
BLIND NETWORK TOMOGRAPHY

by

Muhammad Hassan Raza

Submitted in partial fulf llment of the
requirements for the degree of

Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

July 2011

c© Copyright by Muhammad Hassan Raza, 2011

DALHOUSIE UNIVERSITY

DEPARTMENT OF ENGINEERING MATHEMATICS

The undersigned hereby certify that they have read and recommend to the Faculty of

Graduate Studies for acceptance a thesis entitled “BLIND NETWORK TOMOGRAPHY”

by Muhammad Hassan Raza in partial fulf llment of the requirements for the degree of

Doctor of Philosophy.

Dated: July 18, 2011

External Examiner:

Research Supervisor:

Examining Committee:

Departmental Representative:

ii

DALHOUSIE UNIVERSITY

DATE: July 18, 2011

AUTHOR: Muhammad Hassan Raza

TITLE: BLIND NETWORK TOMOGRAPHY

DEPARTMENT OR SCHOOL: Department of Engineering Mathematics

DEGREE: Ph.D. CONVOCATION: October YEAR: 2011

Permission is herewith granted to Dalhousie University to circulate and to have copied for
non-commercial purposes, at its discretion, the above title upon the request of individuals
or institutions. I understand that my thesis will be electronically available to the public.

The author reserves other publication rights, and neither the thesis nor extensive extracts
from it may be printed or otherwise reproduced without the author’s written permission.

The author attests that permission has been obtained for the use of any copyrighted material
appearing in the thesis (other than brief excerpts requiring only proper acknowledgement
in scholarly writing), and that all such use is clearly acknowledged.

Signature of Author

iii

Table of Contents

List of Tables . vii

List of Figures . viii

Abstract . x

List of Abbreviations and Symbols Used . xi

Acknowledgements . xiv

Chapter 1 Introduction . 1

1.1 Issues with Conventional Network Tomography 5

1.2 Contributions . 7

1.3 Thesis Outline . 10

Chapter 2 Network Tomography . 12
2.1 Introduction . 12

2.2 Literature Review . 13

2.2.1 Passive Network Tomography . 15

2.2.2 Active Network Tomography . 19

2.3 Topology Identif cation . 25

2.4 Discussion on Existing Def ciencies and Research Challenges 28

2.5 Chapter Summary . 30

Chapter 3 Network Tomography By Non Negative Matrix Factorization . . 31

3.1 Introduction . 31

3.2 Routing Matrix Challenges . 31

3.3 Non Negative Matrix Factorization (NNMF) 32

3.4 Network Tomography and NNMF . 34

3.5 Validation of the Application of NNMF for Network Tomography 35

3.5.1 Description of Networking Test Beds 35

iv

3.5.2 Data Processing . 38

3.5.3 Interpretation of Results . 40

3.6 Chapter Summary . 45

Chapter 4 Error Modeling in Network Tomography by Sparse Code Shrink-
age Method . 46

4.1 Introduction . 46

4.2 Error Sources in Network Tomography . 47

4.3 Related Work . 48

4.4 Sparse Code Shrinkage (SCS) . 48

4.4.1 Rationale for Selecting SCS . 49

4.5 Sparsity with NNMF . 50

4.6 Simulation Results of Denoising Tomography Data Through SCS 50

4.6.1 Description of Networking Test Bed 50

4.6.2 Use of Data from Test Bed . 51

4.6.3 Comparison of Measured, Errored, and Denoised Link Delays . . . 53

4.7 Chapter Summary . 57

Chapter 5 Multi-metric Network Tomography 58

5.1 Introduction . 58

5.2 Related Work . 59

5.2.1 Multi-metric versus Additive Metrics 59

5.2.2 Correlation of Link Delays and PLR 60

5.3 Nonnegative Tensor Factorization (NTF) 61

5.4 Simulation Arrangement for Multi-metric Network Tomography 63

5.4.1 Estimation of Link Delay from Path Delays 64

5.4.2 Estimation of Link Delay from a Combination of Path Delays and

Packet Loss Rate (PLR) . 64

5.5 Chapter Summary . 67

Chapter 6 Distributed Network Tomography 69

6.1 Introduction . 69

v

6.2 Related Work . 71

6.3 Distributed Network Tomography Steps 72

6.4 Simulation Results . 73

6.4.1 Description of Test Bed . 73

6.4.2 Processing of Collected Data . 74

6.4.3 Exchange of Data Among Tomographing-Nodes 75

6.4.4 Interpretation of Results . 78

6.5 Chapter Summary . 82

Chapter 7 Conclusions and Future Work 83
7.1 Summary of Contributions . 83

7.2 Future Research Directions . 84

Bibliography . 87

Appendix A Non Negative Matrix Factorization (NNMF) 91

Appendix B OSPF Link-local Signaling Implementation in NS-2.34 94
B.1 Common/packet.h . 94

B.2 hdr-ls.h . 95

B.3 rtProtoLS.cc . 96

B.4 rtProtoLS.h . 96

B.5 tcl/lib/ns-default.tcl . 97

B.6 procedure . 97

B.7 Complete source f les including the modif ed/added functions 97

B.7.1 rtProtoLS.cc . 97

B.7.2 hdr-ls.h . 105

B.7.3 rtProtoLS.h . 106

vi

List of Tables

Table 2.1 Comparison of Network Tomography Types 13

Table 4.1 Comparison of the MSE between measured and noisy link delays,
and the MSE between measured and denoised link delays 57

vii

List of Figures

Figure 2.1 A simple topology of passive network tomography 16

Figure 2.2 A simple topology of four nodes 21

Figure 2.3 A tree topology for multicasting 23

Figure 2.4 A back to back probing case . 24

Figure 2.5 A back to back probing case . 26

Figure 3.1 Testbed Setup with extended pings only 37

Figure 3.2 Testbed Setup with a mixture of extended pings and N2X traff c . . . 38

Figure 3.3 A sample of data from the CSLA show command 39

Figure 3.4 Correlation between H and X for numerical data 42

Figure 3.5 Correlation between H and X with extended pings only 43

Figure 3.6 Correlation between H and X with a mixture of extended pings and
N2X traff c . 44

Figure 4.1 Implementation steps of SCS . 49

Figure 4.2 Testbed setup for denoising with SCS 51

Figure 4.3 Comparison of measured, errored, and denoised link delays on Link1
54

Figure 4.4 Comparison of measured, errored, and denoised link delays on Link2 54

Figure 4.5 Comparison of measured, errored, and denoised link delays on Link3 55

Figure 4.6 Comparison of measured, errored, and denoised link delays on Link4 55

Figure 4.7 Comparison of measured, errored, and denoised link delays on Link5 56

Figure 4.8 Comparison of measured, errored, and denoised link delays on Link6 56

Figure 5.1 Decomposition into two matrices using row-wise unfolding 63

Figure 5.2 Testbed setup for multiple network tomography 63

Figure 5.3 Correlation between the true link delay and the estimated link delay
from a single parameter; path delays 65

viii

Figure 5.4 Correlation between the true link delay and the estimated link delay
from two parameters; path delay and PLR 67

Figure 6.1 Test bed setup for distributed network tomography 74

Figure 6.2 Detail of a component of the Test bed Setup for distributed network
tomography . 75

Figure 6.3 LLS data block in OSPF version 2 [RFC 4813] 76

Figure 6.4 OSPF version 2 options f eld [RFC4813] 76

Figure 6.5 Format of LLS Data Block [RFC4813] 77

Figure 6.6 Format of LLS TLVs [RFC4813] 77

Figure 6.7 Correlation between H and X with extended pings for Segment 1 on
the right side . 79

Figure 6.8 Correlation between H and X with extended pings for Segment 2 on
the top . 79

Figure 6.9 Correlation between H and X with extended pings for Segment 3 on
the left side . 80

Figure 6.10 Correlation between H and X with extended pings for Segment 4 on
the bottom . 80

Figure 6.11 Correlation between H and X with extended pings for all segments
combined . 81

ix

Abstract

The parameters required for network monitoring are not directly measurable and could be

estimated indirectly by network tomography. Some important aspects of network tomogra-

phy appear to be unaddressed and left open for further research. These aspects include the

assumption of a known routing matrix, errors in the measurement of parameters used as

input to network tomography, multi-metric network tomography, and distributed network

tomography. These important research issues, related to network tomography, motivated

the research in this dissertation.

The f rst contribution of this research presents the application of a sparse matrix-based blind

technique such as Non Negative Matrix Factorization (NNMF) to eliminate the unrealistic

assumption of a known routing matrix in the network tomography model. The statistical

ability of NNMF (with the feature of sparsity) is used to estimate link delays from path

delays without a priori knowledge of the routing matrix.
As the second contribution, a modif ed version of Sparse Code Shrinkage (SCS) is applied

to denoise the network tomography model with errors. These errors in the measurement of

various parameters for network tomography are introduced by various factors such as Sim-

ple Network Management Protocol (SNMP) operation, NetFlow measurements, etc. The

estimated denoised link delays are compared with the original (error free) link delays.

The third contribution introduces a novel concept of multiple metric network tomography.

By using two directly observed parameters (Packet Loss Rate (PLR) and path delay), a

single parameter (link delay) is inferred indirectly, based on the evidence from the litera-

ture that there is a correlation between link delay and PLR parameters. A variation of the

Non-negative Tensor Factorization (NTF), the NTF1 model, is applied for this purpose to

estimate link delays.

The fourth contribution introduces a novel technique for implementing distributed network

tomography. In conventional network tomography, processing is carried out by a single

node in a centralized manner. A distributed system of network tomography estimation is

proposed where more than one node is responsible to carry out network tomography on a

distributed pattern.

x

List of Abbreviations and Symbols Used

A Routing Matrix

XN×T Matrix of Unknown Parameters (size N × T)

YP×T Measured Parameters Matrix (size P × T)

ε Measurement Errors

ARIMA Auto-Regressive Integrated Moving Average

BD Blind Deconvolution

BSS Blind Source Separation

CSLA Cisco Service Level Agreement

EEG Electroencephalography

EM Expected Maximization

EO Extended Options

ICA Independent Component Analysis

xi

ICMP Internet Control Message Protocol

ISP Internet Service Provider

LLS Link-local Signaling

MEG Magnetoencephalography

MLE Maximum Likelihood Estimation

MRTG Multi Router Traff c Grapher

MSE Mean Squared Error

NNMF Non Negative Matrix Factorization

NTF Non-negative Tensor Factorization

OD Origin-Destination

OSPF Open Shortest Path First

PARAFAC Parallel Factorization

xii

PCA Principal Component Analysis

PLR Packet Loss Rate

QoS Quality of service

RTT Round Trip Time

SCS Sparse Code Shrinkage

SLAs Service Level Agreements

SNMP Simple Network Management Protocol

SVD Singular Value Decomposition

TLV Type/Length/Value

UDP User Datagram Protocol

VOIP Voice Over IP

xiii

Acknowledgements

Thanks to the supervisory committee for their guidance, my family for the support, and

colleagues for their help.

xiv

Chapter 1

Introduction

Computer networks form the backbone of the modern communication setup. Over the last

decade, computer networks have grown exponentially in terms of the number of users, the

amount of traff c, and the complexity of the applications. An important feature of modern

computer networks is the absence of centralized control. This enables service providers to

develop and offer a rich variety of applications and services at different quality-of-service

levels.

The distributed, unregulated and heterogeneous structure of communication networks deals

with various challenging tasks such as dynamic routing, service optimization, service-level

verif cation, and detection of anomalous behavior [1]. At present, the competitive network

services marketplace is aware of the critical need to detect poor quality of service.

Numerous user applications, which can be broadly classif ed into two categories: time-

sensitive and time-insensitive applications, have been developed for modern networks.

Time-sensitive applications, such as Voice Over IP (VOIP), require extremely high quality

links, while time-insensitive applications, such as email, allow for the retransmission of

corrupted messages. Different levels of service quality are required by different user appli-

cations. Hence performance assessment and network monitoring are critical to support the

vast variety of user applications and for the service providers to meet service level agree-

ments [2, 3, 4].

Accurately characterizing the performance of a network is essential for successful network

management. Network management requires some important performance parameters such

as Packet Loss Rate (PLR) and link delays to monitor, predict, and diagnose the state of a

network.

Because access to measurements are restricted, and there are many users and a high vol-

ume of traff c [2, 4], the goals of assessing network performance, detection of anomalous

behavior, capacity planning and eff cient routing become hard to meet when networks are

decentralized and multilayered.

1

2

The tools have been developed to discover the network connectivity structure, the available

bandwidth of links, and other performance characteristics. Despite these efforts, quanti-

tative network performance assessment is still very diff cult, and the expectation of full

cooperation of the routing equipment is unrealistic in most situations. Collection of the

required performance parameters is challenging due to a number of reasons as follows

[2, 3, 4]:

1. Network measurement tasks depend on the cooperation of individual servers and

routers, but router based direct measurement monitoring software such as traceroute

are usually disabled to avoid computation and communication overheads.

2. Although internal monitoring is performed on select links, privacy and proprietary

concerns prevent that data from being shared. Internal network information is usu-

ally considered conf dential and is not shared with outsiders. The owner of a network

domain has information available about a self owned network and little or no knowl-

edge about the properties of other domains. Thus, the decentralized nature of the

Internet makes quantitative assessment of internal network performance from within

the networks very diff cult.

3. Service providers cannot depend on internal network elements to freely transmit vital

network statistics such as traff c rates, link delays, and packet loss rates. Routers al-

ready bear the burden of managing large amounts of incoming traff c across multiple

outgoing links at very high data rates and any increased burden is inadvisable.

4. Even if the internal link-level characteristics are assumed to be collectable, collecting

such statistics on various hosts may result in a considerable increase in the computa-

tional overhead, the communication cost, and required hardware. The added cost of

processing and communicating performance-related statistics on demand may make

network monitoring an impractical approach.

5. Traditional queuing and traff c models are not designed to capture the characteristics

and complexity of network behavior.

3

These diff culties and challenges call for eff cient data collection and analysis techniques.

This is the motivation for the current research on network tomography. Network tomog-

raphy research attempts to develop methods for the indirect inference of network charac-

teristics (such as PLR, link delays, link utilizations, and routing topologies) using network

measurements collected either by actively sending probe packets into the network or by

passively monitoring packets in the ongoing traff c.

Network tomography presents a good means to measure the statistics of interest that may

not be measured directly. Network tomography measures a parameter (that is usually not

required for network management) actively or passively, and the desired parameter is indi-

rectly measured by applying statistical techniques using an inverse modeling.

Each host does not have the visibility of the rest of the network(s) on the Internet due to

the lack of f ne grain measurement/analysis. For example, routers maintain no f ne-grained

state such as ‘per user’ or ‘per f ow’ information about the traff c. Only aggregate perfor-

mance parameters such as loss or utilization statistics are measured at the router interfaces.

With the wide range of applications, the need of differential measurements is hard to meet

with direct measurements. For example, trouble shooting PLR requires performance mea-

surement at each link. This is unavailable while the composite performance PLR along

a path of multiple links is available. The required link level performance parameter must

then be estimated from the path level measurement.

Network tomography bears a strong resemblance to other inverse problems in which the

key aspects of a system (such as computerized image tomography, system identif cation,

and array processing) are not directly observable. Computerized image tomography refers

to the cross-sectional imaging of an object from either transmission or ref ection of data

collected by illuminating the object from different directions. Tomographic imaging origi-

nated with Hounsf eld’s [5] invention of the x-ray computed tomographic scanner for which

he received a Nobel prize in 1972. More recently, however, medical imaging has also been

successfully accomplished with radioisotopes, ultrasound, and magnetic resonance [5].

Network tomography has several practical applications:

1. Fault detection: from the inference of internal link characteristics, network admin-

istrators can identify degradations of network performance and locate such failures

from path diagnosis [6].

4

2. Congestion control: from the inference of internal link parameters, network adminis-

trators can identify the drop rate in other f ows. This can be used to improve conges-

tion control algorithms, or to capture violating f ows that mean to attack the network

by injecting excessive traff c [2, 7].

3. Service verif cation: with the collected information about the internal parameters of

a network such as link delays, loss rate and throughput, Internet Service Providers

(ISP) can detect potential service violations, bandwidth theft, denial of service at-

tacks, and then consider the need to reorganize their network or limit their users

[7, 8] to reduce potential threats.

4. Network security: network tomography can also be applied in the f eld of network se-

curity. As described in [9], many types of network problems cause abnormal patterns

to appear in the network traff c. Such traff c anomalies may be caused by problems

ranging from security threats such as Distributed Denial of Service attacks and net-

work worms, to unusual traff c events such as f ash crowds, to vendor implementation

bugs, and to network misconf gurations. The work in [9] refers to the problem of in-

ferring anomalies from indirect measurement as network anomography (combining

anomalous with tomography, a general approach to such inference problems).

The simplest model of network tomography is represented by the following equation,

YP×T = AXN×T , (1.1)

linking the measured parameters matrix (YP×T) with the matrix of unknown parameters

(XN×T) with dependence on the routing matrix (A) of the network. If Y has P rows and

X has N rows, then the size of the routing matrix (A) is P × N . The rows of A (Ai)

correspond to paths from the sender to the receivers and the columns (Aj) correspond to

individual links in those paths. An element (Aij) of the routing matrix is 1 if the link j is
included in the path i and 0 otherwise.
Tomography research literature makes two common assumptions. To explain these assump-

tions, let us consider Xl, l = 1, ·, ·, ·, ·, N to be the packet delays, and Yi, i = 1, ·, ·, ·, ·, P

to be the end-to-end delay of a packet along the path destined to receiver i. The following

independence and stationarity assumptions are made [2]:

5

• Spatial independence: packet delays at different links are statistically independent,

i.e.,Xi and Xj are independent for i 6= j.

• Temporal independence and stationarity: for a given link, the delays encountered by

different packets at that link are statistically independent.

After having discussion about the importance of network parameters for effective mea-

surement, the diff culties in collecting the desired parameters, the importance of network

tomography, and the mathematical model of network tomography, some unresolved key

issues related to network tomography are mentioned in the next section. These issues are

the basis of the motivation for this dissertation.

1.1 Issues with Conventional Network Tomography

The f eld of network tomography has always focussed on applying statistical techniques

for solving the inverse model of network tomography. Some important aspects of network

tomography appear to have received little or no attention and have been left open for further

investigation. This dissertation has focussed on such research issues and investigates the

assumption of a known routing matrix, the presence of errors in the measurement of param-

eters for network tomography, multimetric network tomography, and distributed network

tomography. These important and unaddressed issues related to network tomography moti-

vated the research in this dissertation. The research motivation is described in the following

enumerations:

1. Routing Matrix Assumption: Although network tomography offers an effective

alternative solution to the problem of f nding network performance parameters, net-

work tomography research assumes that the routing matrix is known. For example,

Verdi [7] assumes a routing matrix as f xed (all entries in the matrix either 1 or 0)

and random (Markovian) routing. This assumption of a known routing matrix in

network tomography modeling was the motivation to research for more appropriate

methods for the inverse problem solution where this assumption about the routing

matrix could be eliminated.

2. Errors in Measurements: In practice, networks have potential errors that should be

6

ref ected in the network tomographic model as shown in the equation (1.2),

Y = AX + ε, (1.2)

where ε represents the error in the model. There are various sources that contribute

towards the error term (ε) such as SNMP operation and NetFlow measurements. The

heterogeneity of the network components in terms of vendors and hardware/software

platforms, that are used by various types of networking technologies, is also a con-

tributing factor toward the error term, ε. The parameters represented by Y are used

for the estimation of parameter X; obviously the values of the parameter X will

not be reliable if the factor of errors (ε) is ignored as in the conventional model

(Y = AX). The decision made for network management based on such parameters

may adversely affect the performance of a network.

3. Multimetric Matrices: In contrast to the conventional tomography model as dis-

cussed above, the direct measurements of multiple metrics to estimate indirectly a

single parameter with the expectation of getting a better estimate as compared to us-

ing a single directly measured parameter to estimate a parameter indirectly has never

been looked at in network tomography research. This motivated the need to model

network tomography with multi metrics like the model represented by the equation

(1.3), where Y1 and Y2 are directly observed in order to estimate X indirectly by

solving the following inverse equation.

Y1Y2 = AX (1.3)

For example, instead of recovering link delays only from end to end path delays,

link delays can be estimated from a combination of path delays (Y1) and PLR (Y2).

The idea behind this innovation is that a better input in terms of two interdependent

metrics should produce better estimation than using only one parameter such as path

level link delays. This correlation of two network parameters has been discussed in

the literature. For example, the authors of [10] report on the correlation between

delay and loss observed by a continuous-media traff c source. This study [10] deter-

mines the extent to which one performance measure could be used as a predictor of

the future behavior of the other (for example, whether observed increasing delay is a

good predictor of future loss) so that an adaptive continuous media application might

take anticipatory action based on observed performance.

