

MODELING CLINICAL PATHWAYS AS BUSINESS PROCESS MODELS
USING BUSINESS PROCESS MODELING NOTATION

by

Nima Hashemian

Submitted in partial fulfilment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

March 2012

© Copyright by Nima Hashemian, 2012

 ii

DALHOUSIE UNIVERSITY

FACULTY OF COMPUTER SCIENCE

The undersigned hereby certify that they have read and recommend to the Faculty of

Graduate Studies for acceptance a thesis entitled “MODELING CLINICAL

PATHWAYS AS BUSINESS PROCESS MODELS USING BUSINESS PROCESS

MODELING NOTATION” by Nima Hashemian in partial fulfilment of the requirements

for the degree of Master of Computer Science.

 Dated: March 5, 2012

Supervisor: _________________________________

Readers: _________________________________

 iii

DALHOUSIE UNIVERSITY

 DATE: March 5, 2012

AUTHOR: Nima Hashemian

TITLE: Modeling Clinical Pathways as Business Process Models using Business
Process Modeling Notation

DEPARTMENT OR SCHOOL: Faculty of Computer Science

DEGREE: M.C.Sc CONVOCATION: May YEAR: 2012

Permission is herewith granted to Dalhousie University to circulate and to have copied
for non-commercial purposes, at its discretion, the above title upon the request of
individuals or institutions. I understand that my thesis will be electronically available to
the public.

The author reserves other publication rights, and neither the thesis nor extensive extracts
from it may be printed or otherwise reproduced without the author’s written permission.

The author attests that permission has been obtained for the use of any copyrighted
material appearing in the thesis (other than the brief excerpts requiring only proper
acknowledgement in scholarly writing), and that all such use is clearly acknowledged.

 Signature of Author

 iv

TABLE OF CONTENTS

LIST OF TABLES .. vii
LIST OF FIGURES ... viii
ABSTRACT…...xi
LIST OF ABBREVIATIONS USED ... xii
ACKNOWLEDGEMENTS .. xiii
CHAPTER 1 INTRODUCTION .. 1

1.1 Research Motivation and Problem Statement ... 1

1.2 Research Objective and Goals .. 3
1.3 Solution Approach .. 6

CHAPTER 2 WORKFLOWS AND WORKFLOW MODELING 10
2.1 Workflow .. 10

2.1.1 Workflow Purposes, Benefits, and Capabilities 13
2.1.2 Workflow Elements .. 13

2.1.3 Workflow Execution and Workflow Management System 17
2.1.4 Workflow Management System Architecture 19

2.1.5 Workflow Modeling Approaches .. 22
2.1.6 Workflow Formalisms .. 24

2.2 Business Process Modeling ... 27
2.2.1 Event-Driver Process Chain (EPC) ... 28

2.2.2 Petri-Nets .. 30
2.2.3 Unified Modeling Language (UML) ... 32

2.2.4 Business Process Execution Language (BPEL) 33
2.3 Business Process Modeling Notation (BPMN) ... 34

2.4 Comparing BPMN with other Languages ... 42
CHAPTER 3 COMPUTERIZING CP AND CPG .. 46

3.1 PROforma ... 47
3.2 Asbru ... 48

3.3 Gaston ... 50
3.4 SAGE .. 51

3.5 Semantic-based CP Workflow and Variance Management System 52
3.6 Comparison of CPG Formalisms .. 53

 v

CHAPTER 4 ONTOLOGIES IN USE: CP AND BPMN ONTOLOGIES 57
4.1 Ontology ... 57

4.2 The CP Ontology .. 60
4.3 The BPMN Ontology .. 66

4.4 An Introduction to Ontology Mapping ... 72
4.5 Mapping Techniques ... 76

4.5.1 Terminological Techniques ... 76
4.5.2 Structural Techniques ... 77

4.5.3 Extensional Techniques .. 78
4.5.4 Semantic Techniques .. 78

4.6 Tools and Frameworks .. 79
4.6.1 PROMPT ... 79

4.6.2 GLUE .. 83
4.6.3 MAFRA .. 84

CHAPTER 5 ONTOLOGY MAPPING ... 87
5.1 CP-BPMN Ontology Mapping ... 89

5.2 CP-BPMN Mapping Expressions ... 92
5.2.1 Step 2: Mapping Discovery ... 93

5.2.2 Step 3: Documenting the Mappings .. 99
5.2.2.1 Class-Class Mapping ... 99

5.2.2.2 Property-Property Mapping ... 104
5.2.2.3 Class-Property Mapping .. 109

5.2.2.4 Property-Instance Mapping ... 111
5.2.3 Step 4: Consistency Checking and the Output 116

5.3 Extended BPMN Ontology ... 117
CHAPTER 6 MODELING AND EXECUTION OF CP IN LOMBARDI 121

6.1 Introduction to Lombardi .. 122
6.2 Lombardi Ontology ... 124

6.3 BPMN-Lombardi Ontology Mapping ... 128
6.4 Modeling CP in Lombardi .. 133

CHAPTER 7 EVALUATION ... 140
7.1 The Encoded CP in the CP Ontology ... 141

7.2 Encoding CP in BPMN and Lombardi Ontologies ... 142

 vi

CHAPTER 8 CONCLUSION ... 147
8.1 Enhancing the CP Ontology .. 149

8.2 Limitations and Future Work .. 150
BIBLIOGRAPHY ... 152

 vii

LIST OF TABLES

Table 2.1 Expressiveness of Workflow patterns in Petri nets [90] 31

Table 2.2 Modeling constructs of different business process modeling
 languages [89] ... 44

Table 3.1 Comparing computer guideline models [10] …………………………...…54

Table 3.2 Modeling constructs or primitives [10] ... 55

Table 4.1 The mapping between the workflow constructs in CP ontology and
 BPMN ontology .. 71

Table 5.1 The mapping between the classes of the CP and BPMN ontologies 96

Table 5.2 The mapping between the properties of the CP and BPMN ontologies 97

Table 6.1 The mappings between the classes of BPMN and Lombardi ontologies .. 130

 viii

LIST OF FIGURES

Figure 1.1 Thesis structure .. 9

Figure 2.1 Workflow glossary [104] ... 12

Figure 2.2 The standard workflow elements [106] ... 14

Figure 2.3 A business workflow with the BPMN elements [57] .. 15

Figure 2.4 A fragment of a scientific workflow [120] .. 15

Figure 2.5 Comparison of scientific workflows and business workflows at different
 levels [120] ... 16

Figure 2.6 A clinical workflow with the standard workflow elements [106] 17

Figure 2.7 The main components of a workflow management system [111] 20

Figure 2.8 Different frameworks for modeling a workflow [113] .. 23

Figure 2.9 Transformation rule for a decision and activity state to Petri-net [115] 25

Figure 2.10 EPC diagram [116] .. 30

Figure 2.11 The basic elements of UML activity diagram [118] .. 33

Figure 2.12 An example of a private business process ... 35

Figure 2.13 An example of an abstract business process .. 36

Figure 2.14 An example of a collaboration business process ... 36

Figure 2.15 Flow objects [24] ... 37

Figure 2.16 The complete list of BPMN event types [24] .. 37

Figure 2.17 Activities [24] .. 38

Figure 2.18 The complete list of BPMN gateway types [24] ... 39

Figure 2.19 Connecting objects [31] ... 39

Figure 2.20 A pool with two lanes [31] .. 40

Figure 2.21 Artifacts [31] .. 40

Figure 2.22 Attaching data object to the sequence flow ... 41

 ix

Figure 2.23 Association lines between data objects and a task ... 41

Figure 4.1 The CP ontology [56] .. 61

Figure 4.2 CP ontology - The subclasses of the Guideline_Step class [56] 64

Figure 4.3 Physic patient evaluation workflow [98] ... 65

Figure 4.4 Ontology mapping steps [67] .. 72

Figure 4.5 The snapshot of the ontology merging process in Prompt [77] 81

Figure 4.6 The flow of Prompt algorithm [77] ... 81

Figure 4.7 Concept and Attribute Bridge in MAFRA [79] ... 86

Figure 5.1 The overall ontology-mapping framework .. 88

Figure 5.2 The actual class-class mapping for the Admission_Step to the instance of
 the User_Task class .. 101

Figure 5.3 The actual class-class mapping for the provider and system decision steps
 to the event and data based exclusive gateways ... 102

Figure 5.4 The Event_Based_Gateway construct ... 103

Figure 5.5 The actual property-property mapping for the author property to the
 has_business_process_diagram_author property .. 105

Figure 5.6 The actual property-property mapping for the properties of the
 Date_Time class of the CP ontology .. 106

Figure 5.7 The actual property-property mapping for the domain and range of the
 condition_to_go_forward ... 108

Figure 5.8 Mapping the next_step property to the Sequence_Flow class 109

Figure 5.9 The actual property-class mapping for the next_step property to the
 Sequence_Flow class .. 110

Figure 5.10 Mapping the branching_steps property to the Parallel_Gateway class 112

Figure 5.11 The actual property-instance mapping for the Branching_Step to the
 Parallel_Gateway class ... 113

Figure 5.12 The actual property-instance mapping for the
 acceptable_duration_of_results to the instances of the User_Task and the
 Time_Date_Expression class of the BPMN ontology 115

 x

Figure 5.13 Copying the subclasses of the Action_Steps to the subclasses of the
 User_Task class (only some of the subclasses are shown here) 118

Figure 5.14 The actual class-class mapping for the subclasses of the Action_Steps to
 the subclasses of the User_Task class .. 119

Figure 6.1 The architecture of IBM WebSphere Lombardi [7] .. 122

Figure 6.2 The constructs of Lombardi [7] ... 124

Figure 6.3 Lombardi ontology .. 127

Figure 6.4 Creating separate lanes for each of the subclasses of the User_Task class 132

Figure 6.5 The actual Class-Class mapping for the Admission_Step class to the
 instance of the Human_Service class ... 132

Figure 6.6 PMRT CP [56] ... 133

Figure 6.7 PMRT CP in Lombardi .. 134

Figure 6.8 Inclusion Criteria interface, designed by a coach component 137

Figure 6.9 Rule service component ... 138

Figure 6.10 Decision options in a gateway ... 138

Figure 6.11 Attaching a message or timer intermediate event to an activity 139

Figure 7.1 The instantiations of the CP ontology ... 142

Figure 7.2 The initial part of PMRT encoding in the BPMN ontology 143

Figure 7.3 The initial part of AOM encoding in the Lombardi ontology 145

Figure 8.1 Class hierarchy of the new constructs for the domain ontology 150

 xi

ABSTRACT

We take a healthcare knowledge management approach to represent the Clinical Pathway
(CP) as workflows. We have developed a semantic representation of CP in terms of a CP
ontology that outlines the different clinical processes, their properties, constraints and
relationships, and is able to computerize a range of CP. To model business workflows we
use the graphical Business Process Modeling Notation (BPMN) modeling language that
generates a BPMN ontology. To represent a CP as a BPMN workflow, we have
developed a semantic interoperability (mapping ontology) framework between the CP
ontology and the BPMN ontology. The mapping ontology allows the alignment of
relations between two ontologies and ensures that a clinical process defined in the CP
ontology is mapped to a standard BPMN workflow element. We execute our BPMN-
based CP in the Lombardi workflow engine, whereby users can view the execution of the
CP and make the necessary adjustments.

 xii

LIST OF ABBREVIATIONS USED

BPD Business Process Diagram
BPEL Business Process Execution Language
BPEL4WS Business Process Execution Language for Web Service
BPML Business Process Modeling Language
BPMN Business Process Modeling Notation
BPMNO Business Processes Modeling Notation Ontology
CP Clinical Pathway
CPG Clinical Practice Guidelines
CPO Clinical Pathway Ontology
DL Description Logic
EBM Evidence Based Medicine
EPC Event-driven Process Chain
FOL First Order Logic
GEL Guideline Expression Language
HTML HyperText Markup Language
IRIS Integrated Rule Inference System
LP Logic Programming
MAFRA Mapping FRAmework
NDF-RT National Drug File-Reference Terminology
NLP Natural Language Processing
OKBC Open Knowledge Base Connectivity
OMG Object Management Group
OWL Web Ontology Language
PSM Problem Solving Method
RDF Resource Description Format
SAGE Standards-Based Active Guideline Environment
SBO Semantic Bridge Ontology
SWRL Semantic Web Rule Language
TNM Task-Network Models
TURTLE Terse RDF Triple Language
UML Unified Modeling Language
UML AD Unified Modeling Language Activity Diagram
UNA Unique Name Assumption
VMR Virtual Medical Record
URI Uniform Resource Identifier
VMR Virtual Medical Record
W3C World Wide Web Consortium
WfMS Workflow Management System
WSDL Web Service Description Language
WSML Web Service Management Layer
XML Extensible Markup Language
YAWL Yet Another Workflow Language

 xiii

ACKNOWLEDGEMENTS

First and foremost I would like to express my gratitude to Dr. Raza Abidi, for his

supervision, encouragement, support and guidance from the initial to the final stages of

this research. I would not have accomplished the objectives of this thesis without his

supervision.

I am also thankful to Dr. Michael Shepherd and Dr. Grace Paterson for being readers in

the examining committee, and providing their valuable feedback.

I am grateful to Dalhousie University, and the faculty of Computer Science for providing

excellent facilities and a supportive environment.

Last but not least, I am tremendously grateful to my family and friends who have

supported and encouraged me in different ways during this journey.

 Nima
March 2012

 1

CHAPTER 1 INTRODUCTION

Clinical Pathways (CP) can be created from Clinical Practice Guidelines (CPG). Clinical

pathways and clinical practice guidelines provide standardized and structured health care

to physicians and patients. They improve the quality of health care and provide

recommendations for the treatment of diseases to physicians [1].

According to the journal of nursing management [2], “A clinical pathway is a

method for the patient-care management of a well-defined group of patients during a

well-defined period of time. A clinical pathway explicitly states the goals and key

elements of care based on evidence-based-medicine guidelines, best practice and patient

expectations by facilitating the communication, coordinating roles and sequencing the

activities of the multidisciplinary care team, patients and their relatives; by documenting,

monitoring and evaluating variances; and by providing the necessary resources and

outcomes. The aim of a clinical pathway is to improve the quality of care, reduce risks,

increase patient satisfaction and increase the efficiency in the use of resources”.

Clinical practice guidelines are broadly defined as: “systematically developed

statements to assist practitioner and patient decisions about appropriate health care for

specific clinical circumstances” [3].

1.1 RESEARCH MOTIVATION AND PROBLEM STATEMENT

Clinical pathways can be computerized and executed by providing CP ontology,

which can be done by a domain expert. A logic-based execution engine can execute an

instantiation of CP from CP ontology in order to provide specific recommendations for a

 2

patient [92]. For instance, the SAGE execution engine, processes the guidelines encoded

using the SAGE guideline model. The execution engine interprets the actions and

decisions in a guideline, executes workflows based on the decision logic, and interacts

with clinical information systems [13].

However, the execution of a computerized CP could be challenging, model

specific, non-formal, non-standard (reusability, interoperability, analysis) and not

connected to resources.

A possible solution approach is to represent CP as the workflows modeling

languages, since CP contain workflows; CP describe the medical domain knowledge (i.e.

diagnosis and treatment of diseases) and functional knowledge, which is represented as a

combination of tasks, plans, decisions, involved users and resources—the combination of

these elements provides a workflow structure [1]. CP encapsulates the workflow about

how to conduct a specific healthcare procedure for a specific disease/outcome in a

specific healthcare setting.

Representing CP as workflows and applying business process modeling principles

in the design of CP will ensure data interoperability, resource management and task

prioritization. This will yield executable CP that clearly articulate (a) roles and

responsibilities of care providers; (b) decision points and care options; (c) well-identified

clinical/business rules; (d) handling of operational constraints; (e) task scheduling; and (f)

temporal constraints [1].

However, there are some barriers to represent CP as a workflow modeling

language. Related barriers are as follows:

 3

1. Standard formalisms: The use of workflow modeling concepts in the design and

optimization of CP is not yet well established, and as such there are no standard

formalisms for the representation of CP in general, and CP as workflow models in

particular.

2. Semantic interoperability: Workflow modeling notation is not based on

healthcare processes, therefore no semantic interoperability exists between the

workflow modeling notation and the CP ontology.

3. Execution Engine: BPMN modeling language is chosen for the purpose of this

thesis. BPMN is a graphical language, and it is easy to understand by both domain

experts and business process modelers [94]. However, no execution engine exists

for BPMN.

4. Expressivity of a tool as an engine for BPMN: By providing a tool as an

execution engine for our BPMN-based CP (developing an execution engine for

BPMN is out of the scope of this study), we may loose the expressivity of BPMN

specification, since there is no tool that can provide the same level of workflow

expressiveness and abstraction as the BPMN specification. BPMN is a much

richer workflow representation formalism.

1.2 RESEARCH OBJECTIVE AND GOALS

There is a case to explore the potential of business process modeling principles and

workflow modeling formalisms—such as Business Process Modeling Notation (BPMN),

Business Process Execution Language (BPEL), Unified Modeling Language (UML),

 4

etc.—to design standardized CP that can be executed through workflow execution

engines.

Our research objective is to model a number of existing CP to a BPMN based

workflow-modeling language—The semantic description of the CP tasks ensures that the

transformation of a CP to a BPMN workflow maintains the clinical pragmatics of the CP.

The graphical notation of the CP enables rapid user feedback and adjustments to optimize

performance metrics. We pursue a number of goals to meet our objective, as follows:

1. Development of a semantic interoperability framework: We have the semantic

representation of CP in terms of a clinically oriented CP ontology that outlines the

different clinical processes, their properties, constraints and relationships, and is

able to computerize a range of CP. To model CP as business workflows we use a

workflow-oriented BPMN ontology that contains a semantic description of

BPMN constructs.

Our main goal is to develop a semantic interoperability (or ontology mapping)

between the CP ontology and the BPMN ontology, since BPMN notation is not

based on healthcare processes. The ontology mapping allows the alignment of

semantic relations between the clinical and workflow ontologies and thus ensures

that a clinical process defined in the CP ontology is mapped to a standard BPMN

workflow element.

There is much literature that provides semantic interoperability at the data level,

for instance, the semantic interoperability between the health informatics

standards, such as HL7 (for messaging), openEHR (patient records) and

SNOMED (standard terminology), can be provided to prompt interoperability at

 5

the data level [124]. However, our objective is not to unify ontologies or data, the

main objective is to exploit the computerized CP modeled in terms of the CP

ontology, to develop a workflow model of the CP.

By developing this mapping ontology, we will establish semantic mappings

between the elements of our BPMN and CP ontologies. We will get our BPMN-

based CP model by encoding different CP in our BPMN ontology by help of this

mapping ontology.

2. Execution of CP in Lombardi workflow engine: We need to execute our

BPMN-based CP model in a workflow execution engine. Lombardi, a tool from

IBM offers a workflow execution environment, which is very useful for analyzing

and executing our BPMN-based CP model. It enables users to view the execution

of CP and make necessary adjustments to optimize it.

3. Richer specification for Lombardi: Lombardi is a tool and not a workflow

language. We cannot model and execute our CP in it directly, since it is not based

on a workflow language. It only provides a few constructs for modeling and

executing business process. In addition, it does not provide the same level of

workflow expressiveness and abstraction as our BPMN ontology.

The objective is to model and execute our BPMN-based CP model in Lombardi,

and to provide a richer specification for its constructs, since it is not based on the

BPMN sepecification.

4. Enhancing the CP ontology: We propose some extensions to enhance our CP

ontology in order to capture more complex workflow structure of the clinical

 6

pathways. We propose these extensions by studying the constructs of the BPMN

ontology.

1.3 SOLUTION APPROACH

Our solution approach is to define a mapping expression language that allows the

alignment of relations between two ontologies—the relations are represented in terms of

mapping expressions. The mapping expressions, therefore allow the mapping of a CP to a

business workflow represented using the BPMN modeling language. The mapping

expressions are represented in a mapping ontology—the mapping ontology basically

establishes semantic mappings between the CP and BPMN ontologies, such that the

concepts in the mapping expressions will have their domain and ranges defined as

concepts in the CP and BPMN ontologies.

Lombardi is a tool and not a workflow language. It is not based on the BPMN

specification; it only provides a few constructs for modeling and executing business

process. In order to model and execute our BPMN-based CP model in Lombardi, and to

provide richer specification for its constructus in terms of BPMN specification: (a) we

create an ontology for Lombardi to formalize the structure of the Lombardi constructs;

(b) we establish a mapping ontology between the BPMN and Lombardi ontologies. The

mapping ontology establishes semantic mappings between the elements of these two

ontologies, and it can represent the Lombardi constructs in terms of our BPMN ontology.

The mapping expressions in the mapping ontology enable us to model our BPMN-based

CP model by the Lombardi constructs. After modeling our BPMN-based CP model in

Lombardi, we can execute our model and it results to the CP execution.

 7

The result is that we have a semantic interoperability framework whereby clinical

processes/pathways can be conveniently mapped to business process notations thus

enabling CP to be executed and simulated for adjusting various cost functions. It is

achieved by providing a mapping ontology that establishes a high-level semantic

mapping between our ontologies. Our mapping framework allows healthcare

professionals to model a CP using modeling constructs that they are familiar with, and

then we transform their CP model to a business process model. The use of ontologies, at

both representation and mapping levels, allow for the semantic description of concepts

and their relations, with provisions for semantic classification of healthcare concepts to

ensure the right level of conceptual granularity in the representation scheme.

This thesis is organized into eight chapters, and its structure is represented as a

business process model in Figure 1.1.

Chapter 2-Workflows and Workflow Modeling: We review a number of

modeling languages and notations for representing business processes and workflows. In

addition, we gather state-of-the-art work on BPMN. We provide a high-level overview of

BPMN, which is a modeling language for modeling business process.

Chapter 3-Computerizing Clinical Pathways and Clinical Practice Guidelines:

We review a number of approaches and frameworks for computerizing clinical pathways

and clinical practice guidelines.

