
RANGE SEARCHING DATA STRUCTURES WITH CACHE LOCALITY

by

Christopher H. Hamilton

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

March 2011

c© Copyright by Christopher H. Hamilton, 2011

DALHOUSIE UNIVERSITY

FACULTY OF COMPUTER SCIENCE

The undersigned hereby certify that they have read and recommend to the Faculty

of Graduate Studies for acceptance a thesis entitled “RANGE SEARCHING DATA

STRUCTURES WITH CACHE LOCALITY” by Christopher H. Hamilton in partial

fulfillment of the requirements for the degree of Doctor of Philosophy.

Dated: March 17, 2011

External Examiner:

Research Supervisor:

Examining Committee:

Departmental Representative:

ii

DALHOUSIE UNIVERSITY

DATE: March 17, 2011

AUTHOR: Christopher H. Hamilton

TITLE: RANGE SEARCHING DATA STRUCTURES WITH CACHE LOCALITY

DEPARTMENT OR SCHOOL: Faculty of Computer Science

DEGREE: Ph.D. CONVOCATION: May YEAR: 2011

Permission is herewith granted to Dalhousie University to circulate and to have copied
for non-commercial purposes, at its discretion, the above title upon the request of individuals
or institutions. I understand that my thesis will be electronically available to the public.

The author reserves other publication rights, and neither the thesis nor extensive
extracts from it may be printed or otherwise reproduced without the author’s written
permission.

The author attests that permission has been obtained for the use of any copyrighted
material appearing in the thesis (other than brief excerpts requiring only proper
acknowledgement in scholarly writing), and that all such use is clearly acknowledged.

Signature of Author

iii

Table of Contents

List of Tables . vii

List of Figures . viii

Abstract . xi

List of Abbreviations and Symbols Used . xii

Acknowledgements . xvi

Chapter 1 Introduction . 1

1.1 Motivation . 1

1.2 Overview . 3

1.2.1 Hilbert curves . 3

1.2.2 Lower bounds . 4

1.2.3 Upper bounds . 4

Chapter 2 Preliminaries . 6

2.1 Models of Computation . 6

2.1.1 The Random Access Machine Model 6

2.1.2 The Input-Output Model . 7

2.1.3 The Cache-Oblivious Model . 8

2.2 Space-Filling Curves and Data Locality . 9

2.3 Notation . 10

2.4 Definitions . 12

2.4.1 Range Searching Problems . 12

2.4.2 Levels . 17

2.4.3 Cuttings and Partitions . 20

2.4.4 Shallow Cuttings . 21

2.4.5 Planar Point Location . 22

iv

Chapter 3 Previous Work . 24

3.1 Hilbert Curves . 24

3.2 Lower Bounds . 25

3.3 Upper Bounds . 26

Chapter 4 Compact Hilbert Indices . 31

4.1 Hilbert Curves . 32

4.1.1 Higher Dimensions . 33

4.2 Compact Hilbert Indices . 49

4.2.1 Gray Code Rankings . 49

4.2.2 Algorithms . 51

4.3 Experimental Results . 55

4.3.1 Space Savings . 56

4.3.2 Performance . 56

4.3.3 Sorting . 56

Chapter 5 Lower Bounds . 60

5.1 A Multi-Level Indexability Model . 61

5.2 A Lower Bound for Three-Sided Range Reporting 63

5.2.1 The Point Set and Query Set . 66

5.2.2 Forcing Duplication in at Least One Cell 68

5.3 Tightness of the Lower Bound . 74

5.4 Further Lower Bounds . 77

5.4.1 3-D Dominance Reporting and Persistent B-Trees 77

5.4.2 Halfspace Range Reporting in Three Dimensions 78

5.4.3 Las-Vegas-Type Data Structures . 82

Chapter 6 Upper Bounds . 87

6.1 Family of Admissible Problems . 88

6.2 Approximate Range Counting . 91

6.2.1 Overview . 93

6.2.2 A Structure for Polynomial Queries 94

v

6.2.3 A Structure for Polylogarithmic Queries 96

6.2.4 The Final Structure . 99

6.2.5 Applications . 101

6.3 Range Reporting . 102

6.4 Approximate Conflict Lists . 104

Chapter 7 Conclusions . 105

Bibliography . 108

vi

List of Tables

Table 3.1 A comparison of our results on approximate range counting with pre-
vious work. In the listing of query bounds, WC refers to worst-case
bounds; LV to Las Vegas bounds, that is, query bounds that hold in
the expected sense; and MC to Monte Carlo bounds, that is, the an-
swer to a query is correct with high probability. For the sake of clarity,
O-notation has been omitted. 30

