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Abstract

To understand the processes affecting the abundance of wild populations is a fundamental

goal of ecology and a prerequisite for the management of living resources. Variable abun-

dance, however, makes the investigation of ecological processes challenging. Recruitment,

the process whereby new individuals enter a given stage of a fish population, is a highly

variable entity. I have confronted this issue by developing methodologies specifically de-

signed to account for, and ecologically interpret, patterns of variability in recruitment.

To provide the necessary context, Chapter 2 begins with a review of the history of

recruitment science. I focus on the major achievements as well as present limitations, par-

ticularly regarding environmental drivers. Approaches that include explicit environmental

information are contrasted with time-varying parameter techniques.

In Chapter 3, I ask what patterns of variability in pre-recruit survival can tell us about

the strength of density-dependent mortality. I provide methods to investigate the presence

of density-dependent mortality where this has previously been hindered by highly vari-

able data. Stochastic density-independent variability is found to be attenuated via density

dependence.

Sources of recruitment variability are further partitioned in Chapter 4. Using time-

varying parameter techniques, significant temporal variation in the annual reproductive rate

is found to have occurred in many Atlantic cod populations. Multivariate state space models

suggest that populations in close proximity typically have a shared response to environmen-

tal change whereas marked differences occur across latitude.

Hypotheses that could result in consistent changes in productivity of cod populations

are tested in Chapter 5. I focus on a meta-analytical investigation of potential interac-

tions between Atlantic cod and small pelagic species, testing aspects of the cultivation-

depensation hypothesis. The findings suggest that predation or competition by herring and

mackerel on egg and larval cod could delay recovery of depleted cod populations.

Chapter 6 concludes with a critical reflection on: the suitability of the theories em-

ployed, the underlying assumptions of the empirical approaches, and the quality of the data

used in my thesis. Application of ecological insights to fisheries management is critically

evaluated. I then propose future work on recruitment processes based on methods presented

herein.
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List of Abbreviations and Symbols Used

This list contains common symbols and their definitions. Some symbols are used more than

once to represent different entities. Where this occurs, explicit definitions are provided in

the text.

a Instantaneous linear predation rate per predator

α̃ The maximum lifetime reproductive rate, which is the slope at the origin

of the stock-recruit relationship standardized by the spawner per recruit

at zero fishing mortality

α Slope at the origin of the stock-recruit relationship

β Compensatory density-dependent mortality rate in solved Ricker

formulation

e Mathematical constant, base of the exponential function

f A function: often used for a probability density function

F Individual fecundity in number of eggs per female spawner

γ Predation rate in solved Ricker formulation

Ip Identity matrix of dimension p

K Carrying capacity of the total population in numbers or biomass

⊗ Kronecker product of matrices

L Likelihood

l Log-likelihood

ln Logarithm to the base e, referred to as the natural logarithm

µ Population mean - population in the statistical sense

N Abundance in numbers

N Gaussian distribution

p Instantaneous density-dependent mortality rate

P Predator abundance in numbers or biomass

q Instantaneous density-independent mortality rate

xiv



r Intrinsic rate of population growth

R Recruitment: abundance in numbers or biomass at a given, typically

young, age

σ Population standard deviation - population in the statistical sense

SPR Spawner per recruit: weight of spawners produced per recruit, typically

in kilograms

S Spawner abundance in numbers or biomass

τ Age at recruitment in years

θ A typically unknown set of parameters

∼ The distribution of a random variable, read “is distributed”

t Time in context-dependent units
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Glossary

Allee effects

An effect whereby the per-capita growth rate of a population decreases with decreas-

ing abundance at very low abundances. Hypothesized causes include mate-finding

and forms of predation that make individuals more vulnerable to predation at low

abundances.

carrying capacity

The maximum biomass of a population that an environmentally constant area can

support for an indefinite period of time.

coefficient of variation

The ratio of the standard deviation to the absolute value of the mean. Used as an

intuitive measure of dispersion.

cohort

A subset of a population that were spawned or hatched in a given time period -

typically a year for temperate species.

compensatory mortality

Mortality that occurs in response to changes in density. The compensatory mortality

rate increases with increased abunance.

density dependence

A process affecting individuals within a population that changes in accordance with

the density of individuals in space or time.

density independence

A process affecting individuals within a population that behaves independent of the

density of individuals in space or time.

xvi



depensation

A decrease in the survival of young at low levels of the spawning population.

difference equations

Discrete time recursive relationships of the form: xt+1 = f(xt).

differential equations

An equation that describes how the derivatives of an unknown (variable) change as a

function of the unknown and/or other unknowns, e.g.
dy

dx
= f(x, y)

growth overfishing

Fishing a population at a rate above that which allows from maximum productivity

e.g. fishing individuals that are too young.

host

An organism that harbors a parasite or parasitoid, typically the organism unwittingly

provides shelter and nourishment to its own detriment.

maximum reproductive rate

The maximum number of recruits produced per spawner at low population density;

in the absence of density-dependent mortality.

overcompensation

A decline in productivity at high abundance. Typically in Ricker or Schaefer re-

cruitment where density-dependent processes over-compensate density-indendepent

processes at high abundances.

parasitoid

Typically a Hymenopteran or Dipetran insect that deposits larvae on or in a host

organism on which the developing larvae feeds, typically resulting in the death of the

host.

xvii



pre-recruit

The life-stage before recruitment, encompassing all stages from egg, larvae, juvenile

up to recruit.

recruitment

The process whereby new fish enter the portion of the population vulnerable to fish-

ing from earlier life history stages. Also used for the number of recruits in a given

year.

recruitment overfishing

Fishing a population down to a point at which its ability to replace itself via repro-

duction is impeded.

state

Unobserved latent variable that are assumed to be the true as opposed to observed

state of the system at a given time. The states evolve through time according to an

assumed dynamic and stochastic forcing.

stock

A management unit of a population. Where the stock consists of more than one pop-

ulation or a given population straddles two or more stocks, the terms ‘population’ and

‘stock’ are not equivalent. They are, however, often used synonymously throughout

the thesis.

trophodynamic

The dynamics of metabolism and nutrition.

variability

The state of being variable; a measure of the extent of differences or spread in a set

of data points.
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year-class

A subset of a population that were spawned or hatched in a given year.
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Chapter 1

INTRODUCTION

1.1 General Introduction

Population renewal via the influx of young individuals is a core focus of population ecology

and a primary concern of natural resource management. Despite its central role and a near-

century of fruitful investigation, much uncertainty remains in our understanding of sources

of mortality resulting in early life history dynamics (Myers, 1998, 2001; Houde, 2008a).

Fish species in the marine environment typify this assertion. There, marked variability is

often the most striking feature of the data. For example, the coefficient of variation of raw

recruitment typically occurs around 50% and often at as high as 150% (Myers, 2002). Such

variability may hinder the investigation of ecological processes, such as: density-dependent

and density-independent mortality, productivity and species interactions. A sole focus on

the mean response may ignore patterns present in the variability. Testing the connection

between patterns of variability in abundance and the aforementioned ecological processes

may provide a rich framework of investigation. As such, it is argued that questions of the

mean biological response are inherently related to questions of the variability at multiple

levels. Phrased differently, the key question of my thesis was:

What can patterns in the variability of recruitment tell us about the underlying ecological

processes involved?

The principal objective of my doctoral research was to investigate the structure of

recruitment variability and how that relates to ecological processes in temperate marine

fish populations. The approach is to test theory-driven hypotheses with tailored statistical

methodologies, which allow us to analyze multiple datasets simultaneously. Methods that

I developed and employed include investigations of changes in variance and variance par-

titioning methods such as state space and hierarchical models. Much emphasis is placed

1
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on extended recruitment relationships here defined as stock recruitment relationships de-

rived to include additional environmental variables. By combining the estimation of these

extended relationships across multiple populations, optimal use is made of the data, which

may be highly variable for any given population. In this regard, global compilations of stock

assessments such as the original Myers stock-recruitment database (Myers et al., 1995b)

and the new RAM Legacy assessment database (Ricard et al., in review) are used exten-

sively throughout. Note that a critique of this approach are presented in the Chapter 6.

A brief introduction to each chapter with their inter-connectivity highlighted follows.

1.1.1 Chapter Structure

An overview of recruitment science

Chapter 2 provides a broad, essay-style overview of recruitment science (Cushing, 1996).

While other such comprehensive reviews exist (Larkin, 1989; Frank and Leggett, 1994),

the purpose of this chapter was to trace the chronological development of the subject, par-

ticularly with regard to additional environmental drivers (higher dimensions), and critique

accordingly. Studies of recruitment flourished mid-way through the 20th century (Ricker,

1954; Beverton and Holt, 1957; Cushing, 1971, 1975) partly in response to remarkable

population collapses, which could not be attributed solely to growth overfishing where fish

are removed when they are too small. What followed was a period of intense scientific

endeavor and progress where recruitment science became a rich source of development for

population ecology as a whole. The science relating spawner biomass to recruits may be

considered mature, as indicated by the widespread implementation in applied management.

Yet recruits and spawners exist in a dynamic system, where our ability to understand the

effect of changing conditions on recruitment is severely limited. The need to extend inves-

tigations of hypothesized environmental drivers meta-analytically is therefore stressed. I

conclude that time-varying parameter techniques are likely to provide a most useful frame-

work that integrates across many dimensions of tacit change, i.e. there are many possible

sources of changes in productivity (physical, biological, and chemical environment, life

history etc.) but we don’t explicitly reference them, rather, we allow for a time-varying

term that estimates the net effect on productivity across all unmentioned dimensions.
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Non-constant recruitment variability

Variable abundance makes the investigation of population regulation challenging. An over-

looked aspect in understanding how populations are regulated is the possibility that the

pattern of variability - its strength as a function of population size - may be more than

‘noise’, thus revealing much about the characteristics of population regulation. In chap-

ter 3, I show that patterns in pre-recruit survival variability provide consistent evidence

of regulation through density. Using a global compilation of stock and recruitment data,

the relationship between the variability in survival and population abundance is examined.

Observed patterns are consistent with models in which density dependence enters after the

larval stage. The findings are compatible with simple forms of density dependence. The

model predictions explain why populations with strong regulation may experience large in-

creases in variability at low densities. The inverse relationship between survival variability

and the strength of density dependence is discussed in relation to fisheries management and

recovery of depleted populations.

Partitioning recruitment variability

While the investigation of any one hypothesized driver of recruitment may yield important

insights, the simultaneous omission of others renders such approaches of limited holistic

value. The approach used in Chapter 4 partitions the variance in recruitment further. We

temporarily move from the question of why pre-recruit productivity varied? to how has

pre-recruit productivity varied? Arguably, such a treatment should preceed more mecha-

nistic investigations. By allowing the parameters of the recruitment function, particularly

the annual reproductive rate, to vary (Peterman et al., 2003) across populations and time,

we investigate trends that are independent of adult abundance and density-dependent ef-

fects. Importantly, we extend previous foundational single-population applications to the

multivariate case, where the covariance structure of the trends across geographic regions is

of interest. A comprehensive treatment of the formulation, estimation, and interpretation of

the covariance of time-varying productivity is presented. The methodology is applied to 16

widely distributed north Atlantic cod (Gadus morua) populations, showing that productiv-

ity has varied markedly over the time-period investigated with many populations currently

at historically low productivity. Trends in productivity were found to be largely conserved

across regions, particularly in the western Northeast Atlantic populations of the West of
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Scotland, Irish, Celtic, and North Seas, which showed marked contemporaneous coher-

ence.

Higher dimensions as external forces acting on recruitment

Species interactions that play out over large spatial scales are difficult to observe, particu-

larly in the oceans. The lack of empirical evidence for biologically meaningful interaction

parameters is likely to delay the application of holistic management procedures. In chap-

ter 5 we address this issue by developing methods to estimate species interactions during

the early life history that are comparable and can be combined across regions. We present

hierarchical Bayesian models that partition within and between population variability to

estimate the direction and strength of interactions between Atlantic cod and small, numeri-

cally dominant pelagic fishes across much of their range in the North Atlantic. Specifically

we test the hypothesis that small pelagic fish may reduce survival of cod at early life stages,

and thereby contribute to the delayed recovery of depleted cod populations. General pat-

terns of negative interaction were found between young cod and the abundance of herring

and mackerel across many regions investigated. These patterns are consistently present

when the data were investigated hierarchically.

Conclusion: Dimensions of change and the partitioning of variance

Chapter 6 reflects on the developments of the previous chapters and synthesizes the major

methodological and empirical advances from this thesis. These include: the elucidation

of the strength of density-dependent mortality in attenuating survival variability; tempo-

ral patterns in the variance and covariance of time-varying productivity and hierarchical

elucidations on the presence of species interactions. The omission of survey data at a

higher temporal resolution during the very early life history stages is critiqued. Avenues

for further investigation such as an ambitious project to investigate mechanistic density-

dependence across multiple systems using extensions of the variance partitioning methods

are presented.



Chapter 2

RECRUITMENT SCIENCE: AN OVERVIEW WITH PARTICULAR

FOCUS ON HIGHER DIMENSIONS

2.1 Abstract

The development and testing of hypotheses regarding recruitment variability represents a

rich cross-over between fisheries and population ecology. Here, a review is provided of the

biology, theory and analytical methodologies used to encapsulate the relationships between

the number of young fish recruiting to a population and a potentially vast array of biotic

and abiotic drivers. An introduction to the biology of the early life history of fish is accom-

panied by a chronicle of foundational observations and theoretical descriptions. Extensions

to the theory are then proposed, with a particular focus on the incorporation of predation

during the pre-recruit phase. Previous empirical investigations of pre-recruit predation ef-

fects are summarized; potential data analysis pitfalls are highlighted; and the application of

statistical methodologies, such as hierarchical mixed effects and time-varying state space

methods, are compared. Approaches that include explicit environmental information are

contrasted with time-varying latent state parameter techniques. The importance of under-

standing pre-recruit productivity for the management of fisheries and recovery projections

of depleted populations is critically evaluated and presented alongside avenues of further

investigation.

2.2 Introduction

In their early life history stages fish are most vulnerable to competition, predation, hydrog-

raphy, temperature and a multitude of other environmental stressors that result in extraor-

dinarily high levels of natural mortality (Harding and Talbot, 1973; Cushing, 1975). The

varying ability to survive and grow through the early stages ultimately determines how

many fish will recruit to the adult population. A thorough understanding of this period is

5
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therefore critical to understanding fish population dynamics and the management of fish-

eries (Allen, 1963; Cushing, 1975; Mace and Sissenwine, 1993; Cushing, 1996; Mertz and

Myers, 1995; Quinn and Deriso, 1999; Myers, 2001).

The goals of this essay are to: 1) review the major developments of recruitment science

(Cushing, 1996); 2) propose straightforward and testable extensions to the theory of recruit-

ment in higher dimensions; 3) identify suitable frameworks for analysis; and 4) discuss the

potential for applied utility in the management of fisheries resources. Myers (2002) argued

that the systematic incorporation of species interactions into recruitment relationships (as a

component of the ecosystem approach) represents an essential next step in the maturation

of the science. Particular focus is therefore paid to the derivation and analysis of such rela-

tionships here.

Note that in an effort to maintain continuity new terms are italicized, with definitions

provided in an Appendix glossary.

2.2.1 Early Observations on Fish Recruitment

Consideration of the processes that govern the strength of a year-class or cohort is a firmly

established endeavor of fisheries science. Coastal fishing communities have long observed

fluctuations in catches over periods of years, decades and generations (Cushing, 1996).

Early explanations as to the cause of these fluctuations involved en masse migration, e.g.

that all Atlantic herring (Clupea harengus) migrated to and from the refuge of the po-

lar ice. Based upon the detailed work of Heincke (1898), Schmidt (1909), and an early

International Council for the Exploration of the Sea committee (ICES Committee A: 1902-

1908), the eminent Norwegian fisheries scientist, Johan Hjort, rejected the mass migration

hypotheses and put forth the idea that species form discrete populations. Their means

of reproductive renewal could thus impart some of the observed variability (Hjort, 1914,

summarized in Sinclair (1997) and Sinclair and Smith (2002)). Hjort (1914) went further,

suggesting two hypotheses to explain recruitment variability: the critical period and aber-

rant drift hypotheses.

Hjort’s hypotheses

The critical period hypothesis suggests that there exists a narrow period during the early

larval stage in which the strength of a year-class is determined. The proposed mechanism

is trophodynamic (Houde, 2008a); that is, the ability of post-yolk larvae to find prey and
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avoid starvation is critical to surviving the earliest stages in their life history. Where prey

is readily available in time and space, high larval survival is to be expected and a strong (in

numbers) recruiting year-class would result.

The aberrant drift hypothesis drew largely from Hjort’s personal observations onboard

research vessels. The proposed mechanism of this hypothesis relates to the hydrodynamics

of the environment into which the eggs are released. Dynamic conditions could result in

retention over suitable post-settlement habitats or dispersal to unsuitable habitats. In this

manner, the strength of a recruiting year-class would depend on the physical oceanographic

conditions in its early stages (pre-settlement).

Both hypotheses assume that the external environment is the dominant driver. Houde

(2008a) argues that many contemporary theories for recruitment variability originate from

Hjort’s two theories, albeit taking on more sophisticated forms and using new data sources,

e.g. the match-mismatch (Cushing, 1975; Mertz and Myers, 1994a; Beaugrand et al., 2003;

Platt et al., 2003) and member/vagrant (Sinclair and Iles, 1989) hypotheses. In addition,

later theories on migration such as the migration-triangle arose from considerations of the

movement of closed populations first developed by Hjort (Harden Jones, 1968).

Early forecasts

Rather than focusing on these hypotheses and predicting the strength of an incoming year-

class via measurements on abiotic drivers (a year-class forecast per se), Hjort’s approach

disregarded his own hypotheses in favor of carefully monitoring the age composition of the

catch. Using an early port sampling survey design (Guttorp and Lindgren, 2009) and scale

ageing techniques that were discovered independently by Aristotle, van Leeuwenhoek, and

Hoffbauer (Radcliffe, 1921, references therein), the relative abundance of age groups within

the fishery was established in the present. Hjort’s approach of carefully gathering represen-

tative statistics was revolutionary in fisheries science and also noteworthy in the broader

history of statistical science (Guttorp and Lindgren, 2009). With this data at hand and

graphical techniques still in use today (Tufte, 2001), Hjort was able to elegantly show the

progression of the exceptionally large 1904 year-class of Norwegian Spring Spawning her-

ring (Hjort, 1914, Figure (2.1) of the present manuscript). An important observation from

the data in Figure (2.1) was that the strength of an incoming (earliest age) year-class is ex-

ceptionally variable, typically displaying 10-fold, and occasionally 100-fold, inter-annual
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changes (Houde, 2008a). Explaining such extraordinary variability was, and still is, a key

challenge.

At the time Hjort (1914) was somewhat dismissive of the potential to capture the gov-

erning processes of the pre-recruit phase with any consistency:

A final solution to the problem of fluctuations in the fishery by any permanently

valid formula must be regarded as an impossibility and all assertions as to

the discovery of such a solution may safely be relegated to the sphere of pure

imagination.

These assertions may have inhibited the development of recruitment science from 1914-

1930 (Sinclair, 1997). It is important to note, however, that Hjort based his conclusions

on relatively few samples with limited fiscal resources (Hjort, 1926). Furthermore, Hjort

(1926) reviewed his stance after having seen the work of Sund (1924) on the coincidence

of years of low run-off from the land with strong year-classes of cod. These were the first

investigations into the environmental correlates of recruitment variability.

However, Sund’s investigations came at a time when the focus of fisheries scientists was

directed elsewhere. Hjort’s advice on the collection of representative data on age distribu-

tions had gathered much momentum. For example, Thompson (1924) gathered extensive

data on the age distributions of young haddock in the North Sea. The use of such data

in forecasting future fishing opportunities was not lost on Hjort (1926) and the first fish-

ery forecasts, based upon projecting the year-classes present in the fishery forward, were

conducted for the East Anglia herring fishery in 1922 (Hodgson, 1957). These forecasts

applied to year-classes already available to the fishery with less attention on what was forc-

ing the incoming year-class.

Reproductive failure

The East Anglian forecasts were useful and well received within the economically impor-

tant herring industry until the forecasts failed in 1951 and 1952 (Sinclair, 2009). The cause

of the failures is now attributed to a phenomenon called recruitment overfishing (Ricker,

1954; Cushing, 1975). Although overfishing of many coastal stocks had occurred in the

past (Lotze et al., 2006) and had been raised as a concern (Garstang, 1900, W. Garstang

convenor of ICES Committee B (Rozwadowski, 2002)), these situations were attributed to

growth overfishing, where a stock is reduced below its productive capacity by the fishing of
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Figure 2.1: Catch at age of Norwegian spring spawning herring, emphasizing the progres-

sion of the large 1904 yearclass (dashed line). Shaded panel represents the year of Hjort’s

synthesis (Hjort, 1914). Data from: Toresen and Østvedt (2000).
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small individuals (Cushing, 1975). At the time of the collapse of the East Anglia herring, it

was not widely perceived that fishing pressure could deplete the reproductive potential of a

stock. Although others had investigated the effect of fishing mortality on adult abundance

(Baranov, 1918; Graham, 1935; Thompson, 1937), mathematical models linking adults to

young had not yet been conceived. That the strength of a year-class could be related to the

size of the parental stock was a costly but important insight of the early 1950s (Sinclair,

2009). The time was therefore right to capture the relationship between the abundance of

spawners and recruits into a theory of recruitment.

2.3 Recruitment Theory

Fisheries theory and population ecology

The disciplines of fisheries science and population ecology today borrow and contribute to

each other regularly, although the early evolution may have occurred with limited crossover

(Getz and Haight, 1989; Quinn, 2003). Fisheries science needed theoretical frameworks

distinct from those applied to unexploited populations (Beverton and Holt, 1957; Ricker,

1958; Gulland, 1969, and earlier Russian works of Baranov). These theories revolved

around the effects of exploitation on the population and how to extract meaningful infor-

mation from commercial catch data, which was, and still is, the predominant source of

fisheries information (Gudmundsson, 1994). It must be noted, however, that this distinc-

tion is now fading with the recognition of fisheries removals as large-scale experiments of

value for investigating system dynamics (Frank et al., 2005; Myers et al., 2007). In con-

trast to later life stages, the processes acting on a pre-recruit from an egg to a given early

age, operate when the mortality induced by fishing is typically low due to the mesh size of

the nets used (note maternal effects may discredit this line of argument). Theories of re-

cruitment could therefore borrow from, and contribute to, the major concepts of population

ecology.

Theoretical precursors

The theoretical treatment of recruitment, like many aspects of population ecology, de-

scended from initial investigations of human demography and subsequent investigations

on how species interact. Pearl and Reed (1920) likened human population growth to the
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chemical process of autocatalysis, where the rate of product formation follows a parabola

over time. The resulting single species population model is sigmoidal over time, follow-

ing a logistic curve (Verhulst, 1838; Pearl and Reed, 1920), with the rate of change given

by
dN

dt
= rN(1 − N

K
), (2.1)

where N is the population size, r is the intrinsic rate of population growth, and K is the

asymptote or carrying capacity. When K → ∞ (in an unlimited environment) the popu-

lation continues to grow exponentially. The logistic model has proven to be an extremely

useful heuristic building block for population dynamics models (Turchin, 2001). However,

for fish populations, the assumption that the population is homogeneous with respect to age

or life history stage structure is unrealistic. This implies that the adult population may un-

dergo overcompensation when N > K (Ricker, 1954), a situation that is seldom observed

within fish populations where the relative rank of a year-class remains quite constant after

recruitment (Cushing, 1975). A diversity of other taxa do exhibit density-dependent mor-

tality during the adult stages, e.g. birds: (McCallum et al., 2001); ungulates: (Owen-Smith

et al., 2005, see: Festa-Bianchet et al. (2003) for alternative ungulate explanations); and

trees (Yoda et al., 1963; He and Duncan, 2000). But for fish it was necessary to explicitly

consider stage structure in population regulation.

The inspiration for how stage structure could be included in population dynamics came

from early investigations of multispecies dynamics. These pre-date Pearl and Reed’s lo-

gistic model, e.g. Ross (1911), but it was not until the expositions of Lotka (1925) and

Volterra (1926b,a), which built upon the continuous logistic model, that the importance of

how species interact was given full consideration. Nicholson (1933) and Nicholson and

Bailey (1935) focused on population regulation using the illustrative model system of par-

asitoids and their hosts. They derived a system of difference equations to describe the

population dynamics of the interacting species:

N(t+ 1) = N(t)erN−aP (t),

P (t+ 1) = cN(t)(1 − e−aP (t)), (2.2)
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where N(t) and P (t) are the number of hosts and parasitoids at time t , respectively, rN is

the intrinsic rate of population growth of the host (Turchin, 2003), a is the search rate of

the parasitoid, and c is the proportion of attacks leading to parasitoid offspring.

Due to the importance of the Nicholson-Bailey model in: 1) shaping the arguments for

early recruitment theories and 2) igniting the debates of population ecology for the decades

that followed, the derivation is here explored in depth.

The derivation of the Nicholson-Bailey model, as outlined in Nicholson and Bailey

(1935), Hassell (1978), and Ricklefs and Miller (2000), makes use of the Poisson distribu-

tion to describe number of eggs laid (encounters) per host:

P (NH) =
µNHe−µ

NH !
, (2.3)

whereNH is the number of eggs laid by the parasitoids per host. The probability of no eggs

per host is given by e−µ, similarly the probability of at least one egg per host is 1 − e−µ.

Nicholson and Bailey (1935) assumed that the average number of eggs per host was pro-

portional to the parasitoid density µ ∝ aPt, such that the proportion of hosts with at least

one egg laid (attacked) is given by 1 − e−aPt , as in Equation (2.2). The proportion of hosts

attacked thus increases with increasing abundance of parasitoids but at a decreasing rate.

The reason is that as the density of parasitoids increases, the number of non-attacked hosts

(limited resource) decreases, resulting in longer search times. The abundance of parasitoids

may thus be limited via competition for hosts.

The proposed balance of nature of Nicholson (1933) and Nicholson and Bailey (1935)

ignited a spirited debate within the discipline of ecology; that of population regulation,

density dependence, and density independence (Smith, 1935; Andrewartha and Birch, 1954;

Lack, 1954; Milne, 1958; Solomon, 1958; Andrewartha, 1959; Hairston et al., 1960; Ehrlich

and Birch, 1967); see McLaren (1971), Turchin (1995) and Turchin (2003) for extensive

summaries, recent additions and reconciliations.

2.3.1 Standard Ricker Derivation

The concept that fish populations could be regulated by virtue of their abundance at an

early age was first taken up by Ricker (1954) who extended upon the work of Nicholson
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and Bailey (1935). Knowing that the potential for compensatory mortality was greater for

the immature stages as compared to the mature fish, Ricker (1954) focused on the dynam-

ics of the early life history. Ricker (1954) explicitly considered the case of compensatory

predation mortality upon the eggs and larvae, i.e. that the rate of predation increases with

the density of the prey. One situation where this could occur is when adults cannibalize the

young. In this case, one might consider that as the adult density increases, the number of

eggs produced also increases but so too does the predation mortality exerted by the adults.

In this way cannibalism is a regulatory mechanism inducing compensatory mortality.

The derivation of the original Ricker reproductive curve proceeds with the same ar-

guments of random searching as in the Nicholson-Bailey model, only in the Ricker model

parasitoids are replaced by older individuals of the same species (Ricker, 1958). The model

was originally derived as a difference equation but for continuity with Beverton and Holt

(1957) and to ultimately extend the models into higher dimensions, the original Ricker

derivation is here treated with differential equations (Hilborn and Walters, 1992). The dif-

ferential equation describing the rate of change for a cohort under Ricker’s assumptions is

given by
dN(t)

dt
= −(q + pS0)N(t), (2.4)

where N(t) is the cohort size, q+ pS0 is the instantaneous mortality rate comprised of: the

density-independent mortality rate q and the stock-dependent (stock density-dependent)

mortality rate pS0 (Hilborn and Walters, 1992). Note that the density-dependent mortality

rate is here a function of the initial spawning stock size S0. The assumed biological mech-

anism is the presence of intraspecific compensatory predation mortality i.e. cannibalism

(Ricker, 1954). Solving this differential equation with the initial condition N(0) = N0

proceeds as follows:
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dN(t)

dt
= −(q + pS0)N(t),

dN(t)

N(t)
= −(q + pS0)dt,

∫

1

N(t)
dN(t) =

∫

−(q + pS0)dt,

ln(N(t)) = −(q + pS0)t+ C1,

N(t) = eC1e−(q+pS0)t,

N(t) = N0e
−(q+pS0)t. (2.5)

Note the correspondence between this expression and the dynamics for the prey species

in the Nicholson-Bailey model (Equation 2.2). N0 is the initial number of eggs, which is

the product of initial spawner abundance S0 and fecundity F (number of eggs per spawner),

so Equation (2.5) can be written

N(t) = S0Fe
−(q+pS0)t. (2.6)

Setting t at the age of recruitment τ

N(τ) = S0Fe
−(q+pS0)τ . (2.7)

Letting R = N(τ), α = e−qτF and β = pτ , the familiar Ricker spawner-recruit relation-

ship is obtained:

R = αS0e
−βS0 . (2.8)

This is the form regularly statistically fit to stock and recruitment data (assuming lognor-

mally distributed measurement errors) for the purpose of forecasting recruitment in coming

years (see discussions in Hilborn and Walters (1992) and Myers (2001).

Parameter interpretation and assumptions

Before extending the relationships to include other factors, it is useful to consider what the

parameters mean. The scalar, α, can be interpreted as the number of recruits produced per

spawner at low population sizes. It is the slope at the origin where no density-dependent

mortality occurs and is often termed the maximum reproductive rate (Myers et al., 1999).

It is composed of α = e−qτF , that is, the product of fecundity and density-independent
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mortality up to the age at recruitment. The term encapsulates sources of mortality that are

independent of density. Implicit in this parameter is the assumption that the product of

fecundity per unit spawner biomass and density-independent mortality is constant. Where

these vary over time, α may be interpreted as the time average of this product (Myers et al.,

1999). The legitimacy of the assumption of constant reproductive output per unit spawner

biomass has been questioned, primarily based upon maternal effects arguments (Trippel

et al., 1997). For example, a truncation of the population age distribution caused by fishing

could increase the proportion of first time spawners whose eggs might have less chance

of survival. Trippel et al. (1997) showed that using older fish as a measure of spawning

potential provided a better relationship with recruitment. Changes in the age composition

of the stock can also affect the reproductive output (Hutchings and Myers, 1993; Wright

and Gibb, 2005). Marshall et al. (2006) showed that changes occur in the egg production

of cod in the Northeast Arctic related to changes in spawner composition. These consider-

ations will be revisited when time-varying parameters are considered in section (2.4.3) and

Chapter 4.

The term β represents the strength of density-dependent mortality, i.e. how fast the

recruits produced per spawner decrease with increasing spawner abundance. Again, as-

sumptions of constancy are potential sources for criticism here e.g. if other preferential

prey became available to the adults at high density one might not expect compensatory

mortality via cannibalism to be a constant function of adult density.

Both inter- and intra-specific compensatory predation mortality assumptions can be

used to derive the Ricker model. The assumption that the strength of the density-dependent

mortality depends on the initial abundance of the cohort is restrictive and is somewhat of a

surprising assumption given that Ricker was, at the time, working on semelparous salmon

that spawn once and die without feeding. The opportunity for cannibalism from the parents

would be very small but perhaps intercohort cannibalism is important. In addition, limited

available habitat and superimposition of eggs on the salmon redds may result in overcom-

pensatory dynamics. It is also useful to consider other forms of compensatory mortality

and the dynamics they produce.
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2.3.2 Standard Beverton-Holt Derivation

Beverton and Holt (1957) worked in parallel to Ricker and derived a recruitment relation-

ship under alternative assumptions about the nature of density-dependent mortality. The

distinction between these two models is often related mechanistically to the assumptions

of scramble versus contest competition (Hassell, 1975; Brännström and Sumpter, 2005).

