

DESIGN AND DEVELOPMENT OF FUZZY LOGIC OPERATED

MICROCONTROLLER BASED SMART MOTORIZED WHEELCHAIR

By

Hamid Reza Moslehi

Submitted in partial fulfilment of the

requirements for the degree of

Master of Applied Science

at

Dalhousie University

Halifax, Nova Scotia

April 2011

© Copyright by Hamid Reza Moslehi, 2011

ii

DALHOUSIE UNIVERSITY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

The undersigned hereby certify that they have read and recommend to the Faculty of Graduate

Studies for acceptance a thesis entitled ―DESIGN AND DEVELOPMENT OF FUZZY LOGIC

OPERATED MICROCONTROLLER BASED SMART MOTORIZED WHEELCHAIR‖ by

Hamid Reza Moslehi in partial fulfillment of the requirements for the degree of Master of

Applied Science.

Dated: April 15
th

 2011

Supervisor: _________________________________

Readers:

iii

DALHOUSIE UNIVERSITY

 DATE: April 15
th

 2011

AUTHOR: Hamid Reza Moslehi

TITLE: DESIGN AND DEVELOPMENT OF FUZZY LOGIC OPERATED

MICROCONTROLLER BASED SMART MOTORIZED WHEELCHAIR

DEPARTMENT OR SCHOOL: Department of Electrical and Computer Engineering

DEGREE: M.A.Sc. CONVOCATION: October YEAR: 2011

Permission is herewith granted to Dalhousie University to circulate and to have copied for non-

commercial purposes, at its discretion, the above title upon the request of individuals or

institutions. I understand that my thesis will be electronically available to the public.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it

may be printed or otherwise reproduced without the author’s written permission.

The author attests that permission has been obtained for the use of any copyrighted material

appearing in the thesis (other than the brief excerpts requiring only proper acknowledgement in

scholarly writing), and that all such use is clearly acknowledged.

 Signature of Author

iv

Table of Contents

List of Tables …………………………………………………………………………………...vii

List of Figures ………………………………………………………………………………....viii

Abstract ……………………………………………………………………………………..….. xi

Acknowledgment …………………………………………………………………………........ xii

1. Introduction ... 1

1.1 What Is a Smart Wheelchair? ... 1

1.2 Why a Smart Wheelchair? .. 2

1.3 Related Researches ... 3

1.4 Research Contribution .. 5

1.5 Thesis Outline ... 6

2. Mechanical Design .. 8

2.1 Proposed System Hardware Interface ... 8

2.2 Electric Wheelchair ... 10

 2.2.1 Joystick Mechanism …………………………………………………......……11

 2.2.2 Motor Controller …………………………...…………………………………13

2.3 Wheelchair Mechanism .. 18

 2.3.1 Permanent Magnets DC Motors……………………………………………….22

 2.3.2 Kinematic Equations of Wheelchair ………………………………………….23

2.4 Embedded Microcontroller ... 25

2.5 Sensory Circuit ... 28

v

3. Control System Architecture ... 31

3.1 Fuzzy Logic Control ... 31

3.2 How to Design a Fuzzy Logic Control? ... 33

3.3 Input/Output Fuzzification .. 34

 3.3.1 Input Membership Functions ……………………………………………...…36

 3.3.2 Output Membership Functions …………………………………………...….39

3.4 Fuzzy Operators .. 41

 3.4.1 T-norms and T-conorms …………………………………………………..…41

3.5 Inference Engine ... 43

3.6 Defuzzifications .. 46

4. Simulink and Simulation Results .. 50

4.1 MATLAB Simulink .. 50

4.2 Main Functions ... 51

 4.2.1 Embedded Microcontroller Model ... 53

 4.2.2 Motor Driver Model ... 55

 4.2.3 Electric Wheelchair Model .. 58

 4.2.4 Room and Sensors Model .. 60

4.3 MATLAB M-files ... 61

4.4 Interface Functions.. 63

4.5 The GUI (Graphical User Interface) ... 64

4.6 Simulation Results .. 65

5. MCU Programming and Implementation ... 71

 5.1 UART Connection... 72

vi

 5.2 Joystick Interface .. 74

 5.3 Sensory Circuit Interface .. 76

 5.4 Pulse Width Modulation ... 78

 5.5 Fuzzy Logic Implementation .. 80

 5.6 System Implementation .. 81

6. Conclusion and Future Works... 86

 6.1 Conclusion……………………………………………………………….…………...86

 6.2 Future Works ………………………………………………………………………...87

Bibliography…………………………………………………………………………………… 91

Appendix A: MATLAB M-Files and the GUI ..97

 A.1 PlotChair.m ..97

 A.2 PlotSensor.m ..99

 A.3 GetSensor.m ...99

 A.4 Measurement.m ..100

 A.5 Joystick Graphical User Interface ..101

Apendix B: The AVR Atmega644P Embedded MCU Source Codes104

 B.1 USART ...104

 B.2 Joystick ...113

 B.3 Sensors ...116

 B.4 Common ...120

 B.5 Fuzzy Algorithm...123

 B.6 PWM ..139

 B.7 Main ...141

vii

List of Tables

Table 1.1: Smart wheelchair system projects 4

Table 2.1: Variations of motor speed and direction with reference to joystick voltage 12

Table 2.2: DC motors measured stall current 14

Table 2.3: DC motors measured speed 14

Table 3.1: The smart wheelchair control system rules 44

Table 4.1: Motor speed and direction with regarding to the controller output voltage 57

Table 5.1: Analog values of the joystick is converted to digital values using ADC 75

viii

List of Figures

Figure 2.1: Electric power wheelchair block diagram 9

Figure 2.2: Proposed prototype system block diagram 9

Figure 2.3: The not-modified electric wheelchair 10

Figure 2.4: The analog joystick 11

Figure 2.5: Joystick interfacing with the system 12

Figure 2.6: DC motors in testing 15

Figure 2.7: The Dimension Engineering Sabertooth dual 25A regenerative motor driver 17

Figure 2.8: Wheelchair original controller 17

Figure 2.9: 3D model of the electric wheelchair 18

Figure 2.10: Free-body diagram of a powered wheelchair and rider on an inclined surface 19

Figure 2.11: Instantaneous center of rotation (ICR) 23

Figure 2.12: The geometry of the wheelchair 24

Figure 2.13: The Atmel embedded microcontroller board 27

Figure 2.14: Devantech SRF05 sensor 28

Figure 2.15: Sonar Ping and Echo 29

Figure 2.16: Sonar sensors placement on the wheelchair 30

Figure 3.1: The fuzzy membership function 35

Figure 3.2: Triangular membership function 36

Figure 3.3: The joystick membership functions 37

Figure 3.4: Sonar sensors membership functions 38

Figure 3.5: The output direction membership functions 39

ix

Figure 3.6: The output speed membership functions 40

Figure 3.7: Fuzzy logic controller system 43

Figure 3.8: The centroide defuzzification method 46

Figure 3.9: The smart wheelchair FIS editor 47

Figure 3.10: The smart wheelchair fuzzy rule viewer 48

Figure 3.11: The fuzzy logic control surface viewer (sensor1 and 3 vs. output direction) 49

Figure 3.12: The fuzzy logic control surface viewer (sensor1 and 3 vs. output speed) 49

Figure 4.1: The smart wheelchair Simulink model 52

Figure 4.2: The embedded microcontroller Simulink model 53

Figure 4.3: The embedded microcontroller model inside blocks 54

Figure 4.4: The motor controller/driver Simulink model 55

Figure 4.5: The motor controller model inside blocks 56

Figure 4.6: Direction and speed of motors corresponding to the position of the joystick 57

Figure 4.7: The electric wheelchair Simulink model 58

Figure 4.8: The electric wheelchair model inside blocks 58

Figure 4.9: IRC of the wheelchair 59

Figure 4.10: The room and sensory circuit Simulink model 60

Figure 4.11: The room and sensory model inside blocks 60

Figure 4.12: The joystick graphical user interface 64

Figure 4.13: The virtual joystick 65

Figure 4.14: Simulation Step 1 66

Figure 4.15: Simulation Step 2 66

Figure 4.16: Simulation Step 3 66

Figure 4.17: Simulation Step 4 66

Figure 4.18: Simulation Step 5 67

Figure 4.19: Simulation Step 6 67

x

Figure 4.20: Simulation Step 7 67

Figure 4.21: Simulation Step 8 67

Figure 4.22: Simulation Step 9 68

Figure 4.23: Simulation Step 10 68

Figure 4.24: Simulation Step 11 68

Figure 4.25: Simulation Step 12 68

Figure 4.26: Simulation Step 13 69

Figure 4.27: Simulation Step 14 69

Figure 4.28: Simulation Step 15 69

Figure 4.29: Simulation Step 16 69

Figure 4.30: Simulation Step 17 70

Figure 4.31: Simulation Step 18 70

Figure 5.1: Sonar debugging with the help of the UASRT connection 73

Figure 5.2: Terminal USART User Interface 73

Figure 5.3: Converting the Analog signal to Digital 74

Figure 5.4: SRF05 Ultrasonic Sensor Connection Scheme 76

Figure 5.5: SRF05 Ultrasonic Timing Diagram when used in the Mode 2 77

Figure 5.6: Changing the duty cycle of the PWM signal 78

Figure 5.7: Testing the output PWM signals by changing the joystick position 79

Figure 5.8: The control interface PCB schematic 83

Figure 5.9: The control interface PCB lay-out 84

Figure 5.10: The control interface board bottom layer 85

Figure 5.11: The control interface board upper layer 85

Figure 6.1: The smart wheelchair motor controller and microcontroller integration 89

Figure 6.2: The smart wheelchair joystick and sonar sensors implementation 90

xi

ABSTRACT

Independent mobility is critical to quality of life for people of all ages, and impaired mobility

leaves one with both physical and mental disadvantages. Unfortunately, there are some

individuals unable to operate an electric wheelchair due to physical, perceptual, or cognitive

deficits. The prime objective of this research was to develop a prototype system which can

provide mobility assistant to individuals who would otherwise find it difficult or impossible to

operate a power wheelchair.

To accomplish this goal, a prototype system consisting of several components including an

embedded microcontroller and multiple sensors has been designed which can be added to a

standard power wheelchair and make it smart. The control system algorithm designed for this

prototype model is based on the fuzzy logic control theory and its main purpose is to augment

the user ability to navigate the wheelchair and will provide a safe and comfortable journey to

the user.

The proposed system has been tested in simulation under different obstacle configurations and

taking different routes and the results are presented to demonstrate the ability and validity of

the designed system and algorithm in avoiding any possible collision. In addition to the

Simulation tests, the prototype system has been built and implemented on an actual power

wheelchair and the results were promising and a positive step toward a commercial smart

wheelchair.

xii

ACKNOWLEDGEMENTS

First and foremost, I thank my parents, Majid Moslehi and Touba Ghafouri Nobahari, for

the sacrifices made, and their unconditional support during this challenging period of my

education. I am honoured by the investment they have made in my future.

The guidance and critical support I received from my Supervisor, Dr. Jason Gu, has been

immeasurable. From the beginning, Dr. Gu has played a crucial role in the development

of my thesis. I have been inspired and motivated by his encouragement.

It has been my distinct pleasure to have had the opportunity to benefit from the overall

expertise of committee members Dr. M. El-Hawary, and Dr. Ya-Jun Pan.

I would also like to extend a sincere thank you to the faculty and staff of the Electrical

and Computing Engineering Department. Special appreciation goes to the ECED

secretaries, Selina Cajolais, and Nicole Smith, along with ECED technologists Chris Hill,

Mark LeBlanc, and Ian McKenzie for the integral role they have played in the successful

completion of my thesis.

My brothers Amir and Mojtaba, my colleagues in Control Systems and Robotics research

lab, and my dear friends Mohsin Khan, Joey Fitzpatrick, and James Wilson, have made a

lasting impression. You have been there during the difficult times, and I have benefited

enormously from your friendship.

Hamid Reza Moslehi

1

Chapter 1

Introduction

In this chapter; we will talk about what a smart wheelchair is, what is the motivation behind it,

previous research projects and the thesis project contributions.

1.1 What is a smart wheelchair?

A smart wheelchair is a motorized platform which typically consists of either a standard power

wheelchair to which a computer and a collection of sensors have been added or a mobile robot

base to which a seat has been attached and its purpose is to assist a user with a disability or

anyone who is not able to operate a regular power wheelchair and to reduce or eliminate the user

role of driving. It provides navigation assistance to the user in a number of different ways, such

as assuring collision-free travel, aiding the performance of specific tasks, and autonomously

transporting the user between locations [1].

Different types of sensors can be implemented on the smart wheelchairs such as sonars, infrared

sensors or laser rangefinders. Sensors are being used to detect obstacles and modify the user

intended drive path to avoid collision. Control system techniques such as path-planning, artificial

reasoning, and behaviour based control are being used to augment or replace user control of the

wheelchair [2].

2

1.2 Why a smart wheelchair?

Independent mobility is critical to individuals of any age. Children without safe and independent

mobility are denied critical learning opportunities, which place them at a developmental

disadvantage relative to their self-ambulating peers [3]. This will often produces a cycle of

deprivation and reduced motivation that leads to learned helplessness [4].

Adults who lack an independent means of locomotion are less self-sufficient, which can manifest

itself in a negative self-image and self-esteem [5]. Mobility limitations are the leading cause of

functional limitations among adults, with an estimated prevalence of 40 per 1,000 persons age 18

to 44 and 188 per 1,000 at age 85 and older [6].

A lack of independent mobility at any age places additional obstacles in the pursuit of vocational

and educational goals [7], and while the needs of many individuals with disabilities can be

satisfied with power wheelchairs, some members of the disabled community find operating a

standard power wheelchair difficult or impossible.

A clinical survey of 200 practicing clinicians indicated [8] that a significant percentage of people

with disabilities have difficulty operating a power wheelchair. Significant survey results:

 Clinicians indicated that 9 to 10 percent of patients who receive power wheelchair

training find it extremely difficult or impossible to use the wheelchair for activities of

daily living.

 When asked specifically about steering and maneuvering tasks, the percentage of patients

jumped to 40.

 Eighty-five percent of responding clinicians reported seeing some number of patients

each year that cannot use a power wheelchair because they lack the requisite motor skill

strength, or visual acuity. Of these clinicians, 32 percent (27 percent of all respondents)

reported seeing at least as many patients who cannot use a power wheelchair as who can.

 Nearly half of patients unable to control a power wheelchair by conventional methods

would benefit from an automated navigation system, according to the clinicians who treat

them.

3

1.3 Related Research

Several researchers have used different methods and technologies to provide a collision-free

journey for the users. As shown in Table 1, prototypes of several smart wheelchairs have been

developed till today, but few have made the transition to a commercial product. A Canadian

company located in Ottawa, Applied AI [9], sells smart wheelchair prototypes for use by

researchers, but the system is not intended for use outside of a research lab. The CALL Center of

the University of Edinburgh, Scotland, has developed the use of a wheelchair with bump sensors

and the ability to follow tape tracks on the floor as part of a wheeled-mobility training program

[10]. Their chair is sold in the United Kingdom, Australia, and USA by Smile Rehab Ltd.

If we classify the smart wheelchairs by the form factor [1]: Some of the designed systems are

simply mobile robots with a chair on top (e.g., Mister Ed [11], VAHM [12]). And some are

based on modified commercial wheelchairs (e.g., OMNI [13], SENARIO [14]) or the third group

which are collections of components with an add-on unit that can be attached or removed from

the wheelchairs (e.g., SWCS [7], Hephaestus [15]).

From control point of view, we can divide smart wheelchairs to three groups; 1) Autonomous, 2)

Semi-Autonomous, 3) Autonomous and Semi-Autonomous mode. The first group [16], [17]

operate very similar to autonomous robots; the user gives the destination and the smart

wheelchair plans and executes a path to the target location. Autonomous systems typically

require either a complete map of the area or some sort of modification to their environment. The

disadvantage is that they can’t avoid unplanned obstacles or navigate in unmapped

environments. The second group of smart wheelchairs limit their assistance to collision

avoidance and leave the planning and navigation duties to the user (e.g., NavChair [18], TinMan

[19]). The advantage is that they aren’t limited to modeled and planned environments and can

operate in unmodified environments. However, they can be used by user who is able to

effectively plan and navigate the wheelchair to a destination. A final group of smart wheelchairs

offers both autonomous and semiautonomous navigation (e.g., VAHM [20], SENARIO [14]).

Different input methods have been used for smart wheelchairs ranging from the traditional input

methods such as joystick and switches to the more advanced techniques such as touch screen

interfaces [21] and voice recognition [22].

4

Table 1.1: Smart wheelchair system projects [1, 7]

Smart Wheelchair Sensors Description

VAHM [12] Sonar, Infrared,

Dead Reckoning
Offers autonomous navigation based on an
internal map and semiautonomous
navigation in which the VAHM provides
obstacle avoidance in the form of wall
following and obstacle avoidance.

Mister Ed [11] Sonar, Infrared,
Bump

Robot base with chair on top. Subsumption
architecture for control.

NavChair [18] Sonar Uses minimum vector field histogram
(MVFH) and vector force field (VFF) as a
control system. Prevents wheelchair from
colliding with obstacles.

OMNI [13] Sonar, Infrared,
Bump,

Dead Reckoning

Provides hierarchy of functionality: simple
obstacle avoidance, task-specific operating
mode (wall following, door passage), and
autonomous navigation.

Hephaestus [15] Sonar, Bump Provides obstacle avoidance. Compatible
with multiple brands of wheelchairs and
does not require any modifications to
underlying power wheelchair. Based on
NavChair navigation system.

SWCS [7] Sonar, Infrared,

Bump
Prevents wheelchair from colliding with
obstacles. Is compatible with multiple
brands of wheelchairs and does not require
any modifications to underlying power
wheelchair. Rule-Base control system.

SENARIO [14] Dead Reckoning,
Sonar

Provides shared-control navigation obstacle
avoidance and autonomous navigation
based on internal map. Uses neural
networks for localization, and distributed
control architecture.

CALL [10] Bump Used as mobility training aid. Follows lines
and backs up when it collides with an
obstacle.

5

TAO Applied AI Systems [9]

Wheelesly [23]

INRO [24]

CPWNS [25]

Infrared,
Computer Vision

Vision, Infrared,
Sonar

GPS, Sonar,
Drop-Off
Detector

Vision,

 Dead Reckoning

Uses subsumption architecture, from which
several behaviors emerge. Including
collision avoidance, door passage, wall
following, and autonomous navigation.

Has exploring vision-based navigation
assistance. I based on TinMan [19]. TinMan
Original prototype used mechanical
interface to wheelchair joystick, but
subsequent prototypes integrated into
control electronics of wheelchairs. Provides
collision avoidance and autonomous
navigation.

Provides autonomous navigation and
wheelchair convoying between any two
points.

User can automatically reproduce routes
taught to system by manually driving
wheelchair from starting point to goal point.
Uses machine vision to identify landmarks
in environment. No obstacle avoidance
mode.

1.4 Research Contribution

The proposed prototype system consists of several components that can be attached to the

electrical motorized wheelchair and convert it into smart wheelchair, providing navigation

assistant to the user and ensuring a collision-free journey. This system differs from previous

systems in a number of respects, from the hardware (1.The type and number of sensors which

have been used and 2.how they have been implemented on the wheelchair, 3.the computational

hardware which is an embedded microcontroller, and last but not least 4.the interface between

the components and the underlying wheelchair) to the software (The navigational software which

is based on fuzzy logic control theory to avoid modeled and not-modeled obstacles).

