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Abstract

Superintegrable systems are classical and quantum Hamiltonian systems which enjoy

much symmetry and structure that permit their solubility via analytic and even,

algebraic means. They include such well-known and important models as the Kepler

potential, Calogero-Moser model, and harmonic oscillator, as well as its integrable

perturbations, for example, the Smorodinsky-Winternitz (SW) potential. Normally,

the problem of classification of superintegrable systems is approached by considering

associated algebraic, or geometric structures. To this end, we invoke the invariant

theory of Killing tensors (ITKT). Through the ITKT, and in particular, the recursive

version of the Cartan method of moving frames to derive joint invariants, we are able

to intrinsically characterise and interpret the arbitrary parameters appearing in the

general form of the SW superintegrable potential. Specifically, we determine, using

joint invariants, that the more general the geometric structure associated with the SW

potential is, the fewer arbitrary parameters it admits. Additionally, we classify the

multi-separability of a recently discovered superintegrable system which generalizes

the SW potential and is dependent on an additional arbitrary parameter k, known

as the Tremblay-Turbiner-Winternitz (TTW) system. We provide a proof that only

for the case k = ±1 does the general TTW system admit orthogonal separation of

variables with respect to both Cartesian and polar coordinates.
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Chapter 1

Introduction

The origins of this thesis can be traced back to 1965 when Winternitz and Frǐs used the

theory of Lie groups to classify the separable webs of the Euclidean plane. Specifically,

they computed the invariants of the second-order symmetries of the Laplace equation

ΔV (x, y) =
∂2V

∂x2
+

∂2V

∂y2
= 0,

defined on the Euclidean plane under the action of the Euclidean group. As we

shall develop in Section 2.3, the classification of such separable webs is intimately

related to the Hamilton-Jacobi theory, which provides a formulation of Hamiltonian

mechanics that allows one to conclude the solubility of a classical Hamiltonian system

(see Section 2.1). Indeed, by determining the orthogonal coordinate systems that

afford separation of variables in the corresponding Hamilton-Jacobi equation for a

Hamiltonian system (see Section 2.2), one can ultimately obtain exact solutions, or

trajectories, of the Hamiltonian system.

The work of Stäckel in 1893 and its extension by Eisenhart in 1934 were both

essential to the development of this geometric approach to studying Hamiltonian sys-

tems. Both of these canonical papers established the essential role of a geometric

object that naturally arose when studying orthogonal separation of variables of the

Hamilton-Jacobi equation: a Killing tensor of valence two. Studying the intrinsic

properties of Killing tensors corresponding to certain orthogonally separable cases

thus provided a new approach to the problem of solving a Hamiltonian system. In

2002, McLenaghan, Smirnov, and The [44] utilised classical invariant theory to de-

velop the properties of such Killing tensors, which marked the initial stages in the

development of the invariant theory of Killing tensors. Since then the theory has

been utilised by a significant number of authors who have applied it in a more gen-

eral setting to study Killing tensors defined in spaces of constant curvature (e.g., see

[1, 3, 12, 13, 15, 17, 28, 30–32, 44, 55, 56, 69, 73] and the relevant references therein).

1
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In this thesis we use the invariant theory of Killing tensors in the context of

solving the classification problem for superintegrable Hamiltonian systems defined

on the Euclidean plane1. One system of particular interest is the Tremblay-Turbiner-

Winternitz (TTW) system introduced in 2009 [66], which is a generalisation of another

superintegrable system of interest, the Smorodinsky-Winternitz (SW) system. The

unique feature of the TTW system is that it provides an infinite family of solvable

and integrable (quantum) systems on the Euclidean plane with respect to a parameter

k [65–67]. Furthermore, this family of systems was proven to be both classically and

quantum superintegrable for any rational value of k [34–37].

A Hamiltonian system with n degrees of freedom is completely integrable if in

addition to its Hamiltonian, H , it admits n − 1 first integrals of motion, Fi, i =

1, . . . , n− 1, that are well-defined functions on the phase space. These first integrals

must be functionally independent,

dH ∧ dF1 ∧ . . . ∧ dFn−1 �= 0,

and in involution with respect to the Poisson bracket (see Section 1.3)

{H,Fi}P0
= {Fi, Fj}P0

= 0, i, j = 1, . . . , n− 1.

If such a completely integrable system admits additional n− 1 functionally indepen-

dent first integrals of motion, Gi, i = 1, . . . n− 1, namely

dH ∧ dF1 ∧ . . . ∧ dFn−1 ∧ dG1 ∧ . . . ∧ dGn−1 �= 0,

which are in involution

{H,Gi}P0
= {Gi, Gj}P0

= 0, i, j = 1, . . . , n− 1.

then the system is maximally superintegrable (see Section 3.1). Since such systems

have more constants of motion than degrees of freedom it is possible to integrate them

through analytic and algebraic methods. For this reason, superintegrable systems are

often sought after as starting points for studying much more complicated systems.

Some familiar examples of superintegrable systems (in the realm of physics) include

1The term superintegrable was introduced in 1983 by S. Wojciechowski [71].
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the harmonic oscillator, the Kepler system, the Calogero-Moser system, the hydrogen

atom, and others (see e.g. [7, 21, 46, 48, 58, 63]).

The construction of an infinite family of superintegrable systems, such as the TTW

system, is fairly straightforward. We demonstrate the technique with respect to the

TTW system, which begins with the second-order system defined by a Hamiltonian

(see Section 2.1), of the form

H = p2x + p2y − ω2(x2 + y2) +
α

x2
+

β

y2
, (1.1)

where px, py denote the momenta coordinates, and x, y denote the position coordi-

nates. This is the SW system, which is recognised as a seond-order perturbation of the

two-dimensional harmonic oscillator and further, is an example of a superintegrable

Hamiltonian system since it is multi-separable with respect to both Cartesian and

polar coordinates (see Section 2.3). The property of being superintegrable is what we

intend to retain in the construction of a new Hamiltonian system.

To this end, we can transform the Hamiltonian (1.1) to polar coordinates and

replace θ with kθ, where k is some new arbitrary parameter. Such a transformation

of course preserves the property of the system being separable with respect to polar

coordinates, though we now arrive at a new Hamiltonian of the form

H = p2r +
1
r
pr +

1

r2
p2θ − ω2r2 +

1

r2

(
α

cos2 kθ
+

β

sin2 kθ

)
. (1.2)

This is the TTW system. One characterising feature of the TTW system is that much

like the system (1.1), it is still separable with respect to polar coordinates and it still

behaves as a perturbation of the harmonic oscillator. Though this development raises

the question of whether the system remains superintegrable for all values of k. In their

initial publication, Tremblay et al. [66] conjectured and provided strong evidence for

the superintegrability of this system for all rational values of k, a claim which fueled

the activity of researchers who were set out to prove its validity. Indeed, if the system

remained superintegrable then it provided an example of a second order system that

could generate an infinite number of higher order superintegrable systems, which

would work towards the development of a classification theory for superintegrable

systems. The claim was proven to be true in the classical case, where Kalnins et

al. [37] explicitly solved for the higher order first integrals, appearing as polynomials
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in the momenta, by using the structure algebra of first integrals. In this context,

one must determine the order defining when the algebra of first integrals closes with

respect to the Poisson bracket, and find the corresponding structure equations for the

symmetry algebra (see [33] for more details). It was also proven in the quantum case

through a recurrence method introduced by Kalnins et al. (see e.g. [33, 35, 36]). In

this thesis we investigate whether there are values of k for which the system admits

two first integrals of motion quadratic in the momenta. Prior to this thesis, such a

result has not been shown.

In the Euclidean plane, maximal superintegrability requires that a Hamiltonian

system defined by H (see Section 2.1) admits two additional first integrals of motion,

Fi, i = 1, 2 functionally independent and in involution, meaning that dH∧dF1∧dF2 �=
0 and {H,Fi} = XH(Fi) = 0, for i = 1, 2. Note that a Hamiltonian is always a

first integral of motion, a property which can be physically interpreted as a system

demonstrating conservation of energy. For the system given by the Hamiltonian (1.2),

we also readily obtain a second first integral by exploiting the fact that the system

is separable with respect to polar coordinates. Indeed, since (1.2) takes the form of

a natural Hamiltonian, we can use a result by Liouville [42] which yields that such a

system will admit a first integral of motion quadratic in the momenta according to

F (qi, pi) =
1
2
Kij(qi)pipj + U(qi), i, j = 1, 2, (1.3)

with position coordinates qi, momenta coordinates pi, where Kij is a Killing two-

tensor whose normal eigenvectors generate the polar coordinate web (see Section

2.3), and U(qi) is a potential satisfying dU = K̂dV , where K̂ = Kg−1, i.e. K̂ is a

(1, 1)−tensor, which in component form is given by K̂i
j := Ki�g�j. And so, in fact,

there remains only one first integral of motion to find in order for us to conclude

superintegrability of the TTW system.

1.1 Summary of Results

In this thesis we provide a new perspective on the study of joint invariants of Killing

tensors, which are objects originally defined by Smirnov and Yue in 2004 [55], and
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further extended by Adlam et al. [3]. In particular, we establish a relationship be-

tween the geometric and analytic properties of superintegrable Hamiltonian systems,

defined on the Euclidean plane, E2, through the vanishing of joint invariants in the

product space K2(E2) × K2(E2), where K2(E2) denotes the vector space of Killing

two tensors defined on the Euclidean plane (see Section 2.4). We focus our study on

the characterisation of the Smorodinsky-Winternitz potential, where we can readily

establish a link between the arbitrary parameters appearing in the potential and the

parameters in the associated vector space of Killing tensors. In particular, we find

that the more structure we place on the product space K2(E2) × K2(E2), the more

general form a corresponding superintegrable potential is allowed to take, and vice

versa.

As a generalisation of the Smorodinsky-Winternitz potential, we then focus our at-

tention on the Tremblay-Turbiner-Winternitz potential, where we provide a definitive

answer to the following question:

For which values of k is the TTW system multi-separable?

Through the geometric description of a superintegrable potential provided by certain

types of Killing two-tensors (see Chapter 3.1), we find that only when k = ±1, which

in fact reduces the system to the Smorodinsky-Winternitz potential, does the TTW

system retain the property of being multi-separable, in particular, with respect to

both Cartesian and polar coordinates in the canonical position.

1.2 Overview and Historical Development

We begin with a Hamiltonian system defined (on a pseudo-Riemannian manifold M)

by a natural Hamiltonian of the form

H(qi, pi) =
1
2
gijpipj + V (qi), i, j = 1, 2, (1.4)

where (q,p) denote generalised canonical coordinates. A first integral of a Hamil-

tonian system is defined as a smooth function F = F (q,p) which is constant along

the Hamiltonian flow. The flow can be interpreted as the geometric manifestation

of Hamilton’s equations in classical mechanics (see Section 2.1), and so one is often

interested in the explicit form of a Hamiltonian’s first integrals of motion.
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From a physical perspective, the first integrals characterise quantities that are

conserved throughout the motion of a Hamiltonian system, a notion which evokes

some familiar examples of constants of motion such as energy, and both angular

and linear momentum. In a way, the more first integrals a system has, the more

symmetry and structure the system must have. If we can determine n functionally

independent first integrals in involution for a system with n degrees of freedom, then

the system is said to be completely integrable, which means we can explicitly determine

the trajectories or orbits of the system (see e.g. [63]).

In general, an additional geometric structure is required to determine the first inte-

grals of a Hamiltonian system. Some methods which have been successfully employed

include the Lax representation method (see e.g. [26, 52]) and the bi-Hamiltonian ap-

proach (see e.g. [53, 62] and references therein). In this thesis, we will make use of

orthogonal separation of variables in the context of the Hamilton-Jacobi theory to

identify quadratic first integrals of motion, and vice versa (see Section 2.3 for details).

This approach to determining first integrals has a well-established history which we

will discuss in Chapter 2. Furthermore, in Section 2.3 we will present the natural

link between orthogonal separation of variables and Killing two-tensors defined on

the Euclidean plane.

Formally, the search for superintegrable systems in classical and quantum mechan-

ics (in the context of this thesis) also began in 1965, when Frǐs et al. [22] published

a list of superintegrable potentials defined on the Euclidean plane. Two years later,

the study of superintegrable systems defined on three-dimensional Euclidean space,

E
3, was initiated by Winternitz et al. [70] and Makarov et al. [43]. In 1990, these

pioneering works received attention from Evans [21], who was able to extend their

results by performing a systematic search for all maximally superintegrable potentials

on E3 that admitted (at most) quadratic first integrals.

Evans claimed his list of second-order superintegrable systems to be exhaustive

up to the equivalence class of linear transformations [21]. Though, there was one

superintegrable system which did not find itself on Evans’ list: the Calogero-Moser

model. If we let (q1, q2, q3) = (x, y, z) denote canonical Cartesian coordinates, then
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Figure 1.1: The orthogonal coordinate webs in the Euclidean plane, in the canonical
position, arranged according to their number of singular points. Clockwise from top
left: elliptic-hyperbolic, parabolic, polar, and Cartesian.

the Calogero-Moser system is defined in E3 by a natural Hamiltonian, i.e.

H = 1
2
(p2x + p2y + p2z) + V (x, y, z)

with potential given by

V (x, y, z) =
1

(x− y)2
+

1

(y − z)2
+

1

(z − x)2
, (1.5)

which was well-known to be superintegrable at the time [71].

The reason such a model was overlooked by Evans’ method was due to the fact

that he assumed the associated Killing two-tensors would be in the canonical form
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[2]. This assumption in [21] and [22] excluded the possibility that a Hamiltonian

system could be separable in an orthogonal coordinate system which was in a non-

canonical position. We direct the reader to Figure 1.2 for examples of such coordinate

systems on the Euclidean plane. Indeed, the Calogero-Moser system is an example

of a system that admits five first integrals of motion of the form (1.3), where the

associated Killing tensor that comes from solving the compatibility condition gives

rise to five non-canonical characteristic Killing tensors (see [2,28] for more details on

the Calogero-Moser system; see Section 2.3 and 2.4 for the theory).

Naturally, this motivates a generalisation of the aforementioned approach which

makes use of non-canonical Killing tensors. In 2005, Adlam [1] began this endeavor

and provided a more complete list of such superintegrable potentials defined on the

Euclidean plane. Nevertheless, the case when a potential admits orthogonal separa-

bility with respect to elliptic-hyperbolic coordinates in the canonical position, and

polar coordinates in a general position has not been completely classified2.

As such, we seek to further develop the growing collection of superintegrable

potentials defined on E2 by providing a new interpretation of their functional form

characterised via the invariant theory of Killing tensors. In particular, we derive

a relationship between the joint invariants defined on the product space of Killing

two tensors (consisting of Killing tensors compatible with a potential V ), and the

arbitrary parameters of a superintegrable potential which is multi-separable in two

orthogonal system of coordinates.