Table 3.2 A comparison of our results on range reporting with previous work. For
the sake of clarity, O-notation has been omitted. 30

Table 4.1 Values of gc(i), i and gcr(i) for μ = [010110][2] and π = [001000][2]. . . 50

Table 4.2 Sample datasets and their dimensions, sizes and space-savings factors. 57

vii

List of Figures

Figure 2.1 Examples of various range searching query types in two dimensions.
(a) Simplex. (b) Halfspace. (c) Dominance (2-sided). (d) Circular. (e)
Orthogonal (4-sided). (f) 3-sided. (g) Parabolic. 13

Figure 2.2 (a) An example K-set (K = 4) in R
2 and a separating line. (b) An

example of a 2-dimensional aboveness reporting query. 17

Figure 2.3 (a) A point p with a level of 3. (b) The K-level of an arrangement of
lines (K = 3). (c) The (≤ K)-level of an arrangement of lines (K = 3). 18

Figure 2.4 Planar point location: identifying the face of a planar subdivision con-
taining the query point q. 22

Figure 4.1 Order-1 Hilbert lattice . 33

Figure 4.2 Building the order-2 Hilbert lattice 33

Figure 4.3 First four iterations of the Hilbert curve. 34

Figure 4.4 First three iterations of the Peano curve. 34

Figure 4.5 Entry and exit points of the 2 dimensional Hilbert curve (the x-axis
corresponds to the least significant bit and the y-axis the most signif-
icant). 41

Figure 4.6 Running algorithm HilbertIndex with n = 2, m = 3 and p = [5, 6]. 47

Figure 4.7 Comparing performance over random data-sets. (a) Time to calculate
N indices with m = 4 as n varies. (b) Time to calculate N indices
with n = 4 as m varies. 58

Figure 4.8 A comparison of dynamic Hilbert sorting and compact Hilbert sorting
using the WEBLOG data-set. The compact curve includes the cost of
converting both to and from compact Hilbert indices. (a) Wall times.
(b) Relative speed-up. 59

Figure 5.1 (a) The recursive construction of the point set. Fat solid lines bound
grid cells, dotted lines separate subcolumns. (b) The set of queries
in QT . Only one query is shown for each level of QT . (c) Queries at
recursive levels output only points from their subgrids. 66

viii

Figure 5.2 (a) An O
(
N(log logN)1/α

)
-space layout for the point set S (layout

shown for α = 3). (b) Answering a query on the first two levels of
the layout. The dark portion of the query in each copy of S forms a
contiguous subsequence of the column-major layout of the respective
group. The light portion is answered using subsequent copies of S. . . 75

Figure 5.3 (a) Replacing 3-sided queries with parabolic ones. The white squares
are the areas where the subgrids in each grid cell are to be placed.
(b) A naively constructed query in the subgrid in cell T3,6 also reports
points in other cells (e.g., T2,6). (c) Placement of a subgrid within a
grid box G that is nested inside a column box C. (d) Incremental
embedding of a subgrid T ′ inside a grid box. 80

Figure 6.1 (a) An arrangement of lines. The shaded region, excluding its bound-
ary is a 2-dimensional cell. The fat line segment excluding its endpoints
is a 1-dimensional cell. The highlighted vertex is a 0-dimensional cell.
(b) The lower envelope of the arrangement is shaded dark gray. The
(≤ 2)-level includes all light gray and all dark gray faces. (c) The
regions bounded by fat lines are a shallow cutting for the (≤ 2)-level
of the arrangement. (d) The fat lines belong to the conflict list of the
shaded cell. 89

Figure 6.2 Illustration of the query procedure in the proof of Lemma 6.2. Thin
solid lines show the top boundaries of some (≤ 2j)-levels. The shallow
cutting Ci with i = �logK ′� is shown using fat dashed lines. The
approximate conflict list Δ̃C of the cell C ∈ Ci containing the query
point q contains the fat solid curves crossing C but not the thin ones,
solid or dashed. 92

Figure 6.3 Two levels of the recursive structure for polylogarithmic queries. The
entire structure consists of of an approximate counting structure D
for polynomial queries over F , a point location structure L(C) for the
shallow cutting C of the (≤ N1−δ/2c)-level of F , as well as structures
constructed recursively for the cells C1, C2, C3 of C. The representation
of each cell Ci consists of an approximate counting structure Di for
polynomial queries over ΔCi

