

 COST ESTIMATION FOR COMMERCIAL SOFTWARE
 DEVELOPMENT ORGANIZATIONS

by

 Dinesh Tagra

 Submitted in partial fulfilment of the requirements

 for the degree of Master of Computer Science

at

Dalhousie University

Halifax, Nova Scotia

October 2011

© Copyright by Dinesh Tagra, 2011

 ii

DALHOUSIE UNIVERSITY

 FACULTY OF COMPUTER SCIENCE

The undersigned hereby certify that they have read and recommend to the Faculty of

Graduate Studies for acceptance a thesis entitled “COST ESTIMATION FOR

COMMERCIAL SOFTWARE DEVELOPMENT ORGANIZATIONS” by Dinesh Tagra

in partial fulfilment of the requirements for the degree of Master of Computer Science.

 Dated: October 21, 2011

Supervisor:

Co-supervisor: _________________________________

Reader: _________________________________

 iii

DALHOUSIE UNIVERSITY

 DATE: October 21, 2011

AUTHOR: Dinesh Tagra

TITLE: COST ESTIMATION FOR COMMERCIAL SOFTWARE

DEVELOPMENT ORGANIZATIONS

DEPARTMENT OR SCHOOL: FACULTY OF COMPUTER SCIENCE

DEGREE: MCS CONVOCATION: MAY YEAR: 2012

Permission is herewith granted to Dalhousie University to circulate and to have copied

for non-commercial purposes, at its discretion, the above title upon the request of

individuals or institutions. I understand that my thesis will be electronically available to

the public.

The author reserves other publication rights, and neither the thesis nor extensive extracts

from it may be printed or otherwise reproduced without the author‟s written permission.

The author attests that permission has been obtained for the use of any copyrighted

material appearing in the thesis (other than the brief excerpts requiring only proper

acknowledgement in scholarly writing), and that all such use is clearly acknowledged.

 Signature of Author

 iv

TABLE OF CONTENTS

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

ABSTRACT ... viii

LIST OF ABBREVIATIONS USED .. ix

GLOSSARY OF TERMS ... x

ACKNOWLEDGEMENTS ... xi

CHAPTER 1 INTRODUCTION .. 1

1.1 Cost Estimation ... 1

1.2 Research Problem .. 2

1.3 Objectives .. 3

1.4 Importance of Accurate Cost Estimation 5

1.5 Outline ... 5

CHAPTER 2 BACKGROUND AND LITERATURE SURVEY 7

2.1 Literature Review .. 7

2.2 Cost Estimation Techniques ... 12

2.3 Reasons for failure of the cost estimation models 15

2.4 Classification of Software Metrics ... 16

2.4.1 Process Metrics ... 16

2.4.2 Project Metrics ... 16

2.4.3 Product Metrics ... 17

2.5 Characteristics of Good Software Measures 17

2.6 Size Estimation .. 17

2.6.1 Lines of Code ... 18

2.6.2 Function Point Metrics ... 19

2.7 Iterative Software Development ... 20

2.8 Metrics for Planning and Controlling the Projects 20

CHAPTER 3 PROPOSED COST ESTIMATION TOOL ... 21

3.1 Complexity of the Project ... 21

 v

3.1.1 Functional Requirements Complexity Determination .. 21

3.1.2 Implementation for the Complexity of the Project 24

3.2 Project Size Determination ... 25

3.2.1 Dimensions used in the project size estimation 25

3.3 Determining the cost factors of project ... 29

3.3.1 Implementation of cost drivers of the projects 31

3.4 Determining estimates of Time, Effort and People 32

3.4.1 Implementation for Effort, Time and People 33

3.5 Recording of Estimated Data .. 36

3.5.1 Implementation for the analysis of recorded data 37

3.6 Implementation of Cost Estimation Tool 38

CHAPTER 4 COST ESTIMATION METHOD .. 40

4.1 Effort Computation for Iterative Software Development Projects 40

4.1.1 Identification of Use Case required 40

4.1.2 Computation of Effort Estimation per Iteration 41

4.2 Testing .. 44

4.2.1 The students and the work groups 44

4.3 Experimental Results ... 45

4.3.1 Effort Estimated Per Iteration 46

4.3.2 Magnitude of Relative Error 46

4.4 Controlled factors for the results .. 48

4.5 Limitation of the Proposed Method ... 49

CHAPTER 5 CONCLUSIONS AND FUTURE WORK ... 50

5.1 Conclusions .. 50

5.2 Future Work .. 51

APPENDIX A ... 56

BIBLIOGRAPHY ... 69

 vi

LIST OF TABLES

Table 2.1 Previous surveys on estimation accuracy………………………………8

Table 2.2 Software overrun case studies from Boehm……………………………10

Table 4.1 Previous knowledge and experiences…………………………………..44

Table 4.2 Software used for the Project…………………………………………...45

Table 4.3 Actual effort for Group A Project………………………………………45

Table 4.4 Actual effort for Group B Project………………………………………45

Table 4.5 Actual effort for Group C Project………………………………………46

Table 4.6 Actual effort for Group D Project………………………………………46

Table 4.7 Magnitude of relative error for Group A………………………………..47

Table 4.8 Magnitude of relative error for Group B………………………………..47

Table 4.9 Magnitude of relative error for Group C………………………………..47

Table 4.10 Magnitude of relative error for Group D………………………………47

 vii

LIST OF FIGURES

Figure 3.1 Screenshot depicting the project class/complexity level……………..25

Figure 3.2 Screenshot depicting the three different dimensions…………………28

Figure 3.3 Screenshot depicting the Cost Drivers of the application……………31

Figure 3.4 Screenshot depicting the selection of software estimation model……33

Figure 3.5 Screenshot highlighting the “Basic” estimation model………………34

Figure 3.6 Screenshot highlighting the estimated Effort, Time & People……….36

Figure 3.7 Screenshot highlighting the estimation data using “Basic” estimation

model……………………………………………………………….37

Figure 3.8 Screenshot highlighting the estimation data using “Intermediate”

estimation model…………………………………………………...38

Figure 3.9 Flow Chart of proposed cost estimation tool…………………………39

Figure 4.1 Precedence Diagram………………………………………………….41

Figure 4.2 Consideration of additional cost estimation factors………………….43

Figure 4.3 Magnitude of relative error in consecutive iteration…………………48

 viii

ABSTRACT

The estimation of the software cost remains one of the most challenging problems in

software engineering; as a preliminary estimate of cost includes many elements of

uncertainty. Reliable and early estimates are difficult to obtain because of the lack of the

detailed information about the future system at an early stage. However, the early

estimates are really important when bidding for a contract or determining whether a

project is feasible in terms of cost-benefit analysis. Estimators often rely on their past

experiences for the prediction of effort for software projects. The fundamental factors

that are contributing towards inaccuracy of the cost estimation process are imprecise and

drifting requirements, information not readily available on past projects, and the methods

that were developed and trained on specific data.

In this thesis, we have developed a software cost estimation tool that helps

commercial software-development organizations to effectively and quantitatively

measure and analyze the software metrics based upon the functional requirements,

operational constraints and organization‟s capability to handle a project. This cost

estimation tool is a fusion implementation or an essence of certain software measurement

and estimation techniques that help a software organization to evaluate and analyze

fundamental software metrics such as complexity, time, effort, and cost all of which are

essential to improving turnaround time and attaining organizational maturity. The new

cost estimation method is proposed for the iterative software development projects. The

use case technique is implemented per iteration for the specification of the software

requirements. COCOMO II and Function Point were used to compute the effort required

for successive iterations. We also computed the magnitude of relative error for successive

iterations. We tested the proposed method on student projects in order to illustrate its

usefulness.

 ix

LIST OF ABBREVIATIONS USED

LOC Line of Code

SLOC Source Line of Code

FP Function Point

SDLC Software Development Life Cycle

COCOMO Constuctive Cost Model

SLIM Software Life Cycle Management

EAF Effort Adjustment Factor

ELOC Estimated Line of Code

UFP Unadjusted Function Point

SRS Software Requirement Specification

ILF Internal Logical Files

EIF Extrenal Interface Files

MRE Magnitude of Relative Error

 x

GLOSSARY OF TERMS

Line of Code (LOC)

Line of Code is a software metrics which is used to measure the size of a software

program by counting the number of lines in the text of the program‟s source code. It is

typically used to predict the amount of effort required to develop a program.

Function Point (FP)

Function Points was proposed by Allan Albrecht to help measure the functionality of the

software systems. It is used to estimate the effort required for the software development.

Software Development Life Cycle (SDLC)

SDLC is a conceptual model used in project management for developing software

through business needs, analysis and design, coding, testing and maintenance.

Effort Adjustment Factors (EAF)

The Effort Adjustment Factor in the effort equation is product of the effort multipliers

corresponding to each of the cost drivers for the project.

Magnitude of Relative Error (MRE)

A Magnitude of Relative Error is the ratio of the deviation of actual effort and estimated

effort to the actual effort.

Constructive Cost Model (COCOMO)

The Constructive Cost Model (COCOMO) is an algorithmic software cost estimation

method which was proposed by Barry Boehm. The equations and parameters are used to

compute the cost estimation, which has been formed on the basis of previous experience

in estimation of cost software projects.

Software Life Cycle Management (SLIM)

The SLIM is an empirical software effort estimation model proposed by Lawrence H.

Putnam that describes the time and effort required to finish a software project.

Internal Logical Files (ILF’s)

A user identifiable group of logically related data that is located within the applications

boundary and is maintained by the external inputs.

External Interface Files (EIF’s)

A user identifiable group of logically related data that is located outside the application

boundary and is maintained by another application.

 xi

ACKNOWLEDGEMENTS

With a deep sense of gratitude, I wish to express my sincere thanks to my supervisor, Dr.

Morven Gentleman, for this immense help in planning and supporting my research

project. I am also very thankful to my co-supervisor Dr. Peter Bodorik for his help in

completing the thesis. Their perpetual energy and enthusiasm in the research motivated

all their advisees, including me. Their encouragement, supervision and support from the

preliminary to the concluding stages enabled me to develop a deep understanding of the

subject. As well, their constant encouragement, feedback and constructive comments

helped improve the quality of this research immensely, making my work on this project a

smooth and rewarding experience.

I would like to thank Dr. Denis Riordan for giving his valuable time to be the external

examiner for my thesis defense.

I am deeply indebted to my parents and friends for their inspiration and ever encouraging

moral support, which enabled me to pursue my studies.

I am also thankful to the entire faculty and staff members of Computer Science of their

direct and indirect help and cooperation which made my stay at Dalhousie University

memorable.

I would like to thanks to staff of the Writing Centre, Dalhousie University, who helped

me a lot to correct my grammatical mistakes, citations as well as to make thesis more

structured. Last but not least, I offer my most sincere thanks to everyone who supported

me during the course of this thesis work.

 1

CHAPTER 1 INTRODUCTION

1.1 Cost Estimation

After some 40 years of research, estimation of the software -development cost remains

one of the most challenging problems in the software engineering. Estimating the costs

has troubled system analysts, project managers, and software engineers for decades. An

estimate of cost and schedule is based on the prediction of the size of a future system.

Unfortunately the software profession is notoriously inaccurate when estimating cost and

schedule [3] [6].

Preliminary estimates of cost always include many elements of uncertainty [1].

Reliable early estimates are difficult to obtain because of the lack of the detailed

information about the future system at an early stage. However, early estimates are

required when bidding for a contract or determining whether a project is feasible in terms

of a cost-benefit analysis. Since the process prediction always guides decision making, a

prediction is always useful if it is reasonably accurate.

Many cost estimation methods and tools are difficult to use and to interpret to be

much help in the cost estimation process. Several studies were conducted to evaluate the

cost models. Research has shown that the estimation accuracy is improved if models are

calibrated to a specific organization. Estimators often rely on their past experience when

predicting effort for software projects. It is therefore of a vital need for the software

industry to develop new cost estimation methods that are easy to understand, calibrate

and use.