Chapter 4-Ontologies in use: CP and BPMN Ontologies: In this chapter we

provide an introduction to ontology, and then we discuss our CP and BPMN ontologies.

We provide a literature review on ontology mapping techniques as well.

 8

Chapter 5-Ontology Mapping: In this chapter, we discuss our ontology-mapping

framework, and we provide examples for different types of our mapping expressions.

Chapter 6-IBM WebSphere Lombardi: In this chapter, first we provide an

introduction to IBM WebSphere Lombardi v7.1 [7], which is a platform for modeling

business process. We explain the created ontology for Lombardi, and then we discuss our

ontology mapping between the BPMN and Lombardi ontologies. In addition, we explain

how to model and execute clinical pathways in the Lombardi environment as well.

Chapter 7-Evaluation In this chapter, we evaluate our proposed semantic

interoperability framework by encoding six different clinical pathways in our ontologies.

Chapter 8-Conclusion This chapter summarizes the findings and purposes future

research. In particular, we discuss the implications of this thesis for a process modeling of

clinical pathways in BPMN and their execution in IBM WebSphere Lombardi. We also

propose to enhance our CP domain ontology and to make it more expressive by adding

constructs from the BPMN ontology.

 9

Fi
gu

re
 1

.1

St
ru

ct
ur

e
of

 th
es

is

 10

CHAPTER 2 WORKFLOWS AND WORKFLOW MODELING

In this chapter, we provide an introduction to workflow, its purposes and benefits and the

main components of workflows. Clinical workflows are included in CP and CPG; they

model step-by-step procedures for medical treatment and decision-making. Clinical

workflows demonstrate the ordering, control, and data flow among the tasks in a CP [1].

We also provide an overview of modeling languages for representing business processes

and workflows.

2.1 WORKFLOW

The term workflow can be best understood as “any work process that must go

through certain steps and be handled by more than one person on its way to completion.

Workflow automation relieves people of some of these tasks. Inherent in workflow are

concepts of teamwork, request and approval, routing and tracking of documents, filling

out forms and doing things either in series or parallel” [93].

According to [102], a workflow definition describes a process that includes a

sequence of tasks, activities and steps. It describes when and what activity has to be done

and by whom. Four types of ordering relationships exist between activities, which are

sequence, parallelism, choice and iteration [103].

Workflows have two important dimensions [103]:

 The process-logic dimension: It specifies the order of that tasks that have to be

done in a period of time.

 11

 The resource dimension: It concerns the organizational structure to specify who is

responsible for the assigned task.

There are two types of activities [103] in a workflow process, which are the

compound activity and the atomic activity. The compound activity contains a set of

ordered activities that are combined together, and the atomic activity does not contain any

other activities within itself. The compound activities can be used in other workflow

definition.

The Workflow model (workflow specification) [107] provides the definition of a

workflow, which a set of concepts to describe processes, tasks, the required roles to

perform the tasks and the relations between them. It provides constructs to model

decisions, branching, loop, synchronization, etc.

A workflow model can provide excellent business process models by providing

workflow patterns. According to [5] the workflow patterns can be grouped into the four

perspectives:

 The control flow perspective describes activities, and different constructors

describe the execution ordering that allows the flow of execution control, e.g.

sequence.

 The data perspective layers processing and business data on the control flow

perspective.

 The resource perspective describes the devices and human roles that are

responsible for executing activities in a workflow.

 The operation perspective describes the actions that are performed by activities.

 12

There are different concepts and terminologies for a workflow. The relationships

between these terminologies are illustrated in Figure 2.1 [104].

Figure 2.1 Workflow glossary [104]

 13

2.1.1 Workflow Purposes, Benefits, and Capabilities

According to [105], a workflow has the following purposes:

 To manage a movement of a task from start to finish.

 To direct a task to the right person, by providing the right instructions.

 To ensure individuals accomplish the assigned tasks in the assigned time.

 To monitor and control the status of each task and process.

According to IBM workflow guide [105], a workflow provides the following

benefits and capabilities:

 A task can be directed manually or automatically into a workflow process.

 A user is able to make a decision for an assigned task.

 A time limit can be set for completing a task.

 An instance of a process can be terminated in the workflow.

 A workflow process may contain multiple sub processes.

2.1.2 Workflow Elements

The workflow has some standard elements. We provide a snapshot of these

elements in Figure 2.2 [106].

 14

Figure 2.2 The standard workflow elements [106]

 Process step: It is a general or a manual step in a process.

 Decision point: Branching of a process, it controls the divergence and

convergence of a flow.

 Document: A task that uses a paper document.

 Automatic process: The step that does not require a direct human interaction.

 Manual input task: A manual input or interaction with the system.

 Terminator/Start: The start or end of a process.

 Dynamic connector: It connects two steps.

 Parallel mode: It is a mode that two steps are simultaneous but independent.

There are different types of workflows:

 Business workflows [119,120] demonstrate how organizations achieve their

objectives and goals by providing of a set of activities. Business workflows are

control flow oriented, they form control flow to describe the flow of the execution

from one task another task. Figure 2.3 [57] illustrates a business workflow, with

the BPMN elements.

 15

Figure 2.3 A business workflow with the BPMN elements [57]

 Scientific workflows [119,120] demonstrate the specification of scientific

processes. They automate dataset selection, computation and visualization. They

provide a set of constructs with different semantics than the traditional workflows

for process modeling and execution. Figure 2.4 [120] illustrates a fragment of a

scientific workflow.

Figure 2.4 A fragment of a scientific workflow [120]

According to [120], scientific workflows are data flow oriented. They describe

how input data are provided for the data analysis steps, in order to create

workflow data products. Figure 2.5 [120] provides a comparison between

 16

scientific workflows and business workflows at two different levels, which are the

designer interpretation and execution environment level. As it is shown in Figure

2.5, at the designer interpretation level, the three tasks (“B”, “C”, “D”) use the

output of “A“ in the scientific workflow. However, in the business workflow,

these three tasks are executed after the termination of “A”. At the execution level,

all of the tasks (“A”, “B”, “C”, “D”, “E”, “F”) can be active within the same

instance in the scientific workflow, but in the business workflow only the three

tasks (“B”, “C”, “D”) can be active within the same instance.

Figure 2.5 Comparison of scientific workflows and business workflows at different

levels [120]

 17

 Clinical workflows [1] model step-by-step procedures for medical care and

decisions. Clinical workflows describe a series of tasks, how to achieve them and

the ordering among the tasks. Figure 2.6 [106] illustrates a clinical workflow with

the standard workflow elements.

Figure 2.6 A clinical workflow with the standard workflow elements [106]

2.1.3 Workflow Execution and Workflow Management System

A computer-based workflow automates the business processes, which are a set of

activities to accomplish the business objectives. It passes the data or information from

one person to another person, based on a set of rules in a period of time. The automation

of a business process is included in the workflow process definition, it provides different

process activities and rules for managing the flow of activities [104].

According to [93], the workflow execution entails the traversal of the sequenced

tasks leading to the generation and consumption of information/work products, in

 18

accordance with the specified constraints, inputs and user responses, in order to achieve

the desired objective.

Computerization of workflows provides the following benefits [104]: it can

improve efficiency and reduce costs, improve the business process by providing better

controlling of processes, analyzing the workflow that allows to provide better decision

supports and tasks can be passed or assigned automatically to the responsible person.

According to [107], a workflow specification captures a process abstraction for

modeling a process. A workflow model is required in order to perform the workflow

specification. The workflow model provides a set of concepts to describe process, task,

roles and resources for performing tasks. The workflow specification language

implements the workflow model, and the workflow specification languages (or workflow

management systems) provide the required constraints, graphical elements and rules to

describe the ordering of tasks in a workflow.

A Workflow Management System (WfMS) automates and implement workflows

by supporting workflow design and execution functions. The execution of workflows can

be managed by software running on the workflow engine. The workflow engine (a

software service) creates workflow instances and manages them during the execution. It

interprets the definition of the workflow model, assigns each task to the responsible

person and monitors the status of a process [4].

Stoilov [108] states that a WfMS improves the efficiency and business processes in

the organizations. Without a workflow management system, an organization cannot

monitor and control the status of the processes during the execution. Organizations can

model, execute and monitor the processes by providing a WfMS.

 19

According to [109], in order to have an efficient workflow management, the

various characteristics of the workflow have to be analyzed. There are tools that provide

a complete analyzing of a workflow. These tools analyze workflows in four areas, which

are processes, applications, data, or information and organization. They have a

framework that captures the knowledge of the processes, describes the obstacles exist in a

process and monitor them.

There are two kinds of WfMS [102]:

 Activity-based: The WfMS focuses on activities that have to be completed by a

workflow.

 Entity-based: The WfMS focuses on entities (e.g. documents) that have to be

processed by a workflow.

2.1.4 Workflow Management System Architecture

The main components of a workflow management system are illustrated in Figure

2.7 [110,111].

 20

Figure 2.7 The main components of a workflow management system [111]

The main components of a workflow management system [111]:

 Workflow Enactment Service: A software service that consists of a workflow

engine, it creates and manages the instances of a workflow during the execution.

 Workflow Engine: The workflow engine is the core of a workflow management

system. It executes instances, and controls the execution of a set of processes. It

creates, terminates and maintains the process instances. In addition, it passes the

workflow data between users or/and applications.

 Workflow Application Programming Interface & Interchange: A set of

application programming interfaces and interchanges functions that provides

 21

interaction with other resources, and is supported by a workflow enactment

service.

 Workflow Control/Relevant/Application Data: The control and relevant data are

managed by the workflow management system or engine. The control data

identifies the state of individual process and the relevant data identifies the state

transition of a process instance. The application data are specific only to the

applications, and cannot be accessible by the workflow management system.

 Workflow Client Applications: An application that interacts with users, since a

human decision is required.

 Process Definition Tools: A number of tools may be used to analyze, model or

describe a process.

 The Recording and Reporting Tool: The historical data can be stored during the

execution of a workflow, which later can be used for the reporting purposes.

 The Operational Management Tool: It includes all operations belong to the

management of a workflow, such as adding or removal of a user.

A lot of workflow management systems are available, for modeling, simulating and

executing workflows. Such as Active Webflow (BPEL business workflow standard),

jBPM (BPM business workflow standard) and YAWL (XPDL business workflow

standard) [108].

 22

2.1.5 Workflow Modeling Approaches

There are different frameworks [112,113] to model a workflow, and each

framework has one or more formalisms, such as Petri-nets. According to [113,117], the

most common frameworks are:

 Control flow graphs: Control flow graphs represent the execution dependencies

and ordering of the activities in a workflow by modeling the control flow. They

represent the initial and the final activity in a workflow. A control flow graph

represents all the successor activities for an activity, and whether they have to be

executed simultaneously or not.

The control flow graph is a labeled directed graph. A node in a graph represents

the task that has to be performed, and an arc represents the control and the flow of

data between activities. The arcs are marked with the transition conditions, which

are related to the current state of a workflow.

In Figure 2.8, one of the successors of activity “c” must be executed, and then

there is a choice of executing “f” or “g”. Arcs can be marked with transition

conditions, and the conditions specify the current state of the workflow.

 A task can begin, if all the previous tasks have been completed, and all the

related transition conditions are evaluated to true.

 Rule-Based (Triggers): Workflows can be stated as sets of triggers (Figure 2.8).

These formalisms use logical rules to represent the dependencies between the

tasks in a workflow, such as data, structural or resources.

In these approaches, the logic is divided into a set of rules, and each rule belongs

to one or more activity. These rules specify the properties of an activity, such as

 23

pre and post conditions of an execution.

There is a rule inference engine that analyzes and controls the data and conditions

during the execution. The conditions specify the order of an execution. The

Event-Condition-Action (E-C-A) [117] rules can be used for the task execution. It

has the following syntax [117]:

ON event IF condition Do action

An event states the triggering process to evaluate a condition or a simple task

execution (e.g. purchase order). The condition should be evaluated to true before

triggering any other actions (e.g. adding to cart and making a payment). After

evaluating the conditions, the next action can be performed (e.g. shipping the

order). Some of the rule-based modeling approaches are [117]: AgentWork,

ADEPT, PLMflow and AgFlow.

Figure 2.8 Different frameworks for modeling a workflow [113]

 24

2.1.6 Workflow Formalisms

According to [114] a standard workflow model can be defined as a eight-tuple

, where:

 is a set of process elements that are divided into disjoint sets of AND-Joins (,

OR-Joins , AND-Splits , XOR-Splits , and activities .

 is a transition relation between the elements of a process.

 is a function to assign names to activities

There are several formalisms for describing workflows. We list some of these

formalisms [115] here, however the details of these formalisms are out of the scope of

this thesis:

Petri-net: A Petri-net [115] is a directed graph, and it consists of places (circles),

transitions (bars) and arcs (edges from transitions to places or vice versa).

The activities in a workflow are represented as the transitions in a Petri-net, and the

input of an activity is represented as an input place and the output of an activity is

represented as an output place for the transition in a petri-net. Figure 2.9 illustrates the

transformation of the UML Activity Diagrams constructs to Petri-nets [115].

 25

Figure 2.9 Transformation rule for a decision and activity state to Petri-net [115]

A PTN can be defined as a four-tuple where [115]:

 P is a set of places, which is finite: P =

 T is a finite set of transitions: T = . The set of P and T are disjoint,

 is the input mapping function for from transitions to places.

 is the output mapping function from transitions to places.

The dynamic behavior [115] of Petri-nets can be represented by assigning Tokens

to the places of a Petri-net. A token in a place indicates the condition of that place. The

position and number of tokens can change during the execution of a Petri-net.

A Petri-net can be executed by firing transitions, and it controls the quantity and

spreading of tokens. A transition fires by eliminating tokens from the input places and

assigning new tokens in the output places [115].

 26

Activity diagram: An activity diagram is a state chart diagram of UML. All the

states in the activity diagram are action states (activity node) and the transitions can be

triggered by completion of the actions in the source states (the node that the edge leaves).

An action state can model the execution of a procedure, it can be viewed as an atomic

task, and it has an internal action and at least one outgoing transition [115].

 For multiple transitions, a condition must be defined. An activity diagram can be

defined as the tuple [115], where:

 S = is a set of activity states, is an initial pseudo state.

 A = is a set of internal transitions.

 C = is a set of forks and joins.

 D = is a set of decisions.

 are mappings, which define

input and output transitions for states.

 are mappings, which define input and output

transitions for decisions.

 are mappings, which define input and output

transitions for forks and joins.

EPC [116]: It has three types of nodes, which are events (E), functions (F) and

connectors (C). It can be formalized as a five-tuple [116], where:

 E is a set of events. Events describe the situation before or after the execution of a

function. Events represent pre or post condition of a function in a workflow.

 F is a set of functions. A function is related to an activity, such as a task in a

workflow that has to be executed.

 27

 C is a set of logical connectors (). The connectors connect activities and

events to specify the flow of control. The ” operator represents branching or

synchronization in a workflow. The represent decision gateways in a

workflow; based on the result of an event, one of the paths has to be followed.

 is a function that specifies a connector type for a

connector.

 is a set of

arcs. They connect functions, events and connectors. An arc acts as a sequence

flow in a workflow.

2.2 BUSINESS PROCESS MODELING

According to Mending J. [19] business process modeling involves modeling of the

business process in an organization. M. Weske [20] states that, a business process model

includes a set of activity modeling and constraint execution.

According to [19], business process modeling has an important role in the lifecycle

of a system development. It provides a process definition to model activities with the

process modeling languages, and a workflow management system that monitors and

controls the execution of the processes in a workflow.

Assaf A. [26] states that, “Business Process Modeling Language (BPML) defines a

formal model for expressing abstract and executable processes that address all aspects of

enterprise business processes, including activities of varying complexity, transactions,

data management, exception handling and operational semantics. BPML also provides a

grammar in the form of an XML Schema for enabling the persistence and interchange of

 28

definitions across heterogeneous systems and modeling tools.”

According to [27] the modeling language consists of three elements:

 Notation specifies the visual elements, which can be used for the visualization of

a model.

 Syntax defines a set of constructs with the rules, to describe how the constructs

can be combined.

 Semantics provides meaning for the constructs defined in the syntax and it can be

defined using ontologies.

In the next section, we review a number of modeling languages and notations for

representing business processes and workflows, and then we gather state-of-the-art work

on BPMN. We also provide a summary of workflow patterns analyses to explore the

expressive power of BPMN and other modeling languages.

2.2.1 Event-Driver Process Chain (EPC)

Event-driven process chain (EPC) [19,31,32] is a semi-formal graphical modeling

language for modeling business processes and workflows. Scheer W. developed EPC

within the framework of ARIS [30] in the early 1990s. It was used in the ERP systems,

which describe workflow (e.g. SAP R/3). EPC models processes as chains of events and

triggers a function, which results in events again. The concept of EPC is very close to

Petri nets [31].

A definition by Wang J. [31] states that, EPC represents events and functions in an

ordered graph. It provides multiple connectors to execute multiple processes in parallel. It

provided logical operators, such as OR, AND and XOR. EPC is very simple and easy to

 29

understand technique to model business process.

EPC consists of the following elements [118]:

 Events: The passive elements, which describe the circumstances in which a function

or process works. It is represented as hexagon.

 Function: The active elements that model the activities, and describe the

transformations from the first state to the end state. Functions are represented as

rounded rectangle.

 Organization units: It indicates the responsible person or unit for an assigned task.

 Information or resource object: It describes the objects in the real world and can be

provided as the input data or output data for a function.

 Process path: It shows the sequence in EPC. They indicate the connection from or to

other process.

 Control flow: Functions, process or logical connectors can be connected with other by

control flow. It is represented as a dashed arrow.

 Logical connector: The logical connectors describe the relationships between the

elements in a control flow. There are three different kinds of logical relationships in

EPC: Branch/Merge, Fork/Join, OR.

 Information flow: The connection between input or output data and functions are

represented by information flow.

 Organization unit assignment: It shows the connection between an organization unit

and the assigned function.

 30

A sample of EPC diagram is shown in Figure 2.10 [116].

Figure 2.10 EPC diagram [116]

2.2.2 Petri-Nets

Petri net [29,89,90] is a formal, graphical and executable language to specify

dynamic behavior. It was defined by C.A. Petri in the 1960s as a tool for modeling

distributed systems. Petri nets have precise mathematical properties, which can be used

workflow management [29].

Petri net [20] is a directed graph. It has two nodes, which are places (circles) and

transitions (rectangles). There are directed arcs that connect the nodes. Places contain

tokens, which represent the dynamic behavior (and being able to execute them).

According to Lohmann N. [90], a Petri net is a workflow net that has a source and a

sink place, and there is an arc or a path from a source to a sink. A token in the source

place represents a new event, and a token in the sink place represents a finished event.

 31

Petri nets have a small number of modeling constructs; therefore they are limited to

express the resources, structural, functional or operational perspectives [89].

The authors in [90] used the workflow patterns to analyze the expressive power of

Petri nets for workflow and process modeling. We provide a summary of their results in

Table 2.1 [90].

Patterns that are easy to represent in Petri nets

Sequence: An activity is started after the completion of another activity

Parallel Split: Activities can be executed simultaneously or in parallel

Synchronization: Waiting for all the incoming branches to be completed before going to the
next step

Exclusive Choice: One of the branches has to be chosen

Simple Merge: Two or more branches are merged without any synchronization

Deferred Choice: One of the branches is chosen, but the decision is not based on data

Patterns that are harder to represent in Petri nets

Multi-Choice: A number of branches can be chosen

Cancel Region: A set of tasks that can not be executed

Pattern that cannot be represented in Petri nets

General Synchronizing Merge: Wait-and-see synchronizing construct

Table 2.1 Expressiveness of Workflow patterns in Petri nets [90]

 32

2.2.3 Unified Modeling Language (UML)

According to [118] there are two types of diagrams for UML, which are Structural

and Behavioral. Structural diagram is divided into three types of diagrams, which are

[118]:

 Class diagram: It represents a set of classes, and the relationships between these

classes. It shows the structure of the classes.

 Component diagram: it groups a set of objects into components, such as source

codes or application documents.

 Deployment diagram: It shows the components that depend on the run time

processes.

Behavioral Diagram is divided into four types of diagrams [118]:

 Use case diagram: It represents a set of classes, users (actors) and the

relationships between these classes and users. It represents the functionality of the

classes.

 Interaction diagram: It shows the communications between the objects.

 State diagram: It shows all the available states for objects, and how the state of an

object can be changed. It includes two elements, which are state and transition.

 Activity diagram: It is the best way to model a workflow, among the listed

diagrams. It includes a number of workflow constructs that can capture the

workflow patterns.

UML Activity Diagram [25,33,34] is a semi-formal language from the Object

Management Group (OMG). It is a case of UML state diagrams for modeling workflows.

An UML activity diagram represents the step-by-step of a workflow, and the ordering

 33

among the tasks, activities and states [25].

The basic elements of UML activity diagram are shown in Figure 2.11 [118].

Figure 2.11 The basic elements of UML activity diagram [118]

2.2.4 Business Process Execution Language (BPEL)

Business Process Execution Language (BPEL) [35,36,37,38] is a standard

executable language, which specifies actions in the business processes by help of web

services. BPEL uses Web Service Description Language [39] (WSDL), which is based on

XML language, to describe the functionality of web services and how to access them.

BPEL, which is an orchestration language can specify an executable process to

exchange messages with other systems, and an orchestration designer controls the

messaging exchange [21].

BPEL process has the following concepts [36]:

• Variables: the data that are exchanged with web services can be stored in

variables.

• Handlers: in the case of the occurrence of a fault, handlers can be used to handle

the faults.

• Basic and Structured Activities: operations that have to be performed in a

 34

process are specified by basic activities and structured activities are utilized for

the definition of control flow.

• PartnerLinkTypes: the port types for a message exchange are defined with

PartnerLinkTypes by indicating which partner acts according to which defined

role in a partner link.

We also need to mention that some literature has proposed the use of BPMN to

model a BPEL process, but this mapping can be very difficult since there are fundamental

differences between these two languages [35,36]. It is difficult to create BPEL code from

a BPMN diagram [36]. In addition there are a number of tools for partial mapping from

BPMN to BPEL (e.g. BPMN2BPEL which is an open source tool), but [40] this is neither

supported with semantics nor fully automated.