1.3 Notation and Conventions

In this thesis, we let M denote an n-dimensional pseudo-Riemannian manifold, mean-

ing thatM is a smooth manifold endowed with a non-degenerate covariant symmetric

metric tensor g. The tangent bundle of M, T (M), is defined as the disjoint union of

the tangent spaces at all points of M:

T (M) =
⊔
p∈M

Tp(M),

2The choice of which coordinate system is in the canonical position is irrelevant, only that one
system is in a general position.
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Figure 1.2: Examples of orthogonal coordinate webs in the Euclidean plane, in some
general position. Clockwise from top left: elliptic-hyperbolic, parabolic, polar, and
Cartesian.

where the tangent space Tp(M) is the set of all linear maps X : M → R satisfying

for all f, g ∈ M
X(fg) = f(p)Xg + g(p)Xf,

i.e. the set of all derivations of M at p. An element of Tp(M) is called a tangent

vector. Whence, we also have the cotangent bundle of M, defined as the disjoint

union of the cotangent spaces at all points of M:

T ∗(M) =
⊔
p∈M

T ∗
p (M),
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where the cotangent space is the dual space of Tp(M). Recall that a covector is

a real-valued linear functional on a space, i.e. a linear map ω : Tp(M) → R. A

significant fact which helps to identify T ∗
p (M) for p ∈ M is then that given a basis

for the tangent space, (Ei), the covectors (εi) defined by

εi(Ej) = δij =

{
1 if i = j,

0 if i �= j

form a basis for T ∗
p (M), p ∈ M.

Our results will take place in the Euclidean plane, so in general we will take

M = E2 where the metric tensor’s components then become trivial, e.g. in Cartesian

coordinates the components of the metric tensor are gij = δij where δij denotes the

familiar Kronecker delta. The remaining content of this section is devoted to the

presentation of some specific definitions and theorems relevant to the later sections.

1.3.1 Tensors and Index Notation

Following the presentation in [40], a multilinear 3 function

T : T ∗
p (M)× . . .× T ∗

p (M)︸ ︷︷ ︸
s copies

×Tp(M)× . . .× Tp(M)︸ ︷︷ ︸
r copies

→ R

defined at a point p ∈ M which maps r covectors and s vectors to a real number

is called a tensor of valence (r, s), denoted T r
s . In the case that r or s is identically

zero, we will refer to such a tensor as a covariant s-tensor or contravariant r-tensor,

respectively. As a few familiar examples, every covector ω : Tp(M) → R is identified

as a covariant 1-tensor, the dot product on Rn is a covariant 2-tensor, as a bilinear

form, and the determinant, considered as a function on n vectors, is a covariant

n-tensor on Rn.

In Section 3.3 we will require all tensor components to be written in polar coordi-

nates, and so we will make use of the usual tensor transformation law to acquire the

appropriately defined objects. For example, the metric tensor defined with respect to

a new set of coordinates (q̃1, . . . , q̃n) is determined with respect to the old coordinates

3A map is said to be multilinear if it is linear with respect to each of its arguments, e.g. a
multilinear function in two variables is a bilinear function.
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(q1, . . . , qn) via

g̃ij = Λk
iΛ

�
jgk�,

where g̃ij denotes the metric tensor in the new coordinates, and the Λk
i denotes the

usual Jacobian matrix defined according to

Λk
i =

∂qk

∂q̃i
, (1.6)

relating “new” and “old” coordinates.

As already noted above, we will frequently make use of the Einstein summation

convention for tensor indices, by which any repeated upper and lower index implies

summation over that index from 1 to n. As an example which will prove useful

in Section 2.4, we have the components of a general Killing tensor defined on the

Euclidean plane in Cartesian coordinates (q1, q2) = (x, y) as

Kij = Aij + 2ε(i�B
j)q� + Cεimε

j
kq

mqk,

where

Aij =

(
β1 β3

β3 β2

)
, Bi =

(
β4

−β5

)
, C = β6,

and εij = gi�ε�j , where εij denotes the familiar two-dimensional Levi-Civita symbol4.

Indeed, making use of the Einstein summation convention we can explicitly write out

the four components of this general Killing tensor as follows

K11 = A11 + 2ε12B
1q2 + Cε12ε

1
2q

2q2

= β1 + 2β4y + β6y
2,

K12 = A12 + ε12B
2q2 + ε21B

1q1 + Cε12ε
2
1q

1q2

= β3 − β5y − β4x− β6xy,

K22 = A22 + 2ε21B
2q1 + Cε21ε

2
1q

1q1

= β2 + 2β5x+ β6x
2.

We have also made use of round brackets enclosing tensor indices to imply symmetri-

sation according to

T(ij) =
1
2
(Tij + Tji),

4In particular, this is a pseudotensor which is antisymmetric under the exchange of any two slots:
εij = −εji. Its values are given by ε12 =

√
|g|, where |g|= det gij .[68]
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In an analogous manner, anti-symmetrisation is denoted by the use of square brackets

T[ij] =
1
2
(Tij − Tji).

Lastly we will discuss a few basic tensor operations. Tensors of the same valence can

be added or subtracted by summing corresponding components in the anticipated

way. Multiplication of tensors introduces the tensor product operation ⊗ as follows.

If T ∈ T r1
s1
(M) and S ∈ T r2

s2
(M), then their tensor product T ⊗ S is a new tensor in

T r1+r2
s1+s2 (M) defined by

(T ⊗ S) (ω1, . . . , ωr1, η1, . . . , ηr2 ;X1, . . . , Xs1, Y1, . . . , Ys2)

= T (ω1, . . . , ωr1, X1, . . . , Xs1)S(η1, . . . , ηr2, Y1, . . . , Ys2).

Of particular importance in Section 2.4 will be the symmetric tensor product. If

T1 ∈ Ts1(M) and T2 ∈ Ts2(M), then their symmetric tensor product � is a symmetric

tensor T1 � T2 given by

(T1 � T2)(X1, . . . , Xs1+s2)

=
1

(s1 + s2)!

∑
σ∈Ss1+s2

T1(Xσ(1), . . . , Xσ(s1))T2(Xσ(s1+1), . . . , Xσ(s1+s2)),

where Sn denotes the symmetric group on a set of n elements. It can be shown

that the symmetric tensor product is associative, commutative, and bilinear. An

analogous construction is defined by the wedge product ∧ of tensors, which yields an

antisymmetric tensor (see e.g. [40]).

We remark that the lowering and raising of tensor indices will be done with the

covariant metric gij and its inverse, the contravariant metric, respectively. For ex-

ample, given a vector V with components V k relative to polar coordinates in the

Euclidean plane, its corresponding 1-form Ṽ has components Vi given by

Vi = gikV
k,

where gik is the metric tensor in polar coordinates, i.e g =

(
1 0

0 r2

)
. In this case

we see that V1 = V 1 and V2 = r2V 2.
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1.3.2 The Lie Bracket and its Generalisation

The covariant derivative defines how a vector field changes, i.e. it is a generalisation

of the directional derivative from vector calculus. It can be defined as a connection

∇ on the tangent bundle of a manifold, where a connection provides a prescription

for moving vectors from one point to another on the manifold. The definition of a

connection on a manifold does not require that a metric be defined on the manifold,

but in the case that a non-degenerate metric is defined on a manifold, then there

exists a unique torsion-free connection called the Levi-Civita connection. This choice

of connection is defined by ∇g = 0, i.e. the choice of connection with respect to which

the covariant derivative of the metric vanishes. The components of the Levi-Civita

connection are given by the Christoffel symbols,

Γi
jk =

1
2
gi�(g�j,k + g�k,j − gjk,�),

so that with this choice the covariant derivative of a covector field ωi is given by

ωi;j = ∇jωi = ωi,j − Γk
jiωk,

where a comma followed by an index, e.g. “,j” denotes partial differentiation with

respect to the coordinate qj. The covariant derivative of a contravariant vector field

V i is given by

V i
;j = ∇jV

i = V i
,j + Γi

jkV
k.

This can be generalised for tensor fields of higher valence (see e.g. [40]). If we work in

Cartesian coordinates for E2 then all components of the Levi-Civita connection vanish,

and so all covariant derivatives reduce to simple partial derivatives. Accordingly,

the covariant derivative gives us a way to “compare” vectors in neighboring tangent

spaces, i.e. it gives a generalisation of parallel transport (see e.g. [40]). The Lie

derivative is then another type of derivative between vector fields that one can define

on a manifold. In particular, it is a canonical way of carrying out such a comparison

that does not depend on the existence of a connection. Explicitly, the Lie derivative

of a vector field Y along the flow of X is given by

LXY = XμY ν
,μ − Y μXν

,μ ≡ [X, Y ]ν ,
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where [ , ] denotes the Lie bracket which defines a new vector field as the commutator

of two vector fields. It can be shown that the Lie bracket is bilinear, anti-symmetric,

and satisfies the Jacobi identity.

We now introduce the Schouten bracket and discuss a few of its properties. The

Schouten bracket for contravariant tensor fields is a generalisation of the Lie bracket

for vector fields. Formally, the Schouten bracket is defined as a real bilinear operator

[ , ] : T p(M)× T q(M) → T p+q−1 whose operation on a pair of contravariant tensor

fields P ∈ T p(M), Q ∈ T q(M) is defined by [54]

[P,Q]i1...ip+q−1 =

p∑
k=1

P (i1...ik−1|μ|ik...ip−1∂μQ
ip...ip+q−1)

+

p∑
k=1

(−1)kP [i1...ik−1|μ|ik...ip−1∂μQ
ip...ip+q−1]

−
q∑

�=1

Q(i1...i�−1|μ|i�...iq−1∂μP
iq...ip+q−1)

−
q∑

�=1

(−1)pq+p+q+�Q[i1...i�−1|μ|i�...iq−1∂μP
iq...ip+q−1], (1.7)

where any index located between vertical bars means that the index is excluded from

any anti-symmetrisation or symmetrisation. If we take P and Q to be tensors of

type (p, 0) and (q, 0), respectively, then the Schouten bracket [54] of P and Q yields

a tensor, [P,Q], of type (p + q − 1, 0). As an example, if we let P and Q be tensors

with p = 1, so that P is now a vector field, and allow q to remain arbitrary, then by

definition of the Schouten bracket we have that

[P,Q]k1...kq = (LPQ)k1...kq .

And so indeed, when q = 1, we see that we obtain the Lie bracket of the vector fields

P and Q.

In general, a Killing tensor field of valence p defined on (M, g) is a symmetric

(p, 0) (contravariant) tensor field K satisfying the generalised Killing tensor equation

given by

[g,K] = 0, (1.8)

where [ , ] denotes the Schouten bracket. Since the Schouten bracket is R−bilinear,

the set of solutions to the system of overdetermined PDEs given by (1.8) forms a
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vector space over R. We denote the vector space of valence p Killing tensor fields

defined on M by Kp(M).

1.3.3 Poisson Manifolds

Consider the commutator of respective Hamiltonian flows in the classical Poisson

bracket (see Section 2.1). First we define a Poisson bivector as a (2,0)-tensor,

P0 = P ij
0

∂

∂qi
∧ ∂

∂pj

defined on M which satisfies

[P0, P0] = 0,

where [ , ] denotes the Schouten bracket. Any smooth manifold which admits a

Poisson bivector, or the general Poisson bracket defined for smooth functions f, g :

M → R via

{f, g}P0
= P ij

0

∂f

∂qi
∂g

∂pj
,

is called a Poisson manifold. If we identify P0 as the canonical Poisson bivector,

then the previous equation becomes

{f, g}P0
=

∑
i

∂f

∂pi

∂g

∂qi
− ∂g

∂pi

∂f

∂qi
.

Following [40], we can construct a smooth vector field on M for some smooth function

H : T ∗(M) → R via

XH = [P0, H ],

where the flow of this Hamiltonian vector field is called its Hamiltonian flow. With

respect to (local) coordinates xα = (qi, pi), the coordinates of the flow are then given

as

X i
H = P iα ∂H

∂xα
.

A Poisson manifold endowed with a smooth function H defines a Hamiltonian system,

where the function H is aptly denoted as the Hamiltonian of the system. The integral

curves of the Hamiltonian flow are then called the orbits or trajectories of the system.

The Lie bracket and Poisson bracket can be shown to admit the following rela-

tionship:
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Proposition 1.9 (cf. [40]). Let F,G : M → R be smooth functions, where M is a

Poisson manifold. Denote their respective Hamiltonian flows by XF and XG. We

then have that

[XF ,XG] = −X{F,G},

where [ , ] is the Lie bracket from the previous section, and { , } is the Poisson

bracket.

A proof is provided in [40].



Chapter 2

Theoretical Overview

In this chapter we provide the reader with the mathematical framework on which

this study is built. This begins with a brief review of the Hamiltonian formulation

of classical mechanics, which is the context of the problems we are interested in

studying. We define and discuss what it means to solve a Hamiltonian system, which

motivates our review of the Hamilton-Jacobi (HJ) theory of separability as a powerful

method for solving particular Hamiltonian systems. The HJ theory will allow us to

explicitly define what is meant in saying that a system is separable with respect to a

system of coordinates on a smooth manifold, where we focus on results relevant to the

Euclidean plane. In this context, we present theorems by Jacobi, Eisenhart, Liouville,

and Benenti which establish the link between orthogonal separation of variables and

Killing two-tensors defined on E2. This will motivate the final section, where we

present the reader with a review of the invariant theory of Killing tensors. One goal

in this final section is to introduce the method of moving frames by using a recursive

version of it to derive the fundamental invariants of the vector space of Killing tensors

of valence two under the action of the isometry group on E2, SE(2).

2.1 Hamiltonian Mechanics

In the Lagrangian formulation of classical mechanics the state of a mechanical system

defined on an n-dimensional manifold M is completely determined once we specify its

generalised position and velocity coordinates. In the most general formulation, this

is accomplished by defining a function, L(qi, q̇i), of the position coordinates qi and

their velocities q̇i, where the dot denotes a derivative with respect to time, denoted

by t. This function L is called the Lagrangian of the system and essentially defines a

function from the tangent bundle on a manifold M, denoted by T (M), to R.

17
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The evolution of a system can then be determined by employing Hamilton’s prin-

ciple or the principle of least action. We take the functional (see e.g. [39])

S[qi] =

∫ tf

ti

L(qi, q̇i)dt, (2.1)

to define the action of the system, and from it compute the functional derivative of S

with respect to each of the qi coordinates. By Hamilton’s principle we have that the

coordinates evolve in such a way (as functions of t) for which S remains stationary

with respect to variations in qi that leave the initial and final time values unaffected.

In other words, the action should satisfy δS = 0, where δ represents the variation

with respect to qi. Effecting this computation leads to the well-known Euler-Lagrange

equations, or the equations of motion, for a given system, namely

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
= 0. (2.2)

In the Hamiltonian formulation of classical mechanics, we consider a slightly dif-

ferent set of generalised coordinates. In particular, we derive the canonical momenta

coordinates pi from the Lagrangian L via

pi =
∂L

∂q̇i
. (2.3)

In this way, the canonical momenta coordinates can be taken as defining a covector

field in the cotangent bundle T ∗(M). The relationship between the Lagrangian and

Hamiltonian formulations is then given by the Legendre transformation between their

respective coordinates, namely a smooth function H : T ∗(M) → R defined by

H(pi, q
i) = piq̇

i − L(qi, q̇i), (2.4)

where, for the purpose of this thesis, we have assumed that H has no explicit time

dependence. This function H is called the Hamiltonian of the system. Through

equation (2.3) we see that the time derivatives appearing in (2.4) can be taken as

functions of the generalised position and momenta coordinates. Indeed, substituting

(2.3) into the Euler-Lagrange equations (2.2) and taking the partial derivative of (2.4)

with respect to qi yields the evolution of our momenta coordinates,

ṗi = −∂H

∂qi
. (2.5)
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Similarly, we can take a partial derivative of (2.4) with respect to pi to obtain the

evolution equation of our position coordinates, namely

q̇i =
∂H

∂pi
. (2.6)

Together, the equations (2.5) and (2.6) are called Hamilton’s canonical equations.