Scramble competition occurs when each competitor obtains a fixed proportion of limited

environmental resources whereas in contest competition, competitors receive differential

proportions of the resources. Note, however, that the original Ricker was not derived under

scramble competition premises. The rate of change for a cohort according to the Beverton-

Holt model is given by:
dN(t)

dt
= −(q + pN(t))N(t). (2.9)

where q is a coefficient of density-independent mortality and p is a coefficient of density-

dependent mortality. Comparing Equations (2.9) and (2.4) shows that the nature of density

dependence is different in both cases. In the Ricker formulation, compensatory mortality

occurs via predation or cannibalism in accordance with the initial size of the cohort. In

contrast, the Beverton-Holt formulation relates the strength of the density-dependent mor-

tality to the size of the cohort at any given time.

Beverton and Holt (1957) explicitly pointed out that the coefficients of Equation (2.9) vary

in time, that is q = q(t) and p = p(t). For the purpose of an illustrative derivation, these

coefficients are assumed constant. Solving Equation (2.9) with initial abundance N0 pro-

vides:

N(t) =
N0q

−pN0 + eqtq + eqtpN0

,

=
1

p

q

(

eqt − 1
)

+
eqt

N0

. (2.10)

Setting t at the age of recruitment τ

N(τ) =
1

p

q
(eqτ − 1) +

eqτ

N0

, (2.11)
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and letting α =
p

q
(eqτ − 1), β = eqτ , and N0 ∝ S0 provides the familiar Beverton-Holt

relationship

R =
1

α+
β

S0

. (2.12)

Note that Equation (2.12) is more commonly derived to a form similar to R = αS0/(1 +

βS), which allows α to be interpreted as a maximum reproductive rate. The original deriva-

tion (Beverton and Holt, 1957) is provided above.

Comparative dynamics

The Ricker and Beverton-Holt models display different dynamics (Figure 2.2) by virtue

of the assumed nature of density-dependent mortality. The Ricker relationship is typically

dome-shaped over adult abundance. The decreasing right limb is termed overcompensa-

tion. Overcompensation is a dynamic reserved for stock-dependent regulation, where the

strength of the compensatory mortality depends upon the initial abundance of the cohort

(Harris, 1975). Overcompensation produces a myriad of interesting dynamics in the differ-

ence form (Equation 2.8) from stable endogenous cycles (Ricker, 1954; Myers et al., 1998)

to non-stable chaotic behaviours (May and Oster, 1976). In contrast, the Beverton-Holt

curve is asymptotic, displaying only compensatory mortality and, consequently, a reduced

diversity of potential dynamics (deVries et al., 2006). The existence of chaotic dynamics

in the basic Ricker model requires very high maximum reproductive rates that are rarely

observed outside of the laboratory (Turchin, 2003, note however the case of chaotic dy-

namics in the Norwegian and brown lemmings) or in any known fish population (Hilborn

and Walters, 1992). One might ask what mechanisms could potentially keep the maximum

reproductive rate low enough to avoid chaos?

2.3.3 Extended Ricker Derivation

In this section straightforward extensions to the Ricker theory of recruitment are derived to

include interspecific predation mortality.

Why focus on predation?

Similar to the intuitions of Hjort (1914) and formalization of Lotka (1925), one could hy-

pothesize that the change in the abundance of a cohort in a multispecies system is a function
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Figure 2.2: Families of Ricker and Beverton-Holt model stock-recruitment relationships to

illustrate the 2-dimensional dynamics. Higher and increasingly more dome-shaped Ricker

model curves are achieved by increasing the maximum reproductive rate and strength of

density-dependence. The different Beverton-Holt curves are distinguished by increasing

maximum reproductive rate and strength of density dependence. All curves were forced to

converge arbitrarily for illustration. The solid line represents the 1:1 replacement line.



19

of a bewildering variety of drivers operating at different life stages

dN1(t)

dt
= f(N1, N2, ..., Nn;X1, X2, ..., Xm), (2.13)

where Ni are conspecifics and the Xj terms represent the abiotic environment. While the

ambitious theoretical investigation of such high dimensional relationships has been fruitful

(Andersen and Ursin, 1977), the resulting formulae are exceptionally involved and thus in-

sulated from the rigours of formal testing with available data (Walters and Korman, 1999).

To keep the theory testable while addressing a noted missing link of recruitment science

(Myers, 2002), I focus on but one section of Equation (2.13); that of the effect of predation.

The effect of predation on pre-recruits in temperate systems has received less synthetic

focus than, for example, physical forcing by the abiotic environment (e.g. The Global

Ocean Ecosystem Dynamics programme (GLOBEC) program), with important exceptions

(e.g. Walters et al., 1986; Basson and Fogarty, 1997; Gjøsæter and Bogstad, 1998; Swain

and Sinclair, 2000; Petrie et al., 2009). In an overview of recruitment science, Myers (2002)

expounded the importance of extending recruitment functions to include species interac-

tions. Investigations of the contribution of pre-recruit predation to analyses of recruitment

variability are hampered by a sparcity of suitable data with sufficient contrast (Bax, 1998;

Hilborn and Walters, 1992). Yet, theoretical advances on interactions among species dur-

ing the early life history stages hypothesize that stage-specific interactions among predators

and prey may be key to understanding community dynamics (Walters and Korman, 1999),

e.g. the ‘cultivation-depensation’ hypothesis (Walters and Kitchell, 2001). This hypoth-

esis is related to Ursin’s trophic-triangle hypothesis (Ursin, 1982) and involves an adult

piscivore population that feeds on a lower trophic level species (such as a planktivore) that

is, in turn, a predator of the eggs and larvae of the adult piscivore. Walters and Kitchell

(2001) concluded from simulations in EcoSim (Christensen et al., 2005) that the predation

effect of large piscivores on predators of their young could reduce mortality in the early life

history stages. Conversely, where the adult piscivore population is reduced, e.g. through

excessive fishing mortality, the small planktivore increases and induces depensation in the

adult piscivore population by reducing the survival of its young.

Forms of predation mortality
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By assuming Ricker dynamics (Equation 2.4) for the population growth rate in the ab-

sence of predators (other than cannibals) P and letting f(N,P ) be the predator functional

response, the rate of change for the cohort can be generally written

dN

dt
= −(q + pS)N − f(N,P ). (2.14)

Potential straightforward functional forms for f(N,P ) include linear, hyperbolic and ratio-

dependent predation mortality rates (Turchin, 2003).

Linear predation mortality rate

Assuming a linear functional response for the predator-induced mortality rate (Volterra,

1931), provides

dN

dt
= −(q + pS)N − aNP,

= −(q + pS + aP )N, (2.15)

where a is the instantaneous predation rate per predator. Solving this differential equation

with respect to time provides

Nt = N0e
−(q+pS+aP )t. (2.16)

With the same assumptions made for the standard Ricker model and letting γ = at, Equa-

tion (2.16) is written

Rt = αSe−(βS+γP ). (2.17)

Note that Equation (2.17) or a re-parameterized variant is also a common form used for

general extensions to the Ricker, e.g. including additional sources of mortality such as

abiotic forcing (Brander and Mohn, 2004).

Hyperbolic predation mortality rate

The assumption of a linear increase in predation mortality over all predator abundances is

restrictive. An asymptotic alternative would be to assume a hyperbolic predation functional
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response (Rosenzweig and MacArthur, 1963)

dN

dt
= −(q + pS)N − cNP

d+N
,

= −(q + pS +
cP

d+N
)N. (2.18)

Equation (2.18) serves as an example of how relatively simple but biologically plausible

forms are difficult to solve (integrate) analytically; although this may be possible via partial

fractions. For the purposes of visualizing the dynamics (section (2.3.3)) I used a Runge-

Kutta numerical integration routine (Runge, 1895; Kutta, 1901) implemented in the R pack-

age ‘deSolve’ (Soetaert et al., 2010). The approach is discussed further in the conclusions

of this essay.

Ratio dependent mortality rate

An interesting option is the possibility that the predation rate depends upon the ratio of the

adult populations of both the prey and predator species. This could be a suitable choice

for the ‘cultivation-depensation’ hypothesis where the ratio of the adult populations is key

to the dynamics. Note, however, that the theoretical underpinnings of this form have been

questioned (Abrams and Ginzburg, 2000). Assuming a ratio-dependent functional response

(Turchin, 2003, modified here from original formulation of the ratio of prey to predator to

the ratio of predator to spawning adult) for the predator induced mortality rate, provides

dN

dt
= −(q + pS)N − g

P

S
N,

= −(q + pS + g
P

S
)N. (2.19)

The differential equation solution is given by

Nt = N0e
−(q+pS+g P

S
)t. (2.20)

Letting Rt = Nt, N0 = SF , α = e−qtF , β = pt, and ψ = gt, Equation (2.20) is written

Nt = αSe−βS−ψ
P
S . (2.21)
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Exploring the Dynamics

Resultant recruitment dynamics under these three different forms of predation are shown

in Figure (2.3). The most important result is that the linear predation mortality rate is the

only form that does not give rise to depensatory dynamics. This analytical observation is in

agreement with other theoretical and descriptive expositions (Liermann and Hilborn, 2001;

Walters and Kitchell, 2001). The strength of depensation increases with increasing preda-

tor abundance in both the hyperbolic and ratio-dependent cases. This theoretical insight is

of potential importance when considering recovery dynamics for exploited fish populations

when potential predators are in high abundance.

Previous empirical investigations on the presence of depensation in SR relationships

have yielded conflicting results (Myers et al., 1995a; Liermann and Hilborn, 1997; Walters

and Kitchell, 2001). Myers et al. (1995a), using a depensatory version of the Beverton-Holt

model, reported that evidence for the occurrence of depensation was weak, whereas Wal-

ters and Kitchell (2001), using expert opinion on the trajectory of recruitment over spawner

abundance, concluded that depensation was more common than Myers et al. (1995a) had

found. The related topic of Allee effects, caused by behavioural or behavioural changes at

very low abundance (Frank and Brickman, 2000), was explored in stock-recruitment re-

lationships by Chen et al. (2002). One of two populations explored displayed significant

Allee dynamics (positive x-axis intercept).

None of these studies empirically included additional dimensions that could give rise

to depensatory dynamics, such as those derived here for predation. Analyzing multidimen-

sional data in a 2-dimensional framework can mask such relationships, as illustrated by

Frank and Brickman (2000) in the case of ignoring metapopulation structure.

2.4 Data Analysis

Given the propensity to depensatory dynamics in the theoretical explorations above, it is es-

sential that they be tested with data. Data on the number of recruits typically come from an

age-structured fisheries assessment such as a Virtual Population Analysis (Gulland, 1965,

along with contributions by: Baranov (Ricker, 1975); Fry (1949); and Beverton and Holt

(1957)). By recursively tracing the strength of the cohort back through time, an estimate
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Figure 2.3: Resulting recruitment relationships in a higher dimension (top row) and the corresponding family of curves when

viewed in 2-D (bottom row). Linear, hyperbolic, and ratio-dependent predation mortality are assumed in columns 1, 2 and 3

respectively.
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or tally of the initial abundance is established. The abundance of recruits can thus be re-

lated to the size of the spawning proportion of the population in a stock-recruitment (SR)

relationship (Myers, 2002). These relationships are often characterized by high variability,

which gave rise to debates on whether recruitment was related to the size of the spawning

component at all (Myers and Barrowman, 1996a; Gilbert, 1997; Myers, 1997a). Some of

this variability may arise from additional dimensions we have previously ignored, such as

the effects of biotic (food and predators) and abiotic (physical oceanographic) drivers.

As any one population may yield uncertain parameter estimates - the uncertainty aris-

ing from both natural and sampling processes - statistical methodologies that account for

these uncertanties and combine results across multiple populations are required. First, it is

informative to explore what has already been done.

2.4.1 Empirical Evidence for Pre-recruit Predation

Prior to discussing previous approaches to empirically investigating predation effects on

pre-recruits, there are valuable lessons to be learned from the general topic of including bi-

otic and abiotic correlates. Myers (1998) cautioned that many previously published signif-

icant relationships between recruitment and environmental covariates do not hold up when

retested. Relationships often last for a number of years and then break down (Cushing,

1996) (see section (2.4.3) here for potential time-varying parameter solutions to these is-

sues). Hutchings and Myers (1994), Myers (1998) and Cardinale and Hjelm (2006) caution

against simply regressing recruitment on an environmental correlate without first taking ac-

count of the potentially confounding effect of changing spawner abundance, a factor which

was found to be generally important (Myers and Barrowman, 1996b), as was density de-

pendence (Cushing, 1996).

Previous investigations on the effect of predation on recruitment can be classified ac-

cording to the scale and design of the study. Small scale studies of local populations are

typically (not always) experimental whereas large scale studies at the stock level are almost

always observational in nature. Scale is an important attribute in assessing the effect of a

covariate on mortality, as processes operating locally do not always hold true for the stock

as a whole (Walters and Korman, 1999). This may be particularly true where an interaction
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occurs over days or weeks yet data are only available annually. Experimental investiga-

tions of coral reef populations have yielded great insights into the nature of recruitment,

e.g. the importance of early post-settlement predation in those systems (Carr and Hixon,

1995; Hughes et al., 1992; Hixon and Beets, 2008). Experimentation is more difficult in

temperate systems where the scales of nursery grounds are greater than those of individual

coral reefs. In temperate systems we typically rely on observational data.

The generation of hypotheses regarding the effects of predation in observational sit-

uations relies on diet sampling and correlation analyses of time series data. Large scale

stomach sampling protocols (Daan, 1989; Laurinolli et al., 2004) establish what proportion

of the diet of species i comes from species j. These studies are usually temporally iso-

lated over large geographic range (e.g., ICES year of the stomach in the North Sea (Daan,

1989)), although there are also examples of temporally expansive sampling over large re-

gions (Link and Almeida, 2000, Northeast U.S.). Note that the temporal dimension refers

to years as opposed to seasons within a year, which are often poorly covered. These sam-

pling programs are extremely useful to parameterize predation mortality terms of Multi-

species Virtual Population Analysis (MSVPA) (Helgason and Gislason, 1979; Pope, 1979;

Sparre, 1991), maximum likelihood-based multispecies age-structured assessment models

(e.g., MSASA) (Van Kirk et al., 2010) and EcoSim/EcoPath (Christensen and Pauly, 1992;

Christensen et al., 2005) mass-balance models. Multispecies models such as these gener-

ally focus on the effect of predation mortality among the adults (note pre-recruit age fish are

included in Van Kirk et al. (2010)), whereas the most important determinant of cohort size

occurs much earlier, as discussed previously. It is worth noting, however, that extremely

high levels of natural mortality are estimated for adult cod stocks in the Northwest Atlantic

(Trzcinski et al., 2006; Swain et al., 2008). Investigations of the diets consisting of young

fish are made difficult but not impossible by taxonomic distinction.

For example, Köster and Möllmann (2000) conducted extensive sampling of clupeid

fish (herring (Clupea harengus) and sprat (Sprattus sprattus)) stomachs in the Baltic Sea.

They identifyed eggs and larvae from stomachs to the species level and concluded that

herring and sprat may contribute significantly toward pre-recruit mortality of Atlantic cod

(Gadus morhua) (Köster and Möllmann, 2000). Similar observations have also been made

for capelin (Mallotus villosus) in northeastern Newfoundland (Pepin, 2006) and inferred
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from spatial overlap of larvae and pelagic species on the southern flank of Georges Bank

(Garrison et al., 2002). Predation by herring and Atlantic mackerel (Scomber scombrus)

upon the early life history stages of cod may also be inhibiting the recovery of cod in the

Gulf of St. Lawrence (Swain and Sinclair, 2000). When coupled with a general increase

in the abundance of potential egg and larval predators, e.g. small pelagic species (Bundy

and Fanning, 2005; Frank et al., 2005; Worm et al., 2009), and a contemporary focus on

recovery times and strategies for depleted groundfish (Hutchings and Baum, 2005), these

observations necessitate a theoretical and empirical exposition of the contribution of pre-

recruit predation by small pelagic species to recruitment variability (Pepin, 2006). In the

following two sections I will explore the statistical methodologies available to conduct such

a task.

2.4.2 Hierarchical Mixed Effects Modeling

Previous insights

The application of hierarchical mixed models (described below) to recruitment data has

greatly increased our understanding of recruitment dynamics by allowing data from mul-

tiple populations and regions to be compared in a coherent statistical framework (Gelman

and Hill, 2007, for a general introduction) and (Myers, 1997b; Hilborn and Liermann, 1998;

Myers and Mertz, 1998b; Myers et al., 1999; Myers, 2001, for recruitment-specific appli-

cations). The analysis of individual stocks often fails to elucidate patterns but by collating

results across many populations, effectively analysing a natural experiment with varying

conditions, consistent patterns emerge, e.g. Worm and Myers (2003). Note that this ap-

proach may be thought of as a formalization of the long-pursued comparative approach in

biology. Insights gained from the application of hierarchical methods to recruitment studies

include: the relationship between spawner abundance and subsequent recruits (Myers and

Barrowman, 1996b); relative invariance of the maximum reproductive rate across stocks

(Myers et al., 1999); differences in carrying capacity across systems (Myers et al., 2001);

presence of ‘top-down’ control (Worm and Myers, 2003); relationship between survival

variability and abundance (Myers, 2001; Minto et al., 2008), amongst others.

Implementation
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The implementation of a hierarchical mixed effects analysis generally involves the col-

lation of data from a number of systems with similar properties and then analyzing the

data through fixed-effects, random effects or hierarchical Bayesian approaches (Normand,

1999; Gelman et al., 2004). Fixed effects analysis, which can be thought of as obtaining

an overall weighted average (Normand, 1999), has the advantage of being straightforward

to implement but the assumption that there is a fixed average for a given parameter with-

out population-specific variation is restrictive. Random effects analysis circumvents this

issue by assuming inter-population variability in the parameter. Random effects analyses

are quite straightforward to implement, at least in the linear case, but inference on the re-

sulting predictions for each population (termed Best Linear Unbiased Predictors (BLUPs)

or empirical Bayes estimates) requires careful attention, particularly in non-linear cases

(Pinheiro and Bates, 2000; Diggle et al., 2003). Bayesian hierarchical mixed model analy-

ses have many of the associated inferential benefits of the Bayesian paradigm (Jaynes and

Bretthorst, 2003) and the natural inclusion of data collected at multiple scales (Clark and

Gelfand, 2006; Clark, 2007). Choice of what form and information content is chosen for

the prior distribution (reflects the prior knowledge of a parameter before data are analyzed)

requires careful sensitivity analyses (Calvert et al., 2009).

Proposed hierarchical mixed model extensions

Detailed descriptions of hierarchical mixed models as well as illustrative examples can be

found in Efron and Morris (1977); Harley (2002); Gelman and Hill (2007). The example

shown below is used in Chapter 5.

An example of a hierarchical approach to parameter estimation in extended recruitment

functions, a random effects model of Equation (2.17) is presented. Data are used from all

regions j where the hypothesized interacting species coexist and estimates of their abun-

dances exist. The equation is written:

Rt,j = αjSt−τ,je
−(βjSt−τ,j+γjPt−τ,j)eεt,j , (2.22)
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where τ is the age at recruitment and the distributions of the parameters is given by
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, (2.23)

where the overall means of the distribution of parameter θ (θ ∈ {α, β, γ, ε}) are given by

µθ with variance σ2
θ and covariance σθ1,θ2 . Letting ∆θj be the deviation from the overall

mean of parameter θ by population j and Σ be the variance covariance matrix of the random

effects, the joint probability density function can be written:

f(Rj|Sj,Pj, θ,∆θj)f(∆θj|Σ). (2.24)

The marginal likelihood of Equation (2.24) may be written (Diggle et al., 2003):

L(θ|) =
m
∏

j=1

∫

f(Rj|Sj,Pj, θ,∆θj)f(∆θj|Σ)d∆θj. (2.25)

Such a model can be fit non-linearly or a linearized version using a minimization routine

such as PROC NLMIXED in SAS (SAS, 2004); nlme in R (R Development Core Team,

2008); or ADMB-RE in AD-Model Builder (ADMB-Project, 2009; Skaug and Fournier,

2006).

This approach provides for overall inference on the significance of an interaction, e.g.

µγ term while also providing parameter estimates for each population. The BLUPs or em-

pirical Bayes estimates get shrunk toward the overall mean relative to their uncertainty. In

this way, the uncertain estimates obtained for each population when estimated in isolation

borrow strength from the other populations when analyzed together. To fit the models in-

dividually detracts from the fact that the same parameters are being estimated from each

population and treating the problem as a whole can yield better estimates (Efron and Mor-

ris, 1977). Note that care needs to be taken such that no single population estimate drives

the whole relationship. This can be achieved via sensitivity analysis to the presence or ab-

sence of a given dataset.
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2.4.3 State Space Modeling

State space models may enable an even greater understanding of recruitment dynamics by

dealing explicitly with non-independent data and multiple sources of error and also, perhaps

most importantly, allowing parameters to vary through time. Data collected over time are

typically non-independent (Box et al., 1976), including recruitment data (Walters, 1985).

Time series analysis accounts for this non-independence while estimating parameters of

interest. Comparatively recent developments in state space modeling provide a suite of

methods that allow the contributions of error to be attributed to process variability (actual

changes in the system of interest) and measurement error (Harvey, 1991). The application

of state space models to questions of ecological interest has yielded significant insights

into: patterns and determinants of marine species migration (Jonsen et al., 2003; Mills

Flemming et al., 2006); population abundance and regulation (Clark and Bjørnstad, 2004);

and population viability analysis for endangered species (Dennis et al., 2008), amongst

others.

Extended (Equation 2.17) and non-extended (Equation 2.8) stock-recruit relationships

could also be fit in a dynamic framework (Durbin and Koopman, 2001). The time-varying

approach can account for the dynamic nature of the physical and biological environment.

Using a stochastically evolving parameter equation, the parameters can vary through time

in an autoregressive or random walk fashion rather than remaining constant. A simplified

version of the non-extended (original Ricker) Equation (2.8) for a single population could

be written

Rt = αtSt−τe
−(βSt−τ )eεt . (2.26)

Notice that the typically-assumed constant α (Myers et al., 1999) now varies with time

according to a stochastic recurrence relationship (Peterman et al., 2003)

αt+1 = f(αt) + ηt. (2.27)

The model can pick up on changes without having the cause of the change explicitly in-

cluded. Formulations such as this may offer great potential to capture non-constancy of
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assumptions, e.g., changes in reproductive output per unit spawner biomass (Trippel et al.,

1997). A conceptual plot of this model shows that the slope at the origin (maximum repro-

ductive rate α) varies through time (Figure 2.4). Note that the form does not use explicit

environmental drivers but allows for the ultimate effect of changes in productivity to be

estimated and forecast into coming seasons, a feature not available when the reproductive

rate is assumed constant (Peterman et al., 2003).

The likelihood for a linearized version of such a model can be written down directly

and optimized using a Kalman filter (Harvey, 1991). Alternatively, non-linear state space

models can be fit using Markov Chain Monte Carlo (MCMC) (Spiegelhalter et al., 2004)

or particle filtering methods (Doucet et al., 2001).

2.5 Implications for Management

Since its early inception, a goal of recruitment science has been to build a mechanistic

understanding of the processes affecting survival in the pre-recruit phase (Cushing, 1995).

Cushing (1996) goes so far as to suggest that recruitment relationships are the central prob-

lem of fisheries science and management. The relationship between stock and recruitment

ultimately determines the productivity of the stock and therefore how much yield the pop-

ulation can sustainably support (Ricker, 1975).

Management agencies, however, typically exercise extreme caution in including other

environmental correlates in stock assessment (Myers, 1998), a situation that still persists in

the North Atlantic. The status quo in fisheries stock assessments varies from explicit use of

an established stock-recruitment relationship to taking the geometric mean of the last five

years of recruitment in forecasting coming recruitment (Kell et al., 2005b). So what hope

is there that extensions such as those outlined in this essay will have an applied use?

Where extended relationships are found to be significant, the management of the related

stocks should not be viewed separately. There are interesting arguments, however, that

constant parameters or simple averages of past years may subsume these interactions. This

might hold for the short-term but long-term management based upon the time-averaged pa-

rameter runs the risk of unsustainable depletion or, conversely, lost yield if the pre-recruit
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productivity has directionally changed, e.g., due to climate change. Here is where time-

varying productivity, as estimated in a state space framework, could have its greatest ap-

plied utility. In addition, projections for the recovery of many cod stocks were overly

optimistic, as discussed in Myers et al. (1997c). Although fishing mortality remained high

for some stocks (Kelly et al., 2006a; Rice, 2006) explicit consideration of the dynamic na-

ture of productivity such as that obtained using a state space approach warrants substantial

further investigation.

The utility of explicitly including specific extra drivers in recruitment relationships

might ultimately depend on the temporal scale these drivers operate on. For example, inter-

annual variability in weather patterns might make its inclusion in forecasting as difficult

as the predictions of the abiotic environment itself, which are exceedingly difficult. Yet,

there also exists low frequency, decadal-scale variation in patterns of recruitment caused

by longer term changes in the environment such as the abundance of an interacting species

outlined here. It is these that have the greatest potential to be captured and useful in ex-

tended higher-dimensional recruitment analyses. But what is first required is a large-scale

synthesis using all available populations and data.

2.6 Conclusions

The analytical sections of this essay focus on simple extensions to the theory of recruitment

to include the effect of predation during the pre-recruit phase. It is hoped that a combination

of: field-driven hypotheses, which are as important today as in Hjort’s time; parsimonious

theory built upon the strong foundations laid by Ricker and Beverton-Holt; and proven hi-

erarchical and dynamic modeling approaches will assist in broadly answering questions of

importance and application.

In concluding, three central issues for further research are proposed:

1) Both hierarchical and state space methods offer considerable promise for the analysis

of extended recruitment functions. Measurements on the proposed covariate are required

for the hierarchical mixed effects approach, whereas in the state space approach one can let

the parameters of an unextended relationship vary over time. Conceivably, a well estimated

time-varying maximum reproductive rate could capture unspecified changes in productivity

over time. From the resultant time series of the maximum reproductive rate parameter we
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could obtain estimates of how productivity has changed. In the hierarchical approach we

might discover significant relationships but our focus is admittedly limited to those vari-

ables for which we have data. This begs the question: is it enough to know something has

changed (e.g. time-varying unextended state space model in Figure 2.4) or do we need to

know why it has changed (e.g. extended models of Figure 2.3)? These questions echo ear-

lier mechanistic versus non-mechanistic debates in ecology (Peters, 1986; Lehman, 1986).

Time-varying parameters without explicit covariates may prove to be of great utility in

management under changing productivity. Understanding the origins of the causes for the

changes will be assisted by hierarchical mixed effects analysis but these might ultimately

take a backseat in application. Pursuing both may offer a compromise by first discovering

if changes have occurred and, subsequently, deciphering the weight of evidence in favour

of any particular hypothesis in explaining the observed change.

2) Further theoretical investigation of the extended recruitment relationships using sta-

bility analysis (May, 1973) could yield important information on why chaotic dynamics are

rarely observed in natural systems.

3) Finally, it is remarkable that many of the models used in fisheries and more gener-

ally in population ecology are those that can be neatly solved in time (from their differential

formulation) such as the linear and ratio-dependent predation mortality terms used in the

extensions in this paper. The space occupied by differential equations that can be thus

solved is tiny compared with unsolveable but biologically plausible forms (such as the hy-

perbolic form used here). For these, numerical methods can be used to solve the equations.

There is no reason to believe that biological systems behave in any less complex a fashion

than physical systems where numerical solutions are commonplace. The investigation of

such relationships could yield deeper insights. It could open a wide range of additional dy-

namics for theorists and occupy a long-term research objective for quantitative ecologists

and biostatisticians in coupling stochastic differential equations within a state space estima-

tion framework. Whether annual data can support such potentially formulations compared

to simpler solutions is an open conjecture.
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Chapter 3

SURVIVAL VARIABILITY AND POPULATION DENSITY IN FISH

POPULATIONS

3.1 Abstract

Understanding the processes that regulate the abundance and persistence of wild popula-

tions is a fundamental goal of ecology and a prerequisite for the management of living

resources. Variable abundance data, however, make the demonstration of regulation pro-

cesses challenging (Murdoch, 1994; den Boer and Reddingius, 1996; Shenk et al., 1998).

A previously overlooked aspect in understanding how populations are regulated (Murray,

1999; Turchin, 1999; Berryman et al., 2002) is the possibility that the pattern of variability,

viz. its strength as a function of population size, may be more than “noise”, thus revealing

much about the characteristics of population regulation. Here we show that patterns in sur-

vival variability provide evidence of regulation through density. Using a large, global com-

pilation of marine, anadromous and freshwater fisheries data, we examine the relationship

between the variability of survival and population abundance. The interannual variability in

progeny survival increases at low adult abundance in an inversely density-dependent fash-

ion. This pattern is consistent with models in which density dependence enters subsequent

to the larval stage. The findings are compatible with very simple forms of density depen-

dence, even a linear increase of juvenile mortality with adult density adequately explains

the results. The model predictions explain why populations with strong regulation may

experience large increases in variability at low densities (Hsiesh et al., 2006). Furthermore,

the inverse relationship between survival variability and the strength of density dependence

imparts important consequences for fisheries management and recovery, and population

Minto, C., Myers, R. A., and Blanchard, W. (2008). Survival variability and population density in fish

populations. Nature, 452: 344–7.
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persistence or extinction (Sæther et al., 1998; Lande et al., 2003; Drake, 2005).

3.2 Introduction

Hitherto, the analysis of population density regulation has focussed on the mean response

of the per-capita rate of population change over population density; empirically manifested

in tests of return tendency in abundance data (Wolda and Dennis, 1993). This approach has

made considerable progress in our understanding of population dynamics (Turchin, 1999)

and for many taxa, density-dependent regulation is readily discerned but highly variable

populations (chiefly insects) can often defy attempts to detect density regulation of abun-

dance (Godfray and Hassell, 1992). Among highly variable taxa, fish populations have

been somewhat neglected in the density regulation literature. In fact, the extreme variabil-

ity of reproductive success in fish populations (Fig. 3.1) suggests that they provide ideal

data for tests of proposed links between variability and the strength of population regu-

lation (Myers, 2001). We develop an alternative approach to understanding population

regulation by focussing on the variance in survival. By means of theoretical exposition

and a meta-analysis of 147 wild populations, we demonstrate that survival variability in

fish populations shows a specific and consistent pattern, increasing with decreasing abun-

dance. Moreover, we show that high variability does not preclude simple density regulation

(Sale and Tolimieri, 2000). In the process, we demonstrate the viability of using patterns

in the variance rather than the mean response to overcome the general ecological hurdle of

markedly variable data.

Fish populations pass through a number of life-history stages, from egg to larval to

juvenile, before recruiting to the adult population. In order to analyze the effect of density

dependence on the relationship between variability and reproductive adult abundance, we

will examine models in which density-dependent mortality arises in the juvenile stage, a

treatment which is motivated by the demonstration of the suitability of this choice for many

fish populations (Myers and Cadigan, 1993a). Stochastic mortality, independent of density,

is assumed to take place during egg, larval, and juvenile stages. Using these assumptions

and a suite of commonly applied models for survival ranging from no density dependence

(constant productivity) to extreme overcompensation (Myers, 2001) (survival continually

declines with increasing abundance), we derive predictions for the relationship between
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Figure 3.1: Example relationships between the survival index ln(R/S) and adult abundance

(S). Examples of the Gadidae, Clupeidae, and Salmonidae families, chosen to graphically

accompany specific points made on the relationship between survival variability and pop-

ulation density. (a) cod, Labrador/N.E. Newfoundland (b) silver hake, Mid-Atlantic Bight

(c) herring, Downs stock, North Sea (d) sardine, California (e) atlantic salmon, Margaree

River, NS, Canada, and (f) pink salmon, Sashin Creek, Little Port Walter, Alaska. The

greatest variability occurs for populations reduced to very low levels (Downs herring) and

Icelandic spring spawning herring. Extreme variation is shown in the Sashin Creek pink

salmon population, where the highest variation in survival occurs when the number of fe-

males spawning was reduced to below 300.
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survival variability and population density (see derivations in the Methods and Supplemen-

tary Information).

