

Maximizing Real-Time Distribution of Wind-Electricity to Electrical Thermal Storage Units for
Residential Space Heating

by

Andrew Howard Barnes

Submitted in partial fulfilment of the requirements
for the degree of Master of Applied Science

at

Dalhousie University
Halifax, Nova Scotia

August 2011

© Copyright by Andrew Howard Barnes, 2011

ii

DALHOUSIE UNIVERSITY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

The undersigned hereby certify that they have read and recommend to the Faculty of Graduate

Studies for acceptance a thesis entitled “Maximizing Real-Time Distribution of Wind-Electricity

to Electrical Thermal Storage Units for Residential Space Heating” by Andrew Howard Barnes in

partial fulfilment of the requirements for the degree of Master of Applied Science.

Dated: August 23, 2011

Supervisor: _________________________________

Readers: _________________________________

iii

DALHOUSIE UNIVERSITY

 DATE: August 23, 2011

AUTHOR: Andrew Howard Barnes

TITLE: Maximizing Real-Time Distribution of Wind-Electricity to Electrical
Thermal Storage Units for Residential Space Heating

DEPARTMENT OR SCHOOL: Department of Electrical and Computer Engineering

DEGREE: MASc CONVOCATION: October YEAR: 2011

Permission is herewith granted to Dalhousie University to circulate and to have copied for non-
commercial purposes, at its discretion, the above title upon the request of individuals or
institutions. I understand that my thesis will be electronically available to the public.

The author reserves other publication rights, and neither the thesis nor extensive extracts from
it may be printed or otherwise reproduced without the author’s written permission.

The author attests that permission has been obtained for the use of any copyrighted material
appearing in the thesis (other than the brief excerpts requiring only proper acknowledgement
in scholarly writing), and that all such use is clearly acknowledged.

 Signature of Author

iv

Table of Contents
List of Tables ... viii

List of Figures .. ix

Abstract .. x

Glossary ... xi

Acknowledgements ... xiii

Chapter 1 Introduction .. 1

1.1 Energy Services ... 2

1.2 Electrical Thermal Storage ... 3

1.2.1 ETS Units for Wind Heating ... 4

1.3 Energy Flows, Processes, and Chains ... 5

1.3.1 Flow Diagrams ... 5

1.3.2 Context Diagram ... 6

1.3.3 Behavioral Model .. 7

1.4 Control Systems.. 9

1.5 Objectives ... 9

1.6 Thesis Contents .. 10

Chapter 2 Background ... 11

2.1 Wind as an Energy Source .. 11

2.2 Smart Grid .. 12

2.3 Energy Storage ... 15

2.4 Space Heating ... 16

2.5 Control Systems.. 18

2.6 Communication Protocol ... 18

v

2.6.1 Client-pull .. 19

2.6.2 Server-push ... 23

2.7 Summary .. 25

Chapter 3 System Design ... 26

3.1 The Client-pull Framework ... 26

3.1.1 Database Schema .. 27

3.1.2 Producer Registration and Reporting ... 29

3.1.3 Storage Device Registration .. 31

3.1.4 Storage Device State Request ... 33

3.1.5 Energy Distribution ... 34

3.2 The Server-push Framework .. 35

3.2.1 New Device Registration ... 36

3.2.2 Producer Registration and Reporting ... 38

3.2.3 Power Distribution .. 38

3.3 Residential Modeling and Energy Efficiency .. 39

3.3.1 Degree Days .. 40

3.3.2 Residential Parameters ... 40

3.4 Summary .. 40

Chapter 4 Framework Implementations ... 42

4.1 Communication Protocol ... 42

4.1.1 RESTful Implementation ... 42

4.1.2 Software and Tool Selection ... 43

4.2 Client-pull Implementation .. 44

4.2.1 System Load .. 44

vi

4.2.2 Producer Registration ... 44

4.2.3 Storage Device Registration/State Request .. 45

4.3 Server-push System .. 46

4.3.1 System Load .. 47

4.3.2 Producer Registration ... 47

4.3.3 Storage Device Registration .. 47

4.3.4 Energy Distribution ... 48

4.4 Programming Language and Test Bed ... 49

4.5 Summary .. 50

Chapter 5 Simulation Results and Discussion .. 51

5.1 Jurisdiction Selection .. 51

5.1.1 Surplus Wind-electricity .. 52

5.1.2 Residential Simulation .. 53

5.1.3 Degree Days .. 54

5.1.4 Summerside Residential Parameters .. 54

5.1.5 ETS Model Selection.. 56

5.2 Space Heating Simulations ... 58

5.3 Multi-residence Simulation .. 59

5.4 Full Heating Season Simulation .. 60

5.5 Response Time Analysis ... 63

5.6 24 Hour Analysis ... 65

5.7 Architecture Complexity, Bandwidth and Growth ... 67

5.8 Summary .. 67

Chapter 6 Concluding Remarks.. 69

vii

6.1 Results summary .. 69

6.1.1 Wind-electricity Utilization ... 69

6.1.2 Short Term Latency ... 69

6.1.3 Single Day Performance .. 70

6.1.4 Complexity .. 70

6.2 Recommended Implementation .. 70

6.3 Limitations .. 70

6.4 Future Work ... 71

References .. 73

Appendix A: Database Schema ... 79

Appendix B : Server-push Broadcast Message Format ... 84

Appendix C: Java Source Code .. 86

viii

List of Tables

Table 1: Electricity Sources for Summerside Electric .. 51

Table 2 Degree Days by Month for Summerside 2008 [62] ... 54

Table 3 Energy Intensity by Vintage ... 55

Table 4 Extreme Heating Requirements ... 56

Table 5 ETS Storage Requirements Under Extreme Conditions ... 56

Table 6 ETS System Parameters .. 57

Table 7 Minimum Required Recharge Circuit ... 58

Table 8 Simulated Residences by Vintage .. 60

Table 9 Space Heating Energy Totals by Source ... 63

ix

List of Figures

Figure 1 Flow Diagram for Corn to Ethanol .. 6

Figure 2 Space Heating Energy Flow Diagram .. 7

Figure 3: Distribution of Wind-electricity Generation (February, 2011) 12

Figure 4 Client-pull Framework .. 27

Figure 5 Intermittent Energy Producer Registration .. 31

Figure 6 Client-pull Storage Device Registration .. 33

Figure 7 Client-pull Storage Unit State Request ... 34

Figure 8 Client-pull Energy Distribution .. 35

Figure 9 Server-push Framework .. 36

Figure 10 Server-push Storage Device Registration ... 37

Figure 11 Server-push Energy Allocation .. 39

Figure 12: RESTful Web Service Producer Registration .. 45

Figure 13 RESTful Web Service Storage Device Registration .. 46

Figure 14: Storage Device Registration ... 48

Figure 15 Summerside Energy Flow Diagram ... 52

Figure 16 Surplus Wind-electricity (January 2011) ... 53

Figure 17 Baseboard Heating .. 61

Figure 18 Evening Only Recharge ... 61

Figure 19 Client-pull with Evening Recharge .. 62

Figure 20 Server-push with Evening Recharge ... 62

Figure 21 Client-pull Response Time Analysis .. 64

Figure 22 Server-push Response Time Analysis .. 65

Figure 23 Client-pull 24 Hour Analysis .. 66

Figure 24 Server-push 24 Hour Analysis ... 66

x

Abstract

Wind-electricity is unpredictable in both intensity and duration. This thesis presents the design

and implementation of Client-pull and Server-push architectures for the distribution of wind-

electricity to Electrical Thermal Storage (ETS) units to match the electrical load of the ETS units

with the electricity generation levels.

Wind as an energy source is reviewed and the smart grid concept of a communication layer for

the transmission, production and usage of electricity is explored. ETS operation is explained

and a survey of the Client-pull and Server-push concepts.

These implementations are evaluated on their ability to dispatch wind-electricity over a full

heating season, short term latency, single day performance and complexity.

Client-pull and Server-push architectures have nearly identical performance over a full heating

season and identical performance over the 24 hour period evaluated. The Server-push

architecture has lower short-term latency but is more complex than the Client-pull.

xi

Glossary

Anthropogenic: Caused or produced by humans.

API: Application Programming Interface. A software interface which allows two applications to
exchange information using a predefined set of functions and specifications.

GET: An HTTP method used to request information from the server without changing the
server state.

IDE: Integrated Development Environment. A an application designed for software
development which includes a source code editor, compiler, debugger and tools.

MyQSL: An open source relational database management system.
POST: An HTTP method that passes data to the server for processing. This may result in the
creation or updating of an existing resource. The data is included in the body of the request.

PUT: An HTTP method that uploads a representation of a resource.

SQL: Structured Query Language. A database computer declarative language designed for
managing data in relational database management systems.

UDP: User Datagram Protocol. With UDP, computer applications can send messages, in this
case referred to as datagrams, to other hosts on an Internet Protocol (IP) network without
requiring prior communications to set up special transmission channels or data paths. 3

checksum: A fixed-size datum computed from an arbitrary block of digital data for the purpose
of detecting accidental errors that may have been introduced during its transmission or
storage. The integrity of the data can be checked at any later time by recalculating the
checksum and comparing it with the stored one. If the checksums match, the data were almost
certainly not altered.

Client-pull: a style of network communication where the initial request for data originates from
the client, and then is responded to by the server.

database table: a set of data elements (values) that is organized using a model of vertical
columns (which are identified by their name) and horizontal rows. A table has a specified
number of columns, but can have any number of rows.

xii

datagram: A basic transfer unit associated with a packet-switched network in which the delivery
arrival time and order are not guaranteed. A datagram consists of header and data areas,
where the header contains information sufficient for routing from the originating equipment to
the destination without relying on prior exchanges between the equipment and the network.
The source and destination addresses as well as a type field are found in the header of a
datagram.

device id: A unique character string consisting of a series of letters and numbers used to
identify a device within the system.

ETS: Electric Thermal Storage. A device which converts electrical energy into thermal energy
and stores the thermal energy in ceramic bricks for later use for space heating.

multicast: The delivery of a message or information to a group of destination computers
simultaneously in a single transmission from the source creating copies automatically in other
network elements.

password: A sequence of characters and numbers that is assigned by a system administrator
that is used in conjunction with a device id to verify the identity of the device communicating
with the system.

RESTful: A web service that is stateless and uses the HTTP POST method to create a resource,
GET to retrieve a resource, PUT to update a resource, and DELETE to delete a resource. It also
exposes directory-like URIs to server resources or web pages.

unicast: the sending of messages to a single network destination identified by a unique address.

Virtual Private Network: A mechanism for providing secure, reliable transport over Internet.
The VPN uses authentication to deny access to unauthorized users, and encryption to prevent
unauthorized users from reading the private network packets.

xiii

Acknowledgements

I would like to express my gratitude to Dr. Larry Hughes for sharing his knowledge,

encouragement, suggestions with me during the preparation of this thesis. Maintaining a full-

time job and family while completing this work proved to be a greater challenge then I had

expected.

My professional work experience prepared me for the technical aspects of my research, but Dr.

Hughes experience in thesis preparation and formal documentation have been invaluable to

me. Finishing this work would not have been possible without Dr. Hughes.

Before this work started I was not keenly aware of energy issues including peak oil, energy

security, renewable power integration, or the smart grid and how these issues will affect our

society during the next twenty years. These issues and many more have been explored under

Prof. Hughes leadership in the Energy Research Group. The contribution that this group has

made to my work should also be acknowledged. I am privileged to have been a member and

hope to continue to be a part of that community after my research has finished.

Finally, I would like to thank my wife, Nancy Phalen. She has been a constant supporter

through good times and bad. Her encouragement and understanding have allowed me to

complete my studies.

1

Chapter 1 Introduction

The world is entering a period of climate change due to increased concentrations of CO2 in the

atmosphere from anthropogenic sources. Significant changes in surface temperature, rainfall,

and sea level have been determined to be largely irreversible for more than 1000 years even if

CO2 emission were to stop [1]. Further increases in CO2 levels beyond the current level of

nearly 385 parts per million by volume are expected to increase sea level and dry season rainfall

reductions in some areas over the next millennium [1]. CO2 emissions are also affecting our

oceans; some emissions into the atmosphere are absorbed by the oceans and combine with

water (H2O) to form carbonic acid (H2CO3). This affects the calcium carbonate saturation states,

which impacts shell-forming marine organisms from plankton to benthic mollusks,

echinoderms, and corals [2].

Energy security, the access to available and affordable energy sources, is also becoming a

recognized issue for the three basic energy services: transportation, heating and cooling, and

on-demand electricity. The energy needs of these services are largely met by oil, coal, natural

gas or biomass, all of which are sources of CO2 emissions and have recently been subject to

price volatility. The situation is summed up in the executive summary of the World Energy

Outlook 2008, “The world’s energy system is at a crossroads. Current global trends in energy

supply and consumption are patently unsustainable — environmentally, economically, socially.

But that can — and must — be altered; there’s still time to change the road we’re on. It is not

an exaggeration to claim that the future of human prosperity depends on how successfully we

tackle the two central energy challenges facing us today: securing the supply of reliable and

affordable energy; and effecting a rapid transformation to a low-carbon, efficient and

environmentally benign system of energy supply. What is needed is nothing short of an energy

revolution….” [3].

Mitigating climate change while maintaining energy security presents a significant challenge to

how we produce and use energy. During the UN conference on climate change in Copenhagen

in 2009, the Copenhagen Accord set non-binding objectives to limit the increase in global

temperature to two degrees Celsius (2°C) above pre-industrial levels. Commitments made by

2

members of the accord, even if fully implemented, are expected to be insufficient to meet the

target of a 2°C rise in global temperature [4].

The global demand for electricity is expected to grow at a rate of 2.2% per year between 2008

and 2035 [4]. This increase is expected to be met with increasing use of both renewable and

non-renewable energy sources. Under the New Policies Scenario of the Copenhagen Accord,

renewable energy sources are expected to increase their share of global electricity production

from 19% in 2008 to nearly 33% by 2035, with the increase coming largely from wind and hydro

electricity [4]. To meet the 2°C rise in global temperature, the share of electricity production by

renewable technologies would have to increase to 45% of global electricity production by 2035

[4].

Many jurisdictions are increasing their supply of renewable energy sources, most notably wind,

in an effort to increase energy security and reduce green house gas emissions. Wind generated

energy is renewable, environmentally friendly, and has a low-carbon footprint[5]. These factors

contribute to making wind the fastest growing form of energy worldwide [6]. Despite its

growth, one of wind’s major drawbacks is intermittency [7]. At times electricity from a network

of wind turbines located in the same geographical area (often referred to as a wind farm) may

be produced in abundance, possibly exceeding demand. When this occurs, the excess wind

electricity must be stored for later use, sold to another district, or left unused. On the other

hand, when insufficient wind electricity is available, the shortfall needs to be met from rapid

response generation equipment such as gas turbines or local hydro power, or purchased from

other jurisdictions. Under ideal circumstances, the wind generated electricity would match the

energy demand. These facts make wind not suitable for on-demand electricity usage without a

mechanism to manage its intermittency. A more efficient way to use wind generated electricity

is to apply it to another basic energy service that can take advantage of its intermittent nature

to and reduce its CO2 footprint for that service and increase energy security.

1.1 Energy Services

Energy usage can be divided into three services; on-demand electricity, heating and cooling,

and transportation.

3

On-demand electricity is available the instant the service is needed. Examples of on-demand

energy usage would be turning on a light switch, a TV, or an electric oven. Any delay in

providing the electricity for on-demand use would be considered unacceptable. This energy

service is always present regardless of the time of year.

The heating and cooling service is seasonal with the mix of energy used for heating or cooling

depending on latitude. In northern latitudes, the heating service is dominant but these changes

to cooling at latitudes near the equator. During periods of extreme cold or heat, the energy

used for heating or cooling can place significant demand peaks on the electricity provider. The

electricity provider must have sufficient generation capacity to meet these extreme energy

demands or risk blackouts.

Transportation services include the movement of people and goods by airplanes, trains, ships,

and automobiles. These forms of transportation typically use energy in the form of electricity

or refined petroleum. Air transportation uses refined petroleum products in the form of jet

fuel. Many trains use diesel fuel, but the use of electric trains is increasing. Subway systems

typically use electricity for propulsion. The vast majority of automobiles use refined petroleum

in the form of either gas or diesel as a fuel source. The use of electric cars is increasing and is

seen as the next logical step in reducing the carbon dioxide produced by automobiles. Electric

vehicles are also seen as an answer to the expected increase in price of gasoline as oil reserves

decline.

1.2 Electrical Thermal Storage

Electrical Thermal Storage units (ETS) provide a mechanism to convert off-peak electrical

energy into thermal energy for later use [8]. These units typically recharge during the overnight

hours (such as 11pm to 7am) and use ceramic bricks which are heated up to about 800°C by

electrical heating elements to store thermal energy [9]. The stored thermal energy is recovered

for space heating by circulating air through the ceramic bricks then distributed to the house

through a heating system designed to heat an entire home. Smaller units can be put directly

into a room to heat a single area. Dual-purpose units are also available which provide domestic

hot water in addition to space heating [10].

4

This is advantageous for electricity providers because it shifts the electrical demand for space

heating from the daytime hours and early evening hours, when electrical demand is typically

high to the overnight hours when demand is low. During the evening hours the electrical

provider may be producing electricity in abundance. Some forms of electricity production such

as coal-fired generation, or biomass cannot be turned on or off quickly and typically run at

maximum capacity for maximum efficiency. The energy produced from these sources during

the evening hours and kept for spinning reserve (energy that is kept in reserve to meet

unexpected sudden demands in electricity usage) may not be used if demand is low. As an

incentive, producer’s offer customers a reduced off-peak price for the electricity used during

periods of low demand, reducing the customers cost for space heating [11] .

Although this system does provide a mechanism for reducing the peak load seen by producers

during the day-time hours and does reduce the customers cost for space heating, it is not the

only possible application of ETS units. An ETS unit can be turned on at any point during the day

if there is electricity available that requires storage and the ETS unit has unused storage

capacity.

1.2.1 ETS Units for Wind Heating

ETS units are a natural storage medium for storing electrical energy for later use within a

residence. Using ETS units to store energy generated from an intermittent supplier has been

explored by Hughes [12]. This solution to mitigating the intermittence of wind energy balances

the number of ETS units that are recharging to match the amount of intermittent energy being

generated. As the generation levels change, ETS systems are either increase or decrease the

collective load of the ETS systems to match the generation levels. To match generation and

consumption levels, this system requires electrical generation information from the energy

producers, and electrical consumption information from the distributed ETS units. The number

of units available to store intermittent wind energy will also be needed. This information will

need to be collected and processed by a control system that can communicate with the

intermittent energy producers and the ETS systems to match generation and consumption

levels.

5

The technology required to implement a control system for the distribution of intermittent

energy to distributed storage devices such as ETS units exists today but is used to meet

different consumer demands. Broadband internet connections allow for the distribution of

radio and video to multiple customers simultaneously. The online gaming industry uses

broadband internet for real-time multiplayer virtual environments allowing hundreds of players

to interact in real time. Data exchange using broadband internet connections is now common

place through the use of the World Wide Web. Clearly, there are many options for

implementing a control system using existing technologies. The Steffes Corporation has done

preliminary work using ETS units with a broadband control system as a means for load

balancing with limited success [8]. It would appear that it may be possible to develop systems

capable of utilizing intermittent electricity and provide other grid stability control options for

power distributors.

1.3 Energy Flows, Processes, and Chains

Maximizing the use of domestically generated intermittent wind energy is an exercise in

increasing jurisdiction energy security. The modeling of jurisdiction energy security has been

explored by the use of energy flows, process and chains into an energy security framework [13].

Modeling the use of intermittent wind energy from production to end-use for space heating

using this framework using flows, processes and chains will allow the development of the

communication architectures necessary for energy distribution using a logical and systematic

approach.

1.3.1 Flow Diagrams

Flow diagrams were initially used to show the flow of data in a system. In the context of an

energy security model it is used to show the flow of energy within a jurisdiction. The

generation, distribution, usage and storage of energy all provide paths for the flow of energy

within a flow diagram.

Energy inputs are represented as rectangles to define energy inputs of a system. Arrows are

used to show the direction of energy, or its flow. The actions that take place to either change

the state of energy on its way to the destination, or change the levels of energy flowing from

6

the source to the destination are defined as processes. In the context diagram processes are

represented as circles labeled with the name of the process performing the energy state

change. Energy stores are represented as two horizontal lines with the name of the store

between the lines.

For demonstration purposes, Figure 1 shows a flow diagram for the conversion of corn to

ethanol.

Figure 1 Flow Diagram for Corn to Ethanol

 Two types of flow diagrams can be used in an energy security model, context diagrams which

provide an overall picture of the energy distribution flow paths, and a behavioral diagram which

defines the energy states and rules for moving between states.

1.3.2 Context Diagram

In the energy security framework, context diagrams are used to define a jurisdictions energy

system. In the model used in this work, energy is supplied from four different sources:

dispatchable nonrenewable sources such as coal fired generation, dispatchable renewable

sources such as hydro electricity, non-dispatchable renewable sources such as wind, and grid

intertie where energy is imported through the electrical grid from an adjacent jurisdiction. End

uses of energy are also represented by terminators. In the model used in this work, there are

Storage

tank

Ethanol

Corn

Corn field

Refinery

Terminator

Flow

Process

Flow

Store

7

four different end uses of energy in the form of electricity; on-demand electricity such as

lighting, or electrical appliance use, on-demand space heating such as baseboard heating,

storage such as ETS systems, and grid intertie where electrical energy is exported to an adjacent

jurisdiction.

Energy flows from sources to destinations. Figure 2 shows the behavioral model for an arbitrary

jurisdiction use of electricity. Since this work focuses on the use of ETS systems, they have

been separated from on-demand energy usage as a separate end use.

Figure 2 Space Heating Energy Flow Diagram

1.3.3 Behavioral Model

One of the factors that dictate the flow of energy in this model is the time of day. Traditional

ETS evening recharge places an additional load during the evening when the ETS systems are

recharging. The energy required to meet the demand is met by a set of the producers which

supply energy to the grid. The rules which are used to determine which sources are used and at

ETS system

 (Conversion to thermal energy)

Distribution

Dispatchable

nonrenewable

energy source

Dispatchable

renewable energy

source

Intermittent

renewable energy

source

Grid intertie

On-demand

energy

usage

Electricity Electricity Electricity Electricity

Electricity Electricity

8

what level may vary from jurisdiction to jurisdiction and the output capacity of the individual

suppliers. This work focuses on the distribution of wind energy for space heating by redirecting

the energy to ETS units when wind energy is generated above the level required to meet the

on-demand energy needs of a jurisdiction. As a result, the distribution rules will focus on

monitoring the on-demand energy requirements and the generation levels of the energy

producers.

The energy security model framework uses state diagrams for the rules associated with

meeting a jurisdictions energy requirement. This energy security model uses three states to

represent the jurisdiction.

Neutral: In this state the jurisdiction can meet its energy requirements through its own

domestic supply. Demand and generation levels can be adjusted to form a balance that can

be maintained through dispatchable loads and storage. This represents an ideal energy

security state.

Exporting Energy: In this state energy is being produced within the jurisdiction beyond the

demand and storage levels of the jurisdiction. In this state energy is being exported to an

adjacent jurisdiction. This is a less desirable state because domestically generated energy is

not being used within the jurisdiction.

Importing Energy: This state exists when a jurisdiction is incapable of meeting its energy

requirements and must import energy to satisfy the demand. This is the least desirable state.

The connectors between these states represent the rules associated with the energy security

framework. In the context of using ETS units to increase regional energy security the rules can

be summarized as follows, if there is a surplus of wind generated energy after the on-demand

load has been satisfied, a sub-set of the ETS systems will be turned to create a load equal to the

surplus. If there is still a surplus after the recharging requirements of the ETS systems have

been met, the additional power will be distributed to the grid intertie for use by an adjacent

jurisdiction. If the on demand electricity requirements cannot be met by the domestic sources

of energy (both renewable and non-renewable) the shortfall will be met by energy from an

adjacent jurisdiction through the grid intertie.

9

1.4 Control Systems

A control system can follow one of two basic implementation strategies, client-pull, or server-

push. In client-pull, clients initiate the communication with the server and request instructions

from the server. This model is used for web browsers which connect to a web server through

an internet connection and send a command to the server requesting information from the

server, or provider information to the server. The protocol used by the World Wide Web is the

Hypertext Transfer Protocol (HTTP) which is defined by the Internet Engineering Taskforce

through the publication of a Request For Comments (RFCs) document; the most recent

definition of the HTTP protocol is found in RFC 2616 [14] .

In server-push, the server initiates communication with the clients and sends commands to the

clients as a group, or serially. This is used for distributing video and radio over internet

connections. A common server-push technology used to send data to a number of clients

simultaneously is through the use of User Datagram Protocol (UDP). This protocol is also

defined by the Internet Engineering Taskforce with the most recent definition of the UDP

protocol found in RFC 768 [15]. Distributing energy from intermittent sources can be

accomplished using a control system designed using client-pull, server-push, or a combination

of both. The concept of using a data communication layer to the electrical system is known as

part of the Smart Grid.

Smart Grid builds on many of the technologies already used by electric utilities but adds

communication and control capabilities that will optimize the operation of the entire electrical

grid. Smart Grid is also positioned to take advantage of new technologies, such as plug-in hybrid

electric vehicles, various forms of distributed generation, solar energy, smart metering, lighting

management systems, distribution automation, and many more[16].

1.5 Objectives

The objective of this work is to design and test two control systems, one based upon the client-

pull topology and other based upon a server push topology for the optimal distribution of

intermittent wind energy to thermal storage units. These control systems will be compared on

their ability to utilize wind-electricity over a full heating season, on their short term latency

10

when the available wind generated electricity is increased, performance over a single day, and

complexity.

1.6 Thesis Contents

The remainder of this thesis is organized as follows; chapter 2 presents a detailed examination

of ETS units, the Smart Grid concept, and wind as an intermittent energy source. Chapter 3

presents frameworks for two methods for distributing energy from intermittent energy sources

using the Smart Grid concept. Chapter 4 contains detailed sample implementations used for

testing both the client pull and server push frameworks. Chapter 5 contains the results of

testing both approaches showing the strengths and weakness. Chapter 6 summarizes the work

and makes recommendations for further research in this area.

11

Chapter 2 Background

This chapter examines wind as an energy source, energy storage using ETS devices and the

emerging Smart Grid concept as a means to control the distribution and consumption of

electricity. Finally, different methods of implementing a control system using existing

technologies are explored.

2.1 Wind as an Energy Source

Wind turbines convert the kinetic energy of the wind into electrical energy providing a

renewable, fuel-free source of energy that generates no greenhouse gasses. World generation

capacity for wind power reached 159 GW in 2009 with a growth rate of 31.7% [17]. The total

potential for wind power on land and from near-shore has been estimated at 72 TW, but

practical barriers exist making this upper limit unobtainable [18]; however, the estimated global

wind production could reach 1.9 TW by 2020 [17]. Wind is expected to become a replacement

energy source for other fossil based fuels as reserves decline in years to come [19].

Although these statistics are impressive, wind does present challenges as an energy source.

Wind is difficult to forecast and can vary from second to second. The variability of wind speed

varies the energy output. Wind turbines are rated by their maximum output capacity which is

the maximum energy that the wind turbine can provide under optimal conditions. These

optimum conditions occur rarely, making generation capacity not a valid indicator of actual

energy production. The difference between the actual energy produced by a wind turbine and

its rated maximum is known as its capacity factor. Reported capacity factors for wind turbines

are in the range of 20-51% [20]. The actual capacity factor for a wind turbine is location

dependent.

When multiple wind turbines are installed in the same location where wind conditions are

favorable for energy production, the turbines are collectively called a wind farm. Because wind

farm generated electricity output is variable in both duration and intensity, it is non-

dispatchable; that is, it cannot be increased or decreased on demand). When wind electricity is

generated, it must be used or the electricity is wasted.

12

The graph in Figure 3 shows the hourly power generation from the combined wind farms of the

Atlantic Wind Test Site at North Cape, PEI and the Summerside, PEI.

Figure 3: Distribution of Wind-electricity Generation (February, 2011)

This intermittency results in a reduction in efficiency of conventional dispatchable generation

units as output of conventional units is reduced as wind power increases, thereby reducing the

expected emissions benefits of wind power [21]. Intermittency also requires reserves for

regulation at the 1-minute interval, load-following at the 5-minute interval, and operating

reserves at the 10-minute interval to handle wind electricity’s variability [21].

2.2 Smart Grid

Implementing a system that allows loads to know when energy is available will require

communication between the appliance and the energy provider. The concept of adding a

communication layer to the transportation, consumption, and generation of electricity has

commonly become known as the Smart Grid [22]. The Smart Grid is not an entity that can be

tangibly defined. The Smart Grid does not consist of wind turbines, solar panels, or tidal power

projects, but rather the technologies that allow the power generated by those and other more

traditional energy producers to be integrated into a energy grid that allows the optimum use of

intermittent electricity supplies.

0

5

10

15

20

25

0
1

/0
2

/2
0

1
1

0
2

/0
2

/2
0

1
1

0
4

/0
2

/2
0

1
1

0
6

/0
2

/2
0

1
1

0
8

/0
2

/2
0

1
1

0
9

/0
2

/2
0

1
1

1
1

/0
2

/2
0

1
1

1
3

/0
2

/2
0

1
1

1
5

/0
2

/2
0

1
1

1
6

/0
2

/2
0

1
1

1
8

/0
2

/2
0

1
1

2
0

/0
2

/2
0

1
1

2
2

/0
2

/2
0

1
1

2
3

/0
2

/2
0

1
1

2
5

/0
2

/2
0

1
1

2
7

/0
2

/2
0

1
1

M
W

h

Wind-electricity

13

The following objectives are taken from the U.S Department of Energy as objectives for the

smart grid [23]:

Intelligent: Capable of detecting grid overloads and rerouting power to minimize outages.

Capable of responding autonomously when action is required faster than humans can

respond.

Efficient: Capable of meeting increasing customer demand without increasing infrastructure.

Accommodating: Accepting energy from any and all forms of production and integrating any

and all better ideas and technologies such as energy storage as they are market proven and

ready to come online.

Motivating: Enabling end users to decide when and what forms of energy they wish to use

based on their personal preferences using two way communications between consumers

and producers.

Opportunistic: Creating new opportunities and markets by means of its ability to capitalize on

plug-and-play innovation where and wherever appropriate.

Quality Focused: Free of lags, spikes, disturbances, and interruptions.

Resilient: Increasingly resistant to attack and natural disasters as it becomes more

decentralized and reinforced with Smart Grid security protocols.

Green: Slowing the advance of global climate change and offering a genuine path toward

significant environmental improvement.

The development of the smart grid is seen as key to reducing greenhouse gas emissions, energy

independence and lower energy costs by the current United States Administration [24]. What is

also being recognized is that the development of the Smart Grid will require standards for

implementation for manufacturers, and energy producers, as well as infrastructure upgrades to

allow the required two way communication.