The first approach [1] that comes in to existence when talking about software cost

estimation is the parametric model, which was known in the 1980‟s and before as Barry

Boehm‟s Constructive Cost Model (COCOMO), and Larry Putnam‟s Software Life

Cycle Management (SLIM). Traditional cost estimation models take software size as an

input parameter, and then apply a set of adjustment factors or cost drivers to compute an

estimate of total amount of effort required for the software project. The estimation at the

various points is often error-prone, tedious, or just impossible to perform early in a

project. Often, the only possible approach is to measure the size of the project or estimate

 2

its cost based on expert judgments. In the late 1960‟s, the Delphi technique was

proposed, in which a small number of experienced people guess the size of the project

based on already completed projects in the organization. Research statistics suggested

that most of the researchers who were working with the software cost estimation came up

with the same difficulties, i.e., when the software grows in size and complexity than it is

very difficult to predict and estimate the cost for software projects. Still there is a lack of

rules and standards for the available software cost estimation methods which are the

barrier to improving the overall software cost estimation process in the software industry.

1.2 Research Problem

The software organizations have handled many projects from various business verticals

and every project was a learning experience. Specifically, for each project, an

organization relied on the past experience or „instinct‟ in giving the final commitment to

the customer about the project‟s feasibility, time, and cost. However, this is rarely simply

an upfront activity. Up-front estimation of the total effort is always incorrect. Many costs

are only revealed during development, costs such as workarounds for faulty tools,

invention of new algorithms and data structures when the preselected choices turn out to

be inadequate, redesign to overcome performance inadequacies, and ramp-up costs for

unfamiliar new technology are typical.

The intrinsic problem with the software cost estimation is due to the inaccuracy of the

software cost estimation models that fit the different software development environments.

The other factors that are contributing towards the inaccuracy of cost estimation, such as,

imprecise and drifting requirements, information not readily available on past projects,

and the methods that were developed and trained on specific data, do not easily transfer

to other environments [1] [3] [6].

Software projects vary over an enormous range, from a one person project costing a few

thousand dollars to megaprojects involving thousands of people and costing hundreds of

millions of dollars. Any plausible method or tool must cope with this range. One

consideration is the deviations that are expected from the predicted cost. It is clearly

unreasonable to expect the estimate for a $1000 project to have the same absolute

 3

accuracy as the estimated cost for a $100 million project. Some cost estimation models,

however, could hope to achieve the same relative accuracy, i.e., the expected deviations

might be proportional to the predicted cost.

The other critique towards the cost estimation is the user communication which consists

of the factors regarding the customer and their static requirement in nature. This is

usually the most important factor that is responsible for inaccurate cost estimation. The

requirements are always volatile in nature and iterative software development recognizes

this and attempts to accommodate for it. In the beginning of an iterative software

development, there is incomplete and unclear set of requirements that leads to a difficulty

in accurate cost estimation, but this becomes less of a factor with subsequent iterations. It

is unclear what appropriate factors need to be considered for the iterative software-

development cost estimation [34].

Simple software cost analysis methods are available but they are not always safe to use.

The simplest method is based on the cost and productivity rates of previous projects. This

approach is suitable if a new project doesn‟t have any cost critical differences from those

previous projects, but it is not always safe if some critical cost drivers are ignored [31].

Any cost driver explanation can produce a formula for cost in terms of parameters. Given

that data has been collected, those parameters can be chosen to get a best possible fit.

But the relevance of the formula using best fitted parameters might be incorrect as it is

subjected to the extent of deviation of the observed data from the fitted formula (using

the optimal values of the parameters). There is still a question to think about the deviation

between the prediction of the formula and the observed data. That is the serious flaw in

the published results.

1.3 Objectives

The first objective of this thesis is to develop a cost estimation tool that helps commercial

software development organizations to effectively and quantitatively measure and

analyze software metrics based upon the Functional Requirements, Operational

Constraints, and Organization‟s Capability to handle a project. Requirements engineering

is a major part of Software Engineering, and every general reference on Software

 4

Engineering (e.g. Pressman and Summerfield) emphasizes the topic. Function Points,

especially as defined by the International Function Points User Group (IFPUG), are all

about (and only about) cost and effort estimation based on functional requirements.

Different software organizations attempting to implement the same software specification

will have widely different experiences, based on the chosen software process and the

organization capability based on skills and experience with the process and software

projects, which impact the cost estimation.

Once the important metrics of the prospective project are determined, the organization

can safely give near-precise commitments about the Feasibility and Time and Cost

involved for that project, which helps in project‟s maturity and increasing the credibility.

In this tool, important cost drivers are included for the improvement in the cost

estimation process. Our cost estimation tool will assist commercial software development

organizations in the following ways:

 Determination of project complexity on the basis of its features, required team-

size, and available timeline.

 Determination of project size in terms of lines of code on the basis of Functional

Requirements, Operational Constraints, and other significant cost parameters of

the project.

 Estimation of the total effort in terms of person-months.

 Estimation of the total time required for the development of project.

 Estimation of the head count or manpower required in the project, based on the

project‟s size and complexity.

 Analyses and comparisons with the results of estimation for various projects of

varying size and complexity that were done in the past.

The other major objective of this research is to propose a method for improving the cost

estimation process for the iterative software development projects. There is always an

 5

incremental code change, which is the essence of iterative, component-based

development or of maintenance. Not just agility, but incremental delivery and

evolutionary (multi-release) deployment are often essential. Existing software cost

estimation models and methods do not apply to this – they are for complete projects

starting from nothing. There is an interesting challenge to improve the cost estimation

process for the iterative software development projects.

1.4 Importance of Accurate Cost Estimation

Accurate cost estimation in the software industries is really important due to the

following reasons [28]:

 For the better management of the software development projects, the needs of the

resources should be completely matched with the real needs or the requirements.

 Customer always expects that the estimated software development cost should be

matched with the estimated software development cost.

 The overall business plan of a software organization can be improved with accurate

cost estimation, as it will lead to an efficient use of the resources.

 Cost estimation process is used to decide which resources are required for the project

and how to better utilize resources.

 The accurate cost estimation process is necessary for defining the resources needed to

produce, verify and validate the software products and for managing the software

development activities. It also helps to decide whether cost of tools is offset by

improved productivity.

1.5 Outline

This Chapter discussed the cost estimation and presented the objectives of the thesis.

Chapter 2 provides a detailed background on the cost estimation and also various

software cost estimation methods. Chapter 3 explains the proposed software cost

 6

estimation tool for the software industries, while using screenshots for explanations. The

proposed software cost estimation method for iterative software development projects

and the related experimental results are described in Chapter 4. Chapter 5 offers

conclusions and future work on the proposed cost estimation tool and method.

 7

CHAPTER 2 BACKGROUND AND LITERATURE SURVEY

2.1 Literature Review

Software cost estimation has been a particularly active research area, with the research

increasing substantially over the past two decades. For instance, surveys conducted in

[7] and [8] show that research in last 25 years focused on different levels of software

estimation.

Some of the software estimations were conducted at project levels and some at company

levels. However, most of the literature concentrated on how commercial-level software

organizations estimate project costs and the importance of the required accuracy of

effort for the projects.

Surveys conducted by Jenkins [9], Phan [10], Bergeron and St-Arnaud [11], Heemstra

and Kusters [12], Lederer and Prasad [13] [14], and Sauer and Cuthbertson [15]

investigated the average estimation accuracy and frequency of overruns. The summaries

of these surveys are displayed in Table 2.1 below. The x in the table indicates that this

information was not presented in the surveys.

Study(first
author)

Jenkins

Phan

Heemstra

Lederer

Bergeron

Sauer

Study year

1984

1988

1989

1991

1992

2003

Cost

Overrun

34%

33%

x

x

33%

18%

Project used

more than

estimated

effort

61%

x

70%

63%

x

59%

Project used

less than

estimated

effort

10%

x

x

14%

x

15%

 8

Schedule

Overeun

22%

x

x

x

x

23%

Project

Completed

after

schedule

65%

x

80%

x

x

35%

Project

Completed

before

schedule

4%

x

x

x

x

3%

 Table 2.1: Previous Surveys on estimation accuracy [7]

The studies suggest [7] that a large number of projects (60-80%) are completed with

under-estimated effort and under-estimated scheduling. Sauer and Cuthbertson [15]

came up with lower number of magnitudes of project and schedule overruns because

study was affected by self-selecting samples of projects.

The study performed by Prasad and Lederer [13][14] was at a project level. They

concluded that 87% of the companies estimate large projects only. Moores and Edwards

[11] concluded in their study that 91% of the managers reported that the level of

estimation accuracy was typically less than 20%.

Phan [10] surveyed the overruns at organization level and discovered findings that were

incompatible with other surveys. Of the 191 organizations he surveyed, he concluded

from the viewpoint of a different measurement scale, that cost overruns always occurred

in 5%, usually in 37%, sometimes in 42%, rarely in 12% and never in 4%. From a

schedule overrun point of view, he concluded that schedule overruns occurred always in

1%, usually in 31%, sometimes in 50%, rarely in 15%, and never in 3% of the

organizations.

Pressman [17] suggests that the Buy vs. Make decision should be considered in

determining the software estimation. Reusable software components are widely used by

many commercial software development organizations. Project managers frequently use

 9

the commercial off-the-shelf (COTS) components instead of encouraging developers to

create from scratch. Therefore, buy/estimate decision should be an important factor in

software estimation. There should be a need for the ability to predict the cost of using

COTS components [35].

Parkinson‟s Law [16] suggests that the project cost is highly dependent on whatever

resources are available in the organization, and that the project life cycle is expandable

to meet the deadline according to the resources available to the organization.

Pandian [18] proposed three estimation methodologies, which he described as Analogy

method, Top down Method and Bottom up method. The Analogy method involves

estimating the project by using historical data of previously completed projects. The

project to be estimated is compared with already existing information on completed

projects. The top down approach concentrates on the overall characteristics instead of

the functional and non-functional requirements of the system to be developed. The

bottom up method provides the most detailed estimation because it considers each and

every component and then combines them all to give the overall required estimation for

the project.

McConnell [19] stated that numerous surveys have found that more than half of the

projects substantially overrun their estimates and a large number of projects either

cancelled or misses its delivery dates. The effective software estimation is one of the

most important and difficult software development activities. The over-estimating and

the under-estimating of a project are both bad for different reasons. An underestimating

of a project will lead to under staffing, under scoping the quality assurance effort, short

schedule, etc., whereas overestimating will cause for a project to take at least as long as

it was estimated [3]. In the following table 2.2, Boehm [5] listed some major projects

that cancelled due to estimation failure.

 10

Project

First Cost
($M)

Last

Estimate
Cost($M)

First

Schedule
(months)

Last

Estimate
Schedule
(months)

Status at

Completion

PROMS

(Royalty

Collection)

12 21+ 22 46 Cancelled,

Month 28

London

Ambulance

1.5 6+ 7

17+

Cancelled,

Month 17

London Stock

Exchange

60-75 150 19 70 Cancelled,

Month 36

Confirm (Travel

Reservation)

56 160+ 45 60+ Cancelled,

Month 48

Master Net

(Banking)

22 80+ 9 48+ Cancelled,

Month 48

 Table 2.2: Software Overrun Case Studies from Boehm [5]

The Literature suggests several reasons for the overruns of the cost estimation; the

factors as listed by Linda L. Laird [3] include the lack of education and training,

confusion of the desired schedule/effort target with the estimate, and incomplete,

changing, and creeping requirements. Many people in the software industry don‟t know

how to estimate costs, have no training in the area of software estimation, and receive no

feedback to improve the estimation process. The other reasons identified by Laird for

project overruns included incomplete and unclear requirements, difficulty managing the

schedule of the project as the scope change, planning an overly assertive schedule, and

insufficient resources for the project. Galorath and Evans [4] conducted an intensive

research by using 2100 internet websites and came up with several reasons for the

failures of the software projects. The most common and important reasons he found

were the insufficient requirement engineering, poor planning, sudden decision at the

early stage at the project, and inaccurate cost estimation. Boehm suggested three basic

reasons for inaccurate cost estimations, i.e., lack of clear understanding of the software

requirements, under-estimation of software size, and required effort for the software

projects.

