabled developers to program their own optimizations for 

multicore CPUs via the Pixel Bender shader language, which parallelizes 

vector operations (Adobe, “Flash Player Release Notes”; Uro, 2008).  

Since Flash 11.4, clients can also do CPU multiprocessing in ActionScript 

by programmatically launching multiple “Workers” or virtual instances of 

the Flash runtime, each with its own thread of execution.  Workers have 

high overhead cost but may cheaply communicate with each other via 

shared memory or message passing (Adobe, “Worker”).

Starting in Flash 10.2, applications may be able to offload streaming 

video rendering to the GPU via an API called StageVideo.  StageVideo is 

always rendered behind Stage—a suitable ordering for “the most common 

use case, which is a video player application” (Adobe, “Getting started 

with stage video”).  There may be zero or more StageVideos available to 

an application, depending on the underlying platform.  As each 

StageVideo is full-window and does not support transparency or other 

blending (Adobe, “Getting started with stage video”), the use case for 

multiple StageVideos would seem to be limited to multi-window or multi-

display AIR applications.

For reasons of efficiency, previous versions of Flash made the contents 

of StageVideo write-only: the frames of video data could not be read by 

client code (Adobe, “Getting started with stage video”).  Moreover, 

StageVideo did not support camera input.  Without camera input or 
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readable video frames, StageVideo was doubly ill-suited to the needs of 

AR.  However, a solution was previewed in a beta version of Flash in 

October 2011 (Imbert, 2011).  Ten months later, StageVideo gained 

client-readable camera input in the release version of Flash 11.4.

Figure 8: Ordering of Stages in Flash 11

At the front (nearest the viewer), there is exactly one Stage, rendered via the old, 

CPU-bound, programmable pipeline.  Behind it, there are zero or more 

Stage3Ds, rendered via the new, GPU-accelerated, programmable pipeline.  At 

the rear, there are zero or more (though typically one) StageVideos, rendered via 

another GPU-accelerated pipeline, which is fixed-function.  The diagram is from 

Adobe (“How Stage3D Works”).

Since Flash 11.0, the original Stage and StageVideo are supplemented 

by an alternative called Stage3D (formerly, Molehill), which is GPU-

accelerated.  Stage3D supports parallel programming on the GPU via 

Adobe Graphics Assembly Language (AGAL) or the higher-level Pixel 

Bender 3D (PB3D) language, though the future of the latter language is 

uncertain (Adobe, “What is AGAL”; Adobe, “Preview 3 and the future of 

PB3D”).  There may be zero or more Stage3Ds available to an 
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application, depending on the underlying platform  (Adobe, “How 

Stage3D Works”).  Windows and Mac can use Stage3D since Flash 11.0, 

while iOS and Android AIR applications can use it since Flash 11.2  

(Adobe, “Flash Player Release Notes”; Adobe, “Adobe AIR release 

notes”).  Stage3Ds are sandwiched between the Stage and StageVideo 

(Figure 8) (Adobe, “How Stage3D Works”).  Stage3D does not yet 

support background transparency so if one Stage3D is visible, it obscures 

further-back Stage3Ds and StageVideo.  Background transparency for 

Stage3D was previewed in a beta version of Flash in summer 2011.  

However, there is no news about further development of this feature.

Stage3D does not have any functionality for camera input or streaming 

video rendering.  Therefore, in itself, Stage3D is an insufficient canvas for 

AR.  To use Flash for GPU-accelerated 3D rendering in front of live 

video, one must make use of another graphics pipeline as well.  Two 

approaches are feasible:

1. Marshall camera frames from Stage to Stage3D, and render them 

on Stage3D as a textured plane behind the virtual scene.

2. Marshall the virtual scene’s frames from Stage3D to Stage, and 

render them as a bitmap in front of a live video that resides on either 

Stage or StageVideo.

Neither approach is ideal: it would be more efficient to have camera input 

stored to a Stage3D texture in the first place, or to have a transparent 

background in Stage3D so that StageVideo could show through.  Thus, 

compositing is problematic for AR in Flash.
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Chapter 3: Exploratory Work

The original motivation for this thesis grew out of the author’s work at 

Ad-Dispatch, Inc. (Dartmouth, NS), an AR company, in the period of 

July 2011 to March 2012.  During this time, Ad-Dispatch saw the need to 

transition away from its main third-party software dependency, which, 

though efficient, was expensive, fragile, and troublesome to Web users.  

The company sought alternatives that would be equally efficient but more 

ubiquitous: practical even for low-budget projects, varying host 

environments, and novice users.  For certain platforms, Ad-Dispatch 

found an off-the-shelf, integrated solution to its problem.  For other 

platforms, including the Web, there was no such readymade engine, 

though there were relevant off-the-shelf components.

As part of his employment, the author integrated available AR, 

rendering, media, and GUI components in Flash (plus AIR) to test several 

alternative concepts of an AR engine targeting the Web (plus other 

platforms).  The results of these efforts are detailed in the next section, 

“3.1: At Ad-Dispatch”.  Broadly, the concepts proved functional and 

deployable, though efficiency and workflow (particularly, turnaround 

time for testing art assets) were problematic to varying extents.  Ad-

Dispatch suspended its plans to develop an engine in-house.

Thereafter, the author entered into an informal collaboration with 

Bernhard Jung, one of the developers of flare*nft, to start assessing 

another round of integration concepts, with an emphasis on reducing 

marshalling costs, utilizing the GPU via thinner wrappers, and supporting 

asset imports more simply.  The results of this dialogue are detailed in the 

“Refinements” section.  Broadly, the consensus was that the new approach 

yielded improvements in efficiency and workflow, relative to the author’s 



 70

and Jung’s previous models.  Further validating the use of thin wrappers, 

the author tried unsuccessfully to attain the same performance when 

adding AR atop an existing, high-level game engine.

There are two takeaway lessons from this exploratory work.  First, the 

combination of ubiquity and efficiency is critical in an industry-grade AR 

engine—and finding or creating this combination is nontrivial.  Second, 

Flash (or AIR) solutions can potentially deliver this combination, 

provided that care is taken to use the strengths and avoid the weaknesses 

of the platform’s multiple graphics pipelines.  Particularly, complications 

arise in sharing data among components.  These lessons influence the 

architecture and choice of dependencies that we discuss in the next 

chapter, “Design and Contribution”.

3.1: At Ad-Dispatch

3.1.1: Objectives and Problems

Ad-Dispatch specializes in rapid development of multi-platform NFT 

applications with 3D content.  The purpose of its applications is to add 

interactive value to clients’ physical products, advertisements, and venues.  

Users include media technicians, commercial salespeople, retail 

salespeople, and consumers.

Within this business context, reusable application frameworks (both 

code and interface principles) are important for the sake of meeting the 

short timelines while still ensuring robustness, responsiveness, usability, 

and polish for the multiple platforms, contexts, and audiences.  Of course, 

not all application frameworks fulfill these needs equally well.
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As of 2011, Ad-Dispatch was heavily invested in the D’Fusion SDK 

but was encountering problems with this framework.  First, D’Fusion 

carried high recurring costs per application and per revision of an 

application.  This cost structure was prohibitive to many of the small-scale 

and recurring contracts that would have suited Ad-Dispatch’s specialty in 

rapid development.  Second, D’Fusion does not truly provide uniform 

development and deployment experiences across the supported platforms.  

For D’Fusion Web Player, many end users complained of installation 

failures.  On iOS and Android, the application developer must write glue 

code to manage D’Fusion’s proprietary runtime.  The vendor-provided 

samples of glue code proved to be unreliable (in the author’s attempts to 

adapt them)—suffering from memory leaks, camera resource leaks, and 

graphics resource leaks in certain situations where the runtime needed to 

be paused and resumed.

The residual appeal of D’Fusion lay in its convenient visual toolchain, 

and its consistent graphical features and performance across Web and 

desktop platforms.  Ad-Dispatch’s artists, in particular, were satisfied with 

D’Fusion because it could reliably import their 3D animations and show 

previews that corresponded well to runtime results (at least on the Web 

and desktops).
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To understand the importance of previewing 3D animations early and 

often, let us look at the typcial steps in Ad-Dispatch’s workflow:

1. Managers and salespeople establish project specifications in 

consultation with clients.  These specifications are then 

communicated to artists and programmers.

2. Artists create content while programmers work on implementing 

other aspects of the application.

3. Artists send content to programmers, who attempt to incorporate 

the content into the application.  The application or an in-editor 

simulation of it may be shown to artists for review.  If there are 

problems at this stage and there does not seem to be any convenient 

programmatic solution, programmers and artists meet to discuss 

possible causes and solutions.  These discussions may result in 

rework for the artists, in which case the workflow returns to (2).

4. A demo build of the application is sent to the client for review.  This 

demo may be work-in-progress.  The client may request changes.  

Depending on the client’s requests and whether the demo is work-

in-progress, the workflow might return to (1) or (2).

5. A client-approved application is tested by various staff and deployed 

by programmers.

If timelines for incorporating content are not met, then artists and 

programmers are tied up in the effort to resolve the technical problems, 

while managers and salespeople may be tied up in client-relations 

problems because there is no new demo content for the client to see.

Ad-Dispatch decided to try to replace D’Fusion with one or more 

alternative frameworks, which would need to be less costly and more 

robust but would ideally offer the same type of workflow, and at least 
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equal graphical features and performance.  A comparison of mobile 

alternatives led to the adoption of Vuforia plus Unity as an obvious choice 

for iOS and Android projects, with Vuforia providing the NFT 

functionality and Unity providing the game engine functionality and visual 

toolchain.  A comparison of Web and desktop alternatives did not produce 

any obvious match to the criteria, so the author was assigned to 

investigate further and to work on developing better matches.

3.1.2: Approaches and Outcomes

At different times, the author explored possible Flash 10, Flash 11, and 

equivalent AIR solutions using flare*nft.  As discussed in “2.3.3: 

Frameworks”, flare*nft belongs to the same evolutionary group as 

Vuforia, so the choice of flare*nft would facilitate cross-platform feature 

parity for Ad-Dispatch.  The scope of the explorations included 

identifying integration issues among the platform’s standard libraries, 

various third-party rendering libraries, and flare*nft itself.

Performance profiling was done on Mac OS X 10.7, 2.4 GHz Core 2 

Duo, 4 GB RAM, GeForce 320M.  Functional testing was done on 

multiple platforms.

One proposed approach—the most conservative—was to closely follow 

flare*nft’s demo application code, which integrated the Papervision 

renderer.  As the pioneering 3D renderer for Flash, Papervision was first 

publicly released in 2007 (Ulloa, July 7, 2007).  The latest stable version, 

dating to 2009, is optimized for Flash 9 (Ulloa, October 13, 2009).  As 

such, Papervision is highly suboptimal for today’s Flash audience.  On 

Flash 10.3, it was possible to produce an NFT application that ran at 12 

FPS with an animated, 20,000 polygon model and 640x480 video.  
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However, to achieve this frame rate, it was necessary to use an inaccurate 

depth-sorting algorithm, which is actually the default in Papervision 

(Chúťka, 2010).  This option caused an inordinate amount of rework for 

the animator, since the model’s geometry needed to be sliced up in unusual 

ways to compensate for the algorithm’s flaws.  With accurate depth-

sorting, the application ran at only 4 FPS.

Other proposed approaches involved more up-to-date renderers, such 

as Away3D and Alternativa3D.  These two renderers are available in both 

Flash 10-optimized and Flash 11-optimized versions.  Away3D is forked 

from Papervision so may offer the easiest upgrade path for legacy code.  

Alternativa3D is an original library with an impressive portfolio, including 

Adobe’s official launch demo for Stage3D and several massively 

multiplayer online games (MMOGs) (AlternativaPlatform, “Showcase”).  

Approaches using either of these two renderers were not explored very 

far, due to Ad-Dispatch’s concerns about the time investment that might 

be required for programmers and animators to troubleshoot another new 

rendering pipeline.

A final proposed approach—the most radical—was to integrate 

flare*nft with Unity via interprocess communication, such that artists and 

front-end developers would only need to deal with the known Unity 

workflow.  (This effort predated Unity’s built-in support for targeting 

Flash).  This approach was explored mainly with respect to AIR 

deployment for kiosks running Windows or Mac.  Testing revealed an 

AIR incompatibility in flare*nft, so an AIR-compatible custom version 

was obtained from the vendor.  An open-source demo application called 

UnityFlashCam (Rooney, 2011) was studied as an example of marshalling 

video frames from AIR’s input to Unity’s output via asynchronous socket 
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communication.  Extending and optimizing this example, the author’s 

demo marshalled both video frames and NFT pose estimates from AIR to 

Unity.  The asynchronous communication had the desirable effect of 

decoupling the camera/NFT frame rate in Flash from the faster rendering 

frame rate in Unity, such that the animated foreground did not skip 

frames even when the video background and tracking did.  On AIR 3.1 

and Unity 3.4, rendering at 60 FPS was possible for millions of polygons, 

while a 320x240 live video ran at high frame rates in the background.  

However, video lag was somewhat noticeable, and at higher video 

resolutions the background’s frame rate deteriorated, becoming unusable 

in the case of HD video.  Ultimately, the bottleneck was not the socket 

communication (the marshalling between application contexts) but rather 

the upload of video frames from main memory to GPU memory (the 

marshalling between hardware contexts).

The company did not reach any decision on its technological strategy 

for the Web and desktop-based kiosks.  For the short term, flare*nft plus 

Papervision saw small-scale use, while D’Fusion continued to be the 

mainstay.  The investigation of other alternatives was shelved in 

December 2011, pending possible new information in Q1 2012 about the 

flare*nft roadmap, Unity roadmap, and business opportunities for the 

Web and kiosks.  Ultimately, in that quarter, no new information proved 

conclusive with respect to Ad-Dispatch’s criteria.

3.2: Refinements

The idea of integrating flare*nft with an up-to-date, Flash 11 renderer 

continued to seem plausible, except that the timeline differed from the 

expectations in an application development company specializing in rapid 
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turnaround.  The author undertook to develop an integration demo for his 

own research purposes, and then validate this work in consultation with 

Bernhard Jung, one of flare*nft’s developers.

The integration demo is simply called FlareNFTAlternativa3D.  It is an 

optimized and parameterized port of flare*nft’s “Austrian Cubes” demo 

(which integrates flare*nft and Papervision).  “Austrian Cubes” uses three 

marker images: of Austria, Vienna, and Graz.  When the user holds a 

marker in front of the webcam, a cube bearing the flag or crest of the 

given place is rendered over the marker in the video feed.  On two of the 

markers, certain regions are enabled as virtual buttons that trigger a 

logging function when physically touched (or when otherwise occluded).  

To exercise the superior rendering efficiency of Alternativa3D, the port 

uses additional 3D content: atop each cube sits a 13,470-triangle apple.2  

The port’s virtual buttons are not responsible for logging but instead for 

causing certain apples to disappear/reappear, or stop/start rotating.

Four main problems are addressed in the optimized port of “Austrian 

Cubes”.  These problems relate to:

1. rendering the 3D content in front of the video;

2. calibrating the virtual camera’s perspective to match the video 

camera’s supposed perspective;

3. sanity-checking assumptions about the video camera’s perspective;

4. supporting HD video without additional burden on the tracking 

algorithm.

