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ABSTRACT

Coastal sediments continuously interact with the overlying water column, collecting and

decomposing the incoming rain of organic detritus into inorganic nutrients, and consuming

oxygen in the process. This thesis compares the ability of two qualitatively different

sediment models, a two-layer and a multi-layer model, to quantify the biogeochemical

transformations that occur when detritus is decomposed in the sediment. Using sediment

flux observations from a mesocosm eutrophication experiment, selected model parame-

ters and different parameterizations for depositional fluxes of organic matter have been

optimized using an evolutionary algorithm and a gradient descent algorithm respectively.

Simulations with constant depositional fluxes outperformed simulations where deposi-

tion was dependent on proxies of biomass concentration in the overlying water. With

these constant inputs, both sediment models produced similar nutrient fluxes across the

sediment-water interface, however the multi-layer model was better able to adapt to new

environments.
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CHAPTER 1

INTRODUCTION

At the ocean’s bottom, sinking organic detritus is deposited into the sediment, which

becomes a focal site of decomposition. Many metabolisms are involved in the process,

each functioning according to the availability of oxidizing agents in the environment:

aerobic metabolisms react oxygen with organic matter directly; in the absence of oxygen,

denitrification reacts organic carbon with nitrate, which is converted into inert N2 gas;

lacking oxygen and nitrate, sulphate is consumed, producing H2S gas; under anaerobic

conditions metal oxides may oxidize organic matter; and finally, failing the availability of

any of the above reactants, microbes can convert organic carbon into methane (Boudreau,

1997; Berner, 1980). Decomposition of organic matter results in the release of nutrients,

namely, phosphate (PO4), inorganic nitrogen (NH4, NO3, NO2), and silica. Further

reactions take place when reduced compounds are exposed to oxygen. For example,

ammonium is nitrified to nitrate, and H2S, or a number of other reduced end products

of an anaerobic metabolism can become oxidized within aerobic layers of the sediments.

Sediment, processes, therefore influence the biogeochemical dynamics of the overlying

ocean through the consumption of oxygen and the release of inorganic nutrients.

The importance of sediments to ocean biogeochemistry varies with water depth and

vertical circulation rates (Kemp et al., 1992). When waters are shallow, more labile organic

matter is able sink to the bottom before being metabolized. Both shallow waters and

vertical circulation facilitate the recirculation of remineralized nutrients from the sediments

into the photic zone, supporting the uptake of nutrients by photosynthesis. Higher rates

of photosynthesis in turn generate more organic matter that can be re-deposited in the

1
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sediments. In sum, shallower waters and higher rates of vertical exchange increase the

benthic-pelagic coupling, and thus this coupling is is often pronounced within bays,

coastal oceans, and continental shelves. For example, mesocosm experiments have shown

sediments in well mixed water of 5m depth to represent over half the system’s respiration

(Oviatt et al., 1986). Thus, an understanding of these shallow systems’ biogeochemical

dynamics requires an understanding of sediment chemistry.

When constructing the nitrogen budget of a shallow system, it is critical to estimate

rates of denitrification accurately. This reaction converts reactive nitrogen species into the

N2 gas which is biologically inaccessible to all but a few life forms. Thus, denitrification

functions to permanently remove nitrogen from the ocean (Seitzinger et al., 2006). Rates

of sediment denitrification on coastal and shelf oceans can be high, with some estimates

attributing 35-45% of the world’s total denitrification to coastal and shelf sediments

(Middelburg et al., 1996; Seitzinger et al., 2006). Thus, in order to properly construct

global nitrogen budgets, sediment denitrification rates must be quantified.

It is challenging to estimate rates of denitrification as they are subject to a number of

environmental factors. For instance, it is more thermodynamically favourable to metabolize

organic matter with oxygen than with nitrate, and thus denitrification rates drop when the

environment becomes oxygenated. Denitrification also requires a supply of nitrate, which

is generated by nitrifying ammonia, and requires oxygen. Therefore, both the absence

or excess of oxygen can prevent denitrification from taking place; thus, denitrification

primarily occurs in spatial and temporal transitions between oxic and anoxic environments.

In many cases, sophisticated models are required to produce accurate denitrification rates,

particularly in low oxygen environments (Kemp et al., 1990; Seitzinger et al., 2006).

The inhibition of denitrification in anoxic waters can induce an important feedback

on ocean biogeochemistry. If, under anoxic conditions, reactive nitrogen is not removed

from the system by denitrification, but accumulates in the form of ammonium instead,

it can be oxidized in the overlying water, or transported back to the surface and used

for photosynthesis (Kemp et al., 2005). Sediments also exhibit feedbacks of phosphate

release under low oxygen conditions. Episodes of suboxic bottom water result in amplified

outfluxes of PO4 (DiToro, 2001). The effect is postulated to occur as oxic conditions

prompt the sorption of PO4 to iron oxyhydroxide, which later can release PO4 should the

environment become sufficiently reduced to dissolve this iron compound (Boström et al.,
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1988). This mechanism has been observed in the sediments of Chesapeake Bay, where

bottom waters experience intense seasonal anoxia (Boesch et al., 2001; Kemp et al., 2005).

Low oxygen conditions in shallow systems are often associated with eutrophication,

a condition of the water column where high nutrient concentrations stimulate large blooms

of phytoplankton. The effects of such a high concentration of water column biomass can

induce a wide variety of alterations to the aquatic environment, including bottom water

hypoxia. This can happen when the growth of biomass is stimulated near the water surface,

and decomposing biomass begins to sink. If the ocean’s mixing rate is low, the oxygen

demand of the decomposing biomass may outweigh the supply of oxygenated water from

the surface. Other effects of eutrophication can include: increased water turbidity, shifts

in algal species composition (including toxic algal blooms), and changes in the species

composition of benthic flora, benthic macrofauna and pelagic macrofauna (Kemp et al.,

2005). As an example, Chesapeake Bay has exhibited all of these environmental effects

over its long history of eutrophication, particularly within the last 60 years (Kemp et al.,

2005). Research into the dynamics and effects of coastal ocean eutrophication is informed

by a good understanding of sediment processes and their coupling to the water column.

Models of sediment dynamics have used many approaches and assumed many degrees

of complexity. These different kinds of models, outlined in Soetaert et al. (2000), typically

assume one of the following forms: (1) The simplest representations can assign constant

oxygen and nutrient fluxes at the ocean bottom, or even ignore sediment fluxes altogether,

and instead assign boundary-condition concentrations to the bottom waters. (2) Functional

sediment models attempt to generate sediment fluxes as a function of the overlying water

column state, but do not represent the sediments with any time-dependant state variables

(e.g., Middelburg et al., 1996; Fennel et al., 2006). (3) Depth-integrated sediment models

use a variety of analytical equations to designate chemical profiles within a small number

of sediment layers, and the model’s state variables make the sediment’s behaviour history

dependent (e.g., DiToro, 2001). (4) Depth-resolved models are usually the most complex.

They divide the sediments into many layers. Some models have every layer share the

same parameters (e.g., Soetaert et al., 1996a), while others allow parameter values to vary

between layers (e.g., Berg et al., 1998).

The behaviour of any given model depends on its parameter values (i.e. specific

reaction rates, diffusion rates, partitioning coefficients etc.); however, these parameters
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are rarely uniform between different environments, and many cannot be measured directly.

Consequently, it is common that several of these parameters are poorly quantified. Un-

constrained parameters values can be estimated through tuning, i.e. fitting model output

to observations by manipulating the model’s parameters (Bagniewski et al., 2011; Fennel

et al., 2001). Depending on the structure and complexity of the sediment model, this

can have a number of effects. While the parameters of a complex model might easily be

adapted to a particular observation set, there exists a risk of overfitting, that is, the param-

eters risk being fit to meaningless variation (noise) in the observations. Overfitting thus

may decrease the model’s ability to predict an independent set of observations. A simple

model, although not as prone to overfitting, may not be able to adapt to the dynamics of

the system, and thus could generate a poor fit. Parsimony is therefore the objective: to find

a compromise between the sediment model’s fit and complexity (Friedrichs et al., 2007).

For this thesis, I have constructed a comparison of models representing complexity

categories (2), (3) and (4). Evolutionary algorithms were used to tune a two-layer, depth-

integrated sediment model and a multi-layer depth-resolved sediment model, representing

categories (3) and (4) respectively, to observations of sediment fluxes within a mesocosm

eutrophication experiment. Although both models follow a different design philosophy,

they both represent the same sediment chemical processes and can be compared on this

basis. Representing category (2), two functional oxygen flux models were optimized using

non-linear regression and compared against the oxygen fluxes of the more complex layered

models. Cross validation experiments tested to see how these models could adjust their

behaviour to different environments without further tuning. These experiments were done

with the intention of eventually coupling a sediment model to a regional, 3-dimensional,

biogeochemical ocean model.



CHAPTER 2

METHODS

2.1 Dataset

Eutrophication experiments were performed at the Mesocosm Experimental Research

Laboratory (MERL) of the University of Rhode Island between 1981 and 1983. Situated

on the coast of Narragansett Bay, nine outdoor laboratory mesocosms were used to study

the effects of sewage effluent on the coastal environment. Reserving three mesocosms

as control, the remaining six mesocosms received inorganic nutrient inputs that varied

exponentially between tanks. A full description of the experiments can be found in the

MERL data reports (Frithsen et al., 1985a,b,c). A brief summary of the experiments is

given here.

The mesocosm tanks, 7m deep and 1.5m in diameter, were engineered to mimic

the physical conditions of Narragansett Bay (Fig 3.5). Heat exchangers equilibrated

the tanks with ocean water temperatures, and bay water was pumped through the tanks,

effecting a turnover rate similar to that of the bay ( 27 days). Mesocosm sediment (40 cm

deep) was transferred directly from the bay by means of a box core. Tidal mixing was

simulated by an automated stirring plunger, which mixed the water column on a cycling

6 hour schedule. The mixing rates were adjusted until the mesocosm concentrations of

resuspended sediment material was maintained at concentrations close to those of the bay

( 3 mg / L).

The six treatment tanks received nutrient inputs which increased exponentially from

one tank to the next: the “1x” tank received 7.57 mM N / day, and each tank thereafter

(named 2x, 4x, 8x, 16x, 32x) received double the nutrient load of the preceding tank, with

5
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(a) Photograph (b) Schematic

Figure 2.1: The MERL Mesocosms, photos from http://www.gso.uri.edu/

the “32x” tank receiving 242.24 mM N/day. Nutrients were added in the form of inorganic

salts, (NH4Cl KH2PO4, NaSiO3 · 9H2O) in ratios of 12.8-N : 1.0-P : 0.91-Si, matching the

stoichiometry of sewage.

Throughout the two-and-a-half-year experiment, monthly measurements of water

chemistry were collected, including O2, NO3, NH3 and PO4 (Fig 2.2), temperature (Fig 2.3),

and salinity. Chlorophyll concentrations were estimated from observations of fluorescence,

and dry weights of zooplankton were measured as well (Fig 2.4). Observations of O2,

NO3, NH3 and PO4 fluxes between sediment and overlying water (Fig 2.5) were taken

by covering the entire mesocosm’s sediment surface with a plexiglass benthic chamber

and measuring changes in nutrient and oxygen concentrations in the chamber over an

hour. During the measurement, nutrient and oxygen concentrations within the chamber

were modified due to reactions in the water (i.e. nitrification). To account for this, bottle

samples were taken, and changes in their concentrations were measured as well. Mean

flux values are listed in Table 2.1. The nutrient fluxes in many of the eutrophic mesocosms
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Figure 2.2: MERL water chemistry observations for four selected mesocosms

had large uncertainties (Kelly et al., 1985) (Table 2.1). Nutrient fluxes in the 8X, 16X

and 32X mesocosms are associated with large uncertainties, as the flux measurements

required the detection of small changes in very high background concentrations. These

high uncertainties were further compounded by the samples requiring dilution in order

to measure the high nutrient concentrations. For this thesis, the uncertainty in the O2

flux measurements was estimated as the standard deviation of the random error from the

three control mesocosms after removing the seasonal cycle. These uncertainties were

similar to those listed for a different experiment, which used the same benthic chamber

measurement technique (Oviatt et al., 1984). Nutrient uncertainties used within this thesis

were calculated in the same manner, or taken from Kelly et al. (1985), whichever was

larger. All sediment flux uncertainties used in this study are all listed in table 2.1.

Mesocosm oxygen concentrations follow a seasonal pattern of buildup due to cool

temperatures and photosynthesis during the winter-spring bloom, and decrease during

the heterotrophic summer season. The seasonal signal is not as strong for the nutrient

concentrations; however, average concentrations roughly reflect the loading rate of their

corresponding mesocosm. While chlorophyll levels appear to increase for higher loadings,

oxygen levels appear to be unchanged, likely because of air-sea gas exchange of oxygen in
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Figure 2.3: MERL temperature observations in control mesocosms

combination with daily mixing. Shortly following the chlorophyll blooms, zooplankton

populations rise in response to food availability. Food competition between zooplankton

and a relatively large colony of bivalves in mesocosm 8x might account for the relatively

low zooplankton biomass compared to the others (Oviatt et al., 1986).

For this thesis, water chemistry observations from the MERL dataset will be used

as surface boundary conditions for the sediment models. Benthic flux outputs generated

by the sediment models will be fit to observed fluxes. The sediment models also require

inputs of a depositional flux of particulate organic matter (POM). Since the MERL dataset

does not include observations of this flux, it was parameterized in a number of ways, some

parameterizations requiring chlorophyll and zooplankton observations as input.