 11

Software Cost Estimation is an important, but a difficult, task since the beginning of the

computer era in the 1940s. In the last 3 decades, there have been three models that have

been significantly used for cost estimation namely: Boehm‟s COCOMO [20], Putman‟s

SLIM [21], and Albrecht‟s function point [22]. Most of the models use the size

measurement methods such as Line of Code (LOC) and Function Point (FP) for

determining the cost estimation. The accuracy of the cost estimation is directly related

with the estimation of size.

Boehm [6] commented that there are large numbers of cost analysis methods available,

but they are not always safe to use. The simplest method is to base a cost estimate on the

typical costs or productivity rates of previous projects. Some of the simple methods are

useful if the new project does not have any cost critical differences from the previous

projects. However, they are risky if the critical factor of the cost driver has been

discarded.

Boehm [6] is known as the leader of the software cost estimation and reformulated his

model in COCOMO II in 1997 which consists of three different sub models: application

composition, early design, and post-architecture.

The software maintenance is also important because it consumes a large part of the

overall cost of the life-cycle. The survey [37] suggested that around 75% of the

maintenance effort was due to the adaptive and perfective maintenance.

In the Late 1970‟s different models were proposed, such as SLIM [24], Checkpoint [25],

Price-S [26], SEER [26], and COCOMO [27]. Most of the researchers, who were

working on developing the cost estimation, found the same difficulties when software

grows in size and complexity, making it very difficult to predict the cost of software

development.

Some authors suggested that the big challenge in the software-cost estimation is that there

is a lack of specific rules and standards to control the overall process of software

development and there is a need of some kind of rules and standards to control and

improve the cost estimation process.

 12

The inaccuracy of cost estimation is to recognize the three related quantities, i.e.,

functional specification, cost, and delivery time. These three quantities lead to a different

form of a contract: fixed price or fixed delivery date; but only functionality can be met

within that constraint.

2.2 Cost Estimation Techniques

Several methods are available in literature for cost estimation. Basically, cost-estimation

methods are categorized into two groups, which are algorithmic and non-algorithmic. In

this section, I am going to discuss the methods which are used for cost estimation [1] [4]

[29].

2.2.1 Algorithmic Methods

The algorithmic methods use special algorithms to perform the cost estimation. The data

is required to compute the results by using mathematical relations. Currently, many

software estimation models are using these methods for cost estimation. The generic

representation of the equation is as follows:

Effort = f(x1,x2…,xN),

Where, (x1…xN) is the vector form of the cost factors.

Most of the models are using product factors, computer factors, personnel factors, and the

project factors.

2.2.1.1 Putnam’s Model

This model has been proposed by the Putnam‟s by the inspection of several software

projects and distribution of the manpower. The Software equation suggested by the

Putnam‟s model is [4]:

Where,

E= environment indicator that reflects the development capability, which can be derived

from the historical data using the software equation

Td= time of delivery

 13

Effort is represented in person-year and S is expressed in Lines of Code (LOC). The

Effort equation for the model is

 Effort =

Where,

D = manpower build-up factor

SLIM (software life cycle management) is a tool that works according to the Putnam‟s

model.

2.2.1.2 Seer-Sem

SEER-SEM model has been proposed by Galorath Inc. in 1980. The parameters

suggested by this model are for commercial and business projects. The effective size of

the software project is the most vital feature in this method and is represented by Se. The

effective size is calculated by determining five indicators which are new size, existing

size, redesign, re-implementing and retesting. The generic formula for Se is [4] [29]:

Se = newsize+existingsize(0.4Redesign+0.25reimp+0.35 retest)

After determining the effective size, the estimated effort is calculated as:

Effort =Td =

Where D = degree of staffing complexity

Se=effective size

Cte = productivity and efficiency of the used development method

2.2.1.3 Linear Models

The linear models are simple in structure and can be expressed by the following equation

[4]:

Effort

Where a1,….an are selected according to the information available for the projects.

2.2.1.4 Constructive Cost Model

The Constructive Cost Model (COCOMO) is proposed by Barry Boehm in 1981 and is

the most popular model in the algorithmic methods for the cost estimation [1] [4] [29].

The equations and parameters are used to compute the cost estimation, which has been

 14

formed on the basis of previous experience in estimation of cost software projects.

COCOMO II is the most recent version of the COCOMO that predicts the amount of

effort required for the projects in person-month. The usage of COCOMO II is high and

usually it produces more accurate results compared to other algorithmic methods.

The COCOMO II [38] model makes its estimate of the required effort based on the

estimate of the software project‟s size:

Effort =

Where,

EAF = Effort adjustment factor derived from the cost drivers

KSLOC = Project Size measured in thousand source line of codes

E = Exponent derived from the five scale drivers

The COCOMO II [38] predicts the number of month required to complete software

project. The duration of the project is dependent on the prediction of the effort:

Duration =

Where,

Effort = Effort computed from the COCOMO II effort equation

SE = Schedule exponent derived from the five scale drivers

2.2.2 Non-Algorithmic Methods

The non-algorithmic methods are based on the comparisons with the previous projects

that are similar to the project being estimated. The cost estimation for these methods can

be done by analysis of the already existing datasets for the projects. The non-algorithmic

methods have two categories which are analogy- based and expert judgment [1] [4] [29].

2.2.2.1 Analogy based

Numerous similar completed projects are analyzed. Based on these analyzed completed

projects, estimation of under-estimated project is done according to actual effort and cost.

This method can be performed at system as well as subsystem levels. The steps for this

method are as follows [4]:

 15

a) Selection of analogy

b) Exploring the similarities and differences among the projects

c) Inspecting the quality of the analogy

d) Determining the estimation

2.2.2.2 Expert based judgments

As the name suggests the judgments of one or more experts are involved during the cost

estimation process [4]. The expert should have extensive experience by having handled

similar kind of projects in past. This method is applicable where it is hard to find

appropriate data and gather the requirements. The Delphi method is the most common

method, which is based upon the expert based judgments, and the steps for the Delphi

techniques are as follows [29]:

a) The coordinator gives an estimation form to each expert to record the estimation.

b) The form is filled by experts without any discussion with each other.

c) The summary of all estimations are prepared by the coordinator who then requests

iteration for the estimation.

d) Steps (b, c) are repeated for many rounds before finalizing the estimation.

2.3 Reasons for failure of the cost estimation models

Tom DeFanted [30] asserted in 1970‟s that the cost and effort estimation was a solved

problem-clearly not. Today, several methods are available for the cost estimation but

unfortunately none of them can estimate the cost of software with a high degree of

accuracy. Several reasons are identified as being responsible for making the cost

estimation processes difficult [3] [29]:

 The software development environments are evolving quickly and endlessly.

 There are several interrelated factors which affect the cost estimation process in the

software development such as volatility of the system requirements, number of user

screens, and the reusability of the components.

 There is still a lack of measuring the complexity of the software projects.

 16

 Presently, there is still a lack of accurate historical data for the measurement of the

cost.

 Sometimes, there is a lot of information about the past projects that is required for

cost estimation, which is not available in every situation.

 Incomplete, changing, and creeping requirements are the other sources which are

difficult to manage in a fixed-price and the fixed-schedule project.

 There are still a large number of factors missing which should be considerable during

the process of cost estimation.

Today, there is a strong need to improve the performance of existing methods and also

for bringing in new methods for the cost estimation.

2.4 Classification of Software Metrics

Software metrics may be broadly classified into three different categories: Process

Metrics, Project Metrics, and Product Metrics [33].

2.4.1 Process Metrics

Process metrics are primarily used for software development and maintenance and

classified as private and public metrics. Private metrics are used to assess individual team

member productivity, while public metrics help to evaluate the organization as a whole

and evaluate the performance and productivity of a process.

2.4.2 Project Metrics

Project metrics are used to estimate the cost and effort for software projects and includes

metrics such as lines of code, cyclomatic complexity, and code coverage. In the lines of

code metric, all physical (comment and blank lines) and logical (statements) lines are

counted for a specific programming language. Cyclomatic complexity measures the

complexity of a program or application and is computed by using a flow graph. Code

coverage determines the degree to which the source code has been tested.

 17

2.4.3 Product Metrics

These metrics focus on the key characteristics of the software product. Commonly used

product metrics are specification quality metrics, architectural metrics, length metrics and

testing effectiveness metrics. Specification quality metrics measure of the completeness

of the requirements. Architectural metrics provide information regarding the quality of

the architectural design of the system. Length metrics measure the system size by using

lines of code during implementation phase of the project. Testing effectiveness metrics

measure the effectiveness of executed test cases.

2.5 Characteristics of Good Software Measures

Good metrics [32] should contribute to the development models that are capable of

predicting software product and processes. The metrics and models can be used to

measure the productivity and product quality by estimating the product cost and schedule.

The ideal metrics should have the following characteristics:

 Be simple and definable so that they will be easy to understand and evaluate.

 Have a well-defined goal.

 Be available at a reasonable cost.

 Be valid - Metrics should measure what they are intended to measure.

 Be robust - Metrics should be relatively insensitive to insignificant changes in the process

or product.

 Be consistent in terms of units and dimensions.

 Be independent of programming languages.

 Give useful feedback.

 Be practical.

2.6 Size Estimation

Estimation of project size is fundamental to estimating the effort and time required to

complete the planned software project. The size of a program indicates the development

complexity. There are two important metrics to estimate size [3] [29] [39].

 18

 Line of Code (LOC)

 Function Point (FP)

2.6.1 Lines of Code

The software industry began in the 1950s, with the early metrics being SLOC (source

lines of code) [39]. Line of code and source line of code have the same meaning, and this

size metrics is widely used in the software industries. Source line of code is defined as

measuring the size of a software program by counting the number of lines in a program

[3]. The Lines of code or Source Line of Codes is based either on physical lines of code

or logical lines of code.

The main strong points of physical lines of code (LOC) are

i) This is really an easy measure for counting the size of application.

ii) We can easily automate the measurement of physical line of code.

iii) The physical line of code can be used by software estimation tools.

The main strong points for logical statements are

i) The logical statement cannot consider dead code, blank lines and commented lines.

ii) The mathematical conversion of logical statement to function point is possible.

iii) The estimation tools can be applied to logical statements.

2.6.1.1 Limitation of LOC

 A programmer whose productivity is measured in terms of LOC will try to write

unnecessary verbose code. This can increase the complexity of the system and also

increase the effort required for bug fixing.

 The estimation of LOC count at the beginning of the project is very complicated

compared to estimation at the end of a project. In measuring the LOC at the

beginning, the problem should be divided into different modules and each module

should be divided into sub modules to predict the project‟s size and complexity.

 19

 The greatest emphasis of LOC is on measuring the coding activity. Thus, it usually

ignores the complexity of design and testing activities. Design may be equally as

complex as coding activities.

 Some programmers write extra amounts of code to make the code structure complex

in order to increase productivity in terms of line of code. This type of unnecessary

code creates extra overhead and is not an adequate measure for size estimation.

 Code reusability also affects the estimated efforts in terms of Line of Code. Reusable

amounts of code should be excluded from software metric estimation. Reusability,

even just in the sense of exploiting libraries, reduces Lines of Code. More suitable

domain-specific languages also reduce Line of Code [29] [39].