6

The reason fuzzy logic control has been used for this system is because of the features [26] that

make it an adequate tool for autonomous navigation problems where there is a need to cope with

large amount of uncertainty that is inherent in natural environments. Fuzzy logic is not limited to

a few feedback inputs and one or two control outputs, nor is it necessary to measure or compute

rate-of-change parameters in order for it to be implemented. Any sensor data that provides some

indication of a system's actions and reactions is sufficient. This allows the sensors to be

inexpensive and imprecise, thus keeping the overall system cost and complexity low [27]. Using

fuzzy logic control makes the implementation of the system much more practical which is the

number one goal - to design a non-expensive and non-complex system which anybody can use,

and will be able to augment the commercial wheelchairs and make them smart.

1.5 Thesis Outline

The second chapter talks about the mechanical design of the system. It gives a deep description

of how the proposed system was designed, what components it is made of, components details

and how the designed system has been integrated to the base power wheelchair.

Chapter 3 is about the control system architecture of the designed system. It talks about the

control system components, criteria and how it was designed. Furthermore it will give a deep

step by step overview about the fuzzy logic control algorithm used for this thesis project.

Chapter 4 talks about the designed Simulink system. It gives a deep description of how the

simulation process was designed, why was it designed and the simulation results.

Chapter 5 gives a deeper view of the most challenging part of the project, the embedded

microcontroller programming and implementation. It is divided by six sections, the USART

connection which has been used for debugging proposes, the joystick interface which talks about

how to interface a joystick with a microcontroller and how to use the ADC feature of the AVR

Atmega644P, the sensory circuit and how the ultrasonic sensors have been programmed, the

pulse width modulation which serves as the output of the system and last but not least the system

implementation which talks about how the embedded microcontroller has been interfaced with

the other components.

7

Finally, in chapter 6, the effectiveness of the prototype system in providing a collision free

journey to the user is discussed along with future scope of work. Appendix contains MATLAB

codes and the embedded microcontroller codes.

8

Chapter 2

Mechanical Design

The proposed system consists of sensors, computational hardware, and the control system

software. The main purpose is to increase the user ability to navigate in an unmodified

environment safely and collision-free. The proposed system is a semi-autonomous platform

which will get the direction from the user, but be able to alter it, change the direction and speed

of the wheelchair, and avoid any planned and unplanned object in its way. In this chapter the

electric motorized wheelchair, proposed system hardware parts and how to interface it with the

wheelchair will be discussed.

2.1 Proposed System Hardware Interface

In an unmodified commercial electric power wheelchair a joystick or any user interface system

(switches, touchscreen displays, etc.) is linked to the wheelchair main controller (which acts as a

motor controller) and the controller is connected to the two motors. Batteries are also connected

to the controller, providing the necessary power for the system. The user selects the desired

speed and direction using the joystick and the controller drives the motors based on the signal

received by the joystick.

9

Figure 2.1: Electric power wheelchair block diagram

In the proposed system however, the connection between the joystick and the controller was

interrupted by inserting an embedded microcontroller in between. There are also multiple sensors

added and interfaced to the embedded microcontroller. The user chooses the direction and speed

with the joystick, the joystick sends the information to the embedded microcontroller and the

microcontroller checks it's surrounding with the help of the sensors and then corrects and

alternates the joystick signals if necessary based on the control system algorithm before sending

it to the motor controller. So if the user selects a direction and speed but there is an obstacle in

the way the microcontroller will change the initial direction and speed so the wheelchair can

avoid possible collisions.

Figure 2.2: Proposed prototype system block diagram

10

2.2 Electric Wheelchair

The prototype system is mounted on an Everest and Jennings electric motorized wheelchair

which was available in the Mobile Robotics laboratory. The wheelchair is controlled by an

analog joystick that connects directly to the wheelchair controller. It also comes equipped with

two 12V gel cell batteries connected in series and two 24V permanent magnet DC motors. The

wheelchair was not in a good condition and was not working properly. After series of testing I

find out that couple of repairs was necessary to make it work again. The main issues were with

the wheelchair controller which needed to be replaced. More details will be discussed in the

Motor Controller part. The other issue was the Lead-acid batteries which lost the ability to hold a

charge because they were discharged for too long due to sulfation, the crystallization of lead

sulfate. They were replaced by two Gel-Cell batteries each rating 12V and making up to 24V

when connected in series, which is enough power to run the two 24V DC motors. The wheelchair

wiring were also changed and modified. The wiring details will be discussed in the wiring

section.

Figure 2.3: The not-modified electric wheelchair

http://en.wikipedia.org/wiki/Lead_sulfate
http://en.wikipedia.org/wiki/Lead_sulfate

11

2.2.1 Joystick Mechanism

The Everest and Jennings wheelchair uses a standard analog joystick as the user interface. The

analog joystick needs 5V to operate and will output two voltages which go to the wheelchair

controller and represent the speed and direction of the chair. The handle moves a narrow rod that

sits in two rotatable, slotted shafts. The shafts are connected each to a potentiometer. Tilting the

stick forward and backward pivots the Y-axis shaft from side to side. Tilting it left to right pivots

the X-axis shaft. When you move the stick diagonally, it pivots both shafts. Several springs

center the stick when you let go of it. By moving the contact arm along the track, the resistance

acting on the current flowing through the circuit will be increased or decreased [28].

Figure 2.4: The analog joystick [28]

The joystick will output two voltages ranging from 0V to 5V. The analog voltage variations from

―0V to 2V‖ indicate speed variation from maximum to minimum in clockwise direction and

variations from ―3V to 5V‖ gives the speed variation from minimum to maximum in counter

clockwise direction. The slot of variations ―2.02 to 2.98‖ represents the no operation state.

12

Table 2.1: Variations of motor speed and direction with reference to joystick voltage

Analog Voltage Speed Motor Direction

0.00 – 2.00 Max - Min Clock Wise

2.02 – 2.98 Zero OFF

3.00 – 5.00 Min - Max Counter Clock Wise

The connection between the joystick and motor controller was interrupted by cutting the wires

that send the X-Axis and Y-Axis states of the joystick to the motor controller by two. Then one

end of the wires which comes from the joystick were fed to the two ADC (Analog to Digital

Convertor) pins of the microcontroller and the other end of the wire which goes to the motor

controller were fed to the two other pins of the microcontroller that outputs PWM (Pulse Width

Modulation) signals.

Figure 2.5: Joystick interfacing with the system

13

2.2.2 Motor Controller

In an electric wheelchair the controller acts as the command center for the wheelchair and is

responsible for amperage, speed control and the maintenance of straight line propelling and

turning control when the chair is in use. The controller derives its energy from two rechargeable

batteries, and the controller gives the individual the ability to move the chair forward, backward,

left and right and to make any variation of turns up to 360 degrees.

The original controller however was not working and it had to be replaced. For replacing the

controller with a new one several considerations had to be made:

1. The first consideration is the motor’s nominal voltage. The wheelchair has two DC

motors which each operate to the maximum 24V capacity so the motor controller must be

powerful enough to provide 24V to each motor [29].

2. The next consideration is the continuous current the controller needs to supply. I had to

find a controller that was able to provide current equal or above the motor’s continuous

current consumption under load.

The wheelchair DC motors need 250W power when used on a flat field but the power

consumption jumps to 450W when climbing over curbs and up steeps.

 (2.1)

P – Power (W)

V – Voltage (V)

I – Current (A)

Based on the above power formula the current each motor needs to operate is 10.41A in

the first case and 19A when climbing.

The stall current also has been measured by holding the armature and supplying a small

amount of voltage to the motor and since the motors are each a powerful 24V, it’s not

possible to hold the armature when more voltage is applied so maximum voltages of 1V

and 1.6V has been tried (Table). Maximum current draw is at zero RPM (stall) where the

motor is unable to turn [30]. Maximum current draw is referred to as 'stall current' or

14

'stall amps'. Knowing the stall current of a motor is valuable when planning for worst-

case design parameters, although a power wheelchair or any well designed robotic

platform will rarely encounter a stall condition.

Table 2.2: DC motors measured stall current

Applied Voltage Measured Stall Current Static Resistance

1V 2A 0.5Ω

1.6V 4A 0.4Ω

One way to estimate the stall current at full operation voltage is to multiply the reading

obtained with smaller voltages by (Full Voltage/ Tested Voltage).

 (2.2)

The motors have been further tested in the laboratory (Dalhousie research lab. C102) to

find out the characteristics and to have a better understanding of their power

requirements. The DC motor has been supplied with the 6V, 12V, and 24V and the

current and speed has been measured using a multimeter and a tachometer (Table 2.3).

Table 2.3: DC motors measured speed

Applied Voltage Current Revolutions Per Minute

24V 1.5A 350rpm

12V 1.3A 200rpm

6V 1A 100rpm

As it can be seen from the above table, the maximum rotational speed of the motor is 350

rpm which is proportional to 36.65 rad/s. knowing the maximum angular speed is

15

especially useful when designing the control system algorithm. The frequency of rotation

can be converted to the angular speed using the following formula:

 (2.3)

 (

)

Figure 2.6: DC motors in testing

3. The control method is another important consideration. Control methods include

analogue voltage, I
2
C, PWM, R/C, UART (a.k.a. serial). The new controller will be

interfaced with the microcontroller and will use PWM to communicate, one PWM

channel per motor.

4. The final consideration is a choice between single and dual motor controllers. A dual DC

motor controller is preferred since it can control the speed and direction of two DC

motors independently which will save money and time.

16

After researching the motors behaviours and future system expectations, the Dimension

Engineering Sabertooth dual 25A regenerative motor driver has been chosen to replace the

original controller. Some of the key features of this controller are as following [31]:

 Dual motor controller, 25A (6-24V nominal, 30V absolute max)

Can supply two brushed DC motors with up to 25A continuously. Peak currents of

50A per channel are achievable for a few seconds. Sabertooth has independent speed

+ direction operating modes, making it the ideal driver for differential drive.

 Analog, R/C, simplified serial and packetized serial interfaces (TTL)

Sabertooth is able to control two motors with: analog voltage, radio control, serial and

packetized serial.

 Synchronous regenerative drive

The regenerative topology means that the batteries get recharged whenever the robot

or the wheelchair slows down or goes reverse.

 Ultrasonic switching frequency (32KHz)

Sabertooth's transistors are switched at ultrasonic speeds (32 KHz) for silent

operation.

 Thermal and overcurrent protection

Overcurrent and thermal protection means we will never have to worry about killing

the driver with accidental stalls or by hooking up a motor.

 Lithium protection mode

The lithium cut-off mode allows the controller to operate safely with lithium ion and

lithium polymer battery packs - the highest energy density batteries available.

 suitable for high powered robots - up to 100lbs in combat or 300lbs for general

purpose robotics.

 It’s able to make very fast stops and reverses

 It has a built in 5V BEC that can provide power to a microcontroller or R/C receiver.

http://www.robotshop.ca/dc-motors.html
http://www.robotshop.ca/dc-motors.html
http://www.robotshop.ca/analog-motor-controllers.html
http://www.robotshop.ca/rc-motor-controllers.html
http://www.robotshop.ca/serial-motor-controllers.html
http://www.robotshop.ca/standard-batteries.html
http://www.robotshop.ca/motors.html
http://www.robotshop.ca/batteries-chargers.html
http://www.robotshop.ca/robot-construction-kits.html
http://www.robotshop.ca/microcontrollers.html
http://www.robotshop.ca/rc-communications.html

17

Figure 2.7: The Dimension Engineering Sabertooth dual 25A regenerative motor driver

Figure 2.8: Wheelchair original controller

18

2.3 Wheelchair Mechanism

Figure 2.9: 3D model of the electric wheelchair

The electric wheelchair used in this research is a rear-wheel drive system powered by two

permanent magnet dc motors. Rear-wheel drive is the traditional and most popular power

wheelchair style. They are generally faster than front-wheel models, but provide poor turning

capabilities in comparison to front-wheel drive wheelchairs and mid-wheel drive wheelchairs

models [32]. It also uses belt to transform power from the motors to the wheels. Electric/power

wheelchairs make use of either gears or belts, or sometimes both. Power wheelchairs with belt

drives are usually quiet, but tend to be high-maintenance. Gear drives are fairly low-

maintenance, but tend to wear out quickly and getting noisy in the process. The wheelchair used

in this research is a low-end power model which has a light frame that is suitable for indoor use,

but tends to crack, the front forks bend and motors die when they are abused outside. In the

following pages the mechanism and kinematics of the wheelchair will be discusses more deeply.

19

The wheelchair will have some torque loss from the friction of the wheels, bearing and rolling

[33] which have to be considered when designing the system.

Figure 2.10: Free-body diagram of a powered wheelchair and rider on an inclined surface [33]

θ – Pitch (slope) angle;

ϕ – Incline angle

M- Mass of the wheelchair/rider system

20

Acceleration of the wheelchair/rider system along the x and y axes:

 (2.4)

vr – Linear velocity of the right wheel

vl - Linear velocity of the left wheel

l – Distance between the center of mass and the rear axles

W – Width of wheelchair between the rear wheels

Forces, acting at the center of the mass (M) of the wheelchair/rider system:

 (2.5)

g - Acceleration due to gravity.

21

Linear acceleration of the left and the right wheels:

 (2.6)

 =

 =

Wheelchair angular acceleration about the ―z‖ axis:

 (2.7)

) (

)

Where:

 (2.8)

[

] [((

)

 (

)

)

 (

) (

)]

 (2.9)

[

] [((

)

 (

)

)

 (

)]

22

2.3.1 Permanent Magnets DC Motors Models

A permanent magnet dc motor is a mechanism which converts electrical power to mechanical

power via magnetic coupling. The electrical power is provided by a voltage source, while the

mechanical power is provided by a spinning rotor [34].

 (2.10)

Va – armature voltage;

ia – armature current;

Ra – armature resistance;

Kv – motor voltage constant;

wm – motor angular velocity;

La – armature inductance;

Jm – motor inertia;

Kt – motor torque constant;

Tm – motor torque.

23

2.3.2 Kinematic Equations of Wheelchair

Figure 2.11: Instantaneous center of rotation (ICR)

The wheelchair can be driven to any position by the rear wheels velocities. It can be coordinated

by the (x, y) the position of the wheelchair center in the Cartesian space and φ the heading

angle of the wheelchair from the x-axis as shown in Figures 2.11 and 2.12.

If and are the actuated angular velocities on the right and left wheel respectively,

then the right and left wheel linear speeds without slipping are:

 (2.11)

And the linear and angular velocities of the wheelchair are:

 (2.12)

24

Where r is the wheel radius, b is the distance from the point C to each wheel, is the advance

speed of the wheelchair without slipping and W is the angular velocity of the wheelchair.

Figure 2.12: The geometry of the wheelchair

Using the above relationships the absolute velocity of point C is related to and W by the

following kinematics equations [35]:

25

(2.13)

It should be noted that the center of rotation is the intersection point of the axis between the two

rear wheels and the axis linking the two endpoints of wheel speed vectors as shown in Figure

2.12.

2.4 Embedded Microcontroller

A microcontroller is a computing device capable of executing a program and is often referred to

as the ―brain‖ or ―control center‖ in a robot since it is usually responsible for all computations,

decision making, and communications [36].

In order to interact with the outside world, a microcontroller possesses a series of pins (electrical

signal connections) that can be turned HIGH (1/ON) or LOW (0/OFF) through programming

instructions. These pins can also be used to read electrical signals (coming from sensors or other

devices) and tell whether they are HIGH or LOW. Most modern microcontrollers can also

measure analogue voltage signals (i.e. signals that can have a full range of values instead of just

two well defined states) through the use of an Analogue to Digital Converter (ADC). By using

the ADC, a microcontroller can assign a numerical value to an analogue voltage that is neither

HIGH nor LOW.

Although microcontrollers can seem rather limited at first glance, many complex actions can be

achieved by setting the pins HIGH and LOW in a clever way like creating very complex

algorithms such as advanced vision processing and intelligent behaviours.

26

Microcontrollers can be used to control other electrical devices such as actuators (when

connected to motor controllers), storage devices (such as SD cards), Wi-Fi or Bluetooth

interfaces, etc. As a consequence of this incredible versatility, microcontrollers can be found in

everyday products. Practically every home appliance or electronic device uses at least one (often

many) microcontroller. For instance TV sets, washing machines, remote controls, telephones,

watches, microwave ovens, and now robots require these little devices to operate.

Unlike microprocessors (e.g. the CPU in personal computers), a microcontroller does not require

peripherals such as external RAM or external storage devices to operate. This means that

although microcontrollers can be less powerful than their PC counterpart, developing circuits and

products based on microcontrollers is much simpler and less expensive since very few additional

hardware components are required.

Many microcontrollers readily support the most popular communication protocols such as

UART (a.k.a. serial or RS232), SPI and I
2
C.This feature is incredibly useful when

communicating with other devices such as computers, advanced sensors, or other

microcontrollers.

Analogue-to-digital converters (ADC) are used to translate analogue voltage signals to a digital

number proportional to the magnitude of the voltage, this number can then be used in the

microcontroller program. In order to output an intermediate amount of power different from

HIGH and LOW, some microcontrollers are able to use pulse-width modulation (PWM). For

example this method makes it possible to smoothly dim an LED.

Finally, some microcontrollers integrate a voltage regulator in their development boards. This is

rather convenient since it allows the microcontroller to be powered by a wide range of voltages

that do not require you to provide the exact operating voltage required. This also allows it to

readily power sensors and other accessories without requiring an external regulated power

source.

So an embedded microcontroller was chosen as the computational hardware since it provides

much better real-time operation than most of the operation systems. It is also relatively cheap

compared to a laptop or a PC, it consumes less power, it is much lighter in weight, and doesn’t

block the user’s view if used on a wheelchair. Although a computer is much easier for debugging

or optimization purposes, and is easier to interface with the sensors and joystick, ultimately the

embedded microcontroller is a better practical choice.

http://en.wikipedia.org/wiki/Uart
http://en.wikipedia.org/wiki/RS-232
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://en.wikipedia.org/wiki/I2c
http://en.wikipedia.org/wiki/Digital
http://en.wikipedia.org/wiki/Pulse-width_modulation

27

The embedded microcontroller used in this project is an AVR Atmega644P based controller

supplied by the university (Figure 2.13). The Atmega644P is an 8-bit microcontroller with 64

Kbyte flash memory, 2 Kbyte EEPROM and 4 Kbyte RAM [37]. C programming language has

been used to code the microcontroller along with the AVR Studio 4 and WINAVR compiler. The

microcontroller was programed using bootloader software. The programming details are

discussed in chapter 5.

Figure 2.13: The Atmel embedded microcontroller board

28

2.5 Sensory Circuit

Sensors act as the mobile robot eyes and sensing is the key requirement for any but the simplest

mobile behaviour [38]. Sensors and sensing algorithms are required for a robot in order to know

where it is, how it got there and where it should go.

Figure 2.14: Devantech SRF05 sensor

Multiple ultrasonic (sonar) sensors have been used for the system sensory circuit. Ultrasonic

sensor works by emitting a high frequency sound wave (Ping) and evaluating the received echo.

They determine the distance from the object by calculating the time interval between sending the

signal and receiving the echo.

By accurately measuring the time from the start of the ping until the echo returns back to the

sensor, the distance to the nearest object can be easily calculated. Sound travels at 1116.4

feet/second (340.29 meters/second) at sea level. The distance to the nearest object can be

calculated by dividing the elapsed time (time between issuing the sound and hearing the echo) by

twice the speed of sound, as follows [39]:

 (2.14)

29

Figure 2.15: Sonar Ping and Echo [39]

The reason for dividing by twice the speed of sound is that the distance to the object is only half

the distance the sound wave actually travels. The sound wave must travel to the object and back

to the sensor in order for the sensor to hear the echo.

The sonar sensor used in this project is the Devantech SRF05 ultrasonic range finder. It has a 3-

4cm resolution and it can detect objrcts from min 1cm to max 4m. The dimension is 43mm x

20mm x 17mm. More details about the sonar sensor operation will be discussed in the chapter 5,

MCU Programming.