7

4. Distributed Network Tomography: Network tomography, in general, works in a
central manner. There is a single data repository that is the node where network to-

mography is being performed. A single data repository brings in challenges such

as susceptibility to redundancy, and computation and communication complexities.

These problems can be taken care of by multiple data repositories in the form of a

distributed system. As an alternative, various entities (nodes performing tomogra-

phy) in a distributed system can operate concurrently and possibly autonomously.

Tomographic tasks can be carried out independently and actions are co-ordinated at

well-def ned stages by exchanging messages. Also, the nodes performing tomogra-

phy can be heterogeneous, and failures are independent. There is no single node that

performs network tomography and has the knowledge of the entire state of the sys-

tem, but the workload is divided and the ref ned information is exchanged among the

participating nodes that perform network tomography. This has motivated the need

to research on a novel technique to implement distributed network tomography.

1.2 Contributions

The research in this dissertation consists of various unaddressed research aspects of net-

work tomography. These issues were identif ed as open research problems in the previous

section. The main philosophy behind the contributions of this dissertation has grown out of

blind network tomography techniques, where the indirect estimation of a parameter (link

delay) was achieved with the knowledge of only one measured parameter (path delays).

In this dissertation, the estimation of the routing matrix in the inverse model of network

tomography has been taken care of by the statistical ability of the blind technique applied

to solve the research problems identif ed in the previous section.

This dissertation has used various blind techniques in the same way that many other f elds

of science have used similar approaches. Blind deconvolution (BD) appears in various ap-

plications related to acoustics, optics, geophysics, communications, and control. In com-

munications, the term blind channel equalization is more common, as the main interest

lies in retrieving the data transmitted over a dispersive communication channel [11, 12].

In control, BD is usually known as blind identif cation, since the main goal is to obtain a

model of the system [13, 14], whereas in acoustics, optics and geophysics the term blind

8

deconvolution is more adequate, since the goal is to undo the inf uence of a system by f nd-

ing its stable inverse.

The dissertation has considered active tomography for implementation of the blind net-

work tomography techniques. However, the techniques developed in this dissertation can

be applied to all types of network tomography. This is an additional advantage of the

contributions of this dissertation as compared to the other tomography techniques where

statistical techniques are typically limited to only one type of network tomography. The

contributions of this thesis are summarized below.

1. The f rst contribution, published as [15], presents the application of a sparse matrix-

based blind technique to eliminate the assumption of a known routing matrix in net-

work tomography. Most of the network tomography research unrealistically assumes

that the routing matrix is known and models network tomography as an inverse prob-

lem. The elimination of this assumption motivated the need to discover more appro-

priate methods for the inverse problem solution where the routing matrix is accom-

modated by the statistical ability of such methods as Non Negative Matrix Factoriza-

tion (NNMF). NNMF (with the feature of sparsity) is used to factorize a matrix into

two factors (matrices). The simulation results verify that NNMF performs network

tomography accurately without a priori knowledge of the routing matrix.

2. In the second contribution, published as [16, 17], a modif ed version of sparse code

shrinkage (SCS), a blind technique, is applied to denoise network tomography model

with errors. SCS is used in the f eld of image recognition for denoising of the image

data and here, for the f rst time, has been utilized for estimating error free link delays

from erroneous link delay data. To make SCS properly adoptable in network tomog-

raphy, some changes have been made in the SCS technique such as the use of NNMF

instead of Independent Component Analysis (ICA) for the purpose of estimating

sparsifying transformations. The estimated error free link delays are compared with

the original (error free) link delays based on the data obtained from a laboratory test

bed. The simulation results reveal that denoising of the tomography data has been

carried out successfully.

3. The third contribution, published as [18], introduces a novel concept of multiple met-

ric network tomography. Conventional network tomography is mono metric based

9

meaning that it estimates a single parameter from the observation of a single param-

eter. Observation of two parameters directly has been considered and both of these

parameters have been used to infer a single parameter indirectly. Nonnegative Tensor

Factorization (NTF) is a blind technique where a parameter in the form of a matrix

is estimated from more than one directly measured parameter in the form of matri-

ces. A variation of Nonnegative Tensor Factorization NTF (NTF1 model) has been

applied for this purpose to estimate link delays from path delays and PLR. Simula-

tion results show a better correlation between the estimated and measured link delays

when a duplex of metrics is used rather than using only the path level link delays for

estimating the link delays on a test bed.

4. The fourth contribution introduces a novel technique for implementing distributed

network tomography. In conventional network tomography research, the processing

is carried out by a single node in a centralized manner. A distributed system of net-

work tomography estimation is proposed, where more than one node is responsible

to carry out network tomography by using a blind network tomography technique

such as NNMF in a distributed pattern. Implementation of a modif ed version of

Open Shortest Path First (OSPF) updates with Link-Local Signaling (LLS) in NS-

2 simulation is an integrated part of the fourth contribution. OSPF updates with

LLS is responsible for the mutual exchange of the network tomography estimations

among the special nodes called ‘tomographing-nodes‘ in the distributed network to-
mography. The estimated parameters (for example link delays) in various sections of

a network are exchanged among the nodes that carry out network tomography. The

simulation results verify that estimated link delays from various tomographing-nodes
are mutually exchanged and f nally are appended at each tomographing-node to give
link delays for the whole test bed.

The four contributions can also be combined in the form of a comprehensive commercial

application that is capable of implementing the various blind network tomography initia-

tives discussed above. Such an application can provide a turn-key solution to network

administrators for implementing various kinds of network tomography with the additional

feature of multi-metric and distributed blind network tomography. In addition, the errors in

the network tomography estimations can also be removed. This way the system administra-

tors manage their networks to better solve the issues related to fault detection, congestion

10

control, service verif cation, capacity planning, traff c engineering, and network infrastruc-

ture development. This will ref ect as a better market share for a company by providing

better services and products to have an increased number of satisf ed customers.

1.3 Thesis Outline

The following six chapters cover the background work and the details of the contributions

listed in the previous section. The thesis is organized in the following structure.

Chapter 2 provides an overview of the various ways of categorizing network tomography.

In the literature review, the most popular categories of network tomography have been de-

scribed as passive network tomography, active network tomography, and topology identi-

f cation. Major contributions and respective mathematical techniques are reviewed in each

of the network tomography categories.

Chapter 3 presents the application of a sparse matrix-based blind technique to eliminate the

unrealistic assumption of a known routing matrix in network tomography. Routing matrix

challenges have been discussed. NNMF has been explained as a matrix-based blind method

to solve inverse problems. The relationship between the network tomography and NNMF

has been established. For validation of the application of NNMF for network tomography,

laboratory test beds were used. A description of the test bed, the types of traff c, and the

detail of ping traff c is given. The steps required in the processing of the data obtained

from the test bed are explained. Finally, the results have been interpreted to show that the

estimated link delays are strongly correlated to the measured link delays.

Chapter 4 highlights the issue of errors in the estimation from network tomography and pro-

vides the solution through a modif ed version of SCS to denoise the network tomography

model with errors by using NNMF in place of ICA. The sources that cause the introduc-

tion of the errors in the network measurements, to be used as input to NNMF, have been

examined. The related work in the f eld of error modeling has been reviewed to show the

signif cance of this contribution. SCS has been explained and the rationale for using SCS

has been described. A description of the test bed used, the types of traff c, and the details

of ping traff c is given. The steps required in the processing of the data obtained from the

test bed are explained. Finally, the results have been shown as graphs giving a comparison

of the measured, errored, and denoised link delays based on the data obtained from a lab-

oratory test bed. The simulation results reveal that denoising of the tomography data has

11

been carried out successfully by applying SCS.

Chapter 5 introduces a novel concept of multiple metric network tomography. By using

two directly observed parameters (PLR and path delay); a single parameter (link delay) is

inferred indirectly. In related work, it has been described that the use of multi metrics is a

different concept from the concept of additive metrics and the novelty of the multi metric

has been highlighted. The correlation of the link delays and PLR has also been reviewed.

The simulation arrangements in the form of a test bed that includes multimedia and ping

traff c has been described. Two sets of results have been presented that are the estimation

of link delays from path delays and the estimation of link delays from a combination of

path delays and PLR. Simulation results show a better correlation between the estimated

and measured link delays when a duplex of metrics is used, as compared to using only the

path level link delays for estimating the link delays on a test bed.

Chapter 6 proposes a novel technique for implementing distributed network tomography.

In conventional tomography research, the network tomography processing is carried out

by a single node in a centralized manner. A distributed system of network tomography

estimation is proposed where multiple nodes are responsible to carry out network tomog-

raphy on a distributed pattern. The related work reviews the only research effort on the

topic of distributed tomography and gives a critique. The steps involved in the distributed

network tomography are described. The estimated parameters (for example link delays)

are exchanged among multiple data repositories by implementing LLS capable version of

OSPF in NS-2 network simulator. This method uses the benef ts of distributed comput-

ing and avoids the disadvantages of centralized computing. The simulation results verify

that the link delays from various sections of a test bed were estimated by the respective

tomographing-nodes. These estimations were exchanged among the tomographing-nodes,
and f nally these sectional estimates were appended at each tomographing-node to provide
the link delays of the entire test bed.

Chapter 7 summarizes the main topics and contributions presented in this dissertation and

outlines the future research directions that are heralded by this dissertation.

Chapter 2

Network Tomography

2.1 Introduction

This chapter explains various aspects of network tomography in detail including classif ca-

tion methods, the role of parameters in the model, and the contribution of previous research

work in network tomography.

After having discussed the needs, the motivation, and the basic model of network tomogra-

phy in the previous chapter, this chapter is organized to provide a detailed in-depth analysis

of the various types of network tomography so that the readers of this dissertation are

enabled to judge the simplicity, superiority, and affectiveness of the contributions of this

dissertation over the work done previously in the f eld of network tomography.

As per the network tomography model discussed in Chapter 1, the parameters represented

byX and Y depend on the type of network tomography, such as passive, active, and topol-

ogy identif cation. The following is a brief description of these types of network tomogra-

phy.

End-to-end measurement techniques can be classif ed according to the manner in which

measurements are acquired. Passive techniques observe already-existing network traff c,

and thus consume no extra bandwidth. They look for naturally occurring packet sequences

which provide information about the state of the network. The main drawback of using

passive techniques is the lack of measurement f exibility, since the patterns of interest may

only occur rarely. On the other hand, active techniques make measurements by sending

packet probes between the participating hosts. These techniques center on designing prob-

ing algorithms to gauge a specif c network property. Although most probing algorithms aim

to be economical, active measurements still expend network resources. Thus, the tradeoff

between using active and passive methods is a matter of f exibility versus resource con-

sumption.

Knowledge of the routing matrix (A) is crucial for most of the network tomography prob-

lems; such knowledge, however, is not always readily available, and this need shapes the

12

13

third type of network tomography, topology identif cation [2, 4]. A summarized compar-

ison of the types of network tomography is given in Table 2.1. The key idea in most of

the existing topology identif cation methods is based on the collection of measurements

at pairs of receivers. A simple example is the case of delay covariance. These types of

network tomography (passive, active, and topology identif cation) are compared in terms

of traff c type, measured and inferred parameters, and advantages and disadvantages in the

following sections.

Table 2.1: Comparison of Network Tomography Types

Tomography
Type

Traff c
Type

Parameters
Measured

Parameter
Infered

Pros. Cons.

Active Unicast
Multicast
Probing

End-to-
end
loss rate
Delay

Link De-
lay,
Packet
loss
Bandwidth

Traverses
through
others
networks

Multicast dis-
abled,
unicast causes
extra
traff c synchro-
nized
clocks assumed

Passive Routine
Traff c

Delay
Packet
count

Traff c
Matrix

Good for
private
networks

Cooperation of
external routers

Topology
Identif cation

Multicast
Probing

Relative
loss rate
Delay

Logical
Topology

Beyond
owned
network

External
cooperation

2.2 Literature Review

Network tomography has been looked at in the literature from various angles; as ac-

tive (link-level), passive (path level), or topology identif cation (as mentioned before), by

the type of probing (unicast and multicast), and by the type of statistical technique used

(Maximum Likelihood Estimation (MLE), Auto-Regressive Integrated Moving Average

(ARIMA), Markov Chain, Expected Maximization (EM), Clustering, and Bayesian tech-

niques).

In general, network tomography has two forms:

1. Path-level [19, 20]: measurements are taken at each internal node, and inference

14

is made for origin-destination (OD) characteristics, for example, obtaining a traff c

matrix. For a traff c matrix, the number of packets that pass through each internal

node is counted. Then an estimation is made for the amount of traff c that originates

from a specif ed source node and is destined for a specif ed receiver node. Traff c

intensities of all these OD pairs are combined to form the traff c matrix.

2. Link-level [4, 21, 22]: Measurements are taken at a source node and inference is

made for internal link characteristics, such as PLR, delay distribution and logical

topology. Logical topology identif cation is also mentioned as the third type of net-

work tomography, but from a technical point of view it is a special case of link level

tomography. For logical topology, the degree of correlation between receiver nodes

is computed, for example, the correlation of counts of losses, and delay covariance.

Network tomography is carried out in a number of ways that are classif ed by several fac-

tors:

1. Active or passive [2, 23]: as mentioned before, active tomography sends probes

across a network and keeps track of end-to-end information for those probes. This in-

formation is then used to estimate internal link-level parameters. Passive tomography

captures packets of normal network traff c as they are sent across links and collects

information about them. This information is usually collected at the link-level and

used to estimate path-level characteristics. Despite the fact that the probes sent by

active monitoring may disturb the normal network traff c, they are more controllable

during the measurement process than passive network topology and can give more

reliable information about link behavior than passive monitoring.

2. Multicast or Unicast probes [3, 21]: active monitoring has two probing schemes. One

is the multicast scheme, in which each probe is replicated at internal nodes for every

branching path. The packet is effectively sent from the root node to all the receiver

nodes. The key to multicast probing for network tomography is that it introduces

dependency between end-to-end measurements on different receivers, which in turn

enables inferences about network internal link characteristics. The other scheme is

unicast probing, which refers to sending separate packets from the source node, one

at a time, to the receiver nodes. Unicast traff c is easy to generate and is widely sup-

ported by computer networks. But this scheme suffers from identif ability problems;

15

therefore modif cations such as back-to-back unicast have been proposed in the lit-

erature [3, 21]. The key idea behind back-to-back unicast probing is to mimic the

behavior of the multicast probing scheme, and the closer the resemblance, the more

accurate the probing result.

3. Fixed or random routing [2, 7]: in f xed routing networks, the directed path between

any two nodes is known and remains the same during the measurement time. In

random routing networks, the directed path between any two nodes is determined by

a known Markov Chain and changes with time.

4. Single or multiple source [8]: most of the existing techniques for network tomogra-

phy are based on single source topologies. However, multiple sources are also used

in the context of network tomography. It can measure some of the internal links

that are inaccessible by single source measurement. Moreover, it is possible to get

a more accurate and ref ned network characterization with the information gleaned

from multiple sources.

However, the most common categorization of network tomography is passive, active, and

topology identif cation. Further explanation of these types and the research work related to

each type of network tomography is given in the following subsections.

2.2.1 Passive Network Tomography

The goal of the traff c matrix estimation literature is to estimate the intensity of point-

to-point, or Origin-Destination (OD) traff c between nodes in a network based upon total

traff c counts observed at each link. This approach is called passive network tomography

as the measurements consist of observations made on traff c already in the network.

To understand the terms involved in passive (also called path level) tomography, here is an

explanation. Suppose one wants to transfer a f le from a remote network location to the

local host. The contents of a f le are broken into pieces, called packets, that also contain

OD information, reassembly instructions (such as sequence numbers), and error-correction

features. The collection of packets comprising the entire f le is called a f ow. The OD

information is used by the network elements (routers and switches) to deliver the packets

to the intended recipient. One can think of the routers as the intersections in a road network.

Packets belonging to different f ows are queued at routers, awaiting their transmission to

16

the next router according to some protocol (f rst-in-f rst-out is common, but there are other

methods as well). Physically, a queue consists of a block of memory that temporarily

stores the packets. If the queue (memory) is full when a packet arrives, it is discarded and

depending on the transmission protocol, the sender may or may not be alerted. Otherwise,

the packet waits until it reaches the front of the queue and is forwarded to the next router

on the way to its destination. This queuing mechanism is responsible for observed packet

losses and, to a large extent, for packet delays.

Figure 2.1 shows such an example and is taken from [7]. There are 4 nodes in the network.

The links are either unidirectional or bidirectional. There are 7 directed links (a to b, c to

a, a to c, c to b, b to c, c to d, d to c), hence 7 measurements, and 12 possible OD pairs

(ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, dc). In the following discussion, the directed

links, OD pairs, and the routing table that connects the OD pairs are shown as matrices in

the network tomography model settings. Suppose the network traff c is stationary and the

routing is f xed (if multiple paths are possible between a source-destination pair, only one

Figure 2.1: A simple topology of passive network tomography

of them is used and it is known which one). The problem then becomes a linear inverse

problem, Y = AX , where Y = [Y 1, ..., Y p]T is the vector of the aggregated traff c counts

(the measurements),X = [X1, ..., Xn]T is the vector of the source-destination counts and

A is the routing matrix, which is determined by the routing tables held at every node. Every

element of A is either 1 (the link is on the path of a certain OD pair) or 0 (the link is not

on the path). All the three components in the network tomography model, Y = AX , are

17

shown below as three matrices.




ab

ac

ca

bc

cb

bd

db




=




1 0 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0 1 0 0

0 0 0 1 1 0 0 0 0 1 0 1

0 0 0 0 0 0 0 1 1 0 0 0

0 0 1 0 0 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1







ab

ac

ad

ba

bc

bd

ca

cb

cd

da

db

dc




The inverse problem arises from the fact that Y (the left-most matrix above) is measured,

but the traff c matrix X or its distribution (the right most matrix above) is of considerable

interest to service providers and network engineers. This is a highly ill-posed inverse prob-

lem as the number of observations of nodes (Y) is much smaller than the number of OD

pairs (X). So additional assumptions are required or some type of regularization must be

used before all the parameters are estimated. A number of approaches have been proposed

to solve this statistically ill-posed inverse problem. Some of the prominent contributions

are brief y discussed in the following paragraphs.

Vardi [7] assumed that the OD pair counts (X) follow Poisson distributions with different

parameters. Since the mean and variances are the same for the Poisson distribution, this

yields additional information (in the form of variances) to estimate the parameters.

Vardi’s paper [7] developed the maximum likelihood approach using the EM algorithm but

points out certain diff culties:

1. The problem becomes computationally intractable for large networks.

2. It is possible to construct simple networks for which the Expectation Maximization

(EM) algorithmwill not converge to theMaximumLikelihoodMaximization (MLE).

The EM-algorithm for obtaining the MLEs is computationally very intensive, so moment-

based methods were also proposed in [21].

18

In [21], a slightly different framework is introduced for the passive or path level network

tomography problem. They model the OD packet counts as a normal random variable in

which the variance is proportional to the mean raised to a power. The authors specify an

EM algorithm for computing the MLE. The model is extended in the situation in which

the traff c intensities vary over time. This estimation is accomplished by using a moving

window. Thus, all the observations within a certain time period are used to estimate the

parameters. The window of time is shifted one unit and the estimation is repeated indepen-

dently of the previous windows (despite sharing most of their observations). The result is

a smoothly changing set of estimates over time.

A Bayesian approach for the same framework was considered in [24]. The goal here is

slightly different as the authors of [24] seek to estimate the actual OD traff c counts instead

of the distribution of the counts. Again, they assume that these counts follow a Poisson

process which is estimated as a means to get the counts. The authors of [24] present a

Markov Chain Monte Carlo (MCMC) algorithm for estimation.

Zhang et al. [25] present an information-theoretic approach to the traff c matrix problem.

The main idea is to estimate a model that is consistent with the data while remaining as

close as possible to an independent model. The closeness is measured in terms of entropy.

In this case, the purely independent model is based on a gravity model in which traff c

between the source and the destination is a scaled product of the total traff c originating at

the source and the total traff c ending at the destination.

All the types of passive network tomography techniques, reviewed above, have a common

assumption that the routing matrix is known. For example, the routing matrix is assumed

as f xed (1s or 0s) and random (Markovian) routing. In practical networks, the routing ma-

trix is unknown. One important contribution of this disseration is that this assumption of a

known matrix in the network tomography model is eliminated by the use of the blind tech-

nique of NNMF where routing matrix estimation is taken care of by the statistical ability

of NNMF.