2 The apple model is courtesy of Teinye Horsfall at WireCASE Ltd 
(http://www.wirecase.com).
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Some elements of these problems arise from shortcomings in the original 

(Papervision) “Austrian Cubes”; others arise from differences between 

Papervision and Alternativa3D, or between Stage and Stage3D.  The 

particular complications and solutions are as follows.

First, like the Flash 11 platform in general, Alternativa3D suffers from 

the rendering order problem described in “2.6.4: Focus on Flash”: content 

that fully utilizes the GPU-accelerated Stage3D pipeline cannot be 

rendered in front of content that fully utilizes the CPU-bound Stage 

pipeline, where camera input resides.  Moreover, Alternativa3D does not 

offer any built-in functionality for streaming video frames from Stage to 

Stage3D.  However, the opposite route is well supported: Alternativa3D 

can do partially GPU-accelerated rendering to bitmaps residing on 

Stage—in our case, to an otherwise transparent bitmap in front of the 

video.  This convenient approach proved to offer good enough 

performance to validate the choice of Alternativa3D over Papervision 

(Table Series 6).

Second, flare*nft assumes that certain values it provides will be written 

to the virtual camera’s projection matrix, with the intent of matching the 

video camera’s perspective.  Papervision permits direct editing of the 

projection matrix, while Alternativa3D instead provides high-level 

functions that abstract the editing of the the projection matrix.  To 

determine the correspondence between the raw matrix exposed by 

flare*nft and the abstractions exposed by Alternativa3D, it was necessary 

to reverse engineer the derivation of each, mostly via black-box testing.  

(Alternativa3D was closed-source at this time, though now it is open-

source.)  Notable parameters of flare*nft’s projection matrix derivation 

are described below in relation to the third problem.  A notable parameter 
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of Alternativa3D’s projection matrix derivation is documented as “fov” or 

“Field of view” (AlternativaPlatform, “Camera3D - API Documentation”) 

but more precisely it represents diagonal field of view.  This meaning was 

unexpected because OpenGL and Direct3D use vertical field of view 

(OpenGL, “gluPerspective”; Microsoft, “D3DXMatrixPerspectiveFovLH 

function”).

Third, flare*nft relies on the video camera’s optical and digital 

characteristics being defined in a configuration file, in a format specified 

by the ARToolKitPlus project.  The required data in this config file 

include the pixel dimensions of the captured video and the lens’s focal 

length divided by the pixel pitch (B. Jung, personal communication, 

December 28, 2011; Christian Doppler Laboratory, “ARToolKitPlus”).  

The latter datum relies on a priori knowledge of the video camera’s 

engineering specs.  As such, the true value is unknowable except in 

controlled setups such as kiosks.  The original “Austrian Cubes” 

invariably uses a configuration that represents a 320x240 video feed with 

a 72° diagonal field of view (medium-wide, equivalent to a 30mm focal 

length in 35mm photography).  Testing revealed that flare*nft’s tracking 

accuracy degrades drastically as the video feed’s actual aspect ratio 

diverges from the configuration.  FlareNFTAlternativa3D addresses this 

problem by choosing among multiple config files based on runtime 

measurements of the camera’s aspect ratio.  Generating the config file 

itself at runtime would be another option.  Meanwhile, misconfiguration of 

focal length per pixel pitch produces lesser variances in tracking accuracy: 

across the ranges tested, this misalignment was barely noticeable in 

Austrian Cubes.3  FlareNFTAlternativa3D does not do any runtime 

3 Other, less contrived scenarios might highlight misalignment more 
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validation of focal length per pixel pitch.  Such validation could be done 

via user-assisted calibration exercises that would yield an estimate of the 

video camera’s field of view.

Fourth, the cost of flare*nft’s tracking algorithm increases with the 

resolution of the video being processed.  Capturing HD video frames for 

display may be desirable in some contexts, yet processing them with 

flare*nft proved to be impractical in real time.  (The original “Austrian 

Cubes” does not attempt it.)  FlareNFTAlternativa3D addresses this 

problem by applying efficient downscaling (via the Stage pipeline) to the 

video data that is sent to flare*nft (while the rendered frame is not 

downscaled).  Thus, the cost of the tracking algorithm remains constant 

regardless of the video resolution used in capture and display.

Table Series 6 summarizes FlareNFTAlternativa3D’s performance, 

varying with respect to the marker, number of virtual buttons, video input 

resolution, and 3D content.  “Seeking”, in the table, refers to periods 

when no marker is recognized and, consequently, no 3D content is being 

rendered.  “Tracking” refers to periods when one of the markers is 

recognized and, consequently, one of the sets of 3D content is being 

rendered.  “Video only” refers to the NFT algorithm and 3D rendering 

both being turned off, for comparative purposes.  Performance is capped 

at 60 FPS due to camera hardware limitations and Flash’s synchronous 

processing of the video input frames.  Between seeking and tracking, the 

cost of video rendering should stay constant, the cost of the NFT 

algorithm should decrease, and the cost of 3D rendering should increase 

clearly.  There is no particular reason for a user to expect a cube to sit 
dead-center atop a picture of Austria.  However, in a virtual cutaway view 
of a medical drawing, a user would expect a particular alignment.
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(from nothing).  If the solution to the fourth problem is effective, the cost 

of the NFT algorithm should not vary with respect to the video input 

resolution.  The cost of the 3D rendering may vary with respect to the 

video input resolution because the resolution of the 3D rendering is 

increased to match.  The performance results suggest that resolution 

rather than triangle count is the dominant factor in the ranges tested.  The 

solution to the fourth problem is validated, as performance during seeking 

remains constant across several video input resolutions.

We believe that in Web use, an AR application with these performance 

capabilities can meet or exceed consumer expectations.  640x480 and 

1280x720 are large canvases in the context of Web design, and speeds 

approaching 60 FPS or 30 FPS are typical in games.  For comparison, the 

popular Wii game console is limited to exactly 640x480 resolution at either 

60 FPS or 30 FPS (depending on the television).  One Wii developer 

claims that the system is capable of rendering approximately 80,000 

polygons at 60 FPS (Richardson, 2009).  Again, the performance seen in 

FlareNFTAlternativa3D comes close to this level.
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Table Series 6: Performance of FlareNFTAlternativa3D
System: Flash 11.2, Firefox 11.0, Mac OS X 10.7, MacBook Pro 13" mid-2010.  

Built-in iSight camera for 320x240 and 640x480 resolutions; USB Logitech 

HD Pro C920 for 1280x720 and 1920x1080 resolutions.

Table 6A: Vienna Marker, 0 Virtual Buttons

Resolution of 
video input 
and canvas

Triangles FPS, seeking
FPS, 
tracking

FPS, video 
only

320 x   240 12 23 60 60

320 x   240 13,482 23 60 60

640 x   480 12 † 23 † 50 60

640 x   480 13,482 23 44 60

1280 x   720 12 23 22 60

1280 x   720 13,482 23 19 60

1920 x 1080 12 13 9 35

1920 x 1080 13,482 13 9 35

† Baseline (original “Austrian Cubes”): 24 FPS, seeking; 60 FPS, tracking
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Table 6B: Austria Marker, 1 Virtual Button

Resolution of 
video input 
and canvas

Triangles FPS, seeking
FPS, 
tracking

FPS, video 
only

320 x   240 12 23 55 60

320 x   240 13,482 23 55 60

640 x   480 12 † 23 † 43 60

640 x   480 13,482 23 40 60

1280 x   720 12 23 22 60

1280 x   720 13,482 23 19 60

1920 x 1080 12 13 9 35

1920 x 1080 13,482 13 8 35

† Baseline (original “Austrian Cubes”): 24 FPS, seeking; 50 FPS, tracking
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Table 6C: Graz Marker, 2 Virtual Buttons

Resolution 
of video 
input and 
canvas

Triangles
Rotating 
content

FPS, 
seeking

FPS, 
tracking

FPS, video 
only

320 x   240 12 No 23 38 60

320 x   240 13,482 No 23 37 60

320 x   240 13,482 Yes 23 37 60

640 x   480 12 No † 23 † 30 60

640 x   480 13,482 No 23 30 60

640 x   480 13,482 Yes 23 30 60

1280 x   720 12 No 23 19 60

1280 x   720 13,482 No 23 19 60

1280 x   720 13,482 Yes 23 19 60

1920 x 1080 12 No 13 9 35

1920 x 1080 13,482 No 13 8 35

1920 x 1080 13,482 Yes 13 8 35

† Baseline (original “Austrian Cubes”): 24 FPS, seeking; 40 FPS, tracking

By comparison, the original “Austrian Cubes” renders 12 triangles and 

640x480 video at 40 FPS to 60 FPS (depending on the marker and 

number of virtual buttons), with visible rendering flaws such as distorted 

and non-antialiased textures, as well as noticeable lag in both the video 

and the tracking.  Based on the author’s Papervision-based work at Ad-

Dispatch, as well as comments from Adobe (“How Stage3D Works”) and 

the Papervision community (Grden, 2011), it is clear that Papervision’s 
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performance deteriorates rapidly as the triangle count increases into the 

1,000s or 10,000s, especially if accurate depth sorting is used.  Although 

Alternativa3D seems to have greater overhead (handicapping it for small 

triangle counts), it does not suffer from these rendering flaws nor from 

such severe falloff of performance.  Moreover, FlareNFTAlternativa3D 

does not suffer from any noticeable lag when using 640x480 video, and 

even when it uses 1280x720 video, its lag is less than that of the original 

“Austrian Cubes” (using 640x480 video).  The reduction in lag is 

attributable to the efficient resampling of video frames for flare*nft’s 

purposes.

For practical purposes, 1920x1080 video input proved to be unusable 

on the test system.  Video lag exceeded 15 seconds, even when the video 

was the only content running.

The source code of FlareNFTAlternativa3D was provided to Jung, 

who confirmed that the approach and the output were valid (B. Jung, 

personal communication, January 3, 2012).  Based on the demo and 

further experimentation of his own, Jung also noted that Alternativa3D’s 

content pipeline is simpler and more robust than Papervision’s (B. Jung, 

personal communication, January 16, 2012).  As the result of these 

explorations, the development version of flare*nft now supports closer 

integration with Alternativa3D (B. Jung, personal communication, April 

12, 2012), so further improvements in performance and workflow can be 

expected.

As an alternative to using Alternativa3D, the author also retested the 

concept of integrating flare*nft with Unity.  By this time, new features in 

Unity 3.5 allowed for Unity applications to be embedded within Flash, 

making interprocess communication unnecessary.  Unfortunately, the 
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author’s efforts at merging Unity’s 3D content with with video input from 

Stage degenerated into the same bottleneck as in the previous integration 

attempt.  Overall performance actually worsened; the interprocess 

approach had, in its favor, the ability to place video capture and NFT 

tracking on separate threads.

Going forward, all of this exploratory work is important in suggesting 

that a renderer built from the ground up for Stage3D—specifically, 

Alternativa3D—is viable for use in a gaming-quality AR framework for 

the Web.  By comparison, several alternatives are not as viable, due to 

problems of either performance (Papervision, Unity for Flash) or 

reliability (Papervision, D’Fusion).
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Chapter 4: Design and Contribution

We present an AS3 solution targeting Flash 11.  This solution, called 

Illusion SDK, draws on existing third-party libraries to provide the 

foundations of its tracking and graphics engine functionality.  (See 

“Appendix A: Availability and Licensing” for information on obtaining 

Illusion and dependencies.)  However, compared to its dependencies and 

other previous work, Illusion offers greater generality and extensibility by 

virtue of a high-level, modular design.

General and extensible solutions are motivated by a desire to avoid 

rework, particularly in the event that the use case changes or a given 

implementation proves to be too limited.  Relevant anecdotes of rework 

are offered in the previous chapter, “Exploratory Work”.  Although 

Illusion is not the only framework that attempts to abstract AR 

functionality, the alternatives miss some foreseeable types of rework.  For 

example, they may obstruct the programmer from changing the source of 

sensor data, changing the tracking algorithm, using multiple tracking 

algorithms at once, tracking duplicates of physical markers, or changing 

or removing the rendering functionality.  (See “4.3: Comparison to Other 

Designs”.)

Illusion’s design includes abstractions for sensors, trackers, and 

compositors.  Via a simple wrapper, any tracker can integrate with any 

source of sensor data and—optionally—with any technique for 

compositing and rendering an AR scene.

Ubiquitous applications can be built atop Illusion, as its abstractions do 

not assume any I/O pattern that is specific to personal computing.  For 

example, a sensor need not be a camera or any other local peripheral; it 
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could be a network of peers.  The tracking results need not be rendered 

atop a video; indeed, they need not be rendered at all.

At the same time, applications built atop Illusion can be efficient.  The 

abstractions are not tightly coupled to each other, so the client is free to 

pick and choose among possible implementations and interactions based 

on their optimality for the given application and platform.  For example, 

multiple trackers can read from one sensor without caveats.  The sensor 

and compositor can be selected independently of the tracker.  (See the rest 

of this chapter.)  Empirically, Illusion proves to be efficient insofar as it 

adds no frame lag and negligible time cost relative to the underlying 

library functions of the trackers, graphics engine, and Flash.  (See the 

“Evaluation” chapter.)

Illusion is modular: it can be compiled as multiple libraries with sparse 

interdependencies.  Thus, client code can use just part of the functionality 

without having to pay overhead for the whole.  We provide an example 

application that uses camera input, multiple types of trackers, lighting, and 

textured models loaded from external files.  Another application might use 

only one type of tracker, or might analyze a virtual drawing canvas 

instead of a camera feed.  Yet another application might use only Illusion’s 

model loading functionality.  All of these use cases are intended (and none 

is handicapped) by Illusion’s design.

This chapter proceeds by describing, in a top-down fashion, the design 

and usage of Illusion’s AR-related functionality.  Illusion’s more general-

purpose functionality (ex. for loading files and setting up 3D scenes) is 

described in “Appendix B: Non-AR Functionality” instead.  After 

describing AR functionality, this chapter presents an example application.  
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Last, Illusion is compared to other designs in terms of generality and 

extensibility.

4.1: AR Functionality

This section illustrates the functionality of Illusion SDK through class 

diagrams and snippets of client code.  The diagrams conform to the 

Unified Modeling Language (UML) standard (Object Management 

Group, “Unified Modeling Language”).  Most of the code snippets are 

adapted from an example application that is listed in full in the next 

section, “4.2: Full Example Application”.  Each diagram and snippet are 

accompanied by brief remarks on the functionality’s motivation, interface, 

implementation, and design patterns.

Our taxonomy of design patterns comes from Gamma et al (1995).  