The reasons ultrasonic sensors have been chosen for the system are because they are lightweight,

do not occupy a lot of space, easy to interface and relatively cheap. They are also very accurate

when the sound wave hits the target at the right angle. Although it will be inaccurate if the target

is made of sound-absorbent materials or has a smooth surface. Another problem is that the sound

wave can get lost or bounce between walls multiple times before returning to the sensor [40].

Eight sonar sensors have been placed on the wheelchair (Figure 2.16). The number of sonars

sensors used for the prototype was limited by the cost of adding new sensors and the

performance and capacity of the embedded microcontroller but have been tried the best to

decrease blind spots as much as possible with the help of the control system algorithm and

30

placement of the sensors. The system has been simulated multiple times to find the perfect

number and position of the sensors.

The biggest disadvantage with using multiple sonars is the ―crosstalk‖ effect in which one sensor

sends the signal but another sensor receives the echo. For solving this problem the sonars were

mounted in a way so they will be pointed at different angles and outside of viewing angle of each

other. In addition to that the sensors will be fired up two by two and at different time slots to

reduce erroneous readings from sensor crosstalk.

Figure 2.16: Sonar sensors placement on the wheelchair. The triangle’s represent the cones

emitted by each sonar.

31

Chapter 3

Control System Architecture

A control system is a device or set of devices to manage, command, direct or regulate the

behaviour of other devices or systems [41].There are two common classes of control systems,

with many variations and combinations: logic or sequential controls, and feedback or linear

controls. There is also fuzzy logic, which attempts to combine some of the design simplicity of

logic with the utility of linear control.

The main purpose of the control system in this project is to augment the user ability to drive the

wheelchair and help the user to navigate through the indoor space with maximum comfort and

minimum risk of accident.

3.1 Fuzzy Logic Control

Fuzzy logic control has been used to design the controller for this smart motorized wheelchair.

Fuzzy logic control is derived from the fuzzy logic and fuzzy set theory that were introduced in

1965 by Lotfi A. Zadeh [42]. Since then the theory has been applied in wide range of fields such

as economics, data analysis, engineering and other arias that involve a high level of uncertainty,

http://en.wikipedia.org/wiki/Logic_gate
http://en.wikipedia.org/wiki/Feedback
http://en.wikipedia.org/wiki/Linear
http://en.wikipedia.org/wiki/Fuzzy_logic
http://en.wikipedia.org/wiki/Logic

32

complexity, or nonlinearity [43] and in wide range of applications from wash-machines to digital

cameras to automated space docking.

Fuzzy logic is a form of many valued logic that deals with type of reasoning that is robust and

approximate rather than brittle and exact. In contrast with "crisp logic", where binary sets have

two valued logic (0 or 1), fuzzy logic variables may have a truth value that ranges in degree

between 0 and 1 [44]. A form of reasoning, derived from fuzzy set theory, doesn’t need to be

exactly zero (false) or one (true), but rather can be zero, one, or any value in between. Fuzzy

logic is designed for situations where information is inexact and traditional digital on/off

decisions are not possible. It divides data into vague categories such as "hot", "medium" and

"cold" called linguistic variables [45].

The fuzzy logic control has features [26] that make it an adequate tool for autonomous

navigation problems where there is a need to cope with large amount of uncertainty that is

inherent in natural environments. Fuzzy logic is not limited to a few feedback inputs and one or

two control outputs, nor is it necessary to measure or compute rate-of-change parameters in order

for it to be implemented. Any sensor data that provides some indication of a system's actions and

reactions is sufficient. This allows the sensors to be inexpensive and imprecise, thus keeping the

overall system cost and complexity low [27] and as a result, using fuzzy logic control makes the

implementation of the semi-autonomous wheelchair system much more practical.

The fuzzy control is known as a robust controller since it doesn’t require precise, noise-free

inputs, and for that matter has been one of the favourite high level behaviour control choices for

complex and nonlinear systems where lot of uncertainty is involved [46]. And new inputs and

outputs can easily be interfaced to a fuzzy system by generating the appropriate membership

functions and equations.

Fuzzy logic differs from conventional control methods because incorporates a simple, rule-based

IF X AND Y THEN Z approach to a solving control problem rather than attempting to model a

system mathematically. The fuzzy logic model is empirically-based, relying on an operator's

experience rather than their technical understanding of the system [27].

The fuzzy control for this project has been designed using MATLAB fuzzy logic toolbox. And

since designing a fuzzy controller relies heavily on the designer experience and knowledge of the

system the designed fuzzy logic controller system has been tested in the simulation environment

http://en.wikipedia.org/wiki/Many-valued_logic
http://en.wikipedia.org/wiki/Reasoning
http://en.wiktionary.org/wiki/binary
http://en.wikipedia.org/wiki/Two-valued_logic
http://en.wikipedia.org/wiki/Truth_value

33

(MATLAB Simulink) along with the rest of the system for debugging and optimization purposes

before moving to the hardware mode. Simulation results are discussed in chapter 4.

3.2 How to design a Fuzzy Logic Control?

1) First step is to define the control objectives and criteria: What do I want to control? What do

I have to do to control the system? What kind of response do I need? What are the possible

system failure modes?

2) Second step is to determine the input and output relationships and choose a minimum number

of variables for input to the fuzzy logic engine.

3) Using the rule-based structure of fuzzy logic, break the control problem down into a series of

IF X AND Y THEN Z rules that define the desired system output response for given system

input conditions. The number and complexity of rules depends on the number of input

parameters that are to be processed and the number fuzzy variables associated with each

parameter.

4) Creating fuzzy logic membership functions that define the meaning and values of

Input/output terms used in the rules.

5) Creating the necessary pre- and post-processing fuzzy logic routines or program the rules

into the fuzzy logic engine.

6) Test the system, evaluate the results, tune the rules and membership functions, and retest

until satisfactory results are obtained.

34

3.3 Input/output Fuzzification

The first step toward designing the fuzzy control algorithm is to fuzzify input and output

variables. In fuzzification process we need to transform the real/crisp valued variables into the

fuzzy sets. Fuzzy sets are sets whose elements have degrees of membership (DOM) [47].There

are different ways to map the data into fuzzy sets such as Gaussian membership function,

singleton membership function, triangular membership function, etc.

The membership function is a graphical representation of the magnitude of participation of each

input. It associates a weighting with each of the inputs that are processed, define functional

overlap between inputs, and ultimately determines an output response. The rules use the input

membership values as weighting factors to determine their influence on the fuzzy output sets of

the final output conclusion. Once the functions are inferred, scaled, and combined, they are

defuzzified into a crisp output which drives the system [27].

The characteristics of the membership function are defined by three properties [48]. They are:

1. Core: If the region of universe is characterized by full membership (1) in the set A then

this gives the core of the membership function of fuzzy at A. The elements, which have

the membership function as 1, are the elements of the core (µA(x) =1). Note that the

membership can take value between 0 and 1.

2. Support: If the region of universe is characterized by nonzero membership in the set A,

this defines the support of a membership function for fuzzy set A. The support has the

elements whose membership is greater than 0 (µA(x) > 0).

3. Boundary: If the region of universe has a nonzero membership but not full membership,

this defines the boundary of a membership; this defines the boundary of a membership

function for fuzzy set A. The boundary has the elements whose membership is between 0

and 1, (0 < µA(x) < 1).

There is a unique membership function associated with each input parameter. The membership

functions associate a weighting factor with values of each input and the effective rules. These

weighting factors determine the degree of influence or degree of membership (DOM) each active

35

rule has. By computing the logical product of the membership weights for each active rule, a set

of fuzzy output response magnitudes are produced. All that remains is to combine and defuzzify

these output responses.

Figure 3.1: The fuzzy membership function

36

3.3.1 Input Membership Functions

The proposed system has nine inputs consisting of eight sonar sensors distance inputs and one

joystick direction input. The fuzzifier converts each crisp input values to linguistic variables

which are described by fuzzy sets. In our system each input is fuzzified using triangular

membership function method. The main reason for using the triangular membership function is

that it will be easier when transferring them to the microcontroller and embedded language.

Triangular functions are defined using the following equation:

Figure 3.2: Triangular membership function

(3.1)

{

Triangular function are defined by a lower limit a, an upper limit b, and a value m, where a < m

< b.

37

The joystick is fuzzified to five membership functions each representing a direction selected by

the user. The linguistic terms used in this fuzification are rearL (Rear left direction), left, front,

right, and rearR (Rear right direction). The input output membership functions have been

designed from the experience, other similar projects, and mostly the simulation results. Different

membership functions have been tested in the Simulink environment and the best has been

chosen based on the performance of the system under different simulation testing’s.

Figure 3.3: The joystick membership functions

Each sonar sensor is fuzzified to three membership functions. The membership functions are

designed based on the distance between the wheelchair and obstacles detected by the sonars. For

example if the sonars detect an obstacle in the three meters distance then based on the

membership function (Figure 3.4), the obstacle is in the far category and will have less urgency

than an obstacle that is in half meter distance. The linguistic terms used in this fuzzification are

near, middle, and far. The X-axis of the graph represents the distance in meters.

38

Figure 3.4: Sonar sensors membership functions

39

3.3.2 Output Membership Functions

The embedded microcontroller outputs are two PWM channels which will be fed into the

wheelchair motor driver. The two PWM channels will indicate the direction and speed of the

wheelchair. That’s why the fuzzy controller output has been designed based on the speed and

direction. The output direction membership function is the same as the input direction

membership function.

Figure 3.5: The output direction membership functions

The speed membership function has three members (slow, medium, and fast) and is based on the

initial velocity and speed which has been chosen by the user. The output speed membership

function is however based on percentage. For example if the user chooses (with the help of the

joystick) the maximum speed of 4m/s but there is an object in the close distance to the

wheelchair, the controller will automatically decrease the velocity to 10 percent or 0.4 m/s so it

won’t hit the object and will be able to manoeuvre safely.

40

Figure 3.6: The output speed membership functions

41

3.4 Fuzzy Operators

As in classical logic, in fuzzy logic there are three basic operations on fuzzy sets: union,

intersection and complement [49].

 Union: Let µA and µB be membership functions that define the fuzzy sets A and B,

respectively, on the universe X. The union of fuzzy sets A and B is a fuzzy set defined by

the membership function:

 (3.2)

 Intersection: Let µA and µB be membership functions that define the fuzzy sets A and B,

respectively, on the universe X. The intersection of fuzzy sets A and B is a fuzzy set

defined by the membership function:

 (3.3)

 Complement: Let µA be a membership function that defines the fuzzy set A, on the

universe X. The complement of A is a fuzzy set defined by the membership function:

 (3.4)

3.4.1 T-norms and T-conorms

T-norms and t-conorms are binary operators that generalize intersection and union operations,

respectively.

 t-norm: it is a binary operation T: [0,1] x [0,1] → [0,1] which satisfies the following

properties:

42

o Commutativity: T(a,b) = T(b,a)

o Associativity: T(a, T(b,c)) = T(T(a,b), c)

o Identity element: T(a,1) = T(1,a) = a

o Monotonicity: if a ≤ c and b ≤ d then T(a,b) ≤ T(c,d)

These operators represent the intersection of two fuzzy sets. Some examples of t-norms are the

minimum min (a,b), the product prod (a,b) = a•b and Lukasiewicz W (a,b) = max (0,a+b-1).

 t-conorm: it is a binary operation S: [0,1] x [0,1] → [0,1] which satisfies the following

properties:

o Commutativity: S(a,b) = S(b,a)

o Associativity: S(a, S(b,c)) = S(S(a,b), c)

o Identity element: S(a,0) = S(0,a) = a

o Monotonicity: if a ≤ c and b ≤ d then S(a,b) ≤ S(c,d)

These operators represent the union of two fuzzy sets. Some examples of t-conorms are the

maximum max (a,b), the probabilístic sum or sum-product sum-prod (a,b) = a+b - a•b and

Lukasiewicz W*(a,b)= min (1,a+b).

43

3.5 Inference Engine

A Fuzzy Inference System (FIS) is a way of mapping an input space to an output space using

fuzzy logic. A FIS tries to formalize the reasoning process of human language by means of fuzzy

logic (that is, by building fuzzy IF-THEN rules). Rules form the basis for the fuzzy logic to

obtain the fuzzy output [50]. The inference engine combines If-Then type fuzzy rules and

converts the fuzzy inputs to the fuzzy outputs.

Figure 3.7: Fuzzy logic controller system

The rule-based uses linguistic variables as its antecedents and consequents. The antecedents

express an inference or the inequality, which should be satisfied [51]. The consequents are those,

which we can infer, and is the output if the antecedent inequality is satisfied. The fuzzy rule-

based system uses IF–THEN rule-based system, given by, IF antecedent, THEN consequent.

There are three types of inference engine: Mamdani’s model, Takagi-Sugeno-Kang model

(TSK), and Standard Additive model (SAM).

Mamdani's method is been used to design the system which is the most commonly used in

applications, due to its simple structure of 'min-max' operations. Twenty four (24) rules have

been designed for the system (Table 1.1). Min operation has been used for the fuzzy AND

method and the fuzzy implication. Max operation has been used for the fuzzy OR method and

the fuzzy aggregation.

44

Table 3.1: The smart wheelchair control system rules

Rules

No

Direction S 0 S 1 S 2 S 3 S 4 S 5 S 6 S7 Speed

(V)

Direction

1 Front F F F Front

2 Left F F Left

3 Right F F Right

4 Left N S Right

5 Right N S Left

6 Front N S Left

7 Front N S Right

8 Left M N M Right

9 Right M N M Left

10 Left ` N S Right

11 Right N S Left

12 Front N N N N S Rear

right

13 Front N S Right

14 Front N S Left

15 Rear left N S Right

16 Rear

right

 N S Left

17 Rear left F F Rear left

18 Rear

right

 F F Rear

right

45

19 Rear left N N S Right

20 Rear

right

 N N S Left

21 Front N S Left

22 Front N S Right

23 Front M N M S Rear left

24 Front M N M S Rear

right

Sensors abbreviations:

N – Near

M – Middle

F – Far

Output speed abbreviations:

S – Slow

M – Medium

F – Fast

46

3.6 Defuzzifications

Defuzzification process is the opposite of fuzzification which means converting the fuzzy output

to crisp values. Once the rules have been composed the solution we get a fuzzy set, however, for

most applications there is a need for a `crisp' solution to emanate from the inferencing process.

This will involve the `defuzzification' of the solution set.

Centroide method is the most widely used method which has been also used in this system.

Centroid defuzzification returns the center of area under the curve. It also been called as center

of gravity or center of area method. It can be defined by the algebraic expression:

 (3.5)

∫

∫

Figure 3.8: The centroide defuzzification method

Some other commonly used defuzzification methods are: Weighted average method, Centre of

sums, Mean of maximum.

The defuzzification process will output two numbers indicating the corrected angular velocity

and linear velocity. The microcontroller will then build two PWM channels based on this data

and sends it to the wheelchair motor driver.

47

Figure 3.9: The smart wheelchair FIS editor

48

Figure 3.10: The smart wheelchair fuzzy rule viewer

49

Figure 3.11: The fuzzy logic control surface viewer (sensor1 and 3 vs. output direction)

Figure 3.12: The fuzzy logic control surface viewer (sensor1 and 3 vs. output speed)

50

Chapter 4

Simulink and Simulation Results

On the following chapter a brief description of the Simulink model, its functions and the

simulation results are provided. The section 4.2 explains the Simulink blocks developed to

model the modified smart wheelchair including the room/sensory model, motors model, the

microcontroller, the joystick, and the wheelchair itself. The section number 4.3 shows the

MATLAB M-files that are used to develop the graphics of the environment. To join the

Simulink blocks and the MATLAB M-files, some inference functions have been added, they are

explained in section 4.4. The GUI (Graphical User Interface) is described in section number 4.5.

Finally the simulation results are been discussed in the section 4.6.

4.1 MATLAB Simulink

MATLAB is an interactive program for numerical computation and data visualization; it is used

extensively by control engineers for analysis and design. There are many different toolboxes

available which extend the basic functions of MATLAB into different application areas [52].

Simulink is an environment for multi-domain simulation and Model-Based Design for dynamic

and embedded systems. It provides an interactive graphical environment and a customizable set

51

of block libraries which makes it possible to design, simulate, implement, and test a variety of

time-varying systems, including communications, controls, signal processing, video processing,

and image processing [53].

MATLAB fuzzy logic toolbox was used to design the control system for the system. The fuzzy

controller then was integrated to the Simulink environment along with the wheelchair model to

test the validity of the designed system.

4.2 Main Functions

The main function of the system has been divided into four main blocks, they represent different

group of elements:

1. The embedded microcontroller model function has the algorithms to implement the

embedded microcontroller that will be inserted between the wheelchair controller and the

joystick. It contains the control system and the fuzzy logic algorithm and the interfaces

between the input signals and output signals.

2. The motor-driver model function implements the motors and the wheelchair controller. It

has both the motor controller algorithm and DC motors models, so the inputs are the X-

axis and Y-axis signals of the joystick and the outputs are the linear and angular speed of

the wheels.

3. The electric wheelchair model is the third block and it takes the speed of the wheels and

calculates the position of the chair as an integration of them.

4. The room and sensors models function is the way to incorporate the M-files to the

Simulink system, so it will call the M-functions with the input of the wheelchair model

and puts the measurement of the sensors inside the Simulink blocks.

52

Figure 4.1: The smart wheelchair Simulink model

53

4.2.1 Embedded Microcontroller Model

Figure 4.2: The embedded microcontroller Simulink model

This model converts the X and Y joystick positions and calculates the joystick angle for the

fuzzy algorithm. It also has the sensors as inputs which are fed directly to the fuzzy logic

controller. Once the fuzzy algorithm is computed depending on the distance to the obstacles, the

modified joystick angle is calculated. Finally this angle is transformed to the X and Y joystick

signals that represent the angular speed of the motors. There is also another output from the

fuzzy algorithm representing the linear speed of the motors. The linear speed is based on the

percentage of the maximum speed chosen by the user. The linear speed signal along with the

angular speed, will transform to the right and left motors speed and thus the direction of the

wheelchair.

The ―Embedded Microcontroller‖ block model will be implemented on the actual

microcontroller hardware. The most important sub-function inside the block is the fuzzy

algorithm that will be translated to embedded C code and will be installed on the microcontroller

along with the other sub-functions which convert the joystick signals to the joystick-direction

54

used inside the fuzzy and then convert the output joystick-direction into joystick signals (or into

speed on the wheels). The combination of X, Y and speed percentage (%) signals provide a one,

and only one, combination of right and left motor speeds. It means that if we know these three

signals we can calculate the speed of the wheels and thus the wheelchair movement and vice

versa.

Figure 4.3: The embedded microcontroller model inside blocks

55

4.2.2 Motor Driver Model

Figure 4.4: The motor controller/driver Simulink model

This block model simulates the wheelchair controller/driver in the Simulink environment. As can

be seen on the figure 4.5, the Simulink model has a sub-function in which the motor driver is

implemented. In this sub-function the transformation between joystick angle and motor speed is

done based on the table 4.1 and figure 4.6. As it can be seen from the table 4.1 the analog

voltage variations from 0V-2V indicates speed variations from maximum to minimum in

clockwise direction and variations from 3V-5V gives the speed variations from minimum to

maximum in counter clockwise direction. The slot of variations between 2.02V-2.98V has been

chosen for a no operation state [54].

The sub-function modified output is a signal similar to the PWM signal produced by the

microcontroller, with a digital value from 0 Hex to 255 Hex. When multiplying by the speed

percentage and reconverted by the PWM, the speeds of the motors are calculated.

The figure 4.6 gives a detailed outline of how the motor movement takes place by varying

joystick position in a 360 degree plane. The arrows drawn on each circle representing left and

right motors shows the speed and direction of the motors at different joystick angles. When the

56

line is pointing upward it means that the motor moves in clockwise direction and when the speed

line is pointed downward then the motor is moving in counter clockwise direction. The yellow

arrows mean that the motor or wheel corresponding to it has less power and speed than the motor

with the red arrow. The cross signs are an indication for a turned off (not moving) motor.

