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Abstract

The healthcare systems are experiencing heavy workload and high cost caused by
ageing population. The assisted monitoring systems for the elderly persons, and
persons with chronic diseases, promises great potential to provide them with care
and comfort at the privacy of their own homes and as a result help reduce healthcare
costs. This requires a monitoring system capable of detecting daily human activities
in living spaces. In this work we discuss different challenges to design such a system,
present an activity data visualization tool designed to study human activities in a
living space and propose a two stage, supervised statistical model for detecting the
activities of daily living (ADL) from non-visual sensor data streams. A novel data
segmentation is proposed for accurate prediction at the first stage. We present a novel
error correction structure for the second stage to boost the accuracy by correcting

the misclassification from the first stage.
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Chapter 1

Introduction

The increasing cost of the healthcare system with sudden increase in ageing popu-
lation has lead to the proposition of an idea of autonomous monitoring systems for
the elderly. A system that can provide the elderly with care and supervision at the
comfort of their own homes. In addition, increasing interest of home automation
and home security industry for autonomous intrusion monitoring and better energy
management in a house has opened great potential for research in ubiquitous comput-
ing. Automatic detection of daily human activities can greatly benefit the in-home
elder care and home automation systems but creates several technical challenges and
ethical responsibilities to perform the monitoring effectively without compromising
a person’s privacy. A typical activity detection system is shown in Figure 1.1. The
automatic activity detection requires a house or a living space to be equipped with a
sensor network and a system capable of making decisions according to the occupants
activities by learning their regular behaviour. A filter module can be designed to
isolate the irregular behavior of activities that may be further analysed in a analysis
module and based on different applications different actions could be taken by the
actuation module. The actuation module can be an activity logger, that can be used
to log the activity patterns to study different users or it can be a monitoring system
that sounds alert in case of emergency or security breach. The focus of this research

work is to design an accurate activity detection engine.

The inherent presence of complex human behaviour in daily activities creates a
great challenge for the effective modeling of the activities. The activities can be
ambiguous and highly variable in nature from one person to another; moreover dif-
ferent activities or even different instances of the same activity may vary widely in
duration of performing an activity or the usage of object while performing an activ-
ity. For example, the meal preparation activities like preparing breakfast, lunch and

dinner can be performed very quickly when minimum cooking is involved and may
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Figure 1.1: A typical activity detection system.

take hours when cooking a big meal. Similarly, some times a person would use a
cooker to prepare a meal and sometimes just use a knife to slice vegetables to make a
sandwich. Another typical characteristic of human behaviour in every day activities
occurs when people perform more than one activity at the same time, commonly
referred to as concurrent activities and sometimes with interleaving periods known
as interleaving activities. One example of concurrent activities is, a scenario where
a person is watching TV and is interrupted by a phone call, assuming the phone is
right next to the couch where the person is sitting, he picks up the phone and start
talking. From the sensor’s point of view the two activities of watching TV and talking
on the phone are being executed simultaneously, although it can be argued that the
person is doing only one activity actively at a time and the other fades out in the
background. Once the person finishes the phone conversation he gets back to actively
watching the TV again. An example of interleaving activity is the following: a person
starts doing laundry, he opens up the laundry cabinet and takes out the detergent.
In this process he triggers the sensors attached to the laundry cabinet and laundry
detergent jug, indicating the start of the laundry activity. He then suddenly gets
interrupted by a phone call, once finished on the phone he returns back to the laun-
dry task. The concept of concurrent and interleaving activities have been discussed
repeatedly in the literature [11, 13| and it has been argued that the sequential activ-
ity models like Hidden Markov Model (HMM) and Conditional Random Field (CRF)
Model are unable to detect the concurrent and interleaving activities. However, it can
be counter argued that one way to capture the concurrent activities in a sequential

activity model framework is by simply grouping these activities into one, so following



3

the same example of watching TV and phone conversation we can say that the activ-
ity sequence is watching TV, watching TV-phone and watching TV, where watching
TV-phone being an activity where they occur simultaneously. Representation of the
interleaving activities require long-term temporal dependencies [26, 40] between the
activities, that may be achieved by using layered HMM architecture [9] by modeling
the activities at different granularities in different layers. Other variants of HMM
such as Hidden Semi-Markov models [8], Hierarchical Hidden Markov models [3] and
Decomposed Hidden Markov model [40] have been proposed to model the long-term
temporal dependencies in different domains. To adapt the generic HMM to model
different characteristics of the process, these different variants of HMM make the
learning and inference highly complicated and may not be suitable for online appli-
cations, where inference time is critical. Within the CRF framework, the Skip Chain

CRF model (SCCM) is proposed in [11] to model the interleaving activities.

To capture the complex human activities we require a system capable of identify-
ing different activity patterns performed by the occupant in a living space, with an
ability to disambiguate them in the presence of spurious activations of the sensors
and activity labelling errors. The model should be able to capture the long-term

dependencies to allow the modeling of the interleaving activities for proper detection.

To acquire the intuitive understanding of the complexity of different behaviours
making up an activity, in this work we designed an activity visualization tool. This
visualization tool is designed to visualize the data from different activity datasets
that are collected from sensor equipped houses by different research groups in this

domain.

Activity Modeling Everyday human activities are associated with two feature
sets, temporal and spatial features. Studying the daily behaviours in depth gives
the insight of how these features can be used to effectively infer the activities. We
can divide the temporal features further into two sets, absolute and relative [38]. The
absolute temporal feature gives the approximate time of the day the activity is usually
conducted. Although absolute time feature is important, it can only be relevant to
certain set of activities like sleeping, going to work or eating a meal, which are more

likely to happen every day in a fixed time slot. Other activities may have irregular
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daily pattern that may change every day, like eating a snack or preparing a beverage,
reading or entertainment. The relative temporal feature on the other hand, gives
information on which activity is more likely to follow another activity. For example,
it is more likely that the person will dress after taking a shower rather than eating his
meal. Absolute and relative temporal features if used in conjunction can strengthen
the belief in the occurrence of an activity in an error prone sensory environment.
In addition, if we consider the activities at their atomic level, the relative temporal
feature can be more useful. Activities at their elemental level constitute several steps
that may follow a certain order. For example, activity preparing a beverage consists of
steps such as fetching a glass and opening a refrigerator. The relative temporal feature
at the atomic level of activities can help distinguish them by identifying the subtle

differences between closely related activities where common sensors may trigger.

Another important characteristic of the daily activities that can be helpful is
location or a spatial feature. Certain activities are very location specific, for example
preparing a meal can only be done in kitchen, toileting and showering activities can
only occur in a bathroom. The spatial feature can be very useful as it can be used to
increase the accuracy of activity prediction for certain activities. It may also improve
the efficiency of the model by considering the sensor data only from the activity

specific locations.