There are various sources such as SNMP operation and NetFlow measurements that intro-

duce errors in network tomography estimates. The decision made for network management

based on such parameters may adversely affect the performance of a network. None of the

passive network tomography techniques considers these errors while modeling network

tomography. This dissertation has considered this factor of errors and has introduced a

19

technique to denoise the tomography data.

The passive tomography models use a single directly measured parameter to estimate a pa-

rameter indirectly. This dissertation presents an approach for improved indirect estimation

of a single parameter by directly measuring multiple metrics. The idea behind this innova-

tion is that a better input in terms of more than one interdependent metric should produce

better estimation than using only one parameter such as path level link delay.

All the passive network tomography techniques, in general, work in a central manner. There

is a single data repository that is the node where network tomography is being performed.

A single data repository brings in challenges such as susceptibility to redundancy, and

computation and communication complexities. These problems can be taken care of by

multiple data repositories in the form of a distributed system. As an alternative, distributed

network tomography is proposed in this dissertation. Tomographic tasks can be carried out

independently and actions are co-ordinated at well-def ned stages by exchanging messages.

Also, the nodes performing tomography can be heterogeneous, and failures are indepen-

dent.

This subsection covered the salient related work in the f eld of passive or path level network

tomography. One is left with the impression that there has always been a great emphasis

on f nding better statistical alternatives for the solution of the inverse problem of network

tomography including EM algorithms, Bayseian approach, information theoretic approach,

and others. The novel contributions of this dissertation in addressing many issues not ad-

dressed by the previous techniques have also been mentioned in the above paragraph.

The operational limitations of passive tomography, such as full access to a network, makes

active network tomography an alternative. Active network tomography is discussed in the

next subsection.

2.2.2 Active Network Tomography

The application of passive network tomography requires full control of the network. With

no control over other networks, the link level information cannot be obtained and thus ac-

tive tomography is required as an alternative method for performing network tomography.

This section brief y analyzes some signif cant contributions in the area of active network

tomography.

The goal of active network tomography is to estimate the performance characteristics of

20

individual links based upon measurements of injected traff c sent across a network from

one accessible edge node to another node (or to a group of nodes) as described in [26].

Link-level network tomography is the estimation of link-level network parameters (PLR,

delay distributions) from path-level measurements. Link-level parameters can be estimated

from direct measurements when all nodes in a network are cooperative. Many promising

tools such as pathchar (pchar), traceroute, clink, and pipechar use Internet Control Mes-

sage Protocol (ICMP) packets (control packets that request information from routers) to

estimate link-level loss, latencies, and bandwidths. However, many routers do not respond

to or generate ICMP packets or treat them with very low priority, motivating the develop-

ment of large-scale link-level network inference methods that do not rely on cooperation

(or minimize cooperation requirements). The challenge for active network tomography is

to deconvolve this path-level information into link-level information. Although it can be

viewed as the reverse of the situation encountered in passive tomography, the active tomog-

raphy also gives rise to an inverse problem of the form Y = AX , where A is the routing

matrix giving the end-to-end paths, X contains the unknown link processes, and Y gives

the observed path-level data. Here also the routing matrix has a row for each path and a

column for each link with A(i, j) = 1 when link j is in the path i.
The probing activity has three variations in terms of the receiving nodes; a probe can be

sent from one source to a single destination, a multicast probe can be sent from a source

to multiple sources, and wherever multicast is not permitted, a variation of the unicast that

is back-to-back unicast can be used to mimic mutlicast. Back-to-back unicast probes are

sent to more than one node with the inter-probes distance so small that this repeated uni-

cast appears to be a multicast. The following paragraphs give a description of the research

contributions related to these variations of probing.

Multicast Probing

Let us consider the network scenario shown in Figure 2.2 to get a better understanding

of the loss rate network tomography through multicast probing as discussed in [3]. If a

multicast packet is sent by the sender (node 0) and received by node 2 but not by node 3,

then it can be immediately determined that loss occurred on link 3 (successful reception

at node 2 implies that the multicast packet reached the internal node 1). By performing

21

Figure 2.2: A simple topology of four nodes

such measurements repeatedly, the rate of loss on the two links 2 and 3 can be estimated;

these estimates and the measurements enable the computation of an estimate for the loss

rate on link 1. To illustrate further, let θ1 , θ2 , and θ3 denote the log success probabilities

of the three links in the network, where the subscript denotes the lower node attached to

the link. Let p2|3 denote the ratio of the number of multicast packet probes simultaneously

received at both nodes 2 and 3, relative to the total number received at node 3. Thus, p2|3
is the empirical probability of success on link 2 conditional upon success on link 3, which

provides a simple estimate of θ2 . Def ne p3|2 in a similar fashion, and also let pi , i=2,3

denote the ratio of the total number of packets received at node i over the total number of

multicast probes sent to node i. We can then write,



log(p̂2)

log(p̂3)

log(p̂2|3)

log(p̂3|2)




=




1 1 0

1 0 1

0 1 0

0 0 1







θ1

θ2

θ3




A least squares estimate of θi is easily computed for this overdetermined system of equa-

tions.

The authors of [26] are concerned with estimating link loss rates based upon multicast

probing. [26] describes a framework common in this area: treeshaped topologies, spatially

22

independent links, and temporally independent probes. Consider the network in Figure

2.3. A single multicast probe sent from node 0 will try to reach all of the receiver nodes: 4,

5, 6, and 7. It does so in the following manner. A packet is placed on the link from node 0

to node 1. At node 1, the packet is duplicated and sent on to the children of node 1. At each

subsequent child node, the packet is duplicated further and sent. In this case, each probe

generates a fourtuple observation. At each of the receivers, the packet is either received

or lost. The authors assume that link losses are independent Bernoulli processes and de-

rive an estimator based on the end-to-end measurements. The shared information resulting

from the common paths and the multicast mechanism produces correlated end-to-end ob-

servations that can be used to deconvolve the path-level loss process into the link-level loss

processes. This estimator involves solving a polynomial equation and the solution asymp-

totically corresponds to the maximum likelihood estimate.

In [27], it is postulated that a pseudo-likelihood method is appropriate for both link per-

formance and traff c matrix estimation with multicast experiments. The basic focus is to

consider pairwise projections of the high-dimensional observation. The result is an algo-

rithm with improved computational eff ciency at the expense of some statistical eff ciency.

Some important properties are preserved such as consistency. The authors of [28] also tried

to use similar ideas to estimate link delay distributions, but the method does not extend eas-

ily to the delay problem.

Unicast Probing

Alternatively, one can tackle loss rate and delay distribution tomography using unicast mea-

surements. Unicast measurements are more diff cult to work with than multicast, but since

many networks do not support multicast, unicast-based tomography is of considerable prac-

tical interest. The diff culty of unicast-based tomography is that although the single unicast

packet measurements allow the estimation of end-to-end path loss rates and delay distri-

butions, there is no unique mapping of these path-level parameters to the corresponding

individual link-by-link parameters. For example, referring again to Figure 2.2, if packets

are sent from node 0 to nodes 2 and 3 and nk and mk denote the numbers of packets sent

23

Figure 2.3: A tree topology for multicasting

to and received by receiver node k, k=2, 3, then,

(
log(p̂2)

log(p̂3)

)
=

(
1 1 0

1 0 1

)



θ1

θ2

θ3




where p̂k = mk/nk and θj , j =1, 2, 3 denotes the log success probability associated with

each link. Clearly, a unique solution for θi does not exist since A is not full rank. It suffers

from identif ability problems: active probing experiments based on unicast schemes alone

cannot identify all the internal link parameters of interest, such as loss rates and delay dis-

tributions. To address this problem, the authors of [21] introduced back-to-back unicast

experiments for link loss estimation. Practically, this allows analysis of networks in which

the multicast mechanism is not available. They developed an EM algorithm to maximize

the likelihood and studied some of the properties of the resulting estimator.

The authors of [29] estimated link delay distributions based on back-to-back unicast mea-

surements. They altered the traditional discrete model slightly and introduced an eff cient

EM algorithm based on the Fast Fourier Transform (FFT).

The back-to-back unicast probing scheme proposed in [29] also imitates the multicast pro-

tocol. Figure 2.4 explains the back-to-back unicast probing scheme. At time t a unicast

packet is sent to receiver i and at time t+δt a second unicast packet is sent to receiver j. If

24

the time difference δt is small enough, we would expect the two unicast probes to experi-

ence a similar network environment on the common path that they share on the network.

The authors of [29] did not quantify the correlation on the common path; instead it was

Figure 2.4: A back to back probing case

assumed that the loss experience and delays on the common path are identical. Under such

an assumption the back-to- back unicast probing scheme in [29] is equivalent to the bicast

(multicast to a pair of receivers) protocol. However, the assumption of identical perfor-

mance will not hold in all cases and it is diff cult to verify this assumption.

The authors of [30] also modeled delay using back-to-back unicast probing. They modeled

each link delay distribution as a f nite mixture of Gaussians with a point mass at zero. They

used a penalized maximum likelihood approach to choose the number of mixing compo-

nents and estimate the parameters.

The authors of [27] present a pseudo-likelihood method appropriate for both link perfor-

mance and traff c matrix estimation. The basic focus is to consider pairwise projections of

the high-dimensional observation. The result is an algorithm with improved computational

eff ciency at the expense of some statistical eff ciency.

This dissertation has used active tomography, but is applicable to all other types of network

tomography.

Like passive network tomography, there are various sources that introduce errors in to-

mography data into active network tomography such as SNMP operation and NetFlow

25

measurements. The errors in measurements for active network tomography have been ad-

dressed and a novel method to denoise network tomography data has been introduced.

All the conventional active tomography methods, as discussed in this section, use a single

directly measured parameter to estimate a parameter indirectly. Based on the fact that a bet-

ter input in terms of more than one interdependent metrics should produce better estimating

than using only one parameter, this dissertation introduces a novel approach of estimation

of a single network parameter from the input of multiple parameters.

This subsection has described various research contributions in the area of unicast probing

and has explained the difference between unicast and back-to-back unicast probing.

The next section describes the third type of network tomography, topology identif cation.

2.3 Topology Identif cation

Most of the network tomography problems addressed in earlier sections dealt with the iden-

tif cation of network performance parameters, with full knowledge of the network (routing)

topology. As mentioned before, there are deterministic tools like traceroute that report the

network devices and their connectivity. These cooperative conditions are often not met in

practice and may be increasingly uncommon as the network grows and privacy and pro-

prietary concerns increase. Knowledge of A is crucial for network tomography problems;

such knowledge, however, is not always readily available, and this need shapes the third

type of network tomography, topology identif cation [2, 4]. Topology identif cation is con-

cerned with discovering devices on a network.

For situations in which common tools such as traceroute are not applicable, a number of

methods have been proposed for the identif cation of network (routing) topology based

on end-to-end measurements by determining the degree of correlation between receivers

[8, 21, 31]. Most of these approaches have concentrated on identifying the tree structured

topology connecting a single sender to multiple receivers. It is assumed that the routes from

the sender to the receiver are f xed. With only end-to-end measurements, it is only possible

to identify the logical topology def ned by the branching points between paths to different

receivers. The key idea in most of the existing topology identif cation methods is to col-

lect measurements at pairs of receivers. A simple example is the case of delay covariance.

If two receivers share some portion of their paths, then the covariance between the end-

to-end delays to the two receivers is ref ective of the sum of the variances on the shared

26

links (assuming the delays are not correlated on unshared links). The more shared links

(larger shared portion of their paths), the larger the covariance between the two. Metrics

possessing this type of monotonicity property can be estimated from a number of different

end-to-end measurements including counts of losses, counts of zero delay events (utiliza-

tion), delay correlations, and delay differences [3, 26, 32].

Thus, using active probing experiments to determine the topology is an important area

of research in network tomography. The methods used in the literature [8, 21, 31] include

clustering techniques, maximum likelihood, and Bayesian approaches. There are also some

clever ideas for probing experiments such as the sandwich probing scheme [21]. Figure 2.5

Figure 2.5: A back to back probing case

illustrates this idea. Two small unicast probe packets, packets 1 and 3, are sent to one re-

ceiver and the large unicast probe packet is sent to another receiver. But the large probe is

sandwiched between the two small probes. Let us suppose that d denotes the time differ-

ence between probes 1 and 3 at the source node and d∗ denote the observed time difference

between the two probes at the receiver. The longer the common path in the pair of receivers,

the longer is the delay. Thus, the delay differences can be used to estimate the topology.

Since only the measurements of local delay differences are made, the clock synchroniza-

tion among the nodes on the network is not an issue.

In single source active measurement techniques, the paths from the source to the receivers

form a tree structure with the source at the root of the tree and receivers as the leaves.

27

Active probing techniques are designed to measure a specif c network property. The mul-

ticast transport mechanism was identif ed early on as being well-suited for active probing

[3, 26, 32]. Each multicast packet sent from the source is replicated whenever there is a

new branch in the tree. Consequently, when a packet gets dropped or queued on a certain

link, all receivers descended from that link will observe the effect of the loss or queueing

behavior.

Ratnasamy and McCanne f rst demonstrated that these correlated drop observations could

be used to reconstruct the multicast topology and to infer the link-level loss rates [3].

Duff eld et al. [31] then rigorously established the correctness of this algorithm and de-

veloped a framework under which other metrics such as delay variance and Explicit Con-

gestion Notif cation (ECN) marking rate could be used in place of loss rate for inferring the

topology [27, 33, 34]. Duff eld et al. proposed the use of stripes rather than packet pairs,

where each packet in the stripe is sent to a different receiver. However, as the length of

the stripe grows, correlation is weakened throughout the stripe. Long stripes are also much

more intrusive and prone to disrupt other network traff c than packet pairs.

Motivated by the lack of support of multicast protocols over the entire Internet infrastruc-

ture, and because the majority of Internet traff c uses the unicast transport mechanism,

researchers then developed a series of measurement tools using the unicast mechanism.

Many of these techniques utilize packet pair measurements to infer loss [30, 31] and delay

distributions [28]. In these measurements, packets are sent back-to-back and each packet is

destined for a different receiver. Much like the correlation experienced by multicast pack-

ets, back-to-back packets are highly correlated on shared links before the paths to each

receiver branch apart. Thus, the main difference between the techniques of using unicast

and multicast probes is that the unicast measurements are made only to pairs of receivers

at a time, whereas each multicast packet is transmitted to all of the receivers.

Researchers have also investigated the problem of identifying a single source unicast topol-

ogy using special-purpose probes [2, 21, 35]. The probes in these algorithms use a collec-

tion of different sized packets sent to two receivers, noting that larger packets have a longer

transmission time than smaller packets. They then employ a complexity reducing hierar-

chical statistical model to reconstruct the tree topology.

Whereas all previously mentioned techniques had only utilized a single source, the work in

[36] combines measurements made independently from a collection of multicast sources.

28

Assuming the multiple source topology to be known, they establish conditions which guar-

antee that all links of interest are identif able from end-to-end measurements. Furthermore,

they present two algorithms for estimating loss from the combined set of measurements.

However, a closer look at the problem of identifying a multiple source topology from the

end-to-end measurements reveals that this is no trivial task.

This dissertation focused on active tomography for estimating link delays from path level

delays. The reason for reviewing topology identif cation is that topology identif cation, in

general, applies active network tomography to guess the topology of a network. Therefore,

this dissertation has a strong resemblance with the topology identif cation network tomog-

raphy.

The next section summarizes the discussion on the existing def ciencies and research chal-

lenges related to network tomography in the context of the contributions of this dissertation.

2.4 Discussion on Existing Def ciencies and Research Challenges

The discussion in this chapter explains three types of network tomography; active (link-

level), passive (path level), and topology identif cation. Explanation of the types of probing

and the types of statistical technique for network tomography has also been given in this

chapter. All the types of tomography have a common assumption that the routing matrix is

known. For example, the routing matrix is assumed as f xed (1s or 0s) and random (Marko-

vian) routing. In practical networks, the routing matrix is unknown. This assumption of a

known matrix in the network tomography model has been addressed in this dissertation in

Chapter 3. Chapter 3 applies a blind technique (NNMF) and eliminates the assumption of

a known routing matrix.

Some of the conventional tomographic techniques such as [22, 37] have used statistical

parameters such as mean, variance, and standard deviation to compare the recovered and

true link matrices. The variance and standard deviation describe how spread out the data

is. If all the data lies close to the mean, then the standard deviation will be small, while if

the data is spread out over a large range of values, standard deviation will be large meaning

that having outliers will increase the standard deviation. Considering these factors and the

prominent role of correlation in validity testing as described in [38], the correlation coeff -

cient has been preferred over mean and variance in Chapter 3.

The experiments in this dissertation use active tomography for implementation. However,

29

the techniques developed in this dissertation are not limited to this type of network tomog-

raphy and can be used with all types of network tomography. This is a major advantage of

the contributions of this dissertation as compared to the techniques presented in the liter-

ature review where statistical techniques are typically limited to only one type of network

tomography.

In addition to the elimination of the assumption of a known routing matrix, some other

important aspects of network tomography are also in the past research on network tomog-

raphy. There has not been any effort to solve the unaddressed problems such as the errors

in the measurement of parameters for network tomography, multi-metric tomography, and

distributed network tomography. These important and unaddressed issues related to net-

work tomography may improve the results of network tomography signif cantly.

In reality, all the practical networks have potential errors that should be ref ected in the

network tomographic model as shown in the equation below,

Y = AX + ε, (2.1)

where ε represents the error in the model. There are various sources that contribute towards

the error term (ε) such as SNMP operation and NetFlow measurements. The heterogeneity

of the network components in terms of vendors and hardware/software platforms, that are

used by various types of networking technologies, is also a contributing factor toward the

error term, ε. The parameters represented by Y are used for the estimation of parameter

X; obviously the values of the parameter X will not be reliable if the factor of errors (ε) is

ignored as in the conventional model (Y = AX). The decision made for network manage-

ment based on such parameters may adversely affect the performance of a network. The

errors in measurement have been tackled in Chapter 4.

The conventional tomography model, as discussed in the current chapter, uses a single di-

rectly measured parameter to estimate a parameter indirectly. In contrast to this approach,

Chapter 5 presents an approach for improved indirect estimation of a single parameter by

directly measuring multiple metrics. The idea behind this innovation is that a better input in

terms of more than one interdependent metric should produce better estimation than using

only one parameter such as path level link delay.

Network tomography, in general, works in a central manner as all the techniques reviewed

in this chapter use a central approach. There is a single data repository that is the node

30

where network tomography is being performed. A single data repository brings in the chal-

lenges such as susceptibility to redundancy, and computation and communication complex-

ities. These problems can be taken care of by multiple data repositories in the form of a

distributed system. An alternative distributed network tomography is proposed in Chapter

6 where various entities (nodes performing tomography) in a distributed system can operate

concurrently and possibly autonomously. Tomographic tasks can be carried out indepen-

dently and actions are co-ordinated at well-def ned stages by exchanging messages. Also,

the nodes performing tomography can be heterogeneous, and failures are independent.

To sum up, this section describes past research on topology identif cation network tomog-

raphy. The main mathematical techniques applied in topology identif cation are clustering,

maximum likelihood, delay distribution, and packet pair measurements.

2.5 Chapter Summary

This chapter has described various ways of categorizing network tomography. In the lit-

erature review, the most popular categories of network tomography have been described

as passive network tomography, active network tomography, and topology identif cation.

Major contributions and respective mathematical techniques are reviewed in each of the

network tomography categories. This dissertation applies active tomography to implement

the proposed blind network techniques. However, the techniques developed in this disser-

tation are not limited to one type of network tomography and can be used with all types.

This is an additional advantage made possible by the contributions of this dissertation as

compared to the techniques presented in the literature review where statistical techniques

are typically limited to only one type of network tomography.

Chapter 3

Network Tomography By Non Negative Matrix Factorization

3.1 Introduction

Network tomography offers an effective alternative solution to the problem of f nding net-

work performance parameters. Network tomography research assumes that the routing

matrix is known. The need to eliminate this unrealistic assumption (as mentioned in Sec-

tion 2.4) motivates the research for alternative solutions such as NNMF. NNMF is a matrix

based technique for solving the inverse problem and it does not require knowledge of the

routing matrix to perform network tomography. Sparsity is an important feature of NNMF

that allows consideration of network links (in use) from a minimum to a maximum num-

ber. For this contribution, NNMF with the feature of sparsity has been applied to the data

obtained from a laboratory test bed to perform delay tomography under various traff c con-

ditions.

The rest of the chapter is organized as follows. Section 3.2 describes the challenges faced

by the routing matrix in the network tomography model. Section 3.3 discusses NNMF.

Section 3.4 explains application of NNMF in the context of network tomography. Sec-

tion 3.5 presents and discusses results to show that NNMF performs network tomography

accurately without a priori knowledge of the routing matrix. Section 3.6 is the chapter

summary.

