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Abstract

The identification of encrypted network traffic represents an important issue for net-

work management tasks including quality of service, firewall enforcement and security.

Traffic identification becomes more and more challenging as the traditional techniques

such as port numbers or deep packet inspection are becoming ineffective against ap-

plications such as the Peer-to-Peer (P2P) Voice over Internet Protocol (VoIP), which

uses non-standard ports and encryption. Thus, different approaches such as machine

learning (ML) are explored in the literature for traffic classification. However, traffic

classification represents a particularly challenging application domain for ML. Ide-

ally, solutions should be both simple (hence efficient to deploy) and accurate. Recent

advances in ML provide the opportunity to decompose the original problem into a

subset of classifiers with non-overlapping behaviours, in effect providing further in-

sight into the problem domain and increasing the throughput of solutions. Thus, this

thesis presents a novel approach for generating robust signatures to classify P2P VoIP

traffic using a ML-based approach, specifically with the C5.0, GP and AdaBoost clas-

sification algorithms. In this research, simple packet header feature sets and statistical

flow feature sets are explored without using the IP addresses, source/destination ports

and payload information to unveil the encrypted VoIP application in network traffic.

In this context, what is meant by robust signatures are those which have been learned

by training on one network are still valid when they are applied to traffic coming from

different time periods, different networks (locations) as well as under evasion attacks

that are designed to bypass such a classifier.

Results show that the performance of the automatically generated signatures does

not degrade significantly when evaluated against the robustness criteria. These results

demonstrate that flow-based statistical features (temporal information) with the use

of a ML-based approach can achieve high classification accuracy and produce robust

signatures. Furthermore, the results on the evasion experiments demonstrate that

the performance of the signatures is very promising if a malicious user tries to alter

the characteristics of VoIP (specifically, Skype) traffic to evade the classifier.
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Chapter 1

Introduction

Traffic classification becomes a crucial requirement for network administrators to

manage their network and help them to allocate expensive network bandwidth and

resources to essential applications. Hence, network administrators are in need of effi-

cient tools to manage, control and measure the traffic. However, managing network

traffic requires huge resources to verify the traffic on the network, to ensure that or-

ganizational policies are met and to ensure security for the users. Identifying Internet

Protocol (IP) Network traffic according to the application type has the capability of

resolving some of the complicated network management problems for organizations

(enterprises) such as managing bandwidth budget and ensuring quality of service

objectives for critical applications.

Furthermore, traffic classification is important for defence applications since it can

facilitate the assessment of security threats. Such a system is particularly useful from

a law enforcement application perspective since most of the time users with malicious

intentions try to hide their behaviour either in encrypted or covert tunnels. For

example, should some law enforcement agencies need to intercept or capture malicious

traffic (e.g. child pornography traffic) from an Internet Service Provider (ISP), then

IP network traffic classification is a core part of the solution. Hypothetically, from

a chief security officer’s point of view any application that hides its behaviour and

avoids detection by encrypting its payload and implementing many methods to bypass

firewalls or proxies is a risky application for sensitive information. Thus, such an

application can be viewed as a backdoor [1].

Thus, systems which can classify encrypted traffic represent a first step in identi-

fying such malicious behaviours. Moreover such systems can be useful as a forensic

tool to identify applications used by malicious users whose data is collected/captured

by law-enforcement units. In this case, establishing the classification of traffic types

can reflect the current utilization of applications and services in a given traffic trace.

1
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In turn, this can help law-enforcement units to make a case for investigating the true

intent of malicious users. Moreover, network engineering problems such as traffic

shaping or workload modeling require the classification of network traffic. In some

cases law enforcement agencies may want to ‘tap’ some actual phone call in so far as

who called and when the call happened and will ask telephony companies to do so.

In cases in which an individual is using a Voice over Internet Protocol (VoIP) such as

Skype to communicate, then they request the information from the ISP. Therefore,

traffic classification offers the option of identifying VoIP traffic in the ISP network.

Moreover, based on the traffic classification approach employed, user privacy can be

maintained.

1.1 Motivation and Objectives

The increasingly popular P2P VoIP applications have enjoyed huge success in the

last few years. They are becoming a major communication service for enterprises

and individuals since the cost of VoIP calls is much cheaper than the traditional

Public Switched Telephone Networks (PSTNs). Voice and video quality are getting

better and the communication is free of charge if placed directly from one VoIP

end user to another. Moreover, through such services, the dynamic approach to

circumvent restrictive network environments such as firewalls and Network Address

Translation (NAT) boxes is possible. To date, there are many VoIP products which

are able to provide high call quality such as Skype [2], Gtalk [3], Microsoft Messenger

(MSN) [4], Primus [5] and Yahoo! Messenger (YMSG) [6]. Skype is a very popular

P2P VoIP client developed in 2002 by the creators of Kazaa, which allows its users

to communicate through voice calls, audio conferencing and text messages. Skype

protocols are proprietary and an extensive use of cryptography is implemented by the

Skype creators. Moreover, Skype employs a number of methods to circumvent NAT

and firewall restrictions [7], which makes it difficult to distinguish from non-Skype

traffic. On the other hand, Gtalk is an instant messenger developed by Google, which

allows its users to place voice calls, send text messages, check emails and transfer

files. Gtalk provides services very similar to those of MSN, YMSG, Primus and Skype

since it has abilities for voice calls, instant messaging and buddy lists. In practice, it

resembles Skype application since Gtalk encrypts its traffic; however the fundamental
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protocols and techniques employed are relatively distinctive. Thus, the goal of this

thesis is to develop a model which distinguishes VoIP (mainly Skype, and Gtalk)

traffic from non-VoIP traffic. An efficient classification of such VoIP traffic represents

a fundamental issue for network management tasks such as managing bandwidth

budgets and ensuring quality of service objectives. Naturally, the process of traffic

classification has several unique challenges including: the non-standard utilization

of ports, the embedding of services within encrypted channels, the dynamic port-to-

application relationships, and the real-time nature of the domain.

Traditionally, two approaches are used to identify IP network traffic: the first

approach is to use ‘well-known’ Transmission Control Protocol (TCP) and/or User

Datagram Protocol (UDP) port numbers (visible in TCP or UDP headers) while

the second approach includes more sophisticated techniques based on ‘deep packet

inspection’ (DPI) within TCP or UDP payloads (visible payloads) looking for specific

protocol signatures. Each approach relies on some assumptions, which are no longer

accurate and has many disadvantages. The first approach assumes most applications

always use well-known port numbers registered by the internet assigned numbers

authority (IANA) [8]. However, this assumption becomes increasingly inaccurate

when applications use non-standard ports to bypass firewalls or circumvent operating

system restrictions. New applications such as Skype have not registered port numbers

with IANA and assign port numbers dynamically. Moreover, the same port number

can be used to transmit multiple applications, most notably port 80. Moore and

Papagiannaki showed that classification based on the IANA port list is correct 70%

of the time [9]. Madhukar and Williamson confirmed that port number analysis

misclassifies 30-70% of their flow traffic [10].

On the other hand, the second approach, DPI, assumes the access to the payload

of every packet. This technique can be extremely accurate when the payload is

not encrypted. Sen et al. [11] demonstrates that classifying Peer-to-Peer (P2P)

traffic based on payload signatures could reduce false positive and false negative

rates by 5%. Moreover, Moore and Papagiannaki [9] showed that using the entire

payload can classify 100% of packets correctly. However, DPI has many limitations.

Firstly, governments may regulate the use of payload and enforce constraints on its use

since it can violate some organizational privacy policies or go against related privacy
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legislation. Secondly, examining the payload of a packet at the network speed is

a computationally expensive task since the speed of networks, i.e. packet volumes

transmitted through a network, is increasing daily. Hence, deploying DPI, which

works efficiently is challenging. Finally, the success of DPI is losing ground since new

applications such as Skype or other VoIP or P2P traffic which use techniques such

as protocol encapsulation, payload encryption, and protocol obfuscation, imply that

the payload is opaque. Thus, other techniques are required to increase the accuracy

of network traffic classification.

As discussed earlier, since the traditional methods are ineffective for the new

emerging P2P VoIP applications, many studies in the literature employ machine

learning (ML) techniques using statistical flow information (features). Such features

are usually derived from the information on the transport layer, which does not

depend on port numbers or payload inspections. Moreover they have shown promising

results for classifying encrypted applications [12, 13, 14, 15, 16]. However, when ML

is deployed to extract signatures from traffic data it requires training data (where

the traffic is labelled by application, i.e. ground truth) and a feature set such as

inter-arrival times or packet sizes to represent the traffic. Therefore, ML classifiers

are trained on the data set to correlate sets of feature values with the class label to

extract signatures (rules) to classify unknown traffic.

Recent research in this area focuses on the identification of efficient and effective

classifiers. Different research groups have employed expert systems or various ma-

chine learning techniques such as Hidden Markov models, Näıve Bayesian models,

AdaBoost, RIPPER, Decision Trees or Maximum Entropy methods to investigate

this problem [9, 17, 18, 19, 20, 21, 22, 23, 24, 25]. Moreover, the limitations of port

and payload based analysis have motivated the use of transport/flow layer statistics

for traffic classification [12, 13, 15]. These techniques rely on the observation that

different applications have distinct behaviour patterns on the network. However, in

general all these efforts show that even though it is easier to apply such techniques to

well-known public domain applications such as mail, more work is necessary to dis-

tinguish between Peer-to-Peer (P2P) or encrypted applications accurately. Moreover,

P2P and encrypted applications such as Skype or Gtalk use port numbers dynamically

as well as using the same port number for multiple applications.
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There are three commonly used machine learning techniques. These are: su-

pervised learning, unsupervised learning, and semi-supervised learning. Supervised

learning is finding the correlation between the target class (labels) and the input

feature to build a set of rules/models. Supervised learning requires labelled training

data. While unsupervised learning is the clustering (grouping) of records which have

similar characteristics according to the input features regardless of the classes (labels).

Thus, unsupervised learning does not require labelled data. On the other hand, semi-

supervised learning aims to understand how combining labelled and unlabelled data

may change the learning behaviour, and how to design algorithms, which take ad-

vantage of such a combination [26]. In this research, the focus is on the application

of supervised learning techniques to encrypted VoIP traffic classification, specifically

classification of Skype and Gtalk traffic. The reason such an approach is taken is

twofold: (i) automatically generating signatures (rules) is necessary to classify VoIP

encrypted traffic, and (ii) automating the process of selecting the most appropriate

features /attributes for those signatures becomes possible. In this thesis, I have em-

ployed three supervised machine learning algorithms: C5.0, AdaBoost and GP. The

reasons I have employed these machine learning algorithms include the following:

previous works have reported good performance from these learning models in their

respective studies [21, 22, 25]. In the form of rules I have observed these models to

give the best solutions under different network conditions [18, 19, 20, 27]. Moreover,

all of these learning models are capable of choosing the best attributes from a given

set. This is an important property, given that I am interested in analyzing which

attributes are the best from a set of all possible attributes. Last, but not least, all

three of these learning algorithms can generate solutions automatically in the form

of rules which are easy to understand by human experts. I refer to these rules as the

automatically generated signatures to identify the target traffic class (e.g. Skype)

in a given traffic log file. This is a very important property in order to employ the

generated rules as signatures to classify traffic in practice. Furthermore, these learn-

ing models (C5.0, GP and AdaBoost) provide human readable solutions, hence, the

solutions they generate are not a black box to the system administrators or network

engineers. Additionally, other ML methods (black box methods) such as Support

Vector Machines (SVM) and Bayesian methods have significant memory overheads,
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which make all but the most advanced instances inappropriate whereas the advanced

cases are not openly available. Particularly, Bayesian methods require a lot of ex-

pertise to extract their potential. Conversely C5.0 addresses the memory overheads

of C4.5 [28] making for a very robust implementation. Likewise, AdaBoost and GP

manage the memory very well.

The use of ML techniques requires two major steps. Firstly, features need to be

defined to describe the traffic data to the ML algorithms. In this case, features can

be based on packet header information or can be calculated over flows representing

multiple packets. Secondly, the ML technique needs to be trained to find patterns

to correlate features to known traffic classes (supervised learning) and create mod-

els/rules to classify traffic. Every ML technique has a different schema to associate

with a specific set of features for building the final model/solution.

The number of network packets passing through high-speed links is massive and

is affected by the applications used, the number of Internet users and the capacity of

the links. As a result, sampling network traffic for traffic classification becomes a vital

procedure for dealing with huge volumes of traffic where resources are limited (e.g.

hard disk, memory). The most difficult part of sampling is to capture the behaviour

of an application by observing a small number of packets/flows. Therefore this thesis

investigates the challenging problem of sampling training data sets for the ML algo-

rithms. Weiss [29] has already demonstrated that performance of the classifier is not

impacted by restricting the learner to a subset of the exemplars during training. To

study the effectiveness of ML algorithms to generate transportable/robust signatures,

I use totally different data sets for training and testing the classifiers. Naturally, these

traffic traces represent large data sets from a ML perspective. Thus, subset sampling

is used to decouple the overall exemplar count from the subset over which training

is conducted. I performed subset sampling to limit the memory and Central Process

Unit (CPU) time required for training.

As discussed earlier, one of the objectives of this thesis is to develop a model,

which distinguishes VoIP from non-VoIP traffic robustly without using IP addresses,

TCP/UDP port numbers or payload information. I believe that this will enable

the learning model to generalize from one network to another as well as potentially

enabling such an approach to be employed for the classification of other encrypted
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applications. To achieve this goal, the approach consists of two main phases: the

learning phase to identify signatures automatically and the classification phase. The

goal of the learning phase is to correlate between network traffic flow/packet header-

based features and the target class using the training data set. At the end of this

phase, the best learner is selected based on the highest performance in terms of

Detection Rate (DR) and False Positive Rate (FPR). Then, the classification phase is

employed to test the robustness/generalization of the rules/signatures found in phase

one on unseen data sets, which include different locations, different networks and

different time periods. Furthermore, another objective of finding robust signatures

is to identify which feature set (Packet header or Flow) is the most suitable for

generating robust signatures to classify encrypted VoIP traffic. Since one of the

thesis objectives is to find robust signatures in order to classify VoIP traffic, the

robustness/generalization of the proposed approach is investigated by evaluating it

against potential evasion attacks, i.e. attacks, which try to bypass the proposed

traffic classifier. To the best of my knowledge, this is the first time in which the

robustness/generalization of classifiers was evaluated under evasion attacks for traffic

classification, specifically for Skype P2P VoIP.

Moreover, my proposed approach for identifying VoIP encrypted traffic such as

Skype is data-driven and I present all possible attributes/features to the learning

algorithms employed. In doing so, I aim to examine: (i) which features will be

considered the most appropriate by each learning algorithm; and (ii) which features

will be chosen by all of the learning models employed in this work. Therefore, I believe

that this subset of features will give the most robust/generalized as well as the most

appropriate ones, which can be used on real-life network traffic traces. Furthermore,

in this thesis, my approach to the identification of encrypted VoIP traffic takes the

form of a forensic analysis tool.

Finally, the three machine learning algorithms used in this thesis build different

solutions from the training data set. Usually, solutions built by these algorithms cover

parts of the example space which is represented by the training data set. As discussed

earlier, having an informative training data set is not an easy task. On the other hand,

using only one ML algorithm might not result in the best rule set either. For example,

a rule/model classifies a hard example or outliers should be included in the rule
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sets beside the rule/model that classifies a large number of exemplars. Therefore, I

investigated how to best combine the solutions provided by AdaBoost, C5.0 and GP to

produce one classifier. This is called ensemble learning. The ensemble learning model

involves the training of different classifiers followed by combining their outputs (using

a method such as a neural network) into one classifier to classify new examples. In

other words, ensemble learning transfers/combines the outputs of different classifiers

into one classifier [30]. It should be noted here that this thesis focuses on three

specific VoIP applications, namely Skype, Gtalk and Primus softphone. Since Gtalk

and Primus softphone are new applications in the market, obtaining a data set for

them is challenging. Therefore, a testbed was set up in the lab to generate traffic for

these applications in order to evaluate the proposed approach in classifying multiple

VoIP applications.

In summary, the primary objective of this thesis is to explore the robustness of

automatically generated signatures for encrypted VoIP traffic. In this case, robustness

analysis consists of unseen data sets including (i) different locations (networks), (ii)

different time periods, and (iii) evasion attacks. The steps taken to achieve this are

enumerated below.

1. The robust classification of encrypted VoIP traffic from a given traffic file with-

out using IP addresses, port numbers and payload information.

2. The identification of a suitable method for sampling training data sets in order

to find robust signatures/rules for classifying VoIP traffic;

3. An exploration of performance in classifying encrypted VoIP traffic when no

temporal information is used, i.e. Packet Header-based features;

4. An exploration of performance in classifying encrypted traffic when temporal

information is used, i.e. Flow-based features;

5. An exploration of limits of employing machine learning algorithms (C5.0, GP

and AdaBoost) in order to classify encrypted VoIP traffic robustly;

6. The testing of the ability of the robust signatures against evasion attacks;

7. The analysis of which features are related to the classification target – VoIP

encrypted traffic;
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8. An exploration of performance of ensemble learning techniques for enhancing

the performance of the signatures found by creating one classifier, i.e. combining

the C5.0, AdaBoost and GP solutions based on the Flow-based features using

a Neural Network based approach;

9. An exploration of capacity of the proposed approach for classifying more than

one VoIP application – a multi-class classification based approach.

Such an approach raises several fundamental questions, including: how to establish

the data on which ‘general’ – as opposed to network specific – classification signatures

are identified; what representation and corresponding features to assume and what

representation should the model of the classification assume to satisfy both real-time

(potentially) and accuracy requirements. In this research, use is made of training and

test data from entirely independent networks in order to provide some measure of

classifier generalization (robustness). Issues of data representation are addressed by

employing packet header-based features and flow-based features only without using

IP addresses, port numbers and payload data. Specifically, a representation based on

packet header information implies a low overhead and low computational cost when

deriving corresponding features in real-time, whereas the construction of statistical

flows is a much more involved process, but can still be achieved in near real-time.

Flows are derived from a 5-tuple consisting of the protocol (TCP/UDP), the ‘forward’

and ‘backward’ IP addresses and the corresponding port numbers. When IP numbers

match within a finite temporal window ‘flow’ statistics are calculated.

1.2 Thesis Contributions

In this thesis, I am interested in establishing how to deploy ML algorithms more

effectively for practical network operation tasks such as traffic classification. To this

end, an automatic classification system that is able to produce robust signatures for

classifying encrypted VoIP traffic is developed. The proposed approach contributes

to the identification of encrypted traffic by using a minimal set of features which can

be utilized for analyzing and developing robust signatures. A significant contribution

to the field of network traffic classification was achieved by finding lightweight models

which are able to classify VoIP traffic robustly. To this end the novel contributions
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listed below are presented for consideration.

1. The identification of a suitable method for the challenging problems of sampling

a training data set in order to find robust signatures and, hence, improve the

performance of the classifiers.

2. The empirical determination that robust signatures can be found using ML

techniques with statistical flow-based feature sets

3. The empirical examination of the robust signatures found by the proposed ap-

proach on traffic traces from different time periods, locations, networks infras-

tructures and also against evasion attacks.

1.3 Thesis Organization

In order to achieve the goals of this thesis, Chapter 2 introduces the background

literature. It highlights several open source tools, which are able to classify network

traffic based on the deep packet inspection method, the port numbers method and

machine learning techniques. In addition, the chapter describes two commonly used

VoIP applications, namely Skype and Gtalk.

Chapter 3 details the three supervised ML algorithms employed in this thesis

(C5.0, AdaBoost and GP). The chapter explains the two feature sets employed. The

first feature set is based on the information extracted from the packet header of a

packet while the second feature set is based on the statistical information calculated

from flows. Furthermore, the chapter defines the term robustness and describes the

evaluation schema for evaluating the ML algorithms. Also, a detailed description of

the network data sets (traces) employed in this research are presented in this chapter.

Chapter 4 presents the experimental studies performed on subset sampling. It

describes in detail the three different techniques used for subset sampling and shows

their performances on the test traces. The chapter concludes with a recommendation

on the most suitable subset sampling method for finding robust signatures.

In chapter 5 experimental studies are presented comparing three ML algorithms

(C5.0, AdaBoost and GP) in classifying VoIP traffic. First, classification techniques

based on the packet header-based feature set are presented and then it is demonstrated
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that by adding the temporal information based on statistical information calculated

from flows, i.e. flow-based feature set, not only is classification performance improved

but also classification becomes more robust.

After finding the robust signatures, which are able to classify traces from different

locations, networks and time periods the robustness evaluations can be used as well

against potential evasion attacks. It is believed that the evasion attacks detailed

in Chapter 6 is the first time such experiments have been performed against VoIP

signatures. To this end, a description of evasion attacks is given in Chapter 6 followed

by the details of the experimental setup and results.

Having demonstrated that the signatures found are robust not only on traces from

different time periods, locations, and network infrastructures but also against evasion

attacks, an analysis of the signatures is performed in detail in Chapter 7. In this

chapter, the solutions are analyzed in terms of the time required to train the ML

algorithms to obtain them, the number of features used, the number of signatures

utilized and the false positive rate triggered to understand fully how the proposed

approach solves the problem of classifying encrypted VoIP traffic. The analysis is

done both for packet header-based signatures and flow-based signatures.

Chapter 8 introduces the possibility of enhancing the performance of the robust

signatures found by combing the solutions of C5.0, AdaBoost and GP using an ensem-

ble learning technique. In this thesis, a neural network based technique is employed to

combine the three ML algorithms in an ensemble learner. Chapter 9 demonstrates the

ability of the proposed approach to classify more than one VoIP application. Finally,

chapter 10 draws conclusions and discusses future research directions.



Chapter 2

Literature Survey and Background

In this chapter, I give an overview of the VoIP applications employed in section 2.1 as

well as summarizing previous works on Peer-to-Peer (P2P) and Voice over IP (VoIP)

network traffic classification in section 2.2.

2.1 Overview of VoIP Applications

The Internet Protocol Suite, commonly known as TCP/IP, is organized into five lay-

ers. Four of these layers are protocols, which build on top of the hardware at the

physical layer. These five layers are: (i) Physical Layer; (ii) Data link layer; (iii)

Network layer; (iv) Transport layer; and (v) Application layer. The application layer,

the top layer of the TCP/IP stack, controls the interaction between the operating

system and its application. Users invoke application programs such as a Web browser

to access services available through the Internet. The application communicates with

one of the transport layer protocols to deliver data. The transport layer, layer 4, reg-

ulates the flow of information between two end nodes based on the protocol software.

Two protocols, which are used commonly at this layer are the Transmission Control

Protocol (TCP) and the User Datagram Protocol (UDP). The UDP protocol is an

unreliable connectionless transport protocol. It has no mechanism for ensuring the

arrival of packets, ordering the message, or providing information on when to termi-

nate the connection. Furthermore, the UDP protocol has no flow control capability

unlike the TCP protocol. The TCP protocol is a reliable and connection-oriented

transport protocol. It includes an error-detection mechanism and supports three-way

handshaking prior to sending messages to ensure that a virtual channel is established

between the two communicating end nodes. The transport layer, layer 4, divides the

stream of data into packets with a given destination address and forwards them to

the network layer for transmission. The network layer manages the communication

from one network node to another by using the Internet Protocol (IP). At this layer,

12
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the routing information informs the network on how to send the packet to its final

destination and provides this service in a “best effort” way. The Data link layer, layer

2, interacts with the hardware, the Physical layer, to ensure the proper transmission

of the data. In this thesis, I am interested in identifying encrypted VoIP applica-

tions at the Application layer by using information (feature sets) extracted from the

Transport layer, the Network layer and the Data link layer as explained in detail in

Chapter 3, section 3.1.

2.1.1 Skype

Skype [2] is a very popular P2P VoIP application developed in 2002. Skype allows

its users to communicate through voice calls, audio conferencing and text messages.

Although Skype client provides similar functions as MSN and Yahoo instant message

applications, the fundamental protocol and techniques it operates are completely

different. Since Skype protocols are proprietary and an extensive use of cryptography

is implemented by the Skype creators, understanding the Skype protocol is a difficult

task. Moreover, Skype employs a number of methods to circumvent NAT and firewall

restrictions [7], which increases the difficulty of understanding the Skype protocol.

Skype is based on a P2P architecture with the user’s authentication based on a

central architecture (client-server model via public key mechanisms). After authenti-

cation is completed, all communication is performed on the P2P network. Therefore,

user information and search queries are stored and broadcast in a decentralized ap-

proach. On the P2P network, there are two types of nodes: ordinary nodes (hosts)

and supernodes. An ordinary node is a Skype client, which can be used to com-

municate through the service provided by Skype. On the other hand, any node on

the P2P network with sufficient CPU power, memory and network bandwidth is a

suitable candidate for a supernode. A supernode is part of the decentralized Skype

network, which can ease the routing of Skype traffic to bypass NATs and firewalls.

Moreover, ordinary hosts have to connect to a supernode and register with the Skype

login server in order to join the P2P network.

Skype uses TCP or UDP at the Transport layer to provide services to users such

as voice and video calls, file transfer, chat and conference calls. For network com-

munications, Skype prefers the UDP protocol when there are no restrictions. The
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communication among peers (users) on the P2P network is established via the Inter-

net Protocol (IP) paradigm. However, in the case of NATs and firewall restrictions,

Skype prefers using either port 80 (HTTP) or port 443 (HTTPS). Furthermore, Skype

has the ability to route (overlay routing) traffic via its supernodes to circumvent the

NATs and firewall restrictions. A more detailed description of the Skype protocol

and internals can be found in [7, 31].

2.1.2 Gtalk

Gtalk [3] is an application developed by Google, which is based on Extensible Messag-

ing, the Presence Protocol and the Jabber protocol (XMPP/Jabber) [32]. It provides

many services to end users, these are: (i) voice communication, (ii) video commu-

nication, (iii) file transfer and (iv) chat services. The communication between users

is established using a traditional end-to-end IP paradigm, but Gtalk call is routed

through a relay node to ease the traversal of symmetric NATs and firewalls. Though

Gtalk may relay on TCP and UDP at the Transport layer, preferably, communication

data are carried over UDP. The user’s authentication is performed by a client-server

architecture using public key mechanisms. After a user (client) is authenticated all

further communication is carried out with the ‘nearest’ Google server relay node.

In this way, not only can the quality of service be guaranteed by Google but also

both the scaling and control issues can be solved in a more seamless way. A Gtalk

client stores all the user information on the server side and nothing on the client side.

There is no direct communication with Gtalk clients to establish communication: the

Gtalk clients on the caller side and callee side have to communicate through a Google

server(s). Depending on the network restrictions, the communication between a Gtalk

client and a Google server could use TCP or UDP. However, Gtalk prefers UDP and

if it is behind a firewall or NAT then it uses HTTPS (TCP port 443). Furthermore,

one of the main advantages of Gtalk is that Gtalk can benefit from the vast numbers

of Google servers which are being used as relay nodes (super nodes) to ensure quality

of service. Moreover, Gtalk is different from Skype in terms of preserving the band-

width of the client machine by not letting the client to become a super node. A more

detailed description of the Gtalk protocol can be found in [3, 33].
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2.1.3 Other Common Applications

Yahoo! Messenger (YMSG) [6] uses a client-sever architecture for normal operations

and a voice-chat service [34, 35]. The client needs to contact one Yahoo server and

then route all subsequent communications through that server. It uses the Session

Initiation Protocol (SIP) [36] for signalling and transmits the data via the Real-

Time Transport Protocol (RTP) [37]. SIP is an application layer text based protocol

for establishing multimedia sessions and adapts a client-server architecture. Several

major companies, including Microsoft and Yahoo, have chosen SIP for signaling VoIP

traffic. SIP messages can be transmitted over UDP, TCP or SSL. MSN and YMSG

VoIP applications use SIP for creating, modifying and terminating voice sessions.

However, in SIP voice, the voice and video communication are carried over the RTP

protocol whose job it is to carry voice data from caller to callee.

Microsoft Messenger (MSN) [4] has a similar approach to that used by YMSG

[34, 35]. It employs a client-server architecture for normal operations. MSN uses

SIP for voice communication and transmits the data through RTP protocol. The

major difference between YMSG and MSN is that YMSG needs only to contact one

server and can provide all services via that server whereas MSN has different types of

servers for each service it provides, including login, user search and voice. Moreover,

its traffic is routed to the appropriate server based on the services requested by the

client. Finally, MSN does not have any encryption capabilities while YMSG provides

encryption. Gtalk is similar to YMSG and MSN for using a central server for user

authentication. However, Gtalk is different from YMSG and MSN in its interior pro-

tocol design. YMSG and MSN depend on SIP and RTP to start, establish and end

voice communications while Gtalk uses Simple Traversal of User Datagram Proto-

col (UDP) Through Network Address Translators (STUN) [38] and XMPP/Jabber

protocols to establish voice communications.

Furthermore, the Primus Enterprise VoIP network has developed a soft Talk Broad

Band phone (softTBB) [5], which runs over SIP [36]. SIP is responsible for setting

up, validating and completing calls over the Internet. The main components of the

Primus Enterprise VoIP network are: (i) IP phone [a terminal (softTBB software)

with native VoIP support and direct connection to the Internet]; (ii) Primus Voice

Gateway with the ability to convert network signals from/to both telephony interfaces
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and VoIP protocols; and (iii) Primus SIP server, which is responsible for providing

the management and administrative functions with essential support for routing calls

across the network. For a call to a PSTN phone, the calls are routed to the near-

est Primus Voice gateway for establishing communication and converting the calls

between the VoIP network and the PSTN network.

2.2 Traffic Classification: Specifically P2P and VoIP

Traffic classification has been a consistently popular research topic in computer net-

works. However, with the increase in the number of VoIP, P2P and encrypted appli-

cations, interest has increased as well. Jordan [39] lists four questions, which can be

used as a framework for guiding the use of traffic classification practices by ISPs in

the United States and for determining whether the network management polices are

reasonable / acceptable or unreasonable / unacceptable. The first two questions are

relevant for the Internet Protocol Suite while the other two questions are related to

traffic management at the ISP end (who should manage traffic and when it should be

managed). The first two questions are the most related to this research and they are

in the form of where and what. These two questions are where in the network layers

the monitoring should be applied and what type of monitoring should be applied (e.g.

blocking or terminating of a connection). Jordan suggested that the monitoring of

network packets should not violate network layering, which is what this research does

since the stated aim is to identify encrypted VoIP applications at the Application

layer by employing feature sets obtained from the Transport layer, the Network layer

and the Data link layer without using the IP addresses, source/destination ports and

payload information. He suggested as well that the type of traffic monitoring should

be associated with the enhancement or degradation of QoS, which is what this re-

search does by identifying signatures that can be used to enhance or degrade VoIP

traffic.

Two survey papers [40, 41] summarize the research in IP traffic classification from

1997 to 2008. Firstly, Nguyen and Armitage [40] focus on research in the literature,

which use machine learning techniques to classify IP network traffic. They reviewed
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eighteen significant works from 2004 to 2008, which employ supervised learning tech-

niques, unsupervised learning techniques and hybrid techniques, which combined su-

pervised and unsupervised techniques for traffic classification. Secondly, Callado et

al. [41] give details about the challenges in the area of IP traffic analysis and ap-

plication classification. They reviewed papers from 1997 to 2008. They divided the

techniques for traffic analysis and classification into two categories: packet-based and

flow-based.

This chapter discusses on the research in the literature on automatic identifica-

tion/classification of P2P applications and VoIP applications. The review is divided

into five areas: (i) machine learning methods for classifying P2P network traffic (sec-

tion 2.2.1); (ii) Port-based methods for classifying P2P network traffic (section 2.2.2);

(iii) Deep Packet Inspection (DPI) methods for classifying P2P network traffic (sec-

tion 2.2.3); (iv) Open source network traffic classification tools (section 2.2.4) and (v)

Alternative methods for classifying P2P network traffic (section 2.2.5).