Modeling of human activities starts by quantifying different characteristics of the
activities. This is done by capturing human actions over time using electronic sensors.
Given the contextual and temporal nature of human activities in a typical home set-
ting, several different approaches have been proposed to quantify the human activities
using visual and non-visual sensors [28, 21, 27, 18]. The video or image based activity
recognition approaches, focus on human posture and locations to record the activities
and non-visual sensors rely on the human-object interaction that is captured by the
sensors that are built into the surrounding objects. To alleviate the privacy concerns
to some extent, in this work we use the non-visual sensors to capture the activities.
In human-object interaction approach that uses non-visual sensors, the triggering of
sensors individually or in a sequence is interpreted as an execution of an activity.
For example, in a house RFID sensors can be attached to different objects in kitchen

such as cups, saucers and stove knobs. The use of these objects is registered by a
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reader attached to a wrist or other parts of a human body. The switch sensors can
be built into different cabinets, closets and faucets in different rooms of the house,
such as bathroom, kitchen and bedrooms. The human interaction with the sensor
equipped objects such as retrieving a glass and reaching to the kitchen faucet might
imply the person is thirsty and is getting a glass of water. Turning on the shower
faucet indicates the person is about to take a shower. In this work our focus is on
non-visual sensor perception of activities. We use a human-object interaction dataset

which is discussed in detail in chapter 4.1.

Traditional approaches with HMM and the variants of HMM, where all the ac-
tivities are modeled as states, has been the most popular approach [35, 4] to model
ADLs. Although, modeling the activities with HMM in this manner has been shown
to be feasible but lacks the flexibility to make use of the temporal features embed-
ded at different levels. HMM with activities as states fails to capture the temporal
information within the activities, also known as intra-activity information. The intra-
activity information is very important for distinguishing between the activities that
trigger the same set of sensors but have different triggering patterns. The thorough
inspection of each activity leads to the conclusion that the nature of different activi-
ties can vary widely and a “single model fits all ”approach [35] may not be the best
route towards the development of a robust and accurate model for the detection of
the daily activities. In this work we chose the layered-HMM architecture because
of its several different advantages. Firstly, as mentioned above it allows the process
to be modeled at different granularities that allow long term dependencies between
the states which are difficult to model with the single layer HMM. Secondly, with-
out adding the complexities of the additional parameters for the different variants of
HMMs discussed above we can achieve the long term dependencies for the activities
that are performed for longer periods in addition to the short term dependencies for
the activities that are performed for short periods. The activities of daily living have
complex time dependence and have the hierarchical structure [23] at different time
granularities, that can be modeled effectively using the layered-HMM architecture.
To cover the complete spectrum of different characteristics of each activity we chose
to model each activity individually. To accommodate the low order temporal feature

of the activities of daily living (ADL) we propose a two stage approach to model the
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Figure 1.2: General architecture of the two stage model.

ADLs.

The general architecture of the proposed two stage model is shown in Fig. 1.2.
The first stage consists of an individual Markov chain for each activity. Although
this configuration helps the model to capture the intra-activity information, it creates
some other challenges. First, we require a method to segment the data by recognising
the points in time where an activity ends and new one begins. Second, when modeling
the activities independently, we lose the inter-activity transitions.

In individual activity model configuration, to detect an activity a segment of
sensor data stream corresponding to that activity is fed to each activity model. The
activity model that gives out the highest likelihood value is selected as the most
probable activity. The accurate segmentation of the data is a complex problem.
When modeling each activity individually, the effective decoding of the activities
requires the data segments to consist only instances from one activity. There is a
rather simple approach taken by [12] where they segment the data with a fixed length
window. This approach does not consider the start and end times of the activities
and may generate segments with more than one activity. Tapia et al. [33], on the
other hand, use a sliding window technique with a fixed length window equal to the
average length for each activity. Although this method provides better segmentation
it may be problematic for detecting instances of activities with a length different from
the mean and it also requires repeated scans of the data stream for each activity. In
Section 3.1 we propose a novel approach for the segmentation problem.

The inter-activity information that is not modeled in the first stage is captured at
the second stage. The second stage consists of a HMM where each activity is modeled
as a state, while the observation distribution is based on the first-stage output. The

use of a second layer in a layered-HMM architecture is not unique to this work but the
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way to structure the second stage as an ‘error correction’ stage to boost the accuracy
of the first stage is unique. Modelling the activities with an ‘error correction’ stage
allows the model to capture the activities more closely at sensor level while keeping
it immune to the effect of spurious sensor activations, that becomes more prominent
when modelling the activities with low level sensor information. The second stage
aims at correcting possible misclassification originated in the first stage. It performs
error correction by learning the misclassification from the first stage. This stage also
considers the relative temporal relationship between the activities which can improve

the confidence of the model when inferring the activities.



Chapter 2

Literature Review

Over the past two decades two industries, elder care and home automation, has been
seen as the driving force for the research in context aware computing. The potential of
context aware ubiquitous computing to provide better living at homes and increased
productivity in office spaces has drawn lot of attention in this area. In assisted living
complexes, context-aware systems monitor the state of the elderly occupants, freeing
the nursing staff from the task of constantly supervising them, thus giving them more
time to care about those who actually need their support most. The in-home elder
care and home automation requires a house to be equipped with ubiquitous sensor
networks that is capable of making decisions according to the occupant’s activities
by learning their behavior. The inherent complexity of human behavior poses a great
challenge for recognition [33]. For example, people often perform several activities
simultaneously and everyday activities are subject to periodic variation. Different
activities occur at different time scales. The activities can be performed with inter-
leaving intervals, such as laundry, a person can start doing laundry and may start
cooking a meal and then come back to finish laundry. This requires a system capable
of identifying different activities that are being performed by the occupant in a living

space with an ability to disambiguate them for proper detection.

Detection and recognition of activities is not a trivial task. Several approaches are
being carried out to design a monitoring and detection system with ubiquitous sensor
embedded living laboratories [5, 16, 2]. The goal of such systems is to be sensitive
enough to disambiguate the abnormal activities that may be an indication of distress
of an occupant in a house and at the same time robust enough to detect the activities
in a error prone sensor environment. This needs a thorough study of each activity
being performed by an individual to design a system that can learn the behavior of

a person to correctly identify the normal activities from abnormal activities.

The emerging market of home automation promises some very attractive options
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for better living. Meyers and Rakotonirainy listed very interesting smart homes sce-

narios in [19]. Some of them are as below:

e Phones only ring in room where the addressee is present, preventing other people

being disturbed by useless ringing.

e The music being played in a room adapts automatically to the people within
and the pictures in the frames on the desk change depending on which person

is working there.

e In-house context-aware communication systems allow family members to speak
to each other as if they were in the same room, even when they are in different

roo1s.

e Elderly people will be supported in their daily life by context-aware homes,

allowing them to age in their own home or familiar environment.

To study ADL several living laboratories have been designed such as MavHome [5],
a multi-disciplinary research project at the University of Texas at Arlington focused
on the creation of an intelligent home environment; AwareHome [16], aiming to create
a living laboratory for research in ubiquitous computing for everyday activities; and
HomeLab [2], established by Philips as a testing ground for a better tomorrow with
an emphasis on advanced interaction technology. The PlaceLab project [15], a joint
initiative between Massachusetts Institute of Technology(MIT) and TIAX, a collabo-
rative product and technology development firm, aimed to provide a living laboratory
to systematically study human behaviors, the routine activities and interactions of
everyday life.