2.3 BUSINESS PROCESS MODELING NOTATION (BPMN)

In this section, we gather state-of-the-art work on BPMN The Business Process

Modeling Notation (BPMN) [27,34,35,41,42,43] is a semi formal modeling language, to

model business process and web service processes. Business Process Management

Initiative, which is now merged with the OMG organization, published the first version

of BPMN in May 2004 [27]. The latest version of BPMN specification (BPMN v2.0),

which has been recently released (March 2011), includes extensions to the notation and

meta-model specification, however we used BPMN v1.1 for the purpose of this thesis.

According to [34], the main goal of BPMN is to provide a graphical notation that

can be easily understood and use by all users, such as business analyst, technical people

and business people [41].

 35

The structural elements of BPMN facilitate the readability and provide three types

of model [41]:

 Private (internal) business processes: It states business processes that are

internal or private to an organization and are not accessible from outside. (Figure

2.12).

 Abstract (public) processes: It states the interactions between a private or,

internal business process with another business process. (Figure 2.13).

 Collaboration (global) processes: It states the sequence of activities between two

or more business entities. These activities represent the exchange of messages

between those entities. (Figure 2.14).

Figure 2.12 An example of a private business process

 36

Figure 2.13 An example of an abstract business process

Figure 2.14 An example of a collaboration business process

BPMN provides a single diagram, called the Business Process Diagram (BPD).

Business processes can be modeled and managed by this diagram. In addition it is easily

understandable by all users [41].

BPMN elements can be categorized in four different classes [41]:

 37

The first group is called Flow Objects: Flow objects are the primary graphical

elements that can describe the behavior of a business process (Figure 2.15).

Figure 2.15 Flow objects [24]

Flow objects are defined in the following three groups:

 Events happen during the business process and are represented as circles. The

complete list of BPMN events is shown in Figure 2.16. Events can have a trigger

and results. There are three types of events that can affect the flow:

• Start Event: starts a process flow.

• Intermediate Event: happens during a process.

• End Event: ends a process flow.

Figure 2.16 The complete list of BPMN event types [24]

 38

 Activity is the real work that the organization performs. An activity can be atomic

or a compound activity that contains other activities. There are three types of

activities, which are process, sub-process and task (Figure 2.17).

 TASK Collapsed Sub-Process Expanded Sub-Process

Figure 2.17 Activities [24]

• Task is an atomic activity and there are different types of tasks, such as

“user task”, which is performed by a human, “send task”, which sends a

message by executing the task and “service task” that provides a web

service.

• Sub-process is a compound activity that contains another process. A sub-

process can be expanded/collapsed, in order to show/hide the sub-process

details.

• Process doesn’t have a graphical representation. It is an activity that has to

be performed within organizations.

 Gateways represent decisions in a process. They provide branching, forking,

merging and joining of paths. The complete list of BPMN gateways is shown in

Figure 2.18.

 39

Figure 2.18 The complete list of BPMN gateway types [24]

The second group is called Connecting objects; they connect flow objects to each

other in three ways (Figure 2.19):

 Sequence Flow represents the execution order of activities in a process and can

be represented as arrows between flow objects.

 Message Flow shows the flow of message between different participants and are

represented as dashed arrows.

 Association associates extra information to the flow objects, and are represented

as dashed lines.

Figure 2.19 Connecting objects [31]

 40

The third group is called Swimlanes and they group the modeling elements in two

ways (Figure 2.20):

 Pools represent involved participants and users in a process and also can be used

to seperate a set of activities in a pool from the activities in other pools.

 Lanes divide a pool into sub partitions and can be used to represent roles or

departments. Lanes organize and categorize workflow elements.

Figure 2.20 A pool with two lanes [31]

The fourth group is called Artifacts. Aritifacts provide further information about a

process. They don’t affect the flow of interaction. There are three types of artifacts,

which are provided in Figure 2.21.

Figure 2.21 Artifacts [31]

 41

 Data Objects provide information about activities or data exchanged between

activities, and they don’t have effect on the flow of process. Data objects are

represented as a rectangle with a folded corner (Figure 2.22 and Figure 2.23).

 Group can be used for grouping flow objects with the same category. A group is

represented as a dashed box that contains a group of flow objects.

 Text Annotation provides additional information about the model. It can be

connected to an object by an association flow.

Figure 2.22 Attaching data object to the sequence flow: Prescription is being approved

when it is sent from the Send Prescription task to the Get Medicine task

Figure 2.23 Association lines between data objects and a task: the state of Exam data

object is changed from “Done” to “Approved” after the Approve Exam task

 42

2.4 COMPARING BPMN WITH OTHER LANGUAGES

In this section, we provide a summary of workflow patterns analysis to analyze the

expressive power of BPMN and other modeling languages. By providing this

comparison, we conclude that BPMN is very easy to use and understand, since it is a

graphical language, and it is more expressive than other languages concerning control

flow structures. BPMN has more control flow elements than other languages; therefore it

supports more workflow patterns [32,33,35].

The ARIS community has listed the comparison of EPC with BPMN below [32]:

 BPMN supports more workflow patterns that EPC, therefore it is more expressive

than EPC. BPMN supports 24 of 43 patterns, while EPC supports 10.

 BPMN is more efficient than EPC. EPC requires events after OR and XOR

gateways, while in BPMN the conditions are carried in the properties of sequence

flows after the split gateway.

 Exceptions are well handled in BPMN, while EPC cannot handle exceptions that

happen during the execution.

 BPMN is easier to read and understand.

 BPMN supports transactions and compensations patterns, while EPC has

difficulty to support these patterns.

According to [33], UML is harder to understand than BPMN, since there are some

model elements in BPMN that are not available in UML. In addition the main goal of

BPMN is to be understandable by all users, which is not the same for UML.

The authors in [33] have conducted a workflow pattern framework analysis

 43

between BPMN and UML. Their results showed that BPMN has a better representation

power in control flow patterns and BPMN supports more data patterns than UML.

Another comparison of BPMN and UML in [34] indicates that:

 BPMN has a mathematical foundation that can be used for mapping to business

process execution language (BPEL), whereas UML doesn’t have a mathematical

foundation and it does not define any execution meta-model.

 UML is a combination of diagrams that are not intended to communicate with

each other; therefore UML can model part of applications with no details of

implementation. However, BPMN defines a single diagram that provides multiple

views for users.

The authors in [35] have done a comparison between BPMN and BPEL. Their

result showed that BPEL has difficulty in modeling complex control flow patterns, such

as the following patterns:

• Advanced branching and synchronization patterns are not well supported in

BPEL, but BPMN supports these patterns by providing parallel gateways, which

control the branching and merging flows.

• BPEL does not support the arbitrary cycle pattern.

L. Yun [89] has categorized the modeling constructs of the process modeling

languages according to the six process perspectives. We provide the table of this

categorization here:

 44

 Petri Net EPC UML BPMN

Structural - Process path UML use case
Collapsed

/Expanded sub-
processes

Operational
/Functional - Functions Activity Task, Process

Control Transition node,
Arc Connector, Flow

Flow, Fork,
Join, Decision,

Merge

Sequence flow,
Decision,

Merge, Loop

Resource -
Extension with

information,
Resource object

- Data object

Organizational - Extension with
role, Person

Partition,
Swimlanes Pool, Lane

Data
Transaction Token Event UML state

diagram
Message flow

with data object

Table 2.2 Modeling constructs of different business process modeling languages [89]

In this chapter, we provided an introduction to workflow, workflow management

system, workflow modeling approaches and formalisms. We also reviewed a number of

modeling languages and their limitations compared to BPMN. Because of those

limitations we chose BPMN as our workflow modeling language, in addition based on

[32,34,35,89,90] we highlight the main advantages of BPMN as follows:

 BPMN is more expressive than other modeling languages, since it supports most

of the workflow patterns.

 BPMN is a graphical language, thus it is easy to understand and learn.

 Different user can have different views of the BPMN diagram.

 A set of attributes can be defined to provide a richer specification.

 The graphical elements can be extended for the domain purpose.

 45

Based on these reviews, we chose BPMN as our modeling language to design

standardized CP that can be executed through workflow execution engines. BPMN

provide constructs to capture the complexity, and control-flow amongst multiple clinical

tasks. It models the ordering among different tasks and activities. The use of BPMN

formalisms to represent CP [1] clearly describes the operational aspects of clinical

processes, such as (a) roles and responsibilities of care providers; (b) decision points and

care options; (c) well-identified clinical/business rules; (d) operational constraints; (e)

task scheduling; and (f) temporal constraints.

 46

CHAPTER 3 COMPUTERIZING CP AND CPG

The paper-based Clinical Practice Guidelines (CPG) and Clinical Pathways (CP) cannot

be utilized at the point of health care, since it is difficult to integrate them in the active

clinical practices. Paper based clinical pathways lack dynamicity, and are static. In

addition, the maintenance of the healthcare business process lacks from continuous

updating, since the medical guidelines change frequently, and there is no real time

information for the clinical pathways [96].

CPG and CP can be computerized to reduce variations in quality of health care, to

provide recommendations and to reduce costs [2]. Computerization simplifies decision

support and execution; and multiple care processes can be executed simultaneously [1].

A number of approaches such as PROforma, Asbru, Gaston and SAGE have been

proposed to computerize CPG and CP. Most of these formalisms represent medical

knowledge as the “Task-Network Models” (TNM) in different approaches. TNM

languages decompose recommendations into the network of tasks, and describe the

relationships between these tasks. These computer formalisms of the clinical guidelines

provide decision support at the point of care [10].

In this chapter we review some of these approaches, however the details of these

approaches are out of the scope of this thesis. At the end of this chapter, we provide a

comparison against the eight dimensions from Peleg [10] between some of these

approaches and our CP ontology. By reviewing these approaches and providing a

comparison from Peleg [10], we find out that these guideline models have some common

constructs to represent guideline steps, and the combination of these constructs can

 47

represent a workflow. However, they have a limited number of constructs and they

cannot model workflow patterns properly. Therefore we use a standard workflow

modeling language to model a CP.

3.1 PROFORMA

PROforma [8,9,10], a knowledge representation language, was implemented at the

Advanced Computation Laboratory of Cancer Research, UK.

PROforma captures the knowledge and the structure of a guideline, which can be

understood by a computer. PROforma is a combination of the two words proxy

(“authorized to act for another”) and formalize (“give definite form to”) [8].

Guidelines are represented as a set of tasks. The tasks are modeled hierarchically

into plans and are divided into four classes [9]:

 Action is a clinical activity or a task that needs to be executed (e.g. backup

database).

 Enquiry is an action to request more information or data from the user (e.g. a

nurse)

 Decision is a task, in which a decision has to be made, such as choice of

diagnosis.

 Plan is a set of tasks that are combined together to accomplish a clinical

objective. These tasks can be grouped, since they have common goals or they

need to be executed at the same time during the execution.

There are two main implementations of the PROforma engine available [9],

Arezzo, which is a commercial tool developed by InferMed Ltd. (London UK), and Tallis

 48

implementation by Cancer Research UK.

Arezzu [9] includes a composer, which is a graphical authoring tool and a

performer, which is an execution engine and application tester.

Tallis [9] consists of a composer to support the creation and modeling of

guidelines, and a tester, which allows users to debug a guideline.

3.2 ASBRU

Asbru, a skeletal plan-specification representation language, was developed at Ben

Gurion University and the Vienna University of Technology. Asbru, which is a time

oriented language represents clinical guidelines in XML [10].

The main features of Asbru are [18]:

 Temporal dimension of states and plans.

 Each plan can have its own intentions.

 Actions and states can be continuous.

 Plans can be executed in parallel, sequence or periodically.

 Verification and validation of the plan itself.

 Reuse of existing knowledge and acquired plans.

Asbru represents a protocol in a hierarchy of plans. Each plan has a name, a time

label, which can be used to specify the duration of the plan’s execution and the following

main components [16]:

 Preferences are used to constrain the choice of a plan to accomplish a given goal

or to describe the behavior of a plan.

 Intentions are the main goals at different stages of a plan, and are represented as

 49

actions, or states that can be held during or after finishing a plan.

 Conditions are temporal patterns and they define the various phases for the

execution of a plan. There are different conditions such as preconditions, activate,

reactivate, complete and abort conditions.

 Effects describe the effects of a plan’s execution on parameters.

 Plan-Body contains sub-plans and actions, which will be executed in a particular

way (parallel, sequence or any order).

In the medical domain there is a temporal uncertainty for time aspects since we

cannot always predict when something will happen or when it ends. Asbru includes time

label that can be assigned to various components and the uncertainty can be represented

in the starting time, ending time and duration [18].

AsbruView [10] is a visualization tool to model guidelines in the Asbru language. It

can design the temporal views of plans that are written in Asbru.

However, S. Miksch [17] has listed the drawbacks of Asbru in her paper, which are:

 Acquisition of conditions (the temporal patterns) and time annotations are

difficult, and temporal dimensions are often unknown.

 It is difficult to handle all the possible orders of the plan execution and the

exceptions that might arise.

 50

3.3 GASTON

Gaston is developed in the Eindhoven University of Technology. The goal of this

framework is to improve the use of the computerized guidelines and decision support

systems [11].

The framework consists of [12]:

 A set of concepts, which are primitives, Problem Solving Method (PSM) and

ontologies are used to represent guideline formalism.

 An authoring environment that allows authors to model guidelines.

 An execution environment to process and interpret guidelines by an execution

engine.

Gaston architecture involves several steps [12]:

First a domain ontology must be defined. It contains a set of concepts for a specific

domain and knowledge in terms of entities, properties and relations.

Then a method ontology must be defined, which models concepts as primitives and

PSMs. Primitives describe a single guideline step and the internal structure of a PSM.

These ontologies can be defined in Protégé framework, which is a tool to develop

knowledge-based systems [11].

Finally, a set of components that describe specifications for communication

between the components of the execution time and other systems must be defined.

 51

3.4 SAGE

The SAGE (Standards-Based Active Guideline Environment) project [13]

represents the integration of decision support systems for guidelines in the clinical

information systems.

The SAGE project uses the standard terminologies and information models to

encode the guideline content as the recommendation sets [13].

A combination of a clinical setting, the care provider and the relevant patient states,

can define a context. A recommendation set relates decisions to actions in order to

provide recommendations. Recommendation sets are modeled either as activity graphs or

decision maps [13].

An activity graph represents guideline-directed processes. It can describe the

relationships among different activities. Decision map represents recommendations by

providing decisions at one point in time [13].

The SAGE project uses different levels of standard terminologies, which are

required for encoding and executing guidelines. These standard terminologies use the

vocabulary resources [13] of SNOMED CT, LOINC, and National Drug File-Reference

Terminology (NDF-RT).

The SAGE project uses Protégé open-source knowledge based modeling

environment to model guidelines, and GELLO a standardized language is used as the

expression language of SAGE [13].

 52

3.5 SEMANTIC-BASED CP WORKFLOW AND VARIANCE MANAGEMENT
SYSTEM

Semantic-based clinical pathway workflow and variance management system is a

framework for modeling pathway from Y. Ye [14]. The proposed framework contains

three components [14]:

 Clinical Pathway Ontology (CPO) and domain ontology

 Clinical pathway workflow management

 Variance Management

According to [14], the clinical pathway ontology and domain ontology can provide

a semantic interoperability between the clinical pathway workflow and variance

management. Clinical pathway workflow management executes and monitors the clinical

pathways and variance management provides support for analyzing and handling

variances during the reasoning.

Importing two existing ontologies, which are process ontology in OWL-S and time

ontology develop a CPO. Process ontology defines terminologies to describe processes

and their structures, and the time ontology provides temporal concepts and relations [14].

Semantic modeling in the framework is implemented by two modeling approaches

[14]:

 A hierarchical modeling approach, which has two levels: the outcome flow level

and intervention workflow level.

 A modeling approach, which is based on Semantic Web Rule Language (SWRL).

Applying a clinical pathway to the treatment of the individual patients may create

some variances. In the framework, these variances are handled and analyzed by the

 53

event-condition-action rules [14].

3.6 COMPARISON OF CPG FORMALISMS

M. Peleg et al. [10] identified eight dimensions to compare six computer-

interpretable Guideline Models (Asbru, EON, GLIF, GUIDE, PRODIGY, and

PROforma). These eight dimensions are as follows [10]:

 Organization of guideline components

 The goals and intensions

 Guideline actions modeling

 Decisions

 Expression languages for decision criteria

 Interpertation of data

 Medical concept model representation

 Information model for patient

A number of tables in this study provide a comparison among these models based

on each dimension. The details of these comparisons are out of the scope of this thesis.

However, the study concluded that each of these models has strength in different

dimensions and none of them performs well in all eight dimensions. A summarized

comparison of these models by our CP ontology [92] is provided in Table 3.1 [10].

 54

C

O
M

PA
R

IN
G

 C
O

M
PU

T
E

R
-I

N
TE

R
PR

ET
A

B
LE

 G
U

ID
E

L
IN

E
 M

O
D

E
L

S
D

.1

D
.2

D

.3

D
.4

D

.5

D
.6

D

.7

D
.8

A
sb

ru

TN
M

Ex

pr
es

si
on

M

ed
ic

al

ac
tio

ns

Sw
itc

h
co

ns
tru

ct
s

X
M

L
Te

m
po

ra
l

A
bs

tra
ct

io
n

V
ar

ia
bl

e
na

m
e

M
ap

pi
ng

gu

id
el

in
e

ta
bl

e

E
O

N

TN
M

Ex

pr
es

si
on

Sp

ec
ia

liz
ed

m

ed
ic

al

ac
tio

ns

Sw
itc

h
co

ns
tru

ct
s

R
D

F
Te

m
po

ra
l

A
bs

tra
ct

io
n

C
la

ss
ifi

ca
tio

n
hi

er
ar

ch
ie

s
V

M
R

G
L

IF

TN
M

Te

xt
 S

tri
ng

M

ed
ic

al

ac
tio

ns

Sw
itc

h
co

ns
tru

ct
s

G
EL

LO

G
en

er
al

A

bs
tra

ct
io

n
C

la
ss

ifi
ca

tio
n

hi
er

ar
ch

ie
s

H
L7

 R
IM

G
U

ID
E

TN

M

Ex
pr

es
si

on

M
ed

ic
al

ac

tio
ns

Sw

itc
h

co
ns

tru
ct

s
Fo

rm
al

La

ng
ua

ge

G
en

er
al

A

bs
tra

ct
io

n
C

la
ss

ifi
ca

tio
n

hi
er

ar
ch

ie
s

M
ap

pi
ng

gu

id
el

in
e

ta
bl

e

PR
O

D
IG

Y

TN
M

Te

xt
 S

tri
ng

Sp

ec
ia

liz
ed

m

ed
ic

al

ac
tio

ns

A
rg

um
en

ta
tio

n
ru

le
s

Fo
rm

al

La
ng

ua
ge

G

en
er

al

A
bs

tra
ct

io
n

C
la

ss
ifi

ca
tio

n
hi

er
ar

ch
ie

s
V

M
R

PR
O

fo
rm

a
TN

M

Ex
pr

es
si

on

M
ed

ic
al

ac

tio
ns

N
o

co
m

m
itm

en
t t

o
a

de
ci

si
on

al

te
rn

at
iv

e

R
2L

G

en
er

al

A
bs

tra
ct

io
n

V
ar

ia
bl

e
na

m
e

M
ap

pi
ng

gu

id
el

in
e

ta
bl

e

C
P

O
nt

ol
og

y
TN

M

Fr
ee

 T
ex

t
Ex

pr
es

si
on

Sp
ec

ia
liz

ed

m
ed

ic
al

ac

tio
ns

Sw
itc

h
co

ns
tru

ct
s

Lo
gi

ca
l

Te
xt

G

en
er

al

A
bs

tra
ct

io
n

C
on

ce
pt

-U
R

I
C

on
ce

pt
-

U
R

I

Ta

bl
e

3.
1

 C
om

pa
rin

g
co

m
pu

te
r g

ui
de

lin
e

m
od

el
s [

10
]

 55

In this chapter we studied a number of approaches that have been proposed to

computerize CPG and CP, and then we provided a comparison along the eight

dimensions as mentioned above. By reviewing these approaches, we observed that most

of these formalisms have some common constructs to represent guideline steps, such as

actions, decisions and scheduling constraints. Table 3.2 [10] provides a summary of these

constructs or modeling primitives.

 MODELING PRIMITIVES
Branching/Scheduling Action Decision

Asbru
Ordering,

Completion or Continuation
Condition

Plan Precondition

EON Branch
Synchronization Action Decision

GLIF Branch
Synchronization Action Decision

GUIDE Synchronization Task Deterministic
Decision

PRODIGY Branch Action Rules

PROforma Branch
Synchronization Action Decision

Table 3.2 Modeling constructs or primitives [10]

 Guideline actions represent clinical intervention, or actual tasks described by a

clinical guideline.

 GLIF, EON and PROforma model decision as decision step (using switches), and

Asbru does not use explicit construct to represent decisions, but it has exclusive

pre-condition or argumentation rules.

 56

 Scheduling constraints represent the temporal relationship between actions. All

except Prodigy support cyclical and iterative graphs. Asbru uses ordering

constraint to specify the order of sequence and completion/continuation condition.

 Parallel pathways can be modeled by providing a branch step and a

synchronization step [10].

All of these formalisms contain a number of constructs to specify guideline steps

such as actions, decisions and scheduling, and the combination of these constructs can

represent a workflow. However, they have limited constructs and they cannot model

workflow patterns. Therefore in order to design operationally and clinically pragmatic CP

to ensure data interoperability, resource management and task prioritization, it is

important to view CP as ‘specialized’ process workflows. However, the use of workflow

modeling concepts in the design and optimization of CP is not yet well established, and

as such there are no standard formalisms for the representation of CP in general, and CP

as workflow models in particular.