, a point location structure L(Ci) for a
shallow cutting Ci of ΔCi

, as well as structures constructed recursively
for the cells of Ci, indicated by the different shading of cells. Note
that, even though the shallow cuttings define a recursive partition of
space, this does not necessarily produce a partition of F . For instance,
if the structure represents an arrangements of lines, the line � would
be represented in the data structures of all three cells C1, C2, and C3

and of some sub-cells of C2 and C3. 97

ix

Figure 6.4 For queries above the (N1−δ/2c)-level, Db is used to answer the query.
For queries between the (logτ N)-level and the (N1−δ/2c)-level, Ds is
used. For queries between Cs and Cb, L(Cb) is used to locate the cell
C ∈ Cb containing the query point, and the final answer is obtained
using DC . For queries contained in Cs, L(Cs) is used to locate the cell
C ′ ∈ Cs containing the query point, and the final answer is obtained
by scanning ΔC′ . 100

Figure 6.5 Reduction of dominance queries to aboveness queries in 2-d. (The
construction in 3-d is identical, except that the last step requires two
45◦-rotations.) (a) A point set (white) and a query range defined by
the black corner point q. Points p1 and p2 are contained in the query
range; p3 is not. (b) Piecewise linear functions corresponding to the
white points. q is a above the functions defined by query points p1
and p2, but not above the one defined by p3. (c) Rotating the figure
45◦ to the left makes all functions totally defined and does not change
aboveness. 102

x

Abstract

This thesis focuses on range searching data structures, an elementary problem in computa-

tional geometry with research spanning decades. These problems often involve very large

data sets. Processor speeds increase faster than memory speeds, thus the gap between the

rate at which CPUs can process data and the rate at which it can be retrieved is increasing.

To bridge this gap, various levels of cache are used. Since cache misses are costly, algorithms

should be cache-friendly.

The input-output (I/O) model was the first model for constructing cache-efficient algo-

rithms, focusing on a two-level memory hierarchy. Algorithms for this model require manual

tuning to determine optimal values for hardware dependent parameters, and are only op-

timal at a single level of a memory hierarchy. Cache-oblivious (CO) algorithms are built

without knowledge of the hierarchy, allowing them to be optimal across all levels at once.

There exist strong theoretical and practical results for I/O-efficient range searching. Re-

cently, the CO model has received attention, but range searching remains poorly understood.

This thesis explores data structures for CO range counting and reporting. It presents the

first space and worst-case query-time optimal approximate range counting structure for a

family of related problems, and associated O(N logN)-space query-optimal reporting struc-

tures. The approximate counting structure is the first of its kind in internal memory, I/O

and CO models. Researchers have been trying to create linear-space query-optimal CO re-

porting structures. This thesis shows that for a variety of problems, linear space is in fact

impossible.

Heuristics are also used for building cache-friendly algorithms. Space-filling curves are

continuous functions mapping multi-dimensional sets into one-dimensional ones. They are

used to build search structures in the hopes that objects that were close in the original space

remain close in the resulting ordering. This results in queries incurring fewer page swaps

when traversing the structure. The Hilbert curve is notably good at this, but often imposes

a space or time penalty. This thesis introduces compact Hilbert indices, which remove the

ineffiency inherent for input point sets with bounding boxes smaller than their bounding

hypercubes.

xi

List of Abbreviations and Symbols Used

[·][2] Used to denote non-negative integers written in base 2

‖·‖ Number of ‘1’ bits in the binary representation of a
non-negative integer (the parity)

∨ Bitwise or operator

⊕ Bitwise exclusive-or operator

∧ Bitwise and operator

� Bitwise not-and operator

¬ Bitwise not/negation operator

� Bitwise shift-left operator

� Bitwise shift-right operator

� Bitwise left-rotation operator

� Bitwise right-rotation operator

2-d Two-dimensional

3-d Three-dimensional

B Memory block size

B A set of block sizes

B Set of boolean integers {0, 1}
B(P) Smallest n-dimensional box B

m0×· · ·×Bmn−1 such that
P ⊆ B(P)

B-cover A block cover

B
k Set of positive integers of k bits, Z2k

bit (a, k) Represents the value of the kth bit of a non-negative
integer a

CO Cache-oblivious

CPU Central processing unit

d A direction in Zn

xii

d(0), . . . , d(2n − 1) Sequence of directions in Zn such that e(i) ⊕ 2g(i) ⊕
2d(i) = e(i+ 1)