The 2007 Energy Independence and Security Act passed in the United States gives “primary

responsibility to coordinate development of a framework that includes protocols and model

standards for information management to achieve interoperability of smart grid devices and

systems…” to the National Institute of Standards and Technology (NSIT) [25]. The eight

priorities set by the NSIT for smart grid development include [26]:

14

 Demand Response and Consumer Energy Efficiency

 Wide-Area Situational Awareness

 Energy Storage

 Electric Transportation

 Advanced Metering Infrastructure

 Distribution Grid Management

 Cyber Security

 Network Communications

The NIST Framework and Roadmap for Smart Grid Interoperability Standards identifies 75

existing standards for the ongoing development of the smart grid and identifies 15 high priority

gaps and harmonization issues which require new or revised standards [26]. These standards

are targeted for completion by early 2011[27]; however, these standards will need to be

adopted by manufacturers. For example, the Society of Automotive Engineers has already

created standards for 220V links between electric vehicles and the grid, but the Nissan Leaf due

later this year uses a proprietary interconnect [28] .

Robert Poor, founder of Blue Dot, a company that offers advice to customer’s on ways they can

save on their energy bills, believes that the transition will come slowly, “It's at least a decade

before this gets to gets into the market in the way it needs to be” [28].

Some initial steps are being taken to move toward a smarter grid. A smarter grid is defined by

the US DOE as offering valuable technologies tools and techniques that can be deployed within

the very near future or are already deployed today to allow the grid to operate more efficiently

with less environmental [23] .

CanmetENERGY believes that the modernization of the electricity networks cannot be

simplified to a single technology, but to a collection of applications each requiring precise

technologies to operate [29]. Some technologies need to be installed at the customer’s home

or business while others target the power company’s network. What is common in every region

is the need to build a communication network or to establish partnerships to manage this

quantity of data [29]. Existing or planned Smart Grid initiatives within Canada include the

15

instillation of Smart Meters in Alberta, British Columbia, Manitoba, Ontario [29], the PowerShift

Atlantic project in New Brunswick which aims to allow utility companies to better understand

how customers will react to smart grid technologies and which electricity loads can be managed

better by real time demand [30] and the Wind and Storage demonstration in a First Nations

Community [31] to name a few.

2.3 Energy Storage

Electrical energy storage has become a topic of interest to both researchers and electricity

providers over the past decade. The United Kingdom Low Carbon Transition Plan [32] includes

energy storage in the list of key elements of a UK smart grid. Most existing energy storage

implementations use large grid scale facilities to store significant volumes of energy that is

produced in access for later return to the electrical grid when needed to provide on demand

electricity. One popular method that is currently in use is pumped storage where during

periods of low electricity demand, electricity is used to pump water from a lower elevation to a

reservoir at a higher elevation creating a height differential. During periods of high demand,

the water is allowed to flow back to the lower elevation through turbines and the generated

electricity is put back onto the electrical grid. In the United States, there are 40 pumped hydro

energy storage stations with a total capacity of nearly 20 GW, with hundreds of more

worldwide in operation with a total capacity of 127 GW [33]. Another method that is proposed

for large scale electrical storage in our energy future is the use of compressed air energy

storage (CAES). CAES is seen as one of the technologies with the highest economic feasibility

for an electrical system with better utilization of fluctuating renewable energy sources [34].

CAES is similar to basic gas turbine (GT) technology, but low-cost electricity is used to compress

air into and underground cavern. During periods of peak demand, the compressed air is heated

and expanded in a gas turbine, producing electricity that is then put back into the electrical

grid. Both of the methods described above provide grid scale storage from a centralized

location. Distributed storage provides an alternative that uses many smaller scale storage

implementations where the stored energy is closer to the end use location. Plug-in electric

vehicles (PEVs) are seen as having significant potential in the future grid as a form of distributed

storage [35], but again, the target for this proposed implementation is in supplementing the

16

need for on-demand electricity. Any large scale use of PEVs as a form of distributed storage

would require agreements between PEV owners and utility providers and the implementation

of a bi-directional communication system, as proposed by the smart grid initiative.

2.4 Space Heating

Electric baseboard heaters are inexpensive, easy to install method for heating a residence. An

electric baseboard heater has an electrical heating element inside a metal housing: when the

heater is turned on an electric current flows through the heating element. The resistance of

the heating turns the electrical energy into thermal energy as the element heats up. The

element then transfers the generated heat to the surrounding air through convection, causing

the air to rise and new colder air to be pulled in from the bottom of the heater. As the hot air

rises, it provides space heating for the room. Baseboard heaters are typically installed under

windows, so that the heater’s rising warm air will counteract falling cool air from the cold

window glass [36]. Because baseboard heaters work on the principal of a resistive load that

converts electrical energy into thermal energy at the time of use, baseboard heaters require a

constant supply of electricity to supply the heating demand that may occur anytime during the

day. The application of wind generated electricity for space heating using electric baseboard

heaters has been explored by Hughes and been shown to be unreliable due to the fact that

generation cannot be expected to follow demand [37].

Electrical thermal storage units are another form of electric heating, but the energy used for

the heating does not require on demand electricity. The ETS units use ceramic bricks which are

heated up to 700°C by electrical heating elements to store thermal energy. The stored thermal

energy is recovered for space heating by circulating air through the device using an electric fan.

A controller is used to regulate the flow of air through the device, transferring the thermal

energy to the circulating air which is then circulated through the home to provide space

heating.

Two types of ETS units are used for space heating: room and central. A room ETS is designed to

provide space heating for a limited number of rooms in a house whereas a central ETS unit is

larger and provides space heating for the entire building. Central ETS units can be sub-divided

into forced hot air that provide space heating only and hydronic systems that can also provide

17

residential hot water [38]. Each ETS unit has a maximum thermal storage capacity that is set by

the manufacturer which will dictate the number of rooms that can be heated by the unit. Most

ETS units operate in stand-alone mode requiring little or no operator control at a defined

maximum output. The normal discharge time is 16 hours with up to eight hours of charge time.

ETS units can discharge heat energy while it is being recharged for the following 16 hour

discharge cycle. A common method for ETS usage today is through the use of time-of-day rates

and smart meters. Under a time-of-day rate, the power utility charges a different rate for

electricity usage depending on when the electricity is used. The smart meter accumulates

energy usage based upon when the energy is used and the customer is billed accordingly. The

goal of this type of rate plan is to modify consumer energy usage by making periods when the

energy demand is low have a lower rate. This lower rate typically occurs during the evening

hours and is therefore given a discounted rate, whereas a premium rate is used for the typical

peak hours of the day [39]. Under this implementation, the smart meter does not need to

know what the ETS unit is doing, it simply records the energy usage when it occurs. The ETS

also does not need to report to the smart meter and can simply operate on a predefined charge

cycle. This implementation is a method of load shifting, the energy required for space heating

is simply taken when demand is low. No effort is made to target specific energy sources to

charge the ETS units.

ETS units can however recharge at anytime and allow for an alternate implementation that

allows for specific energy producers to be used to recharge the ETS units. The communication

scheme envisioned by the development of the Smart Grid can allow for the communication of

information from electricity providers and consumers. Coupling intermittent wind generated

electricity with ETS units provides a dynamic controllable load that can be scaled to match the

level of electricity production. This is a form of distributed storage, but the stored energy is not

directed back to the electrical grid for on-demand use, it is used for another of the energy

services, namely space heating. The feasibility of wind heating has been explored by Hughes

[37] and been shown to have great potential. Implementation of coupling wind heating with

ETS units will require the development of a control system that can distribute the wind energy

to the ETS units.

18

2.5 Control Systems

The topic of control systems is broad a covers a wide range of devices and system architectures.

A control system may be as simple as the darkness setting on a toaster, or as complicated as

the ignition system for the space shuttle. Each of these systems collects data from the

environment and modifies the system to reach a desired outcome. Our investigation of control

systems architecture will be limited to what is needed for controlling ETS units based upon data

reported by one of more wind farms.

This design will be a software based control system. It will require status information from the

ETS units within the district and also have to send operating instruction to the ETS units. Wind

farm generation data will also be needed to accurately dispatch the generated power. The

geographic distance between the ETS units, wind farms, and the control system will require a

communication link to transmit the bi-directional data. The hardware required to collect the

ETS and wind farm data needed by the control system is assumed to exist and that a

mechanism to send the data to the control system is already in place. The format of the data

transmission will also need to be established using a protocol will that will provide data

integrity, security and authentication to block attacks by rogue systems or devices intended to

create grid instability. Finally, a hardware platform will be needed to hold the control system

and associated software modules. The hardware platform must ensure scalability, archived

data integrity, and adequate processor power to minimize system response time.

2.6 Communication Protocol

The communication protocol chosen for the control system is a fundamental aspect of overall

system design. The Open System Interconnection (OSI) model defines a networking framework

for implementing protocols in seven layers [40]. Each layer describes how its portion of the

communication process should function, and how it interfaces to the layers above, below, and

adjacent to it on other systems. The seven layers defined by the OSI model are Application,

Presentation, Session, Transportation, Network, Data Link, and Physical layers. The Application

layer is the highest layer of the OSI and does not provide services to any other layer. It defines

the format and rules used for the transmission of data between applications but how the

19

transmission occurs. The layers beneath the Application layer facilitate the transmission of the

data that the application is seeking with no regard to what the data actually is. This work

evaluates existing Application Layer protocols and their suitability for implementation in a

control system for distributing wind generated electricity to ETS units. The design and

implementation of a custom Application Layer protocol is possible, but may be unnecessary if

proven, well established existing protocols exist that can be used. Two types of existing

Application Layer protocols will be evaluated, Client Pull and Server Push.

2.6.1 Client-pull

In client pull communication, the client device initiates a conversation with the server, and a

reply is sent from the server. The client can pass data to the server through the request,

allowing the server to process the data and respond appropriately. Well established client pull

technologies include TELENT for remote access, HTTP for web page access and S-HTTP which is

used for secure web content and transactions.

2.6.1.1 TELNET Implementation

The TELNET specification can be found in RFC854 [41]. Telnet was intended to provide remote

access to a computer system from a remote terminal (basic key board and screen with no

underlying PC hardware) and no security provisions where provided in the initial standard. It is

still used today in a secure form called SSH-2 (Secure SHell) [42] that provides a security layer to

the standard TELNET protocol. Using this protocol, a client device could connect to a SSH-2

server and login. Once the connection was established, the client could run an application on

the server with command line parameters to pass data to the server. The server side

application would then execute, process the client parameters, and return instructions to the

client in an ASCII format such as XML through the SSH-2 connection. Once the instructions

were received, the client could terminate the connection.

2.6.1.2 Web Implementation

HTTP is used as the Application Layer protocol for web pages. This technology has been proven

to be reliable with a significant body of software written to support its implementation. HTTP

does not provide a security layer, but a modified version of with security is available called

20

SHTTP. SHTTP is often used for secure credit card transactions on the web. Newer

technologies for delivering content to remote systems use Web services as a client pull. A

"Web service" is defined by the W3C (World Wide Web Consortium) as "a software system

designed to support interoperable machine-to-machine interaction over a network. It has an

interface described in a machine-processable format (specifically Web Services Description

Language WSDL). Other systems interact with the Web service in a manner prescribed by its

description using SOAP (Simple Object Access Protocol) messages, typically conveyed using

HTTP with an XML serialization in conjunction with other Web-related standards."[43]

The W3C also states, “We can identify two major classes of Web services, REST-compliant Web

services, in which the primary purpose of the service is to manipulate XML representations of

Web resources using a uniform set of ‘stateless’ operations; and arbitrary Web services, in

which the service may expose an arbitrary set of operations.” [44]

2.6.1.3 RESTful Web Services

Roy Fielding defined the Representational State Transfer (REST) as a style of software

architecture for distributed hypermedia systems such as the World Wide Web in his 2000

doctoral dissertation [45].

REST-style architectures consist of clients and servers. Clients initiate requests to servers;

servers process requests and return appropriate responses. Requests and responses are built

around the transfer of "representations" of "resources". A resource can be essentially any

coherent and meaningful concept that may be addressed. A representation of a resource is

typically a document that captures the current or intended state of a resource.

At any particular time, a client can either be in transition between application states or "at

rest". A client in a rest state is able to interact with its user, but creates no load and consumes

no per-client storage on the set of servers or on the network.

The client begins sending requests when it is ready to make the transition to a new state. While

one or more requests are outstanding, the client is considered to be in transition. The

representation of each application state contains links that may be used when the client

chooses to initiate a new state transition.

21

REST was initially described in the context of HTTP, but is not limited to that protocol. RESTful

architectures can be based on other Application Layer protocols if they already provide a rich

and uniform vocabulary for applications based on the transfer of meaningful representational

state. RESTful applications maximize the use of the pre-existing, well-defined interface and

other built-in capabilities provided by the chosen network protocol, and minimize the addition

of new application-specific features on top of it[46].

A RESTful web service has three defined aspects:

 The URL of the web service (i.e., http://myservice/ets_heating)

 The MIME (Multipurpose Internet Mail Extensions) type of data supported by the web

service

 The set of operations supported by the web service using HTTP methods (e.g., POST, GET,

PUT, or DELETE).

The HTTP specification provides the following guidelines for the use of the POST request:

“The POST method is used to request that the origin server accept the entity enclosed in the

request as a new subordinate of the resource identified by the Request-URI in the Request-Line.

POST is designed to allow a uniform method to cover the following functions:

 Annotation of existing resources;

 Posting a message to a bulletin board, newsgroup, mailing list, or similar group of articles;

 Providing a block of data, such as the result of submitting a form, to a data-handling process;

 Extending a database through an append operation.

Using a POST request also has security implications for the transmitted data. These

implications are explained in section 15.1.3 of the HTTP specification:“Because the source of a

link might be private information or might reveal an otherwise private information source, it is

strongly recommended that the user be able to select whether or not the Referer field is sent.

For example, a browser client could have a toggle switch for browsing openly/anonymously,

which would respectively enable/disable the sending of Referer and From information.

Clients SHOULD NOT include a Referer header field in a (non-secure) HTTP request if the

referring page was transferred with a secure protocol.

22

Authors of services which use the HTTP protocol SHOULD NOT use GET based forms for the

submission of sensitive data, because this will cause this data to be encoded in the Request-

URI. Many existing servers, proxies, and user agents will log the request URI in some place

where it might be visible to third parties. Servers can use POST-based form submission

instead.”[47]:

2.6.1.4 Arbitrary Web Services

Two arbitrary web service protocols have emerged as popular choices by developers. The SOAP

(Simple Object Access Protocol) protocols sit on top of the HTTP protocol and extend its

functionality and JSON (JavaScript Object Notation). Each of these protocols is explained in

brief below.

SOAP. The SOAP specification is currently maintained by the XML (Extensible Markup

Language) Protocol Working Group of the World Wide Web Consortium but was initially

created by Microsoft as an object-access protocol. The official definition of SOAP taken from

the most recent SOAP 1.2 specification [48]:

SOAP is a lightweight protocol intended for exchanging structured information in a
decentralized, distributed environment. SOAP uses XML technologies to define an
extensible messaging framework, which provides a message construct that can be
exchanged over a variety of underlying protocols. The framework has been designed to
be independent of any particular programming model and other implementation specific
semantics.

SOAP has the advantage of allowing two applications to exchange complex data types in a

system and software independent format. XML is highly human readable and can be verified

using a XSD (XML Schema Definition). This comes at the cost of a XML parser to process the

data in the HTTP request. This additional layer will increase the CPU usage along with the

increased bandwidth requirements of sending lengthy XML formatted data.

JSON. JSON is a lightweight text-based open standard designed for human-readable data

interchange. It is derived from the JavaScript programming language for representing simple

data structures and associative arrays, called objects. Despite its relationship to JavaScript, it is

language-independent, with parsers available for virtually every programming language.

23

The JSON format was originally specified by Douglas Crockford, and is described in RFC 4627.

The official Internet media type for JSON is application/json.

The JSON format is often used for serializing and transmitting structured data over a network

connection. It is primarily used to transmit data between a server and web application, serving

as an alternative to XML [49].

2.6.2 Server-push

In a server push technology, the server initiates a conversation with the client. This has the

advantage of additional control by the server on the activities of the clients by instructing the

clients to perform actions by when the server needs the actions to be taken. One disadvantage

of all server push technologies is that the client devices must open a port to receive

communication. This open port represents a possible security vulnerability for an external

program to attack the client and disrupt its operation. Server push technology can come in

three forms, broadcast, multicast, and unicast. Each has its own advantages and disadvantages.

2.6.2.1 Multicast

In multicast, the server sends a command to a subset of the devices within a network. Multicast

has already been applied to internet solutions that distribute television using IP technology

[50]. Implementing Multicast solutions has many challenges which are identified by the

Network Working Group through RFC3170 [51] . An implementation using a multicast solution

would require ETS units to register with the system when storage was available within the ETS

unit. When the ETS unit was completely charged, it would unregister with the system. By

keeping an accurate count of the ETS units that can accept wind generated electricity and the

knowledge of how much electricity an ETS system will consume, the available wind power can

be distributed. Multicast for turning on ETS units could be accomplished by having each ETS

within the system join a VPN (Virtual Private Network) and be assigned and IP address within

the VPN.

The server would send a Multicast message where the number of addresses in the multicast

address range would match the number of ETS units that were required to be turned on. The

multicast message would contain a command to turn on. Another multicast message would be

24

sent to the remaining IP addresses within the VPN telling those ETS units to turn off. Using this

approach, all ETS units can be directed to turn on or off using two multicast messages. The

problem with this approach is that broadcast messages are not guaranteed to be delivered. In

this particular case, it would not be a significant issue. To mitigate the risk of missing a message

from the server, the same message could be sent several times. ETS units that had already

received the message would already be in the correct state. Even if an ETS unit missed a

message, it would take many ETS systems to make a significant impact on grid stability.

2.6.2.2 Broadcast

In a broadcast system, the server sends a command to all devices simultaneously within a

network with no regard to what information the broadcast message contains. Each device

receives the message but what is done with the data contained within the message is handled

at higher levels of the OSI model. Using a broadcast approach would require the development

of a packet that can be delivered to each device within the system that contained enough

generic information to allow each instruct each device to turn on or off. A corresponding

higher level OSI layer driver would also be needed by the storage devices to process this packet

and either turns on or off. Broadcast messages do not have guaranteed delivery. This fact

would also need to be considered in developing a system to distribute intermittent renewable

energy.

2.6.2.3 Unicast

In a unicast approach, the server would be balancing the number of ETS units that are on or off

with the amount of generated wind electricity by sending individual commands to ETS units.

Since the server is communicating with a single device, acknowledgement of the command can

be guaranteed. Care must be taken in this type of implementation that the server has enough

resources to communicate to all the ETS units within the system within a reasonable amount of

time. If there are more ETS units then the server can comfortable handle, additional servers

and a load balancing layer would need to be added to ensure timely communication.

25

2.7 Summary

This chapter has shown that wind power is expected to play an important role in an energy

future that uses increasing amounts of renewable energy. The issue of wind intermittency has

also been shown to be its most challenging obstacle for integration into the existing power grid.

The development of a new “Smart Grid” that uses a variety of technologies to increase the use

and delivery of intermittent renewable energy is currently in development by a number of

governments and will form the backbone of our future energy grid. Finally, the use of existing

internet technologies has been explored for their suitability in developing a system for the

distribution intermittent renewable energy sources. This research into using existing

technologies in a new implementation for power distribution can be considered a “Smart Grid”

activity.

The next chapter will explore the design and implementation of client pull and server push

systems for the distribution of intermittent power to ETS units for residential space heating.

The goal of these implementations is to use all the available wind power for space heating

thereby reducing the carbon intensive non renewable energy sources needed and increase a

jurisdictions energy security.

26

Chapter 3 System Design

This chapter presents the design of both the Server-push and Client-pull systems for the

distribution of variable supplies of wind-electricity for storage in ETS devices. Although this

work focuses on wind and ETS devices, each system is capable of accepting variable supplies of

energy from any source for distribution to any device capable of storing energy for later use.

Modeling of the generation, distribution and use of wind generated energy for space heating is

explored using energy chains to identify the processes, flows, and energy stores. The proposed

implementations have been designed to have similar system architectures to reduce the design,

implementation, and testing cycles for both systems. Frameworks for both implementations

are first presented to show the similarities and differences of the approaches. This is followed

by a detailed discussion of the system component requirements. The strengths and

weaknesses of each system are then discussed.

3.1 The Client-pull Framework

Client-pull was defined in 2.6.1 as a system where client devices initiate a conversation with the

server for the exchange of information. The server in this system has a passive role, only

responding to requests made by the client devices. The framework must be designed to

provide the processes and components necessary to distribute intermittent wind energy to ETS

units when there is a surplus.

Distribution of energy requires accurate information on the current production information

from the energy producers. To provide this information in a client pull framework, each

producer must have a means of transmitting its production information. Each ETS system will

also have operational information that will need to be transmitted for the system to make

distribution decisions. The final requirement for the system is the current system load.

Figure 4 shows a generalized Client-pull framework for the distribution of intermittent wind

energy to ETS devices satisfying the requirements explained above. It includes external sources

of energy. The contribution of the external sources will depend on the on-demand electricity

27

levels in the jurisdiction and the generation level of intermittent wind energy and supplement

any domestic energy shortfall.

Figure 4 Client-pull Framework

The framework shown in Figure 4 has four servers. Each server is designed to handle a specific

task required to implement the Client-pull Framework. These tasks include: producer

registration and reporting, storage device registration, storage device state request, and energy

distribution. Having four independent servers provides server resources to support large

volumes of communication traffic.

The distribution of wind energy requires access to data from the energy producers, the ETS

units, and the current on-demand electricity level. The storage of data for access by distributed

systems is accomplished using a database. Before discussing the processes, the format of the

database used by the system is first explained.

3.1.1 Database Schema

This framework requires that the ETS systems, power producers, and system processes

exchange information. This information is generated and used asynchronously by entities

28

within the system. The information is stored in a system of database tables as it is generated

and read from the tables when it is needed. The tables can be divided into two categories,

input tables that contain data used by the system to distribute energy and archive tables used

to record a history of energy production, usage, and distribution.

A minimum of four input tables are required for the Client-pull framework, each of which is

described below:

Authentication Table: This table holds device id/password pairs for all the devices which can

communicate with the system. To gain access a device must pass a device id and an

assigned password for that device. The use of device id/password pairs is required to

prevent unauthorized system access by rogue systems that may try to introduce instability or

compromise system security.

Storage Unit Table: This table holds a record of the currently allocated energy to each storage

device. This table will have a device id field to identify the device, an energy allocation field

to record the energy allocated to the device, and a time stamp to record when the energy

was allocated. Summing the energy allocation field will indicate the total amount of energy

allocated to storage units.

System Load Table: This table holds a record of the energy currently being used by loads within

the system which are not storage devices. This table will have a device id field to identify the

load, an electrical load field to record the energy being used by the device, and a time stamp

to record when the energy was allocated. Summing the loads will give the total system load

for the district.

Producer Table: This table holds a record of the energy currently being generated by the

energy producers. It requires a device id field to identify the producer, an output field to

record the energy being produced by the device, and a time stamp to record the last time

the record was updated. Summing all the output fields give the total energy being produced

in the district.

The archive tables are used by the system to record historical information on the production of

intermittent energy, the system load, and the state of the ETS systems. This information is

needed for evaluating system performance, new distribution algorithms, and as an archive for

29

debugging in the event of a system failure. This framework uses four tables to archive system

information.

Energy Allocation Table: Each time energy is allocated to a storage device, a record is added to

this table. Each entry in the table records the device ID, the total energy currently being

produced, the minimum and maximum possible recharge rates for the storage device, the

current discharge rate of the storage device, the external temperature, the energy allocated

to the device, a record index, and a timestamp of when the allocation was made.

System Load Archive: Each time a system load reports a change in its energy usage, a record is

added to this table that records the device id, the energy usage, and a time stamp.

Producer Archive: Each time a energy producer reports a change in its energy production, a

record is added to this table that records the device id, the energy production level, and a

timestamp.

Emergency Archive: If an ETS unit becomes completely depleted during the daytime hours it

must draw electricity from the grid to meet the space heating needs of the residence. If this

occurs, the ETS unit writes a record to this table of the ETS device id, the time, and the

energy required. This is used as a debug tool.

These tables are used by processes within the Client-pull framework. The following sections

describe these processes and show the usage of the database tables.

3.1.2 Producer Registration and Reporting

The first process is the reporting and storage of wind energy production levels. Each wind-farm

monitors and reports the current level of energy production to a generation registration server.

This reporting is done using a data communication link that provides encrypted transportation,

authentication, and guaranteed delivery (failure of delivery notification). This update will occur

when either a specified time interval has passed since the last update, or when the production

level has changed by a predetermined amount. A server will authenticate the client and archive

a time stamped record of the production level the producer archive table and update the

record in the producer table for this energy producer for later processing. After the data has

30

been successfully archived, the server will reply to the client with the results of the archiving

operation.

The key aspects of this process and an explanation of why they are needed are given below:

Encrypted transportation: The client will be transmitting a device id/password pair. Without

encryption, this could be compromised by a rogue system and used to report incorrect

production levels leading to grid instability.

Authentication: Without an authentication layer, a rogue system could pose as a wind farm

and report incorrect production levels leading to grid instability.

Guaranteed delivery: The wind farm must ensure that its production data is reaching the

server. If communication fails due to any one of a number of reasons, the wind farm must

retry until communication is reestablished and delivery confirmed. This is to ensure the

server has the most up to date generation data for energy distribution.

Update on Time Interval or Production Level Change: In this system, the intermittent energy

producer is responsible for giving the server up to date production information. If for some

reason the wind farm goes offline, it will not provide generation data to the server. For this

reason, when a wind-farm reports generation data, the time must be recorded. By checking

the time of the last update, the system can decide if the information is accurate enough to

be used. It is also possible for the wind farm not to report production information if there

has been no change in the production levels without a forced time interval update to the

server. For this reason, the energy producer must report production information every time

there is a change in production levels (the actual quantum required for an update would be

jurisdiction dependant) or after a maximum period of time has passed (also jurisdiction

dependant) since the last update. If the interval between the current time and the time of

the last production update is greater than the maximum period allowed between production

level updates, server can assume that the producer is off line and its production information

is unreliable.

If the energy output of the wind farm were to change drastically over a period of time shorter

than the forced update interval, the system would be using inaccurate generation data. Using a

forced update when a predefined production level change has occurred since the last update

31

ensures the system will always have accurate production levels for distribution to storage units.

This process is described by Figure 5.

Start

No

Set timeout value

(current time +delta)

Current time > =

timeout

Production level

change?
No

Delay

Initialize retry counter

Yes

Yes

Server

acknowledged

update

Update server with

current production

level

Retry counter =0

No
Decrement retry

counter

No

Yes

Log communication

failure

Yes

Figure 5 Intermittent Energy Producer Registration

3.1.3 Storage Device Registration

In this system, energy storage devices (ETS units) register with the system. When a device

registers, it must report how much power it can absorb while recharging and its current

charging state. During the evening hours, ETS units may be charging at a nominal rate to reach

full charge by the end of the evening recharge cycle. If the minimal recharge rates of the ETS

systems were ignored during the evening hours, the distribution system would allocate all the

intermittent renewable energy in addition to the minimum recharge rate of the ETS units,

forcing the system to use non-renewable energy sources for space heating. There is also no

guarantee that all storage devices will be the same model, or be made by the same

manufacturer. As a result the maximum recharge rate of each ETS system is needed by the

distribution system to optimize the use of intermittent renewable energy. Registration is done

using a data communication link that provides encrypted transportation, authentication, and

32

guaranteed delivery (failure of delivery notification). Registration occurs at a specified time

interval. A server will authenticate the client and archive a time stamped record of the

registration, current operating state, and maximum recharge rate. This newly added ETS

system will be queued for inclusion in the distribution algorithm during the next distribution

operation. After the data has been successfully archived, the server will reply to the client with

the results of the registration. When devices have been fully recharged they unregister,

removing them from the intermittent energy distribution system.

The encryption, authentication, guaranteed delivery, and registration requirements of storage

device registration are the same as those covered in 3.1.2.

Registration Timeout: As a client pull system, the clients are responsible for providing the

server with accurate, up to date information. If an ETS system were to go offline due to a

power outage or communications link failure, the distribution system would still think the

ETS unit was active. By forcing a maximum time between registrations, the system can

ensure that the registered ETS units are active by checking the current time against the

registration time. Any units that had a registration time beyond the maximum time between

registrations would be assumed to be off line, and not used for power distribution.

The ETS systems must also be intelligent enough to revert back to a standalone operation mode

if communication with the server fails for an extended period of time. The ETS should continue

to attempt to register with the system until the communication link is reestablished. This

process is described in Figure 6.

33

Start

Set timeout value

(current time +delta)

Current time > =

timeout

No

Delay

Initialize retry counter

Yes

Server

acknowledged

registration

Register with server

and pass min, max,

and current recharge

Retry counter =0

No
Decrement retry

counter

No

Yes

Yes

Figure 6 Client-pull Storage Device Registration

3.1.4 Storage Device State Request

The ETS units will use a data communication link that provides encrypted transportation,

authentication, and guaranteed delivery (failure of delivery notification) to periodically request

instructions from a server to set its recharge rate. This service is provided by the state request

server. The ETS device will pass its device id and password to the state request server. The

state request server will then authenticate the ETS against the authentication table. The

registration server then uses the device id that was passed from the ETS system to read the

energy allocation for this ETS system from the storage unit table. The allocation information is

then passed back to the ETS system. Since all ETS units will be communicating with this server,

it may experience high traffic if there are a large number of ETS units registered or if the update

period for receiving instructions is too short.

The encrypted transportation and authentication and guaranteed delivery requirements as the

same as those covered in section 3.1.2, Energy Distribution

34

This process distributes the generated intermittent energy from the registered intermittent

producers to the registered storage units (ETS systems). The distribution algorithm must

account for the energy used during the evening hours for recharging and new units that have

registered since the last energy distribution has been calculated. It should also allow each

registered ETS system equal access to the available energy. The flowchart in Figure 7 describes

the process.

Start

Set timeout value

(current time +delta)

Current time > =

timeout

No

Delay

Initialize retry counter

Yes

Server

acknowledged

update

Request recharge rate

from server
Retry counter =0

No
Decrement retry

counter

No

Yes

Set recharge rate to

min recharge rate

Yes
Set recharge rate to

valuee from server

Figure 7 Client-pull Storage Unit State Request

3.1.5 Energy Distribution

This process does not directly touch any external systems. The data used for the distribution is

extracted from the database input tables and the new distribution information is updated to

the database in the storage units table. An archive of each allocation is stored in the energy

usage table. This process should run whenever there is a change in a producers output, or

when a time interval expires. A flow chart describing the process is shown in Figure 8.