An important observation to make is that Hamilton’s equations form a set of 2n

first-order differential equations for the 2n unknown functions qi(t) and pi(t) of the

system. This system of first-order differential equations thus replaces the n second-

order differential equations (2.2) admitted by the Lagrangian treatment.

Hamilton’s equations define a vector field on the cotangent bundle T ∗(M). The

2n-dimensional phase space of a Hamiltonian, admitted by generalised position co-

ordinates qi and generalised momenta coordinates pi, is an example of a symplectic

manifold, which is defined as a smooth manifold with a smooth, non-degenerate,

closed 2-form. In particular, we can construct such a 2-form via

ω =
n∑

i=1

dpi ∧ dqi, (2.7)

where d denotes the exterior derivative and ∧ denotes the exterior, or wedge, product.

This is the canonical symplectic 2-form. A fundamental result in the theory of sym-

plectic structures, due to Darboux (see e.g. [40]), states that for any 2n-dimensional

symplectic manifold with symplectic form ω there exist local canonical coordinates

such that ω assumes the canonical form (2.7). Such coordinates are called Darboux

coordinates, or canonical coordinates. Further, the canonical symplectic 2-form ω in-

duces a pairing between the tangent and cotangent bundle, namely a bivector field

on the manifold called the canonical Poisson bivector, which is obtained by taking

the inverse of the canonical symplectic form

ω−1 =

n∑
i=1

∂

∂qi
∧ ∂

∂pi
≡ P0. (2.8)

Using the Poisson bivector, we can define the Poisson bracket for two smooth functions
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f and g defined on the cotangent bundle, by

{f, g}P0
= P ij

0

∂f

∂qi
∂g

∂pj
,

=
∑
i

∂f

∂pi

∂g

∂qi
− ∂g

∂pi

∂f

∂qi
.

Given a symplectic manifold M with a canonical Poisson bivector P0 (2.8), if we have

a smooth function H : T ∗(M) → R, then

XH = [P0, H ]

=
∑
i

∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi
, (in local coordinates) (2.9)

defines the Hamiltonian vector field, where [ , ] denotes the Schouten bracket defined

in Section 1.3. A symplectic manifold M with a Hamiltonian vector field defined

with respect to a Poisson bivector, and smooth function H : T ∗(M) → R, namely

{M,XH , H}, comprise a classical Hamiltonian system. This development also yields

the condition for a smooth function F : T ∗(M) → R to be an integral of motion.

Indeed, to remain constant during the evolution of the system the Poisson bracket of

a time-independent F with respect to the Hamiltonian H must vanish,

{H,F}P0
= XH(F ) = 0. (2.10)

The proof of this statement is straightforward upon considering the total time deriva-

tive of F = F (qi, pi; t),

dF

dt
=

∂F

∂t
+

∑
i

∂F

∂qi
q̇i +

∂F

∂pi
ṗi.

By Hamilton’s equations (2.6) and (2.5) this takes the form

dF

dt
=

∂F

∂t
+ {H,F}P0

, (2.11)

where

{H,F}P0
=

∑
i

∂H

∂pi

∂F

∂qi
− ∂F

∂pi

∂H

∂qi
,

is the Poisson bracket of H and F with respect to a canonical Poisson bivector P0.

In the case that F is time-independent, (2.10) follows immediately from (2.11).
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Hamiltonian systems play an essential role in classical and quantum mechanics and

the theory of differential equations. They can be used to describe simple Newtonian

systems such as the motion of a pendulum, or a heavy symmetrical top with a fixed

lower point, and other dynamical systems such as planetary orbits arising in celestial

mechanics. In this thesis, we will focus on a class of Hamiltonian systems whose

Hamiltonian functions take the form of a natural Hamiltonian. To establish this

distinction we will first note what it means in the case of the Lagrangian formalism,

as this readily motivates the interpretation in the Hamiltonian formalism.

In the context of the Lagrangian formalism, a natural Lagrangian is one which

takes the form

L(qi, q̇i) = 1
2
gij q̇

iq̇j − V (qi), (2.12)

where gij denotes the covariant components of the associated metric tensor g, which

is a function of the coordinates qi, and V (qi) represents the potential energy, which

characterises the interaction between the particles in a system. We remark that in

physical terms the Lagrangian is defined as the difference between kinetic and poten-

tial energy of a mechanical system, which explains the aforementioned terminology.

With this identification, the first term of (2.12) can be interpreted as the kinetic en-

ergy of the system. For the natural Lagrangian (2.12) the Euler-Lagrange equations

(2.2) written in covariant form appear as

q̈i + Γi
jkq̇

j q̇k = gijV,j, (2.13)

where Γi
jk are the components of the Levi-Civita connection discussed in Section

1.3. In the case that we have a vanishing potential, i.e. a system free of particle

interactions, (2.13) takes the form of the geodesic equation, which is very familiar:

the geodesic equation models the evolution of a system with n degrees of freedom

and no external forces. Through the Legendre transformation (2.4) we then obtain

the equivalent natural Hamiltonian, which assumes the form

H(qi, pi) =
1
2
gijpipj + V (qi), (2.14)

which our discussion above makes it clear that the Hamiltonian can be interpreted as

the total energy of our system, i.e. the sum of kinetic and potential energy, respec-

tively.
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Neither the Lagrangian nor the Hamiltonian formulation present a simple system

of equations to solve. Even though the Hamiltonian formulation reduces the Hamil-

tonian system to a set of first-order equations, the fact remains that we still must

solve a coupled set of non-linear ordinary differential equations. This prompts the

need for methods by which we can complete the complicated task of integrating the

equations of motion. In the case of systems with two degrees of freedom, we can

focus on the method of separation of variables in the context of the Hamilton-Jacobi

theory, which will allow us to link integrability of the equations of motion with the ex-

istence of an associated valence two Killing tensor. This link is in part a result of the

Arnold-Liouville theorem [4] which states that a Hamiltonian system with n degrees

of freedom will be integrable by quadratures if it admits n functionally independent

first integrals of motion in involution with the Hamiltonian.

2.2 Hamilton-Jacobi Theory

The strategy behind the Hamilton-Jacobi theory is to rewrite Hamilton’s equations,

(2.5) and (2.6) in a revealing form through a choice of a new system of coordinates

(see e.g. [4, 39]). In particular, we will require a canonical transformation of the

coordinates, i.e. a transformation that leaves Hamilton’s equations invariant. Indeed,

a canonical transformation would allow us to obtain an equivalent formulation of

classical mechanics just as in the previous section. Explicitly, if we change to a

new system of coordinates (Qi, Pi) through a canonical transformation then the new

Hamiltonian K must satisfy

Q̇i =
∂K

∂Pi
, Ṗi = − ∂K

∂Qi
.

To this end we can consider the action (2.1) as a function of the coordinates, i.e.

independent of time. We will then study the change in the action S, defined in the

previous section, from one path to a neighbouring path, which is readily calculated

as

δS =

[
∂L

∂q̇
δq

]tf

ti

+

∫ tf

ti

(
∂L

∂q
− d

dt

∂L

∂q̇

)
δq dt.

Since the path of the system satisfies the Euler-Lagrange equations (2.2), then

the integral in δS vanishes. If we consider the canonical momenta coordinates (2.3)
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then we see that the above equation gives us, for an arbitrary number of degrees of

freedom,
∂S

∂qi
= pi. (2.15)

From the definition of the action (2.1) we also have the necessary link between this

alternative formulation and the Lagrangian formulation. In particular we see that

the time-derivative of the action S(qi, t) is equal to the Lagrangian of Section 2.1.

Namely,

dS/dt = L. (2.16)

Combining this with (2.15) then yields the following relationship,

dS(qi, t)

dt
=

∂S

∂t
+

∂S

∂qi
dqi

dt

=
∂S

∂t
+ piq̇

i. (2.17)

Now consider that we seek a canonical transformation. In this case by imposing

that these new coordinates (Qi, Pi) also satisfy the principle of least action we will

derive an analogous relationship which must hold with respect to the new Hamilto-

nian. Thus we can take the difference between the new action and the original action,

which we write as

piq̇
i − PiQ̇

i = H −K +
dF

dt
,

where F = F (t, qi, pi, Q
i, Pi) defines a generating function that characterises the

canonical transformation used to define the new coordinates. We can determine the

appropriate Legendre transformation in the above equation by first taking our new

generating function to be G = F +Piq
i, so that it depends on the old position coordi-

nates and the new momenta coordinates. With respect to the canonically conjugate

quantities qi and Pi, we then arrive at the following system of equations

pi =
∂G

∂qi
, Qi =

∂G

∂Pi

, K = H +
∂G

∂t
. (2.18)

The generating function will be chosen in such a way that the new Hamiltonian K is

identically zero1 (see e.g. [39]). In this case the above (final) equation (2.18) yields

1This choice refers to a system which has thus been linearised.
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(replacing with G = S)
∂S

∂t
+H

(
qi,

∂S

∂qi

)
= 0, (2.19)

which one can take as the Hamilton-Jacobi equation, though in this thesis, we will

reserve this term for another version of the equation.

We proceed a bit more in the derivation upon noting that the Hamilton equations

(2.5) and (2.6) in the new coordinates become trivial, i.e. Q̇i = Ṗi = 0, so that

Qi = di and Pi = ci, where di and ci represent an n-tuple of constants. Thus, we can

write

S = S(t, qi; ci), pi =
∂S

∂qi
, di =

∂S

∂ci
.

Since the natural Hamiltonian (2.14) does not have any explicit time dependence,

then we can let

S(t, qi; ci) = S0(t; ci) +W (qi, ci),

which makes it clear that the time dependence is trivial. In particular we can choose

S0(t;E) = −Et, which corresponds to the separation of the time variable since E

only represents a constant. With this choice equation (2.19) then takes the form of

what we will refer to as the Hamilton-Jacobi equation

H

(
qi,

∂W

∂qi

)
= E. (2.20)

A complete integral of the HJ equation will then be of the form W = W (qi; ci) which

satisfies the non-degeneracy condition

det

(
∂2W

∂qi∂cj

)
n×n

�= 0. (2.21)

By Jacobi’s theorem once a complete integral is known then one can compute

the motion of the system explicitly, i.e. determine the trajectories of the Hamiltonian

system. And so finding a complete integral to the Hamilton-Jacobi equation affords

us an alternative way to derive a solution to the associated Hamiltonian system.

Theorem 2.22 (Jacobi). Let W (qi; ci) be a complete integral of the Hamilton-Jacobi

equation (2.20) and let t0 and d1, . . . , dn−1 be arbitrary constants. Then the functions

qi = qi(t; ci, d
i)
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defined by the relations

t− t0 =
∂W

∂E
, di =

∂W

∂ci
, i = 1, . . . , n− 1

together with the functions

pi =
∂W

∂qi
, i = 1, . . . , n,

form a general solution of the canonical Hamilton equations, (2.5) and (2.6).

This result must be considered in connection with the Arnold-Liouville theorem

which states that a system in n degrees of freedom will be integrable by quadratures if

it has n functionally independent first integrals in involution (see, e.g [4]). In our case

of systems with two degrees of freedom, i.e. defined on the Euclidean plane, we have

as a corollary to the Arnold-Liouville theorem that finding one first integral F inde-

pendent of the Hamiltonian H renders the system integrable by quadratures. Other

criterion and results which determine the integrability of a general n-dimensional

pseudo-Riemannian manifold have also been established by Stäckel in the 1890’s [59],

and Levi-Civita in the early 1900’s [41].

A powerful way of integrating a Hamiltonian system is crafted through an ap-

propriate canonical transformation that places the associated HJ equation into a

separable form. In this case the HJ equation is said to be integrable via separation

of variables with respect to the newfound separable coordinates, which we will denote

as ui. In this situation the separation ansatz for integrating the HJ equation takes

an additive form according to

W (ui; ci) = W1(u
1; ci) +W2(u

2; ci) + · · ·+Wn(u
n; ci), (2.23)

which is subject to the non-degeneracy condition (2.21). Any Hamiltonian system

for which there exists such a system of separable coordinates ui on M that yields a

complete integral of the form (2.23) is termed to be separable. Orthogonal separation

of variables occurs in the case that the canonical transformation is a point transfor-

mation that leaves the metric tensor g diagonalised with respect to the new separable

coordinates. Such a Hamiltonian system is said to be orthogonally separable. In the

next section we elaborate on the historical development of separation of variables on

E2.
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2.3 Separability on the Euclidean Plane

One of the primary results of relevance to the present study comes from Liouville in

1846 [42]. Liouville studied Hamilton’s equations for the motion of a particle on a

curved surface which was under the influence of a time-independent potential. He

found that if the metric and potential of a corresponding Hamiltonian function took

a special (separable) form then the Hamiltonian system was solvable.

Theorem 2.24 (Liouville). Let M be a two-dimensional manifold with local position

coordinates (u, v) and corresponding canonical momenta coordinates (pu, pv). If a

Hamiltonian function is of the form

H = (A(u) +B(v))−1 [1
2

(
p2u + p2v

)
+ C(u) +D(v)

]
, (2.25)

where A(u), B(v), C(u) and D(v) are arbitrary smooth functions, then the Hamilto-

nian system given by {M,XH , H} can be solved by quadratures.2

Through the equivalence of the Hamilton-Jacobi theory, Liouville’s result also

demonstrated that the associated HJ equation of (2.25) would be solvable under

additive separation of variables. In covariant form, we can write the metric of the

kinetic part of (2.25) as

ds2 = (A(u) +B(v))(du2 + dv2), (2.26)

so that any potential which appears as in the Hamiltonian (2.25), or any metric of

the form (2.26) is said to be in the Liouville form.

In 1881, Morera proved the converse of Liouville’s result [47]. This established

that if a system defined by a natural Hamiltonian (2.14) was separable in the context

of HJ theory then its metric g and potential V (qi) would take the Liouville forms

with respect to the separable coordinates. Nevertheless, Morea’s equivalence did

not provide a way of determining the separable coordinates, nor did it address the

possibility that a Hamiltonian system could be separable in some other system of

coordinates, with respect to which the metric and potential were not in the Liouville

2By quadratures, one means through algebraic means or by taking an integral.
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form. Bertrand and Darboux, in 1857 [6] and 1901 [16], respectively, worked to

address these concerns.