Existing approaches on activity recognition can be broadly classified based on

types of sensors used for observing the activities.
1. Non-Visual Sensors based recognition

2. Video & Audio based recognition.
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2.1 Non-Visual sensor based recognition

Given the contextual and temporal nature of human activities in a typical home
setting several different approaches has been proposed for the detection of activities
using the non-visual sensors. Depending on the objective of monitoring, activity
recognition has been bifurcated into two branches: single and multiple occupant
activity detection. The single occupant detection approaches are geared more towards
the independent living of the elderly and multiple occupant approaches target other
smart home applications, where multiple occupant environment is more likely.

Yang in [37] elaborated on the current research trends in the activity detection
domain. He discussed how different machine learning techniques making their way
in the detection of activities, such as transfer learning that is used in [24, 41] for
localization of human in a building environment using wifi radio signals, inferring the
cross domain activities using Transferred HMM and Skip Chain Conditional Random
Field (SCCRF) models for detecting concurrent and interleaving activities. SCCRF
is proposed in [11] to model the interleaving activities and Goal Graphs to model
the concurrent activities. Although SCCRF is capable of modeling the interleaved
activities, it is not clear whether they provide any significant advantage with the
added complexity that is created by number of skip chain between the interleaved
activities [17]. Several approaches propose a method to capture the concurrent and
interleaving activities [13, 11, 25]. In [11], they demonstrated how often a person
performs the concurrent and interleaving activities in a typical day.

A context aware ADL system proposed in [4] uses a variant of HMM called Adap-
tive Learning HMM that incorporates a self adapting mechanism to adapt to the new
environment without needing to re-train the model. Another interesting approach is
seen in [27] that exploits the user-object interaction to infer the activities. It uses
dynamic Bayesian networks to model the activities and then Monte Carlo approxima-
tion to solve for the most likely activity. They tried to build a very generic dynamic
Bayesian network that can easily adapt to different environments. This approach
inherently allows the contextual information to increase the accuracy of activity de-
tection. An interesting work was done in [18], where they equip the house with
several different types of sensors including RFID switches, motion sensors, on-body

accelerometer, current and flow sensors. Different aspects of activity detection were
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then evaluated, such as effectiveness of each sensor to detect an activity indepen-
dently and in combination with other sensors, evaluating different machine learning
techniques, such as Naive Bayes, Support Vector Machines (SVM) and C4.5 decision
tree models. It was discovered that motion-based sensors outperformed every other
sensor for most of the activities and SVM model showed the best results for activity

detection.

The MavHome project in [30] proposed a predictive framework for the location-
aware resource optimization in smart homes. The predictive framework uses spatio-
temporal context of the activities to provide services and managing resources in a
house by predicting next action of the inhabitant. Sanchez et al. in [32] proposed
and tested two configurations of a 2-level layered HMM model, serial layer and par-
allel layer HMM models, on the multiple occupant dataset, consisting of activities
performed by doctors and nurses in a typical hospital. This approach distinguishes
between different activities performed by different staff members by associating the
contextual information such as the usage of the artifacts and the tasks that are rel-
evant for different staff members (nurses, physicians and interns). All the data was
created manually. They modeled the first layer as low level activities abstraction
layer, they used the artifact contextual information in the form of artifact usage ma-
trix at the observation of the first layer. The output from the first stage is combined
with people interaction information in the form of weight matrix and is then fed to
the second layer for higher level activities in a serial configuration. In parallel config-
uration they modeled the artifact and people interaction in the first layer with two
separate HMMs and then combine the output to feed the second layer. They reported
that parallel layered HMM performed better than other configuration. Perdikis et al.
in [26] also used a layered HMM model for the detection of human actions on a desk
in an office environment, using on-body magnetic position sensors. They reported
that the inherent advantages of using layered HMM are their capability of model-
ing actions of relatively long durations and reducing model complexity. Although
our approach follows the same suite by modeling the activities at different levels, we
use the high level activity model in a unique way, by using it as an error correction
layer for the first stage and at the same time using it to capture the inter-activity

transitions between the activities. Most of the work done in activity detection for
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multiple occupants uses an explicit ID in the form of RFIDs transmitters attached
to each user to distinguish the activities performed by different users [36]. However
the work presented in [10] uses Emerging Patterns (a type of knowledge pattern that
describe significant changes between classes of data to model the activities of differ-
ent users). A novel two phase approach for detecting abnormal human activities to
provide support to the occupant of a house or other premises in case of emergency
is presented in [39]. They first use one class SVM to filter out the activities with
highest probabilities of being normal and then used kernel non-linear model (KNLR)

to derive abnormal activity model.

2.2 Video & audio based recognition

The video-based activity recognition approaches, focus on human postures and lo-
cations to infer the activities, rather than object-human interaction. Video-based
recognition can be classified into two categories [28]: offline human body modeling,
where a known human body model is used and sequences of postures are learned
through a probabilistic models for the recognition process and online human body
modeling, where a typical human body model is not assumed a priori but variations
in pose configuration, body shape, camera viewpoint and appearance are used to
model the human body and infer the activities. Mori et al. in [21] used a time series
of 3-D spatial human postures as input to infer the daily life actions of a human,
such as walking, standing, sitting and lying. They proposed a hierarchical structure
of actions to capture the fine details of human postures using continuous HMM. To
capture long term complex activities involving interaction of multiple people, Zhang
et al. [40] proposed a variant of HMM, which is a combination of the coupled HMM
and hierarchical HMM and is called decomposed HMM that decomposes the standard
HMM hierarchically with coupling between the different layers in hope to capture the
interacting activities multiple processes at the same time. They used video clips of
activities as input to their model and dealt with a problem of detecting the inter-
acting activities, where two people may interact with each other in the same frame.
Their approach showed only marginal improvements over HMM, coupled HMM and
hierarchical HMM models with additional complexity in learning and testing phase.

Audio data could potentially be a powerful source for anomaly detection. Doukas et
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al. in [6] used on-body accelerometers and microphones for the detection of patient
activities. They showed how sound data can be effectively used for patient fall de-
tection. They used short time Fourier transform and spectrogram analysis to extract
features from sound data and then used SVM to classify the activities. Doukas et
al. in [7] used both video and audio for patient activity detection and emergency
recognition in cases like elder fall. Their system uses microphone array to localize
and classify the abnormal sounds and then use over head video camera data with

different classifiers to detect an activity or patient’s situation.



Chapter 3

Methodology

Human actions over time are quantitatively captured using electronic sensors. To
model the activities more accurately and make better use of the information available
in the form of relative and absolute time features, we model the activities with low
level sensor information at the first stage. The higher level temporal features between
the activities are introduced in the second stage.

Model architecture of the proposed two-stage model is shown in Fig. 3.1. We use
Markov chains to model the activities. Markov chains are suitable for the modeling of
time varying discrete stochastic processes [22]. In addition, they support the inclusion
of temporal and spatial characteristics of activities discussed above, either implicitly
or explicitly. In this work we have adopted the Markov chain framework as described

in Hasan [12].