2.2 Equilibrium Model

Direct measurements of benthic reaction rates are not included in the MERL observations.

For this study, rates of total carbon metabolism, denitrification, and nitrification were

estimated from the observed MERL sediment fluxes by applying an equilibrium model.

The equilibrium model is based on a denitrification parameterization from Fennel

et al. (2009), but further accounts for the conservation of nitrogen species (i.e. NO3 and

NH4). Budgets of oxygen, ammonium, and nitrate were constructed, assuming that the

sediment concentrations quickly equilibrated with the overlying water column by means

of diffusion. The known fluxes from the sediments to the overlying water column are:

the oxygen flux (JO2 , units μmolO2

cm2d
), ammonium flux (JNH4 , units μmolNH4

cm2d
) and nitrate flux



9

Zooplankton and Chlorophyll Biomass

0

100

200

 

 

C01
Zooplankton
Chlorophyll a C05 C08

0

200

400

600

0

100

200

C
hl

or
op

hy
ll 

a 
[μ

g/
L]

01X 02X 04X

0

200

400

600

Z
oo

pl
an

kt
on

, [
dr

y 
μ

g/
L]

Jan82 Jan83
0

100

200 08X

Jan82 Jan83 Jan82 Jan83

16X

Jan82 Jan83 Jan82 Jan83

32X

Jan82 Jan83
0

200

400

600

Figure 2.4: MERL chlorophyll a and zooplankton observations

(JNO3 , units μmolNO3

cm2d
). The four unknown, vertically integrated reaction rates are: the total

rate of carbon metabolism (R�
met, units μmolC

cm2d
), the rate of carbon decomposition via the

aerobic metabolism and/or the coupling of the sulphate metabolism and H2S oxidation

(R�
aer, units μmolC

cm2d
), the rate of carbon decomposition via the denitrifying metabolism (R�

dnf ,

units μmolC
cm2d

), and the rate of nitrification (R�
nit, units μmolO2

cm2d
). When the Redfield ratio

is assumed in designating the composition of organic matter, the following equilibrium

relationships result:

R�
met = R�

aer + R�
dnf (2.1)

JO2 = −R�
aer − R�

nit (2.2)

JNH4 =
16

106
R�

met −
1

2
R�

nit (2.3)

JNO3 =
1

2
R�

nit −
4

5
R�

dnf (2.4)

Since the fluxes of O2, NH4 and NO3 are known from the MERL dataset, it is possible to
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Figure 2.5: MERL benthic flux observations for four selected mesocosms

solve these four simultaneous linear equations for the four unknown reaction rates.

R�
met = −(212JO2 − 159JNH4 + 265JNO3)/236 (2.5)

R�
aer = −(43JO2 − 106JNH4 − 20JNO3)/59 (2.6)

R�
dnf = −(40JO2 + 265JNH4 + 345JNO3)/236 (2.7)

R�
nit = −(16JO2 + 106JNH4 + 20JNO3)/59 (2.8)

Within this study, reaction estimates derived in this manner will be referred to as the

“equilibrium model”, and they will be used for purposes to the numerical sediment models.

Error estimates of the equilibrium model were assessed by propagating flux errors through

these formulae.

2.3 Two-Layer Model

The two-layer sediment model (DiToro, 2001) examined in this study was originally

designed to serve as a subroutine for the Row-Column AESOP (RCA) water column

eutrophication model (Fitzpatrick, 2004), but now can be used as a stand-alone model.
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Table 2.1: Mean MERL Benthic Fluxes
Flux C01 C05 C08

J̄O2 -3.5±0.6 -3.3±0.6 -3.9±0.6

J̄NH4 2.3±0.1×10−1 2.5±0.7×10−1 2.7±0.4×10−1

J̄NO3 6.4±3.6×10−2 1.8±3.6×10−2 3.7±3.6×10−2

J̄PO4 1.3±0.7×10−2 1.7±0.5×10−2 1.9±1.0×10−2

- 01X 02X 04X

J̄O2 -4.7±0.6 -3.6±0.6 -4.4±0.6

J̄NH4 4.0±2.2×10−1 -3.7±0.036 1.2 ± 2.2 −1

J̄NO3 4.3±2.4×10−2 3.2±7.2×10−2 12.0 ± 2.6×10−2

J̄PO4 2.7±1.2×10−2 2.1±1.0×10−2 0.7p ± 1.2×10−2

- 08X 16X 32X

J̄O2 -6.3±0.6 -5.7±0.6 -6.0±0.6

J̄NH4 3.4±2.2×10−1 7.6±10.97×10−1 4.5±111.6×10−2

J̄NO3 -3.3±116.4×10−2 -1.1±23.28×10−1 -7.4±337.7×10−2

J̄PO4 4.4±12.5×10−2 7.6±8.6×10−2 9.1±5.8×10−2

It simulates sediment chemistry and vertical transport within two vertically integrated

layers, a thin aerobic layer on the surface and a large anaerobic layer below. The chemical

reactions represented in the model vary between the two layers, but altogether include

the decomposition of organic carbon due to a sulphate metabolism, denitrification, and

methane production; nitrification, hydrogen sulfide oxidation and methane oxidation take

place in the aerobic pore waters. Aerobic decomposition is not modelled. In its place, the

sulphate metabolism consumes an equivalent amount of oxygen when its end product, H2S

is oxidized.

Model inputs include its state variable initial conditions, the temperature, nutrient

and oxygen concentrations of the overlying-water, and the depositional flux of particulate

organic matter (POM flux). Surface nutrient exchange fluxes, a sediment oxygen demand

(i.e. the magnitude of the oxygen flux into the sediment), reaction rates, and chemical

species distribution, are all outputs. State variables include three lability classes of particu-

late carbon, dissolved NO3, and both sorbed and dissolved forms for each of NH3, PO4, Si,

H2S, and CH4. All materials are budgeted with mass balance equations of the form,

dC1

dt
= Rsrc,1 − Rsnk ,1 +

Lolwc,1 (Colwc − C1) − L1,2 (C1 − C2)

H1

− Lsed(C1)

H1

(2.9)

dC2

dt
= Rsrc,2 − Rsnk ,2 +

L1,2 (C1 − C2)

H2

− Lsed(C2 − C1)

H2

, (2.10)
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where Colwc, C1, and C2 are a chemical’s concentration in the overlying water column

(units
[

μmol
cm3

]
), layer 1 and layer 2 respectively, H1 and H2 are the layer thicknesses (units

[cm]), Rsrc,1, Rsrc,2, Rsnk,1 and Rsnk,2 are the nutrients’ chemical sources and sinks for

each layer (units
[

μmol
cm3·d

]
), Lsed controls the rate of material removal from the bottom of

each layer due to burial (units
[

cm
d

]
), and Lolwc,1 and L1,2 are mass-transfer coefficients

(units cm
d

), which describe the diffusive transports of materials (see below). Note that a

mass transfer coefficient for diffusion Li ,j can be re-written as the ratio of the diffusion

rate Di ,j (units
[

cm2

d

]
), and layer depth, H (units [cm]).

Li ,j =
Di ,j

H
. (2.11)

The diffusive transports in the mass balance equations are used to describe several

processes. Bioturbation is represented within the model as a diffusive transport of solid

materials between the model’s two layers. Aqueous substances are transported through the

sediment porewater by molecular diffusion and biological activity. All of these diffusive

transports are described within the mass balance equations as a first-order Fick’s second

law, which states that the time derivative of a substance’s concentration C is proportional

to the spatial derivative of that material’s flux, J :

∂C

∂t
= −∂J

∂z
(2.12)

while according to Fick’s first law, the flux J is proportional to the gradient of C,

J = −D
∂C

∂z
, (2.13)

where D is a diffusion constant. Thus, in the two mass balance equations we find that

Lolwc,1 (Colwc − C1), L1,2 (C1 − C2) and L1,2 (C1 − C2) represent diffusive fluxes at the

boundaries of each layer, and thus
Lolwc,1(Colwc−C1)−L1,2(C1−C2)

H1
and

L1,2(C1−C2)−0

H2
, are the

derivatives of the flux of C across the sediment layers.

The two-layer model’s algorithm can be described as follows:

1. Estimate the sediment oxygen demand, R�
SOD,

[
gO2

cm2d

]
, i.e. the vertically integrated

rate of oxygen consumption in the sediment. Use either the value from the previous

timestep, or if the simulation just started, use R�
SOD = 0.
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2. Estimate the benthic surface mass transfer coefficient (Lolwc,1,
[

cm
d

]
) and aerobic

layer depth (H1, [cm]), by assuming that the diffusive influx of oxygen and sediment

oxygen demand are in equilibrium, i.e.

R�
SOD = Dpwθ(T−20)

pw

[O2]olwc − [O2]2
H1

, (2.14)

where Dpw is the diffusion rate constant for dissolved porewater substances, θ
(T−20)
pw ,

is a temperature correction factor which increases diffusion with temperature,

[O2]olwc is the overlying water column oxygen concentration, and [O2]2 is the oxygen

concentration at the very bottom of the aerobic layer, i.e. [O2]2 = 0. Combining

equations 2.11 and 2.14, we find

Lolwc,1 =
R∗

olwc

[O2]olwc

(2.15)

3. Calculate the concentration of oxygen in the upper layer. As mentioned above, the

upper sediment’s diffusive gradient of oxygen is approximated to drop off linearly.

The oxygen concentration thus varies linearly between the concentration of the

overlying water column [O2]olwc to zero at the bottom of the aerobic layer. Integrat-

ing over across this gradient, the aerobic layer’s average oxygen concentration is

therefore [O2]1 = [O2]olwc

2
.

4. Calculate mass balance of all chemical species. Source and sink terms are calculated

for the model reactions: denitrification, sulfate reduction, methane production,

nitrification, sulfide oxidation and methane oxidation (Fig 2.6). Transport terms are

also calculated. Surface sediment fluxes are estimated by assuming that diffusion

constants are similar across all species:

JNH 4 = Lolwc,1 ([NH 4]olwc − [NH 4]1) (2.16)

JNO3 = Lolwc,1 ([NO3]olwc − [NO3]1) (2.17)

JPO4 = Lolwc,1 ([PO4]olwc − [PO4]1) (2.18)

Between sediment layers, diffusion governs the vertical transport of dissolved

species, and bioturbation the transport of solids (Fig. 2.7). The model’s mass
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balance equations are solved implicitly to find chemical species concentrations in the

two layers. Because the mass balance equations include transport between the layers,

the implicit solution requires solving them as two simultaneous linear equations.

Some substances react to their chemical environment by changing between solid

and aqueous phases, and thus they are able to be transported via both bioturbation

and porewater diffusion. For these substances their solid and aqueous partitions

are calculated each timestep. To do this, the overall concentration of a chemical

species C is calculated from its solid and aqueous phases, and re-partitioned such

that the porewater concentration of the aqueous phase Cpw

[
μmol
cm3

]
, and the solid

concentrations of the solid phase Cs satisfy the ratio ΠC = Cs

Cpw
, where Π is either a

model parameter, or calculated quantity. In either case, Π is intended to function

as an equilibrium constant of dissolution. The solubility of some substances is

dependent on the chemistry of its environment, and thus the chemical’s partition

parameter Π may differ between aerobic and anaerobic layers. For example, the

phosphate partitioning parameter in the aerobic layer is calculated from three model

parameters, πPO4,base

(
units

cm3(solid volume units)
cm3(porewater volume units)

)
, πPO4,exp (unitless), [O2]crit (units

μmol
cm3 ):

ΠPO4 = πPO4,baseπ

“
[O2]

[O2]crit

”

PO4,exp ; [O2] < [O2]crit (2.19)

ΠPO4 = πPO4,base; [O2] >= [O2]crit (2.20)

5. After the above calculations, the model finds a new R�
SOD from the demands of

nitrification (R�
NSOD) and the oxidation of sulfide and methane (R�

CSOD). Note that

R�
NSOD and R�

CSOD are themselves functions of the original estimate of R�
SOD from

step 1.

6. Lastly, a root-finding algorithm is implemented to solve the equation

0 = R�
NSOD(R�

SOD) + R�
CSOD(R�

SOD) − R�
SOD. (2.21)

Each timestep, the algorithm iterates steps 2 through 4 until the estimate of R�
SOD

converges and satisfies this equation. Once satisfied, the timestep is complete, and

the next timestep begins with step 1.
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Figure 2.6: Chemical Reactions of the Two-Layer Model. Particulate organic matter is

broken down by one of three metabolisms (denitrification, sulphate reduction, and methane

production). Porewater reactions oxidize the reduced end products of the POM metabolism

(nitrification, sulphide oxidation and methane oxidation.)

In each layer, the model estimates a carbon metabolic rate in proportion to the

concentrations of three lability classes of carbon, [C]�, where the most labile class � = 1

decomposes over timescales of months, lability class � = 2 operates on timescales of

years, and � = 3 is practically inert. These classes are made distinct by giving each its

own specific rate constant rmet,�, which is re-scaled by an approximated Arrhenius factor

θ
(T−20)
met ,� . Thus, in a given layer, the rate of carbon metabolism, Rmet (units μmolC

cm3d
), is

therefore:

Rmet =
∑

�

rmet,�θ
(T−20)
� [C]�. (2.22)

Next, for each layer, the rates of denitrification Rdnf,1, Rdnf,2 (units μmolC
cm3d

) are cal-

culated to be proportional with the layer’s NO3 concentrations. Denitrification rates are

sensitive to oxygen concentrations, and so the aerobic and anaerobic layers each have

their own specific rate of reaction rdnf,1 and rdnf,2 (units 1
d
), but share an approximated
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Figure 2.7: Transports of the two-layer model. Influxes of particulate organic matter fuel

the carbon metabolisms. Solids are bioturbated between layers, while aqueous phases are

diffused. The surface benthic fluxes are model outputs.