35

Start

END

Get total of system

loads

System load

table

Total production >

total system loads?

Get total energy

production
Producer table

Get total min

recharge from

Storage units

Yes
Storage unit

table

Net production >

total min recharge?
Yes

Dispatchable energy =

net production – min

recharge

Dispatchable

energy > Current

device Max

recharge?

Current device = first

storage device

Current device recharge

rate = current device

Max Recharge rate

Storage unit

table

Dispatchable energy =

Dispatchable energy –

current device recharge

rate

Current device = next

storage device

Current device recharge

rate = Current device

min recharge +

Dispatchable energy

All recharge rates

set?

Yes

 No

 No

Yes

Set all storage devices

to min recharge rates

Storage unit

table
 No

Figure 8 Client-pull Energy Distribution

3.2 The Server-push Framework

Section 2.6.2 introduced Server-push concept where information exchange is initiated by the

server device and delivered to the client devices for processing. This exchange can be initiated

either through a broadcast where all devices receive message sent from the server, multicast

where the message is sent to all the client devices, or a unicast message where the server

initiates a unique conversation with each client. Figure 9 presents a framework for a Server-

push system for the distribution of intermittent wind energy to ETS devices. It includes external

sources of energy. The contribution of the external sources will depend on the on-demand

36

electricity levels in the jurisdiction and the generation level of intermittent wind energy and

supplement any domestic energy shortfall.

Figure 9 Server-push Framework

This implementation differs from the client pull in that after an ETS registers with the system it

joins a Virtual Private Network (VPN) to receive commands from a distribution server. The

commands from the distribution server are delivered using a network broadcast protocol that is

received and decoded by all ETS units simultaneously.

The database tables used in this framework are identical to that in the Client–pull discussed in

3.1.1 This system can be divided into four processes; New device registration, ETS units joining

the VPN, Generation registration/reporting, and power distribution. Each of these processes is

described below.

3.2.1 New Device Registration

An ETS device registers with the system through a registration system similar to the client pull

implementation. ETS units use encrypted authentication and provide the power requirements

of the ETS system during recharge. The server first authenticates the username/password pair,

then checks to see if the device is already registered with the system. If the device is

37

registered, it simply returns acknowledgement that the registration succeeded. If the device is

not already registered, the device is added to the database as a new unit and the reply contains

credentials needed to join a Virtual Private Network used for power distribution, and issued a

Distribution ID used by the distribution server to identify this ETS unit within the VPN. Like the

client pull implementation, ETS units are required to re-register with the system within a

predetermined time window since it last registered. When devices become fully charged, they

would unregister with the system, allowing other ETS systems more access to the available

intermittent energy.

The encrypted transportation, authentication, and guaranteed delivery requirements as the

same as those presented in 3.1.2. The registration timeout requirement is the same as that

presented in 3.1.3. The Flowchart in Figure 10 describes the registration process.

Start

Set timeout value

(current time +delta)

Current time > =

timeout

No

Delay

Initialize retry counter

Yes

Server

acknowledged

registration

Register with server

and pass min, max,

and current recharge

Retry counter =0

No
Decrement retry

counter

No

Yes

Yes

Save distribution ID

from server

Join VPN using

credentials passed

from server.

New Distribution

ID?
Yes

No

Figure 10 Server-push Storage Device Registration

ETS Units Joining the VPN: Upon receiving credentials from the Registration server, the ETS unit

will then join a VPN using the supplied address, username and password. After registration,

38

it then prepares to receive multicast messages from the VPN distribution server for

processing. The VPN must use encrypted transportation for sending information to other

devices within the VPN.

The key aspects of the VPN are authentication and encryption which have already been covered

in 3.1.2.

3.2.2 Producer Registration and Reporting

This process is identical to the one described in the Client-pull implementation in 3.1.2.

3.2.3 Power Distribution

Power distribution in the Server-push implementation shares many of the same aspects as the

power distribution in the client pull system. Power distribution would be calculated the same

way in both systems, but the server push implementation The Distribution server would use the

Distribution IDs issued to the ETS systems during registration to send a broadcast message to

the ETS units within the VPN. This message must be small enough to fit within a single

multicast datagram to reduce system latency and eliminate the additional complexity of

assembling a message from multiple datagrams. The message should contain have an

appended checksum.

Broadcast Message: A broadcast message has the advantage of reaching all devices at virtually

the same time, reducing network traffic and the latency of having each device poll for

operation instructions. Limiting the size of the message to a single multicast datagram

removes the requirement of assembling a command from multiple datagram’s, simplifying

ETS reception.

Checksum: By adding a checksum to the data transmitted in the Multicast packet, the ETS unit

can ensure that the data was not modified during transmission or reception. Packets that

failed to pass the checksum test would be discarded by an ETS system.

The flowchart in Figure 11 shows the process for energy distribution for Server-push.

39

Start

END

Get total of system

loads

System load

table

Total production >

total system loads?

Get total energy

production
Producer table

Get total min

recharge from

Storage units

Yes
Storage unit

table

Net production >

total min recharge?
Yes

Dispatchable energy =

net production – min

recharge

Dispatchable

energy > Current

device Max

recharge?

Current device = first

storage device

Start ID = Current

device ID

Current device recharge

rate = current device

Max Recharge rate

Storage unit

table

Dispatchable energy =

Dispatchable energy –

current device recharge

rate

Current device = next

storage device

Set remaining Devices

to min recharge rate

All recharge rates

set?

Yes No

 No

Yes

Set all storage devices

to min recharge rates

Storage unit

table
 No

Stop ID = Current

device ID

Storage unit

table

Start ID = 0

End ID = 0

Send Broadcast

message (start ID to

End ID turn on, all

others off)

Figure 11 Server-push Energy Allocation

3.3 Residential Modeling and Energy Efficiency

The energy intensity of a residence for space heating will depend on several factors. These

factors include the size of the residence, the desired internal temperature, the external

temperature and the general construction of the home. This section contains an analysis of

these parameters and how they can be used to derive a model for estimating residential space

heating energy usage.

40

3.3.1 Degree Days

Heating degree-days for a given day are the number of Celsius degree that the mean

temperature is below a target temperature. If the temperature is equal to or greater than the

target temperature, then the number will be zero [52]. Degree days are useful in estimating

the energy requirements of a residence based on the temperature difference. To model a

system as accurately as possible degree hours or degree seconds provide a finer time scale.

3.3.2 Residential Parameters

The residential parameters that affect the energy intensity for space heating in a residence can

be determined from The Office of Energy Efficiency for Canada Comprehensive Energy Use

Database. This database provides statistics on the total energy used for space heating by

vintage, the housing stock by vintage, and the floor space by vintage [53]. This allows the

calculation of the Energy Intensity per square meter by vintage using Equation (3.1).

 (3.1)

Dividing the results of Equation (3.1) by the number of degree seconds (degree hours multiplied

by 3600) gives an energy intensity with units of J/(°C sec m2) presented in Equation (3.2)

 (3.2)

The product of the Energy Intensity, the number of heating degrees, the interval of time, and

the residence size gives an estimate of the energy used for space heating for that period of

time.

3.4 Summary

This chapter presented two different frameworks for implementing a control system for the

distribution of intermittent renewable energy using existing technologies applied in a

nontraditional way. The client-pull framework model is taken directly from the implementation

of the World Wide Web and RESTful web services. The Server-push implementation is similar

to the technology used to provide television over the internet. A method to accurately model

41

the residential space heating needs has also been presented. This method could be applied to

any jurisdiction being modeled using the framework implementations. The next chapter

presents an implementation of the frameworks and residential modeling of Summerside PEI.

42

Chapter 4 Framework Implementations

This chapter presents the implementations of the client-pull and server-push frameworks.

From the design discussion in Chapter 3, both require input from the intermittent energy

providers and registration of the energy storage devices when they can store energy and

deregistration when they cannot. The significant difference between both implementations is

in how the energy storage devices are controlled. These implementations run in a simulated

environment but use the system components and protocols defined in this chapter.

The software implementations have been designed to use as much code reuse as possible to

reduce the development and testing cycles and therefore have identical registration

implementations for both the intermittent energy providers and the energy storage devices.

4.1 Communication Protocol

Both implementations use the HTTP protocol when a reply from the server is required by the

storage device or intermittent energy producer. This protocol provides the guaranteed delivery

(or failure notification) required by the design and described in Chapter 3. Security can be

provided by using the SHTTP protocol which uses ordinary HTTP over an encrypted Secure

Sockets Layer (SSL) or Transport Layer Security (TLS) connection. The encryption occurs at a

lower layer of the OSI model and is decrypted to standard HTML before being passed to the

Application Layer. Any system that implements a HTTP protocol can easily be migrated to use

the encrypted HTTPS protocol by changing the server configuration.

4.1.1 RESTful Implementation

The three defined aspects of a RESTful web service were defined in 2.6.1. The first requirement

is easily met through design, while the second enforces a standard form of data transmission;

these implementations will use plain text for transmission. The third requirement limits the

methods used to operate on the transmitted data using the HTTP protocol.

Each transmission from either an energy storage device or an intermittent energy producer

contains a device-id/password pair used for authentication. For compliance as a RESTful web

43

service and follow the recommendations in the HTTP protocol specification all commands sent

to the distribution system will be done using the POST command.

4.1.2 Software and Tool Selection

Web services are provided through the use of web-servers configured to provide data rather

than web pages. These types of web servers are commonly called Application Servers. There

are many commercial Web servers available including Oracle WebLogic 11g Application Server

[54], Microsoft Internet Information Server [55], and IBM WebSphere Application Server [56].

In addition to these commercial products, there are also a number of free application servers

including Apache Tomcat [57], Oracle Glassfish Server [58], WebSphere AS Community Edition

[59], Jetty [60], and JBoss [61] to name a few. Apache Tomcat web server was chosen to

provide the required web services; it uses the Java language to implement servlets that handle

HTTP requests from web clients. Servlets are similar to Java applications, but are executed by

Tomcat to process a request for a web service handled by the Servlet. The Java API implements

a base class for servlets that has default handlers for the defined HTTP commands (GET, PUT,

POST). If a web service implements one or more of these commands, the application developer

overrides the default handler and creates their own method for handling the request. Java

applications (and servlets) can be written using a simple test based editor and compiled using a

command line compiler, but integrated design environments (IDEs) have been created to allow

for much smoother application development and debugging. This work uses the Java Eclipse

IDE for the Web Service application development. The Tomcat Web Server integrates with the

Eclipse IDE to simplify the development and testing cycles of Web Service design.

The protocol requirements of the Client-Pull framework can be completely met using HTTPS.

The Server-Push framework requires a protocol supporting multicast and broadcast to send

commands to the energy storage devices at the same time. The selected protocol to meet this

aspect of the server push implementation is UDP.

Both framework implementations use a data store to hold information from the distribution of

wind energy. These framework implementations use a MyQSL data base as the data store.

MySQL provides an API that allows Java applications to connect, execute SQL commands, and

44

process query replies for a MySQL database. This software API is implemented in a Java library

called JConnector. The MySQL database and JConnector are both available for free download

from www.mysql.com. A detailed description of the tables used in these implementations can

be found in Appendix A.

4.2 Client-pull Implementation

This section provides implementation details on how the tables described in Appendix A are

used to implement a Client-Pull architecture based on the framework described in Chapter 3.1

4.2.1 System Load

The system requires information of the current system load to determine if there is surplus

energy to allocate to the storage devices. The system load in this simulated environment is

implemented as a object oriented software construct call a class. A class is used in object

oriented programming to implement the state and behavior of an entity. In this case, the class

models the behavior of the system load by reading the data stored in the Wind Data Table

based upon the current time as seen by the simulated environment to update its state, which is

the system load in kWh. Upon updating its state by reading new data from the Wind Data

Table, the class connects to the database and creates a new record in the System Load Table if

one does not exist. If a record for this load is already present, it simply updates the records

value. In the simulated environment, a servlet was not used to register the system load

because the additional HTTP traffic on a single PC simulating the entire environment including

the ETS unit, web server, and database was found to make the simulation run excessively slow.

4.2.2 Producer Registration

Intermittent energy producers register with the system to allow the energy they produce to be

distributed to the registered storage devices. The framework presented in section 3.1.2

describes how these requirements can be met using a RESTful web service.

1
 A system that models the framework in Chapter 3 was implemented but due to the processing power available

on a single PC, it was found that it was necessary to simplify simulation. The implementation presented combines
some aspects of the framework but leaves the intent of a client-pull system intact. Only two servlets are used, one
for producer registration and one for storage devices that combines the energy distribution and registration for
storage units.

http://www.mysql.com/

45

The flowchart in Figure 12 describes the implementation of a RESTful web service Servlet for

producer. For clarity, some aspects of the source code such as error and range checking have

been omitted from the flowchart.

Start

Read HTML

payload data

Get the password

for this device ID
Authentication

table

Passwords

match?

Format an invalid

login reply

Producer

deregistering?

Producer table

Delete Producer

from Producer

table

Format a Producer

deregistered reply
YES

NO

YES

NO

Producer

already

registered?

Producer table

Update producer

output
YES

Register Producer
Format producer

updated reply
Producer table

NO

Format Device

Registered Reply

Send reply to

Energy Producer

END

Figure 12: RESTful Web Service Producer Registration

4.2.3 Storage Device Registration/State Request

This servlet combines the distribution and registration servlets for storage devices. This

implementation does not use device authentication to decrease the time required to respond

to a storage device. An operational system would require the authentication step, but because

we are simulating and not performing a security audit of the system it can be bypassed.

46

Figure 13 presents a flowchart that implements the storage Device Registration/State Request

servlet. For clarity, some aspects of the source code such as error and range checking have

been omitted from the flowchart.

Start

Read HTML

payload data

YES
Surplus wind

energy?

Assign minimum

recharge rate
NO

Format storage

device reply

END

Get the wind

energy being

produced

Get the wind

energy allocated to

all storage units

Producer table

Storage unit

table

Get the system

load

System loads

table

Get the energy

previously

allocated to this

storage unit

Storage unit

table

Record storage

unit parameters in

energy usage

table

Energy Usage

Table

Assign maximum

possible recharge

rate

Send reply to

storage device

Figure 13 RESTful Web Service Storage Device Registration

4.3 Server-push System

This section provides implementation details on how the tables described previously are used

to implement a Server-Push system based on the framework described in Chapter 3.2

2
 As with Client-Pull, the limitations of using a single PC to model the entire system forced some redesign of the

framework but the spirit of the server-push system was preserved. In the framework defined in chapter 3, all
storage devices monitor the same port for a command sent by the server that contains a packet of data specifying
who should be on and who should be off. However, on a single PC it is not possible to bind multiple threads to a
single port. As a result, an intermediate process was used that monitored the port for commands sent from the

47

4.3.1 System Load

The system load is simulated using the same object oriented class defined for the Server-Push

implementation in section 4.2.1.

4.3.2 Producer Registration

The energy producers in the Server-Push implementation report their energy production levels

identically to the method presented in section 4.2.2.

4.3.3 Storage Device Registration

Storage devices are required to register with the system to be included in the distribution of

intermittent energy. In the Server-Push implementation, a storage device is returned a

distribution ID when it registers with the server. This distribution ID is a unique ID allocated to

a single storage device. This number is assigned incrementally with the first device to register

begin assigned ID 1, the second device ID 2 and so on. This allows the server to identify a range

of storage devices that should act on a packet containing command instructions by specifying a

range of ID’s. During device registration, operational parameters are passed from the storage

device to the server. Devices continually register with the server on a periodic basis, or when

their operational parameters have been changed by a command sent by the server. If a device

has previously registered with the server, it is returned the distribution ID that has been

previously assigned.

This is implemented as a servlet that runs on the web server associated with the system. A flow

chart describing its operation is shown in Figure 14.

distribution process, then serially sent the command to the storage units which were modeled as application
threads.

48

Start

Read HTML

payload data

END

Authenticate

Device ID/

password pair

Authentication

table

Get Assigned

distribution ID
Device table

Return Distribution

ID to storage

device

Authentication

success
NO

Assign invalid

distribution ID

Distribution ID

previously assigned
NO

Add new device to

Device table with

current operating

parameters

Device table

Get newly

assigned

distribution ID

Update Device

table with current

operating

parameters for this

device

Device table

Figure 14: Storage Device Registration

For clarity, some aspects such as error and range checking have been omitted from the

flowchart.

4.3.4 Energy Distribution

Energy distribution in the Server-Push architecture uses a broadcast message sent to all ETS

devices simultaneously using UDP. The full implementation of this framework requires a

security layer for protection from rogue computers that attempt to introduce grid instability.

The system presented in this work does not include the security layer since the increased

processing power required was not available in a single PC modeling an entire system.

Broadcast Message

A Broadcast message has the advantage of reaching all devices at virtually the same time,

reducing network traffic and the latency of having each device poll for operation instructions.

49

Limiting the size of the message to a single multicast datagram removes the requirement of

assembling a command from multiple datagrams, simplifying ETS reception. If a broadcast

message is missed by a client due to network delivery failure, or checksum failure, the ETS

device will take no action and remain in its current state. This will introduce an error in the

distribution of energy if the state should have changed but did not. Section 3.2.1 the Server-

push framework discussion enforced a rule where ETS devices must re-register with the system

after a predetermined amount of time. The state of the ETS device during re-registration could

then be checked against the desired state. If the states were found not to match, the server

could include an instruction to set the state of the ETS in its reply. This was not implemented

because failure to receive a datagram was not part of the simulation.

The format of the broadcast message packet can be found in Appendix B.

4.4 Programming Language and Test Bed

The Client-pull and Server-push servlets were written in Java and implemented on the Tomcat

Apache Web server. This was chosen due to budgetary constraints and the wealth of

information available for developing servlets using Apache Tomcat. These applets were

developed using the Eclipse IDE. Eclipse was chosen because it integrates easily with Apache

Tomcat for the development of servlets.

An application was written in Java for testing the Client-pull and Server-push architectures. The

Eclipse IDE played a part in choosing Java as the language for the test application. Eclipse

projects can contain both servlets that can be deployed to Apache Tomcat directly from the IDE

and java applications that can run on the development machine, both of which can be

debugged in the IDE simultaneously. Java was also a language which I had limited exposure and

I used this as an opportunity to gain experience in using it for both applications and servlets.

Java is an object oriented language. This allowed the wind farms, ETS devices, system load, and

wind distributor to be simulated as instances of classes that modeled the elements. Multiple

wind farms were different instances of the same wind farm class. The different vintages of

residences were modeled as parameters in instances of an ETS device class. These instances

were instantiated by a test application also written in java that allowed the number of

50

residences based upon vintage to be defined by the user. Two versions of the test application

were developed, one for the Client-pull architecture and one for the Server-push architecture.

The Java source code for the servlets, test bed, and device classes can be found in Appendix C.

4.5 Summary

This chapter presented the implementation of a client pull and server push system for the

distribution of intermittent wind energy based on the frameworks described in chapter 3.

These implementations were subject to the limitations imposed by modeling a system with

limited resources. The assumptions made and necessary modifications have been described.

The registration of intermittent energy producers does not need to be limited to wind farms.

Any device that produces intermittent energy could register with the system and allow its

energy production to be distributed to storage units when there is an energy surplus. Storage

units do not need to be limited to ETS systems. Any device capable of storing energy for later

use could potentially register and be allocated energy using the implementations presented. A

method to model the residential space heating needs for a jurisdiction has also been presented.

The following chapter presents the results of simulating the Client-pull and Server-push

implementations using the residential model for Summerside PEI.

51

Chapter 5 Simulation Results and Discussion

This chapter applies the Client-pull and Server-push architectures to a jurisdiction in a simulated

environment to evaluate the performance of both systems over a full year analysis, and how

each system responds to sudden changes in energy production. The jurisdiction being modeled

is first discussed and the ETS systems required by the residences are identified. Next a short

description of the test environment is given. Baseboard and evening recharge heating models

used for comparison purposes.

During the evening hours the normal system load is lower because most people are sleeping

and not working. It should be expected that wind-generated electricity will contribute to a net

surplus condition most often during the evening hours when the electricity demand is low. This

indicates that the Evening Recharge ETS system should use more wind generated energy then

the baseboard system by focusing its energy usage to the period where wind generated energy

is most often contributing to a net surplus energy condition. The Client-pull and Server-push

systems should provide an improvement over the normal Evening Recharge ETS by optimizing

the evening recharge to use as much wind energy as possible during both the day time and

night time hours.

5.1 Jurisdiction Selection

This simulation uses Summerside PEI as the jurisdiction being evaluated. Summerside receives

electricity from the 3 sources listed in Table 1(Larry Hughes, Greg Gaudet Interview. August

2010.). Each wind-farm supplies a varying amount of electricity, while the contract with NB

Power provides a source of on-demand electricity that can be changed (i.e., increased or

decreased, depending upon the wind supply) to meet Summerside’s electricity requirements.

Table 1: Electricity Sources for Summerside Electric

Supplier Type of electricity supply Range

NB Power On-demand, changeable 0 MW to winter-peak
(about 23 MW)

West Cape wind farm Variable 0 MW to 9 MW

Summerside wind farm Variable 0 MW to 12 MW

52

If the wind generated electricity exceeds the on demand electricity requirements, the excess is

sold back to NB power. The energy security context diagram showing the energy flow for

Summerside PEI is shown in Figure 15.

Figure 15 Summerside Energy Flow Diagram

5.1.1 Surplus Wind-electricity

Summerside collects power related metrics including the system load and the wind generation

levels from the North Cape and Summerside wind farms on an hourly basis. This data has been

shared with the Dalhousie Energy Research Group and has been used in this work.

Surplus wind-ectricity is defined in this work as the wind-electricity that is generated in access

to the system load. The surplus wind-electricity can be determined from the Summerside data

by summing the generation levels from the North Cape and Summerside wind farms then

subtracting the system load. If the result is positive it represents surplus wind-electricity that is

currently sold to NB Power at a discounted rate. A negative result requires the import of

ETS system

 (Conversion to thermal

energy)

Distribution

West Cape Wind

farm

Summerside Wind

farm

NB Power

On-demand

energy usage

0-23 MW 0-12MW

0-9 MW

Electricity Electricity

53

electricity from NB power to meet the shortfall between the demand and wind-electricity

levels.

Figure 16 shows the Summerside electricity metrics for January 2011. The System Load shows a

periodic usage curve corresponding to time of day. The Wind Generated-electricity is random

in duration and intensity. The Surplus Wind-electricity has characteristics of both a random and

periodic curve. Surplus Wind-electricity is targeted by the distribution systems to be directed

to the ETS units rather than be sold to NB Power as an energy export. The energy available for

redirection does not contribute significantly to the total energy used by the jurisdiction of

Summerside during the heating season. The available Wind-electricity will vary from

Jurisdiction to Jurisdiction and from year to year. When the system performance is evaluated

the energy available for redirection will have to be taken into consideration.

Figure 16 Surplus Wind-electricity (January 2011)

5.1.2 Residential Simulation

Section 3.3 presented a method to model the residences within a jurisdiction. This section

applies this method to Summerside PEI to determine the parameters required for residential

simulation

0

5000

10000

15000

20000

25000

1
/1

/2
0

1
1

1
/3

/2
0

1
1

1
/5

/2
0

1
1

1
/7

/2
0

1
1

1
/9

/2
0

1
1

1
/1

1
/2

0
1

1
1

/1
3

/2
0

1
1

1
/1

5
/2

0
1

1

1
/1

7
/2

0
1

1
1

/1
9

/2
0

1
1

1
/2

1
/2

0
1

1
1

/2
3

/2
0

1
1

1
/2

6
/2

0
1

1
1

/2
8

/2
0

1
1

1
/3

0
/2

0
1

1

kW
h

Time

System Load

Wind-electricity
Generation

Surplus Wind-
electricity

54

5.1.3 Degree Days

Environment Canada archives the temperature for each hour for selected locations in Canada.

Using this data, Table 2 shows the total number of degree days for Summerside in 2008 for an

internal target temperature of 19°C. The data has been centered on December which is the

middle of a typical heating season.

Table 2 Degree Days by Month for Summerside 2008 [62]

Month Degree hours

July 31.4

August 76.7

September 144.6

October 315.0

November 459.6

December 662.0

January 781.1

February 741.4

March 752.1

April 496.3

May 325.6

June 145.1

5.1.4 Summerside Residential Parameters

In Chapter 3, Equation (3.1) was developed to model the energy usage and Equation (3.2) for

the space heating energy intensity of a residence. These equations are used along with the data

from Table 1 and 2008 historical data from the Office of Energy Efficiency to develop a model

for the residences of Summerside PEI shown in Table 3.

55

Table 3 Energy Intensity by Vintage

 Floor
Space by
Vintage
(million

m2)

Housing
Stock by
Vintage

(thousands)

Energy
Use by
Vintage

(PJ)

Average
home
size
(m2)

Energy
Usage
(GJ/
m2)

Energy
Intensity
(J/°C sec

m2)

Before 1946 1.5 13.4 0.9 110.1 0.600 1.408

1946–1960 0.3 2.7 0.2 128.8 0.667 1.565

1961–1977 0.8 6.5 0.3 125.6 0.375 0.880

1978–1983 0.6 4.7 0.2 122.1 0.333 0.782

1984–1995 1.9 14.6 0.5 132 0.263 0.618

1996–2000 0.8 5.6 0.2 137.6 0.250 0.587

2001–2005 1 7 0.2 147.5 0.200 0.469

2006–2008 0.6 4 0.1 146.1 0.167 0.391

The product of the energy intensity, the number of heating degrees, the interval of time, and

the residence size gives an estimate of the energy used for space heating for that period of

time.

A building’s energy intensity can be used to determine the size of ETS unit needed to meet its

space heating requirements: the higher the intensity, the larger the unit. The coldest recorded

temperature for Summerside PEI was -29.9°C[63]. This value is used to calculate heating

requirements of a residential structure by vintage shown in Table 4 by multiplying the energy

intensity values from Table 3 by a full heating day with in internal temperature of 19°C and an

external temperature of -29.9°C

56

Table 4 Extreme Heating Requirements

Vintage
Heating

kWh

Before 1946 182

1946–1960 237

1961–1977 130

1978–1983 112

1984–1995 96

1996–2000 95

2001–2005 81

2006–2008 67

5.1.5 ETS Model Selection

The following section provides a method for determining the size of ETS model required to

meet the extreme space heating needs of a residence. This requires knowledge of the charge

and discharge cycle used for the ETS system. The storage capacity of the ETS system must be

greater than or equal to the energy required for space heating during the discharge cycle.

During the charge cycle, the ETS system can satisfy the space heating demands of the

residence, and recharge for the following discharge cycle. This analysis uses a 16 hour discharge

cycle and an 8 hour recharge cycle. For a 16 hour discharge, the storage requirements by

vintage are given in Table 5.

Table 5 ETS Storage Requirements Under Extreme Conditions

Vintage
Heating

kWh

Before 1946 122

1946–1960 158

1961–1977 87

1978–1983 75

1984–1995 64

1996–2000 63

2001–2005 52

2006–2008 45

57

The model of ETS required by vintage is found by selecting one with a storage capacity equal to

or greater than the values in Table 5. This analysis uses Comfort-Plus Forced Air ETS systems

built by the Steffes Corporation. These ETS systems can implement different charging input

circuits allowing the ETS to recharge faster. The technical specifications sheets for the Steffes

Comfort-Plus Forced-Air ETS models 4120, 4130, and 4140 give the maximum BTU loss per hour

that can be maintained for different recharge-cycles hours in BTU and the selected recharge

circuit, and storage capacity. This data is summarized below in Table 6.

Table 6 ETS System Parameters [64]

Model 4120 4130 4140

Storage Capacity (kWh) 120 180 240

Charging input (kW) 14 19.2 24.8 28.8 37.2 38.4 45.6

Maximum Maintainable
heat loss
 8 Consecutive charge
hours (kWh/hr)

5.98 8.21 10.02 12.31 14.42 16.41 19.23

 12 Consecutive charge
hours (kWh /hr)

8.97 12.31 13.35 18.46 19.23 24.62 25.64

 18 Consecutive charge
hours (kWh /hr)

13.46 18.46 23.85 27.69 35.77 36.92 38.47

From Table 5 and Table 6, a model 4120 ETS system has sufficient storage capacity to meet the

space heating requirements for residences built after 1960. Residences built before 1960

require between 122kWh and 158kWh of storage capacity. This can be met by a model 4130.

The required charging input can be determined by taking the maximum possible discharge over

a 24-hour period and dividing this by the length of the recharge cycle. Assuming an eight-hour

recharge, the required charging input for each residence by vintage is shown in Table 7.

58

Table 7 Minimum Required Recharge Circuit

Vintage
Total discharge
over 24 hours

(kWh)

Required
recharge circuit

(kW)

Before 1946 182 23

1946–1960 237 30

1961–1977 130 16

1978–1983 112 14

1984–1995 96 12

1996–2000 95 12

2001–2005 81 10

2006–2008 67 8

This represents the minimum recharge circuit by vintage. The recharge circuit selected must be

greater than or equal to this value but in this work the objective is to minimize the export of

wind energy which can be most effectively accomplished by maximizing the ETS’s capacity to

use wind energy when it is available. To maximize this potential, all ETS units in this thesis will

use the maximum recharge circuit defined for the required model.

5.2 Space Heating Simulations

These simulations evaluate the performance of the Client-pull and Server-push space

architectures using Summerside PEI for the Jurisdiction under test. The simulations use two

other forms of space heating for comparison purposes, Baseboard and ETS units which use a

traditional Evening recharge.

5.2.1.1 Baseboard

Baseboard heating was discussed in section 2.4. The availability of wind power and the space

heating needs of a residence are two independent processes. If there is wind generated

electricity available when the space heating demand is present, the simulations assume the

power has been used for space heating. If there is no wind generated electricity available, the

needed energy is imported using the grid intertie.

59

5.2.1.2 Evening recharge

Some jurisdictions use the overnight hours (23:00 to 7:00) which are typically periods of low

electrical demand to recharge the ETS systems[11]. The recharge rate in this model is

calculated by dividing the available energy storage by the time remaining in the eight-hour

recharge cycle plus the discharge rate over the previous hour as shown in Equation (5.1).

 (5.1)

5.2.1.3 Client-pull with Evening Recharge

This is similar to the Evening Recharge implementation in that it will ensure that the ETS is fully

recharged during the overnight hours meet the space heating needs of the residence until the

next recharge cycle. In addition to this minimum recharge rate during the evening hours, the

Client-Pull architecture as described in 4.2 for the distribution of surplus wind generated energy

to ETS devices is implemented.

5.2.1.4 Server-push with Evening Recharge

This model also uses the Evening Recharge implementation to ensure that the ETS is fully

recharged during the evening hours to provide the space heating needs of the residence until

the next recharge cycle. In addition to this minimum recharge rate during the evening hours,

the Server-push architecture as described in 4.3 is implemented to distribute the surplus wind

generated energy when it is available.