3.2 Routing Matrix Challenges

A routing matrix is usually assumed to be known and constant throughout the measure-

ment (network tomography operation) period. For example, Vardi [7] (who is credited

for introducing network tomography) divided networks into two categories: f xed routing

(deterministic) and random (Markovian) routing networks. In f xed routing networks, the

directed path between any two nodes is f xed and remains the same for all messages trav-

eling between these two nodes. In random routing networks, the directed path taken by a

31

32

message traveling from the source node j1 to the destination node j2 is determined accord-

ing to a f xed known Markov chain specif c to a source destination (SD) pair (j1, j2). From

a purely technical standpoint, f xed routing is a special case of random routing.

The large-scale network inference problem deals with a potentially very large dimension

of A, which can range from half a dozen rows and columns for a small local area network,

to thousands or tens of thousands of rows and columns for a large network or the Internet.

The periodic routing table updates occur at intervals of several minutes. The dynamics of

the routing matrix may restrict the amount of data that can be collected and used for in-

ference. Most current methodologies usually assume that performance characteristics on

each link are statistically independent of all other links; however this assumption is clearly

violated due to common cross-traff c f owing through the links. Assumptions of temporal

stationarity are also made in many cases [2, 4].

In general, A is not full rank and causes identif ability concerns. Statistical means are em-

ployed to introduce regularization and induce identif ability. Assuming independent and

identically distributed (i.i.d.) Poisson distributions for the OD traff c byte counts on a

general network topology, Vardi [7] demonstrated the identif ability of the Poisson model

and developed an EM algorithm to estimate Poisson parameters in both deterministic and

Markov routing schemes.

The above discussion motivates the need for more appropriate methods for the inverse

problem solution where the statistical ability of such methods removes the need to make

an unrealistic assumption about the routing matrix. Non Negative Matrix Factorization

(NNMF) is one such method. The next section brief y describes NNMF.

3.3 Non Negative Matrix Factorization (NNMF)

NNMF is one of the implementations of Blind Source Separation (BSS). The BSS approach

aims at reconstructing both unobserved input signals and the mixing-weights matrix from

the combined signals received at a given sequence of time points. BSS in general has

applications in the f elds of power systems, telecommunications, speech processing, f -

nance/econometrics, bio-medical science and digital image processing [39]. In the case of

networks, as in similar applications, the individual components can be separated.

If a non-negative matrix V is given, then the NNMF f nds non-negative matrix factors W

33

and H such that [40]:

V ≈ WH (3.1)

NNMF can be applied for statistical analysis of a given set of multivariate n-dimensional

data vectors; the vectors are placed in the columns of an n × m matrix (V), where m is

the number of samples in the data set. After choosing a value for r (the number of fac-

tors/components to be determined) that is usually smaller than both n and m, V is approx-

imately factorized into a productof n × r (matrix, W) and an r ×m matrix, H . Matrices

W and H are smaller than the original matrix V . MatricesW and H are randomly initial-

ized by the NNMF algorithm and the parameter (r) is user def ned is always matching with

the real values in this dissertation. To f nd an approximate factorization, a cost function

is def ned that quantif es the quality of the approximation. Such a cost function can be

constructed using some measure of distance between two non negative matrices, A and B.

One popular cost function is simply the square of the Euclidean distance between A andB,

‖A− B‖2 =
∑

ij

(Aij − Bij)
2 (3.2)

and another is based on divergence,

D(A‖B) =
∑

ij

(Aij log
CAij

Bij

− Aij +Bij) (3.3)

Like the Euclidean distance, the divergence is also lower bounded by zero, and vanishes if

and only if A = B, but is not called a distance, because it is not symmetric in A and B,

therefore it is referred to as the divergence of A and B. It reduces to the Kullback-Leibler

divergence [40], or relative entropy, when the sum of Aij and Bij is equal to unity, so that

A and B can have normalized probability distributions.

A cost function is used for the formulation of the NNMF optimization problem to minimize

‖V −WH‖2 or D(V ‖WH) with respect toW and H , subject to the constraintsW , H ≥

0.

For each cost function, there are rules for updating W and H after selecting initial values

of W and H . At each iteration W and H are multiplied and ‖V −WH‖2 or D(V ‖WH)

is calculated. The values ofW andH are updated until ‖V −WH‖2 orD(V ‖WH) reach

a minimum threshold. At this moment, the values ofW andH represent the f nal estimate.

A useful property of NNMF is its ability to produce a sparse representation (coding) of the

data. Such a representation encodes much of the data using few active components, which

34

makes the encoding easy to interpret [40].

There are various other ways to implement BSS such as ICA and Principal Component

Analysis (PCA)/Singular Value Decomposition (SVD) [39]. These BSS approaches may

produce negative values in the estimated matrices whereas the link delays and entries of a

routing matrix may not be negative values. NNMF is preferred over other BSS techniques,

because it only deals with positive values.

In summary, NNMF is used to factorize a matrix into two factors (matrices) with the con-

straint that all three matrices must be non-negative, meaning that all elements must be

equal to or greater than zero. The process involves matrices and optimizing the residue to

obtain the best result with the feature of sparsity. The next section highlights the connection

between network tomography and NNMF models.

3.4 Network Tomography and NNMF

There are a number of reasons for the consideration of NNMF in the context of network

tomography:

1. Both models, Equation 1.1 and Equation 3.1, represent a system of equations in the

form of three matrices.

2. Both models, Equation 1.1 and Equation 3.1, represent an inverse problem, where

the parameter (X) in network tomography and sources (H) in NNMF are calculated

from directly measured Y and V , respectively.

3. The mixing matrix (W) and routing matrix (A) are generally unknown. The mixing

matrix (W) is recovered through statistical processing as a part of the NNMF oper-

ation. The routing matrix (A) is assumed to be known either as f xed routing, or as

probabilistic routing. In reality, the routing matrix changes over time. Determining

the routing matrix starts from simpler and ineffective methods like traceroute, but is

a tedious and resource intensive task. Due to these reasons, most of the researchers

assume it is f xed or probabilistic.

4. Sparsity is a feature of NNMF and is also present in a network represented by the

tomography model. The level of sparsity in a network may depend on the routing

scheme and network topology.

35

By considering NNMF for performing network tomography, there is no need to make as-

sumptions about the routing matrix. The recovery of the routing matrix is taken care of by

the NNMF operation as NNMF can estimate both the unknown parameters in the model,

A and X in this case. NNMF offers an alternative to conventional statistical tomography

techniques. A variety of traff c sources and disturbances such as Agilent Router Tester

(N2X) traff c have been applied to verify the capability of NNMF as a better alternative to

conventional tomography techniques. The reasons behind the behaviorial changes in link

performances are also analyzed and interpreted as part of this contribution.

3.5 Validation of the Application of NNMF for Network Tomography

To validate the idea that NNMF can perform active network tomography, two types of tests

were carried out: the f rst is based on known numerical data and the second set of tests is

based on the real measurements from test beds.

In all types of tests, the end to end (path level) delay was input to the NNMF. The recovered

link level delays were correlated with the true link level delays to examine the performance

of NNMF for network tomography.

The next subsection describes two variations of a test bed that were used for data collection

to obtain end to end delays for use as input to NNMF and link delays for bench-marking

the estimations of link delays by NNMF.

3.5.1 Description of Networking Test Beds

A test bed was set up in the Advanced Internetworking Laboratory (AIL) that consisted of

eight 3800 series Cisco routers, N2X, and a Multi Router Traff c Grapher (MRTG) capable

workstation. OSPF routing was implemented on routers and N2X. The test bed is of smaller

size than the practical networks and has a limited number of links, because a collection of

the actual values of the link delays for bench-marking the accuracy of estimated link delays

is required. The test bed experiments were used to prove that NNMF estimates are close to

the actual link delays. In contrast to this test bed, the practical networks are larger in scale,

but scalability is not an issue as NNMF can handle larger sizes of matrices [41].

The Echopath option of the Cisco Service Level Agreement (CSLA) was implemented to

send six probes and collect the cumulative Round Trip Time (RTT) from source to each

36

hop on the path of a probe.

The CSLA is an application-aware synthetic operation agent that monitors network perfor-

mance by measuring response time, network resource availability, application performance,

jitter (inter-packet delay variance), connect time, throughput, and packet loss. Performance

can be measured between any Cisco device that supports this feature and any remote IP

host (server), Cisco routing device, or mainframe host. Performance measurement statis-

tics provided by this feature can be used for troubleshooting, for problem analysis, and for

designing network topologies.

In particular, the CSLA is a reliable mechanism for accurately monitoring the metrics in

Service Level Agreements (SLAs). Response time and availability information is collected

by operations that are conf gured on a router. Operations use synthetic packets specif -

cally placed in a network to collect data about the network. These packets simulate other

forms of network traff c, as determined by the type of operation conf gured. Operations

usually consist of multiple probe packets sent into the network; operations in general can

be thought of as collections of probes.

CSLA operations are given specif c identif cation numbers so one can track the various

conf gured operations. CSLA operations are conf gured in RTR conf guration mode.

For this contribution, all unicast probes (page 23) were grouped together. All probes in

the group started at the same time and traveled from right to left in the test bed diagrams

(Figure 3.1 and Figure 3.2). The group of probes was repeated 100 times with a time dif-

ference of 10 seconds between two consecutive repetitions. Various repetitions up to two

thousands were used, however there was no discernible improvement over the results with

one hundred repitions. Therefore, the results from the sample size of 100 are shown in this

contribution, because getting estimation in shorter time is better for computer networks.

The selected links were stressed by two sources: extended ping on selected links and traff c

injected from the N2X.

Figure 3.1 shows a test bed with six probes (from right to left) and four selected links that

were stressed by extended ping packets of two sizes: two of these links (Link 4 and Link

5) were stressed with an extended ping of the packet size 100 Bytes and the other two links

(Link 1 and Link 6) were stressed with an extended ping of 200 Bytes. The size of the

probes in CSLA was 40 Bytes. The condition of the network remained unchanged during

the whole period of data collection.

37

Figure 3.1: Testbed Setup with extended pings only

In Figure 3.1, the path of Probe 1 includes Link 1, Link 3, Link 5 and Link 6. The

following matrix represents the routing matrix (A) for Figure 3.1 and Figure 3.2. The f rst

row of this matrix corresponds to the path of Probe 1 and has entries of 1s for the elements

of the f rst row that corresponds to Link 1, Link 3, Link 5 and Link 6. All other entries

in the f rst row are 0s, because Probe 1 does not pass through these links. An element of

sparsity is present as some links have values as 1s and some have values as 0s.




1 0 1 0 1 1 0 0 0 0

1 0 1 0 1 0 0 0 0 0

1 1 0 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 1 1

0 0 0 0 1 1 1 1 0 0




Figure 3.2 shows a test bed with six probes (from right to left) and two of the links (1

and 6) were stressed with an extended ping of 200 Bytes. The other source of disturbance

was the traff c from the N2X. The module 1 of N2X was generating a variable packet size

from 1000 Bytes to 1500 Bytes. The size of the probes in CSLA was 10 Bytes for this sce-

nario. In this case also, the condition of the network remains unchanged during the CSLA

38

operation.

Figure 3.2: Testbed Setup with a mixture of extended pings and N2X traff c

3.5.2 Data Processing

The data obtained from the CSLA was in the form of accumulative hop-wise round trip

time and a snapshot of a reading of CSLA is shown in Figure 3.3. The following steps

were taken to process the data to obtain two matrices; a matrix of the end to end delays and

a matrix of the link level delays:

1. As can be seen from Figure 3.3 that the output from the ‘collect statistics’ command

of CSLA is in the form of text separated by tabs or blank spaces to give a tabular

representation. The repetition of the ‘collect statistics’ command accumulates a list

of such text patterns as in Figure 3.3 in the router command windows, which was

then saved in a text f le. With path delays as an input to NNMF, the true link delays

on the path of each probe were extracted. Parsing software was used to convert this

information into the data required, that is the path and link delays.

Three f elds are of special interest from the table shown in Figure 3.3; Entry, Hop,

and Sumcmp. The f eld, Entry, basically identif es a probe. The f eld, Hop, gives the

list of hops traversed by a probe in a round trip. The f eld, SumCmp, represents the

accumulated RTT. The parsing software was written in Java and it extracts link delays

39

Figure 3.3: A sample of data from the CSLA show command

and end to end (path) delays in the form of two matrices from the accumulative round

trip time at each hop on the path of a probe.

If there are multiple paths possible for a single probe, that probe could have more than

one entry in the column, Entry. The parsing software f rst checks for multiple paths

for a probe and if there are any then it can make different sets of paths depending on

the number of multiple entries of a probe and the number of probes that have multiple

entries.

The hop-wise RTT is cumulative in nature meaning that RTT for the Hop 1 is the RTT

from the source to the Hop 1 and RTT for the Hop 2 is the RTT from the source to the

Hop 2. Subtracting RTT of the previous hop from the current hop gives the RTT from

the previous to the current hop. Therefore the RTT for the last hop represented by

the f eld, Hop, of a probe def nes the RTT for that hop and is used to make a matrix

of the path delays. The differential delays between the subsequent hops are used to

get a matrix of true link delays.

2. Path level delays (V) were the input to NNMF. The Matlab tool NMFpack was used

for NNMF factorization. This package is associated with [40]. The NMFpackMatlab

40

package implements and tests various versions of NNMF with the feature of sparsity.

The NMFPack performs standard NNMF with divergence and Euclidean objectives

with or without sparseness. NMPack is a comprehensive package with a directory

of codes. As per the requirement of this dissertation, some components of the code

have been borrowed and customized for the implementation of the NNMF in this dis-

sertation. Both algorithms; divergence and Euclidean algorithms were tested and the

results were similar. However, the results included in this dissertation were obtained

using the divergence algorithm with the feature of sparsity. Based on the fact that

the routing matrix for these test beds is of sparse nature as explained on page 37 in

Section 3.5.1, the sparsity for the routing matrix is kept at 0.3 in all the tests and the

sparsity of the link delays varies from 0.1 to 0.9 as per Appendix A.

3. The coeff cient of correlation between the estimated link delays (H) and actual link

delays (X) was determined by using a modif ed component of EEGLAB [42]. The

EEGLAB is an interactive Matlab toolbox for processing continuous and event-

related electroencephalography (EEG), magnetoencephalography (MEG) and other

electrophysiological data.

For f nding the correlation coeff cient, matching rows in two matrices (H and X)

were found and their correlation was determined. As a result a column vector of

correlation coeff cients between the best-correlating rows of matrices H and X was

obtained along with the other by-product (routing matrix).

3.5.3 Interpretation of Results

The results were expected to show a strong correlation between the estimated and measured

link delays by using NNMF and the true link delays. Three types of results are discussed;

the results from numerically simulated data, the results from the f rst version of the test

bed being stressed with extended ping, and the results from the second version of the test

bed using a mix of extended ping and traff c from N2X. The next subsection describes the

reason for using correlation as a parameter for the comparison of the estimated link delays

(H) and the measured link delays (X).

41

Correlation as a Parameter for Comparison

A statistical metric, correlation, has been considered as a measure for checking the close-

ness of the estimated link level delays by NNMF (H) to the actual link level delay (X).

The correlation coeff cient is used to indicate the relationship of two random variables. It

provides a measure of the strength and the direction of the correlation varying from -1 to

+1. Positive values indicate that the two variables are positively correlated, meaning the

two variables vary in the same direction. Negative values indicate that the two variables

are negatively correlated, meaning the two variables vary in the contrary direction. Ac-

cording to the accepted guidelines for interpreting the correlation coeff cient in [38], values

between 0.7 and 1.0 indicate a strong positive linear relationship.

Some of the conventional tomographic techniques such as [22, 37] have used statistical

parameters such as mean, variance, and standard deviation to compare the recovered and

true link matrices. The variance and standard deviation describe how spread out the data

is. If all the data lies close to the mean, then the standard deviation will be small, while if

the data is spread out over a large range of values, standard deviation will be large meaning

that having outliers will increase the standard deviation. Considering these factors and the

prominent role of correlation in validity testing as described in [38], the correlation coeff -

cient has been preferred over mean and variance. The results in the subsections to follow

prove that the correlation values produced by NNMF are close to 1 even without a priori
knowledge of the routing matrix.

Results from Numerical Simulations

With MatLab simulation, end-to-end link delays were generated as Y (of the size of 4×

100) from a known link matrix (X= 10+2×randn(6,100)) and a routing matrix (A= [1 0

1 1 0 0;0 1 1 0 1 0; 1 1 0 0 0 0; 1 0 0 1 0 1]). The end-to-end matrix (Y) was input to

NNMF and the estimated matrix (H) was correlated with the known link delay matrix (X).

Figure 3.4 shows that the correlation between the estimated link delays (H) and the actual

link delays (X) is close to 1 at low sparsity and as the network becomes sparse, the value

of correlation decreases.

42

Figure 3.4: Correlation between H and X for numerical data

Results from the Test Bed Stressed with Extended Ping

Figure 3.5 makes it clear that when selected links were stressed with extended pings of 100

Bytes and 200 Bytes, the correlation between the estimated link delays (H) and the actual

link delays (X) was close to 1 when this network was using more links (low sparsity).

When the sparsity of this network increases, the degree of correlation decreases. It was

observed that the correlation was high at low sparsity and this was because low sparsity

resembled an actual network with all the links in use. In contrast, the high sparsity accounts

for a subset of actual network links. As the links were being stressed with a predictable set

pattern (constant extended pings of 100 Bytes and 200 Bytes during the entire time of data

collection), the correlation lines for various links at different sparsity levels were spaced

differently in Figure 3.5 as compared to the numerical simulation results (Figure 3.4). This

depicts the behavior of a practical network due to the transmission delay of the CSLA

packets and the delay added by the extended pings.

Results from the Test Bed Stressed with Extended Ping and N2X Traff c

One of the components of the link disturbance was introduced by N2X with a larger and

variable packet size. The correlation between the estimated link delay (H) and actual

link delay (X) is close to 1 in Figure 3.6 at low sparsity, which is similar to Figure 3.4

43

Figure 3.5: Correlation between H and X with extended pings only

and Figure 3.5. This shows that NNMF is able to successfully estimate the link delays

under different traff c conditions. However, at high sparsity (right hand side of Figure 3.6),

Figure 3.6 is different from Figure 3.4 and Figure 3.5. The reason for such behavior is the

combination of the variable delay introduced by N2X and the other traff c patterns that are

described as follows:

1. Four out of the six probes use Link 1 and three use Link 5. The link statistics collected

for Link 1 and Link 5 have more reliable and verif able information than the other

links as comparatively more samples are collected in a given time at Link 1 and Link

5.

2. Though Link 2, Link 3, and Link 6 have two probes passing though them, Link 2 also

has Probe 4 passing through it and it shows better correlation at high sparsity. This

is because Probe 4 ends before entering Link 4 and Link 5 and because N2X traff c

passes through Link4 and Link 5.

3. Link 2 has Probe 3 passing through it, and Probe 3 also passes through Link 4, which

has additional delay due to N2X traff c passing through it. This is why the correlation

for Link 3 shows less improvement at high sparsity than that for Link 2.

4. For implementing increased sparsity, NNMF models fewer links out of the available

44

links (ten links in our case). The result in Figure 3.6 reveals that Link 1, Link 2 and

Link 5 show better correlation at all levels of sparsity based on the reasons described

in items 1 and 2.

5. Link 4 and Link 5 have N2X traff c passing through them, and this traff c is faster

than the CSLA traff c. Therefore, the correlation for Link 4 and Link 5 improves (as

compared to Figure 3.5) less than Link 1 and Link 2 (in Figure 3.6) at high sparsity.

6. At Link 6, Link7, Link 8, Link 9 and Link 10, the traff c pattern remains the same

in both the test beds; that is why the values of correlation for these links follow the

same pattern in Figure 3.5 and Figure 3.6 at all levels of sparsity.

Figure 3.6: Correlation between H and X with a mixture of extended pings and N2X traff c

This discussion reveals an encouraging fact that if the pattern of stressing links is changed,

NNMF takes this into consideration and this characteristic is clear in the results (Figure 3.6

in comparison to Figure 3.5).

Comparison with Conventional Tomography Methods

An examination of the results presented in conventional tomography methods such as [22,

37] shows that these authors have used statistics such as mean and variance (for comparing

estimated and measured link delays) instead of correlation with the assumption of a known

45

routing matrix. As per the discussion in the beginning of this subsection, it is believed that

correlation is a better statistical measure than mean and variance. In this analysis, NNMF

has shown a correlation between the estimated link delay (H) and the actual link delay (X)

close to 1 with no prior knowledge of the routing matrix.

