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ABSTRACT 
 
Using administrative data and data sources which contained gold standard cases of 
diabetes, this thesis examined (1) the validity of commonly used administrative case 
definitions for identifying cases of diagnosed diabetes within an Aboriginal population, 
and (2) the effect of conditional covariance on parameter estimates of an administrative 
case definition used to identify cases of diagnoses diabetes within the general population 
of Nova Scotia. We found significant differences in the sensitivity and specificity of a 
commonly used administrative case when applied to an Aboriginal population at the sub-
provincial level. For the general population of Nova Scotia, we found that including a 
parameter to estimate conditional covariance between data sources resulted in significant 
variation in sensitivity, specificity, and prevalence estimates as compared to a study 
which did not consider this parameter.   
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CHAPTER 1: INTRODUCTION 

Administrative data is one of the most commonly used data sources for diagnosed diabetes 

surveillance within Canada. The main advantages of this data source are its population coverage 

and wide availability for disease surveillance systems. Despite the fact that diabetes coding in 

administrative data has been found to have high validity in many studies (Hux, 2002., Health 

Canada, 2003., Johnson, 2009) the magnitude of misclassification errors due to coding error 

remains a significant concern (Strom, 2001.; Feinstein, 1989; Kephart, 2004). This concern has 

prompted interest in both estimating the validity of administrative case definitions in the absence 

of a gold standard data source, and combining administrative data with data from other sources 

to improve the validity of diabetes surveillance. 

 Models developed by Hui and Walter (1980) and Bayesian methods to simultaneously 

adjust for and estimate sensitivity and specificity of data source case definitions can be used to 

improve the validity of diabetes surveillance systems which utilize administrative data.  This 

thesis project uses these methods to estimate and adjust for error within administrative case 

definitions, and evaluates the utility of combining diabetes surveillance data from various 

sources to improve diabetes surveillance within Nova Scotia. 

 This thesis manuscript provides a review of the literature in Chapter 2. Chapters 3 and 4 

present the results from two distinct studies, in the form of research articles, and Chapter 5 

provides a conclusion of the full master’s thesis project.  
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CHAPTER 2: LITERATURE REVIEW   
                                                                
Importance of Disease Surveillance 
 

Disease surveillance systems have been in operation since epidemiologists first attempted to 

understand trends in disease progression. These systems are a central component of any modern, 

effective public health system. The Center for Disease Control defines epidemiologic 

surveillance as,  

“… the ongoing systematic collection, analysis, and interpretation of health data essential 
to the planning, implementation, and evaluation of public health practice, closely 
integrated with the timely dissemination of these data to those who need to 
know.”(Thacker, 1988) 
 
Effective disease surveillance is essential in planning appropriate response to disease, 

monitoring population health, and mitigating costs associated with disease. Choi (1998) argues 

that a modern surveillance system must be systematic, ongoing, and population-based. Such a 

system could be used to identify emerging health risks and to develop and evaluate evidence-

based disease control and prevention programs. 

 While there are common features to all modern surveillance systems, programs can be 

conceptualized into several distinct types based on their focus:   

1) Surveillance for prevention. Focuses on the risk factors and antecedents of disease. 
In the prevention of diabetes, such a system would focus on monitoring recognized risk 
factors in the development of type 2 diabetes such as smoking, obesity, diet and exercise 
(Chipkin, 1996). Surveillance for prevention allows public health officials to act 
proactively rather than reactively to prevent the spread of disease. “Upstream” disease 
prevention has tremendous potential for success, but is more difficult to for policy makers 
to accept. The ideal outcome from upstream prevention is low incidence of disease, 
which is less tangible than the outcomes from other health programs (such as primary and 
acute care). 

 
2) Surveillance of disease prevalence, incidence and diagnosis. Focuses on the 
incidence and prevalence of disease within a population. The key challenge is in the 
identification of true cases of disease in the population, many of which may be 
undiagnosed. With Type II diabetes, many individuals may meet the clinical definition of 
disease, but are asymptomatic and undiagnosed. These individuals must be identified in 
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order to prevent complication or slow the progression of disease. For diabetes health 
policy planning, monitoring the time from development of disease to diagnoses is crucial 
in order to improve screening and disease management programs.    

 
3) Surveillance of disease management. Focuses on identifying diagnosed cases of 
disease to monitor disease management and outcomes. This type of surveillance is very 
common, and is the focus of this research project. Disease management systems provide 
us with progress indicators on how we are doing in addressing specific diseases. In 
diabetes care, this type of system is crucial to ensure that, (1) patients receive adequate 
follow-up care once they have been diagnosed with disease, (2) to ensure that patients 
receive timely care at diabetes centres, and (3) to monitor common diabetic co-
morbidities/complications (e.g. cardiovascular disease and diabetic retinopathy). 
Monitoring these indicators helps ensure effective treatment and resource 
planning/deployment to prevent or ameliorate the negative consequences of diabetes.   

 
While it is important to delineate types of surveillance, it is equally important to identify 

where and how surveillance information is used. Surveillance data is used at the national, 

provincial, regional, and local levels. The Public Health Agency of Canada monitors national 

trends in disease in order to plan broad country-wide health initiatives and target resources. Since 

health care delivery is under provincial jurisdiction in Canada, provinces and territories use 

disease surveillance systems to identify specific disease trends within their populations. At the 

regional level, district health authorities use surveillance data to monitor disease trends at the 

sub-provincial level, within place such as Cape Breton. Finally, Communities use surveillance 

data at the sub-population level, and are often responsible for the implementation of initiatives 

and programs to address disease within their communities.  

Over the past two decades within Canada, there has been a movement towards the 

devolution of health care planning and decision making to smaller geographical and sub-

population levels (Lewis, 2004). Surveillance systems which are able to provide information at 

the local and sub-population level are needed, as this is where health care is increasingly being 

planned and delivered. Disease trends at the national and provincial level may not be reflected at 
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the local level, and with increasing population diversity, it is important to understand disease 

management and risk factors at the local level for specific groups of individuals. 

An excellent example of the need for surveillance data at the local level is within 

Aboriginal communities. While it is believed that Aboriginal people are at higher risk of 

developing diabetes (FNIHB, 2010), there is great diversity between Aboriginal communities in 

Canada, and the risk may not be equal between or even within communities. Moreover, the need 

for Aboriginal communities to have greater control over their own health care planning and 

delivery has been widely recognized in major reports on health in Canada (Commission of the 

Future of Health Care in Canada, 2002., Royal Commission on Aboriginal Peoples, 1996).  

Despite the need for surveillance of diabetes in Aboriginal communities, there are 

considerable gaps in the data needed to support surveillance at this level. Many Canadian 

Aboriginal communities are not included in national and provincial health surveys. The First 

Nations Longitudinal Regional Health Survey (RHS) was initiated to address this need for 

disease surveillance within Aboriginal communities. The RHS is a First Nations governed, 

longitudinal national health survey (RHS, 2010). Data from the RHS is controlled by the 

Canadian First Nations due to complex self governance issues within many Aboriginal 

communities. The main advantage of this self-governance is that Aboriginal communities can 

claim ownership of their health data under the principals of OCAP (ownership, control, access, 

possession). This survey provides excellent coverage of First Nations communities within 

Canada, but due to its national scope, does not have adequate statistical power to produce 

reliable indicators at the community level. Using national or regional level indicators for 

planning at the community level  is also problematic, as minority populations are often 

erroneously treated as homogeneous (for example, First Nations, Inuit, and Métis people are 
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distinct groups, but are often considered to be part of a homogenous group of Aboriginal 

peoples) (Burrows, 2004). Given the heterogeneity and diversity of Aboriginal peoples within 

Canada, there is very likely to be considerable variation in disease indicators between 

communities. Moreover, the accuracy of data sources may also vary across communities (Liao, 

2004).  

Data from Administrative databases (such as hospital discharge abstracts and physician 

billing data) is an attractive option for surveillance within Aboriginal communities because of its 

population coverage.  It could be used to attempt to provide the coverage and statistical power 

needed for Aboriginal health surveillance, but it can be problematic to identify Aboriginal 

community members using this type of data, as individuals who are not registered under the 

Indian Act cannot be identified (Pohar, 2007). Geographic proxies for Aboriginal individuals can 

also be inaccurate due to the wide geographical dispersion of Aboriginal peoples (Assembly of 

First Nations, 2010).  The use of local sources of data from Aboriginal communities, such as 

electronic medical records, is also being explored. Unfortunately this type of information is not 

typically organized or accessible for disease surveillance, although they are of great potential for 

surveillance systems.  

Health data issues within Aboriginal communities are reflective of the problems that arise 

with the devolution of health care planning and implementation to the local level. We will now 

examine these and other challenges to disease surveillance more generally within Canada.  

 
Challenges in Current Approaches to Surveillance for Disease Management 
 

There are three critical challenges in surveillance of diagnosed cases of disease within the 

local and regional populations;  
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1) To obtain data with sufficient statistical power to support surveillance at the local and 
regional level, 

 
2) To obtain data that is sufficiently accurate to avoid bias that could compromise 

surveillance, and  
 
3)  To obtain data that has a sufficient breadth of information to support a variety of 

surveillance requirements (i.e. co-morbidities, processes of care and outcomes).   
 

Utilizing specific types of data necessitates tradeoffs between these three challenges. 

Consideration of the strengths and weaknesses of different surveillance systems using different 

data sources illustrates these tradeoffs. 

Survey data provides a large breadth of information and is reasonably accurate, but 

typically lacks adequate statistical power for surveillance at the local level. The advantage of 

survey data is that it is often collected for research purposes, and surveys can be targeted towards 

addressing priority health concerns.  They thus contain a wealth of data which can be tailored to 

meet information needs. A primary disadvantage of using survey data is that it must rely on self-

reported diagnosis of disease from individuals. Without linkages to other data sources, or other 

types of verification procedures, there may be flaws in the data as individuals may forget to 

report health conditions or misunderstand specific questions.  

Nationally, the Canadian Community Health Survey (CCHS) is the flagship survey for 

health surveillance. This survey represents one of the largest Canadian efforts to collect health 

information, and carries significant expense in its administration. The CCHS is a cross sectional 

survey designed to provide reliable disease estimates at the health region level (Statistics Canada, 

2010). This survey targets all Canadians over the age of 12, but excludes individuals living on 

Reserves, crown lands, institutionalized individuals, residents of certain remote regions, and 

members of the Canadian Forces. The advantages of this survey are that it has a large sample 

size, employs sampling methods to avoid bias at the national level, and also collects a broad 
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breadth of demographic and outcome information. Despite its large sample size and coverage of 

the Canadian population, the CCHS often has inadequate statistical power to produce reliable 

health estimates at the health region or local level. This inadequacy is exacerbated by the fact 

that some information which is used to estimate health indicators at the health region level is 

collected in only a sub-sample of respondents.  

For Aboriginal communities, a primary survey data resource is the First Nations Regional 

Longitudinal Health Survey (RHS). This survey also employs sampling methods to correct for 

bias and error in the data, as well as collects information on a range of health indicators.  The 

RHS uses a cluster sampling design, where Aboriginal communities are selected and approached 

to participate in this survey, and then samples of individuals are randomly selected from these 

communities to complete the survey. As discussed earlier, this survey has excellent coverage of 

Aboriginal communities within Canada, but does not have adequate coverage of Aboriginal 

communities to produce estimators of diabetes at the community level even though large samples 

were drawn from many communities across Canada. The samples of Aboriginal people on 

reserves ranged from as high as 53.8% in Newfoundland and Labrador, to 2.1% in Ontario. The 

Nova Scotia sample was approximately 14.2% of the population of interest (First Nations Centre, 

2002), which is not adequate for making inter-community comparisons within this province. 

Since the RHS is targeted towards Aboriginal communities only, it does have excellent coverage 

of the Canadian Aboriginal population living on reserves; unfortunately, it does not cover 

Aboriginal peoples living off reserve.  

A popular alternative surveillance data source is administrative health data.  This type of 

data is routinely collected by provincial governments in the process of administering Medicare 

(e.g. Provincial Health Insurance Programs). Administrative data includes physician billing data, 
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hospital discharge abstract data (DAD), and Pharmacare data. DAD consists of demographic, 

administrative and clinical data on all patients discharged from hospitals or who receive day 

surgery (CIHI, 2010). Physician billing data is typically submitted to provincial health insurance 

programs by physicians on a fee-for-service pay schedule to receive reimbursement for services 

rendered. Many provinces also collect prescription claims data as part of provincial drug 

programs. Pharmacare data has been used to help identify individuals with diabetes within 

specific populations which may not be extensively covered in other data sources (e.g. frail 

elderly), but has not been widely used within disease surveillance systems. Insulin and oral 

antihyperglycemic agents are a reliable proxy for diagnosed diabetes among seniors which also 

can be used (DCPNS, 2009).  

By linking and combining these administrative data sources, provinces and the Public 

Health Agency of Canada have established surveillance systems for diabetes and a number of 

other chronic diseases. 