Arrhenius factor θT−20
dnf .

Rdnf,1 = rdnf,1θ
(T−20)
dnf [NO3]1 (2.23)

Rdnf,2 = rdnf,2θ
(T−20)
dnf [NO3]2 (2.24)

This rate, when converted to equivalent carbon units is subtracted from the total of con-

sumed carbon. The remainder of the decomposed carbon is usually consumed by the

sulphate reduction metabolism. In the rare case that [SO4] is still too low to fuel the entire

metabolic demand, methane production processes the remainder. This is done by calcu-

lating a sulphate reduction layer depth (HSO4 ≤ H2) by linearly approximating the SO4

diffusion gradient and finding the depth where [SO4] reaches zero. Sulphate reduction and

methane production metabolisms are then partitioned as
HSO4

H2
and (1− HSO4

H2
) respectively.

The nitrification reaction rate Rnit (units μmolN
cm3d

) are proportional to the specific

reaction rate rnit, are proportional to [NH4]1, and are modified by an O2 Michaelis-Menten

term, and an Arrhenius factor. The rate is also modified by an NH4 Michaelis-Menten



17

factor, although the half saturation parameter, knit,NH4 (units μmolN
cm3 ), is modified by its own

Arrhenius factor, θk,nit,NH4 . Note that this reaction occurs only in the aerobic layer.

Rnit = rnitθ
T−20
nit

[NH4]1
knit,NH4θk,nit,NH4 + [NH4]1

[O2]1
knit,O2 + [O2]1

. (2.25)

Oxidation rates of H2S in the aerobic layer is calculated using different specific rate

constants, rH2S,s for solid phase of H2S, and rH2S,pw for the aqueous phase (units 1
d
). Both

phases share the same Arrhenius factor, and vary linearly with oxygen. Parameter kH2S,ox

functions only for unit conversion.

RH2S,aq = rH2S,aqθ
T−20
H2S

[O2]1
kH2Sox

[H2S]aq (2.26)

RH2S,s = rH2S,sθ
T−20
H2S

[O2]1
kH2Sox

[H2S]s. (2.27)

The methane oxidation rates, RCH4ox (units μmolC
cm3d

), are calculated with a specific rate

constant rCH4ox (units 1
d
), and Arrhenius factor θT−20

CH4ox, a Michaelis-Menton oxygen factor

[O2]1
kCH4ox+[O2]1

, and varies in proportion to methane concenrations:

RCH4ox = rCH4oxθ
T−20
CH4ox

[O2]1
kCH4ox + [O2]1

[H2S]aq (2.28)

Bioturbation is modelled as a diffusive process, however, the two-layer model ac-

knowledges that this transport is the result of biological activity. This is done by adjusting

a base diffusion rate, Ds ( cm2

d
), according to temperature, food availability (i.e. organic

carbon in the sediment), and oxygen availability. The resulting mass transfer coefficient is

L′
12,s =

Ds

H2

θT−20
Ds

[C]1
[C]ref

[O2]olwc

[O2]olwc + kO2,Dp

, (2.29)

where θT−20
Dp

[O2]1
1

is an Arrhenius factor which varies with temperature,
[C]1
[C]ref

is a normal-

ized concentration of organic carbon within the aerobic sediments, kO2,Dp is a Michaelis-

Menten half saturation constant for oxygen (units μmolO
cm3 ), and H2 is the thickness of the

anaerobic layer.

The two-layer model also simulates stress on benthic fauna which results from low

oxygen concentrations. A model state variable, stress, S (unitless), evolves according to
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the equation

dS

dt
= −rsS +

kO2,Dp

kO2,Dp + [O2]olwc

(2.30)

where rs (units 1
days

) is the specific rate of decay for stress. This equation describes stress

to grow under low oxygen conditions, and dissipate when the water is well oxygenated.

When the benthic community accumulates any amount of stress, bioturbation is then

proportionately reduced for the remainder of the year according to the equation

L12,s = L′
12,smin(1 − rsS) (2.31)

where the function min(1 - ksS) represents the annual minimum of the quantity (1 - ksS).

It should be noted that the above text uses specific rate constants r (units 1
d
) when

describing system dynamics, while the two-layer model’s actual implementation usually

uses reaction velocities, κ (units cm
d

) which are defined as κ =
√

Dpwk, where Dpw is the

porewater diffusion constant. Essentially, this means that many of the above instances of a

rate constant r would be substituted in the two-layer model code by κ2

Dpw
. This distinction

does not result in any functional difference, but only in the values of the listed parameters.

A comprehensive list of two-layer model parameters are given in table A.1.

2.4 Multi-Layer Model

A multi-layer model, described by Soetaert et al. (1996a,b) has a vertically resolved design,

dividing the sediment into multiple layers, each layer describing the same transports and

chemical reactions. I have modified the multi-layer model from its original design to

include phosphate so that it can be compared to the two-layer model. The state variables

of the multi-layer model are O2, NO3, NH3, aqueous and solid (i.e. sorbed) PO4, two

lability classes of organic carbon, and oxygen demand units ODU. The ODU variable

represents reduced materials and chemicals which result from anaerobic metabolisms

and are measured in concentrations of oxygen. Receiving overlying water column con-

centrations, depositional fluxes of organic carbon, and state variable initial conditions as

input, the model computes surface fluxes, reaction rates, transport rates, and state variable

concentrations. All chemical species described in the multi-layer model obey mass balance
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equations, which are solved using the Euler forward method,

∂C

∂t
= Rsrc − Rsnk − ∂

∂z

(
D

∂C

∂z

)
− vsed

∂C

∂z
, (2.32)

where C is a chemical concentration, Rsrc and Rsnk are the chemical’s sources and sinks

(units μmol
cm3d

), D is the Fick’s law diffusion constant (units cm2

d
), and vsed is the burial speed

(units cm
d

), which results from a slowly rising coordinate system that is compensating for

the constant addition of sediment materials at the sediment surface (defined as z = 0).

Diffusion transports aqueous material between layers, while bioturbation transports solids.

Figure 2.9 summarizes the model’s modes of physical transport. As in the two-layer

model, phosphate can be converted between solid and aqueous phases. Chemical reactions

include aerobic decomposition, denitrification, anaerobic decomposition (which produces

ODUs), the oxidation of ammonium, and the oxidation of ODUs (Fig 2.8). Rates of the

oxidation reactions are calculated using a specific rate constant (r) and Michaelis-Menten

half saturation constants (k). For nitrification:

Rnit = rnit[NH4]
[O2]

O2 + kO2,nit

(2.33)

For ODU oxidation:

RODUox = rODUox[ODU]
O2

[O2] + kODUox,O2

(2.34)

Computation of the reaction rates for the three metabolisms first estimates the total

decomposed carbon, and then partitions the decomposition between the three metabolisms

depending on the availability of oxygen and nitrate. The rate of carbon decomposition in a

given layer is:

Rmet =
2∑

�=1

rmet�
[C]�θ

(T−20)
met�

(2.35)

where rmet� is the specific rate constant for carbon lability class � = 1, 2, and θmet�

is an Arrhenius factor. Three limitation terms are then calculated, (limaer, limdnf , and
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limanox) and summed (
∑

lim).

limaer =
[O2]

[O2] + kaer,O2

(2.36)

limdnf =
[NO3]

[NO3] + kdnf,NO3

kdnf,O2

[O2] + kdnf,O2

(2.37)

limanox =
kanox,NO3

[NO3] + kanox,NO3

kanox,O2

[O2] + kanox,O2

(2.38)

∑
lim = limaer + limdnf + limanox (2.39)

The model then assigns the fraction of decomposed carbon to each metabolism as Rmet
limaerP

lim
,

Rmet
limdnfP

lim
, Rmet

limanoxP
lim

to aerobic decomposition, denitrification and anaerobic decompo-

sition, respectively.

ODU Oxidation

Nitrification

O2

NH4
+

ODU

NO3
-

Other

Porewater Reactions

POM

PO4
3-

NO3
-

ODU

NH4
+

CO2

N2

Anoxic Metabolism

Denitrification

O2

Decomposition

Aerobic Metabolism

Other

Figure 2.8: Chemical reactions of the multi-layer model. Particulate organic matter is

decomposed by one of three metabolisms (aerobic, denitrification or anaerobic). Pore-

water reactions (nitrification, ODU redox) oxidize the reduced end products of the three

metabolisms.

2.5 POM Flux Parametrizations

Both the multi- and two-layer models require a depositional flux of particulate organic

matter (POM) as input. These fluxes were not measured during the MERL eutrophication



21

{Sediment
Layer n 

Overlying
Water

Column{ Model Input

State Variables

Output

...

...
Diffusion

POM Deposition

Porewater - Olwc
Exchange

OLWC
Concentrations

Porewater
Concentrations

Organic
Matter

Bioturbation

Burial

Bioturbation Diffusion

Figure 2.9: Transport processes of the multi-layer model. The surface layer receives an

influx of particulate organic matter. Solids are transported between layers via bioturbation.

Aqueous phases are transported between layers via diffusion. The benthic oxygen and

nutrient fluxes are the model output.

experiments, and had to parameterized. Four parameterization methods were optimized

in a number of ways. “Joint” parameterizations fit POM flux parameters using data from

all of the mesocosms, while “individual” parameterizations constrain a different flux pa-

rameter value for each mesocosm. In additional trials, sediment model parameters were

included in the optimization. These trials used both the two-layer and multi-layer model.

Parameterizations of POM flux were constructed as follows:

Method A: For each mesocosm, a constant POM flux rate was assigned over the en-

tire 2.5 year simulation.

JPOM = pconst (2.40)

This basic method is similar to that described in DiToro (2001). Note that this method

was only optimized individually. In other words, the mesocosms never shared the same



22

constant POM flux value.

Method B: POM deposition scales in direct proportion to chlorophyll concentrations,

C, i.e.,

JPOM = pchla [Chl]. (2.41)

Method C: POM flux scales linearly to chlorophyll a of two phytoplankton groups:

“diatom” and “other”. Measured chlorophyll-a, C, is partitioned between diatoms, and

other phytoplankton, using the observed abundances of diatoms, Adia , and total abundance

of algae, Atot .

JPOM =
(pdiaAdia + pother(Atot − Adia))

Atot

[Chl]. (2.42)

This parameterization is a generalization of method “B” and can reproduce its output by

setting pdia = pother .

Method D: POM flux constructed from a linear combination of chlorophyll-a, [Chl],

and zooplankton biomass, [Zoo]:

JPOM = (pchla [C] + pzoo [Zoo]) . (2.43)

This parameterization is also a generalization of method “B” and can reproduce its output

by setting pzoo = 0.

2.6 Simple Oxygen Flux Parameterizations

Oxygen flux parameterizations do not have state variables, but instead immediately convert

an input (i.e. temperature or overlying water oxygen) into an output according to a function.

For sake of comparison, the performance of two parameterizations of oxygen flux will

be assessed. These models use only 1 to 2 parameters (p1 and p2), and accept only one

or two fields as input. As a result, they are easier to implement and require negligible

computational resources when compared to the two- and multi-layer models.



23

The first parameterization, previously suggested by Murrell and Lehrter (2010),

describes the flux to increase linearly with oxygen supply. Is an empirical parameterization

relating the benthic oxygen flux JO2,ML (negative sign implies a flux into the sediment), to

oxygen concentration in the overlying water, O2:

JO2,ML = −p1O2. (2.44)

While Murrell and Lehrter (2010) used a second y-intercept parameter, we chose to set it

to zero so that the model produces meaningful output in the limit as O2 approches zero.

The second parameterization, used in Hetland and DiMarco (2008), also uses overly-

ing water oxygen as input, but rescales the flux according to temperature by including an

(approximated) Arrhenius factor. The inclusion of this factor accounts for the dependence

of the sediment’s metabolic rate with temperature. Inputs for this parameteriztion are

therefore oxygen, O2, and temperature, T :

JO2,HD = −p12
T
10

(
1 − e

“
p2
O2

”)
. (2.45)

Here, the 2
T
10 allows the flux to obey a “Q10” rule: that an increase in 10 degrees

roughly doubles most rates of reaction. The

(
1 − e

“
p2
O2

”)
factor approaches zero at low

oxygen.

For the sake of brevity the Murrell and Lehrter (2010) parameterization will from

now on be referred to as “ML10”, and the Hetland and DiMarco (2008) will be called

“HD08”.

2.7 Optimization Methods

While some of the sediment model’s parameters may be known prior to a simulation, it is

rare that the model’s entire parameter set is well quantified from the outset. Many of these

parameters are difficult or impossible to measure empirically, so unknown parameters are

determined in the process of optimization. During this process, a model’s parameters,

�p, are objectively constrained by methodically adjusting their values in an attempt to

minimize the misfit between model output, Xmod
i (�p), and corresponding observation, Xobs

i .
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The model-data misfit is quantified with a cost function, F (�p),

F (�p) =
M∑

m=1

1

Wm

Im∑
i=1

(
Xobs

m,i − Xmod
m,i (�p)

)2
(2.46)

which can be algorithmically minimized by using a number of different techniques. In this

definition, M is the number of different data types m ε {JO2 , JNO3 , JNH4 , JPO4}, which

each have Im observations, and are given weights Wm. The value of a data type’s weighting

factor was chosen to be equal to the same data type’s unweighted cost contribution prior

to optimization. This choice of weights normalized the unoptimized cost contribution of

each data type to the value of 1.0, and prevented the cost from arbitrarily varying with

the choice of units for a given data type. The exact values used in this study are WO2 =

901.49 [ cm2d
μmolO2

]2, WNO3 = 33.37 [ cm2d
μmolNO3

]2, WNH4 = 29.93 [ cm2d
μmolNH4

]2, and WPO4 = 0.8046

[ cm2d
μmolPO4

]2.