5.3 Multi-residence Simulation

This simulation evaluates a total of 60 residences. The number of residences was limited to 60

due to the computer power available; each heating season simulated took 24 hours to

complete. Table 3 contains the number of residences by vintage. The distribution of residences

used in this simulation matches the distribution of residences by vintage for Summerside PEI as

shown in Table 8.

60

Table 8 Simulated Residences by Vintage

Vintage

Housing
Stock by
Vintage

(thousands)
Residences
simulated

Before 1946 13.4 13

1946–1960 2.7 3

1961–1977 6.5 7

1978–1983 4.7 5

1984–1995 14.6 15

1996–2000 5.6 6

2001–2005 7 7

2006–2008 4 4

5.4 Full Heating Season Simulation

This simulation evaluates the energy source used for space heating from September 2010 to

May 2011 for the four different space heating models. Wind generation and load information

was not available for May 2011 so data from May 2010 was used in its place.

Figure 17 to Figure 20 show the energy used by month for baseboard heating, evening only

recharge, Client-pull with evening recharge, and Server-push with evening recharge

respectively. The height of each bar represents the total energy used by the residences with the

blue portion representing the energy that has been obtained from the wind. The red portion

represents the energy obtained from outside Summerside.

61

Figure 17 Baseboard Heating

Figure 18 Evening Only Recharge

0

20

40

60

80

100

120

Sept Oct Nov Dec Jan Feb Mar Apr May

M
W

h

Imported

Wind

0

20

40

60

80

100

120

Sept Oct Nov Dec Jan Feb Mar Apr May

M
W

h

Imported

Wind

62

Figure 19 Client-pull with Evening Recharge

Figure 20 Server-push with Evening Recharge

Although the stacked bar graphs show how variations in the monthly use of wind generated

electricity for space heating, they do not allow for an easy comparison of the different space

heating models. To help clarify the seasonal heating data, the heating season totals by energy

source are shown in Table 9 as percentages.

0

20

40

60

80

100

120

Sept Oct Nov Dec Jan Feb Mar Apr May

M
W

h

Imported

Wind

0

20

40

60

80

100

120

Sept Oct Nov Dec Jan Feb Mar Apr May

M
W

h

Imported

Wind

63

Table 9 Space Heating Energy Totals by Source

Baseboard

Evening
recharge Client-pull Server-push

Wind 19.7% 29.9% 35.0% 34.0%

Imported 80.3% 70.1% 65.0% 66.0%

The Client-pull and Server-push implementations offer an advantage in utilizing domestic wind

generated electricity over the existing evening recharge model for ETS systems and base board

heating. The Client-pull implementation has a slight advantage over Server-push which can be

attributed to the fact that the Client-pull model can set an ETS recharge rate to a fraction of the

ETS unit maximum therefore matching the energy demand with the energy supply. The Server-

push system must use the reported maximum recharge rates of the ETS systems and match as

closely as possible the demand with the existing supply of wind generated energy. These

figures are encouraging given the limited availability of surplus wind-electricity as shown in

Figure 16.

5.5 Response Time Analysis

This analysis explores how quickly each system can respond to a change in the production of

wind energy. In the analysis, the initial state is where there is a surplus of wind energy being

produced, but it can be completely absorbed by the ETS units within the system. Next an

abrupt change in the production of wind energy is introduced which is above the total capacity

that can be absorbed by the ETS units. The simulation tracks the total amount of energy being

used by the ETS units over time and the amount of wind energy being produced.

In the Client Pull implementation, each ETS unit polls the server on an interval to determine its

operating state. The expected behavior of the system to an abrupt change in wind generation

is a nearly linear increase in the total energy being used by the ETS units until the maximum

amount that can be absorbed is reached. The interval for the system to reach this upper limit

should be less than or equal to the interval period used by the ETS units to poll the server. In

this analysis, the interval was set between 30 and 60 seconds. A system of 60 ETS units was

used for the analysis. Only 60 ETS units were used due to the limited computing power

available for the simulation.

64

The results of how the Client Pull system responds to an abrupt change in the production of

wind energy is shown below in Figure 20.

Figure 21 Client-pull Response Time Analysis

Before the transition in the generation of wind energy, all of the available wind energy was

absorbed by the ETS units. After the transition as ETS units polled the server, additional wind

energy was distributed to the ETS units over a period of approximately 1 minute, until all ETS

units were recharging at their maximum rate. This observed behavior matches the expected

behavior. This response time could be reduced by increasing the frequency that the ETS units

request state information from the server, but this would increase network traffic and also

place additional load on the server.

The Server-push implementation was tested against the same energy production profile to

evaluate its response time. Before the transition, it is expected that nearly all (or slightly more)

of the wind energy will be allocated to the ETS units. After the transition, a new distribution

packet will be generated and sent to all ETS units that should allocate the maximum amount of

wind energy almost immediately. A system of 60 ETS units was used for the analysis. Only 60

ETS units were used due to the limited computing power available for the simulation.

The results of how the Server Push system responds to an abrupt change in the production of

wind energy are shown below in Figure 21.

0

500

1000

1500

2000

2500

3000

3500

4000

-2
0

-1
5

-1
0

-5 0 5 1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

kW
h

Time(sec)

Wind Energy

Client-pull

65

Figure 22 Server-push Response Time Analysis

Before the transition, the Server Push system was allocating slightly more energy then was

being produced. This is because the absolute difference between the generated and used

levels was minimized by turning on an additional unit. After the transition, the system

responded within 4 seconds. This delay was due to the processing time required to simulate

the ETS units, send the UDP packet, and handle the responses from the ETS units as they

processed the UDP packets and reported back to the registration server, all being done on the

same PC. The responsiveness of the Server-push system makes it ideal for the implementation

of a load balancing mechanism when used with the surplus storage capacity discussed in 5.4.

5.6 24 Hour Analysis

The graphs in Figure 22 and Figure 23 show the energy allocation for a single residence of each

vintage over a 24 hour period from noon on Feb 26 2011 to noon on Feb 27 2011 in the Client-

pull and Server-push architectures. This period was selected because it has a period during the

day time hours where wind energy is being produced in surplus and periods where there is no

wind power available. Also during the evening hours there is a period where wind is also

generated in surplus. The wind energy uses the right axis while the residences use the left.

0

500

1000

1500

2000

2500

3000

3500

4000

-2
0

-1
5

-1
0

-5 0 5 1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

kW
h

Time(sec)

Wind Energy

Server-push

66

Figure 23 Client-pull 24 Hour Analysis

Figure 24 Server-push 24 Hour Analysis

These two graphs are identical. Since there is more wind energy available then can be used, all

ETS devices are recharging at their maximum rate. It is interesting to note that not all of the

wind energy is being used during the day time hours. This is a result of each ETS unit being fully

charged and simply replenishing the hourly discharged energy needed for space heating and

there not being enough ETS devices to absorb all the available wind energy. After the wind

energy is no longer available at 17:00 all ETS devices stop recharging but begin again at 20:00

0

0.5

1

1.5

2

2.5

3

3.5

4

0

5

10

15

20

25

30

2
/2

6
/2

0
1

1
 1

2
:0

0

2
/2

6
/2

0
1

1
 1

4
:0

0

2
/2

6
/2

0
1

1
 1

6
:0

0

2
/2

6
/2

0
1

1
 1

8
:0

0

2
/2

6
/2

0
1

1
 2

0
:0

0

2
/2

6
/2

0
1

1
 2

2
:0

0

2
/2

7
/2

0
1

1
 0

0
:0

0

2
/2

7
/2

0
1

1
 0

2
:0

0

2
/2

7
/2

0
1

1
 0

4
:0

0

2
/2

7
/2

0
1

1
 0

6
:0

0

2
/2

7
/2

0
1

1
 0

8
:0

0

2
/2

7
/2

0
1

1
 1

0
:0

0

M
W

h

kW
h

Before 1946

1946-1960

1961-1977

1978-1983

1984-1995

1996-2000

2001-2005

2006-2008

Wind energy

0

0.5

1

1.5

2

2.5

3

3.5

4

0

5

10

15

20

25

30

2
/2

6
/2

0
1

1
 1

2
:0

0

2
/2

6
/2

0
1

1
 1

4
:0

0

2
/2

6
/2

0
1

1
 1

6
:0

0

2
/2

6
/2

0
1

1
 1

8
:0

0

2
/2

6
/2

0
1

1
 2

0
:0

0

2
/2

6
/2

0
1

1
 2

2
:0

0

2
/2

7
/2

0
1

1
 0

0
:0

0

2
/2

7
/2

0
1

1
 0

2
:0

0

2
/2

7
/2

0
1

1
 0

4
:0

0

2
/2

7
/2

0
1

1
 0

6
:0

0

2
/2

7
/2

0
1

1
 0

8
:0

0

2
/2

7
/2

0
1

1
 1

0
:0

0

M
W

h

kW
h

Before 1946

1946-1960

1961-1977

1978-1983

1984-1995

1996-2000

2001-2005

2006-2008

Wind energy

67

(three hours before the evening recharge cycle) and quickly recharge then continue to recharge

the hourly discharge until 7:00 the following morning.

5.7 Architecture Complexity, Bandwidth and Growth

The Server-push architecture implementation has a more complex design. Its firmware design

must implement a client for connecting to a VPN, and also implement the UDP protocol. The

network on which the system is deployed must also support sending UDP packets through

routers and switches. This is in addition to the HTTP protocol that is implemented by both

systems.

The increased complexity of the Server-push architecture does however provide an advantage

in bandwidth requirements. The Client-pull system is continually polling the server for system

updates. As the number of ETS units being supported by the system, the bandwidth

requirements will increase. For the Server-push architecture, only one packet which is then

distributed to each storage device is required and only when a change in power distribution is

required. A Server-push architecture should support a larger install base before bandwidth

bottlenecks become a significant issue. This simulation used in this work could only implement

a limited number of storage devices due to the limited hardware and processor power

available.

5.8 Summary

This chapter presented the implementations of the Client Pull and Server Push systems, and an

analysis of the ability of each to effectively use wind energy to minimize energy exports. It also

presented a response time analysis of each system. Each system was seen to have a strength

and a weakness. The Client-pull system utilized of intermittent wind electricity more effectively

then the Server-push system. The Server-push system clearly outperformed the Client-pull

system in responding to changes wind energy production levels.

These observations show that the implementation chosen for a system to distribute wind

generated energy for space heating will depend largely on the goals of the system designers.

An optimum system could also be designed that implemented aspects of both systems by using

broadcast messages to turn units on or off quickly as seen in the Server-push implementation

68

and also use the polling technique seen in the Client-pull system to optimize the use of wind

generated energy.

The emergency recharge database table discussed in section 3.1.1 was intended to record when

an ETS device became completely depleted. This database table contained no records after the

simulations. This indicates that the ETS units selected did not become fully depleted. The

unused storage capacity could be used to increase the use of intermittent wind energy by

developing an algorithm that recharged an ETS system during the evening to a predefined level

that is a fraction of its maximum storage, increasing the storage capacity to be used by

intermittent wind energy generated in the day time hours. Another option would be to use the

additional storage as a mechanism for load balancing.

69

Chapter 6 Concluding Remarks

The objective of this thesis was to develop a system to maximize the distribution and utilization

of intermittent renewable wind energy within a jurisdiction by employing the storage capacity

of ETS units. Two approaches were considered to meet this goal, a Client-pull architecture

based upon using the HTTP protocol where the ETS units would poll a server for operating

instructions and a Server-push architecture where a server would send operating instructions to

all ETS devices simultaneously using a UDP broadcast message to the ETS units though a VPN.

These implementations were chosen because they allowed the use of existing proven

technologies implemented to satisfy the communication requirements of the energy

distribution system.

6.1 Results summary

Section 1.5 outlined the comparison criteria for the Client-pull and Server-push approaches.

The discussion below presents each of these criteria with an analysis of the results.

6.1.1 Wind-electricity Utilization

Both the Client-pull and Server-push architectures differed by only 1% from each other but did

improve the wind-electricity utilization over the traditional ETS recharge. The results were not

conclusive enough to support one being superior over the other and may be due to the limited

amount of surplus wind-electricity available to be distributed as shown in Figure 16. Further

testing using wind data with more surplus wind-electricity may provide a clearer picture of the

differences between the two systems.

6.1.2 Short Term Latency

The Server-push architecture had a significantly faster response time (4 seconds) then the

Client-pull (60 seconds). The actual response time in a distributed network was not evaluated

due to the limitations of the simulation environment being a single PC. The faster response

time of the Server-push does come with a cost. The Server-push implementation does not

provide a mechanism for the server to know that the client received the sent command.

70

6.1.3 Single Day Performance

During the day selected for analysis (Feb 26-27 2011), both the Client-pull and Server-push

architectures distributed wind-electricity identically by accurately distributing the surplus wind-

electricity to ETS units.

6.1.4 Complexity

Both the Client-pull and Server-push architectures used Web SHTTP protocols for registration

and status update. The Client-pull used the same Web SHTTP protocol for communication with

the ETS devices. The Server-push architecture implementation required the additional sending

of UDP datagrams over a VPN for passing operating instructions to the ETS units. This makes

the Server-push architecture the more complex system.

6.2 Recommended Implementation

The selection of one system over the other will depend on the objectives of the jurisdiction.

The simplicity of the Client-pull architecture makes it an easier system to implement in a

jurisdiction then the Server-push which makes it the natural first step in developing a surplus

wind-electricity distribution system. If the goals of the jurisdiction are to be able to quickly pass

operating instructions to ETS units for rapid response, then the additional complexity of the

Server-push architecture may be justified.

6.3 Limitations

This work was done using a simulated environment with all system software running on a single

general purpose PC. This limited the depth to which the system could be tested as follows

 The VPN presented in 3.2.1 was not implemented due to the additional latency and

complexity of implementing it on a single PC.

 Implementation on a single PC restricted the use of a UDP packet for sending operating

instructions in the Server-push architecture because only one process can monitor a port at

a time. A single process UDP monitoring scheme was required which passed the instruction

to the simulated ETS devices allowed this limitation to be mitigated, but not eliminated.

71

 For simplicity, the distribution algorithm in the Server-push architecture always started with

the lowest push id. This does not allow all ETS units equal access to the surplus wind energy.

A scheme that used the ETS units in a form of circular queue, turning on units at the start

and turning them off from the end would be a fairer system, but would be more complex to

design.

 A single PC was not capable of simulating all of the system elements as independent threads,

with each system device connecting and reporting independently. This would have been a

closer approximation to what would happen in a real world environment. System elements

needed to be handled serially to ensure that each was processed.

Many of these limitations could be removed by having multiple PC’s for the server-side

implementation and a network of PC’s to simulate the ETS units running within a VPN. Another

limiting factor in this work was the low level of available surplus wind-electricity as shown in

Figure 16. This obscured the differences of the two systems in evaluating wind-electricity

utilization over a full heating season.

6.4 Future Work

Some interesting observations were made during testing that could lead to further work in this

area. These areas include:

Load Balancing: All ETS units reacted to the Server-push broadcast message in two seconds.

This responsiveness of the Server-push architecture could be exploited to use ETS units in

load balancing. Network latency which may be an issue for load balancing was not

addressed in this work due to the simulation occurring on a single PC.

Thermal Storage Optimization: By using a worst case for determining the thermal storage

requirements of an ETS within a residence there was thermal storage potential that was

underutilized. A recharging algorithm that set an evening recharge thermal storage

maximum as a fraction of the maximum possible by the ETS device based on the expected

temperature for the following day would provide additional storage potential in the ETS unit

to capitalize on more intermittent wind energy during the day time hours if it were to

become available and potentially reduce the level of non-renewable energy required to

recharge the ETS unit during the next evening recharge cycle.

72

Circular Distribution Queue: Designing a circular distribution queue for the Server-push

architecture would allow for a fairer distribution of wind energy to ETS devices.

Multi-framework Implementation: Blending the best aspects of each system (load matching

the energy supply in the Client-pull and low latency of the Server-push) into one

implementation.

73

References

[1] Susan Solomona and et al., "Irreversible climate chage due to carbon dioxide emissions,"
Proceedings of the National Academy of Sciences of the United States of America, pp.
1704-1709, January 2009.

[2] Scott C. Doney, Victoria J. Fabry, and Richard A. Feely, "Ocean Acidification: The Other
CO2 Problem," Annual Review of Marine Science, pp. 169-192, 2009.

[3] International Energy Agency, "World Energy Outlook 2008," 2008.

[4] International Energy Agency, "World Energy Outlook 2010," 2010.

[5] C. Menz Fredric and Vachon Stephan, "The effectiveness of different policy regimes for
promoting wind power: Experiences from the states," Energy Policy, pp. 1786-1796,
September 2006.

[6] World Wind Energy Association, "World Wind Energy report 2009," 2010.

[7] Georg Marsh, "From Intermittent to variable;Can we manage the wind?," Renewable
energy focus, pp. 42-47, September/October 2009.

[8] Tom Steffes, Phone conversation with Tom Steffes regarding ETS units and control, Oct 4,
2010.

[9] South Kentucky Rural Electric Cooperative Corperation. South Kentucky Rural Electric
Cooperative Corperation. [Online]. http://www.skrecc.com/ets.htm [Accessed: 28
October 2010].

[10] Steffes Corperation, Comfort Plus Hydronic Furnace Specifications for 240V units.

[11] Nova Scotia Power. (2010) Electrical Thermal Storage. [Online].
http://www.nspower.ca/en/home/residential/homeheatingproducts/electricalthermalsto
rage/default.aspx [Accessed: 10 December 2010].

[12] Larry Hughes, "Meeting residential space heating demand with wind-generated
electricity," Renewable Energy, vol. 35, no. 8, pp. 1765-1772 , August 2010.

[13] Larry Hughes, A framework for determining and improving the relative energy security of
a jurisdiction’s energy system, 2011.

http://www.skrecc.com/ets.htm
http://www.nspower.ca/en/home/residential/homeheatingproducts/electricalthermalstorage/default.aspx
http://www.nspower.ca/en/home/residential/homeheatingproducts/electricalthermalstorage/default.aspx

74

[14] Internet Working Group. (1999, June) Hypertext Transfer Protocol -- HTTP/1.1. [Online].
http://www.ietf.org/rfc/rfc2616.txt [Accessed: 22 Jan 2011].

[15] Postel J. (1980, August) User Datagram Protocol. [Online].
http://tools.ietf.org/html/rfc768 [Accessed: 29 August 2011].

[16] NEMA. (2001) NEMA The Association of Electrical and medial Imaging Equipment
manufacturers. [Online].
http://www.nema.org/gov/energy/smartgrid/whatIsSmartGrid.cfm [Accessed: 22 March
2011].

[17] World Wind Energy Association, "World Wind Energy Report 2009," Bonn, 2009.

[18] Archer Cristina L. and Jacobson Mark Z., "Evaluation of global wind power," Journal of
Geophysical Research, vol. 110, 2005.

[19] Hannes Weigt, "Germany’s wind energy: The potential for fossil capacity replacement and
cost saving," Applied Energy, vol. 86, no. 10, October 2009.

[20] Nicolas Boccard, "Capacity factor of wind power realized values vs. estimates," Energy
Policy, vol. 37, no. 7, 2009.

[21] M.H. Albadi and E.F. El-Saadany, Overview of wind power intermittency impacts on power
systems, 2010.

[22] Kari Larsen, "Smart grids – A Smart Idea?," renewable energy focus, pp. 62-67, 2009.

[23] U.S Department of Energy, "The Smart Grid: An Introduction," 2008.

[24] Electric Power Research Institute, "Report to NIST on the Smart Grid Interoperability
Standards Roadmap," 2010.

[25] 110th Congress, Energy Independence and Security Act of 2007, 2007.

[26] National Institute of Standards and Technology, NIST Framework and Roadmap for Smart
Grid Interoperability Standards, Release 1.0, 2010, January.

[27] NSIT. (December, 23) NIST & the Smart Grid. [Online].
http://www.nist.gov/smartgrid/nistandsmartgrid.cfm [Accessed: 17 January 2011].

http://www.ietf.org/rfc/rfc2616.txt
http://tools.ietf.org/html/rfc768
http://www.nema.org/gov/energy/smartgrid/whatIsSmartGrid.cfm
http://www.nist.gov/smartgrid/nistandsmartgrid.cfm

75

[28] Rick Merritt. (2010, May) EE Times News and Analysis. [Online].
http://www.eetimes.com/electronics-news/4199756/Smart-grid-standards-expected-by-
mid-2011 [Accessed: 29 September 2010].

[29] David Beauvais, Smart Grid- Activities in Canada, May 3, 2010.

[30] Natural Resources Canada. (2010, July) Natural Resources Canada. [Online].
http://www.nrcan-rncan.gc.ca/media/newcom/2010/201058-eng.php

[31] Cowessess First Nation. Cowessess First Nation Wind Turbine Battery Project. [Online].
http://www.cowessessfn.com/our-departments/economic-development/wind-energy-
project [Accessed: 18 November 2010].

[32] HM Government, "The UK Low Carbon," London, National strategy for climate and energy
2009.

[33] Elizabeth Ingram, "Pumped storage development activity snapshots.," Hydro Review, pp.
12-25, December 2009.

[34] S Van der Linden, "Bulk energy storage potential in the USA, current developments and
future prospects.," Energy, vol. 15, 2008.

[35] Jasna Tomic and Willett Kempton, "Using fleets of electric-drive vehicles for grid support,"
Journal of Power Sources, vol. 168, no. 2, 2007.

[36] BC Hydro. (2010, October20) BC Hydro. [Online].
http://www.bchydro.com/etc/medialib/internet/documents/Power_Smart_FACT_sheets
/FACTS_Electric_Baseboard_Heaters.Par.0001.File.FACTS_electric_baseboard_heaters.pd
f

[37] Larry Hughes, "Meeting residential space heating demand with wind-generated electricity
," Renewable Energy, vol. 35, no. 8, pp. 1765-1772, August 2010.

[38] Steffes Corperation. ETS Off Peak Headting ETS Systems. [Online].
http://www.steffes.com/off-peak-heating/hydronic-furnace.html

[39] Nova Scotia Power. (2010) Nova Scotia Power Website. [Online].
http://www.nspower.ca/en/home/residential/homeheatingproducts/electricalthermalsto
rage/timeofdayrates.aspx [Accessed: 30 September 2010].

http://www.eetimes.com/electronics-news/4199756/Smart-grid-standards-expected-by-mid-2011
http://www.eetimes.com/electronics-news/4199756/Smart-grid-standards-expected-by-mid-2011
http://www.nrcan-rncan.gc.ca/media/newcom/2010/201058-eng.php
http://www.cowessessfn.com/our-departments/economic-development/wind-energy-project
http://www.cowessessfn.com/our-departments/economic-development/wind-energy-project
http://www.bchydro.com/etc/medialib/internet/documents/Power_Smart_FACT_sheets/FACTS_Electric_Baseboard_Heaters.Par.0001.File.FACTS_electric_baseboard_heaters.pdf
http://www.bchydro.com/etc/medialib/internet/documents/Power_Smart_FACT_sheets/FACTS_Electric_Baseboard_Heaters.Par.0001.File.FACTS_electric_baseboard_heaters.pdf
http://www.bchydro.com/etc/medialib/internet/documents/Power_Smart_FACT_sheets/FACTS_Electric_Baseboard_Heaters.Par.0001.File.FACTS_electric_baseboard_heaters.pdf
http://www.steffes.com/off-peak-heating/hydronic-furnace.html
http://www.nspower.ca/en/home/residential/homeheatingproducts/electricalthermalstorage/timeofdayrates.aspx
http://www.nspower.ca/en/home/residential/homeheatingproducts/electricalthermalstorage/timeofdayrates.aspx

76

[40] International Organization for Standardization, ISO/IEC 7498-1:1994, 1994.

[41] J. Postel and J. Reynolds. faws.org. [Online]. http://www.faqs.org/rfcs/rfc854.html
[Accessed: 8 October 2010].

[42] Internet Engineering Task Force. The Secure Shell (SSH) Authentication Protocol. [Online].
http://tools.ietf.org/html/rfc4252 [Accessed: 8 October 2010].

[43] W3C Working Group. (2010) WC3. [Online]. http://www.w3.org/TR/ws-gloss/ [Accessed:
8 October 2010].

[44] W3C Working Group. (2010) wc3. [Online]. http://www.w3.org/TR/ws-arch/#relwwwrest
[Accessed: 8 October 2010].

[45] Roy Thomas, Architectural Styles and the Design of Network-based Software
Architectures, 2000.

[46] (2010, October) Wikipedia. [Online].
http://en.wikipedia.org/wiki/Representational_State_Transfer#cite_note-Fielding-Ch5-0
[Accessed: 8 October 2010].

[47] Network Working Group. (1999, June) Hypertext Transfer Protocol -- HTTP/1.1. [Online].
http://www.w3.org/Protocols/rfc2616/rfc2616.html [Accessed: 26 April 2011].

[48] WC3. (2010) WC3. [Online]. http://www.w3.org/TR/soap12-part1/ [Accessed: 10 October
2010].

[49] D. Crockford. (2006, July) The application/json Media Type for JavaScript Object Notation
(JSON). [Online]. http://www.ietf.org/rfc/rfc4627.txt?number=4627 [Accessed: 17
January 2011].

[50] D. Negru, A. Mehaoua, Y. Hadjadj-aoul, and C. Berthelot, "Dynamic bandwidth allocation
for efficient support of concurrent digital TV and IP multicast services in DVB-T networks,"
Science Direct, vol. 29, no. 6, 2006.

[51] B. Quinn, Celox Networks, and K. Almeroth. (2001) IP Multicast Applications:Challenges
and Solutions. [Online]. http://tools.ietf.org/html/rfc3170 [Accessed: 11 October 2010].

http://www.faqs.org/rfcs/rfc854.html
http://tools.ietf.org/html/rfc4252
http://www.w3.org/TR/ws-gloss/
http://www.w3.org/TR/ws-arch/#relwwwrest
http://en.wikipedia.org/wiki/Representational_State_Transfer#cite_note-Fielding-Ch5-0
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/TR/soap12-part1/
http://www.ietf.org/rfc/rfc4627.txt?number=4627
http://tools.ietf.org/html/rfc3170

77

[52] Environment Canada. (2011, May) National Climate Data and Information Archive.
[Online]. http://climate.weatheroffice.gc.ca/prods_servs/glossary_e.html [Accessed: 18
Feburary 2011].

[53] Natural Resources Canada. (2005, April) Office of Energy Efficiency. [Online].
http://oee.nrcan.gc.ca/corporate/statistics/neud/dpa/comprehensive_tables/ [Accessed:
13 July 2011].

[54] Oracle. Oracle web site. [Online]. 2011 [Accessed: 27 July 2011].

[55] Microsoft Inc. (2011) IIS. [Online]. http://www.iis.net/overview [Accessed: 27 July 2011].

[56] IBM. (2010) IBM Software. [Online]. http://www-
01.ibm.com/software/websphere/?lnk=mhpr# [Accessed: 27 July 2011].

[57] The Apache Software Foundation. (2011) Apache Tomcat. [Online].
http://tomcat.apache.org/ [Accessed: 27 July 2011].

[58] Oracle. Oracle web site. [Online].
http://www.oracle.com/us/products/middleware/application-server/oracle-glassfish-
server/index.html [Accessed: 27 July 2011].

[59] IBM. (2010) IBM web page. [Online]. http://www-
01.ibm.com/software/webservers/appserv/community/ [Accessed: 27 July 2011].

[60] Mort Bay Consulting. (2011) Codehaus web site. [Online]. http://jetty.codehaus.org/jetty/
[Accessed: 27 July 2011].

[61] Redhat. JBoss web site. [Online]. http://www.jboss.org/overview.html [Accessed: 27 July
2011].

[62] Environment Canada. (2011, May) National Climate Data and Information Archive.
[Online].
http://www.climate.weatheroffice.gc.ca/climateData/hourlydata_e.html?Prov=PE&Statio
nID=10800&timeframe=1&cmdB2=Go&cmdB1=Go&Month=12&Day=1&Year=2008&cmd
B2=Go [Accessed: 25 May 2011].

http://climate.weatheroffice.gc.ca/prods_servs/glossary_e.html
http://oee.nrcan.gc.ca/corporate/statistics/neud/dpa/comprehensive_tables/
file:///E:/2011
http://www.iis.net/overview
http://www-01.ibm.com/software/websphere/?lnk=mhpr
http://www-01.ibm.com/software/websphere/?lnk=mhpr
http://tomcat.apache.org/
http://www.oracle.com/us/products/middleware/application-server/oracle-glassfish-server/index.html
http://www.oracle.com/us/products/middleware/application-server/oracle-glassfish-server/index.html
http://www-01.ibm.com/software/webservers/appserv/community/
http://www-01.ibm.com/software/webservers/appserv/community/
http://jetty.codehaus.org/jetty/
http://www.jboss.org/overview.html
http://www.climate.weatheroffice.gc.ca/climateData/hourlydata_e.html?Prov=PE&StationID=10800&timeframe=1&cmdB2=Go&cmdB1=Go&Month=12&Day=1&Year=2008&cmdB2=Go
http://www.climate.weatheroffice.gc.ca/climateData/hourlydata_e.html?Prov=PE&StationID=10800&timeframe=1&cmdB2=Go&cmdB1=Go&Month=12&Day=1&Year=2008&cmdB2=Go
http://www.climate.weatheroffice.gc.ca/climateData/hourlydata_e.html?Prov=PE&StationID=10800&timeframe=1&cmdB2=Go&cmdB1=Go&Month=12&Day=1&Year=2008&cmdB2=Go

78

[63] Environment Canada. (2011, May) Canadian Climate Normals 1971-2000. [Online].
http://www.climate.weatheroffice.gc.ca/climate_normals/results_e.html?stnID=6547&la
ng=e&dCode=1&province=PEI&provBut=Search&month1=0&month2=12 [Accessed: 11
June 2011].

[64] STEFFES Corperation, Technical Data Sheet, Comfort Plus Forced Air Electric Thermal
Storage Heating System Models 4120, 4130, 4140.

http://www.climate.weatheroffice.gc.ca/climate_normals/results_e.html?stnID=6547&lang=e&dCode=1&province=PEI&provBut=Search&month1=0&month2=12
http://www.climate.weatheroffice.gc.ca/climate_normals/results_e.html?stnID=6547&lang=e&dCode=1&province=PEI&provBut=Search&month1=0&month2=12

79

Appendix A: Database Schema

Authentication table

Table name: auth_table

Description: This table is used by the Web Services to authenticate the device connecting to the

system.

Field Name Datatype length description

deviceid char 32 a 32 or less character string that uniquely identifies this device

password char 32 a 32 or less character string used for authentication

Storage units

 Table name: storage_units

Description: This table maintains the list of devices that have registered with the system and

the energy that is currently allocated to that unit.