The primary advantages of surveillance systems based on administrative data include 

their wide availability and population coverage. These types of surveillance system have 

minimal issues with statistical power since they collect information on every person who 

accesses health services within Canada. Surveillance systems based on administrative data also 

suffer from some major limitations. Administrative data is typically not collected for surveillance 

or research purposes, and thus there may be gaps and inaccuracies in the data collected. For 

example, while Nova Scotia allows for multiple diagnostic codes within hospital DAD and MSI 

submissions, patients may only be assigned a single diagnostic code even though they present 

with multiple complaints. A patient with who visits their general practitioner to manage high 

blood pressure and discuss their diabetes may be identified in administrative data as having high 
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blood pressure only, and may not be coded as a diabetic. Administrative data also suffers from 

accuracy problems.  Diagnostic disease coding in administrative data is known to have 

inaccuracies that can result in significant misclassification error when used for disease 

surveillance (Strom, 2001.; Feinstein, 1989; Kephart 2004). Diagnostic errors can result as 

coding on physician claims is often entered by physicians or their support staff, and not 

professional coders. Checking procedures to ensure data integrity may not be followed within a 

busy clinic, and can result in data inaccuracies. 

One type of error which commonly happens within administrative data source is 

misclassification error. This type of error typically arises in two situations, when individuals with 

a specific disease are falsely classified as not having that disease (False Negatives), and when 

individuals who do not have a specific disease are falsely classified as having this disease (False 

Positives). Misclassification error causes problems as it creates an imbalance between the 

number of false positives and false negatives within the data source.  False cases are a function 

of the data’s sensitivity (the percent of true cases captured) and its specificity (the percent of 

non-cases captured). Decreases in the sensitivity of the data source over time will result in 

underestimates of the prevalence of the disease of interest, through the generation of false 

negative cases, while decreases in the specificity of the data source will result in overestimation 

of the prevalence of disease, through the generation of false-positive cases. 

 The true prevalence of disease also changes how the sensitivity and specificity will affect 

prevalence estimates. At low disease prevalence, specificity has a larger influence on the validity 

of administrative case definitions, as it will results in a larger numbers of false positive (see table 

1). Even if the sensitivity and specificity of a data source did not change, bias could differ as a 

function of variations in the true prevalence of disease between communities. This 
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interrelationship is especially pertinent to our analysis of diabetes rates within and between 

minority populations as it has been shown that both the prevalence of disease, and the sensitivity 

and specificity of the data, may vary across these populations (Sackett, 2002). Combined, 

variation in these three factors can result in biased estimates of true disease prevalence, with 

differential bias between communities. 

Table 1. The effect of Sensitivity, Specificity, and True Disease Prevalence on Estimates of 
Disease Prevalence using various types of Surveillance Data. 

Data source True 
Prevalence 

Sensitivity Specificity Positive 
Predictive 

Value 

Negative 
Predictive 

Value 

Estimated 
Prevalence 

(error) 
 
 

Administrative 
Data 

 

 
2% 

 
85% 

 
96% 

 

 
43% 

 

 
99.7% 

 

 
5.6% (+3.6) 

 
 

2% 
 

85% 
 

99% 
 

63% 
 

99.7% 
 

2.7% (+0.7) 
 

Clinical 
Registries 

 

 
2% 

 

 
50% 

 
100% 

 
100% 

 
99% 

 
1% (-1.0) 

Pharmacare 
Claims 

 

 
2% 

 
40% 

 
100% 

 
100% 

 
99% 

 
8% (+6.0%) 

 
 

Administrative 
Data 

 
10% 

 

 
85% 

 
96% 

 
70% 

 
98% 

 
12% (+2.0) 

 
10% 

 

 
85% 

 
99% 

 
82% 

 
98% 

 
10% (0) 

Clinical 
Registries 

 
10% 

 
50% 

 
100% 

 
100% 

 
95% 

 
5% (-5.0) 

 
Pharmacare 

Claims 
 

10% 
 

40% 
 

100% 
 

100% 
 

94% 
 

4% (-6.0) 
 

 

 Administrative data typically has high sensitivity and specificity for identifying cases of 

diabetes (table 1) (Kephart, 2004), although the accuracy of these data sources is highly affected 
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by the true prevalence rate. We can also see, that when the specificity of the data is altered, even 

by a small amount, the error in the estimates of disease prevalence increase drastically (table 1).  

While there are concerns about the accuracy of administrative data, it is often the only 

information which is available at the population level to monitor disease. The National Diabetes 

Surveillance System was a collaborative network of provincial and territorial information 

systems designed to improve the breadth of diabetes surveillance. Administrative data from 

provincial health insurance registries were linked to physician billing and hospitalization data in 

each province and territory, and compiled by the Public Health Agency of Canada (PHAC, 

2009). The strength of the NDSS was that it had excellent coverage and statistical power since it 

is population-based. Several weaknesses of the NDSS have been identified including; 

1) The overestimation of diabetes prevalence when it is used over time. False positive cases 
accumulate as the data is used over time and the ratio of false positive to false negative 
cases become unbalanced (Health Canada, 2003), and  

 
2) In Nova Scotia, and elsewhere, many physicians are switching to alternate pay structures 

where they are not required to submit billing information, and thus the validity of the 
NDSS case definition may have declined. 

 
Clinical registries are another data source sometimes used in disease surveillance. Clinical 

registries contain information on patients with a particular condition of interest, within which 

information is collected and can be used for surveillance and research purposes. The Diabetes 

Care Program of Nova Scotia (DCPNS) maintains a clinical registry (DCPNS registry) of all 

cases of diabetes and pre-diabetes referred to their Diabetes Centres around the province. The 

DCPNS Registry is not subject to some of the limitations of the NDSS. The DCPNS Registry 

contains information collected through the NS Diabetes Centres; as such, all cases appearing in 

this Registry have clinically diagnosed diabetes or pre-diabetes (i.e., 100% or no false positives). 

A limitation of this Registry is that individuals with diabetes who never accessed care at a 



 
 

12 
 

Diabetes Centre do not appear within the DCPNS Registry. When comparing the DCPNS 

Registry against the NDSS, over 70% of the estimated cases identified by the NDSS 

methodology appear in the DCPNS Registry, with this percentage varying by age (DCONS, 

personal correspondence). The population-based DCPNS Registry is actively used for diabetes 

surveillance at the provincial District Health Authority, and community level with the 

recognition that it does not capture all diabetes cases in the province, but rather those who have 

received care through Diabetes Centres.  

 We have seen that each data source has particular strengths and weaknesses which must 

be addressed. With this in mind, we will consider new approaches to surveillance which seek to 

overcome the limitations inherent in the use of any one particular data source.  

New Directions/Approaches 
 
  Given the limitations of using individual data sources for surveillance purpose, there has 

recently been considerable interest in methods to both combine information from multiple data 

sources and correct for misclassification error. Through the combination of multiple data 

sources, it is possible to balance the strengths and weaknesses of each data source, as well as 

increase the power of data sources to perform subpopulation analyses. Administrative data often 

has the potential to be linked with disease registries and survey data through the use of personal 

identifiers such as health card number, or from multiple cell sources such as name, date of birth, 

and sex using probabilistic matching. While our current data resources may have individual 

weaknesses, a combination of these sources of information would produce a powerful new tool 

for disease surveillance.  

The Nova Scotia Diabetes Repository (NSDR) is an example of such an approach to 

combining data sources for disease surveillance. The NSDR was a pilot project that combined 
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the advantages of the population coverage of administrative data sources used in the NDSS 

(physician billings data and hospital DAD data) with data rich information in the DCPNS 

Registry, along with supplemental information from Nova Scotia Pharmacare on medication use 

related to diabetes (i.e. oral antihyperglycemic agents and insulin), and the Nova Scotia Atlee 

Perinatal Database (NSAPD), which contains information on all pregnancies in Nova Scotia with 

information on pre-existing diabetes and new  cases of gestational diabetes.  

To validate NSDR cases, Kephart and Andreou (2009) used a Bayesian statistical method 

to evaluate and combine multiple databases to increase the accuracy of surveillance data. To 

estimate diabetes in persons aged over 65, Pharmacare information, data from the DCPNS 

registry, and administrative data were combined into a model to simultaneously estimate the 

sensitivity and specificity of each data source, and to estimate the prevalence of diabetes overall. 

For people under 65 years of age, data from the diabetes care program and administrative data 

were used. While this approach yielded good estimates of the prevalence of diabetes, prevalence 

estimates were conservative, and values for sensitivity of the data sources were likely biased as 

the authors did not account for dependence between data sources. In this thesis, we will apply the 

methods used by Kephart and Andreou to estimate the accuracy of data sources for identifying 

diabetes case definitions in Aboriginal populations.  In addition, we will extend the models used 

by Kephart and Andreou to further refine estimates of the accuracy of various data sources used 

in the NSDR. 

Compensating for Estimation Error in surveillance methods 

One approach to address misclassification error in data sources is to adjust estimates of 

prevalence for misclassification error, based on knowledge of sensitivity and specificity.  For 

example, we can adjust estimate of apparent disease prevalence using a likelihood approach. 
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Using the observed prevalence as an estimate, we can multiply this estimate by the likelihood 

ratio (which is estimated from sensitivity and specificity), which will result in an estimate of 

prevalence which more accurately estimates the true prevalence. Maximum likelihood estimates 

are a set of estimates which are determined to be the most likely to have generated the observed 

data. This type of estimation is useful in the absence of certainty about the condition of interest 

since they will give us the most “likely” estimate of the parameter of interest to match the 

observed data.  A similar approach is to use a Rogan-Gladen estimator to obtain prevalence 

estimates (Greiner, 2003). A Rogan-Gladen estimator provides an approximately unbiased 

Bayesian estimate of prevalence conditional on the apparent prevalence (the estimates of 

prevalence are obtained by applying a diagnostic test to the population) and the sensitivity and 

specificity (Kephart, 2004).  

These two approaches to adjustment have been extensively used within the literature but 

have several important limitations to their use. The primary issue is that both rely on knowing 

with certainty the sensitivity and specificity of an ideal reference. There are many difficulties 

with identifying an ideal reference standard with which to evaluate diagnostic test parameters. 

The second weakness of these approaches is related to the first, in that it does not allow users to 

incorporate uncertainty about sensitivity, specificity and prevalence into the adjustment process. 

This issue is especially important for disease surveillance at the local level and within 

subpopulation groups, as sensitivity and specificity can vary across or within these levels of 

analysis, and they can only be estimated with error.  

The sensitivity, specificity and prevalence of disease cannot be known with complete 

certainty, unless an ideal (gold) reference standard is available. An ideal reference standard 

should meet three criteria (Reitsma, 2009): the reference standard provides error-free 
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classification of all subjects, the same reference standard is used to verify all index test results, 

and the index test and reference standard can be performed within a short interval to avoid 

changes in target conditional status. Even with an ideal reference standard, there will always be a 

margin of error associated with parameter estimates, and it is important to account for this 

uncertainty within the adjustment procedure (Lawrence, 1995).   

Reitsma et al (2009) argues that the criteria for a reference standard are rarely met with 

any diagnostic as there are many types of error which can impede the construction of an ideal 

reference standard including: 

1) Misclassification: if the condition of interest does not manifest typically, or is not 
detectable at the time of diagnosis, this would cause error in the reference standard if 
that individual was not classified as having the condition of interest, 
 

2) Dichotomizing: Conditions of interest often occur along a spectrum, and not simply 
as present or absent, and as different standards may use different cut-points, this can 
result in error in the reference standard, 
 

3) Failure in the reference standard protocol: practitioners who are administering the 
protocol may not adhere to the highest standard and may misclassify individuals who 
have the condition of interest, and 
 

4) Interpretation errors by observers: There may be error in the entering of results of 
the reference standard into databases, which would result in errors in the reference 
standard. 

 
Models for Estimating Parameters of Interest in the Absence of a Gold-Standard 
 

A growing body of literature explores methods for estimating sensitivity, specificity, and 

disease prevalence in the absence of a gold standard (Reitsma, 2009., Rutjes, 2007).  To illustrate 

the basics of the approaches, and the challenges involved, it is useful to start with a simple 

example. The simplest data which can be used to represent an evaluation of diagnostic 

parameters is for one population of interest with two independent diagnostics. The independence 

of the diagnostics refers to the fact that the error in each diagnostic database is not related to the 
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error in the other. For the remainder of these examples, we will use the word diagnostic to refer 

to a diagnostic database used to identify cases of diagnosed disease.  

The simplest way to represent the findings of two diagnostic tests within one population 

is to form a 2 X 2 table. In this table we have the results of diagnostics “2” represented in the 

rows, and for diagnostic “1” in the columns. (Figure 2). Since we have applied two diagnostics to 

the population of interest, our simple table also shows the degree of agreement or disagreement 

between the diagnostics, represented as the cells of the tables. For instance, if a person from the 

population is identified as having a condition of interest by test 1, but as not having the condition 

by test 2, they would be included in cell X12.  