Figure 4.5: The motor controller model inside blocks

57

Table 4.1: Variation of motor speed and direction with regarding to the controller output voltage

Analog Voltage (V) Digital (Hex) Speed Motor Direction

0.00 – 2.00 00 - 66 Max - Min Clockwise

2.02 – 2.98 67 - 98 Zero OFF

3.00 – 5.00 99 - FF Min - Max Counter Clockwise

Figure 4.6: Direction and speed of left and right motors corresponding to the different position of

the joystick

58

4.2.3 Electric Wheelchair Model

Figure 4.7: The electric wheelchair Simulink model

The electric wheelchair model simulates the wheelchair behaviors according to the received

inputs. It takes the speed of the motors (calculated by the fuzzy algorithm) and computes the X

and Y positions along with the direction of the wheelchair (Angle [rad]) over the room. Note that

the block model output signals are based on the global coordinates.

Figure 4.8: The electric wheelchair model inside blocks

59

The model of the chair is based on the calculation of the ―Instantaneous Rotation Center‖ of a

solid axle and the kinematic equations of the wheelchair.

Figure 4.9: IRC of the wheelchair

 (4.1)

 ⁄

 ⁄

VR - Right side speed of the axle.

VL - Left side speed of the axle.

VC - Center speed of the axle.

WC - Angular speed of the axle.

d - Length of the axle (Distance between the wheels on wheelchair).

60

4.2.4 Room and Sensors Model

Figure 4.10: The room and sensory circuit Simulink model

In this block model, the calculation of the sensor measurements and the command to plot the

environment takes place. The inner blocks are ―Plot function‖ and ―Sensors measurement‖, and

they call the M-files ―GetSensors‖ and ―PlotChair‖ which are coded outside the Simulink

environment.

Figure 4.11: The room and sensory model inside blocks

61

4.3 MATLAB M-files

The expressions that are not allowed to use in Simulink, are coded in MATLAB M-language,

they are the functions that show the environment and compute the distances between the chair

and the obstacles along with the sensor’s directions.

Users are able to tailor MATLAB by creating their own functions and scripts of MATLAB

commands and functions. Both scripts and functions are ordinary ASCII text files external to

MATLAB. The name of each file ends in ―.m‖ and can be found on MATLAB's search path.

A script may contain any sequence of MATLAB statements, including references to other M-

files. It is invoked like any other command without arguments and acts on the variables of the

workspace globally. Each command in the file is executed as though you had typed it into

MATLAB [55].

MATLAB functions can be run by just calling the function name. This is useful because

functions can be called in MATLAB scripts or other functions without having to write out the

whole function again. The Source codes for PlotChair.m, PlotSensorare.m, GetSensors.m, and

Measurement.m are attached as Appendix A.

4.3.1 PlotChair.m

Here, the most important goal is to plot the environment and the wheelchair with the sensors, the

code transforms local coordinates into global coordinates depending on the X position, Y

position and Angle provided by the Simulink block model. So, first the objects are designed in

local coordinates and then transformed to global coordinates or coordinates of the room.

62

4.3.2 PlotSensor.m

This M-file is called by the PlotChair.m function to plot the 8 sensors in global coordinates.

First the sensor coordinates are transformed to the local-chair coordinates and finally to the

global coordinates (Room coordinates).

4.3.3 GetSensors.m

Once the plotting is done, the next point is to compute the distance between the wheelchair and

the obstacles in global coordinates, so this M-file calculates the point and direction in which each

sensor is placed and then calls the Measurement.m function for measuring the distance.

4.3.4 Measurement.m

When the GetSensors.m function calls Measurement.m, the program calculates the distance

between the sensor and the nearest obstacle in front of it. The measurement has been

implemented with an error below 1 cm to reproduce the imperfections of the real obstacles and

the real sensors.

63

4.4 Interface Functions

Interface Functions have been designed for communication between MATLAB workspace and

the Simulink.

4.4.1 Init.m

Upon the staring of the Simulink model this function is computed. It initializes the fuzzy

algorithm, sets the joystick input to ―up‖ (forward movement) and calls the GUI.

%Init file -> it runs upon opening the Simulink

FuzzyController8Sensor=readfis('FuzzyController8Sensor');
GUI;
global Jcontrol
Jcontrol = 1;

4.4.2 Joystick.m

This function looks over the joystick global variables on the workspace and implements its value

inside the Simulink model.

function out=Joystick(u)

global Jcontrol

out = Jcontrol;

64

4.5 The GUI (Graphical User Interface)

A graphical user interface (GUI) is a graphical display in one or more windows containing

controls, called components, which enable a user to perform interactive tasks. The user of the

GUI does not have to create a script or type commands at the command line to accomplish the

tasks. Unlike coding programs to accomplish tasks, the user of a GUI doesn’t need to understand

the details of how the tasks are performed.

GUI components can include menus, toolbars, push buttons, radio buttons, list boxes, and sliders.

GUIs created using MATLAB tools can also perform any type of computation, read and write

data files, communicate with other GUIs, and display data as tables or as plots [56].

In the smart wheelchair Simulink model the GUI is the way to navigate the wheelchair along the

room and choose the desired direction just as the real joystick. It has several buttons each

representing a direction which will modify the joystick global variables when pressed. The GUI

does not save the values of the joystick on the workspace. The GUI source code is attached as

Appendix B.

Figure 4.12: The joystick graphical user interface

65

4.6 Simulation results

Designing a fuzzy control algorithm depends heavily on the designer knowledge and experience,

and so it’s always better to test the control system in the simulation environment before applying

it on the hardware. That’s why the whole system has been simulated in order to verify the

validity of the proposed system and to optimize the control system algorithm.

Figure 4.13: The virtual joystick (GUI)

In the simulation steps shown in Figures 4.14, 4.15... 4.31, the wheelchair navigates in the given

environment, corrects the user direction if needed and avoids collision by manoeuvring around

the upcoming obstacles and objects. The user can change the wheelchair direction with the

virtual joystick GUI (Figure 4.13) but the wheelchair does the rest and avoids any object in its

way using the designed fuzzy logic control system and the virtual sonar sensors.

For testing the system the wheelchair has been moved multiple times in a crowded environment

taking different paths and in all cases the wheelchair was able to navigate while avoiding

obstacles successfully.

In the following figures, green lines show the cones emitted by the sensors, the blue lines

represent the obstacles, and the black line is the wheelchair path.

66

Figure 4.14: This is the start point. The user starts

the wheelchair with pressing one of the direction

buttons on the virtual joystick.

Figure 4.15: The user chooses to go the right

direction by pressing the right-up button on the

joystick GUI.

Figure 4.16: The wheelchair gets too close to the

wall.

Figure 4.17: The wheelchair automatically notices

the wall in front of it and avoids it by turning to

its left.

67

Figure 4.18: The wheelchair is getting close to the

second wall.

Figure 4.19: The wheelchair senses the wall, cuts

the joystick connection and avoid collision by

turning to its right.

Figure 4.20: The user decides to turn to its right

and pass through the hallway by pressing the

right-up button on the joystick.

Figure 4.21: The wheelchair is getting close to an

obstacle and there is a chance for a collision.

68

Figure 4.22: The wheelchair control system

kicks in again and changes the wheelchair

direction.

Figure 4.23: The user decides to go from between

the walls (doorway) and changes the wheelchair

direction.

Figure 4.24: There is a chance for collision if the

wheelchair keeps going in this direction.

Figure 4.25: The wheelchair senses the possible

collision and corrects it direction.

69

Figure 4.26: The user changes the wheelchair

direction to right.

1. Figure 4.27: When the wheelchair gets too close

to the object, the control system cuts the user

joystick connection and manoeuvres the

wheelchair around the object.

Figure 4.28: The user navigates the wheelchair. Figure 4.29: The wheelchair designed control

system alters the direction when senses any kind

of danger. In this case it turns right so the upper

left side of the wheelchair will not collide.

70

Figure 4.30: The wheelchair autonomously follows

the wall by setting up a safe distance with it.

Figure 4.31: The wheelchair successfully travels

through the crowded environment using its

designed fuzzy logic based control system. It alters

the user navigation inputs when necessary and

changes the direction when senses any kind of

collision.

The black line shows the traveled path in this

simulation test.

71

Chapter 5

MCU Programming and
Implementation

The microcontroller is the brain and control center of the system. It is an entire computer system

contained within a single integrated circuit or chip and consists internally of a relatively simple

CPU, clock, timers, I/O ports, and memory. Microcontroller operation is controlled by a user-

written program interacting with the fixed hardware architecture resident within the

microcontroller [57].

To program a microcontroller the following steps must be taken:

1. Write C programs in AVR Studio. AVR Studio is an integrated development

environment that includes an editor, the assembler, HEX file downloader and a

microcontroller emulator.

2. Compile them into a .hex file using the AVR-GCC compiler (which integrates into AVR

Studio). GCC-based compiler is used which appears in AVR Studio as a plug-in tool.

3. Simulate the target AVR chip and debug the code within AVR Studio.

4. Program the actual chip using the Bootloader programmer software. Bootloader is

software that is located in flash memory and makes it possible to connect the

72

microcontroller to the PC application directly. If not using a bootloader then a

programmer device (STK500, ATMEL AVRISP mkII) must be used.

5. Once programmed, the chip runs the program in the circuit.

The wheelchair system software consists of five parts: USART, Joystick interface, Sensory

circuit interface, Fuzzy algorithm control system, and the output signals (PWM). Each part will

be discussed deeply in this chapter and the source codes are attached as Appendix B.

5.1 USART Connection

The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USAR) is a type

of serial communication and it allows the AVR to transmit and receive data serially to and from

other devices - such as a computer or another AVR [58].

Microcontrollers must often exchange data with other microcontrollers or peripheral devices

using parallel or serial techniques. In parallel techniques, an entire byte of data is typically sent

simultaneously from the transmitting device to the receiver device. It is efficient from a time

point of view but it requires eight separate lines for the data transfer. In serial transmission, a

byte of data is sent a single bit at a time. Once 8 bits have been received at the receiver, the data

byte is reconstructed. Although this is inefficient from a time point of view, it only requires a

line (or two) to transmit the data. The Atmega644P microcontroller used in this project comes

equipped with different types of serial communication subsystems such as USART, SPI (Serial

Peripheral Interface), and TWI (Two-Wire Serial Interface).

The USART or UART is used to debug the code and test the sensors in this project. The USB

connection has been used to transmit/receive data between the embedded microcontroller board

and the laptop. To allow the two interfaced devices (laptop and the embedded microcontroller) to

communicate together, we need to decide first on a baud rate for the communication. Baud is a

measurement of transmission speed in asynchronous communication. The computer, any

adaptors, and the UART must all agree on a single speed of information - 'bits per second' [59].

73

The baud rate used for this project is 115200. Terminal software is being used for data logging

and measurement purposes. Note that the USART coding can be found in the Appendix B.1.

Figure 5.1: Sonar debugging with the help of the UASRT connection

Figure 5.2: Terminal USART User Interface

74

5.2 Joystick Interface

The joystick used in the system is an analog joystick which consists of two independent 10K

potentiometers with common ground. More details about the joystick and how it operates can be

found on Chapter 2, 2.2.1, page 10 and Chapter 4, 4.2.2, page 56.

The joystick outputs two analog voltages ranging from 0V to 5V representing the knob position

in the X and Y axis. The analog values can’t be fed directly to the microcontroller since the

microcontroller doesn’t have an analog input and so the ADC (Analog to Digital Convertor) is

being used.

The ADC converts an analog signal from the outside world into a binary representation suitable

for use by the microcontroller [60].Atmega 644P has 8 ADC channels, allowing up to 8 analog

sources to be attached to the microcontroller.

TheATmega644P ADC has 10 bit resolution, analog voltage between 0 and 5V will be encoded

into one of 1024 binary representations between (000) 16 and (3FF) 16. This is a voltage

resolution of approximately 4.88mV.

Figure 5.3: Converting the Analog signal to Digital

75

Table 5.1: Analog values of the joystick is converted to digital values using ADC

Analog Voltage (V) Digital (Hex) Speed Motor Direction

0.00 – 2.00 00 - 66 Max - Min Clockwise

2.02 – 2.98 67 - 98 Zero OFF

3.00 – 5.00 99 - FF Min - Max Counter Clockwise

ADC unit is powered with separate power supply pins AVCC with AGND, but AVCC must not

differ ±0.3V of VCC [61]. Free running conversion has been used for this system which means

that the conversion in continuous. Once initialized it takes 13 ADC cycles for single conversion.

In this mode ADC data register has to be read before new value is written.

AVR ADC has a nice feature ADC noise reduction technique which allows performing

conversion with minimal noise induced from AVR core and I/O peripherals. When noise

cancelling is enabled microcontroller is put to sleep (CPU clock stops). After conversion

completes, interrupt wakes processor to read and process converted data.

There are three steps needed to in order to make ADC work. First of all, ADC needs to be

initialized. For this adc_init() function is written. Next step is to convert data itself. As we need

to read values from two channels, there also multiplexing is needed. If the conversion mode

invokes an interrupt after conversion is complete, third step is writing interrupt service routine.

For the actual code please refer to the Appendix B.2.

76

5.3 Sensory Circuit Interface

Ultrasonic rangefinders are being used as the sensors for the system. The sensory circuit consist

of eight ultrasonic sensors and has been implemented on the wheelchair in a way to give the

system the maximum view. More details on the sensory circuit is given in chapter two section

2.5, page 27.

The ultrasonic sensor used in the system is a SRF05 made by Devantech. It has two operation

modes; 1. Separate Trigger and Echo, 2. Single pin for both Trigger and Echo [62].

To save pins on the embedded microcontroller, mode 2 has been used to interface the sensors. To

use this mode, the mode pin has been connected to the 0v Ground pin. In this mode the echo

signal will appear on the same pin as the trigger signal. The SRF05 will not raise the echo line

until 700uS after the end of the trigger signal so we have that long to turn the trigger pin around

and make it an input and to have our pulse measuring code ready.

Figure 5.4: SRF05 Ultrasonic Sensor Connection Scheme [62]

The SRF05 Timing diagram for mode 2 is shown in Figure 5.5. A short 10uS pulse needs to be

supplied to the trigger input to start the ranging. The SRF05 will send out an 8 cycle burst of

77

ultrasound at 40 kHz and raise its echo line high. It then listens for an echo, and as soon as it

detects one it lowers the echo line again. The echo line is therefore a pulse whose width is

proportional to the distance to the object. By timing the pulse the range is calculated in inches or

centimeters. If nothing is detected then the SRF05 will lower its echo line anyway after about

30mS.

The SRF05 provides an echo pulse proportional to distance. The width of the pulse is measured

in µS, then dividing it by 58 gives the distance in cm. To find it in inches the measured pulse

must be divided by 148. The SRF05 can be triggered as fast as every 50mS, or 20 times each

second.

Figure 5.5: SRF05 Ultrasonic Timing Diagram when used in the Mode 2 [62]

The sensor code consists of the following steps (The source code is attached as Appendix B.3):

Send a pulse out

Start timer with count

Wait for the echo

Echo gotten

Stop timer

Take the timers count and calculate a distance

78

5.4 Pulse Width Modulation

Pulse Width Modulation or PWM means that we can generate a pulse whose width can be

altered. Since microcontrollers are digital then their output pins can be either low (0v) or high

(5v). However everything else is analog rather than just being on or off for example motors tend

to need speed control, lighting may need to be dimmed, servos need to move to a particular

position, buzzers need a sound frequency and etc. [63].

AVR microcontrollers have Analogue to Digitals Convertors (ADC) to convert a voltage from

the analogue world to a number but do not have Digital to Analogue Convertors (DAC) to

convert digital numbers back into variable voltages. And to solve that problem the PWM is the

closest solution.

By turning an output pin repeatedly high and low very quickly then the result is an average of the

amount of time the output is high. If it is always low the result is 0v, always high then the result

is 5v, if half-and-half then the result is 2.5v.

Figure 5.6: The speed of the motor increases by increasing the duty cycle of the PWM signal. In

this figure the speed of the motor increases from top to bottom [64].

79

PWM signals are used in the prototype system to control the speed of the DC motors. The DC

motors can’t be connected directly to the output pins of the microcontroller or the

microcontroller will blow up. That’s why a motor controller should be used. More information

about the motor controller can be found in chapter 2, section 2.2.2, and page 12.

To drive a DC motor a PWM signal will be used and the duty cycle will be varied to act as a

throttle: 100% duty cycle = full speed, 0% duty cycle = stop, 50% duty cycle = half speed etc.

An R/C filter with component values of 10k ohms resistors and at 10uf capacitors are used

before feeding the PWM channels to the motor controller. This will result in smoother motor

operation. A PWM frequency of 5000Hz is used.

Figure 5.7: Testing the output PWM signals by changing the joystick position. The top two

signals in the oscilloscope screen represent the PWM 1 and 2 with the use of RC filter and the

two signals in the bottom are without the RC filter

80

5.5 Fuzzy Logic Implementation

The fuzzy logic control algorithm has been developed with MATLAB fuzzy toolbox and has

been proven to work – at least – in the simulation environment. The next step is to transfer the

algorithm to the microcontroller. The easiest way to transfer the designed control system

algorithm from fuzzy logic toolbox to C or C++ language is to use especial software’s such as

Byte Craft or fuzyTech which will automatically transform the linguistic variables and

membership functions to the desired high level language. fuzzyTech even goes one step further

and claims that it can transform the fuzzy or neural-fuzzy algorithms directly to the desired

microcontroller (AVR, Microchip, …) embedded language. These are all good products but none

of them has been used in this project.

MATLAB has a stand-alone C code fuzzy interface engine which makes two C files ―fismain.c‖

and ―fis.c‖ from each project built with fuzzy logic toolbox and stores them in the directory of

the toolbox and which are provided as the source codes for the stand-alone fuzzy interface

engine or can be embedded in other external applications. These FIS files are ANSI C

compatible but need to be changed a lot to fit into an 8-bit microcontroller with limited on-chip

memory. In fact, the whole algorithm has been coded and redesigned in order to make it Atmega

compatible and the FIS files have been used as a reference. First, the fuzzy control algorithm has

been written in C language and then it has been re-coded in AVR embedded C language. The

fuzzy logic control algorithm source code can be found in the Appendix B section.

Of course the work with MATLAB has not been wasted. First, with using MATLAB, the fuzzy

algorithm has been modeled, the output values have been checked for different inputs, graphical

models has been used to debug the system, and the last but not least the SIMULINK has been

used to prove the validity of the designed control algorithm.

81

5.6 System Implementation

To interface the Embedded Microcontroller board with the sonar’s, joystick, and PWM outputs a

PCB (Printed Circuit Board) called control interface board has been designed. EAGLE 5.11.0

software has been used to draw the schematic of the circuit and design the board layout. The

manufacturing files such as the Gerber and drill files have been sent to the university to build the

board. The schematic and board layout can be seen in the figure 5.8 and figure 5.9.

Some of the key features of the designed PCB are as following:

 For PWM connection on the board as it can be seen in the figure 5.8, an RC low pass

filter has been used for each PWM output. The RC filter will keep the noise to minimum;

will cut the variations in the signal and leaving only the continuous component of the

signal or its medium value to pass through. The components value used for the filter are

R= 10 kΩ and C= 10 µF.

 Additional pull up resistors has been used for each sonar echo/trigger line. A pull up is a

resistor that 'pulls up' the voltage at a certain pin. More precisely, it is a resistor placed

through the supply rail (VCC, 'up'), and the desired pin (The ECHO line in the case of

sonar sensor). That forces than when the transistor is not in conduction, the voltage on the

collector is close to VCC. Not using pull up resistors may cause false voltage readings

and cause a power supply grounding problem.