2.6.2 Function Point Metrics

In the 1970s, Allan Albrecht came up with the Function Point (FP) method for size

estimation, which can be applied to different programming languages or to a combination

of programming languages. The Function Point is computed from the analysis of the

requirements and specification of the application. It consists of five weighted and

adjusted factors [36] [39]:

1. Number of Inputs (screens, signals, etc.)

2. Number of Outputs (screens, reports, checks, etc.)

3. Number of Inquiries

4. Number of Logical files

5. Number of Interfaces

The main strong points for function point metrics are [39]:

1. Function points always remain independent of programming language used.

2. Function points perform well for the analysis of complete software life cycle.

3. Function points are able to measure coding as well as non-coding activities like

documentation.

4. Function-point analysis is also able to measure defects in requirements and design.

5. Function-point analysis can be used by software estimation tools.

 20

2.7 Iterative Software Development

Iterative software development is at the heart of the software development process and it

was developed to overcome the weaknesses of waterfall model [34]. The iterative

software development accommodates the volatility of the requirements. The common

feature of the most iterative methods is that after each iteration, a running product is

developed. A final clean-up may be required before ending the project, but a well-

managed iterative process allows the project to be declared at any stage. Within each

iteration, there will be some requirements analysis to choose what this iteration is

intended to add to (or remove from) what was produced in the previous iteration. This

might be done partly by the customer and partly by the software development

organization.

2.8 Metrics for Planning and Controlling the Projects

The other flaw to cost estimation observed in the literature is that an organization cannot

estimate the software development cost accurately because it does not have the

measurements available from the previous projects. Metrics of previous projects are

useful for planning and control of the future projects. Putnam and Myers suggested some

useful metrics for the planning and controlling of the future projects [1] [30]:

 Amount of function built or modified usually is measured in terms of lines of code

and often function point, subsystem and use cases.

 Development time is required to number the months or years to complete the

implementation stage of the project.

 Effort applied is measured by the number of person–months. It is also useful to

estimate the cost of the project.

Cost = person-months × average labor rate

 Process productivity is represented as a rate at which the work is accomplished.

 Defect rate measures the quality and reliability of the project.

 21

CHAPTER 3 PROPOSED COST ESTIMATION TOOL

The proposed software cost estimation tool will help commercial software development

organizations to improve, strengthen, and add value to their business processes through

reducing response times and bringing accuracy in their answer(s) to a particular business

requirement. The two estimation models (Basic and Intermediate) have been

implemented based on the methodology of gathering inputs regarding a certain business

software project. In performing the cost estimation, our tool considers parameters such as

Functional Specifications, Operational Constraints, and Organizational Maturity to

handle a particular business requirement or project. This tool is a fusion implementation

or an essence of certain software measurement and estimation techniques that help a

software organization to evaluate and analyze fundamental software metrics such as

Effort, Time, People and Cost, all of which are essential to improving turnaround time

and attaining organizational maturity. Cost estimation tool is actually, or primarily, a

compostion of COCOMO and Function Points. Versatility of the proposed tool is the

function point method that is used to measure the project size in terms of lines of code

and also the COCOMO (Basic and Intermediate) are implemented for the different levels

of the complexity of the project.

3.1 Complexity of the Project

Whenever a software organization wins a new project, the first and perhaps the most

important step during initial discussions with the client in the requirements-gathering

phase is to determine the complexity of the project.

3.1.1 Functional Requirements Complexity Determination

The determination of the complexity is significant in order to evaluate the total effort and

time for its implementation. There is no universal consensus on how to define,

characterize, or measure complexity. Theoretical computer scientists tend to assess

algorithm complexity by counting the number of steps taken by the algorithm for a

problem of a given size performed on a particular model of an abstract computer. This

may or may not correlate with measured run time or other resource consumption on real

 22

hardware. Asymptotic results are often quoted, but the sizes of problems solved in

practice often are not in the range where asymptotic simplifications apply.

The following are important factors that need to be considered during the complexity

determination of the different domains of the projects:

 The most obvious complexity factor is the complexity of algorithms and data

structures used in the project. This might be because the mathematics is subtle and

sophisticated, or it might be because the mathematical model of the scientific

situation is delicate and sensitive. It might be because simpler algorithms would

be significantly less efficient or that naïve mathematical simplifications are

subject to excessive round-off error.

 It might be that sequencing, timing, or concurrency is critical, and not easily

expressed in conventional programming languages that lead to a complex system.

 Another interpretation of complexity is that the data collection and the operational

procedures when using the software are lengthy, tedious and error prone, so

external input must be continually monitored for consistency, internal

corroboration, and plausibility.

 It is conceivable that the coding was merely incompetent and clumsy, and there is

a superior way to code computation. However, it is much more plausible that if

the computation is programmed in a non-obvious way, there is some deep

explanation for why that was done, and the desired effect is not a consequence of

the formal definition of the programming language, but an artifact of the

implementation. Cache behavior or NUMA (non-uniform memory access)

behavior is an example, as are the consequences of the differences in performance

between multi-core and multi-processor.

 File system layout and mapping of file structures to disk might have a significant

impact on performance as well as resilience to data corruption, yet these are not

part of the programmer‟s abstraction.

 23

 Although security by obscurity is sometimes not the best way to ensure

confidentiality, deliberate obfuscation can still play a useful role.

 Example of the errors in prediction of tsunami-wave height illustrate another form

of complexity: the Navier-Stokes equations are theoretically sufficient to

completely define liquid motion, and although there are technical difficulties in

integrating these partial differential equations, there are approximations that are

sufficiently accurate to be used for this purpose. However, the solutions do

depend on the boundary conditions, and although today we do have depth maps of

the whole Pacific basin, the detail is not of sufficient resolution for the predicted

wave height to be within a factor of 2, or even a factor of 10. The amount of data

required is enormous, and most of it simply hasn‟t been gathered, although in

principal it could be. Even if it was known, organizing it for efficient access

would not be possible at most plausible computation sites. So access to relevant

data could be another form of complexity.

 Let us take an example of a real-time missile controller project that is won by an

organization for the first time. Hence, they are not specifically aware of, or

experienced, the challenges of this domain, i.e., Defense. To date, the

organization has accomplished various projects in different verticals such as

Biometrics, Network Security, and so on, but the Defense domain is altogether

new for them. Moreover, since it involves issues of national security, the client

has imposed certain crucial constraints in terms of the application‟s functionality,

time and cost.

After this project is won by the organization, the first step is the identification and

determination of project complexity during the initial requirements discussion with the

client. In order to evaluate this, the organization would want to clarify certain points,

such as:

 How critical and sensitive is this project in terms of its functionality?

 What will be the required team-size to develop this application?

 24

 How rigid is the imposition of time constraints by the client?

 Does this project require any specific development or testing infrastructure?

 Does this project require any specific domain competency or knowledge?

All of the above queries indicate a need for determining the complexity of the project.

The project manager should take above queries into account when determining the

complexity of each project class. The project classes are described in Figure 3.1.

3.1.2 Implementation for the Complexity of the Project

Taking the above scenario into consideration, our application helps to fulfill the purpose

by giving the Project Manager (who, we assume, would be supervising the application)

five options to determine the project‟s complexity. Three factors affecting the option

choice are: Functional Requirements, Operational Constraints, and Team Size. The

classifications of the project‟s complexity were selected based upon the COCOMO

model.

From the perspective of the user of the tool, it is important that the predictions of

complexity represent predictions that the user will be able to make. We assume that the

Project Manager will select the appropriate option based on his/her experiences of

managing projects. Specifically, we will classify the project complexity into five broad

categories.

1. Very Simple

2. Simple

3. Advanced

4. Semi Complicated

5. Complicated

This classification will play an important role in analyzing and measuring the different

metrics involved in the implementation of the project / module. A sample screenshot of

this feature is shown in Figure 3.1.

 25

 Fig 3.1: Screenshot depicting the project class/complexity level

Once the Project Manager selects the appropriate complexity, we assign a numeric value

to a variable according to his/her selection of the project‟s class or complexity, i.e., the

higher the complexity, the higher the value of the initialized variable, and vice-versa. The

numeric values are assigned based on COCOMO (Basic and Intermediate) model. Please

see step 3 in Appendix A for the assigned values of the complexity.

3.2 Project Size Determination

After the complexity of the project is determined, the size of the project needs to be

gauged in order to use it as a metric. We assume that our application will measure the

size of a project/module in terms of the Lines of Code required for its implementation.

3.2.1 Dimensions used in the project size estimation

In order to fulfill the above objective and calculate the size of implementation of a

project/module, our tool enables the user to analyze it from three different dimensions, as

explained below.

Dimension 1: Functional Characteristics

Under this dimension, the user will analyze and evaluate the functional expectations and

requirements from the software that needs to be implemented for the project/module.

From functional expectations, we are referring to four parameters. These parameters are

taken from function point method to determine the project size based on the functionality

that the system delivers to the users. The selected parameters are as delineated below:

 26

1. User Inputs: This parameter will signify the number and level of user inputs required

by the solution to be implemented.

2. User Outputs: This parameter will signify the number and level of user outputs

required by the solution to be implemented.

3. User Enquiries: This parameter will signify the number and level of user enquiries

that the solution will need to answer. The enquiries could be answered in the form of

reports or some data required by the user. Specifically, it refers to the number and

level of interrogations made by the user from the module.

4. Files or Databases: Refers to the number of external databases or files required by the

solution.

5. External interfaces: Interfaces with the interoperability with other software.

The above functional requirements are rated according to their expectations from the

necessary module that has to be implemented. This rating will actually contribute

significantly in determining the size of the solution. We assume that the ratings will be

chosen amongst three options, which are: Simple, Average, and Complex. This means

that the higher the rating of any functional parameter, the bigger the size of the module in

terms of lines of code that have to be implemented.

Hence, for example, if, in the missile-controller project, a module requires a Complex

level of all of the above five functional parameters, its implementation would be bigger in

size. Otherwise, it could be either Moderate/Average or Simple.

Dimension 2: Operational Constraints

This step would enable the user to analyze and determine the operational factors and

constraints involved within the implementation of the project.

The need to determine operational constraints arises from the fact that when we develop

any solution, apart from fulfilling all its functional requirements, it must also be efficient

 27

and possess other important characteristics like reusability, low performance overhead,

etc. Furthermore, when we take these factors into consideration, it becomes all the more

important to develop it in such a manner that makes it feature-rich in terms of operational

capabilities.

For instance, suppose, for a certain module in the project, our application will enable the

Project Manager to rate the implementation of that module from many different

perspectives. The rating would be done to highlight the importance of a particular

operational capability within the prospective solution. This means that, on a scale of 1 to

5, if the rating for Reusability is 5, the required solution must be reusable. Thus, when

similar classifications of modules are needed to be developed, they can be implemented

immediately with some additional effort. To effectively consider the operational

constraints, our application asks 14 questions from different angles and makes the user

rate them, as per their relevance. These 14 questions were chosen from function point

method for the consideration of the general characteristics of the project classes. The

chosen questions are listed in BLUE (middle) rectangle of Figure 3.2.

Dimension 3: Programming Language

In this sub-feature, we enable the user to select the programming language in which the

prospective solution would be developed. We assume that, as the generation of a

programming language advances, it requires less effort during development compared to

the older generation languages. Hence, if the user selects an older programming language

to develop the solution, it directly affects the size. Newer programming languages should

have more semantic depth, meaning that less code needs to be written because the

functionality would be provided by the language and its library. A screenshot displaying

the discussed three dimensions is shown below in Figure 3.2.

 28

 Figure 3.2: Screenshot depicting the three different dimensions

In the Figure 3.2, the three rectangles in different colors depict different dimensions, as

discussed above. The BROWN rectangle on top signifies the functional requirements of

the application or solution to be developed. It enables the user to rate the complexity and

significance of functional requirements on five different parameters. The higher the rating

of parameter-complexity, the larger the application size.