 
 

Diagnostic 1 

 Diagnostic 2 
 no yes 

no X11 X21 
yes X12 X22 

 
  X11= [P[D+]* [1-Se1]*[ 1-Se2] + P[D-]*[Sp1]* [Sp2]]*n 

X21= [P[D+]*[1-Se1]*[Se2] + P[D-]*[Sp1]* [1-Sp2]]*n 
X12= [P[D+]*[Se1]*[1-Se2] + P[D-]*[1-Sp1]* [Sp2]]*n 
X22= [P[D+]*[Se1]*[Se2] + P[D-]*[1-Sp1]* [1-Sp2]]*n 

  
P[D+] = Probability of having Diabetes  
P[D-]= Probability of not having Diabetes 
[Se1]= Probability of being identified as a Diabetic within Diagnostic 1 conditional on true status as a diabetic 
[1-Se1]= Probability of being identified as a non-Diabetic within Diagnostic 1 conditional on true status as a diabetic 
[Sp1]= Probability of being identified as a non-Diabetic within Diagnostic 1 conditional on true status as a non-Diabetic 
[1-Sp1]= Probability of being a identified as a Diabetic within Diagnostic 1 conditional on true status as a non-diabetic 
[Se2]= Probability of being identified as a Diabetic within Diagnostic 2 conditional on true status as a diabetic 
[1-Se2]= Probability of being identified as a non-Diabetic within Diagnostic 2 conditional on true status as a diabetic 
[Sp2]= Probability of being identified as a non-Diabetic within Diagnostic 2 conditional on true status as a non-Diabetic 
[1-Sp2]= Probability of being a identified as a Diabetic within Diagnostic 2 conditional on true status as a non-diabetic 
n= total population (X11+ X21+ X12+ X22) 

 
Figure 1. One population with two independent Diagnostic Tests 
 

In the instance of one population with two independent diagnostics, using probability 

theory, cells can be represented as a function of the probability that an individual has diabetes, 

and the sensitivity and specificity of diagnostics 1 and 2.  
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We can then write equations to solve for our parameters of interest, and see from these 

equations that there are 5 unknown properties, P, Se1, Se2, Sp1, and Sp2. In a 2 X 2 table (figure 

1), if we know the values of three of the four cells we can calculate the value of the unknown 

cell, and thus the data has three degrees of freedom. With five unknown parameters, and only 

three degrees of freedom, we cannot specify a unique solution to any of the unknown parameters 

in the equations (Lawrence, 1995).  

The only way to estimate model parameters is to specify values for at least some of the 

parameters, thereby reducing the number of unknown parameters. For example, if previous 

research showed that the values of specificity and prevalence were 95% and 7% respectively, we 

could substitute these values into our equations, and reduce the number of unknown parameters 

to three with three degrees of freedom. Using this method, we could solve the equations if there 

was enough research on our diagnostics tests for us to confidently make these assumptions about 

some of the parameters. As discussed earlier, this information is typically not accessible due to 

the non-availability, or inadequacy, of diagnostic gold-standard databases.  

A more sophisticated, but similar approach to solving this equation is to use Bayesian 

statistical methods, which employ a more formalized and integrated approach to including past 

research to estimate model parameters. This approach allows us to incorporate prior information 

about our parameter estimates, while also incorporating uncertainty about these values. An 

example would be if we thought that the specificity and prevalence of our diagnostic data had 

means of 95% and 7% respectively, with associated credibility intervals. A Bayesian 

methodological approach would allow us to specify prior distributions for model parameters (e.g. 

a beta-distributions corresponding to a mean and confidence interval from previous research). 

Bayesian estimation techniques combine the prior distributions of model parameters with the 
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data to derive “posterior” distributions of the model parameters.  Providing the prior distributions 

and the data contain enough informative information, the posterior distributions can provide 

reasonably precise estimates of the model parameters, conditional on the prior distributions, the 

data and the model on which the estimation is based (i.e. the equations in Figure1).  

If more detailed data are available, fewer assumptions (or informative prior distributions) are 

required, and estimates of model parameters can be based more exclusively on the data. 

Consider, for example the situation where we have data on two populations, with different 

prevalence of disease, and data from two independent diagnostics on each population (Figure 3). 

There are now 6 unknown parameters, and 6 degrees of freedom. Knowing this, we can calculate 

a unique solution for all the parameters of interest (Lawrence, 1995). Bayesian methods can still 

be used to incorporate prior knowledge (and uncertainty) into our parameter estimates, and can 

enhance the precision and accuracy of estimates. 
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     Population A                                                              
 
 
               
Diagnostic 1 

Diagnostic 2 
 + - 

+ X11 X21 

- X12 X22 
  

  
  
  

       
                  Population B 

                                  
 

 
 
 
 

 
 
P[D+] = Probability of having Diabetes 
P[D-]= Probability of not having Diabetes 
[Se1]= Probability of being identified as a Diabetic within Diagnostic 1 conditional on true status as a diabetic 
[1-Se1]= Probability of being identified as a non-Diabetic within Diagnostic 1 conditional on true status as a diabetic 
[Sp1]= Probability of being identified as a non-Diabetic within Diagnostic 1 conditional on true status as a non-Diabetic 
[1-Sp1]= Probability of being a identified as a Diabetic within Diagnostic 1, conditional on true status as a non-diabetic 
[Se2]= Probability of being identified as a Diabetic within Diagnostic 2 conditional on true status as a diabetic 
[1-Se2]= Probability of being identified as a non-Diabetic within Diagnostic 2 conditional on true status as a diabetic 
[Sp2]= Probability of being identified as a non-Diabetic within Diagnostic 2 conditional on true status as a non-Diabetic 
[1-Sp2]= Probability of being a identified as a Diabetic within Diagnostic 2 conditional on true status as a non-diabetic 
n= total population (X11+ X21+ X12+ X22) 

 
    Figure 2. Two Populations (different disease prevalence) with Two Independent Diagnostics 

 

While more data from separate populations can provide enough degrees of freedom to 

solve our equations, this is not a straightforward relationship. Sometimes there is only 

information on one population of interest, say if the administrative data does not contain much 

demographic information, but we have data from three independent diagnostics tests (Figure 4). 

In this model there are 7 unknown parameters, and 7 degrees of freedom. For this model we now 

have enough information to find a unique solution to our parameters of interest. For this 

situation, the Bayesian method is again useful as it will allow us to use prior information to 

combine with the data, and obtain meaningful estimates of model parameters. 

 
 
                
Diagnostic 2 

    Diagnostic  1 
 + - 

+ Y11 Y21 

- Y12 Y22 

X11= [P[DA
+]* [1-Se1]* [1-Se2] + P[DA

-]* [Sp1]* [Sp2]]*n 
X21= [P[DA

+]* [1-Se1]* [Se2] + P[DA
-]* [Sp1]* [1-Sp2]]*n 

X12= [P[DA
+]* [Se1]* [1-Se2] + P[DA

-]* [1-Sp1]* [Sp2]]*n 
X22= [P[DA

+]* [Se1]* [Se2] + P[DA
-]* [1-Sp1]* [1-Sp2]]*n 

Y11= [P[DB
+]* [1-Se1]* [1-Se2] + P[DB

-]* [Sp1]* [Sp2]]*n 
Y21= [P[DB

+]* [1-Se1]* [Se2] + P[DB
-]* [Sp1]* [1-Sp2]]*n 

Y12= [P[DB
+]* [Se1]* [1-Se2] + P[DB

-]* [1-Sp1]* [Sp2]]*n 
Y22= [P[DB

+]* [Se1]* [Se2] + P[DB
-]* [1-Sp1]* [1-Sp2]]*n 
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  Diagnostic 2 Diagnostic 3 

  yes no 

Diagnostic 1 
yes yes X111 X112 

no X121 X122 

no yes X211 X212 
no X221 X222 

 
 
  
 
 
 
 
 
 
P[D+] = Probability of having Diabetes  
P[D-]= Probability of not having Diabetes 
[Se1]= Probability of being identified as a Diabetic within Diagnostic 1 conditional on true status as a diabetic 
[1-Se1]= Probability of being identified as a non-Diabetic within Diagnostic 1 conditional on true status as a diabetic 
[Sp1]= Probability of being identified as a non-Diabetic within Diagnostic 1 conditional on true status as a non-Diabetic 
[1-Sp1]= Probability of being a identified as a Diabetic within Diagnostic 1 conditional on true status as a non-diabetic 
[Se2]= Probability of being identified as a Diabetic within Diagnostic 2 conditional on true status as a diabetic 
[1-Se2]= Probability of being identified as a non-Diabetic within Diagnostic 2 conditional on true status as a diabetic 
[Sp2]= Probability of being identified as a non-Diabetic within Diagnostic 2 conditional on true status as a non-Diabetic 
[1-Sp2]= Probability of being a identified as a Diabetic within Diagnostic 2 conditional on true status as a non-diabetic 
[Se3]= Probability of being identified as a Diabetic within Diagnostic 3 conditional on true status as a diabetic 
[1-Se3]= Probability of being identified as a non-Diabetic within Diagnostic 3 conditional on true status as a diabetic 
[Sp3]= Probability of being identified as a non-Diabetic within Diagnostic 3 conditional on true status as a non-Diabetic 
[1-Sp3]= Probability of being a identified as a Diabetic within Diagnostic 3 conditional on true status as a non-diabetic 
n= total population (X11+ X21+ X12+ X22) 

 
Figure 3. One Population with Three Independent Diagnostics 

 
The previous models all make a strong assumption about the independence of error in 

diagnostic tests. Especially with different data sources for identifying a disease, errors may not 

be independent.  In many cases, coding of disease from different sources may be related.  For 

example, providers who do not code a disease in one data source may not do so in another, or 

errors may be geographically clustered because of the way patients access care. Error in different 

administrative data sources is possible if the same health professional records diagnostic 

information that gets incorporated into physician billings data and hospital discharge data.  

Dependence is a very realistic situation within health data diagnostic databases, but the 

difficulty with dependence is that we often do not have good information on how the diagnostic 

X111= [P[D+]* [Se1]* [Se2]* [Se3]  + P[D-]* [1-Sp1]* [1-Sp2]* [1-Sp3]]*n 
X112= [P[D+]* [Se1]* [Se2]* [1-Se3]  + P[D-]* [1-Sp1]* [1-Sp2]* [Sp3]]*n 
X121= [P[D+]* [Se1]* [1-Se2]* [Se3]  + P[D-]* [1-Sp1]* [Sp2]* [1-Sp3]]*n 
X122= [P[D+]* [Se]* [ 1-Se2]* [1-Se3]  + P[D-]* [1-Sp1]* [Sp2]* [Sp3]]*n 
X211= [P[D+]* [1-Se1]* [Se2]* [Se3]  + P[D-]* [Sp1]* [1-Sp2]* [1-Sp3]]*n 
X212= [P[D+]* [1-Se1]* [Se2]* [1-Se3]  + P[D-]* [Sp1]* [1-Sp2]* [Sp3]]*n 
X221= [P[D+]* [1-Se1]* [ 1-Se2]* [Se3]  + P[D-]* [Sp1]* [Sp2]* [1-Sp3]]*n 
X222= [P[D+]* [1-Se1]* [ 1-Se2]* [1-Se3]  + P[D-]* [Sp1]* [Sp2]* [Sp3]]*n 
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parameters are related. For example, given a positive result on Diagnostic 1, we could be more 

likely to have a positive result on diagnostic 2, but this does not support the assumption that 

given a negative result on 2, we are more likely to see a negative result on 1. Within this study, 

we parameterize dependence in the context of validation of a data source which contains gold 

standard cases of disease and one which does not. Dependence of data sources is estimated 

through the inclusion of a covariance term to express the conditional covariance of error between 

data sources. 