3.3 Methods Summary

Models for the variance in survival. A derivation of the survival variability model is

presented in the Methods section and fully expanded upon in the accompanying Supple-

mentary Information.

Data. The data come from a standardized global compilation of stock-recruit data of

over 500 species (Myers et al., 1995c). The data are standardized so that recruits and

spawners have the same units (Myers, 2001). To avoid the subsequent meta-analytical

means being dominated by populations with large ranges of adult abundance and thus small

standard errors, the recruits and spawners were further standardized to range between 0 and

1. Only data sets with at least 15 pairs of spawner recruit observations and where the ra-

tio of the maximum observed adult abundance to the minimum was at least 5 were used.

This was done in order to eliminate data sets which had little power to address the question

(Hassell et al., 1989) and resulted in the analysis of 147 populations of 39 species.

Likelihood. A constant log-likelihood function for a regression of survival ln(R/S) on

spawning stock biomass (S) with normally distributed errors with a fixed mean (Deriso,

1980; Schnute, 1985) µi = ln(α) + ln(1 − βγSi)
1/γ (see Methods section) at a given Si

and variance σ2 is given by

l(µ, σ2) ∝ −1

2

n
∑

i=1

lnσ2 − 1

2

n
∑

i=1

(ln(Ri

Si
) − µi)

2

σ2
(3.1)

To investigate the relationship between survival variability and population density, the vari-

ance term can be re-parameterized as a functional form of adult abundance (Harvey, 1976;

Drake, 2005). The log-likelihood is now written

l(µ, η0, η1) ∝ −1

2

n
∑

i=1

(η0 + η1Si) −
1

2

n
∑

i=1

(ln(Ri

Si
) − µi)

2

eη0+η1Si
(3.2)

If the variance is constant over adult abundance, the heteroscedastic coefficient η1 = 0 and
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a constant variance is recovered at eη0 = σ2.

Meta-analysis. A full description of the fixed and mixed-effects meta-analytical meth-

ods, used to estimate the heteroscedastic coefficients, along with sample code is provided

in the Supplementary Information.

3.4 Results and Discussion

Fig. 3.2 shows the predicted relationships between survival variability and adult abundance

under different survival model formulations. In comparison to the density-independent

form, all density-dependent models predict marked changes in the variance in survival over

adult density; including a general increase in variance at low abundance where the models

exhibit compensatory survival (increasing survival). The degree of compensation increases

from the left through the first five panels on the right of Fig. 3.2. The variance in survival

declines monotonically for survival models displaying only compensatory survival. For

over-compensatory models where survival continually declines with increasing abundance

with no asymptote (e.g. Ricker and Schaefer models) the variance in survival is predicted

to initially decrease, then increase with adult abundance. Maximum likelihood was used

to estimate the parameters of a general Deriso-Schnute (Deriso, 1980; Schnute, 1985) sur-

vival model, assuming that the variance is not constant but follows a functional form of the

explanatory variable (Harvey, 1976), adult density S as in σ2 = eη0+η1S(Methods). This

parameterization enables us to estimate a coefficient of heteroscedasticity (η1), which in-

dicates how much and in which direction the variance is changing over adult density in a

given population. We then combine these estimates within and across species in a formal

meta-analysis (Methods).

Fig. 3.3 shows the heteroscedastic coefficient estimates combined across populations

by species under three different survival model formulations. There is a consistent trend

indicated by both the fixed-effects and overall mixed-effects results for an inverse rela-

tionship between the variance in survival and adult abundance (see the individual fits in

the Supplementary Information). Species for which there are greater than four popula-

tions emphasize this point in that the decline in survival variability is generally conserved

across different survival model formulations. We emphasize a general mechanism that can
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Figure 3.2: The predicted relationships between adult abundance and: recruitment, survival ln(R/S), and survival variability

SD(ln(R/S)). The population growth models are realizations of the Deriso-Schnute general stock-recruitment model (Deriso,

1980; Schnute, 1985) at: (a) γ = −1000 (no density dependence), (b) γ = −2 (Cushing-like), (c) γ = −1 (Beverton-Holt), (d)

γ = 0 (Ricker), (e) γ = 1 (Schaefer) and (f) γ = −1 for the depensatory Beverton-Holt model (Supplementary Information). The

other parameters chosen were α = 3, β = 0.02 for all models except the Schaefer model for which β = 0.0085 (Supplementary

Information). The dotted lines are realizations in the absence of density dependence.
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explain the changing variability in survival over adult abundance, density-dependent mor-

tality in the juvenile phase following stochastic density-independent mortality in the egg

and larval stages (Methods). If density-dependent population regulation decreases the vari-

ance in survival with increasing density, why then should we witness high variability in

strongly regulated populations? We explain this phenomenon by way of example using

equation (5) of the Methods section. Assuming that density-dependent mortality is linear

in log-abundance, the variance in survival is given by Var(ln(Rt/St)) ≈ (1 − λ)2σ2
ε + σ2

δ

(Methods), where Rt and St are the number of recruits and the number of spawners at time

t, λ is density-dependent juvenile mortality and σ2
ε and σ2

δ are the variance in mortality in

the egg and larval stages and the variance in survival during the juvenile phase unrelated

to density, respectively. Based on the fitting of a key factor model for cod populations,

λ ≈ 0.5 is appropriate (Myers and Cadigan, 1993a). This corresponds to very strong pop-

ulation regulation in that a 100-fold increase in the abundance of cod entering the juvenile

stage would yield only a 10-fold increase in the abundance of cod surviving the juvenile

stage (Myers and Cadigan, 1993a). Such strong regulation might suggest that recruitment

variability of cod should be weak, but such is not the case, since cod populations typically

have a standard deviation of log recruitment in the 0.5 to 1.0 range (Mertz and Myers,

1995). That recruitment variability is strong, despite regulation, is a consequence of the ex-

tremely large variability in larval abundance (Myers and Cadigan, 1993b; Mertz and Myers,

1994b). If the variance in the juvenile mortality unrelated to density is ignored (see ref. 18)

then σln(R/S) = (1 − λ)σǫ. Thus, σln(R/S) will be reduced to about one-half σǫ; however,

despite this attenuation, the large magnitude of σǫ ensures that there will be strong survival

variability. The key to understanding population regulation in this taxa is that although the

observed survival variability may be high, this is the result of highly variable stochastic

mortality in the larval phase but where density-dependent regulation occurs in the juvenile

phase we will observe marked patterns of change in survival variability over adult density,

as is generally the case (Fig. 3.3).

Our treatment does not amount to previously illuminated demographic stochasticity

(May, 1973), where individual fitness variance increases at greatly reduced abundances,

accompanying population-level Allee effects. In fact, including depressed survival at very

low abundances (depensation) only serves to exacerbate survival variability (Fig. 3.2 panel
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f: depensatory Beverton-Holt model) atop of underlying changes across the whole range of

densities (Fig. 3.2 panel c: usual Beverton-Holt model). In contrast to density-independent

random walks, which allow for populations to plummet to irrecoverably low densities, den-

sity dependence has long been considered a safeguard from population extinction (Sale and

Tolimieri, 2000). From a fisheries perspective, survival should be sufficiently high at low

densities so as to mitigate the effects of driving the population down. However, the greatest

survival variability occurs for populations reduced to very low levels, e.g., Downs herring

in the North Sea and Iceland spring spawning herring, both of which were greatly over-

exploited (Myers, 2001). Extreme variation is shown in Pink salmon from Sashin Creek,

Alaska, where the highest variation in survival occurs when the number of females spawn-

ing was reduced to below 300 (Fig. 3.1). The increased variance at lower adult abundance

will result in higher extinction risk not accounted for in current projections (Sæther et al.,

1998; Lande et al., 2003). An immediately practical implication for recovery is that cur-

rent biological reference points and recovery projections are based upon the maximum

reproductive rate at low population sizes, estimated from the slope of stock-recruitment

function at the origin. Under present understanding, recruitment is deemed lognormally

distributed by assuming that the survival rates in each life-history stage are an independent

random variable and the sum of these on the log scale is normally distributed (Peterman,

1981). This would imply that recruitment variability would increase with the mean recruit-

ment and equivalently that survival should be normally distributed at a given abundance

with a constant variance. However, our treatment has shown the variance in survival to

be generally non-constant over abundance (Fig. 3.2). If the maximum reproductive rate

is estimated from the same data here shown to be naturally heteroscedastic (non-constant

variance) erroneous recovery projections could result. Our model results show that survival

variability can be inversely density-dependent in that the steepness of the increase in vari-

ability of survival as zero density is approached depends on the strength of the density de-

pendence parameter (sensitivity analysis in Supplementary Information). Populations with

very strong density dependence may exhibit dramatically increased survival variability dur-

ing population declines. Incorporating this heteroscedastic component by weighting will

affect estimates of the slope at the origin and thus alter recovery projections for severely

depleted populations.
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Figure 3.3: Estimates of the heteroscedastic coefficient η1 in survival across available fish species. The panels corresponding to:

(a) Schaefer (γ = 1), (b) Ricker (γ = 0), and (c) Beverton-Holt (γ = −1) survival models. The number of populations per

species is given in parentheses and the error bars represent the 95% confidence intervals on the estimate. For species where the

number of populations is greater than 4, the estimate represents a fixed-effects estimate using all populations simultaneously. For

species with 4 or less populations a weighted average of the individual population estimates is provided. An overall estimate of the

heteroscedastic coefficient is provided by a random effects meta-analysis (Supplementary Information).



Chapter 4

TIME-VARYING RECRUITMENT DYNAMICS OF ATLANTIC

COD (GADUS MORHUA)

4.1 Abstract

The maximum reproductive rate is a parameter of central importance to population ecology

and resource management. It determines, amongst others, the intrinsic rate of popula-

tion growth, productivity, overfishing limits and reference points. Traditional approaches

to stock recruitment relationships don’t allow for inter-annual variation in the maximum

reproductive rate. Allowing for such process variation provides an opportunity to track

changes in productivity. Foundational single-stock applications (Peterman et al., 2003)

are extended here to the multivariate case, where the covariance structure of the trends

in productivity across taxa and geographic regions is also of interest. The formulation,

estimation, and interpretation of the covariance of the states, is presented. Univariate

and multivariate implementations are applied to 16 widely distributed north Atlantic cod

(Gadus morua) stocks, showing that productivity has varied markedly over the time-period

investigated with many stocks currently at historically low productivity. Trends in pro-

ductivity were found to be largely conserved across regions, particularly western stocks

of the Irish, Celtic, and North Seas in the northeast Atlantic showing notable contempo-

raneous coherence. Latitudinal differences were evident, showing a differential response

to environmental conditions between northern and southern latitude stocks. We conclude

that time-varying parameter techniques provide a useful framework that integrates across

many dimensions of environmental change affecting recruitment dynamics. Such an ap-

proach may be an attractive method for non-explicit incorporation of multiple dimensions

of change into stock assessment.

43
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4.2 Introduction

Population renewal by incoming young individuals is a key concern of fisheries ecology

and management (Walters and Martell, 2004). Despite its central role and a near-century

of fruitful investigation, much uncertainty remains in our understanding of recruitment

(Houde, 2008a; Myers, 1998, 2001). In their early life history stages fish are most vulner-

able to competition, predation, hydrography, temperature and a multitude of other environ-

mental stressors that result in extraordinarily high levels of natural mortality (Harding and

Talbot, 1973; Cushing, 1975). The varying ability to survive and grow through the early

stages ultimately determines how many fish will recruit to the adult population. A thorough

understanding of this period is therefore critical to understanding fish population dynamics

and the management of fisheries (Allen, 1963; Cushing, 1975; Mace and Sissenwine, 1993;

Cushing, 1996; Mertz and Myers, 1995; Myers, 2001).

Hypothesized processes affecting the strength of a recruiting year class or cohort are

manifold, including: adult abundance and composition (maternal effects) (Trippel et al.,

1997; Marshall et al., 2006; Green, 2008), density-dependent and density-independent mor-

tality via predation, competition, and the physical environment, and the many interactions

therein (Houde, 2008b; Green, 2008). While investigations of any particular hypothesized

agent or indicator of mortality (e.g. temperature anomalies, North Atlantic Oscillation,

abundance of predators/competitors) can yield potentially useful insights (Brander and

Mohn, 2004; Worm and Myers, 2003; Minto and Worm, in review), other candidate hy-

potheses are often excluded. An example is that of the contemporary focus on relating

recruitment or recruitment deviations to the physical environment (Planque and Fredou,

1999; Brander and Mohn, 2004; Mantzouni et al., 2010; Mantzouni and MacKenzie, 2010,

and Global Ocean Ecosystem Dynamics (GLOBEC) reports). While of intrinsic impor-

tance, given the rate of change in the physical environment, such investigations often ex-

clude other factors such as maternal effects (Trippel et al., 1997; Marshall et al., 2006;

Lambert, 2008) and predation or competition (Minto and Worm, in review). In an extreme

case, there can exist more hypotheses than observations to test them with, for example ex-

plaining at-sea survival of Atlantic salmon (Salmo salar) (Cairns, 2001).

Rather than pose a specific hypothesis as a proximate agent of pre-recruit productivity,
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we focus here on the question of whether pre-recruit productivity has changed. Our ques-

tion thus switches from why pre-recruit productivity has changed? to how has pre-recruit

productivity changed? With the plethora of hypotheses available for any given stock, the

argument may be made that such an approach is a necessary pre-cursor to tackling multiple

and competing hypotheses. Simply asking the question of whether there has been a change

and if this change is common across stocks has received remarkably scant attention, with

some notable exceptions (Peterman et al., 2003; Rothschild, 2007; Dorner et al., 2008).

Previous investigations on the covariance or coherence (in the spectral domain, which

is an alternative method for running time series analyses) of recruitment across stocks serve

as a basis to extend the approach. Rothschild (2007) showed that recruitment of cod co-

varied across 11 stocks in the northwest Atlantic. It is unclear, however, the degree to

which this reflected changes in the adult spawning stock biomass (Cardinale and Hjelm,

2006) and thus common trends in fishing mortality or environmental forcing. Peterman

et al. (2003) and Dorner et al. (2008) presented foundational state space methods to extract

filtered and smoothed estimates of trends in productivity for multiple species and stocks

of Pacific salmonids. The correlation amongst the various stocks was estimated, but exter-

nally to the state space model via correlation of the smoothed states. While this method

provides an indication of the inter-stock productivity relationships, it does not provide for

a disentanglement of what is environmentally driven and what is a result of direct interac-

tions between the stocks or species (see the Materials and Methods below).

The goals in this paper are both methodological and applied. We develop and apply

time-varying parameter estimation techniques to Atlantic cod stocks in order to test: (1) if

the maximum reproductive rate has changed over time for individual stocks; (2) elucidate

what form of stochastic process best describes changes where they exist; and (3) develop

and apply methodologies to investigate how changes compare across regions. The impetus

behind developing and applying such methods lies in the need for scientific understanding

and management that reflects current productivity conditions. Without time-varying state

space methodologies, in both univariate and multivariate implementations, these questions

cannot be addressed.
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4.3 Materials and Methods

An overview of univariate state space models is presented, followed by a treatment of the

multivariate estimation. While excellent expositions of the univariate case are available

elsewhere (Harvey, 1991; Durbin and Koopman, 2001; Pella, 1993) this is presented here

for both completeness and background to the multivariate implementation. The relation-

ship to recruitment models is presented subsequently along with details of Atlantic cod

(hereafter termed ‘cod’) datasets used.

4.3.1 State Space Models

Univariate

State space models are a general family of models where the observations result from an

underlying (observed or unobserved) state process and measurement error (Harvey, 1991).

State space implementations were investigated relatively early on in fisheries (Schnute,

1991; Pella, 1993; Gudmundsson, 1994; Freeman and Kirkwood, 1995). A general state

space model may be written

yt = ht(θt, vt), (4.1)

θt = gt(θt−1, wt), (4.2)

where θt is the state at time t, which is governed by the transition or process relation gt that

maps to the state in the previous time step and a random deviation wt; the observation yt

is related to the unobserved state via the measurement equation ht and a random deviation

vt. If gt and ht are linear and vt and gt are normally distributed and additive, the dynamic

linear model (Petris et al., 2009) results:

yt = Ftθt + vt, vt ∼ N (0, Vt) (4.3)

θt = Gtθt−1 + wt, wt ∼ N (0,Wt). (4.4)
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The univariate local-level (random walk) model is given by

θt = µt, Ft = 1, Vt = σ2
v , Gt = 1, Wt = σ2

w, (4.5)

where σ2
v is the measurement error variance and σ2

w is the variance of the unobserved la-

tent process. It is important to note that the process does not consist of a parameter per

year, which would result in an over-parameterized model. The process consists of an un-

observed latent state that evolves through time according to an assumed dynamic (Harvey,

1991). The local-level model is useful but restrictive as it assumes an identical relation-

ship between successive states (up to a random deviate). A first-order autoregressive state

process is less restrictive and written

θt = µt, Ft = 1, Vt = σ2
v , Gt = φ, Wt = σ2

w, (4.6)

where φ is the autoregressive coefficient. A first-order autoregressive model can equate

with a random walk model when φ = 1, otherwise it shows a quicker decay in the memory

of the system. Formulations such as: a local linear trend model (random walk with time-

varying drift); moving average; and autoregressive moving average models require that

the dimensions of the state, measurement, and variance model matrices be increased. For

example, the local linear trend model (Durbin and Koopman, 2001) may be written

θt =

(

µt

νt

)

, Ft =
(

1 0
)

, Gt =

(

1 1

0 1

)

, Vt =
(

σ2
v

)

, Wt =

(

σ2
µ 0

0 σ2
ν

)

,

(4.7)

where νt is the slope at time t and σ2
ν is the variance of the time varying slope. A first-

order moving average process model, where the present state is only related to the random

deviation at the preceeding time-step may be written

θt =

(

ζ1,t

ζ2,t

)

, Ft =
(

1 0
)

, Gt =

(

0 1

0 0

)

, Vt =
(

σ2
v

)

, Rt =

(

1

ϑ

)

, Wt = Rt

(

σ2
ζ

)

R′

t,

(4.8)
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where ϑ is the moving average coefficient and σ2
ζ is the variance of the moving average

process. Equation (4.8) may be converted to a first-order autoregressive moving average

ARMA(1,1) model by altering the transition matrix to

Gt =

(

φ 1

0 0

)

. (4.9)

Including regressors

Additional regressors may be included in the framework of the dynamic linear model. For

example, a linear regression of y on x with a time-varying intercept

yt = αt + βxt, (4.10)

can be written in dynamic linear form as

θt =

(

αt

β

)

, Ft =
(

1 xt

)

, Gt =

(

1 0

0 1

)

, Vt =
(

σ2
v

)

, Wt =

(

σ2
α 0

0 0

)

.

(4.11)

Setting σ2
α = 0 would result in a regular linear regression with all error attributed to mea-

surement error. It is important to note that the time-varying parameter states are introduced

by a non-zero variance in Wt alone, where these elements are fixed at zero the parameter

is constant. The regressors are included here in the measurement equation Ft. They could

also be included in the process model in a similar manner to the local linear trend model

(Equation 4.7) modified such that the Gt matrix contained xt.

A time-varying slope βt is obtained by assigning a variance to the regression slope, i.e.

Wt =

(

σ2
α 0

0 σ2
β

)

. (4.12)

No covariance structure is assumed between the time-varying intercept and slope here for

illustration only. They would likely be highly correlated, as is typical with the intercept

and slope of linear regression parameters (Montgomery et al., 2001), although Petris et al.
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(2009) present dynamic regressions where the dgree of correlation in time-varying inter-

cepts and slopes is not excessive.

Multivariate

A multivariate implementation is required when the observations at time t form a vector

Yt of dimension p × 1, where (p > 1). For example, an independent bivariate (p = 2)

Yt = (y1,t, y2,t)
′ local-level model may be implemented as

θt =

(

µ1,t

µ2,t

)

, Ft =

(

1 0

0 1

)

, Gt =

(

1 0

0 1

)

, Vt =

(

σ2
v,1 0

0 σ2
v,2

)

, Wt =

(

σ2
µ,1 0

0 σ2
µ,2

)

,

(4.13)

where the off-diagonals of the process and measurement error matrices are zero. Direct

interactions between the states can be implemented in the off-diagonals of the Gt transition

matrix; covariance in the measurement errors via the Vt matrix; and covariation in the

process errors via the Wt off-diagonals. In a species interactions context, Ives et al. (2003)

interpreted an autocorrelated version of Gt with non-zero off-diagonals as a community

matrix representing simple linear relationships between the p species. Ecologically, the

Wt matrix governs the yearly fluctuations resulting from undefined stochastic processes of

the environment (Ives et al., 2003). This is central to the current analysis (see recruitment

section below). A positive off-diagonal in Wt between two species represents a common

response to the environment; conversely a negative off-diagonal would imply a differential

response to the environment.

Additional regressors may be included in the bivariate local-level model. For example,
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a bivariate regression with time-varying intercepts would be given by

θt =















α1,t

α2,t

β1

β2















, Ft =

(

1 0 x1,t 0

0 1 0 x2,t

)

, Gt =















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1















, (4.14)

Vt =

(

σ2
v,1 0

0 σ2
v,2

)

, Wt =















σ2
µ,1 0 0 0

0 σ2
µ,2 0 0

0 0 0 0

0 0 0 0















. (4.15)

Again, time-varying slopes (β1,t, β2,t) could be implemented by assigning variances in the

bottom right 2 × 2 block diagonal component. Where the intercepts covary in time, the

upper-left 2 × 2 off-diagonals would be non-zero. Such an implementation is analogous to

seemingly unrelated regressions (SUR) (Zellner, 1962), commonly applied in econometrics

(Greene and Zhang, 2003, §15.4) but differs in that SUR models typically assume measure-

ment errors only.

More generally, a multivariate dynamic linear regression model for p response variables

(e.g. p might be the number of stocks in the Multivariate recruitment formulation section

below) may be written

Yt = (Ft ⊗ IpXt)(θt) + vt, vt ∼ N (0, Vt) (4.16)

θt = (Gt ⊗ Ip)(θt−1) + wt, wt ∼ N (0,Wt), (4.17)

where Ft =
(

1 1
)

, ⊗ is the Kronecker product; Ip is the identity matrix of dimension

p× p (Petris et al., 2009); Xt is a diagonal matrix of dimension (2p× 2p) where

diag(Xt) =







1, if j ≤ p

xj−p,t, otherwise;
(4.18)

Gt = I2 (identity matrix of dimension 2), Vt is of dimensnion (p × p) and Wt is block

diagonal of dimension (2p × 2p). The structure of Wt is further elaborated upon when
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applications to stock-recruitment relationships are discussed below.

Filtering, Smoothing and Estimation

A discussion of the filtering, smoothing and estimation algorithms is provided in Ap-

pendix B. This includes a preliminary discussion of computational challenges with high-

dimensional state space models. A simulation routine to investigate parameter recovery in

a state space model with the time-varying intercept and slope is presented there also.

4.3.2 Application to Recruitment Models

A general deterministic relationship between adult stock St and recruitment Rt is given

by

Rt = αSt−τf(St−τ ) (4.19)

where α is the slope at the origin, St−τ is the spawner abundance when the recruits of age τ

were spawned, and f(St−τ ) is typically a monotonic decreasing function relating survival

to spawner abundance. Assumptions for f(St−τ ) include the Ricker exp(−βSt−τ ) and

Beverton-Holt 1/(1 + St−τ/K) formulations. For subsequent interpretation it is important

to note here that in the derivation of the Ricker model, α is the product of fecundity and

density-independent mortality integrated over the time of spawning to recruitment (Ricker,

1954). The slope at the origin has units of recruits per spawner, which for most marine

fish is measured in number per weight. This makes interpretations of replacement and

comparisons among separate stocks in this parameter cumbersome. Based upon earlier

work by Goodyear (1993) and Mace and Sissenwine (1993), Myers et al. (1996) introduced

a method to convert the units of recruits to that of spawners. The scaling factor used was a

stock-specific weight of spawners produced per recruit at zero fishing mortality:

SPRF=0 =
A
∑

a=τ

waPae
−

Pa−1

c=τ Mc , (4.20)

where τ is the age at recruitment, A is the maximum age, wa is the weight at age a, P

the proportion mature and M the natural mortality. When a given number of recruits is

multiplied by SPRF=0, the biomass produced is the expected weight of spawners produced

over the lifetime under natural adult mortality and growth dynamics. Thus scaled, the
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replacement is along the 1:1 line in spawner and resultant-spawner space and the slope

at the origin is now termed the maximum lifetime reproductive rate α̃. Hereafter we use

the maximum reproductive rate for the number of spawners produced per spawner over its

lifetime (Myers et al., 1996, 1999); hereafter, where ‘productivity’ is used it refers to this

entity.

Univariate Recruitment Formulation

Myers et al. (1999) noted that the maximum annual reproductive rate is a maximum of the

annual reproductive rates across the years. Peterman et al. (2003) explicitly investigated

this for sockeye salmon using the linearized Ricker model

ln(Rt/St−τ ) = at + βSt−τ , (4.21)

where at = ln(αt). which may be included in the dynamic linear modeling framework.

For example, assuming a random walk on at, as in Equation (4.11), and by writing yt =

ln(Rt/St−τ ) we obtain:

θt =

(

at

β

)

, Ft =
(

1 St−τ

)

, Gt =

(

1 0

0 1

)

, Vt =
(

σ2
v

)

, Wt =

(

σ2
a 0

0 0

)

.

(4.22)

Alternative formulations for the dynamics of at include the local linear trend and ARMA

models outlined above. The ARMA implementation follows

θt =









ζ1,t

ζ2,t

β









, Ft =
(

1 0 St−τ

)

, Gt =









φ 1 0

0 0 0

0 0 1









, Vt =
(

σ2
v

)

, (4.23)

Rt =









1

ϑ

0









, Wt = Rt

(

σ2
ζ

)

R′

t. (4.24)
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The density-dependent mortality term may also vary through time (Zeng et al., 1998) as βt.

This can be investigated alone, e.g. in a random walk case

Wt =

(

0 0

0 σ2
β

)

, (4.25)

or in conjunction with a time-varying intercept

Wt =

(

σ2
a ρσaσβ

ρσaσβ σ2
β

)

, (4.26)

where ρ is the correlation of the time-varying intercept and slope. A simulation routine

that investigates the recovery of the parameters of Equation (4.26) under various known

scenarios is presented in Appendix B.

Model Comparison

Alternative univariate model formulations were compared using Akaike Information Cri-

terion (AIC), defined for dynamic linear models as (Harvey, 1991; Durbin and Koopman,

2001)

AIC = 2
(

−l(Θ̂) + k +m
)

(4.27)

where l(Θ̂) is the log-likelihood evaluated at the maximum (Appendix B), k is the length

of the parameter vector Θ and m is the number of diffuse starting parameters (Durbin

and Koopman, 2001) (see Appendix B). Seven alternative univariate formulation were thus

compared, these were: local-level at; local-level βt; local-level at and βt; local linear trend

at; AR(1) at; MA(1) at; and ARMA(1,1) at.

An indication of the relative strength of the process variance and measurement error

variance may be obtained from the signal-to-noise ratio (SNR) defined for the local-level

model with time-varying intercept (Equation 4.22, denoted LL(at) for local-level) as

SNRLL(at) =
σ2
a

σ2
v

. (4.28)
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Where a and β both vary in time, the SNR is given by

SNRLL(at,βt) =
σ2
a + σ2

β + 2ρσaσβ

σ2
v

, (4.29)

where the numerator is the variance of at and βt.

Multivariate Recruitment Formulation

Preliminary univariate fits indicated that the local-level model with time-varying at fit best.

The multivariate formulation therefore focusses on the multivariate extension of this model

(Equations 4.16 and 4.17). In particular, we investigate the covariance matrix of the time-

varying intercepts. In a multivariate formulation, Wt is block-diagonal

Wt =





Wa 0

0 Wβ



 , (4.30)

with the upper left block (Wa, which is a p × p matrix), corresponding to the covariance

matrix of the time-varying maximum reproductive rates. The off-diagonals of Wa measure

the between-stock covariance in the maximum reproductive rates. Where stocks are be-

having similarly, positive off-diagonals would be expected in Wa, conversely where they

behave differentially negative off-diagonals would be expected. There exists many formu-

lations for the structure of the covariance matrix, such as exchangeable (same correlation

between all stocks), exponential and half-Gaussian, amongst others (Diggle et al., 2003).

The correlation may also be made a function of the distance (likely geographic distance but

also others, if required) between the stocks. An unstructured correlation structure, where

the correlations between each pair of stocks is free, is chosen here. Although this requires

p(p + 1)/2 parameters to parameterize Wa, it makes the least a priori assumptions on the

relationships between the stocks.

Following estimation, the covariance matrix Wa can be converted into the equivalent

correlation matrix Wa for ease of interpretation via

Wa = D−1
a WaD

−1
a , (4.31)
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whereDa is a diagonal matrix with diag(Da) =
√

diag(Wa) (Bollen, 1989). Further details

regarding the estimation of the covariance matrices, such as the maintenance of positive-

definiteness are presented in Appendix B.

In total, allowing for separate measurement error variances per stock and an unstruc-

tured covariance matrix for the time-varying intercepts requires p(p+ 1)/2 + p parameters

to be estimated. We therefore analyzed the northeast (10 stocks; 65 parameters) and north-

west Atlantic (6 stocks; 27 parameters) separately.

Post-estimation Investigations

Geographic location and distance, ambient temperature

The centroid of each stock, as presented in the original Myers Stock Recruitment Database

(Myers et al., 1995b), was used to obtain the mid-latitude of the stock for comparing trends

across latitudes. The centroid was also used to calculate the distance in kilometers between

the stocks for further investigation of the correlation across geographic distance. The mean

spring surface temperature (Mantzouni et al., 2010) was used in addition to latitude to

investigate how the time-varying trends compare across stocks.

Depensation

Post-estimation, the at series were simply plotted against spawning stock biomass in an

exploratory attempt to investigate depensatory dynamics.

Reference points

The implications for management were preliminarily explored using the fitted time-varying

recruitment parameters. Where recruits and spawners have the same biomass units, the

difference between the stock-recruitment curve and the 1:1 replacement line represents

excess recruitment in biomass, termed theoretical yield Y

Y = αSe−βS − S. (4.32)

The rate of change of yield over spawning stock biomass is given by

dY

dS
= αe−βS(1 − βS) − 1. (4.33)
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The spawning stock biomass that results in the maximum equilibrium yield (SSBMSY ) is

found by setting Equation (4.33) equal to zero

αe−βS(1 − βS) = 1, (4.34)

and solving for S (Ricker, 1973). Equation (4.34) is transcendental with the solution (Coby

Needle, FRS Marine Laboratory Aberdeen, personal communication) given by:

SMSY =
1

β

(

1 −W
( e

α

))

, (4.35)

where W () here is the Lambert W function (Lambert, 1758; Euler, 1779). Time varying

estimated α̂t and β̂ from the univariate local-level model on αt were substituted into Equa-

tion (4.35) and the GNU Scientific Library implementation of Lambert’s W (Galassi et al.,

2010) within R (R Development Core Team, 2009) was used to solve for SMSY . The cor-

responding exploitation rate at SMSY , uMSY , was estimated from the ratio of the yield at

MSY divided by SMSY , which simplifies to

uMSY =
1 − eβSMSY

α
. (4.36)

4.3.3 Data

Stock assessments

Estimates of cod spawning stock biomass and recruitment (16 regions) were extracted from

a newly developed, quality controlled stock assessment database (Ricard et al., in review).

Older assessment results, either from the original Myers’ stock-recruitment database (My-

ers et al., 1995c) or the literature, were spliced together with the recent assessments to

create the longest possible time series (some dating to the beginning of the 20th century).