Field Name Datatype length description

Deviceid char 32 a 32 or less character string that uniquely identifies
this device

Energy_ allocation double 1 The current power allocated to this storage device
(kW)

80

Energy Production

Table name: producers

Description: This table holds the most recent output level for each intermittent power provider

in the system.

Field Name Datatype length description

Deviceid char 32 a 32 or less character string that uniquely identifies this
device

Output_kw double 1 The current power output of the intermittent producer in kW

Emergency Storage

Table name: emergency_storage

Description: This table records when an ETS unit runs out of thermal storage and requires

immediate energy from the grid to meet the space heating needs of the residence.

This was added to ensure that the ETS units selected for a residence were not

undersized and aid in the analysis of the system data. Ideally this table will have no

records.

Field Name Datatype length description

aDateTime Longint 64 bit The time the event occurred in msec since Jan1,
1970

Deviceid char 32 a 32 or less character string that uniquely identifies
this device

ResSize double 1 The size of the residence in m3

EmergencyRecharge double 1 The energy taken from the grid in kWh to meet the
current hours space heating needs

EnergyIntensity double 1 Factor used for determining the energy
requirements of the residence

Output_kw double 1 The current power output of the intermittent
producer in kW

81

System Loads

Table name:System_loads

Description:This table records the system loads for the district for the current hour. This is

needed to determine if and when there is surplus wind energy.

Field Name Datatype length description

Deviceid char 32 a 32 or less character string that uniquely identifies this
load

Electrical_load double 1 The current power consumption of the load in kWh

System data

Table name: wind_data_table

Description: This table contains information parsed from the chronological data provided by

Summerside PEI. This includes the time, system load, external temperature and the

generation levels for two wind farms.

Field Name Datatype length description

aDateString char 32 a 32 or less character string that provides a text version of
the record time.

aDateTime LongInt 64bit The record time in msec since Jan 1 1970

Powerload double 1 The energy used by the system for the current hour in MW

WestCape double 1 Hourly power output from the WestCape wind farm in kW

Summerside double 1 Hourly power output from the WestCape wind farm in kW

Temperature double 1 The external temperature for the current hour in °C

82

Energy statistics

Table name: energy_stats

Description: This is a summary table that records on an hourly basis system performance

metrics used for analysis.

Field Name Datatype length description

aDateTime LongInt 64bit The record time in msec since Jan 1
1970

WindEnergyAvailable double 1 This is the net wind energy available
from the wind farms after the system
loads have been satisified.

EnergyForSpaceHeating double 1 The total energy used for space heating
by all residences for the current hour.

ImportedEnergyForSpaceHeating double 1 The energy that must be imported for
space heating due to insufficient wind
energy.

ExportedWindEneryg double 1 The net excess energy that can be
exported after the system loads and
space heating requirements for all
residences has been met.

EveningHours Integer 1 A field used to simplify analysis. 1=
23:00 to 7:00, 7:00 to 23:00.

aDateString char 32 a 32 or less character string that
provides a text version of the record
time.

RecordIndex Integer 1 Used to record the order in which
records were added.

83

Energy Usage

Table name: energy_usage

Description: This table records when the energy allocated to any storage device in the system

changes. It provides a chronological history of the systems allocation. There is a

significant amount of data in this table related to allocating data. Not all the fields

are populated in the server push implementation due to the time required to

perform the querying and insertion of the additional data.

Field Name Datatype length description

aDateTime LongInt 64bit The record time in msec since Jan 1 1970

Deviceid char 32 a 32 or less character string that uniquely
identifies this device

EnergyProduced double 1 Total intermittent energy produced.

SystemLoad double 1 The system load when the record was written

EnergyAvailable double 1 The net energy available for distribution to
storage devices.

EnergyAllocatedBefore Double 1 The total energy allocated before re-allocation.

EnergyAllocatedToUnit Double 1 The energy allocated to this device during re-
allocation.

MinRecharge Double 1 The minimum recharge for this device when the
record was written

MaxRecharge Double 1 The maxnimum recharge for this device when the
record was written

CurrentRecharge Double 1 The energy allocated to this device during re-
allocation.

LastRecharge Double 1 The recharge rate assigned to this unit previously

CurrentStorage Double 1 The energy stored in the device in kWh.

CurrentDischarge Double 1 The discharge of the storage device in kWh.

ExtTemp Double 1 The external temperature of the residence.

DateString Char 32 A text version of the date and time.

RecordIndex Integer 1 A sequential index for ordering the records in the
table.

84

Appendix B : Server-push Broadcast Message Format

Message format

The Multicast message is structured as shown below

Address Name Type Notes

0x00-0x03 SOH 32UINT value = 0x87654321

0x04-0x07 BTF 32UNIT bytes to follow (including checksum)

0x08-0x0B VERSION 32UINT current version of packet (1)

0x0C-0x0F CMD 32UINT command code

0x10-0x13 STARTID 32UINT start id

0x14-0x17 ENDID 32UNIT end id

0x18-0x1F CHECKSUM 64UNIT Alder 64 bit check sum from SOH to ENDID

This format allows a command to be sent to a range of ETS devices, or a command to be sent to

a single device within the system.

SOH

The Start of Header value simply provides a starting point for the message.

BTF

This allows the size of the command to have a variable length and provides the handler to

determine where the checksum is located in the data stream.

VERSION

As the system develops, the structure of the messages may change. Providing a version

number in the packet allows the system to handle the packet appropriately.

CMD

This is the action to be taken by the ETS system. In the development of this system the

following commands have been defined.

CMD_MULTI_ON = 1; // units within a defined range turn on

CMD_MULTI_OFF = 2; // units within a defined range turn off

CMD_ALL_ON = 3; // all units turn on

CMD_ALL_OFF = 4; // all units turn off

CMD_SINGLE_ON = 5; // the identified unit turns on

CMD_SINGLE_OFF = 6; // the identified unit turns off

CMD_X_MULTI_ON = 7; // units within a defined range turn on, all others turn off

CMD_X_MULTI_OFF = 8; // units within a defined range turn off, all others turn on

85

STARTID

This is the device ID of the first ETS unit that should act on this command. ETS units my act

using this parameter if they are outside of this range, depending on the command issued.

ENDID

This is the device ID of the last ETS unit that should act on this command. ETS units my act using

this parameter if they are outside of this range, depending on the command issued.

CHECKSUM

By adding a checksum to the data transmitted in the Multicast packet, the ETS unit can ensure

that the data was not modified during transmission or reception. Packets that failed to pass the

checksum test would be discarded by an ETS system.

86

Appendix C: Java Source Code

// server-push architecture source

// Each file has been appended into one. Break the files at the comment above the 'package'

keywords

// configuration class

package net.wattbox.config;

/**

 * @author barnes

 * Holds the configuration variables

 *

 * <p>

 * Some system configuration information is spanned across class instances.

 * Rather then have these parameters defined in the class source code for each class,

 * these configuration parameters are stored in the Config class.

 *

 */

public class Config {

 public static final String dBaseName = "jdbc:mysql:///WattBoxPush";

 public static final String dBaseUserName = "root";

 public static final String dBasePassword = "cuc002";

 public static final String DriverClass = "com.mysql.jdbc.Driver";

 public static final double SystemScale = 1.0;

 public static final boolean RealTimeRun = false;

 public static final int TimeIncrement = 1000*60*60; // one hour

 /* 24 hour analysis by vintage start and end*/

 public static final String SimulationStart= "2011-02-26 00:00:00";

 public static final String SimulationEnd = "2011-02-27 13:00:00";

 /* response time analysis start and end*/

 //public static final String SimulationStart= "2010-01-16 22:50:00";// 2010-01-16 22:50:00

WestCape increased to 4000 from 8000 for the response time analysis

 //public static final String SimulationEnd = "2010-01-16 23:15:00";

 /* heating season analysis start and end*/

 //public static final String SimulationStart= "2010-09-01 00:00:00";

 //public static final String SimulationEnd = "2011-05-31 23:00:00";

}

// the SimETS class

package net.wattbox.gui;

import java.net.*;

import java.io.*;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Statement;

import java.text.DateFormat;

import java.text.SimpleDateFormat;

//import java.text.DateFormat;

//import java.text.SimpleDateFormat;

import java.util.*;

import java.util.regex.Pattern;

import net.wattbox.config.Config;

/**

 * Simulates an ETS (Electric Thermal Storage) device

 * @author barnes

 *

 */

public class SimETS implements Comparable<SimETS> {

 final String Digits = "(\\p{Digit}+)";

 final String HexDigits = "(\\p{XDigit}+)";

 // an exponent is 'e' or 'E' followed by an optionally

 // signed decimal integer.

 final String Exp = "[eE][+-]?"+Digits;

 final String fpRegex =

 ("[\\x00-\\x20]*"+ // Optional leading "whitespace"

87

 "[+-]?(" + // Optional sign character

 "NaN|" + // "NaN" string

 "Infinity|" + // "Infinity" string

 // A decimal floating-point string representing a finite positive

 // number without a leading sign has at most five basic pieces:

 // Digits . Digits ExponentPart FloatTypeSuffix

 //

 // Since this method allows integer-only strings as input

 // in addition to strings of floating-point literals, the

 // two sub-patterns below are simplifications of the grammar

 // productions from the Java Language Specification, 2nd

 // edition, section 3.10.2.

 // Digits ._opt Digits_opt ExponentPart_opt FloatTypeSuffix_opt

 "((("+Digits+"(\\.)?("+Digits+"?)("+Exp+")?)|"+

 // . Digits ExponentPart_opt FloatTypeSuffix_opt

 "(\\.("+Digits+")("+Exp+")?)|"+

 // Hexadecimal strings

 "((" +

 // 0[xX] HexDigits ._opt BinaryExponent FloatTypeSuffix_opt

 "(0[xX]" + HexDigits + "(\\.)?)|" +

 // 0[xX] HexDigits_opt . HexDigits BinaryExponent FloatTypeSuffix_opt

 "(0[xX]" + HexDigits + "?(\\.)" + HexDigits + ")" +

 ")[pP][+-]?" + Digits + "))" +

 "[fFdD]?))" +

 "[\\x00-\\x20]*");// Optional trailing "whitespace"

 static final int PacketVersion = 1;

 static final int BTF = 24;

 static final int SOH = 0x87654321;

 static final int CMD_MULTI_ON = 1; // units within a defined range turn on

 static final int CMD_MULTI_OFF = 2; // units within a defined range turn off

 static final int CMD_ALL_ON = 3; // all units turn on

 static final int CMD_ALL_OFF = 4; // all units turn off

 static final int CMD_SINGLE_ON = 5; // the identified unit turns on

 static final int CMD_SINGLE_OFF = 6; // the identified unit turns off

 static final int CMD_X_MULTI_ON = 7; // units within a defined range turn on all

others turn off

 static final int CMD_X_MULTI_OFF = 8; // units within a defined range turn off all

others turn on

 public String DeviceID;

 private String Password;

 private int PushID=-1;

 private double MaxRecharge;

 private double MaxDischarge;

 private double MaxStorage;

 private double CurrentRecharge;

 private double CurrentStorage;

 private double CurrentDischarge;

 private double MinRecharge;

 private double VolumeToHeat;

 private double EnergyIntensity = 1;

 private double TargetTemp;

 private double ExtTemp;

 private Random generator = new Random();

 private long LastTick=0;

 private double PostMaxRecharge = 0;

 private double LastDischarge = 0;

 public double EnergyFromGrid;

 int Port;

 double temperature;

 private GregorianCalendar LocalInit;

88

 private GregorianCalendar VirtualInit;

 private GregorianCalendar EndTime;

 private GregorianCalendar HitServerTime;

 String McastAddr;

 Connection con = null;

 Statement stmt= null;

 ResultSet rs;

 TimeZone zone = TimeZone.getTimeZone("Canada/Atlantic");

 GregorianCalendar HoldCalendar = new GregorianCalendar(zone);

 DateFormat dfm = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

 public GregorianCalendar ETSCalendar;

 boolean TimeToRegister = false;

 int timescale; // this is a scale factor for the timestep

 int timestep; // this is how often the system runs the tick_task

 Timer tick_timer;

 Timer register_timer;

 TimerTask register_task;

 TimerTask tick_task;

 boolean Registered = false;

 /**

 * @return The port monitored for UDP packets

 */

 public int getPort() {

 return Port;

 }

 /**

 * Sets the port monitored for UDP packets

 * @param port the port to be monitored

 */

 public void setPort(int port) {

 Port = port;

 }

 /**

 * @return the Multicast address string used for port monitoring

 */

 public String getMcastAddr() {

 return McastAddr;

 }

 /**

 * Sets the Multicast address string used for port monitoring

 * @param mcastAddr a string in the form xxx.xxx.xxx where x is a number.

 */

 public void setMcastAddr(String mcastAddr) {

 McastAddr = mcastAddr;

 }

 /**

 * Sets the time of the ETS to the passed value

 * @param aTime a long value used to set the ETS time in MSEC since 1970

 */

 public void setETSTime (long aTime)

 {

 ETSCalendar.setTimeInMillis(aTime);

 }

 /**

 * @return The next time the ETS will contact the server in MS since 1970

 */

 public long getHitServerTime()

 {

 return HitServerTime.getTimeInMillis();

 }

89

 /**

 * @return a character string containing the DeviceID

 */

 public String getDeviceID() {

 return DeviceID;

 }

 /**

 * @param deviceID the new deviceID to be used by the ETS

 */

 public void setDeviceID(String deviceID) {

 DeviceID = deviceID;

 }

 /**

 * @return a character string containing the password used for this ETS

 */

 public String getPassword() {

 return Password;

 }

 /**

 * @param password the new password for this device

 */

 public void setPassword(String password) {

 synchronized (this) {

 Password = password;

 }

 }

 /**

 * @return the id (integer value) used to identify this device in UDP commands

 */

 public int getPushID() {

 return PushID;

 }

 /**

 * @param pushID sets the id (integer value) used to identify this device in UDP commands.

 * Normally this value is assigned by the server during registration

 */

 public void setPushID(int pushID) {

 synchronized (this) {

 PushID = pushID;

 }

 }

 /**

 * @return The maximum recharge rate of this ETS

 */

 public double getMaxRecharge() {

 return MaxRecharge;

 }

 /**

 * @param maxRecharge assigns the maximum recharge rate (kWh) of this ETS per hour

 */

 public void setMaxRecharge(double maxRecharge) {

 synchronized (this) {

 MaxRecharge = maxRecharge;

 }

 }

 /**

 * @return the maximum possible discharge (kWh) of this ETS per hour

 */

 public double getMaxDischarge() {

 return MaxDischarge;

 }

 /**

 * @param maxDischarge assigns the maximum possible discharge (kWh) per hour

 */

 public void setMaxDischarge(double maxDischarge) {

90

 synchronized (this) {

 MaxDischarge = maxDischarge;

 }

 }

 /**

 * @return the maximum storage capacity of the ETS in kWh

 */

 public double getMaxStorage() {

 return MaxStorage;

 }

 /**

 * @param maxStorage assigns the maximum possible storage of the ETS in kWh

 */

 public void setMaxStorage(double maxStorage) {

 synchronized (this) {

 MaxStorage = maxStorage;

 }

 }

 /**

 * @return the current recharge rate of the ETS in kWh

 */

 public double getCurrentRecharge() {

 return CurrentRecharge;

 }

 /**

 * @param currentRecharge assigns the current recharge rate of the ETS in kWh

 */

 public void setCurrentRecharge(double currentRecharge) {

 synchronized (this) {

 CurrentRecharge = currentRecharge;

 }

 }

 /**

 * @return the current storage level of the ETS device in kWh

 */

 public double getCurrentStorage() {

 return CurrentStorage;

 }

 /**

 * @param currentStorage assigns the current storage level of the ETS device in kWh

 */

 public void setCurrentStorage(double currentStorage) {

 synchronized (this) {

 CurrentStorage = currentStorage;

 }

 }

 /**

 * @return the current discharge rate of the ETS in kWh

 */

 public double getCurrentDischarge() {

 return CurrentDischarge;

 }

 /**

 * @param currentDischarge

 */

 public void setCurrentDischarge(double currentDischarge) {

 synchronized (this) {

 CurrentDischarge = currentDischarge;

 }

 }

 /**

 * @return the Minimum recharge level required by the ETS device

91

 */

 public double getMinRecharge() {

 return MinRecharge;

 }

 /**

 * @param minRecharge assigns the minimum recharge rate for the ETS

 */

 public void setMinRecharge(double minRecharge) {

 synchronized (this) {

 MinRecharge = minRecharge;

 }

 }

 /**

 * @return the volume of the residence the ETS is heating

 */

 public double getVolumeToHeat() {

 return VolumeToHeat;

 }

 /**

 * @param volumeToHeat sets the volume of the residence the ETS is heating

 */

 public void setVolumeToHeat(double volumeToHeat) {

 synchronized (this) {

 VolumeToHeat = volumeToHeat;

 }

 }

 /**

 * @return the internal target temperature for the residence

 */

 public double getTargetTemp() {

 return TargetTemp;

 }

 /**

 * @param targetTemp assigns the internal target temperature for the residence

 */

 public void setTargetTemp(double targetTemp) {

 synchronized (this) {

 TargetTemp = targetTemp;

 }

 }

 /**

 * @return the external temperature of the residence

 */

 public double getExtTemp() {

 return ExtTemp;

 }

 /**

 * @param extTemp assigns the external temperature of the residence

 */

 public void setExtTemp(double extTemp) {

 synchronized (this) {

 ExtTemp = extTemp;

 }

 }

 /**

 * @param aVal a multiplier used to accelerate time

 */

 public void setTimeScale(int aVal) {

 synchronized (this) {

 timescale = aVal;

 }

 }

92

 /**

 * @return the multiplier used to accelerate time

 */

 public int getTimeScale() {

 return timescale;

 }

 /**

 * @param aVal assigns a discrete time interval used when a tick occurs

 */

 public void setTimeStep(int aVal) {

 synchronized (this) {

 timestep = aVal;

 }

 }

 /**

 * @return a discrete time interval used when a tick occurs

 */

 public int getTimeStep() {

 return timestep;

 }

 /**

 * UDP command hsndler

 *

 * @param cmd the command sent

 * @param startID the start id for the command

 * @param endID the end if for the command

 * <p>

 * This method handles UDP commands sent by the server. Only one process can have acccess to

 * a port at a time so it was necessary to have the UDP commands handled by the owner of this

class and the

 * command passed into the ETS device using a function call.

 */

 public void HandleUDPCmd (int cmd, int startID, int endID)

 {

 TimeToRegister = true;

 //if (!EveningHours())

 {

 switch (cmd)

 {

 case CMD_ALL_ON:

 CurrentRecharge = PostMaxRecharge;

 // System.out.println("UDP: AllON");

 break;

 case CMD_ALL_OFF:

 CurrentRecharge = MinRecharge;

 // System.out.println("UDP: AllOFF");

 break;

 case CMD_MULTI_ON:

 if ((PushID >=startID)&&(PushID<=endID))

 CurrentRecharge = PostMaxRecharge;

 break;

 case CMD_MULTI_OFF:

 if (!((PushID >=startID)&&(PushID<=endID)))

 CurrentRecharge = MinRecharge;

 break;

 case CMD_SINGLE_ON:

 if (PushID ==startID)

 CurrentRecharge = PostMaxRecharge;

 break;

 case CMD_SINGLE_OFF:

 if (PushID ==startID)

 CurrentRecharge = MinRecharge;

 break;

 case CMD_X_MULTI_ON:

 if ((PushID >=startID)&&(PushID<=endID))

 CurrentRecharge = PostMaxRecharge;

 else

 CurrentRecharge = MinRecharge;

 break;

93

 case CMD_X_MULTI_OFF:

 if (!((PushID >=startID)&&(PushID<=endID)))

 CurrentRecharge = MinRecharge;

 else

 CurrentRecharge = PostMaxRecharge;

 break;

 }

 }

 HitServer();

 }

 /**

 * This method reads the current temperature from a MySQL database table using the current

time as

 * seen by the ETS device.

 *

 */

 public void ReadExtTemp()

 {

 String query = null;

 synchronized (this){

 try {

 query = "SELECT * FROM wind_data_table WHERE aDateTime <=

"+ETSCalendar.getTimeInMillis()+" ORDER BY aDateTime DESC LIMIT 0,1;";

 rs = stmt.executeQuery(query);

 if (rs.next())

 {

 ExtTemp = rs.getDouble("Temperature");

 //System.out.println("Time "+formatter.format(NextRecordTime.getTime())+"Power

output:"+rs.getDouble("WindOutput"));

 }

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

 }

 /**

 * This method archive the current storage of the ETS device in a MySQL table

 */

 public void ArchiveStorage()

 {

 String query = null;

 synchronized(this) {

 try {

 query = "INSERT chargelevel (DateString,aDateTime,DeviceID,ChargeLevel)

VALUES('"+dfm.format(ETSCalendar.getTime())+"',"+ETSCalendar.getTimeInMillis()+",'"+DeviceID+"',"

+CurrentStorage+");";

 stmt.execute(query);

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

 }

 /**

 * @return returns true if the current time as seen by the ETS deivce is during the evening

hours (23:00 to 07:00)

 */

 public boolean EveningHours()

 {

 boolean result=true;

 long DayStart;

 long DayEnd;

 // determine if we are in the 'auto recharge time';

94

 // get rid of the fractional days

 long Hour = ETSCalendar.get(Calendar.HOUR_OF_DAY);

 long Minute = ETSCalendar.get(Calendar.MINUTE);

 long Second = ETSCalendar.get(Calendar.SECOND);

 long Delta = Hour*60*60+Minute*60+Second;

 DayStart = 60 * 60 * 7; // 7 am

 DayEnd = 60 * 60 * 23; // 11 pm

 if ((Delta > DayStart)&(Delta < DayEnd))

 {

 result = false;

 }

 return result;

 }

 /**

 * This method is called by the owner of the ETS instance to discharge, recharge and register

with the server if required.

 */

 public void run()

 {

 long TimeDelta = 0;

 // determine how long has passed since the timer last ran

 TimeDelta = (ETSCalendar.getTimeInMillis() - LastTick)/1000;

 // read the current temperature

 ReadExtTemp();

 // first handle any depletion since the past tick

 DoDischargeAndRecharge((int) TimeDelta);

 //Hit the server and find out if we should be on of off

 if (ETSCalendar.getTimeInMillis() > HitServerTime.getTimeInMillis())

 {

 HitServer();

 int randomDelay = (generator.nextInt(30)+30)*1000;// delay somewhere in the next 20

seconds

 HitServerTime.setTimeInMillis(ETSCalendar.getTimeInMillis()+ randomDelay);// hit the

server ~ 60 seconds from now

 }

 LastTick=ETSCalendar.getTimeInMillis() ;

 }

 /**

 * This method connects to the HTTP server registration and status updates.

 */

 public void HitServer()

 {

 HttpURLConnection connection = null;

 BufferedReader rd = null;

 InputStream is = null;

 String line = null;

 URL serverAddress = null;

 String agent = "WattBoxETS";

 String type = "application/x-www-form-urlencoded";

 String data ="";

 try {

 data = URLEncoder.encode("deviceid", "UTF-8") + "="

 + URLEncoder.encode(DeviceID, "UTF-8");

 data += "&" + URLEncoder.encode("password", "UTF-8") + "="

 + URLEncoder.encode(Password, "UTF-8");

 data += "&" + URLEncoder.encode("MinRecharge", "UTF-8") + "="

 + URLEncoder.encode(Double.toString(MinRecharge), "UTF-8");

 data += "&" + URLEncoder.encode("MaxRecharge", "UTF-8") + "="

 + URLEncoder.encode(Double.toString(PostMaxRecharge), "UTF-8");

 data += "&" + URLEncoder.encode("CurrentRecharge", "UTF-8") + "="

 + URLEncoder.encode(Double.toString(CurrentRecharge), "UTF-8");

 // System.out.println("Current recharge reported as "+CurrentRecharge);

 data += "&" + URLEncoder.encode("ExtTemp", "UTF-8") + "="

 + URLEncoder.encode(Double.toString(ExtTemp), "UTF-8");

 data += "&" + URLEncoder.encode("CurrentStorage", "UTF-8") + "="

95

 + URLEncoder.encode(Double.toString(CurrentStorage), "UTF-8");

 data += "&" + URLEncoder.encode("CurrentDischarge", "UTF-8") + "="

 + URLEncoder.encode(Double.toString(CurrentDischarge), "UTF-8");

 //if (addDevice)

 data += "&" + URLEncoder.encode("action", "UTF-8") + "="

 + URLEncoder.encode("register", "UTF-8");

 //else

 // data += "&" + URLEncoder.encode("action", "UTF-8") + "="

 // + URLEncoder.encode("unregister", "UTF-8");

 data += "&" + URLEncoder.encode("PostTime", "UTF-8") + "="

 + URLEncoder.encode(dfm.format(ETSCalendar.getTime()), "UTF-8");

 } catch (UnsupportedEncodingException e1) {

 e1.printStackTrace();

 }

 try {

 serverAddress = new URL(

 "http://localhost/WattBoxPush/GetState"); // set

 // up

 // out

 // communications

 // stuff

 connection = null; // Set up the initial connection

 connection = (HttpURLConnection) serverAddress.openConnection();

 connection.setRequestMethod("POST");

 connection.setRequestProperty("User-Agent", agent);

 connection.setRequestProperty("Content-Type", type);

 connection.setRequestProperty("Content-Length",

 Integer.toString(data.length()));

 connection.setUseCaches(false);

 connection.setDoInput(true);

 connection.setDoOutput(true);

 connection.setReadTimeout(30000);

 // Send request

 DataOutputStream wr = new DataOutputStream(

 connection.getOutputStream());

 wr.writeBytes(data);

 wr.flush();

 wr.close();

 // Get Response

 if (connection.getResponseCode() == 200)

 {

 is = connection.getInputStream();

 }

 else

 { /* error from server */

 is = connection.getErrorStream();

 }

 //is = connection.getInputStream();

 rd = new BufferedReader(new InputStreamReader(is));

 StringTokenizer st;

 String key;

 String val;

// StringBuffer response = new StringBuffer();

 //CurrentRecharge = MinRecharge;

 while ((line = rd.readLine()) != null) {

 //System.out.println(line);

 st = new StringTokenizer(line, "=");

 while (st.hasMoreElements())

 {

 key = st.nextToken();

 if (st.hasMoreElements())

 val = st.nextToken();

 else

 val = "NULL";

 if (key.matches("PushID"))

 {

 if (Pattern.matches(fpRegex, val))

 PushID = Integer.valueOf(val);

 }

96

 }

 }

 //if (!addDevice) PushID = -1;

 connection.disconnect();

 } catch (MalformedURLException e) {

 e.printStackTrace();

 } catch (ProtocolException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 } finally {

 // close the connection, set all objects to null

 if (connection != null)

 connection.disconnect();

 rd = null;

 connection = null;

 }

 ReadExtTemp();

 }

 /**

 * constructor for ETS

 * @param DeviceID The deviceID

 * @param Password The password

 * @param MaxRecharge The maximum recharge rate of the ETS in kWh

 * @param MaxDischarge The maximum discharge rate of the ETS in kWh

 * @param MaxStorage The maximum storage of the ETS in kWh

 * @param VolumeToHeat The volume of the residnce to heat

 * @param aEnergyIntensity a parameter used to calcuate the energy required to heat the

residence

 * @param TargetTemp target internal temperature of the residnce

 */

 public SimETS(String DeviceID, String Password, double MaxRecharge,

 double MaxDischarge, double MaxStorage, double VolumeToHeat,

 Double aEnergyIntensity, double TargetTemp) {

 TimeZone zone = TimeZone.getTimeZone("Canada/Atlantic");

 ETSCalendar = new GregorianCalendar(zone);

 EndTime = new GregorianCalendar(zone);

 HitServerTime = new GregorianCalendar(zone);

 LocalInit = new GregorianCalendar(zone);

 VirtualInit = new GregorianCalendar(zone);

 synchronized (this) {

 setDeviceID(DeviceID);

 setPassword(Password);

 setMaxRecharge(MaxRecharge);

 setMaxDischarge(MaxDischarge);

 setMaxStorage(MaxStorage);

 setCurrentStorage(MaxStorage*0.7);

 setMinRecharge(0);

 setCurrentDischarge(0);

 setVolumeToHeat(VolumeToHeat);

 setTargetTemp(TargetTemp);

 setTimeScale(1);

 ExtTemp = TargetTemp;

 EnergyIntensity = aEnergyIntensity;

 initialize();

 }

 //(new Thread(new UDPListner())).start();

 }

 /**

 * Initialization routine that establishes a connection to the database and creates a

statement.

 */

 private void initialize()

 {

 try {

 con = DriverManager.getConnection("jdbc:mysql:///wattboxpush",

97

 "root", "cuc002");

 stmt = con.createStatement();

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

 /**

 * records emergency energy usage when the ETS is fully depleated in a MySQL table

 * @param aVal the energy required by the ETS device

 */

 public void ArchiveEmergencyStorge(double aVal)

 {

 Statement stmt;

 String query = null;

 try {

 stmt = con.createStatement();

 query = "INSERT INTO emergency_storage (aDateTime," +

 "DeviceID," +

 "ResSize,"+

 "EnergyIntensity,"+

 "EmergencyRecharge," +

 "ExtTemp) values ("+

 ETSCalendar.getTimeInMillis()+","+

 "'"+DeviceID+"',"+

 +VolumeToHeat/2.5+","+

 +aVal+","+

 +EnergyIntensity+","+

 +ExtTemp+");";

 stmt.execute(query);

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

 /**

 * Discharges the ETS

 * @param seconds

 *

 * Discharges the ETS energy store based upon the heating requirements of the residence and

the elaspsed time.