There is a case for exploring the potential of business process modeling principles

and workflow modeling formalisms—such as Business Process Modeling Notation

(BPMN), Business Process Execution Language (BPEL), UML, etc.—to design

standardized CP that can be executed through workflow execution engines.

Our main goal is to provide a CP design framework that uses a standard modeling

notation to capture the control-flow amongst multiple clinical tasks with the workflow

constructs that represent the workflow patterns [24].

 57

CHAPTER 4 ONTOLOGIES IN USE: CP AND BPMN

ONTOLOGIES

The Semantic Web (SW) framework provides a representation formalism and

semantically knowledge modeling in terms of ontologies, reasoning mechanisms and the

reusability of knowledge models. Semantic web technologies offer OWL ontologies to

both model and execute CP [1].

This chapter covers the research background in the realm of ontologies, specifically

pertinent to our research. We present a description of the existing ontologies—(a) CP

Ontology, and (b) BPMN ontology—that we have used in our research. In addition, we

provide an introduction to ontology mapping with an overview of existing approaches

and tools for ontology mapping.

4.1 ONTOLOGY

According to [44], a formal explicit specification of shared conceptualization

defines an ontology. Conceptualization means that the represented knowledge is based on

conceptualization and models a domain by providing its classes, concepts and the

relations between those concepts. Concepts and relations in ontology must be understood

according to their proposed conceptualization; therefore knowledge representation

languages are used to provide a formal representation for the concepts and relations

contained in an ontology. The explicit indicates that the knowledge, which is stated

explicitly in the domain ontology is part of the machine process conceptualization, and

 58

the concepts and the relationships exist between them in an ontology can be shared and

reused between the people in the organizations and applications [27].

An ontology has the main following concepts [45]:

1. Concepts specify a set of entities within a specific domain. There are two types of

concepts [45]:

 Primitive concepts have necessary conditions in order to be members of a

class. For example, ‘Centrum’ is a multi-vitamin, that has vitamin ‘C’, but

there could be other things that have vitamin ‘C’ and are not ‘Centrum’

multi-vitamin.

 Defined concepts have both necessary and sufficient description in order

to be a member of the class. For example, Leukocytes are white cells that

are produced from a multi potent cell known as a Hematopoietic. If an

instance is a member of class CELL and it has at least one is_produced

relationship with a member of class HEMATOPOIETIC, then these

conditions are sufficient to determine that that instance must be a member

of LEUKOCYTES.

2. Relations describe the properties of the concepts and the interactions between

them. There are two types of relations [45]:

 Taxonomic relations organize the concepts in a subclass and superclass

structure. The most common form is known as the ‘is a kind of’

relationship. For instance, Chardonnay is a kind of white wine, which in

turn is a kind of alcoholic drinks.

 Associative relationships relate concepts through the hierarchical tree

 59

structures, such the nominative relationships that explain the names of

concepts. For example, PROTEIN hasProteinName PROTEINNAME.

3. Instances are the ‘things’ (elements) represented by concepts. Instances describe

the members of a class. For example, Zinc is an instance of the concept vitamin.

4. Axioms can be used to constrain values for classes or their instances. Such as a

property axiom <owl:ObjectProperty rdf:ID=“hasProteinName”> specifies a

property that the value is an instance of the PROTEIN_NAME class.

Web Ontology Language (OWL) [53] defines instantiating and shares ontologies

on the web. It is a semantic markup language that provides machine interpretable

semantics, and a rich vocabulary [50]. There are many reasoners that support OWL, such

as Pellet [54] and FaCT++ [55].

The OWL language describes relations between classes by providing a set of

constructs (e.g. unionOf, intersectionOf, disjointWith, equivalentClass), defines

cardinality for properties (e.g. minCardinality=1, maxCardinality=3) and can specifies

the characteristics of a property (equivalentProperty, FuncionalProperty, Transitive) [53].

The OWL language provides three sub languages [53]:

 OWL-Lite supports classification hierarchy, and it is less complex than other sub

languages. It supports simple constraints such as the cardinality constraints (OWL

Lite supports only 0 and 1 cardinality values).

 OWL-DL is based on description logic, thus it provides more expressiveness than

OWL-Lite and guarantees computational completeness. It makes sure that all

computations are computed and completed in finite time. OWL-DL supports all

OWL language constructs, however, it has some restriction rules such as a class

 60

cannot also be an instance of another class.

Description Logics are knowledge representation formalisms and they are

portions of the First Order Logic (FOL). They can be used to represent a formal

and structured way of the knowledge of a domain [35].

 OWL-Full supports more expressiveness than the two other sub languages, but it

has no computational guarantees. It doesn’t guarantee that all the computation

will be completed in finite time. OWL-Full allows a class to be treated as an

instance as well. However, it is unlikely that a reasoner provides full support for

the all the features of OWL-Full.

4.2 THE CP ONTOLOGY

CPG are paper-based and they need to be computerized in order to be executed. As

mentioned in chapter 3, CPG computerization demands the abstraction of medical and

functional concepts from the paper-based CPG with respect to a CPG knowledge model.

In our research, the CP ontology serves as the CPG knowledge model that comprises a

semantic description of the high-level concepts, relations and constraints constituting a

CPG. To computerize a CPG, a medical knowledge engineer will instantiate the CP

ontology with domain and functional concepts from the CPG, and models the CPG’s

workflow in terms of procedural relations defined in the CP ontology. An instantiation of

a paper-based CPG in terms of the CP ontology is regarded as the computerization of the

CPG, such that it can now be executed through CPG execution engines [92].

The CP ontology from Shayegani S. [56,92] is used for the purpose of this thesis. It

represents both the structures and the constructs of a CPG and the medical domain

 61

knowledge within a CP or CPG [56]. The CP ontology includes a number of constructs

for modeling workflow in CP, such as branching, synchronization, decision, flow of

activities and etc.

The ontology represents the knowledge in CP by defining 50 classes, 161 properties

and 589 instances. The Class names are denoted using SMALL CAPS, properties with

italics and instances with underline.

A CP can be modeled as an instance of the CLINIAL_GUIDELINE class in the CP

ontology (Figure 4.1).

Figure 4.1 The CP ontology [56]

In the CP ontology, the sequences of activities are defined by two properties: (a)

first_step, a property of the CLINICAL_GUIDELINE class and (b) next_step, a property of

 62

the GUIDELINE_STEP class. The first_step property is used to show the first step in a

guideline and after the first step, the next_step property indicates the sequence between

two steps. We can move from one step to another step with the next_step property. The

range of the next_step property can be either a GUIDELINE_STEP or another

CLINICAL_GUIDELINE. These two properties represent the flow of a sequence in a

workflow.

In the CP ontology, the GUIDELINE_STEP represents the steps of a guideline and it

has 3 main classes (Figure 4.2) [56,92]:

 ACTION_STEP represents the clinical activities that are performed within a CPG’s

workflow and it has subclasses, such as ASSESSMENT_STEP (to model a clinical

assessment), DIAGNOSTIC_STEP (diagnosis actions that are performed),

TREATMENT_STEP (the step that recommends a treatment in a guideline),

SCHEDULE_STEP (the step indicates that the activity needs to be scheduled to be

performed later) and NOTIFICATION_STEP (a step that indicates a notification for

an activity needs to be sent to an external user).

 DECISION_STEP represents a point where a decision has to be made for

determining the next activities. The next step is based on the result of the

decision. The next step is modeled by the decision_option property, and each

decision_option may hold multiple instances of the DECISION_STEP class. Each

decision option indicates the next step that needs to be performed.

There are two subclasses of the DECISION_STEP class:

• PROVIDER_DECISION_STEP: A healthcare provider should make a

decision, and the next step is defined by his/her decision.

 63

• SYSTEM_DECISION_STEP: The system makes a decision, when the

decision logic is specified in the CPG. The decision is based on all the

available information and data elements.

 ROUTE_STEP represents the flow of activities in a CPG. It has 3 subclasses:

• BRANCH_STEP: It specifies the branching point in a CPG, where two or

more steps need to be performed in parallel. The branching_step property

represents all the steps after a branching point, and it may hold multiple

instances of the GUIDELINE_STEP or the CLINICAL_GUIDELINE class.

• LOOP_STEP: It specifies that one or more guideline steps needs to be

repeated. It has four properties, which are iteration (to specify the number

of times that a loop has to be repeated), condition (to specify when a loop

should be terminated), next_step (as long as a loop is not terminated, the

next_step property indicates the next step in a loop),

next_step_when_loop_ends (it indicates the next step, when a loop is

terminated).

• SYNCHRONIZATION_STEP: It synchronizes or merges the steps that are

previously branched. It has a preceding_steps_to_be_completed property

that specifies all the preceding steps need to be completed.

 64

Figure 4.2 CP ontology - The subclasses of the GUIDELINE_STEP class [56]

The provided CP ontology outlines the different clinical processes, their properties,

constraints and relationships. An execution engine can execute an instantiation of CP

from CP ontology with the patient data in order to provide recommendations [92].

However, the execution of a computerized CP is challenging, model specific, non-formal,

non-standard (reusability, interoperability, analysis) and not connected to resources.

The CP ontology contains workflow, and it captures the workflow elements by

providing different classes, such as BRANCH_STEP, LOOP_STEP, SYNC_STEP and

ACTION_STEP.

Figure 4.3 [98] illustrates a clinical workflow, which is implemented by the

standard workflow elements as we listed in Chapter 2. It has decision control construct to

control the divergence and convergence of a flow, a process step to represent a general or

 65

manual step in a process and a sequence flow construct to connect to steps. These

elements can be captured by the constructs of our CPG ontology, as we listed before.

Figure 4.3 Physic patient evaluation workflow [98]

In order to design operationally and clinically pragmatic CP and to ensure data

interoperability, resource management and task prioritization, we use BPMN, a business

process modeling language to model CP as workflows. It allows us to design

standardized CP, which clearly describes the operational aspects of clinical processes.

First we provide BPMN ontology that contains a semantic description of BPMN

constructs, and then we establish a semantic interoperability (or ontology mapping)

between the CP ontology and the BPMN ontology.

After explaining the BPMN ontology, we provide a table that lists the equivalence

relationships between the constructs of the CP and BPMN ontologies. This table shows

that the elements of the CP ontology exist in a workflow modeling language such as

BPMN.

 66

4.3 THE BPMN ONTOLOGY

The BPMN ontology is a formalization of the structural elements of the BPMN

specification v1.1 in OWL-DL. It includes of a set of axioms for describing the BPMN

elements and their combination for creating a Business Process Diagrams. For instance, it

includes merging axiom to describe the correspondences between the BPMN ontology

and a domain ontology. For example, a BPMN event can be used to describe the events

of a domain ontology and not objects [57].

The structural assertion provides information about how to connect the graphical

objects [57]:

 The SEQUENCE_FLOW class has two properties (source_sequence_ref,

target_sequence_ref), which states that two graphical elements are connected to it.

For instance, the assertion source_sequence_ref (sequence_flow_1; gateway_5)

states that the sequence_flow_1 originates from gateway_5, and

target_sequence_ref (sequence_flow_1; activity_2) states that the target of the

sequence_flow_1 is activity_2; both gateway_5 and activity_2 are graphical

elements.

The process specific constraints [57] are expressions that state specific properties of

a process. There are different types of process specific constraints [57]:

 Containment constraints: These constraints indicate that a BPD or some graphical

elements contain other elements within them or not. For example the activity of

patient admission is a sub process that contains an activity of registration:

 67

 Enumeration constraints: These constraints provide at least, at most and exactly

enumerations to extend the containment constraints. For example, a gateway must

have at least 2 outgoing gates:

 Precedence constraints: These constraints state that some graphical elements

should appear before others in a BPD. For example the activity of shipping is

always preceded by an activity of payment:

The BPMN ontology consists of 95 classes, 108 object properties (the relations

between instances of two classes, for example hasCondition is an object property

between two classes, GATEWAY and CONDITION) and 70 data properties (the relation

between instances of classes and XML schema data types, for example hasAge (Integer

data type), is a data property of the AGE class).

The BPMN elements are divided into two disjoint classes in the BPMN ontology

[57]:

 Graphical Elements are the main elements to describe the business process,

which we discussed in Chapter 2.

 Supporting Elements are used to specify the attributes of the graphical objects.

 68

For example the supporting elements INPUT_SET or OUTPUT_SET are used to

define attributes of the graphical object ‘ACTIVITY’, which describes the data

requirements for input or output of the activity.

The constructs of BPMN ontology are the following [57]:

 The BUSINESS_PROCESS_DIAGRAM class collects a set of properties for a

business process diagram (BDP), such as id, name, version, author, creation_date

and pools.

 Each BPD has one or more pools to represent all the participants in a process.

Each POOL has a process_ref and has_lanes property. A pool has one or more

lanes to organize activities within a pool.

 A PROCESS is the activity accomplished within a company. It includes a set of

graphical elements to represent the activities. Each PROCESS class has input_set,

output_set and has_graphical_elements properties. The input_set or output_set

property defines the data requirement for input to a process or output from the

process respectively. The has_graphical_elements property defines all the

graphical objects that are included in a process (ACTIVITIES, EVENTS,

GATEWAYS and ARTIFACTS).

 There are 3 types of events in the BPMN ontology, Start, Intermediate and End.

• START_EVENT: It specifies the start of a process. It has a trigger property

to define the type of trigger for a start event. There are different triggers,

such as MESSAGE, TIMER and CONDITIONAL. The MESSAGE trigger

indicates that a process will start after receiving a message, the TIMER

trigger means a process will start at a specific time/date and the

 69

CONDITIONAL trigger means that a process will start if sets of conditions

are evaluated to true.

• INTERMEDIATE_EVENT: These events are between a start and end event,

and they cannot start or terminate a process. However, they will affect the

flow of a process. Each intermediate event has two properties; has_target

property indicates an intermediate event is attached to an activity and

has_trigger property defines the type of trigger for the event. There are

different triggers for an intermediate event, such as: CONDITIONAL,

TIMER, CANCEL, ERROR, MESSAGE, COMPENSATION and SIGNAL. Each

of these events has different properties. The most important events in our

study are MESSAGE event that has a message_ref property, TIMER event

that has two properties, has_timer_cycle, and has_timer_date and the

CONDITIONAL event with a condition_ref property.

• END_EVENT: It specifies the end of a process.

 The GATEWAY class controls the divergence and convergence of a flow. Each

gateway has a gateway_gate property to indicate the number of gates (options)

after a gateway. The range of the gateway_gate property is the GATE class, which

provides outgoing gates for gateways, for example a GATEWAY

(Payment_is_Required) has two gates yes, no. The are three types of gateways:

• EXECLUSIVE_GATEWAY: It has two subclasses, which are

DATA_BASED_GATEWAY that a decision is based on a set of data and

EVENT_BASED_GATEWAY that a decision is based on an external event,

such as receipt of a message.

 70

• PARALLEL_GATEWAY: It can be used for branching or merging, and has

only one property, gateway_gate property.

 The SEQUENCE_FLOW class shows the flow of sequence in a BPD. It has three

properties, sour_ref, target_ref and condition_expression. We specify conditions

for gateways in a sequence flow. The condition_expression property has the range

of an EXPRESSION class.

 The EXPRESSION class has an expression_body property to provide the text of the

expression.

 The ACTIVITY class represents the work that an organization performs. It has the

following sub-classes: MULTI_INSTANCE_LOOP, STANDARD_LOOP_ACTIVITY,

SUB_PROCESS, TASK. There are three different sub processes: EMBEDDED,

REFERENCE and REUSABLE. The TASK class can be a SEND_TASK,

RECEIVE_TASK, SCRIPT_TASK, USER_TASK, MANUAL_TASK,

ABSTRACT_TASK, REFERENCE_TASK or SERVICE_TASK. In this thesis, we used

the STANDARD_LOOP_ACTIVITY to show a loop within a BPD and the

USER_TASK to represent the user activity. The STANDARD_LOOP_ACTIVITY has

a condition property to specify a condition for a loop and a counter property to

count the number of cycles.

 The PROPERTY class is used to provide the data elements. It has three properties,

name (e.g. Age), type (Integer) and value (28).

The BPMN ontology used in this thesis is based on OWL-DL. However, in the

literature review we found another BPMN ontology from Super project [60], which is in

WSML-Flight (Web Service Management Layer-Flight) language [61].

 71

As mentioned before, the CP ontology contains workflow, and it captures the

workflow elements by providing different classes. We list the relationships between the

workflow constructs in CP and BPMN ontologies in Table 4.1.

WORKFLOW CONSTRUCTS

CP Ontology BPMN Ontology

Clinical_Guideline Business_Process_Diagram

Branch_Step, Syn_Step Parallel_Gateway

Loop_Step Standard_Loop_Activity

Decision_Step Event_Based_Execlusive_Gateway,
Data_Based_Exclusive_Gateway

Action_Step, Intervention_Step User_Task

first_step, next_step,
next_step_when_loop_ends, branching_steps

Sequence_Flow, sequence_flow_source_ref,
sequence_flow_target_ref

inclusion_critera, exclusion_criteria Start_Event, Conditional_Event_Detail

decision_options, treatment_options has_gateway_gate,
has_sequence_flow_condition_expression

Condition Condition, has_condition_expression

Data_Element InputSet, OutputSet

Date_Time, Duration Time_Date_Expression

Schedule Timer_Intermediate_Event

Notification Message_Intermediate_Event, Message

Table 4.1 The mapping between the workflow constructs in CP ontology and BPMN

ontology

In the next section, we provide an introduction to ontology mapping, listing some

of the matching techniques, and then we continue with an overview of some tools for

ontology merging or mapping.

 72

4.4 AN INTRODUCTION TO ONTOLOGY MAPPING

Ontology mapping [65,66,67] involves finding syntactic and semantic relationships

between entities of different ontologies, and documenting semantic relations, mapping or

correspondences using formal semantic mapping expressions (Figure 4.4 [67]).

There are different definitions for ontology mapping; in [65] ontology mapping is

defined as finding correspondences that are similar in meaning but have different

structures or name. Another definition in [66] states that ontology mapping tries to relate

the elements of two given ontologies based on their structure and intended

interpretations.

In our work, we consider the following definition for ontology mapping [67]:

“Given two ontologies OS and OT, mapping from ontology OS to another OT means for

each entity in ontology OS, we try to find a corresponding entity, which has the same

intended meaning in ontology OT”.

Figure 4.4 Ontology mapping steps [67]

 73

The output of an ontology mapping exercise leads to the following [68]:

 The translation of the source ontology to the target ontology. The translation

approaches specify ontologies in a standard form and translate them into a

specific representation language [99]. An existing system such as Ontolingua [99]

defines classes, properties, theories and functions. It translates definitions that are

provided in a standard language into the forms that are required as the input for

the other implemented representation system. In addition Dejing [101] uses first-

order logic axioms to provide translation between ontologies; we provide an

example of their work here: Ontology G1 has two properties wife and married,

and G2 has the partner and in_marriage properties. There is a first order logic

axiom that describes the relationship between the domain and range (properties

link instances from the domain to instances from the range [64]) of has_wife and

has_married properties.

 are variables that represent woman and man respectively. The facts that

are expressed in G1 can be translated into G2 by replacing corresponding

properties:

If we translate the axiom of G1 to G2, we have:

However, it’s not always true, since a woman is a partner of a man doesn’t mean

that she must be in marriage with him.

 74

 The merging of the two ontologies to create a new ontology; two given ontologies

will be merged to a new third ontology. Prompt is a tool that supports the merging

of two ontologies through ontology mapping [70]. We will provide an overview

of Prompt later in this chapter.

 Ontology mapping can be represented by providing axioms to relate the elements

of one ontology to the elements of another ontology [68], such as the MAFRA

framework [79] that uses a semantic bridging ontology for encoding mapping, and

an instance of this ontology includes semantic bridge instances to map an instance

of the source entity to the instance of the target entity. For instance

<ConceptBridge rdf:ID="Individual-Man">

 <relatesSourceEntity rdf:resource="#user_task"/>
 <relatesTargetEntity rdf:resource="#diagnosis"/>
</ConceptBridge>

OWL itself provides tools to create axioms between entities. An example between

two entities could be:

<rdf:RDF>
<owl:ontology>

<owl:imports rdf:resource="http://www.axiom.com/ont1"/>
<owl:imports rdf:resource="http://www.axiom.com/ont2"/>

</owl:Ontology>
<owl:Class rdf:about="http://www.axiom.com/ont1#user_task">

<owl:equivalentClass
rdf:resource="http://www.axiom.com/ont2#admission"/>
</owl:Class>
</rdf:RDF>

Shvaiko [100] provides a formalism to describe a mapping relationship. Their

formalism is defined as a five-tuple , where:

• is the unique identifier for a given mapping relation.

 75

• are the entities (classes or properties) in the source and target

ontology respectively.

• is a mathematical confidence measure for the mapping relation between

.

• is the relation between the entities (e.g. equivalence , more

general , disjoint , overlapping))

The ontology mapping expresses the mapping relations by providing a

representation language. Ontology representation languages provide more effective

representation solutions for ontology mapping, since the ontology is expressive itself

[69].

The mapping language specifies the actual mappings and the main goal of ontology

mapping representation language [71] is to express a mapping relation. Therefore the

expressivity of the mapping languages (the type of relations that can be expressed

between the two ontology) is an important characteristic of these languages.

Two important tasks have to be accomplished in an ontology mapping process [68]:

First we have to find the similarities and relationships between entities of two given

ontologies and then we have to describe and represent the mappings relations between

two ontologies in a standard mapping representation language.

 76

4.5 MAPPING TECHNIQUES

There are several techniques to find similarities between entities of two ontologies,

and to establish a semantic mapping between them [74,75,76]. We present some of these

basic ontology-mapping techniques here.

4.5.1 Terminological Techniques

These techniques [74,75] calculate the similarity between text strings, which are a

sequence of letters. There are two types of terminological techniques [74]:

String-based techniques compare the structure of text strings. A string is a

sequence of letters, a set of words or a set of letters. These techniques don’t consider the

semantic of terms. An example of these techniques is the two terms Book and Textbook

would have high degree of similarity, whereas Book and Paper have low degree of

similarity.