Particularly, Illusion uses the observer pattern, mediator pattern, and 

adapter pattern.  The observer pattern, also known as event-driven 

programming, relates one object (the observee) to many others (the 

observers) such that all observers receive notifications about changes to 

the observee’s state.  The mediator pattern relates many objects (the 

mediatees) to one object (the mediator) such that the mediator handles 

interactions among the mediatees.  Often, the mediator pattern makes use 

of delegation: the mediator (a delegate) implements an interface that is 

called by at least one of the mediatees (a delegator).  The adapter pattern, 

also known as the wrapper pattern, relates one object (the adaptee) to 

another (the adapter) such that the adapter’s interface masks the adaptee’s 

interface.
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Figure Series 9: Overview of Illusion SDK

Figure 9A: Design of AR-related Classes and Interfaces
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Figure 9B: Example of AR-related Data Flow

Our discussion of Illusion focuses on the components that are most 

specific to AR.  Key concepts include (Figure 9A):

• A sensor that captures data about the real world.  This concept is 

represented by the AbstractSensor class, which has specializations 

dealing with visual data: AbstractVisualSensor, 

VisualSensorFromDisplayObject (capturing data from a 2D scene 

node such as a video), and VisualSensorFromCamera (capturing 

data directly from a camera).  Other classes may implement an  

interface called ISensorSubscriber, which allows instances to 

subscribe to updates about one or more sensors’ data.
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• A tracker that updates a 3D scene based on a sensor’s data.  This 

concept is represented by the AbstractTracker class, which 

implements ISensorSubscriber.  (Specializations of AbstractTracker 

are introduced later in this chapter.)  Client code provides a 

delegate and (optionally) event handlers to customize the contents 

of the tracker’s 3D scene.  The delegate must implement an 

interface called ITrackerDelegate, which allows it to receive and 

populate lists of virtual markers.  These lists are of type 

MarkerPool.  Tracked nodes in the 3D scene may receive events of 

type MarkerEvent.

• A viewport that composites a sensor’s visual data and a tracker’s 3D 

scene.    This concept is represented by the AbstractARViewport 

class, which extends Sprite (a type of 2D scene node in Flash).  The 

specializations of AbstractARViewport are ARViewportUsingStage 

(typically used alongside VisualSensorFromDisplayObject) and 

ARViewportUsingStageVideo (typically used alongside 

VisualSensorFromCamera).

For a visual AR application, a typical data flow among these components 

is (Figure 9B):

1. Flash updates a 2D node or camera.

2. An AbstractVisualSensor stores the node or camera's pixels.

3. An AbstractTracker reads the AbstractVisualSensor's pixels.

4. The AbstractTracker selects 3D nodes that it holds in MarkerPool 

instances.  If it runs out of nodes to select, it asks an 

ITrackerDelegate to (optionally) supply more.

5. The AbstractTracker updates the selected 3D nodes. The nodes end 

up sharing a common parent while tracked.
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6. The AbstractTracker fires MarkerEvent instances from newly 

found or lost 3D nodes. Listeners handle the events. The 

ITrackerDelegate may be a listener.

7. An AbstractARViewport composites the AbstractTracker's root 3D 

node and AbstractVisualSensor's 2D node or camera.

8. Flash displays the AbstractARViewport.

The design and usage of these components are detailed in the rest of this 

chapter.

For 3D scene graph functionality and 3D graphics functionality, 

Illusion interfaces with the Alternativa3D 8 graphics engine.  All 

relationships between Illusion classes and Alternativa3D classes are 

achieved by composition, not inheritance.  Therefore, Illusion’s 

implementation is independent of Alternativa3D’s.

For tracking functionality, Illusion interfaces with flare*nft and 

flare*tracker.  However, Illusion provides abstractions to facilitate the 

future development of other trackers and tracker wrappers.  As such, 

dependencies between Illusion’s implementation and third-party trackers’ 

implementations are localized in leaf nodes of Illusion’s inheritance tree.  

Moreover, all relationships between Illusion classes and flare*nft or 

flare*tracker classes are achieved by composition, not inheritance.

4.1.1: Centralizing Access to Sensor Data

For visual tracking (and image processing in general), access to pixel 

data is essential.  Often, the relevant data are unstable because they 

correspond to an input device (ex. a camera), or to a branch of the 2D 

scene (ex. a video) that is being re-rendered continually.  For efficiency’s 

sake, when multiple trackers (or other image processing entities) need to 



 93

access the same unstable pixel data, they should do so through a shared 

manager that minimizes acquisition and copying of data.  Similar issues 

apply to  non-visual trackers and their access to data.  For example, the 

audio data read from a microphone or a playing sound clip are unstable, 

too.

We have seen (in “3.2: Refinements”) that a source of pixel data may 

be associated with a priori knowledge such as a field of view, and 

configuration values such as a resolution.  These factors may affect the 

way the data are processed (ex. by trackers) and the way its source is 

presented (ex. by a compositor).

To represent a configurable stream of input, Illusion provides the 

AbstractSensor class (Figure 10).  To more specifically represent a 

configurable stream of pixel data, Illusion provides a subclass, 

AbstractVisualSensor.  AbstractVisualSensor has two implementations: 

VisualSensorFromDisplayObject (Code Sample 1) and 

VisualSensorFromCamera (Code Sample 2).  

VisualSensorFromDisplayObject captures pixels from a DisplayObject (a 

standard 2D scene node in Flash), which is specified at instantiation.  For 

example, the DisplayObject could be a live video in the 2D scene.  

VisualSensorFromCamera captures data directly from a Camera, which is 

likewise specified at instantiation.  The Camera need not be attached to a 

live video in the 2D scene.  Optionally, a FOV and processing resolution 

may be specified at instantiation of an AbstractVisualSensor subclass; 

otherwise, certain default values are assumed.

Client code may implement an interface called ISensorSubscriber and 

subscribe to any AbstractSensor to receive notifications about new sensor 

data.  The subscriber (or other code) may access a ByteArray representing 
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the current sensor data (ex. the current pixels of the DisplayObject or 

Camera).  As such, AbstractSensor may be considered a mediator between 

some stream-like class (ex. DisplayObject or Camera) and ByteArray.  

Internally, AbstractSensor implementations use the observer pattern to 

coordinate the mediatees.

Typically, client code does not access an AbstractSensor’s properties 

directly or subscribe to its notifications directly.  Rather, an 

AbstractSensor is used in instantiating other types, which internalize the 

reading of the AbstractSensor’s properties and the subscription to its 

notifications.  (See the next two sections: “Compositing 2D and 3D 

Scenes” and “Tracking Markers”.)
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Figure 10: Design of AbstractSensor and Related Types
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Code Sample 1: Usage of VisualSensorFromDisplayObject
class MyVisualSensorFromDisplayObjectSubscriber
implements ISensorSubscriber
{

var sensor_:VisualSensorFromDisplayObject;

public function MyVisualSensorFromDisplayObjectSubscriber(
source:DisplayObject)

{
// Create the sensor with the default values for the
// FOV and resolution arguments.
sensor_ = new VisualSensorFromDisplayObject(source);

}

// The ISensorSubscriber implementation.
public function onSensorDataUpdated(

sensor:AbstractSensor):void
{

// Get the FOV and resolution values.
var diagonalFOV:Number = sensor_.diagonalFOV;
var width:uint = sensor_.width;
var height:uint = sensor_.height;

// Get the latest frame of pixel data from the sensor.
var pixels:ByteArray = sensor_.pixels;

}
}

Code Sample 2: Usage of VisualSensorFromCamera
class MyVisualSensorFromDisplayObjectSubscriber
implements ISensorSubscriber
{

var sensor_:VisualSensorFromCamera;

public function MyVisualSensorFromDisplayObjectSubscriber(
source:Camera)

{
// Create the sensor with the default values for the
// FOV and resolution arguments.
sensor_ = new VisualSensorFromCamera(source);

}

// The ISensorSubscriber implementation.
public function onSensorDataUpdated(

sensor:AbstractSensor):void
{

// Get the FOV and resolution values.
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var diagonalFOV:Number = sensor_.diagonalFOV;
var width:uint = sensor_.width;
var height:uint = sensor_.height;

// Get the latest frame of pixel data from the sensor.
var pixels:ByteArray = sensor_.pixels;

}
}

4.1.2: Compositing 2D and 3D Scenes

We have discussed the difficulties of overlaying 3D content atop 2D 

content in Flash, particularly where the 2D content is a camera feed.  (See 

“2.6.4: Focus on Flash” and “3.1.2: Approaches and Outcomes”.)  To 

varying extents, the feasible solutions may promote efficiency by 

leveraging GPU acceleration but hurt efficiency by requiring data to be 

marshalled between main memory and graphics memory.  One approach 

is to marshall the GPU-rendered 3D content into the 2D context.  Illusion 

provides two implementations of this approach, with one implementation 

being general-purpose and the other being optimized for camera input.

Both implementations of 3D-to-2D marshalling are concrete subclasses 

of the AbstractARViewport class.  AbstractARViewport extends Sprite (a 

type of node in Flash’s standard 2D scene graph), so client code can add 

its instances to the Stage (alongside other standard 2D nodes).  An 

AbstractARViewport is constructed using a Stage3D and an 

AbstractVisualSensor.  Internally, the AbstractARViewport creates a 3D 

root node, adds it to the Stage3D, and continually manages the 3D scene’s 

rendering to a bitmap that is the child of the AbstractARViewport.  This 

bitmap’s background is transparent.  Beneath the bitmap lies a 

representation of the 2D scene.
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For the general-purpose compositor, which is called 

ARViewportUsingStage, the representation of the 2D scene is a 

DisplayObject residing on Stage.  This DisplayObject is obtained from a 

VisualSensorFromDisplayObject that is provided when instantiating the 

ARViewportUsingStage (Figure 11; Code Sample 3).

Figure 11: Design of ARViewportUsingStage



 99

Code Sample 3: Usage of ARViewportUsingStage
var scene2D:DisplayObject;
var stage3D:Stage3D;
var sensor:VisualSensorFromDisplayObject;
…

// Create the AR viewport.
var arViewport:ARViewPortUsingStage =

new ARViewportUsingStage(stage3D, sensor);

// Display profiling statistics such as FPS.
arViewport.showProfilingDiagram = true;

// Make the AR viewport mirrored (horizontally flipped).
arViewport.mirrored = true;

// Add the AR viewport to the 2D scene.
scene2D.addChild(arViewport);

// Get the 3D scene from the AR viewport.
var scene3D:Object3D = arViewport.scene3D;

For the camera-specific compositor, which is called 

ARViewportUsingStageVideo, the representation of the 2D scene is a 

StageVideo with an attached Camera.  The Camera is obtained from a 

VisualSensorFromCamera that is provided when instantiating the 

ARViewportUsingStageVideo.  The StageVideo is also provided at 

instantiation (Figure 12; Code Sample 4).

The 3D root node of an AbstractARViewport is exposed to client code, 

which is responsible for populating it with children.  The 3D root node’s 

type is Object3D—a building block of scene graphs in the Alternativa3D 

graphics engine.  Object3D is analogous to Sprite: both are types of 

positional nodes that have event dispatching functionality.
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Figure 12: Design of ARViewportUsingStageVideo
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Code Sample 4: Usage of ARViewportUsingStageVideo
var scene2D:DisplayObject;
var stageVideo:StageVideo;
var stage3D:Stage3D;
var sensor:VisualSensorFromCamera;
…

// Create the AR viewport.
var arViewport:ARViewPortUsingStageVideo =

new ARViewportUsingStageVideo(stageVideo, stage3D, sensor);

// Display profiling statistics such as FPS.
arViewport.showProfilingDiagram = true;

// Add the AR viewport to the 2D scene.
scene2D.addChild(arViewport);

// Get the 3D scene from the AR viewport.
var scene3D:Object3D = arViewport.scene3D;

Both implementations of AbstractARViewport are optimized to do 

nothing (i.e. just show the 2D scene) when the 3D scene contains no 

meshes.  This optimization is important because compositing is expensive 

and, in AR, the 3D scene may be empty much of the time (when no 

physical markers are found).

At the design level, AbstractARViewport can be considered an adapter 

from AbstractVisualSensor to both Sprite and Object3D.  Internally, it 

uses the observer pattern to coordinate with its adaptee.

Note that AbstractARViewport does not interface with Illusion’s 

tracking system.  Conversely, Illusion’s tracking system does not interface 

with AbstractARViewport.  Thus, 2D/3D compositing is decoupled from 

tracking.  For example, clients are free to roll their own compositor for use 

with the tracking system, or to use the tracking system without rendering 

any underlying 2D content.
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4.1.3: Tracking Markers

We have discussed a variety of trackers available in AS3 and other 

languages.  (See “2.3.3: Frameworks”.)  None of these trackers provides a 

superset of the others’ functionality, so clients might want to use multiple 

trackers in one project or at least across projects.  However, interface 

differences are an obstacle.  A naive approach—one that treats trackers’ 

interfaces as non-generalizable—produces code that is difficult to maintain 

and perhaps inefficient due to duplicated processing and storage of sensor 

data.

Illusion provides a streamlined interface for wrapping (creating 

adapters for) existing and future trackers.  This interface is called 

AbstractTracker.  Currently, wrappers for flare*tracker and flare*nft are 

implemented.  These wrappers are called FlareBarcodeTracker (Figure 

13, Code Sample 5) and FlareNaturalFeatureTracker (Figure 14, Code 

Sample 6).

AbstractTracker and its implementations rely on a mediator pattern 

with delegation.  The client-defined delegate must implement an interface 

called ITrackerDelegate, which provides callbacks for situations where 

the client probably wants to supply new virtual markers.  The delegate can 

supply virtual markers to the AbstractTracker via mediatees of type 

MarkerPool.  Specifically, MarkerPool exposes a Vector.<Object3D> 

whose elements are virtual markers that may represent a like number of 

tracked instances of a physical marker.  The AbstractTracker has one 

MarkerPool per type of physical marker.  For example, if an 

AbstractTracker can track three different images but only one instance of 

each image at a time, then it would have three MarkerPool objects, which 

client code should populate with one Object3D each.
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AbstractTracker subclasses are instantiated with an ITrackerDelegate, 

an AbstractSensor (often, an AbstractVisualSensor representing the input 

images and their projection data), and an Object3D (representing the root 

node to which virtual markers will be attached).  An optional boolean 

argument specifies whether the tracker should start automatically or wait 

for an instruction from client code.  Automatic starting is the default.

Depending on the subclass, the constructor may take additional 

arguments.  FlareBarcodeTracker must be instantiated with a 

configuration object of type FlareBarcodeFeatureSet, which specifies the 

quantity, patterns, and sizes of barcodes to be used.  This configuration 

class serves to provide default values in a manner that is independent of 

constructor signatures.

FlareNaturalFeatureTracker reads its configuration from a file whose 

path may be provided as an optional constructor argument; otherwise, a 

default path is used.  Both types of flare* wrappers need a license file for 

the underlying library.  The license file’s path may be provided as an 

optional constructor argument; otherwise, a default path is used.

Internally, the flare* wrappers’ file loading is performed using the 

Loader class and ILoaderDelegate interface that are described in “B.1: 

Loading Binary or Text Files”.  The same approach to file loading is 

recommended for client implementations of AbstractTracker.

Internally, an AbstractTracker implementation should update the 

position and orientation of virtual markers based on the position and 

orientation of corresponding physical markers.  Also, when physical 

markers are found or lost, corresponding virtual markers should be added 

to or removed from the root node, and each virtual marker should 

dispatch an event of type MarkerEvent, specifying its change in tracking 
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status.  Client code may listen for a MarkerEvent on any marker, and may 

handle the event appropriately.

Optionally, the client-defined delegate for FlareBarcodeTracker may 

implement an interface called IFlareDataMatrixDelegate, which provides 

a callback for handling a barcode decoding event.  The decoded message 

(ex. a URL) is provided to the callback as an argument.  This callback is 

fired even if no virtual marker is provided.