While the dependence assumption of a model of interest is likely more representative of 

the true nature of using diagnostic tests, it is more complicated, and in order to model the 

relationship, we must employ more complicated models, with new parameters to reflect 

dependence.  Thus, more data and assumptions will be required to estimate model parameters 

(figure 5). 
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  Population A 

 
 

Diagnostic 1 

 Diagnostic 2 
 no yes 

no X11 X21 
yes X12 X22 

 
  Population B 

 
 

Diagnostic 1 

 Diagnostic 2 
 no yes 

no Y11 Y21 
yes Y12 Y22 

 
 

X11= [P[D+]* [1-Se1]* [ 1-Se2] + cov] + P[D-]* [Sp1]* [Sp2]]*n 
X21= [P[D+]* [1-Se1]* [Se2] – cov] + P[D-]* [Sp1]* [1-Sp2]]*n 
X12= [P[D+]* [Se1]* [1-Se2]- cov] + P[D-]* [1-Sp1]* [Sp2]]*n 
X22= [P[D+]* [Se1]* [Se2] + cov] + P[D-]* [1-Sp1]* [1-Sp2]]*n 

 
Y11= [P[D+]* [1-Se1]* [ 1-Se2] + cov] + P[D-]* [Sp1]* [Sp2]]*n 
Y21= [P[D+]* [1-Se1]* [Se2] – cov] + P[D-]* [Sp1]* [1-Sp2]]*n 
Y12= [P[D+]* [Se1]* [1-Se2] – cov] + P[D-]* [1-Sp1]* [Sp2]]*n 
Y22= [P[D+]* [Se1]* [Se2] + cov] + P[D-]* [1-Sp1]* [1-Sp2]]*n 

 
P[D+] = Probability of being identified as having Diabetes 
P[D-]= Probability of not being identified as having Diabetes  
[Se1]= Probability of being identified as a Diabetic in diagnostic 1 conditional on true status as a diabetic  
[1-Se1]= Probability of being identified as a non-Diabetic in diagnostic 1 conditional on true status as a diabetic  
 [Sp1]= Probability of being identified as a non-Diabetic in diagnostic 1 conditional on true status as a non-Diabetic 
[1-Sp1]= Probability of being a identified as a Diabetic in diagnostic 1 conditional on true status as a non-diabetic 
[Se2]= Probability of being identified as a Diabetic in diagnostic 2 conditional on true status as a diabetic 
[1-Se2]= Probability of being identified as a non-Diabetic in diagnostic 2 conditional on true status as a diabetic 
[Sp2]= Probability of being identified as a non-Diabetic in diagnostic 2 conditional on true status as a non-Diabetic 
[1-Sp2]= Probability of being a identified as a Diabetic within Diagnostic 2 conditional on true status as a non-diabetic 
Cov= Conditional covariance of error in sensitivities between data sources 
n= total population (X11+ X21+ X12+ X22) 
 

Figure 5. Two population with two dependent Diagnostics 
 

From figure 4, we can now see that since we must an additional parameter (cov) to 

estimate the conditional covariance of sensitivities between data sources. We do not estimate 

dependence in specificity, as research shows that the specificity of administrative case 

definitions are typically very high (generally greater than .92 (DCPNS, 2009., Hux, 2002)). 

While this model may have sufficient degrees of freedom to make parameter estimates, it is 

sometime necessary to include additional informative prior information to converge reasonable 
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estimates. As the model become more complicated we must make more assumptions based on 

prior information in order to produce unique solutions for our parameters of interest.  

Estimation Methods 

A variety of methods exist to estimate parameters of interest once a model has been 

specified for the data, including Frequentist based on  maximum-likelihood estimation (EnØe, 

2000), the Expectation-Maximization algorithm (EnØe, 2000), and Bayesian approaches using a 

Gibbs sampler (Jospeh, 1995). As previously discussed, the advantage of the Bayesian method 

lays primarily in the fact that, while both approaches must rely on assumptions when models are 

under-identified (more parameters of interest than degrees of freedom), the Bayesian approach 

provides a framework for combining prior information and knowledge with data to estimate 

model parameters.  

The Bayesian approach typically employs a Gibbs sampling technique. A Gibbs sampler 

chooses a random value for each parameter of interest which lies between the distribution 

estimate which was specified (usually between 0 and 1), and a sample is drawn from each 

distribution. The Sampler then builds on all further arbitrary selections by incorporating the 

values of previous samples into further estimations. This is the method which will be used in the 

following analyses. 

 In summary, we have seen that there is a need for reliable and accurate health data at the 

community level in order to meet the needs of policy makers. Current data sources are 

inadequate to meet this need, and so we must use methods to balance the strengths of multiple 

data sources which also explicitly acknowledge their weaknesses. In order to estimate the 

accuracy of data sources for identifying cases of diagnosed Diabetes in Aboriginal versus non-
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Aboriginal populations we will use a Bayesian method to estimate parameters (sensitivity, 

specificity, and disease prevalence) within each population.  
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CHAPTER 3: Manuscript 1 

 
Validation of an Administrative Case Definition for Identifying Cases of Diagnosed 
Diabetes within an Aboriginal Population at the Sub-Provincial Level 
 

Introduction  

 While there has been a plethora of research using administrative data (Physician Claims 

and Hospital Discharge Data) to estimate the prevalence of diabetes in Aboriginal communities 

(Dyck, 2010., Johnson, 2009., Martens, 2007., Hemmelgarn, 2007., Green, 2003), it has typically 

relied on  case definitions which have not been validated within these populations. For example, 

most Canadian research has used the “Manitoba” case definition (2 or more physician claims or 

1 or more hospital claims within a two-year window), which has been validated in national and 

provincial populations (Hux, 2002., Health Canada, 2003., Johnson, 2009), but not for 

Aboriginal populations at the sub-provincial level.  The sensitivity and specificity of 

administrative case definitions in Aboriginal populations may differ as a result of increased 

awareness of diabetes as a concern in this population, which could contribute to increased 

screening for diabetes. Sub-provincial populations are also served by a smaller number of health 

care providers, where the contribution of even a single coder deviating from average coding 

practices would have a substantial effect on the validity of administrative data case definitions.  

Validation of administrative case definitions to identify cases of diagnosed diabetes at the 

sub-provincial level in Aboriginal populations is important for two reasons. The first reason is 

significant variation in the prevalence of diabetes between Aboriginal communities (Delisle, 

1993., Yu, 2007., Oster, 2009). Difference in the prevalence of diabetes is likely a reflection of 

the heterogeneity of Aboriginal populations at the national and provincial level in Canada. The 

Canadian National Indian Registry broadly recognizes three groups of Aboriginal peoples; First 
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Nations, Metis, and Inuit each of whom have distinct history, language and cultural practices 

(Aboriginal Affairs and Northern Development Canada, 2011), and thus may not have the same 

prevalence or risk factors of diabetes. It is thus important to assess the validity of administrative 

case definitions of diabetes at the sub-provincial level for specific Aboriginal groups.  

The second reason for validation of administrative case definitions within Aboriginal 

populations at this level is that the prevalence of diabetes is expected to be higher (Dyck, 2010), 

and the onset of diabetes occurs at a younger age (Oster, 2009), which will directly affect the 

positive predictive value (PPV) of administrative case definitions (PPV is the proportion of 

individuals who are identified as have a condition of interest in a surveillance system who are 

correctly identified). In any disease surveillance system, PPV is the most important parameter to 

consider when assessing accuracy as it directly illustrates the utility of the surveillance system to 

correctly identify individuals of interest. The relationship between the prevalence of disease and 

PPV is straightforward. For example, for any administrative case definition with a sensitivity 

(the proportion of true diabetics who are correctly classified) less than 100% and a fixed 

specificity (the proportion of non-diabetics who are correctly classified), the PPV will decrease 

as the population prevalence decreases. Again, it is thus important to assess the validity of 

administrative case definitions for specific Aboriginal populations at the sub-provincial level. 

Further, through the validation of administrative case definitions within Aboriginal sub-

populations, data from local diabetes surveillance systems can be combined with administrative 

data to improve diabetes prevalence estimation (Tu, 2010). Combining diabetes surveillance data 

from various sources is becoming increasingly important as more physicians move to alternative 

physician reimbursement schedules, which could affect the quality and population coverage of 

administrative data. If data from Electronic Medical Records’s (EMR) is to be incorporated into 
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diabetes surveillance systems for Aboriginal communities, the validity of alternative 

administrative case definition’s of diabetes first needs to be assessed.  

The purpose of this study was to estimate the sensitivity and specificity of administrative 

case definitions for diabetes within five Aboriginal communities in Nova Scotia, Canada. 

Further, we also examined the utility of an electronic medical record based diabetes registry to 

improve apparent prevalence estimates of diabetes.  

Method 

Data and subjects 

The subjects for this study were members of five Aboriginal communities in Cape 

Breton, Nova Scotia (Eskasoni, Membertou, Wagmatcook, Waycobah, and Chapel Island) in the 

year 2009 (n= 8380). For analysis, data on diagnosed diabetes was pooled across the five 

communities. Members of the communities were identified using the Unama’ki Client Registry 

(UCR), which was assembled by the communities, in partnership with the Population Health 

Research Unit at Dalhousie University, Medavie Blue Cross, and the Nova Scotia Department of 

Health and Wellness as an attempt to identify their communities for health policy research and 

planning.  The UCR was assembled from EMR information, Indian and Northern Affairs Canada 

member data, and data from the Nova Scotia Medical Services Insurance Eligibility File. The 

UCR includes provincial health card numbers, as well as demographic and community 

information. The inclusion of health card numbers permitted linkage of the registry to provincial 

administrative data (Medical Services Insurance (MSI) Claims, and Canadian Institutes of Health 

Information Hospital Discharge Abstract Database (DAD)), as well as EMR disease registries 

maintained at local community health clinics.  



 
 

28 
 

Several case definitions were compared from the Administrative data (Table 1). Cases of 

Gestational Diabetes were excluded from the administrative data for these analyses. MSI claims 

data contains diagnostic data for health services rendered by a physician which has been 

reimbursed through Nova Scotia’s MSI program. DAD contains information on all discharge 

diagnoses of identified patients from Nova Scotia hospitals. Using the UCR to identify members 

of the five communities, administrative data ensures that access to health services outside of the 

community specific health centres will be captured.  

Cases of diabetes from the EMR diabetes registries were extracted according to coding 

practices within clinics located in each community. The five communities of interest all use 

Practimax© EMR software. Communities use the EMR software for clinical records, to submit 

physician billings reimbursement information, and also to assemble registries for diabetes 

surveillance. While all communities use their EMR’s for the aforementioned purposes, three of 

the communities collect information on type of diabetes (Type 1, Type 2, and Gestational 

Diabetes) in their diabetes registries, while two do not. Thus, cases of gestational diabetes were 

excluded from analyses for three communities, but not for the two which did not collect 

information on type of diabetes.  

The EMR was assumed to contain gold standard cases of diabetes (having perfect 

specificity) but was not considered to contain gold standard non-cases of diabetes as it does not 

have full population-coverage. Not all community members receive health care through the 

clinics. Some community members have primary care givers located in adjacent communities 

and thus may not be captured in the EMR.  
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Table 1. Administrative case definitions for non-gold standard data sources   
Case Selection Case Definition 

 
1 in 1 One or more physician or hospital claims with a diagnosis of diabetes within 

the previous year, excluding identified cases of gestational diabetes. 
 

2 in 1 At least two physician claims or at least one hospital claim with a diagnosis of 
diabetes within the previous year excluding identified cases of gestational 
diabetes. 
 

Manitoba Rule At least two physician claims or at least one hospital claim with a diagnosis of 
diabetes within the previous two years excluding identified cases of gestational 
diabetes. 
 

 

Statistical Analysis  

To assess the validity of diabetes case definitions, we began by examining percent 

agreement and kappa statistic (Cohen, 1960) between the EMR and Administrative data sources 

by age group and sex. 

We adapted a model developed by Hui and Walter (1980) to estimate the sensitivity and 

specificity of administrative case definitions and the EMR diabetes registries. Hui and Walter  

showed that the sensitivity and specificity of two diagnostic tests can be estimated, in the 

absence of having a gold standard, if the tests are assumed to be independent (i.e. their errors are 

uncorrelated) and they are applied two populations with substantially different disease 

prevalence. As shown in figure 1, the model specifies the relationship between the observed data 

(cross-classifications of measured diabetes status according to the two tests in each population) 

and six model parameters: the sensitivity and specificity for each test, and the disease prevalence 

in each population.   
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          Population A                                                              
 
 
               
Admin Data 

         EMR Data 
 + - 

+ X11 X21 

- X12 X22 
  

 
 
  
 

                      Population B 
                                  

 
 
 
 

 
P[D+] = Probability of having Diabetes 
P[D-]= Probability of not having Diabetes 
[Se1]= Probability of being identified as a Diabetic within EMR conditional on true status as a diabetic 
[1-Se1]= Probability of being identified as a non-Diabetic within EMR conditional on true status as a diabetic 
[Sp1]= Probability of being identified as a non-Diabetic within EMR conditional on true status as a non-Diabetic 
[1-Sp1]= Probability of being a identified as a Diabetic within EMR, conditional on true status as a non-diabetic 
[Se2]= Probability of being identified as a Diabetic within Admin conditional on true status as a diabetic 
[1-Se2]= Probability of being identified as a non-Diabetic within Admin conditional on true status as a diabetic 
[Sp2]= Probability of being identified as a non-Diabetic within Admin conditional on true status as a non-Diabetic 
[1-Sp2]= Probability of being a identified as a Diabetic within Admin conditional on true status as a non-diabetic 
n= total population (X11+ X21+ X12+ X22) 

 

Figure 5. Two populations (with different disease prevalence) with two independent diagnostics 
 

 For model estimation, we treated age groups as separate populations, as the prevalence 

of diabetes rises sharply with age.  As per figure 1, we estimated models using the following 

three pairs of age groups:  <45 and 45-54, 55-64 and 65-74, and 65-74 and 75-84 as separate 

populations. Models including individuals over the age of 85 were not included as this group had 

an insufficient number of diabetic individuals.  In all models, the Manitoba administrative case 

definition, and the EMR definition were treated as independent measures of diabetes (no 

conditional dependence).  Separate sets of models were estimated for males and females.  