 The ADC has a separate analog supply voltage pin, AVCC. AVCC must not differ more

than ±0.3V from VCC. VCC is the standard power in for the digital circuitry and AVCC

is for the analog. The separation is for when there is a mixed mode circuit or board so the

power lines can be run separately to avoid crosstalk noise. Digital switching noise may

affect the analog signals and vice versa. So it’s better to separates them on the board.

Low pass filter has been used when connecting the AVCC to VCC which allows the DC

voltage through while blocking the high frequency digital surges as demanded from the

switching circuits. The low pass filter used for noise cancelling consists of a 10µH

inductor and a 100nF capacitor as the Atmega644P datasheet suggests.

82

 In an AVR Atmega microcontroller internal reference voltages of nominally 1.1V, 2.56V

or AVCC are provided On-chip. The voltage reference may be externally decoupled at

the AREF pin by a capacitor for better noise performance. VREF tied to 5V (VCC for

example) is the voltage that the analog system compares the analog input to. Since in the

current program the ADC has been set to use the external VCC as the reference voltage,

The AREF pin has been connected to the 5V VCC through a decoupling and noise

cancelling capacitor of 0.1 µF.

 The analog joystick used for this project has five pins, one connected to ground, one to

5V VCC and two which are representing the vertical and horizontal state of the joystick

have been connected to PA0 and PA1 (ADC pins of the microcontroller) via 4.7K

resistors. The resistors along with the ADC capacitors act as filter against the short time

noise pulses. There is also another pin (SELECT) which is not connected anywhere since

the press button is not being used in the program.

 The 5V VCC used to power the sonars and joystick comes from the motor driver. The

Demension 2x25V motor driver used in this system is capable of outputting 5V and GND

which has been connected to the PCB through the power port.

83

Figure 5.8: The control interface PCB schematic

84

Figure 5.9: The control interface PCB lay-out

85

Figure 5.11: The control interface board

Figure 5.10: The control interface board bottom layer

86

Chapter 6

Conclusion and Future Works

In this chapter, the effectiveness of the prototype system in providing a collision free journey to

the user is discussed along with the future scope of work.

6.1 Conclusion

In this thesis, the smart wheelchair prototype system was designed and tested to demonstrate the

first steps toward a commercially smart wheelchair. The main criteria in designing such system

was to build a non-complex, non-expensive system that can be added to a normal power

wheelchair to augment the navigation ability of the user and ensuring a safe and collision free

journey.

One of the factors that differentiate this system with the previous attempts is the use of Fuzzy

Logic as the primary high level control system. Fuzzy logic membership functions give the

advantage of designing the system based on the level of uncertainty the system is facing and

because it doesn’t necessary need precise inputs, inexpensive sensors can be used and therefor

resulting a decrease in the overall cost of the system.

87

The other important difference between this system and other designs is the use of

microcontroller instead of a computer or laptop. This will allow the system to be lighter, energy-

efficient, more portable, inexpensive and easier to interface with different wheelchairs control

systems. Currently the microcontroller is programmed so it can interface with any wheelchair

controller using PWM (pulse width modulation) as input.

Using MATLAB Simulink and testing the system in simulation environment under different

obstacle configurations and taking different routes proved the ability and validity of the designed

system and algorithm in avoiding any possible collision. The wheelchair was able to avoid any

objects in its way with maximum comfort which is very important when dealing with

wheelchairs where the comfort and safety of the user can’t be overlooked. The wheelchair moves

smoothly because of the fuzzy logic control and the addition of the membership functions

comparing to the systems using model-based control (IF X… THEN Z), which are usually jerky.

In addition to the simulation, the actual hardware has been also built. The designed prototype

system which consists of multiple ultrasonic sensors, embedded microcontroller and control

system algorithm has been implemented on the Everest and Jennings wheelchair which was

provided by the control systems and robotic lab. The wheelchair was turned into a power

wheelchair first and then a smart wheelchair. Multiple tests have been undertaken and although

the results were promising, further improvements on the hardware and especially the sensors are

necessary.

6.2 Future Works

Although the simulation works flawlessly, further tweaking of the hardware would lead to safer

and more accurate results. For improved reliability, the sensitivity of the sensors needs to be

revaluated. The process of revaluating the sensors sensitivity will lead to some reprogramming

and debugging. Ultimately the debugging will result in safe and smart option of transportation

for people of disable community.

88

In addition, the following recommendation can improve the functionality of the smart wheelchair

system:

 Using multiple sensors combination: Each type of sensor has different advantages and

disadvantages and the system reliability will be increased by using different kind of

sensors. For example when using just sonars, reflection varies based on the surface

material and this problem especially shown itself in case of wall-following.

 Drop offs detector: There is a need for a new sensory circuit to identify the sudden

drop-offs likes curbs, stairs, and potholes.

 Software customization: The control system algorithm, navigation software and

thresholds have been designed to meet the researcher’s criteria’s and to balance the

safety and functionality of the wheelchair. However, it’s better to allow the user to

manually change the software thresholds or allowing the chair to automatically adapt

these software thresholds based on the user’s behaviour and observations of the

environment.

 Testing the system with members of the disable community for better adjustments of

the system.

89

 Figure 6.1: The smart wheelchair motor controller and microcontroller integration

90

Figure 6.2: The smart wheelchair sonar sensors and joystick implementation

91

Bibliography

[1] Richard C. Simpson, ―Smart wheelchairs: A literature review‖, Journal of Rehabilitation

Research & Development. Volume 42, Number 4, Pages 423–436 July/August 2005.

[2] Smart wheelchair, Wikipedia, ―http://en.wikipedia.org/wiki/Smart_wheelchair‖. [Accessed:

23 Sep. 2009].

[3] Rosenbloom L. Consequences of impaired movement: a hypothesis and review. In:

Movement and child development. Holt KS, editor. London, England: HarperCollins; 1975.

[4] Gignac MA, Cotta C, Badley EM. Adaptation to chronic illness and disability and its

relationship to perceptions of independence and dependence. J Gerontol B Psychol Sci Soc Sci.

2000.

[5] Wright BAP. Physical disability—A psychosocial approach. New York: Addison-Wesley;

1983.

[6] Pope A, Tarlov A, editors. Disability in America: Toward a national agenda for prevention.

Washington (DC): National Academies Press; 1991.

[7] Richard Simpson, Edmund LoPresti, Steve Hayashi, Illah Nourbakhsh, David Miller, ―The

Smart Wheelchair Component System‖, Journal of rehabilitation research & develop. May/June

2004.

[8] L. Fehr, W. Langbein, and S. Skaar, ―Adequacy of power wheelchair control interfaces for

persons with severe disabilities: A clinical survey‖, Journal of Rehabilitation Research and

Development Vol.37,No.3, June 2000.

[9] Gomi T, Ide K. The development of an intelligent wheelchair. Conference on Intelligent

Vehicles; Sep 19–20, 1996.

[10] Nisbet PD, Craig J, Odor JP, Aitken S. ―Smart‖ wheelchairs for mobility training. Technol

Disabil. 1995.

[11] Connell J, Viola P. Cooperative control of a semi-autonomousmobile robot. Robotics and

Automation: Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA); 1990 May 13–18; Cincinnati, OH. Piscataway (NJ): IEEE; 1990.

http://en.wikipedia.org/wiki/Smart_wheelchair

92

[12] Bourhis G, Moumen K, Pino P, Rohmer S, Pruski A. Assisted navigation for a powered

wheelchair. Systems Engineering in the Service of Humans: Proceedings of the IEEE

International Conference on Systems, Man and Cybernetics; 1993 Oct 17–20; Le Touquet,

France. Piscataway (NJ): IEEE; 1993.

[13] Borgolte U, Hoyer H, Buehler C, Heck H, Hoelper R. Architectural concepts of a semi-

autonomous wheelchair. J Intell Robotic Syst. 1998.

[14] Katevas NI, Sgouros NM, Tzafestas SG, Papakonstantinou G, Beattie P, Bishop JM,

Tsanakas P, Koutsouris D. The autonomous mobile robot SENARIO: A sensor-aided intelligent

navigation system for powered wheelchairs. IEEE Robot Autom Mag. 1997.

[15] Simpson RC, Poirot D, Baxter MF. The Hephaestus smart wheelchair system. IEEE Trans

Neural Syst Rehabil Eng. 2002.

[16] J. Crisman and M. Cleary, ―Progress on the deictic controlled wheelchair,‖ Assistive

Technology and Artificial Intelligence. Springer Verlag, 1998.

[17] P. Nisbet, J. Craig, P. Odor, and S. Aitken, ― Smart wheelchairs for mobility training‖,

Technology Disability, Vol. 5, 1995.

[18] Levine SP, Bell DA, Jaros LA, Simpson RC, Koren Y, Borenstein J. ―The NavChair

assistive wheelchair navigation system‖, IEEE Trans Rehabil Eng. Dec 1999.

[19] Miller DP, Slack MG. Design and testing of a low-cost robotic wheelchair prototype. Auton

Robots. 1995.

[20] Bourhis G, Moumen K, Pino P, Rohmer S, Pruski A. ―Assisted navigation for a powered

wheelchair‖. p. 553–58. IEEE; 1993.

[21] Abigail Drury, Rittika Shamsuddin, Melissa Frechette, Audrey Lee St. John, Dan Barry,

William Kennedy, ―Autonomous Wheelchair‖,

―wiki.cs.mtholyoke.edu/mediawiki/rmc_images/6/64/Spaulding10.ppt‖. [Accessed: 15 July

2009].

[22] Gabriel Pires and Urbano Nunes, ―A Wheelchair Steered through Voice Commands and

Assisted by a Reactive Fuzzy-Logic Controller‖, Journal of Intelligent and Robotic Systems 34:

301–314, 2002.

93

[23] Yanco HA. Wheelesley: a robotic wheelchair system: Indoor navigation and user interface.

In: Assistive technolgy and artificial intelligence. Mittal VO, Yanco HA, Aronis J, Simpson RC,

editors. New York: Springer-Verlag; 1998.

[24] Schilling K, Roth H, Lieb R, Stutzle H. Sensors to improve the safety for wheelchair users.

3rd Annual TIDE Congress; 1998 July; Helsinki, Finland. Helsinki: TIDE; 1998.

[25] Yoder JD, Baumgartner ET, Skaar SB. Initial results in the development of a guidance

system for a powered wheelchair. IEEE Trans Rehabil Eng. 1996.

[26] A. Saffiotti, ―The uses of fuzzy logic in autonomous robot navigation‖, Soft Computing 1

(1997) pp. 180-197, Springer-Verlag 1997.

[27] Steven D. Kaehler, Seattle Robotics, ―Fuzzy Logic - An Introduction‖,

http://www.seattlerobotics.org/encoder/dec97/fuzzy.html. [Accessed: 17 Aug. 2009].

[28] Tom harris, ―How joysticks works‖,

―http://electronics.howstuffworks.com/joystick.htm/printable‖. [Accessed: 12 Jan. 2009].

[29] Lesson 5, choosing a motor controller, how to make a robot, GoRobotics,

―http://www.robotshop.com/gorobotics/how-to-make-a-robot/how-to-make-a-robot-lesson-5-

motor-controller‖. [Accessed: 15 Jan. 2010].

[30] Stall current, Combat Robot Wiki, ―http://combots.net/wiki/index.php/Stall_current‖.

[Accessed: 10 Feb. 2010].

[31] Dimension engineering, Sabertooth dual 25A regenerative motor driver manual,

http://www.dimensionengineering.com/datasheets/Sabertooth2x25.pdf. [Accessed: 15 Feb.

2010].

[32] Power engineering, The wheelchair site,

―http://www.thewheelchairsite.com/power-wheelchairs.aspx‖. [Accessed: 10 March 2010].

[33] Marek Andrezej Perkowski, Electrical and Computer Engineering, Portland State

University, Rehabilitation robots course mterials,

http://web.cecs.pdx.edu/~mperkows/Rehabilitation_Robots/. [Accessed: 21 Sep. 2010]

[34] Ismail H. Altas, Electrical and Electronics Engineering, Karadeniz Technical University,

ELK 5320 Nero Fuzzy Systems, Project 37 Dynamic model of a permanent magnet DC motor.

1992.

http://www.seattlerobotics.org/encoder/dec97/fuzzy.html
http://electronics.howstuffworks.com/joystick.htm/printable
http://www.robotshop.com/gorobotics/how-to-make-a-robot/how-to-make-a-robot-lesson-5-motor-controller
http://www.robotshop.com/gorobotics/how-to-make-a-robot/how-to-make-a-robot-lesson-5-motor-controller
http://combots.net/wiki/index.php/Stall_current
http://www.dimensionengineering.com/datasheets/Sabertooth2x25.pdf
http://www.thewheelchairsite.com/power-wheelchairs.aspx
http://web.cecs.pdx.edu/~mperkows/Rehabilitation_Robots/

94

[35] A. Fattouh, Y. Dadam, D. T. Pham, ―MATLAB-Based 3D Model of a Powered

Wheelchair‖, Laboratory of Automatic Control and Automation Faculty of Electrical and

Electronic Engineering, University of Aleppo, Aleppo, Syria. July 2008.

[36] Lesson 4, Understanding Microcontrollers, How to Make a Robot, GoRobotics,

―http://www.robotshop.com/gorobotics/articles/microcontrollers/how-to-make-a-robot-lesson-4-

understanding-microcontrollers‖. [Accessed: 13 Jan. 2011].

[37] Atmel AVR Atmega 644P 8-bit microcontroller manual,

http://www.atmel.com/dyn/resources/prod_documents/8011S.pdf. [Accessed: 27 Aug. 2009].

[38] Gregory Dudek, Michael Jenkin, ―Computational Principles of Mobile Robotics‖,

Cambridge University Press, 1 edition, Sensors, pp. 51-62, Feb 28
th

 2000.

[39] Sonar Made Simple, RidgeSoft, LLC,

―http://www.ridgesoft.com/articles/sonar/SonarMadeSimple.pdf‖. [Accesses: 10 Sep. 2009].

[40] Robot Sonars, Sensors, Society of Robots,

―http://www.societyofrobots.com/sensors_sonar.shtml‖. [Accesses: 15 Sep. 2009].

[41] Control system, Wikipedia, http://en.wikipedia.org/wiki/Control_system. [Accesses: 05 Feb.

2011].

[42] L. A. Zadeh, "Fuzzy sets", Information and Control Vol. 8 (3): 338–353, 1965.

[43] Siripun Thongchai and Kazuhiko Kawamura, ―Application of Fuzzy Control to a Sonar-

Based Obstacle Avoidance Mobile Robot‖, International Conference on Control Applications,

Anchorage, Alaska, USA. September 25-27, 2000.

[44] Fuzzy logic, Wikipedia, http://en.wikipedia.org/wiki/Fuzzy_logic. [Accesses: 17 Oct. 2009].

[45] Fuzzy logic, TLAs Glossary, DER Engineering, http://dereng.com/tlas_glossary.htm.

[Accesses: 24 Oct. 2009].

[46] Tijana T. Ivancevic, Bojan Jovanovic and Sasa Markovi, ―Fuzzy control strategies in human

operator and sport modeling ―, Fuzzy Information and Engineering, Volume 2, Number 2, pp

157-186, SpringerLink. July 2009.

[47] Didier Dubois, Henri Prade, ―Fuzzy elements in a fuzzy set‖, RIT, Universite Paul Sabatier,

Toulouse, France.

http://www.robotshop.com/gorobotics/articles/microcontrollers/how-to-make-a-robot-lesson-4-understanding-microcontrollers
http://www.robotshop.com/gorobotics/articles/microcontrollers/how-to-make-a-robot-lesson-4-understanding-microcontrollers
http://www.atmel.com/dyn/resources/prod_documents/8011S.pdf
http://www.amazon.ca/s/181-7026472-7138032?_encoding=UTF8&search-alias=books-ca&field-author=Gregory%20Dudek
http://www.amazon.ca/s/181-7026472-7138032?_encoding=UTF8&search-alias=books-ca&field-author=Michael%20Jenkin
http://www.ridgesoft.com/articles/sonar/SonarMadeSimple.pdf
http://www.societyofrobots.com/sensors_sonar.shtml
http://en.wikipedia.org/wiki/Control_system
http://en.wikipedia.org/wiki/Fuzzy_logic
http://dereng.com/tlas_glossary.htm
http://www.springerlink.com/content/?Author=Tijana+T.+Ivancevic
http://www.springerlink.com/content/?Author=Bojan+Jovanovic
http://www.springerlink.com/content/?Author=Sasa+Markovi
http://www.springerlink.com/content/1616-8658/
http://www.springerlink.com/content/1616-8658/2/2/

95

[48] Timothy J. Ross, ―Fuzzy logic with engineering applications―, page 91, second edition,

WILEY Publication, 2004.

[49] Sanjay Krishnankutty Alonso, ―Mamdani’s fuzzy inference method‖, eMathTeacher,

Polytechnic University of Madrid. http://www.dma.fi.upm.es/java/fuzzy/fuzzyinf/. [Accessed: 07

Sep. 2010].

[50] S. N. Sivanandam, S. Sumathi and S. N. Deepa, ―Introduction to fuzzy logic using

MATLAB‖, Springer Publication, 2006.

[51] Prasan Pitiranggon, Nunthika Benjathepanun, Somsri Banditvilai, and Veera Boonjing,

―Fuzzy Rules Generation and Extraction from Support Vector Machine Based on Kernel

Function Firing Signals‖, International journal of engineering and applied sciences, 2010.

[52] MATLAB Basic Tutorial, Control tutorials for MATLA and Simulink,

―http://www.library.cmu.edu/ctms/ctms/basic/basic.htm‖. [Accessed: 16 Nov. 2010].

[53] Simulink – simulation and model-based design, MathWorks,

―http://www.mathworks.com/products/simulink/‖. [Accessed: 22 Dec. 2010].

[54] H.R. Singh, Abdul Mobin, Sanjeev Kumar, Sundeep Chauhan and S.S. Agrawal, ―Design

and development of voice/joystick operated microcontroller based intelligent motorised

wheelchair‖, IEEE TENCON, pp. 1573 – 1576, 1999.

[55] Ian Cavers, ―A Brief Introductory Guide to MATLAB‖, UBC computer science, CPSC 303.

http://www.cs.ubc.ca/~ascher/542-403/MatlabGuide.pdf. [Accessed: 13 Dec. 2010].

[56] What is a GUI?, MathWorks, ―http://www.mathworks.com/help/techdoc/creating_guis/f2-

998436.html‖. [Accessed: 17 Jan. 2011].

[57] Steven F. Barrett, Daniel J. Pack, Chap 1, Atmel AVR Architecture Overview, pp. 1-24,

Atmel AVR microcontroller primer: programming and interfacing, MORGAN & CLAYPUL,

2008.

[58] Dean Camera, ―Using the USART - Serial communications‖, AVRFreaks, 2006.

http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=45341. [Accessed: 11

Sep. 2010].

[59] Microcontroller UART Tutorial, Society of Robots,

http://www.societyofrobots.com/microcontroller_uart.shtml. [Accessed: 13 Oct. 2010].

http://www.dma.fi.upm.es/java/fuzzy/fuzzyinf/
http://www.library.cmu.edu/ctms/ctms/basic/basic.htm
http://www.mathworks.com/products/simulink/
http://www.cs.ubc.ca/~ascher/542-403/MatlabGuide.pdf
http://www.mathworks.com/help/techdoc/creating_guis/f2-998436.html
http://www.mathworks.com/help/techdoc/creating_guis/f2-998436.html
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=45341&start=0&postdays=0&postorder=asc&highlight=&sid=e7560efa1ed45a5aa97b9abeb6376294
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=45341
http://www.societyofrobots.com/microcontroller_uart.shtml

96

[60] Steven F. Barrett, Daniel J. Pack, Chap 3, Analog-to-Digital Conversion, pp. 41-64, Atmel

AVR microcontroller primer: programming and interfacing, MORGAN & CLAYPUL, 2008.