ε A small positive quantity

e An entry point in B
n

e(0), . . . , e(2n − 1) Sequence of entry points in B
n

f An exit point in B
n

f(0), . . . , f(2n − 1) Sequence of exit points in B
n

FIFO First in, first out

g(0), . . . , g(2n − 2) Sequence of integers in Zn such that gc(i) ⊕ 2g(i) =
gc(i+ 1)

gc Binary reflected Gray code function

gcr Gray code rank function

GIS Geographic information system

h A Hilbert index in B
M

H(P) Smallest n-dimensional hypercube B
m × · · · × B

m such
that P ⊆ H(P)

I An indexing scheme

I/O Input-output

K Number of reported points/output size

L1 Level 1

L2 Level 2

L3 Level 3

LRU Least-recently used

LV Las Vegas

xiii

M Size of main memory

m Maximum precision, m = maxi{mi}
m0, . . . , mn−1 Precision (number of bits) of each of the n dimensions

MC Monte-Carlo

μ A mask in B
n

N Number of points/problem size

N Set of natural integers, {0, 1, . . .}
n Number of dimensions

n-d n-dimensional

P A set of points

p = [p0, . . . , pn−1] A point in the space B(P)

perm(N) External permutation complexity Θ(min sort(N), N)

Q A set of queries/subsets of S or P

q A query

R Set of real numbers

RAM Random access memory

S A set

scan(N) External scanning complexity Θ
(
N
B

)
sort(N) External sorting complexity Θ

(
N
B
logM

B

N
B

)

T(e,d)(b) Hilbert curve transformation function

tsb Trailing set bits function

xiv

U = {u0 < . . . < u‖μ‖−1} Set of unconstrained bits associated with a given mask
μ

W A workload

WC Worst-case

X Net precision, X =
∑

imi

Z Set of integers, {. . . ,−1, 0, 1, . . .}
Z+ Set of positive integers, {1, 2, . . .}
Zk Set of integers modulo k, {0, . . . , k − 1}

xv

Acknowledgements

During my work on this thesis I had the honour and pleasure of being supervised by Norbert

Zeh, whose depth of knowledge came to my rescue on many occasions. I am also in debt

to his dedication and invaluable guidance; he always had time to discuss new ideas and to

review drafts, even while dealing with the upheaval of a sabbatical on another continent.

Without his intellectual input, this work would have been impossible. I would also like to

thank Peyman Afshani whose own thesis work brought to light the key insight allowing the

main results of this thesis to unfold after almost two years of fruitless efforts.

I extend thanks to my committee members Andrew Rau-Chaplin and Alex Brodsky for

their willingness to work through this thesis in detail, providing valuable feedback.

I thank NSERC, the Killam Foundation, Norbert Zeh and Dalhousie University for their

generous financial support without which my continued studies would have been an impos-

sibility.

I wish also to thank my friends at Dalhousie for making my time there memorable,

specifically Mason Macklem, Glenn Hickey and Greg Zaverucha. They were always ready to

talk about new ideas, and more importantly, to take my mind off of research when required.

My family deserves my gratitude for their continued encouragement and support. Specif-

ically, my sister Sara Hamilton whose own doctoral journey provided me with much needed

context and motivation.

Last but not least, my partner Caroline Piché has been with me through this entire

process. She has coped with my distracted nature when buried in work, all the while wearing

a smile. Her love and easy laughter has been a much needed source of energy and inspiration

day after day.

xvi

Chapter 1

Introduction

1.1 Motivation

This thesis focuses on the development of algorithms and data structures for cache-efficient

range searching. Range searching problems are among the most natural problems in compu-

tational geometry. As a consequence, they are among the most well-studied. Range searching

exists in many forms (What space does the problem live in? What is being reported? What

is the shape of the query regions?), with most variants finding practical applications. For

example, orthogonal range searching problems are directly motivated by queries in database

systems, while circular range searching queries find immediate use in geographic information

systems (GIS). Many seemingly unrelated problems may also be reduced to range searching

problems through appropriate geometric reductions, as will be discussed in more detail in

Chapter 2.

Practical applications of range searching problems often involve extremely large data sets,

particularly in the domains of database systems and GIS. This creates unique challenges.