3.1 Multi-Markov Model - First Stage (MMM-FS)

The first stage consists of a collection of Markov chains, each representing an activity.
A Markov chain is a discrete random process that complies with the Markov Property
and is represented as a state-space, linking each state with other in a chain like
manner. The Markov property defines that when the next state of a system depends
only on the current state and not on the sequence of events that preceded it. A random
process with Markov property is called Markov process [22]. A Markov process is a
system that randomly changes state at each time step. A series of sensor activations
within an activity can be considered as a discrete-time random process and can be
effectively modeled using a Markov chain.

The activities can be modeled as Markov chains at different information levels.
To model the higher level temporal information, that may define the ordering of the
human activities in a day as a Markov chain, the series of activities performed in a

day are considered as a single process and different activities as different states of that

14
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system that changes randomly at each time step. Although modeling the activities
at higher temporal information level simplifies the modeling process it alone does
not allow the complete use of the temporal features that are embedded at lower
level within the activities. Each activity is composed of a series of elemental steps
indicated by the sensor activations. These steps are more likely to be repeated every
time the activity is performed by a person and are more dependent on the person’s
habit. One example of that would be every time a person prepares a tea he may
fetch a spoon from a drawer to add sugar in the cup either before pouring the boiling
water or after. To model the activities more accurately and make better use of the
information available in the form of relative and absolute time features, we model
the activities at low level sensor information in first stage. The higher level temporal
features between the activities are introduced in the second stage.

An activity Markov chain consists of a set of states, S = sq,s9,...... , Sn, where
each state is an active sensor that are activated during the activity. The activity
process starts in one of the states depending upon the initial state distribution and
steps from one active sensor state to another. Moving from the state s; to the state
s; at the next time step with probability a;; that depends only on the current state
of the system (Markov property). Transition probabilities a;; are modeled during the
learning phase. The system could remain in the same state at next time step happens

with probability of a;. The activity Markov chain is defined by three parameters:
MM = (S,1I, A) (3.1)

where: S is the set of states, II is the initial state distribution and A is the state
transition probability matrix. Development of an activity model has two phases:
learning and testing.

During the learning phase, each activity is modeled by learning the initial state
IT and state transition A distribution matrices from the training samples of the cor-

responding activity using the following equations.
a;j = Ti;/T; (3.2)

where: Tj; is the number of i to j state transitions, 7; is the number of transitions

from state i, /V; is the number of activations of state i and IV is the number of states.
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When modeling the activities at lower level, we observe that there could be more
than one sensor that is active at one time slice. This could be due to three possible
reasons: some times more than one sensor can be associated with one sub-activity,
more than one sub-activity is performed within one sampling period, or due to the
presence of spurious sensor readings. When dealing with non-visual sensors the errors
in activity representation by the sensors can be introduced very easily, one example
of that is if a person forgets to shut the closet after opening it, the sensor associated
with that closet door keep triggering while the person is moved on to perform another
activity. This representation of the data allows natural filtering of the sensors with
respect to the activity being performed, as most of the sensor that are active during
an activity are more likely to be associated with that activity. Inspired from the
work in [12] we use the concurrently active sensors to train the activity model by
considering only active sensors as the states for that model. We dynamically add
new states as they appear in successive time periods. This method is very useful
in limiting the complexity in cases where there are hundreds of sensors deployed in
a house. So, instead of considering all the possible sensors as states, we learn the
activity models only with the sensors that are relevant to modeled activity i.e. those
sensors that were active during different samples of the modeled activity. All the
activities are trained individually with their corresponding training samples. While
training an activity model we learn the transitions only between the active sensor
states. These transitions capture the sequences of sensor activations. In testing
phase, when modeling the activities individually, the typical problem of data sequence
segmentation comes up. A sensor data stream is a long sequence of sensor activations
during multiple activities and there is no direct way to distinguish between the sensor

data corresponding to different activities during testing.

In this work we propose a novel variable window length segmentation technique
called rate of change termination segmentation (MLROC). It allows the segmentation
of the sensor data sequences more accurately than the sliding window segmentation
approach, by monitoring the change in the likelihood value of the most likely activity
model, also called forward variable at each time step of a test sensor data sequence. It
is described in detail in the next section. In testing or decoding phase, a test sequence

is fed to each of the activity model and the maximum likelihood of each model given
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the prior and state transition matrix is evaluated using the Viterbi algorithm [29].
The Viterbi algorithm reduces the problem of finding the most likely state sequence
into finding a shortest path from the start state to the end state in a trellis of all the

possible paths given the model parameters.

Pa(St) _ { Pa(si)Pa(Ooi) ift =1 (34)

i Pu(O,)maz|Py(SHS! ) Py(St1)]  otherwise

where: P,(S;) is the prior probability of sensor i for activity a, P,(O,;) is the probabil-
ity of output O, from sensor i during activity a and P,(S!|S!™!) is the state transition
probability for activity a. The activity model with the highest maximum likelihood
value of all the models is chosen as the activity for the given test sequence of the

sensor data.

3.1.1 Maximum-Likelihood Rate of Change Termination Segmentation
Technique (MLROC)

The Maximum-Likelihood rate of change (MLROC) segmentation technique proposed
in this work is inspired by the observation that the likelihood value of the most
likely activity changes substantially when the transition from one activity to another
occurs. This is due to the fact that different sensor triggering patterns occur when
a new activity starts and activities that have similar sensor signature may not occur
in succession. Based on this observation we increment the length of the window by
one time unit at each step while monitoring the rate of change percentage in the
likelihood value using Eq. 3.5 where © is the maximum likelihood value. When
the rate of change percentage exceeds a predefined threshold value, the window is
terminated and the inferred activity for that segment is used as the output. From
the point of termination a new open window is started in the next time step and the
process repeats until the end of the test day. It is to be noted that, unlike the sliding
window approach for segmenting the data where the data is segmented corresponding
to the window of a fixed length that is decided based on the average lengths of the
activities is moved over the data sequence with a predefined overlapping, the use
of MLROC does not require repeated scans of the test day with fixed size windows

of each activity and hence is a more efficient segmentation method. The rate of
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change percentage (ROCP) is calculated using the Eq. 3.5 where: O is the Maximum
likelihood.

ROC = |(6(t) —6(t —1))/6(t — 1)| x 100 (3.5)

The threshold value relies on different sensor activations during different activities,
in cases where sensor errors (triggering of unrelated sensors during an activity) are
very dominant in the data streams this value will be smaller as there will be relatively
smaller changes at activity transitions as the unrelated sensors will be active during
most of the activities. For the selection of the rate of change threshold value in cases
where the original labels or ground truth is available, an alignment accuracy of the
segmented data with the original labels can be used during the training phase. The
alignment accuracy is measured by calculating the distance from the start and end
point of the identified segments with the start and end points of the original labels.
To quantify the best segmentation we designed a ad-hoc distance measure that was
used to evaluate the best threshold value. The distance measure is explained in detail
in Sec. 3.4. This evaluation is done over a validation set and is then used for the test
set. In cases where the ground truth is not available, the threshold can be selected by
analysing the changes in the rate of change percentage of the data streams during the
training phase. Figure 3.2 shows an example of how the rate of change percentage
changes significantly when the transition from one activity to another occurs. The
x-axis shows a portion of a sequence of activities from dataset DS-2, introduced in

Sec. 4.1, the y-axis represents the rate of change percentage value.