Bertrand searched for natural Hamiltonian systems (2.14) that could admit a first

integral of motion which took the form

F (qi, pi) =
1
2
Kij(qi)pipj + U(qi), i, j = 1, 2, (2.27)

for some K and U in the coordinates qi. Such a first integral is at most quadratic

in the momenta. Bertrand showed that subject to the forms (2.14) and (2.27), the

vanishing of the Poisson bracket of H and F , namely {H,F}P0
= 0, imposed two

conditions on the Hamiltonian system. The first of these is the Killing tensor equation

[g,K] = 0, (2.28)

where [ , ] denotes the Schouten bracket presented in Section 1.3. The second is the

compatibility condition

d
(
K̂dV

)
= 0, (2.29)

which in (local) coordinates yields what is called the Bertrand-Darboux PDE (see

e.g. [56]). The compatibility condition appears as the integrability condition imposed

on U(qi) in (2.27) by requiring that H and F be in involution, namely

dU = K̂dV, (2.30)

where K̂ is the (1,1)-tensor defined by K̂ := Kg−1, i.e. K̂i
j := Ki�g�j. Together,

the Killing tensor equation (2.28) and (2.30) are equivalent to the vanishing of the

Poisson bracket of H and F subject to (2.14) and (2.27).

In 1901, Darboux solved the linear, second-order PDE admitted by (2.29) using

the method of characteristics [16], by first simplifying the PDE through a coordinate

rotation and translation. This essentially had the effect of transforming the associated

Killing tensor Kij in (2.27) to a canonical form, which he could then diagonalise to

derive the appropriate separable coordinates (u, v) [56]. In a systematic way, Darboux

arrived at a potential satisfying (2.29) with respect to a canonical Killing tensor whose

normal eigenvectors generated elliptic-hyperbolic coordinates.
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Indeed, the problem that Darboux solved was to determine the most general

potential which would admit orthogonal separation of variables with respect to an

elliptic-hyperbolic coordinate system. This method is very familiar in classifying

systems of superintegrable potentials, where one requires that a system be separable

with respect to some particular orthogonal coordinate systems and then solves for the

most general potential compatible via (2.29) (see Section 3.1). The complicated part

of the above procedure rests in solving (2.29), which yields a non-linear second-order

PDE when expressed in local coordinates.

In 1934, a new approach to this problem was presented in a famous paper by

Eisenhart [20] who provided an intrinsic characterisation of orthogonally separable

Hamiltonian systems. Eisenhart worked to extend the results of Stäckel [60], who

studied the orthogonal separability of the HJ equation. Stäckel established that a

necessary condition for a system defined by a natural Hamiltonian to be orthogonally

separable was that it admits n − 1 quadratic first integrals of the form (2.27), all

functionally independent and in involution with H . Eisenhart observed that a smooth

function F ∈ T ∗(M) in the restricted form

F (qi, pi) =
1
2
Kij(qi)pipj i, j = 1, 2, (2.31)

would be a first integral of the geodesic Hamiltonian,

H(qi, pi) =
1
2
gijpipj , (2.32)

if and only if the functionsKij in (2.31) were the components of a characteristic Killing

tensor field K ∈ K2(M). This result is readily established upon computation of the

Poisson bracket of F and H in the assumed forms (2.31) and (2.32), respectively. The

pivotal result Eisenhart established in the theory of orthogonal separation of variables

is given by

Theorem 2.33 (Eisenhart). The Hamiltonian system defined by a geodesic Hamil-

tonian (2.32) is orthogonally separable if and only if it admits n − 1 functionally

independent first integrals of motion taking the form (2.31), such that

(1) all corresponding Killing two-tensors have real and pointwise distinct (almost

everywhere) eigenvalues,
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(2) all corresponding eigenvector fields of the Killing two-tensors are normal,

(3) the Killing two-tensors defined by the n − 1 first integrals all have the same

eigenvectors.

A Killing tensor satisfying (1) and (2) is called a characteristic Killing tensor.

Eisenhart’s results demonstrated that Killing tensor fields would play a crucial role

in determining the orthogonal separability of a Hamiltonian system. In 1997, Benenti

[5] extended this result to Hamiltonian systems defined by a natural Hamiltonian,

i.e. with non-vanishing potential.

Theorem 2.34 (Benenti). The Hamiltonian system defined by a natural Hamiltonian

(2.14) is orthogonally separable if and only if there exists a characteristic Killing two-

tensor K such that

d
(
K̂dV

)
= 0.

The requirement of n − 1 first integrals in Eisenhart’s theorem is reduced to the

existence of a single characteristic Killing tensor in Benenti’s theorem. To determine

such a Killing tensor, one can start with the n − 1 Killing tensors afforded by the

n− 1 first integrals of motion, and take a linear combination of these Killing tensors.

If we let K1, . . . , Kn−1 be as in Theorem 2.33, then adding the metric tensor g of M
will yield a basis generating an n-dimensional vector subspace of K2(M). A general

Killing tensor in this space

K = g +

n−1∑
i=1

K i,

is then guaranteed to still have real and distinct eigenvalues and the same eigenvectors

admitted by the individual K i, i = 1, . . . , n− 1. The condition that the eigenvectors

be normal, that is,

Ei ∧ dEi = 0, i = 1, . . . , n (no summation), (2.35)

where Ei denote the eigenforms of K, then implies that the eigenforms generate n

foliations3. These will consist of (n − 1)-dimensional hypersurfaces orthogonal to

3In the case of E2, we have that (2.35) is always satisfied, by dimensional considerations, and so
that the eigenvectors of Killing tensors defined on E2 are always normal.
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the eigenvectors of each Killing tensor (see [8, 9] for details). This is the geometric

construction of the orthogonal coordinate web. Such a web defines the separable

coordinates with respect to which an associated HJ equation separates.

These two theorems establish the explicit role characteristic Killing tensors play

with regards to the HJ theory of orthogonal separation of variables, and essentially

provides a link between their algebraic and geometric properties. In the next section

we will explore this link through the theoretical framework of the invariant theory of

Killing tensors with an emphasis on defining joint invariants, as first introduced in

[55], and later utilised in the theory of superintegrable Hamiltonian systems in [3].

2.4 Invariant Theory of Killing Tensors

We begin this section with a brief historical account on the emergence of Killing

tensor fields in mathematics. For a more in-depth account of this history, we direct

the reader to [27], on which this introduction is based.

In the 1880s, Wilhelm Killing began an extensive study of non-Euclidean geometry

in which he sought to develop a theory of space forms, which in modern language is a

complete Riemannian manifold M with constant curvature. Killing began his study

analytically by studying the behaviour of infinitesimal motions of an n-dimensional

continuous manifold of points (x1, . . . , xn) with n degrees of freedom. In his attempt

to deal with all possible space forms, Killing imposed an (unconventional) condition

on his infinitesimal motions which lead to the implication that they formed a finite-

dimensional Lie algebra, a theory mostly unknown to him at the time. This naturally

brought Killing into contact with Sophus Lie, and through his and Lie’s results on

transformation groups he succeeded in proving that a proper space form would have

degree n(n+1)/2 and admit a Riemannian metric. From the fact that an infinitesimal

motion ought to leave the metric invariant, Killing then arrived at the equations

defining what we now call a Killing vector field

LKg = 0, (2.36)

where LK denotes the well-studied Lie derivative along the vector field K, and g is

the metric tensor of the Riemannian manifold M. Indeed, we can use this Killing
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vector field to define a function on the cotangent bundle T ∗(M), namely Kipi, and

(2.36) then implies that this function will be a first integral of the geodesic flow on

T ∗(M) with respect to the Riemannian metric g.

2.4.1 Preliminaries

The Killing fields with which Killing himself worked were Killing vector fields, which

act as the infinitesimal generators of isometries on a Riemannian manifold. This is

made obvious by considering equation (2.36), where we observed that the vector fields

K admitted by this equation were those which preserved the metric g. Killing tensor

fields of higher valence, p > 1, provide information regarding quadratic, cubic, and

higher-order first integrals of the Hamiltonian geodesic flow. With this in mind we

begin our study of the vector space in (M, g) formed by Killing tensors of the same

valence p, which we will denote as Kp(M). The fact that this collection of tensors

forms a vector space follows from the bilinear nature of the Schouten bracket (see

Section 1.3).

If M is a space of constant curvature then the dimension of Kp(Mn) will be

maximal, and given by the Delong-Takeuchi-Thompson (DTT) formula [18, 61, 64]

d = dimKp(Mn) =
1

n

(
n+ p

p+ 1

)(
n+ p− 1

p

)
, p ≥ 1. (2.37)

In this situation, we see that the vector space Kp(M) is determined with respect

to d arbitrary parameters. In other words, an element of Kp(M), namely a Killing

tensor with fixed valence p, can be viewed as being an algebraic object in a vector

space. This identification provides the pivotal link between vector spaces of Killing

tensors defined on pseudo-Riemannian spaces of constant curvature and the classical

invariant theory of vector spaces of homogeneous polynomials (for more details on

the latter see e.g. [49]).

The focus of this thesis is the vector space of Killing two-tensors defined on the

Euclidean plane, namely K2(E2) and products of this space, e.g. K2(E2) × K2(E2).

The DTT formula yields that the dimension of K2(E2) is six, since n = p = 2. An

alternate way of arriving at this number is to formally derive the solution to the

Killing tensor equation (2.28) in the Euclidean plane, which we do in Appendix B,
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and count the total number of integration constants in the end. Additionally, this

approach yields that the general solution to (2.28) in E
2, with respect to Cartesian

coordinates, is a Killing two-tensor K ∈ K2(E2), with components given by

K11 = β1 + 2β4y + β6y
2,

K12 = β3 − β4x− β5y − β6xy, (2.38)

K22 = β2 + 2β5x+ β6x
2,

where βi, i = 1, . . . , 6 are arbitrary parameters which appear as constants of inte-

gration in solving (2.28). And so indeed, we can identify the vector space of Killing

two-tensors defined on E2 with R6. Another result which will be frequently made

use of throughout this thesis is the following lemma, independently arrived at by

[18, 61, 64] in the early 1980’s:

Lemma 2.39. Any Killing tensor of valence p defined on a constant curvature pseudo-

Riemannian manifold (M, g) can be expressed as a sum of symmetrised tensor prod-

ucts of a basis of Killing vectors on M.

We make use of the above lemma to write our general Killing tensor K ∈ K2(E2)

as

K = AijX i �Xj +BiX i �R + CR�R, (2.40)

where X i denote the translational basis Killing vectors and R denotes the rotational

basis vector. In this case the Aij, Bi and C define the Killing tensor parameters,

which we can identify with (2.38) by letting

Aij =

(
β1 β3

β3 β2

)
, Bi =

(
β4

−β5

)
, C = β6, (2.41)

which will be subject to the symmetry property

Aij = A(ij).

Furthermore, we will take as a basis for the space of Killing vectors on E2 the usual

vectors given in Cartesian coordinates, (q1, q2) = (x, y), namely

X1 =
∂

∂x
, X2 =

∂

∂y
, R = y

∂

∂x
− x

∂

∂y
. (2.42)
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The components of the general Killing tensor (2.40) with respect to the basis (2.42)

are then expressible in a compact way as

Kij = Aij + 2ε(i�B
j)x� + Cεimε

j
kx

mxk. (2.43)

One can check (see Section 1.3) that indeed, subject to (2.41) this reproduces the

general Killing tensor components defined in (2.38). In this compact presentation, it is

straightforward to compute the transformation law for the parameters βi, i = 1, . . . , 6

under the action induced by the isometry group SE(2) � E2 which acts transitively

on the Euclidean plane via

qi → Λi
jq

j + δi, (2.44)

where Λi
j ∈ SO(2), δ ∈ R

2, so δi = pi, i = 1, 2. This computation is carried out using

the compact notation in Appendix A.1. For clarity we will now provide the explicit

computation of the induced action.

We seek to derive the transformation law for the parameters in K2(E2) under the

action of SE(2), which we can obtain by making use of the usual transformation rules

for tensor components (mentioned in Section 1.3). In particular, a Killing two-tensor

Kij transforms according to the tensor transformation rules via

K̃ij = Λi
�Λ

j
kK

�k, (2.45)

where the Λi
j represent the Jacobian matrices (1.6) defined in Section 1.3. The action

of SE(2) � E
2 is identified by(

q̃1

q̃2

)
=

(
cos θ − sin θ

sin θ cos θ

)(
q1

q2

)
+

(
p1

p2

)
, (2.46)

so that identifying the components of the Jacobian via (1.6), namely

Λj
k =

∂q̃j

∂qk
, (2.47)

we see that indeed this is given by a rotation matrix:

Λ =

(
∂q̃1/∂q1 ∂q̃1/∂q2

∂q̃2/∂q1 ∂q̃2/∂q2

)
=

(
cos θ − sin θ

sin θ cos θ

)
.
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Thus, computationally, equation (2.45) amounts to (appropriately) multiplying the

2× 2-matrix defining the Killing two tensor Kij with two rotation matrices:

K̃ = ΛTKΛ,

where we see that we must multiply on the left by the transpose of the Jacobian

matrix in order to carry out the proper tensor index transformation. Carrying out

this calculation, we obtain in a simple manner that the components of Kij transform

according to

K̃11 = −K11 cos2 θ + 2K12 cos θ sin θ +K22 sin2 θ,

K̃12 = −K11 cos θ sin θ +K12(cos2 θ − sin2 θ) +K22 cos θ sin θ, (2.48)

K̃22 = K11 sin2 θ − 2K12 cos θ sin θ +K22 cos2 θ.

Using the compact formulae (2.43), the non-transitive action of SE(2) � K2(E2)

is elegantly derived by substituting into (2.40) with the basis vector transformation

rules (A.1), which yields equation (A.3)4. Since we work in E2 we can get by without

the compact notation, and so we continue with the above procedure for deriving the

invariants as follows. First, we must substitute with the polynomial components of

Kij given by (2.38) into the transformed components (2.48) and then set this equal

to K̃ij written in transformed parameters, i.e. we arrive at the following system of

equations (we have let (q1, q2) = (x, y) for clarity)

β̃1 + 2β̃4ỹ + β̃6ỹ
2 = −(β1 + 2β4y + β6y

2) cos2 θ

+ 2(β3 − β4x− β5y − β6xy) cos θ sin θ

+ (β2 + 2β5x+ β6x
2) sin2 θ

β̃3 − β̃4x̃− β̃5ỹ − β̃6x̃ỹ = −(β1 + 2β4y + β6y
2) cos θ sin θ

+ (β3 − β4x− β5y − β6xy)(cos
2 θ − sin2 θ)

+ (β2 + 2β5x+ β6x
2) cos θ sin θ

β̃2 + 2β̃5x̃+ β̃6x̃
2 = (β1 + 2β4y + β6y

2) sin2 θ

− 2(β3 − β4x− β5y − β6xy) cos θ sin θ

+ (β2 + 2β5x+ β6x
2) cos2 θ

4See Appendix A.1 for this computation.
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Next, we must substitute for x̃ and ỹ according to (2.46), after which we can equate

coefficients of like terms. This then yields the following explicit transformation laws

for the parameters of K2(E2):

β̃1 = β1 cos
2 θ − 2β3 cos θ sin θ + β2 sin

2 θ − 2p2β4 cos θ,

−2p2β5 sin θ + β6p
2
2,

β̃2 = β1 sin
2 θ − 2β3 cos θ sin θ,+β2 cos

2 θ − 2p1β5 cos θ,

+2p1β4 sin θ + β6p
2
1,

β̃3 = (β1 − β2) sin θ cos θ + β3(cos
2 θ − sin2 θ),

+(p1β4 + p2β5) cos θ + (p1β5 − p2β4) sin θ − β6p1p2,

β̃4 = β4 cos θ + β5 sin θ − β6p2,

β̃5 = β5 cos θ − β4 sin θ − β6p1,

β̃6 = β6.