Model parameters were estimated by Bayesian methods using WinBUGS software 

(Lunn, 2000), which utilizes Gibbs sampling, a Markov Chain Monte Carlo technique, to 

X22= [P[D+]* [1-Se1]* [1-Se2] + P[DA
-]* [Sp1]* [Sp2]]*n 

X21= [P[D+]* [1-Se1]* [Se2] + P[DA
-]* [Sp1]* [1-Sp2]]*n 

X12= [P[D+]* [Se1]* [1-Se2] + P[DA
-]* [1-Sp1]* [Sp2]]*n 

X11= [P[D+]* [Se1]* [Se2] + P[DA
-]* [1-Sp1]* [1-Sp2]]*n 

Y22= [P[D+]* [1-Se1]* [1-Se2] + P[DB
-]* [Sp1]* [Sp2]]*n 

Y21= [P[D+]* [1-Se1]* [Se2] + P[DB
-]* [Sp1]* [1-Sp2]]*n 

Y12= [P[D+]* [Se1]* [1-Se2] + P[DB
-]* [1-Sp1]* [Sp2]]*n 

Y11= [P[D+]* [Se1]* [Se2] + P[DB
-]* [1-Sp1]* [1-Sp2]]*n 

 
 
                
Admin Data 

         EMR Data 
 + - 

+ Y11 Y21 
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generate estimates of model parameters. Non-informative priors were specified for the 

prevalence of diabetes in each population, the specificity of administrative case definitions, and 

the two sensitivities.  Because the identification of diabetes in the EMR data is based on clinical 

assessment, we assumed the specificity of the EMR data was nearly perfect (1 coding error 

within 1000 entries), which was entered into the WinBUGS models as an informative prior (beta 

distribution). Models were estimated based on 50,000 iterations, with a burn in of 5000 

iterations. Model convergence was assessed by checking density, trace and history plots. 

Where possible, we sought to assess assumptions in the Hui-Walter model that might be 

violated. The model assumes the sensitivity of the EMR and administrative case definitions are 

constant across age group pairings (e.g. Se constant for individuals age <45 and 45-54). To check 

this assumption we estimated and compared parameters of interest using alternative pairs of age 

groups. A second assumption was that the prevalence of diabetes was substantially different 

between age groups. This assumption was checked using cross-tabulated calculations of apparent 

prevalence from the Manitoba administrative case definition (Table 6). A third assumption was 

that the parameters of interest were constant across the five communities. Unfortunately, due to 

the small population size of most of the communities, we did not have a sufficient number of 

diagnosed cases of diabetes to support stratified analysis. A final assumption was that error in 

our administrative case definitions would not be correlated with error in our EMR diabetes 

registry case definition. This is known as the independence assumption, and while it is very 

likely that dependence between our data sources exists (as indicated by high percent agreement 

and kappa values (Table 2)), we do not have sufficient information on our population of interest 

to specify a model which accounts for data source dependence.  
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Practically, the degree of misclassification error from diabetes case definitions depends 

on the positive and negative predictive values.  Accordingly, we computed predictive values 

directly from estimates generated in Bayesian models for sensitivity and prevalence. Only 

positive predictive values are presented, as the negative predictive values are consistently very 

high (DCPNS, 2009).   

Ethics approval for this study was obtained through Mi’kmaq Ethics Watch Board at 

Cape Breton University and Human Research Ethics Board at Dalhousie University. Data Access 

permission was granted though the Unama’ki Data Access Committee, and the Population 

Health Research Unit Data Access Committee at Dalhousie University.  

 
Results 
 

Table 2 shows the percent agreement and kappa statistics between administrative case 

definition rules and the EMR registry. Percent agreement values are relatively high among the 

younger and older age groups, but reach a low point in the 64-75 age group in both sexes across 

all administrative case definitions.  Observed values for the kappa statistic likely reflect that this 

measure is a poor indicator of agreement for this data as the prevalence of disease and number of 

individuals within each age group varies significantly. High agreement could result from either 

accuracy in the case definitions, or highly correlated errors.  Most Unama’ki communities use 

the EMR systems to submit physician billings information and to code clinical cases of diabetes. 

The overall highest percent agreement and kappa statistics are observed for the Manitoba rule. 
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Table 2. Percent Agreement and Kappa Statistics for Administrative Case Definition and 
EMR Registry 

 1 and 1 2 and 1 Manitoba rule 
 % 

Agreement 
Kappa % 

Agreement 
Kappa % 

Agreement 
Kappa 

Female       
<45 95.3 53.6 95.4 49.8 95.8 58.3 

45-54 86.2 56.3 85.5 48.6 87.2 60.3 
55-64 86.0 64.7 81.4 47.6 86.0 64.4 
65-74 73.2 31.1 75.7 30.9 75.2 37.3 
75-84 79.6 43.1 79.6 35.2 80.5 44.7 

Male       
<45 96.8 49.4 96.9 38.3 97.2 54.6 

45-54 82.7 50.9 81.7 42.6 83.4 53.2 
55-64 78.0 48.5 79.5 48.2 80.2 54.6 
65-74 76.4 48.2 72.7 35.0 75.0 45.0 
75-84 80.0 45.1 80.0 40.9 80.0 45.1 

 

Sensitivity of the Administrative and EMR data case definitions were generated using our 

estimation method (Table 3). These estimates show that the sensitivity of the Manitoba 

administrative case definition are slightly higher for females than for males and generally 

increase with age .The 95% credibility intervals (CI) are wide and increase with age, indicated 

that these estimates are only moderately precise. Sensitivity estimates for the EMR case 

definition are relatively low within all age groups and are generally higher for females than 

males with the exception in the 65-84 age group. The 95% CI’s are again large, indicating 

imprecise estimates of these parameters in older age groups.  
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Table 3. Estimates of Sensitivity for the EMR and Manitoba Administrative Case 
Definition 
 Manitoba Case 

Definition 
 

95% CI 
EMR Case 
Definition 

 
95% CI 

 Mean Lower Upper Mean Lower Upper 
Females       

<55 0.639 0.571 0.720 0.658 0.593 0.725 
55-74 0.814 0.738 0.881 0.837 0.540 0.995 
65-84 0.828 0.707 0.923 0.563 0.332 0.944 

Males       
<55 0.628 0.545 0.720 0.608 0.532 0.687 

55-74 0.790 0.711 0.860 0.724 0.537 0.976 
65-84 0.766 0.636 0.875 0.700 0.456 0.975 
 

Specificity estimates for the Manitoba administrative case definition (Table 4) are high in 

the youngest age group, but become low within the older age groups, and are quite close between 

males and females. The 95% CI’s once again show that the results are only moderately precise, 

and generally become wider in older age groups. 

Table 4. Estimates of Specificity for the Manitoba Administrative Case Definition 
 Manitoba Case 

Definition 
95% Credible Intervals Manitoba case 

Definition 
 Mean Lower Upper Median 

Females     
<55 0.997 0.993 0.999 0.998 

55-74 0.859 0.792 0.986 0.844 
65-84 0.867 0.742 0.991 0.865 

Males     
<55 0.998 0.993 0.999 0.998 

55-74 0.884 0.768 0.993 0.883 
65-84 0.847 0.722 0.985 0.842 

 

The final output of our Bayesian estimation method is estimates of the apparent 

prevalence of diabetes (Table 5). The apparent prevalence of diabetes increases with age and is 

higher in older age groups, but drops in the oldest age group. This result is consistent with other 

research on diabetes prevalence as this population has higher mortality and a lower life 

expectancy. These estimates have small CI’s in the younger age groups, but the CI’s become 
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large in older age groups. In order to converge estimates for parameters of interest, it was 

necessary to assume that the sensitivity of case definitions remained constant within age group 

pairs, but we were able to estimate apparent prevalence for independent age groups. 

Table 5. Bayesian Estimates of Diabetes prevalence Manitoba rule 2009  
 Mean 95% Credible Intervals 
 Prevalence Lower Upper 

Females    
<45 0.079 0.065 0.092 

45-54 0.297 0.250 0.347 
55-64 0.277 0.210 0.378 
65-74 0.303 0.154 0.456 
75-84 0.241 0.108 0.400 

Males    
<45 0.048 0.036 0.059 

45-54 0.362 0.306 0.421 
55-64 0.366 0.253 0.481 
65-74 0.408 0.257 0.557 
75-84 0.239 0.102 0.431 

 
Estimates of the apparent prevalence of diabetes were also calculated from cross-

tabulations of the Manitoba administrative and EMR case definitions (Table 6). The Manitoba 

administrative case definition yields much higher apparent prevalence estimates of diagnosed 

diabetes when compared to the EMR case definition across all age groups except in the under 45 

age group. The higher apparent prevalence estimates of the administrative data are as expected 

since this data source captures information on all individual within the UCR, regardless of where 

they access physician or hospital services, while the EMR registry only capture cases of 

diagnosed diabetes who are seen within the local community health clinics. Males have a higher 

apparent prevalence of diabetes than females, as is consistent with diabetes trends in other 

populations. When prevalence estimates from cross-tabulations of our data and Bayesian 

estimates of parameters are compared, we see that the Bayesian analysis estimation method 

yields higher estimates of apparent prevalence for females, except in the under 45 age group. For 
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males, the Bayesian method had higher estimates of apparent prevalence than the cross-

tabulation method, again except in the < 45 age group.  

 
Table 6. Diabetes Prevalence Estimates from Cross Tabulation of EMR and Admin Data 
(Manitoba rule) 

 Manitoba Administrative Case 
Definition  

EMR Diabetes Registry Case 
Definition 

Female   
<45 4.79 5.82 

45-54 22.41 17.46 
55-64 29.48 24.01 
65-74 34.65 15.84 
75-84 30.10 12.62 

Male   
<45 2.90 3.33 

45-54 24.76 20.87 
55-64 36.40 26.50 
65-74 39.71 27.94 
75-84 30.91 14.55 

 
Table 7 shows the PPV’s for the three alternative case definitions that were compared 

within this study. The Manitoba rule was found to have the highest overall PPV’s of the 

administrative case definitions across both sexes. 

Table 7. Estimates of Positive Predictive Values for Administrative Case Definitions* 
 Administrative Case Definition 
 1 in 1 (%) 2 in 1 (%) Manitoba Rule (%) 

Females    
<45 12.0 7.2 13.1 

45-54 39.6 26.7 42.7 
55-64 60.5 36.3 62.6 
65-74 59.6 44.0 67.7 
75-84 52.0 37.3 60.5 

Males    
<45 7.2 3.4 7.8 

45-54 46.7 30.2 48.9 
55-64 63.4 48.5 68.4 
65-74 70.5 53.1 68.8 
75-84 53.1 32.6 50.6 

* PPV calculated from Bayesian estimated parameters using formula:  
PPV= (Prevalence)(Senesitivity)/( Prevalence)( Senesitivity) + (1- Prevalence)(1- Senesitivity) 
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Discussion 

To our knowledge, this is the first study to validate administrative case definitions within 

an Aboriginal population at the sub-provincial level. There have been many studies examining 

the prevalence of diabetes in Aboriginal communities at the provincial level using administrative 

data (Dyck, 2010., Johnson, 2009., Martens, 2007., Hemmelgarn, 2007., Green, 2003), and 

studies examining Aboriginal diabetes prevalence at the community level using diabetes 

registries, (Horn, 2007) and chart review (Brassard, 1993), but this is the first study to our 

knowledge to validate administrative case definitions at the local level. Our estimation method 

allowed us to simultaneously estimate the sensitivity and specificity of our administrative case 

definition, while estimating the prevalence of diabetes within our population of interest without 

relying on a gold-standard data source.  

 Our estimates of the sensitivity and specificity of the Manitoba administrative case 

definition in these Aboriginal communities were generally lower than those obtained from other 

studies in Ontario (Hux, 2002) and Nova Scotia (DCPNS, 2009). Hux et al, (2002) found that the 

sensitivity of the Manitoba administrative case definition was 86% overall, with estimates of 

specificity at 97%. Our results showed lower sensitivities, except in the over 75 age group for 

females, and lower specificities except in the females under the age of 55. In validation work 

which used similar methods to this study, the Diabetes Care Program of Nova Scotia (2009) 

showed similar estimates of sensitivity of the 1 in 1 administrative case definition in all groups, 

but estimates of specificity from .95 to .99 across all age groups, as compared to specificity 

estimates in this Aboriginal population which spanned between .84 to .99.  