These techniques are not strong enough and using these techniques in the mapping

process alone is not enough. The following examples illustrate the weakness of these

techniques.

The two terms Person and Personality have high degree of similarity since the text

strings are quite similar, although they have different meanings. In another example the

two terms Drug and Medicine are very distinct from each other, although the semantic

concepts are generally the same.

Language-based techniques are based on Natural Language Processing (NLP) and

are more complex than the previous technique. In these techniques strings are not treated

as a sequence of characters, they are treated as a text. These techniques compare the

 77

meaningful terms from the text and find the similarity between them.

Language-based techniques can be classified as intrinsic methods, which rely on

algorithms only and extrinsic methods use external resources such as dictionaries to find

the similarity between the terms [75].

Intrinsic methods reduce each term to a standardized form that can be easily

understood; they find similarities between terms that have syntactical variations.

Extrinsic methods use external resources such as dictionaries to find the similarity

between lexical variations for a term, for example the two words Physician and Doctor

have the same meaning [75].

4.5.2 Structural Techniques

The structural techniques will compare the structure of elements (e.g. classes) in

ontologies. They can either compare the internal structure of elements, such as properties

or cardinality, which is called internal structure or they can compare the relationship of

each element with other elements, which is called external structure [74].

Internal Structure [74] techniques compare the properties, attributes, relations and

cardinality of elements. For instance if one ontology O1 has an element Text with two

attributes (Name.String, DateOfPublish.Date) and ontology O2 has an element Manual

with two attributes (ManualName.String, DateOfRelease.Date), these techniques will

give a very high similarity for these two elements, since the data types of these two

attributes in the two elements are the same.

These techniques are easy to implement but they are not correct all the time. Two

elements with different concepts may have properties that have the same data types, or

properties of two elements may have different data types. For instance if one ontology O1

 78

has an element Person with two attributes (Name.String, DateOfBirth.Date) and ontology

O2 has an element Car with two attributes (Name.String, ModelDate.Date), the internal

structure techniques will suggest that these two elements are similar. However, they have

different semantics.

External Structure [74] techniques are based on the relationship of an element

with other elements. The external structure method suggests that if two entities are

similar, then there could be some similarity with their adjacent entities. Ontology is

considered as a graph, in which each node is an element and edges specify the relations

between nodes and are labeled by a name.

4.5.3 Extensional Techniques

These techniques [74,75] compare the instances of two elements (class). These

techniques match two elements when they have the same set of instances. These

techniques are useful when there is not enough information about the concept, but the

concepts have some instances. For instance if one ontology O1 has an element Car with

two instances (Audi and BMW) and ontology O2 has an element Vehicle with the same

instances (Audi and BMW), then these techniques will suggest these two entities are

similar by comparing all the instances.

4.5.4 Semantic Techniques

These techniques [74,75,76] match elements in the ontologies based on their

semantic interpretation. These methods justify their results based on the theoretical

models [75]. An example of these techniques is based on Description Logics.

 79

Semantic techniques based on Description Logic (DL): According to [74] in

these techniques, provide the necessary expressivity to matches concepts in a semantic

manner. The relation can be described with respect to the subsumption test, which

establishes the relations between the concepts in a semantic manner. For instance if

ontology O1 has three entities (University, College, and Department) and University is a

College with more than 10 Departments and ontology O2 has three entities (Academy,

Institution, Building) and Academy is Institution with more than 6 Buildings. It is also

declared that College is equivalent to Institution and all Buildings are Departments, then

these techniques will suggest that University is equivalent to Academy.

In this section, we listed the basic techniques for finding similarities between

entities based on terminological, structural, extensional and semantic methods. However,

not all of these techniques are equally applicable to any domain, the best technique is to

find the appropriate combination of these techniques for a selected domain.

4.6 TOOLS AND FRAMEWORKS

In this section, we provide an overview of some tools for ontology mapping that

creates mapping relations between two given ontologies, and ontology merging that

merges two given ontologies into one target ontology. The details of these tools are out of

the scope of this study.

4.6.1 PROMPT

The PROMPT suite [77] includes a set of tools to merge ontologies, align

ontologies and versioning of ontologies. It has an interactive process to merge ontologies,

 80

and a user makes many decisions. PROMPT either performs additional actions based on

the users choices or provides a new set of suggestions. It can identify inconsistencies and

conflicts between ontologies after performing updates.

The components of PROMPT suit are developed as plug-ins of Protégé [64]. These

components are [77]:

 PROMPT or iPrompt is a merging tool, which provides suggestions for merging

the elements. It gets two ontologies O1 and O2 as input, and creates a new merged

ontology Om. The merging process is based on the similarity of class names.

Figure 4.5 [77] shows a screenshot of PROMPT. The main window (A) in the

background shows a list of suggestions at the left side and the explanation for the

selected suggestion at the bottom. The right side of the window (B) shows the

merged ontology. The front screen (C) shows the two source ontologies side by

side.

 81

Figure 4.5 The snapshot of the ontology merging process in Prompt [77]

The PROMPT algorithm defines a set of steps for merging two ontologies, which

are shown in Figure 4.6.

Figure 4.6 The flow of Prompt algorithm [77]

 82

In the first step, the system makes the initial suggestions based on the lexical

similarities, and then the list of suggested merging is shown to the user. In the second

step, the user chooses one of the suggested merging from the list and then the system

performs the merging operation and the additional changes based on the type of the

operation. The system uses the confirmed correspondences from the user and performs

structural analysis based on the structure of ontologies, and then creates a new list of

suggestions. In addition, it states the conflicts from the performed operations and the

possible solutions. An example of these conflicts could be name conflicts, when there is

more than one frame (class, slot, instance) in the merged ontology, for instance we copy

the class WAGE to the merged ontology and then we copy the slot wage that may exist in

the source ontology. There will be a name conflict in the merged ontology. In the last

step, the user responds to the suggestions and after that the next merging suggestion can

be selected from the list [77].

 PROMPTDiff compares the structure of two versions of an ontology to identify

whether there are changes in the frames, in the properties only or frames that have

changed their names and also other parts of their definitions.

 AnchorPROMPT is an alignment tool. It finds relationship between concepts

and provides additional information. It extends PROMPT by finding more

similarities between ontologies, which are not identified by PROMPT. It takes

two pairs of terms as the input in the source ontologies and creates new pairs of

matching terms. The results can be used in PROMPT and provide new

suggestions to the user.

 83

 PROMPTFactor enables users to extract a new ontology from an existing

ontology. The terms of the resulting ontology are well defined, and the algorithm

copies all the terms that are required in order to maintain the semantics of the

descriptions.

The PROMPT is developed as plug-in of the Protégé [64] environment. Protégé

ontology environment has an Open Knowledge Base Connectivity (OKBC) [64]

knowledge model. OKBC is frame based and it has three different types, which are

classes (a set of entities), slots (relations between classes) and instances.

4.6.2 GLUE

GLUE [78] is a system that uses a machine-learning technique to create mappings

between two ontologies. For each concept in the source ontology, it finds the related

concept in the target ontology. GLUE finds one to one mappings between concepts of

ontologies, which can be seen as taxonomies.

GLUE uses two taxonomies [78], in which concepts are referred as nodes, and

edges refers to is-a relationships in the taxonomies. The result is a set of similarity

measures. It identifies the concepts of a given taxonomy that are similar to the concepts

of another taxonomy. It has three modules [78]:

 Distribution Estimator: It takes two taxonomies O1 and O2 and then a machine-

learning technique is applied to calculate the joint probability distributions for

every pair of concepts. It computes four probabilities namely,

For example , is the probability that

an instance belongs to both A and B, or , is the probability that an

 84

instance belongs to A, but not to B.

 Similarity Estimator: A similarity measure such as Jaccard coefficient is applied

to the results of the pervious probabilities. The similarity can be computed

by . The output will be a similarity matrix for the

concepts of two given taxonomies.

 Relaxation Labeler: Searching for the similarity measures that satisfy the domain

constraints in a similarity matrix. A set of similarity measures is the output of

GLUE.

4.6.3 MAFRA

The Mapping FRAmework (MAFRA) [79] is a mapping representation approach. It

has an ontology called the Semantic Bridge Ontology (SBO). An instantiation of this

ontology provides an ontology-mapping document. It provides mapping relations

between concepts and attributes. It can provide conditional mappings as well [80]. The

SBO includes the following concepts [79]:

 The SEMANTIC BRIDGE class states the relations of the source entities to target

entities, based on their types and cardinality. Concepts and properties of the

source ontology map into concepts and properties of the target ontology. Each

bridge has a transformation service that determines the required procedure for

doing this mapping transformation, and in addition the required information that

the user has to provide to the execution engine.

 The class SERVICE provides the resources that are responsible to describe the

transformations. These resources may describe the characteristics of services,

such as name and location for the execution engine.

 85

 The class RULE states the constraints and relevant information for a

transformation.

 The class TRANSFORMATION, which is an obligatory class, specifies the

procedure of the transformation for each semantic bridge, and it uses the inService

relation for linking the procedure to the execution engine.

 The class CONDITION represents the required conditions that should be evaluated

to true, in order to execute a semantic bridge.

 The composition modeling primitive belongs to the SEMANTIC_BRIDGE class by

the hasBridge relation. It allows a semantic bridge to combine various different

bridges, and then to call and process bridge by bridge during the execution of

transformations.

 The alternative modeling primitive is supported by the SEMANTICBRIDEALT

class. It groups multiple mutual exclusive semantic bridges.

 The Lift & Normalization module translates the ontologies into RDF(S) in the

mapping process, and it is a required module for MAFRA. The Lift &

Normalization module defines a uniform representation that normalizes the

ontologies for the mapping process.

The MAFRA maps classes and attributes by providing ConceptBridge and

AttributeBridge (Figure 4.7 [79]).

However, MAFRA does not support mappings between properties and instances

[81], unlike our mapping representation language that provide mapping between

properties and instances.

 86

Figure 4.7 Concept and Attribute Bridge in MAFRA [79]

In this section, we have provided an overview of two tools for ontology mapping.

These tools and other existing tools provide different algorithm to (semi) automatize the

mapping process, they may provide a graphical user interface that allow user to relate the

corresponding entities. However, they may only generate few mappings and each tool

may use different algorithms to generate mapping ontology, and the results are based on

different formats [82]. In the next chapter, we propose a common ontology mapping

representation language that allows the alignment of semantic relations between two

ontologies. We formalize the semantic correspondences between each type of entity

(classes, properties and instances) of our ontologies. We explain our mapping process

that documents the semantic relations between the entities of our two ontologies, and

generates mapping tables. We define different types of constructs to capture the relations

between the entities of our two ontologies.

 87

CHAPTER 5 ONTOLOGY MAPPING

In this chapter we present our work on ontology mapping to establish semantic

interoperability between two ontologies—i.e. the CP ontology and the BPMN ontology.

Clinical Pathways (CP) model the sequence of tasks, constraints, decision points and

actor roles, to perform a specific clinical procedure, based on the operational policies of

the institution [1, 2]. From a business process re-engineering perspective, a CP

encapsulates the workflow about how to conduct a specific healthcare procedure for a

specific disease/outcome in a specific healthcare setting. The intent of our ontology

mapping exercise is to establish an interoperability framework that enables the translation

of clinical workflows to a standard process workflow formalism—semantic

interoperability, therefore, involves the mapping of the clinical concepts to the workflow

concepts such that a clinical workflow can be represented as a process workflow and

executed by a workflow execution engine. We represent clinical workflows using a CP

ontology that outlines the different clinical processes, their properties, constraints and

relationships, and process workflows using a BPMN ontology that contains a semantic

description of BPMN constructs. Ontology mapping, therefore, is the alignment of

semantic relations between the clinical and workflow ontologies such that a clinical

process defined in the CP ontology is mapped to a standard BPMN workflow element in

the BPMN ontology.

To further specialize the BPMN ontology towards clinical workflows, we extended

our BPMN ontology to provide more salient mapping expressions, such that the extended

BPMN ontology is very close to our CP ontology.

 88

In the next chapter, we execute our BPMN-based CP in the Lombardi workflow

engine (developed by IBM), whereby users can view the execution of the CP and make

necessary adjustments to optimize the CP.

Lombardi does not provide the same level of workflow expressiveness and

abstraction as the BPMN specification. BPMN is a much richer workflow representation

formalism. We establish a semantic interoperability between the BPMN and Lombardi

ontologies, to provide a richer specification for the Lombardi constructs. At the end, we

model a number of existing CP using our framework and we will present our results. The

overall ontology-mapping framework is shown in Figure 5.1.

Figure 5.1 The overall ontology-mapping framework

 89

5.1 CP-BPMN ONTOLOGY MAPPING

To achieve ontology mapping, we specify the correspondences between classes,

properties and instances between the candidate ontologies. These correspondences are

based on the terminological technique [74,75] (entity names, labels), for instance the

author property of the CP ontology will be mapped to the

has_business_process_diagram_author property of the BPMN ontology. In addition to

the terminological technique, we specify the correspondences based on the interpretation

of entities [74,75,76] when the labels are not the same. These interpretations are based on

the semantic description of the entities. For instance the range of the first_step property

of the CP ontology will be mapped to the sequence_flow_target_ref property of the

SEQUENCE_FLOW class in the BPMN ontology, and to show that this is a first step in a

workflow, we write a constraint that that the source element of the sequence flow is the

START_EVENT.

 We define a mapping expression language that allows the alignment of relations

between two ontologies—the relations are represented in terms of mapping expressions

(discussed below). The mapping expressions, therefore allow the mapping of a CP to a

business workflow represented using the BPMN modeling language. The mapping

expressions are written in OWL language and exported to the Terse RDF Triple

Language (Turtle) [83] syntax to make them more readable. The mapping expressions are

represented in a mapping ontology—the mapping ontology basically establishes semantic

mappings between the CP and BPMN ontologies, such that the concepts in the mapping

expressions will have their domain and ranges defined as concepts in the CP and BPMN

ontologies.

 90

Our ontology mapping process consists of four steps:

1. Extracting and Analyzing Concepts: First, we extract all the classes, properties

and constraints of both our CP and BPMN ontologies. We list all the classes and

their related properties and constraints to discover the semantic relations. The

domain and range of each property is captured as well. There are existing

constrains, such as timing constraints, scheduling constraints and resource

constraints that are represented in the BPMN ontology and need to be analyzed,

since these constraints can help us later for mapping and encoding purposes. For

instance there is a constraint in the BPMN ontology that after the

EVENT_BASED_GATEWAY (decision by the user), a timer or signal intermediate

event should be appeared, but any object can be connected to a

DATA_BASED_GATEWAY (decision by the system).

2. Mapping Discovery: We discover the mapping relations between the entities

(classes, properties) of our CP and BPMN ontologies. These mappings are based

on the terminological technique [74,75] (entity names, labels), and the

interpretation of entities. These interpretations are based on the semantic

description of the entities [74,75,76,79,80,100]. For instance there is a next_step

property in the CP ontology for going from one step to the next step, and in the

BPMN ontology there is a SEQUENCE_FLOW class that has two properties, which

are the sequence_flow_source_ref and sequence_flow_target_ref properties.

These two properties of the SEQUENCE_FLOW class are used to represent the flow

in a workflow. The domain of the next_step property should be mapped to the

sequence_flow_source_ref property of the SEQUQNCE_FLOW class, and the range

 91

of the next_step property should be mapped to the sequence_flow_target_ref

property of the SEQUENCE_FLOW class in the BPMN ontology. We provide this

mapping later.

We create instances and constraints in our mapping expressions to map a class or

property to another class or property, when the direct mapping is not possible. We

demonstrate this mapping discovery in our mapping tables later.

3. Documenting: After discovering the mapping relations between our CP and

BPMN ontologies, we need to document these relations. We represent our

mapping expressions as a five-tuple [100], where:

• is the unique identifier for the given mapping relation.

• is the type of mapping relation. We define four types of constructs in

our mapping ontology (Class, Property, Class-Property, Property-

Instance). We explain these constructs later.

• are the entities (class, property or instance) in the source and target

ontology respectively.

• is the relation between the entities . (e.g. equivalentClass,

equivalentProperty, equivalentInstance).

4. Consistency Checking: After documenting our mapping expressions, we check the

consistency of our mapping ontology. We export all of our mapping expressions

to an OWL ontology that we call mapping ontology. The CP and BPMN

ontologies will be imported to this mapping ontology as well. The mapping

expressions in this ontology act as the bridges between these two ontologies.

 92

We check the consistency of this mapping ontology, first by using the Pellet

Reasoner in Protégé, and then we model a number of existing CP to a BPMN

based workflow. We make sure that the existing CP can be encoded to the BPMN

ontology, and the control flow patterns and conditions are captured based on our

mapping expressions. After encoding the existing CP in our BPMN ontology, we

check the consistency in Protégé again to make sure that there is no inconsistency

because of the existing constraints in the BPMN ontology. In the case of

inconsistency, we correct the mapping expression and then we repeat this process

again. The output is a consistent mapping ontology.

5.2 CP-BPMN MAPPING EXPRESSIONS

The mapping expressions contains constructs [82] to express relations between the

different entities of the two ontologies:

 Class-to-Class mapping (37 CCmappings): Mapping a class to another class (or

instance of the class).

 Property-to-Property mapping (48 PPmappings): Mapping a property (either

object or data property) to another property (or instance of the property).

 Class-to-Property mapping (6 CPmappings): Mapping between a property and

a class (or instance of the class).

 Property-to-Instance mapping (79 PVmappings): Mapping between a property

and an instance. Unlike the MAFRA framework that does not support mapping

between properties and instances, in our mapping expression language an instance

 93

may be mapped as a value of a target property, or a source property/class may be

mapped to an instance of the target entity.

We provide examples for each of these constructs later. In our mapping expressions

we used a set of OWL properties such as cardinality, union, intersection, and equivalent

(owl:cardinality, owl:UnionOf, owl:IntersectionOf, , owl:equivalent, owl:oneOf). For

instance, we indicate the relation between a class in the CP ontology, which is the same

as another class in the BPMN ontology by the owl:equivalent property (a owl:quivalent

b).

The mapping expressions together with these OWL properties enable the

translation of clinical workflows to the BPMN workflow language. Therefore a defined

clinical process in the CP ontology can be mapped to a standard BPMN workflow

element in the BPMN ontology based on these mapping expressions.

5.2.1 Step 2: Mapping Discovery

We discover the mapping relations between entities (classes, properties) of our CP

and BPMN ontologies. We discover the relationships between entities based on the

terminological technique, and the interpretation of entities when the labels are not the

same [74,75,76,79,80,100], as we have provided examples in the previous section. We

create instances and constraints in our mapping expressions to map a class or property to

another class or property, when the direct mapping is not possible.

For instance as is listed in Table 5.1, to map the NOTIFICATION class of the CP

ontology to the MESSAGE class of the BPMN ontology, we have to write a constraint that

a message intermediate event has a message event detail, and the message event detail

 94

has a message reference property. After writing this constraint, we map the

NOTIFICATION class to the range of the message_reference property, which is the

MESSAGE class.

The mappings between the classes of the CP and BPMN ontologies are listed in

Table 5.1. It can be noted that whilst the CP ontology provides a fine-grained

classification of the ACTION_STEPS (such as ADMISSION_STEP, DIAGNOSTIC_STEP,

etc.), the same is not the case in the BPMN ontology where there is a single high-level

concept USER_TASK.

 95

THE MAPPING BETWEEN THE CLASSES OF CP AND BPMN ONTOLOGIES
CP BPMN

Action_Step User_Task

Admission_Step
Assessment_Step
Diagnostic_Choice_Step
Diagnostic_Step
Education_Step
Notification_Step
Plan_Explication_Step
Schedule_Step
Treatment_Choice_Step
Treatment_Step
Visit_Step

(User_Task) and (BPMN_E. Cat = “Admission_Step”)
(User_Task) and (BPMN_E. Cat = “Assessment_Step”)
(User_Task) and (BPMN_E. Cat = “DiagnosticChoice_Step”)
(User_Task) and (BPMN_E. Cat = “Diagnostic_Step”)
(User_Task) and (BPMN_E. Cat = “Education_Step”)
(User_Task) and (BPMN_E. Cat = “Notification_Step”)
(User_Task) and (BPMN_E. Cat = “Plan_Explication_Step”)
(User_Task) and (BPMN_E. Cat = “Schedule_Step”)
(User_Task) and (BPMN_E. Cat = “Treatment_Choice_Step”)
(User_Task) and (BPMN_E. Cat = “Treatment_Step”)
(User_Task) and (BPMN_E. Cat = “Visit_Step”)

• “Categories” can be for the user-defined semantics.
• Instead of “Categories”, we can use “Documentation” as

well.
• BPMN_Element EquivalentTo Graphical_Element
 Graphical_Element EquivalentTo Flow_Object
 Flow_Object EquivalentTo Activity

Intervention_For_Diagnosis
Diagnostic_Imaging
Group_of_Diagnostic_Process

(User_Task) and (BPMN_E. Cat = “Intervention_Diagnosis”)
(User_Task) and (BPMN_E. Cat= “Diagnosis_Imaging”)
(User_Task) and (BPMN_E. Cat= “GroupDiagnosticProcess”)

Laboratory_Exam
Physical_Exam
Procedure_To_Diagnosis
Intervention_For_Treatment
Procedure_For_Treatment
Prescription
Radiotherapy

(User_Task) and (BPMN_E. Cat =“ Laboratory_Exam”)
(User_Task) and (BPMN_E. Cat =“ Physical_Exam”)
(User_Task) and (BPMN_E. Cat =“ProcedureToDiagnosis”)
(User_Task) and (BPMN_E.Cat=“InterventionForTreatment”)
(User_Task) and (BPMN_E. Cat = “ProcedureForTreatment”)
(User_Task) and (BPMN_E. Cat =“Prescription”)
(User_Task) and (BPMN_E. Cat =“ Radiotherapy”)

Provider_Decision_Step Event_Based_Exclusive_Gateway

System_Decision_Step Data_Based_Exclusive_Gateway

 96

THE MAPPING BETWEEN THE CLASSES OF CP AND BPMN ONTOLOGIES
CP BPMN

Branch_Step

Parallel_Gateway

Sync_Step Parallel_Gateway

Loop_Step (StandardLoop_Activity) and (BPMN_E. Cat = “Loop_Step”)

Data_Element Property

Provider Member

Role Role

Duration
Time_Date_Expression
(Timer_Event_Detail has_timer_event_time_date

Time_Date_Expression)
Decision_Option Gateway has_out_going_gate Gate

(Gate has_gate_outgoing_sequence_flow_ref
Sequence_Flow)

Date_Time Time_Date_Expression

Condition Expression

Notification

Message
Message_Intermediate_Event has_messsage_event_detail

Message_Event_Detail
Message_Event_Detail has_message_event_message_ref

Message
Clinical_Guideline Business_Process_Diagram

Table 5.1 The mapping between the classes of the CP and BPMN ontologies

In Table 5.2, we list some of the relationships between the object properties of the

CP ontology and the BPMN ontology.