[61] Running TX433 and RX433 RF modules with AVR microcontrollers, WINAVR-GCC

Tutorials, http://winavr.scienceprog.com/. [Accessed: 22 Aug. 2009].

[62] Devantech SRF05 Ultrasonic Range Finders datasheet manual,

http://www.robotstorehk.com/sensors/doc/srf05tech.pdf. [Accessed: 08 Nov. 2009].

[63] Webbot, ―PWM - an overview‖, Society of Robots,

http://www.societyofrobots.com/member_tutorials/node/228. [Accessed: 03 Sep. 2010].

[64] Digital I/O Ports, Society of Robots,

http://www.societyofrobots.com/microcontroller_tutorial.shtml. [Accessed: 05 Sep. 2010].

http://winavr.scienceprog.com/example-avr-projects/running-tx433-and-rx433-rf-modules-with-avr-microcontrollers.html
http://winavr.scienceprog.com/
http://www.robotstorehk.com/sensors/doc/srf05tech.pdf
http://www.societyofrobots.com/member_tutorials/node/228
http://www.societyofrobots.com/microcontroller_tutorial.shtml

97

Appendix A: MATLAB M-files and the
GUI

A.1 PlotChair.m

function h=PlotChair(Xpos,Ypos,Angle)

LocalChair=[-0.25 0.25;
 0.25 0.25;
 0.3 0;
 0.25 -0.25;
 -0.25 -0.25;
 -0.25 0.25];

 Sxlocal=[0 0.25 0.25 0.25 0.25 0 -0.25 -0.25];
 Sylocal=[0.25 0.25 0.15 -0.15 -0.25 -0.25 0.25 -0.25];
 Sanglelocal=[pi/2 pi/4 0 0 -pi/4 -pi/2 3*pi/4 -3*pi/4];

GlobalChair=LocalChair;

for i=1:length(LocalChair)
 GlobalChair(i,1)=Xpos+LocalChair(i,1)*cos(Angle)-

LocalChair(i,2)*sin(Angle);
GlobalChair(i,2)=Ypos+LocalChair(i,1)*sin(Angle)+LocalChair(i,2)*cos(Angle);
end;

cla;
hold on;
plot(GlobalChair(:,1),GlobalChair(:,2),'r');
for i=1:length(Sxlocal)
 PlotSensor(Xpos,Ypos,Angle,Sxlocal(i),Sylocal(i),Sanglelocal(i));
end;
axis square;

Room = [0 0;
 0 10;
 10 10;
 10 0;
 0 0];
Table1 = [2 2;
 2 3;
 3 3;
 3 2;
 2 2];
Table2 = [2 7;
 2 8;
 3 8;

98

 3 7;
 2 7];
Table3 = [6 4;
 6 7;
 7 7;
 7 4;
 6 4];
Table4 = [6 0;
 6 2;
 7 2;
 7 0;
 6 0];
Table5 = [5 9;
 5 10;
 10 10;
 10 9;
 5 9];
Table6 = [9 5;
 9 6;
 10 6;
 10 5;
 9 5];
Table7 = [9 2;
 9 3;
 10 3;
 10 2;
 9 2];

plot(Room(:,1),Room(:,2),'b');
plot(Table1(:,1),Table1(:,2),'b');
plot(Table2(:,1),Table2(:,2),'b');
plot(Table3(:,1),Table3(:,2),'b');
plot(Table4(:,1),Table4(:,2),'b');
plot(Table5(:,1),Table5(:,2),'b');
plot(Table6(:,1),Table6(:,2),'b');
plot(Table7(:,1),Table7(:,2),'b');
xlim([0 10]);
ylim([0 10]);
hold off;

global Xj Yj
Xj = 0;
Yj = 0;
pause(0.001);
h = 1;

99

A.2 PlotSensor.m

function PlotSensor(Xpos,Ypos,Angle,Sxlocal,Sylocal,Sanglelocal)

Sensor=[0 0;
 4 0.1;
 4 0;
 4 -0.1;
 0 0];

SensorChair=Sensor;

for i=1:length(Sensor)
 SensorChair(i,1)=Sxlocal+Sensor(i,1)*cos(Sanglelocal)-

Sensor(i,2)*sin(Sanglelocal);

SensorChair(i,2)=Sylocal+Sensor(i,1)*sin(Sanglelocal)+Sensor(i,2)*cos(Sanglel

ocal);
end;

SensorGlobal=SensorChair;

for i=1:length(SensorChair)
 SensorGlobal(i,1)=Xpos+SensorChair(i,1)*cos(Angle)-

SensorChair(i,2)*sin(Angle);

SensorGlobal(i,2)=Ypos+SensorChair(i,1)*sin(Angle)+SensorChair(i,2)*cos(Angle

);
end;

plot(SensorGlobal(:,1),SensorGlobal(:,2),'g');

A.3 GetSensor.m

function sensors=GetSensors(Xpos,Ypos,Angle)

Sensor=[0 0;
 4 0];
SensorChair=Sensor;

 Sxlocal=[0 0.25 0.25 0.25 0.25 0 -0.25 -0.25];
 Sylocal=[0.25 0.25 0.15 -0.15 -0.25 -0.25 0.25 -0.25];
 Sanglelocal=[pi/2 pi/4 0 0 -pi/4 -pi/2 3*pi/4 -3*pi/4];

100

sensors =[];

for j=1:length(Sxlocal)

 for i=1:length(Sensor)
 SensorChair(i,1)=Sxlocal(j)+Sensor(i,1)*cos(Sanglelocal(j))-

Sensor(i,2)*sin(Sanglelocal(j));

SensorChair(i,2)=Sylocal(j)+Sensor(i,1)*sin(Sanglelocal(j))+Sensor(i,2)*cos(S

anglelocal(j));
 end;

 SensorGlobal=SensorChair;

 for i=1:length(SensorChair)
 SensorGlobal(i,1)=Xpos+SensorChair(i,1)*cos(Angle)-

SensorChair(i,2)*sin(Angle);

SensorGlobal(i,2)=Ypos+SensorChair(i,1)*sin(Angle)+SensorChair(i,2)*cos(Angle

);
 end;

 s=Meassurement(SensorGlobal(1,1),SensorGlobal(1,2),Angle+Sanglelocal(j));

 sensors = [sensors,s];

end;

 A.4 Measurement.m

function s=Meassurement(Xini,Yini,Angle)

 Room = [0 10;
 0 10];
Table1 = [2 3;
 2 3];
Table2 = [2 3;
 7 8];
Table3 = [6 7;
 4 7];
Table4 = [6 7;
 0 2];
Table5 = [5 10;
 9 10];
Table6 = [9 10;
 5 6];
Table7 = [9 10;

101

 2 3];
s=4;

 for i=0:0.01:4
 xpos = Xini + i*cos(Angle);
 ypos = Yini + i*sin(Angle);

 if ((xpos < Room(1,1)) | (xpos > Room(1,2)) | (ypos < Room(2,1)) | (ypos

> Room(2,2)) | ((((xpos > Table1(1,1)) & ...
 (xpos < Table1(1,2))) & ((ypos > Table1(2,1)) & (ypos <

Table1(2,2)))) | ...
 (((xpos > Table2(1,1)) & (xpos < Table2(1,2))) & ((ypos >

Table2(2,1)) & ...
 (ypos < Table2(2,2)))) | (((xpos > Table3(1,1)) & (xpos <

Table3(1,2))) & ...
 ((ypos > Table3(2,1)) & (ypos < Table3(2,2)))) | (((xpos >

Table4(1,1)) & (xpos < Table4(1,2))) & ...
 ((ypos > Table4(2,1)) & (ypos < Table4(2,2)))) | (((xpos >

Table5(1,1)) & (xpos < Table5(1,2))) & ...
 ((ypos > Table5(2,1)) & (ypos < Table5(2,2)))) | (((xpos >

Table6(1,1)) & (xpos < Table6(1,2))) & ...
 ((ypos > Table6(2,1)) & (ypos < Table6(2,2)))) | (((xpos >

Table7(1,1)) & (xpos < Table7(1,2))) & ...
 ((ypos > Table7(2,1)) & (ypos < Table7(2,2)))))) & (i < s)
 s = i;
 break;
 end;
end.

A.5 Joystick Graphical User Interface Source

Code

function varargout = GUI(varargin)

% GUI M-file for GUI.fig
% GUI, by itself, creates a new GUI or raises the existing
% singleton*.
%
% H = GUI returns the handle to a new GUI or the handle to
% the existing singleton*.
%
% GUI('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in GUI.M with the given input arguments.
%
% GUI('Property','Value',...) creates a new GUI or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before GUI_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application

102

% stop. All inputs are passed to GUI_OpeningFcn via varargin.
%

gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @GUI_OpeningFcn, ...
 'gui_OutputFcn', @GUI_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);

if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End of the initialization process

% --- Executes upon GUI initialization.
function GUI_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to GUI (see VARARGIN)

% Choose default command line output for GUI
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes GUI wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = GUI_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes when left button is pressed.
function left_Callback(hObject, eventdata, handles)
% hObject handle to left (see GCBO)

103

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global Jcontrol
Jcontrol = 3;

% --- Executes when left-up button is pressed.
function leftup_Callback(hObject, eventdata, handles)
global Jcontrol
Jcontrol = 2;

% --- Executes when up button is pressed.
function up_Callback(hObject, eventdata, handles)
global Jcontrol
Jcontrol = 1;

% --- Executes when right-up button is pressed.
function rightup_Callback(hObject, eventdata, handles)
global Jcontrol
Jcontrol = 8;

% --- Executes when right button is pressed.
function right_Callback(hObject, eventdata, handles)
global Jcontrol
Jcontrol = 7;

% --- Executes when left-down button is pressed.
function leftdown_Callback(hObject, eventdata, handles)
global Jcontrol
Jcontrol = 4;

% --- Executes when down button is pressed.
function down_Callback(hObject, eventdata, handles)
global Jcontrol
Jcontrol = 5;

% --- Executes when right-down button is pressed.
function rightdown_Callback(hObject, eventdata, handles)
global Jcontrol
Jcontrol = 6;

104

Appendix B: The AVR Atmega644P
Embedded MCU Source Codes

B.1 USART
//***

// HEADER avr_UART0.h

//***

#ifndef _AVR_UART0_H_

 #define _AVR_UART0_H_

//***

#include "common.h"

//***

// constants

// USART buffers dimensions: MUST be 2, 4, 8, 16, 32, etc.

#define UART0_TX_BUFF_SIZE 128

#define UART0_RX_BUFF_SIZE 32

// uart speeds index - low order register byte only, high order byte is 0

enum

{

 SPEED0_38400,

 SPEED0_57600,

 SPEED0_115200,

 //

 SPEED0_MAX

};

#define UCSR0A_VAL (1<<U2X0) // double speed

#define UCSR0B_VAL ((1<<RXCIE0)|(1<<RXEN0)|(1<<TXEN0))

#define UCSR0C_VAL ((1<<UCSZ01)|(1<<UCSZ00)) // 8 bits, asynch.,no parity, one stop

// macros

#define UART0_TX_INTERRUPT_ENABLE sbi (UCSR0B, UDRIE0)

#define UART0_TX_INTERRUPT_DISABLE cbi (UCSR0B, UDRIE0)

105

#define UART0_RX_INTERRUPT_ENABLE sbi (UCSR0B, RXCIE0)

#define UART0_RX_INTERRUPT_DISABLE cbi (UCSR0B, RXCIE0)

//***

// exported functions

UCHAR UART0_init (UCHAR speed);

UCHAR UART0_get_RX_status (void);

UCHAR UART0_get_TX_status (void);

UCHAR UART0_send_data (UCHAR* data, UCHAR len);

UCHAR UART0_send_long_data (UCHAR* data, UINT len);

UCHAR UART0_get_data (UCHAR* data);

unsigned char receiveByte(void);

void transmitByte(unsigned char);

void transmitString(unsigned char*);

#endif //_AVR_UART0_H_

//***

// end of file

//***

//***

// SOURCE avr_UART0.c

//***

#include "avr_UART0.h"

//***

// local functions

// local constants

#define UART0_TX_MASK (UART0_TX_BUFF_SIZE - 1)

#define UART0_RX_MASK (UART0_RX_BUFF_SIZE - 1)

// USART speed definition with double speed and 14.7 MHz

#define UBRR0H_VAL 0

#define UBRR0L_38400 47

#define UBRR0L_57600 31

#ifdef CLOCK_10MHZ

 #define UBRR0L_115200 10

106

#else

 #define UBRR0L_115200 15

#endif

static const UCHAR UART0_speed[] =

{

 UBRR0L_38400,

 UBRR0L_57600,

 UBRR0L_115200

};

// exported variables

// local variables

SVUCHAR TxData0[UART0_TX_BUFF_SIZE];

SVUCHAR TxStartPointer0;

SVUCHAR TxEndPointer0;

SVUCHAR TxStatus0;

SVUCHAR RxData0[UART0_RX_BUFF_SIZE];

SVUCHAR RxStartPointer0;

SVUCHAR RxEndPointer0;

SVUCHAR RxStatus0;

/**

| NAME: UART0_init

| ABSTRACT: uart0 initialization

| PARAMETER: none

| RETURN: none

**/

UCHAR UART0_init (UCHAR speed)

{ // UART registers initialization

 if (speed >= SPEED0_MAX)

 {

 return S_FAIL; // invalid speed requested

 }

 UCSR0A = 0;

 UCSR0A = UCSR0A_VAL; //0

 UBRR0H = UBRR0H_VAL;

 UBRR0L = UART0_speed[speed];

 UCSR0C = UCSR0C_VAL;

 UCSR0B = UCSR0B_VAL;

107

 // variables initialization

 TxStartPointer0 = 0;

 TxEndPointer0 = 0;

 TxStatus0 = 0;

 RxStartPointer0 = 0;

 RxEndPointer0 = 0;

 RxStatus0 = 0;

 return S_OK;

}

/**

| NAME: UART0_get_RX_status

| ABSTRACT: clears RxStatus0 but returns its real value

| PARAMETER: none

| RETURN: RxStatus0

**/

UCHAR UART0_get_RX_status (void)

{

UCHAR i;

 UART0_RX_INTERRUPT_DISABLE;

 i = RxStatus0;

 UART0_RX_INTERRUPT_ENABLE;

 return i;

}

/**

| NAME: UART0_get_TX_status

| ABSTRACT:

| PARAMETER: none

| RETURN: TxStatus0

**/

UCHAR UART0_get_TX_status (void)

{

UCHAR i;

 UART0_TX_INTERRUPT_DISABLE;

 i = TxStatus0;

 UART0_TX_INTERRUPT_ENABLE;

 return i;

}

108

/**

| NAME: UART0_get_data

| ABSTRACT:

| PARAMETER: pointer where the received data have to be saved

| RETURN: number of received bytes

**/

UCHAR UART0_get_data (UCHAR* data)

{

UCHAR i = 0;

 UART0_RX_INTERRUPT_DISABLE;

 RxEndPointer0 &= UART0_TX_MASK;

 RxStartPointer0 &= UART0_TX_MASK;

 if (RxStartPointer0 == RxEndPointer0)

 {

 UART0_RX_INTERRUPT_ENABLE;

 return 0; // there are not any received bytes or overflow appears

 }

 while (RxEndPointer0 != RxStartPointer0)

 {

 *(data + i) = RxData0[RxEndPointer0];

 RxEndPointer0 ++;

 RxEndPointer0 &= UART0_TX_MASK;

 i++;

 }

 UART0_RX_INTERRUPT_ENABLE;

 return i;

}

/**

| NAME: UART0_send_data

| ABSTRACT:

| PARAMETER: pointer to data to be sent, number of bytes

| RETURN: number of sent bytes

**/

UCHAR UART0_send_data (UCHAR* data, UCHAR len)

{

UCHAR i = 0;

109

UCHAR FreeBytes;

 UART0_TX_INTERRUPT_DISABLE;

 TxEndPointer0 &= UART0_TX_MASK;

 TxStartPointer0 &= UART0_TX_MASK;

 // looks for the free space in the local buffer

 if (TxEndPointer0 == TxStartPointer0)

 { // the local buffer is whole empty

 FreeBytes = UART0_TX_BUFF_SIZE;

 }

 else

 if (TxEndPointer0 < TxStartPointer0)

 {

 FreeBytes = TxStartPointer0 - TxEndPointer0;

 }

 else

 {

 FreeBytes = TxEndPointer0 - TxStartPointer0;

 }

 // copy the data to the local buffer

 while ((i < len) && (i < FreeBytes))

 {

 TxData0[TxStartPointer0 & UART0_TX_MASK] = *(data + i);

 TxStartPointer0 ++;

 i ++;

 };

 UART0_TX_INTERRUPT_ENABLE;

 return i;

}

/**

| NAME: UART0_send_long_data

| ABSTRACT:

| PARAMETER: pointer to data to be sent, number of bytes (up to 64 kB)

| RETURN: number of sent bytes

**/

UCHAR UART0_send_long_data (UCHAR* data, UINT len)

{

UINT uLength = len;

110

UINT uSentNum = 0;

UINT temp;

 while (uSentNum < uLength)

 {

 while (TxStatus0 != S_OK); // wait for empty buffer

 if ((uLength - uSentNum) > UART0_TX_BUFF_SIZE)

 {

 temp = (UINT)UART0_send_data ((UCHAR*)(data + uSentNum), UART0_TX_BUFF_SIZE);

 }

 else

 {

 temp = (UINT)UART0_send_data ((UCHAR*)(data + uSentNum), (UCHAR)(uLength - uSentNum));

 }

 uSentNum += temp;

 }

 return S_OK;

}

//***

// interrupt routines

/**

| NAME: SIGNAL (SIG_UART0_RECV)

| ABSTRACT: Uart0 RX interrupt handler

| PARAMETER: none

| RETURN: none

**/

//SIGNAL (SIG_UART0_RECV)

ISR (USART0_RX_vect)

{

UCHAR temp = UDR0; // read data register

 RxData0[RxStartPointer0] = temp;

 RxStartPointer0 ++;

 RxStartPointer0 &= UART0_RX_MASK;

 if (RxStartPointer0 == (RxEndPointer0 & UART0_RX_MASK))

 { // error: buffer overflow

 RxStatus0 = S_OVERFLOW;

111

 }

}

/**

| NAME: SIGNAL (SIG_UART0_DATA)

| ABSTRACT: Uart0 TX Data Register Empty interrupt handler

| PARAMETER: none

| RETURN: none

**/

//SIGNAL (SIG_UART0_DATA)

ISR (USART0_UDRE_vect)

{

 UDR0 = TxData0[TxEndPointer0];

 TxEndPointer0 ++;

 TxEndPointer0 &= UART0_TX_MASK;

 if (TxEndPointer0 == (TxStartPointer0 & UART0_TX_MASK))

 { // end of the data to be transmitted

 UART0_TX_INTERRUPT_DISABLE;

 TxStatus0 = S_OK;

 }

 else

 {

 TxStatus0 = S_BUSY;

 }

}

/**

| NAME: SIGNAL (SIG_UART0_TRANS)

| ABSTRACT: Uart0 TX complete interrupt handler, practically not used

| PARAMETER: none

| RETURN: none

**/

//SIGNAL (SIG_UART0_TRANS)

ISR (USART0_TX_vect)

{

 cbi (UCSR0B, TXCIE0); // to be sure, disable TX interrupt

}

//***

// direct access functions: first time only:

112

//**

//Function to receive a single byte

//***

unsigned char receiveByte(void)

{

 unsigned char data, status;

 while(!(UCSR0A & (1<<RXC0))); // Wait for incoming data

 status = UCSR0A;

 data = UDR0;

 return(data);

}

//***

//Function to transmit a single byte

//***

void transmitByte(unsigned char data)

{

 while (!(UCSR0A & (1<<UDRE0)))

 ; /* Wait for empty transmit buffer */

 UDR0 = data; /* Start transmition */

}

//***

//Function to transmit a string in RAM

//***

void transmitString(unsigned char* string)