The BLUE (middle) rectangle is used to determine the complexity and importance of the

operational constraints or factors. The higher the complexity, the larger the application

size. The rectangle in GREEN, on the bottom, depicts the selection of the programming

language to be used for development. The functional characteristics and operational

constraints are rated for the complexity of programming languages. Functional

characteristics and operational constraints rating was chosen on the basis of function

point. For the rating, please see the step 4 (4.1 & 4.2) in Appendix A. We have assumed

three programming languages for development, namely C, C++ and Java.

 29

For every selection made for individual parameters above, we initialize a separate

variable with a value that reflects the selected complexity level of the parameter. The

selected values for the parameters were taken from function point method for their degree

of complexity. Once all the selections regarding Functional Expectations, Operational

Constraints and Programming Language have been made, we calculate the size. The size

is computed on the basis of function point. For the computation detail of the estimated

size, please see the step 5 in Appendix A.

3.3 Determining the cost factors of project

Once the complexity and size of the project are determined, the next objective is to

determine the relevance of factors that drive the application‟s cost. These factors are

important, since not only do they play a vital role in determining the total effort, time and

manpower required in a project, but they can also have an impact on the total estimated

cost of development. The specific calculation performed is based on the COCOMO.

Our application enables the Project Manager to determine the Cost Drivers through rating

the importance of four attributes, as mentioned below:

 Product Attributes: These factors would highlight the core important features of

the product, such as reliability, complexity, etc.

 Hardware Attributes: These attributes would reflect how much advanced

hardware configurations are required to implement the solution of the business

problem, project or module.

 Personnel Attributes: These attributes would help in rating the features related to

human resources like efficiency, productivity, competency, etc.

 Project Attributes: These attributes would be related to the project‟s

characteristics such as milestones, deliverables, etc.

 30

The whole idea in rating the above factors and attributes is to have an additional input

about the application or the features that are to be implemented in order to handle the

project effectively. This input would further help us in effectively measuring and

estimating the metrics.

Now to develop this level of capability in the missile controller software, the Project

Manager needs to evaluate its implementation and sensitivity from a realistic point of

view, keeping both its pros and cons in mind. In other words, the project manager must

have the answers to be sure about the impact of each particular requirement (i.e., How

many people would want this capability to be built-in? How would it affect the usage of

the tool? How many users will benefit from this capability? And will it be of any use to

other people who do not wish to use it? etc.)

After evaluating the complexity and size, an important step is to identify it in terms of

other attributes which would require us to answer the questions below:

 Should an organization try to do this entire project by itself, or should we

subcontract parts of the project to secondary or even tertiary suppliers with more

specialized resources?

 Are the existing team members competent enough to build this feature?

 Is there any hardware required at the end-user level to implement or test this

feature effectively?

 How crucial or sensitive is this project or module implementation?

The answers to the above questions will actually help us in determining the relevance of

other additional factors which significantly contribute to the cost of the application.

Please see the step 6 in the Appendix A for rating of the selected cost drivers.

 31

3.3.1 Implementation of cost drivers of the projects

The screenshot of this functionality is described below in Figure 3.3. The cost drivers

which we selected are based upon COCOMO.

 Figure 3.3: Screenshot mentioning the Cost Drivers of the application

Figure 3.3 describes how the application enables the user to rate the Cost Drivers

according to their relevance and complexity. This means that in considering the

appropriate attributes, a user rates them while taking the complexity and size into

consideration. The higher the rating, the higher the estimated amount of effort, time and

manpower required to develop the project or module.

At the implementation level, whenever a user puts a final rating to all the attributes after

carefully understanding the functional expectations of the project / module and its

corresponding cost drivers, we declare the variables and define them according to the

complexity or rating level. This means, the higher the rating, the higher the variable

value.

 32

3.4 Determining estimates of Time, Effort and People

After determining the application‟s Complexity, Size and Cost-driving factors, we need

to determine the actual metrics of the project or module that has to be implemented, i.e.

we need to answer queries such as those below:

1. What is the total estimated effort required in implementing a particular project or

its module?

2. How much approximate time duration will it take for the implementation?

3. How many estimated number of people would be required for the

implementation?

4. What is the estimated implementation cost?

Once the above queries are answered, we can utilize the above metrics for project

management and scheduling purposes.

Therefore, once we have answered the following questions, then we can move forward in

determining the actual Effort, Time, People and Cost of the project‟s implementation.

The questions which we identified are based upon functional characteristics and

operational constraints to handle the project.

 How critical is this project / module?

 How useful is this project / module in terms of its merits and demerits?

 How complicated is this project / module?

 How big is it in terms of implementation size?

 What are its high and low-level functional requirements?

 What are its desired operational constraints?

 What is its feasibility analysis?

 33

3.4.1 Implementation for Effort, Time and People

In order to calculate the total estimated Effort, Time, People and Cost required for the

implementation of the project or module, we would use the inputs, complexity and size of

the solution. In our application, we have planned to calculate the size in three ways:

1. By considering the functional requirements

2. By considering both functional and non-functional requirements and operational

constraints

3. By considering the complexity of the project to be developed

For the implementation of effort time and people, we have implemented two estimation

models of COCOMO which are Basic & Intermediate, respectively. A screenshot

showing where we enable the user to select the model is highlighted in Figure 3.4.

 Figure 3.4: Screenshot depicting the selection of software estimation model

 34

Once the user selects the estimation model type, as highlighted in the RED rectangle

above, the next screen or interface will be presented accordingly. For instance, if the user

selects the Basic model of estimation, he/she will be asked to input only the functional

requirements for size-estimation. If the user selects the Intermediate model for

estimation, functional requirements, operational constraints and attributes will also be

taken into consideration in the form of cost drivers. A screen shot of the interface when

the user selects Basic estimation model is shown in Figure 3.5.

 Figure 3.5: Screenshot highlighting the “Basic” estimation model

The PINK rectangle above signifies that if the user selects the Basic model, he/she will

only be asked to supply functional requirements for size estimation. The operational

constraints or Cost Drivers will remain disabled.

Once the user has performed the size evaluation for both models, he/she can better

conclude the evaluation of metrics through approximation. However, the application‟s

complexity-evaluation will be done for both the models.

 35

Once we have evaluated the size and complexity of the prospective implementation for

the project/module, we will use the size factor to determine the estimated effort and

complexity factor to determine the time metric. Then, once the estimated effort and time

have been calculated, the estimated required number of people in the project can be

calculated by dividing the estimated Effort with Time.

Considering the above-mentioned example, let us assume that the total number of

estimated people required for implementing the module is 30 and the required time is six

months. In such a case, the implementation cost can be roughly calculated by adding the

respective salaries of each employee multiplied by the total time for which they would

work on the implementation plus other expenses and profit figures.

After processing the final inputs from the user regarding the Functional Requirements,

Operational Constraints and Organization‟s Capability or Maturity to implement the

project or module, our application would declare and define various intermediate

variables in order to store the values of calculated Size, Complexity, Effort, Time, People

and Cost, and would use each variable accordingly.

A screenshot displaying the values of estimated metrics is shown below in Figure 3.6.

The organic, semidetached and embedded are the project classes for COCOMO which

represents simple, advanced and complicated levels of complexity respectively. The

specific calculation is performed based on the COCOMO (Basic and Intermediate) and

the formulas are described in step 7 of Appendix A.

 36

 Figure 3.6: Screenshot highlighting the estimated Effort, Time & People

The rectangle in BROWN above highlights the calculated estimated values of the

metrics, Effort, Time and People.

3.5 Recording of Estimated Data

The next most important objective of software estimation and measurement practices is

the recording of estimated data. In other words, in order to save time and bring efficiency

and maturity into software cost estimation process, the organization should record the

estimation data for comparison and analysis purposes for future projects. For example,

the organization receives a similar magnitude of requirements from the Defense domain

again, but this time they need to control high-altitude projectiles or intelligent nuclear

bombs dropped from air to surface. The project has been evaluated to be of a similar

complexity and size as the previous one; thus, if the estimated data from the previous

implementation is stored, it will not take the same amount of time as before for the

organization to plan and schedule the implementation. In other words, if the appropriate

records are there, the organization can fetch them and, based on that data, conveniently

 37

and speedily manage the implementation of the new project or module without any

hassles or delays, all the while taking care to incorporate into the latest project any

significant facts or lessons learnt during the previous implementations.

Additionally, the recording of data also helps the organization to compare and analyze the

results in order to extract meaningful inferences. These can also be adopted into their

software engineering practices on their way to becoming a mature organization.

3.5.1 Implementation for the analysis of recorded data

We have implemented the recording of analysis data in the form of a detailed report that

contains all the information related to the analysis of previous projects. The report

includes details like Analysis Timestamp, Project Class or Complexity, Estimated Effort,

Time in the duration of months and days and Number of people.

A screen shot of this information is displayed below:

 Figure 3.7: Screenshot highlighting the estimation data using “Basic” estimation model

 38

Figure 3.8: Screenshot highlighting the estimation data using “Intermediate” estimation

model

As shown in the above screenshots, we can record the results of estimations from both

implemented models – Basic and Intermediate – individually so that whenever there is a

need for comparison or analysis, we can refer to the stored data.

3.6 Implementation of Cost Estimation Tool

The flowchart of the implemented tool is shown in Figure 3.9 (shown on the next page).

 39

 Password

 Functional & Operational Constraints

 Estimated Line of Code (ELOC)

 Effort Adjustment Factor + Estimated Line of Code

 ELOC

Analysis Date, Model, Effort, Schedule, People etc.

 Estimated People

 Estimated Effort Estimated Schedule

 Figure 3.9: Flow Chart of proposed cost estimation tool

Model Selection

(Basic / Intermediate)

Function Points Calculation

Effort Adjustment Factors

(EAF) Calculation using

Cost Drivers with ratings

(Intermediate Model)

Estimated Effort, Schedule

& People Calculation

Personnel Planning

Project cost estimation

improve

Detailed Analysis Report

(Basic or Intermediate)

Application‟s Size

Determination

Application‟s Complexity

Determination

Startup Screen

Login

 40

CHAPTER 4 COST ESTIMATION METHOD

The purpose of the proposed method is to improve the cost estimation process for

iterative software development projects. The two majors steps of this method are

determination of the use case required for each iteration and the computation of effort

estimation in each iteration. To accommodate the requirements at each iteration, use case

technique was used. The function point method is used to determine the unadjusted

function point for each iteration, where the COCOMO II is used to compute the required

effort in each iteration. The section 4.1 discusses the method in detail while the testing

results of proposed method are discussed in section 4.3.

4.1 Effort Computation for Iterative Software Development Projects

The two main steps of the method are required in each iteration:

Step 1: Identification of Use Case required

Step 2: Computation of Effort Estimation

4.1.1 Identification of Use Case required

The objective of this step is to identify the use case that need to be implemented per

iteration. For this purpose, it is necessary that the use cases have already been identified

for the complete software. The identified use cases have to be included in the

specifications of the software requirements. For this purpose, we used precedence

diagram in which the preconditions of every use case are contained in the specifications.

The use case precedence diagram is illustrated in figure 1. An arrow indicates the order in

which the use cases are implemented. For instance “Use Case A” will be implemented

before “Use Case 3”.

 41

Use Case A

Use Case 2

 Use Case 3

 Use Case 4

 Figure 4.1: Precedence Diagram

4.1.2 Computation of Effort Estimation per Iteration

After step 1 is completed, in the step 2, Functions Points and COCOMO II are used to

determine the effort that will be required for each iteration. First of all, it is necessary to

determine the Unadjusted Function Points (UFP) per iteration. The reason followed to

adapt this technique for iterative incremental lifecycles is to compute the resultant UFP of

the complete project. The total UFP of the complete project must be equal to the sum of

the Unadjusted Function Points computed separately per iteration. A challenge which

must be recognized, but which this research does not address, is whether these methods

will work well for the incremental code changes necessary to accommodate the additional

use cases.