3.2 Multi-Markov Model - Second Stage (MMM-SS)

The first stage does not model the relationships between the activities executed over
the day because each activity is modeled individually. The second stage of the model
makes use of the relative temporal features at the activity level, into the activity
detection process. Furthermore, it boosts the accuracy of ADL recognition by acting
as an error-correction layer on top of the first stage. We chose HMM for the second
stage, where the corrected activity process is unobservable and the detected activity
process is the output from the first stage. The error-correction process using HMM

works as follows:
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Figure 3.2: Rate of change threshold selection. The graph peaks represent the tran-
sition from one activity to another.

1. In the training phase, the corrected activity process is modeled by learning the

activity transitions from the training dataset and the error probabilities from

the first stage output.

2. In the testing phase, the Viterbi algorithm is used to find the corrected activity

sequence using the transition for each activity and the error probabilities from

the first stage model.

An error-correction HMM is defined by a five-tuple:

HMM = (S,0,11, A, E)

(3.6)

where: S is the set of hidden states (activities), O is the set of observation symbols

(activities learned from first stage), II is the initial state distribution, A is the state

transition probability distribution and F is the probability of activity ¢ classified as

activity 7.

3.3 Data Representation

The goal of this research is to detect the activities without interrupting the natural

behaviour of a person that pertains to the induction of false sensor readings into

datasets. In both datasets, that are used in this work, it was observed that certain
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sensors continue to fire even after the activity was over. This could be due to the
reasons, such as annotation errors (since the data is annotated manually), this was
confirmed with manual inspection of the data, unintentional triggering of sensors
by the subject or false triggering of sensors due to sensor calibration faults. For
example activities that involved door of rooms or cabinets tend to be left open by
the subjects, causing the sensors to fire continuously and give false impression of
the activity being executed. Another example from dataset 1 Sec.4.1 the person
starts preparing lunch and during this activity he triggers sensors associated with
‘Electric cooker’ and ‘Dishwasher’. It was observed that these sensors remain active
when the person moved on to the next activity which in this case was toileting.
Although the person moved on to the toileting activity, the preparing lunch activity
was being executed in the background. This might be one of the examples where
people perform concurrent activities and for this dataset only the active activity
was registered as ground truth. Therefore, to deal with the false sensor readings,
annotation errors and concurrent activities the raw representation of the data where
the sensor value when active is recorded as ‘1’ and when inactive it is recorded as
‘0’. Two novel data representations called change point and last sensor representation
were proposed in [35]. To reduce the sensor errors (unrelated sensors triggering during
an activity) introduced in the data due to the natural behaviour of the subject or
malfunctioning of the door or drawer mechanism, the change point representation
registers the sensor activations only for the time instances where sensor changes its
value. This resolves the problem of misrepresentation of the activity in cases where
the doors or drawers are left open even after the activity is completed. Although this
representation increases accuracy [35] it fails to capture the temporal element between
the atomic activities. The last sensor representation, as the name suggests, registers
only the last sensor that changed value and continues to register it as active until
another sensor changes its value. This representation in addition to re-introducing the
temporal element in the data, minimises the sensor errors issues in raw representation
and is more suitable for models like Markov chains that capture sequential data.
Kasteren [35] reported that they achieved highest accuracy when they combined the
change point and last sensor representations. This may be due to the fact that change

point representation removes the activity misrepresentation errors of the sensors from
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Figure 3.3: Data representation.

the data and last sensor representation adds back the temporal relationship between
the atomic activities. Different data representations are shown in Fig. 3.3. Although
the combination strategy of the change point and last sensor representation is not
clearly defined in [35], we combined the two by simple logical OR operation. In our
experiments we found no difference in results between the last sensor representation
and combination of change point and last sensor representation. We used the last

sensor representation for all the experiments presented in this work.

3.4 Rate of change threshold selection

In order to achieve the best segmentation it is important to select an appropriate
threshold value for the termination of the window. This is done by quantifying the
alignment accuracy of each day in the validation set using the distance measure
that is calculated as shown in algorithm 1. The smaller the distance, the better is
the alignment accuracy. The accuracy of the alignment of segmented labels against
the true labels is measured for different candidate threshold values. The candidate
threshold values are selected based on the amount of activity misrepresentation errors
present in the dataset. More the errors in the data, the larger is the variation between
two successive instances within an activity (unrelated sensors changing values) and
hence higher threshold values are required to identify the transition between activities.

The threshold value with the least distance is considered to give the best segmentation



for the given dataset and is used for the test set.

the threshold selection. We segment all days in the validation set for each candidate
threshold value. For the dataset used in this work we chose the candidate threshold
values between 80 % and 99.9 % with the increments of 5 %. 80 % was chosen as
the starting point based on our experimentation with both the datasets. For every
candidate threshold value, the alignment accuracy is calculated for each day in the

validation set and then averaged over all the days, the threshold value with least

Due to the limited size of the datasets we use the training set as validation set for

average distance is selected for the test set.

Algorithm 1 Alignment Distance

Input: Vectors STp, ETo,STs and ETgs, the start and end times of original and segmented data

Output: Alignment distance AD.
1: clear AD
2: for every day d do

12:
13:
14:
15:
16:
17:
18:

—_ =

clear ST, clear ET
ET = min(length(ETo),length(ETs))
ST = min(length(STo), length(STs))
k = length(ET)
for every k do
if BT (k) == ETs(k) then
dist =0
end if
if ETo (k) > ETs(k) then
dist = sum(ETo (k) — ETs(ETo > ST(k)&&ETo < ET(k)))
end if
if ETo (k) < ETs(k) then
dist = sum(ETo (k) — ETs(ETo > ST(k)&&ETo < ET(k)))
end if
AD(d) = AD(d) + dist

end for

19: end for




Chapter 4

Results and Evaluation

4.1 Datasets

In this work we used two different datasets. Both datasets are collected from a real
house set up with single occupancy. The subject is asked to perform a certain set of
activities during the day. Care has been taken so that the activities are not highly
orchestrated to avoid any unintended bias in the dataset. For modeling and evaluation
purposes both datasets provide activity labels, which are collected manually by the

subjects while performing an activity.

4.1.1 Dataset - 1 (DS-1)

The first dataset [33] uses wireless sensor nodes. These sensor nodes can be equipped
with different sensor types. This dataset consists of only reed switches that are
connected to 77 and 84 collection boards. The sensors are installed in everyday
objects such as drawers, refrigerator, containers. The dataset consists of the data
from two different houses occupied by two different subjects. The number of instance
for each activity in the dataset are shown in Table 4.1. Fig. 4.1 shows the lengths
of different activities over 16 days for both subject 1 and 2. We use this dataset
to compare our approach with the Multi-Naive Bayes classifier (MNBC) proposed
in [33]. It can be observed from Fig. 4.1 that the lengths of each activity varies

widely among different days and may not necessarily present on each day.

4.1.2 Dataset - 2 (DS-2)

The second dataset [34], consists of 21 binary sensors installed in a two storey house for
18 days. The sensors are installed in everyday objects in a house, such as reed switches
in the cabinets and doors, mercury contact sensor for the movement of contacts such

as drawers, float switch for the toilet flush system. The house is occupied by a 57

24



160

140

120

100

80

60

40

Mean activity lengths (minutes)

20

200
180
160
140
120
100
80
60
40
20
0

Mean Actviity lengths (minutes)

year old male, who was asked to perform fifteen fixed every day activities.