{

 while (*string)

 {

 transmitByte(*string++);

 }

}

//***

// end of file

//***

113

B.2 Joystick

//***

// joystick.h

//***

#include "common.h"

//***

void Joystick_init (void);

void JoystickMeasurementTask (void);

UCHAR JoystickGetData (UCHAR Direction);

//***

// end of file

//***

//***

// joystick.c

//***

#include "common.h"

#include "joystick.h"

//***

#define MEASUREMENT_NUMBER 4 // to use average value from these

 // measurement results

#define INDEX_MASK (MEASUREMENT_NUMBER - 1)

//***

// local

static UCHAR FrontBackDirection[MEASUREMENT_NUMBER];

static UCHAR LeftRightDirection[MEASUREMENT_NUMBER];

static UCHAR MeasurementCounter;

/**

| NAME: Joystick_init

| ABSTRACT: component initialization after reset

| PARAMETER: none

| RETURN: none

114

**/

void Joystick_init (void)

{

 MeasurementCounter = 0;

 JoystickTimeOut = JOYSTICK_MEASUREMENT_TIME;

 ADMUX = (1<<ADLAR); // external Vref = Vcc, right adjustment

 // ADC input clock 14MHz/8, approximately 10 microseconds conversion time

 ADCSRA = (1<<ADEN) | (1<<ADPS1) | (1<<ADPS0);

 ADCSRB = 0; // ADC free running mode

 // set analogue inputs

 DIDR0 = (1<<ADC_FRONT_BACK) | (1<<ADC_LEFT_RIGHT);

}

/**

| NAME: JoystickMeasurement

| ABSTRACT: do measurement of both directions

| PARAMETER: none

| RETURN: none

**/

void JoystickMeasurementTask (void)

{

 if (JoystickTimeOut != 0)

 {

 return;

 }

 JoystickTimeOut = JOYSTICK_MEASUREMENT_TIME;

 // doing front-back joystick direction measurement

 ADMUX = (1<<ADLAR) + ADC_FRONT_BACK;

 sbi (ADCSRA, ADSC);

 while ((ADCSRA & (1<<ADSC)) != 0)

 { // wait conversion end

 }

 FrontBackDirection[MeasurementCounter & INDEX_MASK] = ADCH;

 // doing left-right joystick direction measurement

 ADMUX = (1<<ADLAR) + ADC_LEFT_RIGHT;

 sbi (ADCSRA, ADSC);

115

 while ((ADCSRA & (1<<ADSC)) != 0)

 { // wait conversion end

 }

 LeftRightDirection [MeasurementCounter & INDEX_MASK] = ADCH;

 MeasurementCounter ++;

}

/**

| NAME: JoystickGetData

| ABSTRACT: gives the average measurement value

| PARAMETER: direction

| RETURN: average measurement value

**/

UCHAR JoystickGetData (UCHAR Direction)

{

 UINT summ = 0;

 UCHAR idx;

 for (idx = 0; idx < MEASUREMENT_NUMBER; idx ++)

 {

 if (Direction == ADC_FRONT_BACK)

 {

 summ += (UINT)(FrontBackDirection[idx]);

 }

 else

 {

 summ += (UINT)(LeftRightDirection[idx]);

 }

 }

 return (UCHAR)(summ / MEASUREMENT_NUMBER);

}

//***

// end of file

//***

116

B.3 Sensors

//***

// sonar.h

//***

#ifndef _SONAR_H

#define _SONAR_H

//***

// exported functions

void InitSonar (void);

void SonarMeasurementTask (void);

UCHAR IsSonarMeasurementDone (void);

void SonarStartMeasurement (void);

void SonarDataConversion (void);

//***

// The sensors are placed in clockwise direction with 45 degrees angle distance

// between them.

// sonar lines definitions:

#define SONAR_FRONT 0 // 0 degrees

#define SONAR_FRONT_RIGHT 1 // 45

#define SONAR_RIGHT 2 // 90

#define SONAR_BACK_RIGHT 3 // 135

#define SONAR_BACK 4 // 180

#define SONAR_BACK_LEFT 5 // 225

#define SONAR_LEFT 6 // 270

#define SONAR_FRONT_LEFT 7 // 315

//***

// exported variables

extern UINT SonarDataInCentimeters [];

extern volatile UCHAR SonarMeasurementTimeOut;

#endif //_SONAR_H

//***

// end of file

//***

117

/***

// joystick.c

//***

#include "common.h"

#include "sonar.h"

//***

#define MEASUREMENT_NUMBER 4 // to use average value from these

 // measurement results

#define INDEX_MASK (MEASUREMENT_NUMBER - 1)

//***

// local

static UCHAR FrontBackDirection[MEASUREMENT_NUMBER];

static UCHAR LeftRightDirection[MEASUREMENT_NUMBER];

static UCHAR MeasurementCounter;

/**

| NAME: Joystick_init

| ABSTRACT: component initialization after reset

| PARAMETER: none

| RETURN: none

**/

void Joystick_init (void)

{

 MeasurementCounter = 0;

 JoystickTimeOut = JOYSTICK_MEASUREMENT_TIME;

 ADMUX = (1<<ADLAR); // external Vref = Vcc, right adjustment

 // ADC input clock 14MHz/8, approximately 10 microseconds conversion time

 ADCSRA = (1<<ADEN) | (1<<ADPS1) | (1<<ADPS0);

 ADCSRB = 0; // ADC free running mode

 // set analogue inputs

 DIDR0 = (1<<ADC_FRONT_BACK) | (1<<ADC_LEFT_RIGHT);

}

/**

| NAME: JoystickMeasurement

| ABSTRACT: do measurement of both directions

118

| PARAMETER: none

| RETURN: none

**/

void JoystickMeasurementTask (void)

{

 if (JoystickTimeOut != 0)

 {

 return;

 }

 JoystickTimeOut = JOYSTICK_MEASUREMENT_TIME;

 // doing front-back joystick direction measurement

 ADMUX = (1<<ADLAR) + ADC_FRONT_BACK;

 sbi (ADCSRA, ADSC);

 while ((ADCSRA & (1<<ADSC)) != 0)

 { // wait conversion end

 }

 FrontBackDirection[MeasurementCounter & INDEX_MASK] = ADCH;

 // doing left-right joystick direction measurement

 ADMUX = (1<<ADLAR) + ADC_LEFT_RIGHT;

 sbi (ADCSRA, ADSC);

 while ((ADCSRA & (1<<ADSC)) != 0)

 { // wait conversion end

 }

 LeftRightDirection [MeasurementCounter & INDEX_MASK] = ADCH;

 MeasurementCounter ++;

}

/**

| NAME: JoystickGetData

| ABSTRACT: gives the average measurement value

| PARAMETER: direction

| RETURN: average measurement value

**/

UCHAR JoystickGetData (UCHAR Direction)

{

 UINT summ = 0;

119

 UCHAR idx;

 for (idx = 0; idx < MEASUREMENT_NUMBER; idx ++)

 {

 if (Direction == ADC_FRONT_BACK)

 {

 summ += (UINT)(FrontBackDirection[idx]);

 }

 else

 {

 summ += (UINT)(LeftRightDirection[idx]);

 }

 }

 return (UCHAR)(summ / MEASUREMENT_NUMBER);

}

//***

// end of file

//***

120

B.4 Common

/***

// common.h common definitions for all project

//***

#ifndef _COMMON_H_

#define _COMMON_H_

//***

#define CLOCK_10MHZ

//

// if defined the whole PORTC will be initialized as inputs with internal pull ups

// and by connecting to ground it is possible to check one or more pins. PORTC status

// sends via UART on every ~ 800 milliseconds

//#define PORTC_INPUT_TEST

// if defined below the whole PORTC is initialized as output and

// its value increments on every milliseconds, so it’s possible to see each pin by oscilloscope.

//#define PORTC_OUTPUT_TEST

//

//***

#define define __AVR_ATmega644__

#ifdef CLOCK_10MHZ

 #define F_CPU 10000000UL // 10.00 MHz

#else

 #define F_CPU 14745600UL // 14.74 MHz

#endif

//***

#include <avr/io.h>

#include <util/delay.h>

#include <avr/interrupt.h>

#include <avr/eeprom.h>

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

#include <inttypes.h>

#include <avr/wdt.h>

//#include <avr/iom128.h>

#include <avr/iom644.h>

121

#include <math.h>

//***

// preprocessor predefinitions

#define UCHAR unsigned char

#define UINT unsigned int

#define ULONG unsigned long

#define LONG long

#define VUCHAR volatile unsigned char

#define VUINT volatile unsigned int

#define VULONG volatile unsigned long

#define VLONG volatile long

#define SVCHAR static volatile char

#define SVUCHAR static volatile unsigned char

#define SVUINT static volatile unsigned int

#define SVINT static volatile int

// for compatibility with old versions

#define inp(port) (port)

#define outp(val, port) (port) = (val)

#define sbi(port, bit) (port) |= (1 << (bit))

#define cbi(port, bit) (port) &= ~(1 << (bit))

typedef float tMember;

//***

// conditional compilation

//#define _DEBUG_SONAR_TASK

//***

// global returned results

#define S_OK 0

#define S_WAIT 1

#define S_OVERFLOW 2

#define S_BUSY 3

#define S_FAIL 0xFF

//***

#define JOYSTICK_MEASUREMENT_TIME 10 // on every 10

milliseconds

122

#define ADC_FRONT_BACK 0 // ADC channels

#define ADC_LEFT_RIGHT 1

#define SONAR_SENSORS 8

//***

extern volatile UCHAR JoystickTimeOut;

extern void delay (UCHAR cycles);

#endif //_COMMON_H_

//***

// end of file

//***

123

B.5 Fuzzy Algorithm

//***

// fuzzy.h

//***

#include "common.h"

//***

void FuzzyProcess (void);

extern float distance[8];

extern tMember FuzzyOutputSpeed;

extern tMember FuzzyOutputDirection;

extern UCHAR JoystickXValue;

extern UCHAR JoystickYValue;

//***

// end of file

//***

//***

// joystick.c

//***

#include "common.h"

#include "sonar.h"

//***

#define MEASUREMENT_NUMBER 4 // to use average value from these

 // measurement results

#define INDEX_MASK (MEASUREMENT_NUMBER - 1)

//***

// local

static UCHAR FrontBackDirection[MEASUREMENT_NUMBER];

static UCHAR LeftRightDirection[MEASUREMENT_NUMBER];

static UCHAR MeasurementCounter;

/**

| NAME: Joystick_init

| ABSTRACT: component initialization after reset

124

| PARAMETER: none

| RETURN: none

**/

void Joystick_init (void)

{

 MeasurementCounter = 0;

 JoystickTimeOut = JOYSTICK_MEASUREMENT_TIME;

 ADMUX = (1<<ADLAR); // external Vref = Vcc, right adjustment

 // ADC input clock 14MHz/8, approximately 10 microseconds conversion time

 ADCSRA = (1<<ADEN) | (1<<ADPS1) | (1<<ADPS0);

 ADCSRB = 0; // ADC free running mode

 // set analogue inputs

 DIDR0 = (1<<ADC_FRONT_BACK) | (1<<ADC_LEFT_RIGHT);

}

/**

| NAME: JoystickMeasurement

| ABSTRACT: do measurement of both directions

| PARAMETER: none

| RETURN: none

**/

void JoystickMeasurementTask (void)

{

 if (JoystickTimeOut != 0)

 {

 return;

 }

 JoystickTimeOut = JOYSTICK_MEASUREMENT_TIME;

 // doing front-back joystick direction measurement

 ADMUX = (1<<ADLAR) + ADC_FRONT_BACK;

 sbi (ADCSRA, ADSC);

 while ((ADCSRA & (1<<ADSC)) != 0)

 { // wait conversion end

 }

 FrontBackDirection[MeasurementCounter & INDEX_MASK] = ADCH;

 // doing left-right joystick direction measurement

125

 ADMUX = (1<<ADLAR) + ADC_LEFT_RIGHT;

 sbi (ADCSRA, ADSC);

 while ((ADCSRA & (1<<ADSC)) != 0)

 { // wait conversion end

 }

 LeftRightDirection [MeasurementCounter & INDEX_MASK] = ADCH;

 MeasurementCounter ++;

}

/**

| NAME: JoystickGetData

| ABSTRACT: gives the average measurement value

| PARAMETER: direction

| RETURN: average measurement value

**/

UCHAR JoystickGetData (UCHAR Direction)

{

 UINT summ = 0;

 UCHAR idx;

 for (idx = 0; idx < MEASUREMENT_NUMBER; idx ++)

 {

 if (Direction == ADC_FRONT_BACK)

 {

 summ += (UINT)(FrontBackDirection[idx]);

 }

 else

 {

 summ += (UINT)(LeftRightDirection[idx]);

 }

 }

 return (UCHAR)(summ / MEASUREMENT_NUMBER);

}

//***

// end of file

//***

126

//***

// fuzzy.c

//***

#include "common.h"

#include "sonar.h"

#include "joystick.h"

//***

//typedef float tMember;

#define RULES_NUMBER 24

#define INPUTS_NUMBER 9 // 1 direction and 8 distances

#define DISTANCE_NUM 8 // 8 sonars

#define OUTPUTS_NUMBER 2

// sonar sensors indexes

enum

{

 S_LEFT_FRONT, // S0

 S_RIGHT_FRONT, // S1

 S_LEFT_CORNER, // S2

 S_RIGHT_CORNER, // S3

 S_LEFT, // S4

 S_RIGHT, // S5

 S_LEFT_BACK, // S6

 S_RIGHT_BACK // S7

};

// sonar distances input members

enum

{ // index value

 Near, // 0 0.00 - 0.49

 Middle, // 1 0.50 - 1.00

 Far, // 2 > 1.00

 NONE // not used for calculations

};

// direction input/output members

enum

{ // index

 REAR_L, // 0 0.0PI - 0.5PI

127

 LEFT, // 1 0.5PI - 1.0PI

 FRONT, // 2 1.0PI - 1.5PI

 RIGHT, // 3 1.5PI - 2.0PI

 REAR_R, // 4 > 2.0PI

 DIR_FREE // not used for calculations

};

// speed output members

enum

{ // index

 SLOW, // 0

 MEDIUM, // 1

 FAST // 2

};

#define OUTPUT_SPEED_INDEX 9

#define OUTPUT_DIR_INDEX 10

// The Rules

UCHAR Rules[RULES_NUMBER][INPUTS_NUMBER + OUTPUTS_NUMBER] =

{ // DIR_IN, S0 S1 S2 S3 S4 S5 S6 S7 SPEED DIR_OUT

// 0 1 2 3 4 5 6 7 8 9 10

 { FRONT, Far, Far, NONE, NONE, NONE, NONE, NONE, NONE, FAST, FRONT },

// 01

 { LEFT, NONE, NONE, NONE, NONE, Far, NONE, NONE, NONE, FAST, LEFT },

 // 02

 { RIGHT, NONE, NONE, NONE, NONE, NONE, Far, NONE, NONE, FAST, RIGHT },

// 03

 { LEFT, NONE, NONE, NONE, NONE, Near, NONE, NONE, NONE, SLOW, RIGHT },

// 04

 { RIGHT, NONE, NONE, NONE, NONE, NONE, Near, NONE, NONE, SLOW, LEFT },

// 05

 { FRONT, NONE, Near, NONE, NONE, NONE, NONE, NONE, NONE, SLOW, LEFT },

// 06

 { FRONT, Near, NONE, NONE, NONE, NONE, NONE, NONE, NONE, SLOW, RIGHT },

// 07

 { LEFT, Middle, NONE, Near, NONE, NONE, NONE, NONE, NONE, MEDIUM, RIGHT },

// 08

 { RIGHT, NONE, Middle, NONE, Near, NONE, NONE, NONE, NONE, MEDIUM, LEFT },

// 09

 { LEFT, NONE, NONE, Near, NONE, NONE, NONE, NONE, NONE, SLOW, RIGHT },

// 10

128

 { RIGHT, NONE, NONE, NONE, Near, NONE, NONE, NONE, NONE, SLOW, LEFT },

// 11

 { FRONT, Near, Near, Near, Near, NONE, NONE, NONE, NONE, SLOW, REAR_R },

// 12

 { FRONT, NONE, NONE, Near, NONE, NONE, NONE, NONE, NONE, SLOW, RIGHT },

// 13

 { FRONT, NONE, NONE, NONE, Near, NONE, NONE, NONE, NONE, SLOW, LEFT },

// 14

 { REAR_L, NONE, NONE, NONE, NONE, NONE, NONE, Near, NONE, SLOW, RIGHT },

 // 15

 { REAR_R, NONE, NONE, NONE, NONE, NONE, NONE, NONE, Near, SLOW, LEFT },

// 16

 { REAR_L, NONE, NONE, NONE, NONE, NONE, NONE, Far, NONE, FAST, REAR_L },

// 17

 { REAR_R, NONE, NONE, NONE, NONE, NONE, NONE, NONE, Far, FAST, REAR_R },

// 18

 { REAR_L, NONE, NONE, NONE, NONE, NONE, NONE, Near, Near, SLOW, RIGHT },

// 19

 { REAR_R, NONE, NONE, NONE, NONE, NONE, NONE, Near, Near, SLOW, LEFT },

// 20

 { FRONT, NONE, NONE, NONE, Near, NONE, NONE, NONE, NONE, SLOW, LEFT },

// 21

 { FRONT, NONE, NONE, Near, NONE, NONE, NONE, NONE, NONE, SLOW, RIGHT },

// 22

 { FRONT, NONE, Middle, NONE, Near, NONE, Middle, NONE, NONE, SLOW, REAR_L },

// 23

 { FRONT, Middle, NONE, Near, NONE, Middle, NONE, NONE, NONE, SLOW, REAR_R }

// 24

 // DIR_IN, S0 S1 S2 S3 S4 S5 S6 S7 SPEED DIR_OUT

};

//***

static float ajm;

static tMember InputDistanceMembers[DISTANCE_NUM][3];

static tMember InputDirectionMembers[5];

static tMember OutputSpeedMembers[RULES_NUMBER][3];

static tMember OutputDirectionMembers[RULES_NUMBER][5];

static tMember FinalOutputSpeedMembers[3];

static tMember FinalOutputDirectionMembers[5];

129

static tMember AuxOutputSpeedMembers[3];

static tMember AuxOutputDirectionMembers[5];

// exported variables

float distance[8];

tMember FuzzyOutputSpeed;

tMember FuzzyOutputDirection;

UCHAR JoystickXValue;

UCHAR JoystickYValue;

//***

static void CalcInputDirectionMembers(void);

static void CalcJoystickAngle (UCHAR x, UCHAR y);

static void CalcInputDistanceMembers (float dist, tMember* member);

static void ClearArray (UCHAR *adr, UINT bytes);

static void CalcInputFuzzyMembers (void);

static void CalcOutputFuzzyMembers (void);

static tMember LookForMinValue (tMember *arr, UCHAR number);

/**

| NAME: CalcJoystickAngle

| ABSTRACT:

| PARAMETER: ADC joystick values: x, y - range 0 - 255

| RETURN: none

**/

static void CalcJoystickAngle (UCHAR x, UCHAR y)

{

 //atan2 returns a value in the range –PI to PI radians, using the signs of

 //both parameters to determine the quadrant of the return value.