3.6 Chapter Summary

In summary, the elimination of the assumption of a known routing matrix as a part of con-

ventional tomography has been discussed in this chapter. One of the BSS methods, sparse

NNMF, has been identif ed as a method which could recover the desired parameters without

knowing the routing matrix. With the numerical simulations and the experiments to obtain

data from laboratory test beds, it has been shown that NNMF can perform network tomog-

raphy with accuracy without assuming a known routing matrix. The correlation between

the estimated and actual link delays was close to 1. If the characteristics of the network

change, as was done by the introduction of N2X in the test bed, the results obtained from

NNMF ref ect the changes in the network traff c by showing better correlation for some

links even on high sparsity.

Chapter 4

Error Modeling in Network Tomography by Sparse Code Shrinkage

Method

4.1 Introduction

All practical networks have the potential of errors that should be ref ected in the basic

network tomographic model (Y = AX) as shown in the equation below,

Y = AX + ε, (4.1)

where ε represents the error in the model. There are various sources that contribute towards

the error term (ε) such as Simple Network Management Protocol (SNMP) operation and

NetFlow measurements. The heterogeneity of the network components in terms of vendors

and hardware/software platforms, that are used by various types of networking technolo-

gies, is also a contributing factor toward the error term, ε.

For this contribution, Sparse Code Shrinkage (SCS) (a blind technique) has been applied

to denoise the noisy link delay data. SCS exploits the statistical properties of the data to

be denoised. A key idea that constitutes the rationale behind SCS is to use a basis that is

more suitable for the data at hand. For denoising, it is required to transform data to a sparse

code, apply MLE procedure component-wise, and transform back to the original variables.

Originally, SCS is an image denoising technique; this contribution has employed SCS for

the f rst time for estimating the error free link delays from the erroneous link delay data.

The simulation results show that the SCS based denoising technique successfully denoises

the noisy data and recovers almost noise free (original) data. The rest of this chapter is or-

ganized as follows. Section 4.2 brief y describes network tomography and various sources

of error that may be present in tomography data. Section 4.3 presents related work. Section

4.4 discusses SCS and the rationale for using SCS. Section 4.5 explains the application

of NNMF in the context of network tomography and sparsity. Section 4.6 presents and

discusses results to show that SCS successfully denoises noisy link delay data in a blind

manner without a priori knowledge of the routing matrix. Section 4.7 summarizes the

46

47

chapter.

4.2 Error Sources in Network Tomography

SNMP and NetFlow are the main contributors towards the error term (ε) along with the

heterogeneity of the network components in terms of vendors and hardware/software plat-

forms that are used by various types of networking technologies [43, 44, 45, 46].

SNMP is applied for collecting data that is used for management purposes including net-

work delay tomography. SNMP [45] periodically polls statistics such as the byte count of

each link in an Internet Protocol (IP) network. In SNMP, the commonly adopted sampling

interval is 5 minutes. The management station cannot start the management information

base (MIB) polling for hundreds of the router interfaces in a network at the same time (at

the beginning of the 5-minutes sampling intervals). Therefore, the actual polling interval is

shifted and could be more than 5 minutes.

The traff c f ow statistics are measured at each ingress node via NetFlow [43, 44]. A f ow

is an unidirectional sequence of packets between a particular source and destination IP ad-

dress pair. For each f ow, NetFlow maintains a record containing a number of f elds such

as source and destination IP addresses, number of bytes and number of packets transmitted

etc. This f ow level information would be suff cient to provide direct traff c matrix mea-

surement if complete NetFlow data were collected for the entire network. The high cost

of deployment limits the NetFlow capable routers. Also, products from vendors other than

Cisco have limited or no support at all for NetFlow [43, 44]. Therefore, sampling is a

common technique to reduce the overhead of a detailed f ow level measurement. The f ow

statistics are computed after applying sampling at both packet level and f ow level. Since

the sampling rates are often low, inference from the NetFlow data may be noisy.

Both SNMP and NetFlow use the User Datagram Protocol (UDP) as the transport protocol.

The operating nature of UDP may add to the error term of the model due to hardware or

software problems resulting in data loss in transit [43, 44, 45, 46].

Having different vendors for network components along with hardware/software platforms

that are used by various types of networking technologies and the inherited shortcomings

of the distributed computing also contributes toward introducing errors. The risk of errors

increases if there are more components in a system. The physical and time separation and

consistency are also a problem and a source of error [46].

48

4.3 Related Work

The authors of [46], when estimating a traff c matrix with imperfect information, have men-

tioned the presence of errors in network measurements. However, they did not present any

solution in particular to the errors in link measurements, though they have considered these

errors when they have compared the traff c matrix with and without network measurement

errors. A traff c matrix quantif es aggregate traff c volume between any OD pairs in a net-

work, which is essential for eff cient network provisioning and traff c engineering. They

have applied statistical signal processing techniques to correlate the data obtained from

both (SNMP and NetFLow) measurement infrastructures. The traff c under passive tomog-

raphy was determined by considering a bi-model approach for error modeling in [46]; one

model for the SNMP errors and the other model for NetFlow errors. They have also cate-

gorized errors in various categories such as erroneous data and dirty data. This dissertation,

on the other hand, has used a single model to represent noise irrespective of the nature of

the noise source as shown in Equation 4.1. The error model in this chapter is simpler than

the model in [46] as it considers all the errors as a single collective parameter, ε, irrespec-

tive of the sources that have caused these errors. Though the data for simulations has been

collected by active tomography, this method could be applied to any type of tomographic

data.

As described in Section 4.2, various kinds of sources introduce errors in the original data

and the use of this data for making further estimation can increase the effect of errors.

There is a need of some techniques to denoise the erroneous network tomography data and

SCS is one such technique. A brief description of SCS is given in the next section.

4.4 Sparse Code Shrinkage (SCS)

The proposed application of SCS [47] proceeds as follow. SCS exploits the statistical

properties of the data that is to be denoised. A general model of SCS is S = ZX , where

S represents mixed observed signals, X is available data (link delays in this dissertation)

and Z is a mixing weights matrix. The SCS model may also be represented as S̃ = ZsX
e,

where S̃ is the sparse and shrunk observed noisy image (data), Zs is the sparse mixing

matrix, and Xe is the denoised estimation of unobserved independent signals (data). By

using a noise-free training set of X , use some sparse coding method for determining a

49

sparse version of matrix Z (Zs) so that the components Si in S = ZX have as sparse a

distribution as possible.

In general, SCS consists of three steps as shown in Figure 4.1 and explained as follows:

1. The noisy sparse data (Sn
s) is obtained by multiplying Zs with noisyX (Xn).

2. Apply the component wise shrinkage non-linearity gi(). Denote the obtained com-

ponents by S̃ = gi(S
n
s).

3. Estimate the denoised unobserved signalsX (Xe) from Xe = S̃Z−1
s .

Figure 4.1: Implementation steps of SCS

To estimate the sparsifying transform Z, an access to a noise-free realization of the

underlying random matrix is assumed. This assumption is not unrealistic in many appli-

cations. For example, in image denoising it simply means that we can observe noise free

images that are somewhat similar to the noisy image to be treated, i.e., they belong to the

same environment or context. In terms of link delays in networking, it means having link

delay readings while a system is operating in normal condition with no abnormalities to

cause errors.

4.4.1 Rationale for Selecting SCS

Some other interesting techniques for denoising (of the nature of SCS) were also inves-

tigated as part of the literature survey, such as Wiener Filtering and Wavelet Shrinkage

methods [47], but SCS was a preferred choice for the following reasons. The Wavelet

Shrinkage method adopts a f xed basis to linearly transform image data into another do-

main where denoising is more tractable. Some of the wavelet methods such as presented

in [25] resemble SCS. There are two main differences between the two methods (SCS and

Wavelet Shrinkage); the choice of the transformation and the estimation principle. SCS

50

chooses the transformation using the statistical properties of the data at hand, whereas the

Wavelet Shrinkage methods described in [25] use a predetermined wavelet transform. SCS

estimates the shrinkage nonlinearities by the maximum likelihood (ML) principle (adapt-

ing to the data at hand) whereas some methods [25] use f xed thresholding derived by the

min-max principle.

4.5 Sparsity with NNMF

A useful property of NNMF is the ability to produce a sparse representation of data. Such

a representation encodes much of the data using a few active components, which makes

the encoding easy to interpret. Sparse coding, on theoretical grounds is considered a useful

middle ground between completely distributed representations, on the one hand, and unary

representations on the other [41]. In terms of network terminology, a highly sparse network

means using fewer links out of the total number of links available in a network and a low

sparse network is considered closer to the original topology of a network. As the feature of

sparsity plays a signif cant role in SCS, NNMF has been considered for the estimation of

the sparsifying transformation in the initial step of SCS.

In summary, NNMF is used to factorize a matrix into two factors (possibly matrices with

various degree of sparsity) with the constraint that all three matrices must be non-negative.

4.6 Simulation Results of Denoising Tomography Data Through SCS

For validating SCS as a technique to denoise the erroneous link delays, a laboratory test bed

was used to collect real link delays. WGN was introduced into the measured link delays

to create the effect of errors in the measured link delays. This erroneous data was input to

SCS and this data was denoised to get an estimate of the link delays close to the measured

link delays. The next subsection describes the test bed that was used for data collection to

obtain end-to-end delays and link delays as benchmarks.

4.6.1 Description of Networking Test Bed

The experimental data has been obtained from a test bed that was set up in the Advanced

Internetworking Laboratory (AIL) and consisted of six 3800 series Cisco routers, Agilent

Router Tester (N2X), and an MRTG capable workstation. OSPF routing was implemented

51

on routers and N2X. SCS [47] and NNMF [41] are both capable for dealing with scalability

in the case of larger networks. The Echopath option of the CSLA was implemented to send

four probes and collect the cumulative RTT from a source to each hop. All probes were

grouped together. All the probes in the group started at the same time. The group of probes

was repeated 100 times with a time difference of 10 seconds between two consecutive rep-

etitions. The selected links were stressed by two sources: extended ping on selected links

and traff c injected from the N2X.

Figure 4.1 shows a test bed with the four probes (traveling from right to left) and two of the

links (Link 1 and Link 6) stressed with an extended ping of 200 Bytes. The other source of

disturbance was the traff c from the Agilent router tester (N2X). The module 1 of N2X was

generating a variable packet size from 1000 Bytes to 1500 Bytes. The size of the probes

in CSLA was 10 Bytes for this scenario. The condition of the network remains unchanged

during the CSLA operation.

Figure 4.2: Testbed setup for denoising with SCS

4.6.2 Use of Data from Test Bed

Original link delays in Link 1 to Link 6 of Figure 4.1 were collected. The data obtained

from the CSLA was in the form of accumulative hop-wise round trip time. The following

steps were followed to process the data for obtaining two matrices; a matrix of end-to-end

52

delays and a matrix of link level delays. Parsing software, written in Java, extracted link

delays and end to end delays in the form of two matrices. From the accumulative round trip

time from source to each hop, hop to hop delays were calculated to form the delay matrix.

From the accumulative round trip time (from the source to the destination), the end-to-end

delay matrix was determined. This data was used as a baseline for judging the accuracy to

the SCS.

The WGN was simulated through a MatLab based function and measured link delays were

converted into noisy link delays. This noisy data was used as an input to SCS. SCS was

expected to denoise this data in such a way that the denoised link delays were in close

proximity of the measured link delays.

As part of the SCS, there was the need to apply a BSS technique as a sparse coding method

for determining the sparse matrix Zs so that the components Si in S = ZX had as sparse

distributions as possible. NNMF was applied for this purpose. The end-to-end link delays

obtained from CSLA were input to NNMF. The MatLab tool NMFpack [40] was used for

NNMF factorization . Various combinations of measured link delays and the routing ma-

trix with various sparsity levels were tried to get Si as sparse as possible. These sparse

estimation of Si were input to step 2 of the implementation of SCS as described in Section

4.4. The following are the steps of SCS in the context of denoising the noisy link delays:

1. Actual noise free end-to-end delays (S) as the training set and link delays (X) for

bench marking were measured.

2. With the noise free training set of end-to-end link delays (S), a sparse coding method

(NNMF) determined the sparse version of matrix Zs, so that the row components

Si of S = ZX have as sparse a distribution as possible. Then this sparse mixing

matrix Zs was used in the following steps. Originally, SCS uses ICA in [47] for the

estimation of the sparsifying transformation. However, this dissertation used NNMF

instead of ICA. The ICA approach may result in negative values in estimatedmatrices

whereas all the matrix components in NNMF are always positive.

3. To emulate the effect of the noisy measurement, White Gaussian Noise (WGN) was

introduced to the actual noise free link delay (X) to get a noisy version of link delays

(Xn), and the sparse and noisy end-to-end delays (Sn
s) were obtained by multiplying

53

this noisy link delays (Xn) with the sparse mixing matrix Zs. The signal power ofX

in terms of the squared mean of X was 0.486 msec2 in this contribution. The WGN

was generated with the function (wgn(R,C,20×log10(s n× stdX)), whereR, C, and

stdX are dependent on X and s n is user def ned. Another function (addGauss(X ,

mu, s n)) returnsXn and the variance of the Gaussian Noise by havingX and noise

parameter (zero mean, unit variance) as inputs (please refer to [47] for further de-

tails). Noisy and sparse end-to-end delays Sn
s were input as argument u to the fol-

lowing nonlinearity shrinkage function to get S̃ = gi(S
n
s).

g(u) = 1/(1 + σ2a)sign(u)max(0, |u| − σ2), (4.2)

where σ2 is the noise variance and its value was 14.909 msec2 in this contribution.

The effect of the shrinkage function is to reduce the absolute value of its argument

by a certain amount, which depends on the parameters. Small arguments are thus set

to zero.

4. Estimations of denoised link delays were obtained from Xe = Z−1
s S̃.

4.6.3 Comparison of Measured, Errored, and Denoised Link Delays

The results have been displayed in six diagrams (Figure 4.3 to Figure 4.8). Each diagram

representing one link, from Link 1 to Link 6. In each diagram, three types of data lines are

shown:

1. The actual measurement of the link delays collected from CSLA is shown as solid

lines.

2. The link delays after the introduction of the error are shown as the dotted lines.

3. The denoised link delays after the application of SCS are shown as dashed lines.

The vertical axis represents the link delays and horizontal is the number of samples at var-

ious times.

It is clear from these six graphs that the denoised link delays are in close proximity to

54

the actual link delays. The errored link delays were input to SCS and the estimated (de-

noised) values of link delays are close to the measured values. This shows that the SCS

has successfully denoised the noisy link delay data and denoised data is in the proximity of

benchmarks.

Figure 4.3: Comparison of measured, errored, and denoised link delays on Link1

Figure 4.4: Comparison of measured, errored, and denoised link delays on Link2

A comparison of the Mean Squared Errors (MSE) in Table 4.1 between measured and

noisy link delays, and MSE (inmsec2) between measured and denoised link delays shows

55

Figure 4.5: Comparison of measured, errored, and denoised link delays on Link3

Figure 4.6: Comparison of measured, errored, and denoised link delays on Link4

56

Figure 4.7: Comparison of measured, errored, and denoised link delays on Link5

Figure 4.8: Comparison of measured, errored, and denoised link delays on Link6

57

that the MSE between measured and denoised link delays is less than the MSE between

measured and noisy link delays on all the links of the test bed.

Table 4.1: Comparison of the MSE between measured and noisy link delays, and the MSE
between measured and denoised link delays

Link 1 Link 2 Link 3 Link 4 Link 5 Link 6
MSE between mea-
sured and noisy link
delays 25.490 17.289 16.546 16.546 17.423 27.345

MSE between mea-
sured and denoised
link delays 0.018 0.018 0.013 0.036 0.818 0.604

.

4.7 Chapter Summary

To summarize, in this chapter, the SCS technique was applied to denoise the network to-

mography model with errors. To f t well to the research objectives of this dissertation, SCS

was modif ed by replacing ICA with NNMF to get positive values in the estimated link

delay matrix. The results obtained from the laboratory test bed based experiments proved

that SCS successfully denoised the link delays. The comparison of denoised link delays

with the error free benchmark data showed them in close proximity.

Chapter 5

Multi-metric Network Tomography

5.1 Introduction

The conventional tomography model (Y = AX) uses a single measured parameter matrix

(Y) to estimate a matrix of a single unknown parameter (X). In contrast to the conventional

model, this chapter proposes the use of direct measurements of multiple metrics to recover

indirectly a single parameter with expectation of getting a better estimate as compared to

using a single directly measured parameter to estimate a parameter indirectly. The new

model is represented by Equation 5.1, where Y1 and Y2 are directly observed in order to

estimateX indirectly by solving the following inverse equation.

Y1Y2 = AX (5.1)

For example, instead of recovering link delays from merely end to end path delays, we

can estimate link delays from a combination of path delays (Y1) and PLR (Y2). By having

a better input in terms of two interdependent metrics, multi metrics network tomography

produces a better estimation than using only one parameter such as path level link delays.

This correlation of two network parameters has been discussed in the literature. For ex-

ample, the authors of [10] report on the correlation between delay and loss observed by a

continuous-media traff c source. This study [10] determines the extent to which one perfor-

mance measure could be used as a predictor of the future behavior of the other (for example,

an increasing delay is a good predictor of future loss) so that an adaptive continuous media

application might take anticipatory action based on the observed performance. A variation

of NTF called the NTF1 model has been applied for this purpose.

The rest of the chapter is organized as follows. Section 5.2 reviews the related work. Sec-

tion 5.3 discusses NTF. Section 5.4 details simulation arrangements. Section 5.5 presents

and discusses results. Section 5.6 serves as the chapter summary.

58

59

5.2 Related Work

This section investigates related work in the domains of the multiple metric network to-

mography concept and the interdependence of delays and PLR.

5.2.1 Multi-metric versus Additive Metrics

To best of the author’s knowledge, there has never been an implicit consideration of di-

rectly measured multiple metrics for an indirect estimate of a network metric. In [48]

however, there is evidence of considering multiple metrics in the form of additive metrics.

A framework was proposed for analyzing topology using ideas and tools from phyloge-

netic inference in evolutionary biology. The phylogenetic inference problem determines

the evolutionary relationship amongst a set of species. The framework is built upon ad-

ditive metrics. Under an additive metric the path metric (path length) is expressed as the

summation of the link metrics (link lengths) along the path. In [48], the intent is to use es-

timated distances between the terminal nodes (end hosts) to infer the routing tree topology

and link metrics. Based on the framework some inference algorithms have been presented

as an alternative to network tomography.

They [48] consider that G = (V , E) denotes the topology of the network, which is a di-

rected graph with node set V (end hosts, internal switches and routers, etc.) and link set

E (communication links that join the nodes). For any nodes i and j in the network, if the
underlying routing algorithm returns a sequence of links that connect j to i, they say j is
reachable from i. They call this sequence of links a path from i to j, denoted by P(i, j).
As per their terminology, d(e) can be viewed as the length of link e, and d(i, j) can be

viewed as the distance between nodes i and j. Basically, an additive metric associates each
link on the tree with a f nite positive link length, and the distance between two nodes on

the tree is the summation of the link lengths along the path that connects the two nodes.

Suppose T (s,D) = (V,E) is a routing tree with source node s and a set of destination

nodes (D). Let
d(E) = d(e) : eεE (5.2)

denotes the link lengths of T (s,D) under additive metric d. Remember U = s
⋃
D is the

set of terminal nodes on the tree. Let

d(U2) = d(i, j) : i, jεU (5.3)

60

denotes the distances between the terminal nodes.

The above review makes it clear that considering additive metrics is different from multiple

metrics based network tomography. Actually, this phylogenetic based technique is claimed

to be an alternative to network tomography [48]. Therefore, the work in this thesis of

considering multiple metrics is a novel way of improving the conventional mono-metric

network tomography model.

5.2.2 Correlation of Link Delays and PLR

The authors of [10] examine the correlation between packet delay and packet loss expe-

rienced by a continuous media traff c source. They [10] study the extent to which one

performance measure can be used to predict the future behavior of the other (for example,

whether an observed increasing delay is a good predictor of future loss) so that an adaptive

continuous media application might take anticipatory action based on the observed perfor-

mance. They provide a quantitative study of the extent to which such correlation exists.

There are two examples in this regard mentioned in the following discussion.

When the buffer reaches its capacity, packet losses begin to occur. The receiver of the

continuous-media application thus sees increased delay, and eventually losses.

When packets from a continuous-media application arrive at a buffer that is already full,

they are dropped. As other sources (for example, TCP connections) detect congestion and

decrease their transmission rate, the queue length at the buffer will decrease, and packets

from the continuous-media application will start to be queued, rather than dropped. The

receiver sees losses followed by high, but possibly decreasing, packet delays.