 */

 public void Discharge(int seconds) {

 double TempDelta;

 LastDischarge = CurrentDischarge;

 CurrentDischarge = 0;

 TempDelta = TargetTemp-ExtTemp;

 if (TempDelta > 0)

 CurrentDischarge = EnergyIntensity*VolumeToHeat*TempDelta*seconds*2.77777777778e-7;

// this is the kwh used to space heating during this interval

 CurrentStorage -= CurrentDischarge;

 if (CurrentStorage < 0)

 {

 ArchiveEmergencyStorge(-CurrentStorage);

 CurrentStorage =0;

 }

 }

 /**

 * @return the number of seconds remaining in the evening recharge cycle

 */

 public long SecondsForRecharge()

 {

 long result=0;

 long DayStart;

98

 long DayEnd;

 // determine if we are in the 'auto recharge time';

 // get rid of the fractional days

 long Hour = ETSCalendar.get(Calendar.HOUR_OF_DAY);

 long Minute = ETSCalendar.get(Calendar.MINUTE);

 long Second = ETSCalendar.get(Calendar.SECOND);

 long Delta = Hour*60*60+Minute*60+Second;

 DayStart = 60 * 60 * 7; // 7 am

 DayEnd = 60 * 60 * 23; // 11 pm

 if (Delta >= DayEnd)

 {

 result = DayStart+(24*60*60-Delta);

 }

 else if (Delta <= DayStart)

 {

 result = DayStart - Delta;

 }

 return result;

 }

 /**

 * @param seconds The number of seconds to recharge the ETS. This function also calculates

the min recharge rate

 * and a maximum possible recharge rate

 */

 public void Recharge(int seconds)

 {

 // keep it simple, simply recharge based upon the existing parameters

 double HoursForRecharge=1;

 CurrentStorage += (CurrentRecharge*seconds/3600);

 // don't over charge

 if (CurrentStorage >MaxStorage)

 System.out.println("Over charged");

 CurrentStorage = Math.min(CurrentStorage,MaxStorage);

 /**************************************

 * This models an ETS that uses max wind any time

 */

 // calculate the maximum recharge rate needed to recharge over the next hour (can't be >

MaxRecharge)

 MinRecharge = 0;

 PostMaxRecharge = Math.min(MaxRecharge,MaxStorage-CurrentStorage);

 // the minimum recharge rate depends on the time of day

 if (EveningHours())

 {

 // during the evening we recharge at an optimum rate to level out the load

 HoursForRecharge =SecondsForRecharge() /3600.0;

 // ensure no division by zero , a minimum of 5 minutes (0.0833 hours) must available

for recharge

 if (HoursForRecharge >= 0.0833)

 MinRecharge = Math.max(0,((MaxStorage-CurrentStorage-

LastDischarge)/HoursForRecharge))+LastDischarge;

 // the MinRecharge can not be greater then the maximum recharge

 MinRecharge = Math.min(MinRecharge, MaxRecharge);

 // the max recharge must be greater then or equal to the min recharge

 PostMaxRecharge = Math.max(PostMaxRecharge, MinRecharge);

 }

 // the MinRecharge can not be greater then the maximum recharge

 MinRecharge = Math.min(MinRecharge, MaxRecharge);

 // the max recharge must be greater then or equal to the min recharge

 PostMaxRecharge = Math.max(PostMaxRecharge, MinRecharge);

 }

 /**

 * @param seconds

99

 */

 public void DoDischargeAndRecharge(int seconds) {

 Discharge(seconds);

 Recharge(seconds);

 if (CurrentStorage < 0)

 CurrentStorage = 0;

 if (CurrentStorage > MaxStorage)

 {

 // System.out.println("Current recharge set to Min after fully charging");

 CurrentStorage = MaxStorage;

 CurrentRecharge = MinRecharge;

 }

 }

 /**

 * @param StartTime the time the simulation starts

 * @param aEndTime The time the simulation ends

 */

 public void InitTimeStamp(Date StartTime,Date aEndTime) {

 LocalInit.setTime(new Date()); // local time the system started

 VirtualInit.setTime(StartTime);

 EndTime.setTime(aEndTime); // ets time to stop simulating

 ETSCalendar.setTime(StartTime); // set the start time for the ETS

 LastTick = ETSCalendar.getTimeInMillis();

 //int randomDelay = (generator.nextInt(10)+10)*1000;// delay somewhere in the next 20

seconds

 //timer.schedule(new tick_task(), randomDelay, 1000);

 HitServerTime.setTimeInMillis(VirtualInit.getTimeInMillis());

 }

 /* (non-Javadoc)

 * @see java.lang.Comparable#compareTo(java.lang.Object)

 *

 * helper function to sort ETS devices based on when they will hit the server

 */

 @Override

 public int compareTo(SimETS o) {

 long delta;

 delta = HitServerTime.getTimeInMillis()-o.getHitServerTime();

 if (delta >0) return 1;

 else if (delta < 0) return -1;

 else return 0;

 }

}

// system load class

package net.wattbox.gui;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Statement;

import java.text.DateFormat;

import java.text.SimpleDateFormat;

import java.util.Date;

import java.util.GregorianCalendar;

import java.util.TimeZone;

import java.util.Timer;

import java.util.TimerTask;

import net.wattbox.config.Config;

/**

 * @author barnes

 *

 *Simulates a system load

 */

/**

 * @author barnes

100

 *

 */

public class SimSystemLoad {

 GregorianCalendar ThisRecordTime;

 GregorianCalendar NextRecordTime;

 double SystemLoad;

 long HoldTime;

 long DeltaTime;

 String DeviceID = "SummerSideLoad";

 String Password;

 Connection con = null;

 Statement stmt;

 ResultSet rs;

 String query;

 GregorianCalendar ETSCalendar;

 GregorianCalendar EndTime;

 /**

 * Constructor for the system load

 *

 * Initializes a connection to a MySQL database

 */

 public SimSystemLoad()

 {

 try {

 Class.forName(Config.DriverClass).newInstance();

 con = DriverManager.getConnection(Config.dBaseName,

 Config.dBaseUserName, Config.dBasePassword);

 stmt = con.createStatement();

 } catch (SQLException e) {

 e.printStackTrace();

 } catch (InstantiationException e) {

 e.printStackTrace();

 } catch (IllegalAccessException e) {

 e.printStackTrace();

 } catch (ClassNotFoundException e) {

 e.printStackTrace();

 }

 DeviceID = "SummerSideLoad";

 TimeZone zone = TimeZone.getTimeZone("GMT+0");

 ETSCalendar = new GregorianCalendar(zone);

 ThisRecordTime = new GregorianCalendar(zone);

 EndTime = new GregorianCalendar(zone);

 NextRecordTime = new GregorianCalendar(zone);

 }

 /**

 * Sets the time of the ETS to the passed value

 * @param aTime a long value used to set the ETS time in MSEC since 1970

 */

 public void setETSTime (long aTime)

 {

 ETSCalendar.setTimeInMillis(aTime);

 }

 /**

 * This method is called by the owner of the system load instance to update the system load

in the database based on the current time.

 */

 public void run()

 {

 // get the new output value from the database if it's past the next update time

 if (ETSCalendar.after(NextRecordTime))

 {

 try

 {

 query = "SELECT PowerLoad FROM wind_data_table WHERE aDateTime =

"+Long.toString((NextRecordTime.getTimeInMillis()));

 rs = stmt.executeQuery(query);

 if (rs.next())

101

 {

 SystemLoad = rs.getDouble("PowerLoad");

 HoldTime=NextRecordTime.getTimeInMillis();

 DeltaTime = NextRecordTime.getTimeInMillis()% (60*60*1000);

 HoldTime -=DeltaTime;

 //System.out.println("Time "+formatter.format(NextRecordTime.getTime())+"Power

output:"+rs.getDouble("WindOutput"));

 }

 // now record the time of the next record

 query = "SELECT * FROM wind_data_table WHERE aDateTime >

"+Long.toString((NextRecordTime.getTimeInMillis()))+ " LIMIT 0, 1";

 rs = stmt.executeQuery(query);

 if (rs.next())

 {

 NextRecordTime.setTimeInMillis(rs.getLong("aDateTime"));

 }

 rs.close();

 // update the producers table

 query ="UPDATE system_loads SET electrical_load =

"+SystemLoad/Config.SystemScale+" WHERE DeviceId = '"+DeviceID+"';";

 stmt.executeUpdate(query);

 }

 catch (SQLException e)

 {

 e.printStackTrace();

 }

 }

 }

 /**

 * @param StartTime the time the simulation starts

 * @param aEndTime The time the simulation ends

 */

 public void InitTimeStamp(Date StartTime,Date aEndTime) {

 // this procedure sets the local time of each ETS to the same value

 DateFormat dfm = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

 SimpleDateFormat formatter = new SimpleDateFormat("E yyyy.MM.dd 'at' hh:mm:ss a zzz");

 // Set the start time

 ETSCalendar = new GregorianCalendar();

 ETSCalendar.setTime(StartTime);

 EndTime.setTime(aEndTime);

 ThisRecordTime.setTime(StartTime);

 // Initialize the record times by checking the database

 try

 {

 query = "SELECT * FROM wind_data_table WHERE aDateTime >=

"+Long.toString((ThisRecordTime.getTimeInMillis()))+ " LIMIT 0, 2";

 rs = stmt.executeQuery(query);

 if (rs.next())

 {

 SystemLoad = rs.getDouble("PowerLoad");

 ThisRecordTime.setTimeInMillis(rs.getLong("aDateTime"));

 System.out.println("First record: "+dfm.format(ThisRecordTime.getTime()));

 if (rs.next())

 {

 NextRecordTime.setTimeInMillis(rs.getLong("aDateTime"));

 System.out.println("Second record: "+dfm.format(NextRecordTime.getTime()));

 }

 }

 rs.close();

 query = "INSERT system_loads (DeviceID,electrical_load)

values('"+DeviceID+"',"+SystemLoad/Config.SystemScale+");";

 stmt.execute(query);

 }

 catch (SQLException e)

 {

 e.printStackTrace();

 }

102

 System.out.println("SystemLoad initialized to "+formatter.format(ETSCalendar.getTime()));

 }

}

// simulated windfarm class

package net.wattbox.gui;

import java.io.BufferedReader;

import java.io.DataOutputStream;

import java.io.IOException;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.net.HttpURLConnection;

import java.net.MalformedURLException;

import java.net.ProtocolException;

import java.net.URL;

import java.net.URLEncoder;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Statement;

import java.text.SimpleDateFormat;

//import java.text.DateFormat;

//import java.text.SimpleDateFormat;

//import java.text.SimpleDateFormat;

//import java.util.Calendar;

import java.util.Date;

import java.util.GregorianCalendar;

import java.util.TimeZone;

import java.util.Timer;

import java.util.TimerTask;

import net.wattbox.config.Config;

public class SimWindFarm {

 GregorianCalendar ThisRecordTime;

 GregorianCalendar NextRecordTime;

 double PowerOutput;

 String DeviceID;

 String Password;

 Connection con = null;

 Statement stmt;

 ResultSet rs;

 String query;

 GregorianCalendar ETSCalendar;

 private GregorianCalendar EndTime;

 /**

 * Consructor for the simulated wind farm class

 * @param aDeviceID The device ID used for registration

 * @param aPassword The device password used for registration

 */

 public SimWindFarm(String aDeviceID, String aPassword)

 {

 try {

 Class.forName(Config.DriverClass).newInstance();

 con = DriverManager.getConnection(Config.dBaseName,

 Config.dBaseUserName, Config.dBasePassword);

 stmt = con.createStatement();

 } catch (SQLException e) {

 e.printStackTrace();

 } catch (InstantiationException e) {

 e.printStackTrace();

 } catch (IllegalAccessException e) {

 e.printStackTrace();

 } catch (ClassNotFoundException e) {

 e.printStackTrace();

103

 }

 ETSCalendar = new GregorianCalendar();

 ThisRecordTime = new GregorianCalendar();

 NextRecordTime = new GregorianCalendar();

 EndTime = new GregorianCalendar();

 DeviceID = aDeviceID;

 Password = aPassword;

 }

 /**

 * Sets the time of the ETS to the passed value

 * @param aTime a long value used to set the ETS time in MSEC since 1970

 */

 public void setETSTime (long aTime)

 {

 ETSCalendar.setTimeInMillis(aTime);

 }

 /**

 * Registers a wind farm with the server

 * @param addDevice Adds the device to the server if true, deletes the device if false

 * @return

 * @throws IOException

 */

 public boolean RegisterWithServer(boolean addDevice) throws IOException {

 boolean result = false;

 HttpURLConnection connection = null;

 BufferedReader rd = null;

 InputStream is = null;

 //String line = null;

 URL serverAddress = null;

 String agent = "WattBoxWindfarm";

 String type = "application/x-www-form-urlencoded";

 String data = null;

 data = URLEncoder.encode("deviceid", "UTF-8") + "="

 + URLEncoder.encode(DeviceID, "UTF-8");

 data += "&" + URLEncoder.encode("password", "UTF-8") + "="

 + URLEncoder.encode(Password, "UTF-8");

 data += "&" + URLEncoder.encode("output_kw", "UTF-8") + "="

 + URLEncoder.encode(Double.toString(PowerOutput/Config.SystemScale), "UTF-8");

 //+ URLEncoder.encode(Double.toString(PowerOutput), "UTF-8");

 if (addDevice)

 data += "&" + URLEncoder.encode("action", "UTF-8") + "="

 + URLEncoder.encode("register", "UTF-8");

 else

 data += "&" + URLEncoder.encode("action", "UTF-8") + "="

 + URLEncoder.encode("unregister", "UTF-8");

 try {

 serverAddress = new URL(

 "http://localhost/WattBoxPush/ProducerRegistration"); // set

 connection = null; // Set up the initial connection

 connection = (HttpURLConnection) serverAddress.openConnection();

 connection.setRequestMethod("POST");

 connection.setRequestProperty("User-Agent", agent);

 connection.setRequestProperty("Content-Type", type);

 connection.setRequestProperty("Content-Length",

 Integer.toString(data.length()));

 connection.setUseCaches(false);

 connection.setDoInput(true);

 connection.setDoOutput(true);

 connection.setReadTimeout(30000);

 // Send request

 DataOutputStream wr = new DataOutputStream(

 connection.getOutputStream());

 wr.writeBytes(data);

 wr.flush();

 wr.close();

 // Get Response

 is = connection.getInputStream();

104

 rd = new BufferedReader(new InputStreamReader(is));

 rd.close();

 result = true;

 } catch (MalformedURLException e) {

 e.printStackTrace();

 } catch (ProtocolException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 } finally {

 // close the connection, set all objects to null

 if (connection != null)

 connection.disconnect();

 rd = null;

 connection = null;

 }

 return result;

 }

 /**

 * This method is called by the owner of the wind farm instance to update the produciton

level in the database using a HTTP server based

 * on the current time .

 */

 public void run()

 {

 // get the new output value from the database if it's past the next update time

 if (ETSCalendar.after(NextRecordTime)||(ETSCalendar.getTimeInMillis() ==

NextRecordTime.getTimeInMillis()))

 {

 try

 {

 query = "SELECT * FROM wind_data_table WHERE aDateTime =

"+Long.toString((NextRecordTime.getTimeInMillis()));

 rs = stmt.executeQuery(query);

 if (rs.next())

 {

 PowerOutput = rs.getDouble(DeviceID);

 long HoldTime=NextRecordTime.getTimeInMillis();

 long DeltaTime = NextRecordTime.getTimeInMillis()% (60*60*1000);

 HoldTime -=DeltaTime;

 //System.out.println(DeviceID+" "+"Time

"+formatter.format(NextRecordTime.getTime())+"Power output:"+rs.getDouble(DeviceID));

 }

 // now record the time of the next record

 query = "SELECT * FROM wind_data_table WHERE aDateTime >

"+Long.toString((NextRecordTime.getTimeInMillis()))+ " LIMIT 0, 1";

 //System.out.println("Query sent to MySQL: "+query);

 rs = stmt.executeQuery(query);

 if (rs.next())

 {

 NextRecordTime.setTimeInMillis(rs.getLong("aDateTime"));

 //System.out.println("Next record: "+dfm.format(NextRecordTime.getTime()));

 }

 else

 {

 System.out.println("Next record

NOTFOUND!!!");

 }

 // update the producers table

 }

 catch (SQLException e)

 {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 // update the database with the latest production data

 try

 {

105

 RegisterWithServer(true);

 }

 catch (IOException e)

 {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 }

 /**

 * @param StartTime the time the simulation starts

 * @param aEndTime The time the simulation ends

 */

 public void InitTimeStamp(Date StartTime,Date aEndTime) {

 SimpleDateFormat formatter = new SimpleDateFormat("E yyyy.MM.dd 'at' hh:mm:ss a zzz");

 // Set the start time

 ETSCalendar = new GregorianCalendar();

 ETSCalendar.setTime(StartTime);

 ThisRecordTime.setTime(StartTime);

 EndTime.setTime(aEndTime);

 // Initialize the next record time by checking the database

 try

 {

 // get the current production level

 query = "SELECT * FROM wind_data_table WHERE aDateTime <=

"+Long.toString(ThisRecordTime.getTimeInMillis())+" ORDER BY aDateTime DESC LIMIT 0,1;";

 rs = stmt.executeQuery(query);

 if (rs.next())

 {

 PowerOutput = rs.getDouble(DeviceID);

 try

 {

 RegisterWithServer(true);

 }

 catch (IOException e)

 {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 // now initialize the next record time

 query = "SELECT * FROM wind_data_table WHERE aDateTime >=

"+Long.toString(ThisRecordTime.getTimeInMillis())+" LIMIT 0,1;";

 rs = stmt.executeQuery(query);

 if (rs.next())

 {

 NextRecordTime.setTimeInMillis(rs.getLong("aDateTime"));

 }

 }

 catch (SQLException e)

 {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 //timer.schedule(new tick_task(), 500,1000);

 System.out.println("WindFarm "+DeviceID+" initialized to

"+formatter.format(ETSCalendar.getTime()));

 }

}

package net.wattbox.gui;

//import java.util.Calendar;

//import java.text.DateFormat;

//import java.text.SimpleDateFormat;

import java.text.DateFormat;

import java.text.SimpleDateFormat;

106

import java.util.Date;

import java.util.GregorianCalendar;

import java.util.TimeZone;

import java.util.Timer;

import java.util.TimerTask;

import java.io.ByteArrayInputStream;

import java.io.ByteArrayOutputStream;

import java.io.DataOutputStream;

import java.io.IOException;

import java.net.DatagramPacket;

import java.net.DatagramSocket;

import java.net.InetAddress;

import java.net.SocketException;

import java.net.UnknownHostException;

import java.sql.*;

import java.util.zip.Adler32;

import java.util.zip.CheckedInputStream;

/**

 * @author barnes

 *This class is used to recalculate the distribution of wind energy and sends a

 *command to the ETS units using the UDP protocol.

 */

public class WindDistributor {

 static final int PacketVersion = 1;

 static final int BTF = 28;

 static final int SOH = 0x87654321;

 static final int CMD_MULTI_ON = 1; // units within a defined range turn on

 static final int CMD_MULTI_OFF = 2; // units within a defined range turn off

 static final int CMD_ALL_ON = 3; // all units turn on

 static final int CMD_ALL_OFF = 4; // all units turn off

 static final int CMD_SINGLE_ON = 5; // the identified unit turns on

 static final int CMD_SINGLE_OFF = 6; // the identified unit turns off

 static final int CMD_X_MULTI_ON = 7; // units within a defined range turn on

 // all others turn off

 static final int CMD_X_MULTI_OFF = 8; // units within a defined range turn

 // off all others turn on

 boolean AllOn = false;

 String DestAddress = "localhost";

 int DestPort = 4536;

 public int tail = -1;

 public int head = -1;

 public int PacketNumber = 0;

 boolean TimerRunning = false;

 TimerTask tick_task;

 private double NetEnergy=0;

 private GregorianCalendar ETSCalendar;

 private GregorianCalendar EndTime;

 private GregorianCalendar StartDelay;

 int timescale = 600; // this is a scale factor for the timestep

 int timestep = 1; // this is how often the system runs the tick_task

 DatagramSocket socket;

 DatagramPacket packet;

 InetAddress address;

 ByteArrayOutputStream ByteStream = new ByteArrayOutputStream();

 // now create a data output stream so we can write primitives

 DataOutputStream UDPData = new DataOutputStream(ByteStream);

 TimeZone zone = TimeZone.getTimeZone("Canada/Atlantic");

 GregorianCalendar HoldCalendar = new GregorianCalendar(zone);

 Statement stmt;

 ResultSet rs;

 DateFormat dfm = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

 private Connection con = null;

107

 /**

 * Sets the time of the ETS to the passed value

 * @param aTime a long value used to set the ETS time in MSEC since 1970

 */

 public void setETSTime (long aTime)

 {

 ETSCalendar.setTimeInMillis(aTime);

 }

 /**

 * Simple constructor that calls the initialize function

 */

 public WindDistributor() {

 initialize();

 }

 /**

 * initializes the class variables

 */

 private void initialize() {

 ETSCalendar = new GregorianCalendar(zone);

 EndTime = new GregorianCalendar(zone);

 StartDelay = new GregorianCalendar(zone);

 String dip = DestAddress;

 try {

 address = InetAddress.getByName(dip);

 } catch (UnknownHostException e2) {

 // TODO Auto-generated catch block

 e2.printStackTrace();

 }

 try {

 socket = new DatagramSocket();

 } catch (SocketException e1) {

 // TODO Auto-generated catch block

 e1.printStackTrace();

 }

 try {

 Class.forName("com.mysql.jdbc.Driver").newInstance();

 con = DriverManager.getConnection("jdbc:mysql:///WattBoxPush",

 "root", "cuc002");

 } catch (SQLException e) {

 e.printStackTrace();

 } catch (InstantiationException e) {

 e.printStackTrace();

 } catch (IllegalAccessException e) {

 e.printStackTrace();

 } catch (ClassNotFoundException e) {

 e.printStackTrace();

 }

 try {

 stmt = con.createStatement();

 } catch (SQLException e3) {

 // TODO Auto-generated catch block

 e3.printStackTrace();

 }

 }

 /**

 * Builds and sends a UDP packet containing operating instructions for

 */

 private void SendRequest() {

 try {

 ByteStream.reset();

 // create a byte array output stream so we can access the data as an

 // array of bytes

 /*

 * The format for the UDP packet sent by this class is as follows

108

 *

 * address Name Type Notes 0x00-0x03 SOH 32UINT value = 0x87654321

 * 0x04-0x07 BTF 32UNIT number of bytes to follow (including

 * checksum) 0x08-0x0B VERSION 32UINT current version of packet (1)

 * 0x0C-0x0F CMD 32UINT command code 0x10-0x13 STARTID 32UINT start

 * id 0x14-0x17 ENDID 32UNIT end id 0x18-0x1F CHECKSUM 64UNIT Alder

 * 64 bit check sum from SOH to ENDID

 */

 try {

 UDPData.writeInt(SOH);

 UDPData.writeInt(BTF);

 UDPData.writeInt(PacketNumber);

 PacketNumber++;

 UDPData.writeInt(PacketVersion);

 // write the appropriate command

 if (tail < head)

 UDPData.writeInt(CMD_X_MULTI_ON);

 else if (tail > head)

 UDPData.writeInt(CMD_X_MULTI_OFF);

 else if (AllOn)

 UDPData.writeInt(CMD_ALL_ON);

 else {

 if (head == -1)

 UDPData.writeInt(CMD_ALL_OFF);

 else

 UDPData.writeInt(CMD_X_MULTI_ON);

 }

 // write the start and stop ID's

 UDPData.writeInt(tail);

 UDPData.writeInt(head);

 System.out.println("Wind startID:" + tail + " endID:" + head

 + " Packet Number:" + (PacketNumber - 1));

 // append the checksum

 long HoldCRC = CalcCRC(ByteStream);

 UDPData.writeLong(HoldCRC);

 } catch (IOException e1) {

 e1.printStackTrace();

 }

 packet = new DatagramPacket(ByteStream.toByteArray(),

 ByteStream.size(), address, DestPort);

 socket.send(packet);

 } catch (IOException io) {

 }

 }

 /**

 * @param aStream

 * @return a long value containing the Adler32 checksum of the data in the stream

 */

 private long CalcCRC(ByteArrayOutputStream aStream) {

 long result = 0;

 ByteArrayInputStream bais = new ByteArrayInputStream(

 aStream.toByteArray());

 CheckedInputStream cis = new CheckedInputStream(bais, new Adler32());

 byte[] tempBuf = new byte[aStream.size()];

 try {

 while (cis.read(tempBuf) >= 0) {

 }

 result = cis.getChecksum().getValue();

 } catch (IOException e) {

 e.printStackTrace();

 }

 return result;

 }

 /**

 * Resets the head and tail values to -1

 */

109

 public void ResetHeadTail() {

 head = -1;

 tail = -1;

 }

 /**

 * @return the lowest pushid of the ETS units

 */

 public boolean getFirst() {

 boolean result = false;

 try {

 rs = stmt

 .executeQuery("SELECT * from storage_units ORDER BY PushID LIMIT 0,1;");

 if (rs.next()) {

 tail = rs.getInt("PushID");

 result = true;

 }

 } catch (SQLException e) {

 e.printStackTrace();

 }

 return result;

 }

 /**

 * Distributes the intermittent wind power to the ETS devices

 * @return true if there was change in the wind power distribution

 */

 public boolean DistributeWind() {

 boolean result = false;

 double PowerProduced = 0;

 double MinLoad = 0;

 double PowerAvailable = 0;

 double EnergyGenerated = 0;

 double EnergyAllocatedBefore = 0;

 double EnergyAllocatedAfter = 0;

 double ThisAllocation = 0;

 boolean TurnAllOff = false;

 boolean DoAllocation = false;

 double MinDiff = 0;

 double MaxDiff =0;

 double ExtTemp = 0;

 if (!TimerRunning) {

 TimerRunning = true;

 String query = "unasigned";

 ResetHeadTail();

 try {

 rs = stmt.executeQuery("SELECT SUM(output_kw) as total_energy from producers;");

 if (rs.next()) {

 PowerProduced = rs.getDouble("total_energy");

 EnergyGenerated = PowerProduced;

 }

 // account for the system load

 //Get the system load

 double SystemLoad = 0;

 query = "SELECT SUM(electrical_load) as total_energy from system_loads;";

 rs = stmt.executeQuery(query);

 if (rs.next())

 SystemLoad = rs.getDouble("total_energy");

 rs = stmt.executeQuery("SELECT SUM(CurrentRecharge) as total_energy from

storage_units;");

 if (rs.next()) {

 EnergyAllocatedBefore = rs.getDouble("total_energy");

 }

 if ((PowerProduced - SystemLoad) > 0) {

 if (((PowerProduced - SystemLoad) != NetEnergy)){

 NetEnergy = (PowerProduced - SystemLoad);

 // account for any energy that is being used that can not be

 // turned off

110

 rs = stmt.executeQuery("SELECT SUM(MinRecharge) as total_energy from

storage_units;");

 if (rs.next()) {

 MinLoad = rs.getDouble("total_energy");

 PowerAvailable = PowerProduced - MinLoad - SystemLoad;

 EnergyAllocatedAfter = MinLoad;

 }

 if (PowerAvailable > 0) {

 if (getFirst()) {

 AllOn = false;

 TurnAllOff = false;

 // there is access power to distribute and devices

 // to take it

 rs = stmt.executeQuery("SELECT * from storage_units ORDER BY

PushID;");

 // power is distributed on a first come, first

 // served basis

 while ((PowerAvailable > 0) && (rs.next())) {

 DoAllocation = true;

 if ((PowerAvailable - rs.getDouble("MaxRecharge"))<0)

 {

 // Only turn on if we will use more wind power then we will

have to import

 MaxDiff = Math.abs(PowerAvailable -

rs.getDouble("MaxRecharge"));

 MinDiff = Math.abs(PowerAvailable -

rs.getDouble("MinRecharge"));

 if (MinDiff < MaxDiff)

 {

 // better off not turning on, we'll import more then we

would export

 DoAllocation = false;

 PowerAvailable = -1;

 }

 }

 if (DoAllocation)

 {

 head = rs.getInt("PushID");

 ThisAllocation = (rs.getDouble("MaxRecharge") -

rs.getDouble("MinRecharge"));

 PowerAvailable -= ThisAllocation;

 EnergyAllocatedAfter += ThisAllocation;

 ExtTemp = rs.getDouble("ExtTemp");

 }

 // System.out.println("Total:"+EnergyAllocatedAfter+" Allocated

"+ThisAllocation+" Min:"+rs.getDouble("MinRecharge")+" Max:"+rs.getDouble("MaxRecharge"));

 }

 SendRequest();

 result = true;

 }

 }

 // now record the energy usage

 query = "INSERT energy_distribution

(EnergyProduced,EnergyUsedBefore,EnergyAllocatedAfter,ExtTemp,DateString) VALUES("

 + EnergyGenerated

 + ","

 + EnergyAllocatedBefore

 + ","

 + EnergyAllocatedAfter

 + ","

 + ExtTemp

 + ",'"

 + dfm.format(ETSCalendar.getTime()) + "');";

 stmt.execute(query);

 }

 // EnergyAllocatedAfter = EnergyGenerated-PowerAvailable;

 }

 else

111

 {

 TurnAllOff = true;

 }

 if (TurnAllOff) {

 // there are no units to process, or no energy available.

 // Send a packet telling all units to turn off anyway

 head = -1;

 tail = -1;

 AllOn = false;

 SendRequest();

 result = true;

 }

 } catch (SQLException e) {

 e.printStackTrace();

 System.out.println("SQL string:" + query);

 }

 TimerRunning = false;

 }

 return (result);

 }

}

// wind distributor class

package net.wattbox.gui;

//import java.util.Calendar;

//import java.text.DateFormat;

//import java.text.SimpleDateFormat;

import java.text.DateFormat;

import java.text.SimpleDateFormat;

import java.util.Date;

import java.util.GregorianCalendar;

import java.util.TimeZone;

import java.util.Timer;

import java.util.TimerTask;

import java.io.ByteArrayInputStream;

import java.io.ByteArrayOutputStream;

import java.io.DataOutputStream;

import java.io.IOException;

import java.net.DatagramPacket;

import java.net.DatagramSocket;

import java.net.InetAddress;

import java.net.SocketException;

import java.net.UnknownHostException;

import java.sql.*;

import java.util.zip.Adler32;

import java.util.zip.CheckedInputStream;

/**

 * @author barnes

 *This class is used to recalculate the distribution of wind energy and sends a

 *command to the ETS units using the UDP protocol.