To the best of my knowledge, the focus of the literature for detecting VoIP traffic

is on Skype traffic since Skype is the dominant P2P VoIP application with more than

246 millions users [42]. Therefore, Skype analysis has become popular in the last

five years, in part due to the combination of the encrypted operation and dynamic

nature of the port assignment making traditional methods of traffic identification

insufficient. Baset and Schulzrinne [7] studied Skype during login, Network Address

Translation (NAT) and firewall traversal, and call establishment under three different

network arrangements in order to understand Skype behaviour and reverse engineer

its protocol. Guha et al. [43] presented an experimental study of Skype in which

they collected Skype traffic for five moths. They narrowed their approach to include

only sessions relayed via a supernode. Rossi et al. [44] concentrated their analysis

on the Skype signaling traffic while Yu et al. [45] inspected the characteristics of the

Skype P2P overlay network. Suh et al. [46] monitored Skype relay nodes. They used

statistical analysis based on inter-arrival time, byte size ratios and maximum cross

correlation to detect Skype relay traffic. Furthermore, Cicco et al. [47] examined the

Skype congestion control algorithm considering video call flow behaviour over TCP,

taking into account network time variation.
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2.2.1 Machine Learning Methods for Classifying P2P Network Traffic

In the literature, Bonfiglio et al. [48] present one of the earlier studies in classifying

Skype traffic using supervised learning techniques. They introduced two approaches

for classifying Skype traffic. The first approach is to classify Skype client traffic

based on Pearson’s Chi-Square (χ2) test using information revealed from the message

content randomness (e.g. the FIN and ID fields) introduced by the cypher and the

header format. Their second approach is to classify Skype VoIP traffic based on the

näıve Bayesian classifier using packet arrival rate and packet length. They obtained

the best results when the first and second approaches were combined. They achieved

approximately a 1% false positive rate and a 2-29% false negative rate, depending

on the data sets. However, they employed a payload-based classification scheme

as well and used a priori knowledge for UDP detection. Freire et al. [49] studied

detecting Skype flows in Web traffic by using metrics derived from the χ2 value

and the Kolmogorov-Smirnov distance using features based on Web request/respone

size, the number of requests and the time taken to detect Skype and Gtalk traffic.

They achieved 100% DR and 5% FPR for both applications. Recently, Este et al.

[50] applied Support Vector Machines (SVM) for classifying only TCP bi-directional

flows relying mainly on the packet size as the main feature. The SVM models are

able to classify multiple applications such as HTTP, HTTPS, BitTorrent, e-Donkey,

Kazza, Gnutella and MSN. The classification method is based on two phases. For the

first phase, they build a one-class SVM classifier in which the classifier can determine

the application of the TCP flow-based on where the flow feature values fall in SVM

hyperplanes (surfaces). For the second phase, they built a multi-class SVM based

classifier. The second phase is called when the TCP flow falls inside more than one

surface (class) in order to determine the correct application class. Furthermore, if

the flow falls outside the surface, the flow is marked as ‘unknown.’ They tested their

methods on three traces, which were captured from different locations. They were

able to achieve high performance on the P2P e-Donkey flows but had poor results on

other P2P applications such as Kazza and Gnutella. However, they did not look at

the transportability/robustness of the SVM models.

Unsupervised learning methods have been used in network traffic classification as

well. Bernaille et al. [15] used an unsupervised learning method to cluster the network
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traffic in order to label it according to the application protocols. They clustered the

first five packets of TCP flows based on the packet size in each connection. They

used the K -Means algorithm with the Euclidean distance to build an online classifier

consisting of fifty clusters to classify only TCP network flows. The classifier begins by

building the flows based on the 5-tuple (Protocol, Source/Destination IP addresses

and Source/Destination port numbers) from the TCP header and calculating packet

size. Then, the classifier searches all fifty clusters to label the coming traffic (new

flow) according to application type. They were able to classify accurately more than

80% of the P2P application traffic. In particular, they achieved 95.24% accuracy for

Kazaa and 84.2% accuracy for e-Donkey traffic. However, the classifier has problems

handling similar flow sizes employed by different applications, basically labelling the

flows the same way. Erman et al. [12] investigate K -Means and density-based spatial

clustering of applications with noise (DBSCAN) and AutoClass algorithms. They

used features based on bidirectional flows (Table 2.1) and evaluated the clustering

algorithms on two traces: a public trace (Auckland IV2 [51]) and a trace collected

at the University of Calgary. Results showed that the K -Means algorithm had an

accuracy over 85% and was more suitable to the clustering of Web, P2P and FTP

traffic since it was faster than AutoClass and DBSCAN. On another study, Erman

et al. [52] addressed the problem of asymmetric flow data at the core of the network.

They focused on TCP flows since partial information about the direction of TCP

connections was available on the backbone traffic. They achieved an overall accuracy

of 95% using K -Means when flow statistics from the server to the client were used.

However, for P2P traffic they achieved 77% recall and 82% precision. Furthermore,

they proposed an algorithm which could estimate flow statistics such as the number

of bytes/packets of TCP flow from unidirectional traces where the direction of the

flow was not observed.

Furthermore, Erman et al. [53] are among the first researchers to apply a semi-

supervised technique for classifying such internet flow traffic as the Web, FTP, and

P2P file sharing. The semi-supervised learning method consists of two steps. During

the first step, the K -Means algorithm with Euclidean distance is used to cluster

traffic. The clusters contain pre-labelled flows and unlabelled flows. The second

step involves using the maximum likelihood estimate for the pre-label flows within a
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Table 2.1: Flow Feature Set for the Clustering Technique Used by Erman et al. in
[12]

Numbers Features
1 Total number of packets
2 Mean packet size
3 Mean payload size excluding headers
4 Number of bytes transferred in forward direction
5 Number of bytes transferred in backward direction
6 Total number of bytes transferred
7 Mean inter-arrival time of packets

cluster to map the cluster into known traffic application classes. Clusters, which have

no pre-label flows are mapped into the ‘unknown class.’ They applied the backward

greedy feature selection algorithm to choose eleven flow features (Table 2.2). They

achieved a best performance of ≈98% flow classification accuracy and ≈93% byte

accuracy. Their performance metric is based only on accuracy, which is the number

of correctly classified instances divided by the total number of instances, rather than

providing classification results based on the false positive rate as well. Unfortunately,

this may be misleading, especially on unbalanced data sets in which the data set

consists of, say, two classes only (in a total of one hundred instances), 10 instances of

FTP and 90 instances of P2P. By labelling everything as the major class, a classifier

can achieve 90% accuracy but the false positive rate for P2P would be 100%.

Table 2.2: Flow Feature Set for the Semi-Supervised Classifier Used by Erman et al.
in [53]

Numbers Features
1 Total number of packets
2 Average packet size
3 Total bytes
4 Total header (transport plus network layer) bytes
5 Number of caller to callee packets
6 Total caller to callee bytes
7 Total caller to callee payload bytes
8 Total caller to callee header bytes
9 Number of callee to caller packets
10 Total callee to caller payload bytes
11 Total callee to caller header bytes
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Recently, Iliofotou et al. [54] employed Traffic Dispersion Graphs (TDGs) for

classifying P2P traffic (e.g. Gnutella, e-Donkey and BitTorrent). Their approach

worked by grouping the first sixteen bytes of the payload using the K -Means algo-

rithm. These bytes act as categorizing features ranging from 0 to 255. Then, the

TDGs are used to classify the clusters. They applied their approach on backbone

traffic collected from different sites and showed that they were able to classify 90%

of P2P traffic with an average precision of 95%.

2.2.2 Port-based Methods for Classifying P2P Network Traffic

Port numbers have been used as a discriminator for identifying application traffic.

Moore and Zuev [17] used the Näıve Bayes estimator to classify traffic into different

categories. They distinguished eleven discriminators (Table 2.3), including the port

number, out of 248 per-flow discriminators. They grouped network traffic into ten

categories (Table 2.4), considering only complete TCP connections in their experi-

ments. Their results showed that with the Näıve Bayes estimator they could achieve

an average 65% accuracy, where accuracy is calculated as the total number of correct

instances divided by the total number of instances. In addition, they enhanced the

overall accuracy of the classification to 95% by using kernel-estimates combined with

the Fast Correlation-Based Filter (FCBF) technique for discriminator reduction, but

their best results on the P2P category was a 55.18% detection rate.
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Table 2.3: Most Important Distinguishable Discriminators Identified by Moore et al.
in [17]

Numbers Discriminators Direction
1 Port server
2 # of pushed data packets server-to-client
3 Initial window bytes client-to-server
4 Initial window bytes server-to-client
5 Average segment size server-to-client
6 IP data bytes median client-to-server
7 Actual data packets client-to-server
8 Data bytes in the wire variance server-to-client
9 Minimum segment size client-to-server
10 RTT samples client-to-server
11 Pushed data packets client-to-server

Table 2.4: Network Traffic Grouped by Moore et al. in [17]

Classification Example Application
BULK FTP

DATABASE postgres, sqlnet, oracle, ingres
INTERACTIVE SSH, klogin, Rlogin, Telnet

MAIL IMAP, POP2/3, SMTP
SERVICES X11, DNS, IDENT, lDAP, NTP

WWW WWW
P2P Kazaa, BitTorrent, Gnutella

ATTACK Internet worm and virus attacks
GAMES Half-Life

MUTIMEDIA Windows Media Player, Real

Furthermore, Moore et al. [9] extended the work to classify network flow traffic

using nine distinct identification methods (Table 2.5) in order to study the classifi-

cation of different applications. They used the standard port number as their first

classification method. After that they used the header information for bidirectional

flows as their second method. The final methods employ host rules for classifying

the flows. The classification works by the flow going through different sub-methods

for classification (Figure 2.1). They used port numbers and payload information for

their methods. Furthermore, human interference is required when the flow has more

than one match in order to identify the application accurately. They used accuracy

as their only evaluation method, achieving 99.9% accuracy using the nine methods.
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Table 2.5: Nine Identification Methods Used by Moore et al. in [9]

Identification Methods Example
I Port-based classification (only) –
II Packet header (including I) simplex flows
III Single packet signature May worm/virus
IV Single packet protocol IDENT

V Signature on the first KByte P2P
VI first KByte protocol SMTP

VII Selected flow(s) protocol FTP
VIII (All) Flow Protocol VNC, CVS

IX Host history Port-scanning

Figure 2.1: Different Sub-methods Used by Moore et al. in [9]
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Ehlert and Petgang [55] studied Skype signaling traffic looking for different pat-

terns which would enable Skype to be detected. They built signatures based on port

usage, packet sizes and payload content. They were able to identify Skype signaling

traffic for Skype versions 1.4, 2.0 and 2.5. However, the use of port numbers and

payload information makes their signatures less robust since the port number can be

changed easily.

Bernaille and Teixeira [56] employed first clustering and then classification to the

first few packets in each connection to identify Secure Socket Layer (SSL) connec-

tions and applications running over SSL. They used the first four packets of a TCP

connection and represented it using the 5-tuple (destination/source IP addresses, des-

tination/source port numbers and protocol) and the packet size. They achieved high

performance on P2P traffic over SSL (a true positive of ≈86% for BitTorrent and

≈97% for e-Donkey). Li and Moore [57] employed C4.5 to classify different classes

of network traffic. They used server/client port numbers in their feature sets. They

achieved 99% recall for P2P flows. The P2P applications were Napster, Kazaa, e-

Mule, Gnutella and e-Donkey. Recently, Li et al. [58] employed the C4.5 algorithm to

classify network applications, using the first five packets of a connection. They clas-

sify bi-directional flows of the TCP and UDP protocols using features extracted from

the packet headers including the source/destination port numbers. They reported a

good performance for an online real-time classification of network traffic. However,

when they tested the trained model on a data set different from the training data

set, the performance of their classifier dropped significantly (e.g. on the interactive

applications, such as SSH, the Recall was less than 30%).

2.2.3 Deep Packet Inspection (DPI) Methods for Classifying P2P

Network Traffic

Zhang and Paxson [59] present one of the earlier studies of techniques based on

matching patterns in the packet payloads. They developed an algorithm for classifying

interactive network traffic based on matching patterns in the packet payloads, packet

size, inter-arrival time and direction [59]. They developed signatures for classifying the

traffic from seven interactive applications but they evaluated only the signatures for

Telnet, Rlogin, SSH, FTP, and Root prompt, since there was no traffic for Napster
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and Gnutella in their test traces. They had a high performance on different test

traces. Sen et al. [11] provide an approach based on available documentation and

packet payload to derive application signatures for five P2P protocols: Gnutella, e-

Donkey, DirectConnect, BitTorrent and Kazaa. They achieved high performance on

all the test traces with less than 5% for both the false positive rate and false negative

rate.

Chung et al. [60] compared three similarity metrics (Jaccard similarity, Cosine

similarity, and Gaussian radius based function) for payload-based classification. They

used accuracy as their evaluation metric. Results showed that the Jaccard Similar-

ity had the best performance (95% accuracy on P2P traffic). Recently, Finamore

et al. [61] proposed a deep packet inspection classifier for UDP traffic called KISS.

KISS inspects the first byte of the payload and the packet header to derive statistical

signatures by using Pearson’s Chi-Square (χ2) test. KISS adopts SVM for classifica-

tion. KISS was able to identify a wide range of applications correctly, including DNS,

RTP, P2P e-Mule, BitTorrent and P2P-TV applications with a 99% true positive

rate. However, KISS is not able to classify encrypted traffic.

2.2.4 Open Source Network Traffic Classification Tools

There are several open source tools, which can classify traffic by using DPI or port

numbers to classify network traffic. This section summarizes some of these tools.

Wireshark and CoralReef are two well-known open source tools which use port num-

bers to label traffic. Wireshark [62], formerly known as Ethereal, is the most popular

open-source, cross-platform network analysis tool. Network packets can be analyzed

by Wireshark either online or offline. Wireshark makes of the libpcap [63] library

for packet sniffing. Further, Wireshark is available for different platforms such as

Unix-based, Windows-based and Apple machines. Wireshark labels traffic based on

the standard port numbers. On the other hand, the CoralReef suite is a passive traf-

fic monitoring tool which allows users to measure and analyze network traffic. The

CoralReef software project is developed by the Cooperative Association for Internet

Data Analysis (CAIDA) [64, 65]. CoralReef provides a large number of features at

every layer of the network protocol stack and works on different operating system

platforms.
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Furthermore, DPI tools can classify network traffic by matching regular expres-

sions with the payload bytes of packets. There are many open source tools such as

OpenDPI and L7–filter. L7–filter [66] is a deep packet inspection tool designed for

the Linux kernel. It uses regular expression matching of the first few packets of the

application layer connection to classify traffic. It is capable of classifying many appli-

cations such as Kazza, BitTorrent, SSL, SSH, HTTP etc. The L7–filter is available

as well in lighter version called ‘L7–filter Userspace.’ The IPOQUE company [67]

has developed a software library which can classify network traffic based on pattern

matching and statistical techniques. The IPOQUE company releases a lighter open

source version called OpenDPI [68] which employs deep packet inspection to classify

network traffic.

Furthermore, Bonfiglio et al. [48] added their method, which is based on the näıve

Bayesian classifier using features such as packet length and inter arrival time to clas-

sify Skype traffic to the Tstat tool. Tstat is a real-time passive analysis tool derived

form the ‘tcptrace’, which was developed by the Politecnico di Torino networking

research group [69]. Tstat provides more than 80 different measures and statistics

output to network traffic. Tstat is capable of classifying network traffic using deep

packet inspection techniques and machine learning techniques as well (Näıve Bayesian

classifier [48]). It inspects the packet payload bytes of one packet and matches them

with the protocol’s signatures to classify applications such as PPLive, BitTorrent,

e-Mule, and Gnutella. If the application cannot be defined by inspecting one packet,

then it inspects several packets. Using this technique, Tstat is able to identify appli-

cations such as MSN, XMPP/Jabber, Yahoo and SSL.

2.2.5 Alternative Methods for Classifying P2P Network Traffic

Many methods using host information, pattern matching and nonlinear recurrence

plot-based approaches have been employed for classifying network traffic. Karagiannis

et al. [13] designed a framework called BLINC, which was able to classify network

flow traffic by analyzing patterns at three levels: (i) the social level; (ii) the functional

level; and (iii) the application level. At the social level, they evaluate the popularity

of a host by counting the number of communications to it at the Network layer.

Basically, they counted the number of destination IPs interacting with the host. At
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the functional level, they evaluated the behaviour of the host as either a client or

server in order to identify host functionality on the network by analyzing port usage

at the Transport layer. Primarily, they investigated source/destination IP addresses

and the source port numbers. Lastly, at the application level, they identified the

application running on a host using two steps. In step one, they classified based

on the source/destination IP addresses and source/destination port numbers. In

step two, they refined the classification using graphs based on flow features such

as protocol name, the number of packets and the number of bytes. In summary,

they gathered flow information at the transport and network layers and investigated

the relationships between host behaviour and the applications in order to classify

flows. They captured three traces from different locations and developed deep packet

inspection classifiers based on matching bit strings in order to set the ground truth

of the traces. They grouped the flows into eleven categories (Table 2.6). They were

able to identify 80% to 90% of the flows with an accuracy of 95%, where they defined

accuracy as the percentage of correctly labelled traffic by BLINC. However, BLINC

has a limitation of not being able to classify individual flows and may not be capable

of classifying distinct applications [70].

Table 2.6: Network Traffic Grouped by Karagiannis et al. in [13]

Category Application/protocol
WWW WWW
P2P FastTrack, e-Donkey2000, BitTorrent,

Gnutella,WinMx, OpenNap, Soulseek, Ares,
MP2P, Dirrect Connect, GoBoogy, Soribada,
PeerEnabler

data (FTP) FTP, database (MySQL)
Network management (NM) DNS, Netbios, SMB, SNMP, NTP, spamassasin,

GoToMyPc
mail mail (SMTP, POP, IMAP, IDENTD)
news news (NNTP)

chat/irc (chtirc) IRC, MSN messenger, Yahoo messenger, AIM
streaming (strm) mms (wmp), real, quicktime, shoutcast, vbrick

streaming, logitech Video IM
gaming (game) HalfLife, Age of Empires, etc.

Nonpayload Packet without message
Unknown Unknown applications
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Suh et al. [46] concentrated on the classification of relayed traffic and monitored

Skype traffic as an application using relay nodes. A relay node is part of the decen-

tralized Skype network which can ease the routing of Skype traffic to bypass NATs

and firewalls. They used several metrics based on features such as inter-arrival time,

byte size ratios and maximum cross-correlation between two relayed bursts of pack-

ets to detect Skype relay traffic. Their results (a 96% true positive and 4% false

positive) show the technique is reliable in recognizing relayed Skype sessions but it

might not be appropriate for classifying all Skype VoIP traffic. Palmieri et al. [71]

used nonlinear recurrence plot-based approach based on two flow features to classify

traffic flows: average packet length and inter-arrival time variance. Their result on

e-Donkey P2P flow traffic was a ∼78% true positive rate. Keralapura et al. [72] built

a two-stage P2P traffic classifier called Self-Learning Traffic Classifier (SLTC) which

used signature matching and pattern classification methods. In the first stage, they

proposed a Time Correlation Metric (TCM) algorithm to identify either P2P nodes or

P2P supernodes and classify in/out flows from these nodes as P2P flows. The TCM

is based on the assumption that when a new node joins the P2P network, it tries

to connect to a supernode. Then, the supernode would open a connection to more

than one node and forward the information on the new node to other supernodes on

the P2P network. The TCM algorithm monitors this temporal correlation from the

incoming to outgoing connections to identify the P2P nodes. Results showed that

the TCM is able to discover P2P nodes with 95% accuracy with 0% false positives.

When the network flows go through the first stage, the matching P2P flows would be

flagged as “Known” and no further process would be required. However, if there were

no matching signatures, they would flag the flows as “unknown” and would forward

layer 3 and layer 4 of the TCP/IP network packet information to the next stage for

further analysis. In the second stage, they aggregated the row packets together and

classified packets using signatures based on the destination IP, the destination port

number, the number of packets in flow and the number of bytes in each packet. They

achieved a 95% detection rate with 0% false positive rate for the P2P traffic.
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2.2.6 Importance of Robustness/Generalization for the Classification of

Network Traffic

In terms of the generalization/robustness of the classifier, Park et al. [73] pointed out

the importance of finding a robust classifier. They used different data for training

and testing for network traffic classification, which were different in terms of time

periods and locations. Their scheme consisted of using Genetic Algorithms (GA)

for feature set reduction and using a decision tree as a classifier. However, they

did not provide the results of individual applications but rather they provided the

overall results. Unfortunately, this can be misleading – particularly on unbalanced

data sets when the data set consists of two classes (a small class and a major class)

– when simply classifying everything as the major class; a classifier can achieve high

accuracy. Hu et al. [74] built an approach based on behavioural profiling with a

two-level matching method (host-level matching and flow-level matching) to identify

P2P flow traffic, using BitTorrent and PPlive as the two case studies. Their flow

features were based on the five flow tuples (srcIP, destIP, srcPort, destPort, protocol)

and statistical flow features. They used the Apriori algorithm to achieve a compact

set of flow patterns and build their rule sets using maximal association rules. They

used accuracy as their evaluation criterion. They obtained an average accuracy for

PPlive and BitTorrent when the validation data set was different from the training

data set of ≈98% and ≈97% for PPlive over TCP and UDP respectively and ≈94%

and ≈96% for BitTorrent over TCP and UDP, respectively. However, they did not

report true positive and false positive rates. Moreover, they discussed how their

methods could be evaded by malicious users, leaving any experiments to this end for

future work. By contrast, Wright et al. [75] used traffic morphing techniques to make

one application’s traffic look similar to another application’s traffic by padding the

payload of a packet. They used accuracy as their only performance measurement and

showed that the morphing techniques were able to reduce the accuracy of their own

VoIP language classifier [76], from 71% to 30% and to reduce a web page classifier,

designed by Liberatore et al. [77] from 98.4% to 4.5%. Then, the results of the

classifiers employed were enhanced significantly when the morphed data included in

the training data set and the experiments were repeated.

In this thesis, the aim is to use generic feature sets and let the employed machine
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learning algorithms identify the subsets of it for classifying any given application. The

aim is to perform an investigation of C5.0, GP and AdaBoost based classifiers for the

identification of VoIP (e.g. Skype) encrypted traffic as well as explore their robustness.

The focus is on the robustness of the classifiers since it is important to demonstrate the

robustness/generalization of such classifiers not only by evaluating them on unseen

data from the same network but also by evaluating them against unseen data captured

from different networks/locations at different time periods as well as against potential

evasion (bypassing classifiers) attacks. In the literature, the evaluation of classifying

network traffic traces using ML solutions against different network traffic traces or

evasion attacks were reported, but to the best of authors’ knowledge this is the first

time that the generalization/robustness of classifiers was evaluated under the three

aforementioned conditions for traffic classification specifically for encrypted P2P VoIP

applications such as Skype.



Chapter 3

Methodology: Learning Algorithms and Data Sets Employed

In this research, the focus is on the application of supervised ML-based techniques to

network traffic classification, specifically classification of Skype-encrypted VoIP traf-

fic. To this end, three different supervised machine learning algorithms, AdaBoost,

C5.0 and Genetic Programming (GP), are evaluated to generate signatures automat-

ically in order to identify VoIP traffic robustly. The ML techniques require a number

of steps such as selection of features, labelling of the data set, training of the learning

algorithms and testing the solutions. The details of these steps and the data sets

employed are presented in this chapter.

3.1 Feature Sets

Features consist of a small set of identifiers which are required to describe a data set.

In other words, a feature set is a vector of information which describes each record

of a data file that is input to a ML algorithm. The type of features is important in

order for the machine learning algorithm to quantify the characteristic of the network

traffic class. In this research, issues of data representation are addressed by employing

packet header-based features and flow-based features but without using IP addresses,

port numbers and payload data. Specifically, a representation based on packet header

information implies a low computational cost when deriving corresponding features

in real-time, whereas the construction of statistical flows is a much more involved

process. However, this can be accomplished in near real-time. What is meant by

flows is a communication between two network nodes where they share the same 5-

tuple information (destination/source IP addresses, destination/source port numbers

and protocol) for the two network nodes. Then, statistical information is calculated

within a finite temporal window once the 5-tuple information is matched. Through the

experiments, the best attribute set will be recommended for finding robust signatures

based on the performance of the ML algorithms.

31
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3.1.1 Packet Header-based Feature Set

In this case, each packet is described in terms of 29 packet header-based features

(Table 3.1) in which the underlying principle is that features employed are simple

and clearly defined within the networking community. They represent a reasonable

benchmark feature set to which more complex features might be added in the future.

To this end, Wireshark [62] is employed to process data sets and to generate features.

As discussed earlier, this does not use the IP addresses, port numbers and payload

data. The packet header feature set represents the TCP/IP Internet protocol stack

where the information from the Transport, Network and Data link layers are gathered

to identify applications running at the Application layer. Features 1 to 5 correspond

to the Data link layer while features 6 to 13 represent the IP header (Network layer).

Finally, features 14 to 29 are extracted from the two common protocols (TCP and

UDP) which are running on the Transport layer.
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Table 3.1: Packet Header-based Features Employed; * Denotes that the Feature is
Normalized by log

Number Feature Name Description
1 frame.time delta Delta time from previous captured packet
2 frame.pkt len* Packet Length
3 frame.len* Frame Length
4 frame.cap len* Capture Length
5 frame.marked Frame is marked
6 ip.len* IP Header length
7 ip.flags IP Flags
8 ip.flags.rb IP Flags: Reserved bit
9 ip.flags.df IP Flags: don’t fragment
10 ip.flags.mf IP Flags: More fragments
11 ip.frag.offset IP Fragment offset
12 ip.ttl* IP Time to live
13 ip.proto IP Protocol
14 tcp.len* TCP Segment Length
15 tcp.seq* TCP Sequence number
16 tcp.nxtseq* TCP Next sequence number
17 tcp.ack* TCP Acknowledgement number
18 tcp.hdr len* TCP Header length
19 tcp.flags* TCP Flags
20 tcp.flags.cwr TCP Flags: Congestion Window Reduced
21 tcp.flags.ecn TCP Flags: ECN-Echo
22 tcp.flags.urg TCP Flags: Urgent
23 tcp.flags.ack TCP Flags: Acknowledgment
24 tcp.flags.push TCP Flags: Push
25 tcp.flags.reset TCP Flags: Reset
26 tcp.flags.syn TCP Flags: Syn
27 tcp.flags.fin TCP Flags: Fin
28 tcp.window size* TCP Window size
29 udp.length* UDP Length
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3.1.2 Flow-based Feature Set

In this case, network traffic is represented using flow-based features. As discussed

earlier, flows are bidirectional streams of packets between two hosts (client and server)

where they share the same 5-tuple (source/destination IP addresses, source/destination

port numbers and protocol). Client to server direction decides the forward direction.

Moreover, flows are of limited duration. UDP flows are terminated by a flow time-

out while TCP flows are terminated upon proper connection teardown or by a flow

timeout, whichever occurs first. The flow time-out value (600 seconds) employed in

this research is used as specified in [78]. The flow features employed are based on

direction, inter-arrival time and inter-packet length. In this research, each network

flow is described by a set of statistical features (Table 3.2). Here, a feature is a de-

scriptive statistic which can be calculated from one or more packets, which provides

a label (e.g. {Skype, non-Skype}) for each flow. To this end the NetMate tool [79]

is employed to process packets, generate flows and compute feature values. Finally,

only those UDP and TCP flows which have no less than one packet in each direction

and transport no less than one byte of payload are considered. As discussed earlier,

features such as IP addresses, source/destination port numbers and payload are ex-

cluded from the feature set to ensure that the results are not dependent upon such

biased features.



35

Table 3.2: Flow-based Features Employed

Abbreviation Feature Name
1 proto Protocol
2 Duration Duration of the flow
3 fpackets # Packets in forward direction
4 fbytes # Bytes in forward direction
5 bpackts # Packets in backward direction
6 bbytes # Bytes in backward direction
7 min fiat Min forward inter-arrival time
8 mean fiat Mean forward inter-arrival time
9 max fiat Max forward inter-arrival time
10 std fiat Std deviation of forward inter-arrival times
11 min biat Min backward inter-arrival time
12 mean biat Mean backward inter-arrival time
13 max biat Max backward inter-arrival time
14 std biat Std deviation of backward inter-arrival times
15 min fpkt Min forward packet length
16 mean fpkt Mean forward packet length
17 max fpkt Max forward packet length
18 std fpkt Std deviation of forward packet length
19 min bpkt Min backward packet length
20 mean bpkt Mean backward packet length
21 max bpkt Max backward packet length
22 std bpkt Std deviation of backward packet length
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3.2 Labels, Training and Testing Data Sets

In this research, the label of a data record is a class, which indicates the type of the

IP traffic. Labels reflect the ground truth of a given data set. Thus, if the traffic type

is known, a label is provided for each packet/ flow (data record) in the data sets.

Machine learning algorithms need to be trained using a data set (called train-

ing). Once they are trained, they give a solution, which consists of the rules or the

model they generate. This solution (output) can be validated and tested on a test

data set (previously unseen data instances). Sampling a representative subset data

for training the machine learning algorithms is a difficult task in order to model or

characterize the different behaviour of an application’s traffic (e.g. Skype traffic). In

this thesis, Chapter 4 describes how the training data sets are sampled. Moreover,

test data sets are important for determining the performance of the best machine

learning algorithms on unseen data/network traces and hence is an important step in

identifying the robustness of the classifiers. Section 3.6 describes the test data sets

employed in this thesis in more detail.

3.3 Robustness of Machine Learning Algorithms

In most cases in the literature [9, 15, 17, 22, 23, 70, 74, 75], researchers have evalu-

ated the performance of their approaches on traces from the same network on which

the model was trained, even though the testing data sets were unseen during train-

ing. It is important to evaluate the robustness/generalization of the solutions of the

machine learning algorithms, specifically C5.0, GP and AdaBoost, in traffic classi-

fication (e.g. VoIP). In this thesis, robustness/generalization is defined from three

perspectives: testing on (i) unseen data from different locations and network infras-

tructures; (ii) unseen data from different time periods and (iii) unseen altered data

by padding/morphing, i.e. evasion attacks. It is believed that this is the first research

to evaluate robustness of traffic classification signatures produced by ML algorithms

on all three criteria. The quantification of the robustness of the signatures can be

measure in terms of achieving moderate performance accuracy on test traces, which

is higher than 50% (random guessing).
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3.4 Machine Learning Algorithms Deployed

In this section, the three machine learning techniques employed in this thesis (C5.0,

AdaBoost and GP) are summarized.

3.4.1 C5.0

C5.0 is the commercial tool [80] developed from the C4.5 decision tree algorithm. C5.0

incorporates new (relative to C4.5) technologies such as boosting and the construction

of a cost-sensitive tree while still keeping all the functionalities of C4.5. The main

improvements of C5.0 affect efficiency, otherwise the algorithm remains the same as

C4.5 [28]. The C5.0 algorithm builds a decision tree by dividing the input spaces into

local regions in a sequence of recursive splits. A split is pure if for all branches, for

all exemplars choosing a branch belong to the same class after the split. It begins

by calculating the entropy of input data (S ); in Eq. 3.1. n represents the number of

classes in the data and pi corresponds to the proportion of exemplars that belong to

class i.

E(S) =
n∑

i=1

−pilog2pi (3.1)

If the split is not pure, then the exemplars are divided to minimize impurity and

there can be multiple possible attributes on which a split can be done. The next step

is to reduce the entropy by calculating the information gain for each attribute, A, in

the input data, S, as in Eq. 3.2. E(S) is the entropy of all the input, and Sv is the

number of instances which have value v for attribute A.

G(S,A) = E(S) − ∑

v∈(A)

Sv

S
E(Sv) (3.2)

In other words, when a tree is constructed, at each step the split that results in the

largest decrease in impurity is chosen. A more detailed explanation of the decision

tree can be found in [81].

3.4.2 AdaBoost

The AdaBoost algorithm introduced by Freund and Schapire [82] in 1995 is a repre-

sentative meta-learning algorithm of the Boosting family. The principle of AdaBoost
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is to convert or to boost weak learning (simple) classifiers into strong learning classi-

fiers. Given a training data set, AdaBoost builds a complex classifier incrementally

(Eq. 3.3).

H(X) = sign(
T∑

t=1

) ∝t ht(X) (3.3)

The classifier H(X) is created by overlapping the performance of many weak simple

classifiers, called decision stumps, for T times using a voting scheme. The decision

stumps examine the feature set and return a decision tree with two leaves. Thus,

the algorithm generates a set of hypotheses ht such that each decision stump will

return either +1 or –1. At the end of learning, H(X) represents a combination of

these hypotheses with weights based on their credential factor ∝t.

It constructs a complex classifier incrementally by overlapping the performance of

possibly hundreds of simple classifiers using a voting scheme. These simple classifiers

are called decision stumps. They examine the feature set and return a decision tree

with two leaves. The leaves of the tree are used for binary classification and the root

node evaluates the value of only one feature. Thus, each decision stump will return

either +1 if the object is in-class, or –1 if it is out-class. Further information on the

AdaBoost algorithm can be found in [81].

3.4.3 Team-based Genetic Programming

In this thesis, the form of genetic programming employed is based on the Symbiotic

Bid-Based (SBB) paradigm of team-based GP. The SBB framework makes extensive

use of coevolution [83, 84], with a total of three populations involved: a population of

points, a population of learners, and a population of teams. Individuals comprising a

team are specified by the team population, thus establishing a symbiotic relationship

with the learner population. Only the subset of individuals indexed by an individual

in the team population compete to bid against each other on training exemplars. The

use of a symbiotic relation between teams and learners makes the credit assignment

process more transparent than in the case of a population-wide competition between

bids. Thus, variation operators may now be defined for the independent investigation

of team composition (team population) and bidding strategy (learner population).