The cost function will be used to compare the model performance for a number of

sediment models; however, there is uncertainty associated with the observations used to

calculate the cost. The cost function, therefore, has its own bounds of uncertainty, which

can be estimated by propagating observational errors (table 2.1) into the cost function

calculation using a Monte Carlo method (Bagniewski et al., 2011).

Three different minimization algorithms were used in this study: least squares re-

gression, a gradient descent scheme, and an evolutionary algorithm. The latter two are

described below.

Optimization of the POM flux parameterizations fitted modelled sediment fluxes

to observed fluxes by algorithmically varying the POM flux parameters. The fitting

algorithm used a gradient descent scheme. This algorithm starts its search of the parameter

space from an initial point, numerically estimates the cost function gradient,
∂F (�p)
∂pi

, at

this point and uses the gradient to estimate a new point in parameter space, i.e. a new

parameter set expected to correspond to a lower cost. When the chosen parameter set

is sufficiently near a cost function minimum, the gradient becomes very small, and the

procedure terminates. When calculating the cost function gradient numerically, this method

is used best with relatively few parameters, because estimation of the cost gradient requires

one model simulation for every parameter involved, and so the required computation

resources increase linearly with the number of parameters. This kind of optimization is
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also deterministic and is therefore repeatable, given the same initial conditions.

The two- and multi-layer sediment models involved far more parameters than the POM

flux parameterizations, making the gradient descent method computationally expensive.

Evolutionary algorithms, whose required computational resources do not increase with the

number of parameters, were used for these models (Fig 2.11). Evolutionary algorithms, so

named due to their semblance to the mechanisms of natural selection, work as follows:

1. Initialization: A baseline parameter set �pinit is copied n times to form a parameter set

population. Diversity in the population is generated by adding noise to the copies.

2. Selection: The cost function is evaluated for each population member, and the

members are sorted by cost. Members with lower cost are kept, and the remaining

fraction of the population is deleted (we deleted half the members each generation).

3. Repopulation and Recombination: Those population members which remain are

randomly grouped into pairs of ”parents”. From each pair of parents, a random com-

bination of parameter values are used to generate an “offspring”, a new population

member. This is repeated until the population size is replenished.

4. Mutation: The selection step requires population diversity in order to function. This

diversity is maintained by applying mutations to offspring. In this manner, new

parameter values may enter the population.

5. Iterate over the previous three steps for a set number of generations. For purposes of

this study, thirty generations was sufficient to allow the cost function to converge to

a minimum.

Note that when optimizing non-linear models, such as the two- and multi-layer

sediment models, multiple local minima can exist in addition to a global minimum (Fig

2.10). Both gradient descent methods and evolutionary algorithms (with sufficiently small

mutation rates) can become ”trapped” in a local minimum, and it is not easy to verify

any minimum to be global. At best, comparison of repeated optimizations can test the

consistency of optimizations.

Due to the simple nature of the SOD parameterizations, their parameters were easily

fit to observations using a least-squares regression routine.
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Figure 2.10: Example of an idealized cost function in 2D parameter-space, with one global

and many local minima

2.8 Evaluation of Model Parsimony, the f -Test

Any phenomenon can be described to an arbitrary precision, given a sufficiently complex

model. Since inaccurate models are not useful, and exceedingly complex models are

impractical, success in modelling therefore lies within the compromise of the model-data

fit and model’s complexity. Quantitative evaluation of this compromise is possible by

means of an f -test. This test compares two models, rewards them for better model-data

fits, and punishing them for utilizing a larger number of parameters (i.e. for being more

complex). Examples of its use in sediment modelling can be found in Soetaert et al.

(1996c); Berg et al. (1998), and the procedure will be be summarized here.

The f -test uses the null hypothesis that a complex model does not significantly

improve the model-data fit over that of a simpler model. If the null hypothesis is true,

the value ftest =
(

FC−FS

(dC−dS)

)
/
(

FC

dC

)
follows an f -distribution with (dS − dC ,dC) degrees

of freedom, where FC and FS are the cost functions (eqn. 2.46) of the complex and

simple models respectively, and dC and dS are their degrees of freedom (i.e. number of

observations - number of model parameters - 1). If the null hypothesis is true, then the
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Figure 2.11: Diagram of an evolutionary algorithm. From Mattern (2008)

calculated value of ftest should be less than f -distribution’s critical value (which varies

with the chosen confidence interval). Thus, if ftest exceeds the critical value, the data is

better described by the more complex model, in spite of it’s larger number of parameters.

2.9 Hessian Analysis

A Hessian matrix can be defined as the matrix with elements:

Hij =
∂2F (�p)

∂pi∂pj

, (2.47)

where F (�p) is a model’s cost function (defined in the previous section), and �p is the model

parameter set. When used with linear models, inverting the Hessian matrix results in the

covariance matrix of the model parameters. Because the two-layer and multi-layer models

are both non-linear, this process only provides an approximation of the covariance matrix,

and the covariance values do not maintain a uniform value throughout parameter space. A

full description of this technique may be found in Thacker (1989). The covariance matrix

can be used to identify parameters with a large variance, as well as correlated parameters.

These parameters are to be removed from the optimization process because large parameter

variances indicate insensitive parameters that are difficult to constrain, and large parameter

covariances indicates undesirable redundancy between the function of two parameters. By
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removing these parameters, the optimization’s repeatability is improved.

2.10 Cross Validation

While the process of optimization allows a model’s performance to improve within a given

dataset, there is reason for concern that the model’s parameter set becomes over-fitted,

that is, too specialized to function properly within other environments. After optimizing

a model within a given dataset, it is prudent to test the model within other environments

without re-tuning its parameters. Although this study has been restricted only to the

MERL eutrophication dataset, a wide range of eutrophication conditions exists between

mesocosms. Cross validation was accomplished by subsampling 5 of the 9 available

tanks. A single list of ten random mesocosm subsets was generated, and both models

were optimized using each subset. The resulting optimized models were then run in all

9 mesocosms, and the ten resulting cost functions were averaged. Because the POM

flux parameterization used a different parameter for each mesocosm, it was impossible to

involve them in the cross validation process, and previously optimized values were used.



CHAPTER 3

RESULTS

3.1 Hessian Analysis

As stated in chapter 2, insensitive parameters were the first to be removed from the Hessian

matrix. In order to gauge their relative sensitivity, the parameter values were normalized,

and the second derivatives of the cost function with respect to each parameter (i.e. the

diagonal elements of H) were compared. The twelve least sensitive parameters were

removed from the Hessian matrix for both models. If the second derivative with respect

to a given parameter was smaller than a chosen threshold, that parameter was removed

from the Hessian matrix. Without the removal of these insensitive parameters, the multi-

layer model’s Hessian matrix inverted into an unreasonable covariance matrix (i.e. some

parameters had negative variance values).

Correlated parameters were removed next. The covariance matrices were normalized

to acquire correlation matrices, which are visualized in figure 3.1. Correlated and anticorre-

lated parameters appear as red and blue respectively, while uncorrelated parameters appear

as grey. For both models, the rows and columns of the most correlated parameters were

removed until no two parameters shared a correlation higher than a chosen threshold of 0.6.

Correlation matrices generated after the removal of correlated parameters are visualized in

figure 3.2.

It was often required to choose between two or more correlated parameters for

removal. In these cases, the choice was made with two goals in mind: first, to remove

as few parameters as possible, and second, to preserve the functional diversity of the

parameter set as best as possible. Tables A.1 and A.2 list all the parameters involved in the

29
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process, and list the results of the Hessian analysis. Parameters were either “Kept” and

included in the process of optimization, or they were removed either as “Insensitive” or

“Correlated” parameters. Overall, 22 of the 48 two-layer model parameters were included

in optimization, while 15 of the 33 multi-layer model parameters were included (see tables

A.1 and A.2).

The two-layer model’s parameters rmet,3, θmet,3, κH2Sox,aq, κH2Sox,s, πH2S,1, πH2S,2,

θH2Sox, kH2Sox,O2 , κCH4ox, θCH4ox, kCH4ox,O2 , and ksul,SO4 were found to be insensitive and

were eliminated. This result was reasonable: parameters rmet,3, and θmet,3 decompose

the most inert class of organic matter over timescales which are irrelevant to the MERL

mesocosm experiments; κH2Sox,aq, κH2S,s, πH2S,1, θH2Sox, and kH2Sox,O2 , ksul,SO4 , directly or

indirectly, govern the oxidation rate of H2S, which is irrelevant since the model converts

outfluxes of H2S into a sediment oxygen demand; κCH4ox, θCH4ox, and kCH4ox,O2 govern

the methane production metabolism rates, which are very small in the MERL dataset and

are only large on rare occasion when sulphate is depleted from the sediment.

Parameters Lsed, rmet,2 and θmet,2 were removed as they were correlated with the POM

deposition parameters (i.e. pconstC01, pconstC05, and pconstC08). Although vsed does not

register as being above the .6 correlation threshold in figure 3.1(a), removal of parameters

such as rmet,2 affected future iterations of the correlation matrix, and vsed’s correlations

grew larger. Many parameters involved with transfer and storage of aqueous and solid

phosphate registered as correlated, including Dpw, Ds, πPO4,base, πPO4,exp, rmet,1 and θmet,1.

From this list, πPO4,exp was kept to preserve the functioning of the sediment phosphate

storage. Many nitrification parameters were correlated, including κnit, θnit, knit,NH4 and

θk,nit,NH4 . Similarly, denitrification parameters were correlated as well, including κdnf,1,

rdnf,2, and θdnf . In both situations, only the reaction velocities κnit and κdnf,1 were kept.

Most of the multi-layer model’s chemistry parameters were removed as they were

found to be insensitive, including kaer,O2 , kODUox,O2 , kanox,ODU, knit,O2 , kdnf,NO3 , kdnf,O2 ,

and kanox,NO3 . Since the MERL mesocosms were consistently well-oxygenated, the oxygen

saturation and inhibition parameters were not necessary for the model’s proper functioning

and would only have affected the model’s behaviour under extremely high or low oxygen

concentrations. Many of these parameters are furthermore used to weight partitions of the

carbon metabolism between aerobic, denitrification and anaerobic pathways, depending

on the availability of oxygen, and nitrate. There never arose any situation where oxygen
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(a)

(b)

Figure 3.1: Parameter covariance for two-layer model (left) and multi-layer model (right)
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(a)

(b)

Figure 3.2: Parameter covariance for two-layer model (left) and multi-layer model (right)

after the removal of correlated parameters.
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concentrations dropped to sufficiently low levels that the weighting of these parameters

became significant. Parameters of the anammox pathway all registered as insensitive,

likely due to the fact that these reactions were inhibited by the presence of oxygen. A

number of the POM depositional flux parameters (i.e. pconstC01, ... etc.) were among

the 12 least sensitive and were removed. Since optimization of the POM parameters was

necessary, these parameters were kept in spite of their removal during the Hessian analysis.

Since the inverted Hessian matrix only approximates the model’s covariance matrix, one

cannot expect it to identify insensitive parameters with perfect accuracy.

Once the Hessian matrix was inverted however, it was straight-forward to remove

correlated parameters. When θmet,1 was removed from the matrix, all correlations dropped

below the .6 threshold.

3.2 Depositional Flux Optimizations

The depositional flux of particulate organic matter (POM) is a necessary input to the

two-layer and multi-layer sediment models, but the MERL eutrophication experiment data

did not include such observations. These unknown fluxes were thus parameterized and

optimized for the two-layer model. Four flux parameterization methods were used: assign-

ing a different constant POM flux to each mesocosm (method “A”); a POM flux scaled to

chlorophyll concentrations in the overlying water (method “B”); a POM flux scaled to a

linear combination of diatom chlorophyll and other chlorophyll (method “C”); and a POM

flux scaled to a linear combination of chlorophyll and zooplankton concentrations (method

“D”). The optimized cost function values for the four methods are listed in table 3.1. For

methods B, C, and D, these results include “individual” parameterizations (subscript “i”),

where a unique POM flux parameter was assigned to each mesocosm, and “joint” parame-

terizations (subscript “j”), where the same parameter was applied across all mesocosms.

Uncertainties of the cost function were estimated by propagating observational errors listed

in table 2.1.

Due to the exceedingly large uncertainties in the observed nutrient fluxes of the 8X,

16X and 32X mesocosms, the cost functions also had large uncertainties, too large to

reliably compare the optimized cost functions. However, when the cost function was

calculated from these same results, but excluding the cost contributions of mesocosms

8X, 16X and 32X, the uncertainty was sufficiently small to resolve differences in the
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Table 3.1: Two-layer model: cost for all mesocosms

Flux Parameteriza-

tion

A, flux is con-

stant

B, flux scales

with chl.

C, flux scales

with diatom

and other chl.

D, flux scales

with chl. and

zoop.

Individual: unique

parameters for each

mesocosm

3.76 ± 2.85 4.24 ± 2.85 4.12 ± 2.85 4.15 ± 2.85

Joint: shared pa-

rameters across all

mesocosms

N/A 5.60 ± 2.85 5.38 ± 2.85 5.20 ± 2.85

Table 3.2: Two-layer model: cost, excluding 08X, 16X and 32X

Flux Parameteriza-

tion

A, flux is con-

stant

B, flux scales

with chl.