Activity lengths over 16days - DS1, Sub - 1

(a) DS-1 Subject 1

25

@ Going out

Toileting
Bathing
e Grooming
@ Dressing
Prep. breakfast
== Prep.lunch
Prep.dinner
e Prep. snack
Prep.drink

== \Wash dishes

Cleaning

e | aundry

Activity lengths over 16days - DS1, Sub - 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Day

(b) DS-1 Subject 2

e Toileting

=== Prep. Breakfast
Prep.lunch

=== Prep.dinner

= Prep. snack
Wash dishes

e |_jsten music
Take med.

e \Natch TV

Figure 4.1: Activity lengths over 16 days for DS-1

The

activities were hand annotated by the subject in a diary. The list of activities with

their corresponding number of samples can be seen in Table 4.2 and the lengths of

different activities over 19 days can be seen in Fig. 4.2.

Both the datasets are provided in matlab format. There are two main files, sensor

structure that provides the sensor activation time with location and Sensor IDs and

activity structure that provides the start and end time of an activity with activity

labels. The data for all the days is concatenated in two files. To use the dataset for
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S.No. Activities Subject 1 Subject 2
Samples Std. Dev. Samples Std. Dev.

over 16 days over 16 days

1 Going out to work 12 0.83 - -
2 Toileting 85 0.90 40 0.87
3 Bathing 18 0.78 - -
4 Grooming 37 0.88 - -
5 Dressing 24 0.94 - -
6 Preparing Breakfast 14 0.60 18 0.81
7 Preparing Lunch 17 0.24 20 0
8 Preparing Dinner 8 0.50 14 0.63
9 Preparing a Snack 14 0.66 16 0.48
10 | Preparing a Beverage 15 0.75 - -
11 Washing Dishes 7 0.50 21 1.00
12 Cleaning 8 0.87 - -
13 Doing Laundry 19 1.59 - -
14 Listening to Music - - 18 0.56
15 Take Medication - - 14 1.47
16 Watching TV - - 15 1.37

Table 4.1: Activity samples in DS-1 and the standard deviation of the occurrence of
the activities over 16 Days for subject 1 and 2.

training our models we divided the data in days at 6 AM point of the day for DS-1

to and 3 AM point of the day for DS-2 to capture the repeated patterns of daily

activities as suggested in [35]. Both datasets are recorded with assumption that there

is always one person at a time in the house and the all the activities are performed

sequentially, however with close examination of the sensor activations in the datatsets

it was found that at several occasions concurrent activities were performed but only

the activities that the person was performing actively were registered as ground truth.

S.No Activities | No. of samples Std. Dev. Percentage of time
over 19 Days

1 | Going out to work 47 1.00 45.7%

2 Toileting 89 1.27 1.0%

3 Shower 14 0.67 0.8%

4 Brushing teeth 26 0.92 0.4%

5 Go to bed 19 0.64 29.2%

6 Prepare breakfast 18 - 0.6%

7 Prepare dinner 11 - 1.1%

8 Get drink 10 0.49 0.1%

| Other Activities (21.1%) |

9 Eating 27 1.04 -

10 Shave 7 0.48 -
11 Get dressed 23 0.52 -
12 Take medication 5 0.44 -
13 Prepare Lunch 8 - -
14 Get snack 9 - -
15 Relax 30 - -

Table 4.2: Activity samples in DS-2 and the standard deviation of the occurrence of
the activities over 16 Days.
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Figure 4.2: Activity lengths over 19 days

4.2 Activity Visualization Tool

In activity detection problem, understanding the nature of the activities can help to
model them as closely as possible. To understand the activities we built a visualization
tool that can be used for different datasets to give direct visualization of the activities
as being performed in real time. This can help the experts to get a greater insight
of the activities and help them to choose the appropriate modeling techniques to
model the activities. To get the complete sense of activity episodes in a house, this
tool requires a floor plan layout image and the physical coordinates of each sensor
installation. If the physical coordinates are not available with the dataset, a unique
identifier to indicate the room-wise location of the sensor can be used to display the

rough estimate of activities being performed.

The design objective of an activity visualization tool was to provide the user with
multiple views and enough controls to study and analyse the sensor data to understand
the dynamics of the sensor activation with respect to the activities performed by the
occupant of a house. A screen shot of the visualization tool is shown in Fig. 4.3. This
tool is not designed for monitoring the patients in a living space. Its sole purpose is
to aid an expert to get a better understanding of the activity data while designing
the activity detection engine for the an activity detection system. One such example

is the use of this tool by the expert to analyse the activities with respect to different
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Figure 4.3: Sensor Visualization Window

sets of sensors giving a better understanding of the effectiveness of different sensors

to capture the natural human activities in a living space.

For the tool to function properly, it requires a floor plan image of the house where
the activities are needed to be analysed, a file containing the physical coordinates
of the sensor installation scaled to the dimensions of the image and the data files
with columns sensor ID, times of activations (time stamps), sensor description and
values. For purpose of demonstration we used the PLCouplel [1, 14] dataset created
by PlaceLab research team. This dataset provides the floor plan image of the house
and the physical coordinates of the sensor installation in the house. The SensorVi-
sualization window is divided into two main sections. The sensor view on the left
and controls panel on the right. The sensor view shows the floor plan of the house
with the sensor locations in the house. The house is installed with different types of
sensors, each sensor type is shown as a different color square. The activation of binary
sensors such as switches or motion sensors is indicated by glowing rectangles around
the sensor points as a visual cue, shown in Fig. 4.4. The data from the sensors that
have continuous values over time, such as temperature, humidity, etc can be viewed
on the graph view with respect to time for better understanding of the variation in
values over time. The graph view is shown in Fig. 4.5. A user can click on each

sensor point on the sensor view to read the sensor ID, type, description and its exact
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location on the top right corner of the SensorVisualization window also shown in
Fig. 4.4. When the user clicks on a sensor a search action is triggered that retrieves
all the fields corresponding to that sensor ID and displays them in the information
box in the main window.

The sensor location file for the dataset used to demonstrate this visualization tool
had many sensors that were missing the coordinate information due to the nature of
the sensors such as RFID-tags. These RFID tags can be placed on any movable object,
so in order to handle such situations we allow to display them with their approximate
locations on the floor plan with respect to their location description. In cases where
the exact coordinates of each sensor are not available we display a stack of sensors
in each room. Each sensor can be accessed using the next and previous controls on
the top right corner of the control panel. Another feature that is incorporated in the
sensor view is the ability to display the sensors by type. This allows the user to select
only a subset of sensors allowing them to study the effectiveness of each sensor for
their intended task. Furthermore, it can provide the ability to analyse the layout of
the house in terms of mobility and accessibility for the occupant in each room. A
user can select the sensor types from the list displayed on the control panel.

I FADDDBOICEADC CA D
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Figure 4.4: Sensor Information Display.