The third population provides the mechanism for scaling evolution to large data sets.
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In particular, the interaction between team and point population is formulated in

terms of a competitive coevolutionary relation [85]. As such, the point population

indexes a subset of the training data set under an active learning model (i.e. the subset

indexed varies as classifier performance improves). Biases are enforced to ensure equal

sampling of each class irrespective of their original exemplar class distribution [86],

whereas the concept of Pareto competitive coevolution is used to retain points of most

relevance to the competitive coevolution of teams.

The SBB model of evolution generates Pgap new exemplar indices in the point pop-

ulation and Mgap new teams in the team population at each generation. Individuals

in the point population take the form of indices to the training data and are generated

stochastically (subject to the aforementioned class balancing heuristic). New teams

are created through variation operators applied to the current team population. Fit-

ness evaluation evaluates all teams against all points with (Psize − Pgap) points and

(Msize − Mgap) teams appearing in the next generation. Pareto competitive coevolu-

tion ranks the performance of teams in terms of a vector of outcomes, thus the Pareto

non-dominated teams are ranked the highest [85]. Similarly, the points supporting

the identification of non-dominated individuals (distinctions) are retained as well. In

addition, use is made of competitive fitness sharing [87] in order to bias survival in

favor of teams, which exhibit uniqueness in the non-dominated set (Pareto front).

Denoting the non-dominated and dominated points as F (P ) and D(P ), respec-

tively, the SBB framework notes that as long as F (P ) contains fewer than (Psize−Pgap)

points, all the points from F (P ) are copied into the next generation [83, 84]. An

analogous process is repeated for the case of team selection, with (Msize − Mgap)

individuals copied into the next generation. Under the condition where the (team)

non-dominated set exceeds this number, the fitness sharing ranking employs F (M)

and D(M) in place of F (P ) and D(P ), respectively. The resulting process of fitness

sharing under a Pareto model of competitive coevolution has been shown to be ef-

fective at promoting solutions in which multiple models cooperate to decompose the

original C class problem into a set of non-overlapping behaviours [83, 84].

Finally, the learner population of individuals expressing specific bidding strate-

gies employs a linear representation. Bid values are standardized to the unit interval

through the use of a sigmoid function, or bid(y) = (1 + exp (−y))−1, where y is the
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real valued result of program execution on the current exemplar. Variation opera-

tors take the form of the instructions add, delete, swap and mutate, applied with

independent likelihood, under a uniform probability of selection. When an individual

is no longer indexed by the team population it becomes extinct and is deleted from

the learner population. Conversely, during evaluation of the team population, ex-

actly Mgap children are created pairwise care of team-based crossover. Learners that

are common to both child teams are considered to be the candidates for retention.

Learners not common to the child teams are subject to stochastic deletion or modifi-

cation, with corresponding tests for deletion/insertion at the learner population. The

instruction set follows from that assumed in [83, 84] and consists of eight opcodes

({cos, exp, log, +,×,−,÷, %1}) operating on up to eight registers, as per a linear GP

representation. A more detailed description of the SBB-based GP learning model can

be found in [83, 84].

3.5 Evaluation of Machine Learning Algorithms

In traffic classification, typically two metrics are used in order to quantify the per-

formance of the classifier: Detection Rate (DR) and False Positive Rate (FPR). In

this case, DR reflects the number of in-class (the ones which the algorithm aims to

identify) packets/flows classified correctly and is calculated using Eq. 3.4; whereas

FPR will reflect the number of out-class packets/flows classified incorrectly as in-class

and is calculated using Eq. 3.5. Naturally, a high DR and a low FPR are the most

desirable outcomes. False Negative, FN, implies that in-class traffic is classified as

out-class traffic, whereas False Positive, FP, implies that out-class traffic is classified

as in-class traffic. Furthermore, True Positive, TP, implies that in-class traffic is clas-

sified as in-class traffic, whereas True Negative, TN, implies that out-class traffic is

classified as out-class traffic.

DR =
TP

TP + FN
(3.4)

FPR =
FP

FP + TN
(3.5)

1% is a conditional operator that changes the sign of the opcode
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All three candidate classifiers are trained on the training data using fifty runs

to generate fifty different models for each run. Weka [88] is employed with default

parameters to run AdaBoost. The Linux implementation in [80] is used with default

parameters to run C5.0. Moreover, fifty runs of the C5.0 algorithm are performed

using different confidence factors to generate different models for C5.0 and fifty runs

of the AdaBoost algorithm are performed using different weight thresholds to gen-

erate different models for AdaBoost. Fifty runs of the GP algorithm are performed

using different population initializations to generate different models. The default

parameters of the C5.0, AdaBoost and GP classifiers are summarized in Tables 3.3,

3.4, and 3.5, respectively. The reason why all three candidate classifiers are trained

on the training data using fifty runs to generate 50 different models for each run is to

ensure that the results are based on statistically significant experiments as opposed

to one-off trials. Furthermore, the non-dominated solutions were selected out of the

fifty models. The non-dominated solutions are the distinctive solutions that ranked

the highest in terms of high DR and low FPR out of all solutions/models. Then,

the best learner out of the non-dominated learners is chosen based on the highest

performance (the highest DR and the lowest FPR).

Table 3.3: C5.0 Parameterization

Description Value
r Use rule-based classifiers True
b Use boosting False
p Use soft thresholds True
e Focus on errors True
s Find subset tests for discrete attributes False
c Confidence factor for pruning 5-54

Table 3.4: Weka Parameterization for AdaBoost

Description Value
classifier The base classifier to be used DecisionStump
numIterations Number of iterations 10
seed The random seed number 1
useResampling Use resampling instead of reweighting False
weightThreshold Weight threshold (default 100) 10-250
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Table 3.5: SBB-GP Parameterization

Description Value
Psize Point population size 90
Msize Team population size 90
tmax Number of generations 30000
pd Probability of learner deletion 0.1
pa Probability of learner addition 0.2
μa Probability of learner mutation 0.1
ω Maximum team size 30
Pgap Point generation gap 30
Mgap Team generation gap 60
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3.6 Traces Deployed

To show the effectiveness of the proposed approach, completely different data sets

are employed for training and testing the classifiers. Moreover, solution robustness

is assessed by training on a data set from one location (hereafter denoted Univ2007

trace) but by testing on data sets from other locations (Univ2007 Test partition,

Univ2010, ITALY, NIMSII, NIMSIII and IPv6 traces, which were captured between

2000 and 2010).

3.6.1 Dalhousie Traces

Two Dalhousie traces were captured on the Dalhousie University Campus network

by the Information Technology Services Centre (ITS) in January 2007 and May 2010

(Univ2007 and Univ2010). Dalhousie is one of the biggest universities in the Atlantic

region of Canada. There are more than 15000 students and 3300 faculty and staff.

The ITS is responsible for all the networking on the campus which includes more than

250 servers and 5000 computers. The Dalhousie network is connected to the Internet

via a full-duplex T1 fiber link. Given privacy issues, data is filtered to scramble the

IP addresses and each packet is truncated further to the end of the IP header so that

all payload is excluded. Moreover, the checksums are set to zero since they could leak

information from short packets. However, any information regarding the size of the

packet is left intact. Moreover, both the Univ2007 and Univ2010 traces are labelled

by ITS using a commercial classification tool called PacketShaper, which is a deep

packet analyzer [89].

3.6.2 ITALY Traces

The ITALY data set consists of 96 hours of Skype Traffic over TCP and UDP pro-

tocols [90]. The data set was captured on the main link at the Politecnico di Torino

University campus. TCP Statistic and Analysis Tool (Tstat) and the traffic clas-

sification method employed in [48] were used to label the traffic. As described in

Chapter 2, section 2.2.1, the creators of this data set classified Skype traffic based

on deep packet inspection and per-host analysis. In this thesis, all the Skype traces,
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which were captured in the Politecnico di Torino main link were employed: (i) End-

to-End (E2E) voice only and voice-video class (Skype UDPE2E); (ii) Skype out calls

(Skype UDPE2O); (iii) Signaling connections only (Skype UDPSIG); and (iv) End-

to-End and Skype out calls (Skype TCPE2X). The first trace, which was captured

over UDP, consists of voice only calls as well as voice plus video calls. The fourth

trace was captured over TCP and consists of voice only calls.

3.6.3 NIMSII Traces

VoIP traffic was generated using different applications on a testbed set up in the NIMS

Lab in 2009 at Dalhousie University. This testbed involved several PCs connected

through the Internet and several network scenarios were emulated using many popular

VoIP applications (e.g. Gtalk, Primus, Yahoo messenger). The focus was on Gtalk

traffic and how Gtalk reacts to different network restrictions was observed. Moreover,

the effects (if any) of different types of access technologies (i.e. WiFi versus Ethernet)

were investigated as well as their different combinations. In 2009 over two hundred

experiments were conducted, equivalent to more than fifty hours of VoIP traffic and

non-VoIP traffic. This data set was made public at [91].

For this work, a Gtalk client was installed on each of the three Windows XP

machines. The first machine was a Pentium 4 2.4 GHz Core 2 Duo with 2 GB

RAM; the second machine was a Pentium 4 2 MHz Core 2 Duo with 2 GB RAM,

and the third machine was a MacBook 2 GHz Intel Core 2 Duo with 2 GB RAM.

Two machines had a 10/100 Mv/s Ethernet connection and the third machine had

a wireless 10/100 Mv/s card. Furthermore, one was connected to a 1 GB/s network

while the others were connected to a 10/100 Mb/s network. All three machines had

Windows XP Service Packet 2 and all experiments were done using the Gtalk client

version 1.0.0.104. In all experiments, Gtalk traffic was captured from both ends. In

all cases the experiments were performed under several different network scenarios

(Figures 3.1 and 3.2).
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Figure 3.1: Network Setup with Restrictions

Figure 3.2: Network Setup without Restrictions

These scenarios include: i) Firewall restrictions at one user end and no restrictions

at the other end; ii) Firewall restrictions at both ends; iii) No restrictions at both

ends; iv) Use of wireless and wire-line connections; v) Blocking of all UDP connections,

and vi) Blocking of all TCP connections. It should be noted here that during these

experiments all the Internet communications went through the network’s firewall. The

firewall was configured to either block or to permit access to the following restrictions:

i) block everything, or ii) permit limited well-known port numbers: 22, 53, 80 and

443. Wireshark [62] and NetPeeker [92] were used to monitor and control network

traffic. NetPeeker was used to block ports and to allow either both TCP and UDP

traffic, or only UDP or TCP traffic in order to analyze the behaviour of the Gtalk

client. On the other hand, Wireshark was used to capture traffic from both ends of

the communication.
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The general call setup between the caller and callee for voice calls was as follows:

caller transmits a standard audio file to callee. An English spoken text (male and

female audio files) without noise and a sample rate of 8Hz was used, which encoded

with 16 bits per sample and which can be downloaded at [93]. The wav-file was

played and then the output of the Windows media player was used as input for

Gtalk, Primus (soft Talk Broadband (softTBB)) and Yahoo messenger (Encrypted

with Zfone in 2009) with clients using a microphone. Wireshark was used to capture

the traffic from both users’ ends.

Figure 3.3: Network Setup for Zfone Calls

Furthermore, Yahoo messenger traffic was generated as well (encrypted with Zfone

in 2009 only). Zfone traffic is another encrypted VoIP traffic, which was generated.

Zfone [94] is software which secures VoIP calls over the Internet. Zfone works by inter-

cepting all the unencrypted VoIP channel and protecting the VoIP channel securely

by encrypting all the VoIP packets. Zfone is the user interface of the Zimmermann

Real-time Transport Protocol (ZRTP) [95]. ZRTP uses Diffie-Hellman to exchange

keys over the Real-time Transport Protocol (RTP) packet stream (creating secure

RTP sessions). It encrypts the payload of a packet using standard cryptographic

algorithms such as the Advanced Encryption Standard (AES) or Rivest Shamir Adle-

man (RSA) algorithms. Zfone was used to secure all Yahoo Messenger audio calls.

Zfone detects Yahoo packets and encrypts them as they are sent by the caller machine

and detects the encrypted packets received by the callee machine and decrypts them

(Figure 3.3).
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Non-encrypted VoIP traffic was generated using a Primus Session Initiation Pro-

tocol (SIP) client [5]. Primus softTBB was used to make calls to a Public Switched

Telephone Network (PSTN) for voice services (hard line phone) and mobil cell phone.

The softTBB client runs on a PC or a laptop and connects to the Primus SIP Net-

work over the Internet. Depending on what is called, i.e. a mobile phone or a PSTN

phone, the Primus SIP network routes the calls to the final destination differently.

Figure 3.4: Network Setup for Primus Calls

A call to a PSTN phone is routed to the nearby Primus Voice gateway which

converts the calls between the VoIP network and the PSTN network (Figure 3.4).

For a call to a cell phone which is subscribed to the Bell General Packet Radio

Service (GPRS) and Universal Mobile Telecommunication System (UMTS) network,

the route is more complex. According to the GPRS/UMTS specification [96], the main

components of the GPRS/UMTS network are base stations and gateways connected

to the Internet. In this case, firstly, the cell phone registers with the base station.

Then, the base station is connected to the Serving Gateway Support Node (SGSN),

which is connected to the Gateway GPRS Support Node (GGSN) inside the Bell

GPRA/UMTS network. Finally, the GGSN is the first node responsible for processing

IP packets from the Internet to the mobile network and vice versa. To establish the

call between a Primus softTBB and a Bell mobile phone, the call is routed through
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the Primus SIP network through the Internet to the Bell GGSN gateway. In all

cases it was possible to listen to the call on the PSTN phone and the mobile phone.

All communications are done without encryption and the traffic is captured using

Wireshark only at the machine where softTBB is running, since permission to capture

traffic with Primus or Bell companies were not an option. In this case, it was a

deliberate choice not to encrypt the traffic in order to have different mixtures of VoIP

traffic in the traces, i.e. both encrypted (Gtalk, Skype, and Yahoo with Zfone) and

non-encrypted (Primus).

3.6.4 NIMSIII Traces

Further VoIP traffic was generated in 2010 using the same testbed used for the NIMSII

traces. For the NIMSIII traces Gtalk and Primus traffic was generated using the same

setup as in the NIMSII traces (section 3.6.3) and other background traffic, such as

torrent traffic and web TV and radio, were included. However in 2010, Yahoo began

to use encryption to secure its traffic. Therefore Zfone was not needed for encrypting

the Yahoo traffic since it can be used only with a non-encrypted payload. Online

web radio media stream (non-encrypted) traffic was captured as well. Also, the same

methodology was used to capture a TV media stream channel broadcast on the web.

Torrent traffic was captured as well by installing a Torrent client to download a free

Linux operating system distribution. Several hours of traffic was captured for each

application.

Figure 3.5: VPN Tunnel Setup
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Due to wide usage of the Virtual Private Network (VPN) technology by compa-

nies and users who want to secure their communications, VPN traffic was generated

as well and included in the NIMSIII test data sets. VPN technology can tunnel any

traffic and quarantine the privacy and security between the two end points. Two VPN

technologies are applied regularly for establishing VPN tunnels: Layer 2 Tunneling

Protocol Internet Protocol Security (L2TP/IPSec) and Secure Socket Layer Transport

Layer Security (SSL/TLS). Both technologies provide encrypted and secure communi-

cations with different implementations. L2TP enables the encapsulation of Ethernet

frames into UDP packets. To ensure the privacy of the packets, L2TP is combined

with IPSec. IPSec comes with two configurations: the (i) Encapsulated Security Pay-

load (ESP) and the (ii) Authentication Header (AH). The ESP protects the payload

by using encryption algorithms (e.g. Blowfish) while the AH protects the IP packet

header by computing a cryptographic checksum and hashing. The ESP was chosen

for two reasons: (i) authentication does not quarantine encryption of the payload;

and (ii) the VoIP applications employed in this thesis encrypt their payload. The

second common technology for setting up a VPN tunnel is SSL/TLS, which is used

typically for securing HTTP connections but which can be used as well to create a

tunnel for transfering any traffic between two machines. The Mac OS X implemen-

tation of L2TP/IPSec was used to set a connection between two machines for the

first VPN technology and a commercial tool called VPN-X [97], which employs the

second VPN technology was used as well (Figure 3.5). For both VPN technologies a

VPN tunnel was set up between two machines and their traffic was captured. Using

the two VPN setups it was possible to view and share files, to browse web pages and

to send chat messages. This testbed traffic has been made publicly available to the

research community as well [91].

3.6.5 IPv6 Traces

IPv6 is a version of IP and is intended to succeed IPV4 since the IPv4 address space is

running out of addresses. The IPv6 address space is 128 bits long and provides privacy

and security for communication on the network by applying encryption. IPv6 allows

varieties of encryption algorithms. Kent and Atkinson define the IPv6 architecture

[98]. Since IPv6 encrypts the packet and has a large address space which will not be
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running out in the next few years, IPv6 traces are included as test data sets to evaluate

the robustness of the signatures. Public IPv6 traces captured by the Measurement

and Analysis on the WIDE Internet working group (MAWI) [99] in 2000 and 2009

were used. The IPv6 traces are captured daily at an IPv6 cable connected to the

6Bone testbed (Figure 3.6). The 6Bone [100] testbed was established by the Internet

Engineering Task Force (IETF) in 1996 to test IPv6 and ease the transition of the

Internet to IPv6. The IPv6 traces total more than nine hours and include several

applications running over TCP and UDP protocols such as HTTP, HTTPS, SMTP,

POP3, SSH and DNS as well as traffic from other protocols (e.g. ICMP).
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Figure 3.6: Packet Size Distribution for IPv6 Traces [101]
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3.6.6 Analysis of Traces

The aim of this section is to have a better understanding of the characteristics of the

data sets deployed in this thesis. The network traffic traces are examined in detail.

First, the general properties of the traces are shown in terms of protocol usage and

the number of packets/flows, then a more detailed analysis of the data is presented

in terms of time, rate and bytes sent/received for each trace.

Brief statistics on the traffic data collected are given in Table 3.6. This shows that

all the data sets have different general properties in terms of the number of packets

and flows and the size of the traces.

Table 3.6: Overview (in Millions) of Network Traces Employed

Packets Bytes Flows
Univ2007 336M 212,931M 28M
Univ2010 1,857M 1,347,191M 46M
Skype UDPE2E 39M 7,840M 295,811
Skype UDPE2O 3M 188M 2,601
Skype UDPSIG 71M 15,141M 50M
Skype TCPE2X 2M 302M 13,306
NIMSII: GTALK2009 34M 6,485M 190,665
NIMSII: PRIMUS2009 2M 384M 7,529
NIMSII: Zfone2009 1M 138M 28,553
NIMSIII: GTALK2010 384M 1,256M 14,847
NIMSIII: PRIMUS2010 7M 1,367M 21,802
NIMSIII: YAHOO2010 8M 1,080M 23,239
NIMSIII: Torrent2010 21M 17,791M 412,345
NIMSIII: Radio2010 stream 332,183 272M 2,236
NIMSIII: TV2010 stream 5M 4,941M 1,803
NIMSIII: VPN2010 32,079M 26,728M 74,302
IPv6 808M 825M 1,151

Also there is clear differentiation of the traces in terms of the use of the TCP/UDP

protocols (Figures 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13, 3.14, 3.15 and 3.16). From

these figures, it can be seen that the Univ2010 traces have a high number of packets

transmitted with relatively big packet sizes whereas Univ2007 have a higher average

size of packets but a lower number of packets transmitted compared to Univ2010.

This shows the difference between these traces. Furthermore, the number of TCP

packets/bytes have doubled in numbers from Univ2007 to Univ2010. These differences
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might be due to the changes of the applications’ behaviour or the usage of the network

by the users or both. Moreover, the Dalhousie (Univ2007 and Univ2010) traces have

more TCP protocol usage than UDP protocol usage whereas the ITALY traces consist

of mostly UDP usage. This might be due to the fact that the ITALY traces contain

only Skype traffic. It should be noted here based on the analysis of the ITALY

traces that Skype prefers the usage of UDP to TCP. The same trend for the VoIP

applications protocol preferences can be seen as well in the NIMS traces where the

UDP packets/bytes are more numerous than the TCP packets/bytes. Furthermore,

most of the packets transmitted on the ITALY and NIMS traces are on average smaller

in size compared to the University traces. This makes the ITALY and NIMS traces

different from the University traces. The traces are from different locations, network

infrastructures and cover different time periods ranging from 2006 to 2010 and are

over different durations ranging from three hours to several days. Moreover, TCP

and UDP have different trends in the traces, too.
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Figure 3.7: Number of Packets per Minute for TCP/UDP Protocols in Univ2007
Trace
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Figure 3.8: Number of Bytes per Minute for TCP/UDP Protocols in Univ2007 Trace
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Figure 3.9: Number of Packets per Minute for TCP/UDP Protocols in Univ2010
Trace
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Figure 3.10: Number of Bytes per Minute for TCP/UDP Protocols in Univ2010 Trace
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Figure 3.11: Number of Packets per Minute for TCP/UDP Protocols in ITALY Trace
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Figure 3.12: Number of Bytes per Minute for TCP/UDP Protocols in ITALY Trace
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Figure 3.13: Number of Packets per Minute for TCP/UDP Protocols in NIMSII Trace
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Figure 3.14: Number of Bytes per Minute for TCP/UDP Protocols in NIMSII Trace



62

 0

 20000

 40000

 60000

 80000

 100000

 120000

2010/11/06
00:00:00

2010/11/13
00:00:00

2010/11/20
00:00:00

2010/11/27
00:00:00

N
u
m
b
e
r
 
o
f
 
P
a
c
k
e
t
s

Date/Time

TCP
UDP
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Figure 3.16: Number of Bytes per Minute for TCP/UDP Protocols in NIMSIII Trace
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Looking at the traces from the perspective of flows, Figures 3.17 and 3.18 show

scatter plots of the mean inter-arrival time and the standard deviation of inter-arrival

time of each flow for the forward and the backward directions (client to server direction

and server to client direction, respectively) while Figures 3.19 and 3.20 show scatter

plots of the mean packet length and the standard deviation of packet length. In these

figures, it can be seen that the Skype flows are notably diverse between the forward

and backward directions for the inter-arrival time for all the data sets. This is due

to the infrastructure of the network (e.g. the bandwidth, cable type etc.) and the

behaviour of the Skype users in using Skype features such as text chat, voice chat, file

transfers and so on. On the other hand, there is a symmetry between the forward and

the backward directions for the packet length. Moreover, Skype flows overlap with

non-Skype flows in the data sets plotted. This shows that Skype is mimicking the

typical routines of other protocols. Hence, the problem of finding robust signatures

for classifying Skype packets/flows on different data sets from different time periods

and locations is a challenging task. Furthermore, the figures show that all the data

sets are very good choices for testing the robustness/generalization of the signatures

generated by the ML classifiers.
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Figure 3.17: Forward Direction of Mean of Inter-rrival Time vs. Std. of Inter-arrival
for University, NIMS and ITALY Traces
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Figure 3.18: Backward Direction of Mean of Inter-arrival Time vs. Std. of Inter-
arrival for University, NIMS and ITALY Traces
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Figure 3.19: Forward Direction of Mean of Packet Length vs. Std. of Packet Length
for University, NIMS and ITALY Traces
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Figure 3.20: Backward Direction of Mean of Packet Length vs. Std. of Packet Length
for University, NIMS and ITALY Traces



Chapter 4

Subset Sampling Methods for Selecting Training Data Sets

Weiss [29] has pointed out the importance for the subset sampling and its effects on

the performance of the classifier during training. This chapter tackles the challenging

problem of sampling training data sets for the machine learning algorithms where

the most important part of the process is finding an informative sampled training

data set for the ML algorithms. Three different techniques for sampling training data

sets have been compared: (i) uniform random N sampling where N is either a fixed

number of records (e.g. 30K, 60K, etc.); or N is a fixed percentage of records (e.g.

1%, 2%, etc.); (ii) stratified N sampling based on grouping where N is either a fixed

number of records (e.g. 30K, 60K, etc.); or N is a fixed percentage of records (e.g.

1%, 2%, etc.) and (iii) continuous data streams of either a specific time period (e.g.

30 minutes, 60 minutes and 90 minutes of traffic) or N sampling records (e.g. 30K,

60K, etc.). All random samplings were done using uniform probability. Since the goal

is to generate robust signatures for classifying unknown VoIP traffic, the training data

set was limited to be a subset of Univ2007 and the remaining Univ2007 as well as

Univ2010, NIMSII, NIMSIII and IPv6 and ITALY traces become the test data sets.

4.1 Uniform Random N Sampling Method

Random N packets are sampled with uniform probability from the Univ2007 trace

where it was divided into two classes. The two classes are Skype, representing the

in-class, and non-Skype, representing the out-class. The non-Skype class includes all

the network applications in the traces. Since the focus is to differentiate Skype traffic

from non-Skype traffic, six training data sets with different N number of packets

were sampled randomly with uniform probability. For example, when N is equal to

30K, 15000 flow records from Skype and 15000 flow records from non-Skype classes

were sampled randomly for a total of 30000 records. For the fixed number of records,

six different N values were used: 30K, 60K, 100K, 200K, 400K and 800K. Six other

69
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different training data sets were sampled randomly with uniform probability where N

represents a fixed percentage of records. Six different N values were used. These are:

1%, 2%, 3%, 4%, 5% and 6%. For instance, when N is equal to 1%, 1% of flow records

from Skype and 1% of flow records from non-Skype classes were sampled randomly.

Table 4.1 lists the total number of records sampled randomly for each training data

set.

Table 4.1: Number of Flows Sampled for the Uniform Random N Sampling Method

N records # of Skype # of non-Skype Total
30k 15,000 15,000 30,000
60k 30,000 30,000 60,000
100k 50,000 50,000 100,000
200k 100,000 100,000 200,000
400K 200,000 200,000 400,000
800k 400,000 400,000 800,000
1 Percent (1%) 82,547 207,250 289,797
2 Percent (2%) 165,095 414,501 579,596
3 Percent (3%) 247,643 621,752 869,395
4 Percent (4%) 330,191 829,002 1,159,193
5 Percent (5%) 412,739 1,036,253 1,448,992
6 Percent (6%) 495,286 1,243,504 1,738,790

4.2 Stratified Sampling Method

Stratified sampling uses a priori information to improve the estimation performance of

classification methods by using grouping techniques. This section investigates whether

including applications which exhibit behaviour similar to the Skype application to

the training data set makes any difference in the training performance or not. The

Univ2007 data sets will be grouped so that each cluster contains data with similar

properties. After that the classes (network applications e.g, FTP, HTTP etc.) in each

cluster are determined in order to select them for constructing the training data set.

Self-Organizing Feature Maps (SOM), which are introduced by Kohonen [102], are

employed to build the clusters using the Univ2007 data sets. SOM is a well-known

unsupervised machine learning model based on a neural network model for clustering

and visualization of high dimensional data into a topographical two-dimensional grid
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structure [103].

4.2.1 Self Organizing Feature Maps (SOM)

Self organizing feature maps are unsupervised neural networks which transform ar-

bitrarily high dimensional input data space (n dimensional input data vector) into a

low dimensional space which is most commonly a two dimensional array of neurons.

The aim of the SOM is to discover the fundamental structure of the input data space

(feature map) while maintaining the properties of the input space. SOM builds a

topologically preserving map which presents a visual arrangement of the neighbour-

ing relationships of the points in the input data set where a human can simply notice

groups/clusters and relations.

The learning process of the SOM starts by selecting at random a sample vector

x from the input and calculating all the weight vectors based on a distance measure-

ment. The neuron whose weight vector has the minimum distance to the input vector

x becomes the Best Matching Unit (BMU), Eq. 4.1:

‖x − mc‖ = min{‖x − mi‖} (4.1)

where x is the input vector, w the weight vector, c is the BMU and ‖‖ is the distance

measure. In this thesis, the Euclidian distance was used. After finding the BMU, all

neurons (weight vectors) are updated to make the BMU moving closer to the input

vector, Eq. 4.2:

wi(t + 1) = wi(t) + α(t)hci(t)[x(t) − wi(t)] (4.2)

where wi(t) is the weight vector which specifies the location of the output unit index, i,

in the data space at time t, α is the learning rate and hci is the neighbourhood kernel

close to the c (BMU). After convergence is reached, the resulting map is ordered

topologically. Further details about the SOM can be found in [104]. In order to

apply SOM, the input data set needs to be normalized to prevent certain variables

(features, e.g. the minimum forward packet length (min fpktl) value) from having

a higher impact than the other variables. This normalization will transform all the

variables to be within the range of 0 to 10 (log normalization).
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In this thesis, the SOM PAK package and the SOM Toolbox [105, 106] are used to

carry out the SOM-based experiments. Clustering using a SOM involves experiment-

ing with parameters. The main parameters are the map dimensions, the number of

iterations and the learning rate. The map dimensions have an effect on the number of

clusters (units) the SOM generates. Since the data sets are relatively large, a bigger

map size is needed. In this case, it is 6x6 (36 map units). The parameters for training

the map are listed in Table 4.2.

Table 4.2: Parameters of the SOM

Parameters values
X dimension 6
Y dimension 6
radius1 2
radius2 1
data Length (rlen 1) rlen 1 multiply by 100
data Length (rlen 2) rlen 1 multiply by 1000
alpha type inverse t
neighourhood gaussian
alpha1 0.5
alpha2 0.05
topology hexa

After training the SOM is finished, a Unified distance matrix (U-matrix) is used to

visualize the grouping structure of high weight vectors between neurons. U-matrix is a

color-heated map, which plots the distances of SOM neurons (Figure 4.1). The color-

heated map ranges from dark red through shades of yellow and green to dark blue,

where red implies high values and blue implies low values. A dark red color means a

large distance between neurons, which indicates heterogeneous neighborhoods while

a dark blue color means a small distance which indicates homogenous neighborhoods.

The dark color can represent the cluster separators while the light color can represent

the clusters. This color schema is useful when trying to find clusters in the data set

without a priori knowledge.

Although the SOM is an unsupervised learning algorithm, in post training the

Univ2007 data is input to SOM to find out the following: (i) the number of appli-

cations in each neuron; (ii) how spread is the Skype application on the map; and
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Figure 4.1: Unified Distance Matrix

(iii) how many applications are similar to Skype. Figure 4.2 shows that Skype is in

11 neurons and shared similarities with eight applications (FTP, SSH, MAIL, DNS,

HTTP, HTTPS, MSN and OTHER). This is because a Skype application is trying

to mimic the behaviour of other applications to avoid detection. Thus, based on this

observation, the FTP, SSH, MAIL, DNS, HTTP, HTTPS, MSN and OTHER appli-

cations are going to be used as the out-class when sampling the training data set for

the stratified sampling method (‘a priori’ method).
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Figure 4.2: Distribution of Applications in each Neuron



75

4.2.2 Training Data Sets

Table 4.3 lists the number of flow records for each of the nine applications (FTP, SSH,

MAIL, DNS, HTTP, HTTPS, MSN, Skype and OTHER) on the Univ2007 data set.

In this case, based on the SOM classification, data is sampled randomly with uniform

probability in different N fixed size samples and different N percentages from nine

different applications (FTP, SSH, MAIL, DNS, HTTP, HTTPS, MSN, Skype and

OTHER) to form the out/in-class for the training data set (Tables 4.4 and 4.5). For

the N fixed size training data sets as in section 4.1, the data set is balanced so that the

in-class and out-class have the same number of flows. For the fixed size of N records,

the number of out-class flows is divided by the number of out-class applications (e.g.

for the 30K classes 15000/8=1875 flows for each class). If an application has a fewer

number of flows in the data set than the number necessary for sampling, then, the

missing flows would be sampled randomly from the OTHER class. For instance,

there were 7,684 FTP flows in the Univ2007 data set, when sampled for the 200K

class training data set. The number of FTP flows is less than the 12,500 allocation

for the FTP application so the missing flows would be taken from the OTHER class.