These results indicate that the validity of administrative case definitions in Aboriginal 

communities cannot be assumed to mirror estimates of validity for the general population. Many 
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studies using administrative data to study Aboriginal populations have, essentially, made this 

assumption (Dyck, 2010., Johnson, 2009., Martens, 2007., Hemmelgarn, 2007., Green, 2003), 

and as a result may have obtained biased estimates of prevalence.   The lower specificity 

estimates as compared to the published validation data indicate that when administrative data is 

used to identify cases of diagnoses diabetes, there are likely to be many false-positive cases. This 

could result in an overestimation of the true prevalence of diabetes within these communities 

This concern may not be specific to Aboriginal communities, as it is likely that the 

validity of administrative data may vary considerably across smaller populations and 

communities. This is due to the fact that a smaller number of physicians typically serve these 

populations, and thus deviations in coding practice in even a few of these individuals could result 

in significant misclassification error in administrative data for these populations. Differences in 

the salience of diabetes within these small populations could, for example, also result in higher 

rates of miscoding of pre-diabetes as diabetes within administrative data. 

 Our estimates of diabetes prevalence were considerably higher than reported for the 

general population when using administrative data at the national or provincial level (Health 

Canada, 2003., DCPNS, 2009). Our apparent prevalence for this Aboriginal population was 

approximately 2.5 times higher in older age groups than was found in a validation study which 

used similar methods in the general population of Nova Scotia (DCPNS, 2009). However, 

similarly high estimates have been obtained in several studies examining Aboriginal diabetes 

which rely solely on administrative data (Dyck, 2010, Oster, 2009, Green, 2003), and in several 

studies of Aboriginal communities which do not solely rely on administrative data (Oster, 2009, 

Kaler, 2006). Further, when prevalence estimates were presented to the health directors of the 
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five Aboriginal communities, they were not surprised, and commented that they were in line with 

their impressions of diabetes rates within their communities.  

Even when combining data from all five communities of interest, estimates of parameters 

of interest had large 95% credibility intervals, indicating that these results are imprecise. This 

was likely a result of small numbers of diabetics in the larger age groups within these 

communities, as a large proportion of this population is made up of individuals in the < 45 age 

group. This effect could also be due to poor model fit. If the model is an oversimplification of the 

relationship between our data and parameters of interest, this would result in biased estimates as 

well as large CI’s, regardless of statistical power.   

The model assumed conditional independence in the error between data sources, and it is 

plausible that this assumption is violated. This assumption is not likely to be true as we found 

that there was a large percent agreement between data sources, and kappa statistics were high 

across most age groups. This dependence is likely a consequence of the use of EMR to submit 

physician billings claims. Thus, if a person is missed in the EMR diabetes registry, it is less 

likely that they will be identified within the administrative data. Within this study it was not 

possible to estimate the effect of dependence between data sources as there were not sufficient 

numbers of identified diabetes or diagnostic data sources to support models which could estimate 

parameters of interest in the presence of dependence between data sources. 

 Given the similarity of apparent prevalence estimates to the published literature, it is 

important to note that the PPV’s estimated from this study indicate that many diabetics identified 

from administrative data alone could be false positive cases when using the Manitoba 

administrative case definition. This is the result of low estimates of the specificity of this 

administrative case definition. These low PPV values again indicate that researchers and health 
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policy planners should be cautious when interpreting estimates of diabetes based solely on 

administrative data, and should be aware that the risk of misclassification error is substantial. 

Conclusion 

These analyses show that the Manitoba administrative case definition has lower 

sensitivity and specificity when applied to Aboriginal communities at the sub-provincial level for 

identifying cases of diagnosed diabetes. This case definition has low Positive Predictive values in 

older age groups, and thus likely overestimates the prevalence of diagnosed diabetes within 

Aboriginal communities at this population level. Apparent prevalence estimates from diabetes 

surveillance systems which rely solely on administrative data should be interpreted with 

considerable caution, and alternative methods for identifying cases of diagnosed diabetes should 

be identified. Given these cautions, it is likely that diagnosed diabetes is more prevalent within 

some Aboriginal communities at the sub-provincial level as compared to the general population.  

References 
 
Aboriginal Affairs and Northern Development Canada. (2011). Aboriginal peoples and  

communities. Accessed: August 16th, 2011 from: http://www.ainc-inac.gc.ca/ap/index-
eng.asp 

 
Brassard, P., Robinson, E., Lavallee, C. (1993). Prevalence of diabetes mellitus among  

the James Bay Cree of northern Quebec. Canadian Medical Association Journal. 149(3), 
303-308. 

 
Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and  
 Psychological Measurement., 20, 37-46. 
 
Delise, H., Ekoe, J. (1993). Prevalence of non-insulin-dependent diabetes mellitus and  

impared glucose tolerance in two Algonquin communities in Quebec. Canadian Medical 
Association Journal., 148(1), 41- 47. 

 
Diabetes Care Program of Nova Scotia. (2009). Development of a Nova Scotia diabetes  
 repository. Diabetes Care Program of Nova Scotia, Halifax, Nova Scotia. 
 
Dyck, R., Osgood, N., Lon, T., Gao, A., Stang, M. (2010). Epidemiology of diabetes 

mellitus among First Nations and non-First Nations Adults. CMAJ., 182(3), 249-256. 



 
 

41 
 

 
Green, C., Blacnchard, J., Young, T., Griffith, J. (2003). The epidemiology of diabetes in  

the Manitoba-registered First Nation population. Diabetes Care., 26(7), 1993-1998. 
 
Health Canada. (2003). Repsonding to the challenge of diabetes in Canada: first report of 

the national diabetes surveillance system (NDSS) 2003. Health Canada. Ottawa, Ontario.  
 
Horn, O., Bruegl, A., Jocobs-Whyte, H., Paradis, G., Ing, A., Macaulay, A. (2007).  

Incidence and prevalence of type 2 diabetes in the First Nation community of 
Kahnawa:ke, Quebed, Canada, 198-2003. Revue Canadienne De Sante Publique., 98(6), 
438-444. 

 
Hui, S., Walter, S. (1980). Estimating the error rates of diagnostic tests. Biometrics., 36,  
 167-171. 
 
Hux, J., Ivis, F., Flintoft, V., Bica, A. (2002). Determination of prevalence and incidence  
 using a validated administrative data algorithm. Diabetes Care., 25(3), 512-516. 
 
Johnson, J., Vermeulen, S., Toth, E., Hemmelgarn, B,m Raph-Campbell., K., Hugel, G., 

King, M., Crowshoe, L. (2009). Canadian Journal of Public Health., 100(3), 231-236. 
 
Kaler, S., Ralph-Campbell, K., Pohar, S., King, M., Laboucan, C., Toth, E. (2006). High  

rates of metabolic syndrome in a First Nations community in western Canada: prevalence 
and determinants in adults and children. International Journal of Circumpolar Health., 
65(5), 389-402. 

 
Lunn, D., Thomas, A., Best, N., Spiegelhalter, D. (2000). WinBUGS- a Bayesian  

modeling framework: concepts, structure, and extensibility. Statistics and Computing., 
10, 325-337. 

 
Martens, P., Martin, B., O’Neil, J., MacKinnon, M. (2007). Diabetes and adverse 

outcomes in a first nations populations: association with healthcare access, and 
socioeconomic and geographical factors. Canadian Journal of Diabetes., 37(3): 223-232.  

 
Oster, R., Toth, E. (2009). Differences in the prevalence of diabetes risk factors among  

First Nation, Metis and non-Aboriginal adults screening clinics in rural Alberta, Canada. 
Rural and Remote Health. 9. 1170-1178. 

 
Hemmelgarn, B., Toth, E., King, M., Crowshoe, L., Ralph-Campbell, K.  

(2009) Chapter 10. diabetes and the status Aboriginal population in Alberta in Johnson, J. 
(ed). Alberta diabetes atlas 2009. Edomonton: Institute of Health Economics. 

 
Tu, K., Manuel, D., Lam, K., Kavanagh, D., Mitiku, T., Guo, H. (2011). Diabetes can be 

identified in an electronic medical record using laboratory tests and prescriptions. Journal 
of Clinical Epidemiology., 64. 431-435. 

 



 
 

42 
 

Yu, C., Zinman, B. (2007). Type 2 diabetes and impaired glucose tolerance in  
Aboriginal populations: a global perspective. Diabetes Research and Clinical 
Practice., 78, 159-170. 

 
 
 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

43 
 

CHAPTER 4: Manuscript 2 

 
Data Source Dependence in the Estimation of Diabetes Prevalence within the General 
Population of Nova Scotia 
 

Introduction 

Administrative data is often relied upon to provide population-based, ongoing data for 

diabetes surveillance systems.  Despite the fact that diabetes coding in administrative data has 

been found to have high validity in many studies (Hux, 2002., Health Canada, 2003., Johnson, 

2009) the magnitude of misclassification errors due to coding error remains a significant concern 

(Strom, 2001.; Feinstein, 1989; Kephart, 2004).  

Assessment of the validity of administrative case definitions for diabetes has typically 

relied on a gold standard data source (assumed to have perfect sensitivity and specificity) for 

estimates of test parameters (Valenstein, 1990., Greiner, 2000, Saydah, 2004).  When a gold 

standard data source is available, it is assumed that the disease status of each individual within 

this source is known with certainty, and the validity of another data source is determined in 

comparison with the gold standard. Choices of gold standard data sources within diabetes 

surveillance have included hospital chart abstraction (Wilson, 2001, Guttmann, 2010), health 

care provider report (Gambassi, 1998) and patient self-report (Hebert, 1999).  Unfortunately, the 

criteria for a gold reference standard are rarely met, as there are many types of error which can 

impede the construction of an ideal reference standard (Lawrence, 1995., Reitsma, 2009). While 

validation studies have typically identified data sources with gold standard cases of disease 

(individuals we are certain have a condition of interest), they often do not contain good gold 

standard non-cases of diabetes (individuals we are certain do not have a condition of interest). 



 
 

44 
 

To address this issue, there has been considerable interest in methods for estimating the 

sensitivity and specificity of administrative case definitions in the absence of a gold standard 

(Rutjes, 2006., EnØe, 2000.,Valenstein, 1989). These methods have the advantage of 

simultaneously estimating and adjusting for the sensitivity and specificity of case definitions 

while producing prevalence estimates (Joseph, 1995), and where Bayesian estimation is used, 

can incorporate prior knowledge and information.   

While these methods relax the assumption of gold standard accuracy in comparator data, 

many studies that use these methods also assume that errors between alternative case definitions 

or tests are conditionally independent (DCPNS, 2009., Joseph, 1995). Two measures are 

conditionally independent if the sensitivity and specificity of one measure does not depend on 

whether the subject tests positive or negative to the second test. Conditional dependence implies 

that the sensitivity of one test varies depending on the result of the other test. Incorrectly 

assuming that error is conditionally independent between data sources can result in biased 

estimates of parameters of interest in validation studies (Gardner, 2000., Brenner, 1996., 

Torrance-Rynard, 1997., Vacek, 1985). For example, when Dendukuri & Joseph (2001) re-

examined data from a previous study which assumed that the result from multiple diagnostic 

tests were independent (Joseph, 1995), they found that including parameters which account for 

test dependence resulted in substantial changes in estimates of test parameters and disease 

prevalence.  

Conditional covariance of error is a critical issue for the validation of diabetes 

administrative case measures, and the application of these measures to health research.   To the 

degree conditional covariance in error exists, estimates of sensitivity and specificity obtained 

from validation of case definitions against other measures, such as clinical registries, will not be 
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generalizable to the general population. For example, some validation studies have relied on 

clinical registries for gold standard cases of disease (DCPNS, 2009).  Patients attending these 

clinics are generally a subset of the population with diabetes, and since they are referred to these 

centres by physicians, they may be more likely to be coded as having diabetes in administrative 

claims data.  Referring physician who perceive diabetes as salient and a priority, will thus be 

more likely to code diabetes in physician claims and charts.  Conversely, if diagnosed diabetes is 

not as salient (e.g. in an elderly patient with many other more pressing health problems, or  lower 

severity of diabetes), then coding diabetes as the most responsible diagnosis within a 

reimbursement claim and referring the patient to a local diabetes care centre may both be less 

likely. Based on this example, the estimated sensitivity of administrative data in a subset of 

persons identified as gold-standard cases of disease may be higher than in the total diseased 

population. 

Methods for relaxing the conditional independence assumption between data sources 

have also received considerable attention (Dendukuri, 2001., Gardner, 2000., Torrance-Rynard, 

1997., Vacek, 1985).  Generally, these methods assess and control for dependent error through 

the inclusion of covariance terms in the estimation models. However, in the context of the 

validation of administrative case definitions, a simple and plausible example of dependence of 

error is that the sensitivity and specificity of an administrative definition differs depending on 

whether or not it is identified in a gold standard data source, such as a disease registry.  For 

example, independence of error would imply that the sensitivity of an administrative case 

definition for those in a disease registry is the same as the sensitivity for cases that are not.  If 

this did not hold, it would be an example of dependent error.  
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The purpose of this study was to assess the generalizability of estimates of the validity 

administrative case definitions that are obtained from comparing administrative data to two 

alternative gold standard data sources: clinical registry data and drug claims data.   We estimated 

conditional dependence in the sensitivity between an administrative case definition of diabetes 

and two different gold standard measures of persons with diabetes, and examined the potential 

effect of erroneously assuming conditional independence on estimates of sensitivity and 

prevalence. 