Total_UFP=

One of the most important contributions of this method is to determine the UFP of the

Internal Logical Files (ILF) and the External Interface Files (EIF) for each use case. For

this purpose, this method uses the following formula in which (File_UFP(j) = Unadjusted

Function Point for a use case “j” due to files ILF/EIF, TNU(i) = total of use cases that

uses a ILF/EIF “i”, Weight(i)= Weight due to the complexity of ILF/EIF “i”, i= ILF/ EIF

used in use case “j” and j= use case involved)

 42

File_UFP (j) xWeight (i)

Using the results obtained from the previous formula and knowing which use case will be

developed for each iteration, the UFP will be determined by means of the files present in

the iteration. Next, the UFP corresponding to the transactions will be added. To

accomplish this task, the following formula will be used where i=iteration, FP(i)=Total

of UFP for iteration “i”, File_UFP(j)= UFP for a use case “j” due to ILF/EIFs,

Trans_UFP(j)= UFP due to transactions (EI,EO,EQ) and j=use case subject to be

implemented in an iteration “i”.

+

The next step uses COCOMO II and the UFP of each iteration. The effort expressed in

man-month is computed per iteration and using this value, time and resources needed to

complete the whole project is estimated. It is really important to point out if the context

of the project is subject to change from one iteration to another (knowledge of the

development platform, integration of the developer team) so that it could be useful to re-

estimate the effort required by next iterations. This can be determined by reviewing files

(ILF/EIF) and transactions (EI, EO, EQ) in case of change of requirements and

recalculating the cost drivers suggested by COCOMO II.

 43

Vague Requirement Gathering

Prioritizing the Requirements

Estimation at early stage

Iterative Planning and

Estimate

Development and Testing

Working Software

No requirements for updations

Additional Cost Estimation

Factors

A
ft

e
r

It
e

ra
ti

o
n

 Figure 4.2: Consideration of additional cost estimation factors

 44

4.2 Testing

For testing the proposed method for iterative software development, we used a project in

the core course in the Software Engineering. In this course the student had to develop a

project and the time frame of the project was 12 weeks. The students worked in projects

groups consisting of five to six members developing small software systems, using an

incremental development process. First of all the student did not use the whole method

but only used the precedence diagram to plan the iterations of the projects. The objective

was to determine the collection of certain data of the iterative software development

project for the cost estimation.

4.2.1 The students and the work groups

The students are divided groups of 5 to 6. The groups were formed based upon the

academic performance of the previous terms as well as the previous software

development experience. Each group contains 2-3 people and they all had two years of

experience in the field of software development. Table1 contains the previous knowledge

and experiences that the students had prior to the beginning of the software project.

 Table 4.1: Previous knowledge and experiences

The iterative methodology is followed by each group. Before beginning the

implementation phase each group had finished the Software Requirement Specification

Characteristics Experience and knowledge

 Project Management Short and medium software

programming Projects

 Programming Platform C, C++, Java, C#, Python

 Databases SQL server, MS SQL server

 Analysis and Design Object oriented design

 Software Estimation No previous experience

 45

(SRS) requirements in which they included all the possible use case scenarios and the

precedence diagram for the use cases in the project.

Every group had to develop two iterations in the implementation phase. Each iteration

had taken two weeks of work. The number of use cases implemented in the second and

third iteration was based on the previous iterations. There were four use cases that were

implemented for each iteration.

Item Software

Documenting Software MS office suite 2007/2010

Modeling Software Rational Rose

Programming Language C++, Java

Data base Microsoft SQL server 2008

Operating System Linux, Unix

 Table 4.2: Software Used for the Projects

4.3 Experimental Results

The actual efforts are measured in men-hours. The actual effort is determine by the

effective work done by each group for software design, testing and implementation.

Table 4.3: Actual Effort for Group A Project Table 4.4: Actual Effort for Group B Project

Iteration

Group A

Actual

Effort

UFP

1 292 187.23

2 189 195.61

Iteration

Group B

Actual

Effort

UFP

1 322 155.13

2 277 178.30

 46

Table 4.5: Actual Effort for Group C Project Table 4.6: Actual Effort for Group D Project

4.3.1 Effort Estimated Per Iteration

To compute the estimated effort for iterations, the following formula used from

COCOMO II:

 Est_Effort (i)

Est_Effort (i) = Estimated Effort for iteration i

EAF(i) = COCOMO‟s EAF for the iteration i

Actual_Effort (j) = Actual effort for iteration j

The EAF factor used for calculating the estimating effort were 1.46 for first iteration and

0.8 for the second iteration.

4.3.2 Magnitude of Relative Error

A Magnitude of relative error is showing the deviation between the prediction of the

formula and the observed data.

Magnitude of Relative Error (MRE) = | |

Iteration

Group C

Actual

Effort

UFP

1 240 175.3

2 255 138.5

Iteration

Group D

Actual

Effort

UFP

1 295 188.4

2 169 203.5

 47

Iteration EAF Factor Actual
Effort

Estimated
Effort

MRE

1 1.46 1.753 1.845 9.2%

2 0.8 1.544 1.585 2.65%

 Table 4.7 Magnitude of relative error: Group A

 Table 4.8 Magnitude of relative error: Group B

 Table 4.9 Magnitude of relative error: Group C

 Table 4.10 Magnitude of relative error: Group D

Iteration EAF Factor Actual
Effort

Estimated
Effort

MRE

1 1.46 1.802 1.457 19.14%

2 0.8 0.998 0.875 12.3%

Iteration EAF Factor Actual
Effort

Estimated
Effort

MRE

1 1.46 1.932 1.687 12.6%

2 0.8 1.143 1.278 11.8%

Iteration EAF Factor Actual
Effort

Estimated
Effort

MRE

1 1.46 1.738 1.952 12.31%

2 0.8 0.893 0.972 8.8%

 48

 Figure 4.3: Magnitude of relative error in consecutive iteration

The recorded effort in the first iteration was useful to compute and estimate the

estimation for next iteration. From the result obtained for four different groups, it is

observed that in the second iteration the Magnitude of relative error is less than 13% for

the groups. By computing the relative errors at each iteration, we can verify and control

the certain factors by which we can improve the overall cost estimation process for the

iterative software projects.

4.4 Controlled factors for the results

It is hard to generalize the result within the context of software industry. The advantage

of experiments done with students is that some of the factors are controlled (knowledge,

level of expertise, context of iteration) which can be difficult to control in the software

industry. Some of the important factors and variables that can be controlled in student‟s

projects are:

 Change of requirements happens throughout the project. This factor can be controlled

to some extent for academic projects.

 49

 In an industry project, the team members may be reassigned according to the

expertise required for the projects. To solve the critical issue in the project, expert

team member may be reassigned to the software development projects.

 Sometimes it‟s really hard to implement the sequence requirements in the industry

projects but we can control this factor at the academic level.

4.5 Limitation of the Proposed Method

 The limitations with the proposed methods are:

 Incremental delivery is a good strategy, but it does not allow for the common

experience in user centered design. For the proposed method, we can easily add the

use cases at each iteration but there is no way to remove the unwanted use cases at the

later stage.

 Incremental delivery only assumes monolithic progress.

 The more detailed limitation of this technique is that we assume each additional use

case only affects internal and external files. Actually, in many situations additional

use cases can introduce additional input, output, queries or interface requirements.

 50

CHAPTER 5 CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this thesis, we have proposed and developed a cost estimation tool and a method for

iterative software development projects for improving the cost estimation process. The

proposed cost estimation application is specifically targeted and intended for commercial

software development organizations that need to estimate, analyze and utilize different

vital metrics (i.e., Complexity, Size, Effort, Schedule, Manpower, Cost, etc.) involved in

a software project during the discussion and planning phase. We selected cost estimation

drivers (Product Attributes, Hardware Attributes, Personnel Attributes and Project

Attributes) that are most likely to cause cost critical differences and also rated them for

determining the impact of selected cost drivers. The importance of estimating the

software metrics lies within the technique and methodology adopted. It is essential that

the estimation tool be user-friendly, self-explanatory, and easy to operate. Furthermore,

the results that it generates should be informative and helpful, not only in terms of project

planning and management but also in providing sufficient convenience and confidence to

the organization in extending near-precise commitments to their client. In other words,

the cost estimation tool should leverage the organization‟s capabilities and strengthen it

in terms of maturity, increased goodwill and credibility.

Therefore, we can hereby conclude that proposed cost estimation tool can

 Help the organizations to effectively determine complexity of a project in terms of

its required team size for implementation and rigidness of requirements.

 Enable the organizations to estimate vital software metrics from different

perspectives and levels of inputs, helping them to attain a wide range of input in

order to give near-precise commitments to their clients.

 Enable the Project Manager(s) to calculate the size of the application in terms of

lines of code through considering the functional specifications, operational

constraints, organization‟s capability and maturity to handle that project and other

significant attributes of the project.

 51

 Strengthen the organization through estimating crucial software metrics such as

Effort, Time and People required in the project, which helps the organization to

confidently extend fair commitments to their clients.

 Make the organizations wise through storing the data of estimation done for previous

projects, which the organization can scrutinize anytime for their information and

reference purposes.

The method is proposed for the improvement in the cost estimation process for the

iterative software development projects. The use case technique is implemented per

iteration for the specifications of the software requirements. COCOMO II and Function

Point are used to determine the effort that will be required for each iteration. The

experiments were performed on student‟s projects and the results were analyzed. It is

observed that in the second iteration the magnitude of relative error is less than 13%. By

computing the relative error at each iteration, we can verify and improve the cost

estimation process for the iterative software development projects. The results which we

obtained cannot be generalized with the perspective of software industries because the

experiments were performed on academic projects.

 5.2 Future Work

This proposed cost estimation tool is built upon the essence of certain prominent

software estimation and measurement techniques, wherein we have attempted to

incorporate some meaningful customizations. The distinguishing features that separate

this application from existing software estimation tools are its hybrid implementation

methodology of estimating software metrics (such as Effort, Time and People) and its

inbuilt capabilities of scheduling a project, planning human resources, and storing data

for further analysis. Yet despite these accomplishments, there is still scope for further

improvement in the areas of more detailed input, presentation of results, and so on, as

highlighted below. We can further strengthen this application by implementing domain-

specific estimation techniques. Presently, this application takes functional specifications

 52

and operational constraints of a certain project, generically, as an input towards

estimation. We can enhance this application in a way that enables the Project

Manager(s) to customize the level of functional specifications and operational

constraints being considered for a particular project, i.e. functionality can be added that

gives Project Manager(s) the privilege to add, edit, or delete a particular input intended

for the estimation.

Future version of this tool (and all other such cost estimation tools) really needs to

provide not just a point estimate, but also an interval estimate. When being used in

preparing a bid, for instance, without knowledge of the uncertainty in the point estimate

it is hard to imagine how a project manager could be cautious and inflate the point

estimate by a safety factor in order to manage the risk of unforeseen contingencies.

The proposed cost estimation method can be applied for agile software development

methods because most of the projects have changing requirements which can be

accommodate in the iterative software development and also required level of effort can

be computed for the cost estimation whether the proposed cost estimation tool cannot be

applied to agile software development.

The real accuracy of the cost estimation tool and method can be checked with respect to

the software industries projects but still the project managers can help to make the

proposed tool more accurate by providing their feedback to include other required

inputs for increase the accuracy of proposed cost estimation tool.

Additionally, the estimated metrics can be represented graphically in such a way that

their utilization is displayed in context to software project management and planning. In

other words, once the metrics have been estimated, the results of their analysis in terms

of project scheduling and people planning can be depicted graphically, enabling the

Project Manager(s) to have a clear picture of the project implementation as a whole.