(2.49)

This brings to light our first (algebraic) invariant, namely Δ1 = β6.
5 In order to derive

the remaining fundamental invariants we use the method of moving frames.

2.4.2 The Moving Frames Method

In what follows we provide a synopsis of the moving frames method and its role in the

invariant theory of Killing tensors. For a more complete account we direct the reader

to the wealth of literature that has nourished the development of this theory, namely

[1,3,12,13,15,17,28,30–32,44,55,56,69,73] and references therein. In particular, [44]

pioneered the study of invariants under the isometry group acting on Kp(M) into the

theory of Killing tensors as a way of classifying the orthogonal coordinate webs in the

Euclidean plane.

As noted in Section 2.3, it has been shown (see e.g, [5, 20, 28]) that an element

K ∈ K2(M) with real and distinct eigenvalues and normal eigenvectors generates

an orthogonal coordinate web with n = dim(M) foliations whose leaves are n − 1

dimensional hypersurfaces orthogonal to the eigenvectors of K. In this situation

Cartan’s geometry [11] can be combined with the study of principal fiber bundles to

provide a framework for the invariant theory. For a detailed account of the underlying

5See Appendix A A.2 for the compact form of these six parameters under the group action.
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ideas of the generalised moving frames method we direct the reader to [49], from

which this brief overview is based on. In this section, we focus on demonstrating

the recursive approach to constructing the moving frame map, developed by Kogan

in 2003 [38]. We begin with some preliminary definitions mostly compatible with

[44, 49, 55, 56].

Let G be an r-dimensional (Lie transformation) group acting smoothly on an n-

dimensional manifold M with s-dimensional orbits. Representative points in each

group orbit can be chosen to depend continuously on the orbits provided that the

group acts regularly6. A (local) cross-section is an (n− s)−dimensional submanifold

K ⊂ M that intersects each group orbit transversally7 and at most once. In general,

a local cross-section passing through any point in p ∈ M can be constructed provided

that the the group acts regularly on M.

Choosing a cross-section amounts to fixing a moving frame, i.e. identifying a map

f : K2(M)/G → G, where we focus on the quotient space, considering G as the

subspace G = {cg|c ∈ R} generated by the metric, which in our case is trivial since

it provides no information regarding separable coordinate systems [44]. A moving

frame is formally defined as a smooth, G-equivariant map8 ρ : M → G whose exis-

tence is guaranteed in a neighborhood of a point p ∈ M provided that G acts freely9

and regularly near p [49]. To construct a moving frame, one utilises Cartan’s nor-

malisation method, whereby the elements of the cross-section can be interpreted as

canonical forms for general elements in the underlying manifold M. The normalisa-

tion procedure amounts to choosing local coordinates g = (g1, . . . , gr) on G near the

identity element, identifying explicit formulae for the group transformations in the

coordinates, and then equating the first r components of the formulae in the previous

step to given constants. The Implicit Function theorem then guarantees that such a

6Regularity means that all the orbits of the group action on M have the same dimension and
each point p ∈ M has a system of arbitrarily small neighborhoods whose intersection with each
orbit is a pathwise connected subset of the orbit [49]

7Two submanifolds K,N are said to intersect transversally at a point p ∈ K ∩ N if Tp(K) ∩
Tp(N) = {0},i.e. if they share no common non-zero tangent vectors.

8 A map γ : M → G is G-equivariant if for g ∈ G, p ∈ M, γ(g · p) = γ(p) · g−1 with respect to
the actions of G on M and on itself by right multiplication.

9A transformation group G acts freely provided that the isotropy group, Gp = {g ∈ G|g · p = p}
where p ∈ M is trivial: Gp = e, for all p ∈ M, where e denotes the identity element of G. In other
words, only the identity element fixes any p ∈ M.
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system of equations is locally soluble.

We shall illustrate the method explicitly by taking G to be the isometry group of

the Euclidean plane, which acts as an automorphism, i.e. Killing tensors are mapped

to Killing tensors in K2(E2), and so preserves the geometry of the vector space.

Explicitly, we take G = SE(2), the special Euclidean group, which acts freely and

regularly in the vector space of Killing tensors [55].

Recall that SE(2) consists of the rigid body motions, translations and rotations,

and so it can be identified as the semi-direct product of the special orthogonal group

SO(2) with the group of translations on E2. The recursive version of the moving

frames method to derive invariants then proceeds in two steps. First, we compute

a set of fundamental invariants under the subgroup of translations and choose an

appropriate cross-section to obtain a set of translational invariants. Second, we use

these translational invariants as new coordinates in the vector space and compute the

action under the subgroup of rotations, SO(2). After choosing an additional cross-

section, or normalisation equation, we then arrive at a final set of invariants under

the action of the full isometry group [38].

The action of the subgroup of translations amounts to substituting with Λj
i = δj i

in (2.44) and (2.49), where δj i denotes the Kronecker delta. In other words, the

group of translations acts on E2 via qi → q̃i + δi and so we find that this induces the

transformation10,

β̃1 = β1 + 2β4p2 + β6p
2
2,

β̃2 = β2 + 2β5p1 + β6p
2
1,

β̃3 = β3 − β4p1 − β5p2 − β6p1p2,

β̃4 = β4 + β6p2,

β̃5 = β5 + β6p1,

β̃6 = β6.

(2.50)

We then choose our cross-section for the restricted group action via

β̃4 = β̃5 = 0. (2.51)

The moving frame map for the restricted group action is then defined by the following

10See Appendix A.2, eq. A.3 for the compact form of this transformation.
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normalisation equations

p1 = −β4/β6, p2 = −β5/β6 (2.52)

We then substitute these relationships into the remaining four equations (2.50) and

thus arrive at the following fundamental (translational) invariants of K2(E2)

I1 = β1β6 − β2
4 ,

I2 = β2β6 − β2
5 , (2.53)

I3 = β3β6 + β4β5,

I4 = β6.

Next, we determine the action of the subgroup of rotations SO(2) on the space of the

four invariants (2.53). Since SO(2) acts on E
2 via x → Λi

j x̃
j , then we can use the

same technique as above to determine the transformation formulas induced by this

action. Thus, we find that SO(2) acts on K2(E2) according to11

β̃1 = β1 cos
2 θ + β2 sin

2 θ − 2β3 sin θ cos θ,

β̃2 = β1 sin
2 θ + β2 cos

2 θ − 2β3 sin θ cos θ,

β̃3 = (β1 − β2) sin θ cos θ + β3(cos
2 θ − sin2 θ),

β̃4 = β4 cos θ + β5 sin θ,

β̃5 = β4 sin θ − β5 cos θ,

β̃6 = β6.

(2.54)

Therefore, taking into consideration (2.53) and (2.54), we find that

Ĩ1 = − (cos θβ4 + sin θβ5)
2 +

(
cos2 θβ1 + sin θ (sin θβ2 − 2 cos θβ3)

)
β6,

Ĩ2 = − (sin θβ4 − cos θβ5)
2 +

(
sin2 θβ1 + cos θ (cos θβ2 − 2 sin θβ3)

)
β6,

Ĩ3 =
1
2
sin 2θ

(
−β2

4 + β2
5 + (β1 − β2) β6

)
− cos 2θ (β4β5 + β3β6) ,

Ĩ4 = I4. (2.55)

We can then obtain the final normalisation equation by taking Ĩ3 = 0, which yields

θ =
1

2
arctan

(
2(β4β5 + β3β6)

β6(β1 − β2)− β2
4 + β2

5

)
.

11See Appendix A.2 eq. A.4 for compact formulae.
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Substituting this into (2.55), we recover the SE(2) invariants

Δ1 = β6,

Δ2 = β6(β1 + β2)− β2
4 − β2

5 , (2.56)

Δ3 =
(
β6(β1 − β2)− β2

4 + β2
5

)2
+ 4 (β6β3 + β4β5)

2 ,

established first in [69] and later in [44, 55, 56]. As was shown first by Winternitz

and Frǐs in 1965 [69] and again in 2002 by McLenaghan et al. [44] via the invariant

theory of Killing tensors, the invariants Δ1 and Δ3 can be used to classify the orbits

of K2(E2)/SE(2) as follows

Elliptic-hyperbolic : Δ1 �= 0, Δ3 �= 0,

Parabolic : Δ1 = 0, Δ3 �= 0,

Polar : Δ1 �= 0, Δ3 = 0,

Cartesian : Δ1 = 0, Δ3 = 0.

The final tool we require from the invariant theory comes from considering the

group action on the product space obtained by taking two copies of the vector space

of Killing tensors: K2(E2)×K2(E2). This action leads to the notion of joint invariants

of Killing tensors, the topic of discussion featured in our next section.

2.4.3 Joint Invariants of Killing Tensors

We now present the geometric properties of joint invariants of Killing two-tensors (to

be defined below) as first introduced by Smirnov and Yue in 2004 [55]. Our notation

will be compatible with Adlam et al. [3], who extended the study established in

[55] and demonstrated its applicability to superintegrable systems. We specialise this

development for the isometry group which acts on the product space K2(E2)×K2(E2),

where we begin with the joint invariants of non-degenerate orbits of the orbit space

(K2(E2)×K2(E2))/SE(2) studied in [3].

A three-dimensional orbit is defined to be non-degenerate provided that, along

the orbit, the invariant given by k2 =
√
Δ3/(Δ

′
1)

2, is non-vanishing. The action

SE(2) � K2(E2) × K2(E2) for which k2 �= 0 is likewise termed non-degenerate. The
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geometric interpretation of the invariant k2 is the (half) distance between the foci of an

elliptic-hyperbolic coordinate web generated by the normal eigenvectors of a Killing

two-tensor, and so it follows that such Killing tensors will have a correspondence with

the non-degenerate orbits [44, 56, 69].

In this situation, the isometry group SE(2) acts on each copy of K2(E2) with

three-dimensional non-degenerate orbits. If we denote the parameters of each vec-

tor space by αi, βi, i = 1, . . . , 6, respectively, then the group action is induced by

the corresponding transformation laws given by (2.49). Explicitly, we have that the

parameters αi, i = 1, . . . , 6 in the first copy of K2(E2) transform as

α̃1 = α1 cos
2 θ − 2α3 cos θ sin θ + α2 sin

2 θ − 2p2α4 cos θ

−2p2α5 sin θ + α6p
2
2,

α̃2 = α1 sin
2 θ − 2α3 cos θ sin θ + α2 cos

2 θ − 2p1α5 cos θ

+2p1α4 sin θ + α6p
2
1,

α̃3 = (α1 − α2) sin θ cos θ + α3(cos
2 θ − sin2 θ)

+(p1α4 + p2α5) cos θ + (p1α5 − p2α4) sin θ − α6p1p2,

α̃4 = α4 cos θ + α5 sin θ − α6p2,

α̃5 = α5 cos θ − α4 sin θ − α6p1,

α̃6 = α6,

(2.57)

and the equivalent relationship in terms of the parameters βi, i = 1, . . . , 6, for the

second copy,

β̃1 = β1 cos
2 θ − 2β3 cos θ sin θ + β2 sin

2 θ − 2p2β4 cos θ

−2p2β5 sin θ + β6p
2
2,

β̃2 = β1 sin
2 θ − 2β3 cos θ sin θ + β2 cos

2 θ − 2p1β5 cos θ

+2p1β4 sin θ + β6p
2
1,

β̃3 = (β1 − β2) sin θ cos θ + β3(cos
2 θ − sin2 θ)

+(p1β4 + p2β5) cos θ + (p1β5 − p2β4) sin θ − β6p1p2,

β̃4 = β4 cos θ + β5 sin θ − β6p2,

β̃5 = β5 cos θ − β4 sin θ − β6p1,

β̃6 = β6.

(2.58)
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Additionally, the conditions

k2
1 =

√
(α2

4 − α2
5 + α6(α2 − α1))2 + 4(α6α3 + α4α5)2

α6
�= 0,

k2
2 =

√
(β2

4 − β52 + β6(β2 − β1))2 + 4(β6β3 + β4β5)2

β6
�= 0

hold true.

If we denote the six dimensional space defined by the parameters αi, i = 1, . . . , 6 by

A � R
6, then we can define a joint invariant [55] of the product space K2(E2)×K2(E2)

as a function J : A×A → R that satisfies

J = F (α1, . . . , α6, β1, . . . , β6) (2.59)

= F (α̃1, . . . , α̃6, β̃1, . . . , β̃6), (2.60)

under the transformation laws induced by the isometry group SE(2). Six joint in-

variants of the action SE(2) � K2(E2)×K2(E2) then immediately follow from (2.56),

namely

Δ′
1 = α6,

Δ′
2 = α6(α1 + α2)− α2

4 − α2
5,

Δ′
3 = (α6(α1 − α2)− α2

4 + α2
5)

2 + 4(α6α3 + α4α5)
2,

Δ′
4 = β6,

Δ′
5 = β6(β1 + β2)− β2

4 − β2
5 ,

Δ′
6 = (β6(β1 − β2)− β2

4 + β2
5)

2 + 4(β6β3 + β4β5)
2.

(2.61)

We remark that since the joint invariants are obtained via the moving frames method

then they are functionally independent. Further, any analytic function of the in-

variants (2.61) will also be a joint invariant of the non-degenerate group action

SE(2) � K2(E2) × K2(E2) [49]. The Fundamental Theorem on invariants of regular

Lie group actions tells us that we should obtain a total of 9 fundamental invariants,

which we arrive at by subtracting the dimension of the orbits, 3, from the dimension

of the product space K2(E2) × K2(E2), 12. Thus, we are in search of three more

fundamental invariants.

These remaining joint invariants can be derived by employing geometric consid-

eration. Recall that each element of a non-degenerate orbit of the action K2(E2) ×
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K2(E2) corresponds to a Killing tensor whose normal eigenvectors generate an elliptic-

hyperbolic web. The foci represent the singular points of this coordinate web, which

are characterised, following [5], as the points where the eigenvalues of the associated

Killing tensor are equal. Establishing this degeneracy, one can solve for the explicit

form of the singular points in terms of the arbitrary parameters, from which we have

that the coordinates for the two foci, denoted S1, S2, in the elliptic-hyperbolic web

are (see [44])

(x1, y1)S1
= (

−β5

β6
+ 1

β6

(√
Δ′

6
−σ1

2

)1/2

, −β4

β6
+ 1

β6

(√
Δ′

6
+σ1

2

)1/2
)
,

(x2, y2)S2
= (

−β5

β6
− 1

β6

(√
Δ′

6
−σ1

2

)1/2

, −β4

β6
− 1

β6

(√
Δ′

6
+σ1

2

)1/2
)
,

(2.62)

where σ1 = β2
4 − β2

5 + β6(β2 − β1) and Δ′
6 is as defined in (2.61). Considering the

product space K2(E2)×K2(E2), we have another set of foci, (x3, y3)S3
and (x4, y4)S4

,

appropriately defined with respect to the parameters αi, i = 1, . . . , 6, σ1 in terms

of αi, and Δ′
3. In [3], this identification motivates the authors to take the action

SE(2) � K2(E2)×K2(E2) as the free and regular action SE(2) � E
2 ×E

2 ×E
2 ×E

2,

and hence, use the Weyl theorem on joint invariants to conclude that the square of

the distances between the foci will be a joint invariant of the preceding action. Thus,

in the case of a non-degenerate action, we can take the remaining three invariants as

Δ′
7 = d2(S2, S3) = (x2 − x3)

2 + (y2 − y3)
2,

Δ′
8 = d2(S1, S3) = (x1 − x3)

2 + (y1 − y3)
2,

Δ′
9 = d2(S2, S4) = (x2 − x4)

2 + (y2 − y4)
2,

(2.63)

where (xi, yi), i = 1, . . . , 4 are given by (2.62) in terms of βi and analogously in terms

of αi. Note that we require the quadrilateral S1S3S4S2 to be rigid so that we need to

only specify the distance of one of the diagonals and the other can be determined as a

function of these nine invariants. Other geometrically motivated joint invariants can

be established in this manner as well, which would be obtained as functions of the

invariants Δ′
1−Δ′

9, such as the areas within the quadrilateral whose vertices are given
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by the four singular points— see Figure 2.1. In the next chapter, we characterise the

case when one of the Killing tensors K ∈ K2(E2) belongs to a degenerate orbit of the

orbit space K2(E2)/SE(2).