Assessment methodologies were typically sequential cohort analyses (e.g. VPA, ADAPT)

except for the west coast of Scotland cod, which uses a state space model (Fryer et al.,

1998). Further details of the assessments used are found in Appendix C of Chapter 5.

Recent assessments for some important regions in the northwest Atlantic (e.g. North-

ern cod (NAFO subareas 2J3KL), Southern Grand Banks (NAFO subareas 3NO), Southern



57

Newfoundland (NAFO 3Ps)) were either unavailable or highly uncertain given the lack of

recent catch data for these stocks. As a result, these regions are omitted from the present

analyses.

The start and the end points of the assessment differ by region with some stretching back

close to a century while others beginning within the last 30 years. Technically, this results

in ragged start and end points for the analyses. State space models are uniquely capable

of dealing with missing values by interpolating over the missing values using the transition

equation only during these periods (Durbin and Koopman, 2001; Clark, 2007; Petris et al.,

2009). In the multivariate case, this provides an interesting opportunity to speculate on

historical trends in productivity for a given stock during a time period in which no data

exist for that stock. The method relies on hindcasting (Appendix B: smoothing) using the

optimized covariance matrix of the process, which is estimated in the period of overlap.

Data standardization

Differences in growth rates and gear selectivity results in the age at recruitment, when

fish first enter the fishery, varying by region. Myers et al. (1996) developed a method of

comparing the relationships across regions by multiplying the recruits (in numbers) by the

predicted spawner biomass per recruit assuming fishing mortality is 0 SPRF=0 (Mace and

Sissenwine, 1993, as outlined above). This allows for the estimates of the maximum repro-

ductive rate to be compared across stocks (Myers et al., 1999).

The stock-recruit relationships also include a density-dependent term that limits recruit-

ment and determines the carrying capacity. Comparing such parameters across regions re-

quires that the data are standardized to the area available for the juveniles. Myers et al.

(2001) and Mantzouni et al. (2010) achieved this by dividing cod recruitment by the area

occupied by the juveniles between 0-300m and 40-300m, respectively. The 0-300m defini-

tion is used here.
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4.4 Results

4.4.1 Univariate Fits

As judged by AIC, local-level models typically provided the best fits amongst the candi-

date univariate models (Table 4.1). Although for some regions, such as: Georges Bank,

Gulf of Maine, West of Scotland, and Celtic Sea, a constant model provides equally as

good a fit (Table 4.1). Of the local-level models, a time-varying maximum reproductive

rate generally provided the lowest AIC, although time-varying maximum reproductive rate

and density dependence appeared to fit best for the Eastern Scotian Shelf, Northeast Arctic,

and Eastern Baltic (Table 4.1). More complicated structures on at (e.g. AR(1), MA(1), and

ARMA(1,1)) generally fit poorly in comparison (Table 4.1).

Results of the simulation study of time-varying intercepts and slopes, show the parame-

ters to be typically well-recovered under various assumptions of constancy and strength of

the process variability and correlations (Appendix B). The estimates of the correlation in

the time-varying intercept and slopes were imprecise, however, when the true correlation

was weak (Appendix B).

The signal-to-noise ratios indicated varying degrees of attribution to process and mea-

surement error amongst the stocks and models (Table 4.2). Some regions attributed either

all to process (e.g. Northeast Arctic, Norwegian Coastal) or measurement error variance

(e.g. Georges Bank, West of Scotland) in the local-level model on at (Table 4.2). Regions

tended to exhibit either high or low SNR across model formulations with some exceptions,

particularly for the moving average fits which tended to pick up on more process variance

(Table 4.2).

The observed recruitment dynamics were well captured using the time-varying max-

imum reproductive rate random walk model (Figure 4.1). Low signal-to-noise ratios and

small differences in the AIC values of constant and time-varying parameters (Tables 4.1

and 4.2) are reflected in the dynamic of the estimated states of some regions (Figure 4.1).

For example, the Georges Bank maximum reproductive rate appears as a flat line, indicat-

ing the suitability of the constant model in this case (Table 4.1). Other regions, such as the

Southern Gulf of St. Lawrence, Eastern Scotian Shelf and Eastern Baltic display marked

changes in the maximum reproductive rate (Figure 4.1).
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Table 4.1: AIC values for the univariate fits by model and region. Lower AIC values exhibit better fits. The lowest AIC values per

row are shown in bold. Model names refer to the structure of the parameters a and β and are as follows: Constant refers to time-

invariant parameters; LL is a local-level (random walk) model; LLT is a local linear trend model (random walk with time-varying

drift); AR(1) is first-order autoregressive; MA(1) is first-order moving average; and ARMA(1,1) is first-order autoregressive,

first-order moving average model. Terms that vary in time according to the given model are subscripted t, e.g. at.

Constant LL LLT AR(1) MA(1) ARMA(1,1)

Area ID a, β at, β a, βt at, βt at, β at, β at, β at, β
Georges Bank GB 44.11 44.11 44.11 48.11 69.97 45.52 75.40 52.83

Gulf of Maine GOM 47.83 47.42 47.83 50.94 73.02 57.55 71.44 53.67

Southern Scotian Shelf and Bay

of Fundy

4X 6.39 0.46 6.39 4.58 30.97 2.24 70.71 98.32

Eastern Scotian Shelf 4VsW 111.28 95.33 111.28 50.96 122.05 97.24 131.82 100.46

Southern Gulf of St. Lawrence SGOSL 17.59 -6.32 17.59 -2.93 22.67 -4.78 67.63 0.00

Northern Gulf of St. Lawrence NGOSL 29.16 22.39 29.16 22.98 48.43 28.25 53.12 27.78

Northeast Arctic NEAR 39.02 19.55 39.02 15.88 45.90 21.36 156.78 25.76

Norwegian Coastal NORCOAST -1.56 -6.68 -1.55 -5.68 19.18 -5.09 16.93 -2.55

Iceland ICE -16.67 -17.80 -16.67 -16.22 16.03 -14.94 151.80 -10.41

West of Scotland WSCOT 43.16 43.16 43.16 47.24 83.31 41.27 79.26 45.84

Irish Sea IS 53.59 46.65 53.59 48.65 76.34 85.44 90.73 50.10

Celtic Sea CS 50.19 50.19 50.19 54.10 82.03 53.06 71.36 58.60

North Sea NS 50.53 49.05 50.53 52.81 75.20 50.43 144.14 54.87

Kattegat KAT 41.85 38.93 41.85 41.68 63.56 41.86 76.17 44.33

Western Baltic BA2224 52.26 50.89 52.26 54.63 76.30 50.80 78.11 62.85

Eastern Baltic BA2532 3.91 1.07 3.91 0.75 30.59 3.13 54.61 6.31
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Table 4.2: Signal-to-noise for the univariate fits by model and region. Values of 0 and 1000 effectively indicate either measurement

error or process-error only models. Model details are per the caption of Table 4.1.

Constant LL LLT AR(1) MA(1) ARMA(1,1)

Area ID a, β at, β a, βt at, βt at, β at, β at, β at, β
Georges Bank GB - 0.00 0.00 0.00 0.00 0.13 3.56 0.09

Gulf of Maine GOM - 0.13 0.60 2.36 0.07 1.93 1.16 0.52

Southern Scotian Shelf and Bay

of Fundy

4X - 0.13 0.14 0.09 0.11 0.17 3.59 0.02

Eastern Scotian Shelf 4VsW - 57.24 0.00 1000 1.21 8.68 15.96 1.14

Southern Gulf of St. Lawrence SGOSL - 7.59 0.79 4.14 1000 6.81 33.30 0.58

Northern Gulf of St. Lawrence NGOSL - 2.69 0.11 6.76 1.57 0.10 0.00 0.39

Northeast Arctic NEAR - 1000 0.23 584.16 99.17 75.54 172.65 3.12

Norwegian Coastal NORCOAST - 1000 1000 377.45 2.77 28.73 3.79 6.49

Iceland ICE - 0.02 0.00 0.06 0.35 0.05 352.61 0.01

West of Scotland WSCOT - 0.00 0.00 0.06 2.49 0.00 6.39 38.15

Irish Sea IS - 0.14 0.00 1.05 1.09 1.00 1.37 0.09

Celtic Sea CS - 0.11 104.06 27.69 0.35 0.17 9.80 210.66

North Sea NS - 0.06 0.67 0.25 0.06 0.08 0.38 0.35

Kattegat KAT - 0.08 0.02 0.00 0.06 0.15 1.00 1.79

Western Baltic BA2224 - 0.35 0.38 0.50 0.49 0.21 2.31 0.52

Eastern Baltic BA2532 - 1000 1.23 1000 2.63 56.06 230.57 28.33
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Figure 4.1: Time varying annual reproductive rates and fitted recruitment values of Atlantic

cod by region. For each region, the left panel displays the estimated maximum reproductive

rates and the right panel the observed and predicted recruitment values. The maximum

reproductive rate on the original scale is in numbers. Grey shading represents the 95%

confidence intervals. Corresponding area names are provided in Table 4.1.
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Many regions display conserved changes in the reproductive rate in recent times, e.g.

declines in the Northwest Atlantic: Southern and Eastern Scotian Shelf, Southern Gulf of

St. Lawrence, and many of the stocks in the western Northeast Atlantic, e.g. Irish Sea,

Celtic Sea, North Sea (Figure 4.1). When standardized to have a mean of zero and standard

deviation of one (z-scores) the reproductive rates display a general pattern of productivity

decline from approximately 1980 (Figure 4.2). Prior to 1980, the productivity was largely

constant or increasing at a slow rate. Approximately post-1980 a decline was observed

with an apparent increase in the rate of decline post-1995 for many stocks in the Northeast

Atlantic. These patterns appear conserved across latitudes and temperatures (Figures 4.1 &

4.2), although the two northern-most stocks (Northeast Arctic and Icelandic) did not show

pronounced recent declines below historic averages as others did. Two series, the North-

east Arctic (NEAR) and Eastern Baltic, showed an increase in the maximum reproductive

rate post-2000 (Figures 4.1 & 4.2). The Northeast Arctic also displayed somewhat regular

high-frequency (relative to the length of the series) fluctuations over the full time period

but without an obvious trend (Figure 4.2).

Approximately half of the regions investigated exhibited decreased maximum repro-

ductive rate at low spawning stock biomasses (Figure 4.3). Although the relationships

are highly autocorrelated and no attempt was yet made to adjust the state space model to

include this aspect (e.g. explicit depensation model), Figure (4.3) provides preliminary

graphical evidence for depensatory dynamics in these stocks (e.g. Southern Scotian Shelf

and Inner Bay of Fundy, Irish Sea, Celtic Sea, and North Sea). Although note must be taken

that the spawning stock biomass is not at the origin where the maximum reproductive rate

is extrapolated to. The Eastern Scotian Shelf stock (4VsW) has an zero recruitment event

at the last year in the time series, which appears anomalous in many of the plots. While

this point is the latest in the series and likely very uncertain, it is included here until further

communication with the assessment scientists.

Reference Points

Time-varying reference points reflected the dynamics observed in the maximum repro-

ductive rates (Figures 4.2 and 4.4). Regions that produced flat reproductive rates in Fig-

ure (4.2), such as the Georges Bank and West of Scotland stocks, have constant reference

points. Unrealistically high reference points, such as those observed for Georges Bank,
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Figure 4.2: Standardized time-varying annual reproductive rates of Atlantic cod across

the North Atlantic. Each line represents the individual stock presented in Figure (4.1)

normalized to its mean and standard deviation. Each series is then plotted at either its mid-

latitude (top panel) or mean spring surface temperature (bottom panel). Points are placed

every 5 years for visual clarity.
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Figure 4.3: Time-varying maximum reproductive rates, as estimated via the local level on α model, plotted against spawning stock

biomass. A positive relationship (reproductive rate declines at low SSB) indicates potential depensatory dynamics.
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West of Scotland and the Kattegat regions (Figure 4.4) are a result of weak compensatory

mortality estimated for these regions (i.e. recruitment linear over spawners with weak

density-dependent mortality). This means that yield continually grows with increasing

spawner biomass. Many other regions display rational reference point levels that appear

relatively stable over time. Exceptions include those regions which exhibited marked jumps

(e.g. Gulf of St. Lawrence and Baltic stocks).

4.4.2 Multivariate Fits

The multivariate model was fitted to all stocks on each side of the north Atlantic, simulta-

neously estimating the time-varying maximum reproductive rate states for each stock and

strength of the relationship between stocks. A comparison of the smoothed states from the

univariate and multivariate formulations show similar trends for most stocks with overlap-

ping confidence intervals from both methods (Figure 4.5). Although some stocks, such as

Georges Bank show dynamics not present in the univariate results (Figure 4.5). The mul-

tivariate states typically displayed more variability compared to the smoother univariate

states (Figure 4.5). Hindcasts prior to the start of the assessment quickly become uncer-

tain, as demonstrated by the rapidly expanding confidence intervals into the past (where no

data exists for that stock). Some stocks, such as the Norwegian Coastal and West of Scot-

land, however, have relatively narrow confidence bands and dynamically changing hind-

casts (Figure 4.5).

The correlation of time-varying maximum reproductive rates across stocks (Wa in

Equation 4.31) shows notable patterns in the northeast and northwest Atlantic (Figure 4.6).

In the Northeast Atlantic, clusters of stocks are apparent, e.g. Baltic stocks and the North

Sea, and western Northeast Atlantic stocks (West of Scotland, Irish Sea, Celtic Sea, and

North Sea) (Figure 4.6). In northern latitudes, the Icelandic and Northeast Arctic stocks

positively covary (albeit weakly) but are notable in that they vary inversely in relation to

almost all other stocks in the Northeast Atlantic (Figure 4.6(a), left-most and third left-most

columns). Strong correlations exist in the Northwest Atlantic, with the Georges Bank, Gulf

of Maine and Southern Scotian Shelf and Bay of Fundy stocks behaving similarly but dis-

similarly to the Eastern Scotian Shelf and Southern Gulf of St. Lawrence (Figure 4.6).

The correlation between regions decays with distance on both sides of the Atlantic
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Figure 4.4: Spawning stock biomass (black line) and estimated time-varying reference point SMSY (gray line) by region.
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(Figure 4.7). The strength of the correlation appears to decay more quickly with increased

geographic distance in the northwest than northeast Atlantic (Figure 4.7). The pattern of

decaying productivity with increased distance suggests this form could be parameterized

as an exponential or half-Gaussian correlation structure over geographic distance.

4.5 Discussion

The dynamics of the univariate fits are discussed first, followed by the multivariate patterns.

The implications are then developed.

4.5.1 Univariate Models

Population dynamics

Using a time-varying implementation of the Ricker stock-recruitment relationship, consid-

erable changes to the population dynamics of Atlantic cod across much of its range were

observed. In contrast to the results for Atlantic cod, Peterman et al. (2003) found that

an autoregressive process best described the time-varying reproductive rate of Bristol Bay

sockeye salmon. A random walk may be considered an autoregressive process where the

autoregressive coefficient in equal to one. Positive autocorrelation coefficients less than one

indicate more variability in the process than a random walk. It is likely that the dynamics of

cod have lower frequency variation than that of sockeye, which are typified by regular fluc-

tuations (Myers et al., 1998). The dynamics of the maximum reproductive rate in cod are

typified by low frequency trends (Figure 4.1), although some regions, such as the Western

Baltic and Northeast Arctic, exhibit higher frequency variation. Higher frequency variation

may reflect greater inter-annual variability of the environmental conditions of these regions.

Evidence for thresholds, regime shifts, and depensation?

The Eastern Scotian Shelf and Gulf of St. Lawrence stocks uniquely exhibit large jumps.

For example, the Eastern Scotian Shelf stock (4VsW) exhibited relatively stable maximum

reproductive rate until 1990, when it rapidly increased to a higher level, which it remained

in for approximately 10 years before decreasing rapidly (Figure 4.1). The effect of the dis-

tribution of the data, i.e. whether the data in latter years are closer to the origin warrants

further investigation for these and all stocks. The Southern Gulf of St. Lawrence (SGOSL)

stock experienced a significant increase over a short period of time in the early 1970s from
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which it has declined towards values observed at the beginning of the series (Figure 4.1).

The Northern Gulf of St. Lawrence exhibited a marked decline in the maximum reproduc-

tive rate up to 1990 when it experienced an equally marked increase over five years. It is

notable that although these changes were not contemporaneous (Figure 4.6), those sort of

dynamics were only observed in the Atlantic maritimes region of Canada. Potential causes

for these rapid changes are elusive, although Swain and Sinclair (2000) observed marked

changes in the pelagic species such as Atlantic herring during this period may have resulted

in the observed dynamics. Slow, directional change typified the trends in the northeast At-

lantic (e.g. Irish Sea, Celtic Sea, North Sea). Although marked changes appear in some

regions, hysteretic typical of regime changes are absent, at least in the present analysis.

Petraitis and Dudgeon (2004) put forward conditions for the presence of alternative stable

states. These included that the system is observed for long enough to ensure the stability of

the alternate state. The observed maximum reproductive rates, which reflect environmental

conditions have, on occasion and within given systems (e.g. Eastern Scotian Shelf, Gulf of

St. Lawrence stocks), experienced large perturbations (Figure 4.1), yet subsequent to these

changes, the reproductive rates do not appear to stay in alternate states for long. A possi-

ble exception is the Eastern Scotian Shelf, which appeared to undergo a marked increase in

productivity in the early 1990s and stay there for ten years before the most recent extremely

low recruitment observations. Despite these examples, gradual change typifies much of the

observed dynamics.

Depensation is defined as a decrease in the per-capita rate of growth declines at low

abundance (Liermann and Hilborn, 2001). Using this definition, it would appear that de-

pensatory dynamics are not as infrequent as previously thought (Myers et al., 1995a). Wal-

ters and Kitchell (2001) made a similar argument; however, that study did not isolate the

maximum reproductive rate, as we have done here. It must be stressed, however, that no

attempt was made to embed depensation in a confirmatory fashion within the state space

model. Effectively depensation could be included via the introduction of the adult abun-

dance on the process governing the dynamics of the maximum reproductive rate (transition

matrix). The degree to which this would result in an over-parameterized model is unclear

and would require substantive simulations before drawing strong conclusions on the pres-

ence or absence of depensation.



72

4.5.2 Multivariate Models

When viewed together, consistent patterns in the maximum reproductive rate across stocks

(Figure 4.2) point somewhat toward general environmental conditions forcing productivity

change. Yet, when investigated more thoroughly via a multivariate state space formula-

tion, the picture is not as unequivocal as previously thought. Based upon the coherence of

spawning stock biomass or recruitment series separately in the Northwest Atlantic, Roth-

schild (2007) concluded that strong coherence is likely the result of common environmen-

tal conditions. Coherence of the spawning stock biomass may reflect factors other than

the environment, e.g. coherent fishing mortality patterns. We have focussed on recruit-

ment, specifically on the maximum reproductive rate, which is a combination of fecundity

and density-independent (i.e environmental forcing) mortality (Ricker, 1958). Allowing

the maximum reproductive rate α̂ to vary as α̂t allows changes in the productivity of the

stock unrelated to spawner abundance or the strength of density dependence to be investi-

gated. Environmental effects can therefore be isolated from the effects of density and adult

abundance (see comments on maternal effects below), although the potential still exists for

fishing mortality to affect the results if pre-recruit discarding is a concern (Kelly et al.,

2006a). While considerable correlation appears between some stocks of the Northwest At-

lantic with clustering evident (Figure 4.6), the coherence at this life-stage cannot be said

to be pan-regional (Figure 4.6). In fact, some stocks within the northwest Atlantic exhibit

strongly inverse inter-annual dynamics, even those in close proximity (e.g. the Southern

and Eastern Scotian Shelf stocks, Figure 4.6). Kelly et al. (2009) investigated temporal

degradation in the synchronicity of northwest Atlantic cod recruitment as a result of local

level population structure altered via overexploitation.

In the Northeast Atlantic, the northern stocks of Icelandic and Northeast Arctic cod

exhibit weakly positive correlation of their time-varying maximum reproductive rates but

vary inversely with those of more southern latitudes (Figure 4.6). Given concerns regarding

global environmental change, these results suggest that in a very general way, these stocks

would respond in an opposite direction to those of southern latitudes. Note however that the

same cannot be said of the other northern stock, Norwegian coastal cod, which has weak
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or no correlation with the Northeast Arctic or Icelandic stocks.

Adopting a multivariate approach allows for information to be shared across stocks, in

terms of the covariances amongst stocks. In many regions the similar trends are observed in

the univariate and multivariate implementations (Figure 4.5). The multivariate implementa-

tion, however enables the strength of the correlation to be estimated within the model, thus

accounting for all sources of uncertainty. The variability of the estimated states increases

in the multivariate setting with some regions that exhibited constant reproductive rate in

the univariate setting showing greatly increased dynamics in the multivariate setting (Fig-

ure 4.5). Two regions, Georges Bank and West of Scotland, emphasize this observation.

The Georges Bank multivariate implementation exhibits very different dynamics compared

to the univariate case. Strong correlations were estimated between the Georges Bank, Gulf

of Maine and Southern Scotian Shelf and Inner Bay of Fundy stocks (Figure 4.6). This

correlation is influencing the states for the Georges Bank stock. As there were no con-

straints on the correlation parameters (unstructured), the multivariate implementation may

be more reflective of the actual dynamics, in as much as information is shared across stocks.

The West of Scotland also displayed strong correlations with adjacent stocks but the mul-

tivariate implementation largely follows that of the univariate but with more variability.

It is important to note that the multivariate implementation implements the same model

across all stocks, whereas the univariate results suggest that while the local level model

typically fits best, other formulations may have lower AIC values in specific circumstances

(Table 4.1). Using the best-fitting model for each region in a multivariate setting would

require the system transition matrices to be adjusted according to whichever model fits best

in the univariate case. The covariance of the states could still be investigated in such an

analyses.

4.5.3 Hypotheses for Observed Changes

While allowing the maximum reproductive rate to vary in time provides a method to tacitly

track population dynamic changes, the approach is without explicit mechanism and may

therefore be regarded as scientifically unsatisfactory. Here we discuss potential hypothe-

ses for the observed changes. As the maximum reproductive rate is a combination of the

density-independent mortality and fecundity, this could also reflect maternal changes that
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would affect the total egg production (Marshall et al., 2006).

Density-independent effects

Mantzouni et al. (2010) presented a hierarchical model linking the the maximum reproduc-

tive rate to changes in temperature for Atlantic cod. Similarly, Brander and Mohn (2004)

presented evidence for the effects of large scale climatic indices on recruitment success.

Planque and Fredou (1999) showed relationships between temperature and raw recruit-

ment. Drinkwater (2005) used these relationships to predict future scenarios, with with

range expansions in the northern areas and contractions and loss in southern areas. The

results obtained here are in agreement with these predictions in that differential responses

have been observed in southern regions with conserved declines of the maximum repro-

ductive rate in southern stocks, especially in the Northeast Atlantic where the mean spring

surface temperature is typically higher than stocks at similar latitudes in the Northwest At-

lantic (Mantzouni et al., 2010).

Beaugrand et al. (2003) suggested that an interaction between temperature changes

and zooplankton dynamics could adversely affect the reproductive success of cod via the

match-mismatch hypothesis (Cushing, 1975, 1996). Boyce et al. (2010) reported large-

scale changes in phytoplankton levels with marked declines being observed in many re-

gions, including the North Atlantic. Changes to the plankton dynamics may reduce the

condition of early life history stage larvae and result in increased density-indepenent mor-

tality (Cushing, 1975). Such changes could be reflected in the observed changes to the

maximum reproductive rate.

Many small pelagic species such as Atlantic herring and Atlantic mackerel have in-

creased in abundance (Worm et al., 2009). These species are observed to predate on the

early life history stages of groundfish, including cod (Köster and Möllmann, 2000; Daan

et al., 1985; Segers et al., 2007). Swain and Sinclair (2000) showed a decreased recruit-

ment success of cod in the Southern Gulf of St. Lawrence with increased herring and mack-

erel abundance. Fauchald (2010) investigated zooplankton, temperature and small pelagic

species abundance on cod recruitment and concluded that predation by small pelagics was

an important source of pre-recruit mortality.

Maternal effects
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Trippel et al. (1997) showed that using older fish as a measure of spawning potential pro-

vided a better relationship with recruitment. As such, changes in the age composition of

the stock can affect the reproductive output (Hutchings and Myers, 1993; Wright and Gibb,

2005). Marshall et al. (2006) also showed changes in egg production of cod in the Northeast

Arctic via changes in spawner composition. In a meta-analysis of the effect of the diver-

sity of spawner ages on recruitment and recruitment variability, Brunel (2010) observed

that such maternal effects can be important for some species (cod included, particularly

age diversity) but that the effects are not taxonomically universal. It is also possible that

the effects manifest through potentially complex interactions between maternal effects and

environmental conditions (Green, 2008).

Ultimately, a multiple hypothesis testing framework (Wolf and Mangel, 2008) may best

decipher the most important agents of why changes in productivity occur. The degree

to which the observed changes are common across, or specific to, certain stocks and re-

gions will assist in the reduction of plausible hypotheses. Candidate hypotheses must be

capable of explaining the scale of the observed changes recorded here (Figures 4.6 and

4.7). Estimated trends in pre-recruit productivity that are independent of adult density and

density-dependent effects, such as those proposed here, would also feature in such a testing

framework. The current approach may also be amenable to alternative tests of time series

forcing such as Granger causality (Hamilton, 1994). In the meantime, management advice

is required that reflects the current environmental conditions and the time-varying approach

may provide a mechanism for tacitly integrating across the plethora of hypotheses detailed

above.

Disentangling density-independent and maternal effects

The penultimate step in the derivation of the Ricker stock recruitment model (Chapter 2)

combines the product of fecundity and density-independent mortality into one term -the

slope at the origin. Where information is available on the temporal dynamics of fecundity,

these may be included directly in the recruitment function (effectively as an offset), this

would provide for a cleaner interpretation of changes attributable to density-independent

effects. Ricker (1973) makes explicit reference to this approach. Unfortunately the paucity

of long-term monitoring of fecundity (Trippel et al., 1997) may preclude such an investi-

gation, although some stocks, such as the Northeast Arctic cod could be amenable to such
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investigations.

4.5.4 Management Implications

Population viability

Re-scaling the slope at the origin by the spawners per recruit at zero fishing mortality allows

the long-term viability of the population to be investigated. A maximum reproductive rate

of one would correspond to replacement whereas values below one would indicate popu-

lation decline with potential extinction risk. Many of the stocks have values much greater

than one (exponent of the natural logarithm of the maximum reproductive series in Fig-

ure 4.1), as noted by Myers et al. (1996), although some stocks such as the Northern Gulf

of St Lawrence ( around 1990), Eastern Scotian Shelf (recently), Western Baltic (around

1990) had values very close to one. Were they sustained, these values would result in the

continued decline and increased extinction risk (Myers and Mertz, 1998a). It is important

to note that the calculation of SPRF=0 involves natural mortality of the adult stock. In many

cod stocks this is fixed at 0.2, whereas Swain and Chouinard (2008) and Trzcinski et al.

(2006) have documented marked increases in adult natural mortality that would imply a

lower SPRF=0 value than those used here. This would also affect where the replacement

line occurs for the interpretation of extinction risk. Other stocks such as the Norwegian

Coastal stock, Irish Sea, Kattegat, and the Western Baltic display worrying contemporary

trends of decrease (Figure 4.1).

Status relative to reference points

Some stocks display remarkably constant reference points across time (Figure 4.4). For

these stocks, there is sufficient evidence that a time-invariant reference point is presently

suitable. Yet, other stocks show marked changes in their reference points over time. Man-

agement based upon the time-averaged parameter runs the risk of unsustainable depletion

or, conversely, lost yield if the pre-recruit productivity has directionally changed. In effect,

the reference points become moving targets. Where compensatory mortality exists and is

fixed, the maximum sustainable yield increases with increases in the maximum reproduc-

tive rate (Equation 4.35). This makes intuitive sense in that a low productivity stock could

only sustain a low sustainable yield. When it is known, however, that the stock had a pre-

viously higher sustainable yield, managing to a lower level appears counter-intuitive, even
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if it does reflect conditions. The implications of this merit further explicit investigations of

the management implications of time-varying reference points

4.5.5 Methodological Advances and Shortcomings

Myers et al. (1999) demonstrated the suitability of the Ricker model in estimating the max-

imum reproductive rate. This requires an extrapolation but in many of the stocks observed

here, very low spawner biomasses have been observed over protracted periods. Atlantic cod

may therefore be a suitable model species for these methods. Adopting a linearized version

of the Ricker model allows for the use of the Kalman flter in estimating the parameters and

predicting the states. Models in which survival is concave over adult abundance such as the

Beverton-Holt model cannot be globally linearized but may represent suitable dynamics for

some species. Methods for parameter estimation in non-linear state space models will need

to be developed for these cases. Options for the estimation in non-linear settings include

Markov Chain Monte Carlo Bayesian (Tanizaki and Mariano, 1998; Jonsen et al., 2003);

particle filtering methods (Arulampalam et al., 2002) such as sequential importance sam-

pling (Doucet et al., 2000); and additional numerical approximation methods Kitagawa

(1987); Skaug and Fournier (2006). Laplace approximations within AD-Model Builder

(ADMB) (ADMB Project, 2009) can be used in conjunction with importance sampling.

This feature could be particularly useful when the suitability of the Laplace approxima-

tion is questioned (Pedersen et al., 2011). Univariate implementations of the random walk

models worked well in ADMB, but the multivariate implementations did not converge on

relatively powerful processors (Appendix B). It is assumed that high-dimensional integral

approximations precludes timely estimation in this case. Assuming linearity allows for the

use of the Kalman filter, which greatly increases the speed with which high-dimensional

problems can be solved. For multivariate implementations it is an open question whether

non-linear approximations via local linearity (e.g. extended or unscented Kalman filters)

or specifically designed non-linear methods (outlined above) will prove most practically

useful (Grewal and Andrews, 2008).
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4.5.6 Further Applications

The methods implemented here could open the way for many further investigations. Time-

varying methods were applied only to cod stocks in the North Atlantic in the present anal-

ysis. With the development of the RAM Legacy Database (Ricard et al., in review), these

could be applied to many species or region combinations to investigate whether relation-

ships are more tightly coupled (positiviely or negatively) between species within a region or

within a species across regions. Questions such as these, which empirically inform across

a wide gamut of management objectives, have not yet been addressed.

By altering the transition matrix to include direct interactions between species (G ma-

trix) multispecies interactions could be investigated (Ives et al., 2003) and the relative

strength of environmental and species interactions within a region could be addressed.

4.5.7 Conclusions

Contrary to the belief that there is little information at low spawning stock biomasses,

we have conclusively shown that the dynamics in proximity to the origin can be inter-

preted for Atlantic cod. Marked variation was observed in the maximum reproductive rate

within and across stocks. We presented methods to allow for the simultaneous estimation of

time-varying recruitment dynamics across multiple stocks, showing how the relationships

change with geographic distance. We thus place the inter-relationships between the various

stocks in an inferential framework. Finally, the explicit investigation of the management

implications has been provided through traditional fisheries theory, although this requires

further investigation.



Chapter 5

INTERACTIONS BETWEEN SMALL PELAGIC FISH AND

JUVENILE COD ACROSS THE NORTH ATLANTIC

5.1 Abstract

Species interactions that occur over large spatial scales are difficult to observe, particularly

in the oceans. The current lack of empirical evidence for biologically meaningful interac-

tion parameters likely delays the application of holistic management procedures. Here we

estimate interactions during the early life history of fish across regions. We present hier-

archical Bayesian models that estimate the direction and strength of interactions between

Atlantic cod and dominant pelagic fishes across much of their range in the North Atlantic.

We test the hypothesis that small pelagic fish may reduce survival of cod at early life stages,

and thereby contribute to the delayed recovery of depleted cod populations.