 //returns x/y

 double X = (double)(x - 128);

 double Y = (double)(y - 128);

 double res;

 if (Y == 0)

 { // to avoid division by zero

 Y = 1;

 }

 res = atan2 (X, Y);

130

 if (res >= 0)

 {

 ajm = (float)res;

 }

 else

 {

 ajm = (float)(res + 2*3.1415);

 }

}

/**

| NAME: CalcInputDirectionMembers

| ABSTRACT:

| PARAMETER: input direction 0...2*PI

| RETURN: none

**/

static void CalcInputDirectionMembers(void)

{//mue7[1:5] = calculateInput7(ajm);

 /*Calculation membership function 1*/

 if (ajm > 1.571)

 {

 InputDirectionMembers[0] = 0;

 }

 else

 {

 InputDirectionMembers[0] = (tMember)(1 - ajm/1.571);

 }

 /*Calculation membership function 2*/

 if (ajm > 3.142)

 {

 InputDirectionMembers[1] = 0;

 }

 else

 {

 if (ajm < 1.571)

 {

 InputDirectionMembers[1] = (tMember)(ajm/1.571);

 }

 else

 {

131

 InputDirectionMembers[1] = (tMember)(2 - ajm/1.571);

 }

 }

 /*Calculation membership function 3*/

 if (ajm > 4.712)

 {

 InputDirectionMembers[2] = 0;

 }

 else

 {

 if (ajm < 1.571)

 {

 InputDirectionMembers[2] = 0;

 }

 else

 {

 if (ajm < 3.142)

 {

 InputDirectionMembers[2] = (tMember)((1.571 + ajm)/1.571 - 2);

 }

 else

 {

 InputDirectionMembers[2] = (tMember)(3 - ajm/1.571);

 }

 }

 }

 /*Calculation membership function 4*/

 if (ajm > 6.283)

 {

 InputDirectionMembers[3] = 0;

 }

 else

 {

 if (ajm < 3.142)

 {

 InputDirectionMembers[3] = 0;

 }

 else

 {

 if (ajm < 4.712)

132

 {

 InputDirectionMembers[3] = (tMember)((3.142 + ajm)/1.571-4);

 }

 else

 {

 InputDirectionMembers[3] = (tMember)(4 - ajm/1.571);

 }

 }

 }

 /*Calculation membership function 5*/

 if (ajm > 6.283)

 {

 InputDirectionMembers[4] = 0;

 }

 else

 {

 if (ajm < 4.712)

 {

 InputDirectionMembers[4] = 0;

 }

 else

 {

 InputDirectionMembers[4] = (tMember)((4.712 + ajm)/1.571 - 6);

 }

 }

}

/**

| NAME: CalcInputDistanceMembers

| ABSTRACT:

| PARAMETER: distance, address

| RETURN: none

**/

static void CalcInputDistanceMembers (float dist, tMember* member)

{

 /*Calculation membership function 1*/

 if (dist > 0.5)

 {

 *member = 0;

 }

 else

133

 {

 *member = 1 - (2*dist);

 }

 /*Calculation membership function 2*/

 if (dist > 1)

 {

 *(member + 1) = 0;

 }

 else

 {

 if (dist < 0.5)

 {

 *(member + 1) = 2 * dist;

 }

 else

 {

 *(member + 1) = 2 - (2 * dist);

 }

 }

 /*Calculation membership function 3*/

 if (dist > 1)

 {

 *(member + 2) = 1;

 }

 else

 {

 if (dist < 0.5)

 {

 *(member + 2) = 0;

 }

 else

 {

 *(member + 2) = -1 + (2 * dist);

 }

 }

}

/**

| NAME: ClearArray(...)

| ABSTRACT: clears all data before rules calculations

134

| PARAMETER: UCHAR *adr, UINT bytes

| RETURN: none

**/

static void ClearArray (UCHAR *adr, UINT bytes)

{

 UINT idx;

 for (idx = 0; idx < bytes; idx ++)

 {

 *(adr + idx) = 0;

 }

}

/**

| NAME: LookForMinValue

| ABSTRACT:

| PARAMETER: tMember *arr, UCHAR number

| RETURN: minimal value

**/

static tMember LookForMinValue (tMember *arr, UCHAR number)

{

 UCHAR idx;

 UCHAR ZeroFlag = 0;

 tMember minVal = 1.0;

 for (idx = 0; idx < number; idx ++)

 {

 if (*(arr + idx) != 0)

 {

 ZeroFlag = 1;

 }

 }

 if (ZeroFlag == 0)

 { // all values are zeros

 return 0;

 }

 for (idx = 0; idx < number; idx ++)

 {

 if ((*(arr + idx) != 0) && (*(arr + idx) < minVal))

 {

135

 minVal = *(arr + idx);

 }

 }

 return minVal;

}

/**

| NAME: CalcInputFuzzyMembers

| ABSTRACT:

| PARAMETER: none

| RETURN: none

**/

static void CalcInputFuzzyMembers (void)

{

 UCHAR idx;

 CalcJoystickAngle (JoystickXValue, JoystickYValue);

 CalcInputDirectionMembers ();

 for (idx = 0; idx < DISTANCE_NUM; idx ++)

 {

 CalcInputDistanceMembers (distance[idx], &InputDistanceMembers[idx][0]);

 }

}

/**

| NAME: CalcOutputFuzzyMembers

| ABSTRACT:

| PARAMETER: none

| RETURN: none

**/

static void CalcOutputFuzzyMembers (void)

{

 UCHAR rules_idx;

 tMember used_members[INPUTS_NUMBER];

 tMember MinValue;

 UCHAR used_index;

 UCHAR current_index;

 ClearArray ((UCHAR*)&OutputSpeedMembers[0][0], sizeof (OutputSpeedMembers));

136

 ClearArray ((UCHAR*)&OutputDirectionMembers[0][0], sizeof (OutputDirectionMembers));

 for (rules_idx = 0; rules_idx < RULES_NUMBER; rules_idx ++)

 {

 ClearArray ((UCHAR*)&used_members[0], sizeof (used_members));

 used_index = 0;

 // Input direction member index

 current_index = Rules[rules_idx][0];

 // relevant input direction value

 used_members[used_index] = InputDirectionMembers[current_index];

 // collect data from input distance members

 for (used_index = 1; used_index < INPUTS_NUMBER; used_index ++)

 {

 // Input distance member index

 current_index = Rules[rules_idx][used_index];

 if (current_index < NONE)

 {

 used_members[used_index] = InputDistanceMembers[used_index - 1][current_index];

 }

 }

 MinValue = LookForMinValue (&used_members[0], INPUTS_NUMBER);

 // output speed member index

 current_index = Rules[rules_idx][OUTPUT_SPEED_INDEX];

 OutputSpeedMembers[rules_idx][current_index] = MinValue;

 // output direction member index

 current_index = Rules[rules_idx][OUTPUT_DIR_INDEX];

 OutputDirectionMembers[rules_idx][current_index] = MinValue;

 }

 ClearArray ((UCHAR*)&FinalOutputSpeedMembers[0], sizeof (FinalOutputSpeedMembers));

 ClearArray ((UCHAR*)&FinalOutputDirectionMembers[0], sizeof (FinalOutputDirectionMembers));

 // output speed

 //mus2[1:3] = calculateOutputs2(mur1s2[1:3] to mur24s2[1:3])

 for (used_index = 0; used_index < 3; used_index ++)

 {

 MinValue = 1.0;

137

 for (rules_idx = 0; rules_idx < RULES_NUMBER; rules_idx ++)

 {

 if (OutputSpeedMembers[rules_idx][used_index] != 0)

 {

 if (OutputSpeedMembers[rules_idx][used_index] < MinValue)

 {

 MinValue = OutputSpeedMembers[rules_idx][used_index];

 }

 }

 }

 FinalOutputSpeedMembers[used_index] = MinValue;

 }

 // output direction

 // mus1[1:5] = calculateOutputs1(mur1s1[1:5] to mur24s1[1:5])

 for (used_index = 0; used_index < 5; used_index ++)

 {

 MinValue = 1.0;

 for (rules_idx = 0; rules_idx < RULES_NUMBER; rules_idx ++)

 {

 if (OutputDirectionMembers[rules_idx][used_index] != 0)

 {

 if (OutputDirectionMembers[rules_idx][used_index] < MinValue)

 {

 MinValue = OutputDirectionMembers[rules_idx][used_index];

 }

 }

 }

 FinalOutputDirectionMembers[used_index] = MinValue;

 }

 for (used_index = 0; used_index < 3; used_index ++)

 {

 AuxOutputSpeedMembers[used_index] = FinalOutputSpeedMembers[used_index] -

 (FinalOutputSpeedMembers[used_index] * FinalOutputSpeedMembers[used_index])/2;

 }

 //aux1 = 0.2*(mus2[1]-mus2[1]^2/2);

 //aux2 = 1*(mus2[2]-mus2[2]^2/2);

 //aux3 = 0.2*(mus2[3]-mus2[3]^2/2);

138

 AuxOutputSpeedMembers[0] = 0.2 * AuxOutputSpeedMembers[0];

 AuxOutputSpeedMembers[2] = 0.2 * AuxOutputSpeedMembers[0];

 for (used_index = 0; used_index < 5; used_index ++)

 {

 AuxOutputDirectionMembers[used_index] = FinalOutputDirectionMembers[used_index] -

 (FinalOutputDirectionMembers[used_index] *

FinalOutputDirectionMembers[used_index])/2;

 }

 //u2 = (0*aux1/2+0.5*aux2+1*aux3/2)/(aux1/2+aux2+aux3/2);

 FuzzyOutputSpeed = (/*0.0 * AuxOutputSpeedMembers[0]/2 +*/

 0.5 * AuxOutputSpeedMembers[1]/2 +

 1.0 * AuxOutputSpeedMembers[2]/2)/(

 AuxOutputSpeedMembers[0] +

 AuxOutputSpeedMembers[1] +

 AuxOutputSpeedMembers[2]);

 //u1 =

(0*aux1/2+3.1416/2*aux2+3.1416*aux3+3*3.1416/2*aux4+2*3.1416*aux5/2)/(aux1/2+aux2+aux3+aux4+aux5/2);

 FuzzyOutputDirection = (/*0.0 * AuxOutputDirectionMembers[0]/2 +*/

 1.571 * AuxOutputDirectionMembers[1] +

 3.141 * AuxOutputDirectionMembers[2] +

 1.5 * 3.141 * AuxOutputDirectionMembers[3] +

 3.141 * AuxOutputDirectionMembers[4])/(

 AuxOutputDirectionMembers[0]/2 +

 AuxOutputDirectionMembers[1] +

 AuxOutputDirectionMembers[2] +

 AuxOutputDirectionMembers[3] +

 AuxOutputDirectionMembers[4]/2);

}

/**

| NAME: FuzzyProcess

| ABSTRACT:

| PARAMETER: none

| RETURN: none

**/

void FuzzyProcess (void)

{

 CalcInputFuzzyMembers ();

 CalcOutputFuzzyMembers ();

139

}

//***

// end of file

//***

B.6 PWM

//***

// pwm_output.h

//***

#include "common.h"

#include "sonar.h"

void PWM_init (void);

void PWM_set_duty (UCHAR ch, UCHAR val);

//***

// end of file

//***

//***

// pwm_output.c

//***

#include "common.h"

#include "sonar.h"

/**

| NAME: PWM_init

| ABSTRACT:

| PARAMETER: none

| RETURN: none

**/

void PWM_init (void)

{

 TCCR0A = 0xA3; // fast PWM mode

140

 OCR0A = 0x80; // PWM duty 50 %

 OCR0B = 0x80; // PWM duty 50 %

 TCCR0B = 0x02; // 1/8 prescaller, ~ 5KHz output

 sbi (DDRB, 3); // output A

 sbi (DDRB, 4); // output B

}

/**

| NAME: PWM_set_duty

| ABSTRACT:

| PARAMETER: channel 0 - 1, value 0 - 255

| RETURN: none

**/

void PWM_set_duty (UCHAR ch, UCHAR val)

{

 if (ch == 0)

 {

 OCR0A = val;

 }

 else

 {

 OCR0B = val;

 }

}

//***

// end of file

//***

141

B.7 Main

//***

// main.c test sonar functions

//***

#include "common.h"

#include "sonar.h"

#include "avr_UART0.h"

#include "joystick.h"

#include "fuzzy.h"

#include "pwm_output.h"

//***

// at 14745600 Hz - pulses per second (main quartz oscillator)

// => 14745 pulses per millisecond / 64 (prescaller) = 230

// at 10000000 Hz - pulses per second (main quartz oscillator)

// => 10000 pulses per millisecond / 64 (prescaller) = 156

// max timer value 255 - 230 = 25 - constant to be reload to have 1 millisecond

// the system interrupt for all timeouts

#ifdef CLOCK_10MHZ

 #define TMR0_CONST 156

#else //14745600 Hz

 #define TMR0_CONST 230

#endif

#define TMR0_RELOAD_VALUE (0xFF - TMR0_CONST)

#define UART_TIME 800

//***

static void Interrupts_init (void);

static void Hardware_init (void);

//***

volatile UCHAR JoystickTimeOut;

//***

static volatile UINT MeasurementTimeOut;

142

static volatile UCHAR MainIntFlag;

static UCHAR str[128];

static UCHAR Output_0, Output_1;

#ifdef PORTC_OUTPUT_TEST

 static UCHAR PORTC_value = 0;

#endif

#ifdef PORTC_INPUT_TEST

 static UCHAR PORTC_value = 0;

 static sData[30];

#endif

//***

// interrupt routines

/**

| NAME: SIGNAL (SIG_OVERFLOW0)

| ABSTRACT: interrupt handler - provides all timeouts with 1 millisecond

| resolution

| PARAMETER: none

| RETURN: none

**/

//SIGNAL (SIG_OVERFLOW0)

SIGNAL (SIG_OVERFLOW2)

{

 cbi (PORTB,0);

 //TCNT0 +=TMR0_RELOAD_VALUE;

 TCNT2 +=TMR0_RELOAD_VALUE;

 if (MeasurementTimeOut != 0)

 {

 MeasurementTimeOut --;

 }

 if (JoystickTimeOut != 0)

 {

 JoystickTimeOut --;

 }

 if (SonarMeasurementTimeOut != 0)

 {

 SonarMeasurementTimeOut --;

143

 }

 MainIntFlag = 1;

 sbi (PORTB, 0);

}

/**

| NAME: void Interrupts_init (void)

| ABSTRACT: interrupts initialization and enabling

| PARAMETER: none

| RETURN: none

**/

static void Interrupts_init (void)

{

 //sbi (TIMSK0, TOIE0); // TIMER0 overflow interrupt enabled

 sbi (TIMSK2, TOIE2); // TIMER2 overflow interrupt enabled

 sei (); // enable all interrupts

}

/**

| NAME: void Hardware_init (void)

| ABSTRACT: interrupts initialization and enabling

| PARAMETER: none

| RETURN: none

**/

static void Hardware_init (void)

{

 MeasurementTimeOut = UART_TIME;

 //TCNT0 = TMR0_RELOAD_VALUE;

 //TCCR0A = 0; // Timer0 normal operation

 //TCCR0B = 0x03; // prescaller = clk/64, start timer

 TCNT2 = TMR0_RELOAD_VALUE;

 TCCR2A = 0; // Timer2 normal operation

 TCCR2B = 0x04; // prescaller = clk/64, start timer

 Output_0 = 0;

 Output_1 = 0;

 MainIntFlag = 0;

 sbi (DDRB, 0); // PORTB0 as output

144

 sbi (DDRB, 1); // PORTB1 as output

}

/**

| NAME: void SonarTask (void)

| ABSTRACT: start and check sensor on every SONAR_TIME milliseconds

| PARAMETER: none

| RETURN: none

**/

static void UART0_Task (void)

{

UCHAR temp1, temp2;

UCHAR s[60];

 if (MeasurementTimeOut != 0)

 {

 return;

 }

 MeasurementTimeOut = UART_TIME;

/*

 str[0] = 0; // zero broken

 sprintf (str,"FuzzyOutputSpeed: %04d\n", (UINT)(FuzzyOutputSpeed*100));

 sprintf (s,"FuzzyOutputDirection: %04d\n", (UINT)(FuzzyOutputDirection*100));

 strcat (str, s);

*/

 temp1 = JoystickGetData (ADC_LEFT_RIGHT);

 temp2 = JoystickGetData (ADC_FRONT_BACK);

 str[0] = 0; // zero broken

 sprintf(str, "L-R:%03d, F-B:%03d", temp1, temp2);

 strcat (str, "\n");

 // print the calculation time:

 //sprintf (s, "Fuzzy time:%2d\n", FuzzyTimeCounter);

 //strcat (str, s);

 if (S_OK == IsSonarMeasurementDone ())

 {

 strcat (str, "Sonars:\n");

 SonarDataConversion ();

145

 for (temp1 = 0; temp1 < 8; temp1 ++)

 {

 sprintf (s, "%1d: %04d cm\n", temp1, SonarDataInCentimeters[temp1]);

 strcat (str, s);

 }

 SonarStartMeasurement ();

 }

 else

 {

 strcat (str, "Sonar measurement is not finished yet.\n");

 }

 UART0_send_data (str, strlen (str));

 Output_0 += 16;

 Output_1 += 64;

 PWM_set_duty (0, Output_0);

 PWM_set_duty (1, Output_1);

}

/**

| NAME: int main (void)

| ABSTRACT: infinite main software loop

| PARAMETER: none

| RETURN: none

**/

int main (void)

{

 Hardware_init ();

#ifdef PORTC_OUTPUT_TEST

 DDRC = 0xFF; // all as outputs

 PORTC = PORTC_value;

 Interrupts_init ();

 while (1)

 {

 if (MainIntFlag != 0)

146

 {

 MainIntFlag = 0;

 PORTC_value ++;

 PORTC = PORTC_value;

 }

 }

#endif //PORTC_OUTPUT_TEST

#ifdef PORTC_INPUT_TEST

 UART0_init (SPEED0_115200);

 cbi (MCUCR, PUD); // all PULLUP's are enabled

 DDRC = 0x00; // all as inputs

 PORTC = 0xFF; // all pull ups ON

 MeasurementTimeOut = 800;

 Interrupts_init ();

 while (1)

 {

 if (MeasurementTimeOut == 0)

 {

 MeasurementTimeOut = 800;

 PORTC_value = PINC;

 sData[0] = 0;

 sprintf (sData, "PORTC value: %02X\n", PORTC_value);

 UART0_send_data (sData, strlen (sData));

 }

 }

#endif //PORTC_INPUT_TEST

 InitSonar ();

 UART0_init (SPEED0_115200);

 Joystick_init ();

 PWM_init ();

 Interrupts_init ();

 SonarStartMeasurement ();

 PWM_set_duty (0, 196);

 PWM_set_duty (1, 64);

147

 // input distances:

 //JoystickXValue = 200;

 //JoystickYValue = 20;

 //distance[0] = 0.35;

 //distance[1] = 0.65;

 //distance[2] = 0.80;

 //distance[3] = 0.98;

 //distance[4] = 1.20;

 //distance[5] = 1.40;

 //distance[6] = 1.90;

 //distance[7] = 2.10;

 //FuzzyOutputSpeed: 0.22

 //FuzzyOutputDirection: 2.83

 //JoystickXValue = 200;

 //JoystickYValue = 20;

 //distance[0] = 0.65;

 //distance[1] = 0.35;

 //distance[2] = 0.80;

 //distance[3] = 0.98;

 //distance[4] = 1.20;

 //distance[5] = 1.40;

 //distance[6] = 1.90;

 //distance[7] = 2.10;

 //FuzzyOutputSpeed: 0.22

 //FuzzyOutputDirection: 2.97

 JoystickXValue = 200;

 JoystickYValue = 20;

 distance[0] = 0.95;

 distance[1] = 0.85;

 distance[2] = 0.80;

 distance[3] = 0.98;

 distance[4] = 0.20;

 distance[5] = 0.40;

 distance[6] = 1.90;

 distance[7] = 2.10;

148

 //FuzzyOutputSpeed: 0.21

 //FuzzyOutputDirection: 2.70

 while (1)

 {

 //sbi (PORTB, 1);

 ////delay(200);

 //_delay_us (50);

 //cbi (PORTB, 1);

 ////delay (100);

 //_delay_us (50);

 JoystickMeasurementTask ();

 SonarMeasurementTask ();

 FuzzyProcess ();

 UART0_Task ();

 }

}

//***

// end of file

//***