S4

S3

S2S1

�2 2 4 6

�2

2

4

6

Figure 2.1: Quadrilateral whose vertices are given by the singular points of two non-
degenerate orbits {KEH ,KEH} ∈ K2(E2)×K2(E2)



Chapter 3

Superintegrable Systems on the Euclidean Plane

We recall the significance of the first integrals of motion for a Hamiltonian system.

These are smooth functions in the generalised canonical coordinates that remain

constant along the Hamiltonian flow, or orbits, of a system. As such, they can be

identified as constants of motion for a system which elicits many familiar examples of

first integrals. Indeed, the total energy, angular momentum, and linear momentum

are all examples of constants of motion that provide physical insight about a Hamil-

tonian system: in particular, each of these is an example of a conserved quantity

that corresponds to a symmetry of the Lagrangian. A systematic way of deriving

these quantities from symmetry considerations is the heart of Noether’s theorem (see

e.g. [23]) where, for instance, conservation of energy is an artifact of the Lagrangian

being invariant under changes in time. In brief, we see that the first integrals of

motion help to establish physical properties of a Hamiltonian system by signifying

the existence of structure and symmetry.

3.1 Classification and Development of Superintegrable Systems

A Hamiltonian system with n degrees of freedom is said to be completely integrable

if it admits n globally defined, functionally independent first integrals of motion in

involution with respect to the Poisson bracket (see Section 1). In the case that

such a system admits n + 1 such first integrals of motion the system is said to be

minimally superintegrable, whereas it is termed to be maximally superintegrable if it

admits 2n − 1 such first integrals. In some cases we find that a system is solvable

via orthogonal separation of variables in more than one system of coordinates, which

qualifies such systems as being multi-separable. For the purpose of this study, we

focus on superintegrable systems that exhibit this property of being multi-separable.

As discussed in Section 1.2, we can study the first integrals of natural Hamiltonian

44



45

systems

H(qi, pi) =
1
2
gijpipj + V (qi), (3.1)

defined on flat pseudo-Riemannian manifolds which take a form quadratic in the

momenta according to

F (qi, pi) =
1
2
Kij(qi)pipj + U(qi), i, j = 1, 2, (3.2)

which will afford orthogonal separation of variables in the associated Hamilton-Jacobi

equation in the case that Kij is a characteristic Killing two-tensor satisfying the

compatibility condition

d
(
K̂dV

)
= 0. (3.3)

This is the content of Benenti’s theorem (see Section 2.3).

We can generalise this development to the study of first integrals polynomial in

the momenta of degree p upon considering Killing tensors of valence p (for a recent

account, see e.g. [29])1. Indeed, the search for first integrals of motion in higher degrees

of the momenta has been extensively studied for over a century, with Drach initiating

the study of first integrals cubic in the momenta in 1908 [19,51]. In 2002, Gravel and

Winternitz considered superintegrable systems on E2 characterised by one linear and

one (non-trivial) cubic first integral [24]. This work was continued by Gravel who

then characterised systems with one quadratic first integral (derived from the system

admitting separability in Cartesian coordinates), and one cubic first integral [25]. The

origins of the invariant theory approach can be traced back to Winternitz and Frǐs in

1965 [69], in which the authors computed the invariants of second-order symmetries

of the Laplace equation defined on E2 under the action of the isometry group, and

then used these invariants to classify the orthogonal separable webs on E2. In 2002,

this geometric approach resurfaced with McLenaghan et al. in [45], who presented it

in the language of the invariant theory of Killing tensors. In 2008, Adlam et al. [3]

extended the theory constructed in [44] and derived an invariant characterisation of

the superintegrable potential admitted by the Kepler problem through the use of

1Though, in studying Killing tensors of valence p > 2, we lose the interpretation of a system
being orthogonally separable.
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invariants and joint invariants of Killing two tensors that determined first integrals

according to (3.2).

In this thesis, we continue the work of classifying superintegrable potentials on

the Euclidean plane by providing a new perspective on the ideas developed in [3].

In particular, we investigate the joint invariants of a degenerate and non-degenerate

orbit of the orbit space (K2(E2)×K2(E2))/SE(2) admitted by a Killing tensor whose

eigenvalues generate an elliptic-hyperbolic web in the canonical position, and a sec-

ond Killing tensor whose eigenvalues generate a polar web in the non-canonical po-

sition. To this end we begin by providing a joint invariant characterisation of the

Smorodinsky-Winternitz system,

H = 1
2

(
p2x + p2y

)
− ω2

(
x2 + y2

)
+

α

x2
+

β

y2
, (3.4)

where α, β, and ω are arbitrary parameters. Our goal is to use joint invariants of

Killing two tensors K defined on E2 [55] to provide a link between the arbitrary

parameters of the SW potential and the parameters which characterise the associated

vector space of Killing tensors K2(E2).

Further, this will provide motivation for studying an interesting integrable per-

turbation of the SW potential that has recently appeared in the literature known

as the Tremblay-Turbiner-Winternitz (TTW) potential. Our interest will be in de-

termining which potentials admitted by the TTW system remain multi-separable in

the Euclidean plane. We remark that the results of the next two sections have been

submitted for publication (see [57]).

3.2 Characterisation of the Smorodinsky-Winternitz Potential

The superintegrability of the Smorodinsky-Winternitz (SW) potential is a simple con-

sequence of its multi-separability with respect to both canonical polar and canonical

Cartesian coordinates. The property of the coordinate web being canonical can be

interpreted either geometrically, (see Figure 1.1), or with respect to the form of the

general characteristic Killing tensor defining the orthogonal coordinate web (see [44]).

Geometrically, canonical Cartesian coordinates are aligned with the coordinate axes

and canonical polar coordinates have their singular point coincide with the origin of
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the coordinate axes; the associated Killing tensors for each canonical web respectively

take the forms (3.6) and (3.8) given below.

Since the SW potential is of the form V = f(x)+g(y), it immediately follows that

the system enjoys separability with respect to (canonical) Cartesian coordinates, and

so the Hamiltonian flow defined with respect to (3.4) admits a first integral quadratic

in the momenta according to

F1 =
1
2
Kij

1 pipj + U1, i, j = 1, 2, (3.5)

where Kij
1 is the Killing two-tensor whose normal eigenvectors generate the (canoni-

cal) Cartesian coordinate web:

Kij
1 =

(
1 0

0 0

)
. (3.6)

Imposing the compatibility condition (3.3) requires that dU1 = K̂1dV, which we can

readily integrate to obtain that U1(x, y) =
α
x2 − ω2x2. This provides us with the first

non-trivial quadratic first integral.

If we transform the potential of (3.4) to polar coordinates we immediately see that

it is of the from V (r, θ) = f(θ)
r2

+ g(r), and so that indeed the Hamiltonian system

defined by (3.4) is also separable with respect to (canonical) polar coordinates. Thus,

we have that it admits a second quadratic first integral according to

F ij
2 = 1

2
Kij

2 pipj + U2, i, j = 1, 2, (3.7)

where Kij
2 is given by the Killing two-tensor whose normal eigenvectors generate the

(canonical) polar web:

Kij
2 =

(
y2 −xy

−xy x2

)
(3.8)

In this case, we find upon integrating dU2 = K̂2dV that U2(x, y) =
ay2

x2 + bx2

y2
, and so

we have obtained two non-trivial quadratic first integrals.

The functional independence of F1 and F2 follows from considering that the wedge

product of their differentials with dH at a point p ∈ E2 is non-vanishing

dH ∧ dF1 ∧ dF2(p) �= 0,
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a criterion which yields that the set of F1 and F2 defines a coordinate system, since

this is equivalent to saying that the Jacobian determinant of the functions F1 and

F2 at a point p ∈ M is non-vanishing, and so by the Implicit Function theorem

the set indeed forms a coordinate system (e.g. see [40]). Furthermore, since both

are mutually in involution with the Hamiltonian, i.e. {F1, H} = {F2, H} = 0, then

we have at once that the Hamiltonian system (3.4) is superintegrable (since it is

multi-separable) with 2n − 1 = 3 functionally independent first integrals of motion,

namely the set {H,F1, F2}. Since the function F3 = F1 + F2 is also a first integral

of motion, with an associated Killing two-tensor K1 + K2 = KEH, where KEH

denotes the (canonical) Killing tensor whose normal eigenvectors generate the elliptic-

hyperbolic coordinate web, then it follows that the SW potential will also be separable

in (canonical) elliptic-hyperbolic coordinates. Indeed, the canonical characteristic

Killing tensor that generates the elliptic-hyperbolic coordinate web is given by

Kij
EH =

(
y2 + k2 −xy

−xy x2

)
, (3.9)

(where k2 is an invariant to be defined below) which makes it clear that any potential

of a Hamiltonian system compatible with both the valence two Killing tensor of polar

type and the valence two Killing tensor of Cartesian type will also be compatible with

the valence two Killing tensor of elliptic-hyperbolic type, by linearity of the exterior

derivative.

We can now make use of joint invariants, introduced in Section 2.4.3, to conclude

that separation in (canonical) polar and (canonical) elliptic-hyperbolic coordinates

implies that the quadrilateral (see Figure 2.1) S1S2S4S3 degenerates in the following

manner. Denote by S1 and S2 the singular points of the Killing two-tensor K3 whose

first integral is given by F3 as defined above (i.e. K3 = KEH), and similarly, take S3

and S4 as the singular points of K2. Then since both K1 and K2, and hence K3

are in canonical form, we find that the quadrilateral S1S2S4S3 degenerates according

to the invariant conditions S3 = S4, and dist(S1, S3) = dist(S2, S4). In terms of the

fundamental joint invariants (2.61), we can equivalently write these conditions as

Δ′
3 = 0, Δ′

8 = Δ′
9,
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respectively.

Conversely, if we begin with a general potential V of a natural Hamiltonian

(3.1) and impose that the Hamiltonian system be multi-separable with respect to

canonical polar and canonical Cartesian coordinates, i.e. impose that it admits two

quadratic first integrals given by F1 and F2 as above, then integrating the condi-

tions dUi = K̂idV for i = 1, 2 will yield the Smorodinsky-Winternitz potential,

which follows from [1, 22]. Therefore, we can conclude that the superintegrable

system given by the Smorodinsky-Winternitz potential is characterised by a pair

of Killing tensors (K2,K3) ∈ K2(E2) × K2(E2) whose position in the orbit space

(K2(E2)×K2(E2))/SE(2) is determined by the invariant conditions

Δ′
1 �= 0, Δ′

3 = 0, Δ′
4 �= 0, Δ′

6 �= 0, Δ′
7 = Δ′

8 = Δ′
9.

Thus, we have the following:

Theorem 3.10. Let V be the potential of a natural Hamiltonian

H(qi, pi) =
1
2
gij(qi)pipj + V (qi), i, j = 1, 2

satisfying d
(
K̂�dV

)
= 0, � = 2, 3 for a pair of Killing tensors (K2,K3) ∈ K2(E2)×

K2(E2). Then the following statements are equivalent:

(1) The pair (K2,K3) ∈ K2(E2) ×K2(E2) is invariantly characterised by the con-

ditions

Δ′
1 �= 0, Δ′

3 = 0, Δ′
4 �= 0,

Δ′
6 �= 0, Δ′

7 = Δ′
8 = Δ′

9. (3.11)

(2) The potential V given by the natural Hamiltonian is the Smorodinsky-Winternitz

potential given in Cartesian coordinates (q1, q2) = (x, y) by

V (x, y) = −ω2(x2 + y2) +
α

x2
+

β

y2
. (3.12)

Thus, we have shown that by invariantly characterising the pair (K2,K3) ∈
K2(E2)×K2(E2), we have in fact characterised the SW potential which they define.

Next, we study what happens to the form of the SW potential in the case that we

weaken the invariant conditions (3.11).
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3.2.1 Weakening the Conditions

We shall first suppose that the Hamiltonian system (3.1) admits two quadratic first

integrals of motion according to (3.5) and (3.7). Further, suppose that the Killing

tensor KP generates (non-canonical) polar coordinates, and that the Killing tensor

KEH generates (non-canonical) elliptic-hyperbolic coordinates. Without loss of gen-

erality, and to facilitate calculations, we will assume that KEH is in the canonical

form, so that the elliptic-hyperbolic web is generated in the canonical position. Then

the singular points of the two webs form a general triangle �S1S2S3— see Figure

3.1. Considering the fundamental joint invariants (2.61), this arrangement induces

S3

S2S1

�2 2 4 6

�2

2

4

6

Figure 3.1: Triangle whose vertices are given by the singular points of two Killing ten-
sors, one non-degenerate and the other degenerate, (KEH ,KP ) ∈ K2(E2)×K2(E2).
In this case, KEH is in the canonical form.
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the following invariant conditions for the pair (KP ,KEH) ∈ K2(E2)×K2(E2):

Δ′
1 �= 0,Δ′

3 = 0,Δ′
4 �= 0,

Δ′
6 �= 0,Δ′

7 = Δ′
9 �= Δ′

8. (3.13)

We then have the following components for the respective Killing tensors as follows

[44]

Kij
P =

(
(y − b)2 (x− a)(y − b)

(x− a)(y − b) (x− a)2

)
, a, b ∈ R, (3.14)

and

Kij
EH =

(
y2 + k2 −xy

−xy x2

)
, k2 ∈ R, (3.15)

where k2 is the invariant given by (half) the distance between the foci of the elliptic-

hyperbolic web (see Section 2.4.3). We then ask the question of how this setup affects

the arbitrary parameters in the Smorodinsky-Winternitz potential (3.12).