 */

public class WindDistributor {

 static final int PacketVersion = 1;

 static final int BTF = 28;

 static final int SOH = 0x87654321;

 static final int CMD_MULTI_ON = 1; // units within a defined range turn on

 static final int CMD_MULTI_OFF = 2; // units within a defined range turn off

 static final int CMD_ALL_ON = 3; // all units turn on

 static final int CMD_ALL_OFF = 4; // all units turn off

 static final int CMD_SINGLE_ON = 5; // the identified unit turns on

 static final int CMD_SINGLE_OFF = 6; // the identified unit turns off

 static final int CMD_X_MULTI_ON = 7; // units within a defined range turn on

 // all others turn off

 static final int CMD_X_MULTI_OFF = 8; // units within a defined range turn

112

 // off all others turn on

 boolean AllOn = false;

 String DestAddress = "localhost";

 int DestPort = 4536;

 public int tail = -1;

 public int head = -1;

 public int PacketNumber = 0;

 boolean TimerRunning = false;

 TimerTask tick_task;

 private double NetEnergy=0;

 private GregorianCalendar ETSCalendar;

 private GregorianCalendar EndTime;

 private GregorianCalendar StartDelay;

 int timescale = 600; // this is a scale factor for the timestep

 int timestep = 1; // this is how often the system runs the tick_task

 DatagramSocket socket;

 DatagramPacket packet;

 InetAddress address;

 ByteArrayOutputStream ByteStream = new ByteArrayOutputStream();

 // now create a data output stream so we can write primitives

 DataOutputStream UDPData = new DataOutputStream(ByteStream);

 TimeZone zone = TimeZone.getTimeZone("Canada/Atlantic");

 GregorianCalendar HoldCalendar = new GregorianCalendar(zone);

 Statement stmt;

 ResultSet rs;

 DateFormat dfm = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

 private Connection con = null;

 /**

 * Sets the time of the ETS to the passed value

 * @param aTime a long value used to set the ETS time in MSEC since 1970

 */

 public void setETSTime (long aTime)

 {

 ETSCalendar.setTimeInMillis(aTime);

 }

 /**

 * Simple constructor that calls the initialize function

 */

 public WindDistributor() {

 initialize();

 }

 /**

 * initializes the class variables

 */

 private void initialize() {

 ETSCalendar = new GregorianCalendar(zone);

 EndTime = new GregorianCalendar(zone);

 StartDelay = new GregorianCalendar(zone);

 String dip = DestAddress;

 try {

 address = InetAddress.getByName(dip);

 } catch (UnknownHostException e2) {

 // TODO Auto-generated catch block

 e2.printStackTrace();

 }

 try {

 socket = new DatagramSocket();

 } catch (SocketException e1) {

 // TODO Auto-generated catch block

 e1.printStackTrace();

 }

 try {

113

 Class.forName("com.mysql.jdbc.Driver").newInstance();

 con = DriverManager.getConnection("jdbc:mysql:///WattBoxPush",

 "root", "cuc002");

 } catch (SQLException e) {

 e.printStackTrace();

 } catch (InstantiationException e) {

 e.printStackTrace();

 } catch (IllegalAccessException e) {

 e.printStackTrace();

 } catch (ClassNotFoundException e) {

 e.printStackTrace();

 }

 try {

 stmt = con.createStatement();

 } catch (SQLException e3) {

 // TODO Auto-generated catch block

 e3.printStackTrace();

 }

 }

 /**

 * Builds and sends a UDP packet containing operating instructions for

 */

 private void SendRequest() {

 try {

 ByteStream.reset();

 // create a byte array output stream so we can access the data as an

 // array of bytes

 /*

 * The format for the UDP packet sent by this class is as follows

 *

 * address Name Type Notes 0x00-0x03 SOH 32UINT value = 0x87654321

 * 0x04-0x07 BTF 32UNIT number of bytes to follow (including

 * checksum) 0x08-0x0B VERSION 32UINT current version of packet (1)

 * 0x0C-0x0F CMD 32UINT command code 0x10-0x13 STARTID 32UINT start

 * id 0x14-0x17 ENDID 32UNIT end id 0x18-0x1F CHECKSUM 64UNIT Alder

 * 64 bit check sum from SOH to ENDID

 */

 try {

 UDPData.writeInt(SOH);

 UDPData.writeInt(BTF);

 UDPData.writeInt(PacketNumber);

 PacketNumber++;

 UDPData.writeInt(PacketVersion);

 // write the appropriate command

 if (tail < head)

 UDPData.writeInt(CMD_X_MULTI_ON);

 else if (tail > head)

 UDPData.writeInt(CMD_X_MULTI_OFF);

 else if (AllOn)

 UDPData.writeInt(CMD_ALL_ON);

 else {

 if (head == -1)

 UDPData.writeInt(CMD_ALL_OFF);

 else

 UDPData.writeInt(CMD_X_MULTI_ON);

 }

 // write the start and stop ID's

 UDPData.writeInt(tail);

 UDPData.writeInt(head);

 System.out.println("Wind startID:" + tail + " endID:" + head

 + " Packet Number:" + (PacketNumber - 1));

 // append the checksum

 long HoldCRC = CalcCRC(ByteStream);

 UDPData.writeLong(HoldCRC);

 } catch (IOException e1) {

114

 e1.printStackTrace();

 }

 packet = new DatagramPacket(ByteStream.toByteArray(),

 ByteStream.size(), address, DestPort);

 socket.send(packet);

 } catch (IOException io) {

 }

 }

 /**

 * @param aStream

 * @return a long value containing the Adler32 checksum of the data in the stream

 */

 private long CalcCRC(ByteArrayOutputStream aStream) {

 long result = 0;

 ByteArrayInputStream bais = new ByteArrayInputStream(

 aStream.toByteArray());

 CheckedInputStream cis = new CheckedInputStream(bais, new Adler32());

 byte[] tempBuf = new byte[aStream.size()];

 try {

 while (cis.read(tempBuf) >= 0) {

 }

 result = cis.getChecksum().getValue();

 } catch (IOException e) {

 e.printStackTrace();

 }

 return result;

 }

 /**

 * Resets the head and tail values to -1

 */

 public void ResetHeadTail() {

 head = -1;

 tail = -1;

 }

 /**

 * @return the lowest pushid of the ETS units

 */

 public boolean getFirst() {

 boolean result = false;

 try {

 rs = stmt

 .executeQuery("SELECT * from storage_units ORDER BY PushID LIMIT 0,1;");

 if (rs.next()) {

 tail = rs.getInt("PushID");

 result = true;

 }

 } catch (SQLException e) {

 e.printStackTrace();

 }

 return result;

 }

 /**

 * Distributes the intermittent wind power to the ETS devices

 * @return true if there was change in the wind power distribution

 */

 public boolean DistributeWind() {

 boolean result = false;

 double PowerProduced = 0;

 double MinLoad = 0;

 double PowerAvailable = 0;

 double EnergyGenerated = 0;

 double EnergyAllocatedBefore = 0;

 double EnergyAllocatedAfter = 0;

 double ThisAllocation = 0;

 boolean TurnAllOff = false;

115

 boolean DoAllocation = false;

 double MinDiff = 0;

 double MaxDiff =0;

 double ExtTemp = 0;

 if (!TimerRunning) {

 TimerRunning = true;

 String query = "unasigned";

 ResetHeadTail();

 try {

 rs = stmt.executeQuery("SELECT SUM(output_kw) as total_energy from producers;");

 if (rs.next()) {

 PowerProduced = rs.getDouble("total_energy");

 EnergyGenerated = PowerProduced;

 }

 // account for the system load

 //Get the system load

 double SystemLoad = 0;

 query = "SELECT SUM(electrical_load) as total_energy from system_loads;";

 rs = stmt.executeQuery(query);

 if (rs.next())

 SystemLoad = rs.getDouble("total_energy");

 rs = stmt.executeQuery("SELECT SUM(CurrentRecharge) as total_energy from

storage_units;");

 if (rs.next()) {

 EnergyAllocatedBefore = rs.getDouble("total_energy");

 }

 if ((PowerProduced - SystemLoad) > 0) {

 if (((PowerProduced - SystemLoad) != NetEnergy)){

 NetEnergy = (PowerProduced - SystemLoad);

 // account for any energy that is being used that can not be

 // turned off

 rs = stmt.executeQuery("SELECT SUM(MinRecharge) as total_energy from

storage_units;");

 if (rs.next()) {

 MinLoad = rs.getDouble("total_energy");

 PowerAvailable = PowerProduced - MinLoad - SystemLoad;

 EnergyAllocatedAfter = MinLoad;

 }

 if (PowerAvailable > 0) {

 if (getFirst()) {

 AllOn = false;

 TurnAllOff = false;

 // there is access power to distribute and devices

 // to take it

 rs = stmt.executeQuery("SELECT * from storage_units ORDER BY

PushID;");

 // power is distributed on a first come, first

 // served basis

 while ((PowerAvailable > 0) && (rs.next())) {

 DoAllocation = true;

 if ((PowerAvailable - rs.getDouble("MaxRecharge"))<0)

 {

 // Only turn on if we will use more wind power then we will

have to import

 MaxDiff = Math.abs(PowerAvailable -

rs.getDouble("MaxRecharge"));

 MinDiff = Math.abs(PowerAvailable -

rs.getDouble("MinRecharge"));

 if (MinDiff < MaxDiff)

 {

 // better off not turning on, we'll import more then we

would export

 DoAllocation = false;

 PowerAvailable = -1;

 }

 }

 if (DoAllocation)

 {

 head = rs.getInt("PushID");

116

 ThisAllocation = (rs.getDouble("MaxRecharge") -

rs.getDouble("MinRecharge"));

 PowerAvailable -= ThisAllocation;

 EnergyAllocatedAfter += ThisAllocation;

 ExtTemp = rs.getDouble("ExtTemp");

 }

 // System.out.println("Total:"+EnergyAllocatedAfter+" Allocated

"+ThisAllocation+" Min:"+rs.getDouble("MinRecharge")+" Max:"+rs.getDouble("MaxRecharge"));

 }

 SendRequest();

 result = true;

 }

 }

 // now record the energy usage

 query = "INSERT energy_distribution

(EnergyProduced,EnergyUsedBefore,EnergyAllocatedAfter,ExtTemp,DateString) VALUES("

 + EnergyGenerated

 + ","

 + EnergyAllocatedBefore

 + ","

 + EnergyAllocatedAfter

 + ","

 + ExtTemp

 + ",'"

 + dfm.format(ETSCalendar.getTime()) + "');";

 stmt.execute(query);

 }

 // EnergyAllocatedAfter = EnergyGenerated-PowerAvailable;

 }

 else

 {

 TurnAllOff = true;

 }

 if (TurnAllOff) {

 // there are no units to process, or no energy available.

 // Send a packet telling all units to turn off anyway

 head = -1;

 tail = -1;

 AllOn = false;

 SendRequest();

 result = true;

 }

 } catch (SQLException e) {

 e.printStackTrace();

 System.out.println("SQL string:" + query);

 }

 TimerRunning = false;

 }

 return (result);

 }

}

// Test bed for Server-push

package net.wattbox.gui;

import java.awt.*;

import java.awt.event.*; // for ActionListener and ActionEvent

import java.io.BufferedReader;

import java.io.ByteArrayInputStream;

import java.io.DataInputStream;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.FileReader;

import java.io.IOException;

import java.net.DatagramPacket;

import java.net.DatagramSocket;

117

import java.net.UnknownHostException;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Statement;

import java.text.DateFormat;

import java.text.ParseException;

import java.text.SimpleDateFormat;

import java.util.ArrayList;

import java.util.Date;

import java.util.List;

import java.util.StringTokenizer;

import java.util.TimeZone;

import java.util.zip.Adler32;

import java.util.zip.CheckedInputStream;

import java.util.Calendar;

import java.util.Collections;

import java.util.GregorianCalendar;

import java.util.Timer;

import java.util.TimerTask;

import javax.swing.*;

import net.wattbox.config.Config;

import com.toedter.calendar.JDateChooser;

/**

 * @author barnes

 *

 *This class is used has a the test bed for simulating the Server-push architecture

 */

public class SysMonMainPush {

 private String Start= Config.SimulationStart;

 private String End = Config.SimulationEnd;

 private JFrame frame;

 private JTextArea textArea;

 List<SimETS> ETSList = new ArrayList<SimETS>();

 Connection con = null;

 private GregorianCalendar SystemCalendar;

 SimWindFarm West_Cape;

 SimWindFarm SummerSide;

 SimSystemLoad SystemLoad;

 WindDistributor Distributor;

 UDPListner aListner;

 Timer timer;

 TimerTask tick_task;

 int etsTickCount;

 Date StartTime;

 Date EndTime;

 GregorianCalendar InitTime;

 GregorianCalendar VirtualInit;

 TimeZone zone = TimeZone.getTimeZone("Canada/Atlantic");

 GregorianCalendar DistrbutionCalander = new GregorianCalendar(zone);

 WindDistributor DistributionTask;

 boolean CreateWindTable = false;

 public static String newline = System.getProperty("line.separator");

 private JDateChooser dcStart;

 private JDateChooser dcEnd;

 private JDateChooser dateChooser;

 private JTextField textField;

 private JTextField textField_1;

 private JTextField textField_2;

 private JTextField textField_3;

 private JTextField textField_4;

 private JTextField textField_5;

 private JTextField textField_6;

 private JTextField textField_7;

 ResultSet rs;

118

 String query;

 Statement stmt;

 DateFormat dfm;

 /**

 * @author barnes

 * This class is used to monitor a port for UDP commands sent from the server. If the

command is validated,

 * it is passed to the ETS devices.

 */

 public class UDPListner implements Runnable

 {

 static final int PacketVersion = 1;

 static final int BTF = 24;

 static final int SOH = 0x87654321;

 static final int CMD_ON = 1;

 static final int CMD_OFF = 2;

 static final int CMD_ALL_ON = 3;

 static final int CMD_ALL_OFF = 4;

 String DestAddress = "localhost";

 String DestPort = "4536";

 DatagramSocket socket;

 private boolean PacketReceived = false;

 /**

 * @return set to true when the command is processed. The application waits for this

parameter to be set

 * so the ETS units a re updated before the wimulation continues.

 */

 public boolean IsFinished ()

 {

 if (PacketReceived)

 {

 PacketReceived = false;

 return true;

 }

 else

 return false;

 }

 /* (non-Javadoc)

 * @see java.lang.Runnable#run()

 * the implementation waits for commands so it has to run in its own thread that can

block without blocking the application

 */

 public void run(){

 try

 {

 byte[] buffer = new byte[36];

 int port = 4536;

 try

 {

 socket = new DatagramSocket(port);

 while(true)

 {

 try

 {

 /*

 * The format for the UDP packet sent by this class is as follows

 address Name Type Notes

 0x00-0x03 SOH 32UINT value = 0x87654321

 0x04-0x07 BTF 32UNIT number of bytes to follow

(including checksum)

 0x08-0x0B VERSION 32UINT current version of packet (1)

 0x0C-0x0F CMD 32UINT command code

 0x10-0x13 STARTID 32UINT start id

 0x14-0x17 ENDID 32UNIT end id

 0x18-0x1F CHECKSUM 64UNIT Alder 64 bit check sum from SOH

to ENDID

 */

 //Receive request from client

119

 //System.out.println("UDP listner start");

 DatagramPacket packet = new DatagramPacket(buffer, buffer.length);

 socket.receive(packet);

 // create a byte array stream of the received data

 ByteArrayInputStream ByteStream = new ByteArrayInputStream(buffer);

 // create an input stream for primitives

 DataInputStream UDPData = new DataInputStream(ByteStream);

 if (UDPData.readInt() ==SOH)

 {

 UDPData.readInt();

 UDPData.readInt();

 UDPData.readInt();

 int cmd = UDPData.readInt();

 int startID = UDPData.readInt();

 int endID = UDPData.readInt();

 long PacketCS = UDPData.readLong();

 // now compute the checksum

 try

 {

 byte[] tempBuf = new byte[28];

 System.arraycopy(buffer,0,tempBuf,0,28);

 ByteArrayInputStream bais = new ByteArrayInputStream(tempBuf);

 CheckedInputStream acis = new CheckedInputStream(bais, new

Adler32());

 byte readBuffer[] = new byte[28];

 while (acis.read(readBuffer) >= 0);

 long holdCS = acis.getChecksum().getValue();

 if (holdCS== PacketCS)

 {

 //System.out.println("CMD:"+cmd+" startID:"+startID+"

endID:"+endID+" Packet Number:"+PacketNumber);

 // valid packet. Forward to each ETS

 for (SimETS aETS : ETSList)

 {

 //System.out.println(aETS.DeviceID);

 aETS.HandleUDPCmd(cmd,startID, endID);

 }

 PacketReceived = true;

 }

 }

 catch (IOException e)

 {

 e.printStackTrace();

 }

 }

 }

 catch(UnknownHostException ue){}

 }

 }

 catch(java.net.BindException b){}

 }

 catch (IOException e){

 System.err.println(e);

 }

 }

 }

 /**

 * @param args

 * Main function for the application

 */

 public static void main(String[] args) {

 EventQueue.invokeLater(new Runnable() {

 public void run() {

 try {

 SysMonMainPush window = new SysMonMainPush();

 window.frame.setVisible(true);

 } catch (Exception e) {

120

 e.printStackTrace();

 }

 }

 });

 }

 /**

 * Create the application.

 */

 public SysMonMainPush() {

 initialize();

 }

 /**

 * @author barnes

 * This class is used to step through time in the simulation. It is implemented as a timer

task.

 */

 class tick_task extends TimerTask {

 public void run()

 {

 //This event triggers all the devices in the system to update serially

 //In the real world, multiple devices could hit the servers at the same time

 long TimeDelta = 0;

 if (Config.RealTimeRun)

 {

 TimeDelta = System.currentTimeMillis() - InitTime.getTimeInMillis();

 SystemCalendar.setTimeInMillis(VirtualInit.getTimeInMillis()+TimeDelta);

 }

 else

 {

 TimeDelta = Config.TimeIncrement;

 SystemCalendar.setTimeInMillis(SystemCalendar.getTimeInMillis()+TimeDelta);

 }

 if (EndTime.after(SystemCalendar.getTime()))

 {

 // in the push implementation, all ets units run and report operating parameters

before wind is distributed.

 // sort the list of ETS units based upon when they are next serviced

 for(SimETS aETS : ETSList){

 aETS.setETSTime(SystemCalendar.getTimeInMillis());

 }

 Collections.sort(ETSList);

 // process this time step

 for(SimETS aETS : ETSList){

 aETS.run();

 }

 // by now each ETS has depleted based upon the temperature and reported it's

operating parameters to the server

 // update the wind farm production levels

 West_Cape.setETSTime(SystemCalendar.getTimeInMillis());

 West_Cape.run();

 SummerSide.setETSTime(SystemCalendar.getTimeInMillis());

 SummerSide.run();

 // update the system load

 SystemLoad.run();

 // now distribute the power to the ETS units

 Distributor.setETSTime(SystemCalendar.getTimeInMillis());

 if (Distributor.DistributeWind())

 {

 // wait here until the packet is processe;

 while (!(aListner.IsFinished()));

 }

 // now collect the statistics, we care about the wind energy that has been

redirected to ETS units vs exported.

 //Get the total energy allocated to storage units

 double EnergyAllocated=0;

 query = "SELECT SUM(CurrentRecharge) as energy_allocated from storage_units;";

121

 try {

 rs = stmt.executeQuery(query);

 if (rs.next())

 EnergyAllocated =rs.getDouble("energy_allocated");

 //Get the total energy being generated

 double EnergyProduced=0;

 query = "SELECT SUM(output_kw) as total_energy from producers;";

 rs = stmt.executeQuery(query);

 if (rs.next())

 EnergyProduced = rs.getDouble("total_energy");

 //Get the system load

 double SystemLoad = 0;

 query = "SELECT SUM(electrical_load) as total_energy from system_loads;";

 rs = stmt.executeQuery(query);

 if (rs.next())

 SystemLoad = rs.getDouble("total_energy");

 double EnergyAvailable = EnergyProduced - SystemLoad;

 double EnergyImported =0;

 double EnergyExported =0;

 if (EnergyAvailable > EnergyAllocated)

 {

 EnergyImported =0;

 EnergyExported = EnergyAvailable-EnergyAllocated;

 }

 else

 {

 EnergyExported =0;

 if (EnergyAvailable > 0)

 EnergyImported = EnergyAllocated-EnergyAvailable;

 else

 EnergyImported = EnergyAllocated;

 }

 // determine how long it took to distribute the energy

 TimeDelta = System.currentTimeMillis() - InitTime.getTimeInMillis();

 DistrbutionCalander.setTimeInMillis(VirtualInit.getTimeInMillis()+TimeDelta);

 // now set the ETS time

 // record the time, total wind power available, wind power being imported space

heating, wind power being exported and if it is during the evening hours

 query = "INSERT INTO energy_stats (" +

 "aDateTime," +

 "aDistributionTime,"+

 "WindEnergyAvailable,"+

 "WindEnergyForSpaceHeating, "+

 "ImportedEnergyForSpaceHeating, "+

 "ExportedWindEnergy, "+

 "EveningHours, "+

 "DateString) "+

 "VALUES ("+

 SystemCalendar.getTimeInMillis()+","+

 DistrbutionCalander.getTimeInMillis()+","+

 EnergyAvailable+","+

 EnergyAllocated+","+

 EnergyImported+","+

 EnergyExported+","+

 EveningHours()+","+

 "'"+dfm.format(SystemCalendar.getTime()) +"')";

 stmt.execute(query);

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

122

 else

 {

 timer.cancel();

 textArea.append("Simulation complete");

 }

 //increment the system calendar

 dateChooser.setDate(SystemCalendar.getTime());

 }

 }

 /**

 * @return 1 if it is between 23:00 to 7:00, 0 otherwise

 */

 public int EveningHours()

 {

 int result=1;

 long DayStart;

 long DayEnd;

 // determine if we are in the 'auto recharge time';

 // get rid of the fractional days

 long Hour = SystemCalendar.get(Calendar.HOUR_OF_DAY);

 long Minute = SystemCalendar.get(Calendar.MINUTE);

 long Second = SystemCalendar.get(Calendar.SECOND);

 long Delta = Hour*60*60+Minute*60+Second;

 DayStart = 60 * 60 * 7; // 7 am

 DayEnd = 60 * 60 * 23; // 11 pm

 if ((Delta > DayStart)&(Delta < DayEnd))

 {

 result = 0;

 }

 return result;

 }

 /**

 * Creates the database

 * @param conn

 *

 * This function creates a fresh database for the simulation.

 */

 public void createDataBase(Connection conn)

 {

 String query;

 Statement stmt;

 textArea.append("Creating database: ");

 try

 {

 query="create database 'test'";

 stmt = conn.createStatement();

 stmt.executeUpdate(query);

 query="use 'test'";

 stmt.execute(query);

 stmt.close();

 textArea.append("Complete \n");

 }

 catch (Exception e)

 {

 textArea.append("Exception:"+e.getMessage());

 e.printStackTrace();

 }

 }

 /**

 * Creates the database tables

 * @param conn

 */

 public void createTables(Connection conn)

 {

123

 String query="empty";

 Statement stmt;

 try

 {

 // delete the old table

 textArea.append("Dropping old tables:");

 query ="DROP TABLE IF EXISTS activedevices";

 stmt = conn.createStatement();

 stmt.execute(query);

 textArea.append("Complete \n");

 // create the authentication table

 textArea.append("Creating authentication table:");

 query ="DROP TABLE IF EXISTS auth_table";

 stmt.execute(query);

 // create a new copy

 query="CREATE TABLE auth_table ("+

 "DeviceID char(32) DEFAULT NULL,"+

 "Password char(32) DEFAULT NULL"+

 ") ENGINE=InnoDB DEFAULT CHARSET=latin1";

 stmt.execute(query);

 textArea.append("Complete \n");

 // create table for loads

 textArea.append("Creating system loads table:");

 query ="DROP TABLE IF EXISTS system_loads";

 stmt.execute(query);

 query ="CREATE TABLE system_loads ("+

 "DeviceID char(32) NOT NULL,"+

 "electrical_load double) ENGINE=InnoDB DEFAULT CHARSET=latin1";

 stmt.execute(query);

 textArea.append("Complete \n");

 textArea.append("Creating storage unit table:");

 // create producers table

 query ="DROP TABLE IF EXISTS producers";

 stmt.execute(query);

 query ="CREATE TABLE producers ("+

 "DeviceID char(32) NOT NULL,"+

 "output_kw double DEFAULT NULL,"+

 "PRIMARY KEY (DeviceID)"+

 ") ENGINE=InnoDB DEFAULT CHARSET=latin1";

 stmt.execute(query);

 textArea.append("Complete \n");

 // create storage_unit table

 textArea.append("Creating storage unit table:");

 query ="DROP TABLE IF EXISTS storage_units";

 stmt.execute(query);

 query ="CREATE TABLE storage_units ("+

 "DeviceID char(32) NOT NULL,"+

 "PushID int NOT NULL AUTO_INCREMENT,"+

 "energy_allocation double DEFAULT 0,"+

 "CurrentRecharge double DEFAULT 0,"+

 "MaxRecharge double DEFAULT 0,"+

 "MinRecharge double DEFAULT 0,"+

 "ExtTemp double DEFAULT 0,"+

 "PRIMARY KEY (PushID)"+

 ") ENGINE=InnoDB DEFAULT CHARSET=latin1";

 stmt.execute(query);

 textArea.append("Complete \n");

 // create emergency storage table

 textArea.append("Creating emergency recharge table:");

 query ="DROP TABLE IF EXISTS emergency_storage";

 stmt.execute(query);

 query ="CREATE TABLE emergency_storage ("+

 "aDateTime bigint,"+

 "DeviceID char(32) NOT NULL,"+

 "ResSize double,"+

124

 "EnergyIntensity double,"+

 "EmergencyRecharge double,"+

 "ExtTemp double) ENGINE=InnoDB DEFAULT CHARSET=latin1";

 stmt.execute(query);

 textArea.append("Complete \n");

 textArea.append("Creating wind data table:");

 if (CreateWindTable)

 {

 // create the wind data table

 query ="DROP TABLE IF EXISTS wind_data_table";

 stmt.execute(query);

 // create a new copy

 query="CREATE TABLE wind_data_table ("+

 "aDateString char (32),"+

 "aDateTime bigint,"+

 "PowerLoad double,"+

 "WestCape double,"+

 "Summerside double,"+

 "Temperature double"+

 ") ENGINE=InnoDB DEFAULT CHARSET=latin1";

 stmt.execute(query);

 textArea.append("Complete \n");

 }

 // create the energy usage table

 query ="DROP TABLE IF EXISTS energy_usage";

 stmt.execute(query);

 // create a new copy

 query="CREATE TABLE energy_usage ("+

 "aDateTime bigint,"+

 "DeviceID char(32), "+

 "EnergyProduced double, "+

 "SystemLoad double,"+

 "EnergyAvailable double,"+

 "EnergyAllocatedBefore double, "+

 "EnergyAllocatedAfter double, "+

 "EnergyAllocatedToUnit double, "+

 "MinRecharge double, "+

 "MaxRecharge double, "+

 "CurrentRecharge double, "+

 "LastRecharge double, "+

 "CurrentStorage double, "+

 "CurrentDischarge double, "+

 "ExtTemp double,"+

 "DateString char (64), "+

 "RecordIndex int (4) NOT NULL AUTO_INCREMENT,"+

 "UNIQUE (RecordIndex)"+

 ") ENGINE=InnoDB DEFAULT CHARSET=latin1";

 stmt.execute(query);

 textArea.append("Complete \n");

 // create the energy usage table

 query ="DROP TABLE IF EXISTS energy_stats";

 stmt.execute(query);

 // create a new copy

 query="CREATE TABLE energy_stats ("+

 "aDateTime bigint,"+

 "aDistributionTime bigint,"+

 "WindEnergyAvailable double,"+

 "WindEnergyForSpaceHeating double, "+

 "ImportedEnergyForSpaceHeating double, "+

 "ExportedWindEnergy double, "+

 "EveningHours integer, "+

 "DateString char (64), "+

 "RecordIndex int (4) NOT NULL AUTO_INCREMENT,"+

 "UNIQUE (RecordIndex)"+

 ") ENGINE=InnoDB DEFAULT CHARSET=latin1";

 stmt.execute(query);

 textArea.append("Complete \n");

 stmt.close();

125

 }

 catch (Exception e)

 {

 System.out.println(query);

 e.printStackTrace();

 }

 }

 /**Populates the database tables with values

 * @param conn

 */

 public void PopulateTables(Connection conn)

 {

 String query,str_i;

 Statement stmt;

 int count =0;

 int i;

 try

 {

 textArea.append("populating authentication table(adding ETS units):");

 count+=Integer.parseInt(textField.getText());

 count+=Integer.parseInt(textField_1.getText());

 count+=Integer.parseInt(textField_2.getText());

 count+=Integer.parseInt(textField_3.getText());

 count+=Integer.parseInt(textField_4.getText());

 count+=Integer.parseInt(textField_5.getText());

 count+=Integer.parseInt(textField_6.getText());

 count+=Integer.parseInt(textField_7.getText());

 // add devices to the auth table

 stmt = conn.createStatement();

 query = "insert into auth_table(DeviceID,Password) values ";

 for (i=0;i<count;i++)

 {

 str_i = Integer.toString(i);

 if (i!=0)

 {

 query = query+",";

 }

 query = query+"('device"+str_i+"','password"+str_i+"')";

 }

 stmt.execute(query);

 textArea.append("complete\n");

 //now add our wind farm

 query = "insert into auth_table(DeviceID,Password) values

('SummerSide','SummerSide')";

 stmt.execute(query);

 query = "insert into auth_table(DeviceID,Password) values ('WestCape','WestCape')";

 stmt.execute(query);

 textArea.append("complete\n");

 // add the system load device

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 }

 /**

 * Reasd the wind data from a CSV file and puts it in the database.