The activity of each sensor value can be viewed on the graph view window, shown
in Fig 4.5. The graph view can be easily accessed by first selecting the sensor whose
value needs to viewed and then clicking on the graph button in the control panel.
In the graph view window the time slider (black vertical line) indicates the sensor
values on a chart with respect to the current time. For the detailed analysis of the
sensor data the user can zoom in on the graph by simply dragging a selection box
over the area of interest. The graph view window can be zoomed in 4 X the default

scale to allow viewing of the finest detail in sensor values at the scale of millisecond
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(depending on the dataset) on the time axis. The zoom function is implemented such
that the graph is expanded only across time axis (x-axis), as it allows the user to
visualize the data in reference to time and prevent the view to jump with respect to
the sensor value. The graph can be zoomed out in steps by right clicking anywhere
on the graph screen. The graph window also shows the time duration and data values
(Height) at the top right corner and updates them when zoomed in to reflect what

time slot is being observed.

|| Graph of 120 readings from sensor 360003003AD76F10 =

(2006-8-22 03:04.:59.767, 2548.732)
Time Duration: 1h 14m, Amplitude: 132.0

} l529 .750|
|

2490.000|

2450.250

2006-8-22 02:30:06.090

Figure 4.5: Graph view displaying the temperature sensor values over time scale. The
x-axis represents time and y-axis represents amplitude.

4.3 Theoretical and Experimental Analysis

To demonstrate the performance of the proposed methodology two different sets of
experiments were performed. The first experiment shows the performance of the pro-
posed MLROC segmentation technique against a general fixed window segmentation
technique, while the second shows the performance of our two-stage approach for
activity detection. Furthermore, to demonstrate the effectiveness of our results we
present a test of statistical significance for our approach presented in this thesis with
a one stage traditional HMM.

Due to the small size of the datasets, we test our two-stage approach for activity

detection on each day in a leave-one-day-out fashion. We evaluated the activities by
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two measures: time slice accuracy and class accuracy, these evaluation methods are
commonly used in the domain of ADL detection. We present the time slice and class
accuracy results for our approach in comparison with the approach presented in [33]
and with traditional single stage HMM. The average class accuracy and average time

slice accuracy are defined as follows:

Average Class Accuracy: For each activity, the percentage of the activity time
slices identified correctly within an activity averaged over all the days in the dataset.
The average class accuracy is calculated using the Eq. 4.1 where d is number of days,

tp is true positive labels and fn is false negative label.

ip
tp+ fn

1
Average class accuracy = 7 Z (4.1)
d

Average Time Slice Accuracy: The percentage of time slices, of the correctly

identified activities averaged over all the days in the dataset. The average time slice

accuracy is calculated using the Eq. 4.2 where d is number of days, tp is true positive
labels.

lp
total number of time slices

1
Average Time Slice accuracy = 7 Z (4.2)
d

4.4 Results

4.4.1 MLROC variable window segmentation technique vs fixed window

segmentation technique

This section presents the alignment accuracy results for different fixed window lengths
and candidate threshold values. It can be observed from Table 4.3 that MLROC
segmentation technique outperforms the fixed window technique for all candidate

threshold values.

4.4.2 MNBC vs MMMC vs HMM (Leave-one-day-out cross validation)

There are thirteen and nine activities in DS-1 for subject 1 and 2 respectively. How-

ever, for subject-1 only 8 activities and for subject-2 only 7 activities are shown for
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Fixed window Lengths 2 7 10 15
Alignment Distance | 1590.4 | 520.13 390 | 256.1
MLROC segmentation 80 90 95 99
Alignment Distance 148.4 | 148.17 | 101.53 133

Table 4.3: Alignment distance comparison between MLROC and fixed window seg-
mentation techniques

the purpose of comparison. These activities are selected based on the Katz ADL
index [31], that is a standard measure used in healthcare to assess the cognitive and

physical abilities of an elderly person.

Activities No. of MNBC (%) MMM-FS MMM-SS HMM (%)
Samples ROCP = 90(%) | ROCP = 90(%)
Preparing Lunch 17(7.4%) 29 33.03 42.67 53.76
Toileting 85(37.1%) 31 44.32 42.69 72.3
Preparing Breakfast | 14(6.1%) 6 37.05 23.58 1821
Bathing 18(7.8%) 29 43.02 50.47 27.36
Dressing 24(10.4%) 3 65.43 66.79 27.67
Grooming 37(16.1%) 26 16.47 54.29 315
Preparing a beverage 15(6.5%) 13 21.28 23.84 16.84
Doing Laundry 19(8.2%) 7 63.37 63.15 21.05
[ Ave. time slice acc. | - | - | 41.82 | 45.75 | 43.68 |
(a) Subject-1.
Activities No. of MNBC (%) MMM-FS MMM-SS HMM (%)
Samples ROCP = 99(%) | ROCP = 99(%)

Prep. Dinner 14(9.5%) 30 37.42 44.1 6.23
Prep. Lunch 20(13.6%) 22 34.32 29.08 16.62
Listening to music 18(12.3%) 9 54.3 55.67 28.85
Toileting 40(27.3%) 23 32.13 36.84 70.45
Prep. Breakfast 18(12.3%) 24 13.56 16.93 56.71
Washing Dishes 21(14.3%) 11 34.36 31.32 29.92
Watching TV 15(10.2%) 16 13.39 1315 23.22

[ Ave. time slice acc. | - | - | 37.17 | 37.12 | 33.77 |

(b) Subject-2.

Table 4.4: Activity identification accuracy for DS-1. No. of samples is the total
number of each activity in the dataset presented with the proportion of each activity
that makes up the complete dataset. The difference in accuracy of the activities in
bold letters were found to be statistically significant for MMM when compared with
HMM.

For DS-1 dataset, the results in Tables 4.4 shows the class and time slice accuracy
for our two-stage approach MMM-FS (first stage) and MMM-SS (Second Stage) in
comparison with HMM and Multi-Naive Bayes classifier (MNBC) as discussed in [33].
The activity results are the averages of the class accuracies of each activity. Both class
accuracies and time slice accuracies are averaged over all the days in the dataset. It

can be observed from the results that in almost all the activities our model performs
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better than the MNBC. When comparing to HMM (Tables 4.4) the meal preparation
activities, specifically breakfast and lunch activities are better identified with HMM
for subject-1, and our approach outperforms in the remaining activities. These obser-
vations can be confirmed from Table 4.5. This indicates that even after introducing
the temporal feature in MMM at the second stage, HMM was still more capable to use
it effectively to distinguish between the two activities. Tables 4.5 and 4.6 present the
confusion matrices for subject 1 and 2 in DS-1. The rows represent the true labels and
columns represent the predicted labels by the model. Some interesting observations
were made from these confusion matrices. In the case of closely related activities like
Bathing, Grooming and Dressing which are more likely to happen in physical loca-
tions with close vicinity that may trigger a similar set of sensors our model performs
much better when compared with HMM. This can be observed in Table 4.5. However
from Table 4.5(b), we observed that for the Lunch Preparation activity our model was
confused with Breakfast Preparation and Beverage Preparation activities at several
instance when compared with HMM. Another observation was made that reveals the
spurious activations of the sensors where the models were being confused between the
Lunch Preparation activities with the Toileting activities. This was more prominent
with HMM than the output from the two stages of our model. On a closer examina-
tion of the data it was found that a sensor that is labelled as ‘Trash compactor’ is
activated in both the activities, so its activation is learned by both activity models
during training phase. The time slices (one minute sample during an activity) where
the sensor associated with ‘Trash compactor’ is activated alone are predicted as Toi-
leting activity, even though it was found from the true labels that the person was
performing the Lunch Preparation activity in that time slice. This was also found to
be the case for the several instance of Beverage Preparation activities in the dataset.
For subject-2, during the activity watching TV several unrelated sensors trigger. It
seems that although the TV is ‘on’ the person is not actively watching the TV but
doing other activities that includes toileting at several instances. For Listening music
we observed the same behaviour but this behaviour of unrelated sensor triggering is
expected because while listening music people generally perform other activities at

the same time.