C, flux scales

with diatom

and other chl.

D, flux scales

with chl. and

zoop.

Individual: unique

parameters for each

mesocosm

0.46 ± .04 0.62 ± .05 0.52 ± .05 0.58 ± .04

Joint: shared pa-

rameters across all

mesocosms

N/A 1.35 ± .05 1.29 ± .04 1.09 ± .04

costs. However, because the joint parameterizations were fit to observations from all of the

mesocosms (including the noisy eutrophic mesocosms), the optimized values of the joint

parameterizations were therefore overestimated.

Once the cost contributions of 8X, 16X, and 32X were excluded, comparison of

the parameterization costs revealed that methods A and Ci produced the lowest misfit,

their difference in costs being within the bounds of uncertainty. This means that the

two-layer model output more closely resembled observations, while using one of two

parameterizations: one which assigns the POM fluxes to constant values, and one that

scaled nine POM fluxes with estimates of diatom chlorophyll. All other parameterizations

that scaled the POM flux with other measures of pelagic biomass did not generate as good

a fit.

Although method A and Ci frequently had a better fit than the other models, they

were more complex (i.e. used more parameters) than the joint B, C and D methods. There

remains the possibility that method A’s and Ci’s superior fit was a result of over-fitting,

and that the simpler models were to be preferred. More generally stated, the objective
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of the parameterizations was not necessarily to produce the best fit, but to find the most

parsimonious one. The relative parsimony of method A and Ci against the simpler methods

was tested; an f -test can check to see if a more complex model’s additional parameters

are justified by its increase in fit. An f -value, calculated from the cost value and number

of parameters for each model, is compared against a critical value of a corresponding

f -distribution. An f -value which exceeds the critical value indicates that the complex

model’s extra parameters were justified by the model’s improved fit.

This test was performed, using cost functions that excluded contributions from meso-

cosms 8X, 16X and 32X. The results of these f -tests are shown in table 3.3 and table 3.4.

Both methods A and Ci consistently scored an f -value that was much larger than their

critical values, indicating that their extra parameters produced a statistically significant

improvement in the model-data fit. Thus, on the basis of the model-data misfits (Tables

3.1, 3.2 ) and the f -tests (Table 3.3, 3.4) methods A and Ci were to be preferred over the

other parameterizations.

Table 3.3: f -Scores and Critical Values of Two-Layer Model Input Parameterizations:

Method A vs Each of Joint Methods B, C, and D

Compare A against: Bj , flux scales

with chl.

Cj , flux scales

with diatom

and other chl.

Dj , flux scales

with chl. and

zoop.

f score 1155 1092 911

Critical Value 1.96 2.03 2.03

Table 3.4: f -test, of Two-Layer Model Inputs: Method Ci vs joint Methods B, C, and D

Compare A against: Bj , flux scales

with chl.

Cj , flux scales

with diatom

and other chl.

Dj , flux scales

with chl. and

zoop.

f score 1033 982 824

Critical Value 1.65 1.67 1.67

The resulting overall mean POM fluxes are plotted in figure 3.3, and their corre-

sponding parameter values are listed in table 3.5. These results reveal differences in

eutrophication sensitivities between the parameterization methods. Fluxes generated by

method A were insensitive to eutrophication; in spite of the 32-fold difference in nutrient

loading between the 01X and 32X mesocosms, the corresponding fluxes of method A were
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virtually identical, fluxing 1711.7 and 1699.6 μmolC
cm2yr

respectively (see figure 3.3). At most,

the POM fluxes differ by a factor of 2.5 in the C05 and 16X mesocosms, with 1032.9 and

2577.0 μmolC
cm2yr

, respectively.

In contrast, joint POM flux parameterizations of methods B, C and D were far

more sensitive to eutrophication. Joint method B generated fluxes of 137.4 and 2250.5

μmolC
cm2yr

in the C01 control and 32X mesocosms, respectively, and joint methods C and

D exhibited a similar fifteen-fold increase. The nutrient load sensitivity exhibited by

these three parameterizations is inherited from their chlorophyll and zooplankton inputs.

Figure 2.4 reveals a strong increase in chlorophyll and zooplankton concentrations as the

mesocosms become more eutrophic, a trend which joint methods B, C and D follow in

direct proportion.

When methods B, C and D were optimized individually, the POM fluxes closely

matched the eutrophication-insensitive fluxes of method A. Examination of the individually

optimized parameter values of method B reveals a decreasing trend of parameter values

with higher nutrient loads, varying pchla from 209.9 μmolC
cm2yr

L
μgChla

in the C01 mesocosm

to 24.5 μmolC
cm2yr

L
μgChla

in 32X. The net effect of this trend reduces the resulting POM flux’s

sensitivity to eutrophication, producing mean POM fluxes with magnitudes similar to those

of method A.

Optimization did not always generate meaningful parameter values. Individual opti-

mizations of methods C and D sometimes resulted in negative parameters which, given the

presence of water column phytoplankton or zooplankton, implies a removal of organic mat-

ter from the sediments. Either this is not a meaningful result, as it completely contradicts

the original rationale of the parameterizations, or it’s indicative of an unknown removal

mechanism which has somehow been implicitly described in the parametrizaiton. Without

access to directly measured parameters however, it is not possible to decide between these

two possibilities. Although individually optimized methods C and D produced smaller cost

functions than when they were jointly optimized, this was only the expected result of the

optimizer exploiting the extra degrees of freedom made available by assigning individual

parameters to each mesocosm.

The final set of POM flux experiments optimized POM parameterizations for both

the two-layer model and multi-layer model by varying sediment model parameters in

addition to POM flux parameters. These experiments only examined methods A and B.
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Figure 3.3: POM flux, joint vs. individual parameterizations: Jointly optimized flux

parameterizations B, C, and D are sensitive to nutrient loading, while the individually

parameterizations are not.

Because so many parameters were being varied, it was necessary to switch from using the

gradient descent optimization algorithm, to evolutionary algorithms. Consequently, the

cost functions resulting from these optimizations cannot be directly compared to those of

the previous POM flux optimizations. The multi-layer model produced costs of Fm,A =

3.1±2.8, and Fm,B = 4.2±2.8, while the two-layer model generated costs of F2 ,A = 3.1±2.8

and F2 ,B = 3.7±2.8. Uncertainties in the cost are too large to make any comparison, but,

ignoring eutrophic mesocosm cost contributions produces costs of Fm,A = 0.52±0.04,

and Fm,B = 1.3±0.04 for the multi-layer model, while the two-layer model generated

costs of F2 ,A = 0.85±0.03 and F2 ,B = 0.83±0.04. The multi-layer model thus generates a

better fit when accepting a constant POM flux as input as opposed to scaling the flux with

chlorophyll. The two-layer model, by including the model parameters in the optimization,

appears to be able to perform equally well with the chlorophyll-derived input.

Overall, method A and joint method C produced the smallest cost functions, but these

costs were also within the bounds of uncertainty of one another. It was necessary to choose

a POM parameterization method for further studies, so methods A was used as its cost was
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smaller, and it required no inputs.

3.3 Optimized Model Results

For both the two- and multi-layer models, baseline parameter values were taken from

their original publications (Soetaert et al., 1996b; DiToro, 2001). Hessian analysis was

used to develop a list of parameters to optimize, and these parameters were optimized

along with the POM flux parameters. Sediment fluxes calculated by both models were

compared to the MERL observations, including the oxygen flux, ammonium flux, nitrate

flux, and phosphate flux. Modelled reaction rates of carbon decomposition, nitrification,

and denitrification were compared against rate estimates based on an equilibrium model

which inferred the reaction rates from observed fluxes. In these time series plots, the model

outputs are compared by calculating sum of the squared error (SSE) between output and

observation. Otherwise, the models are compared on the basis of a cost function (see

methods). A breakdown of the cost contributions according to mesocosm and flux type

is given in figure 3.4. Overall costs of the two models, F2 = 3.09±2.8 for the two-layer

model, and Fm 3.11±2.8 for the multi-layer model, were within error of one another.

The cost function breakdown clearly indicates that over half of the cost comes from the

eutrophic mesocosms. As will be discussed later, much of this misfit is derived from noise

in the observations, and for this reason, the model costs were re-calculated, this time using

the same model outputs, but ignoring contributions from the eutrophic mesocosms. These

new costs were F2 = .85±.03 and Fm = .53±.04, and were distinct from one another, with

the multi-layer model having a smaller (better) cost and no overlap between each model’s

bound of uncertainty. These results are still not an entirely fair comparison however, as

the parameters of these models have been fit using the noisy observations of eutrophic

mesocosm data. If the models are optimized while ignoring the eutrophic mesocosm

data entirely, the multi-layer model’s cost is still better, i.e., Fm = .47±.03 versus F2 =

.64±.03. Interestingly, both models improved, but the two-layer model improved more.

This suggests that the two-layer model is less able to handle noise in its inputs. Parameter

values resulting from the optimization of both models in all the mesocosms are listed in

the appendix (see A.1 and A.2).

The models were evaluated on the basis of four benthic flux outputs, specifically the

oxygen, nitrate, ammonium, and phosphorus fluxes. Successful modelling of these fluxes
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Figure 3.4: Cost function breakdowns of two- and multi-layer models. X-axis identifies

flux type, and bar colour identifies mesocosm.

first required the models to accurately estimate carbon metabolism within the sediments.

While direct observation of the carbon metabolism was not made in the MERL experiments,

it was possible to infer these rates by assuming that the sediment transports and reactions

were in steady state (see methods). Rates produced by the equilibrium model exhibited a

strong seasonal signal, with larger summer peaks in the more eutrophic mesocosms. Both

the two-layer and multi-layer models were able to resolve the timing of this variation by

applying an approximated Arrhenius factor to their overall carbon consumption rates (Fig

3.5(a)). The models also varied the consumption rate with carbon availability, and thus, the

summer peak rates roughly scaled with the magnitude of the POM flux inputs (Fig 3.6).

The observed and modelled oxygen fluxes in the MERL system (Fig 3.7) were very

closely related to the rates of metabolized carbon, exhibiting the same seasonal variation,

and summer peaks which roughly scaled with the POM flux inputs. Generally speaking,

there exists a close relationship between the consumption rates of oxygen and carbon.

When carbon is consumed, this may occur through the aerobic metabolism that consumes

oxygen directly, or an anaerobic metabolism which generates reduced products that then
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react with oxygen. Both chemical pathways consume the same ratio of carbon to oxygen,

and thus their consumption rates are closely related.

Presumably, it is for this reason that the two-layer model does not explicitly describe

an aerobic carbon metabolism. Instead, oxygen consumption in the sediments are indirectly

handled by the sulphate reduction metabolism. When consuming a quantity of carbon, this

metabolism generates H2S, which rapidly reacts with oxygen. Most anaerobic metabolisms

produce reduced intermediates that function in this way, although denitrification is an

exception. Denitrification generates N2 gas, which is highly inert and can only be oxidized

under special conditions.

The multi-layer model experienced some problems in recreating the large summer

oxygen fluxes. In order to produce a large flux, it was necessary to resolve a sharp oxygen

gradient near the sediment surface. This was accomplished by placing many thin layers

near the surface and allowing layer thickness to increase with depth. However, since the

model was being integrated using a Euler-forward scheme, the maximum timestep size

shrank with the square of the smallest layer thickness. The resulting timestep, .0005 days,

slowed down the model notably, requiring slightly over two minutes to complete the 2.5

year simulation. In contrast, the two-layer model was able to perform the same simulation

in only a few seconds.

The multi-layer model also experienced another related problem: it was unable to

oxidize sufficient ODUs (oxygen debt units, the reduced product of the model’s anaerobic

metabolism) before they diffused from the sediment. This ODU outflux essentially can

be thought of as an outflux of H2S, which is not at all characteristic of a well oxygenated

environment. This outflux also affects the sediment oxygen flux: when ODUs escape the

sediment, there is less demand for oxygen within the sediment, and the resulting influx of

oxygen is smaller. It was found that a more realistic oxygen flux was generated when the

ODU flux was subtracted from the unmodified oxygen flux. Creating this modified oxygen

flux essentially assumes that all the ODUs were consumed inside the sediments in spite of

how the model behaved. Since this modified oxygen flux improved the model’s fit, all the

multi-layer model’s oxygen flux results in this thesis have been adjusted in this manner.

Observed ammonium fluxes (Fig 3.8) exhibited strong seasonal variation in all meso-

cosms, with peak summer fluxes scaling roughly with the mesocosm’s POM input. During

winter, fluxes became very small, and in the case of the 8x, 16x and 32x mesocosms, fluxes
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even became negative. The uncertainties of the fluxes in these mesocosms are very large,

and the timing of the negative fluxes is difficult to discern. After being fit to this data, both

the multi-layer model and the two-layer model succeed in producing negative fluxes in

these mesocosms, but exhibited a different timing. Also, the models’ magnitude of the in-

fluxes tends to be smaller than observed, although well within uncertainty for the eutrophic

mesocosms. In general, both models were able to capture the regular seasonal behaviour

evident in most mesocosms; however, observed variation within the 32x mesocosm broke

from the seasonal pattern, and the models were unable to capture this signal. As a result,

the ammonium flux’s cost contribution is dominated by the 16x and 32x mesocosms (see

Fig 3.4).