 * @param conn

 */

 private void ReadWindData(Connection conn)

 {

 String line = null;

 String adate = null;

 int i;

 double temperature;

 double load;

 double WestCapeOutput;

126

 double SummerSideOutput;

 Date DateTime=new Date();

 String query;

 Statement stmt;

 long HoldLong =0;

 textArea.append("Loading Wind data into database:");

 File file = new File("c:\\SummersideWindData.csv");

 BufferedReader bufRdr;

 try {

 bufRdr = new BufferedReader(new FileReader(file));

 DateFormat dfm = new SimpleDateFormat("MM/dd/yyyy HH:mm");

 dfm.setTimeZone(TimeZone.getTimeZone("Canada/Atlantic"));

 // the first 6 lines are header lines and have no data,

 try {

 for (i=0;i<=5;i++)

 line = bufRdr.readLine();

 } catch (IOException e1) {

 e1.printStackTrace();

 }

 i=0;

 //read each remaining line of text file

 try

 {

 while((line = bufRdr.readLine()) != null)

 {

 i++;

 if (i==1) textArea.append(".");

 i%=100;

 StringTokenizer st = new StringTokenizer(line,",");

 // each line has 18 values. The first is the date and time

 adate = st.nextToken();

 try

 {

 DateTime = dfm.parse(adate);

 } catch (ParseException e)

 {

 e.printStackTrace();

 }

 // second value is the load

 load =Double.parseDouble(st.nextToken())*1000;

 // value 3 is the power output in kwh, from west cape

 WestCapeOutput = Double.parseDouble(st.nextToken())*1000;

 // value 4 is the output from Summerside

 SummerSideOutput = Double.parseDouble(st.nextToken())*1000;

 // value number 4 is the temperature

 temperature = Double.parseDouble(st.nextToken());

 // now add this data to the table

 HoldLong = DateTime.getTime();

 stmt = conn.createStatement();

 query = "Insert INTO wind_data_table(" +

 "aDateString,"+

 "aDateTime,"+

 "PowerLoad,"+

 "WestCape,"+

 "SummerSide,"+

 "Temperature) VALUES ('"+

 adate+"',"+

 Long.toString(HoldLong)+","+

 Double.toString(load)+","+

 Double.toString(WestCapeOutput)+","+

 Double.toString(SummerSideOutput)+","+

 Double.toString(temperature)+");";

 stmt.execute(query);

 }

 } catch (NumberFormatException e) {

 System.out.println("Error in line " +line);

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 } catch (SQLException e) {

 e.printStackTrace();

127

 }

 textArea.append("complete\n");

 bufRdr.close();

 } catch (FileNotFoundException e2) {

 e2.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 /**

 * Creates the ETS units based on the parameters set by the user

 */

 private void CreateETSUnits()

 {

 SimETS ThisETS;

 int i;

 int aDeviceID =0;

 int aCount = 0;

 double ScaleFactor = 0;

 double ResSize =0;

 DateFormat dfm = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

 dfm.setTimeZone(TimeZone.getTimeZone("Canada/Atlantic"));

 try {

 StartTime = dfm.parse(Start);

 EndTime = dfm.parse(End);

 } catch (ParseException e1) {

 e1.printStackTrace();

 }

 textArea.append("Creating ETS units");

 // we need to create ETS units based upon the size of the residence and its vintage

 // pre 1946

 ScaleFactor = 1.408;

 ResSize = 110.1;

 aCount = Integer.parseInt(textField.getText());

 for (i=0;i<aCount;i++)

 {

 textArea.append(".");

 ThisETS = new SimETS("Device" + aDeviceID, "Password" + aDeviceID, 37.2,14.4,

180,ResSize,ScaleFactor, 19);

 ThisETS.InitTimeStamp(StartTime,EndTime);

 ETSList.add(ThisETS);

 aDeviceID++;

 }

 // 1946-1960

 ScaleFactor = 1.565;

 ResSize = 128.8;

 aCount = Integer.parseInt(textField_1.getText());

 for (i=0;i<aCount;i++)

 {

 textArea.append(".");

 ThisETS = new SimETS("Device" + aDeviceID, "Password" + aDeviceID, 37.2,14.4,

180,ResSize,ScaleFactor, 19);

 ThisETS.InitTimeStamp(StartTime,EndTime);

 ETSList.add(ThisETS);

 aDeviceID++;

 }

 // 1961-1977

 ScaleFactor = 0.880;

 ResSize = 125.6;

 aCount = Integer.parseInt(textField_2.getText());

 for (i=0;i<aCount;i++)

 {

 textArea.append(".");

 ThisETS = new SimETS("Device" + aDeviceID, "Password" + aDeviceID, 24.8,10,

120,ResSize,ScaleFactor, 19);

128

 ThisETS.InitTimeStamp(StartTime,EndTime);

 ETSList.add(ThisETS);

 aDeviceID++;

 }

 // 1978-1983

 ScaleFactor = 0.782;

 ResSize = 122.1;

 aCount = Integer.parseInt(textField_3.getText());

 for (i=0;i<aCount;i++)

 {

 textArea.append(".");

 ThisETS = new SimETS("Device" + aDeviceID, "Password" + aDeviceID, 24.8,10,

120,ResSize,ScaleFactor, 19);

 ThisETS.InitTimeStamp(StartTime,EndTime);

 ETSList.add(ThisETS);

 aDeviceID++;

 }

 // 1984-1995

 ScaleFactor = 0.618;

 ResSize = 132;

 aCount = Integer.parseInt(textField_4.getText());

 for (i=0;i<aCount;i++)

 {

 textArea.append(".");

 ThisETS = new SimETS("Device" + aDeviceID, "Password" + aDeviceID, 24.8,10,

120,ResSize,ScaleFactor, 19);

 ThisETS.InitTimeStamp(StartTime,EndTime);

 ETSList.add(ThisETS);

 aDeviceID++;

 }

 // 1996-2000

 ScaleFactor = 0.587;

 ResSize = 137.6;

 aCount = Integer.parseInt(textField_5.getText());

 for (i=0;i<aCount;i++)

 {

 textArea.append(".");

 ThisETS = new SimETS("Device" + aDeviceID, "Password" + aDeviceID, 24.8,10,

120,ResSize,ScaleFactor, 19);

 ThisETS.InitTimeStamp(StartTime,EndTime);

 ETSList.add(ThisETS);

 aDeviceID++;

 }

 // 2001-2005

 ScaleFactor = 0.469;

 ResSize = 147.5;

 aCount = Integer.parseInt(textField_6.getText());

 for (i=0;i<aCount;i++)

 {

 textArea.append(".");

 ThisETS = new SimETS("Device" + aDeviceID, "Password" + aDeviceID, 24.8,10,

120,ResSize,ScaleFactor, 19);

 ThisETS.InitTimeStamp(StartTime,EndTime);

 ETSList.add(ThisETS);

 aDeviceID++;

 }

 // 2006-2008

 ScaleFactor = 0.391;

 ResSize = 146.1;

 aCount = Integer.parseInt(textField_7.getText());

 for (i=0;i<aCount;i++)

 {

 textArea.append(".");

 ThisETS = new SimETS("Device" + aDeviceID, "Password" + aDeviceID, 24.8,10,

120,ResSize,ScaleFactor, 19);

129

 //ThisETS = new SimETS("Device" + aDeviceID, "Password" + aDeviceID, 38.4,18.4,

240,ResSize,ScaleFactor, 19); // 4140 model

 ThisETS.InitTimeStamp(StartTime,EndTime);

 ETSList.add(ThisETS);

 aDeviceID++;

 }

 textArea.append("complete\n");

 }

 /**

 * creates the wind farms used by the simulation

 */

 private void CreateWindFarms()

 {

 West_Cape = new SimWindFarm("WestCape","WestCape");

 DateFormat dfm = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

 dfm.setTimeZone(TimeZone.getTimeZone("Canada/Atlantic"));

 textArea.append("Creating wind farms:");

 try {

 StartTime = dfm.parse(Start);

 EndTime = dfm.parse(End);

 West_Cape.InitTimeStamp(StartTime,EndTime);

 textArea.append("complete\n");

 } catch (ParseException e) {

 textArea.append("Exception:"+e.getMessage()+"\n");

 e.printStackTrace();

 }

 SummerSide = new SimWindFarm("SummerSide","SummerSide");

 dfm = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

 dfm.setTimeZone(TimeZone.getTimeZone("Canada/Atlantic"));

 textArea.append("Creating wind farms:");

 try {

 StartTime = dfm.parse(Start);

 EndTime = dfm.parse(End);

 SummerSide.InitTimeStamp(StartTime,EndTime);

 textArea.append("complete\n");

 } catch (ParseException e) {

 textArea.append("Exception:"+e.getMessage()+"\n");

 e.printStackTrace();

 }

 }

 /**

 * Initialize the contents of the frame.

 */

 private void initialize()

 {

 // create the connection to the database

 try {

 Class.forName(Config.DriverClass).newInstance();

 con = DriverManager.getConnection(Config.dBaseName,

 Config.dBaseUserName, Config.dBasePassword);

 stmt = con.createStatement();

 } catch (SQLException e) {

 e.printStackTrace();

 } catch (InstantiationException e) {

 e.printStackTrace();

 } catch (IllegalAccessException e) {

 e.printStackTrace();

 } catch (ClassNotFoundException e) {

 e.printStackTrace();

 }

 dfm = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

 timer = new Timer();

130

 frame = new JFrame();

 frame.setBounds(100, 100, 593, 647);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 GridBagLayout gridBagLayout = new GridBagLayout();

 gridBagLayout.columnWidths = new int[]{10, 548, 10, 0};

 gridBagLayout.rowHeights = new int[]{10, 289, 253, 0};

 gridBagLayout.columnWeights = new double[]{1.0, 0.0, 0.0, Double.MIN_VALUE};

 gridBagLayout.rowWeights = new double[]{0.0, 1.0, 0.0, Double.MIN_VALUE};

 frame.getContentPane().setLayout(gridBagLayout);

 DateFormat HoldDate = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

 HoldDate.setTimeZone(TimeZone.getTimeZone("Canada/Atlantic"));

 JPanel panel = new JPanel();

 GridBagConstraints gbc_panel = new GridBagConstraints();

 gbc_panel.anchor = GridBagConstraints.NORTH;

 gbc_panel.insets = new Insets(0, 0, 5, 5);

 gbc_panel.fill = GridBagConstraints.HORIZONTAL;

 gbc_panel.gridx = 1;

 gbc_panel.gridy = 1;

 frame.getContentPane().add(panel, gbc_panel);

 GridBagLayout gbl_panel = new GridBagLayout();

 gbl_panel.columnWidths = new int[]{0, 0, 21, 134, 26, 0, 82, 0};

 gbl_panel.rowHeights = new int[]{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

 gbl_panel.columnWeights = new double[]{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,

Double.MIN_VALUE};

 gbl_panel.rowWeights = new double[]{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

1.0, 0.0, Double.MIN_VALUE};

 panel.setLayout(gbl_panel);

 JLabel lblVintage = new JLabel("Vintage");

 lblVintage.setFont(new Font("Tahoma", Font.BOLD, 11));

 GridBagConstraints gbc_lblVintage = new GridBagConstraints();

 gbc_lblVintage.insets = new Insets(0, 0, 5, 5);

 gbc_lblVintage.gridx = 1;

 gbc_lblVintage.gridy = 2;

 panel.add(lblVintage, gbc_lblVintage);

 JLabel lblNumberOfResidences = new JLabel("Number of residences");

 lblNumberOfResidences.setFont(new Font("Tahoma", Font.BOLD, 11));

 GridBagConstraints gbc_lblNumberOfResidences = new GridBagConstraints();

 gbc_lblNumberOfResidences.insets = new Insets(0, 0, 5, 5);

 gbc_lblNumberOfResidences.gridx = 3;

 gbc_lblNumberOfResidences.gridy = 2;

 panel.add(lblNumberOfResidences, gbc_lblNumberOfResidences);

 JLabel lblBefore = new JLabel("Before 1946");

 GridBagConstraints gbc_lblBefore = new GridBagConstraints();

 gbc_lblBefore.anchor = GridBagConstraints.BELOW_BASELINE_TRAILING;

 gbc_lblBefore.insets = new Insets(0, 0, 5, 5);

 gbc_lblBefore.gridx = 1;

 gbc_lblBefore.gridy = 3;

 panel.add(lblBefore, gbc_lblBefore);

 textField = new JTextField();

 textField.setHorizontalAlignment(SwingConstants.CENTER);

 textField.setText("13");

 textField.setColumns(10);

 GridBagConstraints gbc_textField = new GridBagConstraints();

 gbc_textField.fill = GridBagConstraints.HORIZONTAL;

 gbc_textField.insets = new Insets(0, 0, 5, 5);

 gbc_textField.gridx = 3;

 gbc_textField.gridy = 3;

 panel.add(textField, gbc_textField);

 JLabel lblSimulationStart = new JLabel("Simulation start");

 GridBagConstraints gbc_lblSimulationStart = new GridBagConstraints();

 gbc_lblSimulationStart.insets = new Insets(0, 0, 5, 5);

 gbc_lblSimulationStart.gridx = 5;

 gbc_lblSimulationStart.gridy = 3;

131

 panel.add(lblSimulationStart, gbc_lblSimulationStart);

 lblSimulationStart.setHorizontalAlignment(SwingConstants.LEFT);

 try {

 dcStart = new JDateChooser(HoldDate.parse(Start));

 } catch (ParseException e1) {

 e1.printStackTrace();

 }

 GridBagConstraints gbc_dcStart = new GridBagConstraints();

 gbc_dcStart.fill = GridBagConstraints.HORIZONTAL;

 gbc_dcStart.insets = new Insets(0, 0, 5, 0);

 gbc_dcStart.gridx = 6;

 gbc_dcStart.gridy = 3;

 panel.add(dcStart, gbc_dcStart);

 dcStart.setDateFormatString("yyyy-MM-dd HH:mm:ss");

 JLabel label = new JLabel("1946-1960");

 GridBagConstraints gbc_label = new GridBagConstraints();

 gbc_label.anchor = GridBagConstraints.EAST;

 gbc_label.insets = new Insets(0, 0, 5, 5);

 gbc_label.gridx = 1;

 gbc_label.gridy = 4;

 panel.add(label, gbc_label);

 textField_1 = new JTextField();

 textField_1.setHorizontalAlignment(SwingConstants.CENTER);

 textField_1.setText("3");

 textField_1.setColumns(10);

 GridBagConstraints gbc_textField_1 = new GridBagConstraints();

 gbc_textField_1.fill = GridBagConstraints.HORIZONTAL;

 gbc_textField_1.insets = new Insets(0, 0, 5, 5);

 gbc_textField_1.gridx = 3;

 gbc_textField_1.gridy = 4;

 panel.add(textField_1, gbc_textField_1);

 JLabel lblSimulationEnd = new JLabel("Simulation end");

 GridBagConstraints gbc_lblSimulationEnd = new GridBagConstraints();

 gbc_lblSimulationEnd.insets = new Insets(0, 0, 5, 5);

 gbc_lblSimulationEnd.gridx = 5;

 gbc_lblSimulationEnd.gridy = 4;

 panel.add(lblSimulationEnd, gbc_lblSimulationEnd);

 lblSimulationEnd.setHorizontalAlignment(SwingConstants.LEFT);

 try {

 dcEnd = new JDateChooser(HoldDate.parse(End));

 } catch (ParseException e1) {

 e1.printStackTrace();

 }

 GridBagConstraints gbc_dcEnd = new GridBagConstraints();

 gbc_dcEnd.insets = new Insets(0, 0, 5, 0);

 gbc_dcEnd.gridx = 6;

 gbc_dcEnd.gridy = 4;

 panel.add(dcEnd, gbc_dcEnd);

 dcEnd.setDateFormatString("yyyy-MM-dd HH:mm:ss");

 JLabel label_3 = new JLabel("1961-1977");

 GridBagConstraints gbc_label_3 = new GridBagConstraints();

 gbc_label_3.anchor = GridBagConstraints.EAST;

 gbc_label_3.insets = new Insets(0, 0, 5, 5);

 gbc_label_3.gridx = 1;

 gbc_label_3.gridy = 5;

 panel.add(label_3, gbc_label_3);

 textField_2 = new JTextField();

 textField_2.setHorizontalAlignment(SwingConstants.CENTER);

 textField_2.setText("7");

 textField_2.setColumns(10);

 GridBagConstraints gbc_textField_2 = new GridBagConstraints();

 gbc_textField_2.fill = GridBagConstraints.HORIZONTAL;

 gbc_textField_2.insets = new Insets(0, 0, 5, 5);

 gbc_textField_2.gridx = 3;

 gbc_textField_2.gridy = 5;

 panel.add(textField_2, gbc_textField_2);

132

 JLabel label_4 = new JLabel("1978-1983");

 GridBagConstraints gbc_label_4 = new GridBagConstraints();

 gbc_label_4.anchor = GridBagConstraints.EAST;

 gbc_label_4.insets = new Insets(0, 0, 5, 5);

 gbc_label_4.gridx = 1;

 gbc_label_4.gridy = 6;

 panel.add(label_4, gbc_label_4);

 textField_3 = new JTextField();

 textField_3.setHorizontalAlignment(SwingConstants.CENTER);

 textField_3.setText("5");

 textField_3.setColumns(10);

 GridBagConstraints gbc_textField_3 = new GridBagConstraints();

 gbc_textField_3.fill = GridBagConstraints.HORIZONTAL;

 gbc_textField_3.insets = new Insets(0, 0, 5, 5);

 gbc_textField_3.gridx = 3;

 gbc_textField_3.gridy = 6;

 panel.add(textField_3, gbc_textField_3);

 JLabel label_5 = new JLabel("1984-1995");

 GridBagConstraints gbc_label_5 = new GridBagConstraints();

 gbc_label_5.anchor = GridBagConstraints.EAST;

 gbc_label_5.insets = new Insets(0, 0, 5, 5);

 gbc_label_5.gridx = 1;

 gbc_label_5.gridy = 7;

 panel.add(label_5, gbc_label_5);

 textField_4 = new JTextField();

 textField_4.setHorizontalAlignment(SwingConstants.CENTER);

 textField_4.setText("15");

 textField_4.setColumns(10);

 GridBagConstraints gbc_textField_4 = new GridBagConstraints();

 gbc_textField_4.fill = GridBagConstraints.HORIZONTAL;

 gbc_textField_4.insets = new Insets(0, 0, 5, 5);

 gbc_textField_4.gridx = 3;

 gbc_textField_4.gridy = 7;

 panel.add(textField_4, gbc_textField_4);

 JLabel label_6 = new JLabel("1996-2000");

 GridBagConstraints gbc_label_6 = new GridBagConstraints();

 gbc_label_6.anchor = GridBagConstraints.EAST;

 gbc_label_6.insets = new Insets(0, 0, 5, 5);

 gbc_label_6.gridx = 1;

 gbc_label_6.gridy = 8;

 panel.add(label_6, gbc_label_6);

 textField_5 = new JTextField();

 textField_5.setHorizontalAlignment(SwingConstants.CENTER);

 textField_5.setText("6");

 textField_5.setColumns(10);

 GridBagConstraints gbc_textField_5 = new GridBagConstraints();

 gbc_textField_5.fill = GridBagConstraints.HORIZONTAL;

 gbc_textField_5.insets = new Insets(0, 0, 5, 5);

 gbc_textField_5.gridx = 3;

 gbc_textField_5.gridy = 8;

 panel.add(textField_5, gbc_textField_5);

 JLabel label_7 = new JLabel("2001-2005");

 GridBagConstraints gbc_label_7 = new GridBagConstraints();

 gbc_label_7.anchor = GridBagConstraints.EAST;

 gbc_label_7.insets = new Insets(0, 0, 5, 5);

 gbc_label_7.gridx = 1;

 gbc_label_7.gridy = 9;

 panel.add(label_7, gbc_label_7);

 textField_6 = new JTextField();

 textField_6.setHorizontalAlignment(SwingConstants.CENTER);

 textField_6.setText("7");

 textField_6.setColumns(10);

133

 GridBagConstraints gbc_textField_6 = new GridBagConstraints();

 gbc_textField_6.fill = GridBagConstraints.HORIZONTAL;

 gbc_textField_6.insets = new Insets(0, 0, 5, 5);

 gbc_textField_6.gridx = 3;

 gbc_textField_6.gridy = 9;

 panel.add(textField_6, gbc_textField_6);

 JLabel label_8 = new JLabel("2006-2008");

 GridBagConstraints gbc_label_8 = new GridBagConstraints();

 gbc_label_8.anchor = GridBagConstraints.EAST;

 gbc_label_8.insets = new Insets(0, 0, 5, 5);

 gbc_label_8.gridx = 1;

 gbc_label_8.gridy = 10;

 panel.add(label_8, gbc_label_8);

 textField_7 = new JTextField();

 textField_7.setHorizontalAlignment(SwingConstants.CENTER);

 textField_7.setText("4");

 textField_7.setColumns(10);

 GridBagConstraints gbc_textField_7 = new GridBagConstraints();

 gbc_textField_7.fill = GridBagConstraints.HORIZONTAL;

 gbc_textField_7.insets = new Insets(0, 0, 5, 5);

 gbc_textField_7.gridx = 3;

 gbc_textField_7.gridy = 10;

 panel.add(textField_7, gbc_textField_7);

 JLabel lblSimulationTime = new JLabel("Simulation time");

 lblSimulationTime.setHorizontalAlignment(SwingConstants.LEFT);

 GridBagConstraints gbc_lblSimulationTime = new GridBagConstraints();

 gbc_lblSimulationTime.insets = new Insets(0, 0, 5, 5);

 gbc_lblSimulationTime.gridx = 5;

 gbc_lblSimulationTime.gridy = 10;

 panel.add(lblSimulationTime, gbc_lblSimulationTime);

 dateChooser = new JDateChooser((Date) null);

 dateChooser.setDateFormatString("yyyy-MM-dd HH:mm:ss");

 GridBagConstraints gbc_dateChooser = new GridBagConstraints();

 gbc_dateChooser.insets = new Insets(0, 0, 5, 0);

 gbc_dateChooser.fill = GridBagConstraints.BOTH;

 gbc_dateChooser.gridx = 6;

 gbc_dateChooser.gridy = 10;

 panel.add(dateChooser, gbc_dateChooser);

 JPanel panel_2 = new JPanel();

 GridBagConstraints gbc_panel_2 = new GridBagConstraints();

 gbc_panel_2.anchor = GridBagConstraints.NORTH;

 gbc_panel_2.fill = GridBagConstraints.HORIZONTAL;

 gbc_panel_2.gridwidth = 2;

 gbc_panel_2.gridx = 0;

 gbc_panel_2.gridy = 2;

 frame.getContentPane().add(panel_2, gbc_panel_2);

 GridBagLayout gbl_panel_2 = new GridBagLayout();

 gbl_panel_2.columnWidths = new int[]{16, 46, 99, 0, 104, 167, 0, 0};

 gbl_panel_2.rowHeights = new int[]{0, 0, 0, 20, 0, 0, 0, 0, 0, 0, 0};

 gbl_panel_2.columnWeights = new double[]{0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,

Double.MIN_VALUE};

 gbl_panel_2.rowWeights = new double[]{0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

Double.MIN_VALUE};

 panel_2.setLayout(gbl_panel_2);

 textArea = new JTextArea();

 GridBagConstraints gbc_textArea = new GridBagConstraints();

 gbc_textArea.gridwidth = 6;

 gbc_textArea.gridheight = 8;

 gbc_textArea.insets = new Insets(0, 0, 5, 5);

 gbc_textArea.fill = GridBagConstraints.BOTH;

 gbc_textArea.gridx = 1;

 gbc_textArea.gridy = 0;

 panel_2.add(textArea, gbc_textArea);

 textArea.setEditable(false);

 JButton btnStart = new JButton("Start");

134

 btnStart.addActionListener(new ActionListener()

 {

 public void actionPerformed(ActionEvent e)

 {

 // Initialize the database

 createTables(con);

 PopulateTables(con);

 // the wind data must be parsed from a comma separated file

 if (CreateWindTable) ReadWindData(con);

 // Create the ETS units

 CreateETSUnits();

 // create the wind farm

 CreateWindFarms();

 // create the system load

 SystemLoad = new SimSystemLoad();

 // create a wind distributor

 Distributor = new WindDistributor();

 DateFormat dfm = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

 dfm.setTimeZone(TimeZone.getTimeZone("Canada/Atlantic"));

 textArea.append("Creating wind farms:");

 try {

 StartTime = dfm.parse(Start);

 EndTime = dfm.parse(End);

 SystemLoad.InitTimeStamp(StartTime,EndTime);

 TimeZone zone = TimeZone.getTimeZone("Canada/Atlantic");

 SystemCalendar = new GregorianCalendar(zone);

 SystemCalendar.setTime(StartTime);

 SystemCalendar.setTimeInMillis(SystemCalendar.getTimeInMillis()-

Config.TimeIncrement);

 InitTime = new GregorianCalendar(zone);

 VirtualInit= new GregorianCalendar(zone);

 VirtualInit.setTime(StartTime);

 textArea.append("complete\n");

 } catch (ParseException ex) {

 textArea.append("Exception:"+ex.getMessage()+"\n");

 ex.printStackTrace();

 }

 aListner = new UDPListner();

 new Thread(aListner). start ();

 timer.schedule(new tick_task(), 10000,50);

 }

 });

 GridBagConstraints gbc_btnStart = new GridBagConstraints();

 gbc_btnStart.anchor = GridBagConstraints.EAST;

 gbc_btnStart.insets = new Insets(0, 0, 5, 5);

 gbc_btnStart.gridx = 5;

 gbc_btnStart.gridy = 8;

 panel_2.add(btnStart, gbc_btnStart);

 }

}

// servlet class used for storage device registration and reporting

package net.wattbox.servlets;

import java.io.IOException;

import java.io.PrintWriter;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Statement;

135

//import java.text.DateFormat;

import java.text.DecimalFormat;

//import java.text.SimpleDateFormat;

import java.util.GregorianCalendar;

import java.util.List;

import javax.servlet.ServletConfig;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

/**

 * Servlet implementation class GetState

 */

@WebServlet(description = "Gets the state of an ETS device from the server", urlPatterns = {

"/GetState" })

public class GetState extends HttpServlet

{

 private static final long serialVersionUID = 1L;

 private static Connection con = null;

 PrintWriter out;

 public GetState() {

 super();

 }

 /**

 * @see Servlet#init(ServletConfig)

 */

 public void init(ServletConfig config) throws ServletException {

 System.out.println("Storage registration :Init");

 try {

 Class.forName("com.mysql.jdbc.Driver").newInstance();

 con = DriverManager.getConnection("jdbc:mysql:///WattBoxPush","root", "cuc002");

 } catch (InstantiationException e) {

 e.printStackTrace();

 } catch (IllegalAccessException e) {

 e.printStackTrace();

 } catch (ClassNotFoundException e) {

 e.printStackTrace();

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

/**

 * @param d

 * @return rounds a decimal number to two decimal points

 */

double roundTwoDecimals(double d) {

 DecimalFormat twoDForm = new DecimalFormat("#.##");

 return Double.valueOf(twoDForm.format(d));

}

/**

 * @see HttpServlet#doGet(HttpServletRequest request, HttpServletResponse response)

 */

protected void doGet(HttpServletRequest request, HttpServletResponse response) throws

ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("<!DOCTYPE html>\n" +

 "<html>\n" +

 "<head><title>GetState</title></head>\n" +

 "<body bgcolor=\"#fdf5e6\">\n" +

 "<h1>Test</h1>\n" +

 "<p>Applet running</p>\n" +

 "</body></html>");

}

/**

136

 * @see HttpServlet#doPost(HttpServletRequest request, HttpServletResponse response)

 */

protected void doPost(HttpServletRequest request, HttpServletResponse response) throws

ServletException, IOException {

 boolean valid_payload = true;

 response.setContentType("text/html");

 out = response.getWriter();

 if(Debug.ON) out.println("Storage Registration start");

 // read the HTML payload data

 String deviceID = request.getParameter("deviceid");

 String DevicePW = request.getParameter("password");

 String maximum_recharge = request.getParameter("MaxRecharge");

 String minimum_recharge = request.getParameter("MinRecharge");

 String current_recharge = request.getParameter("CurrentRecharge");

 String last_recharge = request.getParameter("LastRecharge");

 String current_storage = request.getParameter("CurrentStorage");

 String current_discharge = request.getParameter("CurrentDischarge");

 String ext_temp = request.getParameter("ExtTemp");

 String action = request.getParameter("action");

 String aTime = request.getParameter("PostTime");

 if(Debug.ON) out.println("Validating payload");

 // validate the payload

 ParamValidation test = new ParamValidation();

 if (!test.validate_double(maximum_recharge,"MaxRecharge")) valid_payload = false;

 if (!test.validate_double(minimum_recharge,"MinRecharge")) valid_payload = false;

 if (!test.validate_double(last_recharge,"LastRecharge")) valid_payload = false;

 if (!test.validate_double(current_recharge,"CurrentRecharge")) valid_payload = false;

 if (!test.validate_double(current_storage,"CurrentStorage")) valid_payload = false;

 if (!test.validate_double(current_discharge,"CurrentDischarge")) valid_payload = false;

 if (!valid_payload)

 {

 // an error occurred during validation. Return the validation results

 List<String> ThisList = test.getStringOutput();

 for (String error_string: ThisList)

 {

 out.println(error_string);

 }

 }

 else

 {

 // we have a valid payload, authenticate the device

 //double LastRecharge = roundTwoDecimals(Double.parseDouble(last_recharge));

 //double MinRecharge = roundTwoDecimals(Double.parseDouble(minimum_recharge));

 //double MaxRecharge = roundTwoDecimals(Double.parseDouble(maximum_recharge));

 double CurrentRecharge = roundTwoDecimals(Double.parseDouble(current_recharge));

 //double CurrentStorage = roundTwoDecimals(Double.parseDouble(current_storage));

 //double CurrentDischarge = roundTwoDecimals(Double.parseDouble(current_discharge));

 int PushID = -1;

 // lock the database

 String query = "SELECT password FROM auth_table WHERE deviceid = '"+deviceID+"' and

password = '"+DevicePW+"';";

 try

 {

 Statement stmt = con.createStatement();

 Statement astmt = con.createStatement();

 //synchronized(this)

 {

 //stmt.execute("LOCK TABLE auth_table WRITE, storage_units WRITE;");

 ResultSet rs = astmt.executeQuery(query);

 if (rs.next())// authenticated

 {

 if(Debug.ON) out.println("Authenticated");

 if (action.equals("register"))

 {

137

 query = "SELECT PushID from storage_units where DeviceID =

'"+deviceID+"';";

 rs = stmt.executeQuery(query);

 if (rs.next())

 {

 // device exits, update the current record

 PushID =rs.getInt("PushID");

 query = "UPDATE storage_units SET MinRecharge="+minimum_recharge+","+

 "MaxRecharge="+maximum_recharge+","+

 "CurrentRecharge="+CurrentRecharge+","+

 "ExtTemp = "+ext_temp+" where DeviceID =

'"+deviceID+"';";

 stmt.executeUpdate(query);

 }

 else

 {

 // this unit does not exist in the table, add it.

 query = "INSERT storage_units

(DeviceID,PushID,energy_allocation,MinRecharge,MaxRecharge,CurrentRecharge,ExtTemp)

VALUES('"+deviceID+"',0,0,"+minimum_recharge+","+maximum_recharge+","+CurrentRecharge+","+ext_tem

p+");";

 stmt.execute(query);

 query = "SELECT PushID from storage_units where DeviceID =

'"+deviceID+"';";

 rs = stmt.executeQuery(query);

 if (rs.next())

 PushID =rs.getInt("PushID");

 }

 // record energy stats for analysis

 query = "INSERT energy_usage (aDateTime," +

 "DeviceID," +

 "EnergyAllocatedBefore," +

 "EnergyAllocatedAfter,"+

 "EnergyAllocatedToUnit," +

 "MinRecharge," +

 "MaxRecharge," +

 "CurrentRecharge,"+

 "CurrentStorage,"+

 "CurrentDischarge,"+

 "EnergyProduced," +

 "SystemLoad,"+

 "EnergyAvailable,"+

 "LastRecharge,"+

 "ExtTemp,"+

 "DateString)" +

 " VALUES" +

 "("+new GregorianCalendar().getTimeInMillis()+","+

 "'"+deviceID+"',"+

 0+","+

 0+","+

 CurrentRecharge+","+

 minimum_recharge+","+

 maximum_recharge+","+

 CurrentRecharge+","+

 current_storage+","+

 current_discharge+","+

 0+","+

 0+","+

 0+","+

 0+","+

 ext_temp+",'"+

 aTime+"')";

 stmt.execute(query);

 }

 else

 {

 query = "DELETE from storage_units where DeviceID = '"+deviceID+"';";

138

 stmt.execute(query);

 }

 }

 stmt.execute("commit;");

 //stmt.execute("UNLOCK TABLES;");

 rs.close();

 }

 stmt.close();

 astmt.close();

 out.println("PushID="+PushID);

 //System.out.println("SetRecharge="+EnergyToAllocate);

 } catch (SQLException e) {

 if(Debug.ON) out.println("SQLException");

 e.printStackTrace();

 }

 }

 if(Debug.ON) out.println("Registration End");

 //if (out!=null) out.close();

 }

}