Significant regional variation exists between cod pre-recruit survival and Atlantic her-

ring abundance with eight of fourteen regions displaying a negative relationship, three re-

gions displaying no relationship and a positive relationship observed in two regions. In

eight of ten regions where Atlantic mackerel co-occurs there was a negative relationship

with cod survival shown, while two regions showed no relationship. Regions with sprat or

capelin as dominant pelagics displayed weak or no relationship, although the strength of the

negative interaction with sprat increased when autocorrelation was accounted for, similar

to other species except capelin. The overall hierarchical interaction estimates with herring

and mackerel were found to be negative with high probabilities of between 0.96 – 0.99

for herring and 0.87–0.98 for mackerel, depending on the chosen model. These findings

suggest that predation or competition by herring and mackerel on cod could delay recovery

Minto, C. and Worm, B. (in review). Interactions between small pelagic fish and juvenile cod across the

North Atlantic. Ecology.

79



80

of depleted populations. The methods introduced here are applicable in the investigation of

species interactions from time series data collected across different study systems.

5.2 Introduction

Fished populations are often depleted past the region of maximum productivity, occasion-

ally to very low biomass levels (Hutchings and Myers, 1994; Myers et al., 1997a, 2001;

Rosenberg et al., 2005). Of particular ecological concern is how such large-scale pertur-

bations to the abundance of interacting species may reconfigure the community to an alter-

native state (Lewontin, 1969; May, 1977; Scheffer et al., 2001; Frank et al., 2005; Casini

et al., 2009). An important implication would be that the ability of a fish population to

recover from depletion may depend not only on the relaxation of fishing mortality, but also

upon the capacity of an altered system to allow for recovery (Scheffer et al., 2001).

Such alternative states have been discussed for the North Atlantic, particularly regard-

ing the slow recovery of depleted Atlantic cod (Gadus morhua, in the following simply

referred to as ‘cod’) populations (Walters and Kitchell, 2001; Frank et al., 2005; Shelton

et al., 2006; Swain and Chouinard, 2008). While continued directed and discard fishing

mortality have been implicated in prolonging recovery (Shelton et al., 2006; Kelly et al.,

2006b; Horwood et al., 2006), so too have changes in productivity (Myers et al., 1997a;

Shelton et al., 2006). Productivity of a fish population arises from adult survival, somatic

growth and the influx of new individuals termed recruits (fish of the youngest age consid-

ered in a fishery).

Given that the strength of a cohort, upon which recovery often depends, is typically

determined at a young age (Myers and Cadigan, 1993a), attention must focus on processes

affecting this vulnerable period (Cushing, 1975). Species interactions, density dependence,

and environmental drivers often result in extraordinarily high levels of natural mortality,

that may approach 50% loss per day during the egg and larval stages (Harding and Talbot,

1973; Cushing, 1975; Houde, 2008b). This results in a classic type III survivorship curve

(Pearl, 1928), where mortality is initially very high and declines as the fish grow. The abil-

ity to survive these critical early life stages ultimately determines how many fish recruit into

the adult population. It is therefore essential that a thorough understanding of this period
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be pursued (Cushing, 1975; Mace and Sissenwine, 1993; Mertz and Myers, 1995; Cushing,

1996; Myers, 2001).

Theoretical advances on the dynamics of early life history of fish emphasize the impor-

tance of competition and predation (Walters and Korman, 1999). A prominent hypothesis

in this regard is the cultivation-depensation hypothesis (Walters and Kitchell, 2001), which

predicts that predation and competition by smaller prey fish can limit the survival of larger

predatory fish at the egg and larval stages. Hence the larger predator may ‘cultivate’ the

ecosystem for its own young by cropping juvenile predators or competitors to low levels.

Conversely, where the large predator population is substantially reduced, small- or medium-

sized fish may increase in abundance and begin to inhibit recovery of the large predatory

fish at the young stages. This may result in inversely density-dependent (or ‘depensatory’)

dynamics at low population levels (Walters and Kitchell, 2001).

Although the dominant food of many small pelagic fish species is crustacean zooplank-

ton such as copepods and mysids, field studies of predation by Atlantic herring (Clupea

harengus) and European sprat (Sprattus sprattus) in the Baltic Sea indicate that these

species can also contribute significantly toward pre-recruit mortality of cod (Köster and

Möllmann, 2000). Predation by herring on the eggs of European plaice (Pleuronectes

platessa) and cod has been observed in the North Sea (Daan et al., 1985; Segers et al.,

2007) and by herring and sprat on plaice in the Irish Sea (Ellis and Nash, 1997). Obser-

vations of pelagic fish predation on spawning grounds of cod were reported off Norway

(Melle, 1985), and capelin (Mallotus villosus) predation on cod eggs has been documented

in northeastern Newfoundland (Pepin, 2006). Significant spatial overlap between cod lar-

vae and pelagic species has been observed, during specifically designed surveys, on the

southern flank of Georges Bank (Garrison et al., 2002) and between the eggs of the ga-

did Norway Pout (Trisopterus esmarkii) and feeding herring in the North Sea (Huse et al.,

2008). Predation by herring and Atlantic mackerel (Scomber scombrus) upon the early life

history stages of cod may also be inhibiting the recovery of cod in the Gulf of St. Lawrence

(Swain and Sinclair, 2000).

In turn, cod are important piscivores on clupeid species in most regions, e.g. the Baltic

Sea, North Sea, off Norway, the Gulf of St. Lawrence, Scotian Shelf and Bay of Fundy

and Georges Bank (Daan, 1973; Harvey et al., 2003; Michalsen et al., 2008; Hanson and
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Chouinard, 2002; Link and Garrison, 2002), although in the Celtic Sea clupeids and mack-

erel were relatively insignificant in the diet of adult cod (Trenkel et al., 2003).

Considering a general increase in the abundance of small pelagic fish (Worm et al.,

2009), these observations motivate a more general analysis of the effects of small pelagic

fish on young cod survival. Myers (2002) highlighted the importance of extending meta-

analytic applications to the study of species interactions affecting fish recruitment. Worm

and Myers (2003) first proposed a meta-analytic framework for analyzing species interac-

tions from time series of fisheries stock assessments (in fisheries terminology a stock is a

management unit of a population; where the stock consists of more than one population

or a given population straddles two or more stocks, the terms population and stock are not

equivalent). Here we modify and extend this approach by focusing on interactions during

the early life history. We evaluate both the effects of interspecific as well as intraspecific

processes on the recruitment of cod across much of their range in the North Atlantic. Our

focus is primarily on the effect of dominant planktivorous pelagic species on the survival

of cod, while accounting for the effects of changes in adult spawning abundance (Cardi-

nale and Hjelm, 2006) and density-dependence. To answer these questions more generally,

we develop hierarchical methods that combine standardized estimates of the strength of

the species interaction across multiple regions. Such an approach allows estimates from

any given population to maintain their region-specific interpretation while also borrowing

strength from other regions (Hilborn and Liermann, 1998).

5.3 Methods

5.3.1 Data

Recent estimates of cod spawning stock biomass, recruitment and total or spawning stock

biomass for pelagic species were investigated in 16 regions across the North Atlantic (Ta-

ble 5.1, Figure 5.1). The pelagic populations comprised of: herring (12 stocks; 14 regions),

Atlantic mackerel (2 stocks; 10 regions), capelin (2 stocks, 3 regions), sprat (1 stock, 2 re-

gions) were obtained from a newly developed, quality controlled stock assessment database

(Worm et al., 2009, Ricard et al., in review). Overlapping species to be included per region
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were determined from a review of the literature presented in the Appendix and summarized

in the Discussion. Where available and corresponding with the latest assessment, older as-

sessment results, either from the original Myers’ stock-recruitment database (Myers et al.,

1995c) or the literature, were spliced together with the recent assessments (at the earliest

time of the most recent assessment) to create the longest possible time series. Most of

the assessments use sequential cohort analyses, e.g. Virtual Population Analysis (VPA),

with the exception of the west coast of Scotland cod, which is assessed using a state space

model. Full details are provided in the Appendix (Table S1), including a description of

omitted regions where cod do occur. Note that a single pelagic stock, particularly mack-

erel, often overlaps with more than one cod stock owing to the wide dispersal of the pelagic

species.

Data standardization

The data are standardized in two ways: (1) to convert the recruits into the same units as

spawners (Myers et al., 1996, 2001) and (2) to account for differences in the areas occupied

by the populations (Myers et al., 2001).

Owing to differences in growth rates and gear selectivity, the age at recruitment, when

fish first enter the fishery, varies by region. For example, in the North Sea, cod recruit

at age 1, in the Northeast Arctic at age 3. Not standardizing for this difference creates

the risk of concluding that the recruitment productivity is lower in the Northeast Arctic

whereas the age groups being different would obscure such a conclusion. Myers et al.

(1996) achieved a method of comparing the relationships across regions by multiplying the

recruits (in numbers) by the predicted spawner biomass per recruit assuming zero fishing

mortality SPRF=0 (Mace and Sissenwine, 1993, Table 5.1 here). This is a region-specific

constant metric of the weight of spawners produced per recruit and accounts explicitly for

the age at recruitment. It allows for the estimates of the maximum reproductive rate (a

parameter of most stock-recruit relationships) to be compared across stocks (Myers et al.,

1999).

Stock-recruit relationships also typically include a density-dependent term. Comparing

density-dependent parameters across regions requires that the data are standardized to the

area available for the juveniles. Myers et al. (2001) and Mantzouni et al. (2010) achieved

this by dividing cod recruitment by the area occupied by the juveniles between 0–300m and
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Table 5.1: Details of cod and pelagic populations investigated: SPRF=0 is the weight of cod spawners produced per cod recruit;

pelagic species investigated by region comprise: Atlantic herring (H), Atlantic mackerel (M), European sprat (S) and capelin

(C). Area is the area of the ocean floor between the contours of 0–300m (used in cod standardization) and 0–200m (used in

pelagic species standardization). Note that where a pelagic species covers more than one region, the sum of the areas was used in

standardizing.

Region name Region ID SPRF=0

kg

Pelagic

species

Area km2

(0–300m)

Area km2

(0–200m)

Georges Bank GB 23.8 H,M 94765 85216

Gulf of Maine GOM 27.9 H,M 53078 34485

Southern Scotian Shelf and Bay of Fundy 4X 14.7 M 68744 56704

Eastern Scotian Shelf 4VsW 11.7 M 97460 90749

Southern Gulf of St. Lawrence SGOSL 7.0 H,M 110863 100134

Northern Gulf of St. Lawrence NGOSL 4.1 H,M 101418 70387

Northeast Arctic NEAR 12.1 H,C 969737 784495

Norwegian Coastal NORCOAST 6.2 H,C 162857 83759

Iceland ICE 18.9 H,C 236408 141751

West of Scotland WSCOT 12.9 H,M 111336 105848

Irish Sea IS 12.7 H,M 47552 47504

Celtic Sea CS 19.9 H,M 236522 230764

North Sea NS 18.2 H,M 616382 579062

Kattegat KAT 7.8 H 21788 21788

Western Baltic BA2224 5.3 H,S 44049 44049

Eastern Baltic BA2532 3.3 H,S 214916 213016
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40–300m, respectively by study. We use the 0–300m definition here (Table 5.1). Similarly,

an important issue arises when comparing interaction coefficients across regions, as the

area occupied by interacting species is a dynamic region in time and space. This may

be exacerbated with most small pelagic species where stock boundaries are difficult to

establish. The approach we take is to define bottom depths between 0-200m as suitable

small pelagic species habitat. We extracted the bottom-area (Table 5.1) between depth

contours within each polygon (management area) using the GRDVOLUME function in the

Generic Mapping Tools (Wessel and Smith, 1991) and the GEBCO 1 minute bathymetry

grid (IOC et al., 2003). The units of pelagic species are thus standardized to tonnes per

km2. Time series of the standardized cod recruitment and pelagic species biomasses are

shown in Figure (5.2).

Importantly, these standardizations affect only the scale and not the relative ranking of

the data (Myers, 2002).

5.3.2 Theory

Extended Ricker model

Assuming Ricker dynamics for the cohort in the absence of predators P (other than canni-

bals) and letting f(N,P ) be the predation mortality (a function of the abundance of prey

and predators), the rate of change for the cohort can then be written (Turchin, 2003)

dN

dt
= −(q + pS0)N(t) − f(N(t), P0). (5.1)

where N(t) is the cohort size at time t and q and pS0 are the density-independent and

stock-dependent (stock density-dependent) mortality rates, respectively (Hilborn and Wal-

ters, 1992). Note that: (1) the density-dependent mortality rate is here a function of the

initial spawning stock size S0 where the assumed biological mechanism is the presence of

intraspecific compensatory predation mortality, e.g. cannibalism (Ricker, 1954); and (2)

the predation mortality is a function of the initial predator abundance. Functional forms

for f(N(t), P0) include linear, hyperbolic and ratio-dependent predation mortality rates
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Figure 5.2: Standardized cod recruitment and pelagic species biomasses by region. Cod recruitment is shown by the solid black

line, pelagic species line colors are: herring (blue); mackerel (dark green); sprat (gray); and capelin (red). Note that where a pelagic

stock covers many regions the biomass per unit area refers to the total pelagic stock area. Full area details are provided in Table 5.1.
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(Turchin, 2003). We focus on the linear predation mortality rate (Volterra, 1931), giving

dN

dt
= −(q + pS0)N(t) − aN(t)P0,

= −(q + pS0 + aP0)N(t), (5.2)

where a is the instantaneous predation rate per predator. We recognize that the assumption

of a linear increase in predation mortality over all predator abundances is restrictive. Hy-

perbolic and sigmoid predation mortality alternatives for f(N,P ) were found to have either

complex or non-closed solutions but were also noteworthy in that they readily produced de-

pensatory dynamics. A ratio-dependent predation mortality rate also induced depensatory

dynamics.

Solving Equation (5.2) with respect to time provides

Nt = N0e
−(q+pS0+aP0)t. (5.3)

N0 is the initial number of eggs, which is the product of initial spawner abundance S0 and

fecundity F (number of eggs per spawner), so Equation (5.3) can be written

N(t) = S0Fe
−(q+pS0+aP0)t. (5.4)

Setting t at the age of recruitment τ ,

N(τ) = S0Fe
−(q+pS0+aP0)τ . (5.5)

and letting recruitment R = N(τ), α = e−qτF , β = pτ , and γ = aτ , the extended Ricker

spawner-recruit relationship is given by

R = αSe−(βS+γP ). (5.6)

Equation (5.6) thus relates recruitment to spawner abundance via two parameters: α the

rate at which recruits are produced per spawner at low spawner abundances (slope at the

origin); β the density-dependent mortality; and γ the predation rate (hereafter termed the

interaction coefficient), all integrated over time τ . Thus a key assumption in the solution is

that the the predator abundance is constant over time τ .
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Equation (5.6), or a re-parameterized variant, is a common form used for general ex-

tensions to the Ricker, e.g. including additional sources of mortality such as abiotic forcing

(Brander and Mohn, 2004). The estimation of the parameters of Equation (5.6) will be the

focus of the present manuscript.

5.3.3 Statistical Analyses

Analysis of extended recruitment functions for each region can be treated separately or hi-

erarchically. We first present non-hierarchical and then extend to the hierarchical case.

Pooled and unpooled analyses

By assuming a lognormal residual error distribution, the extended Ricker recruitment rela-

tionship is written:

R∗

t = αS∗

t−τe
−(βS∗

t−τ+γP ∗

t−τ )eεt , (5.7)

where τ is the age at recruitment, εt ∼ N(0, σ2
ε) and an asterisk denotes the standardized

series. The Ricker curve may be linearized by taking logarithms

ln(R∗

t ) = ln(α) + ln(S∗

t−τ ) + β∗S∗

t−τ + γ∗P ∗

t−τ + εt. (5.8)

This model is often written with the spawner abundance divided through, i.e. as survival

(ln(R∗

t /S
∗

t−τ )), we have chosen to write the linearized Ricker with spawner abundance as

an offset, as this will assist in an exposition of the treatment of measurement error below.

To ease interpretation the signs of the density-dependent and interaction terms have been

changed such that β∗ = −β and γ∗ = −γ. A statistical fit of the model given in Equa-

tion (5.8) to all the data corresponds to a completely pooled analysis (Gelman and Hill,

2007). Although the pooled analysis makes little biological sense, it lies at the extreme of

hierarchical data combination and is included here for comparison.

Considering j = 1, ..,M regions or stocks, an unpooled version of Equation (5.8) can

be written

ln(R∗

t,j) = ln(αj) + ln(S∗

t−τj ,j
) + β∗

jS
∗

t−τj ,j
+ γ∗jP

∗

t−τj ,j
+ εt,j (5.9)
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where the residuals can arise from common (εt,j ∼ N(0, σ2
ε)) or separate error distributions

(εt,j ∼ N(0, σ2
ε,j)).

Partial regressions were used to visualize the effect of the pelagic species abundance on

survival having accounted for the effect of adult cod abundance and density-dependence.

The partial regressions per region were between (1) the residuals of a regression between

cod pre-recruit survival and cod adult spawner biomass and (2) the residuals of a regression

between the scaled abundance of the interacting species and cod adult spawner biomass.

The slope of the regression between these residuals estimates γ∗j in Equation 5.9 (Mont-

gomery et al., 2001). We plot the partial regressions as connected points to graphically

investigate time-dependent dynamics.

Hierarchical analysis

A hierarchical implementation of Equation (5.9) can be written

ln(R∗

t,j) = ln(aj) + ln(S∗

t−τj ,j
) + bjS

∗

t−τj ,j
+ gjP

∗

t−τj ,j
+ εt,j (5.10)

with common or separate (by region) assumptions on the residual error variances and where

the region-level parameters are now assumed to be distributed according to a multivariate

normal distribution
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where {µα, µβ, µγ} are the overall hierarchical means. Note that a key assumption of Equa-

tion (5.11) is that of exchangeability (Gelman et al., 2004), i.e. commensurate with the

model being an accurate depiction of the system, the region-specific parameters are ran-

domly distributed around the hierarchical mean. Additional structure such as relationships

between the estimated interaction coefficients gj and mean annual shelf temperature (My-

ers et al., 2001), mean spring surface temperature (Mantzouni et al., 2010), latitude and

longitude were investigated using linear regression post-estimation (Appendix).

Parameter priors

For the pooled analysis, we chose noninformative normal priors on {ln(α), β, γ} ∼ N(0, 1/0.0001)
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and a uniform distribution on the standard error of the residual variance σy ∼ U(0, 100).

The same priors were implemented independently per region in the unpooled analysis,

{ln(αj), βj, γj} ∼ N(0, 1/0.0001) and σy ∼ U(0, 100). Separate residual error vari-

ances with priors σy,j ∼ U(0, 100) were also investigated. The hierarchical analysis re-

quired the specification of prior distributions on the overall means {ln(µα), µβ, µγ} ∼
N(0, 1/0.0001), region-level variances with an inverse Wishart distribution {σα, σβ, σγ} ∼
Inv-Wishart4(I3) where I3 is an identity matrix of dimension 3 (Gelman and Hill, 2007),

and common or separate residual error variances, as above.

Samples were drawn from the posterior distribution of all parameters using Gibbs sam-

pling implemented in WinBUGS (Lunn et al., 2000). Initially, three Markov Chain Monte

Carlo (MCMC) chains were run for 25,000 iterations from dispersed starting values for all

models. All model were then compared using deviance information criterion DIC (Spiegel-

halter et al., 2002) with the effective number of parameters estimated by half the variance

of the deviance (Gelman et al., 2004). Following model selection, final runs consisted of

100,000 MCMC iterations. The first half of each chain was conservatively discarded (Gel-

man et al., 2004) and the second half sampled every 50 iterations to provide approximately

3,000 posterior samples per parameter. Chain convergence was assessed by assessing au-

tocorrelation and the Raftery and Lewis diagnostic within each chain, and the Gelman and

Rubin diagnostic between chains (Gelman et al., 2004).

Time series and measurement error biases

The data used form time series and thus violate the assumption of independence. We exam-

ined the effect of temporal autocorrelation by investigating the fits under the assumptions

of independent and autocorrelated AR(1) errors.

In addition, the data used in the analysis are not raw data but estimates of absolute

abundances from complex population dynamics models. These results are not typically

presented with estimates of the measurement error. It is known, however, that the pres-

ence of measurement errors can bias the coefficients of the Ricker model, contingent on the

range of spawner values observed (Walters and Ludwig, 1981; Kehler et al., 2002). The

extent of the measurement error likely decreases further back in the time series where co-

horts have completely passed through the fishery but recent estimates are likely to contain
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higher levels of measurement error. We investigated the sensitivity of the results to varying

degrees of measurement error (Appendix).

5.4 Results

Time series trends

Time series of cod recruitment typically displayed high inter-annual variability with over-

all declining trends observed in many regions (Figure 5.2). Pelagic total biomass series

are generally smoother, as would be expected from a summed biomass across many age

groups. Importantly, periods of relatively high and low pelagic species biomass occur in

most regions with some (e.g. North Sea herring) exhibiting multiple peaks and troughs.

Many pelagic species display increasing trends over time, although the Baltic stocks of

herring are decreasing (Figure 5.2). In some regions, periods of high pelagic abundance

coincide with decreased recruitment of cod, e.g. Southern Gulf of St. Lawrence, Georges

Bank; in others, this varies over the course of the series, e.g. early and late periods in

the North Sea. The degree to which these observations are attributable to interactions or

changing adult cod abundance is presented below.

Model comparisons and diagnostics

All MCMC chains mixed well and appeared to converge relatively quickly, as indicated by

low within-chain autocorrelation (≤0.07, typically lower or negative), Gelman and Rubin

diagnostics of 1 or at most 1.01 and Raftery and Lewis diagnostics of approximately 1 also.

For all pelagic species, except capelin, models including density dependence and the

pelagic species biomass with autocorrelated region-specific error variance structures had

the lowest DIC values in both the un-pooled and hierarchical models (Table 5.2). Although

the autocorrelated residual variance structure typically fit best we also draw inference on

the non-autocorrelated implementations, as Myers et al. (1999) noted that autocorrelated

residual errors in a hierarchical analysis can overly shrink the region-specific values toward

the overall mean. The pooled analysis fit poorly compared to the separate and hierarchical

equivalents (Table 5.2).

Effect of herring
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Visually inspecting the partial regression plots of the marginal relationship between her-

ring abundance and juvenile cod survival shows a negative relationship in 8 regions, no

relationship in 2 regions, and a positive relationship in 4 regions (Figure 5.3). Regions

with a positive relationship in the separate analysis generally became flat or weakly neg-

ative in the hierarchical analyses (Table 5.3, Figure 5.3). The overall mean interaction

coefficient from the best fitting model (hierarchical with separate autocorrelated errors by

region: model h8 in Table 5.2) was -0.037 with a 99% probability of being negative. The

non-autocorrelated version (model h5 in Table 5.2) had a mean interaction of -0.042 with a

97% probability of being negative. A comparison of the posterior densities by region and

model assumptions (unpooled, hierarchical, autocorrelated) is shown in Figure 5.5.

There was evidence of shrinkage of both strongly positive and negative separate esti-

mates toward the overall mean in the hierarchical independent error analysis (Figure 5.5).

The hierarchical autocorrelated error analysis showed strong shrinkage. The inner Baltic

regions displayed either a flat or positive relationship between herring abundance and juve-

nile cod survival in the separate analysis (Table 5.3, Figure 5.5). These became either flat

or weakly negative in the hierarchical and hierarchical autocorrelated models (Figure 5.5).

Effect of other pelagics.

Negative trends were observed between mackerel abundance and juvenile cod survival in 8

of 10 regions examined (Figure 5.4). The mackerel-cod interaction in both the West Coast

of Scotland and Irish Sea became weakly negative in the hierarchical analysis (Figures 5.4

and 5.5, Table 5.3). The overall mean interaction coefficient from the best fitting model

(hierarchical with separate autocorrelated errors by region: model h8 in Table 5.2) was -0.1

with a 96% probability of being negative. The non-autocorrelated version (model h5 in Ta-

ble 5.2) had a mean interaction of -0.16 with a 98% probability of being negative. Estimates

for the Eastern Scotian shelf (NAFO are 4VsW) cod recruitment in 2004 and 2005 were

exceptionally low and outlying on the partial regression plots (Figure 5.4). A sensitivity

analysis to the hierachical analysis for mackerel with region 4VsW omitted resulted in the

overall probability of being negative in model mh8 declining from 96% to 87%.

The three regions with capelin showed no or weakly negative relationships with juvenile

cod survival (Figure 5.4–5.5, Table 5.3). Sprat in the Baltic regions had low probabilities of

being negative when analyzed with independent residual error structures (Western Baltic:
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0.29; Eastern Baltic: 0.61) although the evidence for negative impacts was greater when

autcorrelation was accounted for (Western Baltic: 0.8; Eastern Baltic: 0.82) (Figures 5.4–

5.5, Table 5.3).

Post-estimation relationships

No relationships were found between the strength of the interaction terms and tempera-

ture or latitude in the herring or mackerel analyses (Figure C.1–C.2). The relationship with

longitude showed that the interaction terms for herring were typically stronger in the North-

west Atlantic regions (Figure C.1).

5.5 Discussion

Our meta-analysis of species interactions documented an overall negative relationship be-

tween Atlantic herring or mackerel abundance and pre-recruit cod survival across the North

Atlantic (Figures 5.3–5.5). This illustrates the importance of considering predation as a

driving factor in recruitment relationships. Our findings consolidate results from a num-

ber of investigations at the regional level and suggest a general ecological link between

pelagic and demersal communities via interactions occurring during the early life stages.

The Bayesian approach allowed for probabilistic assertions on the direction, strength and

uncertainty associated with these interactions at mutiple levels.

Regional variation and interpretation

The six Northwest Atlantic regions displayed negative relationships with herring (Eastern

and Western Scotian Shelf excluded) and mackerel (Table 5.3, Figures 5.3-5.5). Many of

the Northeast Atlantic populations exhibited negative relationships with both herring and

mackerel. The finding that the strength of the effect of herring becomes increasingly more

negative further west (Appendix) could reflect the historical differences in exploitation be-

tween the Northwest and Northeast Atlantic, with intense fisheries for both species in the

Northeast Atlantic preventing the dominance of herring.

In the Baltic and Kattegat regions, however, flat or positive relationships with both

herring and sprat were observed, although these became weakly negative when autocorre-

lation was accounted for (Table 5.3). Paradoxically, the Baltic region is where predation

by herring on cod eggs was directly observed (Köster and Möllmann, 2000) and a negative
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Figure 5.3: Partial regression plots of the relationship between standardized cod pre-recruit

survival and herring total biomass by region. The effect of cod spawning stock biomass is

removed prior to plotting, making the slope of the relationship interpretable as the interac-

tion coefficient. Observations are displayed as grey lines with the first and last time point

indicated by a white and black point, respectively. The dashed, solid black and solid blue

lines are from the: separate (unpooled), hierarchical and autocorrelated best fitting models

(Table 5.2), respectively.
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Figure 5.4: Partial regression plots of the relationship between standardized cod pre-recruit

survival and other pelagic species total biomass by region. Details as in Figure 5.3.
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Table 5.2: Cod and pelagic model comparison table. Each model has an ID referred to in the text. Terms for each model also

includes an offset (ln(S)). Complete pooling refers to fits in which all the data were combined without reference to region;

unpooled refers to separate parameter estimates per region; and hierarchical refers to the partial pooling model. The residual

variance structure is either independent or autocorrelated with combined or separate parameters by region. The effective number

of parameters is given by pV , DIC is the sum of the mean deviance and pV , and ∆DIC is the difference in the DIC values between

the model in that row and the best model of those investigated per interacting species. Boxed cells refer to best fitting models

with alternative error variance structures in unpooled and hierarchical independent and autocorrelated settings. These are further

discussed within the text.

Herring Mackerel Sprat Capelin

ID Terms Residual Variance D̄ pV ∆DIC D̄ pV ∆DIC D̄ pV ∆DIC D̄ pV ∆DIC

Complete pooling

p1 α N(0, σ2

ε) 1624.59 1.84 763.07 1069.46 2.16 385.58 179.15 2.26 62.46 228.74 2.05 145.65

p2 α + βS N(0, σ2

ε) 1552.27 3.13 692.03 1035.88 3.25 353.1 161.19 3.19 45.45 224.79 3.14 142.79

p3 α + γH N(0, σ2

ε) 1621.01 3.12 760.76 1068.51 2.87 385.34 178.92 3.42 63.4 222.93 3.31 141.10

p4 α + βS + γH N(0, σ2

ε) 1550.56 3.97 691.16 1034.4 4.43 352.8 162.03 5.2 48.3 221.08 4.04 139.98

p5 α + βS + γH N(φǫj,t−1, σ
2

ε) 1090.45 5.52 232.6 807.21 5.49 126.67 119.22 5.43 5.71 113.66 5 33.53

Unpooled

u1 αj N(0, σ2

ε) 1119.36 15.16 271.15 781.23 11.6 106.8 144.14 3.24 28.44 91.74 4.41 11.01

u2 αj + βjS N(0, σ2

ε) 1005.48 30.64 172.75 755.98 22.61 92.56 138.62 5.61 25.3 77.65 7.49 0

u3 αj + γjH N(0, σ2

ε) 1079.83 31.39 247.86 773.24 22.7 109.91 144.01 5.55 30.62 93.75 8.09 16.70

u4 αj + βjS + γjH N(0, σ2

ε) 972.25 44.78 153.67 720.26 34.02 68.24 140.2 7.86 29.13 79.03 11.7 5.59

u5 αj + βjS + γjH N(0, σ2

ε,j) 928.72 67.51 132.86 657.95 47.91 19.83 138.6 9.25 28.92 81.07 17.28 13.21

u6 αj + βjS + γjH N(φǫj,t−1, σ
2

ε) 938.05 61.58 136.26 715.83 45.71 75.51 119.35 10.76 11.17 82.38 16.5 13.73

u7 αj + βjS + γjH N(φǫj,t−1, σ
2

ε,j) 881.81 106.94 125.39 658.59 70.02 42.58 107.26 12.12 0.45 84.66 26.03 25.56

u8 αj + βjS + γjH N(φjǫj,t−1, σ
2

ε,j) 802.44 98.76 37.84 627.88 73.36 15.21 106.52 12.42 0 67.60 21.57 4.03

Hierarchical

h1 aj N(0, σ2

ε) 1119.36 14.88 270.87 781.38 11.69 107.03 – – – – – –

h2 aj + bjS N(0, σ2

ε) 1008.51 28.1 173.24 756.94 20.38 91.28 – – – – – –

h3 aj + gjH N(0, σ2

ε) 1087.52 18.05 242.2 774.94 13.97 102.88 – – – – – –

h4 aj + bjS + gjH N(0, σ2

ε) 988.75 78.25 203.63 727.06 38 79.02 – – – – – –

h5 aj + bjS + gjH N(0, σ2

ε,j) 938.04 74.82 149.50 668.04 52.4 34.41 – – – – – –

h6 aj + bjS + gjH N(φǫj,t−1, σ
2

ε) 953.21 47.61 137.46 723.17 40.5 77.64 – – – – – –

h7 aj + bjS + gjH N(φǫj,t−1, σ
2

ε,j) 888.15 75.04 99.82 662.3 55.13 31.39 – – – – – –

h8 aj + bjS + gjH N(φjǫj,t−1, σ
2

ε,j) 809.01 54.35 0 629.88 56.16 0 – – – – – –
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Table 5.3: Posterior means of the interaction coefficients by region. Herring and mackerel estimates derive from models: u5

unpooled; h5 hierarchical with independent errors; and h8 hierarchical with autocorrelated errors in Table 5.2. Sprat unpooled

independent and autocorrelated estimates derive from models u5 and u8, respectively. Capelin independent error estimates derive

from model u4. Probability of the interaction coefficient being negative is given in parentheses.