Secondly, we can build artificial intelligence into the application so that it may

intelligently and effectively guide us during the estimation procedure about a particular

 53

project through analyzing and learning from the previous data of project(s) belonging to

similar domain.

Thirdly, the cost estimation for maintenance activities is still a challenge and there is a

need for a cost estimation application which would help commercial software

development organizations to estimate the software maintenance effort and cost for the

different complexity of projects.

The other factors which should be considered are the role of prime contractors and their

sub-contractors who are responsible for the range of projects in the software industries.

There is still need for a process which accommodates the cost estimation process for

sub-contractors in order to improve the sub-contractor cost estimation activities.

For the validation of the results of proposed method, this method needs to be applied to

real- world software projects to come up with more useful results for the perspective of

the commercial software development organizations. A challenge which must be

recognized, which this research did not address, was whether this method will work

well for incremental code changes necessary to accommodate additional use cases. For

the consideration of additional use cases, Micro function point can be used for the

further improvement in the method.

Finally, after reflecting the work on software cost estimation, I recommend that the

following cost factors, not covered by the current models such as COCOMO I and

COCOMO II, be included in cost factors for estimating the cost and effort of software

project development. These cost factors are raised in this thesis for consideration for

further cost estimation research but they have not been included in the proposed

method.

 Domain of the Project

There are different activities involved for different domains of the projects which affect

the cost of the projects. For example: military projects require more efforts in

development and testing as compared to other commercial projects. Many military

 54

projects involve building systems that have never been built before by anyone, so there

is a challenge and risk in accomplishing the project.

 Performance of the Project

Performance of the project may be characterized by execution time, designing and

coding standards, accuracy in outcome, etc., as per customer requirements. Thus the

necessary feature must be included in the design and architecture of the software in

order to achieve the required performance level. These features certainly increase the

cost of the project. For example: Google search engine needs better performance for

responding the queries while the performance may be less important for a commercial

application. The performance of a single Google search is probably not critical. There

are occasions, especially in real-time applications, where the performance of a single

execution of a program is critical today (too fast may be as bad as too slow, for instance

in intercept situations). Total throughput of all execution is a more common situation

today and can be compensated by distributing the computation over more computers.

 Configuration

This is also one of the key factors in cost estimation. Configuration, in context of

estimation, refers to special hardware and software requirements to run the software

smoothly. For example, when users run software on a Smartphone, it is not enough that

the software runs correctly without using hardware features such as audio or the multi-

touch screen. Since the hardware capabilities are there, the application is not acceptable

if it does not take advantage of them. The number of different platform configurations

on which the software must run is also an issue. Applications for Windows and Android

system must run on dozens of platforms which are unknown to the developers, whereas

iPhone systems and applications only have to run on the appropriate Apple platforms.

Scalability is also a configuration issue: solving very large or very small problems only,

or supporting a service for a single user, through to supporting the same service for

thousands of users.

 55

 Data Transaction

Here, data transaction refers to the volume and frequency of data transfer from one

machine to another machine. It is also access to different kinds of data. For instance,

GIS data is probably not local, but access to it through mashups makes apps much more

interesting (e.g. real estate or restaurant ads showing location). If the volume of

transactions is high than it directly affects the effort required to develop the software

and hence increase the cost.

 Multiple Sites

If software runs on multiple sites or many team members are to work together in

distributed work environment, cost of the software increases due to the cost of

communication and coordination. The more serious aspect of multiple site software is

that the demands and configuration of the different sites are not the same. For instance,

databases installed on each military base are not identical to each other as the data and

demands of different bases are different.

 Security concern

Security may be considered for data security, operational security, code security, etc;

depending on the stakeholder requirements. All aspects of security must be considered

during the designing, coding, and implementation. They may increase the complexity in

design, coding, and user interfaces and hence result in increasing the cost and duration

of the project. For example, online money transactions require various levels of

securities to maintain the integrity of the software.

 56

APPENDIX A

Step 1: Start  Application‟s start up interface

Step 2: Select the estimation model i.e. Basic or Intermediate

If Model = Basic,

set flag  0

else, if Model = Intermediate

set flag  1

Step 3: Select implementation complexity

If the analyzed implementation complexity is Simple in terms of functional requirements

& operational constraints, set class & no. of required analysts & programmers

pclass  ORGANIC

ana  0.3

pro  0.7

if flag = 0, set

ab  2.4

bb  1.05

db  0.38

else, if flag = 1, set

ai  3.2

bi  1.05

If the analyzed implementation complexity is Medium in terms of functional

requirements & operational constraints, set class & no. of required analysts &

programmers

pclass  SEMI-DETACHED

ana  0.5

 57

pro  0.5

if flag = 0, set

ab  3.0

bb  1.12

db  0.35

else, if flag = 1, set

ai  3.0

bi  1.12

If the analyzed implementation complexity is High in terms of functional requirements &

operational constraints, set class & no. of required analysts & programmers

pclass  EMBEDDED

ana  0.7

pro  0.3

if flag = 0, set

ab  3.6

bb  1.20

db  0.32

else, if flag = 1, set

ai  2.8

bi  1.20

Step 4: Calculate the implementation’s size through Function Point

4.1: Specify functional characteristics

Rate the no. of User Inputs that are involved in the implementation according to the

selected complexity.

 58

if rating = Simple, set var1  2

else, if rating = Average, set var1  4

else, if rating = Complex, set var1  6

Rate the no. of User Outputs that are involved in the implementation according to the

selected complexity.

if rating = Simple, set var2  3

else, if rating = Average, set var2  5

else, if rating = Complex, set var2  7

Rate the no. of User Queries or reports that are involved in the implementation according

to the selected complexity.

if rating = Simple, set var3  2

else, if rating = Average, set var3  4

else, if rating = Complex, set var3  6

Rate the no. of Files or Databases that are involved in the implementation according to

the selected complexity.

if rating = Simple, set var4  5

else, if rating = Average, set var4  10

else, if rating = Complex, set var4  15

Rate the no. of External Interfaces that are involved in the implementation according to

the selected complexity.

if rating = Simple, set var5  4

else, if rating = Average, set var5  7

else, if rating = Complex, set var5  10

 59

4.2: Specify more functional & operational constraints

Rate the Reliable Backup & Recovery constraint according to its importance and

complexity & functional characteristics of the proposed implementation.

if rating = Very Low, set var6  1

else, if rating = Low, set var6  2

else, if rating = Medium set var6  3

else, if rating = High, set var6  4

else, if rating = Very High, set var6  5

Rate the Required Data Communications constraint according to its importance and

complexity & functional characteristics of the proposed implementation.

if rating = Very Low, set var7  2

else, if rating = Low, set var7  3

else, if rating = Medium set var7  4

else, if rating = High, set var7  5

else, if rating = Very High, set var7 6

Rate the Distributed Processing constraint according to its importance and complexity &

functional characteristics of the proposed implementation.

if rating = Very Low, set var8  1

else, if rating = Low, set var8  2

else, if rating = Medium set var8  3

else, if rating = High, set var8  5

else, if rating = Very High, set var8  7

Rate the Critical Performance constraint according to its importance and complexity &

functional characteristics of the proposed implementation.

if rating = Very Low, set var9  3

else, if rating = Low, set var9  4

else, if rating = Medium set var9  5

 60

else, if rating = High, set var9  6

else, if rating = Very High, set var9  7

Rate the Operational Environment Complexity constraint according to its importance and

complexity & functional characteristics of the proposed implementation.

if rating = Very Low, set var10  2

else, if rating = Low, set var10  3

else, if rating = Medium set var10  4

else, if rating = High, set var10  5

else, if rating = Very High, set var10  6

Rate the Online Data Entry constraint according to its importance and complexity &

functional characteristics of the proposed implementation.

if rating = Very Low, set var11  3

else, if rating = Low, set var11  4

else, if rating = Medium set var11  5

else, if rating = High, set var11  6

else, if rating = Very High, set var11  7

Rate the Multiple Screens & Concurrent Operations constraint according to its

importance and complexity & functional characteristics of the proposed implementation.

if rating = Very Low, set var12  1

else, if rating = Low, set var12  2

else, if rating = Medium set var12  7

else, if rating = High, set var12  8

else, if rating = Very High, set var12  9

Rate the Online Updating of Master File constraint according to its importance and

complexity & functional characteristics of the proposed implementation.

 61

if rating = Very Low, set var13  2

else, if rating = Low, set var13  4

else, if rating = Medium set var13  6

else, if rating = High, set var13  8

else, if rating = Very High, set var13  10

Rate the Inputs, Outputs & Database Complexity constraint according to its importance

and complexity & functional characteristics of the proposed implementation.

if rating = Very Low, set var14  3

else, if rating = Low, set var14  5

else, if rating = Medium set var14  7

else, if rating = High, set var14  9

else, if rating = Very High, set var14  11

Rate the Internal Processing Complexity constraint according to its importance and

complexity & functional characteristics of the proposed implementation.

if rating = Very Low, set var15  3

else, if rating = Low, set var15  7

else, if rating = Medium set var15  9

else, if rating = High, set var15  10

else, if rating = Very High, set var15  11

Rate the Code Reusability constraint according to its importance and complexity &

functional characteristics of the proposed implementation.

if rating = Very Low, set var16  1

else, if rating = Low, set var16  2

else, if rating = Medium set var16  3

else, if rating = High, set var16  4

else, if rating = Very High, set var16  5

 62

Rate the Installation & Configuration constraint according to its importance and

complexity & functional characteristics of the proposed implementation.

if rating = Very Low, set var17  3

else, if rating = Low, set var17  7

else, if rating = Medium set var17  11

else, if rating = High, set var17  12

else, if rating = Very High, set var17  15

Rate the Concurrent Pipelined Execution constraint according to its importance and

complexity & functional characteristics of the proposed implementation.

if rating = Very Low, set var18  1

else, if rating = Low, set var18  5

else, if rating = Medium set var18  6

else, if rating = High, set var18  7

else, if rating = Very High, set var18  9

Rate the Ease of Use & Modification constraint according to its importance and

complexity & functional characteristics of the proposed implementation.

if rating = Very Low, set var19  6

else, if rating = Low, set var19  7

else, if rating = Medium set var19  9

else, if rating = High, set var19  10

else, if rating = Very High, set var19  11

4.3: Specify development technology

if technology = C, set var20  1

if technology = C++, set var20  2

if technology = Java, set var20  3

 63

Step 5: Calculate the value of Function Point

Set fp  (0.01 * ∑ vari (i = 6 to 19) + 0.65) * ∑ vari (i = 1 to 5)

Calculate and determine the size of application of solution-implementation of size in the

estimated lines of code (LOC)

Set ELOC  FP* var20

if ELOC <= 8, set size  Small

else, if 8 < ELOC <=32, set size  Intermediate

else, if 32 < ELOC<=128, set size  Medium

else, if ELOC > 128, set size  Large

Step 6: Specify various implementation attributes and cost drivers involving other

different functional & operational characteristics in order to calculate the Effort

Adjustment Factor.