To find how significant are the improvements of our proposed approach compared
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to the model presented in [33] and single stage traditional HMM we performed a
test of statistical significance. Due to the presence of a highly variable distribution
of activity length and occurrences among the different days, it was not possible to
prove that the differences in mean classification accuracy between MMM and HMM
are statistically significant. However, we were able to perform a test of statistical
significance (Analysis of Variance and Dunnett multiple comparison tests) per activity
over all the days in the dataset. We first performed Analysis of Variance test over
the average class accuracies of each activity for both the models to find whether
they are significantly different. After finding the MMM and HMM model accuracies
significantly different the Dunnett multiple comparison test was executed to find
which model performed better. We found certain activities, namely grooming, dressing
and doing laundry in subject 1 and preparing dinner, Watching TV in subject 2
showed significantly better accuracy than HMM with at most 0.05 probability error.
Effects of this variability in the datasets is also observable in cases where the accuracy
degrades from first stage to second stage. This behaviour is due to the fact that not
all the activities are present in all of the days of the datasets and the second stage,
being a single model representation for all the activities, in some cases incorrectly

labels the activities with the activities that are not present in the test day.

For MNBC we were not able to perform the same multiple comparison test because
of the unavailability of the results over different days, but we perform a Paired t-test
on the means of the classification accuracy of the activities over all the different days
in subject 1 and 2 as shown in Table 4.4. We found that differences in the mean of
each activity between MNBC and MMM (first and second stage), and MNBC and
HMM are statistically significant with at most a 5 percent probability error.

For DS-2, Table 4.7 shows the average class and time slice accuracy for Multi-
Markov model and the traditional HMM. DS-2 is a cleaner dataset with lower number
of sensor errors comparing to DS-1, resulting in higher overall accuracies for each
activity. There are a total 15 activities in DS-2, which we collapsed to 12 by merging
the meal preparation activities that are often confused with one another, such as
preparing breakfast, lunch and dinner. For DS-2 we were able to compare our model
only against HMM as results for MNBC were not available on this dataset. We did not

find any significant improvements with our approach when compared with traditional
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HMM. This may be due to the reason that the DS-2 is crafted to incorporate high
level relational temporal information, making it more prominent in the dataset, hence

the advantages with our approach are not very visible in the results.
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Dressing 8 12 25 | 95 | 13 0 1 0
Breakfast Prep. 11 13 42 | 22 | 38 | 103 0 1
Lunch Prep. 57 23 7| 10 | 87 | 236 | 222 36
Beverage Prep. 24 2 30 | 10 | 14 40 35 9
Laundry 21 9 7 7 1 13 5 | 182

(¢) Confusion Matrix Subject-1 MMM-SS

Table 4.5: Confusion matrices for DS-1, Subject-1. Each number in the matrices
represents the number of time slices.
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Toilteting | 236 36 79 | 119 50 98 21
Breakfast Prep. 47 87 | 150 74 88 15 5
Lunch Prep. 112 102 | 211 171 101 57 89
Dinner Prep. 85 0 98 | 221 25 45 32
Dish Wash 22 9 54 48 101 52 42
Listen Music | 106 35 53 48 81 | 377 18
Watch TV | 156 32 | 152 66 62 | 100 | 596

(b) Confusion Matrix Subject-2 MMM-SS

Table 4.6: Confusion matrices for DS-1, Subject-2. Each number

represents the number of time slices.

Activities HMM MMM-FS MMM-SS
ROCP =90 | ROCP = 90
Leaving house 84.75 84.68 84.64
Eating 72.07 86.32 83.76
Toilet downstairs 56.03 53.51 50.64
Shower 69.90 81.71 78.17
Brush teeth 46.48 0.00 36.70
Toilet upstairs 40.27 2.61 8.60
Shave 12.70 43.06 33.56
Sleeping 92.79 98.74 98.70
Dressing 68.42 43.38 52.28
Take medication 40.00 60.00 60.00
Meal Prep. 70.21 57.76 70.01
Drink 12.50 11.98 12.50
| Time slice Accuracy | 87.14 | 89.06 | 89.38 |

Table 4.7: Activity identification accuracy for DS-2
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Chapter 5

Conclusion and Future Work

ADL detection is a very challenging problem. The high variability in the nature of
activities, sensor errors and annotation inaccuracies, all contribute to the complexity
of modeling the ADL effectively. To assist the experts of the domain to study the
different aspects of ADL we designed and presented an activity visualization tool.
This visualization tool can be used to assess the different qualities of the datasets
and hence it aids the expert in getting an intuitive understanding of the properties

of the dataset and in tuning the algorithms appropriately.

To overcome the modeling complexity of the activities due to their highly vari-
able nature, we proposed a two-stage approach to decompose the problem into two
levels. The first stage models the activities at their atomic level and the second stage
attempts to correct the misclassified information from the first stage by learning the
inter-activity transitions from the data and the error distribution from the first stage

output.

We demonstrated that our approach gives a higher activity identification accuracy
than Multi Naive Bayes Classifier in almost all test cases. We observe that for certain
activities, namely grooming, dressing, doing laundry, preparing dinner and watching
TV our proposed two-stage approach performed significantly better than traditional
HMM. The experiments also suggest that, although decomposing the activities helps
to improve the detection accuracies in most cases, it can also degrade detection ac-
curacy for certain activities. Finally, we proposed a novel segmentation approach
that automatically provides better segmentation of the data and hence allows better
classification. We emphasize that the correct segmentation of the data is a crucial

step in our method to achieve high accuracy.

Our two-stage approach with Markov models outperforms MNBC and traditional
HMM in most of the cases and it is on par with HMM in the remaining cases. It

would be worth exploring if modeling the duration of an activity along with other
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temporal features may help improve the activity detection accuracy. The activity
duration may provide another level of classification, by providing a distinguishing
factor between the long and short duration activities. One way to model the activity
duration is by considering the activities as semi-Markov processes [20]. The semi-
Markov model allows the duration of an activity (sojourn time of the process) to be
learned explicitly during the training phase of the model, while still capturing the
other temporal features in a typical Markov chain. The effectiveness of the Hidden
Semi-Markov models (HSMM) compared to HMM has been shown in [34]. We believe
using HSMM in a two layer architecture will further enhance the detection accuracy of
the model. Furthermore, we would like to explore the idea to learn the threshold value

for the proposed segmentation approach, during the learning phase of the model.
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