Similarly, the client-defined delegate for FlareNaturalFeatureTracker 

may implement an optional interface called IFlareVirtualButtonDelegate, 

which provides a callback for handling occlusion events.  An occlusion 

event is fired when a specified part of the physical marker is covered or 

uncovered.  For example, such an event might happen when the user 

starts or stops touching the specified part of the physical marker.  These 

events allow the specified part of the marker to be treated like a button.

Besides supporting its current implementations, AbstractTracker is 

designed to be extensible by future versions of Illusion and by client code.  

Illusion assumes only that the underlying tracker can take sensor data as 

input and give 3D spatial data as output.  The sensor data need not be 

visual.  A minimal wrapper requires just three method implementations: 

start, stop, and updateTrackedMarkers.



 105

Figure 13: Design of FlareBarcodeTracker and Related Types
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Code Sample 5: Usage of FlareBarcodeTracker and Related Types
class MyFlareBarcodeTrackerDelegate
implements ITrackerDelegate, IFlareDataMatrixDelegate
{

var markers_:Vector.<Object3D>;
var tracker_:FlareBarcodeTracker;

public function MyFlareBarcodeTrackerDelegate(
sensor:AbstractVisualSensor,
scene3D:Object3D,
markers:Vector.<Object3D>)

{
markers_ = markers;

// Create the feature set.
var featureSet:FlareBarcodeFeatureSet =

new FlareBarcodeFeatureSet();

// Let there be one simple ID marker.
flareBarcodeFeatureSet.numSimpleIDs = 1;

// Let there be one BCH marker.
flareBarcodeFeatureSet.numBCHs = 1;

// Let there be one frame marker.
flareBarcodeFeatureSet.numFrames = 1;

// Let there be one data matrix marker.
flareBarcodeFeatureSet.numDataMatrices = 1;

// Create the barcode tracker with the default
// file path for the license.
tracker_ = new FlareBarcodeTracker(this,
                                   sensor,

                                              scene3D,
                                   featureSet);

}

// Part of the ITrackerDelegate implementation.
public function onTrackerStarted(

tracker:AbstractTracker,
markerPools:Vector.<MarkerPool>):void

{
// Add one marker to each marker pool (as long as
// enough markers were specified). Also add event
// listeners to each marker.
for(var i:uint = 0;
    i < markerPools.length && i < markers_.length;
    i++)
{

var marker:Object3D = markers_[i];
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// Add the marker to the pool.
markerPools[i].markers.push(marker);

// Listen for the marker being found.
marker.addEventListener(MarkerEvent.FOUND,
                        onMarkerFound);

// Listen for the marker being lost.
marker.addEventListener(MarkerEvent.LOST,
                        onMarkerLost);

}
}

// Part of the ITrackerDelegate implementation.
public function onMarkerPoolHasExcessDemand(

tracker:AbstractTracker,
markerPoolIndex:uint,
markerPool:MarkerPool):void

{
// Do nothing. We do not add virtual markers
// dynamically in this sample. Anyway,
// FlareBarcodeTracker cannot detect multiple
// instances of each physical marker.

}

// The IFlareDataMatrixDelegate implementation.
public function onDataMatrixMessage(

tracker:FlareBarcodeTracker,
markerID:uint,
message:String):void

{
// Do something with the decoded message.
…

}

public function onMarkerFound(event:MarkerEvent):void
{

// Do something with the found marker or its
// marker pool.
var markerPool:MarkerPool = event.markerPool;
…

}

public function onMarkerLost(event:MarkerEvent):void
{

// Do something with the lost marker or its
// marker pool.
var markerPool:MarkerPool = event.markerPool;
…

}
}
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Figure 14: Design of FlareNaturalFeatureTracker and Related Types
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Code Sample 6: Usage of FlareNaturalFeatureTracker and Related Types
class MyFlareNaturalFeatureTrackerDelegate
implements ITrackerDelegate, IFlareVirtualButtonDelegate
{

var markers_:Vector.<Object3D>;
var tracker_:FlareBarcodeTracker;

public function MyFlareBarcodeTrackerDelegate(
sensor:AbstractVisualSensor,
scene3D:Object3D,
markers:Vector.<Object3D>)

{
markers_ = markers;

// Create the natural feature tracker with the
// default file paths for the license and feature
// set.
tracker_ = new FlareBarcodeTracker(this,
                                   sensor,
                                   scene3D);

}

// Part of the ITrackerDelegate implementation.
public function onTrackerStarted(

tracker:AbstractTracker,
markerPools:Vector.<MarkerPool>):void

{
// Add one marker to each marker pool (as long as
// enough markers were specified). Also add event
// listeners to each marker. Finally, add one
// virtual button corresponding to each type of
// physical marker.
for(var i:uint = 0;
    i < markerPools.length && i < markers_.length;
    i++)
{

// Add the marker to the marker pool.
markerPools[i].markers.push(markers_[i]);

// Listen for the marker being found.
marker.addEventListener(MarkerEvent.FOUND,
                        onMarkerFound);

// Listen for the marker being lost.
marker.addEventListener(MarkerEvent.LOST,
                        onMarkerLost);

// Add a virtual button with its upper-left
// corner at (128, 128) pixels and its
// lower-right corner at (384, 384) pixels, in
// terms of the marker type’s source image.
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tracker_.addVirtualButton(i,
                                          128, 128, 384, 384);

}
}

// Part of the ITrackerDelegate implementation.
public function onMarkerPoolHasExcessDemand(

tracker:AbstractTracker,
markerPoolIndex:uint,
markerPool:MarkerPool):void

{
// Do nothing. We do not add virtual markers
// dynamically in this sample. Anyway,
// FlareNaturalFeatureTracker cannot detect
// multiple instances of each physical marker.

}

// The IFlareVirtualButtonDelegate implementation.
public function onVirtualButtonEvent(

tracker:FlareNaturalFeatureTracker,
markerID:uint,
buttonID:uint,
press:Boolean):void

{
if (press)
{

// Handle the button press.
…

}
else
{

// Handle the button release.
…

}
}

public function onMarkerFound(event:MarkerEvent):void
{

// Do something with the found marker or its
// marker pool.
var markerPool:MarkerPool = event.markerPool;
…

}

public function onMarkerLost(event:MarkerEvent):void
{

// Do something with the lost marker or its
// marker pool.
var markerPool:MarkerPool = event.markerPool;
…

}
}
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4.2: Full Example Application

An example application called ApplesAndGoblets (Code Sample 7) 

exercises most of Illusion’s functionality in unison.  flare*tracker seeks 6 

barcode markers (2 each from 3 families of barcode patterns) while 

flare*nft seeks 3 natural feature markers.  Each nature feature marker has 

a “virtual button” (a separately tracked subregion) in its center.

Two high-polygon 3D models—an apple (13,470 triangles) and a 

goblet (3,324 triangles)—are loaded into the application.4  (See “B.2: 

Loading 3D Model Files”.)  Each marker is given either a clone of the 

apple or a clone of the goblet as its virtual representation.  For each 

natural feature marker, the corresponding apple or goblet clone 

starts/stops spinning when the user obscures the virtual button.  A three-

point lighting setup illuminates the scene.  (See “B.3: Creating Lighting 

Setups”).

The trackers analyze data from a live video.  This live video is 

composited with the rendered apples and goblets.  The code can be 

configured to use either the combination of VisualSensorFromCamera and 

ARViewportUsingStageVideo or the combination of 

VisualSensorFromDisplayObject and ARViewportUsingStage.

4 The apple and goblet models are courtesy of Teinye Horsfall at 
WireCASE Ltd (http://www.wirecase.com) and Sven Dännart at 
Medievalworlds (http://www.medievalworlds.com), respectively.
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Code Sample 7: ApplesAndGoblets
[SWF(width='640', height='480', frameRate='60')]
public class ApplesAndGoblets extends Sprite implements

IExternalModelPrefabLoaderDelegate,
ITrackerDelegate,
IFlareVirtualButtonDelegate

{
private const ACCELERATE_WITH_STAGE_VIDEO:Boolean = true;

private var stageFrameRate_:Number;
private var stage3D_:Stage3D;
private var sensor_:AbstractVisualSensor;
private var arViewport_:AbstractARViewport;
private var flareBarcodeTracker_:FlareBarcodeTracker;
private var flareNFT_:FlareNaturalFeatureTracker;
private var applePrefab_:ExternalModelPrefab;
private var gobletPrefab_:ExternalModelPrefab;
private var rotatingMarkers_:Vector.<Object3D> =

new Vector.<Object3D>();
private var lastMilliseconds_:int;

public function ApplesAndGoblets()
{

if (stage)
{

onAddedToStage();
}
else
{

// Listen for being added to the 2D stage.
addEventListener(Event.ADDED_TO_STAGE,

                                 onAddedToStage);
}

}

private function onAddedToStage(event:Event = null):void
{

if (hasEventListener(Event.ADDED_TO_STAGE))
{

removeEventListener(Event.ADDED_TO_STAGE,
                                    onAddedToStage);

}

// Configure the 2D stage.
stage.align = StageAlign.TOP_LEFT;
stage.scaleMode = StageScaleMode.NO_SCALE;

// Store the 2D stage's frame rate for use in
// pausing/unpausing.
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stageFrameRate_ = stage.frameRate;

// Create the video camera.
var videoCamera:Camera = Camera.getCamera();

// Get the 3D stage.
stage3D_ = stage.stage3Ds[0];

// Configure the video camera.
videoCamera.setMode(640, 480, 60); // 640x480 @ 60 FPS

if (ACCELERATE_WITH_STAGE_VIDEO &&
    stage.stageVideos.length > 0)
{

var stageVideo:StageVideo =
stage.stageVideos[0];

// Create the visual sensor that draws data from
// the camera.
sensor_ =

new VisualSensorFromCamera(videoCamera);

// Create the AR viewport.
arViewport_ = new ARViewportUsingStageVideo(

stageVideo,
stage3D_,
sensor_ as VisualSensorFromCamera);

}
else
{

// Create and configure the video.
var video:Video = new Video(videoCamera.width,
                            videoCamera.height);
video.attachCamera(videoCamera);

// Create the visual sensor that draws data from
// the video.
sensor_ =

new VisualSensorFromDisplayObject(video);

// Create and configure the AR viewport.
arViewport_ = new ARViewportUsingStage(

stage3D_,
sensor_ as VisualSensorFromDisplayObject

);
(arViewport_ as ARViewportUsingStage).mirrored =

true;
}

// Add the AR viewport to the 2D scene.
addChild(arViewport_);



 114

// Get the 3D scene from the AR viewport.
var scene3D:Object3D = arViewport_.scene3D;

// Add lights to the 3D scene.
scene3D.addChild(SceneUtils.newThreePointLighting());

// Listen for and request the 3D stage's graphics
// context.
stage3D_.addEventListener(Event.CONTEXT3D_CREATE,
                          onContextCreate);
stage3D_.requestContext3D();

// Listen for keystrokes.
stage.addEventListener(KeyboardEvent.KEY_UP, onKeyUp);

}

private function onContextCreate(event:Event):void
{

stage3D_.removeEventListener(Event.CONTEXT3D_CREATE,
                                        onContextCreate);

// Create the model loader.
var loader:ExternalModelPrefabLoader =

new ExternalModelPrefabLoader(this, "data");

// Load the models.
loader.loadExternalModelPrefabs("apple.3ds",
                                "goblet.3ds");

// Listen for frame updates.
addEventListener(Event.ENTER_FRAME, onEnterFrame);

// Initialize the time.
lastMilliseconds_ = getTimer();

}

public function onLoadExternalModelPrefabError(
loader:ExternalModelPrefabLoader,
filename:String,
errorEventType:String):void

{
throw new Error("Failed to load \"" +
                loader.basePath + filename + "\": " +
                errorEventType);

}

public function onLoadExternalModelPrefabComplete(
loader:ExternalModelPrefabLoader,
filename:String,
externalModelPrefab:ExternalModelPrefab):void

{
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if (filename == "apple.3ds")
{

// Store the apple model.
applePrefab_ = externalModelPrefab;

// Set the apple model's scale.
applePrefab_.scale = 2.5;

// Load the resources for the apple model.
applePrefab_.loadResources(stage3D_.context3D);

}
else // filename == "goblet.3ds"
{

// Store the goblet model.
gobletPrefab_ = externalModelPrefab;

// Set the goblet model's scale.
gobletPrefab_.scale = 1000;

// Load the resources for the goblet model.
gobletPrefab_.loadResources(stage3D_.context3D);

}

if (loader.numLoadsPending > 0)
{

// The other model is still loading.

// Wait for the other model to load.
return;

}

// Both models have loaded.

// Create and configure the barcode tracker's feature
// set.
var flareBarcodeFeatureSet:FlareBarcodeFeatureSet =

new FlareBarcodeFeatureSet();
flareBarcodeFeatureSet.numSimpleIDs = 2;
flareBarcodeFeatureSet.numBCHs = 2;
flareBarcodeFeatureSet.numFrames = 2;

// Create the barcode tracker.
flareBarcodeTracker_ =

new FlareBarcodeTracker(this,
                       sensor_,
                       stage,
                       arViewport_.scene3D,

                        flareBarcodeFeatureSet);

// Create the natural feature tracker.
flareNFT_ =

new FlareNaturalFeatureTracker(
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this,
sensor_,
stage,
arViewport_.scene3D);

}

public function onTrackerStarted(
tracker:AbstractTracker,
markerPools:Vector.<MarkerPool>):void

{
// Add either an apple or a goblet to each marker
// pool.
for (var i:uint = 0; i < markerPools.length; i++)
{

var marker:Object3D;
if (i % 2 == 0)
{

marker = applePrefab_.newObject3D();
}
else
{

marker = gobletPrefab_.newObject3D();
}
marker.addEventListener(MarkerEvent.LOST,
                        onMarkerLost);
markerPools[i].markers.push(marker);

}

if (tracker == flareNFT_)
{

// Set up a 48x48 pixel virtual button in the
// center of each physical marker.

// The Austria physical marker is 480x256.
flareNFT_.addVirtualButton(

0, 216, 104, 264, 152);

// The Vienna physical marker is 480x288.
flareNFT_.addVirtualButton(

1, 216, 120, 264, 168);

// The Graz physical marker is 336x480.
flareNFT_.addVirtualButton(

2, 144, 216, 192, 264);
}

}

public function onMarkerPoolHasExcessDemand(
tracker:AbstractTracker,
markerPoolIndex:uint,
markerPool:MarkerPool):void

{
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// Do nothing, such that the supply of markers is
// inelastic.

}

public function onVirtualButtonEvent(
tracker:FlareNaturalFeatureTracker,
markerID:uint,
buttonID:uint,
press:Boolean):void

{
if (!press)
{

// The virtual button was released.

// Do nothing.
return;

}

// The virtual button was pressed.

// Get the marker corresponding to the virtual button.
var marker:Object3D =

tracker.markerPools[markerID].markers[0];

var i:int = rotatingMarkers_.indexOf(marker);
if (i == -1)
{

// The marker was not rotating.

// Start rotating the marker.
rotatingMarkers_.push(marker);

}
else
{

// The marker was rotating.

// Stop rotating the marker.
rotatingMarkers_.splice(i, 1);

}
}

private function onMarkerLost(event:MarkerEvent):void
{

var marker:Object3D = event.target as Object3D;

var i:int = rotatingMarkers_.indexOf(marker);
if (i != -1)
{

// The marker was rotating.