Table 4.3: Number of Flows for each Application in the Univ2007 Trace

Applications Number of Flows
FTP 7,684
SSH 18,993
MAIL 359,430
DNS 5,032,876
HTTP 5,670,386
HTTPS 1,144,505
MSN 344,408
OTHER 8,146,792
SKYPE 8,254,782
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Table 4.4: Number of Flows Sampled for the Stratified Sampling Method with Fixed
N Records

Applications 30K 60K 100K 200K 400K 800K
FTP 1,875 3,750 6,250 7,500 7,500 7,500
SSH 1,875 3,750 6,250 12,500 18,000 18,000
MAIL 1,875 3,750 6,250 12,500 25,000 50,000
DNS 1,875 3,750 6,250 12,500 25,000 50,000
HTTP 1,875 3,750 6,250 12,500 25,000 50,000
HTTPS 1,875 3,750 6,250 12,500 25,000 50,000
MSN 1,875 3,750 6,250 12,500 25,000 50,000
OTHER 1,875 3,750 6,250 17,500 49,500 124,500
SKYPE 15,000 30000 50,000 100,000 200,000 400,000
TOTAL 30,000 60,000 100,000 200,000 400,000 800,000

Table 4.5: Number of Flows Sampled for the Stratified Sampling Method with Fixed
N Percentage

Applications 1% 2% 3% 4% 6%
FTP 76 153 230 307 384 461
SSH 189 379 569 759 949 1,139
MAIL 3,594 7,188 10,782 14,377 1,797 21,565
DNS 50,328 100,657 150,986 201,315 251,643 301,972
HTTP 56,703 113,407 170,111 226,815 283,519 340,223
HTTPS 11,445 22,890 34,335 45,780 57,225 68,670
MSN 3,444 6,888 10,332 13,776 17,220 20,664
OTHER 81,467 162,935 244,403 325,871 407,339 488,807
SKYPE 82,547 165,095 247,643 330,191 412,739 495,286
TOTAL 289,793 579,592 869,391 1,159,191 1,448,989 1,738,787
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4.3 Continuous Data Stream

Network traffic traces are a real-time continuous stream of packets, which are or-

dered explicitly by the timestamp of the packets. Typically, these continuous data

streams have unique characteristics, which depict the network infrastructure and user

behaviour. In Figure 4.3, there are different peeks for TCP and UDP traffic for the

Univ2007. For instance, at 16:30 PM there is an increase in the number of UDP pack-

ets while there is a decrease in the number of TCP packets. Moreover, the number

of TCP packets fluctuates on the trace, which shows that the Dalhousie users tend

to use more applications that run on TCP than UDP.
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To capture this behaviour in the training data set the flows were sampled based

on the order in which they arrived in two different techniques (Table 4.6). The first

technique used is to sample a fixed size number of records as in the previous two

sections (4.1 and 4.2). For example, for the “First 30K” method the first 15000

Skype flow records and the first 15000 non-Skype flow records were selected. The

second technique used is involves sampling over a continuous time period (e.g. first

30 minutes, first 60 minutes, etc.).

Table 4.6: Number of Flows Sampled for a Continuous Data Stream

Sampling Methods # of Skype # of non-Skype Total
First 30k records 15,000 15,000 30,000
First 60k records 30,000 30,000 60,000
First 100k records 50,000 50,000 100,000
First 200k records 100,000 100,000 200,000
First 400K records 200,000 200,000 400,000
First 800k records 400,000 400,000 800,000
First 30 minutes 1,283,805 3,235,084 4,518,889
First 60 minutes 2,683,941 6,645,860 9,329,801
First 90 minutes 4,227,140 10,327,200 14,554,340

4.4 Results of Experiments for Subset Sampling

In total, 33 training data sets were sampled using the three subset sampling tech-

niques. The sizes of the training data sets vary from thousands of flow records

to millions of flow records (e.g. sizes from 30,000 flow records to 14,554,340 flow

records). For these experiments each classifier was trained initially on the training

data set (which is a subset sampled from the Univ2007 traces) using the same feature

set. The flow feature set was chosen since the size of the data sets is smaller com-

pared to the size of the data generated by the packet header feature set. Then each

trained model (C5.0, AdaBoost and GP) was tested on a validation data set, namely,

a subset of the Univ2010 test traces. The validation data set consists of randomly

sampled (with uniform probability) 1000 flow records of ten applications from the

Univ2010 trace for a total of 10000 records. The ten applications were FTP, SSH,

MAIL, DNS, HTTP, HTTPS, MSN, P2P, Skype and OTHER. The validation data
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was used to evaluate the most appropriate subset sampling method for generating

generalized/robust signatures not to evaluate the performance of the ML algorithms.

Furthermore, the size of the test data sets is huge and therefore, evaluating the 33

training data sets on the test data sets would have required a very long time. Thus,

the best training data set is selected through the results of the validation process.

Once the best one is selected, it is then evaluated on the test data sets. Since the

Univ2010 data set is a real network trace captured from the same location as the

Univ2007 traces but at a different time period and contains many applications, it

is the most suitable one for validating and testing the robustness of the classifiers.

The training performances and the validation performances of the 50 runs on the 33

training data sets are given using density of distribution/box plots for the Uniform

Random N Sampling method, Stratified sampling method and Continuous sampling

method in Appendices A.1, A.2 and A.3, respectively.

It should be noted here that the highest performance solution was selected based

on the DR and FPR on the training results for GP, AdaBoost and C5.0 to be evaluated

on the validation data sets. That is to say, all model construction took place on

the Univ2007 Training partitions. The validation data set, which is a subset of

Univ2010 where none were encountered during training, was used for the post training

evaluation. Table 4.7 lists the performances of the best models obtained on the

validation data. Results show that on the validation data partitions, C5.0 turns out

to provide the stronger performance with consistently lower FPR and higher DR

while using the Uniform Random sampling with the 6 Percent (97% DR and 0.04%

FPR). Moreover, a one-way ANOVA test was employed to compare the performance

of the subset sampling techniques based on the DR and FPR (e.g. one-way ANOVA

with n=50 data points). Results of the one-way ANOVA statistical analysis test

in Appendix B.1 show that the mean of 50 runs of C5.0-based classifiers using the

Uniform Random sampling with 6 the Percent is statistically significantly better than

the mean of the other ML algorithms on the training and validation data sets. Thus

the Uniform Random sampling method with 6 Percent was chosen as the method for

sampling the training data set.
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Table 4.7: Results of the Best Models for Each Classifier on the Validation Data for
Subset Sampling Methods

C5.0 AdaBoost GP
DR FPR DR FPR DR FPR

Uniform Random N Sampling
30K 0.76 0.04 0.73 0.08 0.76 0.07
60K 0.72 0.04 0.73 0.08 0.76 0.04
100K 0.72 0.05 0.73 0.08 0.76 0.07
200K 0.72 0.05 0.73 0.08 0.76 0.07
400K 0.73 0.04 0.73 0.08 0.76 0.08
800K 0.74 0.06 0.73 0.08 0.74 0.05
1% 0.73 0.05 0.68 0.05 0.76 0.06
2% 0.73 0.05 0.68 0.05 0.76 0.07
3% 0.72 0.05 0.68 0.05 0.74 0.04
4% 0.72 0.03 0.68 0.05 0.75 0.06
5% 0.65 0.03 0.68 0.05 0.75 0.04
6% 0.97 0.04 0.68 0.05 0.74 0.06

Stratified Sampling
30K 0.75 0.06 0.68 0.05 0.76 0.07
60K 0.76 0.08 0.68 0.05 0.77 0.08
100K 0.75 0.05 0.68 0.05 0.76 0.09
200K 0.75 0.05 0.68 0.05 0.76 0.08
400K 0.74 0.07 0.68 0.05 0.76 0.09
800K 0.68 0.04 0.68 0.05 0.77 0.06
1% 0.68 0.05 0.68 0.07 0.76 0.06
2% 0.67 0.06 0.68 0.05 0.76 0.07
3% 0.60 0.05 0.68 0.05 0.76 0.09
4% 0.66 0.04 0.68 0.05 0.75 0.07
5% 0.72 0.04 0.68 0.05 0.76 0.05
6% 0.71 0.04 0.68 0.07 0.75 0.08

Continuous data streams
30K 0.67 0.05 0.61 0.06 0.74 0.08
60K 0.72 0.04 0.68 0.05 0.76 0.08
100K 0.64 0.04 0.68 0.05 0.77 0.06
200K 0.74 0.09 0.68 0.05 0.75 0.07
400K 0.69 0.04 0.68 0.05 0.75 0.06
800K 0.69 .07 0.71 0.06 0.75 0.07
30 minutes 0.68 0.05 0.68 0.05 0.75 0.07
60 minutes 0.68 0.04 0.70 0.08 0.75 0.07
90 minutes 0.65 0.04 0.68 0.05 0.77 0.06
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4.5 Results of Experiments for the Best Subset Sampling Technique –

Uniform Random Sampling of 6 Percent

Since the Uniform Random subset sampling with 6 the Percent has the best perfor-

mance on the validation data set, the performance of the three trained models (C5.0,

AdaBoost and GP) was tried out on the test data sets, namely the Univ2007 test

traces and the Univ2010, NIMSII, NIMSIII, IPv6 and ITALY traces.
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Figure 4.4: DR and FPR Results for Skype Identification on the Training Data Sets
Using the Uniform Random with 6 the Percent Sampling Method
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The training performances for the fifty runs were plotted using density of distribu-

tion/box plots (Figure 4.4). Results show that on the training data partitions, C5.0

turns out to provide the stronger performance with a consistently lower FPR and

higher DR for all the fifty runs based on a one-way ANOVA statistical analysis test

(Appendix B.2). Moreover, the box-plot of the C5.0 solutions has a very small range

which implies that most of the C5.0 models have similar performance. Hence, the fifty

models found by C5.0 are highly similar to each other. By contrast, AdaBoost and

GP have different ranges of DR and FPR. This implies that both algorithms found

different solutions on different runs. The best performing solution was selected based

on the DR and FPR on the training results for GP, AdaBoost and C5.0 to be evalu-

ated on the test data sets. In other words, all model construction took place on the

Univ2007 Training partitions. Post training evaluation was conducted on Univ2007

test, Univ2010, NIMS, IPv6 and ITALY traces where none were encountered during

training. Naturally, the Univ2007 Test partition reflects the training behaviour more

closely than the Univ2010, IPv6, all NIMS, IPv6 and ITALY data sets.

To select the best trained model for each machine learning algorithm the training

performance was plotted as a scatter plot for each of the three machine learning

algorithms. Figures 4.5, 4.6 and 4.7 summarize these solutions. For Skype, there

are five solutions which are non-dominated for GP, four which are non-dominated

for AdaBoost and four which are non-dominated for C5.0. The solution with the

highest performance in terms of high DR and low FPR was selected out of these

non-dominated solutions for GP, AdaBoost and C5.0 and then evaluated on the test

data sets.
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Tables 4.8, 4.9, 4.10, 4.11 and 4.12 show the results of the best models for the

three machine learning algorithms on the unseen Univ2007 test trace and the inde-

pendent test traces (Univ2010, NIMSII, NIMSIII, IPv6 and ITALY traces). Under

the Univ2007 and Univ2010 test partitions, C5.0 appears to provide the stronger

performance with consistently better DR and FPR than AdaBoost and GP. Intro-

ducing the entirely independent test set – ITALY traces – indicated that C5.0 had

overlearned the properties implicit in the training partition. Indeed most Skype flow

traffic was misclassified as non-Skype. Moreover, GP was observed to provide best

case performance under the independent ITALY test partition. Results show that the

GP classifier performs better than the other classifiers on the ITALY test trace while

C5.0 performs better on the Univ2010 test trace. The GP classifier achieved 86%

DR and 8% FPR on the Univ2010, 97% DR on the ITALY-UDPE2E, 100% DR on

the ITALY-UDPE2O and 88% on the ITALY-UDPSIG. The C5.0 classifier achieved

83% DR and 4% FPR on the Univ2010, 61% DR on the ITALY-UDPE2E, 53% DR

on the ITALY-UDPE2O and 78% on the ITALY-UDPSIG test traces. In contrast,

AdaBoost provides the best results on the NIMS and IPv6 data sets (Tables 4.10,

4.11 and 4.12). The next best classifier after AdaBoost on the NIMS and IPv6 data

set is C5.0. Thus, there is no best classifier which can have consistent performance

on all the test data sets. Moreover, none of the classifiers could detect any of ITALY-

TCPE2X since there was no Skype TCP flows in the training data set (because there

were no such labelled traffic in the Univ2007 data set).
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Table 4.8: Best Model Results of the Subset Sampling Method (6% Uniform Random
Sampling) for Skype Detection Based on Flow Feature Sets (Training and Testing
University Data Sets)

C5.0 AdaBoost GP
DR FPR DR FPR DR FPR

Training Sample (subset of Univ2007)
Non-SKYPE 0.993 0.004 0.957 0.120 0.936 0.031
SKYPE 0.993 0.005 0.957 0.120 0.969 0.064

Univ2007 Test data sets
Non-SKYPE 0.993 0.005 0.957 0.120 0.936 0.031
SKYPE 0.995 0.007 0.880 0.043 0.969 0.064

Univ2010 Test data sets
Non-SKYPE 0.956 0.169 0.932 0.189 0.922 0.144
SKYPE 0.831 0.044 0.811 0.068 0.856 0.078

Table 4.9: Best Model Results for the Subset Sampling Method (6% Uniform Random
Sampling) for Skype Detection Based on Flow Feature Sets (ITALY Data Sets)

C5.0 AdaBoost GP
DR FPR DR FPR DR FPR

ITALY TCPE2X Test data sets
Non-SKYPE N/A 1.00 N/A 1.00 N/A 1.00
SKYPE 0.000 N/A 0.000 N/A 0.000 N/A

ITALY UDPE2E Test data sets
Non-SKYPE N/A 0.390 N/A 0.794 N/A 0.033
SKYPE 0.610 N/A 0.206 N/A 0.967 N/A

ITALY UDPE2O Test data sets
Non-SKYPE N/A 0.947 N/A 0.977 N/A 0.003
SKYPE 0.053 N/A 0.023 N/A 0.997 N/A

ITALY UDPSIG Test data sets
Non-SKYPE N/A 0.216 N/A 0.304 N/A 0.125
SKYPE 0.784 N/A 0.696 N/A 0.875 N/A
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Table 4.10: Best Model Results for the Subset Sampling Method (6% Uniform Ran-
dom Sampling) for Skype Detection Based on Flow Feature Sets (NIMSII Data Sets)

C5.0 AdaBoost GP
DR FPR DR FPR DR FPR

NIMSII GTALK2009 Test data sets
Non-SKYPE 0.999 N/A 0.999 N/A 0.542 N/A
SKYPE N/A 0.001 N/A 0.001 N/A 0.458

NIMSII PRIMUS2009 Test data sets
Non-SKYPE 1.00 N/A 1.00 N/A 0.680 N/A
SKYPE N/A 0.000 N/A 0.000 N/A 0.320

NIMSII ZFONE2009 Test data sets
Non-SKYPE 0.996 N/A 0.940 N/A 0.624 N/A
SKYPE N/A 0.004 N/A 0.060 N/A 0.376

Table 4.11: Best Model Results for the Subset Sampling Method (6% Uniform Ran-
dom Sampling) for Skype Detection Based on Flow Feature Sets (NIMSIII Data Sets)

C5.0 AdaBoost GP
DR FPR DR FPR DR FPR

NIMSIII GTALK2010 Test data sets
Non-SKYPE 0.997 N/A 0.997 N/A 0.418 N/A
SKYPE N/A 0.003 N/A 0.003 N/A 0.582

NIMSIII PRIMUS2010 Test data sets
Non-SKYPE 0.972 N/A 0.808 N/A 0.673 N/A
SKYPE N/A 0.028 N/A 0.192 N/A 0.327

NIMSIII YAHOO2010 Test data sets
Non-SKYPE 0.932 N/A 0.933 N/A 0.373 N/A
SKYPE N/A 0.068 N/A 0.067 N/A 0.627

NIMSIII RADIO2010 Test data sets
Non-SKYPE 0.997 N/A 0.997 N/A 0.997 N/A
SKYPE N/A 0.003 N/A 0.003 N/A 0.003

NIMSIII TORRENT2010 Test data sets
Non-SKYPE 0.949 N/A 0.934 N/A 0.846 N/A
SKYPE N/A 0.051 N/A 0.066 N/A 0.154

NIMSIII TV2010 Test data sets
Non-SKYPE 0.994 N/A 1.00 N/A 0.983 N/A
SKYPE N/A 0.006 N/A 0.000 N/A 0.017

NIMSIII VPN2010 Test data sets
Non-SKYPE 0.987 N/A 1.00 N/A 1.00 N/A
SKYPE N/A 0.013 N/A 0.000 N/A 0.000



89

Table 4.12: Best Model Results for the Subset Sampling Method (6% Uniform Ran-
dom Sampling) for Skype Detection Based on Flow Feature Sets (IPv6 Data Sets)

C5.0 AdaBoost GP
DR FPR DR FPR DR FPR
IPv6 2000 Test data sets

Non-SKYPE 0.999 N/A 1.00 N/A 0.000 N/A
SKYPE N/A 0.001 N/A 0.000 N/A 1.00

IPv6 2009 Test data sets
Non-SKYPE 0.889 N/A 1.00 N/A 0.000 N/A
SKYPE N/A 0.111 N/A 0.000 N/A 1.00
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4.6 Discussion of Results

The primary motivation addressed in this chapter is the challenging problem of sam-

pling training data sets for ML algorithms in order to generate robust signatures for

detecting VoIP (and specifically Skype) traffic. The effect of using three sampling

techniques was investigated with a total of 33 training data sets using three machine

learning algorithms (AdaBoost, GP and C5.0). To do so, traces from University,

WIDE (MAWI), NIMS lab and ITALY repositories were used. The aforementioned

learning algorithms were evaluated using traffic flow-based features.

These results demonstrate that the signatures, which the AdaBoost, GP and C5.0

classifiers generated during training, are robust (transportable) enough to be tested

on real world network traces. Furthermore, it is possible to have a well generalized

(robust) rules set and a generic attributes set which can be employed to identify

encrypted traffic – such as Skype traffic – using a 6% uniform random sampling

method. However, the most noticeable weakness of the signatures is the Skype TCP

data. Therefore, to enhance the performance of the signatures found, it was decided

to add Skype TCP data to the training data sets. Thus, in the next chapter, randomly

6% of the ITALY TCPE2X trace is sampled randomly with uniform probability and

added to the chosen training data sets described in this chapter, since there are no

any Skype TCP flows in the Univ2007 traces.



Chapter 5

Exploring the Robustness/Generalization of the Classifiers

In this chapter, the effectiveness of my proposed approach for finding robust signatures

is discussed. To this end, test data sets which are completely different from the

training data sets are used in order to provide some measure of classifier generalization

(robustness). Thus, solution robustness is assessed by training on a data set from

one location (the Univ2007 trace) but testing on data sets from different locations,

different networks and different time periods (Univ2007 Test partition, Univ2010,

NIMSII, NIMSIII, ITALY and IPv6, which were captured in 2007, 2010, 2009, 2010,

2006, and in both 2000 and 2009 for IPv6, respectively). Issues of data representation

are addressed by employing packet header-based features and flow-based features but

without using IP addresses, port numbers and payload data.

5.1 Results of Packet Header Experiments for Skype Identification –

Robustness of Signatures

In this set of experiments the objective is to identify Skype on a packet per packet

basis using only the features given in Table 3.1. The training data set is generated by

sampling randomly with a uniform probability of 6% from both classes (in-class and

out-class). Moreover, 6% of traffic from the ITALY (Skype TCPE2X) data is sampled

and added to the training data set to represent the TCP based Skype behaviour during

training, too. In total, the training data set consists of 20,142,770 packets.

The results are presented in Figure 5.1 and the one-way ANOVA statistical anal-

ysis test in Appendix B.3.1 illustrates that the GP-based classification approach is

much better on average than other algorithms employed in identifying the Skype

packets based on the training data set. The violin plot demonstrates the diversity of

the performance in terms of DR and FPR for all fifty models on the training data set

for each ML algorithm (Figure 5.1). On average, GP is much better than the other

ML algorithms on the training data sets for Skype in terms of having a high DR.

91



92

●

●

●●●●

●●●●

n
o
n
S

ky
p
e
−

D
R
−

C
5

.0

n
o
n
S

ky
p
e
−

F
P

R
−

C
5
.0

S
ky

p
e
−

D
R
−

C
5
.0

S
ky

p
e
−

F
P

R
−

C
5
.0

n
o
n
S

ky
p
e
−

D
R
−

A
d
a
B

o
o
st

n
o
n
S

ky
p
e
−

F
P

R
−

A
d
a
B

o
o
st

S
ky

p
e
−

D
R
−

A
d
a
B

o
o
st

S
ky

p
e
−

F
P

R
−

A
d
a
B

o
o
st

n
o
n
S

ky
p
e
−

D
R
−

G
P

n
o
n
S

ky
p
e
−

F
P

R
−

G
P

S
ky

p
e
−

D
R
−

G
P

S
ky

p
e
−

F
P

R
−

G
P

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.1: DR and FPR Results for Skype Packet Header Traffic on the Training
Data Set
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Figures 5.2, 5.3 and 5.4 summarize the performance of trained models for each

ML algorithm. For Skype, there are nine solutions, which are non-dominated for

GP, one which is non-dominated for AdaBoost and four which are non-dominated

for C5.0. The best performing solution in terms of high DR and low FPR out of

these non-dominated solutions was selected for GP, AdaBoost and C5.0, and then

evaluated on the test data sets.
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Packet Header-based Feature Set for Skype Detection (DR versus FPR)
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For the Skype packet header, Tables 5.1, 5.2, 5.3, 5.4, and 5.5 list the results for

the three ML algorithms on the training and independent test traces. All models

return a high DR for Skype traffic on the training data set and C5.0 and GP appear

to provide the strongest performance with a consistently better FPR on the Univ2007

test partition. Naturally, the Univ2007 test partition reflects the training behaviour

the most of all the test data sets.

Introducing the entirely independent test sets – Univ2010, ITALY, IPv6 and all

NIMS data sets – indicates that all classifiers have overlearned the properties implicit

in the training partition. However, GP and C5.0 were observed to provide a best case

performance under the ITALY independent test partitions. All learning algorithms

performed poorly under the Univ2010 and NIMS data sets.

Results show that the C5.0 classifier performs better than the other classifiers

on the majority of ITALY traces (Table 5.2). The C5.0 classifier achieves ≈99%

DR on the ITALY Test TCPE2X trace, ≈100% DR on the ITALY Test UDPE2E

trace and ≈99% DR on the ITALY Test UDPSIG trace. By contrast, GP achieves

100% DR on the ITALY Test UDPE2O trace. Moving to the NIMS traces (NIMSII

and NIMSIII), AdaBoost performed better than C5.0 and GP, most noticeably on the

TORRENT2010 and VPN2010 data sets (Tables 5.3 and 5.4). In this case, robustness

results illustrate the performance of the packet header-based approach in identifying

Skype traffic based on a single packet (packet by packet) without using IP addresses,

port numbers or payload information. It should be noted here that the FP rate for

Skype and DR for non-Skype are zero in the ITALY traces and the DR for Skype and

FP rate for non-Skype are zero in the NIMSII, NIMSIII and IPv6 traces because the

ITALY traces contain only Skype traffic while the NIMSII, NIMSIII and IPv6 traces

contain only non-Skype traffic.
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Table 5.1: Best Model Results on the Training Data Set for the Packet Header-based
Feature Set for Skype Detection (Training and Testing on Dalhousie Data Sets)

C5.0 AdaBoost GP
DR FPR DR FPR DR FPR

Training Sample (subset of Univ2007)
Non-SKYPE 1.00 0.077 0.999 0.244 0.975 0.044
SKYPE 0.923 0.000 0.756 0.001 0.956 0.025

Univ2007 Test data sets
Non-SKYPE 1.00 0.131 1.00 0.245 0.975 0.066
SKYPE 0.869 0.000 0.755 0.001 0.934 0.025

Univ2010 Test data sets
Non-SKYPE 0.976 0.940 0.997 0.994 0.349 0.212
SKYPE 0.06 0.024 0.006 0.003 0.788 0.651

Table 5.2: Best Model Results on Testing for the Packet Header-based Feature Set
for Skype Detection (ITALY Data Sets)

C5.0 AdaBoost GP
DR FPR DR FPR DR FPR

ITALY TCPE2X Test data sets
Non-SKYPE N/A 0.008 N/A 0.243 N/A 0.014
SKYPE 0.992 N/A 0.757 N/A 0.986 N/A

ITALY UDPE2E Test data sets
Non-SKYPE N/A 0.001 N/A 0.13 N/A 0.008
SKYPE 0.999 N/A 0.87 N/A 0.992 N/A

ITALY UDPE2O Test data sets
Non-SKYPE N/A 0.064 N/A 0.43 N/A 0.000
SKYPE 0.936 N/A 0.57 N/A 1.00 N/A

ITALY UDPSIG Test data sets
Non-SKYPE N/A 0.006 N/A 0.217 N/A 0.015
SKYPE 0.994 N/A 0.783 N/A 0.985 N/A
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Table 5.3: Best Model Results on Testing Sets for the Packet Header-based Feature
Set for Skype Detection (NIMSII Data Sets)

C5.0 AdaBoost GP
DR FPR DR FPR DR FPR

NIMSII GTALK2009 Test data sets
Non-SKYPE 0.032 N/A 0.067 N/A 0.023 N/A
SKYPE N/A 0.968 N/A 0.933 N/A 0.977

NIMSII PRIMUS2009 Test data sets
Non-SKYPE 0.033 N/A 0.001 N/A 0.000 N/A
SKYPE N/A 0.967 N/A 0.999 N/A 1.00

NIMSII ZFONE2009 Test data sets
Non-SKYPE 0.008 N/A 0.018 N/A 0.002 N/A
SKYPE N/A 0.992 N/A 0.982 N/A 0.998

Table 5.4: Best Model Results on Testing for the Packet Header-based Feature Set
for Skype Detection (NIMSIII Data Sets)

C5.0 AdaBoost GP
DR FPR DR FPR DR FPR

NIMSIII GTALK2010 Test data sets
Non-SKYPE 0.05 N/A 0.081 N/A 0.046 N/A
SKYPE N/A 0.95 N/A 0.919 N/A 0.954

NIMSIII PRIMUS2010 Test data sets
Non-SKYPE 0.03 N/A 0.000 N/A 0.000 N/A
SKYPE N/A 0.97 N/A 1.00 N/A 1.00

NIMSIII YAHOO2010 Test data sets
Non-SKYPE 0.115 N/A 0.121 N/A 0.02 N/A
SKYPE N/A 0.885 N/A 0.879 N/A 0.98

NIMSIII RADIO2010 Test data sets
Non-SKYPE 0.386 N/A 0.308 N/A 0.724 N/A
SKYPE N/A 0.614 N/A 0.692 N/A 0.276

NIMSIII TORRENT2010 Test data sets
Non-SKYPE 0.653 N/A 0.793 N/A 0.267 N/A
SKYPE N/A 0.347 N/A 0.207 N/A 0.733

NIMSIII TV2010 Test data sets
Non-SKYPE 0.818 N/A 0.844 N/A 0.588 N/A
SKYPE N/A 0.182 N/A 0.156 N/A 0.412

NIMSIII VPN2010 Test data sets
Non-SKYPE 0.983 N/A 0.985 N/A 0.000 N/A
SKYPE N/A 0.017 N/A 0.015 N/A 1.00
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Table 5.5: Best Model Results on Testing for the Packet Header-based Feature Set
for Skype Detection (IPv6 Data Sets)

C5.0 AdaBoost GP
DR FPR DR FPR DR FPR
IPv6 2000 Test data sets

Non-SKYPE 0.436 N/A 0.192 N/A 0.153 N/A
SKYPE N/A 0.564 N/A 0.808 N/A 0.847

IPv6 2009 Test data sets
Non-SKYPE 0.327 N/A 0.144 N/A 0.18 N/A
SKYPE N/A 0.673 N/A 0.856 N/A 0.82
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5.2 Results of Flow Experiments for Skype Identification – Robsutness

of Signatures

In this set of experiments, the objective is to identify Skype on a flow by flow basis

using only the set of features given in Table 3.2. The training data set is generated by

sampling randomly with a uniform probability of 6% from both classes (in-class and

out-class). Moreover, since there were no Skype TCP flows in Univ2007, 6% of the

ITALY (Skype TCPE2X) traffic was sampled. In total, the training data set consists

of 1,739,588 flows.

Figure 5.5 summarizes solutions for the three ML algorithms on the training trace:

all model construction takes place on the Univ2007 training partition. Testing evalu-

ation was conducted under the Univ2007 Test partition, Univ2010, ITALY, NIMSII,

NIMSIII and IPv6 traces where none was encountered during training. Naturally, the

Univ2007 Test partition will reflect the training behavior more closely than the other

test network traces.

Results presented in Figure 5.5 and the one-way ANOVA statistical analysis test in

Appendix B.3.2 illustrates that the C5.0-based classification approach is much better

than other algorithms employed in identifying the Skype flow traffic based on the

training data set. The violin plot demonstrates the diversity of performance in terms

of DR and FPR for all fifty models on the training data sets for each ML algorithm

(Figure 5.5). On average, C5.0 is much better than other ML algorithms on the test

data sets in terms of a high DR and low FPR.

To select the best trained model for each ML algorithm the training performance

was plotted using the scatter plot for each of the three ML algorithms. Figures 5.6,

5.7 and 5.8 summarize the solutions. For Skype, there are four solutions which are

non-dominated for GP, four which are non-dominated for AdaBoost and seven which

are non-dominated for C5.0. The best performing solution in terms of high DR and

low FPR was selected out of these non-dominated solutions for GP, AdaBoost and

C5.0 and then evaluated on the test data sets.
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Figure 5.5: DR and FPR Results for Skype Flow Traffic on the Training Data Set
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The results are summarized in terms of accuracy. Tables 5.6, 5.7, 5.8, 5.9 and

5.10 list the results for the three ML algorithms on the training and independent test

traces. For Skype flows, results show that the C5.0-based classifier performs better

than the other classifiers on the Univ2007 Test partition while the GP-based classifier

performs better than all the others on the Univ2010 test traces. The C5.0-based

classifier achieves ≈100% DR and ≈1% FPR on the Univ2007 Test partition and

≈80% DR and ≈6% FPR on the Univ2010 traces. The GP-based classifier achieves

≈98% DR and ≈10% FPR on the Univ2007 Test partition and ≈86% DR and ≈9%

FPR on the Univ2010 traces (Table 5.6). By introducing the entirely independent

test sets in terms of location, time and network infrastructure (the Univ2010, ITALY,

NIMSII & III and IPv6 traces), the performance of the classifiers were evaluated from

a different perspective. In this case, as the results in Table 5.7 show, AdaBoost had

overlearned the properties implicit in the training partition since the performance of

the AdaBoost-based classifier dropped to a 0% DR on the ITALY traces. Moreover,

C5.0 and GP based classifiers were observed to provide good performances on both

the Univ2010 and ITALY traces, whereas the AdaBoost and the C5.0 based classifiers

achieved very good performances on the NIMSII, NIMSIII and IPv6 test data sets.

The C5.0-based classifier achieved ≈99% DR on the ITALY-TCPE2X traces,

≈89% DR on the ITALY-UDPE2E traces, ≈53% DR on the ITALY-UDPE2O traces

and ≈92% on the ITALY-UDPSIG whereas GP achieves ≈71% DR on the ITALY-

TCPE2X traces, ≈61% DR on the ITALY-UDPE2E traces, ≈94% DR on the ITALY-

UDPE2O traces and ≈61% on the ITALY-UDPSIG (Table 5.7). However, AdaBoost

performs better than C5.0 and GP on the NIMS test traces and the IPv6 traces

(Tables 5.8, 5.9 and 5.10).
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Table 5.6: Best Model Results on Training Data Set for the Flow-based Feature Set
for Skype Detection (Training and Testing on Dalhousie Data Sets)

C5.0 AdaBoost GP
DR FPR DR FPR DR FPR

Training Sample (subset of Univ2007)
Non-SKYPE 0.993 0.003 0.957 0.118 0.901 0.020
SKYPE 0.997 0.007 0.882 0.043 0.980 0.099

Univ2007 Test data sets
Non-SKYPE 0.993 0.004 0.957 0.117 0.901 0.019
SKYPE 0.996 0.007 0.883 0.043 0.981 0.099

Univ2010 Test data sets
Non-SKYPE 0.939 0.203 0.921 0.184 0.907 0.140
SKYPE 0.797 0.061 0.816 0.079 0.860 0.093

Table 5.7: Best Model Results on Testing for the Flow-based Feature Set for Skype
Detection (ITALY Data Sets)

C5.0 AdaBoost GP
DR FPR DR FPR DR FPR

ITALY TCPE2X Test data sets
Non-SKYPE N/A 0.014 N/A 1.00 N/A 0.293
SKYPE 0.986 N/A 0.000 N/A 0.707 N/A

ITALY UDPE2E Test data sets
Non-SKYPE N/A 0.113 N/A 0.794 N/A 0.387
SKYPE 0.887 N/A 0.206 N/A 0.613 N/A

ITALY UDPE2O Test data sets
Non-SKYPE N/A 0.470 N/A 0.976 N/A 0.065
SKYPE 0.530 N/A 0.024 N/A 0.935 N/A

ITALY UDPSIG Test data sets
Non-SKYPE N/A 0.079 N/A 0.302 N/A 0.388
SKYPE 0.921 N/A 0.698 N/A 0.612 N/A
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Table 5.8: Best Model Results on Testing for the Flow-based Feature Set for Skype
Detection (NIMSII Data Sets)

C5.0 AdaBoost GP
DR FPR DR FPR DR FPR

NIMSII GTALK2009 Test data sets
Non-SKYPE 0.787 N/A 0.999 N/A 0.751 N/A
SKYPE N/A 0.213 N/A 0.001 N/A 0.249

NIMSII PRIMUS2009 Test data sets
Non-SKYPE 1.00 N/A 1.00 N/A 0.820 N/A
SKYPE N/A 0.000 N/A 0.000 N/A 0.180

NIMSII ZFONE2009 Test data sets
Non-SKYPE 0.962 N/A 0.938 N/A 0.810 N/A
SKYPE N/A 0.038 N/A 0.062 N/A 0.190

Table 5.9: Best Model Results on Testing for the Flow-based Feature Set for Skype
Detection (NIMSIII Data Sets)

C5.0 AdaBoost GP
DR FPR DR FPR DR FPR

NIMSIII GTALK2010 Test data sets
Non-SKYPE 0.809 N/A 0.998 N/A 0.464 N/A
SKYPE N/A 0.191 N/A 0.002 N/A 0.536

NIMSIII PRIMUS2010 Test data sets
Non-SKYPE 0.998 N/A 0.650 N/A 0.220 N/A
SKYPE N/A 0.002 N/A 0.350 N/A 0.780

NIMSIII YAHOO2010 Test data sets
Non-SKYPE 0.927 N/A 0.931 N/A 0.581 N/A
SKYPE N/A 0.073 N/A 0.069 N/A 0.419

NIMSIII RADIO2010 Test data sets
Non-SKYPE 0.997 N/A 0.997 N/A 0.997 N/A
SKYPE N/A 0.003 N/A 0.003 N/A 0.003

NIMSIII TORRENT2010 Test data sets
Non-SKYPE 0.952 N/A 0.927 N/A 0.821 N/A
SKYPE N/A 0.048 N/A 0.073 N/A 0.179

NIMSIII TV2010 Test data sets
Non-SKYPE 0.989 N/A 1.00 N/A 0.955 N/A
SKYPE N/A 0.011 N/A 0.000 N/A 0.045

NIMSIII VPN2010 Test data sets
Non-SKYPE 0.987 N/A 1.00 N/A 0.595 N/A
SKYPE N/A 0.013 N/A 0.000 N/A 0.405
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Table 5.10: Best Model Results on Testing for the Flow-based Feature Set for Skype
Detection (IPv6 Data Sets)

C5.0 AdaBoost GP
DR FPR DR FPR DR FPR
IPv6 2000 Test data sets

Non-SKYPE 0.999 N/A 1.00 N/A 0.136 N/A
SKYPE N/A 0.001 N/A 0.000 N/A 0.864

IPv6 2009 Test data sets
Non-SKYPE 0.889 N/A 1.00 N/A 0.875 N/A
SKYPE N/A 0.111 N/A 0.000 N/A 0.125
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5.3 Discussion of Results

In this chapter, the robustness of the solutions generated automatically by the Ad-

aBoost, GP and C5.0 based classifiers were explored for identifying encrypted VoIP

traffic, specifically Skype, in a given traffic trace. To do so, traffic traces from Dal-

housie University, NIMS lab, WIDE (IPv6) and ITALY repositories were employed.