The authors of [10] introduce a lag, loss-conditioned average delay, in calculating the aver-

age delay conditioned on loss. Specif cally, the average packet delay, conditioned on a loss

occurring at a time lag j packets in the past, is the average delay of all packets in the trace
that have a loss j packets before them in the trace. That is,

E[di | li−j = 1] =
∑

kεP

dk/ | P |, (5.4)

where P = k : lk−j = 1 and lk = 0.
If the loss-conditioned average delay at a positive lag of j is higher than the unconditional
average delay (that is, the delay averaged over all received packets), the packets that arrive j
packets after a loss have a higher average delay than the unconditional average delay. That

61

is, a loss occurring j packets in the past can be taken as a precursor to a higher delay later.
This discussion shows that delay and PLR are interdependent and correlated based on loss-

conditioned average delay. This evidence motivated the consideration of multi metric net-

work tomography in this dissertation. NTF has been applied to carry out the multiple metric

network tomography and NTF is brief y described in the next section.

5.3 Nonnegative Tensor Factorization (NTF)

During the background research for f nding a mathematical technique that could deal with

multiple metrics and be capable of matrix factorization, NTF appeared to be an appropriate

choice, because it can manage a direct estimation of a matrix from the input of multiple

matrices. In this chapter, two parameters (PLR and link delay) are measured directly to be

applied to estimate the link delays. There is a need for a mathematical model that could

take inputs of two or more matrices and could give estimates of one or more parameters.

NTF, a matrix factorization technique, is capable of fulf lling this objective. Matrix fac-

torization is an important area in signal processing and linear algebra, with applications in

many other areas. BSS and related methods, for example, ICA, employ a wide range of

unsupervised learning algorithms and have found important applications from engineering

to neuroscience.

Some of the concepts involved in NTF are explained (as in [41]) in the following paragraphs

of this section. NTF utilizes tensors, which are generalizations of vectors and matrices. For

example, a third-order tensor (or three-way array) has three modes (or indices or dimen-

sions). Many modern applications generate large amounts of data with multiple aspects and

high dimensionality for which tensors (i.e., multi-way arrays) provide a natural represen-

tation. These include text mining, clustering, Internet traff c, telecommunication records,

and large-scale social networks [41].

A tensor is a multi-way array or multi-dimensional matrix. The order of a tensor is the

number of dimensions, also known as ways or modes.

A formal def nition of a tensor follows: let I1, I2, ·, ·, ·, ·, INεN denote index upper bounds.

A tensor Y εRI1,I2,·,·,·,·,IN of order N is an N-way array where elements yi1,i2,·,·,·,·,iN are in-

dexed by in ε 1,2,·, ·, ·, ·,In for 1≤ n ≤ N .

Unfolding or matricization or f attening is a process of reordering the elements of an N th

order tensor into a matrix. There are various ways to order the f bers of tensors, therefore,

62

the unfolding process is not unique.

Higher-order tensor decompositions are frequently used in a variety of f elds including

psychometrics, image analysis, graph analysis, and signal processing. Two of the most

commonly used decompositions are the Tucker Decomposition and Parallel Factorization

(PARAFAC), which are often considered as higher order generalizations of the matrix SVD

or PCA.

The PARAFAC algorithms decompose a given tensor into a sum of multi-linear terms, in a

way analogous to the bilinear matrix decomposition. Unlike SVD, PARAFAC usually does

not impose any orthogonality constraints. A model which imposes nonnegativity on factor

matrices is called the NTF or Nonnegative PARAFAC [41].

Figure 5.1 illustrates one of the three ways of the basic 3D NTF1 model, which is an exten-

sion of the NTF model. The NTF1 model, given a three-way (third-order) tensor formed

by a set of matrices YqεR
I×Tq

+ (q = 1, 2, ·, ·, ·, ·, Q), formulates a set of nonnegative and

sparse matrices A εRI×J
+ , C εRQ×J

+ , and A XqεR
I×J
+ for q = 1, 2, ·, ·, ·, ·, Q with reduced

dimensions (J << I < Tq).

Global matrix representation using row-wise unfolding of the three-way array is shown in

Figure 5.1 and is expressed (error free model) as Yq = ADqXq. Thus, only the mixing

matrix A and the set of scaled source matrices Xq need to be found whereas due to scaling

ambiguity the matrix C does not need to be calculated explicitly [41].

There are several possible approaches to f nd or identify an extended NTF1 model such

as global strategy, or local strategy, or a combination of both. A global strategy based on

alternating minimization of cost function is shown in Equation 5.5.

DF (Y ‖AX) =
1

2
‖Y −AX‖2F (5.5)

A local strategy based on alternating minimization of cost function is shown in Equation

5.6.

DF (Yq‖AXq) =
1

2
‖Yq − AXq‖

2

F (q = 1, 2, ., ., ., ., ., Q) (5.6)

The local strategy (based on alternating minimization of cost function) has been applied

in this dissertation. The setup of simulations is discussed in the next section.

63

Figure 5.1: Decomposition into two matrices using row-wise unfolding [41]

5.4 Simulation Arrangement for Multi-metric Network Tomography

The experimental data was obtained from a test bed that consisted of six 3800 series Cisco

routers and four Cisco IPTV nodes as shown in Figure 5.2. Two types of traff c was uti-

lized in the test bed: a multimedia traff c through Cisco IPTV setup and Path Echo option

of Cisco CSLA. The Cisco IPTV source was connected to the router, BR4, and all the four

probes were also initialized from the same router. Routers TR1, TR2, and TR4 were the

recipients of the multimedia transmission from the cisco IP/TV and the four probes.

Figure 5.2: Testbed setup for multiple network tomography

64

5.4.1 Estimation of Link Delay from Path Delays

In this f rst part of the simulation, the link delays were estimated from path level delays

and then the correlation between the estimated and measured link delays was determined.

The Echopath option of the CSLA was implemented to send four probes and collect the

cumulative RTT from source to each hop. All probes were grouped together. All the

probes in the group start at the same time. The group of probes was repeated 100 times

with a time difference of 10 seconds between two consecutive repetitions. The selected

links were stressed with extended ping.

Figure 5.2 shows the test bed with the four probes and two of the links (Link 1 and Link 6)

were stressed with an extended ping of 200 Bytes. The condition of the network remained

unchanged during the CSLA operation.The data obtained from the CSLA is in the form

of accumulative hop-wise RTT. The following steps were followed to process the data to

obtain two matrices; a matrix of end-to-end delays and a matrix of link level delays.

Parsing software, written in Java as explained in Section 3.4.2, extracted link delays and

end to end (path) delays in the form of two matrices. From the accumulative RTT from

source to each hop, hop to hop delays were calculated to form the link delay matrix. From

the accumulative RTT from the source to the destination, end to end delay matrix was

determined. Path level delays (V) were input to NNMF. The MatLab tool NMFpack [40]

was used for NNMF factorization. The coeff cient of correlation between the estimated

link delay (H) and actual link delay (X) was determined by using a modif ed component

of EEGLAB.

For f nding the correlation coeff cient, matching rows in two matrices (H and X) were

found and their correlation was determined. As a result, a column vector of correlation

coeff cients between the best-correlating rows of matrices H and X was obtained.

Figure 5.3 shows the correlation between the estimated and true link delays.

5.4.2 Estimation of Link Delay from a Combination of Path Delays and Packet Loss
Rate (PLR)

In the second part of the simulation, it was desired to estimate link delays from a combi-

nation of path level delays and PLR data. The correlation between the estimated and the

measured link delays was measured again and it was expected that this correlation would

be better than the correlation shown in Figure 5.3. In the same test bed, two types of traff c

65

Figure 5.3: Correlation between the true link delay and the estimated link delay from a
single parameter; path delays

66

were injected; CSLA and Cisco IP/TV. A combination of the path level delay and PLR was

obtained. This data was used to recover link level delays by inputting this data to row wise

unfolding of NTF1 model with local strategy based on alternating minimization of the cost

function.

Quality of service (QoS) provides a better service to certain f ows over other f ows. This

is done by either raising the priority of a f ow or limiting the priority of another f ow. The

Cisco IP/TV traff c and the CSLA traff c were identif ed as the two traff c classes and the

Cisco IP/TV traff c class was provided preferential service over the CSLA traff c.

Two types of CSLA ping traff c were used in this experiment as explained below:

1. The Path Echo operations record statistics for each hop along the path that the op-

eration takes to reach its destination. The IP/ICMP Path Echo probe computes this

hop-by-hop response time between a Cisco router and any IP device on the network

by discovering the path using traceroute.

The UDP Plus operation is a superset of the UDP Echo operation. In addition to mea-

suring UDP round-trip time, the UDP Plus operation measures per-direction packet-

loss. Packet loss is a critical element in CSLAs. Packet loss is reported for how

many packets are lost, and in which direction (source to destination or destination

to source). A show command of CISCO IOS displays various parameters including

PacketLossSD and PacketLossDS, that are packet loss from source to destination and

destination to source packet loss, and these two parameters give values at each repeti-

tion of the show command. These two parameters (PacketLossSD and PacketLossDS)
were instrumental in determining PLR for this part of the simulation. The observed

PLR on multimedia traff c was in the range of 5 to 15 percent due the combination

of quality of service enforcement on two types of traff c (ping and multimedia) and

traff c disturbances from extended pings.

2. Cisco IP/TV multimedia traff c was sent from the source (BR4) to workstation con-

nected to TR4, TR2, and TR1, Figure 5.2. Cisco IP/TV servers use IP multicast to

optimize bandwidth for live and scheduled video, broadcasting a single, real-time

stream per program over the network, regardless of audience size.

Cisco IP/TV multicast application solves the scalability limitations of unicast. The primary

advantage of multicast over unicast is that it replicates the video stream closest to users

67

at the last possible point in the network, as opposed to unicast, which replicates a single

video stream for each user at the source. The video and ping traff c were classif ed into two

classes by using the QoS option of Cisco IOS.

Matrices of the end-to-end delays, and PLR were input to the modif ed components of NTF

MatLab toolbox to get the matrix of link delays. The matrix of the measured link delays

has already been estimated in Subsection 5.4.1. Figure 5.4 shows a correlation between the

estimated and true link delays. By comparing Figure 5.3 and Figure 5.4, it is evident that

Figure 5.4: Correlation between the true link delay and the estimated link delay from two
parameters; path delay and PLR

the estimation of the link delays by using the input of two matrices, the path delays and the

PLR is better than the estimation of the link delays from a single metric of the path delays.

5.5 Chapter Summary

In summary, this chapter introduced a novel concept of multiple metrics network tomogra-

phy. Link delays were estimated from path delays for the mono-metric network tomogra-

phy and from the multi metrics network tomography. The estimated link delays by using

multi metric (path delays and PLR)were better than the estimated link delays by using a

68

mono-metric of the path delays.

Chapter 6

Distributed Network Tomography

6.1 Introduction

All types of network tomography, active, passive, and technology identif cation, work in a

central manner. There is a single data repository, that is the node where network tomogra-

phy is being performed. This single node may be the node that sends unicast or multicast

in active tomography, or the node sensing the OD traff c matric from link measurements.

A single data repository brings its challenges such as susceptibility to redundancy, and

computation and communication complexities. These problems can be taken care of by

multiple data repositories in the form of a distributed system.

Coulouris [49] def nes a distributed system as a system in which hardware or software

components located at networked computers only pass messages to communicate and co-

ordinate their actions. The main features of a distributed system include [49, 50] functional

separation, reliability, scalability, and economy.

In general, the functional separation is based on the functionality/services provided, capa-

bility and purpose of each entity in the system, for example more than one node performing

network tomography at the same time and using even different methods of network tomog-

raphy.

Reliability is implemented by the long term data preservation and backup (replication) at

different locations. Scalability enables the addition of more calculating nodes to include

additional networks without affecting the performance of the existing networking infras-

tructure.

As a consequence of these features, the various entities (nodes performing tomography)

in a distributed system can operate concurrently and possibly autonomously. Estimation

of desired network parameters by means of network tomography can be carried out in-

dependently and the distributed results co-ordinated at well-def ned stages by exchanging

messages. Also, nodes performing tomography are heterogenous, and failures are indepen-

dent. There is no single tomographing-node that has the knowledge of the entire state of

69

70

the system, but the workload is divided and ref ned information is exchanged among the

tomographing-nodes.
The following is the rationale behind distributed network tomography [51, 52].

1. Network Scalability: One main challenge for network tomography systems is the fact

that probe packets are injected into the network. When the network is measured from

different end nodes the load on individual links can unintentionally become high.

Reusing the probe packets for sending application data according to the proposals in

[51] will reduce the overhead. However, in scenarios where an operator aims at pure

monitoring, the probe-packet overhead may still be an issue.

2. Node Scalability: Available capacity measurements as well as measurements of the

other time-stamp dependent parameters such as one-way delay require high precision

time stamps on sent and received probe packets. Increasing the number of simultane-

ous measurements escalates the risk of biased time stamps caused by probe packets

originating from the other nodes. Thus, parameter estimation results may be affected

by other concurrent measurement sessions even though they are not measuring the

same path.

3. Administration, control and usage: For all distributed systems the overhead in terms

of administration and control should be limited to reduce unnecessary network traf-

f c. This is especially true when designing network tomography systems where the

participating measurement nodes load the network not only with administrative traf-

f c but also with probe traff c. The traff c for administration, control and usage in

a network tomography system includes control traff c for scheduling measurements,

traff c for replicating and storing measurement data as well as the traff c generated

when a user is searching for specif c data. Further, the manual labor required to

administrate and manage a monitoring system must be kept to a minimum.

Network tomography has always considered operation centered at a single node, no mat-

ter what type of network tomography is applied. This introduces all the disadvantages of

centralized computing and takes away advantages of the distributed computing. This was

the research motivation behind the novel concept of the blind distributed network tomog-

raphy in this chapter. The rest of the chapter is organized as follows. Section 6.2 presents

related work. Section 6.3 explains the concept of distributed network tomography. Section

71

6.4 presents and discusses simulation results to show the successful implementation of the

distributed network tomography without a priori knowledge of the routing matrix. Section
6.5 presents a chapter summary.

6.2 Related Work

In [52] a self-organizing, decentralized, and scalable network tomography control system

is described with the claim that this system autonomously and continuously measures net-

work performance without central control. This system of network tomography is capable

of triggering active measurements. There is no central control system; rather, each node

is equipped with an autonomous management protocol that decides how to schedule mea-

surements with other nodes, how to treat joining and leaving the network as well as where

to store measurement results.

The network tomography system contains three types of node roles; bootstrap, master, and

slave. The master nodes are responsible for triggering measurements among selected peer

nodes, which can be either another master node or a slave node. The slave nodes participate

in measurements but cannot trigger new measurements. Each node is at a given point in

time either a master or a slave. The roles are periodically re-assessed.

For managing switching between master and slave roles, the master-to-slave ratio is a con-

f gurable system parameter. It is part of the control protocol and determines the probability

for a node to become a master or a slave when re-assessing its role. This property gives

the network operator a parameter for controlling how many concurrent measurements are

ongoing at a specif c point in time.

The f rst node in the system is called the bootstrap node. It has to be started manually by

the administrator of the system. The other nodes must be conf gured with both IP address

and port numbers of the bootstrap node. When a node joins, it receives a list of the other

participating nodes, and from this list the measurement peers can be selected.

The version of the network tomography system, presented in [52], uses distributed data

storage. In association with the measurement between two nodes, the results are stored at

both the master and the corresponding slave. To obtain measurement results, the operator

queries the node that is responsible for a specif c measurement. This storage scheme pro-

vides distributed and replicated storage.

In [52], a distributed system for selecting which paths to measure in large-scale networks

72

is also described. The method basically selects a set of nodes to perform measurements.

If the number of measurement nodes is large enough, the probability of covering enough

links for inferential analysis is shown to be high. A distributed data management system

utilizing distributed hash tables is also proposed.

The distributed system described in [52] is very complicated and needs a lot of communi-

cations overhead for learning the states of various types of nodes such as bootstrap, master,

and slave nodes. These different types of nodes require to communicate with each other for

changes in role and prioritization. For example, all the nodes need to contact a bootstrap

node to get registered with that bootstrap node. The framework presented in [52] uses a

distributed data management system that has its own communication requirements and is

communication and calculation intensive as it needs to run algorithms to deal with coding

and decoding of the hash tables.

As compared to the framework of distributed network tomography in [52], the proposed

mechanism in this chapter is simple and eff cient as there are no multiple types of nodes.

There is no requirement of frequent communication among nodes for coordination and the

computation intensity is effectively distributed as described in the following section.

6.3 Distributed Network Tomography Steps

To get the advantages of the distributed system, the following blind method for network

tomography is proposed that consists of three steps.

1. Tomography at multiple nodes: Independently, the tomography is performed at a

selected number of tomographing-nodes (N) in the network. Any kind of network

tomography (such as passive, active, and topology identif cation) can be performed

independently at these selected nodes. The sectional results consisting of the inferred

parameters that cover various segments (N) of the network are available for exchange

among tomographing-nodes.

2. Exchange of network tomographic data: As the selected nodes communicate through

a routing protocol, OSPF, the results of the distributed data repositories at these

N tomographing-nodes are mutually communicated by using a modif ed version of
OSFP updates with link-local signaling (LLS).

73

3. Aggregating results: After the mutual exchange, each tomographing-node appends
all the results received from the other contemporary tomographing-nodes to its own
results. At the end, each tomographing-node is aware of the net estimated statistics
for the entire network that was the objective of a distributed network tomography.

6.4 Simulation Results

On a relatively larger test bed, as described in the following subsection and Figure 6.1,

distributed network tomography was implemented. Network tomography was carried out

at four distinct locations on various portions of the test bed by using the blind network

tomography with NNMF that was introduced in Chapter 3. The test bed uses OSPF for its

routing operation. A modif ed OSPF with LLS was applied to enable OSPF to carry out

the exchange of estimated data obtained from distributed tomography.

Link delays were estimated at each of the four components from end to end (path) delays

at each of the four smaller portions of the large test bed.

The simulation process consists of the following steps.

1. The link delay matrices at four tomographing-nodes in the four section of the test
bed were estimated from the data obtained from the test bed by using the network

tomography technique described in Chapter 3.

2. The exchange of the estimated delaymatrices among the four selected nodes (tomographing-
nodes) were implemented in NS-2 by implementing the modif ed OSPF with LLS.

The next subsections describe the test bed used to generate the data for simulations and

implementation details of the above two simulation steps.

6.4.1 Description of Test Bed

The data for simulations was obtained from a test bed in the Advanced Internetworking

Laboratory (AIL) at Dalhousie University that consists of 3600 and 3800 series Cisco

routers. The test bed includes 24 routers as shown in Figure 6.1. The topology in Fig-

ure 6.1 is made of four identical sub topology blocks and the sub topology is shown in

Figure 6.2 to illustrate the details of the traff c and devices.

In Figure 6.2, the Path Echo option of the Cisco CSLA was implemented to send four

74

probes to collect the cumulative RTT from source to each hop. All probes were grouped

together. In each of the four subsections (Figure 6.2) of the test bed, all the four probes in

the group started at the same time and travel from right to left.

Figure 6.1: Test bed setup for distributed network tomography

6.4.2 Processing of Collected Data

The data obtained from the CSLA was in the form of accumulative hop-wise RTT; the

steps described in Subsection 3.5.2 were followed to process the data for obtaining two

75

Figure 6.2: Detail of a component of the Test bed Setup for distributed network tomography

matrices; a matrix of end-to-end (path) delays and a matrix of link level delays. To f nd

the correlation coeff cient, matching rows in two matrices (estimated and measured) were

found and their correlation was determined. As a result, a column vector of correlation

coeff cients between the best-correlating rows of matrices (estimated and measured) was

obtained.

6.4.3 Exchange of Data Among Tomographing-Nodes

The test bed operates on OSPF. The format of OSPF [RFC2328] packets does not sup-

port f exible data transfer. An example where such a technique could be used is exchanging

some capabilities on a link: standard OSPF utilizes the Options f eld in Hello and Exchange

packets such as in the case of the exchange of estimated network tomography data among

nodes performing network tomography, but there are not so many bits left in it. One po-

tential way of solving this problem could be introducing a new packet type. However, that

would mean introducing extra packets on the network, which may not be desirable. Thus,

this section describes (based on [RFC 4813] how to exchange data using existing standard

OSPF packet types.

The mechanism for implementing LLS is described below. To perform LLS, OSPF routers

add a special data block at the end of OSPF packets or right after the authentication data

block when cryptographic authentication is used. Like OSPF cryptographic authentication,

the length of the LLS block is not included into the length of the OSPF packet, but is in-

cluded in the IP packet length. Figure 6.3 illustrates how the LLS data block is attached.