We must first determine the freedom we have in the arbitrary parameters afforded

by the vector space of Killing tensors. Taking F1 (3.5) and F2 (3.7) as the first

integrals of the Hamiltonian system defined by (3.4), the Killing two-tensor obtained

from taking a linear combination as

Kg = c1KP + c2KEH + c3g, c1, c2, c3 ∈ R,

must also satisfy the compatibility condition with the Smorodinsky-Winternitz po-

tential V admitted by (3.4). However, this raises a concern since Kg depends on

six arbitrary parameters given by k2, a, b, c1, c2, c3, and six also happens to be the

dimension of the vector space of Killing tensors K2(E2). This implies that Kg must

in fact be given by the general formula

K = (β1 + 2β4y + β6y
2)

∂

∂x
� ∂

∂x

+(β3 − β4x− β5y − β6xy)
∂

∂x
� ∂

∂y

+(β2 + 2β5x+ β6x
2)

∂

∂y
� ∂

∂y
,

(3.16)

from which it follows by the compatibility condition (3.3) that the potential V is

trivial: V = constant. Therefore, a non-trivial potential will be obtained if at least
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one of the six parameters vanishes. Considering the geometric implications afforded

if we retain both Killing tensors KP and KEH , the metric g, and k2, the only real

freedom that remains is to switch off the parameters a and b. This presents us with

the following cases:

(1) a �= 0, b �= 0,

(2) a = 0, b �= 0,

(3) a �= 0, b = 0,

(4) a = b = 0.

The first case imposed that the SW potential would assume a trivial form. We

can introduce a new fundamental invariant (replacing Δ′
9 in (2.61), since with respect

to the two orthogonal coordinate webs Δ′
9 = Δ′

7) given by the area of �S1S2S3. In

terms of the fundamental joint invariants (2.61) and the area of �S1S2S3, we then

have the following invariant characterisation.

(1) Δ′
1 �= 0,Δ′

3 = 0,Δ′
4 �= 0,Δ′

6 �= 0,Δ′
7 �= 0,Δ′

8 �= 0, the area of �S1S2S3 �= 0.

(2) Δ′
1 �= 0,Δ′

3 = 0,Δ′
4 �= 0,Δ′

6 �= 0,Δ′
7−Δ′

8 = 0, the area of �S1S2S3 �= 0. In this

case the �S1S2S3 takes the form of an isosceles triangle.

(3) Δ′
1 �= 0,Δ′

3 = 0,Δ′
4 �= 0,Δ′

6 �= 0,Δ′
7 �= Δ′

8, the area of �S1S2S3 = 0. We

remark that this is the case when the singular points all lie on the x−axis.

(4) Δ′
1 �= 0,Δ′

3 = 0,Δ′
4 �= 0,Δ′

6 �= 0,Δ′
7 = Δ′

8, area of �S1S2S3 = 0

We can next characterise the arbitrary parameters a and b as joint invariants

themselves by writing them in terms of the fundamental joint invariants (2.61). To

this end, we consider the general Killing tensor whose components with respect to

Cartesian coordinates (q1, q2) are given by (3.16) and suppose that β6 �= 0,Δ = 0,

where

Δ = (β2
4 − β2

5 + β6(β2 − β1))
2 + 4(β6β3 + β4β5)

2.

If we consider the Killing tensor KP , we can compare it with (3.16) via

Kij = �gij +mK̃P
ij , (3.17)
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where K̃P
ij = gikg�jK

k�
P , with Kk�

P given by (3.14). Comparing components on both

sides of (3.17) then amounts to identifying

α1 + 2α4y + α6y
2 = �+m(y − b)2,

α3 − α4x− α5y − α6xy = −m(x− a)(y − b),

α2 + 2α5x+ α6x
2 = �+m(x− a)2,

which admits the following identification

(a, b) =

(
−α5

α6

,
−α4

α6

)
.

Through a bit of algebraic manipulation, we can then obtain an expression for each

parameter in terms of the joint invariants (2.61):

a =
(Δ′

4)
2(Δ′

8 −Δ′
7)− 1

2
Δ′

6

2Δ′
4

√
Δ′

6

and

b =

√√√√Δ′
7 −

(
a−

√
Δ′

6

2Δ′
4

)2

.

Solving the PDEs that come from imposing the compatibility condition (3.3) for the

Killing two-tensor defined by (3.14) and the SW potential (3.12), we arrive at the

following equation

ω2(bx− ay) +
a(b− y)α

x4
+

b(−a + x)β

y4
= 0, (3.18)

which puts into evidence the following relationship

(1) a �= 0, b �= 0 yields the trivial potential V = 0,

(2) a = 0, b �= 0 yields the potential V =
β

y2
,

(3) a �= 0, b = 0 yields the potential V =
α

x2
,

(4) a = 0, b = 0 yields the general Smorodinsky-Winternitz potential (3.12).
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Henceforth, we arrive at the conclusion that the more geometric structure the pair

(KP ,KEH) ∈ K2(E2)×K2(E2) has (in the sense of placing the polar coordinate web

in restricted positions), the more general the Smorodinsky-Winternitz potential (3.12)

becomes. In each of the cases described above the corresponding pair (KP ,KEH) ∈
K2(E2)× K2(E2) belongs to a different orbit of the group action SE(2) � K2(E2) ×
K2(E2) (see Section 2.4.2, eq. 2.49). In fact, our above analysis shows that these

corresponding orbits have been explicitly distinguished by means of joint invariants

(2.61) of the action (2.49). Considering our work as an extension of the results

obtained in [3], we see that we have demonstrated that the use of joint invariants

to classify the orbits of (K2(E2) × K2(E2))/SE(2) leads to a classification of the

corresponding superintegrable potentials defined by quadratic first integrals in E2.

We remark on the further development of this perspective in Chapter 4.

3.3 The Tremblay-Turbiner-Winternitz System

We now consider the Tremblay-Turbiner-Winternitz (TTW) potential introduced in

2009 [66]. It is defined in polar coordinates by the natural Hamiltonian

H = p2r +
1

r
pr +

1

r2
p2θ − ω2r2 +

1

r2

(
λ1

cos2 kθ
+

λ2

sin2 kθ

)
, (3.19)

which demonstrates that its potential,

V (r, θ) = −ω2r2 +
1

r2

(
λ1

cos2 kθ
+

λ2

sin2 kθ

)
, (3.20)

is of the from V (r, θ) = f(θ)
r2

+g(r) and so is separable in (canonical) polar coordinates.

By the results of Section 2.3, we have that the system admits a first integral of motion

taking the form

F (qi, pi) =
1
2
Kij(qi)pipj + U(qi), i, j = 1, 2,

where Kij is the Killing two-tensor which generates (canonical) polar coordinates,

i.e. (3.8) and U is determined via dU = K̂dV . We then seek to answer the following

question posed in the introduction of this thesis:

For which values of k is the TTW system multi-separable?
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In other words, we seek to determine for which values of k the TTW potential (3.20)

admits an additional (non-trivial) functionally independent quadratic first integral of

motion.

To allow for arbitrary k ∈ R, we cannot transform the TTW system back into

Cartesian coordinates. Indeed, such a transformation would require the use of trigono-

metric identities in cos kθ and sin kθ, which require k to in general be an integer. Thus

we must carry out all our calculations in polar coordinates. To this end we shall first

rewrite the formula defining a general Killing tensor Kg ∈ K2(E2) in polar coordi-

nates.

On this note, we make use of the result that on a manifold M of constant curva-

ture, generalised Killing tensors are formed as sums of symmetrised tensor products

of generalised Killing vectors on M (see [18]). This means that on E2, we have

Kg = AijX i �Xj +BiX i �R + CR�R, i, j = 1, 2, (3.21)

for some tensor Aij, vector Bi and constant C. If we take as our basis of Killing

vectors on E2

X1 = cos θ
∂

∂r
− sin θ

r

∂

∂θ
,

X2 = sin θ
∂

∂r
+

cos θ

r

∂

∂θ
, (3.22)

R =
∂

∂θ
,

and let

(
Aij

)
=

(
β1 β3

β3 β2

)
, Bi = (β4, β5), C = β6, (3.23)

then we find upon substituting (3.22) and (3.23) into (3.21) and taking the symmetric

tensor products then

K p̃ = AijX i �Xj +BiX i �R+ CR�R
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and we derive that the components of the general Killing tensor K p̃ ∈ K2(E2) defined

with respect to polar coordinates are given by

K11
p̃ = 2β3 cos θ sin θ + β1 cos

2 θ + β2 sin
2 θ,

K12
p̃ = 2β4 cos θ + 2β5 sin θ +

2β3 cos 2θ

r
− 2β1 cos θ sin θ

r
+

2β2 cos θ sin θ

r
, (3.24)

K22
p̃ = β6 −

2β3 cos θ sin θ

r2
+

β1 sin
2 θ

r2
+

β2 cos
2 θ

r2
− 2β4 sin θ

r
+

2β5 cos θ

r
.

Substituting K p̃ and the potential (3.20) into the compatibility condition,

d
(
K̂ p̃dV

)
= 0, (3.25)

we arrive at a complicated trigonometric equation in terms of the arbitrary parameters

k, λ1, λ2, βi, i = 1, . . . 6 (see eq. (C.1) in Appendix C). To solve this equation, we

expand it over the following set M of trigonometric functions

M ={1, cos(θ), sin(θ), cos(2θ), sin(2θ),

cos((1 + k)θ), sin((1 + k)θ), cos((1− k)θ), sin((1− k)θ),

cos((1 + 2k)θ), sin((1 + 2k)θ), cos((1− 2k)θ), sin((1− 2k)θ),

cos((1 + 3k)θ), sin((1 + 3k)θ), cos((1 + 3k)θ), sin((1 + 3k)θ),

cos(2(1 + k)θ), sin(2(1 + k)θ), cos(2(1− k)θ), sin(2(1− k)θ),

cos(2(1 + 2k)θ), sin(2(1 + 2k)θ), cos(2(1− 2k)θ), sin(2(1− 2k)θ),

cos(2(1 + 3k)θ), sin(2(1 + 3k)θ), cos(2(1 + 3k)θ), sin(2(1 + 3k)θ)}, (3.26)

which is the set obtained by expanding the trigonometric functions in (C.1), ignoring

any trig identities. The set M is linearly dependent when the arguments of the

trigonometric functions coincide (see Appendix D), a property which depends on the

values assumed by the parameter k. By plotting the arguments as functions over k

and determining the intersection points of these functions, we thus determine that

the set (3.26) is linearly dependent for the following values of k:

k =± 2,±3

2
,±1,±1

2
,±1

4
,±1

6
,±1

8
,± 1

10
,± 1

12
,± 1

14
,± 1

16
,±3

4
,±2

3
,

± 3

8
,±1

3
,± 3

10
,±2

7
,± 3

14
,±1

5
,± 3

16
,±2

5
,±1

7
.

(3.27)
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In the case when k does not equal one of the above values, the set M is linearly

independent and so we can set each of the coefficients to zero in the trigonometric

equations that we obtain upon the substituting (3.21) and (3.20) into (3.25) and

expanding over the set M . This argument leads to an overdetermined system of

polynomial equations which we can then solve for the variables k, βi, and λj, i =

1, . . . , 6, j = 1, 2. Before completing this computation we shall reduce the number of

polynomial equations with the following argument.

Since the TTW potential (3.20) is separable in polar coordinates then if it were

to admit another quadratic first integral of motion it would have been defined by a

Killing two-tensor which is an element of the 5-dimensional vector subspace

Ks = AijX i �Xj +BiX i �R, i, j = 1, 2,

which is the vector space (3.21) with the “polar” term factored out. Substituting

this Killing tensor Ks into the compatibility condition (3.25) for the TTW potential

(3.20), we arrive a system of equations for which it is possible to expand over the basis

L = {1, cos θ, sin θ, cos 2θ, sin 2θ}. This results in the following necessary condition on

the parameters of the Killing tensor Ks:

β2
4 + β2

5 = 0.

Since all parameters are assumed to be real, the above holds provided β4 = β5 = 0.

Therefore we conclude that if the potential (3.20) is separable in another orthogonal

coordinate system, other than polar, it can only be the Cartesian system of coordi-

nates. We can now repeat the same argument outlined above with a simpler Killing

tensor. Namely, the Killing two-tensor that defines Cartesian coordinates in a general

position [44],

Kij
C =

(
cos2(θ − φ) −1

2
r sin(2(θ − φ))

−1
2
r sin(2(θ − φ)) r2 sin2(θ − φ)

)
, (3.28)

where φ denotes the angle by which the Cartesian coordinate system is rotated (recall

the Cartesian web in Figure 1.2). Substituting (3.28) and (3.20) into the compatibility
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condition (3.25), we arrive at the following equation

(3.29)
csc2 kθ

(
6k cos 2(θ − φ) cot kθ +

(
4 + 2k2 − 3k2 csc2 kθ

)
sin 2(θ − φ)

)
λ2

+ sec2 kθ
(
−6k cos 2(θ − φ) tankθ

+
(
4 + 2k2 − 3k2 sec2 kθ

)
sin 2(θ − φ)

)
λ1 = 0.

We can then expand this over a subset of N ⊂ M given by

N ={1, cos(2θ), sin(2θ),

cos(2(1 + k)θ), sin(2(1 + k)θ), cos(2(1− k)θ), sin(2(1− k)θ),

cos(2(1 + 2k)θ), sin(2(1 + 2k)θ), cos(2(1− 2k)θ), sin(2(1− 2k)θ),

cos(2(1 + 3k)θ), sin(2(1 + 3k)θ), cos(2(1 + 3k)θ), sin(2(1 + 3k)θ)} (3.30)

which we determine to be linearly dependent for the following values of k

k = ±1,±2,±2/3,±1/2,±2/5, (3.31)

which are indeed a subset of the values obtained in (3.27). Expanding the equation

(3.29) over the set N , and assuming it to be linearly independent (i.e. excluding the

values of k given by (3.31)), we arrive at the following (reduced) system of polynomial

equations in the variables φ, k, λ1, λ2:

(−2 + k)(−1 + k) (λ1 − λ2) sin 2φ = 0,

(−2 + k(−15 + 23k)) (λ1 − λ2) sin 2φ = 0,

(−2 + k(15 + 23k)) (λ1 − λ2) sin 2φ = 0,

(1 + k)(2 + k) (λ1 − λ2) sin 2φ = 0,

(−1 + k)(−1 + 2k) (λ1 + λ2) sin 2φ = 0,

(1 + k)(1 + 2k) (λ1 + λ2) sin 2φ = 0,

(−1 + 2k)(1 + 2k) (λ1 + λ2) sin 2φ = 0,
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(−2 + k)(−1 + k) (λ1 − λ2) cos 2φ = 0,

(−2 + k(−15 + 23k)) (λ1 − λ2) cos 2φ = 0,

(−2 + k(15 + 23k)) (λ1 − λ2) cos 2φ = 0,

(1 + k)(2 + k) (λ1 − λ2) cos 2φ = 0,

(−1 + k)(−1 + 2k) (λ1 + λ2) cos 2φ = 0,

(1 + k)(1 + 2k) (λ1 + λ2) cos 2φ = 0,

(−1 + 2k)(1 + 2k) (λ1 + λ2) cos 2φ = 0.

There is no non-trivial solution for which the above system is satisfied. Considering

the set of linearly dependent functions, we substitute into equation (3.29) with the

special values of k given in (3.31) to yield the following possible cases

(1) k = ±1

Imposes φ = 0.