Furthermore, the classification based approach can be employed with either the packet

header only feature set or the flow feature set. Both feature sets were investigated on

the traces employed and have showed that the flow-based features performed better

than the packet header-based features. It should be noted here that the classification

based approach does not use IP addresses, port numbers and payload data.

The flow results demonstrate that the C5.0 classifier is the most consistent per-

former across all test and training conditions while being competitive with AdaBoost

using the NIMS and IPv6 traces. This shows not only that the model which the C5.0

classifier learned during training is robust (generalized) enough to be tested on real

world network traces, but also verifies that accurate differentiation between Skype

and non-Skype traffic is possible without employing port numbers, IP addresses and

payload information. These results demonstrate as well that to achieve high detection

and low false positive rates, temporal information is necessary in the case of Skype.

The packet header-based feature set performs well only on the traces in which the

training data set and test data set are from the same network. This suggests that the

packet header-based classifier is more suitable for use on the same or similar network

infrastructures while the flow-based classifier performs well on different traces. This

suggests that the flow-based classifier is more suitable for working robustly on traces

from different networks or network infrastructures. This is the most important dif-

ference between the flow-based features and the single packet header-based features.

In short, these results suggest that the flow-based classification system trained on

data from one network can be employed to run on a different network without new

training.

Figures 5.9 and 5.10 list the performance of the three classifiers on traces which

contain only Skype traffic from different time periods. The time periods range from

2006 to 2010. It is clear that the C5.0-based classifier has the best performance

followed by the GP-based classifier. It should be noted here that the training data
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set was selected from the Univ2007 trace. The signatures found by C5.0 were able

to achieve 87% DR on traces, which were captured a year earlier (the ITALY traces)

and 86% DR on traces which were captured three years later. Even though Skype

has changed updates over the years, from version 2.5 in 2006 [55] to version 5.0 in

2010 [107], the C5.0-based classifier was able to identify Skype with a high DR and

low FPR. Thus, the C5.0-based signatures can generalize well from one network to

another and from different time periods as well as different locations. These results

show that signatures based on flow feature sets can adapt to the changing conditions

of the applications and networks and therefore, they can generalize well, i.e. they are

robust.
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Chapter 6

Evasion of the Robust Signatures

In this chapter, the robustness/generalization of the proposed approach using ML

algorithms with a flow-based feature set is examined by evaluating it against potential

evasion attacks, which could circumvent the traffic classifier. It is believed that this is

the first time the robustness/generalization of such an approach has been investigated

against evasion attacks for VoIP traffic classification, specifically for Skype. To this

end, the data sets employed and the experiments performed will be described followed

by a discussion of the results.

6.1 Altering Skype Traffic – Evasion Attacks

In this section, the performance of the signatures generated by C5.0, AdaBoost and

GP against the padding of the Skype VoIP network traffic is investigated. The same

speech corpus audio files used in the generation of the NIMS Lab traces was used.

The Speex encoder [108] was used to change the bit rate of the audio file from 8Hz

(the original bit rate of the audio file employed) to a range from 5Hz to 14Hz as well

as using a sound file convertor [109] to change the formatting type of the audio file.

The audio formatting files employed were Macintosh sound formats (AIF and AIFF),

a Sun Microsystems file format (AU) and MPEG-2 Audio Layer III (MP3). Table

6.1 lists the properties of the modified audio files.

In these experiments, the impacts of two different approaches for altering the audio

on the transmission of the Skype VoIP calls were investigated. The network setup used

was the same as with the NIMSII Gtalk experiments in section 3.6.3. A Skype client

was installed on the Windows XP machines. The general call setup was the modified

audio file played for ten minutes and then the output of the Windows media player

was used as input for the Skype client using a microphone (Figure 6.1). Wireshark

was used for capturing the traffic on both ends of the Skype communication. These

traffic traces (both altered and unaltered Skype traffic) were mixed with the lab traces

112
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Table 6.1: Statistical Overview of Altered-Skype Audio Files

Audio File Duration Size in Bytes Number of Flows
Original (8Hz) 49s 791kb 2,396
Altering Bitrate (5Hz) 1:18s 791KB 3,188
Altering Bitrate (6Hz) 1:05s 791KB 2,863
Altering Bitrate (7Hz) 56s 791KB 2,324
Altering Bitrate (9Hz) 43s 791KB 3,494
Altering Bitrate (10Hz) 39s 791KB 3,605
Altering Bitrate (11Hz) 35s 791KB 2,478
Altering Bitrate (12Hz) 32s 791KB 2,821
Altering Bitrate (13Hz) 30s 791KB 3,235
Altering Bitrate (14Hz) 28s 791KB 3,123
Altering format (AIF) 49s 791KB 4,937
Altering format (AIFF) 49s 791KB 3,097
Altering format (AU) 49s 8.7MB 2,476
Altering format (MP3) 49s 795KB 2,041

Figure 6.1: Call Setup for Skype Evasion Attacks

described in sections 3.6.3 and 3.6.4.

Figure 6.2 plots the audio spectrum of four audio files. These files (from top to

bottom of the figure) are the altered 6Hz Bitrate audio file, the original audio file, the

altered 9Hz Bitrate audio file and the altered 14Hz Bitrate audio file. The original

audio file was an 8Hz female voice audio file. The orange rectangle boxes on the

altered signals indicate the differences between the altered data and the original data

caused by the padding, the method used for the evasion attacks. As can be seen

from these plots, the padding led to the production of different outputs, but it is very

subtle. Furthermore, the altering of the original audio files changed the number of

flows Skype generated when these audio files were employed in the Skype voice chat
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Figure 6.2: Spectrum Analyzer Displays of Audio Signals

service (Table 6.1). However, the altered Skype flows look similar to the Lab traffic.

Figures 6.3 and 6.4 show the success of the evasion attacks in changing the Skype

traffic into other similar application traffic.
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Figure 6.3: Forward Direction of Mean of Packet Length vs. Std. of Packet Length
for NIMS Traces and Altered-Skype Traces
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Figure 6.4: Backward Direction of Mean of Packet Length vs. Std. of Packet Length
for NIMS Traces and Altered-Skype Traces
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6.2 Evaluation of Evasion Attacks

The objective here is to evaluate the effectiveness of the C5.0, AdaBoost and GP based

classifiers (Flow-based models) trained on the Univ2007 training data set employed

in Chapter 5, section 5.2 on both the original Skype traffic (not altered) traces and

the evaded Skype traffic (altered) traces. As discussed earlier, both of these traces

were generated in the NIMS lab. Figures 6.5, 6.6 and 6.7 show DR and FPR for

C5.0, AdaBoost and GP based classifiers both on the Skype original flows mixed

with the NIMS traces and the Skype altered flows mixed with the NIMS traces. The

reason the NIMS traces were used as the out-class was to see the performance of

the signatures on a data set in which there were additional VoIP applications as

well as other encrypted and non-encrypted applications. Moreover, the same network

infrastructures were used to generate the NIMS traces and the Skype altered traffic.

Figure 6.5 represents the confusion matrix of the C5.0 classifier on the Skype and

Skype altered traffic using a circus graph. The inner circle represents TP, FP, TN,

and FN performances. The circle above it contains four segments. These segments

represent the classes (Skype and Altered-Skype) and the dominant performance met-

ric. Starting clockwise from six o’clock to nine o’clock represents the performance of

Skype in cyan, nine o’clock to twelve o’clock represents the performance of Altered-

Skype in red, twelve o’clock to six o’clock represents the TP rate and TN rate in pink

and blue, respectively. The TP and TN rates are in this inner circle since these two

rates dominate the other rates, which are FP and FN rates. Distinct ribbons deter-

mine the ratio layout between the classes and the performance metric. The ribbon

represents a quantitative measurement, where a larger ribbon means a higher value

and smaller ribbon means a lower value. The FP rate is represented by the green color

while the FN rate is represented by the yellow color. The outer two circles provide

the value for the TP, FN, TN and FP rates. The C5.0-based classifier has a very high

performance based on the size of the ribbons starting from the TP and TN segments

for both the Skype and Altered-Skype classes. For instance, there are two wide cyan

ribbons (Skype) coming from the pink TP segment and the blue TN segment, while

there are two tiny cyan ribbons coming from the green FP segment and the yellow

FN segment. The same behaviour can be seen for the Altered-Skype class. In other

words, C5.0-based signatures show very promising performance for original Skype
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traffic (the cyan color in Figure 6.5) with ≈91% DR and ≈5% FPR for in-class traffic

(Skype) and ≈95% DR and ≈9% FPR for out-class traffic (non-Skype). For Altered-

Skype traffic (the red color in Figure 6.5), the C5.0-based classifier achieved ≈85%

DR and ≈5% FPR for in-class traffic (Altered-Skype) and ≈95% DR and ≈15% FPR

for out-class traffic (non-Skype).

Figure 6.6 shows the performance of the AdaBoost-based classifier. Again, the

ribbons starting from the TP and TN segments are wide for both classes, whereas

the ribbons starting from the FP and FN segments are very narrow which implies

that the percentages of FP and FN are very small. The AdaBoost-based classifier

achieves ≈85% DR and ≈6% FPR for in-class traffic (Altered-Skype) and ≈94%

DR and ≈15% FPR for out-class traffic (non-Skype). For original Skype traffic (the

cyan color in Figure 6.6), the AdaBoost-based classifier achieves ≈91% DR and ≈6%

FPR for in-class traffic (Skype) and ≈94% DR and ≈9% FPR for out-class traffic

(non-Skype).

In contrast, the sizes of the ribbons starting from the TP and TN segments for the

GP-based classifier (Figure 6.7) are narrower (smaller percentage value) compared to

the C5.0-based classifier (higher percentage value) in Figure 6.5, and the AdaBoost-

based classifier in Figure 6.6. Moreover, the ribbons starting from the FP segments

for the Skype and Altered-Skype classes are relatively wide (relatively smaller per-

centage). The GP-based classifier achieves ≈94% DR and ≈23% FPR for in-class

traffic (Skype) and ≈77% DR and ≈6% FPR for out-class traffic (non-Skype). For

Altered-Skype traffic (the red color in Figure 6.7), GP achieved ≈85% DR and ≈23%

FPR for in-class traffic (Altered-Skype) and ≈77% DR and ≈15% FPR for out-class

traffic (non-Skype).
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Figure 6.5: Performance of the C5.0-based Signatures Under Evasion Attacks by
Using a Circos Graph
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Figure 6.6: Performance of the AdaBoost-based Signatures Under Evasion Attacks
by Using a Circos Graph
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Figure 6.7: Performance of the GP-based Signatures Under Evasion Attacks by Using
a Circos Graph
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Table 6.2 lists the performance of the three ML-based classifiers on each of the

flow data sets generated by altering the audio files. The lowest performance occurred

when the audio file bit rate was changed from 8Hz to 9Hz (TP ≈76%). In terms of

modifying the encoding format, the MP3 caused the lowest performance (≈82% TP

rate for the C5.0-based classifier, ≈82% TP rate for the AdaBoost-based classifier

and ≈76% TP rate for the GP-based classifier). Specifically, the GP-based classifier

achieved the highest performance on five of the Skype altered traces (9Hz, 10Hz, 11Hz,

14Hz and AIF), while the AdaBoost-based classifier achieved the highest performance

on two of the Skype altered traces (6Hz and 13Hz) and C5.0 achieved the highest

performance on five of the Skype altered traces (5Hz, 7Hz, 12Hz, AIFF and AU).

Both the C5.0 and AdaBoost based classifiers achieved higher performance than the

GP-based classifier on the MP3 trace.

Table 6.2: TP Rate for the Three Classifiers on each of the Altered-Skype Traces

C5.0 AdaBoost GP
5Hz bitrate 0.875 0.870 0.841
6Hz bitrate 0.796 0.832 0.807
7Hz bitrate 0.815 0.811 0.768
9Hz bitrate 0.758 0.751 0.769
10Hz bitrate 0.886 0.806 0.888
11Hz bitrate 0.86 0.851 0.890
12Hz bitrate 0.84 0.816 0.832
13Hz bitrate 0.823 0.898 0.859
14Hz bitrate 0.822 0.911 0.921
AIF encoding 0.896 0.869 0.924
AIFF encoding 0.88 0.877 0.827
AU encoding 0.878 0.874 0.840
MP3 encoding 0.816 0.816 0.756
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6.2.1 Discussion of Results

The modification of the audio files (Figure 6.2) has a big effect on how Skype transmits

the packets. Hence, the characteristic of the flows changes, which makes them more

similar to other protocols (Figures 6.3 and 6.4). With the success in padding the

Skype payload by altering audio files to mimic the behaviour of other protocols, the

performance of the signatures generated by C5.0 dropped by 7% on average (Table

6.2).

Previously published research [74, 75] in the field claimed that evasion attacks

against ML-based classifiers and / or statistical features could succeed easily, re-

sulting in performances below 50% (random guessing). However, these experiments

indicate that such classifiers are not as easy to evade as claimed before. Indeed, the

performance of the traffic classifiers does drop against such attacks but these results

do indicate that well chosen training data sets and features can improve the general-

ization of such learning and data mining techniques even against evasion attacks. The

results of this research suggest that the signatures generated by using the three ma-

chine learning classifiers do not become ineffective when faced with evasion attacks,

i.e. altered Skype flows. Instead, they can still classify, albeit with a 7% decrease in

their performance. This suggests that the signatures are robust for classifying Skype

traffic regardless of the effect of locations, time periods or padding payload packets.

These results are consistent with the performance of the C5.0, AdaBoost and GP

based classifiers on the test traces (Chapter 5, section 5.2).
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6.3 Evading Public Tools

In this section, the performance of the Deep Packet Inspection tools on the Skype

and Altered-Skype traffic used in section 6.3.1 is discussed.

6.3.1 Evading Attacks Against OpenDPI

The publicly available OpenDPI is one of the common DPI tools used to classify

traffic, as explained in section 2.2.4. Since OpenDPI requires the packet payload

in order to classify the packets, the same traces used to evaluate the robustness of

the ML algorithms against evasion attacks in section 6.1 were employed. Both the

original Skype traffic generated in the NIMS lab and the altered-Skype traffic traces

were used in order to evaluate the performance of the OpenDPI tool.

Figure 6.8: OpenDPI Testbed Setup

The network testbed setup for this experiment as shown in Figure 6.8 is self ex-

planatory. Tables 6.3 and 6.4 show the performance of the OpenDPI tool in classifying

the traces. As can be seen from these results, OpenDPI failed to classify the Altered-

Skype traces. This is due to the fact that the signatures employed by OpenDPI for

classifying Skype are not effective on this data set. Also, these results indicate that

there exists a need for alternative techniques (such as the one proposed in this thesis)

for classifying VoIP traffic.
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Table 6.3: OpenDPI Results on the NIMS Traces and Altered-Skype Traces

DR FPR
Original Skype Traces

Non-SKYPE 0.01 1
Altered-SKYPE 0.0 0.99

Altered-Skype Traces
Non-SKYPE 0.01 1
Altered-SKYPE 0.0 0.99

Table 6.4: TP Rate for OpenDPI on each of the Altered-Skype Traces

5Hz bitrate 0.0
6Hz bitrate 0.0
7Hz bitrate 0.0
9Hz bitrate 0.0
10Hz bitrate 0.0
11Hz bitrate 0.0
12Hz bitrate 0.0
13Hz bitrate 0.0
14Hz bitrate 0.0
AIF encoding 0.0
AIFF encoding 0.0
AU encoding 0.0
MP3 encoding 0.0
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6.3.2 Evading Attacks Against Wireshark

The purpose of this experiment is to show the effectiveness of Wireshark type traffic

analyzers, which inspect all the header (including the IP addresses and TCP/UDP

port numbers) as well as the payload information, as traffic classification systems.

Since Wireshark can be used as a network analysis tool to label traffic according

to application type, the following experiments can show the ability of Wireshark to

classify an encrypted application such as SSH. An SSH session was run in a controlled

environment in which all SSH traffic was defined to be direct communication between

a client machine and an SSH server (hector.cs.dal.ca) connected via the Internet. The

client computer connected to the SSH server on port 22. Tcpdump [110] was running

to capture traffic on the client machine. Figure 6.9 shows the results of running the

Wireshark tool on the captured SSH trace. Indeed, Wireshark was able to label all

of the SSH packets.

Furthermore, to demonstrate how Wireshark uses signatures based on port num-

bers to label SSH traffic, two experiments were run in which the port number in the

SSH trace was modified from port 22 to port 2200 in the first experiment and from

port 22 to port 80 in the second experiment using tcprewrite [111] (a Unix tool for

rewriting packets in a pcap file), and then Wireshark was run again. Figure 6.10

shows the result of the first experiment in which Wireshark failed to detect any of

the SSH packets. Figure 6.10 shows the result of the second experiment in which

Wireshark classified SSH packets as HTTP packets. Wireshark was run as well on

the Original Skype and Altered-Skype traffic. Figures 6.12 and 6.13 show the results

in which Wireshark failed to detect any of Skype packets (Original or Altered). These

experiments illustrate that Wireshark depends on well-known port numbers for clas-

sifying the traffic. Thus, a new approach is necessary, which does not depend on port

numbers where the classifier/analyzer cannot be evaded just by changing the port

number where the application runs.
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Figure 6.9: Wireshark Classifying SSH Packets Before Modifying Ports
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Figure 6.10: Wireshark Misclassify SSH Packets After Modifying Ports
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Figure 6.11: Wireshark Classified SSH Packets as HTTP Packets After Modifying
Ports
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Figure 6.12: Wireshark Could not Classify Skype Original Packets
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Figure 6.13: Wireshark Could not Classify Altered-Skype Packets
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6.4 Discussion

This chapter has demonstrated how easy it is to evade public tools used for traffic

classification which are based on the DPI method (OpenDPI) and the port number

based method (Wireshark). The results of these experiments show the importance

and the need of the proposed approach for finding robust signatures which are diffi-

cult to evade. To do so, it was necessary to evaluate the robustness/generalization of

the solutions provided by the ML algorithms C5.0, GP and AdaBoost in Skype traf-

fic classification on unseen altered data by padding/morphing, i.e. evasion attacks.

These experimental results suggest that the proposed approach provides over 80%

DR on average for Skype VoIP traffic classification even if a user alters the character-

istics of the Skype traffic maliciously. However, the three ML-based classifiers used

in this thesis build different solutions and their performances are different on the test

traces. Thus, there is no dominant classifier for all of the test data sets, even though

the C5.0-based classifier on average has better performance than the AdaBoost and

the GP based classifiers. Therefore, the automatically generated signatures are ex-

amined in more detail in Chapter 7 in order to understand better how the proposed

approach solves the problem of classifying VoIP Skype traffic robustly. In Chapter 8

the performance of the three ML-based classifiers will be investigated when they are

combined together (Ensemble Learning).



Chapter 7

Analysis of the Classifier Solutions

In this chapter, the aim is to analyze the solutions generated by the classification-

based system in terms of Central Processing Unit (CPU) training time and complexity

of the solutions. The complexity analysis is based on the number of features and

the number of rules generated by each classifier. Furthermore, the best solution for

each classifier is discussed in terms of the flow/packet header feature sets, generated

signatures (rules/patterns) and the FPR to understand how the classification based

approach identifies the Skype flows. The approach adopted is to include as wide

a feature set as possible and let the ‘embedded’ properties of the various learning

algorithms establish which subset of features to employ. Given this capability, the

features selected by each learning algorithm are reviewed by class for both C5.0 and

GP. On the other hand, the summary for AdaBoost is not straightforward, since

AdaBoost is an adaptive boosting meta-learning algorithm. Thus, it will be limited

to the total set of features utilized, independent of the class. The analysis is done

using an Intel Xeon 2.67 GHz Quad 16 Core chip with 48 GB of RAM for the the

flow/packet header feature sets.

7.1 Analysis of the Packet Header-based Approach for Skype Detection

This section will analyze the solutions generated by classification for the Packet

Header-based approach to understand how Skype packets are identified.

7.1.1 CPU Training Time

Figure 7.1 summarizes the CPU training time. The steadiness of GP in finding fast

solutions is readily apparent. The GP-based classifier is the fastest ML algorithm by

building its model in ≈3560 seconds on average. Again, the CPU training time for

C5.0 is extremely fast as well (≈9140 seconds on average). Both GP and C5.0 are

particularly impressive in finding very good solutions (see the results in Chapter 5,

133
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section 5.1). By contrast, AdaBoost takes a longer time for training (on average ≈
12100 seconds, which is 3 hours, 21 minutes) compared to GP (60 minutes on average)

and C5.0 (2 hours, 32 minutes on average). Indeed, GP and C5.0 can find effective

solutions with large training sizes (≈20 million records) in few hours.
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Figure 7.1: Training Time (in Seconds) for Skype Detection Based on the Packet
Header Feature Set
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7.1.2 Complexity of Solutions

The AdaBoost-based classifier utilizes on average a lower total count of attributes for

Skype (in-class) and (out-class) traffic than either of the GP or C5.0 based classifiers

(Figures 7.2 and 7.3). The GP-based classifier uses the largest set of attributes as a

whole or by class for Skype detection whereas, on average, the C5.0-based classifier

uses the second largest set of attributes as a whole or by class for Skype detection.

In terms of solution complexity, the GP-based classifier generates fewer individuals

(teams) on average (7 for non-Skype and 8 for Skype) for detecting Skype packet

traffic while the AdaBoost-based classifier finds the second simplest solution (8 rules

for non-Skype and 8 rules for Skype) and the C5.0-based classifier finds the most

complex solution for Skype (on average 283 rules for non-Skype and 464 rules for

Skype), Figures 7.4 and 7.5.
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Figure 7.2: Number of Features Utilized for Each Classifier for Skype Classification
Based on the Packet Header Feature Set
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Figure 7.3: Number of Features Utilized for Each Classifier for non-Skype Classifica-
tion Based on the Packet Header Feature Set
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Figure 7.4: Number of Rules/Individuals Utilized for Each Classifier for Skype Clas-
sification Based on the Packet Header Feature Set
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Figure 7.5: Number of Rules/Individuals Utilized for Each Classifier for non-Skype
Classification Based on the Packet Header Feature Set



140

7.1.3 Best Solution for Each Classifier for the Packet Header-based

Approach for Skype Detection

For the number of features utilized based on the packet header feature set (attributes)

for Skype detection, Tables 7.1, 7.2 and 7.3 summarize these findings for the GP,

C5.0 and AdaBoost based classifiers, respectively. Clearly, AdaBoost uses the lowest

number of attributes relative to GP and C5.0 for Skype detection. Conversely, GP

uses the largest set of attributes as a whole or by class. Each classifier identifies

attributes unique to its own solution as well. For example, AdaBoost focuses mainly

on attributes based on the frame header (Table 7.3). GP is the only model to make

use of ‘frame.marked ’ for Skype detection (Table 7.1). Furthermore, GP and C5.0

discover the hierarchy of the network protocol stack layers (a five layer network stack)

and build their model for selecting attributes from each of the network protocol stack

layers, which include the Data Link layer (the frame header), the Network layer (IP

header) and the Transport layer (TCP/UDP header) for Skype detection.



141

Table 7.1: Features Used by GP for the in/out-classes for Skype Based on the Packet
Header Feature Set

in-class out-class
1 frame.time delta frame.time delta
2 frame.pkt len frame.pkt len
3 frame.len frame.len
4 frame.cap len frame.cap len
5 frame.marked frame.marked
6 ip.len ip.len
7 ip.flags ip.flags
8 ip.flags.rb ip.flags.rb
9 ip.flags.df ip.flags.df
10 ip.flags.mf ip.flags.mf
11 ip.frag.offset ip.frag.offset
12 ip.proto ip.ttl
13 tcp.window size tcp.window size
14 udp.length udp.length
15 tcp.seq tcp.seq
16 tcp.nxtseq tcp.nxtseq
17 tcp.len tcp.ack
18 tcp.hdr len tcp.hdr len
19 tcp.flags tcp.flags
20 tcp.flags.cwr tcp.flags.cwr
21 tcp.flags.ecn tcp.flags.ecn
22 tcp.flags.urg tcp.flags.urg
23 tcp.flags.push tcp.flags.push
24 tcp.flags.reset tcp.flags.reset
25 tcp.flags.syn tcp.flags.syn
26 tcp.flags.fin tcp.flags.fin
27 tcp.flags.ack
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Table 7.2: Features Used by C5.0 for the in/out-classes for Skype Based on the Packet
Header Feature Set

in-class out-class
1 frame.time delta frame.time delta
2 frame.pkt len frame.pkt len
3 frame.cap len frame.cap len
4 ip.len ip.len
5 ip.flags ip.flags
6 ip.flags.df ip.flags.df
7 ip.ttl ip.ttl
8 tcp.len tcp.len
9 tcp.seq tcp.seq
10 tcp.nxtseq tcp.nxtseq
11 tcp.ack tcp.ack
12 tcp.hdr len tcp.hdr len
13 tcp.flags tcp.flags
14 tcp.flags.push tcp.flags.push
15 tcp.flags.reset tcp.flags.reset
16 tcp.flags.syn tcp.flags.syn
17 tcp.flags.fin tcp.flags.fin
18 tcp.window size tcp.window size
19 udp.length udp.length

Table 7.3: Features Used by AdaBoost as a Whole for Skype Based on the Packet
Header Feature Set

in-class out-class
1 frame.time delta frame.time delta
2 frame.len frame.len
3 frame.cap len frame.cap len
4 tcp.window size tcp.window size
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Also of interest is the high level of overlap in shared attributes among the three

ML algorithms. C5.0 shared three of the four attributes utilized by AdaBoost and all

C5.0 attributes shared with GP. What is certainly clear, however, is that a significant

degree of preference exists in attribute selection relative to the ML model; thus,

attempting to provide a limited ‘hand crafted’ set of attributes is likely to be counter-

productive.

In terms of solution complexity for Skype packet header solutions AdaBoost gener-

ates ten signatures for both Skype traffic and non-Skype traffic, whereas C5.0 employs

461 signatures for Skype classification and 287 signatures to classify non-Skype traffic.

The SBB-based GP uses nine individuals for Skype classification and nine for non-

Skype. Figures 7.6, 7.7 and 7.8 show part of the C5.0, AdaBoost and GP solutions

for the detection of Skype traffic based on the packet header feature set. Moreover,

in terms of the number of packets each model can classify per second, the C5.0-based

model leads the competition. In this case, the GP solution can classify ≈ 790000

packets/second, the AdaBoost-based model can classify ≈ 1.16e+06 packets/second

and the C5.0-based model can classify ≈ 3.17e+09 packets/second in terms of clas-

sifying the data sets offline without any special treatment for speed-ups. However,

the number of records processed per second can be improved by using either a faster

machine or parallel computing to implement the signatures, i.e. the solutions of the

ML algorithms. For instance, parallel computing can be implemented in the case of

GP by processing simultaneously each individuals/teams of the GP solution. Hence,

the results of each individuals/teams can be obtained at the same time in order to

find the winner individuals/teams and label the traffic.
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Decision Stump

Classifications

frame.time_delta <= 0.0012155 : NOTSKYPE

frame.time_delta > 0.0012155 : SKYPE

frame.time_delta is missing : NOTSKYPE

Class distributions

frame.time_delta <= 0.0012155

NOTSKYPE SKYPE

0.9929608899388909 0.007039110061109188

frame.time_delta > 0.0012155

NOTSKYPE SKYPE

0.08998482013626576 0.9100151798637343

frame.time_delta is missing

NOTSKYPE SKYPE

0.9828019681503587 0.017198031849641335

Weight: 4.82

Decision Stump

Classifications

frame.cap_len <= 4.3630785 : NOTSKYPE

frame.cap_len > 4.3630785 : SKYPE

frame.cap_len is missing : NOTSKYPE

Class distributions

frame.cap_len <= 4.3630785

NOTSKYPE SKYPE

0.7148325695260668 0.2851674304739333

frame.cap_len > 4.3630785

NOTSKYPE SKYPE

9.032747622759881E-4 0.999096725237724

frame.cap_len is missing

NOTSKYPE SKYPE

0.5583330534039108 0.4416669465960891

Weight: 1.25

Figure 7.6: An Example of an AdaBoost Solution for Skype Based on the Packet
Header Feature Set
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Rule 287: (3271/22, lift 1.0)
frame.time_delta <= 0.000876
frame.pkt_len > 4.672829
frame.pkt_len <= 4.882802
ip.ttl > 4.682131
ip.ttl <= 4.70048
tcp.window_size <= 8.651549
->  class NOTSKYPE  [0.993]

Rule 288: (47628/2, lift 58.1)
frame.time_delta <= 4e-06
frame.cap_len > 4.060443
->  class SKYPE  [1.000]

Rule 289: (122526, lift 58.1)
frame.cap_len > 4.060443
tcp.hdr_len <= 2.995732
->  class SKYPE  [1.000]

Rule 290: (2203, lift 58.1)
frame.time_delta > 0.000473
frame.pkt_len <= 6.202536
frame.cap_len > 4.060443
ip.ttl > 4.75359
ip.ttl <= 4.812184
tcp.seq > 11.71681
tcp.window_size > 8.651549
tcp.window_size <= 9.847076
->  class SKYPE  [1.000]

Figure 7.7: An Example of a C5.0 Solution for Skype Based on the Packet Header
Feature Set
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R[0] <- R[0] R[4] exp

R[7] <- R[7] R[0] cos

R[3] <- R[3] R[7] diff

R[5] <- R[5] I[4] cos

R[0] <- R[0] I[2] div

R[0] <- R[0] I[28] diff

R[1] <- R[1] I[0] log

R[6] <- R[6] R[3] log

R[1] <- R[1] I[0] sum

R[7] <- R[7] I[15] log

R[3] <- R[3] R[3] diff

R[2] <- R[2] I[25] exp

R[0] <- R[0] R[6] diff

R[1] <- R[1] R[6] prod

R[3] <- R[3] I[27] mod

R[7] <- R[7] I[3] exp

R[0] <- R[0] R[5] log

R[3] <- R[3] R[0] diff

R[0] <- R[0] R[3] diff

R[0] <- R[0] R[1] cos

R[1] <- R[1] R[6] prod

R[5] <- R[5] I[1] cos

R[0] <- R[0] R[6] div

Figure 7.8: An Example of a GP Solution for Skype Based on the Packet Header
Feature Set
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7.1.4 FPR for the Best Solutions for Each Classifier based on the

Packet Header Feature Set for Skype Detection

Figures 7.9, 7.10, 7.11, 7.12, 7.13 and 7.14 list the application packets which C5.0,

GP and AdaBoost misclassified as Skype packets for the Univ2007 test and Univ2010

traces employed (See Appendix C.1 for the tables). Given the fact that Skype runs

over TCP or UDP, this is to be expected. C5.0, GP and AdaBoost are mostly

classifying the HTTP and ‘OTHER’ classes as Skype since Skype uses TCP and

UDP for setting up communication calls.