Methods 

Data and subjects 

This study used population-based data previously assembled for the validation 

component of a pilot project, conducted in 2009 to develop a Nova Scotia Diabetes Repository in 

Nova Scotia (NSDR) (DCPNS, 2009).  The purpose of the NSDR was to assemble information 

from a number of different data sources to facilitate diabetes surveillance and research, while 

ensuring security and confidentiality.   

The validation component of the NSDR assembled linked data on diagnoses of diabetes, 

from multiple  data sources, for all persons in Nova Scotia who were registered with the 

provincial health insurance program between 2005-2006 (n= 1,006,687). With the exception of 

excluding a small percentage of Nova Scotians who have their health care costs covered through 

other programs, such as the Canadian Armed Forces and the RCMP, the data covers the whole 

population. Data on diagnoses of diabetes status from multiple data sources, shown in Table 1, 

were linked using encrypted health card numbers.  All records were linked at the Population 

Health Research Unit at Dalhousie University, which maintains and linked administrative data 

for research purposes.  
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Table 1. Data Sources and Description (DCPNS, 2009).  
Data Source Description 
Diabetes Care Program of Nova 
Scotia (DCPNS) Diabetes Registry 
 

The DCPNS maintains records for all new referrals to 38 of the 
provinces Diabetes Care Centres from April 1st 1994 onwards. This 
clinical registry provided information on Diabetes Status of 
individuals identified in the MSI person registry who were found in 
the DCPNS registry during the study period. 
 

Nova Scotia Pharmacare Program 
(NSPP) Drug Claims Database 
 

The NSPP maintains records for Nova Scotians enrolled in the 
provincially funded Pharmacare Program from 1989 forwards. For 
this project, only data from the NSPP seniors program were used. 
Data pertaining to seniors’ (over age 65 with a valid HCN and who 
do not have another benefit program since 1999) prescriptions are 
collected from all NS pharmacies that submit claims for 
reimbursement.  This database provided information on prescription 
claims of individuals identified in the MSI person registry during 
the study period. 
 

Nova Scotia Atlee Perinatal Database A database which contains information about all live born infants 
and foetuses born of less than 20 weeks gestation and their mothers, 
in Nova Scotia Hospitals or select out of province hospitals to Nova 
Scotian mothers from 1998 forward. The database also collects 
information about the mothers of the infants mentioned above. This 
database was used to exclude cases of gestational diabetes from the 
study population. 
 

Canadian Institute for Health 
Information Discharge Abstracts 
Database (CIHI-DAD) 
 

This database contains detailed information about all discharges 
from NS hospitals from 1996 forward. This database provided 
information on discharge diagnosis of individuals identified in the 
MSI person registry during the study period. 
 

Medical Services Insurance (MSI) 
Claims 
 

This database contains claims data for health services rendered by a 
physician and reimbursed through Nova Scotia’s MSI program 
from January 1st 1996 forward. This database provided information 
on diabetes diagnosis of individuals identified in the MSI person 
registry during the study period. 
 

 

Measures 

Using the data sources in Table 1, alternative case definitions of diagnosed diabetes were 

constructed (Table 2).  Two of the data sources, the CIHI-DAD and the MSI claims data, were 

used to construct an administrative case definition for diabetes. While a two-year case definition 

is most commonly used in Canadian research (2 or more physician claims or 1 or more hospital 

claims in 2 years), we employed a simple one-year case definition for this study (1 or more 

physician or hospital claims in a year), as we wished to explore dependence within a single year 
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of data, and two-year case definitions were not available in our data sources.  Previous work 

shows that a 1-in1rule has slightly higher sensitivity and slightly lower specificity than the 

commonly used two-year rule; however, these differences are small and should have minimal 

impact on the results of our study (DCPNS, 2009). Any physician or hospital claims for diabetes 

which corresponded to gestational diabetes cases in the Atlee Perinatial Data were excluded from 

the administrative case definitions.   

The NSPP-S and DCPNS Registry were used to create two other measures of diagnosed 

diabetes status. Both measures identify gold standard cases of diabetes (i.e. we expect near 

perfect specificity and no false positive cases), but only include a subset of all diabetic cases in 

the population (i.e. low to moderate sensitivity).  From the NSPP-S data, beneficiaries with one 

or more claims in 2006 for an oral anti-hyperglycaemic or insulin medication were classified as 

having diabetes. Persons with claims for diabetic supplies, such as test-strips, were not classified 

as having diabetes, as previous validation work found that this results in many false-positive 

cases (DCPNS, 2009). The NSPP-S measure only captures diabetes cases which are drug treated 

and covered under the drug insurance program.  The program covers Nova Scotia residents over 

the age of 65.  Excluded are seniors who opted out of the program or who were covered by other 

drug plans.  

DCPNS data includes records for all NS residents with one of more visits to one of 38 

Diabetes Centres in Nova Scotia, who were clinically diagnosed as individuals with diabetes 

(DCPNS, 2009).  The percent of adults with diabetes who visit one of these centres is estimated 

to be in the range of 60-80% on average, with lower capture rates among the elderly (DCPNS, 

2009). Because diagnostic data is based on clinical assessment, the number of false positives 

should be negligible.  
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We cross-classified all persons in the population by the three measures of diabetes status 

as presented in Table 2.  However, for the population under age 65, no cases are identified by the 

NSPP-S, and thus only two measures of diabetes status were available for this population.  In 

addition, the data included information on each persons’ sex and age (<45, 45-54, 55-64, 65-74, 

75-84, 85+).  Data was provided to the researchers as an aggregated cross-classification, and 

small cells (1-4 persons) were assigned a random number between 1 and 4 with a probability 

corresponding to the frequency distribution of such cells.    

This project received ethics approval from the Dalhousie University Research Ethics 

Board, and Data Access approval from the Diabetes Care Program of Nova Scotia Data Access 

Committee. All data linkage was conducted through the Population health Research Unit at 

Dalhousie University 

Table 2. Data Source Case Definitions 
Data Source Case Definition 
DCPNS 1992 forward Any NS resident with a valid HCN, who is 

eligible to receive health care services under 
the MSI program, who has made one or more 
visits to a Nova Scotia Diabetes Care Centre, 
and who is coded as having the following types 
of diabetes: Type 1 Diabetes, Type 2 Diabetes. 
 

NSPP-S 1989 forward Any senior with one or more claims for insulin 
or an oral antihyperglycemic agent during the 
study period 
 

Administrative Data (CIHI-DAD & MSI 
claims) 

One or more physician or hospital claims with a 
diagnosis of diabetes (ICD-9 250) within the previous 
year 
 

 

Statistical Analysis 

We estimated conditional dependence in sensitivity between the administrative case 

definition and the DCPNS and NSPP-S measures.  We did not estimate conditional covariance in 
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specificity, as research shows that the specificity of administrative case definitions are very high 

(generally greater than .92 (DCPNS, 2009., Hux, 2002)) and the specificity of the DCPNS and 

NSPP-S measures are, essentially, perfect.  If one measure has perfect specificity, then the 

measures are by definition conditionally independent (Gardner, 2000).  

As is conventional in the literature, we measured conditional dependence using the 

conditional covariance (Dendukuri, 2001., Gardner, 2000., Brenner, 1996).  If two tests are 

administered to a population of diseased individuals, and p is the probability of testing positive to 

both tests, then the conditional covariance for sensitivity (λSe) is  p minus the product of the two 

test sensitivities (λSe = p - Se1*Se2).  The magnitude of  λSe depends on the magnitude of the 

sensitivities, and thus is not directly comparable between different models.  To enable 

comparison, we expressed λSe as a percent of its maximum value, which is readily computed 

using the estimates of the two sensitivities (Gardner, 2000). 

We employed two different approaches to estimating the λSe.  The first approach took 

advantage of the availability of two over-lapping gold standard measures of having diabetes in 

the population over age 64.  This permitted us to identify a diseased population using one 

measure (e.g. DCPNS), and directly estimate λSe between the other two measures (e.g. between 

the administrative measure and NSPP-S).  We estimated λSe between the administrative measure 

and NSPP-S for the diabetes population identified using DCPNS, and λSe between DCPNS and 

the administrative measure using the diabetes population identified by NSPP-S.  These two sets 

of estimates of λSe cover only a subset of all diabetes cases, and may not be generalizable to the 

full population of diabetics.  However, this method has the benefit of direct calculation of λSe.  

The two sets of λSe estimates, one for diabetic cases in the NSPP-S and one for diabetic cases 

identified in the DCPNS, were  computed by sex and the three age groups over age 65.   
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The second method for estimating λSe employed Bayesian estimation methods commonly 

used to estimate the sensitivity and specificity of diagnostic tests in the absence of a gold 

standard.  We adapted a model developed by Hui and Walter (1980) to estimate the sensitivity 

and specificity of administrative case definitions and our data sources containing gold standard 

cases of disease. The original model that Hui and Walter conceptualized assumed that the test 

were conditionally independent.  We modified the model to included terms for conditional 

covariance in the sensitivities. As shown in Appendix A, the model specifies the relationship 

between the observed data (cross-classifications of measured diabetes status according to the two 

tests in each population) and seven model parameters: the sensitivity and specificity of each test, 

the disease prevalence in each population, and the conditional covariance in the sensitivities 

between the two tests. The model treated age groups as separate populations, as the prevalence of 

disease rises sharply with age. Using DCPNS data, we estimated models using the following 

three sets of age groups: <45 and 45-54; 55-64 and 65-74; 75-84 and 85+ as separate 

populations. Separate sets of models were estimated for males and females.   

 Model parameters were estimated by Bayesian methods using WinBUGS 

software (Lunn, 2000), which utilizes Gibbs sampling, a Markov Chain Monte Carlo technique, 

to generate estimates of model parameters. It was necessary to include informative prior 

information on the prevalence of diabetes within each population in order to converge estimates 

of parameters of interest. Prevalence estimates were obtained from earlier work with this dataset 

(DCPNS, 2009) which assumed independence of data sources. One prevalence estimate from this 

previous work was identified as inconsistent (for males age 65-74), thus an alternative estimate 

was used for this group. To assess the effect of entering information on prevalence, models were 

re-run with +5, +10 and +20% prevalence estimates.  Because the DCPNS data source was 
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considered to contain only gold standard cases of disease, we assumed the specificity of this data 

sources was nearly perfect (1 coding error within 1000 entries entered as a beta distribution), 

which was entered into the WinBUGS models as an informative prior. Models were estimated 

based on 50,000 iterations, with a burn in of 5000 iterations. Model convergence was assessed by 

checking kernel density, trace and history plots. 

Results 

Direct estimation of conditional covariance λSe between our administrative data and our 

gold standard measures shows high levels of dependence between the administrative case 

definition and the other two measures. Table 4 shows that estimates of conditional covariance 

ranged between about 20% and 50% of the maximum, suggesting that estimates of sensitivity 

obtained by comparing administrative case definitions to a gold standard source may not be 

generalizable to the general population.  For example, among female diabetics between the ages 

of 65 and 74, identified through the NSPP-S data, the conditional covariance in sensitivity 

between the DCPNS and administrative case definition was 51.5% of the maximum.  This 

translates into substantial differences in the sensitivity of the administrative case definition 

between those who are also cases in the DCPNS (.917) and those who are not (.808).  The 

former, which corresponds to the estimate that would obtained from classical methods for 

estimating the sensitivity of administrative case definitions, overestimates the average sensitivity 

of the administrative case definition by 10.6% (.917 versus .829. Conditional dependence was 

higher between the NSPP-S measure and the 1in1 measure than it was between the DCPNS 

measure and the 1in1 measure. For the DCPNS measure, values of λSe  increase in older age 

groups and are higher for males than females. For the NSPP-S case definition, values of λSe stay 

relatively constant across age groups, and are generally higher for males than females, except in 
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the 75-84 age group. These results indicate that assuming independence between this 

administrative and our gold standard case definitions would result in biased parameter estimates. 