(2) k = ±2

Imposes {λ1 = 0, φ = nπ/2} or, {λ2 = 0, φ = nπ/4}, n ∈ N.

(3) k = ±2/3,±1/2,±2/5,

Imposes λ1 = λ2 = 0.

Thus, we conclude that k = ±1 are the only values of k for which the full TTW

potential (3.20) admits two quadratic first integrals of motion. For these values of k,

the TTW system reduces to the Smorodinsky-Winternitz system discussed in Section

3.2. Hence, we have proven the following

Proposition 3.32. The general TTW potential given by (3.20) is a multi-separable

superintegrable potential only when k = ±1.

The case k = ±2 yields the well-known Calogero system on the line (see e.g. [10,

14]). The conclusion of our above argument is that only when either λ1 or λ2 vanishes

does this potential admit separation in general Cartesian coordinates according to a

non-canonical Killing tensor KC whose components are given by (3.28). In particular,

the compatibility condition d(K̂CdV ) = 0 will be satisfied for the potential

V (r, θ) = −ω2r2 +
λ1

cos 2θ
+

λ2

sin 2θ
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when either λ1 = 0 and φ = nπ/2, or λ2 = 0, and φ = nπ/4.

Our results demonstrate that this approach to defining an infinite family of su-

perintegrable systems appears to destroy the geometry of the associated orbit space

(K2(E2) × K2(E2))/SE(2). In other words, it seems unlikely for systems defined in

this manner to admit two quadratic first integrals of motion for multiple values of

the introduced parameter. In 2010 [50], this method was utilised by Post and Win-

ternitz to construct another infinite family of superintegrable systems dependent on

a parameter k, namely a potential that appeared as a second-order perturbation of

the Kepler-Coulomb potential. They then established an equivalence between this

new system and the TTW system through a Stäckel transform, which maps Hamil-

tonians to Hamiltonians, and hence developed a direct relation between the integrals

of motion and trajectories of each system. Indeed, it would be of interest to pursue

this equivalence through the invariant theory of Killing tensors which could possibly

facilitate the search for these Stäckel equivalent systems on a manifold.



Chapter 4

Conclusions and Outlook

We have invariantly characterised the Smorodinsky-Winternitz superintegrable po-

tential modulo the action of the isometry group SE(2) in terms of joint invariants

of the associated Killing tensors by taking them as points in the product space

K2(E2)× K2(E2). We can extend this result to the problem of classification of arbi-

trary superintegrable potentials defined in spaces of constant curvature by classifying

first any associated Killing tensors that define first integrals of motion for the class

of superintegrable systems in question (e.g., superintegrable systems that admit only

quadratic first integrals of motion). These Killing tensors are identified as elements of

the corresponding product spaces, whose factors are the corresponding vector spaces

of Killing tensors representing the associated orbits in the induced orbit space under

the action of the isometry group in such product spaces.

Additionally, we have proven that the general TTW potential is a superintegrable

system with two functionally independent quadratic first integrals of motion only for

k = ±1, that is when it reduces to the Smorodinsky-Winternitz potential. If we

allow one of the arbitrary parameters in the TTW potential to vanish, then a second

multi-separable system is obtained when k = ±2. Therefore we have established that

the general superintegrability of the TTW system for other k values must come from

a (non-trivial) higher order (i.e. not quadratic) first integral.

The results contained within this thesis motivate the complete classification of

Hamiltonian systems with two degrees of freedom, which are superintegrable in the

sense of being multi-separable. The introduction of an additional arbitrary parameter

into a superintegrable potential appears to be very destructive, in the sense that it

destroys the property of multi-separability for all but one choice of the arbitrary

parameter. This hints towards a characterisation on the Euclidean plane for all

superintegrable systems obtained as perturbations of known superintegrable systems,

61
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and further, the classification of all multi-separable superintegrable systems defined

on the Euclidean plane.

Furthermore, we can extend our results to studying superintegrable systems de-

fined on different two-dimensional spaces, such as on the Minkowski plane or the

2D sphere. In the case of the former, the study becomes complicated by the fact

that there are nine orthogonal coordinate webs and instead of a discrete set of singu-

lar points, there are singular regions admitted by complex-valued eigenvalues of the

associated characteristic Killing tensor. In the case of the 2D sphere, the study is

simplified as a result of both the additional symmetry of the manifold and its com-

pactness. Indeed, there are instead only two orthogonal coordinate webs defined on

the sphere, and the set of singular points remains discrete. It is of immediate interest

to the author to carry out the classification of all multi-separable systems defined on

spaces of constant curvature with two degrees of freedom.



Appendix A

Compact Formulae

A.1 The Action of the Isometry Group

We provide compact formulas for the equations appearing in Section 2.4. Of course,

these equations have been produced in the literature for higher (n > 3) dimensional

spaces (see, e.g [30]), though we rewrite them specifically for E2 at the indulgence of

the author.

This begins with the compact formulae for the group action SE(2) � K2(E2), for

the general Killing tensor given by

K = AijX i �Xj +BiX i �R + CR�R,

where we can define the parameters by

A =

(
β1 β3

β3 β2

)
, B =

(
β4

−β5

)
, C = β6.

The transformation laws for the basis vectors are given by

X i = Λj
iX̃j, R = μjX̃j + R̃, (A.1)

where μj = εkiδ
iΛj

k, where εki is the two-dimensional Levi-Civita symbol with the

usual orientation, ε12 = +1, ε21 = −1, δi = (p1, p2) and the Λj
k are elements of the

special orthogonal group, SO(2), i.e.

Λ =

(
cos θ − sin θ

sin θ cos θ

)
,

we find that the action of SE(2) � K2(E2) induced by the action of SE(2) � E2,

63
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i.e. qi → Λi
j q̃

j + δi, can be written in a nice, compact way:

Ãij = Λk
iΛj

pA
kp + 2BkΛk

(iμj) + β6μ
iμj,

B̃j = Λj
�B

� + β6μ
j, (A.2)

C̃ = β6,

where the parentheses around the indices denote symmetrisation as defined in Section

1.3. This is equivalent to equation (2.49).

A.2 Kogan’s Recursive Approach

We can also provide compact formulae for those appearing in the derivation of group

invariants using Kogan’s recursive approach (see Section 2.4.2). Recall that we first

compute the action of the subgroup of translations on the vector space of Killing

tensors K2(E2). This is induced by the action of the translational group on E2, namely

qi → q̃i + δi, which yields the compact form of eq. (2.50) as

Ãij = Aij + 2B(iεj)mδ
m + Cεimε

j
�δ

mδ�,

B̃i = Bj + Cεi�δ
�, (A.3)

C̃ = β6.

The equivalent compact form of the normalisation equations (2.52) are then given by

δi = εijB
j/C.

Finally, we needed to compute the action of the subgroup of rotations SO(2) �

K2(E2). This action is obtained in a straightforward manner as the induced action of

SO(2) � E2, namely qi → Λi
j q̃

j to yield the following compact form of eq. 2.54 as

Ãij = Λk
iΛj

pA
kp,

B̃i = Λ�
iB�, (A.4)

C̃ = β6.

This concludes the compact representation of the Section 2.4.2 equations. Though,

we remark that the development can indeed be continued in order to derive the in-

variants of the vector space of valence two Killing tensors under the action of the
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isometry group, SE(2). Specifically, by substituting for δi into (A.3) and using the

transformation law given by (A.4). Provided that C �= 0, then a basis for the invari-

ants are admitted by the trace and determinant of Ãij. The case when C = 0 must

then be treated separately (see [30] for explicit details).



Appendix B

The Killing Tensor Equation in Local Coordinates

With respect to local (Cartesian) coordinates, i.e. gij = δij , the Killing tensor equation

in Section 1.3, namely

[g,K] = 0,

is equivalent to1

K(ij;k) = 0, i, j, k = 1, 2,

where the covariant derivative (see Section 1.3) is in fact a partial derivative since

all the connection coefficients vanish in a space of constant curvature. Using the fact

that Kij is symmetric, i.e. Kij = Kji, and applying the symmetrization rule, this

equation becomes

Kij,k +Kjk,i +Kki,j = 0,

which yields a system of PDE’s in Kij , for i, j = 1, 2. Namely, we have

(1) K11,1 = 0,

(2) K22,2 = 0,

(3) K12,1 = −1
2
K11,2,

(4) K12,2 = −1
2
K22,1

We will take the Killing tensor components as functions in the Cartesian coordinates

(q1, q2) = (x, y), so that, for instance K11,1 =
∂K11(x,y)

∂x
. Integrating (1) with respect to

x and (2) with respect to y then yields that K11(x, y) = F (y) and K22(x, y) = G(x),

respectively, where F and G are arbitrary functions. Taking a partial derivative of

1This equivalence holds true only in E2, since contravariant and covariant components with
respect to Cartesian coordinates are equivalent.
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(3) with respect to x, we find that

∂2K12

∂x2
= 0,

⇒ K12,1(x, y) = H(y) = −1

2

∂F

∂y
.

Integrating K12,1 with respect to y then yields that

F (y) = −2

∫
H(y)dy + β1. (B.1)

Analogously, if we take a partial derivative of (4) with respect to y , we find that

∂2K12

∂y2
= 0

⇒ K12,2 = M(x) = −1

2

∂G

∂x
,

so

G(x) = −2

∫
M(x)dx + β2. (B.2)

If we now use the fact that the partial derivatives commute, so ∂K12

∂x∂y
= ∂K12

∂y∂x
, then

since K12,1(x, y) = H(y) and K12,2 = M(x), we find that

∂H

∂y
=

∂M

∂x
= −β6,

where β6 is a separation constant. Thus, we can separate these two PDEs to obtain

that

H(y) = −β6y − β4, M(x) = −β6 − β5.

Substituting these into (B.1) and (B.2), respectively, we find after integrating that

F (y) = β6y
2 + 2β4y + β1, G(x) = β6x

2 + 2β5x+ β2,

so that

K11 = β1 + 2β4y + β6y
2, K22 = β2 + 2β5x+ β6x

2.

Lastly, integrating K12,1(x, y) = H(y) with respect to x, and using K12,2 = M(x), we

will find that

K12 = β3 − β4x− β5y + β6xy.

This gives the general solution to the Killing tensor equation defined on the Euclidean

plane. Indeed, we see that it depends on 6 arbitrary parameters, βi, i = 1, . . . 6.



Appendix C

A Complicated Trigonometric Equation

Imposing the compatibility condition d
(
K̂dV

)
= 0 in the case of a general Killing

tensor K̂ in six arbitrary parameters and the potential of the TTW system given in

Section 3.3 as eq. (3.20), we arrive at the following trigonometric equation

(C.1)

r5ω2 (r sin 2θ (β1 − β2)− 2r cos 2θβ3 + 2 cos θβ4 + 2 sin θβ5)

+ 3k2r4 sec4 kθ (sin 2θ (−β1 + β2) + 2 cos 2θβ3 + 2r cos θβ4

+ 2r sin θβ5)λ1 + sec2 kθ
((
4 + r2 + 2k2r4

)
sin 2θ (β1 − β2)

− 2
(
4 + r2 + 2k2r4

)
cos 2θβ3

− 2r
(
3 + 2k2r4

)
cos θβ4 − 2r

(
3 + 2k2r4

)
sin θβ5

)
λ1

+ 2kr2
(
1 + r2

)
cot kθ csc2 kθ (cos 2θ (β1 − β2) + 2 sin 2θβ3

+ r sin θβ4 − r cos θβ5) λ2 + 3k2r4 csc4 kθ (sin 2θ (−β1 + β2)
+ 2 cos 2θβ3 + 2r cos θβ4 + 2r sin θβ5) λ2

+
2

−1 + cos 2kθ

(
−

(
4 + r2 + 2k2r4

)
sin 2θ (β1 − β2)

+ 2
(
4 + r2 + 2k2r4

)
cos 2θβ3 + 2r

(
3 + 2k2r4

)
cos θβ4

+2r
(
3+2k2r4

)
sin θβ5

)
λ2−2kr2

(
1+r2

)
sec2 kθ (cos 2θ (β1−β2)

+ 2 sin 2θβ3 + r sin θβ4 − r cos θβ5) λ1 tan kθ = 0,

which must be solved for ω, λ1, λ2, k, βi, i = 1, . . . , 5.
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Appendix D

Linear Independence of a Set of Functions

We provide a proof to the claim in Section 3.3 that the set M (3.26) is linearly inde-

pendent when the arguments of the trigonometric functions do not coincide. Indeed,

it suffices to prove

Proposition D.1 (cf. Yuan [72]). The set of trigonometric functions defined by

{1, sin(rθ), cos(rθ)},

for positive r ∈ R is linearly independent over R.

Proof. Suppose that we have a non-trivial dependency relation with a minimal num-

ber of terms in sin(rθ) and cos(rθ),

∑
cr sin(rθ) + dr cos(rθ) = 0.

Consider the largest possible real r0 for which dr0 is non-vanishing. If we take a

large, even number of derivatives eventually the dr0 coefficient will dominate all other

coefficients in the other cosine terms. Suppose we take a considerable amount of an

even number of derivatives so that this is the case. If we then substitute with θ = 0,

we eliminate all sine terms and are left with a large number which cannot be equal to

zero. Therefore, it must be the case that no cosine terms appear in the dependency

relation.

Similarly, we can consider the largest possible real r1 for which cr1 is non-vanishing.

We will then take a substantial amount of an odd number of derivatives until the

coefficient of the cos(r1θ) term dominates all other coefficients in the other cosine

terms (where these cosines come from differentiating sines). Substituting with θ = 0,

we again find ourselves with a large number which cannot be equal to zero. Thus, it

follows that there can be no sine terms in the dependency relation.

69



70

What remains is that 1 is the only function which can appear in the non-trivial

dependency relation, which is clearly impossible. Thus, we conclude that no such

dependency relation can exist and so the set must be linearly independent.

Prompted by the discussion in [72], we arrive at a generalisation of the above

proposition. Considering that

cos(rθ) =
eirθ + e−irθ

2
, sin(rθ) =

eirθ − e−irθ

2i
,

it suffices to prove that the set of functions {eirθ} for r ∈ R are linearly independent

over R. Further, we can show that the set of functions {ezθ} for a z ∈ C are linearly

independent over C.

Proposition D.2. The set {ezθ} for z ∈ C is linearly independent over C.

Proof. Suppose we have a non-trivial dependency relation with a minimal number of

terms given by ∑
aze

zθ = 0.

Differentiating this equation with respect to θ then yields that∑
zaze

zθ = 0,

as well. By our assumption, there must exist a non-zero z0 ∈ C with az0 �= 0, and so

subtracting this from the previous equation we find that∑
(z − z0)aze

zt = 0

holds as well. But this is a new non-trivial dependency relation in fewer terms, which

contradicts our original assumption. Therefore, the set of functions {ezθ} is indeed

linearly independent over C.

We comment that the linear independence of the above functions follows from a

more general property regarding eigenvectors of a linear operator, where those with

distinct eigenvalues are linearly independent. Considering that the exponential, sine,

and cosine functions are all essentially eigenfunctions of differentiation1, one can prove

the result holds in this more general context.

1A non-zero function f is called an eigenfunction of a linear operator A iff it satisfies Af = λf,

for some scalar λ called the eigenvalue.
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