The LLS data block may be attached to OSPF packets of two types – type 1 (OSPF Hello),

76

Figure 6.3: LLS data block in OSPF version 2 [RFC 4813]

and type 2 (OSPF Database Description (DBD)). The data included in the LLS block at-

tached to a Hello packet may be used for dynamic signaling, since Hello packets may be

sent at any moment in time. However, delivery of LLS data in Hello packets is not guaran-

teed. The data sent with DBD packets is guaranteed to be delivered as part of the adjacency

forming process. This option has been adopted for the simulation in this chapter.

Some key bits in the LLS packet structure are def ned below: Options f eld: A new bit,

called L (L stands for LLS), is introduced to the OSPF Options f eld (see Figure 6.4). The

value of the bit is 0x10. Routers set the L-bit in Hello and DBD packets to indicate that the

packet contains the LLS data block.

L-bit: this bit is set only in Hello and DBD packets. It is not set in OSPF Link State

Figure 6.4: OSPF version 2 options f eld [RFC4813]

Advertisements (LSAs) and may be used in them for different purposes.

77

LLS data block: the data block used for link-local signaling is formatted as described be-

low (see Figure 6.5 for illustration).

Checksum: the checksum f eld contains the standard IP checksum of the entire contents

Figure 6.5: Format of LLS Data Block [RFC4813]

of the LLS block.

LLS length: the 16-bit LLS data length f eld contains the length (in 32-bit words) of the

LLS block including the header and payload. Implementations should not use the Length

f eld in the IP packet header to determine the length of the LLS data block. All TLVs

(Type/Length/Value) must be 32-bit aligned (with padding if necessary).

LLS TLVs: The contents of the LLS data block is constructed using TLVs. See Figure 6.6

for the TLV format.

Figure 6.6: Format of LLS TLVs [RFC4813]

The Type f eld contains the TLV ID that is unique for each type of TLVs. The Length

f eld contains the length of the Value f eld (in bytes) that is variable and contains arbitrary

data. Note that TLVs are always padded to the 32-bit boundary, but padding bytes are not

78

included in the TLV Length f eld (though it is included in the LLS Data Length f eld of the

LLS block header).

Extended Options (EO)TLV: Bits in the Value f eld do not have any semantics from the

point of view of the LLS mechanism. This f eld may be used to announce some OSPF

capabilities that are link-specif c. Also, other OSPF extensions may allocate bits in the bit

vector to perform boolean link-local signaling. The length of the Value f eld in EO-TLV is

4 bytes. The value of the Type f eld in EO-TLV is 1. EO-TLV should only appear once in

the LLS data block.

Currently, [RFC4811] and [RFC4812] for LLS use bits in the Extended Options f eld of the

EO-TLV.

By default NS-2 does not include OSPF as one of the routing protocols. A protocol equiv-

alent of OSPF that is called Partial Link State implementation, and named as “rtProto”

protocol, is used in NS-2 as one of the routing protocols. Therefore the existing “rtProto”

protocols has been modif ed (as given in Appendix B) to include the packet formats de-

scribed in this section.

6.4.4 Interpretation of Results

Two categories of results are shown; one category of results shows the correlation between

the estimated link delay in all the four sections of the test bed and the second category of the

results show the correlation between the estimated and the actual link delays for the entire

test bed after the exchange of data among the four sections of the test bed. The results were

expected to show a strong correlation between the estimated and true link delays in both

cases.

Results from the Segments of the Test Bed:

The NNMF based blind network tomography method described in Chapter 3 was applied

on all the four segments. The correlation among the estimated and the measured link delays

is shown in Figure 6.6 to Figure 6.9 for segment 1 to segment 4 respectively.

Combined Results for the Entire Test Bed and Discussion on Results

Figure 6.11 shows the result for the entire test bed. Network tomography data from the

four segments was exchanged among tomographing-nodes as per Subsection 6.4.3. This

79

Figure 6.7: Correlation between H and X with extended pings for Segment 1 on the right
side

Figure 6.8: Correlation between H and X with extended pings for Segment 2 on the top

80

Figure 6.9: Correlation between H and X with extended pings for Segment 3 on the left
side

Figure 6.10: Correlation between H and Xwith extended pings for Segment 4 on the bottom

81

Figure 6.11: Correlation between H and X with extended pings for all segments combined

82

shows the correlation of the estimated and the true link delays for all the 24 links in the

system.

In these simulations, the link delays were estimated for the entire network, but with shorter

probes. If the link delays were to be estimated without distributed arrangements, a num-

ber of full length probes from a single tomographing-nodes to various destinations at the
other ends of the network would be required to cover all the links in the entire network.

This would increase traff c due to many probes with each probe covering more hops. Also,

when the network is measured from different end nodes in central network tomography the

load on individual links can unintentionally become high. Therefore, the number of probes

required to do the job of estimating link delays could have been much higher to cover all

the links in the entire network. Designing the probe paths and then ensuring the traversed

route to be the same as per the design of the probe would have been extremely challenging.

Whereas with the distributed scheme for carrying out network tomography, the number

and distance of each probe were reduced to fewer hops. Therefore, the total volume of

traff c for the four components of the localized traff c would be much less as compared to

the probing throughout the entire network. The processing was done on the quarter of the

data at each location simultaneously. The exchange of the estimated data from each quarter

was done with the modif ed routing protocol; OSPF by simulating “rtProto” protocol in the

NS-2 simulator.

Link delays were estimated for the whole test bed with the pings or probes of the smaller

length and localized nature, because each tomographing-node has to do processing on lim-
ited data by covering only a segment of the entire test bed.

6.5 Chapter Summary

This chapter introduced a new mechanism for implementing distributed network tomogra-

phy to ensures network and node scalability. This mechanism does not require any special

protocol for implementation, rather by implementing LLS implementation of OSPF, the

data exchange between the segments of a network was achieved. The link delays were esti-

mated from the four segments of a test bed and these estimations were exchanged by using

a variation of OSPF (LLS), and all the four tomographing-node had an overall estimate of
the links in the whole test bed.

Chapter 7

Conclusions and Future Work

This chapter summarizes the contributions of this dissertation and gives possible directions

for future work. Section 7.1 describes the summary of the contributions and Section 7.2

outlines the direction for future work.

7.1 Summary of Contributions

The research work in this dissertation makes four signif cant novel contributions to the

f eld of network tomography. These research contributions were focused on the blind tech-

niques for performing network tomography, the modeling of errors in network tomography,

improving estimates with multimetric-based network tomography, and distributed network

tomography. All of these four research problems, related to network tomography, were

solved by various blind techniques including NNMF, SCS, and NTF. These contributions

have been verif ed by processing the data obtained from laboratory experiments and by ex-

amining the correlation between the estimated and measured link delays.

The f rst contribution presented the application of a blind sparse matrix-based technique

to eliminate the unrealistic assumption of a known routing matrix in network tomography.

The objective was to get an appropriate method for the inverse problem solution where

the routing matrix was accommodated by the statistical ability of such methods as NNMF.

NNMF (with the feature of sparsity) was used to factorize a matrix into two factors (ma-

trices); link delays were estimated as a result. The path delay and the link delays were

obtained from the data from a laboratory experiment. The path delays were used as an

input to NNMF to estimate link delays. The estimated link delays were correlated with the

measure link delays and the correlation was observed as close to 1.

The second contribution, a modif ed version of SCS was applied to denoise the network

tomography model with errors by using NNMF in place of ICA. It was presumed that the

errors in the measurement of various parameters for network tomography were introduced

by various factors such as SNMP and NetFlow measurements. The estimated error free

83

84

link delays were compared with the original (error free) link delays based on the data ob-

tained from a laboratory test bed. The simulation results revealed that the denoising of the

tomography data had been carried out successfully by applying SCS.

The third contribution introduced a novel concept of multiple metric network tomography

in contrast to the conventional network tomography where only one directly measured pa-

rameter is considered for the indirect estimation of another single parameter. By using two

directly observed parameters (PLR and path delays), a single parameter (link delays) was

inferred indirectly. Based on the evidence from literature that there is a correlation between

link delays and PLR parameters, PLR and path delays were directly measured to estimate

link delays indirectly. A variation of the non NTF, NTF1 model was applied for this pur-

pose to estimate link delays from a duplex of metrics; PLR and path delays. Simulation

results showed a better correlation between the estimated and measured link delays when

a duplex of metrics was used as compared to using only the path level link delays for esti-

mating the link delays on a test bed.

The fourth contribution introduced a novel technique for implementing distributed net-

work tomography. In conventional tomography research, network tomography processing

is carried out by a single node in a centralized manner. A distributed system of network

tomography estimation was proposed where more than one node was responsible to carry

out network tomography on a distributed pattern. The estimated parameters (link delays)

were exchanged among multiple data repositories by implementing an LLS capable version

of OSPF in the NS-2 network simulator. This gives the benef ts of distributed computing

and avoids the disadvantages of centralized computing. The simulation results verif ed

that the link delays from various sections of a test bed were estimated by the respective

tomographing-nodes; these estimations were exchanged among the tomographing-nodes,
and f nally these sectional estimations were appended at each tomographing-node to get
the link delays of all the links in the entire test bed.

7.2 Future Research Directions

This section presents a summary of the research directions that will be pursued in the near

future as a continuation of the research contributions in this dissertation. The following are

a few potential research directions:

85

• Topology identif cation has been mentioned as the third type of network tomogra-

phy but technically it is a subset of active network tomography. As a by-product of

the NNMF-based tomography (the f rst contribution of this dissertation), the routing

matrix is obtained along with the link delay matrix as one of the two estimated matri-

ces. It would be interesting to investigate how to ref ne this estimation of the routing

matrix with appropriate signal processing and statistical techniques. The estimated

routing matrix by NNMF is in fractions as compared to the original routing table

where entries are in the form of 1’s and 0’s. Therefore, statistical techniques will be

explored to convert the estimated fraction from NNMF to 1’s and 0’s.

• Error modeling has been covered by this dissertation in a unif ed manner by con-

sidering all the errors under one heading, but these errors can also be categorized

separately and separate models can be created to represent them. Then both kinds (a

single model representing all errors and specif ed models for various types of errors)

can be compared for optimized performance levels. Also, more types of errors other

than WGN can be inducted and if needed different models can be devised for deal-

ing with these errors. Finally, the effectiveness of the error removal capability of the

proposed models can be tested for various types of errors.

• The contributions of this dissertation were tested for active tomography; as a future

extension, these contributions can be implemented by using the data obtained from

passive network tomography.

• This dissertation has tested the developed techniques on the data obtained from the

laboratory test beds. For obvious reasons, the sizes of these test beds were limited;

therefore it would be interesting to implement the techniques presented in this disser-

tations on the data obtained from some real life networks. This would require more

work while parsing the data and some eff cient bulk data management and storing

techniques will have to be explored.

• One of the many ways to categorize network tomography is how the active network

tomography is being implemented; namely in single source and multiple sources ac-

tive networks. This dissertation deals with the single source active network tomogra-

phy only. It is promising to consider multiple source active network tomography to

86

implement the techniques presented in this dissertation. This future work will need

to develop a framework to cover issues such as how to utilize the data from multiple

sources, whether for verif cation or for unif cation. If the purpose of the framework is

unif cation then some kinds of data integration protocols might need to be designed.

Implementing and dealing with the multiple sources sending multiple probes to per-

haps a single destination would be another challenge. Examining and f ltering the

data to f nd out the ways to ref ne the data is another future research challenge.

• Multi-metric tomography in the context of the error model of network tomography

can be investigated by using some mathematical models that are capable of denoising

an estimated matrix in a multi-metric environment, for example, an NTF model with

denoising capability.

Bibliography

[1] M. Raza, B. Robertson, W. Phillips and J. Ilow, “Network calculus based modeling of
anomaly,” in Proc. IEEE SPECTS, Jul. 2010, pp. 323-336.

[2] R. Castro, M. Coates, G. Liang, R. Nowak and B. Yu, “Network tomography: recent
developments,” J. Statistical Science, vol. 19, pp. 499-517, 2004.

[3] R. Castro, M. Coates, G. Liang, R. Nowak and B. Yu, “Internet Tomography,” IEEE
Signal Processing Magazine, vol. 19, pp. 45-65, 2002.

[4] E. Lawrence, G. Michailidis, V. Nair and B. Xi, “Network tomography: a review and
recent developments,” J. Ann Arbor, vol. 1001, pp. 1087-1107, 2006.

[5] M. Slaney and A. Kak. Principles of computerized tomographic imaging. IEEE Press,
1988.

[6] H. Nguyen and P. Thiran, “Active measurement for multiple link failures diagnosis in
IP networks,” J. Passive and Active Network Measurement, pp. 185-194, 2004.

[7] Y. Vardi, “Network tomography: estimating source-destination traff c intensities from
link data,” J. of the American Statistical Association, vol. 91, pp. 365-377, 1996.

[8] M. Rabbat, R. Nowak and M. Coates, “Multiple source, multiple destination network
tomography,” in Proc. IEEE INFOCOM, 2004, vol. 3, pp. 1628-1639.

[9] Y. Zhang, Z. Ge, Z, A. Greenberg and M. Roughan, “Network anomography,” in Proc.
ACM/USENIX IMC, 2005.

[10] S. Moon, J. Kurose, P. Skelly and D. Towsley, “Correlation of packet delay and loss
in the Internet,”, Univ. Massachusetts, Amherst, MA, Tech. Rep. 1998.

[11] A. Benveniste, M. Goursat and G. Ruget, “Robust identif cation of a nonminimum
phase system: blind adjustment of a linear equalizer in data communications,” IEEE
Trans. Automatic Control, vol. 25, pp. 385-399, 2002.

[12] D. Godard, “Self-recovering equalization and carrier tracking in two-dimensional data
communication systems,” IEEE Trans. Commun., vol. 28, pp. 1867-1875, 2002.

[13] F. Alayyan, R. Shubair, A. Zoubir and Y. Leung,“Blind channel identif cation and
equalisation in OFDM using subspace-based methods,” J. commun., vol. 4, pp. 472-
484, 2009.

[14] E. Moulines, P. Duhamel, J. Cardoso and S. Mayrargue, “Subspace methods for the
blind identif cation of multichannel FIR f lters,” IEEE Trans. Signal Processing, vol.
43, pp. 516-525, 2002. .

87

88

[15] M. Raza, B. Robertson, W. Phillips and J. Ilow, “Network tomography by non nega-
tive matrix factorization (NNMF),” in Proc. IEEE SPECTS, Jul. 2010, pp. 58-64.

[16] M. Raza, B. Robertson, W. Phillips and J. Ilow, “Denoising network tomography
estimation,” in Proc. IEEE DCNET, Jul. 2010.

[17] M. Raza, B. Robertson, W. Phillips and J. Ilow, “Error modeling in network tomog-
raphy by sparse code shrinkage (SCS) method,” in Proc. IEEE Globecom, Dec. 2010.
.

[18] M. Raza, B. Robertson, W. Phillips and J. Ilow, “Multimetric network tomography,”
in Proc. IEEE DCNET, Jul. 2010.

[19] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya and C. Diot, “Traff c matrix
estimation: existing techniques and new directions,” ACM SIGCOMM CCR, vol. 32,
pp. 161-174, 2002.

[20] Y. Zhang, M. Roughan, N. Duff eld and A. Greenberg, “Fast accurate computation of
large-scale IP traff c matrices from link loads,” ACM SIGMETRICS PER, vol. 31, pp.
206-217, 2003.

[21] M. Coates, R. Castro, R. Nowak, M. Gadhiok, R. King and Y. Tsang, “Maximum
likelihood network topology identif cation from edge-based unicast measurements,”
ACM SIGMETRICS PER, vol. 30, pp. 11-20, 2002.

[22] M. Coates and R. Nowak, “Network tomography for internal delay estimation,” in
Proc. ICASSP, 2001, vol. 6, pp. 3409-3412.

[23] V. Padmanabhan, L. Qiu and H. Wang, “Passive network tomography using bayesian
inference,” in Proc. ACM SIGCOMM, 2002, pp. 93-94.

[24] C. Tebaldi andM.West, “Bayesian inference on network traff c using link count data,”
J. American Statistical Association, vol. 93, pp. 557-573, 1998.

[25] Y. Zhang, M. Roughan, G. Lund and D. Donoho, “An information-theoretic approach
to traff c matrix estimation,” in Proc. ATACCC, 2003, pp. 301-312.

[26] R. Caceres, N. Duff eld, J. Horowitz, D. Towlsey and T. Bu, “Multicast-based infer-
ence of network-internal characteristics: accuracy of packet loss estimation,” in Proc.
IEEE INFOCOM, 1999, vol. 1, pp. 371-379.

[27] G. Liang, and B. Yu, “Maximum pseudo likelihood estimation in network tomogra-
phy,” IEEE Trans. Signal Processing, vol. 51, pp. 2043-2053, 2003.

[28] N. Duff eld, F. Presti and D. Towsley, “Multicast-based inference of network-internal
delay distributions,” IEEE/ACM Trans. Networking, vol. 10, pp. 761-775, 2002.

[29] Y. Tsang, M. Coates and R. Nowak, “Network delay tomography,” IEEE Trans. Signal
Processing, vol. 51, pp. 2125-2136, 2003.

89

[30] M. Shih and A. Hero, “Unicast-based inference of network link delay distributions
with f nite mixture models,” IEEE Trans. Signal Processing, vol. 51, no. 51, pp. 2219-
2228, 2003.

[31] N. Duff eld, J. Horowitz, F. Presti and D. Towsley, “Multicast topology inference from
end-to-end measurements,” J. Advances in Performance Analysis, vol. 3, pp. 207-226,
2000.

[32] J. Cao, D. Davis, S. Wiel, and B. Yu. J. Cao, D. Davis, S. Wiel and B. Yu, “Time-
varying network tomography: router link data,” J. American Statistical Association,
vol. 95, no. 452, pp. 1063-1075, 2000 .

[33] E. Lawrence, G.Michailidis, and V. Nair, “Maximum likelihood estimation of internal
network link delay distributions using multicast measurements,” in Proc. CISS, Mar.
2003, pp. 330-336. .

[34] P. McCullagh and J. Nelder. Generalized linear models. Chapman &Hall/CRC, 1989.

[35] M. Coates, and R. Nowak, “Sequential Monte Carlo inference of internal delays in-
nonstationary data networks,” IEEE Trans. on Signal Processing, vol. 50, no. 2, pp.
366-376, 2002.

[36] D.Moore, C. Shannon, D. Brown, G. Voelker and S. Savage, “Cooperative association
for Internet data analysis,” Physical Review Letters, vol. 87, no. 25, 2008.

[37] N. Duff eld, J. Horowitz, F. Presti and D. Towsley, “Network delay tomography from
end-to-end unicast measurements,” Lecture Notes in Computer Science, pp. 576-595,
2001.

[38] B. Ratner. Statistical modeling and analysis for database marketing: effective tech-
niques for mining big data. CRC Press, 2003.

[39] E. Oja, A. Hyvarinen, and J. Karhunen. Independent Component Analysis, JohnWiley
& Sons, 2001.

[40] P. Hoyer, “Non-negative matrix factorization with sparseness constraints,” J. Machine
Learning Research, vol. 5, pp. 1457-1469, 2004.

[41] A. Cichocki, R. Zdunek, A. Phan, and S. Amari. Nonnegative Matrix and Tensor Fac-
torizations: Applications to Exploratory Multi-way Data Analysis and Blind Source
Separation. Wiley, 2009.

[42] A. Delorme and S. Makeig, “EEGLAB: an open source toolbox for analysis of single-
trial EEG dynamics including independent component analysis,” J. Neuroscience
Methods, vol. 134, no. 1, pp. 9-21, 2004.

[43] A. Clemm. NetFlow Services Solutions Guide, Cisco Press, 2006.

[44] A. Clemm. Network Management Fundamentals, Cisco Press, 2006.

90

[45] M. Nagaraja, R. Chittal and K. Kumar, “Study of network performance monitoring
tools-SNMP,” IJCSNS vol. 7, no.7, pp. 310-314, Jul. 2007.

[46] Q. Zhao, Z. Ge, J. Wang and J. Xu, “Robust traff c matrix estimation with imperfect
information: making use of multiple data sources,” ACM SIGMETRICS PER, vol. 34,
no. 1, pp. 133-144, 2006.

[47] A. Rinen, “Sparse code shrinkage: denoising of nongaussian data by maximum like-
lihood estimation,” J. Neural Computation, vol. 11, no. 7, pp. 1739-1768, 1999.

[48] S. Bhamidi, R. Rajagopal and S. Roch, “Network delay inference from additive met-
rics,” J. Random Structures Algorithms, vol. 37, no. 2, 2006.

[49] J. Dollimore, T. Kindberg, and G. Coulouris. Distributed Systems: concepts and
design, Addison Wesley, May, 2005.