Figure 7.9: Applications Wrongly Classified as Skype by the C5.0-based Signatures
on the Packet Header Feature Set on the Univ2007 Test Trace (FPR=0.03%).
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Figure 7.10: Applications Wrongly Classified as Skype by the C5.0-based Signatures
on the Packet Header Feature Set on the Univ2010 Test Trace (FPR=2.4%).

Figure 7.11: Applications Wrongly Classified as Skype by the GP-based Signatures
on the Packet Header Feature Set on the Univ2007 Test Trace (FPR=2.5%).
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Figure 7.12: Applications Wrongly Classified as Skype by the GP-based Signatures
on the Packet Header Feature Set on the Univ2010 Test Trace (FPR=65.1%).

Figure 7.13: Applications Wrongly Classified as Skype by the AdaBoost-based
Signatures on the Packet Header Feature Set on the Univ2007 Test Test Trace
(FPR=0.11%).
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Figure 7.14: Applications Wrongly Classified as Skype by the AdaBoost-based Sig-
natures on the Packet Header Feature set on the Univ2010 Test Trace (FPR=0.34%).
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7.2 Analysis of the Flow-based Approach for Solutions Generated by all

Classifiers

7.2.1 CPU Training Time

Figure 7.15 summarizes the CPU training time. AdaBoost is the fastest compared

to GP and C5.0 for building its model, as shown in Figure 7.15. However, its per-

formance is very low. By contrast, the CPU training time for C5.0 is very fast and

particularly impressive in finding very good solutions (see the results in Chapter 5,

section 5.2). The GP-based classifier takes a longer time for training (on average

1 hour, 20 minutes) compared to C5.0 and AdaBoost (on average less than 8 min-

utes). Indeed, C5.0 can find effective solutions with large training sizes (≈1.7 million

records) in a few minutes.
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Figure 7.15: Training Time (in Seconds) for Skype Detection Based on the Flow
Feature Set
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7.2.2 Complexity of Solutions

AdaBoost uses on average a lower total count of attributes for Skype (in-class) and

(out-class) relative to either GP or C5.0 (Figures 7.16 and 7.17). Conversely, C5.0

uses the largest set of attributes as a whole or by class for Skype detection whereas, on

average, GP uses the second largest set of attributes as a whole or by class for Skype

detection. In terms of solution complexity, GP generates fewer individuals/teams

on average (ten for non-Skype and six for Skype) to detect Skype flow traffic while

AdaBoost finds a simpler solution (eight rules for non-Skype and eight rules for Skype)

and C5.0 finds the most complex solution for Skype (on average 213 rules for non-

Skype and 238 rules for Skype), as shown in Figures 7.18 and 7.19.
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Figure 7.16: Number of Features Utilized for Each Classifier for Skype Classification
Based on the Flow Feature Set
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Figure 7.17: Number of Features Utilized for Each Classifier for non-Skype Classifi-
cation Based on the Flow Feature Set
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Figure 7.18: Number of Rules/Individuals Utilized for Each Classifier for Skype Clas-
sification Based on the Flow Feature Set
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Figure 7.19: Number of Rules/Individuals Utilized for Each Classifier for non-Skype
Classification Based on the Flow Feature Set
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7.2.3 Analysis of the Best Solution from Each Classifier

For Skype, Figures 7.20, 7.21 and 7.22 show the feature selection properties of the

GP, AdaBoost and C5.0 classifiers, respectively. Clearly, AdaBoost uses a lower count

of attributes for Skype detection. Conversely, C5.0 uses the largest set of attributes

as a whole or by class. In addition each classier identifies features unique to its

own solution. For example, AdaBoost chooses the Duration features since the Skype

application depends on the quality of the services for the end user; GP utilizes the

features based on packet size and inter-arrival time intuitively, which makes sense

since the Skype application is mostly interactive (user–user and user-machine); see

Figure 7.20. These features may give more insight into the behaviour of the users

and can provide more information for predicting what the payload might be. By

contrast C5.0 uses all of the features to build its model (22 features). The overlap

in shared attributes among the machine learning models is high with four features

shared between AdaBoost and GP for Skype detection. It is clear that a significant

degree of preference exists in feature selection relative to the machine learning model,

so trying to give a specific limited set of flow features for Skype identification is likely

to be counter-productive.

AdaBoost generates ten signatures for both Skype traffic and non-Skype traffic;

C5.0 employs 187 rules for identifying Skype traffic and 215 rules (signatures) for

non-Skype traffic and GP uses five individuals for Skype classification and eleven for

non-Skype. In short, the simplicity of the GP and AdaBoost solutions does not appear

to be traded off for classifier complexity while still achieving very good performance,

in effect emphasizing the significance of support for problem decomposition in this

application. Figures 7.23, 7.24 and 7.25 show part of the AdaBoost, C50 and GP

solutions for detection Skype traffic based on the flow feature set.
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Figure 7.20: Selected Flow Features of the GP-based Classifier for Skype Detection

Figure 7.21: Selected Flow Features of the AdaBoost-based Classifier for Skype De-
tection
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Figure 7.22: Selected Flow Features for the C5.0-based Classifier for Skype Detection
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Decision Stump

Classifications

max_bpktl <= 62.5 : SKYPE

max_bpktl > 62.5 : NOTSKYPE

max_bpktl is missing : NOTSKYPE

Class distributions

max_bpktl <= 62.5

NOTSKYPE SKYPE

0.19062681872503764 0.8093731812749624

max_bpktl > 62.5

NOTSKYPE SKYPE

0.8978431996029191 0.10215680039708083

max_bpktl is missing

NOTSKYPE SKYPE

0.714826729087577 0.28517327091242295

Weight: 1.95

Decision Stump

Classifications

proto <= 11.5 : NOTSKYPE

proto > 11.5 : SKYPE

proto is missing : NOTSKYPE

Figure 7.23: An Example of an AdaBoost Solution for Skype Detection Based on the
Flow Feature Set
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Rule 215: (879366/168737, lift 1.1)
min_fpktl <= 139
min_bpktl > 48
->  class NOTSKYPE  [0.808]

Rule 216: (9456/3, lift 3.5)
std_fpktl <= 0
max_bpktl <= 321
std_bpktl > 80
max_fiat <= 26620
mean_biat > 34983
mean_biat <= 330261
->  class SKYPE  [1.000]

Rule 217: (1801, lift 3.5)
min_fpktl > 131
duration <= 126901
total_fvolume <= 132
total_bvolume <= 63
->  class SKYPE  [0.999]

Rule 218: (798, lift 3.5)
min_fiat > 0
min_fiat <= 3
->  class SKYPE  [0.999]

Rule 219: (6044/3, lift 3.5)
min_fpktl <= 94
std_fpktl <= 2
min_bpktl > 61
min_bpktl <= 79
max_bpktl > 244
max_bpktl <= 298
std_bpktl > 103
->  class SKYPE  [0.999]

Rule 220: (782, lift 3.5)
min_fpktl > 34
min_fpktl <= 50
std_fpktl > 2
min_bpktl > 46
min_bpktl <= 79
mean_bpktl > 164
max_bpktl <= 595
proto > 6
total_fpackets <= 8
total_bvolume > 359
->  class SKYPE  [0.999]

Figure 7.24: An Example of a C5.0 Solution for Skype Detection Based on the Flow
Feature Set
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R[5] <- R[5] I[3] cos

R[3] <- R[3] R[2] mod

R[5] <- R[5] R[1] cos

R[2] <- R[2] R[1] cos

R[4] <- R[4] R[0] log

R[1] <- R[1] I[1] mod

R[4] <- R[4] I[0] log

R[2] <- R[2] R[4] div

R[5] <- R[5] I[20] cos

R[6] <- R[6] I[6] div

R[4] <- R[4] R[3] cos

R[1] <- R[1] I[17] div

R[4] <- R[4] R[2] prod

R[4] <- R[4] I[4] log

R[6] <- R[6] R[5] diff

R[6] <- R[6] R[0] log

R[4] <- R[4] I[5] exp

R[2] <- R[2] R[4] cos

R[6] <- R[6] I[20] sum

R[7] <- R[7] I[11] exp

R[3] <- R[3] R[3] diff

R[4] <- R[4] R[2] cos

R[1] <- R[1] R[5] exp

R[5] <- R[5] R[6] div

R[0] <- R[0] R[0] log

R[2] <- R[2] I[15] diff

R[5] <- R[5] R[0] sum

R[1] <- R[1] R[0] sum

R[4] <- R[4] R[4] sum

R[2] <- R[2] I[14] prod

R[2] <- R[2] I[0] sum

R[1] <- R[1] R[6] sum

R[7] <- R[7] R[6] diff

R[4] <- R[4] I[3] cos

R[2] <- R[2] I[5] mod

R[1] <- R[1] R[4] log

R[2] <- R[2] I[18] exp

R[0] <- R[0] R[4] cos

R[5] <- R[5] R[4] sum

R[0] <- R[0] R[5] mod

Figure 7.25: An Example of a GP Solution for Skype Detection Based on the Flow
Feature Set
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In summary, ML algorithms such as AdaBoost, GP and C5.0 select the most

appropriate attributes (among the set given) to build their classifier model. This

information is used to determine that five flow attributes from a set of 22 are used

in the experiments for identifying Skype traffic using AdaBoost whereas sixteen flow

attributes (again, out of 22) are used by GP (Figures 7.20 and 7.21).

Intuitively, what these algorithms learned from the data makes sense. In order

to identify Skype traffic correctly the classifier needs to explore both forward and

backward directions of the traffic. Each direction has its unique pattern given that

an Initiator machine (starts connection) and a Corresponder machine (responds to

the connection) operate differently. The features listed in Figures 7.20, 7.21 and

7.22 are what the learning model used to discover the Skype P2P VoIP encrypted

tunnel. These features are separated into two groups: (i) attributes from Initiator to

Corresponder (Forward direction); and (ii) attributes from Corresponder to Initiator

(Backward direction). The attributes in the forward direction are based on the packet

length and inter-arrival time since the forward direction depends on the initiator

requesting information (e.g. min fpktl, mean fpktl, max fpktl, std fpktl, min fiat,

mean fiat, max fiat and std fiat). The attributes in the backward direction are based

on the packet length and the inter-arrival time since the backward direction is based on

the Corresponder side responding to the Initiator requests (min bpktl, mean bpktl,

max bpktl, std bpktl, min biat, mean biat, max biat and std biat).

For example, the minimum length for a packet is affected in part by the length

of the request made by the Initiator. The standard deviation for a packet length is a

measurement of request variation, i.e. the different commands used by the Initiator.

In other words, the standard deviation measures the spread of the packet length,

which can indicate the different commands which Initiators run. Consequently, the

minimum and standard deviations of packet length measurements can shed some light

on the behaviour of the Initiator in choosing commands to do the work and can provide

more information for predicting what the payload might be. Such an indication can

be very useful for network/system administrators since encrypted content can prevent

the detection of anomalous activities, which can harm the system or steal sensitive

data.

Furthermore, in these experiments, the GP model can process ≈ 760000 flow
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records per second, the AdaBoost model can process ≈ 430000 flow records per second

while the C5.0 model can process ≈ 3.51e+09 flow records per second for classifying

off-line data sets. Again, the models can classify more flow records per second if par-

allel computing is used to implement the signatures/model or they are run on a faster

machine (more CPU power). Again, the parallel computing can increase the speed of

the signatures in particular in the case of GP by computing each individuals/teams

solution simultaneously.

7.2.4 FPR for each of the Best Solutions for Each Classifier

Figures 7.26, 7.27, 7.28, 7.29, 7.30 and 7.31 list the application flows which C5.0,

GP and AdaBoost misclassify as Skype flows for the university traces employed (See

Appendix C.2 for the tables). Given the fact that Skype runs over TCP or UDP,

this is to be expected. The C5.0 and AdaBoost Flow-based classifiers tend to classify

HTTP, DNS, P2P and ‘OTHER’ DNS traffic as Skype while GP tends to classify

DNS, P2P and ‘OTHER’ as Skype since Skype uses UDP and TCP protocols to set

up communication calls.

Figure 7.26: Applications Wrongly Classified as Skype by the C5.0-based Signatures
on the Flow Feature Set on the Univ2007 Test Trace (FPR=0.7%).
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Figure 7.27: Applications Wrongly Classified as Skype by the C5.0-based Signatures
on the Flow Feature Set on the Univ2010 Test Trace (FPR=6.1%).

Figure 7.28: Applications Wrongly Classified as Skype by the GP-based Signatures
on the Flow Feature Set on the Univ2007 Test Trace (FPR=9.9%).
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Figure 7.29: Applications Wrongly Classified as Skype by the GP-based Signatures
on the Flow Feature Set on the Univ2010 Test Trace (FPR=9.3%).

Figure 7.30: Applications Wrongly Classified as Skype by the AdaBoost-based Sig-
natures on the Flow Feature Set on the Univ2007 Test Trace (FPR=4.3%).



168

Figure 7.31: Applications Wrongly Classified as Skype by the AdaBoost-based Sig-
natures on the Flow Feature Set on the Univ2010 Test Trace (FPR=7.9%).



169

7.3 Sensitivity Analysis of Configuration Parameters

This section discusses the effect of the parameters on the performance of the C5.0 and

the GP based classifiers, since they are the top two performers in the experiments.

The default parameters for the C5.0-based classifier have been used because the aim

is not to find the best parameter set, but to investigate whether such a classifier will

work out of the box and what its performance would be under such circumstances.

The most important parameter to ‘tune’ under C5.0 is the pruning/confidence factor,

where this has a direct impact on the resulting model complexity. Model complexity is

related to generalization and performance/real-time operation. Figures 7.32, 7.33 and

7.34 summarize the impact of varying the confidence factor (CF) on the DR, FPR and

the number of rules.1 Essentially as the CF increases (less pruning) the resulting C5.0

model becomes more specific; the FPR decreases and the number of rules increases.

However, in this particular data set, there is no change in DR. The best DR and

FPR appear in the 5–45 CF interval. After this, any further improvement to FPR

is negligible. Unfortunately, this comes with the higher number of rules under C5.0

(more than 270 rules). The sweet spot in this configuration happens to correspond

to the default parameterization for C5.0.

Figure 7.32: Sensitivity of C5.0 DR for Changing the Confidence Factor Parameter

1Skype detection task and flow features.
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Figure 7.33: Sensitivity of C5.0 FPR for Changing the Confidence Factor Parameter

Figure 7.34: Sensitivity of the Number of C5.0 Rules for Changing the Confidence
Factor Parameter
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The principle property of variation in models of evolutionary computation, in GP

case, is the seed parameters used to initialize the various stochastic processes behind

population initialization and search operators. This source of variation is addressed

through the use of multiple runs (fifty in this case) and is reported throughout the

aforementioned experimental study. Secondary parameters might include the number

of generations, population size, team size, program length, frequency of applying

search operators and total number of registers. Of these, team size and program length

are free to adapt. As long as runs do not approach the team size and program length

limits, the choice of such parameters is independent of the parameterization, as is the

case here. Any generational limit is fixed mostly to reflect the computational overhead

of the task at hand. That is to say, as long as sufficient evaluations are performed to

reach a performance plateau, the value of considering further evaluations needs to be

traded off against the law of diminishing returns. The same can be said regarding the

size of the point population used to sample from the wider training set. The larger the

point population, the more significant the computational overhead is in performing

any single fitness evaluation – particularly under the Pareto formulations as used

here. Conversely the smaller the point population, the greater the sensitivity is to

any single sample from the point population. Previous research has demonstrated

that even when there is an order of magnitude difference in point population size

there is little impact on the quality of the solutions evolved [112]. The remaining

parameters have been studied extensively by the linear GP literature. In particular,

the work of Brameier and Banzhaf identifies Max. Register Count as the single

most significant parameter on linear GP; see Chapter 7 in [113]. Such a result is

independent of problem domain as it reflects the ratio of registers to instructions per

program. In short, the SBB algorithm adapts program length and team size to the

problem domain at hand. Changes to point population size and team population

size have little impact beyond some nominal figure (fifty individuals) and, within the

limit, are sensitive to the total computational cost of performing a run. Similarly,

a generational limit is imposed such that performance plateaus before a run are

considered to have completed execution.
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7.4 Limitations

No signature-based method in traffic classification can be perfect, given that there

can always be some new (unseen) applications. Thus, the major challenge for traffic

classification in general is evasion. All classification methods can be evaded. For

example, a payload-based approach can be evaded by encrypting the packet payload

and a port-based approach can be evaded by changing the port numbers dynami-

cally. However, approaches based on flow statistics using packet size and inter-arrival

time attributes are sensitive theoretically to altering these attributes. If attackers

want to evade the proposed method they can modify the size of the packets in the

entire connection by padding the packet payloads randomly. The accuracy of the pro-

posed method might be decreased if those features which depend on packet size were

modified from the application behaviour. However, it is not that easy to obfuscate

application behaviour without presenting a large amount of overhead.

Another limitation of any classification system is obtaining (generating) the train-

ing data set. The generality and accuracy of the classifier depends on the quality of

the training data sets. A meaningful and representative training data set is hard to

find and generating one is resource and time consuming. Moreover, since the classifier

generates the signatures automatically from the training data set, the accuracy of the

classifier might decrease if the signatures/models from the trained classifiers are ap-

plied to network traffic which have different characteristics or behaviour (such as new

applications which are developed or old applications which change their behaviour).

Indeed, in such cases, the signatures/models need to be updated by retraining the

classifiers. That is why it is very important to conduct robustness analysis on such

classifiers. For instance, in this thesis, C5.0 signatures have the best consistent per-

formance in the robustness criteria and the signatures can classify Skype P2P VoIP

traffic in a trace robustly if the characteristic of the flow features in the trace fall

within the range described in Table 7.4 (See Appendix D.1 for the figures).



173

Table 7.4: Ranges of Values for each of the Flow Features for the Signatures Generated
by C5.0

Feature Name Range
Duration value <= 5987061
fpackets value <= 1218
fbytes value <= 2512
bpackts value <= 1011
bbytes value <= 2877
min fiat 472914 <= value > 472914
mean fiat 47 <= value > 420485
max fiat 47 <= value > 26620
std fiat 67009 <= value > 6202
min biat value <= 569517
mean biat value <= 330261
max biat value <= 20162
std biat value <= 85003
min fpkt value > 30
mean fpkt 512 <= value > 47
max fpkt 344 <= value > 47
std fpkt value <= 548
min bpkt 870 <= value > 30
mean bpkt 1299 <= value > 38
max bpkt 1341 <= value > 42
std bpkt 633 < value > 587



Chapter 8

Ensemble Learning for Skype Identification

The common model for ensemble learning is depicted in Figure 8.1, where each classi-

fier (1 to N ) is trained on the input data and produces an output. Then, the outputs

of all classifiers (1 to N ) are combined to produce the ensemble learning predication.

Figure 8.1: Common Ensemble Learning Model

There exist several methods for building an ensemble learning model such as

boosting, bagging and stack generalization. Boosting methods consist of training a

classifier sequentially on training exemplars which have been filtered by the (1 to

N ) classifiers. A famous example of a boosting method is the AdaBoost classifier

designed by Freund and Schapire [82]. The bagging (Bootstrap) method involves the

aggregation of multiple classifiers (predictors) by using voting schema to generate

an aggregated classifier [114] which is based on the bootstrap technique. The third

common method of ensemble learning is stack generalization. Stack generalization

consists of two layers in which the outputs of the first layer are employed as inputs

to a second layer [115]. The first layer consists of different classifiers with different

parameters which are trained mainly on the same training data sets. Then, the

outputs of the first layer are fed to the second layer where a combining model is

174
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used to produce the ensemble learning prediction value. Since each one of the ML

algorithms (AdaBoost, C5.0 and GP) employed in this thesis has a different learning

approach, the stack generalization method is the most appropriate method to be

chosen out of the three common ensemble learning methods. Therefore, combining

AdaBoost, C5.0 and GP into one model using the stack generalization method where

a Neural Network is employed at the second layer. The reason behind using a Neural

Network (NN) based approach for ensemble learning is that the usefulness of using a

NN with ensemble learning has been demonstrated already ([116, 117]) and is widely

known.

8.1 The Proposed Ensemble Learner Neural Network Model for Skype

Identification

To combine the three machine learning approaches the following steps are necessary.

The first step is to transform the flow data sets from 22 features (the number of flow

features) to new data sets where the number of features depends on the solutions

produced by the three machine learning algorithms. The second step involves building

the new ensemble learning model using a Neural Network based approach on the newly

transformed data sets.

Figure 8.2 depicts the first step. The solutions generated by C5.0, AdaBoost and

GP are represented as “if-then statement” rules. Then, these rules will be used to

transfer the flow training data sets from 22 features (columns) into a new data set

in which each column represents a binary output since a binary classification (either

Skype or non-Skype) is performed.

The second step is where the selection of the optimal rules happens. A Neural

Network (NN) is run on the new data sets, which consist of the output of a diverse pool

of rules (solutions). The hidden layer and the output layer of the NN are deployed

with a sigmoid function. The reason for using sigmoid and setting the output range

for the sigmoid between -0.8 and 0.8 is to prevent over-fitting (over learning). The

Levenberg-Marquardt algorithm [118] with conjugate gradient approach, which is a

variant of the backpropagation algorithm, is used for the NN. At each generation

the rules which minimize the error rate on the training data set are kept based on a

threshold. Hence, with each generation the size of the data set is reduced.
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Figure 8.2: Representing the Flow Data Set to be Used by the Ensemble Learning
Model

begin
Threshold = 0
for i := 1 to sizeofdata step 1 do

Threshold = Threshold + 0.005
TraintheNeuralNetwork(NN)
if validationError > StoppingCriteria then Break
fi
GetWeightFromNN
if weight > Threshold then KeepRule
fi

end

Figure 8.3: Second Step of the Ensemble Learning Model

The pseudo code is given in Figure 8.3. At the first generation, the threshold is

initialized to 0.005. Then, training of the Neural Network (NN) starts. Two outputs

of the NN are considered. The validation error and the weight of each input after

training. The first output is used as the stopping criterion for the NN. The second

output is a vector of weights for each of the inputs. Only the inputs (rules) which

pass the threshold are kept. A MATLAB [119] version 7.5.0.338 on a Pentium 4 2.4

GHz Core 2 Duo chip with 2 GB of RAM was used to train the NN and test the

ensemble model prediction on the test data sets.
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8.2 Results of the Ensemble Learning Model

Since the performance of the flow feature set is better than the packet header feature

set, the models generated by AdaBoost, C5.0 and GP-based on the flow feature set

were chosen for the Ensemble model experiments. Due to the memory limitation on

the machine where MATLAB runs, the training data set used in Chapter 5 could not

be used (1,739,588 flows). Therefore, in these experiments, the training data set gen-

erated by the uniform random sampling of 30K records from Chapter 4 was employed

during training. As done in the previous experiments, the solution robustness was

assessed by training on a data set from one location (Univ2007 training partition) and

testing on data sets from other locations (Univ2007 test partition, Univ2010, ITALY,

IPv6 and NIMS traces). In short, the performances of AdaBoost, GP and C5.0 as

individual classifiers were compared against the performance of the ensemble model

where the three ML algorithms are employed together to build the ensemble learning

prediction model. Furthermore, the three classifier based ensemble learning model is

compared as well against an ensemble model based on only one classifier.

Table 8.1 shows the performance on the training data and the test data sets of

the University traces for the Ensemble Model when a NN model is used to combine

all classifiers (EL 3-classifiers), for C5.0 rules only (EL C5.0), for AdaBoost rules

only (EL AdaBoost) and for GP individuals only (EL GP). Table 8.2 shows the

performance of C5.0, GP and AdaBoost on the same data sets (as in Table 8.1) but

without ensemble learning. In these experiments (Table 8.2) the classifier giving the

best performance is C5.0 with 98.8% DR and 1.5% FPR on the Univ2007 traces and

with 86.6% DR and 5.9% FPR on the Univ2010 traces. The new approach (EL 3-

classifiers) increases the DR for the Univ2007 data set by 1% compared to the best

classifier, C5.0, and reduces the FPR on the Univ2010 traces by 1% again compared

to running the C5.0-based classifier on its own. The EL 3-classifier model achieves

99.0% DR and 1.5% FPR on the Univ2007 traces and 84.4% DR and 4.9% FPR on

the Univ2010 traces. According to these results, it is clear that the combining of the

three machine learning algorithms is better than each machine learning algorithm on

its own on the university traces.

Since finding the optimum training data set for testing the robustness of the clas-

sifiers is a hard task as illustrated in Chapter 4, none of the three machine learning
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algorithms trained on this smaller data set generalized well to the unseen data sets

from other networks/infrastructures. For the ITALY traces, GP has the best perfor-

mance compared to AdaBoost, C5.0 and the ensemble model (Tables 8.3 and 8.4).

For the NIMSII traces, C5.0 has the best performance on the GTALK and ZFONE

traces while the performance of the EL 3-classifiers was the best on the PRIMUS

traces (Tables 8.5 and 8.6). AdaBoost performs the best on the NIMSIII traces (Ta-

bles 8.7 and 8.8) while the AdaBoost and ensemble learning models achieves 100%

DR for the IPv6 traces (Tables 8.9 and 8.10).

Table 8.1: Results of Ensemble Learning (EL) for the Flow-based Feature Set for
Skype Detection

EL 3-classifiers EL C5.0 EL AdaBoost EL GP
DR FPR DR FPR DR FPR DR FPR

Training Sample (subset of Univ2007)
non-Skype 0.989 0.006 0.988 0.005 0.925 0.023 0.985 0.006
Skype 0.994 0.011 0.995 0.012 0.977 0.075 0.994 0.015

Univ2007 Test data sets
non-Skype 0.985 0.010 0.985 0.010 0.984 0.023 0.980 0.010
Skype 0.990 0.015 0.990 0.015 0.977 0.016 0.990 0.020

Univ2010 Test data sets
non-Skype 0.951 0.156 0.862 0.138 0.866 0.141 0.953 0.173
Skype 0.844 0.049 0.862 0.138 0.859 0.134 0.827 0.047

Table 8.2: Best Model Results on the Training Data Set for the Flow-based Feature
Set for Skype Detection

C5.0 AdaBoost GP
DR FPR DR FPR DR FPR

Training Sample (subset of Univ2007)
Non-SKYPE 0.988 0.008 0.955 0.115 0.924 0.023
SKYPE 0.992 0.012 0.885 0.045 0.977 0.076

Univ2007 Test data sets
Non-SKYPE 0.985 0.012 0.957 0.120 0.924 0.025
SKYPE 0.988 0.015 0.880 0.043 0.975 0.076

Univ2010 Test data sets
Non-SKYPE 0.941 0.134 0.931 0.187 0.939 0.135
SKYPE 0.866 0.059 0.813 0.069 0.865 0.061
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Table 8.3: Results of Ensemble Learning (EL) for the Flow-based Feature Set for
Skype Detection

EL 3-classifiers EL C5.0 EL AdaBoost EL GP
DR FPR DR FPR DR FPR DR FPR

ITALY TCPE2X Test data sets
non-Skype N/A 1.000 N/A 1.000 N/A 1.000 N/A 1.000
Skype 0.000 N/A 0.000 N/A 0.000 N/A 0.000 N/A

ITALY UDPE2E Test data sets
non-Skype N/A 0.761 N/A 0.416 N/A 0.912 N/A 0.605
Skype 0.239 N/A 0.584 N/A 0.088 N/A 0.395 N/A

ITALY UDPE2O Test data sets
non-Skype N/A 0.953 N/A 0.061 N/A 0.993 N/A 0.624
Skype 0.047 N/A 0.939 N/A 0.007 N/A 0.376 N/A

ITALY UDPSIG Test data sets
non-Skype N/A 0.486 N/A 0.311 N/A 0.328 N/A 0.401
Skype 0.514 N/A 0.689 N/A 0.672 N/A 0.599 N/A

Table 8.4: Best Model Results for the Flow-based Feature Set for Skype Detection

C5.0 AdaBoost GP
DR FPR DR FPR DR FPR

ITALY TCPE2X Test data sets
Non-SKYPE N/A 1.000 N/A 1.000 N/A 1.000
SKYPE 0.000 N/A 0.000 N/A 0.000 N/A

ITALY UDPE2E Test data sets
Non-SKYPE N/A 0.994 N/A 0.794 N/A 0.008
SKYPE 0.006 N/A 0.206 N/A 0.992 N/A

ITALY UDPE2O Test data sets
Non-SKYPE N/A 0.994 N/A 0.976 N/A 0.000
SKYPE 0.006 N/A 0.024 N/A 1.000 N/A

ITALY UDPSIG Test data sets
Non-SKYPE N/A 0.399 N/A 0.302 N/A 0.022
SKYPE 0.601 N/A 0.698 N/A 0.978 N/A
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Table 8.5: Results of Ensemble Learning (EL) for the Flow-based Feature Set for
Skype Detection

EL 3-classifiers EL C5.0 EL AdaBoost EL GP
DR FPR DR FPR DR FPR DR FPR

NIMSII GTALK2009 Test data sets
non-Skype 0.985 N/A 0.990 N/A 0.990 N/A 0.983 N/A
Skype N/A 0.015 N/A 0.010 N/A 0.010 N/A 0.017

NIMSII PRIMUS2009 Test data sets
non-Skype 0.997 N/A 0.991 N/A 0.990 N/A 0.985 N/A
Skype N/A 0.003 N/A 0.009 N/A 0.010 N/A 0.015

NIMSII ZFONE2009 Test data sets
non-Skype 0.959 N/A 0.984 N/A 0.984 N/A 0.918 N/A
Skype N/A 0.041 N/A 0.016 N/A 0.016 N/A 0.082

Table 8.6: Best Model Results for the Flow-based Feature Set for Skype Detection

C5.0 AdaBoost GP
DR FPR DR FPR DR FPR

NIMSII GTALK2009 Test data sets
Non-SKYPE 0.990 N/A 0.999 N/A 0.947 N/A
SKYPE N/A 0.010 N/A 0.001 N/A 0.053

NIMSII PRIMUS2009 Test data sets
Non-SKYPE 0.989 N/A 1.000 N/A 0.170 N/A
SKYPE N/A 0.011 N/A 0.000 N/A 0.830

NIMSII ZFONE2009 Test data sets
Non-SKYPE 0.983 N/A 0.938 N/A 0.470 N/A
SKYPE N/A 0.017 N/A 0.062 N/A 0.530



181

Table 8.7: Results of Ensemble Learning (EL) for the Flow-based Feature set for
Skype Detection

EL 3-classifiers EL C5.0 EL AdaBoost EL GP
DR FPR DR FPR DR FPR DR FPR

NIMSIII GTALK2010 Test data sets
non-Skype 0.945 N/A 0.952 N/A 0.952 N/A 0.942 N/A
Skype N/A 0.055 N/A 0.048 N/A 0.048 N/A 0.058

NIMSIII PRIMUS2010 Test data sets
non-Skype 0.814 N/A 0.872 N/A 0.839 N/A 0.918 N/A
Skype N/A 0.186 N/A 0.128 N/A 0.161 N/A 0.082

NIMSIII YAHOO2010 Test data sets
non-Skype 0.915 N/A 0.923 N/A 0.924 N/A 0.883 N/A
Skype N/A 0.085 N/A 0.077 N/A 0.076 N/A 0.117

NIMSIII RADIO2010 Test data sets
non-Skype 0.997 N/A 0.997 N/A 0.997 N/A 0.997 N/A
Skype N/A 0.003 N/A 0.003 N/A 0.003 N/A 0.003

NIMSIII TORRENT2010 Test data sets
non-Skype 0.890 N/A 0.758 N/A 0.782 N/A 0.904 N/A
Skype N/A 0.110 N/A 0.242 N/A 0.218 N/A 0.096

NIMSIII TV2010 Test data sets
non-Skype 0.992 N/A 0.992 N/A 0.991 N/A 0.992 N/A
Skype N/A 0.008 N/A 0.008 N/A 0.009 N/A 0.008

NIMSIII VPN 2010 Test data sets
non-Skype 0.986 N/A 1.000 N/A 1.000 N/A 0.986 N/A
Skype N/A 0.014 N/A 0.000 N/A 0.000 N/A 0.014
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Table 8.8: Best Model Results for the Flow-based Feature Set for Skype Detection

C5.0 AdaBoost GP
DR FPR DR FPR DR FPR

NIMSIII GTALK2010 Test data sets
Non-SKYPE 0.952 N/A 0.997 N/A 0.941 N/A
SKYPE N/A 0.048 N/A 0.003 N/A 0.059

NIMSIII PRIMUS2010 Test data sets
Non-SKYPE 0.871 N/A 0.650 N/A 0.336 N/A
SKYPE N/A 0.129 N/A 0.350 N/A 0.664

NIMSIII YAHOO2010 Test data sets
Non-SKYPE 0.924 N/A 0.933 N/A 0.290 N/A
SKYPE N/A 0.076 N/A 0.067 N/A 0.710

NIMSIII RADIO2010 Test data sets
Non-SKYPE 0.997 N/A 0.997 N/A 0.997 N/A
SKYPE N/A 0.003 N/A 0.003 N/A 0.003

NIMSIII TORRENT2010 Test data sets
Non-SKYPE 0.897 N/A 0.934 N/A 0.562 N/A
SKYPE N/A 0.103 N/A 0.066 N/A 0.438

NIMSIII TV2010 Test data sets
Non-SKYPE 0.991 N/A 1.000 N/A 0.992 N/A
SKYPE N/A 0.009 N/A 0.000 N/A 0.008

NIMSIII VPN2010 Test data sets
Non-SKYPE 0.987 N/A 1.000 N/A 0.959 N/A
SKYPE N/A 0.013 N/A 0.000 N/A 0.041

Table 8.9: Results of Ensemble Learning (EL) for the Flow-based Feature Set for
Skype Detection

EL 3-classifiers EL C5.0 EL AdaBoost EL GP
DR FPR DR FPR DR FPR DR FPR

IPv6 2000 Test data sets
non-Skype 1.000 N/A 1.000 N/A 1.000 N/A 1.000 N/A
Skype N/A 0.000 N/A 0.000 N/A 0.000 N/A 0.000

IPv6 2009 Test data sets
non-Skype 1.000 N/A 1.000 N/A 1.000 N/A 1.000 N/A
Skype N/A 0.000 N/A 0.000 N/A 0.000 N/A 0.000
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Table 8.10: Best Model Results for the Flow-based Feature Set for Skype Detection

C5.0 AdaBoost GP
DR FPR DR FPR DR FPR
IPv6 2000 Test data sets

Non-SKYPE 0.999 N/A 1.000 N/A 1.000 N/A
SKYPE N/A 0.001 N/A 0.000 N/A 0.000

IPv6 2009 Test data sets
Non-SKYPE 0.889 N/A 1.000 N/A 1.000 N/A
SKYPE N/A 0.111 N/A 0.000 N/A 0.000
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8.3 Discussion of Results

Limited by the computer memory and MATLAB license, it was not possible to use

the training data set employed in Chapters 4 and 5 to test the affect of the ensem-

ble learning model on improving the robustness of the machine learning algorithms.