// Stop rotating the marker.
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rotatingMarkers_.splice(i, 1);
}

}

private function onEnterFrame(event:Event):void
{

// Update the time.
var milliseconds:int = getTimer();
var deltaMilliseconds:int =

milliseconds - lastMilliseconds_;
lastMilliseconds_ = milliseconds;

for each (var marker:Object3D in rotatingMarkers_)
{

// Rotate the marker at 45 degrees per second.
marker.getChildAt(0).rotationZ +=

deltaMilliseconds * 0.00025 * Math.PI;
}

}

private function onKeyUp(event:KeyboardEvent):void
{

if (event.keyCode == 32) // spacebar
{

// Show or hide the Alternativa3D profiling
// diagram.
arViewport_.showProfilingDiagram =

!arViewport_.showProfilingDiagram;
}
else if (event.keyCode == 80) // 'p'
{

// Pause/unpause the 2D stage.
if (stage.frameRate == stageFrameRate_)
{

stage.frameRate = 0.0001;
}
else
{

stage.frameRate = stageFrameRate_;
}

}
}

}
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4.3: Comparison to Other Designs

Illusion’s design is most closely paralleled in FLARManager 

(Socolofsky, “FLARManager: Augmented Reality in Flash”).  

FLARManager is an attempt at providing universal glue between tracking 

libraries and non-GPU-accelerated 3D graphics engines for Flash 10.  The 

supported trackers are FLARToolkit, flare*tracker, and flare*nft.  The 

supported graphics engine is Papervision (plus other options for 

FLARToolkit only).  FLARManager internally creates one camera feed 

per tracker.

Compared to FLARManager, Illusion has the advantages of being 

more up-to-date in its choice of 3D graphics engine and more general in 

its design of trackers’ data sources or sensors.  Sensors in Illusion need not 

be based on camera feeds and may be shared among multiple trackers.  

FLARManager is more general in its design of 3D scenes, since there is a 

bridge layer between a tracker and a graphics engine.  However, in 

practice, this bridge layer might make FLARManager harder to extend 

and maintain, as it introduces a degree of interaction among extensions.  

(The existence of a bridge from tracker “x” to graphics engine “y” may 

make a client expect that other supported trackers also have a bridge to 

“y”.)

Goblin XNA (Oda et al, 2012), which targets Windows and Windows 

Phone, is another glue layer that can wrap trackers from multiple vendors.  

Goblin XNA implements an original game engine atop existing graphics 

and physics libraries.  The game scene may have camera components 

attached to it and may contain markers as children.  At a given time, only 

one camera may be active for tracking purposes and only one pose may be 

tracked per physical marker.  The ALVAR tracker, for square markers, is 
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supported on Windows.  No trackers are supported on Windows Phone.  

Certain HMDs, which can sense the wearer’s head pose, are supported on 

Windows.

Compared to Goblin XNA, Illusion is again more general in its design 

of sensors.  Illusion’s sensors need not be based on camera input and need 

not be shared among all active trackers.  Also, Illusion currently supports 

a natural feature tracker, while Goblin XNA does not.  However, Goblin 

XNA has a broader range of game engine functionality and supports 

HMDs.

KHARMA (Augmented Environments Laboratory, “KHARMA”), the 

specification of the Argon mobile AR browser, is vendor-neutral insofar as 

it is offered as an open standard.  However, this standard specifies a 

(limited) set of supported tracking functionality, so it is not broadly 

inclusive of existing and future trackers from third parties.  KHARMA 

does offer a markup-based 3D scene graph in which any node may be 

anchored to a geolocation or a visually tracked square marker.  An 

iPhone-like set of sensors is assumed.

Argon and KHARMA, being a dedicated AR platform and its 

specification, are not directly comparable to Illusion.  Illusion is “just” a 

toolkit targeting a multipurpose Web platform and is designed for 

portability to other multipurpose platforms and for extensibility by any 

tracker developer.  On the other hand, Argon and KHARMA integrate 

markers into a high-level markup language and support geolocation-based 

tracking.

While there are only a few attempts to provide a third-party-extensible 

glue layer between tracking libraries and graphics engines, there are 

numerous vendor-specific solutions for integrating tracking with a 
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graphics engine.  For example, flare*tracker and flare*nft come with 

samples of Papervision integration.  D’Fusion comes with a dedicated 

graphics engine for some platforms, as well as a sample of Away3D 

integration for Flash.  Vuforia comes with a wrapper for Unity integration 

and a sample of raw OpenGL ES integration.

The typical vendor-specific offering is “just” an application framework, 

readymade for a fixed set of trackers.  By contrast, Illusion is a toolkit that 

the client may extend for an arbitrary set of sensors, trackers, and 

compositing techniques.  As seen in the “Evaluation” chapter, Illusion’s 

generality and extensibility come at negligible cost in processing time.  

Moreover, due to its generality and extensibility, Illusion has the potential 

to reduce duplication of development effort (i.e. increase code reuse) in an 

organization where multiple sensors, trackers, or compositing techniques 

are used.  For example, it can help an organization experiment with 

diverse approaches to ubiquitous computing.  Conversely, some 

organizations might need to work with multiple game engines but only one 

tracking technology.  Then, vendor-specific glue layers might reduce 

duplication of development effort, while Illusion would not.

From experience at Ad-Dispatch (“3.1: At Ad-Dispatch”), we know 

that the time cost of experimenting with multiple trackers, in the absence 

of a general and extensible framework, is indeed a practical problem.  This 

problem arose even when targeting just one type of sensor (webcams) on 

conventional personal computers.  Illusion’s design addresses a superset of 

the fragmentation problem that was present in the author’s frameworks at 

Ad-Dispatch.
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Chapter 5: Evaluation

We seek to evaluate the efficiency of Illusion.  This concept is distinct 

from the efficiency of any particular tracking libraries that Illusion wraps, 

or of any particular I/O systems that underlie its sensors and compositors.  

That is to say, we are primarily concerned with the cost that Illusion adds 

atop the tracking algorithm and platform-specific function calls.  If this 

overhead cost is low in the Flash implementation, then in general it should 

be low in ports, too.  To lesser extents, we are concerned with assessing 

optimization opportunities in Illusion’s use of Flash-specific function calls, 

and with subjectively describing the performance of an interactive demo.

To address these evaluation goals, this chapter poses questions about 

Illusion’s performance in various use cases.  Methods for capturing 

performance data are discussed.  Based on these methods, measurements 

and impressions are presented.  From these observations, we are able to 

conclude that Illusion’s overhead cost is negligible even when there are 

hundreds of simultaneously active trackers or marker pools.  However, 

the compositing implementation for Flash is expensive on some hardware.

5.1: Questions

For any given application, quantitive measures of efficiency include 

CPU usage,5 frame rate, and latency.  Frame rate and latency relate to 

subjective qualities such as the AR scene’s smoothness (continuity of 

motion) and its responsiveness (timeliness of motion, i.e. synchronization 

with real-world events).  (See “2.5: Efficiency” for a broader discussion of 

5 GPU usage is of course another measure of efficiency.  However, 
Illusion does not directly use the GPU; rather, it integrates with 
Alternativa3D and Flash functionality that may be GPU-accelerated.
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efficiency’s meaning and its determining factors in the context of AR.)  To 

capture these quantitative and qualitative characteristics over a variety of 

application configurations, our evaluation includes four sets of questions:

1. How many whole frame-lengths of latency does Illusion add in an 

application that uses tracking with 

VisualSensorFromDisplayObject and ARViewportUsingStage?6  

i.e. By how many frames does the tracker’s output scene lag behind 

the input?  An answer of “0” (“no frame lag”) implies that the 3D 

rendering for the current frame can use tracking results based on 

the 2D rendering for the current frame (if the underlying tracker 

permits).  In this case, total latency would depend on frame rate and 

on components other than Illusion.

2. How much CPU time per frame does Illusion add?  i.e. How much 

time is spent in functions belonging to Illusion’s namespace?  This 

measure excludes the time spent in underlying tracker functions and 

underlying Alternativa3D and Flash functions.  How does this 

measure of Illusion’s cost vary with respect to tracking resolution, 

number of trackers, and number of markers?

3. How much CPU time per frame is spent in underlying 

Alternativa3D and Flash functions whose use is peculiar to Illusion?  

(i.e. An alternative implementation of an AR framework for Flash 

6 An application using VisualSensorFromCamera and 
ARViewportUsingStageVideo effectively has two frame rates: one for the 
video background and another for everything else.  We have no tools to 
measure the former, and the difference between the two appears to be 
unstable.  Thus, the effect of Illusion on latency is not easily isolated in 
this case.
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would not necessarily use these functions.)  How does this cost vary 

across hardware configurations?

4. Given some specification of an AR scene with “good” graphics and 

trackers, what frame rate is achievable and what is the author’s 

subjective impression of the smoothness and responsiveness of this 

scene?  How do the frame rate and impression vary across systems?  

How do they vary between an implementation that uses StageVideo  

(i.e. VisualSensorFromCamera and ARViewportUsingStageVideo) 

and one that does not (i.e. VisualSensorFromDisplayObject and 

ARViewportUsingStage)?

The first three sets of questions are explored in controlled conditions.  

A minimal test application, called MinimalProfiler, uses an image stream 

and tracking algorithm that are contrived for repeatability, low time cost, 

and low latency, rather than realism.  (See the next section, “5.2: 

Methodology”, for details on MinimalProfiler and its dependencies.)  

These controlled conditions make it easier to assess possible causes of 

variation in the quantitative data on Illusion’s efficiency.

To address the fourth set of questions, we provide observations on the 

performance of our full-featured demo application, ApplesAndGoblets.  

(See “4.2: Full Example Application”.)  This exploration is less controlled 

but more realistic, as it exercises industry-grade trackers, complex artistic 

content, camera input, and human interaction.  These realistic conditions 

give a sense of context (a likeness to the author’s previous experience in 

using AR applications), such that it is easier to form subjective 

impressions about the application’s performance.
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5.2: Methodology

5.2.1: Dependencies and Platforms

To measure CPU time costs (hereafter, “time costs”), we rely on third-

party solutions.  A tool called The Miner (Sociodox, “The Miner”) is 

integrated into MinimalProfiler.  The Miner provides detailed logs and 

statistics pertaining to time costs, which can be broken down by event 

type or function, per frame.  At least some of the costs of running The 

Miner are measurable, and are excluded from our reporting.

The Miner requires the Flash runtime’s debug version, which might 

run less efficiently than the release version.  For comparison, we evaluate 

the performance of ApplesAndGoblets using both the debug runtime and 

the release runtime.  This comparison is conducted using a basic 

measurement tool that is included in Alternativa3D.  This tool does not 

require the debug runtime but does not provide breakdowns by  event 

type, or function.  It simply measures the time elapsed between frames.  

This value may exceed the time cost of the application per se, as the 

application may be throttled by I/O bottlenecks or may have to yield the 

processor to other processes.

Below the level of the Flash runtime, factors affecting performance also 

include the user’s operating system and hardware.  As discussed in “2.5.2: 

Measurement”, a “typical” user might be running Windows 7 on a 

machine with an Intel Core 2 CPU, 2 GB RAM, Intel GMA 950 GPU, 64 

MB VRAM, and 1366x768 desktop resolution (Unity, “Web Player 

Hardware Statistics - 2012 Q2”).  The closest match available to us as a 

test machine is a Dell Inspiron 9400.  We also have a MacBook Pro 13" 

mid-2010 and a custom gaming desktop (Table 7).  Measurements are 
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taken on each machine.  A 640x480 Flash canvas (and 640x480 camera 

feed) is used because this resolution seems to be most practical for 

embedding in web pages on typical desktop resolutions.  An external 

webcam—a Microsoft LifeCam VX-2000—is used with all machines.  

Flash 11.4 and Firefox 15 (the latest stable versions) are used.7

Table 7: Test Machines

Description
CPU;
main memory

GPU;
graphics 
memory

Operating 
system

Dell Inspiron 9400

2 GHz Intel Core 

2;

2 GB DDR2

ATI Mobility 

Radeon X1400;

128 MB dedicated 

DDR3 plus 128 

MB shared DDR2

Windows 7 32-bit

MacBook Pro 13" 

mid-2010

2.4 GHz Intel 

Core 2 Duo;

8 GB DDR3

NVIDIA GeForce 

320M;

256 MB shared 

DDR3

Mac OS X Lion

Custom gaming 

desktop

3.41 GHz AMD 

Phenom II X4 

965;

4 GB DDR3

ATI Radeon HD 

5870;

1 GB dedicated 

DDR5

Windows 7 64-bit

7 During development, preliminary tests were conducted with Flash 
11.3 and Flash 11.4 Beta.  The stable version of Flash 11.4 seems to yield 
worse performance, especially on the Dell Inspiron 9400.
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5.2.2: Application and Parameters

MinimalProfiler (Code Sample 8), our contrived test application, has a 

predictable source of image data, a simple (non-realistic) tracking 

algorithm, a configurable number of trackers and marker pools, and an 

option to pause when a known frame number is reached.  For any frame, 

the output includes a list of timing statistics and a composited scene based 

on the latest image data and tracking results.  By pausing and inspecting 

the composited scene, we determine whether (and how much) the 

tracking results lag behind the image source (thus answering our first 

evaluation question).  By  configuring the number of trackers and marker 

pools, and then inspecting the timing statistics, we determine how CPU 

time costs scale with respect to the configured variables (thus answering 

our second and third evaluation questions).  Details of these methods are 

given below.

MinimalProfiler uses VisualSensorFromDisplayObject and 

ARViewportUsingStage.  It requires a tracker with the following 

characteristics:

1. The tracking algorithm is transparent.  i.e. For any given input 

image, the virtual markers’ correct transformations are known.  This 

characteristic enables us to determine which frame of the input 

stream corresponds to the current frame of tracking results.  Thus, 

we can measure the latency as a whole number of frame-lengths.

2. An arbitrary number of tracker instances can run at once.  This 

characteristic enables us to scale the application.

3. Each tracker instance can have an arbitrary number of marker 

pools.  This characteristic, too, enables us to scale the application.
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We fulfill these characteristics in a contrived tracker called DebugTracker 

(Code Sample 9).  DebugTracker creates one marker pool per pixel of 

input resolution and it transforms one marker from each non-empty pool.  

The tracking algorithm reinterprets a pixel’s RGB color coordinates as a 

marker’s spatial coordinates: red is x, green is y, and blue is z, with a color 

range of [0, 255] being mapped onto a spatial range of [-128, 127].  For 

example, the color red—RGB triplet (255, 0, 0)—is interpreted as the 

position (127, 0, 0).