[50] A. Tanenbaum and M. Van Steen. Distributed Systems: Principles and Paradigms.
Pearson Prentice Hall, 2007.

[51] P. Papageorge, J. McCann and M. Hicks, “Passive aggressive measurement with
MGRP,” ACM SIGCOMM CCR, vol. 39, no. 4, pp. 279-290, 2009.

[52] R. Hoque, A. Johnsson, C. Flinta, M. Bjrkman and S. Ekelin, “A self-organizing
scalable network tomography control protocol for active measurement methods,” in
Proc. SPECTS, Jul. 2010, pp. 80-87.

Appendix A

Non Negative Matrix Factorization (NNMF)

In this dissertation, the following adaptation of NNMF is implemented to meet sparsity

requirements. The explanation of the algorithmic steps is presented below:

1. User def nes the dimensions of matrices V (for example; 6 × 100 in Chapter 3 of

this dissertation), W (for example; 6 × 10 in Chapter 3 of this dissertation), H (for

example; 10 × 100 in Chapter 3 of this dissertation), and the value of the system

components r (for example; 10 in Chapter 3 of this dissertation)

2. InitializeW ,H to random positive matrices

3. Cost Function: The cost function applied was based on divergence,

D(A‖B) =
∑

ij

(Aij log
CAij

Bij

− Aij + Bij) (A.1)

A cost function is used for the formulation of the NNMF optimization problem to

minimize D(V ‖WH) with respect to W and H , subject to the constraintsW , H ≥

0.

4. Update Rule: For this cost function, there are rules for updating W and H after

selecting initial values of W and H . At each iteration W and H are multiplied and

D(V ‖WH) is calculated. The values of W and H are updated until D(V ‖WH)

reaches a minimum threshold. At this moment, the values ofW and H represent the

f nal estimate.

A projected gradient descent algorithm for NNMF with sparseness constraints takes

a step in the direction of the negative gradient, and subsequently projects onto the

constraint space, making sure that the taken step is small enough that the objective

function is reduced at every step.

In the following algorithm,⊗ and� denote element-wisemultiplication and division,

respectively. Moreover, µw and µH are small positive constants (step-sizes).

91

92

Algorithm 1 NNMF with sparsity constraint based on a sparse-parameter
1: Step # 1: InitializeW , H to random positive matrices
2: Step # 2: If constraints apply to W or H or both, project each column or row respectively to have

unchanged L2 norm and desired L1 norm
3: Step # 3: If sparseness constraints onH apply, then project each row of H to be non-negative, have unit

L2 norm, and L1 norm set to achieve desired sparse-parameter
4: for Iterate do
5: if sparseness constraints onW apply then
6: W := W − µw(WH −A)HT

7: Project each column of W to be non-negative, have unchangedL2 norm, but L1 norm set to achieve
desired sparseness

8: else
9: take standard multiplicative stepW := W ⊗ (V HT)� (WHHT)

10: end if
11: if sparseness constraints onH apply then
12: H := H − µHWT (WH −A)

13: Project each row of H to be non-negative, have unit L2 norm, and L1 norm set to achieve desired

sparse-parameter
14: else
15: take standard multiplicative stepH := H ⊗ (WTV)� (WTWH)

16: end if
17: end for

5. Sparsity Parameter: The main strength of the above algorithm is the projection op-

erator which enforces the desired degree of sparseness. This parameter is described

in detail in the following part of this appendix. Sparsity for the routing matrix (repre-

sented byW in the following algorithm) is imposed on each row indicating that each

probe going through a few nodes.

Sparsity for the link delay matrix (represented by H in the following algorithm) is

imposed on each column indicating the simultaneous bottlenecks causing the delay

and x is a row vector ofH used in NNMF. The sparsity for link delays is imposed by

the following function that indicates that we can control a vectors sparsity by manip-

ulating its L1 and L2 norms by using the following function [40],

sparsness(x) =

√
(T)− ‖x‖1

‖x‖2√
(T)− 1

, (A.2)

93

where T is the dimensionality of x.

Many of the steps in the above algorithm require a projection operator which enforces

sparseness by explicitly setting bothL1 and L2 norms (and enforcing non-negativity).

This operator is def ned as follows.

Given any vector x, f nd the closest non-negative vector s with a given L1 norm and

a given L2 norm.

Algorithm 2 Sparsity with a given L1 norm and a given L2 norm
1: Step # 1: Set si := xi + (L1 −

∑
xi)/dim(X)

2: Step # 2: Set Z := { }

3: Step # 3: Iterate

• Setmi := L1/(dim(X)− size(Z)) if i is not member of Z and 0 if i is member of Z

• Set s := m + α(s −m), where α ≥ 0 is selected such that the resulting s satisf es the L2 norm

constraint. This requires solving a quadratic equation.

• If all components of s are non-negative, return s, end

• Set Z := Z
⋃
{i; si < 0}

• Set si := 0

• Calculate c := (
∑

xi − L1)/(dim(X)− size(Z))

• Set si := si − c

• Repeat the steps under iterate

The above algorithm works as follows: We start by projecting the given vector onto

the hyperplane
∑

xi = L1. Next, within this space, we project to the closest point on

the joint constraint hypersphere (intersection of the sum and the L2 constraints). This

is done by moving radially outward from the center of the sphere (the center is given

by the point where all components have equal values). If the result is completely non-

negative, we have arrived at our destination. If not, those components that attained

negative values must be f xed at zero, and a new point found in a similar fashion

under those additional constraints.

Appendix B

OSPF Link-local Signaling Implementation in NS-2.34

Open Shortest Path First (OSPF), an intra-domain routing protocol, is implemented in NS-

2.34. OSPF packet is not f exible enough to enable applications exchanging data for sit-

uations such as link-local signaling. RFC 4813 proposes Link-Local Signaling (LLS) by

adding a special data block at the end of the OSPF packet. NS-2.34 does not include the

OSPF as it only provides the partial Link state implementation in rtProto protocol. There-

fore, the existing rtProto protocol has been modif ed to include the header of OSPF by

adding the data f eld along with other f elds as mentioned in the RFC 4813 and RFC 5613,

and as described in Section 6.4.3 of this dissertation. A scenario with four tomographing-
nodes has been simulated as per Figure 6.1 to exchanging data using modif ed OSPF by

adding a data block.

The programs used in this dissertation are modif ed versions of the following NS-2.34

source f les to incorporate the OSPF-LLS.

• Common/packet.h

• hdr-ls.h

• rtProtoLS.cc

• rtProtoLS.h

• tcl/lib/ns-default.tcl

In the following subsections, listing of these program (used in this dissertation) is provided,

with the Section B.1 showing additional data structure used in this dissertation and Section

B.6 describes the procedure to run the program.

B.1 Common/packet.h

Incorporated rtProtoLS header NS-2.34, specially adding following code in common/packet.h

94

95

#ifdef NSLS

#define PT_RTPROTO_LS 18

"rtProtoDV", "CtrMcast_Encap", "CtrMcast_Decap", "SRM" ,

"ntype" , "rtProtoLS"

#endif /* ifdef NSLS */

#ifndef NSLS

#define PT_NAMES "tcp", "telnet", "cbr", "audio", "video", "ack",

"start", "stop", "prune", "graft", "message", "rtcp", "rtp",

#endif /* ifndef NSLS */

B.2 hdr-ls.h

struct hdr_LS {

// metrics variable identifier

u_int32_t mv_;

int msgId_;

// Adding new private variable for data

int data_;

u_int32_t& metricsVar() { return mv_; }

int& msgId() { return msgId_; }

// Property function for setting and retriving data value

int& dataValue() { return data_; }

// Header access methods required by PacketHeaderManager

static int offset_;

inline static int& offset() { return offset_; }

inline static hdr_LS* access(const Packet* p) {

return (hdr_LS*) p->access(offset_);

}

};

96

B.3 rtProtoLS.cc

void rtProtoLS::sendpkt(ns_addr_t dst, u_int32_t mtvar,

u_int32_t size, int data)

{

dst_ = dst;

size_ = size;

Packet* p = Agent::allocpkt();

hdr_LS *rh = hdr_LS::access(p);

rh->metricsVar() = mtvar;

rh->dataValue() = data;

target_->recv(p);

}

void rtProtoLS::recv(Packet* p, Handler*)

{

hdr_LS* rh = hdr_LS::access(p);

hdr_ip* ih = hdr_ip::access(p);

// -- LS stuffs --

if (LS_ready_ || (rh->metricsVar() == LS_BIG_NUMBER))

receiveMessage(findPeerNodeId(ih->src()), rh->msgId());

else

Tcl::instance().evalf("%s recv-update %d %d", name(),

ih->saddr(), rh->metricsVar());

// is the value which is being sent via send()

rh->dataValue();

Packet::free(p);

}

B.4 rtProtoLS.h

Modif ed sendpkt function prototype

void sendpkt(ns_addr_t dst, u_int32_t z,

97

u_int32_t mtvar, int data);

B.5 tcl/lib/ns-default.tcl

Add following lines in tcl/lib/ns-default.tcl

Agent/rtProto/LS set preference_ 120

Agent/rtProto/LS set INFINITY [Agent set ttl_]

Agent/rtProto/LS set advertInterval 2

B.6 procedure

Replace the DV to LS in tcl/ex/simple-eqp1.tcl f le so to use rtProto/LS Agent. Copy the

attached hdr-ls.h, rtProtoLS.cc, rtProtoLS.h in linkstate folder in NS-2.34. Recompile NS

to include the changes in above source f les by writing ’make’ in NS folder. It will compile

the whole NS and object f les of the modif ed source f les will be created. Now, OPSF-LLS

can be used to exchange arbitrary data

B.7 Complete source f les including the modif ed/added functions

B.7.1 rtProtoLS.cc

#include "config.h"

#ifdef HAVE_STL

#include "hdr-ls.h"

#include "rtProtoLS.h"

#include "agent.h"

#include "string.h" // for strtok

// Helper classes

class LsTokenList : public LsList<char *> {

public:

LsTokenList (char * str, const char * delim)

: LsList<char*> () {

for (char * token = strtok (str, delim);

98

token != NULL; token = strtok(NULL, delim)) {

push_back (token);

}

}

};

class LsIntList : public LsList<int> {

public:

LsIntList (const char * str, const char * delim)

: LsList<int> () {

for (char * token = strtok ((char *)str, delim);

token != NULL; token = strtok(NULL, delim)) {

push_back (atoi(token));

}

}

};

static class rtProtoLSclass : public TclClass {

public:

rtProtoLSclass() : TclClass("Agent/rtProto/LS") {}

TclObject* create(int, const char*const*) {

return (new rtProtoLS);

}

} class_rtProtoLS;

int rtProtoLS::command(int argc, const char*const* argv)

{

if (strcmp(argv[1], "send-update") == 0) {

ns_addr_t dst;

dst.addr_ = atoi(argv[2]);

dst.port_ = atoi(argv[3]);

u_int32_t mtvar = atoi(argv[4]);

u_int32_t size = atoi(argv[5]);

99

// Getting data value from the argument list

sendpkt(dst, mtvar, size, atoi(argv[6]));

return TCL_OK;

}

/* --------------- LS specific --------------- */

if (strcmp(argv[1], "lookup") == 0) {

if (argc == 3) {

int dst = atoi(argv[2]);

lookup (dst);

/* use tcl.resultf () to return the lookup results */

return TCL_OK;

}

}

if (strcmp(argv[1], "initialize") == 0) {

initialize ();

return TCL_OK;

}

if (strcmp(argv[1], "setDelay") == 0) {

if (argc == 4) {

int nbrId = atoi(argv[2]);

double delay = strtod (argv[3], NULL);

setDelay(nbrId, delay);

return TCL_OK;

}

}

if (strcmp(argv[1], "setNodeNumber") == 0) {

if (argc == 3) {

int number_of_nodes = atoi(argv[2]);

LsMessageCenter::instance().setNodeNumber(number_of_nodes);

}

return TCL_OK;

}

if (strcmp(argv[1], "computeRoutes") == 0) {

computeRoutes();

100

return TCL_OK;

}

if (strcmp(argv[1], "intfChanged") == 0) {

intfChanged();

return TCL_OK;

}

if (strcmp (argv[1], "send-buffered-messages") == 0) {

sendBufferedMessages();

return TCL_OK;

}

if (strcmp(argv[1], "sendUpdates") == 0) {

sendUpdates ();

return TCL_OK;

}

return Agent::command(argc, argv);

}

void rtProtoLS::sendpkt(ns_addr_t dst, u_int32_t mtvar,

u_int32_t size, int data)

{

dst_ = dst;

size_ = size;

Packet* p = Agent::allocpkt();

hdr_LS *rh = hdr_LS::access(p);

rh->metricsVar() = mtvar;

rh->dataValue() = data; // Adding data to the packet

target_->recv(p);

}

void rtProtoLS::recv(Packet* p, Handler*)

{

hdr_LS* rh = hdr_LS::access(p);

hdr_ip* ih = hdr_ip::access(p);

101

// -- LS stuffs --

if (LS_ready_ || (rh->metricsVar() == LS_BIG_NUMBER))

receiveMessage(findPeerNodeId(ih->src()), rh->msgId());

else

Tcl::instance().evalf("%s recv-update %d %d", name(),

ih->saddr(), rh->metricsVar());

// rh->dataValue() is the value which is being sent via send()

Packet::free(p);

}

/* LS specific */

// implement tcl cmd’s

/* -- findPeerNodeId -- */

int rtProtoLS::findPeerNodeId (ns_addr_t agentAddr)

{

// because the agentAddr is the value, not the key of the map

for (PeerAddrMap::iterator itr = peerAddrMap_.begin();

itr != peerAddrMap_.end(); itr++) {

if ((*itr).second.isEqual (agentAddr)) {

return (*itr).first;

}

}

return LS_INVALID_NODE_ID;

}

void rtProtoLS::initialize() // init nodeState_ and routing_

{

Tcl & tcl = Tcl::instance();

// call tcl get-node-id, atoi, set nodeId

tcl.evalf("%s get-node-id", name());

const char * resultString = tcl.result();

nodeId_ = atoi(resultString);

102

// call tcl get-peers, strtok, set peerAddrMap, peerIdList;

tcl.evalf("%s get-peers", name());

resultString = tcl.result();

int nodeId, neighborId;

ns_addr_t peer;

ls_status_t status;

int cost;

// Tcl MUST return pairs of numbers

for (LsIntList intList(resultString, " \t\n");

!intList.empty();) {

nodeId = intList.front();

intList.pop_front();

// Agent.addr_

peer.addr_ = intList.front();

intList.pop_front();

peer.port_ = intList.front();

intList.pop_front();

peerAddrMap_.insert(nodeId, peer);

peerIdList_.push_back(nodeId);

}

// call tcl get-links-status, strtok, set linkStateList;

tcl.evalf("%s get-links-status", name());

resultString = tcl.result();

// cout << "get-links-status:\t" << resultString <<endl;

//Tcl MUST return triplets of numbers

for (LsIntList intList2(resultString, " \t\n");

!intList2.empty();) {

neighborId = intList2.front();

intList2.pop_front();

status = (ls_status_t) intList2.front();

103

intList2.pop_front();

cost = (int) intList2.front();

intList2.pop_front();

linkStateList_.push_back(LsLinkState(neighborId,status,cost));

}

// call tcl get-delay-estimates

tcl.evalf ("%s get-delay-estimates", name());

// call routing.init(this); and computeRoutes

routing_.init(this);

routing_.computeRoutes();

// debug

tcl.evalf("%s set LS_ready", name());

const char* token = strtok((char *)tcl.result(), " \t\n");

if (token == NULL)

LS_ready_ = 0;

else

LS_ready_ = atoi(token); // buggy

}

void rtProtoLS::intfChanged ()

{

Tcl & tcl = Tcl::instance();

// call tcl get-links-status, strtok, set linkStateList;

tcl.evalf("%s get-links-status", name());

const char * resultString = tcl.result();

// destroy the old link states

linkStateList_.eraseAll();

// tcl MUST return triplets of numbers

for (LsIntList intList2(resultString, " \t\n");

104

!intList2.empty();) {

int neighborId = intList2.front();

intList2.pop_front();

ls_status_t status = (ls_status_t) intList2.front();

intList2.pop_front();

int cost = (int) intList2.front();

intList2.pop_front();

// LsLinkState ls;

// ls.init(neighborId, status, cost);

linkStateList_.push_back(LsLinkState(neighborId,status,cost));

}

// call routing_’s LinkStateChanged()

// for now, don’t compute routes yet (?)

routing_.linkStateChanged();

}

void rtProtoLS::lookup(int destId)

{

// Call routing_’s lookup

LsEqualPaths* EPptr = routing_.lookup(destId);

// then use tcl.resultf() to return the results

if (EPptr == NULL) {

Tcl::instance().resultf("%s", "");

return;

}

char resultBuf[64]; // XXX buggy;

sprintf(resultBuf, "%d" , EPptr->cost);

char tmpBuf[16]; // XXX

for (LsNodeIdList::iterator itr = (EPptr->nextHopList).begin();

itr != (EPptr->nextHopList).end(); itr++) {

sprintf(tmpBuf, " %d", (*itr));

strcat (resultBuf, tmpBuf); // strcat (dest, src);

105

}

Tcl::instance().resultf("%s", resultBuf);

}

void rtProtoLS::receiveMessage(int sender, u_int32_t msgId)

{

if (routing_.receiveMessage(sender, msgId))

installRoutes();

}

// Implementing LsNode interface

bool rtProtoLS::sendMessage(int destId, u_int32_t messageId,

int size)

{

ns_addr_t* agentAddrPtr = peerAddrMap_.findPtr(destId);

if (agentAddrPtr == NULL)

return false;

dst_ = *agentAddrPtr;

size_ = size;

Packet* p = Agent::allocpkt();

hdr_LS *rh = hdr_LS::access(p);

rh->msgId() = messageId;

rh->metricsVar() = LS_BIG_NUMBER;

target_->recv(p);

// sendpkt(*agentAddrPtr , messageId, size);

return true;

}

#endif // HAVE_STL

B.7.2 hdr-ls.h

#ifndef ns_ls_hdr_h

#define ns_ls_hdr_h

#include "config.h"

106

#include "packet.h"

struct hdr_LS {

// metrics variable identifier

u_int32_t mv_;

int msgId_;

// Adding new private variable for data

int data_;

u_int32_t& metricsVar() { return mv_; }

int& msgId() { return msgId_; }

// Property function for setting and retrieving data value

int& dataValue() { return data_; }

// Header access methods required by PacketHeaderManager

static int offset_;

inline static int& offset() { return offset_; }

inline static hdr_LS* access(const Packet* p) {

return (hdr_LS*) p->access(offset_);

}

};

B.7.3 rtProtoLS.h

#ifndef ns_rtprotols_h

#define ns_rtprotols_h

#include "packet.h"

#include "agent.h"

#include "ip.h"

#include "ls.h"

#include "hdr-ls.h"

extern LsMessageCenter messageCenter;

107

class rtProtoLS : public Agent , public LsNode {

public:

rtProtoLS() : Agent(PT_RTPROTO_LS) {

LS_ready_ = 0;

}

int command(int argc, const char*const* argv);

void sendpkt(ns_addr_t dst, u_int32_t z, u_int32_t mtvar,

int data);

void recv(Packet* p, Handler*);

protected:

// init nodeState_ and routing_

void initialize();

void setDelay(int nbrId, double delay) {

delayMap_.insert(nbrId, delay);

}

void sendBufferedMessages()

{

routing_.sendBufferedMessages();

}

void computeRoutes() { routing_.computeRoutes(); }

void intfChanged();

void sendUpdates() { routing_.sendLinkStates(); }

void lookup(int destinationNodeId);

public:

bool sendMessage(int destId, u_int32_t messageId, int size);

void receiveMessage(int sender, u_int32_t msgId);

int getNodeId() { return nodeId_; }

LsLinkStateList* getLinkStateListPtr()

{ return &linkStateList_;

}

108

LsNodeIdList* getPeerIdListPtr() { return &peerIdList_; }

LsDelayMap* getDelayMapPtr() {

return delayMap_.empty() ? (LsDelayMap *)NULL : &delayMap_;

}

void installRoutes() {

Tcl::instance().evalf("%s route-changed", name());

}

private:

// addr for peer Id

typedef LsMap<int, ns_addr_t> PeerAddrMap;

PeerAddrMap peerAddrMap_;

int nodeId_;

// to differentiate fake and real LS, debug, 0 == no

int LS_ready_;

// needed in recv and sendMessage;

LsLinkStateList linkStateList_;

LsNodeIdList peerIdList_;

LsDelayMap delayMap_;

LsRouting routing_;

int findPeerNodeId(ns_addr_t agentAddr);

};

// ns_rtprotols_h

#endif