Observations of the nitrate flux did not exhibit any distinctive signal and generally

fluctuated around zero. In the less eutrophic mesocosms, the models reproduced this

behaviour quite well (Fig 3.9). In the more eutrophic mesocosms, the observed nitrate

fluxes appear to become more noisy, and there was no discernible signal for the models to

reproduce. The eutrophic mesocosm fluxes had high uncertainties, and the models were

being optimized to fit these noisy observations. This of course did result in a good fit,

and neither model succeeded in reducing the nitrate flux’s cost contribution significantly

below the baseline value of 1. Indeed, the plotted cost breakdown (Fig 3.4), shows that the

majority of the nitrate cost contributions come from the eutrophic mesocosms.

Nitrification estimates of both layered models were not as large as those of the

equilibrium model, and neither did they follow the reaction’s time-variation (Fig 3.10).

This was particularly true for the 32x mesocosm and is likely a symptom of the noisy flux

observations. A similar mismatch also existed within both layered models’ and equilibrium

model’s denitrification rates (Fig 3.11). Notably, the denitrification rates of the equilibrium

model do not seem reliable in the eutrophic mesocosms: the estimates come with large

uncertainties. The equilibrium model also produces negative reaction rates within the

eutrophic mesocosms.

Phosphate fluxes (Fig 3.12) were generally observed to follow the seasonal signal of

the carbon metabolism, and in the less eutrophic mesocosms, layered models capture this

behaviour. In the 16x and 32x mesocosms, the two-layer model captures some irregularities

in the flux by sorbing solid phophate into the sediment when oxygen concentrations are

high and releasing phosphate when oxygen concentrations drop. The multi-layer model,
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although capable of sorbing phosphate in this way, did not exhibit this behaviour because

Hessian analysis indicated its relevant phosphate parameters to be correlated, and these

parameters were removed from the optimization process. In spite of the noise in the

observed eutrophic phosphate fluxes, the phosphate cost contributions are the smallest of

all the model outputs. However, over three quarters of the cost contribution come from

16x and 32x.

The carbon metabolism was the only model output where the unmodified sum of the

squared error (SSE) was sufficiently different between the two models to be distinguishable

(i.e. they were not within error of each other). When eutrophic mesocosm cost contributions

were not included in the cost calculation, or if their data was used during optimization, the

multi-layer model frequently performed better than the two-layer model (see tables 3.6

and 3.7). Table 3.8, summarizes this comparison between models.

3.4 Oxygen Flux Parameterizations

Two oxygen flux parameterizations were fit to the MERL data using a non-linear regression

algorithm (Fig 3.13), and these were compared to the oxygen flux outputs of the two- and

multi-layer models (Fig 3.14). The two parameterizations used were from Murrell and

Lehrter (2010) (referred to as ML10), which produced an oxygen flux that varied linearly

with overlying water column oxygen, and from Hetland and DiMarco (2008) (referred to

as HD08), which included an Arrhenius factor and an oxygen limitation factor.

These simple parameterizations are not as versatile as the more complex layered

models and produced a larger misfit of 2.59±.07 for the ML10, and 0.78±.04 for the

HD08 parameterization. The layered models on the other hand, produced smaller, better

costs of 0.67±.04 for the two-layer model, and 0.61±0.04 for the multi-layer model.

The ML10 parameterization was particularly ill-suited to the MERL system, producing

seasonal oxygen fluxes which were entirely out of phase with observations. The HD08

parameterization had a significantly better fit, using its temperature sensitivity to capture

the oxygen flux’s seasonal variation. Since the mesocosm water columns were always

well oxygenated, the HD08 parameterization’s oxygen-dependent parameter remained

un-constrained.
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3.5 Cross Validation

Ideally, a process oriented sediment model should be capable of functioning in multiple

environments without modifying its parameter set. Were this to be the case, fitting the

sediment models to one set of observations would simultaneously improve the models’ fit

with a second independent set of observations, or at least not have a negative effect on the

fit. In cross validation experiments, the sediment model parameters were fit to a subset of

observations from the MERL mesocosms. Then, the resulting parameter set was tested

within all of the MERL mesocosms.

Ten of such optimizations were performed, and the resulting cost functions were

averaged. The multi-layer model generated an average cost of 3.37 ± 2.8, while the

two-layer model averaged at 4.08 ± 2.8. The average cost function is smaller in the

multi-layer model, indicating it may be less prone to overfitting, but the difference between

both models is inconclusive since it is smaller than the uncertainty. When the eutrophic

mesocosms are ignored, the average costs drop to 0.57±0.03 for the two-layer model

and 0.40±0.03 for the multi-layer model. The multi-layer model, having the better score,

therefore seems to be less affected by being fit to the noise in the eutrophic mesocosms.

Another identical cross validation experiment was performed on the Hetland &

DiMarco parameterization, which had an averaged oxygen flux cost contributions of 0.83

±.04. In comparison, the cross validation experiments for the layer models generated

oxygen flux cost contributions of 0.70 ±.04 for the multi-layer model and 1.11 ±.04 for

the two-layer model. Note that this particular experiment did not require ignoring the cost

contributions from the eutrophic mesocosms as the oxygen data contains relatively little

noise.
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Table 3.5: Two-layer model parameter values for depositional flux parameterizations.

Method A Method B
Optimization pconst ,

[
μmolC
cm2yr

]
pchla ,

[
μmolC
cm2yr

L
μgChla

]
Joint - 37.1

C01 1119.2 209.9

C05 1032.9 179.8

C08 1271.2 219.5

01X 1711.7 157.2

02X 1292.0 78.1

04X 1639.1 62.7

08X 2064.0 104.8

16X 2577.0 54.8

32X 1699.6 24.5

Method C
Optimization pdia ,

[
μmolC
cm2yr

L
μgChla

]
pother ,

[
μmolC
cm2yr

L
μgChla

]
Joint 23.5 78.6

C01 188.6 50.5

C05 261.7 146.5

C08 209.2 678.5

01X 320.2 -107.6

02X 90.5 102.1

04X 169.1 -11.5

08X 150.4 57.9

16X 42.3 4.6

32X 23.8 -33.7

Method D
Optimization pchla ,

[
μmolC
cm2yr

L
μgChla

]
pzoo ,

[
μmolC
cm2yr

L
dryμgzoopl.

]
Joint 27.2 5.3

C01 44.7 17.0

C05 46.1 12.4

C08 46.8 27.8

01X 45.0 25.4

02X 60.3 12.5

04X 54.4 1.5

08X 107.1 7.4

16X 38.5 2.2

32X 23.0 -2.4
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(a) Carbon metabolism, modelled and inferred from observation. Metabolic rates are highly seasonal, and controlled by

temperature. Note the change in y-axis scale for the eutrophic mesocosms.
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(b) Carbon metabolism vs temperature

Figure 3.5: Total Carbon Metabolism. The metabolic rate is dependent on temperature. R2

= 0.469
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Figure 3.6: Carbon metabolism vs depositional flux of particulate organic matter: the two

are strongly correlated for both layered models. Multi-layer model R2 = 0.842, two-layer

model R2 = 0.881

Table 3.6: Two-layer model: sum squared error, each output

Output Eutrophic

mesocosms

contribute to

cost function

Eutrophic

mesocosms

ignored in cost

function

Eutrophic

mesocosms

ignored during

optimization

O2 flux 663 ±33 410 ±26 306 ±23

NH4 flux 25 ±14 7.5 ±0.8 5.6 ±0.7

NO3 flux 29 ±83 0.94 ±0.17 0.61 ±0.15

PO4 flux 0.47 ±0.14 0.11 ±0.006 0.09 ±0.005

C metabolism 506 ±156 407 ±22 319 ±20

Denitrification 119 ±203 6.9 ±1.2 6.2 ±1.1

Nitrification 139 ±65 13.9 ±2.5 13.3 ±2.5
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Figure 3.7: Oxygen fluxes, modelled and observed. The fluxes almost double in magnitude

up the eutrophication gradient.

Table 3.7: Multi-layer model: sum squared error, each output

Output Eutrophic

mesocosms

contribute to

cost function

Eutrophic

mesocosms

ignored in cost

function

Eutrophic

mesocosms

ignored during

optimization

O2 flux 672±34 239±20 229±20

NH4 flux 27±15 4.4±0.63 3.7±0.62

NO3 flux 27±83 0.39±0.14 0.34±0.13

PO4 flux 0.51±0.15 0.093±0.005 0.07±0.005

C metabolism 853±174 470±25 484±25

Denitrification 111±203 6.1±1.2 5.3±1.1

Nitrification 146±67 15.3±2.6 13.7±2.5
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Figure 3.8: Ammonium fluxes, modelled and observed. Noise in the eutrophic meso-

cosms conceals any discernible signal. Note the change in y-axis scale for the eutrophic

mesocosms.

Table 3.8: Comparison of the two- and multi-layer model SSE. When both models generate

an SSE within the bounds of uncerertainty of the other, it is noted as ”tie”. Otherwise, the

model with the superior SSE is noted.

Output Eutrophic

mesocosms

contribute to

cost function

Eutrophic

mesocosms

ignored in cost

function

Eutrophic

mesocosms

ignored during

optimization

O2 flux Tie Multi-Layer Multi-Layer

NH4 flux Tie Multi-Layer Multi-Layer

NO3 flux Tie Tie Multi-Layer

PO4 flux Tie Multi-Layer Multi-Layer

C metabolism Two-Layer Two-Layer Two-Layer

Denitrification Tie Tie Tie

Nitrification Tie Tie Tie
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Figure 3.9: Nitrate flux, modelled and observed. Both models produce very small denitrifi-

cation rates. The observed fluxes wildly fluctuate in the eutrophic mesocosms, but have

large uncertainty, and so could easily be close to zero like the other mesocosms.
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Figure 3.10: Nitrification rates, modelled and inferred from observation. Note the change

in y-axis scale for the eutrophic mesocosms.
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Figure 3.11: Denitrification rates, modelled and inferred from observation. Models consis-

tendly underestimate denitrification rates in the less eutrophic mesocosms. Uncertainty in

the eutrophic rates are very large, rendering these rates indistinguishable from the models.

Note the change in y-axis scale for the eutrophic mesocosms.
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Figure 3.12: Phosphate flux, modelled and observed. Observed fluxes suggest influxes

of phosphate into the sediment. Uncertainty in these observations are large, but models

somewhat recreate this behaviour

μ

μ

°

°

Figure 3.13: Sediment oxygen demand and oxygen concentration scatter plot: parameteri-

zations and MERL data
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Figure 3.14: Oxygen fluxes generated by models and parameterizations.



CHAPTER 4

DISCUSSION

4.1 POM Flux Parameterizations

Among the first steps of this study was to determine an unknown model input, the deposi-

tional flux of particulate organic matter (POM flux). This flux is ultimately derived from

biomass within the water column, so it is reasonable to expect that the former scales with

the latter. Following this line of reasoning, POM flux parameterization methods B, C and

D generate a POM flux in proportion to proxies of water column biomass, specifically,

chlorophyll a, diatom abundance, and/or zooplankton concentrations. Likewise, virtually

all conventional water column models use similar linear or quadratic relationships. By

positing a linear relationship between POM flux and water column biomass, two outcomes

can be expected: first, because water column biomass grows with the availability of in-

organic nutrients, it follows that the largest POM fluxes are expected to take place in the

more eutrophic MERL mesocosms; second, seasonal variation in the water column would

result in seasonal variation of the POM flux.

Parameterizations B, C and D, when optimizing a universal parameter set to fit all

of the mesocosms (i.e. when jointly implemented), produced POM fluxes which roughly

scaled with eutrophication, as expected. An improved fit was achieved when these same

methods assigned a different parameter set for each mesocosm (i.e. when individually

implemented). In this case, the mean POM fluxes did not follow the expected trend

along the eutrophication gradient, but instead varied relatively little across all mesocosms.

Method A, which assigns a constant individual POM flux to each mesocosm, generated

a similar eutrophication-insensitive result. The resulting fits of method A were within

54
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uncertainty or better than those of the individual parameterizations B, C and D. Thus,

contrary to expectation, the parameterizations that resulted in the best fit were also the

least sensitive to nutrient-loading.

This result is also contrary to our second expectation, that is, when the POM fluxes

were constant, the model’s fit was as good or better than if the POM flux varied with

seasonal biomass signals. This suggests that variation of the true POM flux signal may

have been out of phase with that of the water column biomass, or it may have been of a

smaller amplitude, or a combination of the two.

Neither of these divergences from expectation appear to be the result of poorly tuned

sediment model parameters, for when these parameters were included in the optimization

process, the same result was achieved. It is also unlikely that the results are due to a

systematic bias in either of the models, because both the two-layer model and the multi-

layer model generated a similar result, although the possibility that both models share the

same bias hasn’t been eliminated.

It is worth noting that sediment resuspension occurred throughout the experiment.

Movement of the the stirring plungers within the mesocosms was calibrated to resuspend

sediment until it reached concentrations similar to that of Narragansett Bay (i.e. 3 mg
L

);

however, the organic fraction of this resuspended sediment would be directly related to the

concentration of organic matter at the sediment surface, which in turn is related to the POM

deposition rate. Should eutrophication indeed induce an increased rate of POM deposition,

a greater amount of organic matter would also be resuspended, and therefore subjected to

removal by decomposition within the water column. Thus, sediment resuspension would

serve to reduce the POM flux’s observed sensitivity to eutrophication, possibly resulting in

the eutrophication-insensitive POM fluxes generated by method A, and the independently

optimized methods B, C, and D.

A break-down of the model’s cost contributions clearly shows that the eutrophic

mesocosms consistently dominate the cost function. When optimizing a joint POM

parameterization, the less eutrophic mesocosms would, therefore, be using parameters

that are better suited to the more eutrophic ones. As discussed above, the effects of

resuspension likely induced a negative POM flux bias, which roughly scales with mesocosm

eutrophication. When methods B, C and D are optimized jointly, the large negative bias of

the eutrophic mesocosms would be imposed on the less eutrophic mesocosms, and their
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POM flux estimation would be far too small. Indeed, our results revealed a significant

increase of POM flux within the less eutrophic mesocosms once methods B, C and D were

optimized individually.