However, the results from the ensemble learning approach are promising and show

the effectiveness of combining three machine learning based systems using a Neural

Network for classifying Skype encrypted traffic on the university traces. The ensem-

ble learning approach increases the DR by 1% and reduces the FPR by 1% on the

University test data sets compared to the best classifier (in this case C5.0) based on

the flow feature set.



Chapter 9

Multi-Class Classification for VoIP Applications

In this chapter, an approach which is based on ML algorithms and statistical flow-

based features is described and demonstrated in order to find signatures for clas-

sifying more than one VoIP application. Three VoIP applications were employed:

Skype, Gtalk and Primus softphone. To show the effectiveness of the proposed

approach, evaluations are performed on different training and test data sets. The

solution’s robustness is assessed by sampling the training data from two data sets

(Univ2007 and NIMSII traces) while testing occurred on traces from different loca-

tions (Univ2007 and NIMSII test partitions, Univ2010, IPv6 and ITALY, which were

captured in 2007, 2009, 2010, 2000-2009 and 2006, respectively). In these exper-

iments, the training data set is labelled into multi-classes depending on the VoIP

applications (SKYPE, GTALK, PRIMUS, and non-VoIP). It should be noted here

that 6% of the GTALK2009 and PRIMUS2009 data sets were sampled and added to

the training data set as described in Chapter 5. Thus, the training data set consists of

SKYPE, non-VoIP, GTALK, and PRIMUS applications where each of them contains

the following flow numbers: 646521, 1235055, 11417, and 451, respectively.

As discussed earlier in this thesis, the proposed approach to identifying VoIP

traffic such as Skype, Gtalk and Primus is data-driven, and therefore, all the possible

attributes/features are presented to the learning algorithms employed. In doing so

the aim is to examine: (i) which features will be considered the most appropriate by

each learning algorithm and (ii) which features will be chosen by all of the learning

models employed in this research. The answer to these two questions will provide the

subset of features which could be the most robust/generalized as well as the most

appropriate ones which can be used for real-life network traffic traces.

185
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9.1 Results of the VoIP Multi-Class Classification

Figures 9.1, 9.2 and 9.3 summarize solutions for the three machine learning algorithms

on the training data sets. All model construction takes place on the training partition

(Univ2007 and NIMSII). Testing evaluation is carried on under the Univ2007 and

NIMSII test partitions and the Univ2010, ITALY, NIMSIII and IPv6 traces which

are not seen during training. Normally, the Univ2007 test partition and NIMSII test

partitions will reflect the training behavior more closely than the other test network

traces.

The violin plots demonstrate the diversity of performance in terms of DR and FPR

for all fifty models on the training data sets for each machine learning algorithm. The

results presented in Figure 9.1 and the one-way ANOVA statistical analysis test in

Appendix B.3.3 illustrates that the C5.0-based classification approach is much better

on average than the other algorithms employed in identifying the Skype, Gtalk and

Primus flow traffic based on the training data set. GP is competitive with C5.0 for

all classes (Figure 9.2) and has different ranges of DR and FPR which implies that

the GP-based classifier finds different solutions at different runs. AdaBoost performs

the worst (Figure 9.3) failing to identify any of the Gtalk.
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Figure 9.1: DR and FPR Results for C5.0 or Multi-Class VoIP for the Flow-based
Feature Set on the Training Data Sets
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Figure 9.2: DR and FPR Results for GP or Multi-Class VoIP for the Flow-based
Feature Set on the Training Data Sets
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Figure 9.3: DR and FPR Results for AdaBoost or Multi-Class VoIP VoIP for the
Flow-based Feature Set on the Training Data Sets
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To select the best trained model for each ML algorithm, their training performance

is plotted in a scatter plot for each. Figures 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11,

9.12 summarize the solutions for the C5.0, GP and AdaBoost algorithms. The best

performing solution in terms of high DR and low FPR is selected out of these non-

dominated solutions for GP, AdaBoost and C5.0 and then evaluated on the test data

sets. For C5.0, there are eight solutions which are non-dominated, for GP, seven and

for AdaBoost, one.
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Figure 9.4: Scatter for the C5.0-based Classifier for Training Performance Using the
Flow-based Feature Set for Skype Detection (DR versus FPR)
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Figure 9.5: Scatter for the C5.0-based Classifier for Training Performance using the
Flow-based Feature set for Gtalk Detection (DR versus FPR)
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Figure 9.6: Scatter for the C5.0-based Classifier for Training Performance Using the
Flow-based Feature Set for Primus Detection (DR versus FPR)
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Figure 9.7: Scatter for the GP-based Classifier for Training Performance Using the
Flow-based Feature Set for Skype Detection (DR versus FPR)
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Figure 9.8: Scatter for the GP-based Classifier for Training Performance Using the
Flow-based Feature Set for Gtalk Detection (DR versus FPR)
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Figure 9.9: Scatter for the GP-based Classifier for Training Performance Using the
Flow-based Feature Set for Primus Detection (DR versus FPR)
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Figure 9.10: Scatter for the AdaBoost-based Classifier for Training Performance Using
the Flow-based Feature Set for Skype Detection (DR versus FPR)
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Figure 9.11: Scatter for the AdaBoost-based Classifier for Training Performance Using
the Flow-based Feature Set for Gtalk Detection (DR versus FPR)
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Figure 9.12: Scatter for the AdaBoost-based Classifier for Training Performance Using
the Flow-based Feature Set for Primus Detection (DR versus FPR)
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The results are summarized in terms of DR and FPR. Tables 9.1, 9.2 and 9.3 list

the results for the three machine learning algorithms on the training and independent

test traces. In this case, results show that C5.0 performs much better than the GP

and AdaBoost algorithms in classifying multiple VoIP applications. For Skype C5.0

achieves ≈100% DR and ≈1% FPR on the Univ2007 Test partition, ≈80% DR and

≈4% FPR on the Univ2010 traces, ≈91% DR on the ITALY-TCPE2X traces, ≈83%

DR on the ITALY-UDPE2E traces, ≈58% DR on the ITALY-UDPE2O traces and

≈86% on the ITALY-UDPSIG. Since the ITALY traces consist only of Skype traffic,

the FP rate for Skype and DR for non-Skype was ‘non-applicable’. For Gtalk, C5.0

achieved ≈96% DR and ≈0% FPR on the NIMSII traces and ≈91% DR and ≈0%

FPR on the NIMSIII traces. For Primus, C5.0 achieved ≈94% DR and ≈0% FPR

on the NIMSII traces and ≈92% DR and ≈0% FPR on the NIMSIII traces. The

C5.0 classifier is the most consistent performer across all test and training conditions

while being competitive with GP for Skype detection under the university traces and

Gtalk detection under the NIMS traces. This shows not only that the model which

the C5.0 classifier learned during training is robust (generalized) enough to be tested

on real world network traces, but also verifies that accurate differentiation between

multiple VoIP applications is possible without employing port numbers, IP addresses

and payload information.
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Table 9.1: Results for the C5.0 Classifier - Multi-Class – All Traces

SKYPE Non-VoIP GTALK PRIMUS
Data Sets DR FPR DR FPR DR FPR DR FPR
Training 0.997 0.007 0.993 0.004 0.962 0.000 0.951 0.086
Univ2007 0.996 0.007 0.993 0.004 N/A 0.000 N/A 0.000
Univ2010 0.803 0.038 0.962 0.197 N/A 0.001 N/A 0.000
ITALY TCPE2X 0.913 N/A N/A 0.086 N/A 0.001 N/A 0.000
ITALY UDPE2E 0.834 N/A N/A 0.099 N/A 0.032 N/A 0.035
ITALY UDPE2O 0.576 N/A N/A 0.057 N/A 0.029 N/A 0.338
ITALY UDPSIG 0.863 N/A N/A 0.095 N/A 0.040 N/A 0.002
GTALK2009 N/A 0.002 N/A 0.035 0.963 N/A N/A 0.000
PRIMUS2009 N/A 0.000 N/A 0.056 N/A 0.002 0.942 N/A
ZFONE2009 N/A 0.059 0.751 N/A N/A 0.164 N/A 0.027
GTALK2010 N/A 0.012 N/A 0.074 0.914 N/A N/A 0.000
PRIMUS2010 N/A 0.022 N/A 0.049 N/A 0.014 0.915 N/A
YAHOO2010 N/A 0.082 0.902 N/A N/A 0.016 N/A 0.000
RADIO2010 N/A 0.003 0.986 N/A N/A 0.012 N/A 0.000
TORRENT2010 N/A 0.040 0.921 N/A N/A 0.039 N/A 0.000
TV2010 N/A 0.008 0.987 N/A N/A 0.005 N/A 0.000
VPN2010 N/A 0.000 1.000 N/A N/A 0.000 N/A 0.000
IPv6 2000 N/A 0.000 1.000 N/A N/A 0.000 N/A 0.000
IPv6 2009 N/A 0.000 1.000 N/A N/A 0.000 N/A 0.000
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Table 9.2: Results for the GP Classifier - Multi-Class – All Traces

SKYPE Non-VoIP GTALK PRIMUS
Data Sets DR FPR DR FPR DR FPR DR FPR
Training 0.941 0.078 0.977 0.051 0.963 0.029 0.954 0.008
Univ2007 0.950 0.098 0.858 0.048 N/A 0.029 N/A 0.016
Univ2010 0.816 0.046 0.930 0.085 N/A 0.122 N/A 0.001
ITALY TCPE2X 0.802 N/A N/A 0.198 N/A 0.000 N/A 0.000
ITALY UDPE2E 0.759 N/A N/A 0.086 N/A 0.030 N/A 0.125
ITALY UDPE2O 0.234 N/A N/A 0.002 N/A 0.452 N/A 0.312
ITALY UDPSIG 0.623 N/A N/A 0.230 N/A 0.132 N/A 0.015
GTALK2009 N/A 0.004 N/A 0.033 0.962 N/A N/A 0.000
PRIMUS2009 N/A 0.001 N/A 0.016 N/A 0.001 0.983 N/A
ZFONE2009 N/A 0.043 0.669 N/A N/A 0.288 N/A 0.000
GTALK2010 N/A 0.051 N/A 0.048 0.901 N/A N/A 0.000
PRIMUS2010 N/A 0.074 N/A 0.040 N/A 0.002 0.884 N/A
YAHOO2010 N/A 0.000 0.910 N/A N/A 0.074 N/A 0.017
RADIO2010 N/A 0.001 0.999 N/A N/A 0.000 N/A 0.000
TORRENT2010 N/A 0.006 0.932 N/A N/A 0.044 N/A 0.019
TV2010 N/A 0.001 0.982 N/A N/A 0.008 N/A 0.009
VPN2010 N/A 0.053 0.947 N/A N/A 0.000 N/A 0.000
IPv6 2000 N/A 0.000 1.000 N/A N/A 0.000 N/A 0.000
IPv6 2009 N/A 0.000 1.000 N/A N/A 0.000 N/A 0.000
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Table 9.3: Results for the AdaBoost Classifier - Multi-Class – All Traces

SKYPE Non-VoIP GTALK PRIMUS
Data Sets DR FPR DR FPR DR FPR DR FPR
Training 0.734 0.049 0.951 0.266 0.000 0.000 0.000 0.000
Univ2007 0.747 0.027 0.973 0.253 N/A 0.000 N/A 0.000
Univ2010 0.710 0.067 0.933 0.290 N/A 0.000 N/A 0.000
ITALY TCPE2X 0.000 N/A N/A 1.000 N/A 0.000 N/A 0.000
ITALY UDPE2E 0.206 N/A N/A 0.794 N/A 0.000 N/A 0.000
ITALY UDPE2O 0.025 N/A N/A 0.975 N/A 0.000 N/A 0.000
ITALY UDPSIG 0.735 N/A N/A 0.265 N/A 0.000 N/A 0.000
GTALK2009 N/A 0.005 N/A 0.995 0.000 N/A N/A 0.000
PRIMUS2009 N/A 0.001 N/A 0.999 N/A 0.000 0.000 N/A
ZFONE2009 N/A 0.235 0.765 N/A N/A 0.000 N/A 0.000
GTALK2010 N/A 0.000 N/A 1.000 0.000 N/A N/A 0.000
PRIMUS2010 N/A 0.321 N/A 0.679 N/A 0.000 0.000 N/A
YAHOO2010 N/A 0.002 0.998 N/A N/A 0.000 N/A 0.000
RADIO2010 N/A 0.001 0.999 N/A N/A 0.000 N/A 0.000
TORRENT2010 N/A 0.058 0.942 N/A N/A 0.000 N/A 0.000
TV2010 N/A 0.001 0.999 N/A N/A 0.000 N/A 0.000
VPN2010 N/A 0.013 0.987 N/A N/A 0.000 N/A 0.000
IPv6 2000 N/A 0.001 0.999 N/A N/A 0.000 N/A 0.000
IPv6 2009 N/A 0.111 0.889 N/A N/A 0.000 N/A 0.000
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9.2 Analysis of the Classifier Solutions

In this section, the solutions generated by the classification-based systems are ana-

lyzed in terms of CPU training time, the number of features employed and the number

of rules/solutions generated in order to understand how multiple P2P VoIP applica-

tions are classified. Again, the summary for AdaBoost is not simple and so it will be

limited to the total number of attributes utilized, regardless of the class.

9.2.1 CPU Training Time

Figure 9.13 summarizes the CPU training time using an Intel Xeon 2.67 GHz Quad

16 Core chip with 48 GB of RAM. On average, C5.0 is faster than GP and AdaBoost

in building its model, as shown in Figure 9.13. The CPU training time for C5.0 is

not only fast but also particularly impressive in finding very good solutions (see the

results in section 9.1). GP takes the longest time for training (on average 2 hours,

30 minutes) compared to seven minutes on average for C5.0 and eight minutes on

average for AdaBoost. Indeed, C5.0 can find effective solutions with large training

sizes (≈1.9 million flows) in a few minutes.
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Figure 9.13: Training Time (in Seconds) for VoIP Multi-Class Classification Based
on the Flow Feature Set
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9.2.2 Complexity of Solutions

In this case, AdaBoost uses on average a lower total count of attributes for all VoIP

applications relative to either GP or C5.0 (Figure 9.14). In contrast, C5.0 uses all

of the 22 attributes (the largest set of attributes) for Skype, non-VoIP and Gtalk

while using fourteen attributes for Primus. GP, on average, uses the second largest

set of attributes: eighteen for Skype and Primus, twenty for Gtalk and twent-one for

non-VoIP. In terms of solution complexity, GP generates fewer individuals on average

(ten for non-VoIP, four for Skype, six for Gtalk and five for Primus) in detecting

Skype flow traffic while AdaBoost finds the simpler solution which is, on average,

competitive with GP (eight rules). C5.0 gives the most complex solution on average

(317 for non-VoIP, 217 for Skype, 32 for Gtalk and nine for Primus), see Figure 9.15.
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Figure 9.14: Number of Features Utilized for Each Classifier for VoIP Multi-Class
Classification Based on the Feature Set
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Figure 9.15: Number of Rules Utilized for Each Classifier for VoIP Multi-Class Clas-
sification Based on the Flow Feature Set
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9.2.3 Analysis of the Best Solution from Each Classifier for Multi-Class

VoIP Applications

For multi-class VoIP solutions, Tables 9.4, 9.5 and 9.6 summarize the number of

features utilized by C5.0, GP and AdaBoost, respectively. Clearly, AdaBoost uses

the lowest number of attributes relative to GP and C5.0 for classification. In contrast,

C5.0 uses the largest set of attributes by class. However, the C5.0 solution has the best

performance on these data sets compared to the GP and the AdaBoost solutions. In

these experiments the C5.0-based classifier utilizes all of the features (22 flow features)

to build signatures (rules) for the Skype and non-VoIP applications while using only

fifteen features for Primus and twenty-one for Gtalk. The fifteen features focus on the

packet size and time since VoIP applications depend strongly on the quality of service

provided to their users. These features may provide more insight on the indicators

of quality of service (high quality audio and video calls) to the VoIP application

developers for improving their products.



203

Table 9.4: Flow Features Utilized by C5.0 for Multi-Classes

Skype non-VoIP GTALK PRIMUS
min fpktl min fpktl min fpktl min fpktl
mean fpktl mean fpktl mean fpktl mean fpktl
max fpktl max fpktl max fpktl max fpktl
std fpktl std fpktl std fpktl
min bpktl min bpktl min bpktl min bpktl
mean bpktl mean bpktl mean bpktl mean bpktl
max bpktl max bpktl max bpktl max bpktl
std bpktl std bpktl std bpktl std bpktl
min fiat min fiat min fiat min fiat
mean fiat mean fiat mean fiat mean fiat
max fiat max fiat max fiat
std fiat std fiat std fiat std fiat
min biat min biat min biat min biat
mean biat mean biat mean biat
max biat max biat max biat
std biat std biat
duration duration duration duration
proto proto proto
total fpackets total fpackets total fpackets total fpackets
total fvolume total fvolume total fvolume total fvolume
total bpackets total bpackets total bpackets
total bvolume total bvolume total bvolume total bvolume
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Table 9.5: Flow Features Utilized by GP for Multi-Classes

Skype non-VoIP GTALK PRIMUS
min fpktl min fpktl min fpktl min fpktl
mean fpktl mean fpktl mean fpktl mean fpktl
max fpktl max fpktl max fpktl max fpktl
std fpktl std fpktl std fpktl std fpktl
min bpktl min bpktl min bpktl min bpktl
mean bpktl mean bpktl mean bpktl mean bpktl
max bpktl max bpktl

std bpktl std bpktl std bpktl
min fiat min fiat min fiat min fiat

mean fiat mean fiat mean fiat
max fiat max fiat max fiat

std fiat std fiat std fiat std fiat
min biat min biat min biat

mean biat mean biat mean biat mean biat
max biat max biat max biat max biat
std biat std biat std biat std biat
duration duration duration duration
proto proto proto proto
total fpackets total fpackets total fpackets total fpackets
total fvolume total fvolume total fvolume total fvolume
total bpackets total bpackets total bpackets total bpackets
total bvolume total bvolume total bvolume total bvolume

Table 9.6: Flow Features Utilized by AdaBoost for Multi-Classes

Features
duration
proto
max bpktl
std fiat
total fpackets
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Decision Stump

Classifications

max_bpktl <= 62.5 : SKYPE
max_bpktl > 62.5 : notVoIP
max_bpktl is missing : notVoIP

Class distributions

max_bpktl <= 62.5
SKYPE notVoIP GTALK PRIMUS
0.808242089758833 0.19036041951340704 0.0013974907277599332

0.0
max_bpktl > 62.5
SKYPE notVoIP GTALK PRIMUS
0.10127242113679873 0.89007050212582750.008310332367164615

3.467443702091999E-4
max_bpktl is missing
SKYPE notVoIP GTALK PRIMUS
0.28323735724913474 0.70997409045389090.006531055485709783

2.574968112645434E-4

Weight: 1.89

Decision Stump

Classifications

proto <= 11.5 : notVoIP
proto > 11.5 : SKYPE
proto is missing : notVoIP

Class distributions

proto <= 11.5
SKYPE notVoIP GTALK PRIMUS
0.005908121626949904 0.950762270807104 0.04302540997858238

3.0419758736366874E-4
proto > 11.5
SKYPE notVoIP GTALK PRIMUS
0.57347259169855520.40785890063096675 0.017403369134131673

0.0012651385363464638
proto is missing
SKYPE notVoIP GTALK PRIMUS
0.40676058578960470.567327145437835 0.024929389612221756

9.82879160338412E-4

Weight: 0.77

Figure 9.16: An Example of an AdaBoost Solution for Multi-Class VoIP Application
Classification Based on the Flow Feature Set

In terms of solution complexity, AdaBoost generates ten signatures. C5.0 employs

223 signatures for Skype classification, 307 signatures for non-VoIP classification, 28

signatures for Gtalk classification and eleven signatures for Primus classification. GP

uses eighteen individuals for Skype classification, seven individuals for non-VoIP clas-

sification, eleven individuals for Gtalk classification and eight for Primus classification.

Figures 9.16, 9.17 and 9.18 show parts of the C5.0, AdaBoost and GP solutions for

classifying multiple VoIP applications based on the flow feature set.
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Rule 530: (1103988/624685, lift 1.5)
mean_fiat <= 35603
->  class SKYPE  [0.434]

Rule 531: (7241/1, lift 153.1)
min_bpktl > 38
min_bpktl <= 77
std_bpktl <= 693
min_fiat > 2
duration > 2.099204e+08
->  class GTALK  [1.000]

Rule 532: (959, lift 153.0)
min_fpktl <= 84
min_bpktl <= 383
min_fiat > 10
min_biat <= 4
total_bvolume > 19676
->  class GTALK  [0.999]

Rule 533: (336, lift 152.7)
min_fpktl > 47
max_fpktl <= 48
min_bpktl > 39
max_bpktl > 59
std_bpktl <= 30
total_bpackets > 8
->  class GTALK  [0.997]

Figure 9.17: An Example of a C5.0 Solution for Multi-Class VoIP Application Clas-
sification Based on the Flow Feature Set
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R[0] <- R[0] I[3] exp

R[7] <- R[7] R[2] diff

R[5] <- R[5] I[19] cos

R[5] <- R[5] I[21] log

R[0] <- R[0] I[1] diff

R[0] <- R[0] R[6] div

R[3] <- R[3] I[19] diff

R[3] <- R[3] R[4] exp

R[4] <- R[4] I[3] diff

R[4] <- R[4] R[0] diff

R[0] <- R[0] I[8] diff

R[6] <- R[6] I[14] log

R[5] <- R[5] R[2] div

R[4] <- R[4] I[16] cos

R[1] <- R[1] I[4] cos

R[6] <- R[6] R[4] sum

R[4] <- R[4] R[5] log

R[3] <- R[3] R[3] sum

R[7] <- R[7] R[0] prod

R[6] <- R[6] R[2] sum

R[7] <- R[7] I[13] prod

R[2] <- R[2] R[6] log

R[0] <- R[0] R[5] log

R[4] <- R[4] R[4] sum

R[3] <- R[3] I[7] exp

R[4] <- R[4] I[11] sum

R[0] <- R[0] R[2] log

R[4] <- R[4] I[17] diff

R[2] <- R[2] R[2] cos

R[6] <- R[6] I[12] diff

R[6] <- R[6] R[3] cos

R[0] <- R[0] R[5] prod

R[4] <- R[4] R[6] sum

R[3] <- R[3] I[13] cos

R[3] <- R[3] I[16] div

R[3] <- R[3] R[3] exp

R[6] <- R[6] R[2] cos

R[1] <- R[1] R[6] diff

R[0] <- R[0] R[1] log

R[1] <- R[1] R[7] sum

R[5] <- R[5] I[3] cos

R[1] <- R[1] R[7] sum

R[0] <- R[0] I[20] prod

Figure 9.18: An Example of a GP Solution for Multi-Class VoIP Application Classi-
fication Based on the Flow Feature Set
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9.3 Discussion

As seen in the above results, the C5.0-based classifier has the most consistent per-

formance compared to the AdaBoost and the GP classifiers whether classifying an

individual VoIP application such as Skype with high DR and low FPR or classify-

ing more than one VoIP application (Gtalk and Primus). These results demonstrate

that the model that the C5.0 classifier learned during training is robust (generalized)

enough to be tested on real-world network traces. Furthermore, these results verify

that the accurate differentiation among multiple VoIP applications is possible by us-

ing flow features based on packet size, time and direction while not employing port

numbers, IP addresses and payload information. Last, but not least, these results

demonstrate that it is possible to have a generic attribute set which can be employed

to identify multiple VoIP applications such as Skype, Gtalk and Primus.



Chapter 10

Conclusion

The primary motivation behind the proposed thesis is the challenging problem of

identifying network traffic, specifically encrypted traffic, according to the application

type. Network traffic classification is viewed as an essential task of any network

operations management group since it is used to manage bandwidth budgets and to

ensure quality of service objectives for critical applications. This thesis employs a ML-

based approach to overcome the insufficiency of traditional approaches (port number

and payload signature approaches) for classifying network traffic without using IP

addresses, TCP/UDP port numbers or payload information.

10.1 Research Objectives Realized

To be able to achieve the goal of robust classification of VoIP encrypted traffic eight

steps (milestones) were pursued. These are summarized in the following.

10.1.1 Identifying a Suitable Method for Sampling a Training Data Set

to Generate Robust Signatures

Given that a ML-based approach is employed in this thesis, one of the more important

factors in ML algorithms is the use of a training data set which represents the network

data well. Since the amount of traffic on a network link is massive (could be terabytes

per day, 1012 bytes), sampling an informative training data set becomes a hard task.

Therefore, in addressing this issue, three different sampling techniques were studied

in Chapter 4. These subset sampling methods are: (i) uniform random N sampling,

where N is either a fixed number of records (e.g. 30K, 60K, etc.) or N is a fixed

percentage of records (e.g. 1%, 2%, etc.); (ii) stratified N sampling based on grouping,

where N is either a fixed number of records (e.g. 30K, 60K, etc.) or N is a fixed

percentage of records (e.g. 1%, 2%, etc.); (iii) continuous data streams of either a

specific time period (e.g. 30 minutes, 60 minutes and 90 minutes of traffic) or N

209
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sampling records (e.g. 30K, 60K, etc.). As a result of these three subset sampling

techniques, thirty-three training data sets were sampled to explore these methods

to understand which one would be more suitable for generating robust signatures

for classifying VoIP traffic, specifically Skype. To this end, three ML algorithms

(AdaBoost, C5.0 and GP) were trained on all the training data sets, which were

sampled from Univ2007 network traffic traces and tested on validation data sampled

from the Univ2010 traces. Results indicate that Uniform Random Sampling with 6%

of the records is the most appropriate method for achieving this objective.

10.1.2 Exploring the Performance of Classifying Encrypted Traffic

Using Only One Packet – Without any Temporal Information

Feature sets are important for the ML algorithms, enabling them to group the char-

acteristics of the network traffic into labels. Twenty-nine features extracted from the

packet header were employed in this case, as described in Chapter 3, section 3.1.1.

The main objective of using such a feature set based only on the packet header in-

formation is to test the possibility of generating signatures which can classify VoIP

Skype traffic on the fly with low overhead and computational cost. Results of these

experiments demonstrate that identifying Skype traffic on the fly using information

extracted only from a single packet is possible, however the signatures generated are

not robust. In other words, they work best when the training data set and test data

set are from the same network.

10.1.3 Exploring the Performance of Classifying Encrypted Traffic

Using Only One Flow – With Temporal Information

As discussed earlier, a flow feature is a descriptive statistic which can be calculated

from one or more packets for each flow. The flow feature set depends on the direction,

packet size and inter-arrival time of packets which make up the flow. To this end, 22

flow features were computed and described in Chapter 3, section 3.1.2. Features such

as IP addresses, source/destination port numbers and payload are excluded from the

feature set to ensure that the results were not dependent on such biased features.

The resulting statistical flow feature set adds a computational overhead but can be

achieved in near real-time and represents a benchmark feature set for more complex
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features which can be added in the future. Results of these experiments show that the

performance of the ML algorithms improved significantly when temporal information

was employed compared with the packet header-based feature set. Using this method,

it is possible to classify encrypted VoIP traffic robustly without using port numbers,

IP addresses and payload information. In other words, the signatures which are

generated by this approach are able to classify such traffic on networks different from

the ones on which they are trained.

10.1.4 Exploring the Limits of Employing Machine Learning Algorithms

in Order to Classify Encrypted Traffic Robustly

Since the objective is to generate robust signatures as defined in Chapter 3, section

3.3, three different ML algorithms (C5.0, AdaBoost and GP) were employed in this

thesis for generating robust signatures for classifying VoIP traffic. The robustness

of AdaBoost, C5.0 and GP were investigated by training them on parts of Univ2007

but evaluating their performances on data sets captured from different locations,

different networks and different time periods in Chapter 5. The test data sets were

the Univ2007 Test partition, Univ2010, NIMS II, NIMSIII, ITALY and IPv6, which

were captured in 2007, 2010, 2009, 2010, 2006, and in both 2000 and 2009 for IPv6,

respectively. The results in Chapter 5 demonstrate that the ability to generate robust

signatures automatically which are able to identify Skype with high DR and low FPR

on different network traces and without retraining is possible. As well, these results

show that the signatures are able to identify Skype even though many different Skype

versions were in use/circulation from 2006 to 2010, e.g. version 2.5 in 2006 [55] to

version 5.0 in 2010 [107]. Furthermore, the quantification of the robustness of the

signatures can be measure in terms of achieving a DR that is higher than or equal to

80% and a FPR that is lower than 6% on test traces.

10.1.5 Testing the Ability of the Robust Signatures Against Evasion

Attacks

In Chapter 6 the robust signatures generated in Chapter 5 were evaluated against

evasion attacks. The signatures were evaluated on unseen altered data (evasion data)

by using morphing techniques (padding the payload). Even though, papers [74, 75]
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in the literature claimed that ML algorithms using statistical features can be evaded

easily, the empirical results obtained in this research suggest that this is not the case.

These results suggest that when an informative training data set is provided, ML

algorithms employing statistical flow-based features can generate robust signatures

even against evasion attacks. However, it should be noted here that such attacks do

cause a performance drop in the classification, but cannot be successful all the time.

10.1.6 Analysis of the Selected Features

Results from Chapter 5 show that the GP and C5.0 classifiers performed better than

AdaBoost on both the packet header feature set and flow-based feature sets. Since

the proposed approach in this thesis is data-driven, all the features were presented to

the ML algorithms so that they could select the most suitable ones from the given

set. By analyzing the rules/models generated by C5.0 and GP in Chapter 7 it can be

seen that C5.0 selects 19 features out of 29 and GP selects 26 features out of 29 for

classifying Skype using packet header-based information. Analysis of the flow-based

solutions reveals that the GP-based classifier selects 16 out of 22 flow features whereas

the C5.0-based classifier employs all of the 22 flow features in its solution (rule set).

Furthermore, the analysis of these selected features show that the ML algorithms

attempt to understand Skype application behaviour by differentiating it at both ends

of the communication (Chapter 7).