Code Sample 8: MinimalProfiler
[SWF(width='640', height='480', frameRate=’60')]
public class MinimalProfiler extends Sprite
                             implements ITrackerDelegate
{

private const UPDATE_EVENT:String = Event.ENTER_FRAME;
private const START_PAUSED:Boolean = true;
private const NUM_TRACKERS:uint = 1;
private const NUM_MARKER_POOLS_PER_TRACKER:uint = 1;

private var stageFrameRate_:Number;
private var background_:Shape;
private var stage3D_:Stage3D;
private var sensor_:VisualSensorFromDisplayObject;
private var arViewport_:ARViewportUsingStage;
private var trackers_:Vector.<DebugTracker> =

new Vector.<DebugTracker>();
private var lastMilliseconds_:int;

public function MinimalProfiler()
{

if (stage)
{

onAddedToStage();
}
else
{

// Listen for being added to the 2D stage.
addEventListener(Event.ADDED_TO_STAGE,
                 onAddedToStage);

}
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}

private function onAddedToStage(event:Event = null):void
{

if (hasEventListener(Event.ADDED_TO_STAGE))
{

removeEventListener(Event.ADDED_TO_STAGE,
                    onAddedToStage);

}

// Configure the 2D stage.
stage.align = StageAlign.TOP_LEFT;
stage.scaleMode = StageScaleMode.NO_SCALE;

// Store the 2D stage's frame rate for use in
// pausing/unpausing.
stageFrameRate_ = stage.frameRate;

// Get the 3D stage.
stage3D_ = stage.stage3Ds[0];

// Integrate TheMiner profiling tools.
addChild(new TheMiner());

// Create the background and fill it with a color that 
// the debug tracker will interpret as xyz 
// coordinates: (0, 64, 127).
background_ = new Shape();
background_.graphics.beginFill(0x80c0ff);
background_.graphics.drawRect(0,
                              0,
                              stage.stageWidth,
                              stage.stageHeight);
background_.graphics.endFill();

// Create the visual sensor that draws data from the
// shape.
sensor_ = new VisualSensorFromDisplayObject(

background_, /* source */
1.2566370614359172, /* fov: 72 degrees */
NUM_MARKER_POOLS_PER_TRACKER, /* width */
1 /* height */);

// Create the AR viewport.
arViewport_ = new ARViewportUsingStage(stage3D_, 
                                       sensor_);

// Add the AR viewport to the 2D scene.
addChild(arViewport_);

// Listen for and request the 3D stage's graphics 
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// context.
stage3D_.addEventListener(Event.CONTEXT3D_CREATE,
                          onContextCreate);
stage3D_.requestContext3D();

// Listen for keystrokes.
stage.addEventListener(KeyboardEvent.KEY_UP, onKeyUp);

}

private function onContextCreate(event:Event):void
{

stage3D_.removeEventListener(Event.CONTEXT3D_CREATE,
                             onContextCreate);

// Create the tracker.
for (var i:uint = 0; i < NUM_TRACKERS; i++)
{

trackers_.push(new DebugTracker(
this,
sensor_,
stage,
arViewport_.scene3D));

}

// Listen for frame updates.
addEventListener(UPDATE_EVENT, raiseMarker);

// Initialize the time.
lastMilliseconds_ = getTimer();

}

public function onTrackerStarted(
tracker:AbstractTracker,
markerPools:Vector.<MarkerPool>):void

{
// Create the marker.
var marker:GeoSphere = new GeoSphere(

25, /* radius */
2, /* segments */
false, /* reverse */
new FillMaterial(0xffff80) /* material */);

// Upload the marker's resources to the 3D context.
for each (var resource:Resource
          in marker.getResources())
{

resource.upload(stage3D_.context3D);
}

markerPools[0].markers.push(marker);
}



 131

public function onMarkerPoolHasExcessDemand(
tracker:AbstractTracker,
markerPoolIndex:uint,
markerPool:MarkerPool):void

{
// Do nothing, such that the supply of markers is
// inelastic.

}

private function raiseMarker(event:Event):void
{

removeEventListener(Event.ENTER_FRAME, raiseMarker);

// Update the time.
var milliseconds:int = getTimer();
var deltaMilliseconds:int =

milliseconds - lastMilliseconds_;
lastMilliseconds_ = milliseconds;

// Fill the background with a color that the debug 
// tracker will interpret as xyz coordinates:
// (0, 0, 127).
background_.graphics.beginFill(0x8080ff);
background_.graphics.drawRect(0,
                              0,
                              stage.stageWidth,
                              stage.stageHeight);
background_.graphics.endFill();

if (START_PAUSED)
{

// Pause the 2D stage.
stage.frameRate = 0.0001;

}
}

private function onKeyUp(event:KeyboardEvent):void
{

if (event.keyCode == 32) // spacebar
{

// Show or hide the Alternativa3D profiling
// diagram.
arViewport_.showProfilingDiagram =

!arViewport_.showProfilingDiagram;
}
else if (event.keyCode == 80) // 'p'
{

// Unpause/repause the 2D stage.
if (stage.frameRate == stageFrameRate_)
{
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stage.frameRate = 0.0001;
}
else
{

stage.frameRate = stageFrameRate_;
}

}
}

}

Code Sample 9: DebugTracker
public class DebugTracker extends AbstractTracker
{

public function DebugTracker(delegate:ITrackerDelegate,
                             sensor:AbstractVisualSensor,
                             stage:Stage,
                             scene3D:Object3D,
                             autoStart:Boolean=true)
{

super(delegate, sensor, stage, scene3D, autoStart);
}

override public function start():void
{

super.start();

var visualSensor:AbstractVisualSensor =
sensor_ as AbstractVisualSensor;

var numPixels:uint =
visualSensor.width * visualSensor.height;

// Unfix the number of marker pools.
markerPools.fixed = false;

// Create the marker pools.
for (var i:uint = 0; i < numPixels; i++)
{

markerPools.push(new MarkerPool());
}

// Fix the number of marker pools.
markerPools.fixed = true;

// Notify the delegate that the marker pools have been
// created and tracking has started.
delegate_.onTrackerStarted(this, markerPools);
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}

override public function stop():void
{

super.stop();

// Release the marker pools.
markerPools.fixed = false;
markerPools.splice(0, markerPools.length);
markerPools.fixed = true;

}

override protected function updateTrackedMarkers(
markerPoolIterators:Vector.<MarkerPoolIterator>,
pixels:ByteArray):void

{
for (var i:uint = 0; i < markerPools.length; i++)
{

// Skip the alpha value.
pixels.readUnsignedByte();

// Interpret the RGB values as xyz coordinates.
var x:int = pixels.readUnsignedByte() - 128;
var y:int = pixels.readUnsignedByte() - 128;
var z:int = pixels.readUnsignedByte() - 128;

var marker:Object3D = 
markerPoolIterators[i].nextMarker();

if (!marker)
{

continue;
}

marker.x = x;
marker.y = y;
marker.z = z;

if (marker.parent != scene3D_)
{

// The marker is newly found.

// Add the marker to the 3D scene.
scene3D_.addChild(marker);

// Notify the marker that it has been
// found.
marker.dispatchEvent(new MarkerEvent(

MarkerEvent.FOUND,
markerPoolIterators[i].markerPool));

}
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}
}

}

When feeding DebugTracker a predetermined stream of pixel data, we 

can correctly predict the virtual markers’ positions as a function of time 

and latency, both measured in whole frames.  When time is a given value 

and the stream of images contains no duplicates, this function is invertible 

such that we solve for latency.  i.e. By inspecting the tracking results, we 

know what the pixels of the input image were.  Then, we can search for 

this input image and find that it is a certain number of frames old (ex. 0 

for the current frame of input or 1 for the previous frame).  This number 

of frames is the latency.

Our search for the latency value is bounded.  Based on a priori 

knowledge about Illusion and Flash, we can infer that Illusion’s latency is 

at most 1 frame.  The rationale is as follows.  Illusion’s trackers are 

updated every frame in an event-driven manner.  So are the currently 

supported image sources (DisplayObject and Camera).  Event dispatching 

in Flash is a single-threaded loop and Illusion’s event handlers are likewise 

single-threaded.  Therefore, a given frame’s image source update must 

finish before the next frame’s tracker update begins.

The up-to-dateness of a DebugTracker result can be observed visually 

in a screenshot or paused frame.  Our experiment uses a contrived image 

source: a rectangle whose color changes sharply from one frame to the 

next.  The experimenter can tell whether the position of a rendered 3D 

marker and the color of the rendered background match, according to 

DebugTracker’s known algorithm.  If they do match, the tracker has 

evaluated up-to-date input and thus the lag is 0 frames (“no frame lag”).  
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If they do not match, the tracker has evaluated outdated input and thus 

the lag is 1 frame (Figure 15).

Figure 15: A Test for Frame Lag or its Absence

The contrived image source transitions from a cyan rectangle (upper left image) 

to a blue rectangle (upper right image).  According to the contrived tracker, the 

cyan color corresponds to a lower point in space (a lesser y coordinate) than the 

blue color.  If there is a lag of one frame, the tracker evaluates the cyan rectangle 

in the frame when the blue rectangle is being rendered; thus, the blue rectangle 

is rendered at the same time as a low 3D marker (lower left image).  If there is no 

frame lag, the tracker evaluates the blue rectangle in the frame when the blue 

rectangle is rendered; thus, the blue rectangle is rendered at the same time as a 

high 3D marker (lower right image).
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The presence or absence of frame lag is necessarily affected by the 

client code’s approach to updating the 2D scene.  Where in the Flash 

event cycle is the client code’s update registered: near the start of the 

frame; near the end of the frame; with a high priority; with a low priority?  

How tardy can the client code’s update be before a frame lag is 

introduced, i.e. before the tracker misses the opportunity to evaluate the 

updated data in the same frame?  To find the answer, we vary our 

implementation of the test, incrementally delaying the 2D scene update’s 

position in the Flash event cycle until a frame lag is introduced.

To evaluate scalability, we use up to 1000 marker pools and 1000 

trackers.  We consider 1000 marker pools to be an extreme case—at least 

for Web-based AR—due to the physical and computational complexity of 

seeking so many different markers simultaneously.

5.2.3: Sampling

When measuring various per-frame time costs in a given scenario, we 

take a sample consisting of 20 observations.  Each observation consists of 

average per-frame costs in a 5-minute run of the application.

5.3: Observations

5.3.1: Frame Lag

Lag is measured to be 0 frames (i.e. the blue rectangle is rendered at 

the same time as a high 3D marker) as long as the 2D scene update occurs 

before the Flash runtime’s EXIT_FRAME event.  Typical practice among 

Flash developers is that application code performs 2D scene updates in 

response to the runtime’s ENTER_FRAME event, which does precede 
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the EXIT_FRAME event.  (ENTER_FRAME is followed by 

FRAME_CONSTRUCTED, which is followed by EXIT_FRAME.)  

Thus, 0 frames of lag are introduced by typical use of Illusion.  Atypical 

use, involving 2D scene updates in response to EXIT_FRAME or 

subsequent events, can introduce a lag of 1 frame.

5.3.2: CPU Time Breakdown

The amount of time that MinimalProfiler spends inside all Illusion 

functions, combined, remains less than 1 ms in every case and less than 10 

μs in most cases (Table Series 8).  With a single marker pool and tracker, 

the per-frame cost of Illusion functions ranges from 0.45 μs to 1.1 μs, 

depending on the test machine.  With 100 marker pools, the cost is at 

worst 8.5 μs; with 1000, at worst 940 μs.  For a given number of marker 

pools, the cost is lowest when the ratio of marker pools to trackers is about 

10:1.

Similarly, our tests of MinimalProfiler spend less than 10 μs per frame 

inside Alternativa3D functions.  With a single marker pool and tracker, 

these functions’ per-frame cost ranges from 3.6 μs to 7.5 μs, depending on 

the test machine.

Rather, an overwhelming proportion of the time cost in MinimalProfiler is 

associated with Illusion’s and Alternativa3D’s calls to lower-level 

functions provided by the Flash standard library.  Depending on the test 

machine, 10.2 ms to 106 ms per frame (86% to 99% of the total time cost) 

is associated with Flash’s Context3D.drawToBitmapData() function 

alone.  This function is essential to the 2D/3D compositing technique used 

by ARViewportUsingStage and ARViewportUsingStageVideo.  Another 
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0.73 ms to 3.4 ms (0.86% to 13%) is associated with Flash rendering 

functionality that is not specific to the compositing technique.

Table Series 8: Time Costs per Frame, MinimalProfiler

Table 8A: 1 Tracker, 1 Marker Pool, Varying Machine, Varying Category of 
Cost

Category
Dell Inspiron 
9400

MacBook Pro 
13" mid-2010

Custom gaming 
desktop

Total, excluding 

TheMiner

Mean: 110 ms

StD: 0.72 ms

Mean: 11.8 ms

StD: 0.50 ms

Mean: 84.6 ms

StD: 0.22 ms

Illusion SDK

Mean: 1.0 μs

(0.00091%)

StD: 0.47 μs

Mean: 1.1 μs

(0.0093%)

StD: 0.077 μs

Mean: 0.45 μs

(0.00053%)

StD: 0.29 μs

Alternativa3D

Mean: 7.5 μs

(0.0068%)

StD: 3.8 μs

Mean: 3.6 μs

(0.031%)

StD: 0.34 μs

Mean: 5.3 μs

(0.0035%)

StD: 3.0 μs

Flash rendering

Mean: 3.4 ms

(3.1%)

StD: 0.44 ms

Mean: 1.5 ms

(13%)

StD: 0.063 ms

Mean: 0.73 ms

(0.86%)

StD: 0.040 ms

flash.display3D.

Context3D.

drawToBitmap()

Mean: 106 ms

(96%)

StD: 0.70 ms

Mean: 10.2 ms

(86%)

StD: 0.57 ms

Mean: 83.8 ms

(99%)

StD: 0.19 ms

Note: The breakdowns are not exhaustive, so they do not sum to the totals.
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Table 8B: MacBook Pro 13" Mid-2010, Cost of Illusion Functions Only, 
Varying Number of Marker Pools, Varying Number of Trackers

Marker pools
Trackers

1 10
  

100 1000

1
Mean: 1.1 μs

StD: 0.077 μs

Mean: 1.0 μs

StD: 0.42 μs

Mean: 8.5 μs

StD: 1.4 μs

Mean: 940 μs

StD: 210 μs

10
Mean: 1.0 μs

StD: 0.33 μs

Mean: 3.0 μs

StD: 1.1 μs

Mean: 140 μs

StD: 41 μs

100
Mean: 3.6 μs

StD: 0.81 μs

Mean: 48 μs

StD: 8.9 μs

1000
Mean: 63 μs

StD: 7.6 μs

Note: The stated number of marker pools is the total; it is not per tracker.

5.3.3: Overall Performance

Subjectively, ApplesAndGoblets is choppy but usable on the Dell 

Inspiron and the custom gaming desktop.  The application runs more 

smoothly on the MacBook Pro.  Regardless of the test machine, use of 

StageVideo makes ApplesAndGoblets seem more responsive.  

Particularly, the video background runs more smoothly and with less lag, 

so the user can watch his own motions more comfortably.  The 

improvement when using StageVideo is most pronounced on the 

MacBook Pro, where the StageVideo version runs very fluidly.

Timings of ApplesAndGoblets (Table 9) are consistent with the 

subjective impressions.  The Dell Inspiron runs the application at 



 140

approximately 6 FPS; the custom gaming desktop, approximately 8 FPS.  

The MacBook Pro can exceed 17 FPS without StageVideo, or 46 FPS 

with StageVideo.  These frame rates refer to the 3D scene; the video may 

run at another (higher) frame rate when using StageVideo.

The Flash release runtime consistently yields better performance than 

the debug runtime does.  The release runtime's speedup ratio in 

ApplesAndGoblets ranges from 1.08 to 1.27, depending on the test 

machine and whether StageVideo is used.