Table 3. Sensitivity of the administrative case definition and dependence estimates 
between administrative and gold standard case measures for individuals identified as gold 
standard cases of diabetes within the NSPP-S and DCPNS measures 

NSPP-S data DCPNS data 

 

Se 
(avg) 

Se (in 
DCPNS)  

Se (not 
in 

DCPNS) 

Cov 
% of 
Max 

Se 
(avg) 

Se (in 
Pharm)  

Se (not 
in 

Pharm) 

Cov 
% of 
Max 

Female 
65-74 0.829 0.917 0.808 51.5 0.895 0.917 0.846 21.0 
75-84 0.743 0.861 0.710 46.0 0.810 0.861 0.744 26.9 
85+ 0.651 0.8 0.606 42.6 0.607 0.8 0.496 49.0 

Male 
65-74 0.841 0.918 0.824 48.4 0.884 0.918 0.815 29.0 
75-84 0.763 0.885 0.734 51.4 0.811 0.885 0.706 39.0 
85+ 0.620 0.805 0.587 48.6 0.616 0.805 0.491 49.1 

 
 Results from our second approach to estimating λSe, using Bayesian estimation methods, 

are shown in Table 5.  Results are highly variable and sensitive to prior specification of 

prevalence, However, credibility intervals are generally narrow across all models, indicating that 

estimates are precise. Estimates of λSe using prior prevalence estimates from previous validation, 

which used the same data but assumed conditional independence, are shown in the top row of 

each panel in Table 5.   They are highly variable and differ considerably from the estimates using 

the first method (Table 4).  Many are negative, which is implausible, and the magnitude of some 

are close to zero.  Accordingly, subsequent models were run specifying different prior 

prevalences (increasing the prevalence by 5%, 10%, and 20%).  Doing so had a large impact on 

the estimates of λSe. For example, for females aged between 0-54, an increase of 20% in the 

informative prior prevalence estimate results is an increase in the covariance percent max from 

2.3% to 50.7%.  This demonstrates high interdependence between λSe and prevalence, and that 

the estimation of one depends upon specifying prior information on the other.   
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Making the strong assumption that the estimates of conditional covariance observed in 

Table 4 extend to the full population of diabetics provides a rough basis for selecting which of 

the estimates in Table 5 are plausible.  It is also possible to observe how much higher the prior 

prevalence would have to be to obtain plausible estimates of λSe .  Plausible estimates should 

result in λSe that are positive, and in the range of 20% to 50% of the maximum. For example, for 

females age 55-74, analysis in table 4 shows that the covariance percent of maximum should be 

in the range of 21%. To yield model estimates of covariance at approximately these levels, 

prevalence estimates needed to be increased to 20%. Using this line of reasoning suggests that 

previous work, which used similar models but assumed conditional independence, may have 

underestimated prevalence by as much as 15-20%. 

Table 5 also shows that estimates of the sensitivity of the case definitions are affected by 

dependence in errors. As we increase the informative prior prevalence to levels in which the 

models yield conditional covariance percentage of maximum within an expected range, 

sensitivity estimates decrease. For example, for females age 55-74, when the prevalence 

estimates are increased by 20%, we see that estimates of the sensitivity of administrative data 

decrease from 0.904 to 0.781, a substantial drop.  Decreased sensitivity of the administrative case 

definition will result in increased number of false negative cases of diabetes when using this case 

definition. Estimates of the specificity of administrative data remain high across age groups, sex, 

and prevalence adjustment, although specificity dependence between case definitions was not 

assessed.  
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Table 4. Sensitivity of Administrative case definition and conditional covariance 
estimates for individuals identified within the DCPNS measure. 

Models Prevalence 
Estimate Seadmin 95%CI Sedcpns 95% CI Spadmin 

Cov / 
Covmax 

Female        
0-54 * 0.855 0.832: 0.880 0.570 0.554: 0.586 0.998 2.3% 

 +5% 0.815  0.543  0.998 23.7% 
 +10% 0.778  0.570  0.998 36.6% 
 +20% 0.716  0.457  0.998 50.7% 

55-74 * 0.904 0.890: 0.916 0.614 0.601: 0.627 0.995 -55.1% 
 +5% 0.892  0.594  0.991 -39.6% 
 +10% 0.825  0.567  0.999 -1.2% 
 +20% 0.781  0.52  0.999 30.7% 

75-85+ * 0.812 0.748: 0.849 0.54 0.521: 0.557 0.993 -44.5% 
 +5% 0.774  0.514  0.993 -19.8% 
 +10% 0.700  0.460  0.995 8.7% 
 +20% 0.641  0.422  0.994 23.8% 

Males        
0-54 * 0.834 0.815: 0.851 0.529 0.515: 0.544 0.999 9.1% 

 +5% 0.795  0.505  0.999 26.2% 
 +10% 0.758  0.482  0.999 37.9% 
 +20% 0.697  0.441  0.999 50.7% 

55-74 * 0.903 0.884: 0.915 0.592 0.580: 0.603 0.997 -57.1% 
 +5% 0.872  0.568  0.998 -19.4% 
 +10% 0.831  0.542  0.998 8.7% 
 +20% 0.762  0.497  0.998 35.5% 

75-85+ * 0.826 0.759: 0.859 0.547 0.527: 0.566 0.992 -46.3% 
 +5% 0.781  0.521  0.990 -16.6% 
 +10% 0.745  0.498  0.990 -0.7% 
 +20% 0.687  0.456  0.991 17.6% 

*Estimates of prevalence were derived from previous validation work which used similar 
methods, but assumed independence between data sources 
  

Discussion  

 This study quantitatively demonstrates that there is significant conditional dependence 

between administrative and the gold standard case definitions used for diabetes surveillance 

within Nova Scotia. Both direct computation of conditional dependence, as well as differences in 

the sensitivity of administrative data depending on whether individuals were identified in one or 

both gold standard databases support this finding. Previous work shows that when conditional 
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dependence is present, but not accounted for in estimation models, it can result in 

underestimation of test error rates (Brenner, 1996., Torrance-Rynard, 1997), overestimation of 

specificity and especially sensitivity of test parameters(Torrance-Rynard, 1997) , and poor 

estimation of the true prevalence of disease (Georgiadis, 2003., Vacek, 1985). 

 This study also suggests that previous work using this data source (DCPNS, 2009) 

underestimated the prevalence of diabetes within this study population. This previous work 

assumed independence between data sources, which was likely the main contributing factor to 

bias in these parameter estimates. Our work shows that the prevalence of disease may be up to 

20% higher than previously estimated in age groups over 65, especially within the oldest age 

groups. While we could not directly estimate the magnitude of dependence in age groups under 

65 (as there was no second data source which contained gold standard cases of disease), it is 

likely that there is significant conditional dependence between the DCPNS data source and 

administrative data within this population, and thus that the prevalence of diabetes has been 

underestimated. Sensitivity analysis of our models regarding our prevalence estimates highlights 

a potential weakness of our study. Our models are very sensitive to the prevalence prior 

information that we enter. Small variation in specific prevalence estimates causes models to 

behave erratically, as was observed before amending the prevalence estimate for males from 

validation work which assumed independence (DCPNS, 2009).  

 While previous work has shown that conditional dependence between data sources 

contributes to bias in estimation of sensitivity and specificity (Torrance-Rynard, 1997), estimates 

of these parameters were similar to previous validation work with this data set (DCPNS, 2009). 

This effect could be partially due to the fact that within this analysis, only models which used the 

DCPNS as containing gold standard cases and administrative data were used to estimate these 



 
 

57 
 

parameters. Models which examined conditional dependence and yielded estimates of test 

parameters for individuals over the age of 65 using the NSPP-S data source were estimated but 

yielded inconsistent results and unrealistic parameter estimates. Given the strong theoretical and 

practical work which has demonstrated that conditional dependence results in overestimation of 

sensitivity and specificity, (Torrence-Rynard, 2003., Dendukuri, 2001., Georgiadis, 2003., 

Vacek, 1985) it is possible that we have overestimated these parameters within our analysis.  

With this possibility, we also were forced to make an assumption that the sensitivity of 

administrative and DCPNS case definition remained constant across our pairs of age groups. If 

this assumption is incorrect, it could contribute to error in our estimation of sensitivity and 

specificity parameters. 

Conclusion 

 These analyses show that there is considerable conditional dependence between an 

administrative case definition, and case definitions from a clinical diabetes registry (DCPNS), 

and a drug claims data source (NSPP-S) for individuals over the age of 65. It is likely that 

conditional dependence is also present between these data source for individuals under the age of 

65 as well. This dependence is likely to have contributed to an underestimation of the true 

prevalence of disease, and biased estimates of sensitivity and specificity of an administrative 

case definition in previous work. It is important for disease surveillance systems and authors to 

carefully assess for potential dependence between diagnostic data sources when attempting to 

validate case definitions and estimate the prevalence of disease.  
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Appendix A: Dependence Model 
 

  Population A 

 
 

Diagnostic 1 

 Diagnostic 2 
 no yes 

no X11 X21 
yes X12 X22 

 
  Population B 

 
 

Diagnostic 1 

 Diagnostic 2 
 no yes 

no Y11 Y21 
yes Y12 Y22 

 
 

X11= [P[D+]* [1-Se1]* [ 1-Se2] + cov] + P[D-]* [Sp1]* [Sp2]]*n 
X21= [P[D+]* [1-Se1]* [Se2] – cov] + P[D-]* [Sp1]* [1-Sp2]]*n 
X12= [P[D+]* [Se1]* [1-Se2]- cov] + P[D-]* [1-Sp1]* [Sp2]]*n 
X22= [P[D+]* [Se1]* [Se2] + cov] + P[D-]* [1-Sp1]* [1-Sp2]]*n 

 
Y11= [P[D+]* [1-Se1]* [ 1-Se2] + cov] + P[D-]* [Sp1]* [Sp2]]*n 
Y21= [P[D+]* [1-Se1]* [Se2] – cov] + P[D-]* [Sp1]* [1-Sp2]]*n 
Y12= [P[D+]* [Se1]* [1-Se2] – cov] + P[D-]* [1-Sp1]* [Sp2]]*n 
Y22= [P[D+]* [Se1]* [Se2] + cov] + P[D-]* [1-Sp1]* [1-Sp2]]*n 

 
P[D+] = Probability of being identified as having Diabetes 
P[D-]= Probability of not being identified as having Diabetes  
[Se1]= Probability of being identified as a Diabetic conditional on true status as a diabetic  
[1-Se1]= Probability of being identified as a non-Diabetic conditional on true status as a diabetic  
 [Sp1]= Probability of being identified as a non-Diabetic conditional on true status as a non-Diabetic 
[1-Sp1]= Probability of being a identified as a Diabetic conditional on true status as a non-diabetic 
[Se2]= Probability of being identified as a Diabetic conditional on true status as a diabetic 
[1-Se2]= Probability of being identified as a non-Diabetic conditional on true status as a diabetic 
[Sp2]= Probability of being identified as a non-Diabetic conditional on true status as a non-Diabetic 
[1-Sp2]= Probability of being a identified as a Diabetic within Diagnostic 2 conditional on true status as a non-diabetic 
cov= conditional covariance in sensitivity between tests 
n= total population (X11+ X21+ X12+ X22) 
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Chapter 5: Conclusion 
 

Population level surveillance of diabetes helps to inform health service planning and 

delivery. Administrative data is commonly used for diabetes surveillance systems, but there are 

concerns about the validity of common administrative case definitions within Aboriginal 

populations. Within majority populations, there is also concern regarding the validity of 

administrative case definitions when combining surveillance data from administrative and other 

data sources due to data measure conditional dependence. This thesis project addresses these 

validation issues using data from two Nova Scotian populations.  

 In our first manuscript, we validated a commonly used administrative case definition for 

the identification of cases of diagnosed diabetes within an Aboriginal community. We found that 

the case definitions examined had lower values of sensitivity and specificity than were identified 

when validated within majority populations. This finding illustrates that caution should be taken 

when interpreting prevalence estimates of diabetes within Aboriginal communities using the 

Manitoba administrative case definition, as it could be overestimating the prevalence of diabetes. 

Given these concerns, it is still likely that Aboriginal populations do experience a higher 

prevalence of diabetes as compared to majority populations. This work has important 

implications for other minority populations who may have different diabetes prevalence rates 

than the general population, as administrative case definitions may contain bias as a consequence 

of the particular risk factors unique to that population.  

Future work should focus on chart review within Aboriginal communities to validate 

diabetes diagnoses within diabetes surveillance databases. Since diabetes is widely 

acknowledged as an issue within Aboriginal communities, increased screening and coding of 
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pre-diabetic individuals as diabetic could be a concern. Clinical validation of diabetes cases 

would help to improve and validate the findings presented in this study.  

The incorporation of conditional covariance estimation into models used to validate 

administrative case definitions of diabetes is another potential area for future work. Given the 

high levels of agreement between Aboriginal data sources used in this study, it is likely that 

conditional covariance is indeed present, which could contribute to bias in parameter estimation.  

In order to support estimation of conditional covariance, high quality prior information on 

sensitivity, specificity, or prevalence will need to be identified to support model convergence. 

Our second manuscript focused on evaluating the effect of incorporating conditional 

covariance estimates in models to estimate parameters of interest in the general population of 

Nova Scotia. We found that high levels of covariance were present, which likely contributed to 

an underestimation of the prevalence of disease, and an overestimation of the sensitivity of our 

administrative case definition. This study highlighted that diabetes surveillance systems which 

incorporate diabetes data from several sources must address conditional covariance between 

these measures if they are to yield accurate estimates of the prevalence of disease.  

Future work within this area should focus on improving the quality of informative prior 

information to support more precise estimation of conditional covariance terms. Dependence 

between data sources is complex, but through the identification of high quality additional sources 

of diabetes surveillance data, informative prior information to converge models which include 

conditional covariance estimates can improve parameter estimates.  
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