 97

THE MAPPING BETWEEN THE PROPERTIES OF CP AND BPMN ONTOLOGIES

OBJECT PROPERTY

DOMAIN RANGE

expected_duration

 (Action_Step or Provider_Decision_Step) Duration

owl:oneOf (User_Task or event_based_gateway) Time_Date_Expression

These two properties should be mapped to the Timer_Intermediate_Event class, if they affect
the task and workflow, and are not only an expression.

Timer_Intermediate_Event has_intermediate_event_target owl:oneOf (User_Task or
event_based_gateway)

Timer_Event_Detail has_timer_event_time_cycle Time_Date_Expression

schedule

(Schedule_Step or Procedure_For_Treatment) Schedule

owl:oneOf ((User_Task and
BPMN_Element.Category=“Schedule_Step”) or

(User_Task and
BPMN_Element.Category=“Procedure_For_Treat

ment”))

Timer_Intermediate_Event

condition_to_go_forward

Sync_Step Condition

Parallel_Gateway

Expression
sequence_flow_condition_expression

Condition
Condition has_expression Expression

DATA PROPERTY

CPG BPMN

Loop_Step Standard_Loop_Activity

iterations has_standard_loop_counter

Clinical_Guideline Business_Process_Diagram

author has_business_process_diagram_author

Table 5.2 The mapping between the properties of the CP and BPMN ontologies. The

blue font indicates that the class or the property belongs to the BPMN
ontology

 98

As can be noted from Table 5.2, we have provided some mappings for our object

and data properties. We map the domain and range of each object/data property of the CP

ontology to the domain and range of another object/data property of the BPMN ontology.

In addition, we map the domain and range of a property to a class of the BPMN ontology.

For instance we map the domain of the expected_duration object property, which can be

either the ACTION_STEP class or the PROVIDER_DECISION_STEP class to the

USER_TASK and EVENT_BASED_GATEWAY classes of the BPMN ontology. We use

OWL:oneOf (User_Task, Event_Based_Gateway) property to indicate that the domain

can be mapped to one of these classes. The range of the expected_duration property,

which is the DURATION class, is mapped to the TIME_DATE_EXPRESSION class of the

BPMN ontology.

We cannot always map the domain and range of each property directly to another

class in BPMN; sometimes we have to create instances and provide some constraints in

our mapping expressions. For instance as is listed in Table 5.2, the range of the

condition_to_go_forward object property, which is the CONDITION class is mapped to

the EXPRESSION class of the BPMN ontology, but first we have to create an instance for

the SEQUENCE_FLOW class and the CONDITION class, and then we write two constraints,

which are the instance of the sequence flow has a condition (instance) and the condition

has an expression. These two constraints enable us to map the CONDITION class to the

EXPRESSION class, and to provide the semantic description that this mapped expression

belongs to the condition of a sequence flow.

These mapping expressions develop a high-level semantic mapping between the CP

ontology and the BPMN ontology. It allows the alignment of semantic relations between

 99

two ontologies and thus ensures that a clinical process defined in the CP ontology is

mapped to a standard BPMN workflow element. In the next section, we provide some

examples from our mapping expressions that we have documented.

5.2.2 Step 3: Documenting the Mappings

After discovering the mapping relations between our CP and BPMN ontologies, we

need to document these mappings. As mentioned before, we write these mappings in a

text file and then we export this file to an ontology, which we call it mapping ontology.

To document our mappings, first of all we have defined four types of constructs, which

we have explained before (ClassMapping, PropertyMapping, ClassPropertyMapping,

PropertyInstanceMapping), and our mapping expression can be formalized as a five-tuple

 [100], where is the unique identifier for the given mapping relation,

 is the type of a mapping relation (or the type of construct), are the entities (class,

property or instance) in the source and target ontology respectively and is the relation

between the entities . (e.g. equivalentClass, equivalentProperty, equivalentInstance).

5.2.2.1 Class-Class Mapping

In the Class-Class mapping, we map a class directly to another class or an instance

of a class. For instance, in our mapping ontology, the ACTION_STEPS (the second row of

Table 5.1) or the INTERVENTION_STEPS (the third row of Table 5.1) will be mapped to

the USER_TASK class of the BPMN ontology.

 100

The mapping is done in the following way:

 The USER_TASK is a BPMN_ELEMENT, so it inherits all of its properties.

 Each BPMN_ELEMENT has a has_category object property with the range of the

CATEGORY class, and the CATEGORY has a name data property with the string

data type.

 Each ACTION_STEPS or INTERVENTION_STEPS is a USER_TASK class and can be

mapped to it. However, in order to differentiate the action steps (e.g. admission,

diagnosis, assessment etc.) from each other, we create an instance for the

USER_TASK class and then we map the action/intervention steps to these

instances (e.g. ADMISSION_STEP to the Adm_Instance of the USER_TASK).

 Each instance of the USER_TASK class has a category property and its value is the

name of the ACTION/INTERVENTION_STEP. Figure 5.2 shows the actual mapping

for the ADMISSION_STEP.

 101

Figure 5.2 The actual class-class mapping for the ADMISSION_STEP to the instance of

the USER_TASK class

In another example for the class-class mapping, we map the

PROVIDER_DECISION_STEP class of the CP ontology to the EVENT_BASED_GATEWAY

class of the BPMN ontology and the SYSTEM_DECISION_STEP class to the

DATA_BASED_GATEWAY class. The mapping is a direct class-to-class mapping, and

there is no need to create any instances or constraints. We map the

PROVIDER_DECISION_STEP class of the CP ontology to the EVENT_BASED_GATEWAY

class of the BPMN ontology, since the value of the condition property for the

 102

EVENT_BASED_GATEWAY by default is ‘none’, and it means that there is no condition

and the provider has to make a decision, and we map the SYSTEM_DECISION_STEP class

of the CP ontology to the DATA_BASED_GATEWAY class of the BPMN ontology, since

there is a constraint in the BPMN ontology such that we have to specify a condition for

the DATA_BASED_GATEWAY. The actual mapping is shown in Figure 5.3.

Figure 5.3 The actual class-class mapping for the provider and system decision steps to

the event and data based exclusive gateways

 103

The differences between the DATA_BASED_GATEWAY and EVENT_BASED_GATEWAY

are:

 The decision for the DATA_BASED_GATEWAY is made by the system according

to a set of data. For the EVENT_BASED_GATEWAY, the provider makes the

decision and there is no data.

 For the EVENT_BASED_GATEWAY, the condition of the sequence flow is set to

‘none’, but for the DATA_BASED_GATEWAY we have to specify a condition.

 The alternatives of the EVENT_BASED_GATEWAY are based on an event that

occurs at the point in the process. There is a construct in the BPMN ontology that

after an EVENT_BASED_GATEWAY, the next object should be either a timer or

signal intermediate event, but any object can be connected to a

DATA_BASED_GATEWAY. In our study for modeling a CP to a BPMN based

workflow, this construct is demonstrated as the system waits for a certain amount

of time to receive a response from the provider. The response can be a yes or no

message that determines which path should be taken (Figure 5.4).

Figure 5.4 The EVENT_BASED_GATEWAY construct

 104

5.2.2.2 Property-Property Mapping

The previous mappings (Figure 5.2, Figure 5.3) were the class-class mappings, now

we provide examples for the property-property mapping.

We map the data properties directly to each other, the domain and range of the data

properties are mapped before, in the class-to-class mappings; we only specify to what

class the data property belongs. The mappings for data properties are the simplest type of

mapping, and they are different from the object property or class mappings.

We only map a data property to another data property. However, in class-class

mapping, we may have to create instances or constructs before mapping a class to another

class, as the provided examples in the previous section.

The mappings for the object properties are different from the mapping of the data

properties. We always cannot map an object property directly to another object property,

since each object property in the CP ontology has a domain and range, which are

different from the domain and range of the object property in the BPMN ontology.

Therefore we have to map the domain and range of each object property in the CP

ontology to the domain and range of an object property in the BPMN ontology. We

provide an example later.

Figure 5.5 illustrates a data property mapping. It provides the actual mapping of the

author property of the CLINICAL_GUIDELINE class of the CP ontology, to the

has_business_process_diagram_author property of the BUSINESS_PROCESS_DIAGRAM

class of the BPMN ontology. We map data properties directly to each other. In this

example the author property can be mapped directly to the

 105

has_business_diagram_author, which is a data property of the

BUSINESS_PROCESS_DIAGRAM class of the BPMN ontology.

Figure 5.5 The actual property-property mapping for the author property to the

has_business_process_diagram_author property

In another example for the property-property mapping, we map the

date_time_format and date_time_value, data properties of the DATE_TIME class of the

CP ontology to the data properties of the TIMES_DATE_EXPRESSION class, which are

has_expression_expression_language and has_expression_expression_body. The actual

mappings are shown in Figure 5.6.

 106

Figure 5.6 The actual property-property mapping for the properties of the DATE_TIME
class of the CP ontology

 107

The next mapping (Figure 5.7) will map the domain and range of the

condition_to_go_forward object property to the related classes in the BPMN ontology.

The mapping is done in the following way:

 The domain of the condition_to_go_forward object property is the SYNC_STEP

class and the range is the CONDITION class. We have mapped the SYNC_STEP and

the CONDITION class to the PARALLEL_GATEWAY and EXPRESSION class before

in our class-class mapping. However, this is an object property mapping and we

want to specify how this object property can be mapped to the BPMN ontology.

 In order to do this mapping, we need to create instances and constructs in our

mapping expression. We create instances for the PARALLEL_GATEWAY

(pg_syns), GATE (pg_gate), SEQUENCE_FLOW (pg_sf) and EXPRESSION (pg_ex)

classes of the BPMN ontology. We also have to write the following constructs as

well:

:pg_syns bpmn:has_gateway_gate (:pg_gate [owl:cardinality "synGateCounter"])

:pg_gate bpmn:has_gate_outgoing_sequence_flow_ref :pg_sf .

:pg_sf bpmn:has_sequence_flow_condition_expression :pg_ex .

We specify that a parallel gateway has a number of gates by using the

owl:cardinality property, and each gate has an outgoing sequence flow ref and

each sequence flow has a condition expression.

 We map the domain of the condition_to_go_forward property to the instance of

PARALLEL_GATEWAY class (pg_syns) and the range to the instance of the

EXPRESSION class (pg_ex). The provided constructs provide the semantic

descriptions that this expression belongs to an outgoing sequence flow from a gate

of a parallel gateway.

 108

Figure 5.7 The actual property-property mapping for the domain and range of the

condition_to_go_forward

 109

5.2.2.3 Class-Property Mapping

The next mapping (Figure 5.8) will map the next_step object property of the CP

ontology to the SEQUENCE_FLOW class of the BPMN ontology. This is a class-property

mapping, since the next_step is an object property in the CP ontology and the

SEQUENCE_FLOW is a class in the BPMN ontology. The mapping is done in the

following way:

 There is a SEQUENCE_FLOW class in BPMN ontology. Each SEQUENCE_FLOW

class has two object properties, which are has_sequence_flow_source_ref and

has_sequence_flow_target_ref.

 The range of the has_sequence_flow_source_ref is an object, which is the source

of the flow and the range of the has_sequence_flow_target_ref is an object, which

is the target of the flow.

 We map the domain of the next_step property to the

has_sequence_flow_source_ref property of the SEQUENCE_FLOW class and the

range of the next_step property to the has_sequence_flow_target_ref property of

the SEQUENCE_FLOW class (Figure 5.9).

Figure 5.8 Mapping the next_step property to the SEQUENCE_FLOW class

 110

Figure 5.9 The actual property-class mapping for the next_step property to the

SEQUENCE_FLOW class

 111

5.2.2.4 Property-Instance Mapping

An example of property-instance mapping (Figure 5.10), maps the branching_steps

property to the instance of the PARALLEL_GATEWAY class. The mapping is done in the

following way:

 The domain of the branching_steps property is the BRANCHING_STEP class and

its range is the next activity.

 The Parallel_Gateway class has a property, which is has_gateway_gate_property

and its range is the GATE class. The GATE class indicates the options after a

gateway, for example a Yes gate and No gate. We indicate the number of gates by

using the owl:cardinality property. The value of this property is a variable (e.g.

branchCounter) that should be calculated during the execution.

 We create an instance for the PARALLEL_GATEWAY (PG), Gate (GA) and

SEQUENCE_FLOW (SF) classes, and then we write these constructs in the

mapping file:

PG has_gateway_gate (GA [owl:cardinality “branchCounter”])

 GA has_gate_outgoing_sequence_flow_ref SF

Each parallel gateway has a number of gates (or options) and each gate has an

outgoing sequence flow reference. This SEQUENCE_FLOW class has a

sequence_flow_source_ref property, with the range of the GATE class, and a

sequence_flow_target_ref property, with the range of the next activity.

 We map the domain of the branching_steps property to PG (the instance of

parallel gateway). The range of branching_steps, which is the next activity, will

 112

be mapped to the has_sequence_flow_target_ref property of the SF (instance of

the SEQUENCE_FLOW class).

Figure 5.10 Mapping the branching_steps property to the PARALLEL_GATEWAY class

As is shown in the Figure 5.9, the SEQUENCE_FLOW has a condition property,

which by default is ‘none’ for the parallel gateway. In the case of data- or event-based

gateway, we can set a condition in each sequence flow by using the has_condition

property, with the range of the EXPRESSION class. The actual mapping is shown in Figure

5.11.

 113

Figure 5.11 The actual property-instance mapping for the BRANCHING_STEP to the

PARALLEL_GATEWAY class

 114

In the last example we provide another property-instance mapping for the domain

and range of the acceptable_duration_of_results property of the CP ontology to the

BPMN ontology. The mapping is done in the following way:

 The domain of the acceptable_duration_of_results is the ACTION_STEP class. As

mentioned earlier the ACTION_STEP class can be mapped to the USER_TASK

class of the BPMN ontology.

 The range of the acceptable_duration_of_results is the DURATION class of the CP

ontology. The DURATION class can be mapped to the TIME_DATE_EXPRESSION

class of the BPMN ontology.

 In BPMN, a TIMER_INTERMEDIATE_EVENT can be attached to the USER_TASK

class with the has_intermediate_event_target object property. The range of this

property is the USER_TASK class.

 Each TIMER_INTERMEDIATE_EVENT has a trigger property, which may define

the details of this event, such as time and date.

 We create an instance for the TIMER_INTERMEDIATE_EVENT (TIE),

TIMER_EVENT_DETAIL (TED), TIME_DATE_EXPRESSION (TDE) and the

USER_TASK (UT) class. These instances will enable us to write the following

expressions in our mapping ontology.

 :TIE bpmn:has_intermediate_event_trigger :TED .
 :TIE bpmn:has_intermediate_event_target :UT .

 :TED bpmn:has_timer_event_time_date :TDE .

 After writing these expressions, we map the domain (ACTION_STEP) of the

acceptable_duration_of_results property to the UT instance, and the range

(DURATION) to the TDE instance. The actual mapping is shown in Figure 5.12.

 115

Figure 5.12 The actual property-instance mapping for the acceptable_duration_of_results
to the instances of the USER_TASK and the TIME_DATE_EXPRESSION class
of the BPMN ontology

 116

In this section we described the ontology mapping process to establish a semantic

interoperability between the CP and BPMN ontologies. We demonstrated through

examples how the mapping ontology was achieved through a range of the mapping

expressions developed by us. This ontology mapping ensures that a clinical process

defined in the CP ontology is mapped to a standard BPMN workflow element. We would

like to point out that after establishing the mapping, we then encoded six different CP in

the BPMN ontologies by using our mapping expressions (discussed in detail later in

Chapter 6).

5.2.3 Step 4: Consistency Checking and the Output

After documenting our mapping expressions, we check the consistency of our

mapping ontology. We export all of our mapping expressions to an OWL ontology that

we call mapping ontology. This mapping ontology includes the CP and BPMN ontologies

as well. Our mapping expressions act as the bridges between these two ontologies and

link the classes and properties of our mapping expressions to the classes and properties of

the CP and BPMN ontologies.

The consistency of this mapping ontology, is checked by using the Pellet Reasoner

in Protégé, and by modeling a number of existing CP to a BPMN based workflow to

make sure that the existing CP can be modeled to a BPMN based workflow based on our

mapping expressions. We make sure that the existing CP can be encoded to the BPMN

ontology, and the control flow patterns and conditions are captured based on our mapping

expressions.

We considered six already encoded CP in the CP ontology. Each CP is modeled as

an instance of the CLINICAL_GUIDELINE class in the ontology and it has a goal. To relate

 117

this instance to our BPMN ontology, first we created an instance of the

BUSINESS_PROCESS_DIAGRAM class in the BPMN ontology, and then an instance of the

CLINICALPATHWAY class and the has_business_process_diagram property. Each

clinical pathway has a business process diagram. We provide the details of this encoding

later in Chapter 7.

After encoding existing CP in our BPMN ontology, we check the consistency in

Protégé again to make sure that there is no inconsistency. In the case of an inconsistency,

we correct the mapping and then we repeat this process again.

After checking the consistency of our mapping expressions, we have a mapping

ontology. This mapping ontology is consistent, and it contains a set of expressions that

allow the alignment of semantic relations between two ontologies and thus ensures that a

clinical process defined in the CP ontology is mapped to a standard BPMN workflow

element.

5.3 EXTENDED BPMN ONTOLOGY

The CP ontology provides a fine-grained classification of the ACTION_STEPS (such

as admission step, diagnostic step, etc), the same is not the case in the BPMN ontology

where there is a single high-level concept USER_TASK. The specialized ACTION_STEPS

described in the CP ontology are therefore mapped as instances of the concept

USER_TASK.

 To differentiate the instances of the USER_TASK class from each other, we use the

BPMN_ELEMENT class and its category data property of the BPMN ontology. We write

a constraint that an instance of the USER_TASK is equivalent to an instance of the

 118

BPMN_ELEMENT, and the instance of the BPMN_ELEMENT has a category data

property (string data type), and the range of this property (category) is the name of the

action step (such as admission step, diagnostic step, etc.). However, it is not the best way,

since we have a lot of instances in our mapping expressions that are not that useful, the

only purpose they have is to differentiate the created instances from each other.

We extended our BPMN ontology to provide more significant mapping

expressions, such that the extended BPMN ontology is very close to our CP ontology.

We copied all the ACTION/INTERVENTION_STEPS with all of their properties to our

BPMN ontology as the subclasses of the USER_TASK class (Figure 5.13). We now map

each step directly to the corresponding step and there is no need to create the instances

anymore. The actual mapping is shown in the Figure 5.14.

Figure 5.13 Copying the subclasses of the ACTION_STEPS to the subclasses of the

USER_TASK class (only some of the subclasses are shown here)

 119

Figure 5.14 The actual class-class mapping for the subclasses of the ACTION_STEPS to
the subclasses of the USER_TASK class

In this chapter, we presented our work on ontology mapping to establish semantic

interoperability between two ontologies (the CP ontology and the BPMN ontology).

The intent of our ontology mapping exercise was to establish an interoperability

framework that enables the translation of clinical workflows to a standard process

workflow formalism—semantic interoperability, therefore, involves the mapping of

clinical workflows concepts to workflow concepts such that a clinical workflow can be

represented as a process workflow.

To achieve ontology mapping, we specified the correspondences between classes,

properties and instances between the candidate ontologies. We defined four steps in our

ontology mapping process, which were extracting and analyzing concepts, mapping

discovery, documenting and consistency checking. By processing these four steps, we

 120

achieved a mapping ontology that includes a set of mappings between the concepts of our

CP and BPMN ontologies.

In the next chapter, we execute our BPMN-based CP in the Lombardi workflow

engine (developed by IBM), whereby users can view the execution of the CP and make

necessary adjustments to optimize the CP.

 121

CHAPTER 6 MODELING AND EXECUTION OF CP IN

LOMBARDI

In this chapter we explain our work pertaining to the modeling and execution of CP that

are modeled and executed in Lombardi, a modeling tool from IBM. It is important to note

that Lombardi is a tool and not a workflow language, and it is not based on the BPMN

specification. It only provides a few constructs for modeling and executing business

process. BPMN is a rich workflow representation formalism.

In order to represent our BPMN-based CP in terms of Lombardi constructs, we need to

define a mapping ontology that establishes semantic mappings between the elements of

Lombardi and BPMN. This mapping ontology represents the Lombardi constructs in

terms of our BPMN ontology, and it will provide a richer specification for the Lombardi

constructs.

This mapping ontology enables us to model our BPMN-based CP model by the Lombardi

constructs. After modeling our BPMN-based CP model in Lombardi, we will execute our

model and it will result to the CP execution.

To provide this mapping ontology, first we need to develop a Lombardi ontology to

systemically describe the Lombardi constructs, and then we establish its semantic

interoperability with the BPMN ontology—note that both ontologies represent workflows

but offer different levels of workflow abstractions in terms of workflow components and

constraints.

 122

6.1 INTRODUCTION TO LOMBARDI

IBM WebSphere Lombardi v.7.1 [7,84] is one of the first BPM tools for modeling

BPMN. It provides an environment to improve business process applications.