Table 9: Total Time Cost per Frame of ApplesAndGoblets while Tracking 1 
Natural Feature Marker and Rendering 1 Spinning Apple

Flash version
Context of 
video 
background

Dell Inspiron 
9400

MacBook 
Pro 13" mid-
2010

Custom 
gaming 
desktop

11.4 debug Stage
Mean: 177 ms

(5.65 FPS)

StD: 2.9 ms

Mean: 72.8 ms

(13.7 FPS)

StD: 1.5 ms

Mean: 138 ms

(7.25 FPS)

StD: 0.78 ms

11.4 debug StageVideo
Mean: 182 ms

(5.49 FPS)

StD: 2.0 ms

Mean: 23.5 ms

(42.6 FPS)

StD: 1.7 ms

Mean: 142 ms

(7.04 FPS)

StD: 1.2 ms

11.4 release Stage
Mean: 164 ms

(6.10 FPS)

StD: 1.6 ms

Mean: 57.5 ms

(17.4 FPS)

StD: 1.7 ms

Mean: 124 ms

(8.06 FPS)

StD: 1.1 ms

11.4 release StageVideo
Mean: 161 ms

(6.21 FPS)

StD: 1.5 ms

Mean: 21.6 ms

(46.3 FPS)

StD: 0.50 ms

Mean: 128 ms

(7.81 FPS)

StD: 0.65 ms

Note: For StageVideo, the video runs at an independent (higher) frame rate.
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5.4: Analysis

Within the tested range, Illusion’s time cost seems to grow at a less-

than-linear rate with respect to number of trackers but at a linear or 

greater-than-linear rate with respect to number of marker pools.  (See 

Table 8B in “5.3.2: CPU Time Breakdown”.)  Moreover, the time cost 

seems to grow with the number of marker pools per tracker.  The 

differences in growth characteristics might be due to differences in 

iteration approaches.  Illusion internally creates an iterator object each 

frame for each marker pool, whereas it does not use iterator objects for 

trackers.  Moreover, a dynamically sized vector is created each frame for 

each tracker and is populated with the tracker’s marker pool iterators.  

Here are some examples of the per-frame operations associated with these 

iterators and vectors:

• Each iterator is allocated, has its iteration function invoked multiple 

times, and is garbage collected.

• Each vector may be resized multiple times.  The number of times 

the vector is resized depends on the number of iterators added to 

the vector—thus, the number of marker pools per tracker.  The cost 

of each resizing depends on the same thing.

Thus, there is room for optimizing iteration over marker pools.8  However, 

even in the worst test case, Illusion’s per-marker cost is only 1.1 μs, which 

is likely to be negligible relative to the underlying tracker’s per-marker 

cost.

Even if Illusion were ported to other platforms, we expect that its 

overhead costs, like iteration, would remain negligible relative to the 

8 To test the hypothesis that the iteration approach affects Illusion’s 
scalability, we conducted some preliminary tests with revisions that do not 
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underlying costs of sensing, tracking, and compositing.  For example, on 

any platform, it should be possible to achieve iteration costs that grow 

only linearly with respect to the number of elements.  Two commonplace 

approaches with this characteristic are linked lists and indexing into fixed-

size arrays.

The standard deviation of Illusion’s time cost also seems to increase 

with the number of marker pools per tracker.  This pattern might reflect 

underlying variations in the cost of resizing vectors.

Illusion’s time cost is similar on the Dell Inspiron and MacBook Pro, 

yet is less on the custom gaming desktop.  (See Table 8A in “5.3.2: CPU 

Time Breakdown”.)  This result is unsurprising because the former two 

machines have relatively similar CPUs, while the latter machine’s CPU is 

clocked faster and has twice as many cores.  (See Table 7 in “5.2.1: 

Dependencies and Platforms”.)

Given its low cost at multiple scales and on multiple machines, Illusion 

proves to be lightweight despite its high-level architecture.  That is to say, 

calls to Illusion’s functions pass through to underlying platform and 

tracker functions at negligible cost in time.  Moreover, an inspection of 

paused frames reveals that Illusion introduces no frame lag (in normal 

usage, i.e. when client code adheres to typical event handling practices).  

(See “5.3.1: Frame Lag”.)  Thus, latency is as good as possible for the 

given I/O systems, tracker, and overall frame rate.

Alternativa3D also seems to be lightweight, as far as we can judge from 

the simple 3D scene in MinimalProfiler.  Alternativa3D’s cost in 

use iterator objects.  These tests suggest that the time cost can be reduced 
by a factor of two or more in the case of a single tracker with 1000 marker 
pools.  Note that in absolute terms this difference is still small.
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MinimalProfiler is at worst 7.5 μs, which is negligible.  Moreover, we 

know that Alternativa3D does not introduce frame lag (in normal usage); 

otherwise, Illusion would introduce frame lag too.

The time cost of Alternativa3D is lower on the MacBook Pro than on 

the Dell Inspiron or the custom gaming desktop.  The reason for this 

difference is not apparent to us.  However, in absolute terms, the 

difference is negligible—again, as far as we can judge from the simple 3D 

scene in MinimalProfiler.

The time cost of Illusion’s 2D/3D compositing technique (as 

implemented in ARViewportUsingStage and 

ARViewportUsingStageVideo) is high and has surprising variations 

across the test machines: the MacBook Pro outperforms the custom 

gaming desktop.  Differences in memory architecture are probably the 

cause.  Whereas the desktop uses dedicated graphics memory (and the 

Dell Inspiron may use dedicated graphics memory, depending on the 

circumstances), the MacBook Pro uses shared memory.  Shared memory 

would make GPU rendering results more cheaply accessible to the CPU, 

as the compositing technique demands.

The rationale for the current compositing technique is peculiar to the 

limitations of Flash.  (See “2.6.4: Focus on Flash”.)  The current technique 

marshals the 3D rendering results from graphics memory to main 

memory.  An alternative implementation could marshal camera data from 

main memory to graphics memory, though this approach would preclude 

the use of StageVideo.  A GPU-accelerated compositing technique that 

avoids marshalling is currently infeasible in Flash because Stage3D 

supports neither camera input nor background transparency.
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On future versions of Flash, or on other platforms, it is important that 

Illusion evolve to support fully GPU-accelerated compositing.  

Techniques that avoid reading back graphics memory (or, conversely, 

uploading video buffers to graphics memory each frame) should be both 

faster and more predictable, as they eliminate an entire category of bus 

costs.

For camera input, StageVideo (via ARViewportForStageVideo) offers 

some advantages over Stage (via ARViewportForStage).  (See Table 9 in 

“5.3.3: Overall Performance”.)  StageVideo is categorically more efficient 

on the MacBook Pro, while on the other test machines it seems to improve 

the smoothness and responsiveness of the video background only.  Even in 

the latter case, the user might perceive an overall improvement.  Real-

world objects are the focus of interactivity in AR, so the user might first 

watch for a real-world event in the live video scene, and only then watch 

for a virtual-world event in the 3D scene.

It is surprising that StageVideo improves the overall frame rate on the 

MacBook Pro but not on the other test machines.  A possible explanation 

relates back to the compositing inefficiency, albeit indirectly.  Recall that 

CPU time cost on the Dell Inspiron and the custom gaming desktop is 

dominated by compositing, more so than on the MacBook Pro.  Use of 

StageVideo does not offload compositing to the GPU, though it does 

offload some rendering, which accounts for a higher proportion of CPU 

time cost on the MacBook Pro than on the other machines.  Thus, the 

MacBook Pro should realize a greater speedup ratio from the use of 

StageVideo.

Note that the higher proportional cost of Flash rendering on the 

MacBook Pro does not imply a higher absolute cost.  The absolute cost is 
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greater on the Dell Inspiron, though less on the custom gaming desktop.  

This ordering is consistent with the machines’ relative processing power.  

Both CPU and GPU capabilities might be relevant in this case if Flash 

conditionally offloads some rendering to the GPU.

With some caveats, Illusion and its flare* wrappers are already usable 

in real-world applications.  Graphically intensive AR applications—for 

example, using high-polygon models and dynamic lights—perform well on 

at least some hardware that uses shared graphics memory.  Applications 

that do not use the compositing functionality—for example, games that 

use tracking to control purely virtual scenes—should perform well on 

diverse hardware.
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Chapter 6: Discussion

This chapter reviews the motivations behind this thesis project and the 

extent to which they are resolved by Illusion SDK.  We conclude that 

Illusion’s design can support efficient implementations for many platforms 

and many ubiquitous applications.  For Flash, the current compositing 

implementations are inefficient on some hardware, though otherwise 

efficiency is not problematic.

Continued development of Illusion is proposed.  Optimizations of the 

current compositing implementations are planned in anticipation of new 

features in Flash.  Also, the author and other parties should be able to port 

and extend Illusion to cover more platforms and more techniques for 

sensing, tracking, and compositing.

6.1: Ubiquity

AR’s potential for ubiquity was one of the motivations behind this 

thesis project.  Illusion SDK addresses this potential by providing an 

extensible, modular, portable, high-level architecture that includes 

abstractions of sensors, trackers, and compositors.  These abstractions are 

agnostic about the platform’s I/O capabilities: they can support various 

sources of sensor data and destinations for composited scenes.  Moreover, 

trackers and compositors have no dependency on each other.  A notable 

consequence is that compositing can be omitted—or handled by a non-

Illusion module—if the platform or application so requires.  (See the 

“Design and Contribution” chapter.)  For these reasons, Illusion’s 

abstractions are portable to ubiquitous computers that may have 

unconventional interfaces.
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Illusion’s zlib license is friendly to third-party ports.  For example, 

device manufacturers could make proprietary ports to their platforms.  

Our intent is to encourage the adoption of Illusion’s design, even if our 

own implementation is inappropriate to a given ubiquitous computing 

platform.

Illusion’s current implementation, targeting Flash, is not in itself 

ubiquitously deployable.  However, it is easily deployable to Web users on 

Windows and Mac.  (No incompatibilities were encountered in informal 

testing on our own and colleagues’ machines.)  Deployment in the form of 

desktop applications, via Adobe AIR, should also work (though this path 

is not yet tested).  Besides being available on Windows and Mac, the AIR 

runtime might have a future on proprietary appliances that could be 

characterized as ubiquitous computers.  For example, recent LG Smart 

TVs run AIR 3.0, which is equivalent to Flash 11.0 (Magni, 2012).  

Flash’s security and privacy features, along with its support for peer-to-

peer networking, may make it a suitable platform for applications that rely 

on a network of ubiquitous computers.  (See “2.6.4: Focus on Flash”.)

6.2: Efficiency

The need for AR applications to be responsive—and therefore 

efficient—was another motivation behind this thesis project.  Illusion 

SDK’s design is capable of supporting efficient implementations that have 

low time cost per frame and do not introduce any whole frames of latency.  

(See the “Evaluation” chapter.)

Most of Illusion’s implementation for Flash is efficient.  There is one 

major efficiency problem in Illusion’s compositing implementation for 

Flash: the compositor may marshall data between main memory and 
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graphics memory every frame, at high cost in time.  This problem arises 

from Flash’s use of multiple graphics contexts, some of which cannot 

capture camera input and some of which cannot be layered in front of 

another context.  (See “2.6.4: Focus on Flash” and “5.4: Analysis”.)  

Generally, ports of Illusion to other platforms should not suffer from the 

same compositing problem.

On systems that use shared graphics memory, Illusion’s current 

compositing implementation runs efficiently.  Also, in applications that do 

not require compositing, the current efficiency problem is irrelevant.  For 

example, client code could use Illusion’s sensing and tracking functionality 

to control nodes in a pure 3D scene with no video background.  Though it 

might not fit the definition of AR, this use case is envisioned by Illusion’s 

modular design.

6.3 Conclusion

This thesis has contemplated the statement that ubiquity and efficiency 

are critical in an industry-grade AR engine—and that finding or creating 

this combination is nontrivial.  A good solution, we have argued, can 

deliver this combination, provided that care is taken to use the strengths 

and avoid the weaknesses of a platform’s idiosyncrasies.

Our proof and practical contribution lie in the design, implementation, 

and evaluation of Illusion SDK.  Illusion is an AR engine whose modular, 

extensible design can potentially support ubiquitous and efficient 

applications.  The Flash implementation takes account of certain platform 

peculiarities, strengthening its performance results on some hardware.  

The design is portable to other platforms regardless of I/O capabilities, 

and implementations are expected to have low overhead cost regardless of 
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platform.  Compared to previous solutions by the author and others, 

Illusion has the potential to reduce rework in certain industry-relevant 

situations, as needs and technologies change.

6.4: Future Work

This thesis project has coincided with significant developments in Flash 

and other Web application runtimes.  Flash 11.4 offers GPU-accelerated, 

readable camera input, increasing the platform’s suitability for AR.  More 

generally, Flash 11’s prospects as a game platform are being bolstered by 

support from cross-platform engines such as Unity and Unreal.  Where 

the latest Flash versions are supported (i.e. on Windows and Mac), they 

continue to see strong rates of adoption.

On the other hand, Flash has failed to address the problem of 

increasing fragmentation in Web clients’ operating systems.  It lacks iOS 

support and has recently dropped Android and Linux support.  Silverlight 

and Java have similarly failed to support the mobile Web.  Instead, it is 

likely that WebRTC (for camera access) and WebGL (for GPU 

acceleration) will make JavaScript a viable solution for cross-platform AR 

in future versions of mobile and desktop browsers.

A reexamination of target platforms is the first priority in future work 

on Illusion.  Although Illusion’s abstractions come at negligible 

performance cost (and so do Alternativa3D’s), they are implemented atop 

Flash platform functions that may carry an undue cost.  We want to 

optimize Illusion for future Flash versions and also port it to other Web 

application runtimes in order to determine how the overall performance of 

AR scenes is affected by the platform.
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Beyond Flash 11.4, the platform might evolve to support transparent 

backgrounds in Stage3D, thus enabling a GPU-accelerated compositing 

solution.  There is a precedent for this feature in a beta version of Flash 

11.0.  (See “2.6.4: Focus on Flash”.)  ARViewportUsingStageVideo is 

written in a way that anticipates this feature, so adopting it should require 

only a one-line change to the code.

We have not yet studied the challenges of porting Illusion to 

JavaScript (or any other target in particular).  The range of third-party 

trackers will differ greatly: Flash is quite mature in this respect, while 

JavaScript (and some other targets) are not.  Illusion and all its ports 

should share at least one functionally equivalent tracker for testing 

purposes.  ARToolkit derivatives are a likely choice, since they are already 

available for Flash (FLARToolkit), JavaScript (JSARToolkit), and many 

other targets.

Another priority is the improvement of Illusion’s content pipeline.  

Animations should be supported in the 3D model importer.  (There is 

some underlying support for animation import in Alternativa3D but 

Illusion’s higher-level importer does not provide any abstractions of it.)  

As the content pipeline is closely integrated with the underlying game or 

graphics engine, it might differ greatly across ports of Illusion.  For 

example, a port that integrated with Unity would already get a high-level 

content pipeline as part of the Unity toolchain.