Herring Other species

Region Unpooled Hierarchical Autocorrelated Species Unpooled Hierarchical Autocorrelated

GB -0.155 (0.864) -0.053 (0.954) -0.038 (0.979) Mackerel -0.082 (0.697) -0.152 (0.94) -0.114 (0.969)

GOM -0.172 (0.986) -0.047 (0.926) -0.038 (0.971) Mackerel -0.081 (0.707) -0.126 (0.892) -0.084 (0.884)

4X – – – Mackerel -0.14 (0.954) -0.132 (0.957) -0.098 (0.949)

4VsW – – – Mackerel -0.526 (0.998) -0.199 (0.962) -0.109 (0.91)

SGOSL -0.072 (1) -0.065 (1) -0.033 (0.954) Mackerel -0.433 (1) -0.324 (1) -0.161 (0.994)

NGOSL -0.214 (0.86) -0.055 (0.891) -0.037 (0.96) Mackerel -0.138 (0.891) -0.22 (0.987) -0.124 (0.951)

NEAR 0.008 (0.227) -0.006 (0.662) -0.03 (0.97) Capelin -0.036 (0.526) – -0.001 (0.505)

NORCOAST -0.063 (1) -0.06 (1) -0.038 (0.974) Capelin -0.021 (0.704) – -0.022 (0.815)

ICE -0.13 (0.996) -0.074 (0.996) -0.044 (0.985) Capelin -0.098 (0.903) – -0.102 (0.887)

WSCOT -0.137 (0.754) -0.046 (0.894) -0.038 (0.968) Mackerel 0.699 (0.076) -0.114 (0.824) -0.09 (0.906)

IS 0.209 (0.152) -0.03 (0.803) -0.036 (0.96) Mackerel 0.024 (0.463) -0.154 (0.924) -0.116 (0.97)

CS -0.325 (0.616) -0.042 (0.868) -0.036 (0.952) Mackerel -0.33 (0.96) -0.194 (0.976) -0.125 (0.978)

NS -0.096 (0.966) -0.057 (0.942) -0.042 (0.973) Mackerel -0.107 (0.653) 0.005 (0.498) 0.016 (0.627)

KAT 0.067 (0.296) -0.034 (0.805) -0.037 (0.962) - – – –

BA2224 0.291 (0.063) -0.017 (0.731) -0.035 (0.953) Sprat 0.031 (0.289) – -0.079 (0.796)

BA2532 0.058 (0.096) -0.012 (0.645) -0.037 (0.977) Sprat -0.014 (0.614) – -0.04 (0.819)
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recruitment relationship with sprat has been previously published (Sparholt, 1996). Po-

tential reasons for this disparity include confounding environmental variables, particularly

changes in salinity and oxygen levels. These may override or mask the effects of species

interactions on cod recruitment. The time period used to investigate the sprat relation also

differed from previous investigations (Sparholt, 1996). The series used for herring for the

western Baltic and Kattegat is the shortest series used with comparatively little contrast

over the 17 years of abundance data (Figure S14). Similarly, no relationship existed be-

tween herring abundance and juvenile cod survival in the longest time series available, the

Northeast Arctic. Hjermann et al. (2007) concluded that the effect of herring on the recruit-

ment of cod in that region is likely an indirect effect mediated via exclusion of capelin and

increased cannibalism in cod, which is in turn dependent on the stock size. So in the case

of the Northeast Arctic cod, it is unlikely that a direct effect of herring would be detected

in our models.

Caveats

While the present study attempted to use all the available information to investigate the hy-

pothesis, ultimately our approach remains correlative. Yet, the analysis goes beyond other

observational studies, in that it is essentially replicated across regions with differing his-

torical trajectories, particularly for herring. As potentially confounding factors remain un-

controlled for, however, our conclusions must be treated with caution (Montgomery et al.,

2001).

The rationale behind the hierarchical approach is that we effectively treat each pop-

ulation as a realization of a natural experiment (Myers and Mertz, 1998b). An underly-

ing assumption is that the same processes operate in all populations. The validity of this

assumption may be critically questioned for investigating species interactions where as-

semblages of prey, predators, and competitors vary in their composition between regions.

Yet, in adherence with the ecosystem-based management approach (Larkin, 1996), there

remains a requirement to understand pertinent interactions over the large scales at which

these populations are managed. This requirement is all the more important when consider-

ing the roles of trophic cascades (Pace et al., 1999; Frank et al., 2005; Myers et al., 2007)

and alternative stable states (Scheffer et al., 2001; Beisner et al., 2003) in determining pop-

ulation persistence and recovery at low population levels.
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By assembling the longest available time series and visualizing the partial regressions,

the time-dynamic of the relationship between pelagic fish abundance and cod survival can

be inspected. Ideally multiple historical peaks and troughs in the abundance of the interact-

ing pelagic species would ensure that the hypothesized effect on survival does not appear

unidirectional in Figures 5.3 and 5.4.

It is also important to note that the dominant small pelagic species within a region are

treated separately whereas their combined effect as a functional group may be more rel-

evant (Petrie et al., 2009). Given that some small pelagic species such as mackerel are

highly ranging, we did not attempt to combine their abundance with that of more localized

stocks. Index combination methods may be of useful in this regard.

Spatial overlap in spawning and feeding areas

Given the relatively small gape size of small pelagic species, the inferred predation or

competition for the same food source (early stage copepods) must concern eggs and small

larvae, either prior to or shortly after settling. Cod spend up to 10 weeks in the planktonic

phase before metamorphosis. The overlap between feeding pelagic fish and the larvae dur-

ing this stage is critical in determining the strength of this source of potential mortality

(Huse et al., 2008). Inter-annual variability in temporal and spatial dynamics make it diffi-

cult to obtain accurate estimates of spatial overlap. The approach used here was to review

of literature on the general spawning areas for cod and feeding areas of pelagic species (Ap-

pendix). Broadly, there appears to be sufficient evidence for the potential overlap of feeding

herring and cod eggs and larvae. The picture is less clear for mackerel stocks, which are

typically highly migratory. An a-priori decision was made to analyse only those regions

presented in the stock assessment report but it is noteworthy that mackerel are increasingly

caught in other regions, e.g., off the Faroe Islands and Iceland. However, these did not

appear in the dominant migratory patterns and were thus excluded. It is also questionable

how much mackerel foray into the North Sea, especially since this historic component was

virtually extirpated and has not recovered. The results from the North Sea were in agree-

ment in that no relationship was observed between cod survival and mackerel abundance

there (Table 5.3).

Other potential covariates
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Much attention has focused on the important effects of temperature anomalies and cli-

matic trends (O’Brien et al., 2000; Brander and Mohn, 2004; Planque and Fredou, 1999;

Mantzouni et al., 2010) on cod recruitment. With the effect of temperature varying ac-

cording to the geographical position, for example, higher temperatures favouring strong

recruitment in more northern areas but lower temperatures favouring recruitment in more

southern stocks. There have also been studies into the effects of larval prey availability

and subsequent recruitment, e.g. match-mismatch between young cod and zooplankton in

the North Sea cod (Beaugrand et al., 2003). Recently, a detailed study of the North Sea

by Fauchald (2010) investigated the effect of sea surface temperature, copepod (Calanus

finmarchicus) abundance, adult herring abundance and a competitive effect of herring pre-

dation on C. finmarchicus. The effect of herring on cod survival remained significant after

having accounted for the effects of a non-linear function of adult cod abundance and the

abundance of C. finmarchicus in the best fitting model. Although the present study ignored

possible covariates detailed above, it is the first to investigate this potential ecological inter-

action across the north Atlantic region. Ultimately a multiple-hypothesis testing framework

or hierarchical implementation of the approach adopted in Fauchald (2010), including the

methods developed in Mantzouni et al. (2010), may best determine the proximal relation-

ships. Deriso et al. (2008) present promising generalized methods at the stock assessment

stage that allow for the investigation of multiple factors through a combination of multiple

factor and randomization tests. Such an approach is beyond the scope of the present analy-

sis.

Modelling assumptions

The key modeling assumptions are that the strength of density dependence is a function

of the initial stock density and that the predation mortality term is linear in predator abun-

dance; hence the extended Ricker formulation. Cannibalism has been observed for many

cod stocks so the first choice appears appropriate. Given that eggs are likely only a small

proportion of the pelagic species diet, satiation is unlikely to occur so that the linear func-

tional form may also be a suitable choice (Sparholt, 1996). From a purely practical perspec-

tive, the extended Ricker model also lends itself to relatively straightforward visualization,

including marginal effects such as the partial regression plots we present.

Using a standard definition for depensation: “.. the per-capita rate of growth decreases
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as the density or abundance decreases to low levels” (Liermann and Hilborn, 2001), the lin-

ear predation mortality term we have used does not give rise to a depensatory model. The

per-capita rate of growth is monotonic decreasing over adult abundance at a given predator

abundance. Rather, what we have addressed here is a simpler question of whether the per-

capita growth rate is depressed with increasing predator abundance.

Implications

Our extension of the Ricker model is basic and provides a surface with no discontinu-

ities, thresholds or inherent depensatory dynamics. Therefore, we cannot say conclusively

whether the systems under investigation have entered new regimes or stable states. Pe-

traitis and Dudgeon (2004) set out conditions for the detection of alternative stable states in

the marine environment, including: that the alternate states occur in the same habitat; the

perturbation must occur quickly; and the system observed for long enough to ensure the

stability of the alternate state. In comparison, our observational data are gathered over dy-

namic environmental conditions where fishing has been relatively protracted over modest

time periods. So the ability to detect true alternate states may be limited. From the time-

dynamic of Figures 5.3 and 5.4, the relationships are noisy but do not display any sharp

transitions to indicate alternate states.

Given the finding that the survival of pre-recruit cod generally co-varies inversely with

pelagic fish abundances, a direct applied utility is in adjusting the recovery time for popula-

tions at severely reduced abundances. Myers et al. (1997b) estimated recovery times from

maximum population growth rates based on past data. The inherent assumption that the

environment remains constant may not be realistic, given the large changes in prey abun-

dance, and the potential feedback on predator recruitment discussed here. Incorporating

changes in the abundance of potential egg and larval predators will modify the realized

population growth rates. Time series alternatives that don’t include specific drivers but al-

low the population growth rates to evolve in time (Peterman et al., 2003) should also merit

further investigation in predicting recovery times given contemporaneous environmental

conditions.

From a management perspective, the question must ultimately be posed whether the

negatively interacting species should be fished down or cropped. Given the correlative na-

ture of the present study, to advocate such an action without taking into account secondary
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interactions of importance (Bax, 1998) would be ill-advised. For example, were the small

pelagics in a region to be fished down, predators of those species and cod, e.g. grey seals

(Halichoerus grypus), could increase the per-capita predation rate on cod. We anticipate

that further investigation of these secondary interactions will provide important insights

into the lilkely indirect effects of intervening management options. Such an approach gen-

eralizes to holistic ecosystem models. These models are far more general than those pre-

sented here but they also carry many assumptions and ignore uncertainties (Whipple et al.,

2000). The hierarchical posterior distributions we have estimated could contribute in this

regard.



Chapter 6

DISCUSSION

In this thesis, I have sought to contribute further understanding of important ecological

processes that influence highly variable fish recruitment. Questions on the effects of fish

density, environmental forcing, and predation were addressed using methods specifically

designed to accommodate and interpret patterns of variability. In this general discussion,

I first consider the main findings holistically; the general approach and details are then

critiqued retrospectively; and finally, I discuss potential avenues for future work.

6.0.1 Ecological Inference from Variable Recruitment Data: Thesis Summary

Advances in the investigation of population renewal for any one fish population may be

hampered by highly variable abundance data (Myers and Mertz, 1998b; Myers, 2001). In

Chapter 2, I reviewed the history of recruitment science from early observations on the

variability in yearclass strength (Hjort, 1914), through the foundational contributions, to a

discussion on the contemporary challenges of incorporating multiple dimensions of change.

Much progress has been made, as also reviewed in Frank and Leggett (1994), but I showed

that we are still confronted with: highly variable data, multiple hypotheses and inconclu-

sive inference. What is required is a synthetic approach to investigating these outstanding

issues. Such a procedure should incorporate information across multiple populations to ad-

dress stated hypotheses on the structure of the mean and variance of fish recruitment. The

development of this approach and the inference based thereon was the central goal of my

thesis.

Studies of fish and insect populations are shown to have contributed significantly toward

the development of population dynamics theory (Allison, 1999). Commercial interests in

both groups spurred research into questions of population regulation. Questions regarding

the relative importance of density-dependent and density-independent mortality fueled over

half a century of research and debate (McLaren, 1971; Turchin, 1999, for summaries). I

105
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argued in Chapter 2 that highly variable abundance data contributed toward the many di-

vergent theories of regulation; a topic which was examined in detail in Chapter 3.

Myers (1998) contended that the incorporation of environmental data into population-

specific recruitment studies often results in ephemeral relationships that don’t survive sub-

sequent re-testing and, as a result, often have little relevance in resource management. The

argument was made for the extension of meta-analytical techniques to investigate such rela-

tionships. The latter half of Chapter 2 considers these extensions theoretically and empiri-

cally. Specifically, I focused on extensions to include predation during the early life history

stages. From a theoretical perspective, functional forms other than a linear predation mor-

tality rate were found to readily induce depensatory dynamics. If common, such dynamics

could generally interfere with the recovery of populations that were depleted to low levels.

The ubiquity of depensatory dynamics in marine fish is, however, debated with hierarchical

analyses describing it as rare (Myers et al., 1995a; Liermann and Hilborn, 2001) whereas

expert visual inspection found it to be a more prevalent phenomenon (Walters and Kitchell,

2001). The question of depensation is examined in greater detail in Chapter 4. Return-

ing to the investigation of environmental relationships, the need for methods to standardize

interaction coefficients while making maximal use of available datasets across many popu-

lations is stressed. An application of these methods was presented later, in Chapter 5.

Chapter 2 concludes with a critique of the hypothesis-specific framework. While spe-

cific hypotheses are central to any scientific endeavor, the sheer number of potential hy-

potheses (e.g. concerning physical, chemical, and biological environments, life-history,

and maternal effects) means that there will likely always be alternative explanatory re-

lationships touted. By combining datasets the meta-analytical approach may safeguard

against such ephemeral relationships, yet it remains essentially correlative. As a result

of these considerations, I emphasize the importance of time-varying parameter techniques

(Zeng et al., 1998). These allow for stochastic variation in parameters of interest and, as

such, have the potential to integrate across many sources of environmental change. The

state space modeling framework (Harvey, 1991; Durbin and Koopman, 2001) is central in

this regard and forms the subject matter of Chapter 4. From an applied fisheries perspec-

tive, this approach may ultimately be a more attractive prospect for incorporating dynamic
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change into stock assessments than explicit environmental hypotheses.

Chapter 3 began to address the challenges of ecological inference in the presence of

highly variable recruitment data outlined in Chapter 2. A theoretical and empirical treat-

ment of the relationship between survival variability and population density in marine,

freshwater and anadromous fishes was presented. It was shown that where density de-

pendence occurs, changes in the mean survival will also be accompanied by changes in the

variance in survival. The theory presented in Chapter 3 suggests that the pattern of variabil-

ity relates to the functional form of density dependence. A general increase in variability

at low densities was predicted from most commonly applied functional forms of density

dependence. We employed meta-analytical techniques to test for changes in variability,

where the parameters governing the change were estimated and combined hierarchically.

The results of this meta-analysis, applied to 147 populations comprising 39 species, showed

a general increase in variability of survival at low adult abundance in agreement with the

theoretical expectations. We conclude that density dependence can explain such changes

and, moreover, that variable abundance data need not preclude its investigation. In fact,

the highly variable nature of fish recruitment may represent more than just ‘noise’ and

may actually reflect ecological processes that can be studied and quantified using the meta-

analytical techniques that underlie this thesis.

Recruitment variation was further partitioned in Chapter 4, where state space models

were employed to investigate changes in the maximum reproductive rates of Atlantic cod.

There, recruitment variation was partitioned into that arising from measurement error and

that owing to variability in the maximum annual reproductive rate. Specifically, I tested and

rejected the null hypothesis that pre-recruit productivity in Atlantic cod has remained con-

stant through time. The univariate (single population) application largely followed that of

Peterman et al. (2003). Results of univariate analyses showed that the local-level (random

walk) model typically provided the best fit. When applied to 16 datasets of cod recruitment,

substantial temporal changes in productivity were estimated with an underlying tendency

of declining reproductive rates observed across many regions. The methodology was then

extended to the multivariate case where the covariance structure of the trends in produc-

tivity across geographic regions is also of interest. The multivariate treatment showed
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the between-population coherence to decay with increasing geographic distance. Northern

populations showed a differential response to those at southern latitudes in the response to

environmental conditions, i.e. populations at southern latitudes showed a positive corre-

lation in their annual reproductive rates but a negative correlation with those in the north.

Some regions such as, in the northeast Atlantic: the North Sea, West of Scotland, Irish and

Celtic Seas; and in the northwest Atlantic: Georges Bank, Gulf of Maine, and Southern

Scotian Shelf and Bay of Fundy showed an apparent clustering of positive correlation. In

the northwest Atlantic, the correlations were found to be weaker and in some cases inverse

to that presented in Rothschild (2007). I conclude that distinct changes in productivity have

occurred in these populations over time and that time-varying parameters are likely to play

a central role in the incorporation of such change into stock assessment. Further avenues

for the application of the multivariate methodology to a multispecies setting are presented

below (see: Future work).

A potential hypothesis capable of explaining the conserved trend in productivity de-

cline observed in Chapter 4 was the subject of Chapter 5. I asked whether predation by

small pelagic species has the potential to depress survival of early life history stage cod

thereby reducing its pre-recruit productivity. In particular, I investigated the effect of the

abundance of Atlantic herring, Atlantic mackerel, European sprat, and capelin on cod re-

cruitment across 16 regions in the Northwest and Northeast Atlantic. Methods to standard-

ize interaction coefficients across regions (via the area occupied) were developed, as well

as a treatment of time series and measurement error variances. I partitioned the variance

using a hierarchical Bayesian mixed effects model, which incorporates the effects of adult

abundance and density dependence as well as interactions between the species. Negative

effects of herring and mackerel were observed across many regions, whereas the relation-

ship with other small pelagics was more ambiguous. The extended hierarchical models

consistently fit the data better than analyzing the populations separately. It is concluded

that hypotheses of negative interactions between herring and mackerel and cod pre-recruit

survival are largely borne out in the hierarchical analyses and may be capable of explaining

declines in the productivity of Atlantic cod populations investigated. The critique section

below expands on this surmise.
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6.0.2 A Critique on the Methods Applied

The work presented in my thesis centered on the separation of variation into different com-

ponents explained by ecological processes, measurement error and between-population

variation. This section proceeds with a critique on the strengths and weaknesses of the

theory, methods and data employed.

Suitability of the Theories

As with all observational studies, the need for theory to inform the design and contextual-

ize the results of meta-analytic stock recruitment relationships is great. When investigating

large datasets, there is the potential to mine the data for information without explicitly al-

luding to theory. I think this exploratory approach may be of use where no theory exists

or perhaps when first approaching a very large dataset. In contrast, population ecology

has, as its base, laws and postulates very similar to those of the physical sciences (Turchin,

2001; Murray, 2000; Quinn, 2003), although see Lawton (1999) for an alternative view on

the difficulty or establishing laws at the community level; secondly, individual abundance

datasets are typically short, auto-correlated and highly variable. As a result, I stress the

need for theories derived from first principles, which can subsequently be tested on multi-

ple datasets.

The theory of changing patterns in variability derived in Chapter 3 attempts to derive the

expected relationships between the variability in survival and adult density. The functional

forms of density dependence considered included a range of models from density indepen-

dence to compensatory and over-compensatory density-dependent mortality. While this

encompasses the gamut of most commonly applied functional forms, higher order or de-

layed density-dependent relationships (Turchin, 1990) were ignored. Also, expectations on

the patterns of variability between stages from egg to juvenile were derived but not further

investigated, as the data available were only spawner and recruit abundances. This issue is

further elaborated upon in the Future work section below.

The derivations of Chapter 2 contain a suite of functional forms for the predation mor-

tality. These were found to readily induce depensatory dynamics in correspondence with

the cultivation-depensation hypothesis (Walters and Kitchell, 2001). Yet in Chapter 5, I

only apply the straightforward linear predation mortality rate put forth by Lotka (1925)

and Volterra (1926a). Although the suitability of this form for filter feeding predators such
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as herring was suggested in Swain and Sinclair (2000), other forms of predation mortality

might also be interesting to investigate. The hyperbolic and sigmoidal forms were found

to be analytically intractable. Although a large portion of mathematical analysis is dedi-

cated towards the numerical solution of such problems, I opted for the tractability of the

simpler relationship. Numerical solvers such as the Runge Kutta method (Runge, 1895;

Kutta, 1901) can be applied using the lsoda package in R (Soetaert et al., 2010). The nu-

merical solver could also be embedded in a maximum likelihood framework to optimize

over unknown parameters for a given dataset. This would provide a method to investigate

alternative model formulations of increased biological realism.

Chapter 4 also contains a narrow range of theoretical models. Here, linear, normal mod-

els were used such that the Kalman filter could be employed. The Ricker model is central in

this regard. Where the models are non-linear or non-Gaussian, more complicated filtering

algorithms must be applied such as extended Kalman filters, Bayesian filtering or integral

approximation methods such as the Laplace approximation (Pedersen et al., 2011). Initial

investigations undertook using the Laplace method in AD-Model Builder’s random effects

package (Skaug and Fournier, 2006), showed it to perform well in the univariate case.

For the multivariate case, however, the dimension of the integral required a prohibitively

large amount of time to compute and converge so as to render it impractical for testing and

simulation purposes. Nevertheless, methods that accomodate non-linear and non-Gaussian

dynamics merit further investigation given the propensity of ecological systems to behave

in more complex, non-linear ways (Turchin, 2003).

Meta-analytical Assumptions

While the generality and utility of the meta-analytical approach have been highlighted else-

where (Myers and Mertz, 1998b; Hilborn and Liermann, 1998; Harley, 2002; Peterman,

2004), it is important to briefly discuss its main strengths and weaknesses here. Meta-

analysis can be applied to collated results from separate studies on the same question (Nor-

mand, 1999) or to all sets of original ‘raw’ data using a hierarchical model (Gelman and

Hill, 2007). The latter approach is typically favored as it doesn’t rely on point metrics and

standard errors alone to carry the information content of the whole dataset. Implementing a

hierarchical analysis on a stated question requires that decisions be made on: the methods
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employed to collate component datasets, how representative these are and if any other bi-

ases exist that might restrict the generality of the conclusions (Cooper and Hedges, 1994).

Of particular concern in studies of stock recruitment relations is selection bias (Hilborn

and Liermann, 1998). Collated databases of stock assessment output can hardly be consid-

ered random samples of fish populations, as they mostly concern commercially exploited

populations of sufficient economic value that are relatively persistent in the face of fishing

pressure (Hilborn and Liermann, 1998; Harley, 2002). As such, fish populations in regions

where assessments are not feasible, for a variety of ecological and economic regions, will

be omitted. I think this issue is closely related to that of extrapolation in regression analysis

(Montgomery et al., 2001). In both regression and meta-analysis we may be tasked with

predicting the expected outcome of an, as yet, unobserved set of conditions. Directives for

drawing cautious inference only within the domain of the collated data are well founded in

both settings. That is, if we have collated and meta-analytically analyzed abundance data

on commercially exploited temperate marine fish populations, we draw our inference and

discussion on the same. In the case of Chapter 5, it is not be necessary to generalize to all

cod stocks, as we were predominantly interested in the interactions estimated only in those

regions presented.

By addressing questions of population dynamics across taxonomic and geographic dis-

tances with straightforward normally-distributed random effects analyses, we implicitly

assume random deviations around the fixed effect. Where gradients other than those ex-

plicitly included in our analyses might cause non-random deviations these could alter the

inference drawn. For example, were the interaction coefficients of Chapter 5 found to devi-

ate around a relationship with latitude, we might conclude that the between-study variabil-

ity in the effect is greater than it actually is. Such effects may be particularly important on

the boundaries of significance. As the potential number of environmental gradients along

which these deviations may lie is great, the need for guiding theory is stressed once again.

Incidentally, we tested such gradients in Chapter 5.

Inferential Framework

Debate on the appropriateness of frequentist or Bayesian inference in Statistics has a long

and often polemical history (Hald, 2007; Stigler, 2007). I have adopted a pragmatic ap-

proach to model implementation. Where circumstances required, such as in Chapter 5
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where assumptions regarding the effect of measurement error in the data were explored, the

flexibility of Markov Chain Monte Carlo methods in Bayesian inference was utilized. Sen-

sitivity to the prior assumptions was also investigated. Elsewhere, I have mostly adopted

maximum-likelihood-based inference, although a Bayesian interpretation may be assigned

to the Kalman filter of Chapter 4 when initiated at a diffuse starting density (Petris et al.,

2009). In fact, Bolker (2008) notes that the difference between frequentist and Bayesian

approaches becomes increasingly subtle in relatively advanced approaches such as hier-

archical and state space models. While I adopted a pragmatic approach to inference, I

recognize that this could be seen as inconsistent by ardent followers of either school.

Data Used

Throughout my thesis, extensive use was made of large databases that collate abundance

time series and metadata from many populations (Myers et al., 1995b; Ricard et al., in re-

view). As with all meta-analyses the issue of knowing the data is centrally important. For

Chapters 4 and 5, I extracted directly from assessments, which I read thoroughly. Chapter

3 used the original database, where I did not read all of the assessments, although these

were quality controlled for consistency previously (Myers et al., 1995b).

An important issue arises with modern-day stock assessments that will affect their use

in meta-analyses. Stock assessment techniques such as statistical catch-at-age and separa-

ble models can often tie the estimation of recruitment to a survey index that covers only

part of the catch time series. The resultant recruitment series will be largely deterministic

(in accordance with the assumed stock recruitment relationship) in the period of no survey.

Such series should, in general, not be used within meta-analyses of the stock recruitment

relationship. Generally, the level at which assumptions are made on the form of the stock re-

cruit relationship within an assessment is extremely important. More traditional assessment

methods such as VPA (which made up the majority of assessment in the original database)

make no assumption on the relationship between spawner abundance and recruitment. Oth-

ers assume a stock-recruit relationship but allow the parameters of which to be estimated

within the assessment. Still others use the output from other meta-analyses as priors for the

parameters of the assumed relationship. In this regard, subsequent meta-analysis could be

unduly influenced by the assumptions in the stock assessment process itself, including the

potential for double use of meta-analytical results (Minte-Vera et al., 2005). This situation
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can only be avoided by thoroughly knowing the assessments and communicating with the

ultimate authority of the assessment scientists.

A coefficient of variation of sampling/measurement error of 30% or higher may be

common for recruitment estimates (Kehler et al., 2002). The treatment of this source of

variance is therefore of primary concern. The effects of measurement error on the esti-

mated parameters of stock recruitment relationships, particularly in the linearized Ricker

model have been investigated by Walters and Ludwig (1981) and Kehler et al. (2002).

Both studies found the magnitude of the bias in the estimated parameters to depend on the

range of spawning stock biomasses recorded with the bias typically decreasing at greater

ranges. Traditional stock assessment outputs are not usually accompanied by estimates of

their uncertainty unless bootstrap methods have been applied. Newer methods such as state

space approaches do include estimates of uncertainty on annual estimates (Pella, 1993;

Gudmundsson, 1994; Fryer et al., 1998; Meyer and Millar, 1999). Yet these methods are

not implemented widely enough such that estimates of the measurement error could be ap-

plied directly in my analyses for all populations, e.g. only the west coast of Scotland cod

population has these estimates presented currently. The approach I adopted in Chapter 5

was to investigate the effects of a range of CVs of measurement error on the overall- and

region-level parameter estimates. This was implemented in a hierarchical Bayesian frame-

work that can readily incorporate additional sources of variability. Such an approach was

not performed in the earlier Chapter 2.

The resolution of the data used here is also important to discuss. I have used annual es-

timates from fisheries stock assessments. Admittedly, this is a coarse tool for investigating

processes which occur at a finer spatial and temporal resolution. Much of the interest-

ing dynamics happens at distinct stages within this period (Myers and Cadigan, 1993c,a;

Houde, 2008a). Better temporal resolution could be achieved using survey data where the

abundance at various ages/stages would be available. Long-term survey data covering the

egg to larval to juvenile phases are rare but do exist. These have the potential to address

further foundational questions on critical stages in population regulation (Harley, 2002)

and species interactions. The use of variance partitioning methods will likely be central to

those investigations (see: Future work below).
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6.0.3 Application to Fisheries and Oceans Management

A major goal of recruitment science is to inform and guide the rational exploitation of

natural resources, as part of successful fisheries and oceans management. I think the great-

est potential for application of my thesis results lies in the results of Chapters 4 and 5.

Chapter 4 shows that, as we manage to the long-term average of pre-recruit productiv-

ity, we may severely over or under-estimate contemporary productivity of the population.

Time-varying parameter techniques allow for more adaptive management based on present

conditions. Forecasts in most assessments are typically based on an average small number

of recruitment values in the preceding years. The implicit assumption is that the process is

stationary. It would be an interesting exercise to retrospectively compare predictions from

both approaches with subsequent observations for a number of populations.

Another, arguably more pressing, application might be in the recognition that manage-

ment reference points are dynamic entities. This will bring chagrin to fisheries managers,

where long-term strategies rely on stable conditions. Yet, as the ecosystem approach to

fisheries management (Larkin, 1996) is adopted, it is essential that the dynamic nature of

the environment is resolved with the need for consistent and long-term management goals.

Time-varying parameter techniques may have a lot to contribute in this regard by providing

near real-time estimates of the productivity of the population.

Walters and Collie (1988) made the convincing argument that sanctioning research into

environment- recruitment relationships under the pretense of management application is

questionable. They contend that the identification of reliable pre-recruit survey indices is

likely more effective. While I agree that there is an important role for good survey indices,

there is no reason why continued investigation of environmental relationships cannot exist

in parallel. Environmental data are relatively easily obtained, particularly with develop-

ments in remote sensing. I contend that this situation is exactly what state space models

were developed for. As an aside, much of the origins of state space methodology lie in

aerospace research (Shumway and Stoffer, 2000); no control engineer tracking a spacecraft

would rely solely on the equations governing the motion without measurements on the po-

sition. State space models were designed to couple the scientific model with observations.

Analogously, the underlying relationship between spawners, recruits and the environment
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(containing unknown parameters) would, in turn, be updated using the survey index mea-

surements. In this way, maximal use is made of theory and data in addressing uncertainties

regarding the strength of an incoming yearclass.

Much ecosystem modeling has necessarily focused on deterministic parameterization

of process-oriented whole ecosytem models (Whipple et al., 2000). Much of this work has

focused on interaction within the adult stages. The hierarchical parameter estimates and

their uncertainties of Chapter 5 could be used to parameterize whole ecosystem models to

better reflect understanding of interactions during the early life stages. I have preliminarily

implemented this approach for Georges Bank cod with colleagues from the University of

Rhode Island using the LeMANS ecosystem model (Hall et al., 2006). Using this approach,

the interactions can be placed in a more holistic framework and the effect of fishing on the

interacting species can be investigated via simulation.

The biological and economic relevance of the parameters estimated within my thesis

might best be explored via management strategy evaluation (MSE) (Kell et al., 2005a).

MSE is a simulation routine designed to develop harvest and management strategies robust

to uncertainties. By including the results of Chapters 3-5 and simulating under various har-

vest regimes, the results could be attributed biological and economic significance within

the system of interest.