10.1.7 Exploring the Performance of Ensemble Learning for Enhancing

the Performance of the Signatures

Each ML algorithm employed in this thesis uses a different method for building its

solution. In chapter 8 a technique for combining the different solutions produced by

the ML algorithms into one model was explored: an ensemble learning technique based

on stack generalization was employed. Stack generalization is based on two layers

where the outputs of the first layer (e.g. the solutions of the three ML algorithms) are

fed to the second layer where the integration of different ML solutions occur. In this

research, a NN was employed at the second layer to produce the ensemble learning

model. Results show that an improvement of the generalization of the AdaBoost,

C5.0 and GP solutions can be achieved when they are combined into one model using
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ensemble learning.

10.1.8 Exploring the Ability of the Proposed Approach to Classify more

than One VoIP Application

Chapter 9 explores the ability of the three ML algorithms to classify robustly and

accurately (high DR and low FPR) more than one P2P VoIP application. Three

VoIP applications, namely Skype, Gtalk and Primus softphone, were employed to

evaluate the ability of the proposed approach for this problem. A testbed was set up

in the Dalhousie NIMS lab to generate traffic for the Gtalk and Primus applications

in 2009 and 2010 since there were no public traces available for these two applications.

Results of these experiments show that the C5.0-based classifier can generate robust

signatures not only to classify a single VoIP application, namely Skype, but also to

classify other VoIP applications such as Gtalk and Primus.

10.2 Key Contributions

In this thesis, the main goal is to investigate the robustness of the models/signatures

generated automatically by a ML-based approach – specifically C5.0, GP and Ad-

aBoost – for distinguishing encrypted VoIP traffic (namely Skype) from non-encrypted

traffic in a given traffic trace, robustness meaning that the classifier is trained on a

data set from one network traffic trace but tested on:

1. unseen data from different locations/networks;

2. unseen data from different time periods;

3. unseen data which is altered by padding/morphing (evasion attacks)

To explore this, three supervised ML algorithms, C5.0 AdaBoost and GP, were

employed. It should be noted here that these learning algorithms are not opaque

but rather their solutions can be analyzed to provide signatures (rules) which can

be understood easily by human experts. Moreover, these learning algorithms are

well known for selecting the most appropriate features from a given set for a given

task. Furthermore, the classification based approach was employed using only packet

header attributes or flow attributes.
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In this research, the C5.0-based classification approach performed the best on the

given data sets. In the best case scenario the C5.0-based classifier achieved 99.6%

DR with 0.7%FPR (when trained on one network but tested on another) in detecting

Skype traffic. These results show that the classification based system trained on data

from one network can be employed to run on a different network without new training.

Additionally, the results of evasion attack traces based on morphing techniques in

Chapter 6 showed that C5.0 provided over 80% DR on average for Skype VoIP traffic

classification on maliciously altered Skype traffic. Moreover, the ensemble learning

technique (Chapter 8) can be applied to increase the DR by 1% while reducing the

FPR by 1% as well.

The C5.0-based classifier achieved ≈100% DR and ≈1% FPR on the Univ2007

Test partition, ≈80% DR and ≈6% FPR on the Univ2010 traces, ≈99% DR on the

ITALY-TCPE2X traces, ≈89% DR on the ITALY-UDPE2E traces, ≈53% DR on

the ITALY-UDPE2O traces and ≈92% on the ITALY-UDPSIG. It should be noted

here that the ITALY traces only have Skype traffic. Furthermore, the C5.0-based

classifier identified IPv6 and VPN flows with high DR and low FPR. C5.0 achieved

≈99% DR and 0% FPR on the NIMSIII VPN2010 traces, ≈100% DR and 0% FPR

on the IPv6 2000 traces and ≈89% DR and 0% FPR on the IPv6 2009 traces. With

regard to evasion attacks, the signatures generated by the C5.0-based classifier from a

statistical feature set and a well chosen training data set were proven to be robust and

not easy to evade. The C5.0-based classifier achieved ≈91% DR and ≈5% FPR on

the Original Skype flows and ≈85% DR and ≈5% FPR on the Altered-Skype flows.

In summary, this thesis has proposed and developed a classification system which

is able to generate robust signatures automatically for classifying VoIP traffic, specif-

ically Skype traffic, by addressing the aforementioned research objectives highlighted

in section 10.1. As a result of this research, three main contributions have been made

which are detailed below.

1. The empirical exploration of a subset sampling method for the challenging prob-

lem of sampling a training data set for ML algorithms for classifying encrypted

VoIP traffic.

2. The empirical exploration of the difference between feature sets with and with-

out temporal information. Then, based on these features, the evaluation of the
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robustness of automatically generated signatures on traffic traces from differ-

ent time periods, locations, networks infrastructures as well as against evasion

attacks.

3. The analysis of the robust signatures and features employed to gain an insight

into the problem of encrypted VoIP traffic classification.

10.3 Future Research Directions

Given the results obtained in this thesis, there are many future research directions

which can be pursued. These are listed below.

1. Obtaining network traces for research purposes is a lengthy task and requires a

lot of time and effort. Furthermore, finding public network traces with accessible

payloads is even harder due to privacy issues. However, network traffic can be

generated in a lab environment. Therefore, future work might follow similar

lines to obtain more traces for performing more tests on different and/or even

larger data sets in order to continue to evaluate the robustness of the proposed

approach.

2. An interesting direction might be to combine the packet header feature sets with

the flow feature sets. Such a combination can allow a coarse-grained parallelism

which can increase the accuracy of detecting encrypted traffic.

3. Network traces are huge in size and a subset sampling method is an essen-

tial step in finding an informative training data which can be input to ML

algorithms in order to generate robust signatures. Therefore, another research

direction which might be followed would be to explore larger percentage sizes

for randomly sampling training data sets with uniform probability in order to

define a minimum and maximum range which can be used for subset sampling.

4. Employing a pruning algorithm for the selection of the optimal rules for en-

semble learning and training the ensemble learning model on a large training

data set (e.g. the training data set employed in Chapter 5) would be another

interesting future research direction.
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5. VoIP applications such as Skype are appearing on new wireless gadget devices.

It would be interesting to evaluate the proposed approach on such devices when

they are running Skype (or other VoIP applications) and connected using WiFi

as well as testing on other VoIP applications installed on these devices.

6. Use of different operators for the GP opcodes rather than the standard arith-

metic operators used in this research (e.g. conditional operators >, >=, <,<=).

7. Another area of interest might be exploring the possibilities for integrating

the proposed approach with other approaches such as those employing host-

based behaviour or approaches based on unsupervised learning (e.g. clustering

algorithms).

8. Testing the performance of the generated signatures on other IPv6, VPN and

Altered-VoIP traces.

9. Finally, there is always the potential for additional evaluation of the proposed

approach under other encrypted applications.
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Results of Subset Sampling Methods

A.1 Uniform Random N Sampling

●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●

●

●

●

●

●

●

no
nS

kyp
e−

DR
−C

5.0

no
nS

kyp
e−

FP
R−

C5
.0

Sk
yp

e−
DR

−C
5.0

Sk
yp

e−
FP

R−
C5

.0

no
nS

kyp
e−

DR
−A

da
Bo

os
t

no
nS

kyp
e−

FP
R−

Ad
aB

oo
st

Sk
yp

e−
DR

−A
da

Bo
os

t

Sk
yp

e−
FP

R−
Ad

aB
oo

st

no
nS

kyp
e−

DR
−G

P

no
nS

kyp
e−

FP
R−

GP

Sk
yp

e−
DR

−G
P

Sk
yp

e−
FP

R−
GP

0.0

0.2

0.4

0.6

0.8

1.0

Figure A.1: Results of Three Machine Learning Algorithms Using the Uniform Ran-
dom N Sampling 30K Method on Training Data
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Figure A.2: Results of Three Machine Learning Algorithms Using the Uniform Ran-
dom N Sampling 30K Method on Validation Data
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Figure A.3: Results of Three Machine Learning Algorithms Using the Uniform Ran-
dom N Sampling 60K Method on Training Data
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Figure A.4: Results of Three Machine Learning Algorithms Using the Uniform Ran-
dom N Sampling 60K Method on Validation Data
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Figure A.5: Results of Three Machine Learning Algorithms Using the Uniform Ran-
dom N Sampling 100K Method on Training Data
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Figure A.6: Results of Three Machine Learning Algorithms Using the Uniform Ran-
dom N Sampling 100K Method on Validation Data

●●

●●

●

●●●
●●
●●●●

●

●●●●●●●●

●●●
●●
●●●●

●

●●●●●●●●

●

●

●

●

●

no
nS

kyp
e−

DR
−C

5.0

no
nS

kyp
e−

FP
R−

C5
.0

Sk
yp

e−
DR

−C
5.0

Sk
yp

e−
FP

R−
C5

.0

no
nS

kyp
e−

DR
−A

da
Bo

os
t

no
nS

kyp
e−

FP
R−

Ad
aB

oo
st

Sk
yp

e−
DR

−A
da

Bo
os

t

Sk
yp

e−
FP

R−
Ad

aB
oo

st

no
nS

kyp
e−

DR
−G

P

no
nS

kyp
e−

FP
R−

GP

Sk
yp

e−
DR

−G
P

Sk
yp

e−
FP

R−
GP

0.0

0.2

0.4

0.6

0.8

1.0

Figure A.7: Results of Three Machine Learning Algorithms Using the Uniform Ran-
dom N Sampling 200K Method on Training Data



231

●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●

●

●●●●●
●●●

●

●●●●●●●●

●●●
●●●●

●●●●●●●●

●●●
●●●●

●●●●●●●●

●●

●

●●
●●●●●●

●

●●●●●●●●

●

●

no
nS

kyp
e−

DR
−C

5.0

no
nS

kyp
e−

FP
R−

C5
.0

Sk
yp

e−
DR

−C
5.0

Sk
yp

e−
FP

R−
C5

.0

no
nS

kyp
e−

DR
−A

da
Bo

os
t

no
nS

kyp
e−

FP
R−

Ad
aB

oo
st

Sk
yp

e−
DR

−A
da

Bo
os

t

Sk
yp

e−
FP

R−
Ad

aB
oo

st

no
nS

kyp
e−

DR
−G

P

no
nS

kyp
e−

FP
R−

GP

Sk
yp

e−
DR

−G
P

Sk
yp

e−
FP

R−
GP

0.0

0.2

0.4

0.6

0.8

1.0

Figure A.8: Results of Three Machine Learning Algorithms Using the Uniform Ran-
dom N Sampling 200K Method on Validation Data
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Figure A.9: Results of Three Machine Learning Algorithms Using the Uniform Ran-
dom N Sampling 400K Method on Training Data



232

●●●

●●●

●

●

●
●●●●
●●●●●●●●●●●●

●●●
●●●

●●●●●●●●●

●●●
●●●

●●●●●●●●●

●

●

●
●●●●●●●●●●●●●●●●

●

●

no
nS

kyp
e−

DR
−C

5.0

no
nS

kyp
e−

FP
R−

C5
.0

Sk
yp

e−
DR

−C
5.0

Sk
yp

e−
FP

R−
C5

.0

no
nS

kyp
e−

DR
−A

da
Bo

os
t

no
nS

kyp
e−

FP
R−

Ad
aB

oo
st

Sk
yp

e−
DR

−A
da

Bo
os

t

Sk
yp

e−
FP

R−
Ad

aB
oo

st

no
nS

kyp
e−

DR
−G

P

no
nS

kyp
e−

FP
R−

GP

Sk
yp

e−
DR

−G
P

Sk
yp

e−
FP

R−
GP

0.0

0.2

0.4

0.6

0.8

1.0

Figure A.10: Results of Three Machine Learning Algorithms Using the Uniform Ran-
dom N Sampling 400K Method on Validation Data
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Figure A.11: Results of Three Machine Learning Algorithms Using the Uniform Ran-
dom N Sampling 800K Method on Training Data
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Figure A.12: Results of Three Machine Learning Algorithms Using the Uniform Ran-
dom N Sampling 800K Method on Validation Data
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Figure A.13: Results of Three Machine Learning Algorithms Using the Uniform Ran-
dom N Sampling 1% Method on Training Data
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Figure A.14: Results of Three Machine Learning Algorithms Using the Uniform Ran-
dom N Sampling 1% Method on Validation Data
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Figure A.15: Results of Three Machine Learning Algorithms Using the Uniform Ran-
dom N Sampling 2% Method on Training Data
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Figure A.16: Results of Three Machine Learning Algorithms Using the Uniform Ran-
dom N Sampling 2% Method on Validation Data
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Figure A.17: Results of Three Machine Learning Algorithms Using the Uniform Ran-
dom N Sampling 3% Method on Training Data
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Figure A.18: Results of Three Machine Learning Algorithms Using the Uniform Ran-
dom N Sampling 3% Method on Validation Data
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Figure A.19: Results of Three Machine Learning Algorithms Using the Uniform Ran-
dom N Sampling 4% Method on Training Data
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Figure A.20: Results of Three Machine Learning Algorithms Using the Uniform Ran-
dom N Sampling 4% Method on Validation Data
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Figure A.21: Results of Three Machine Learning Algorithms Using the Uniform Ran-
dom N Sampling 5% Method on Training Data
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Figure A.22: Results of Three Machine Learning Algorithms Using the Uniform Ran-
dom N Sampling 5% Method on Validation Data
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Figure A.23: Results of Three Machine Learning Algorithms Using the Uniform Ran-
dom N Sampling 6% Method on Training Data
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Figure A.24: Results of Three Machine Learning Algorithms Using the Uniform Ran-
dom N Sampling 6% Method on Validation Data
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A.2 Stratified Sampling
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Figure A.25: Results of Three Machine Learning Algorithms Using the Stratified
Sampling 30K Method on Training Data
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Figure A.26: Results of Three Machine Learning Algorithms Using the Stratified
Sampling 30K Method on Validation Data
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Figure A.27: Results of Three Machine Learning Algorithms Using the Stratified
Sampling 60K Method on Training Data
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Figure A.28: Results of Three Machine Learning Algorithms Using the Stratified
Sampling 60K Method on Validation Data
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Figure A.29: Results of Three Machine Learning Algorithms Using the Stratified
Sampling 100K Method on Training Data
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Figure A.30: Results of Three Machine Learning Algorithms Using the Stratified
Sampling 100K Method on Validation Data
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Figure A.31: Results of Three Machine Learning Algorithms Using the Stratified
Sampling 200K Method on Training Data
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Figure A.32: Results of Three Machine Learning Algorithms Using the Stratified
Sampling 200K Method on Validation Data
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Figure A.33: Results of Three Machine Learning Algorithms Using the Stratified
Sampling 400K Method on Training Data
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Figure A.34: Results of Three Machine Learning Algorithms Using the Stratified
Sampling 400K Method on Validation Data
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Figure A.35: Results of Three Machine Learning Algorithms Using the Stratified
Sampling 800K Method on Training Data
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Figure A.36: Results of Three Machine Learning Algorithms Using the Stratified
Sampling 800K Method on Validation Data
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Figure A.37: Results of Three Machine Learning Algorithms Using the Stratified
Sampling 1% Method on Training Data

●●●

●●●●●●●●●
●●●●●●●

●●●

●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●

●

no
nS

kyp
e−

DR
−C

5.0

no
nS

kyp
e−

FP
R−

C5
.0

Sk
yp

e−
DR

−C
5.0

Sk
yp

e−
FP

R−
C5

.0

no
nS

kyp
e−

DR
−A

da
Bo

os
t

no
nS

kyp
e−

FP
R−

Ad
aB

oo
st

Sk
yp

e−
DR

−A
da

Bo
os

t

Sk
yp

e−
FP

R−
Ad

aB
oo

st

no
nS

kyp
e−

DR
−G

P

no
nS

kyp
e−

FP
R−

GP

Sk
yp

e−
DR

−G
P

Sk
yp

e−
FP

R−
GP

0.0

0.2

0.4

0.6

0.8

1.0

Figure A.38: Results of Three Machine Learning Algorithms Using the Stratified
Sampling 1% Method on Validation Data
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Figure A.39: Results of Three Machine Learning Algorithms Using the Stratified
Sampling 2% Method on Training Data
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Figure A.40: Results of Three Machine Learning Algorithms Using the Stratified
Sampling 2% Method on Validation Data
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Figure A.41: Results of Three Machine Learning Algorithms Using the Stratified
Sampling 3% Method on Training Data
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Figure A.42: Results of Three Machine Learning Algorithms Using the Stratified
Sampling 3% Method on Validation Data
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Figure A.43: Results of Three Machine Learning Algorithms Using the Stratified
Sampling 4% Method on Training Data
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Figure A.44: Results of Three Machine Learning Algorithms Using the Stratified
Sampling 4% Method on Validation Data
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Figure A.45: Results of Three Machine Learning Algorithms Using the Stratified
Sampling 5% Method on Training Data
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Figure A.46: Results of Three Machine Learning Algorithms Using the Stratified
Sampling 5% Method on Validation Data
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Figure A.47: Results of Three Machine Learning Algorithms Using the Stratified
Sampling 6% Method on Training Data
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Figure A.48: Results of Three Machine Learning Algorithms Using the Stratified
Sampling 6% Method on Validation Data
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A.3 Continuous Sampling
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Figure A.49: Results of Three Machine Learning Algorithms Using the Continuous
30K Method on Training Data
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Figure A.50: Results of Three Machine Learning Algorithms Using the Continuous
30K Method on Validation Data
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Figure A.51: Results of Three Machine Learning Algorithms Using the Continuous
60K Method on Training Data
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Figure A.52: Results of Three Machine Learning Algorithms Using the Continuous
60K Method on Validation Data
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Figure A.53: Results of Three Machine Learning Algorithms Using the Continuous
100K Method on Training Data
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Figure A.54: Results of Three Machine Learning Algorithms Using the Continuous
100K Method on Validation Data
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Figure A.55: Results of Three Machine Learning Algorithms Using the Continuous
200K Method on Training Data
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Figure A.56: Results of Three Machine Learning Algorithms Using the Continuous
200K Method on Validation Data
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Figure A.57: Results of Three Machine Learning Algorithms Using the Continuous
400K Method on Training Data
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Figure A.58: Results of Three Machine Learning Algorithms Using the Continuous
400K Method on Validation Data
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Figure A.59: Results of Three Machine Learning Algorithms Using the Continuous
800K Method on Training Data
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Figure A.60: Results of Three Machine Learning Algorithms Using the Continuous
800K Method on Validation Data
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Figure A.61: Results of Three Machine Learning Algorithms Using the Continuous
30 Minute Method on Training Data
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Figure A.62: Results of Three Machine Learning Algorithms Using the Continuous
30 Minute method on Validation Data



259

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●

●

●

●

●

●●

no
nS

kyp
e−

DR
−C

5.0

no
nS

kyp
e−

FP
R−

C5
.0

Sk
yp

e−
DR

−C
5.0

Sk
yp

e−
FP

R−
C5

.0

no
nS

kyp
e−

DR
−A

da
Bo

os
t

no
nS

kyp
e−

FP
R−

Ad
aB

oo
st

Sk
yp

e−
DR

−A
da

Bo
os

t

Sk
yp

e−
FP

R−
Ad

aB
oo

st

no
nS

kyp
e−

DR
−G

P

no
nS

kyp
e−

FP
R−

GP

Sk
yp

e−
DR

−G
P

Sk
yp

e−
FP

R−
GP

0.0

0.2

0.4

0.6

0.8

1.0

Figure A.63: Results of Three Machine learning Algorithms Using the Continuous 60
Minutes Method on Training Data
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Figure A.64: Results of Three Machine Learning Algorithms Using the Continuous
60 Minute Method on Validation Data
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Figure A.65: Results of Three Machine Learning Algorithms Using the Continuous
90 Minutes Method on Training Data
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Figure A.66: Results of Three Machine Learning Algorithms Using the Continuous
90 Minute Method on Validation Data



Appendix B

One-way ANOVA Statistical Analysis Tests

A one-way ANOVA statistical analysis test was employed to test the Null hypothesis

that all the means of the DRs and FPRs have an equal mean.

B.1 Choosing the Sampling Method

Table B.1: A One-way ANOVA Statistical Analysis Test for the Mean DR for the
Three ML Algorithms for the Subset Sampling Techniques on the Training Data Set

Source SS df MS F Prob>F
Columns 15.7262 98 0.1605 125.4834 0
Error 6.2036 4851 0.0013
Tota 21.9297 4949
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Table B.2: A One-way ANOVA Statistical Analysis Test for the Mean FPR for the
Three ML Algorithms for the Subset Sampling Techniques on the Training Data Set

Source SS df MS F Prob>F
Columns 5.3618 98 0.0547 39.5126 0
Error 6.7171 4851 0.0014
Tota 12.0790 4949

Table B.3: A One-way ANOVA Statistical Analysis Test for the Mean DR for the
Three ML Algorithms for the Subset Sampling Techniques on the Validation Data
Set

Source SS df MS F Prob>F
Columns 8.2791 98 0.0845 117.6585 0
Error 3.4831 4851 7.1801e-04
Tota 11.7622 4949

Table B.4: A One-way ANOVA Statistical Analysis Test for the Mean FPR for the
Three ML Algorithms for the Subset Sampling Techniques on the Validation Data
Set

Source SS df MS F Prob>F
Columns 4.9024 98 0.0500 63.1761 0
Error 3.8411 4851 7.9182e-04
Tota 8.7435 4949
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Table B.5: A One-way ANOVA Statistical Analysis Test for the Mean DR for the
Three ML Algorithms on the Subset Sampling Training Data Set

Source SS df MS F Prob>F
Columns 0.6439 2 0.3219 236.1756 1.2316e-46
Error 0.2004 147 0.0014
Tota 0.8443 149

Table B.6: A One-way ANOVA Statistical Analysis Test for the Mean FPR for the
Three ML Algorithms on the Subset Sampling Training Data Set

Source SS df MS F Prob>F
textbfColumns 0.1019 2 0.0509 233.4894 2.3364e-46
Error 0.0321 147 2.1819e-04
Tota 0.1340 149

B.2 Subset Sampling Using the Uniform Random Method with a 6

Percent Sampling Rate



264

Table B.7: A One-way ANOVA Statistical Analysis Test for the Mean DR for the
Three ML Algorithms Using the Packet Header-based Feature Set on Training Data
Set

Source SS df MS F Prob>F
Columns 1.5609 2 0.7805 438.5611 1.0889e-62
Error 0.2616 147 0.0018
Tota 1.8225 149

Table B.8: A One-way ANOVA Statistical Analysis Test for the Mean FPR for the
Three ML Algorithms Using the Packet Header-based Feature Set on Training Data
Set

Source SS df MS F Prob>F
textbfColumns 0.0281 2 0.0141 316.7734 5.0874e-54
Error 0.0065 147 4.4363e-05
Tota 0.0346 149

B.3 Robustness of the Classifiers

B.3.1 Robustness of the Three ML Algorithms Using the Packet

Header-based Feature Set
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Table B.9: A One-way ANOVA Statistical Analysis Test for the Mean DR for the
three ML Algorithms Using the Flow-based Feature Set on Training Data Set

Source SS df MS F Prob>F
Columns 0.6150 2 0.3075 209.2938 9.7519e-44
Error 0.2160 147 0.0015
Tota 0.8310 149

Table B.10: A One-way ANOVA Statistical Analysis Test for the Mean FPR for the
Three ML Algorithms Using the Flow-based Feature Set on Training Data set

Source SS df MS F Prob>F
textbfColumns 0.1433 2 0.0717 182.2266 1.5870e-40
Error 0.0578 147 3.9333e-04
Tota 0.2012 149

B.3.2 Robustness of the Three ML Algorithms Using the Flow-based

Feature Set
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Table B.11: A One-way ANOVA Statistical Analysis Test for the Mean DR for the
Three ML Algorithms Using the Flow-based Feature Set on Training Data Set for
Skype Classification

Source SS df MS F Prob>F
Columns 1.7421 2 0.8710 422.4915 1.1344e-61
Error 0.3031 147 0.0021
Tota 2.0451 149

Table B.12: A One-way ANOVA Statistical Analysis Test for the Mean FPR for the
Three ML Algorithms Using the Flow-based Feature Set on Training Data Set for
Skype Classification

Source SS df MS F Prob>F
textbfColumns 0.2781 2 0.1391 123.0332 4.0233e-32
Error 0.1662 147 0.0011
Tota 0.4443 149

B.3.3 Multi-Classes of the Three ML Algorithms Using the Flow-based

Feature Set

Table B.13: A One-way ANOVA Statistical Analysis Test for the Mean DR for the
Three ML Algorithms Using the Flow-based Feature Set on Training Data Set for
Gtalk Classification

Source SS df MS F Prob>F
Columns 28.6823 2 14.3411 2.3786e+04 2.5960e-185
Error 0.0886 147 6.0293e-04
Tota 28.7709 149
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Table B.14: A One-way ANOVA Statistical Analysis Test for the Mean FPR for the
Three ML Algorithms Using the Flow-based Feature Set on Training Data Set for
Gtalk Classification

Source SS df MS F Prob>F
textbfColumns 0.0521 2 0.0260 323.0056 1.5878e-54
Error 0.0118 147 8.0593e-05
Tota 0.0639 149

Table B.15: A One-way ANOVA Statistical Analysis Test for the Mean DR for the
Three ML Algorithms Using the Flow-based Feature Set on Training Data Set for
Primus Classification

Source SS df MS F Prob>F
Columns 28.7183 2 14.3591 1.4973e+04 1.3539e-170
Error 0.1410 147 9.5903e-04
Tota 28.8593 149

Table B.16: A One-way ANOVA Statistical Analysis Test for the Mean FPR for the
Three ML Algorithms Using the Flow-based Feature Set on Training Data Set for
Primus Classification

Source SS df MS F Prob>F
textbfColumns 0.0165 2 0.0083 36.4825 1.3641e-13
Error 0.0333 147 2.2669e-04
Tota 0.0499 149



Appendix C

FPR for the Best Solutions for Each Classifier

C.1 FPR for Packet Header Feature Set for Skype Detection

C.2 FPR for Flow Feature Set for Skype Detection

Table C.1: Applications Wrongly Classified as Skype by the C5.0-based Signatures
on the Packet Header Feature Set on the Univ2007 Test Trace (FPR=0.03%)

Applications Value
FTP 0.0000
SSH 0.0000
MAIL 0.0000
DNS 0.0000
HTTP 0.0000
HTTPS 0.0000
MSN 0.0000
OTHER 0.0003
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Table C.2: Applications Wrongly Classified as Skype by the C5.0-based Signatures
on the Packet Header Feature Set on the Univ2010 Test Trace (FPR=2.4%)

Applications Value
FTP 0.0000
SSH 0.0004
MAIL 0.0001
DNS 0.0001
HTTP 0.0032
HTTPS 0.0002
MSN 0.0001
P2P 0.0002
OTHER 0.0196

Table C.3: Applications Wrongly Classified as Skype by the GP-based Signatures on
the Packet Header Feature Set on the Univ2007 Test Trace (FPR=2.5%)

Applications Value
FTP 0.0000
SSH 0.0001
MAIL 0.0003
DNS 0.0012
HTTP 0.0032
HTTPS 0.0007
MSN 0.0006
OTHER 0.0193

Table C.4: Applications Wrongly Classified as Skype by the GP-based Signatures on
the Packet Header Feature Set on the Univ2010 Test Trace (FPR=65.1%)

Applications Value
FTP 0.0001
SSH 0.0041
MAIL 0.0195
DNS 0.0102
HTTP 0.2007
HTTPS 0.0181
MSN 0.0006
P2P 0.0024
OTHER 0.2663
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Table C.5: Applications Wrongly Classified as Skype by the AdaBoost-based Signa-
tures on the Packet Header Feature Set on the Univ2007 Test Trace (FPR=0.11%)

Applications Value
FTP 0.0000
SSH 0.0000
MAIL 0.0000
DNS 0.0000
HTTP 0.0002
HTTPS 0.0001
MSN 0.0000
OTHER 0.0007

Table C.6: Applications Wrongly Classified as Skype by the AdaBoost-based Signa-
tures on the Packet Header Feature set on the Univ2010 Test Trace (FPR=0.34%)

Applications Value
FTP 0.0000
SSH 0.0001
MAIL 0.0003
DNS 0.0001
HTTP 0.0008
HTTPS 0.0001
MSN 0.0001
P2P 0.0000
OTHER 0.0018

Table C.7: Applications Wrongly Classified as Skype by the C5.0-based Signatures
on the Flow Feature Set on the Univ2007 Test Trace (FPR=0.7%)

Applications Value
FTP 0.0000
SSH 0.0000
MAIL 0.0000
DNS 0.0006
HTTP 0.0000
HTTPS 0.0000
MSN 0.0000
OTHER 0.0066
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Table C.8: Applications Wrongly Classified as Skype by the C5.0-based Signatures
on the Flow Feature Set on the Univ2010 Test Trace (FPR=6.1%)

Applications Value
FTP 0.0000
SSH 0.0000
MAIL 0.0002
DNS 0.0109
HTTP 0.0042
HTTPS 0.0008
MSN 0.0000
P2P 0.0032
OTHER 0.0340

Table C.9: Applications Wrongly Classified as Skype by the GP-based Signatures on
the Flow Feature Set on the Univ2007 Test Trace (FPR=9.9%)

Applications Value
FTP 0.000
SSH 0.000
MAIL 0.000
DNS 0.013
HTTP 0.001
HTTPS 0.000
MSN 0.000
OTHER 0.085

Table C.10: Applications Wrongly Classified as Skype by the GP-based Signatures
on the Flow Feature Set on the Univ2010 Test Trace (FPR=9.3%)

Applications Value
FTP 0.000
SSH 0.000
MAIL 0.000
DNS 0.028
HTTP 0.000
HTTPS 0.000
MSN 0.000
P2P 0.006
OTHER 0.059
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Table C.11: Applications Wrongly Classified as Skype by the AdaBoost-based Signa-
tures on the Flow Feature Set on the Univ2007 Test Trace (FPR=4.3%)

Applications Value
FTP 0.0000
SSH 0.0000
MAIL 0.0000
DNS 0.0009
HTTP 0.0001
HTTPS 0.0000
MSN 0.0000
OTHER 0.0423

Table C.12: Applications Wrongly Classified as Skype by the AdaBoost-based Signa-
tures on the Flow Feature Set on the Univ2010 Test Trace (FPR=7.9%)

Applications Value
FTP 0.0000
SSH 0.0000
MAIL 0.0000
DNS 0.0236
HTTP 0.0003
HTTPS 0.0000
MSN 0.0000
P2P 0.0053
OTHER 0.0499



Appendix D

Range for the Robust Signatures

D.1 C5.0 Signatures

Figure D.1: Range for the min fpktl Flow Feature for the C5.0 Robust Signatures
Based on the Training Data Set
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Figure D.2: Range for the mean fpktl flow Feature for the C5.0 Robust Signatures
Based on the Training Data Set
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Figure D.3: Range for the max fpktl Flow Feature for the C5.0 Robust Signatures
Based on the Training Data Set
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Figure D.4: Range for the std fpktl Flow Feature for the C5.0 Robust Signatures
Based on the Training Data Set
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Figure D.5: Range for the min bpktl Flow Feature for the C5.0 Robust Signatures
Based on the Training Data Set
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Figure D.6: Range for the mean bpktl Flow Feature for the C5.0 Robust Signatures
Based on the Training Data Set
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Figure D.7: Range for the max bpktl Flow Feature for the C5.0 Robust Signatures
Based on the Training Data Set
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Figure D.8: Range for the std bpktl Flow Feature for the C5.0 Robust Signatures
Based on the Training Data Set
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Figure D.9: Range for the min fiat Flow Feature for the C5.0 Robust Signatures
Based on the Training Data Set
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Figure D.10: Range for the mean fiat Flow Feature for the C5.0 Robust Signatures
Based on the Training Data Set
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Figure D.11: Range for the max fiat Flow Feature for the C5.0 Robust Signatures
Based on the Training Data Set
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Figure D.12: Range for the std fiat Flow Feature for the C5.0 Robust Signatures
Based on the Training Data Set
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Figure D.13: Range for the min biat Flow Feature for the C5.0 Robust Signatures
Based on the Training Data Set
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Figure D.14: Range for the mean biat Flow Feature for the C5.0 Robust Signatures
Based on the Training Data Set
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Figure D.15: Range for the max biat Flow Feature for the C5.0 Robust Signatures
Based on the Training Data Set
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Figure D.16: Range for the std biat Flow Feature for the C5.0 Robust Signatures
Based on the Training Data Set
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Figure D.17: Range for the Duration Flow Feature for the C5.0 Robust Signatures
Based on the Training Data Set
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Figure D.18: Range for the Total fpackets Flow Feature for the C5.0 Robust Signa-
tures Based on the Training Data Set
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Figure D.19: Range for the Total fbytes Flow Feature for the C5.0 Robust Signatures
Based on the Training Data Set
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Figure D.20: Range for the Total bpackets Flow Feature for the C5.0 Robust Signa-
tures Based on the Training Data Set
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Figure D.21: Range for the Total bbytes Flow Feature for the C5.0 Robust Signatures
Based on the Training Data Set