Sediment resuspension would also reduce seasonal variation within the POM flux. As

discussed above, this effect reduces the POM flux’s sensitivity to water-column biomass

concentrations. The observed POM flux would depend less on the seasonal biomass signal,

and more on the rate of resuspension. Since the mesocosm mixing plungers churned

the water at constant intervals, the rate of sediment resuspension also would have been

relatively constant. Thus, these effects could account for method A achieving the overall

lowest cost.

It is unfortunate that sediment resuspension appears to produce such a profound bias

in the POM flux parameterizations, as it also renders the use of sediment traps problematic.

Without reliable empirical observations or a parameterization that is well-grounded in

theory, resuspension will hinder the quantification of this important model input. This

problem can be side-stepped in future studies by choosing to simulate regions where

resuspension is not a significant factor. If this is not possible, a sediment model may better

resolve the POM flux by modelling the resuspension and transport of sediment.

4.2 Optimized Model Results

The multi-layer model and two-layer model are both constructed around a different design

philosophy—one is vertically integrated, and the other is vertically resolved—so it was

not expected that the fitted model outputs would resemble one another so closely (Fig 3.4).

The costs are similar in almost every respect, whether cost contributions are broken down

according to the model output, or mesocosm. Unless the cost contributions of mesocosms

8X, 16X and 32X are excluded from the final cost calculation, the model costs are within

error of each other. When observations from those eutrophic mesocosms are excluded

entirely from optimization, the models’ still differ beyond the margin of uncertainty, but

the margin is smaller.

There are reasons to expect that the models might behave similarly. Both models

simulate the same chemical processes (albeit sometimes under different labels). Both

simulate denitrification and nitrification. The two-layer model simulates the anaerobic

sulphate metabolism, and the oxidation of H2S, and the multi-layer model simulates an
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analagous anaerobic metabolism which generates ODUs which may be oxidized in aerobic

layers. While only the multi-layer model explicitly describes an aerobic metabolism, this

distinction has very little effect on the model’s overall behaviour. The two-layer model

and the multi-layer both add any outfluxes of H2S/ODUs to their oxygen influx estimates.

Since this conversion consumes the same amount of oxygen per mole of decomposed

carbon, it effectively erases any distinction between an aerobic or anaerobic metabolism,

and instead it directly links the oxygen flux to the rate of carbon decomposition.

Similarities between the two model cost contributions may also result from the stability

of the oxygen concentrations in the mesocosms. Had low oxygen conditions occurred, they

would have induced different non-linear responses in the two models. For example, in order

for the two-layer model to represent the effects of oxygen on denitrification rates, it provides

a different denitrification parameter to the upper and lower layers: reaction velocity

kapp1no3s for the upper layer, and rate constant k2no3s. Changes in oxygen concentrations

would change the thickness of the aerobic layer, and thus modify the ratio of aerobic

and anaerobic denitrification. Also, changes in oxygen would affect nitrification rates,

which would modify the availability of NO3 for denitrification. The multi-layer model,

rather than using two parameter values for denitrification, tries to resolve denitrificaiton

rates through representation of the oxygen and denitrification distributions within the

sediment. It first estimates a total rate of carbon decomposition, and then attributes

limNO3 =

[NO3]
[NO3]+ks(NO3)

kin(O2denit)
[O2]+kin(O2denit)

lim
of the consumed carbon to denitrification in each

layer (see methods section). Because denitrification is less thermodynamically favourable

than aerobic decomposition, the multi-layer model includes an oxygen inhibition factor
kin(O2denit)

[O2]+kin(O2denit)
in this denitrification partitioning. This factor greatly reduces denitrification

rates in the aerobic layer, and denitrification mostly takes place just below the oxygenated

suface layers, where O2 is low and NO3 is high. When water column oxygen levels drop,

the depth to which oxygen diffuses into the sediment decreases, which in turn would

lower nitrification rates and decrease nitrate supply for denitrification. However, the

model’s oxygen inhibition factor would also be smaller, increasing the denitrification rate.

Since oxygen levels were stable throughout the experiment, neither model was able to

differentiate themselves with their unique non-linear denitrification response.

The models did differ in their ability to capture rates of carbon decomposition. The

two-layer model produced a significantly smaller sum of squared error (SSE) for this
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reaction rate than the multi-layer model, when eutrophic mesocosms were excluded from

the calculation. This was the only model output where both models were not within

observational error of one another. This result was in spite of the similarities in the two

models’ temperature-sensitive calculation of the carbon metabolism. Figure 3.5(b) clearly

indicates that the MERL carbon metabolism is temperature sensitive, and both models

recreate this behaviour by including the same Arrhenius factor in their rate calculations.

Differences in the the two models’ representation of carbon lability classes was superficial:

while the two-layer model uses three lability classes of carbon (the multi-layer model

uses two), the inert G3 decomposes so slowly, it cannot be relevant on the timescale of

the MERL experiments. While the two models do differ in their representation of solid

transport within the sediments, this likely is not what distinguishes the two-layer model

from the other, as the two-layer model is not as finely resolved, and therefore would be

at a disadvantage. The two sediment models do differ in the dynamics of their chemistry,

so it is possible that the two-layer model is simply better equipped to reconstruct carbon

decomposition rates from observed fluxes. When the layer models were optimized while

omitting the eutrophic mesocosm data, the two-layer model still produced the best carbon

metabolism rates. Therefore, it does not appear that the noise in the eutrophic mesocosms’

nutrient fluxes happened to favour the two-layer model output.

Unlike the two models’ carbon metabolism, uncertainties in the models’ denitrification

SSE were too large to allow for comparison. Although the models’ output and the MERL

estimates were usually within error of one another, the model outputs appeared to be

subjected to a negative bias (Fig 3.11). Since the eutrophic mesocosms dominate the

cost functions with noisy data, it is possible that optimization generated a parameter set

which is inappropriate for the less eutrophic mesocosms, at least so far as denitrification is

concerned. It is worth noting that the optimization of the multi-layer model did not involve

any parameter that was specifically purposed for calculation of denitrification, but anything

remotely related to denitrification was removed either as an insensitive or correlated

parameter. Instead, parameters such as diffusion constants and carbon remineralization

rates were optimized, but these would only have had indirect effects on the denitrification

rates.

It is possible that the multi-layer model’s production of ODU outfluxes is affecting the

model’s ability to compute a proper denitrification rate. By converting the ODU outfluxes
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to an O2 influx, any reduced end-product of the anaerobic metabolism is oxidized and

represented in the model output. However this does not address a different issue: that the

oxidization ought to take place within the sediment. The thickness of the oxygen surface

gradient is inversely related to the rate of sediment oxygen consumption. Therefore, prior

to converting the ODU outflux to an O2 influx, the modelled consumption of oxygen in the

sediment was too small, and all else being equal, the oxygen penetration into the sediment

is therefore too deep. In effect, if the oxidation of ODUs is relocated to occur inside

the sediments, the oxygen distribution within the sediments is changed, and as discussed

above, this would have an effect on estimates of denitrification.

Denitrification can be classified into two kinds according to the source of the nitrate:

“coupled” denitrification utilizes the nitrate produced by nitrification, while “direct” denitri-

fication consumes nitrate which has diffused into the sediments from the overlying water.

Should a supply of nitrate increase in the overlying water, one would expect there to be a

greater tendency for direct denitrification to take place. Estimates of the ratio of coupled

and direct denitrification are given in figure 4.1. Indeed, direct denitrification is only taking

place in the three most eutrophic mesocosms, accounting for approximately 20% of their

total denitrification. In order for direct denitrification to take place, nitrate needs to diffuse

into the sediment. Both models, with varying degrees of success, produce the necessary

influxes in the eutrophic mesocosms 3.9.
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Figure 4.1: Coupled and direct denitrification in the MERL mesocosms.

Another curious trend is the tendency for eutrophic mesocosm sediments to have

influxes of ammonium during the winter. While it is unclear whether or not these negative

fluxes are merely products of observational noise, the models were able to re-create these
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negative fluxes due to a number of contributing factors. First, nitrification was constantly

consuming ammonium within the sediment. Second, the ammonium concentrations in a

mesocosm’s overlying water column scaled in approximate proportion to that mesocosm’s

nutrient loading. Third, the depositional POM flux in a mesocosm did not scale with

the mesocosm’s nutrient load, but varied very little by comparison. Thus, the ratio of

overlying water column ammonium to remineralized ammonium in the sediment grew

dramatically in the more eutrophic mesocosms. When the ratio became sufficiently large,

winter concentrations of ammonium in the water column became larger than the sediment

concentrations, and ammonium fluxed into the sediment. These negative fluxes were

sustained over the winter seasons as ammonium was consumed by sediment nitrification.

The phosphate fluxes of the two models are interesting, in that the multi-layer model

produced a SSE which was equal to or better than the two-layer model, depending on

how the SSE was calculated. This is despite of the fact that only the two-layer model

included phosphate partitioning parameters in its optimization. These parameters are used

to describe a phosphate sorbtion mechanism: under oxic conditions, phosphate sorbs to

metal oxides and is trapped within the solid phase of the sediments, and when oxygen

concentrations drop (or oxygen doesn’t penetrate as deeply), some of the sorbed phosphate

is released and fluxes back out from the sediment. Although the multi-layer model had the

capacity to describe this behaviour, Hessian analysis of the multi-layer model parameters

required the removal of all phosphate storage parameters. Referring to figure 3.12, it

is evident that the multi-layer model’s phosphate flux is varying primarily with carbon

metabolism and is not undergoing any complex interactions. In contrast, the two-layer

model is seen to draw phosphate into the sediments where it is stored for a time, and then

released in a large outflux spike. It is likely that the two-layer model was not able to fully

exploit this advantage, because phosphate storage became most significant in the eutrophic

mesocosms, which also happens to be where the data becomes the most noisy.

4.3 Oxygen Flux Parameterizations

As discussed in an earlier section, complexity is not always a desirable feature of a model,

as over-fitting becomes a possibility. Representing a simpler form of sediment model,

two oxygen flux parameterizations were optimized to observations using a non-linear

regression, and their resulting output compared to that of the layered models. Their fit was
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inferior to that of the layered models; however, a simple analysis of their behaviour was

very revealing about how the sediment oxygen fluxes behaved in the MERL systems.

While there obviously exists a relationship between an oxygen influx and the overly-

ing oxygen concentration, such that consumption decreases as oxygen approaches zero,

figure 3.13 clearly indicates an increase of sediment oxygen uptake with decreasing oxygen

concentrations within the MERL mesocosms. This likely occurs as a result of season-

ality in the two signals: high overlying O2 during the winter-spring diatom bloom and

high oxygen demand during the summer. As a result, the Murrell and Lehrter (2010)

parameterization (ML10) proves to be completely out of phase with the observations

(Fig 3.14). Indeed, this parameterization allowed to use a negative slope with a non-zero

y-intercept, the output improved considerably, and was no longer out of phase, however

such a parameterization clearly would not produce accurate oxygen fluxes in the limit

that O2 appraoaches zero. The Hetland and DiMarco (2008) parameterization (HD08)

is much more successful, albeit entirely due to its ability to vary flux rates with seasonal

temperatures. Oxygen concentrations contributed nothing to this parameterization’s predic-

tions, as the optimization process completely eliminated its oxygen sensitivity (Fig 3.13),

effectively reducing the HD08 parameterization to the Arrhenius equation. Interestingly,

after considering the cost function error resulting from observational uncertainty, this

model performs only marginally worse than the two- and multi-layer models, which both

share very similar temperature-scaling factors in their calculation of carbon metabolism

rates. It is worth noting that while the HD08 model was fit only to oxygen fluxes, the

layered models were also fit to other observations, requiring some compromise to their

oxygen fluxes and putting them at a disadvantage. Furthermore, the time-invariant POM

flux inputs may have nullified a significant advantage of the layered models, as they no

longer were able to exploit the full dynamics of carbon storage, but instead accumulated

and metabolized carbon according to temperature trends only.

That a parameterization as simple as that of the HD08 should behave so similarly to

the layered models in terms of its oxygen flux demonstrates that given the right conditions,

simple models can be of value. This model also demonstrates the critical importance of

representing temperature sensitivity within the sediment, as it alone is able to represent

the majority of the variation within oxygen fluxes. For this experiment, the HD08 param-

eterization used a single parameter across all the mesocosms to describe its behaviour.
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Had each mesocosm received its own parameter (as did the layered models’ POM flux

parameterizations), this model would have done even better.

4.4 Cross Validation

The cross validation experiment is a test of a model’s ability to adapt to new environments

without any adjustment of its parameters. This was done by optimizing a model in a set

of randomly chosen mesocosms and using the resulting parameter set to run the model

in all the mesocosms. If a model is, on average, able to keep its cost function below

its initial cost value, one can conclude that optimization of a model to the observations

of one environment tends also to improve its fit to some other environments. It is also

possible to compare the average cost of different models to gauge which of the two is

better suited to general application. The multi-layer model seemed to be quite versatile, as

it managed an average cost of 3.37±2.8, which is lower but within the margin of error than

the baseline value of 4. It also generally had a smaller cost than the two-layer model which

didn’t manage to stay below the baseline, scoring an average cost of 4.08±2.8. While the

uncertainties associated with these scores are very large, a consistent result was achieved

when costs were re-evaluated without the eutrophic mesocosms cost contributions. These

costs, 0.40±0.03 for the multi-layer model and 0.57±0.03 for the two-layer model, again

favoured the multi-layer model, this time outside the bounds of uncertainty.