6.0.4 Future Work

Moving forward, it is essential that a thorough examination of the potential effects on sub-

sequent meta-analyses made by assumptions on the stock-recruit relationship within an

assessment is conducted. It would be of great instruction to re-run the assessments for

multiple populations (e.g. all cod populations) under a variety of realistic assumptions on

the recruitment relationship. The output could then be used as input to a benchmark meta-

analysis, and the differences in inference highlighted along with potential avenues to either

avoid such a situation or incorporate the assumptions directly within the meta-analysis. A

similar analysis on simulated data with known parameters would also be instructive. It is

possible that the recruitment estimates are still useful although the absence of the investiga-

tive analysis outlined here precludes this conclusion.
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Multispecies modelling has, to date, largely focused on interactions occurring during

the adult phase, although exceptions do exist, e.g. Hall et al. (2006). Yet, the strength of

the cohort is typically determined during the young phases. As such there is a great need

to parameterize species interactions during this stage within holistic models. The results of

Chapter 5 could be used in such parameterizations, as outlined above. In addition, Chap-

ter 4 considered the multivariate case where environmental forcing was evaluated via the

covariance structure in the unobserved states. No directed interactions were formulated

between these disparate Atlantic cod populations. If we were interested in direct interac-

tions between species within a community we could formulate the transition equation of

the multivariate state space models presented in Chapter 4 to include the estimation of such

interactions. Such an approach has previously been applied to estimate community interac-

tions in plankton (Ives et al., 2003) and may have much potential to bridge the ever-present

gap present between process-orientated (Whipple et al., 2000) and empirical approaches to

ecosystem modeling.

With regards to the inter-relationships of the chapters, although all concern recruit-

ment variability, the species interactions of Chapter 5 should be further combined with the

approaches in Chapter 4, both in the univariate and multivariate settings. Considerations

would need to be made on whether the hypothesized species interactions affect the process

or the measurement equations (Shumway and Stoffer, 2000). The class of models termed

autoregressive moving average with exogenous inputs (ARMAX) could be very useful in

formulating the process variant. Consideration would also need to be made on the dynam-

ics of the interacting species, which could also be modeled in state space, as the exogenous

driver would no longer be considered deterministic. How the inclusion of the explicit driver

affects the stochastic behaviour of the productivity term would be of considerable interest.

The relative strength of density-dependent and density-independent mortality is of crit-

ical importance in determining at what life stages abundance is regulated. Central to esti-

mating these effects are abundance data at different stages and an explicit treatment of the

sources of variability. Previously, Myers and Cadigan (1993a) analyzed the relative strength

of density-dependent and density-independent mortality at different life history stages as-

suming a density-dependent functional form that was linear in log abundance (Varley and

Gradwell, 1960). Harley (2002) extended this approach to include non-linear functional
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forms in a state space framework. Yet data-deficiencies, in the Georges Bank and North

Sea cod survey data used, precluded the investigation of Hjort’s critical period hypothesis,

which states that the strength of a cohort is determined very early and is thereafter fixed

relative to other cohorts (Hjort, 1914). I would like to couple the theory of Chapters 2

and 3 with these analytical approaches to investigate hypotheses on critical periods. The

parameters could also be allowed to vary through time (Zeng et al., 1998) thus providing a

dynamic setting for the continued investigation of Hjort’s hypotheses. In contrast to Houde

(2008a), I think there is still much to be learned in Hjort’s shadow, particularly when vari-

able data are investigated using extended meta-analytical methods such as those presented

in this thesis.



Appendix A

APPENDIX FOR CHAPTER 3: SURVIVAL VARIABILITY AND

POPULATION DENSITY IN FISH POPULATIONS

A.1 Supplementary Methods

A.1.1 Analytical Models for Survival Variability

The full theoretical treatment of survival variability and population density proceeds as fol-

lows. Note that the salient features are presented in the Methods section of the manuscript

but are repeated here for continuity.

Recruitment can be written(Mertz and Myers, 1996) as

Rt = Et exp(−(C1,t + C2,t + C3,t)) (A.1)

Where Et is the number of eggs produced in year t and Ci,t is the cumulative mortality in

stage i; i = 1 for the egg stage, i = 2 for the late larval stage, and i = 3 for the juvenile

phase. Population size in the egg, late-larval, and late juvenile phase (when they recruit

to the older population) are given by Et, Nt, and Rt, respectively. In order to analyze the

effect of density dependence on the relationship between variability and reproductive adult

abundance we will examine a model in which density dependence arises in the juvenile

stage, a treatment which is motivated by the demonstration of the suitability of this choice

for many fish populations(Myers and Cadigan, 1993a,b). Stochastic mortality, independent

of density, is assumed to take place during both the larval and juvenile stages. The number

of late-stage larval fish, is Nt = Et exp(−(C1,t+C2,t)). The number of fish surviving from

the late-larval stage through to the end of the juvenile phase is given by

Rt = Nt exp(−C3,t) (A.2)
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It is useful to formulate the above equations in terms of deviations from their means. Letting

C3,t = C3 + ∆C3,t and lnNt = lnN + ∆ lnNt gives

lnRt = lnR + ∆ lnNt − ∆C3,t (A.3)

where

lnR = lnN − C3 = ln(N∗ exp(−C3)) (A.4)

and N∗ is the geometric mean abundance of the late-larval stage(Mertz and Myers, 1996).

Rearranging (A.3)

lnRt − lnR = ∆ lnNt − ∆C3,t (A.5)

exp(lnRt − lnR) = exp(∆ lnNt − ∆C3,t) (A.6)

Rt

R∗

= exp(∆ lnNt − ∆C3,t) (A.7)

Rt = R∗ exp(∆ lnNt − ∆C3,t) (A.8)

where R∗ is the geometric mean recruitment. The effect of density dependence can be

incorporated by writing

∆C3,t = f(∆ lnNt) + δt − f̄ , (A.9)

where f is an as yet unspecified function representing density dependence, δt represents

mortality in the juvenile stage unrelated to density and f̄ is the time average of f(∆ lnNt).

Letting εt =
2
∑

i=1

∆Ci,t be the sum of the demeaned mortalities in the egg and larval stages,

it has been shown(Mertz and Myers, 1995) that

∆ lnNt = ∆ lnEt − εt ≈ ∆ lnSt − εt = lnSt − lnS∗ − εt = ln(St/S∗) − εt (A.10)
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where Et is egg production, S∗ is geometric mean adult abundance, and we have used

∆ lnSt ≈ ∆ lnEt, valid when egg production is linearly related to adult abundance. Sub-

stituting (A.10) and (A.9) into (A.8), we can now write

Rt = R∗ exp(ln(St/S∗) − (εt + f(∆ lnSt − εt) + δt − f̄)) (A.11)

=
R∗ exp(ln(St/S∗))

exp(εt + f(∆ lnSt − εt) + δt − f̄)
(A.12)

= R∗

St
S∗

exp(−(εt + f(∆ lnSt − εt) + δt − f̄)) (A.13)

At a given adult abundance, St = S0, log survival is ln(Rt/S0), therefore, from (A.13), we

have

ln(Rt/S0) = ln(R∗/S∗) − εt − f [ln(S0/S∗) − εt] − δt + f̄ (A.14)

One conclusion is immediately apparent from (A.14): the variability of survival, Var[ln(Rt/S0)],

will be independent of adult abundance only if f [ln(S0/S∗) − εt] is linear. Specifically,

write f [ln(S0/S∗) − εt] = λ[ln(S0/S∗) − εt]. Prescribing a density-dependent mortality

which is linear in log-abundance is the core of key factor analysis(Varley and Gradwell,

1960; Manly, 1990) and is essential to the analytic tractability of key factor analysis. The

variability of survival is derived as follows, substituting λ[ln(S0/S∗) − εt] into (A.14)

ln(Rt/S0) = ln(R∗/S∗) − εt − λ[ln(S0/S∗) − εt] − δt + f̄ (A.15)

= ln(R∗/S∗) − εt(1 − λ) − λ ln(S0/S∗) − δt + f̄ (A.16)

Var(ln(Rt/S0)) ≈ (1 − λ)2σ2
ε + σ2

δ (A.17)

where σε and σδ are the standard deviations of ε and δ, respectively. The survival variability

is independent of S0 and the effect of density dependent juvenile mortality (λ) is clearly to

reduce survival variability. A similar expression was previously obtained for the Gompertz

form of density dependence(Lande et al., 2003). Note that for small εt an expression anal-

ogous to (A.17) may be derived, using the delta method(Stuart and Ord, 1987), which is a

Taylor series expansion, valid for any smooth f

Var[ln(Rt/S0)] ≈ [1 − f ′(ln(S0/S∗) − εt)]
2σ2

ε + σ2
δ (A.18)
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Here, f ′(ln(S0/S∗)− εt) is the first derivative of f with respect to εt, evaluated at its mean.

It is evident that the variance of survival will be a minimum for the adult abundance at

which f ′(ln(S0/S∗) − εt) is maximum. However, this result is not valid for large σε and

thus it is necessary to consider a case where the variance of survival can be derived without

demanding that σε be small.

It is useful to consider common models and how the variability in recruitment and survival

is a function of egg abundance. For the commonly applied Ricker spawner-recruit function,

where survival is a linear function of adult abundance

f [ln(S0/S∗) − εt] = exp[ln(S0/S∗) − εt + γ] = βS0 exp(−εt) (A.19)

where β = eγ/S∗. From (A.19) and (A.13), one has

Rt = αS0 exp(−βS0e
−εt − εt − δt) (A.20)

where several constants have been combined into the parameter α. In the limit of zero noise

one obtains from (A.20) the Ricker form, Rt = αS0 exp(−βS0).

From (A.20), the variability of survival is

Var[ln(Rt/S0)] = σ2
ε + β2S2

0Var(exp(−εt)) + 2βS0Cov(εt, exp(−εt)) + σ2
δ (A.21)

The variance term on the right side of (A.21) may be obtained from the variance of a

lognormal distribution, Var(exp(−εt)) = exp(σε)(exp(σε) − 1), and the covariance term

may be computed as follows

Cov(εt, exp(−εt)) = E[εt exp(−εt)] − E[εt]E[exp(−εt)] (A.22)

E[εt] = 0 (A.23)

∴ Cov(εt, exp(−εt)) = E[εt exp(−εt)] (A.24)

Cov(εt, exp(−εt)) =

∫

∞

−∞

εt exp(−εt)
1√

2πσε
exp(− ε2

t

2σ2
ε

) dx (A.25)

= − exp(
σ2
ε

2
)σ2

ε (A.26)
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where E[·] is the expectation operator and we have used E[g(x)] =
∫

g(x)f(x) dx, where

f(x) is the density function of x. Equation (A.21) may now be reduced to

Var[ln(Rt/S0)] = σ2
ε + β2S2

0 exp(σ2
ε)[exp(σ2

ε) − 1] − 2βS0σ
2
ε exp(σ2

ε/2) + σ2
δ (A.27)

For small σε

Var[ln(Rt/S0)] ≈ σ2
ε(1 − βS0)

2 + σ2
δ (A.28)

which can also be obtained from (A.18). In general, it is apparent from (A.28) that for

large βS0 > 1, the term containing β2S2
0 will dominate and the variability of survival will

increase with S0. For βS0 ≪ 1, the term in 2βS0 will dominate that containing β2S2
0 and

thus the variability of survival will decrease as S0 increases. Therefore, the variability of

survival will have a bowl-shaped dependence on S0. As σε increases the bottom of the bowl

will be pushed closer to the S0 = 0 axis. These aspects of the function’s behaviour and a

comparison with the delta method approximation are illustrated in Fig. SA.1.

A.1.2 Delta Method Approximations to Survival Variability

Direct analytic calculation of the variance terms for population growth models that do not

exhibit linearity between survival and adult abundance are not available in closed form, here

we use a delta method approximation to the variance of a function(Stuart and Ord, 1987).

In order to generalize the results across commonly applied models, the three-parameter

Deriso-Schnute(Deriso, 1980; Schnute, 1985) stock-recruitment model is used

Rt = αS(1 − βγS0)
1

γ (A.29)

ln(Rt/S0) = ln(α) +
1

γ
ln(1 − βγS0) (A.30)

The delta method approximation follows from equation (A.18) where

f [ln(S0/S∗) − εt] =
1

γ
ln(1 − βγS0 exp(−εt)) (A.31)

f ′[ln(S0/S∗) − εt] = βS0/(1 − γβS0) (A.32)

Var(ln(Rt/S0)) ≈ (1 − βS0/(1 − γβS0))
2σ2

ε (A.33)
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Figure A.1: The relationship between recruitment (top panel) and the standard deviation of

survival at median (σ2
ε = 0.5, middle panel) and low (σ2

ε = 0.1, lower panel) pre-density-

dependent variable mortality levels. The solid line is the exact solution and the dotted line

in the delta approximation. The recruitment is from the equation R = 3Se−
1
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Possible models of survival range over a degree of compensation continuum between con-

stant productivity (no density dependence) when γ << −1 and high degrees of over-

compensation when γ ≥ 0 (e.g. Ricker and Schaefer model). We fix γ ∈ {−1000,−2,−1, 0, 1}
for cases of no density dependence, Cushing-like density dependence (non-asymptotic

recruitment), Beverton-Holt compensation, and Ricker and Schaefer over-compensation

models, respectively. σ2
ǫ = 0.5 and β = 0.02 for all models except the Schaefer model

for which β = 0.0085. The delta method at β = 0.02 gives well behaved approxi-

mate variances for all models except the Schaefer. The Schaefer model is problematic

at this value due to the behaviour of the term (1 − βS0) as it approaches 0. For this

reason we chose to use a smaller value of β which avoids this situation but still retains

the properties of this model. The depensatory Beverton-Holt survival model used was

ln(Rt/S0) = ln(α) + 1
γ

ln(1 − βγS0) + ln(S0) − ln(S0 + d), where d is the strength of

depensation at low S.

A.1.3 Sensitivity Analysis

The purpose of the sensitivity analysis is to determine what effect parameter values have on

the model outcome of survival variability. We perform sensitivity analyses on the Beverton-

Holt and Ricker model cases of the Deriso-Schnute model to illustrate the general concepts.

We perform the sensitivity analysis over a reasonable set of parameter ranges as estimated

from the individual fits. To estimate the effect of a given parameter, we hold the other pa-

rameters fixed at the median estimate for that parameter and estimate a target function. The

two target functions were: for the Beverton-Holt, an estimate of the change in the variance

in survival ∆σ2
lnR

S

from the lowest parameter value to the highest (estimate of the slope); for

the Ricker: because of the quadratic nature of the function of survival variability over adult

density, the difference between the first and last values tells us little, therefore we estimate

the sum of the absolute value of the first order difference (

n
∑

i=1

|σ2

ln
Ri
Si

− σ2

ln
Ri−1

Si−1

|) over all

densities to provide a metric for how much change occurs in the variance in survival over

the parameter space. The results of the sensitivity analysis are illustrated in Fig. SA.2.

The effect of increasing the variance in survival in the egg and larval stages is to in-

crease the rate of change of survival variability. Consequently, a large value for σ2
ǫ will
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Figure A.2: Sensitivity analysis results for the Beverton-Holt (a) and Ricker (b) survival models. The re-scaled adult abundance

ranges between 0 and 1. The range of values chosen were Beverton-Holt: α ∈ [−2.0, 12.6], K = 1/β ∈ [1e − 09, 10.46]) and

(Ricker: α ∈ [−2.0, 3.1], β ∈ [−5.34,−1e− 09]). For the variance of mortality in the egg and larval stages we chose σ2
ǫ ∈ [0, 0.5].

The target function for the Beverton-Holt was change in the variance in survival forom the lowest parameter value to the highest

∆σ2
lnR

S

and for the Ricker: the sum of the absolute value of the first order difference (

n
∑

i=1

|σ2

ln
Ri
Si

− σ2

ln
Ri−1

Si−1

|).
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ensure strong survival variability. Note that the positive values of ∆σ2
lnR

S

, indicate that the

variability will decrease over adult abundance where this form of density dependence arises

in the juvenile phase. The density-dependent parameters also behave in an intuitive man-

ner. The stronger the regulation (low carrying capacity K = 1/β in the Beverton-Holt),

the greater the change of survival variability over adult density. If we consider a weakly

regulated population to have a high K value, survival variability over adult density will be

relatively flat, thus the value of ∆σ2
lnR

S

will be low. In contrast, strongly regulated popu-

lations (low K) will experience marked changes in survival variability (strongly negative

slope approximated by ∆σ2
lnR

S

) over adult density. For the Ricker β, stronger regulation

results in more change in the variance in survival over adult density. Weakly regulated pop-

ulations are characterised by small changes in survival variability over adult density. No

change is observed in the survival variability over the ranges for α in both the Beverton-

Holt and Ricker models. This is because α is independent of density.

A.1.4 Meta-analytical Methods

Data were analyzed taxonomically by population within a species. To investigate whether

the results are robust to different survival model formulations, we fit survival models with

fixed γ ∈ {1, 0,−1} in

ln(Rt/St) = ln(α) +
1

γ
ln(1 − βγSt) (A.34)

corresponding to the commonly applied Schaefer, Ricker (limγ→0 αSt(1 − βγSt)
1/γ =

αSe−βSt), and Beverton-Holt models, respectively.

The fixed-effects estimates are estimated by species in two seperate ways.

1. For species with greater than 4 populations a mixed-effects meta-analysis combining

all the populations was used. The model fit to each species was

ln(
Rt,i

St,i
) = ln(α+ µi1) +

1

γ
ln(1 − (β + µi2)γSi) + e(η0+µi3)+η1Si (A.35)
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Where α, β, η0, η1 are the fixed-effects parameters for a given species and the µij are

the random effects parameters distributed N(0, σ2
µj

). There are random effects on all

parameters except the slope of the variance because we want maximum flexibility

for the model form for each population within a species but want to obtain an overall

estimate of the change in the variance over abundance.

2. For species with less than 5 populations, there aren’t enough degrees of freedom

to estimate all parameters (the degrees of freedom in a mixed-effects analysis in

SAS PROC NLMIXED is the number of populations minus the number of random

effects). Here, estimates of the slope of the variance were combined within a species

using a weighted average of the individual population estimates, weighted by their

respective sampling variances

η̂ =

∑k
i=1Wiηi
∑k

i=1Wi

(A.36)

where Wi = 1/s2
i , si being the standard deviation associated with the estimated

heteroscedastic coefficient ηi in population i.

Ideally all species-level estimates would come from the fixed-effects parameters from a

mixed-effects fit, which makes the best use of all the data.

We are primarily interested in the general trend of the change in variance over adult

abundance per species but provide an overall estimate of η1 by combining the estimates

of the fixed-effects estimated from 1 and 2 above using a random effects meta-analysis

(Normand, 1999). The fixed-effects results per species were combined to provide an overall

heteroscedastic coefficient result according to

ˆηme =

∑k
i=1wi(τ̂)ηi
∑k

i=1wi(τ̂)
(A.37)

where τ̂ is the inter-population variation estimated by restricted maximum likelihood (Nor-

mand, 1999) and

wi(τ̂) =
1

s2
i + τ̂ 2

(A.38)
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A.2 Supplementary Figures

Presented in Fig. SA.3-SA.8 are the individual population-level fits to the survival data

from each available population under the Schaefer, Ricker, and Beverton-Holt survival

model assumptions. Provided in the top-right of each plot is the population ID and es-

timate of the heteroscedastic coefficient.
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Figure A.3: Individual population-level fits of the heteroscedastic Schaefer survival model. The legend in each plot represents the

population ID and the estimate of the slope of the variance for that population.
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Figure A.4: Individual population-level fits of the heteroscedastic Schaefer survival model continued. The legend in each plot

represents the population ID and the estimate of the slope of the variance for that population.
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Figure A.5: Individual population-level fits of the heteroscedastic Ricker survival model. The legend in each plot represents the

population ID and the estimate of the slope of the variance for that population.
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Figure A.6: Individual population-level fits of the heteroscedastic Ricker survival model continued. The legend in each plot

represents the population ID and the estimate of the slope of the variance for that population.
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Figure A.7: Individual population-level fits of the heteroscedastic Beverton-Holt survival model. The legend in each plot represents

the population ID and the estimate of the slope of the variance for that population.
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Figure A.8: Individual population-level fits of the heteroscedastic Beverton-Holt survival model continued. The legend in each plot

represents the population ID and the estimate of the slope of the variance for that population.
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A.3 Supplementary Tables

The details of each population ID analysed are presented in Table SA.1.



1
3
6

Table A.1: Stock details for each population analysed

ID Order Family Latin name Common name Area

ALEWANN Clupeiformes Clupeidae Alosa pseudoharengus Anadromous alewife Annaquatucket River, USA

ALEWDAMR Clupeiformes Clupeidae Alosa pseudoharengus Anadromous alewife Damariscotta River

ALEWSTJON2 Clupeiformes Clupeidae Alosa pseudoharengus Anadromous alewife Saint John River

ANCHOBLACK Clupeiformes Engraulidae Engraulis encrasicolus Anchovy Black Sea

ASALELLI Salmoniformes Salmonidae Salmo salar Atlantic salmon Ellidaar River, Iceland

ASALMAR Salmoniformes Salmonidae Salmo salar Atlantic salmon Margaree River, NS , Canada

ASALWARM Salmoniformes Salmonidae Salmo salar Atlantic salmon Western Arm Brook, Canada

ATKAALI Scorpaeniformes Hexagrammidae Pleurogrammus

monopterygius

Atka mackerel Eastern Bering Sea and Aleu-

tian Islands

BDUCK Aulopiformes Synodontidae Harpodon nehereus Bombay duck Northwest coast of India

BHERCHO Clupeiformes Clupeidae Alosa aestivalis Blueback herring Chowan River, USA

BHERCON Clupeiformes Clupeidae Alosa aestivalis Blueback herring Connecticut River, USA

BTUNAWA Perciformes Scombridae Thunnus thynnus Atlantic bluefin tuna West Atlantic

CHNKBLOSSOM Salmoniformes Salmonidae Oncorhynchus

tshawytscha

Chinook salmon Blossom River, Alaska-B.C

CHNKCHICKAMIN Salmoniformes Salmonidae Oncorhynchus

tshawytscha

Chinook salmon Chickamin River, Alaska-B.C

CHNKKETA Salmoniformes Salmonidae Oncorhynchus

tshawytscha

Chinook salmon Keta River, Alaska-B.C

CHNKKING Salmoniformes Salmonidae Oncorhynchus

tshawytscha

Chinook salmon King Salmon River, Alaska

CHUMCAK Salmoniformes Salmonidae Oncorhynchus keta Chum salmon Central Alaska

CHUMQCI Salmoniformes Salmonidae Oncorhynchus keta Chum salmon Queen Charlotte Islands, B.C

CHUMWVAN Salmoniformes Salmonidae Oncorhynchus keta Chum salmon West Coast Vancouver Island,

B.C

CMACKCAL Perciformes Scombridae Scomber japonicus Chub mackerel Southern California

COD2J3KL Gadiformes Gadidae Gadus morhua Cod NAFO 2J3KL

COD3M3 Gadiformes Gadidae Gadus morhua Cod Flemish Cap (NAFO Div 3M)

COD3NO Gadiformes Gadidae Gadus morhua Cod NAFO 3NO

Table A.1 – continued on next page
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Table A.1 – continued from previous page

ID Order Family Latin name Common name Area

COD4TVn Gadiformes Gadidae Gadus morhua Cod NAFO 4TVn

CODBA2224 Gadiformes Gadidae Gadus morhua Cod Baltic Areas 22 and 24

CODBA2532 Gadiformes Gadidae Gadus morhua Cod Baltic Areas 25-32

CODFAPL Gadiformes Gadidae Gadus morhua Cod Faroe Plateau

CODICE Gadiformes Gadidae Gadus morhua Cod Iceland

CODKAT Gadiformes Gadidae Gadus morhua Cod Kattegat

CODNEAR Gadiformes Gadidae Gadus morhua Cod North East Arctic

CODNS Gadiformes Gadidae Gadus morhua Cod North Sea

CODVIId Gadiformes Gadidae Gadus morhua Cod ICES VIId

CODVIa Gadiformes Gadidae Gadus morhua Cod ICES VIa

CRAPPIEATKINS Perciformes Centrarchidae Promoxis annularis and

nigromaculatus

Crappie Atkins Reservoir, Arkansas

CRAPPIENIMROD Perciformes Centrarchidae Promoxis annularis and

nigromaculatus

Crappie Nimrod Reservoir, Arkansas

CRAPPIEOKA Perciformes Centrarchidae Promoxis annularis and

nigromaculatus

Crappie Okatibbee Reservoir, Missis-

sippi

CRAPPIEROSS Perciformes Centrarchidae Promoxis annularis and

nigromaculatus

Crappie Ross Barnett Reservoir, Mis-

sissippi

GHALNEAR Pleuronectiformes Pleuronectidae Reinhardtius hippoglos-

soides

Greenland halibut North East Arctic

GOLDANCH Clupeiformes Engraulidae Coilia dussumieri Gold-spotted grenadier an-

chovy

Northwest coast of India

HAD4TVW Gadiformes Gadidae Melanogrammus aeglefi-

nus

Haddock NAFO 4TVW

HAD5Z Gadiformes Gadidae Melanogrammus aeglefi-

nus

Haddock NAFO 5Z

HADICE Gadiformes Gadidae Melanogrammus aeglefi-

nus

Haddock Iceland

HADNEAR Gadiformes Gadidae Melanogrammus aeglefi-

nus

Haddock North East Arctic

Table A.1 – continued on next page
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Table A.1 – continued from previous page

ID Order Family Latin name Common name Area

HADNS2 Gadiformes Gadidae Melanogrammus aeglefi-

nus

Haddock North Sea

HADVIa Gadiformes Gadidae Melanogrammus aeglefi-

nus

Haddock ICES VIa

HERR4-5 Clupeiformes Clupeidae Clupea harengus Herring NAFO 4-5

HERRCC Clupeiformes Clupeidae Clupea harengus Herring Central Coast B.C

HERRDOWN Clupeiformes Clupeidae Clupea harengus Herring Downs stock

HERRGB2 Clupeiformes Clupeidae Clupea harengus Herring Georges Bank

HERRGM Clupeiformes Clupeidae Clupea harengus Herring Gulf of Maine

HERRIspr Clupeiformes Clupeidae Clupea harengus Herring Iceland (Spring spawners)

HERRIsum Clupeiformes Clupeidae Clupea harengus Herring Iceland (Summer spawners)

HERRNOR Clupeiformes Clupeidae Clupea harengus Herring Norway (Spring spawners)

HERRNS Clupeiformes Clupeidae Clupea harengus Herring North Sea

HERRNSG Clupeiformes Clupeidae Clupea harengus Herring North Strait of Georgia

HERRNWCVI Clupeiformes Clupeidae Clupea harengus Herring North West Coast Vancouver

Island

HERRPRD Clupeiformes Clupeidae Clupea harengus Herring Prince Rupert District

HERRQCI Clupeiformes Clupeidae Clupea harengus Herring Queen Charlotte Islands

HERRSSG Clupeiformes Clupeidae Clupea harengus Herring Southern Strait of Georgia

HERRSWCVI Clupeiformes Clupeidae Clupea harengus Herring South West Coast Vancouver

Island

LTROOPEO Salmoniformes Salmonidae Salvelinus namaycush Lake trout Lake Opeongo, Ontario

MACK2-6 Perciformes Scombridae Scomber scombrus Mackerel NAFO 2 to 6

MACKHBLACK Perciformes Carangidae Trachurus mediterraneus Mediterranean horse

mackerel

Black Sea

MACKHWS Perciformes Carangidae Trachurus trachurus Horse mackerel Western ICES

MENATLAN Clupeiformes Clupeidae Brevoortia tyrannus Atlantic Menhaden U S Atlantic

MENGULF Clupeiformes Clupeidae Brevoortia patronus Gulf Menhaden Gulf of Mexico

PERCHALI Scorpaeniformes Scorpaenidae Sebastes alutus Pacific ocean perch Aleutian Is

PERCHEBS Scorpaeniformes Scorpaenidae Sebastes alutus Pacific ocean perch Eastern Berring Sea

Table A.1 – continued on next page
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Table A.1 – continued from previous page

ID Order Family Latin name Common name Area

PERCHGA Scorpaeniformes Scorpaenidae Sebastes alutus Pacific ocean perch Gulf of Alaska

PIKEWINN Salmoniformes Esocidae Esox lucius Pike North Basin, Windermere Lake

PIKEWINS Salmoniformes Esocidae Esox lucius Pike South Basin, Windermere Lake

PINKAKPW Salmoniformes Salmonidae Oncorhynchus gorbuscha Pink salmon Prince William Sound, Alaska

PINKBAK3 Salmoniformes Salmonidae Oncorhynchus gorbuscha Pink salmon Bakhura River, Sakhalin Is

PINKBROP Salmoniformes Salmonidae Oncorhynchus gorbuscha Pink salmon Brown’s Peak Creek, Cook In-

let, Alaska

PINKBRU Salmoniformes Salmonidae Oncorhynchus gorbuscha Pink salmon Bruin Bay, Cook Inlet, Alaska

PINKCAK Salmoniformes Salmonidae Oncorhynchus gorbuscha Pink salmon Central Alaska

PINKFR Salmoniformes Salmonidae Oncorhynchus gorbuscha Pink salmon Fraser River, B.C

PINKHUMP Salmoniformes Salmonidae Oncorhynchus gorbuscha Pink salmon Humpy Creek, Cook Inlet,

Alaska

PINKKA Salmoniformes Salmonidae Oncorhynchus gorbuscha Pink salmon Kodiak Area, Alaska

PINKKOD1 Salmoniformes Salmonidae Oncorhynchus gorbuscha Pink salmon Kodiak Archipelago, Alaska

PINKLUT3 Salmoniformes Salmonidae Oncorhynchus gorbuscha Pink salmon Lutoga River, Sakhalin Is

PINKNSA Salmoniformes Salmonidae Oncorhynchus gorbuscha Pink salmon Northern Panhandle, Alaska

PINKPCHA Salmoniformes Salmonidae Oncorhynchus gorbuscha Pink salmon Port Chatham, Cook Inlet,

Alaska

PINKPDIC Salmoniformes Salmonidae Oncorhynchus gorbuscha Pink salmon Port Dick, Cook Inlet, Alaska

PINKPGRA Salmoniformes Salmonidae Oncorhynchus gorbuscha Pink salmon Port Graham, Cook Inlet,

Alaska

PINKPOK3 Salmoniformes Salmonidae Oncorhynchus gorbuscha Pink salmon Pokosnaya River, Sakhalin Is

PINKPORO Salmoniformes Salmonidae Oncorhynchus gorbuscha Pink salmon Poronal River, Sakhalin Is

PINKROCK Salmoniformes Salmonidae Oncorhynchus gorbuscha Pink salmon Rocky River, Cook Inlet,

Alaska

PINKSEL Salmoniformes Salmonidae Oncorhynchus gorbuscha Pink salmon Seldovia, Cook Inlet, Alaska

PINKSSA Salmoniformes Salmonidae Oncorhynchus gorbuscha Pink salmon Southern Panhandle, Alaska

PINKSUND Salmoniformes Salmonidae Oncorhynchus gorbuscha Pink salmon Sunday Creek, Cook Inlet,

Alaska

PINKWINL Salmoniformes Salmonidae Oncorhynchus gorbuscha Pink salmon Windy Left, Cook Inlet, Alaska

Table A.1 – continued on next page
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Table A.1 – continued from previous page

ID Order Family Latin name Common name Area

PINKWINR Salmoniformes Salmonidae Oncorhynchus gorbuscha Pink salmon Windy Right, Cook Inlet,

Alaska

PLAICKAT Pleuronectiformes Pleuronectidae Pleuronectes platessa Plaice Kattegat

POLLNEAR Gadiformes Gadidae Pollachius virens Pollock or saithe North East Arctic

POLLNS Gadiformes Gadidae Pollachius virens Pollock or saithe North Sea

POLLVI Gadiformes Gadidae Pollachius virens Pollock or saithe ICES VI

REDI II Scorpaeniformes Scorpaenidae Sebastes mentella Redfish North East Arctic

SAPILCH Clupeiformes Clupeidae Sardinops sagax Sardine South Africa

SARDCAL Clupeiformes Clupeidae Sardinops sagax Sardine California

SBTUNA2 Perciformes Scombridae Thunnus maccoyii Southern bluefin tuna Southern Pacific

SHAKE5Ze Gadiformes Gadidae Merluccius bilinearis Silver hake NAFO 5Ze

SHAKEMAB Gadiformes Gadidae Merluccius bilinearis Silver hake Mid Atlantic Bight

SOCKADAM Salmoniformes Salmonidae Oncorhynchus nerka Sockeye salmon Adams Complex, B.C