An ongoing concern is to expand the number of concrete tracker 

interfaces in Illusion, either by wrapping existing trackers or 

implementing new ones.  Facial tracking and 3D object tracking are not 

covered by Illusion’s current tracking wrappers, so these types of tracking 

could be priorities.  Non-visual (ex. audio) sensing and tracking also 
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remains to be explored.  Original trackers should take advantage of GPU 

acceleration and other forms of multiprocessing, where available.  An 

eventual goal is for Illusion to support AR applications that are GPU-

accelerated at the three costly stages of tracking, rendering, and 

compositing.
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Appendix A: Availability and Licensing

For the latest version of Illusion, visit 

https://github.com/JoeHowse/Illusion/.  The latest version may have 

refinements over the version described in this thesis.  (See “6.4: Future 

Work”.)

Illusion is available under zlib license, a liberal open-source license that 

permits both open-source and closed-source extensions, for 

noncommercial or commercial use.  For example, anyone is free to make 

and sell an application that interfaces with Illusion, a tracker that extends 

Illusion, or an authoring environment that embeds Illusion.

We believe that a liberal open-source license helps make a software 

library relevant to a broad audience and broad problem set.  Open-source 

code fosters knowledge transfer among software architects: without it, 

students and even professionals would have relatively few opportunities to 

study large codebases (Brown and Wilson 2012).  It can be audited—a 

requirement in critical applications such as military simulations 

(McDowell et al, 2006; McDowell, 2008) and forensic tools (Carrier, 

2002).  It can be forked and redistributed by anyone, so vendor lock-in is 

avoided—also a requirement in critical and long-term applications 

(McDowell et al, 2006; McDowell, 2008).  It is available without cost, 

without embargo against any user group, and (under “liberal” licenses) 

without prohibition against any use case.

Compared to the Flash-based alternatives—notably, FLARManager 

and vendor-specific offerings—Illusion is available under a more liberal 

license, making it extensible by the broadest possible developer 

community.  (See “4.3: Comparison to Other Designs” for more 

differences that pertain to extensibility and generality.)  FLARManager is 
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open-source under GNU Public License (GPL) but this license prohibits 

closed-source extensions.  For the latter purpose, FLARManager offers an 

alternative, paid license.  Vendor-specific offerings are typically closed-

source, paid, or both.  Illusion’s zlib license encourages both open-source 

and closed-source extensions, for noncommercial or commercial use.

Note that while Illusion is open-source under zlib license, 

implementations of its AbstractTracker type may wrap libraries that fall 

under other licenses.  (See “4.1.3: Tracking Markers”.)  Clients who use 

or make such wrappers must abide by the tracking libraries’ licenses.  For 

example, flare*tracker and flare*nft are closed-source, commercial 

libraries that can be licensed from Imagination Computer Services GmbH 

(http://www.imagination.at/en/?Products:Augmented_Reality).  

Imagination provides demo licenses, with no expiry, for use on localhost.

Alternativa3D (Illusion’s dependency for 3D scene graph functionality 

in Flash) is open-source under Mozilla Public License.  Alternativa3D’s 

latest source code is available from 

https://github.com/AlternativaPlatform/Alternativa3D and the latest 

precompiled binary is available from 

http://alternativaplatform.com/en/download8/.
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Appendix B: Non-AR Functionality

B.1: Loading Binary or Text Files

The Flash standard library provides an event-driven (observer) pattern 

for asynchronous file loading.  The Flex standard library provides an 

alternative pattern of static prototypes, whereby arbitrary files may be 

embedded at compile-time as classes.

Neither of these pre-existing patterns is appropriate to Illusion’s 

internal needs.  Under the observer pattern, synchronizing multiple file 

loads is cumbersome.  Under the static prototype pattern, Illusion and the 

client application become bloated (due to the Flex dependency and static 

data) and more tightly coupled (due to the lack of dynamic data).

As a substitute, Illusion provides a mediator pattern, with delegation, 

for asynchronous file loading (Figure A; Code Sample A).  The delegator 

class, Loader, is instantiated with a delegate and a base file path.  The 

delegate must implement an interface called ILoaderDelegate, which has 

functions for handling load successes and load errors.  The delegator has 

functions for requesting that one or more file paths (relative to the 

specified base path) be loaded as either binary data or text.  The delegator 

can be polled (ex. by the delegate, on a load success) to determine the 

number of pending loads: 0 pending loads indicates that a synchronization 

point has been reached.  The delegator can be told (ex. by the delegate, on 

a load error) to cancel all pending loads.

Internally, Loader still uses the observer pattern.  The particular 

implementation of this pattern ensures that a Loader and its delegate are 

never garbage-collected while there are pending loads.
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Illusion already uses Loader and ILoaderDelegate internally, so client 

code does not necessarily need access to general-purpose file loading 

functionality.  Also, client code is free to use either of the two standard file 

loading patterns, or some other alternative; Illusion just provides Loader 

as an option.

Figure A: Design of Loader and ILoaderDelegate
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Code Sample A: Usage of Loader and ILoaderDelegate
public class MyLoaderDelegate implements ILoaderDelegate
{

var binaryData_:ByteArray;
var textData_:String;

public function MyLoaderDelegate()
{

// Create a loader with this delegate and a base
// path of "data".
var loader:Loader = new Loader(this, "data");

// Load a binary file.
loader.loadBinary("stuff.bin");

// Load multiple binary files.
//loader.loadBinaries("stuff.bin", "dreams.bin");

// Load a text file.
loader.loadText("prose.txt");

// Load multiple text files.
//loader.loadTexts("prose.txt", "verse.txt");

}

// Part of the ILoaderDelegate implementation.
public function onLoadError(loader:Loader,

 filename:String,
 errorEventType:String):void

{
// Cancel any remaining loads.
loader.close();

// Throw an error, saying which load failed and
// what the failure was.
throw new Error("Failed to load \"" +
                loader.basePath + filename + "\": " +
                errorEventType);

}

// Part of the ILoaderDelegate implementation.
public function onLoadComplete(loader:Loader,

    filename:String,
    data:*):void

{
if (filename == "stuff.bin")
{

binaryData_ = data as ByteArray;
}
else // filename == "prose.txt"
{
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textData_ = data as String;
}

if (loader.numLoadsPending > 0)
{

return;
}

// Both files have loaded. Now we can do something
// that requires both files' data.
… 

}
}

B.2: Loading 3D Model Files

Alternativa3D provides functionality for parsing certain binary and 

text formats as 3D scene graph branches (ex. 3D models), containing 

references to any external resources (ex. textures) that need to be loaded 

before render-time.  However, this functionality falls short of being an 

asset pipeline.  On one end, it does not facilitate loading the original 

binary or text data from files, nor does it generate any materials (just 

resource references and metadata).  On the other end, it does not 

aggregate resource references so as to facilitate efficient uploading to the 

GPU and efficient disposal from the GPU.  To find resource references 

and generate appropriate materials, client code must walk the parsed 

scene branch.  Naively implemented client code might generate duplicate 

materials and make redundant resource uploads to the GPU, especially if 

the scene contains multiple copies of the branch.

To address these shortcomings and pitfalls, Illusion provides higher-

level functionality via a builder class, ExternalModelPrefab.  This class is 

instantiated with a prototype of a 3D scene graph branch.  Client code 
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typically does not instantiate a builder directly but instead gets one from a 

file loader of type ExternalModelPrefabLoader (Figure B; Code Sample 

B), which internalizes the steps of loading the 3D data file, parsing it as a 

prototype, and instantiating an ExternalModelPrefab with the prototype.  

ExternalModelPrefabLoader uses the mediator pattern and delegation to 

provide an interface that is similar to Loader’s.  The delegate must 

implement an interface called IExternalModelPrefabLoaderDelegate, 

which is similar to ILoaderDelegate.  (See the previous section, “Loading 

Binary or Text Files”.)

Internally, ExternalModelPrefabLoader creates a Loader and acts as 

its delegate.  Being a Loader’s delegate, an ExternalModelPrefabLoader is 

never garbage-collected while there are pending loads.

Supported file formats are .dae (COLLADA), .3ds (3D Studio), and 

.a3d (Alternativa3D).  Meshes are imported, and materials are generated 

with the following components: diffuse, normal, specular, gloss,  and 

alpha.  Each component uses a texture map if one is specified by the data; 

failing that, a uniform color if one is specified by the data; and failing that, 

a default uniform color.  The current version of ExternalModelPrefab 

does not parse non-mesh nodes, nor does it parse animations.
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Figure B: Design of ExternalModelPrefabLoader and Related Types
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Code Sample B: Usage of ExternalModelPrefabLoader and Related Types
public class MyExternalModelPrefabLoaderDelegate
implements IExternalModelPrefabLoaderDelegate
{

var stage3D_:Stage3D;
var scene3D_:Object3D;

var applePrefab_:ExternalModelPrefab;
var orangePrefab_:ExternalModelPrefab;

var littleApple:Object3D;
var bigApple:Object3D;
var orange:Object3D;

public function MyLoaderDelegate(stage3D:Stage3D,
scene3D:Object3D)

{
stage3D_ = stage3D;
scene3D_ = scene3D;

// Create a loader with this delegate and a base
// path of "data".
var loader:ExternalModelPrefabLoader =

new ExternalModelPrefabLoader(this, "data");

// Load a model file.
//loader.loadExternalModelPrefab("apple.3ds”);

// Load multiple model files.
loader.loadExternalModelPrefabs
(

"apple.3ds",
"orange.3ds"

);
}

// Part of the IExternalModelPrefabLoaderDelegate
// implementation.
public function onLoadExternalModelPrefabError(

loader:ExternalModelPrefabLoader,
filename:String,
errorEventType:String):void

{
// Cancel any remaining loads.
loader.close();

// Throw an error, saying which load failed and
// what the failure was.
throw new Error("Failed to load \"" +
                loader.basePath + filename + "\": " +
                errorEventType);
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}

// Part of the IExternalModelPrefabLoaderDelegate
// implementation.
public function onLoadExternalModelPrefabComplete(

loader:ExternalModelPrefabLoader,
filename:String,
data:*):void

{
if (filename == "apple.3ds")
{

applePrefab_ = data as ByteArray;
}
else // filename == "orange.3ds"
{

orangePrefab_ = data as String;
}

if (loader.numLoadsPending > 0)
{

return;
}

// Both prefabs have loaded. Now we can do
// something that requires both prefabs, such as
// populating a scene with models.

// Make models.

littleApple = applePrefab_.newObject3D();

applePrefeb_.scale = 2.5;
bigApple = applePrefab_.newObject3D();

orange = orangePrefab_.newObject3D();

// Upload resources to the GPU.
applePrefab_.loadResources(stage3D_.context3D);
orangePrefab_.loadResources(stage3D_.context3D);

// Populate the scene.
scene3D_.addChild(littleApple);
scene3D_.addChild(bigApple);
scene3D_.addChild(orange);
…

}

public function dispose():void
{

// Depopulate the scene.
scene3D_.removeChild(littleApple);
scene3D_.removeChild(bigApple);
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scene3D_.removeChild(orange);

// Unload resources from the GPU.
applePrefab_.unloadResources();
orangePrefab_.unloadResources();
…

}
}

B.3: Creating Lighting Setups

The author’s experience is that developers often begin a project with 

naive or lazy approaches to lighting.  As such, the application prototype 

might give a misleadingly poor impression of the 3D artwork—

particularly the materials.  When lacking a more deliberate lighting 

design, developers should pick a standard cinematic setup that tends to 

produce a variety of hard and soft highlights and shadows (Arnold, 2011).

One such setup is three-point lighting, consisting of a key light, a fill 

light, and a back light.  The key light is a bright light facing the subject 

from above-front-left or above-front-right.  It provides broad illumination 

of the subject, though with partial shadow.  The fill light is a dim light 

facing the subject from above-front-right or above-front-left.  It softens 

the shadows on the subject.  The back light is a bright light facing the 

subject from back-left or back-right.  It highlights the subject’s silhouette.

Illusion facilitates the use of a three-point lighting setup by providing a 

static factory method in the SceneUtils class (Figure C, Code Sample C).  

The constructee is a 3D node with three directional lights as children.  As 

the lights are directional, their position relative to the subject is irrelevant, 

and usage is extremely simple (albeit inflexible).
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This implementation of a three-point lighting setup is intended only for 

rapid prototyping of simple scenes, where light rays’ points of origin are 

not of particular concern.  Multiple directional lights, as used in this 

implementation, may produce strange-looking results in complex scenes.

SceneUtils also provides a static function for checking whether a 

specified 3D node or any of its subnodes are instances of a specified class.  

Such information can be useful for optimization purposes.  For example, if 

an entire scene contains no meshes, it need not be rendered.  The latter 

optimization is used internally by Illusion’s compositors.

Figure C: Design of SceneUtils

Code Sample C: Usage of SceneUtils
var scene3D:Object3D = new Object3D();
sceneContainsClass(scene3D, Light3D); // false
…
var threePointLighting:Object3D =

LightingUtils.newThreePointLighting();
scene3D.addChild(threePointLighting);
sceneContainsClass(scene3D, Light3D); // true
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B.4: Miscellaneous Static Functions

Certain math functions are provided statically in the MathUtils class 

(Figure D; Code Sample D).  Specifically, these functions relate to powers 

of 2 and angle conversions.

Figure D: Design of MathUtils

Code Sample D: Usage of MathUtils
MathUtils.nextPowerOf2(3); // 4
MathUtils.nextPowerOf2(4); // 4

MathUtils.isPowerOf2(3); // false
MathUtils.isPowerOf2(4); // true

MathUtils.toRadians(180); // approximately Math.PI

MathUtils.toDegrees(Math.PI); // approximately 180
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Certain functions for parsing strings are provided statically in the 

StringUtils class (Figure E; Code Sample E).  Specifically, most of these 

functions relate to parsing file paths.  Classes in Illusion already use these 

functions internally to parse file path arguments; client code does not need 

to pre-parse file paths when interfacing with Illusion.

Figure E: Design of StringUtils

Code Sample E: Usage of StringUtils
var loadee:DisplayObject;
// Can get information about the application's loading path.
// Suppose the loading path is "http://nummist.com".
…

StringUtils.absolutePath("data/cat.gray.PNG", loadee);
// http://nummist.com/data/cat.gray.PNG

StringUtils.lowercaseFileExtension("cat.gray.PNG"); // ".png"

StringUtils.slashTerminate("data"); // "data/"

StringUtils.trim(" \t\ngrayspace \t\n"); // "grayspace"

Logging functionality is provided in the Logger class (Figure F; Code 

Sample F).  Logger exposes a static, constant instance that may be treated 

as if it were a singleton.  Alternatively, client code may create its own 

instances of Logger for the sake of independent configurability.  A 
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Logger’s verbosity level can be set, and log requests can be made with a 

specified tag (such as a class name), priority level, and message.  A log 

request will be fulfilled (using ActionScript’s standard trace function) if its 

priority level is less than or equal to the verbosity level.

Figure F: Design of Logger

Code Sample F: Usage of Logger
Logger.mainLogger.log("My tag", 0, "My priority 0 message");
// Gets logged as "My tag [0]: My priority 0 message".

Logger.mainLogger.log("My tag", 1, "My priority 1 message");
// Does not get logged because verbosity defaults to 0.

// Increase verbosity to 1.
Logger.mainLogger.verbosity = 1;

Logger.mainLogger.log("My tag", 1, "My priority 1 message");
// Gets logged as "My tag [1]: My priority 1 message".
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