This result suggests that the multi-layer model has better predictive abilities, and

this reinforces a prior finding: initial optimizations of the model produced small cost

functions, regardless of whether noisy data from the eutrophic mesocosms were used in

the optimization. Essentially this is partly the result of the multi-layer model’s chemistry

parameters being insensitive. The model is less reliant on specific parameter values and,

instead, is more responsive to the surrounding chemical concentrations.

The oxygen flux cross validation experiments included the HD08 parameterizations,

which utilized temperature to scale its rate of oxygen uptake. The multi-layer model

proved to be the most versatile, with an average oxygen cost contribution of 0.70 ±.04.

The HD08 fared the same, although its average cost was a little bit larger (0.83 ±.04),

and the two-layer model fared the worst (1.11 ±.04), its average cost being larger than its

starting value. The success of the multi-layer model to adequately function in different

mesocosms without parameter adjustment suggests either that this model is less prone to
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overfitting than the two-layer model, or that it is a better design than the two-layer model,

or both.

While it is difficult to identify which aspect of the two-layer model may be suffering

from an excess of parameterization, it is true that the two-layer model parameterizes a

number of phenomena that the multi-layer model simulates explicitly. For example, prior

discussion has mentioned how the two-layer model produces an oxygen sensitive rate of

denitrification by using an aerobic and an anaerobic rate constant. Another example is

the two-layer model’s estimation of the thickness of the aerobic layer. This calculation

diffuses oxygen from the overlying water into the sediment with a diffusion rate parameter

Dd0, and a temperature sensitivity factor thetaDd0. At the same time, a different pair of

parameters, MixPW and thtaDd, govern the temperature sensitive diffusion between the

two sediment layers. In contrast, the multi-layer model uses only one pair of parameters,

diffusion parameter, D, and the temperature factor theta Dpw to govern diffusion between

all of the layers. Interestingly, most of the parameters mentioned above (kapp1no3s, Dd0,

MixPW, and thtaDp) were included in the optimization and are possible candidates for

overfitting in the two-layer model.



CHAPTER 5

CONCLUSION

Using observations of sediment fluxes and water chemistry from eutrophication experi-

ments performed at MERL, I was able to optimize and compare two qualitatively different

sediment models: a vertically integrated two-layer model and a vertically resolved multi-

layer model. Modelling sediment fluxes in the MERL system required model inputs of a

depositional flux of particulate organic matter (POM flux) which was not observed during

the experiments. The POM fluxes were consequently parameterized in a number of ways.

Generally, the models were most successful when the POM fluxes were set to constant

rates, rather than scaling the flux with water column biomass, a surprising conclusion,

considering that the majority of water column models use the latter kind of parameteriza-

tions. Some of the more eutrophic mesocosms had very noisy observations, however, and

this likely interfered with the sediment model optimization process. When data from the

eutrophic mesocosms were not used to evaluate model performance, it sometimes became

easier to compare the performance of the two models. The multi-layer model generally

performed better, achieving smaller misfits, while also better representing other systems

without readjusting its parameters. The superior performance of the multi-layer model

is thought to result from its ability to resolve phenomena which the two-layer model is

required to parameterize. Denitrification, for example is highly dependent on the spatial

distribution of oxygen and nitrogen in the multi-layer model, while this spatial variation

is parameterized in the two-layer model. As a result, the two-layer model may be more

prone to overfitting. Finally, two oxygen flux parameterizations were compared with the

two-layer models. One such temperature sensitive paremeterization, while not as versatile

64
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as the more complex layered models, generated reasonably accurate oxygen fluxes, and

demonstrated the utility of simple models under certain conditions.



APPENDIX A

OPTIMIZED PARAMETER VALUES

Table A.1: Two-layer model parameter names, description,

initial value, and final value after optimization from the full

dataset, including uncertainty. Correlated and insensitive

parameters were identified using the Hessian matrix, and

were not optimized. The inverse of the Hessian matrix only

approximates the covariance matrix of a model, therefore the

uncertainties are only estimates.

Parameter Description Base

value

Result Units

DT Sediment temperature Diffu-

sion Rate

1.8×10−3 1.7±5.0 × 10−4 cm2

d

rmet,1 Carbon decomposition rate, la-

bility class 1

3.5×10−2 Correlated 1
day

rmet,2 Carbon decomposition rate, la-

bility class 2

1.8×10−3 Correlated 1
day

rmet,3 Carbon decomposition rate, la-

bility class 3

1.0×10−6 Insensitive 1
day

θmet,1 Carbon metab. rate, tempera-

ture factor, lability class 1

1.10 Correlated -

Continued on next page
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Table A.1 – continued from previous page

Parameter Description Value Result Units

θmet,2 Carbon metab. rate, tempera-

ture factor, lability class 2

1.15 Correlated -

θmet,3 Carbon metab. rate, tempera-

ture factor, lability class 3

1.17 Insensitive -

Lsed Burial mass transfer coeffi-

cient

2.5×10−1 Correlated cm
year

Ds Particle diffusion rate 6.0×10−5 Correlated cm2

d

Dpw Porewater diffusion rate 2.5×10−3 7.2±6.7 × 10−3 cm2

d

θDs Particle mixing velocity tem-

perature factor

1.117 1.130±0.063 -

θDpw Porewater mixing velocity

temperature factor

1.08 1.137±0.059 -

Ds0 Surface porewater mixing ve-

locity

1.2×10−3 3.22±0.001 ×
10−5

cm2

d

θDpw0 Surface porewater mixing ve-

locity temperature factor

1.08 Correlated -

κnit Nitrification reaction velocity 1.31×10−1 1.35±0.57 ×
10−1

m
d

πNH4 Ammonia partitioning 1.0 1.6±14.0×10−2 L
kg

θnit Nitrification, ammonia half

saturation

1.12 1.00±0.18 -

θk,nit,NH4 Nitrification, ammonia half

saturation temperature factor

1.125 Correlated -

knit,NH4 Nitrification, ammonia half

saturation

7.28×102 Correlated μgN
L

κdnf,1 Denitrification rate, aerobic 1.0×10−1 8.3±4.9 × 10−2 m
d

kdnf,2 Denitrification rate, anaerobic 2.5×10−1 Correlated m
d

θdnf Denitrification rate, tempera-

ture factor

2.5×10−1 Correlated -

Continued on next page
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Table A.1 – continued from previous page

Parameter Description Value Result Units

κH2Sox,aq Dissolved Sulfide reaction ve-

locity, aerobic

2.0×10−1 Insensitive m
d

κH2Sox,s Particulate Sulfide reaction ve-

locity, anaerobic

4.0×10−1 Insensitive m
d

πH2S,1 H2S partitioning, aerobic 1.0×102 Insensitive L
kg

πH2S,2 H2S partitioning, anaerobic 1.0×102 Correlated L
kg

θH2Sox H2S reaction velocity temper-

ature factor

1.08 Insensitive -

kH2Sox,O2 H2S oxidation, half O2 satura-

tion

4.0 Insensitive mgO2

L

πPO4,base Phosphate partitioning base 2.0×101 5.6 ±5.3 L
kg

πPO4,exp Phosphate partitioning, O2

sensitivity

2.0×101 Correlated L
kg

[O2]crit Hypoxic phosphorus storage

threshold

2.0 Insensitive mgO2

L

kDs,O2 Particle mixing O2 half satura-

tion

4.0 4.0 ±14.3 mgO2

L

Tbnth Bioturbation temperature

threshold

1.0×101 1.2 ± 4.5 ◦C

ks Benthic stress decay rate 3.0×10−2 Correlated 1
d

Ds,min Minimum bioturbation 3.0×10−6 Correlated cm2

d

κCH4ox Methane oxidation reaction

velocity

2.0×10−1 Insensitive m
d

θCH4ox Methate oxidation tempera-

ture factor

1.08 Insensitive -

kCH4ox,O2 Methane oxidation, oxygen

half saturation

2.0×10−1 Insensistive mgO2

L

ksul,SO4 Methane production, sulphate

half saturation

1.0×10−1 Insensitive mgS
L

Continued on next page



69

Table A.1 – continued from previous page

Parameter Description Value Result Units

pconstCO1 POM depositional flux, C01 8.29×102 9.54±.75 × 102 μmolC
cm2yr

pconstCO5 POM depositional flux, C05 8.29×102 8.69±.71 × 102 μmolC
cm2yr

pconstCO8 POM depositional flux, C08 8.29×102 1.18±.81 × 103 μmolC
cm2yr

pconst01X POM depositional flux, 01X 1.12×103 1.55±.86 × 103 μmolC
cm2yr

pconst02X POM depositional flux, 02X 1.03×103 1.35±.69 × 103 μmolC
cm2yr

pconst04X POM depositional flux, 04X 1.60×103 1.65±.57 × 103 μmolC
cm2yr

pconst08X POM depositional flux, 08X 1.62×103 1.89±.74 × 103 μmolC
cm2yr

pconst16X POM depositional flux, 16X 2.02×103 2.64±.77 × 103 μmolC
cm2yr

pconst32X POM depositional flux, 32X 2.15×103 1.77±.51 × 103 μmolC
cm2yr

Table A.2: Multi-layer model parameter names, function,

initial value, and final value after optimization from the full

dataset. Correlated and insensitive parameters were identi-

fied using the Hessian matrix, and were not optimized. The

inverse of the Hessian matrix only approximates the covari-

ance matrix of a model, therefore the uncertainties are only

estimates.

Parameter Description Value Result Units

Dpw Porewater Diffusion Rate 1.5 1.03±0.66 cm2

d

pconstC01 POM depositional flux, C01 6.858± ×
102

1.01±0.8×103 μmol
cm2yr

pconstC05 POM depositional flux, C05 6.450×102 6.72±0.8×102 μmol
cm2yr

pconstC08 POM depositional flux, C08 7.251×102 1.16±0.8×102 μmol
cm2yr

pconst01X POM depositional flux, 01X 1.184×103 1.23±1.0×102 μmol
cm2yr

pconst02X POM depositional flux, 02X 8.284×102 1.11±0.9×102 μmol
cm2yr

Continued on next page
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Table A.2 – continued from previous page

Parameter Description Value Result Units

pconst04X POM depositional flux, 04X 1.002×103 1.11±0.7×102 μmol
cm2yr

pconst08X POM depositional flux, 08X 1.688×103 1.75±1.0×102 μmol
cm2yr

pconst16X POM depositional flux, 16X 1.401×103 2.49±1.2×102 μmol
cm2yr

pconst32X POM depositional flux, 32X 1.580×103 1.75±0.9×102 μmol
cm2yr

Hbio Depth of bioturbated layer 5.0 Insensitive cm

Ds Bioturbation “diffusivity” 1.53 8.29±8.4×10−1 cm2

yr

Ds,coeff Bioturbation dropoff below

zbio

1.0 Insensitive 1
cm

rmet,1 Remineralization rate for inert

organic matter

2.00×10−2 5.93±7.6×10−2 1
yr

rmet,2 Remineralization rate for la-

bile organic matter

2.0 6.0±4.8 1
yr

kaer,O2 Aerobic remineralization, O2

half saturation

3.0 Insensitive μmolO2

L

kanox,O2 Anaerobic remineralization,

inhibition by O2

3.0 Insensitive μmolO2

L

rODUox ODU redox max rate 2.0×101 2.0±1.2 × 101 1
d

kODUox,O2 ODU redox, O2 half satura-

tion

3.0 Insensitive μmolO2

L

rnit Nitrification max rate 2.0×101 2.2±1.1 × 101 1
d

knit,O2 Nitrification, O2 half satura-

tion

1.0 Insensitive μmolO2

L

kdnf,NO3 Denitrification, NO3 half satu-

ration

3.0×101 Insensitive μmolNO3

L

kdnf,O2 O2 Denitrification, inhibition

by O2

1.0×101 Insensitive μmolO2

L

kanox,NO3 Anaerobic remineraliztion, in-

hibition by NO3

5.0 Insensitive μmolNO3

L

ramx Anammox max rate 4.0×10−1 Insensitive 1
d

Continued on next page
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Table A.2 – continued from previous page

Parameter Description Value Result Units

kamx,NO3 Anammox NO3 saturation 3.0 Insensitive μmolNO3

L

kamx,O2 Anammox inhibition by O2 1.0×10−2 Insensitive μmolO2

L

πpo4,exp Phosphate storage partition,

oxygen sensitivity factor

1.2 Correlated Lsolid

Ltotal

πpo4,base Phosphate storage partition,

base

2.0 Correlated -

[O2]crit Phosphate storage, critical O2

concentration

6.25 Correlated μmolO2

L

θmet,1 Inert organic matter remineral-

ization, temperature factor

1.1 Correlated -

θmet,2 Labile organic matter reminer-

alization, temperature factor

1.1 1.09 ±0.07 -

θDpw Porewater diffusion, tempera-

ture factor

1.1 1.1±0.1 -

θDs Bioturbation, temperature fac-

tor

1.1 1.2±0.7 -



APPENDIX B

OPTIMIZED MODEL COST VALUES

Table B.1: Overall Cost Contributions
Model Cost: including eu-

trophic mesocosm

contributions

Cost: ignoring eu-

trophic mesocosm

contributions

C, Cost: optimized

without eutrophic

mesocosms entirely

Two-Layer Model 3.09±2.84 .85±.03 .68±.03

Multi-Layer Model 3.11±2.84 .52±.04 .51±.03
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