SOCKBIRK Salmoniformes Salmonidae Oncorhynchus nerka Sockeye salmon Birkenhead River, B.C

SOCKBLA Salmoniformes Salmonidae Oncorhynchus nerka Sockeye salmon Black Lake, Alaska

SOCKBRA Salmoniformes Salmonidae Oncorhynchus nerka Sockeye salmon Branch River, Alaska

SOCKBRIS Salmoniformes Salmonidae Oncorhynchus nerka Sockeye salmon Bristol Bay, Alaska

SOCKCHI Salmoniformes Salmonidae Oncorhynchus nerka Sockeye salmon Chignik Lake, Alaska

SOCKCHIK Salmoniformes Salmonidae Oncorhynchus nerka Sockeye salmon Chilko River, B.C

SOCKCOL Salmoniformes Salmonidae Oncorhynchus nerka Sockeye salmon Columbia River

SOCKEG3 Salmoniformes Salmonidae Oncorhynchus nerka Sockeye salmon Egegik River, Alaska

SOCKFRAZ Salmoniformes Salmonidae Oncorhynchus nerka Sockeye salmon Frazer Lake, Alaska

SOCKHFLY Salmoniformes Salmonidae Oncorhynchus nerka Sockeye salmon Horsefly River, B.C

SOCKIGU2 Salmoniformes Salmonidae Oncorhynchus nerka Sockeye salmon Igushik River, Alaska

SOCKKAR Salmoniformes Salmonidae Oncorhynchus nerka Sockeye salmon Karluk River, Alaska

SOCKKAS Salmoniformes Salmonidae Oncorhynchus nerka Sockeye salmon Kasilof River, Alaska

SOCKKEN Salmoniformes Salmonidae Oncorhynchus nerka Sockeye salmon Kenai River, Alaska

SOCKKVIC Salmoniformes Salmonidae Oncorhynchus nerka Sockeye salmon Kvichak River, Alaska

SOCKLSTU Salmoniformes Salmonidae Oncorhynchus nerka Sockeye salmon Late Stuart Complex, B.C

SOCKNAK3 Salmoniformes Salmonidae Oncorhynchus nerka Sockeye salmon Naknek, Alaska

Table A.1 – continued on next page
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ID Order Family Latin name Common name Area

SOCKNUSH Salmoniformes Salmonidae Oncorhynchus nerka Sockeye salmon Nushagak River, Alaska

SOCKNUY Salmoniformes Salmonidae Oncorhynchus nerka Sockeye salmon Nuyakuk River, Alaska

SOCKREDR Salmoniformes Salmonidae Oncorhynchus nerka Sockeye salmon Red River, Alaska

SOCKRINL Salmoniformes Salmonidae Oncorhynchus nerka Sockeye salmon Rivers Inlet, B.C

SOCKSK2 Salmoniformes Salmonidae Oncorhynchus nerka Sockeye salmon Skeena River, B.C

SOCKSTEL Salmoniformes Salmonidae Oncorhynchus nerka Sockeye salmon Stellako River, B.C

SOCKSTUA Salmoniformes Salmonidae Oncorhynchus nerka Sockeye salmon Early Stuart Complex, B.C

SOCKTOG2 Salmoniformes Salmonidae Oncorhynchus nerka Sockeye salmon Togiak River, Alaska

SOCKUG3 Salmoniformes Salmonidae Oncorhynchus nerka Sockeye salmon Ugashik River, Alaska

SOCKUPST Salmoniformes Salmonidae Oncorhynchus nerka Sockeye salmon Ayakulik, Kodiak Island,

Alaska

SOCKWEAV Salmoniformes Salmonidae Oncorhynchus nerka Sockeye salmon Weaver Creek, B.C

SOCKWOOD2 Salmoniformes Salmonidae Oncorhynchus nerka Sockeye salmon Wood River, Alaska

SOLEIIIa Pleuronectiformes Soleidae Solea vulgaris Sole ICES IIIa

SOLENS Pleuronectiformes Soleidae Solea vulgaris Sole North Sea

SOLEVIId Pleuronectiformes Soleidae Solea vulgaris Sole ICES VIId

SPRAT22-32 Clupeiformes Clupeidae Sprattus sprattus Sprat Baltic Areas 22-32

SPRAT2628 Clupeiformes Clupeidae Sprattus sprattus Sprat Baltic Areas 26 and 28

SPRATBLACK Clupeiformes Clupeidae Sprattus sprattus Sprat Black Sea

STRIPEDBASSUSA2 Perciformes Moronidae Morone saxatilis Striped bass East Coast, USA

WEAKFISH Perciformes Sciaenidae Cynoscion guatucupa Weakfish East Coast, USA

WHITCS Gadiformes Gadidae Merlangius merlangus Whiting Celtic Sea

WHITIS2 Gadiformes Gadidae Merlangius merlangus Whiting Irish Sea

WHITVIa2 Gadiformes Gadidae Merlangius merlangus Whiting ICES VIa

WPOLLEBS Gadiformes Gadidae Theragra chalcogramma Walleye pollock E Bering Sea

YELL5Z Pleuronectiformes Pleuronectidae Pleuronectes ferrugineus Yellowtail flounder NAFO 5Z

YELLSNE Pleuronectiformes Pleuronectidae Pleuronectes ferrugineus Yellowtail flounder Southern New England



Appendix B

APPENDIX FOR CHAPTER 4: TIME-VARYING RECRUITMENT

DYNAMICS OF ATLANTIC COD (GADUS MORHUA)

B.1 Filtering, Smoothing and Estimation

Note that the following description largely follows that presented in Petris et al. (2009). It

is given here for completeness.

Where all the parameters of the state space model are known a priori, the main task is

usually to draw inference on the unobserved states. Where some or all of the parameters of

the state space model are unknown, they must also be estimated. Both the estimation of un-

known parameters and states involves filtering recursions. In a general state space model,

the unobserved states are represented by the conditional density of the states given the data

f(θs|y1:t), where s = t or s < t we refer to filtered or smoothed densities, respectively.

The difference is that filtered states use all information up to the present to estimate the

current state, whereas smoothing uses all past and future information to estimate the state.

In filtering, the task is to update the filtered density between successive timesteps, i.e. to

obtain f(θt+1|y1:t+1) from f(θt|y1:t) (Durbin and Koopman, 2001; Petris et al., 2009).

B.1.1 Filtering

Assuming we are at time t − 1, filtering proceeds by predicting the density of the state in

the next time period f(θt|y1:t−1) (termed the one-step-ahead predictive density) given the

filtered density of the state currently f(θt−1|y1:t−1) and the transition relation. The one step

ahead prediction density is then updated with the observation density f(yt|θt) via Bayes

rule. This produces the filtered state in the next time period f(θt|y1:t), which is then recur-

sively updated once more. The integrals involved in these densities and updating relations

are generally not analytically tractable, except where the densities are Gaussian and the
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transition and measurement equations are linear. This special case is solved by the Kalman

filter (Kalman, 1960) (independently discovered earlier by Swerling (1958); see Simon

(2006) Appendix A for a discussion on the naming of this important algorithm). Where

the functional forms of the process and measurement equations are linear and both sets of

errors assumed Gaussian, the Kalman filter is found to be an optimal filter (Harvey, 1991,

§3.2).

The Kalman filter relies on a result of the multivariate Gaussian distribution, which

states that where a set of variables is multivariate Gaussian, linear transformation of those

variables are also multivariate Gaussian (Grewal and Andrews, 2008). As such, the joint

and marginal distributions of the filtering recursions are Gaussian and the complete dis-

tribution is characterized by the mean and the variance. The task is then to obtain the

expected means and variances of the filtered, predicted state and predicted observation

densities. These are provided below without derivation.

Given that the current filtered has a Gaussian distribution

f(θt−1|y1:t−1) ∼ N (mt−1, Ct−1) (B.1)

where mt−1 and Ct−1 are the mean and variance of the filtered density at time t − 1. The

expected mean (denoted at) and the variance (denoted Pt) of the one step ahead predicted

state density are given by

at = E (θt|y1:t−1) = Gtmt−1, (B.2)

Pt =Var (θt|y1:t−1) =GtCt−1G
′

t. (B.3)

The expected mean (denoted at) and the variance (denoted Qt) of the predicted observation

density are given by

ut = E (yt|y1:t−1) = Ftat, (B.4)

Qt =Var (yt|y1:t−1) =FtPtF
′

t + Vt. (B.5)

Finally, defining the predicted error as εt = yt− ut and the Kalman gain as Kt = PtF
′

tQ
−1
t

(this is a measure of the ratio of the variance of the predicted state to the variance of the

predicted observations) the expected value and variance of the filtered density at the next
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time step are given by

mt = E (θt|y1:t) = at +Ktεt, (B.6)

Ct =Var (θt|y1:t) =Pt −KtFtPt. (B.7)

It remains to initialize the filter. The approach adopted here is to give the initial density a

diffuse prior

f(θ0) ∼ N (m0, C0) (B.8)

where m0 is often chosen at 0 and C0 very large, e.g. 1e+7 (Harvey, 1991; Petris et al.,

2009).

B.1.2 Smoothing

Starting with the filtered density at the end time point T

f(θT |y1:T ) ∼ N (mT , CT ), (B.9)

smoothing proceeds by hindcasting the smoothed density given the filtered density the pre-

ceding time. The filtering recursions for the mean (denoted st) and variance (denoted St)

of are given written in terms of expectation as

st = E (E (θt|θt+1, y1:t)|y1:T ), (B.10)

St = Var (E (θt|θt+1, y1:t)|y1:T ) + E (Var (θt|θt+1, y1:t)|y1:T )). (B.11)

Which, in terms of the model matrices, is given by

st = mt + CtG
′

t+1R
−1
t+1(st+1 − at+1), (B.12)

St = Ct − CtG
′

t+1R
−1
t+1(Rt+1 − St+1)R

−1
t+1Gt+1Ct. (B.13)
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B.1.3 Estimation

The preceeding sections on Kalman filtering and smoothing were based on the assumption

that the parameters of the system matrices are known. Where the parameter vector Θ is

unknown, they must be estimated from the data. Schweppe (1965) was first to show how

the parameters of the system matrices could be estimated using the predicted errors εt and

their variance Qt. The log-likelihood is given by

lnL(Θ) = −T
2

ln(2π) − 1

2

T
∑

t=1

ln |Qt| −
1

2
εtQ

−1
t ε′t (B.14)

which is maximized (or more typically its negative minimized) with respect to Θ using an

optimizer. Note that Θ contains the variances of the intercept and slope processes so the

likelihood given by Equation (B.14) is general to time-varying or time-invariant estimation

in the Kalman filter. For the simulation routine, a Nelder-Mead optimization algorithm

was implemented in the optim function in R (R Development Core Team, 2009), which

facilitated the large number of runs. Simulated annealing was used for the real data analysis.

This global optimization algorithm may potentially avoid local structures in the likelihood

surface, observed by Zeng et al. (1998). Similar results were, however, obtained using

Nelder-Mead and quasi-Newton algorithms. Estimation was also attempted using the AD-

Model Builder, which can work with non-linear and non-Gaussian models via a Laplace

approximation to the marginal likelihood (Skaug and Fournier, 2006; Pedersen et al., 2011).

Preliminary results were comparable in the univariate case but the multivariate case did not

converge after a number of trials lasting up to three hours on a 32GB Dell PowerEdge

processor. The same model estimated via a Kalman filter converged within 5 minutes on

the same machine. While the Laplace approximation and importance sampling extensions

are more general, where the model is linear, the Kalman filter is optimal (Harvey, 1991)

and in this case, practically necessary for tackling the problem.

B.1.4 Covariance Matrices

The Cholesky decomposition was used to maintain positive-definiteness of the covariance

matrices in optimization. The Cholesky decomposition of the covariance matrix of the
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process is given by

Wt = LtL
′

t (B.15)

where Lt is a lower triangular matrix. Other decomposition parameterizations may have

more direct interpretations (Pinheiro and Bates, 1996) but the Cholesky decomposition is

relatively stable and straightforward to implement.

B.2 Simulation

B.2.1 Setup

A simulation routine was conducted to investigate the recovery of known parameters using

the Kalman filter. A time-varying slope at the origin has previously been shown to be re-

covered well by the Kalman filter (Peterman et al., 2003). Zeng et al. (1998) showed the

recovery of the density-dependent term, however, neither study investigated the recovery of

both terms simultaneously and it is unclear whether a time-varying intercept and slope are

so strongly correlated as to be confounded. The goal of this simulation was to investigate

this.

There are many possible combinations of simulations, we chose to fix the length of the

spawner recruit series to 50 observations. For each run, spawner values were chosen at

random over a Uniform(0,30) distribution, the starting values: a0 = ln(α0) = ln(3) and

β0 = 0.1. One hundred runs were then simulated with random walks on at and βt for each

combination of coefficients of variation of {0, 0.1, 0.3, 0.6} on σa and σβ and correlations

of {−1, 0.5, 0, 0.5, 1} between σ2
a and σ2

β . Measurement error was fixed at σln(R) = 0.3.

This resulted in 8000 simulated stock-recruitment series, covering plausible levels of vari-

ation and covariation in the time-varying slope at the origin and density-dependent terms.

B.2.2 Parameter Recovery

A local-level model with time-varying slope at the origin and density-dependent terms

was used to recover parameters. The proportional error was used to investigate estimated

parameter bias (Kehler et al., 2002; Cope and Punt, 2007, termed relative bias in Kehler
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et al. (2002)). The proportional error is defined as

PE(θ̂) =
θ̂ − θtrue

|θtrue|
(B.16)

where θtrue and θ̂ are the true and estimated parameter values, respectively. When θtrue = 0,

as in the zero process variance (i.e. constant parameter) runs, the right-hand side of Equa-

tion (B.16) is not defined; in this case the error alone (numerator of Equation B.16) was

used to measure bias. Note that in the case of either σa,true or σβ,true equal to zero, the cor-

relation between them is undefined and therefore the proportional error is also undefined.

To investigate the recovery of the simulated states (actual series as opposed to parameters

that govern the series), the average proportional error over the series was used.

B.2.3 Results

Plots of the proportional error of the recovered parameters over the various combinations

of variance and correlation are provided in Figures B.1–B.3. Overall, estimates of σa and

σβ and accompanying series were typically well-recovered. Although where the σβ = 0,

the estimate for σa is marginally biased upward (Left-most column of Figures B.1–B.3).

Simulated parameters were typically well-recovered at strong negative or positive or absent

correlation between the processes. However, medium-strength correlations between the

parameters resulted in highly uncertain estimates of the correlation between the processes

(Figures B.1(a) and B.2(b)).
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(a) Proportional error at perfect negative correlation (ρ = −1)
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Figure B.1: Results of parameter recovery at various levels of variation and negative cor-

relation in the simulated time-varying parameters. Boxes for σa, σβ and ρ show the dis-

tribution of the proportional error over 100 simulations in that combination. Boxes for αt
and βt show the distribution of the average proportional error over the simulated and es-

timated states. No proportional error is reported when the true variance term is zero, as

it is undefined. In these cases, boxes of αt and βt show parameter recovery for constant

parameters.
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Figure B.2: Results of parameter recovery at various levels of variation and no or medium-

strength positive correlation in the simulated time-varying parameters. Details as per Fig-

ure B.1.
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Figure B.3: Results of parameter recovery at various levels of variation and strong positive

correlation in the simulated time-varying parameters. Details as per Figure B.1.



Appendix C

APPENDIX FOR CHAPTER 5: INTERACTIONS BETWEEN

SMALL PELAGIC FISH AND JUVENILE COD ACROSS THE

NORTH ATLANTIC

C.1 Spawning and Feeding Region Overlap Review

In the northwest Atlantic, spawning of Georges Bank cod occurs over a protracted period of

time between November and May, with peak spawning activity during February and March

(ICES, 2005, and references therin). Spawning occurs on the eastern (particularly the

Northeast Peak) and western parts of the bank; spawning is also noted from the Nantucket

Shoals (ICES, 2005). Spring bottom trawl surveys show the presence of non-spawning

(outside mid-September to mid-October) Gulf of Maine-Georges Bank (GMGB) herring

in overlapping areas from 1968-1998 (Overholtz and Friedland, 2002). Using specifically

designed research surveys, Garrison et al. (2002) established that a significant overlap oc-

curs between pelagic fish such as Atlantic herring and mackerel and larval fish, including

cod, on the southern flank of Georges Bank. Gulf of Maine cod spawn during the winter

and early spring with a north-south gradient in timing - later spawning occurring in the

north (ICES, 2005). Spawning predominantly occurs on the western side, particularly in

Massachusetts Bay and north of Cape Ann; although spawning also occurs off the coast

of Maine (ICES, 2005). GMGB herring are found in overlapping areas (Overholtz and

Friedland, 2002) during the same time of year as cod are spawning. Unusually, West-

ern and Eastern Scotian Shelf cod have traditionally had spring (February-March) and fall

(October-November) spawning components (ICES, 2005). Spawning locations are broadly

distributed over the region with high activity occurring on Brown’s Bank and the mouth of

the Bay of Fundy in Spring and inshore along the Nova Scotian coastline from Yarmouth

to Halifax Harbour (ICES, 2005).

The northwest Atlantic mackerel stock over-winters off Cape Hatteras and then splits
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into a Northern and Southern component in the Spring. Mackerel show a strong temporal

variability in distribution but are broadly distributed within the northwest Atlantic. The

potential for spatial overlap of cod spawning and herring and mackerel feeding areas have

previously been established in the Northern and Southern Gulf of St. Lawrence (Swain and

Sinclair, 2000; Duplisea and Robert, 2008, and references therein).

In the northeast Atlantic, northeast Arctic and Norwegian coastal cod spawn from mid-

February to early May with peak spawning at the end of March and start of April (ICES,

2005). Spawning locations for both stocks are mostly near-shore and widely distributed

from mid- to northern-Norway. Prominent spawning locations occur near Lofoten and off-

shore from Vesterålen (ICES, 2005). Norwegian spring spawning (NSS) migration patterns

have changed in the past 60 years (Dragesund et al., 1997; Kvamme et al., 2003). Currently,

adult herring over-winter (October-January) close to Lofoten before spreading out to spawn

along the Norwegian coast in February and March (Devold, 1963). Juvenile fish spend the

early part of their life in the Barents Sea (Dragesund et al., 1997) and feeding along the

Norwegian coast. Post-spawning adult herring undertake extensive feeding migrations far

out into the Norwegian Sea (Dragesund et al., 1997; Kvamme et al., 2003). The overlap

between young cod and feeding herring might therefore be restricted to the early part of the

herring life history in the Barents Sea.

Icelandic cod spawn off the south and southwest coast from mid-March to early May

(Marteinsdóttir et al., 2000). Eggs and larvae drift around the coast in a clockwise direc-

tion to where they settle off the north coast (Marteinsdóttir et al., 2000). Icelandic summer

spawning herring migrate in late February from the over-wintering grounds off Snæfellsnes

and the south coast to feed off the west and east coasts (Óskarsson et al., 2009). The po-

tential for overlap with cod eggs and larvae exists.

Capelin have a circumpolar boreal water distribution (Rose, 2005). In the North At-

lantic, major concentrations occur around Newfoundland and Labrador, north of Iceland

and the Barents Sea (Rose, 2005). The distribution of feeding in Iceland and the Barents

Sea potentially overlap with the presence of early stage cod.

Peak spawning activity occurs in March for West of Scotland cod (ICES, 2005). Based

on egg survey, trawl, and tagging data, Wright et al. (2006) showed that, during the 1950s,
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cod eggs were distributed widely in area VIa with particularly high densities in the Minch

and north of the Isle of Lewis. These observations were corroborated with recent trawl

surveys of ripe fish, which also indicated the importance of the Clyde region Wright et al.

(2006). West of Scotland herring aggregations are distributed widely. There is evidence that

juvenile herring from this stock migrate into the North Sea (ICES, 2009c) but relatively lit-

tle is known about general migration patterns in this stock. Irish sea cod predominantly

spawn in the western Irish Sea between Dublin and Carlingford Lough (ICES, 2008a), al-

though spawning also occurs in the north and east of the Isle of Man (Brander, 1994; Wright

et al., 2006; Fox et al., 2000). Spawning occurs between January and May with the peak

spawning activity in March (Brander, 1994). Herring in the Northern part of the Irish Sea

are typically distributed around the Isle of Man (ICES, 2009c). A Mourne fishery in closer

proximity to the Irish coast (where cod spawn) does exist but the overlap with cod is poten-

tially minimal. Celtic Sea cod spawn in February-March close inshore off the Southwest of

Ireland (ICES, 2008b). Spawning also occurs in the Bristol channel in mid- to late-March

(Brander, 1994). Celtic Sea herring spawn inshore off the south and southwest coast of

Ireland in the Autumn and Winter and migrate offshore to summer feeding regions (ICES,

2009c). It is possible that the overlap in this region is also minimal.

Fox et al. (2008) consolidated historical and contemporary records of cod spawning

locations in the North Sea. Spawning predominantly occurs on the southern and east-

ern Dogger Bank, the German Bight and to the north in the Moray Firth and east of the

Shetland Islands. The timing of spawning is earlier in the southern regions (late January)

compared to northern regions (March) (Brander, 1994). Based upon the dominant spawn-

ing locations, North Sea herring comprise four major sub-components: Shetland, Buchan,

Banks and Downs (Bierman et al., 2010). The sub-components mix to feed between April

and June in the northern part of the North Sea (Cushing and Bridger, 1966). Given that

the spawning of cod is predominantly in the south of the North Sea (Fox et al., 2008) the

overlap with feeding herring is potentially small. Although Daan et al. (1985) showed that

herring do eat cod and plaice eggs in the early part of the season in the North Sea.

Northeast Atlantic mackerel comprise three components: North Sea, Western, and

Southern. Western mackerel spawn from March-July along western Europe, particularly
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on the Porcupine and Great Sole Banks (Lockwood, 1988; Uriarte and Lucio, 2001). Fol-

lowing spawning, the stock moves up along the Irish coast and west of Scotland to feed

in the Norwegian Sea and northern North Sea (Uriarte and Lucio, 2001). It is difficult to

establish whether significant overlap will occur with eggs and larval cod. Although the

western component has been used for all regions here because the North Sea component

has never recovered from severe depletion. The western component does dip into the north-

ern part of the north sea.

Kattegat cod spawn between January and March, predominantly in the southeast in the

vicinity of Skälderviken, Laholmsbukten, and Falkenburg (Vitale et al., 2008). Herring in

this region are grouped under the Western Baltic Spring Spawning herring that migrate out

of the Baltic to the Kattegat, Skagerrak and the North Sea to feed. There is a potential for

overlap during this time. The Western Baltic cod stock spawn from the January to May

with peak spawning in February-April (Bagge et al., 1994). Spawning occurs predomi-

nantly in the south of subdivision 22 (ICES, 2005). The overlap between WBSS herring

and cod eggs has been studied intensely (Köster and Möllmann, 2000) with the conclusion

that there is a potential for overlap but this is strongly time-varying. Eastern (also known

as central) Baltic cod spawn at a different time to the western Baltic stock, now preferring

summer to spring (Wieland et al., 2000). The spawning locations are in deep waters to

the south (Bornholm Basin and Slupsk Furrow) with sufficient salinity for fertilization and

buoyancy (ICES, 2009b). The overlap with herring in this region has been investigated by

(Köster and Möllmann, 2000).

Baltic sprat is a very large stock with a wide distribution in both coastal and offshore

areas of ICES subdivisions 22-32 (ICES, 2009b). The overlap between cod eggs and sprat

populations has previously been established by (Köster and Möllmann, 2000).

C.2 Post-estimation Interaction Coefficient Relationships

The relationships between the interaction coefficients and temperature, latitude and lon-

gitude are shown in Figures (SC.1-SC.2). Linear regressions were fit separately to each

relationship.
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Figure C.1: Relationships between the estimated interaction coefficients for Atlantic her-

ring and mean spring surface temperature (Mantzouni et al., 2010) and mean annual shelf

temperature (Myers et al., 2001), latitude and longitude. The slope and associated p-value

from a linear regression are presented in the legend for each.
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Figure C.2: Relationships between the estimated interaction coefficients for Atlantic mack-

erel and mean spring surface temperature and mean annual shelf temperature, latitude and

longitude. The slope and associated p-value from a linear regression are presented in the

legend for each.
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C.3 Measurement Error

We assume that the measurement errors are lognormally distributed, such that an ob-

servation s of the true spawner abundance S is distributed as ln(s) ∼ N(ln(S), σ2
obs).

The coefficient of variation of the lognormal is given by CV (s) =
√
eσobs − 1, such that

σ2
obs = log(CV (s) + 1). A Bayesian implementation allows for previously deterministic

measurements to be assigned stochastic distributions. The parameters of these are non-

identifiable, as formulated, but we can assess the sensitivity to a range of assumed values.

We investigated the sensitivity of the posterior parameter distributions for the unpooled and

hierarchical models (with independent errors) to four levels of measurement error variation:

CV (s) ∈ {0, 0.1, 0.3, 0.6}, corresponding to absent, low, medium and high levels (Kehler

et al., 2002) on all variables. We only investigated the effect of measurement error using

herring as the interacting species and model h4.

The effect of four levels of assumed measurement error on the posterior distributions

of the overall means and region-level variances is shown in Figure (C.3). The hierarchical

means are relatively insensitive to the inclusion of low to medium levels of measurement

error (CV: 0-0.3). At high levels (CV: 0.6), however, the overall mean of the interaction

coefficient γ becomes less negative and the region-level variance becomes more peaked

and less negative. The residual error variance decreases with increasing measurement error

because the measurement error variance is added to the total residual variance, which is

constant.

At the region level, the estimates from the unpooled analysis are more sensitive to mea-

surement error compared to their hierarchical counterparts. The unpooled estimates for

α typically increase, β becomes more negative and γ does not show a directional change

(Figure C.4). Results from the hierarchical analysis show the α and β parameters to be less

affected but that the interaction coefficients display a greater spread.

C.4 Data Sources

Details of the data coverage and sources are provided in Table C.1 and plotted in Figures

C.5-C.12.
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Table C.1: Details of cod and pelagic assessments used. NAFO/ICES

refers to the primary region of the stock. NWAMC and NEAMC refer to

the large northwest and northeast Atlantic mackerel complexes, respec-

tively.

Region Species NAFO/ICES # Years Notes Source

Georges Bank Cod 5Z 1 1978-2007 VPA split model results NEFSC (2008)

Herring 5Z,5Y 1 1967-2008 TRAC preferred model results Shepherd et al. (2009)

Mackerel NWAMC 1 1962-2004 SSB used. NEFSC (2006)

Gulf of Maine Cod 5Y 1 1982-2007 VPA results NEFSC (2008)

Herring 5Z,5Y 1 1967-2008 TRAC preferred model results Shepherd et al. (2009)

Mackerel NWAMC 1 1962-2004 SSB used. NEFSC (2006)

Southern Scotian

Shelf and Bay of

Fundy

Cod 4X 2 1948-1993 (Gavaris et al., 1994)

1980-2008 (Clark and Emberley, 2009)

Mackerel NWAMC 1 1962-2004 SSB used. NEFSC (2006)

Eastern Scotian Shelf Cod 4VsW 1 1958-2005 M changing in blocks 0.2 to 0.4 to

0.8 presently

Bob Mohn, DFO

Mackerel NWAMC 1 1962-2004 SSB used. NEFSC (2006)

Southern Gulf of St.

Lawrence

Cod 4TVn 1 1971-2009 SPA Model 1 Swain et al. (2008)

Herring

(Spring)

4T 1 1978-2008 ADAPT with gillnet CPUE and

acoustic survey indices

LeBlanc et al. (2008)

Continued overleaf
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Region Species NAFO/ICES # Years Notes Source

Herring

(Fall)

4T 1 1978-2008 ADAPT with gillnet CPUE2 tuning

index

LeBlanc et al. (2008)

Mackerel NWAMC 1 1962-2004 SSB used. NEFSC (2006)

Northern Gulf of St.

Lawrence

Cod 3Pn4RS 1 1974-2008 Fréchet et al. (2009)

Herring

(Spring)

4R 1 1965-2002 West coast of Newfoundland stock Grégoire et al. (2004)

Herring

(Fall)

4R 1 1973-2002 West coast of Newfoundland stock Grégoire et al. (2004)

Mackerel NWAMC 1 1962-2004 SSB used. NEFSC (2006)

Northeast Arctic Cod I, II 2 1900-1999 Data digitized from figures Hylen (2002)

1946-2008 ICES (2009a)

Herring I, II 3 1907-1998 Norwegian spring spawning Toresen and Østvedt (2000)

1950-2007 ICES (2007a)

1988-2009 ICES (2009f)

Capelin I, II 1 1973-2009 SSB in April used. Eight missing

years.

ICES (2009a)

Norwegian Coastal Cod I,II 1 1984-2008 Output from trial XSA ICES (2009a)

Herring I, II 3 1907-1998 Norwegian spring spawning Toresen and Østvedt (2000)

1950-2007 ICES (2007a)

1988-2009 ICES (2009f)

Capelin I, II 1 1973-2009 SSB in April used. Eight missing

years.

ICES (2009a)

Iceland Cod Va 2 1928-1992 Data digitized from figures Schopka (1994)

Continued overleaf
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Region Species NAFO/ICES # Years Notes Source

1955-2008 ICES (2009d)

Herring Va 2 1947-1995 Icelandic summer spawning her-

ring. SSB used.

ICES (1995)

1986-2008 ICES (2009d)

Capelin 1 1979-2009 SSB used. 1978/1979 fishing sea-

son included as 1979 etc.

ICES (2009d)

West of Scotland Cod VIa 1 1978-2009 ICES (2008a)

Herring VIa (North) 1 1957-2008 North of 56◦N component ICES (2009c)

Mackerel NEAMC 1 1972-2008 ICES (2009f)

Irish Sea Cod VIIa 1 1968-2007 ICES (2008a)

Herring VIIa (North) 1 1961-2006 Covers northerly part of the Irish

Sea only. Consider using Celtic Sea

herring also.

ICES (2007b)

Mackerel NEAMC 1 1972-2008 ICES (2009f)

Celtic Sea Cod VIIe-k 1 1971-2007 No analytical assessment was con-

ducted on the Celtic Sea cod stock

in 2009 owing to concerns regard-

ing catch values.

ICES (2008b)

Herring VIIg,h,j,k, VIIa(South) 1 1958-2008 ICES (2009c)

Mackerel NEAMC 1 1972-2008 ICES (2009f)

North Sea Cod IV, IIIa (N), VIId 1 1963-2008 ICES (2009e)

Herring IV, VIId 1 1960-2008 ICES (2009c)

Mackerel NEAMC 1 1972-2008 ICES (2009f)

Continued overleaf
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Region Species NAFO/ICES # Years Notes Source

Kattegat Cod IIIa (S) 1 1971-2008 Run with unallocated removals es-

timated used.

ICES (2009b)

Herring IIIa, 22-24 1 1991-2008 Western Baltic Spring Spawners

(WBSS). Short herring series. Ret-

rospective differences in older as-

sessments.

ICES (2009c)

Western Baltic Cod 22-24 1 1970-2008 ICES (2009b)

Herring IIIa, 22-24 1 1991-2008 WBSS. Short herring series. Retro-

spective differences in older assess-

ments.

ICES (2009c)

Sprat 22-32 1 1974-2008 ICES (2009b)

Eastern Baltic Cod 25-29, 32 1 1966-2008 Run with misreported catches esti-

mated used.

ICES (2009b)

Herring 25-27, 28.2, 29, 32 1 1974-2008 Natural mortality estimated from

MSVPA.

ICES (2009b)

Sprat 22-32 1 1974-2008 ICES (2009b)
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Figure C.6: Cod-pelagic data used per region. Solid and dashed lines represent recent and

older assessments, respectively. Data sources are provided in Table C.1.
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