Lombardi provides design, simulation, rules definition, process execution and

monitoring functions. The architecture of Lombardi is shown in Figure 6.1 [7]. The

details of these components are out of the scope of this thesis. In this thesis we only use

the Authoring Environment component to design and execute CP.

Figure 6.1 The architecture of IBM WebSphere Lombardi [7]

 123

According to [7], the main components of Lombardi are:

Lombardi Authoring Environment: In the authoring environment, users can

create process models.

The Process Center: It includes Process Center Server and Performance Data

Warehouse. Users can run their process applications and store performance data for

testing.

Process Center Console: The applications that are ready for running and testing,

can be installed by the administrator in the process center console.

Process Portal: End users perform the assigned tasks.

Performance Data Warehouse: The process center server will pass the tracked

data at regular intervals to the performance data warehouse. These data can be used

create for the reporting purposes.

We used the Authoring Environment to design CP. The constructs that are available

in this environment are shown in Figure 6.2 [7]. The BPMN ontology provides a much

richer workflow representation formalism than Lombardi.

 124

Figure 6.2 The constructs of Lombardi [7]

6.2 LOMBARDI ONTOLOGY

We create an ontology to semantically describe the elements of Lombardi so that

they are interoperable with other workflow ontologies. We model a number of existing

CP to a Lombardi based workflow by providing this ontology. We use some visualization

plug-ins in Protégé such as OntoGraph [85] or Jambalaya [86] to visualize this modeling,

and to make it easier to follow the steps as the Lombardi environment. We provide an

example of these encodings in Chapter 7.

The Lombardi ontology is in OWL language, and it has 56 classes, 40 object

properties and 25 data properties. The classes and some of the subclasses of the Lombardi

ontology are shown in Figure 6.3.

 125

To create an ontology for Lombardi, first we classified all the constructs of

Lombardi. We categorized these constructs by their intended purposes and labels. We use

the same structure as our BPMN ontology.

For instance, Lombardi has different events such as intermediate tracking event,

start message event, end event, etc. We created an EVENT class in our Lombardi

ontology, and as in the BPMN ontology we created 3 types of events as the subclasses of

the EVENT class, which are START, INTERMEDIATE and END. We included all of the

events of Lombardi as the subclasses of these classes based on their intended purposes

and labels. For instance the END_EVENT and the END_EXCEPTION_EVENT are under the

END_EVENT class. We created the EVENT_TYPE class to specify the type of the event by

the has_event_type property.

We captured and categorized all of the properties that are available for these

elements in Lombardi, and then created object and data properties for these elements. For

instance, the MESSAGE_INTERMEDIATE_EVENT has the following properties:

has_message_ref (to specify the body of a message), has_message_condition (we specify

the condition for the event with this property, and when it is evaluated to true the event

will be activated) and has_intermediate_event_target (to which activity it belongs).

The TIMER_EVENT class is an event that can be used for scheduling or delaying an

activity. It has the following properties: has_custom_date (with the range of the

EXPRESSION class to specify the expression for the event) and

has_intermediate_event_target (to which activity it belongs). We used the same

procedure for the gateways, activities, etc.

 126

Lombardi has five different gateways, which are conditional_join_or (merge two or

more paths based on a condition), conditional_split_or (split two paths based on a

condition), decision_gateway_xor (choose one of the several paths based on a condition),

simple_join_and (merge all paths for synchronization) and simple_split_and (branching).

We included all of these gateways under the GATEWAY class. We also created the

GATEWAY_TYPE class to specify the type of the gateway by the has_gateway_type

property. We created object properties for these gateways based on the existing properties

in Lombardi, such as has_gateway_input_set (to specify the input date requirement for a

gateway to make a decision), has_gateway_output_set (the data set, which will produced

or passed to the next element), has_gateway_lane (to specify in which lane, the gateway

is located) and has_out_sequence_flow_ref (the outgoing sequence flow from the

gateway, and as in the BPMN ontology it has three properties, which are

sequence_source_ref, sequence_target_ref and sequence_flow_condition).

There are different types of activities in Lombardi. We included all of these

activities under the ACTIVITY class. However, based on their labels, we created

subclasses for the ACTIVITY class. For instance, HUMAN_SERVICE, RULE_SERVICE and

WEB_SERVICE are all under the LOMBARDI_SERVICE class. We explain these services

later.

 127

Figure 6.3 Lombardi ontology

 128

6.3 BPMN-LOMBARDI ONTOLOGY MAPPING

Lombardi does not provide the same level of workflow expressiveness and

abstraction as the BPMN specification. BPMN is a much richer workflow representation

formalism. We established a semantic interoperability between the BPMN and Lombardi

ontologies.

The ontology mapping specifies the correspondences between classes, properties

and instances between the candidate ontologies.

The procedure for creating the mapping ontology is similar to the ontology

mapping presented in Chapter 5. Ontology mapping is represented through four different

OWL constructs that document the mapping expressions. The constructs are: 46 Class-to-

Class mapping expressions, 57 Property-to-Property (object and data properties) mapping

expressions, 6 Class-to-Property mapping expressions and 2 Property-to-Instance

mapping expressions. The relationships between the classes of the BPMN and Lombardi

ontologies are listed in Table 7.1.

 129

THE MAPPING BETWEEN THE CLASSES OF BPMN AND LOMBARDI ONTOLOGIES

BPMN Lombardi

User Task
Activity
 Lombardi Service
 Human Service

Service Task
Activity
 Lombardi Service
 Web Service

Script Task Activity
 Java Script

Sub Process Activity
 Nested Process

Standard Loop Activity Activity
 Simple Loop

Multi Instance Loop Activity Activity
 Multi Instance Loop

Exclusive Gateway Decision Gateway (XOR) *

Inclusive Gateway Conditional Split (OR)*

Conditional Join (OR)

Parallel Gateway Simple Split (AND)
Simple Join (AND)

Start Event Start Event

Start Event
 has_start_event_trigger
Message Event Detail

Start Message Event

Message Intermediate Event Intermediate Message Event

Error Intermediate Event Intermediate Exception Event

Timer Intermediate Event Timer Event

Cancel Intermediate Event Terminate Event

End Event End Event

 130

THE MAPPING BETWEEN THE CLASSES OF BPMN AND LOMBARDI ONTOLOGIES

BPMN Lombardi

End Event
 has_end_event_trigger
Error Event Detail

End Exception Event

Business Process Diagram Business Process Definition

Assignment Assignment

Condition Expression

Expression Expression

Time Date Expression Expression

Graphical Elements Graphical Elements

Lane Lane

Message Message

Annotation Notes

Participant Participant

Pool Pool

Process Process

Property Property

Role Role

Sequence Flow Sequence Flow

Input Set
 has_input_set_property_input
Property

Input Set

Output Set
 has_output_set_property_output
Property

Output Set

Table 6.1 The mappings between the classes of BPMN and Lombardi ontologies

 131

In the Lombardi ontology, we use Lanes to differentiate the subclasses of the

USER_TASK class (ADMISSION_STEP, ASSESSMENT_STEP, etc.) from each other.

Lanes represent departments within an organization. Lanes separate the events and

activities of each lane (e.g. department, section, step) with the other lanes during the

process execution. In addition a person or a human resource can be assigned to a lane to

hold or to be responsible for all the activities within the lane during the execution [7].

The mapping between the subclasses of the USER_TASK class and the

HUMAN_SERVICE class is done in the following way:

 Each subclass of the USER_TASK class can be mapped to the

HUMAN_SERVICE class of the Lombardi ontology.

 To differentiate these subclasses from each other, we create an instance for the

HUMAN_SERVICE and LANE classes.

 Each instance of the HUMAN_SERVICE class has an activity_lane property,

and its range is the instance of the LANE class.

 Each instance of the LANE class has a lane_name data property, and its value

is the name of the subclass of the USER_TASK class. By these expressions, we

indicate that each step has a lane and the name of the lane is the same as the

name of the step (Figure 6.4). The actual mapping is shown in Figure 6.5.

 132

Figure 6.4 Creating separate lanes for each of the subclasses of the USER_TASK class

Figure 6.5 The actual Class-Class mapping for the ADMISSION_STEP class to the

instance of the HUMAN_SERVICE class

 133

6.4 MODELING CP IN LOMBARDI

We modeled 3 different CP in Lombardi. After modeling each clinical pathway, we

can execute the model by going through from the start event to the end event. The

diagram for the PMRT CP is shown in Figure 6.6 [56], and Figure 6.7 illustrates its

modeling in the Lombardi modeling environment.

Figure 6.6 PMRT CP [56]

 134

Fi
gu

re
 6

.7

 P
M

R
T

C
P

in
 L

om
ba

rd
i

 135

Lombardi constructs:

 Lanes [7] represent departments within an organization. They separate the events

and activities of each lane (e.g. department, section, step) with the other lanes

during the process execution. In addition a person or a human resource can be

assigned to a lane to be responsible for all the activities within the lane during the

execution. Lombardi by default has a system lane. The system lane contains all

the activities that have to be executed by the Lombardi Engine. It will execute all

the created services (such as the rule service or web service) during the execution.

In addition to the system lane, we also added the Participant lane. We include all

the human services (to create interactive services) in this lane. The human

services include coaches (user interface) to interact with the user. For instance, the

INCLUSION_CRITERIA human service in the Participant lane has an interface that

allows the participant (e.g. physician) to specify the inclusion or exclusion criteria

of a guideline.

 Lombardi has three types of variables [7]:

• Private: These variables are local variables and can be only used within

the current process.

• Input: These variables can be passed into the current process. For instance,

we pass these variables to another activity or a gateway.

• Output: these variables can be passed out from the current process to a

parent process.

 136

 Human service [7] is used when you want to create an interaction service. It

contains a coach component that creates an interface. It provides buttons, forms,

fields, etc.

 Rule service [7] is used when you want to specify a condition for a specific

process. A rule service performs the JavaScript expression based on the input

data, and it passes output variables to the next task.

 Lombardi has five different gateways [7] namely Simple Split (the process

follows all available paths), Simple Join (merge several paths into a single path

after the runtime execution of each individual path), Conditional Split (one or

more path can be followed based on conditions that you specify), Conditional Join

(merge several paths into a single path based on a condition) and Decision

Gateway (only one of the several paths can be followed, depending on a

condition).

In each decision/conditional gateway [7] you can specify a condition to

determine, which path has to be followed. The gateway gets an input variable

from the previous task and based on the value of the variable makes a decision. In

the case of simple split (parallel gateway) there is no condition and all paths are

enabled. They can be executed in parallel or sequentially.

 A message intermediate event can be attached to an activity in order to send a

message to an external participant. The settings for sending a message have to be

defined. In addition to the message intermediate event, a timer intermediate event

can be attached to an activity to schedule an activity.

 137

Modeling in Lombardi:

In Lombardi, in addition to the system and provider lanes, we create lanes to

differentiate each Action/Intervention_Step from each other. Each Step has a different

lane; for instance, in Figure 6.7 the pink lane represents the Notification_Step and the

yellow lane represents the Education_Step.

The first activity after the start event in the participant lane (the first lane) is the

Inclusion/Exclusion criteria task. It has a graphical interface that enables the user to

specify the symptoms of a patient (Figure 6.8). After submitting the information, it passes

the data variables to the next task, which is a task with a rule service.

Figure 6.8 Inclusion Criteria interface, designed by a coach component

The rule service (Figure 6.9) performs our specified JavaScript expression based on

the input data from the provider. The result is a Boolean variable that will be passed to a

gateway to check whether the pathway should be continued or not.

 138

Figure 6.9 Rule service component

We use gateways to model the decision options. For instance, the number of lymph

nodes in the PMRT CP is modeled by a gateway. The gateway gets an input variable

from the previous task, which indicates the number of lymph nodes. The gateway

determines which path has to be followed based on the value of the input variable and our

defined decision options in the gateway [Figure 6.10].

Figure 6.10 Decision options in a gateway

 139

We modeled scheduling and messaging by attaching the timer intermediate event

and message intermediate event to an activity respectively. We may specify the settings

for sending a message, or in the case of the timer intermediate event we can delay an

activity before performing the next activity (Figure 6.11).

Figure 6.11 Attaching a message or timer intermediate event to an activity

We execute our pathway after finishing the modeling. It goes step by step and

executes each task. The provider has an ability to monitor the running processes and

tasks. The provider can terminate a process at any time.

In this chapter, we have explained how to model and execute CP in Lombardi, a

modeling tool from IBM. BPMN and Lombardi offer different levels of workflow

abstractions in terms of workflow components and constraints. Lombardi does not

provide the same level of workflow expressiveness and abstraction as the BPMN

specification. BPMN is a much richer workflow representation formalism. In order to

represent CP in Lombardi, first we developed a Lombardi ontology to formalize the

structure of the Lombardi constructs and then we established its semantic interoperability

with the BPMN ontology. We provided mapping expressions between the BPMN and

Lombardi ontologies to express the relations between the Lombardi constructs and

BPMN.

 140

CHAPTER 7 EVALUATION

To evaluate our CPG-BPMN and BPMN-Lombardi mapping expressions, we encoded

six CP in our ontologies. These CP are already encoded in the CP ontology from Shapoor

[56]. We provided an overview of the CP ontology in Chapter 4. Each CP is modeled as

an instance of the CLINICAL_GUIDELINE class in the ontology and it has a goal.

We model a number of existing CP to a BPMN and Lombardi based workflows.

We make sure that the existing CP can be modeled to a BPMN and Lombardi based

workflows based on our mapping expressions. It can be based on the ability to capture the

control flow patterns and conditions.

After encoding the CP to our BPMN and Lombardi ontologies, first we checked the

consistency by the Pellet Reasoner to make sure that there is no inconsistency in the

classes and the domain and range of our properties, and then the resulting encoding of

these CP to our ontologies are verified by the their clinical pathway diagrams and the

existing descriptions in their guidelines.

In addition, we modeled these CP in the Lombardi environment, which allows us to

compare step by step these encodings with the steps of our model in Lombardi. We use

some visualization plug-ins in Protégé such as OntoGraph [85] to visualize this modeling,

and to make it easier to follow the steps of the Lombardi environment.

 141

7.1 THE ENCODED CP IN THE CP ONTOLOGY

We considered six already encoded CP in the CP ontology [87]:

 Diagnosis and treatment of Acute Otitis Media (AOM), aiming to increase the

accuracy of the diagnosis of AOM, and optimizing management of AOM.

 Locoregional Post Mastectomy Radiotherapy (PMRT), aiming to improve

locoregional control, which increases disease-free survival and overall survival.

 Treatment of Cataract in Adults (CAT), aiming to resolve cataract disease.

 Protocol for Macroscopic and Microscopic Urinalysis (UA) aiming to avoid

unnecessary testing in routine cases.

 Dysphagia Care in MND (DCM)

 Treatment of Gallstones in Adults (GALLA)

Each of these CP was encoded separately as an instantiation of the CP ontology

(Figure 7.1) and with the variety of complexity, GALLA being the simplest and PMRT

being the most complex one. The complexity measure is based on the existing control

patterns in the CP. The number of decisions, loops, scheduling and notification events,

demonstrate the complexity measure.

 142

Figure 7.1 The instantiations of the CP ontology

7.2 ENCODING CP IN BPMN AND LOMBARDI ONTOLOGIES

We encoded the mentioned CP in the BPMN ontologies. CPG is modeled as an

instance of CLINICAL_GUIDELINE in the CP ontology. To relate this instance to our

BPMN ontology, first we created an instance of the BUSINESS_PROCESS_DIAGRAM class

in the BPMN ontology, and then an instance of the CLINICALPATHWAY class and the

has_business_process_diagram property.

Each BUSINESS_PROCESS_DIAGRAM has a POOL, and each POOL has a PROCESS.

Each PROCESS has a number of GRAPHICAL_ELEMENTS, which include the

START_EVENT and the END_EVENT. The process starts from the START_EVENT, with a

trigger property to indicate the inclusion/exclusion criteria and a connecting_object

property, with the range of the SEQUENCE_FLOW class (Figure 7.2).

 143

Fi
gu

re
 7

.2
 T

he
 in

iti
al

 p
ar

t o
f P

M
R

T
en

co
di

ng
 in

 th
e

B
PM

N
 o

nt
ol

og
y

 144

We encoded the instantiations of the CP ontology in our Lombardi ontology, which

does not provide the same level of workflow expressiveness and abstraction as the BPMN

specification.

As in the BPMN encoding, we created an instance of the CLINICAL_PATHWAY

class and the has_business_process_diagram property. A main difference is that in the

Lombardi ontology, lanes are used to differentiate the sub-classes of the USER_TASK

class. Each activity has an activty_lane property that determines to which lane the activity

belongs.

In addition in Lombardi there is no trigger property, therefore we cannot model the

inclusion/exclusion criteria in the START_EVENT. In order to include these conditions,

the first task after the START_EVENT is a task (RULE_SERVICE) that includes

inclusion/exclusion criteria and then goes to the next step. The initial part of AOM

encoding in the Lombardi ontology is shown in Figure 7.3.

 145

Fi
gu

re
 7

.3
 T

he
 in

iti
al

 p
ar

t o
f A

O
M

 e
nc

od
in

g
in

 th
e

Lo
m

ba
rd

i o
nt

ol
og

y

 146

In this chapter, we evaluated our CP-BPMN and BPMN-Lombardi mapping

expressions by encoding six CP in our BPMN and Lombardi ontologies. We verified that

the existing CP can be modeled to a BPMN and Lombardi based workflows based on our

mapping expressions by capturing the control flow patterns and conditions. We verified

the resulting encoding of these CP to our ontologies by their clinical pathway diagrams

and the existing descriptions in their guidelines.

After encoding CP in our ontologies, we used the OntoGraph visualization plug-in

in Protégé to visualize our encoding results as well. It gives us the BPMN/Lombardi-

based CP model in a visual format. It provides users a better undertanding of CP, which

are represented as the BPMN language and Lombardi constructs. Our objective is to

compare our BPMN/Lombardi-based CP model, step by step with the CP diagrams to

make sure that: (a) we have represented all of the existing steps in a CP; (b) we have

captured the flow of control and decision steps in a CP. Our evaluation is based on the

completeness of this objective.

 147

CHAPTER 8 CONCLUSION

We have developed a semantic interoperability framework whereby clinical

processes/pathways can be conveniently mapped to business process notations thus

enabling CP to be executed and simulated for adjusting various cost functions.

Our semantic interoperability framework allows healthcare professionals to model a

CP using modeling constructs that they are familiar with, and then we transform their CP

model to a business process model.

The use of ontologies, at both representation and mapping levels, allows for the

semantic description of concepts and their relations, with provisions for semantic

classification of healthcare concepts to ensure the right level of conceptual granularity in

the representation scheme.

We executed our BPMN-based CP in the Lombardi workflow engine, whereby

users can view the execution of the CP and make necessary adjustments to optimize the

CP. However, Lombardi does not provide the same level of workflow expressiveness and

abstraction as the BPMN specification. BPMN is a much richer workflow representation

formalism. Therefore, we established a semantic interoperability between the BPMN and

Lombardi ontologies. The mapping ontology between the BPMN and Lombardi

ontologies provides a richer specification for the Lombardi constructs.

To evaluate our semantic interoperability framework, we modeled a number of

existing CP to a BPMN based workflow—the CP are rendered in a visual format and can

be interactively executed to study and optimize the CP. The semantic description of the

CP tasks ensures that the transformation of a CP to a BPMN workflow maintains the

 148

clinical pragmatics of the CP and that it can be actively connected with health data from

HIS. The graphical notation of the CP enables rapid user feedback and adjustments to

optimize performance metrics. The interactive execution of designed CP allows

determining process bottlenecks, costs, resource requirements and decision options.

Our contributions to this study are:

 We developed a sematic interoperability (mapping ontology) framework between

the CP ontology and the BPMN ontology. In our framework, we defined a

mapping expression language that allows the alignment of relations between two

ontologies—the relations are represented in terms of mapping expressions. The

mapping expressions are represented in a mapping ontology—the mapping

ontology establishes semantic mappings between the CP and BPMN ontologies,

and ensures that a clinical process defined in the CP ontology is mapped to a

standard BPMN workflow element.

 We extended our BPMN ontology to provide more clinically salient mapping

expressions, such that the extended BPMN ontology is very close to our CP

ontology.

 We encoded six clinical pathways in the BPMN ontology to evaluate the mapping

expressions of our mapping ontology.

 We executed our BPMN-based CP in the Lombardi workflow engine, whereby

users can view the execution of the CP and make necessary adjustments to

optimize the CP.

 Since Lombardi provides fewer constructs than BPMN ontology, first we

developed an ontology for Lombardi to formalize the structure of the Lombardi

 149

constructs, and then we established a mapping ontology between the BPMN and

Lombardi ontologies in order to provide a richer specification of concepts for the

Lombardi constructs.

8.1 ENHANCING THE CP ONTOLOGY

We propose some extensions to enhance our CP ontology in order to capture the

more complex workflow structure of the clinical pathways. We propose these extensions

by studying the constructs of the BPMN ontology. The following constructs are shown in

Figure 8.1 as well [24]:

MULTI_INSTANCE_LOOP: In addition to the SIMPLE_LOOP class we can add the

MULTI_INSTANCE_LOOP. The instances of this loop are performed in parallel or

sequentially. It has a numeric_expression property that determines the number of times

that the activity has to be repeated, and it is evaluated only once before starting the

activity.

GROUP: We may group a set of the guideline steps, since they share the same

category.

INPUT_SET AND OUTPUT_SET: We may define a set of data requirements

(variables) for the input or output of a task.

REFERENCE, SERVICE, SEND and RECEIVE tasks: We can reference another task

that has already been defined. A REFERENCE task shares the same behavior of another

task and it shares all the attributes of that task. An action step of the guideline can be a

SERVICE task that provides a service (e.g. Web service). A simple task could be also a

SEND or a RECEIVE task. The SEND task sends a message to an external user and then it

 150

is completed, and the RECEIVE task waits for receiving a message from an external

participant and then it is completed.