6.1: Specify Product Attributes

Rate Required Software Reliability attributes according to its importance based upon the

complexity & size of the prospective solution implementation

if rating = Very Low, set temp1  0.75

else, if rating = Low, set temp1  0.88

else, if rating = Nominal, set temp1  1.00

else, if rating = High, set temp1  1.15

else, if rating = Very High, set temp1  1.40

else, if rating = Extra High, set temp1  1.60

Rate Application Database Size attributes according to its importance based upon the

complexity & size of the prospective solution implementation

if rating = Very Low, set temp2  0.77

else, if rating = Low, set temp2  0.94

else, if rating = Nominal, set temp2  1.00

else, if rating = High, set temp2  1.08

 64

else, if rating = Very High, set temp2  1.16

else, if rating = Extra High, set temp2  1.28

Rate Product Complexity attributes according to its importance based upon the

complexity & size of the prospective solution implementation

if rating = Very Low, set temp3  0.70

else, if rating = Low, set temp3  0.85

else, if rating = Nominal, set temp3  1.00

else, if rating = High, set temp3  1.15

else, if rating = Very High, set temp3  1.30

else, if rating = Extra High, set temp3  1.65

6.2: Specify Hardware Attributes

Rate Runtime Performance attributes according to its importance based upon the

complexity & size of the prospective solution implementation

if rating = Very Low, set temp4  0.76

else, if rating = Low, set temp4  0.88

else, if rating = Nominal, set temp4  1.00

else, if rating = High, set temp4  1.11

else, if rating = Very High, set temp4  1.30

else, if rating = Extra High, set temp4  1.66

Rate Memory Constraints attribute according to its importance based upon the

complexity & size of the prospective solution implementation

if rating = Very Low, set temp5  0.75

else, if rating = Low, set temp5  0.85

else, if rating = Nominal, set temp5  1.00

else, if rating = High, set temp5  1.06

else, if rating = Very High, set temp5  1.21

else, if rating = Extra High, set temp5  1.56

 65

Rate the Virtual Machine Environment Volatility attributes according to its importance

based upon the complexity & size of the prospective solution implementation

if rating = Very Low, set temp6  0.80

else, if rating = Low, set temp6  0.87

else, if rating = Nominal, set temp6  1.00

else, if rating = High, set temp6  1.15

else, if rating = Very High, set temp6  1.30

else, if rating = Extra High, set temp6  1.66

Rate Required Turnaround Time attributes according to its importance based upon the

complexity & size of the prospective solution implementation

if rating = Very Low, set temp7  0.71

else, if rating = Low, set temp7  0.87

else, if rating = Nominal, set temp7  1.00

else, if rating = High, set temp7  1.07

else, if rating = Very High, set temp7  1.15

else, if rating = Extra High, set temp7  1.60

6.3: Specify Personnel Attributes

Rate Analyst Capability attributes according to its importance based upon the complexity

& size of the prospective solution implementation

if rating = Very Low, set temp8  1.46

else, if rating = Low, set temp8  1.19

else, if rating = Nominal, set temp8  1.00

else, if rating = High, set temp8  0.86

else, if rating = Very High, set temp8  0.71

else, if rating = Extra High, set temp8  1.90

Rate Application’s Experience attributes according to its importance based upon the

complexity & size of the prospective solution implementation

 66

if rating = Very Low, set temp9  1.29

else, if rating = Low, set temp9  1.13

else, if rating = Nominal, set temp9  1.00

else, if rating = High, set temp9  0.91

else, if rating = Very High, set temp9  0.82

else, if rating = Extra High, set temp9  1.40

Rate Software Engineer Capability attributes according to its importance based upon the

complexity & size of the prospective solution implementation

if rating = Very Low, set temp10  1.42

else, if rating = Low, set temp10  1.17

else, if rating = Nominal, set temp10  1.00

else, if rating = High, set temp10  0.86

else, if rating = Very High, set temp10  0.70

else, if rating = Extra High, set temp10  0.75

Rate the Virtual Machine Experience attribute according to its importance based upon the

complexity & size of the prospective solution implementation

if rating = Very Low, set temp11  1.21

else, if rating = Low, set temp11  1.10

else, if rating = Nominal, set temp11  1.00

else, if rating = High, set temp11  0.90

else, if rating = Very High, set temp11  0.75

else, if rating = Extra High, set temp11  1.70

Rate Programming Language Experience attributes according to its importance based

upon the complexity & size of the prospective solution implementation

if rating = Very Low, set temp12  1.14

else, if rating = Low, set temp12  1.07

else, if rating = Nominal, set temp12  1.00

 67

else, if rating = High, set temp12  0.95

else, if rating = Very High, set temp12  0.66

else, if rating = Extra High, set temp12  0.70

6.4: Specify Project Attributes

Rate Software Tools Usage attributes according to its importance based upon the

complexity & size of the prospective solution implementation

if rating = Very Low, set temp13  1.24

else, if rating = Low, set temp13  1.10

else, if rating = Nominal, set temp13  1.00

else, if rating = High, set temp13  0.91

else, if rating = Very High, set temp13  0.82

else, if rating = Extra High, set temp13  0.90

Rate Application of Software Engineering Methods attributes according to its importance

based upon the complexity & size of the prospective solution implementation

if rating = Very Low, set temp14  1.24

else, if rating = Low, set temp14  1.10

else, if rating = Nominal, set temp14  1.00

else, if rating = High, set temp14  0.91

else, if rating = Very High, set temp14  0.83

else, if rating = Extra High, set temp14  0.90

Rate Development Schedule attributes according to its importance based upon the

complexity & size of the prospective solution implementation

if rating = Very Low, set temp15  1.23

else, if rating = Low, set temp15  1.08

else, if rating = Nominal, set temp15  1.00

else, if rating = High, set temp15  1.15

else, if rating = Very High, set temp15  1.40

 68

else, if rating = Extra High, set temp15  1.60

Set EAF temp1 * temp2 * temp3 * temp4 * temp5 * temp6 * temp7 * temp8 * temp9 *

temp10 * temp11 * temp12 * temp13 * temp14 * temp15

EAF=Effort Adjustment Factor

Step 7: Calculate estimated Effort, Time & People required

If flag = 0

Set effort  eloc
bi

 * ab

else, if flag = 1

Set effort  ai * eloc
bb

 * EAF

Set time  effort
db

 * cb

Set people  effort / time

 69

BIBLIOGRAPHY

[1] Software Development Cost Estimation. Phillippe Kruchten, University of British

Columbia

[2] A. Issa, Algorithmic software cost estimation model for early stage of software

development, international journal of academic research, March 2011

[3] Linda M. Laird, "The Limitations of Estimation," IT Professional, vol. 8, no. 6, pp.

40-45, Nov./Dec. 2006, doi:10.1109/MITP.2006.149

[4] V.Khatibi and D.Jawawi, Software Cost Estimation Method: A Review. Journal of

emerging trends in computing and information sciences, 2011

[5] K. Kavoussanakis and T. Sloan. UKHEC Report on Software Estimation, Dec 2001.

accessed on http://www.ukhec.ac.uk/publications/reports/estimation.pdf

[6] Barry Boehm, "Safe and Simple Software Cost Analysis," IEEE Software, vol. 17,

no. 5, pp. 14-17, September/October, 2000

[7] K. Moloekken-OEstvold, M. Joergensen, S.S. Tanilkan, H. Gallis, Lien, A.C. Lien,

S.W. Hove, A survey on software estimation in the Norwegian industry, Proceedings

10th International Symposium, pp. 208- 219, 14-16. Sept. 2004

[8] M. Nasir. A Survey of Software Estimation Techniques and Project Planning

Practices. Proceedings of the Seventh ACIS International Conference on Software

Engineering. pp. 305-310, IEEE Computer Society. 2006

[9] Jenkins, A.M., J.D. Naumann, and J.C. Wetherbe, Empirical Investigation of Systems

Development Practices and Results. Information & Management, 1984. 7: p. 73- 82.

[10] Phan, D., Information Systems Project Management: an Integrated Resource

Planning Perspective Model, in Department of Management and Information Systems.

1990, Arizona: Tucson.

[11] F. Bergeron and J.-Y. St-Arnaud, Estimation of Information Systems Development

Efforts. A Pilot Study. Information & Management, page 239-254, 1992

[12] Heemstra, F.J. and R.J. Kusters. Controlling Software Development Costs: A Field

Study. In International Conference on Organisation and Information Systems. 1989.

Bled, Yugoslavia.

[13] A.L. Lederer, and J. Prasad, Causes of Inaccurate Software Development Cost

Estimates. Journal of Systems and Software, pp. 125-134, 1995

http://www.ukhec.ac.uk/publications/reports/estimation.pdf

 70

[14] A.L. Lederer, and J. Prasad, Information systems software cost estimating: a current

assessment. Journal of Information Technology, pp. 22-33, 1993

[15] Sauer, C. and C. Cuthbertson, The State of IT Project Management in the UK 2002-

2003. Templeton College, University of Oxford.

[16] G.N. Parkinson, Parkinson's Law and Other Studies in Administration, Houghton-

Miffin, Boston, 1957

[17] Roger S. Pressman, “Software Engineering, A Practitioner’s Approach” Sixth

Edition, McGraw-Hill, NY, 2005.

[18] C. Ravindranath Pandian, Software Metrics A Guide to planning, Analysis and

Application, India, 2004

[19] Steve McConnell. Software Project Survival Guide. Microsoft Press, 1998.

[20] B W Boehm, C Abts, A W Brown, S Chulani, B K Clark, E Horowitz, R Madachy,

D Reifer, and B Steece. Software Cost Estimation with COCOMO II. Prentice Hall PTR,

2000.

[21] I. Sommerville. Software Engineering, Sixth Edition. Addison-Wesley Publishers

Limited, 2001.

 [22] W.S.Humphrey. Your Date or Mine. In The Watts New Collection. Software

Engineering Institute, Carnegie Mellon University, http://interactive.sei.cmu.edu/, 2001.

[23] Steve McConnell. Rapid development: taming wild software schedules. Microsoft

Press, 1996.

[24] L. Putnam and W Myers. Measures for Excellence. Yourdon Press Computing

Series, 1992.

[25] C. Jones. Applied Software Measurement. McGraw Hill, 1997.

[26] R Park. The Central Equations of the PRICE Software Cost Model. In 4th

COCOMO Users’ Group Meeting, November 1988.

[27] B. Boehm. Software Engineering Economics. Prentice Hall, 1981.

[28] Zia, Z.; Rashid, A.; uz Zaman, K.;, "Software cost estimation for component based

fourth-generation-language software applications," Software, IET , vol.5, no.1, pp.103-

110, February 2011 doi: 10.1049/iet-sen.2010.0027

[29] H. Leung and Z. Fan, Software Cost Estimation. Handbook of software engineering

and knowledge engineering, world scientific publications company, River Edge, NJ, 2002

 71

[30] L.H. Putnam and W. Myers, "Manager: How Solved is the Cost-Estimation

Problem?, published at IEEE Software, 1997, pp.105-108.

[31] Barry Boehm, "Safe and Simple Software Cost Analysis," IEEE Software, vol. 17,

no. 5, pp. 14-17, Sep./Oct. 2000, doi:10.1109/52.877854

[32] http://www.ere.net/2003/07/08/characteristics-of-a-good-metric. Last accessed: May

20, 2011

[33] Mauricio J. Ordonez, Hisham M. Haddad, "The State of Metrics in Software

Industry," itng, Fifth International Conference on Information Technology: New

Generations, pp.453-458, 2008

[34] Evolutionary Software Development, The Research and technical organization

(RTO) of NATO, published in August 2008

[35] Barry W. Boehm, C.M. Abts and E.K. Bailey, "COCOTS: A COTS Software

Integration Lifecycle Cost Model - Model Overview and Preliminary Data Collection

Findings, Proceedings ESCOM-SCOPE, pp. 325-333, 2000

[36] The International Function Point User Group (IFPUG), Function Point Counting

Practices Manual-Releases 4.1, USA, 1999

[37] J. martin, "Software Maintenance: The Problem and Its Solution". Prentice Hall,

1983, pp. 472

[38] http://www.softstarsystems.com/overview.htm. Last accessed: August, 13, 2011

[39] C. Jones, Strengths and Weaknesses of Software Metrics, Software Productivity

Research, Version 5, March 22, 2006

http://www.ere.net/2003/07/08/characteristics-of-a-good-metric
http://www.softstarsystems.com/overview.htm