PRE_CONDITION and POST_CONDITION: Tasks may have pre-conditions or post-

conditions that should be satisfied before executing a task or proceeding to the next step.

Figure 8.1 Class hierarchy of the new constructs for the domain ontology

8.2 LIMITATIONS AND FUTURE WORK

Apart from the above-mentioned constructs that can be implemented in more detail,

the other major limitations of this study, which can be our future work, are as follows:

 We may develop an execution engine for the BPMN ontology, based on our

mapping ontology.

 In the BPMN ontology, there is no construct to define the outcome of a clinical

guideline, or what happens next in the case of achieving or not achieving the

outcome.

 151

 We may provide additional constructs to capture complex temporal aspects of

tasks. The current BPMN ontology only provides a single time data expression

class for a task, and it doesn’t provide any construct for modeling temporal

aspects, such as start date/time, duration and end date/time.

 Finally, we may add constructs or provide another ontology to capture

information about a situation, which involves the real time processing of

information from an evolving situation in order to understand what is happening,

and to provide a high level reasoning support [91].

 152

BIBLIOGRAPHY

[1] Daniyal, A., Sibte, S. & Abidi, R. Semantic Web-based modeling of Clinical

Pathways using the UML Activity Diagrams and OWL-S. Work 88-99 (2010).

[2] De Bleser, L. et al. Defining pathways. Journal of Nursing Management 14, 553-

563 (2006).

[3] Leong, T.Y., Kaiser, K. & Miksch, S. Free and open source enabling technologies

for patient-centric, guideline-based clinical decision support: a survey. Yearbook of
medical informatics 46, 74-86 (2007).

[4] Cocos C., MacCaulla, W., Kramerb B. and Latzelb M., An Ontology-Based

Approach to Decision Support for Healthcare Workflows. In proceedings of 2nd
Workshop of Ontologies in Biomedicine and Life Sciences, IMISE-REPORT Nr.
2/2010 (September 2010), pp. 13-17.

[5] Aalst, W.M.P.V.D., Barros, A.P., Ter Hofstede, A.H.M. & Kiepuszewski, B.

Advanced Workflow Patterns. Cooperative Information Systems 1901, 18–29
(2000).

[6] Cabral, L., Norton, B. & Domingue, J. The business process modelling ontology.

Management Workshop: Semantic Business Process Management (SBPM 2009) at
European Semantic Web Conference - ESWC 2009, Greece, ACM International
Conference Proceeding Series.

[7] WebSphere Lombardi Edition 7.2.0 Authoring Environment User Guide, IBM,

2010. Available: http://www-01.ibm.com/software/integration/lombardi-
edition/library/documentation

[8] Fox, J., Johns, N. and Rahmanzadeh, A. Disseminating medical knowledge: the

PROforma approach. Artificial Intelligence in Medicine 14, 157-181 (1998).

[9] Sutton, D.R. & Fox, J. The syntax and semantics of the PROforma guideline

modeling language. Journal of the American Medical Informatics Association 10,
433-443 (2003).

[10] Peleg, M. et al. Comparing Computer-interpretable Guideline Models: A Case-

study Approach. Journal of the American Medical Informatics Association 10, 52-
68 (2003).

[11] De Clercq, P.A., Blom, J.A., Hasman, A. & Korsten, H.H. GASTON: an

architecture for the acquisition and execution of clinical guideline-application tasks.
Medical informatics and the Internet in medicine 25, 247-263 (2007).

 153

[12] De Clercq, P.A., Hasman, A., Blom, J.A. & Korsten, H.H. Design and
implementation of a framework to support the development of clinical guidelines.
International Journal of Medical Informatics 64, 285-318 (2001).

[13] Tu, S.W. et al. The SAGE Guideline Model: Achievements and Overview. Journal

of the American Medical Informatics Association 14, 589-598 x2007).

[14] Yan, Y.m Zhibin, J., Dong. Y., Gang, D., A semantics-based clinical pathway
workflow and variance management framework. Service Operations and Logistics,
and Informatics, 2008. IEEE/SOLI 2008. IEEE International Conference on , vol.1,
no., pp.758-763, 12-15 Oct. 2008

[15] ASBRU. Internet: http://www.openclinical.org/gmm_asbru.html [June, 1, 2011].

[16] The Asbru Language. Internet:

http://www.asgaard.tuwien.ac.at/plan_representation/asbru_doc.html [June, 1,
2011].

[17] Miksch, S., Hammermuller, K., Asbru, a Plan-Representing Language Modelling

Time-oriented, Skeletal Plans in Sport. Available:
http://www.ifs.tuwien.ac.at/~silvia/pub/publications/mik_css99.pdf.

[18] Bosse, T., An Interpreter for Clinical Guidelines in Asbru. Master thesis, Vrije

Universiteit Amsterdam, 2001.

[19] Mendling, J. Detection and Prediction of Errors in EPC Business Process Models.

Information Systems Journal 1-491 (2007).

[20] Weske, M. Business Process Management: Concepts, Languages, Architectures.

Process Management 54, 398 (Springer-Verlag New York Inc: 2007).

[21] Business Process with BPEL4WS: Understanding BPEL4WS. Internet:

http://www.ibm.com/developerworks/library/ws-bpelcol1 [June, 3, 2011].

[22] OWL Web Ontology Language. Internet: http://www.w3.org/TR/owl-guide [June,

5, 2011].

[23] Event-driven process chain. Internet: http://en.wikipedia.org/wiki/Event-

driven_process_chain [June, 5, 2011].

[24] Omg, T., Final, O.M.G., Specification, A., Recommendation, T.F.T.F. & Catalog,

O.M.G.S. Business Process Modeling Notation Specification. Management 308
(2006). Available:
http://www.omg.org/bpmn/Documents/OMG_Final_Adopted_BPMN_1-
0_Spec_06-02-01.pdf.

 154

[25] Dumas, M. & Ter Hofstede, A.H.M. UML Activity Diagrams as a Workflow
Specification Language. Intl Conf Unified Modeling Language UML 49, A11
(2001).

[26] Arkin, A. & Pryor, M., Business Process Modeling Language. Intellectual Property

43, 1-67 (2002).

[27] Markovic, I., Semantic Process Modeling. Germany, 2009.

[28] Vanderaalst, W. & Ter Hofstede, A.H.M. YAWL: yet another workflow language.

Information Systems Journal 30, 245-275 (2005).

[29] Petri Nets. Internet: http://www.informatik.uni-hamburg.de/TGI/PetriNets.[June, 8,

2011].

[30] Architecture of Integrated Information Systems. Internet:

http://en.wikipedia.org/wiki/Architecture_of_Integrated_Information_Systems
[June, 8, 2011].

[31] Tsai, A., Wang J., Tepfenhart, W., Rosea, D., EPC Workflow Model to WIFA

Model Conversion, Systems, Man and Cybernetics, 2006. SMC '06. IEEE
International Conference on , vol.4, no., pp.2758-2763, 8-11 Oct. 2006.

[32] BPMN vs. EPC. Internet: http://www.ariscommunity.com/users/ivo/2011-04-11-

bpmn-vs-epc-revisited-part-1 [June, 8, 2011].

[33] Ad, U.M.L. A Notation Evaluation of BPMN and UML Activity Diagrams.

Information Systems Journal (2006).at http://www.soberit.hut.fi/T-86/T-
86.5161/2006/UML_PBMN_Final_Presentation.pdf.

[34] Owen, M. & Raj, J. BPMN and Business Process Management. Business (2003).

[35] Martin, V. & Dustdar, S. A View Based Analysis of Workflow Modeling

Languages. 14th Euromicro International Conference on Parallel Distributed and
NetworkBased Processing PDP06 276-290 (2006).

[36] Recker, J. & Mendling, J. On the Translation between BPMN and BPEL:

Conceptual Mismatch between Process Modeling Languages. CAiSE 2006
Workshop Proceedings Eleventh International Workshop on Exploring Modeling
Methods in Systems Analysis and Design EMMSAD 2006 521-532 (2006).

[37] Business Process Execution Language. Internet:

http://en.wikipedia.org/wiki/Business_Process_Execution_Language [June, 10,
2011].

 155

[38] Which is Simpler: BPMN or BPEL. Internet:
http://www.activevos.com/blog/bpel/bpmn-or-bpel-which-is-simpler/2009/11/19
[June, 10, 2011].

[39] Web Service Description Language. Internet: http://www.w3.org/TR/wsdl [June,

10, 2011].

[40] Abramowicz, W., Filipowska, A., Kaczmarek, M. & Kaczmarek, T. Semantically

enhanced Business Process Modelling Notation. Proceedings of the Workshop on
Semantic Business Process and Product Lifecycle Management SBPM 2007 251,
88-91 (2007).

[41] Number, O.M.G.D. Business Process Model and Notation (BPMN). Business 538

(2011).at http://www.omg.org/spec/BPMN/2.0/PDF.

[42] Seitz, C., Patterns for Semantic Business Process Modeling. Augsburg, 2008.

[43] BPMN Overview. Internet: http://www.bpmnforum.com [June, 20, 2011].

[44] Gruber, T.R. A Translation Approach to Portable Ontology Specifications by A

Translation Approach to Portable Ontology Specifications. Knowledge Creation
Diffusion Utilization 5, 199-220 (1993).

[45] Stevens, R., Goble, C.A. & Bechhofer, S. Ontology-based knowledge

representation for bioinformatics. Briefings in Bioinformatics 1, 398-414 (2000).

[46] W3C. Internet: http://www.w3.org [June, 20, 2011].

[47] Heflin, J. & Hendler, J. A Portrait of the Semantic Web in Action. IEEE Intelligent

Systems 16, 54-59 (2001).

[48] XML. Internet: http://www.w3.org/TR/2000/REC-xml-20001006 [June, 20, 2011].

[49] HTML. Internet: http://en.wikipedia.org/wiki/HTML [June, 20, 2011].

[50] Gasevic, D., Djuric, D. & Devedzic, V. Model Driven Architecture and Ontology

Development. Educational Technology 315 (Springer-Verlag: 2006).

[51] Su, X. & Gulla, J.A. Semantic Enrichment for Ontology Mapping. Natural

Language Processing and Information Systems 217-228 (2004).

[52] RDF. Internet: http://www.w3.org/TR/rdf-schema [June, 20, 2011].

[53] OWL Guide. Internet: http://www.w3.org/TR/2004/REC-owl-guide-20040210

[June, 20, 2011].

 156

[54] Pellet. Internet: http://clarkparsia.com/pellet [June, 20, 2011].

[55] FaCT++. Internet: http://owl.man.ac.uk/factplusplus [June, 20, 2011].

[56] Shayegani, S., Towards Computerization And Merging Of Clinical Practice

Guidelines, Halifax (2007).

[57] Di Francescomarino, C., Ghidini, C., Rospocher, M., Serafini, L. & Tonella, P.

Semantically-aided business process modeling. The Semantic WebISWC 2009
5823, 114-129 (2009).

[58] Di Francescomarino, C., Ghidini, C., Rospocher, M., Serafini, L. & Tonella, P.

Reasoning on semantically annotated processes. ServiceOriented 5346, 132-146
(2008).

[59] Koschmider, A. & Oberweis, A. Ontology Based Business Process Description.

Order A Journal On The Theory Of Ordered Sets And Its Applications 5, 321-333
(2005).

[60] Super Project. Internet: http://www.ip-super.org [July, 10, 2011].

[61] WML Flight. Internet: http://www.w3.org/Submission/WSML/#wsml-flight [July,

10, 2011].

[62] IRIS. Internet: http://www.iris-reasoner.org [July, 10, 2011].

[63] Bruijn, J.D., Lausen, H., Polleres, A. & Fensel, D. The web service modeling

language wsml: An overview. Lecture Notes in Computer Science 4011, 590
(2006).

[64] Horridge, M., Knublauch, H., Rector, A., Stevens, R. & Wroe, C. A Practical Guide

To Building OWL Ontologies using the protege-owl plugin. The University Of
Manchester 27, (2004).

[65] Dou, D., McDermott, D. & Qi, P. Ontology Translation on the Semantic Web.

Science 2, 35-57 (2004).

[66] Calvanese, D., Giacomo, G.D. & Lenzerini, M. Ontology of integration and

integration of ontologies. Description Logics 49, 10-19 (2001).

[67] Tang, J. Multiple strategies detection in ontology mapping. www 5, 1040-1041

(2005).

[68] Marques, D., A Survey of Recent Research in Ontology Mapping. School of

Interactive Arts & Technology, (2005).

 157

[69] Yang, K., Steele, R., A Framework for Ontology Mapping for the Semantic Web,
NSW Australia (2007)

[70] PROMPT. Internet: http://protege.stanford.edu/plugins/prompt/prompt.html [July,

16, 2011].

[71] Thomas, H., Sullivan, D.O. & Brennan, R. Ontology Mapping Representations: a

Pragmatic Evaluation. Management 228-232 (2009).

[72] Noy, N.F. Semantic integration: a survey of ontology-based approaches. ACM

Sigmod Record 33, 65-70 (2004).

[73] Madhavan, J., Bernstein, P.A., Domingos, P. & Halevy, A.Y. Representing and

Reasoning about Mappings between Domain Models. Artificial Intelligence 80-86
(2002).

[74] Euzenat, J. & Shvaiko, P. Ontology matching. booksgooglecom 333 Springer,

(2007).

[75] Romero, M., Naya, J., Loureiro, J., Ezquerra, N., Ontology Alignment Techniques.

IGI Global, (2008).

[76] Euzenat, J. & Valtchev, P. Similarity-based ontology alignment in OWL-Lite.

Processing 333-337 (2004).

[77] Noy, N.F. & Musen, M.A. The PROMPT suite: interactive tools for ontology

merging and mapping. International Journal of Human-Computer Studies 59, 983-
1024 (2003).

[78] Doan, A., Madhavan, J., Domingos, P. & Halevy, A. Ontology matching: A

machine learning approach. Science 1-20 (2004)

[79] Maedche, A., Motik, B., Silva, N. & Volz, R. MAFRA-a MApping FRAmework

for distributed ontologies. Lecture Notes in Computer Science 235–250 (2002).

[80] Euzenat, J. & Shvaiko, P. Frameworks and formats: representing alignments.

Ontology Matrching 219-244 (2007).

[81] Lei, Y. An instance mapping ontology for the semantic web. Proceedings of the 3rd

international conference on Knowledge capture KCAP 05 67 (2005).

[82] Scharffe, F. & De Bruijn, J. A Language to Specify Mappings Between Ontologies.

Proc of the Internet Based Systems IEEE Conference SITIS05 260-264 (2005).

[83] Terse RDF Triple Language. Internet: http://www.w3.org/TR/turtle [July, 20,

2011].

 158

[84] Modeling your business processes with IBM WebSphere Lombardi. Internet:

http://www.ibm.com/developerworks/websphere/library/techarticles/1101_wang/11
01_wang.html?ca=drs- [Aug, 6, 2011].

[85] OntoGraph. Internet: http://protegewiki.stanford.edu/wiki/OntoGraf [Aug, 6, 2011].

[86] Jambalaya. Internet: http://protegewiki.stanford.edu/wiki/Jambalaya [Aug, 6,

2011].

[87] BCG Guidelines. Internet: www.bcguidelines.ca [Aug, 6, 2011].

[88] Macroscopic and Microscopic Urinalysis Guideline. Internet:

http://www.bcguidelines.ca/guideline_urinalysis.html [Aug, 6, 2011].

[89] Lin, Y. & Interoperability, S. Semantic Annotation for Process Models. (2008).

[90] Lohmann, N., Verbeek, E. & Dijkman, R. Petri Net Transformations for Business

Processes – A Survey. Transactions on Petri Nets and Other Models of
Concurrency II 5460, 46-63 (2009).

[91] Matheus, C.J., Kokar, M.M. & Baclawski, K. A core ontology for situation

awareness. Proceedings of the Sixth International Conference on Information
Fusion 1, 545-552 (2003).

[92] Sibte, S., Abidi, R. and Shayegani, S., Modeling the Form and Function of Clinical

Practice Guidelines: An Ontological Model to Computerize Clinical Practice
Guidelines. Knowledge Management for Health Care Procedures 81-91 (2009).

[93] Essex, D. The many layers of workflow automation. Healthcare informatics the

business magazine for information and communication systems 17, 121-122, 124-
130 (2000).

[94] V. Kabilan, T. A. Halpin, K. Siau, J. Krogstie, Eds. Proceedings of the 10th

International Workshop on Exploring Modeling Methods in Systems Analysis and
Design EMMSAD 05 Caise , 557-568 (2005).

[95] Lee, J., Kim, J., Cho, I. & Kim, Y. Integration of workflow and rule engines for

clinical decision support services. Studies In Health Technology And Informatics
160, 811-815 (2010).

[96] Alexandrou, D., Xenikoudakis, F. & Mentzas, G. SEMPATH: Adapting Clinical

Pathways by Utilizing Semantic Technologies. 2009 13th Panhellenic Conference
on Informatics 125-130 (2009).

 159

[97] Du, G. & Jiang, Z., The integrated modeling and framework of clinical pathway
adaptive workflow management system based on Extended Workflow-nets (EWF-
nets). 2008 IEEE International Conference on Service Operations and Logistics and
Informatics 914-919 (2008).

[98] Morgenstern D., Essentials of Clinical Workflow Analysis. Internet:

http://www.masstech.org/ehealth/CPOE University/WFACSC.pdf [Dec, 20, 2011].

[99] Gruber, T.R., 1993. A Translation Approach to Portable Ontology Specification.

Knowledge Acquisition, 5(2)(2), p.199-220. Technical Report. Available at:
http://tomgruber.org/writing/ontolingua-kaj-1993.htm [Dec, 23, 2011].

[100] Shvaiko, P., and Euzenat, J., A Survey of Schema based Matching Approaches.

Technical Report DIT-04-087, Informatica e Telecomunicazioni, University of
Trento, 2004.

[101] Dou, D. & McDermott, D. Deriving axioms across ontologies. Proceedings of the

fifth international joint conference on Autonomous agents and multiagent systems
AAMAS 06 952 (2006).

[102] Bergmann S., Design and Implementation of a Workflow Engine. Thesis chapter,

Rheinische Friedrich-Wilhelms-Universität, 2009.

[103] R.E., Eshuis, R. & Wieringa, R. A Formal Semantics for UML Activity Diagrams -

- Formalising Workflow Models. Science 02, 1-44 (2001).

[104] WfMC Workflow Management Coalition Terminology & Glossary. Management

39, 1-65 (1999).

[105] Workflow Implementation Guideline V.7.1, IBM. Available at:

 [Jan, 16, 2012].

[106] Morgenstern D., Essentials of Clinical Workflow Analysis. Massachusetts

Technology, New Healthcare Institute, CPOE University. Available at:
http://www.masstech.org/ehealth/CPOE University/WFACSC .pdf [Jan, 16, 2012].

[107] Georgakopoulos, D., Hornick, M. & Sheth, A. An overview of workflow

management: From process modeling to workflow automation infrastructure.
Distributed and Parallel Databases 3, 119-153 (1995).

[108] Stoilov T., Stoilov K., Lyutov N., Workflow Technology as a Tool for Automation

of Business Systems. International Scientific Conference, Bulgarian Academy of
Science, Varna Free University, 668-674 (2008).

 160

[109] Ouvry A.S., Workflow analysis and modeling in medical IT projects.
MEDICAMNUDI 46, 47-54 (2002).

[110] Hollingsworth, D. Workflow Management Coalition The Workflow Reference

Model. Management 1-55 (1995).

[111] W. van der Aalst and K. van Hee, Workflow Management: Models, Methods, and

Systems (Cooperative Information Systems). The MIT Press, Mar. 2004.

[112] Borgida, A. Description Logics for Data Bases. Order A Journal On The Theory Of

Ordered Sets And Its Applications 472-494 (2003).

[113] Davulcu, H., Kifer, M., Ramakrishnan, C.R. & Ramakrishnan, I.V. Logic based

modeling and analysis of workflows. Proceedings of the seventeenth ACM
SIGACTSIGMODSIGART symposium on Principles of database systems PODS 98
25-33 (1998).

 Kiepuszewski, B., Ter Hofstede, A.H.M. & Van Der Aalst, W.M.P. Fundamentals
of control flow in workflows. Acta Informatica 39, 143-209 (2003).

[115] Trickovié, I. FORMALIZING ACTIVITY DIAGRAM OF UML BY PETRI

NETS. emisamsorg 30, 161-171 (2000).

[116] Van Der Aalst, W. Formalization and verification of event-driven process chains.

Information and Software Technology 41, 639-650 (1999).

[117] Lu, R. & Sadiq, S. A Survey of Comparative Business Process Modeling

Approaches. Business Information Systems 4439, 82-94 (2007).

[118] Ferdian A Comparison of Event-driven Process Chains and UML Activity Diagram

for Denoting Business Processes. Harburg Technische Universitat
HamburgHarburg Master, 1-42 (2001).

[119] Yang, P., Yang, Z. & Lu, S. Formal Modeling and Analysis of Scientific

Workflows Using Hierarchical State Machines. Third IEEE International
Conference on eScience and Grid Computing eScience 2007 619-626 (2007).

[120] Yildiz, U., Guabtni, A. & Ngu, A.H.H. Towards scientific workflow patterns.

Proceedings of the 4th Workshop on Workflows in Support of LargeScale Science
1-10 (2009).

[121] Ceusters, W. & Smith, B. Semantic Interoperability in Healthcare State of the Art

in the US A position paper with background materials prepared for the project.
Health San Francisco 1-33 (2010).

 161

[122] Oemig, F. & Blobel, B. Semantic interoperability between health communication
standards through formal ontologies. Studies In Health Technology And Informatics
150, 200-204 (2009).

[123] Orgun, B., Dras, M., Nayak, A. & James, G. Approaches for semantic

interoperability between domain ontologies. Expert Systems 25, 179-196 (2006).

[124] Ducrou, A.J. University of Wollongong Thesis Collection Complete

interoperability in healthcare: technical, semantic and process interoperability
through ontology mapping and distributed enterprise integration techniques.
Techniques (2009).