Computer systems have evolved to contain numerous layers of data storage (on-processor

storage, RAM, hard-disk, network, etc), with layers further away from the processor typically

having greater capacities but slower access times. Processor speeds have been increasing

faster than memory speeds, thus the gap between the rate at which CPUs can process data

and the rate at which data can be loaded from memory is constantly increasing. To bridge

this gap, various levels of cache were introduced. In fact, modern computers typically have at

least six such layers (L1, L2, L3, RAM, hard-drive cache, hard-drive itself). The hope is that

most memory accesses can be served from the nearest cache. For most algorithms, this is not

true. Since cache misses are quite expensive, it becomes extremely important for algorithms

to manage data in a cache-friendly manner. The cost of a cache miss is smaller the higher

up the hierarchy it occurs, as memory speeds increase as we climb the hierarchy. An obvious

first approach is to minimize cache misses at the slowest level, but a good algorithm will be

one that is simultaneously efficient across all levels in a cache hierarchy.

1

2

The input-output (I/O) model was the first model for designing cache-efficient algorithms.

It ignores the higher levels of cache and only distinguishes between data stored in memory

and that stored on the disk. In this manner, it minimizes cache misses at the single level of

the hierarchy where they incur the largest cost. Algorithms designed in this model explicitly

control the swapping of data between the two levels, and implementations require manual

tuning to determine optimal values for what are essentially hardware dependent parameters.

The cache-oblivious (CO) model is a simple abstraction that allows the construction of

cache-friendly algorithms without specific knowledge of the cache hierarchy. In the CO model

algorithms are designed without referencing parameters of the model hierarchy, however,

they are analyzed as in the I/O model. This abstraction means that the analysis holds for

any memory hierarchy parameters, and thus simultaneously across all levels of a multi-level

memory hierarchy. The I/O and CO models will be discussed in more detail in Section 2.1.

The database and GIS communities have long recognized the importance of cache-

efficiency, with several I/O-efficient algorithms finding real application in these domains [21,

34,68]. In particular, the problem of range searching has been well studied in the I/O model,

with excellent practical results [27,68,119]. In the last decade, CO algorithms have received a

lot of attention from the computational geometry community, however the problem of range

searching is still poorly understood with many open questions.

Another approach to building cache-friendly algorithms is the use of various tried and

proven heuristics [61,106,109]. Space-filling curves are continuous self-similar functions that

map compact multi-dimensional sets into one-dimensional ones. They are commonly used in

the creation of range searching data structures in the hopes that objects that are close in the

original space remain close in the resulting one-dimensional data structure [51,75,78], usually

a type of search tree. The end result is that leaves containing a point in a query very likely

contain other points belonging to the same query. Thus, queries need to visit fewer leaves

in the resulting data structure, and fewer page swaps are incurred. The Hilbert curve has

been shown as being particularly well suited to this task [100]. However, depending on the

specifics of their use, Hilbert curves impose either a space or time penalty. This thesis solves

this problem with compact Hilbert indices, which remove the inefficiency inherent in Hilbert

indices for input point sets with bounding boxes significantly smaller than their bounding

hypercubes. Although this thesis focuses on Hilbert curves, many other space-filling curves

exist [72].

3

1.2 Overview

This thesis focuses on cache-efficient range searching, with a focus on axis-aligned range

searching problems. The work is divided into two parts. The first part discusses heuristics

for data locality in range searching structures. Specifically, Chapter 4 presents a practical

improvement to Hilbert index calculations and evaluates its real-world utility.

The second part of this thesis focuses on results in the cache-oblivious model. While both

the CO model and the problems we discuss are practically motivated, the results presented in

the latter part of this thesis are purely theoretical. Chapter 5 discusses lower bound results

for range searching in the CO model, while Chapter 6 discusses data structures for range

searching in the CO model.

1.2.1 Hilbert curves

In Chapter 4 we explore the Hilbert curve, reproducing classical algorithms [39,43] for their

generation and manipulation through an intuitive and rigorous geometric approach. We then

extend these basic results to construct compact Hilbert indices which are able to capture

the ordering properties of the regular Hilbert curve but without the associated inefficiency

in representation for data sets whose bounding boxes are significantly smaller than their

bounding hypercubes. Consider a set P of points in Z
n. For simplicity and without loss of

generality, we assume that the point set has been translated such that all coordinates are

positive, and the bounding box has one corner at the origin. The points in P lie within

a power-of-two-sided bounding box B(P) = [0, 2m1] × · · · × [0, 2mk] (letting mi ∈ N be the

minimum values such that this is true) and therefore can be naturally represented using

X =
∑

imi bits. However, the Hilbert curve is naturally defined over a power-of-two-sided

bounding hypercube H(P) = [0, 2m]×· · ·×[0, 2m], wherem = maxi(mi), with each position on

the curve encoded by an mn-bit integer. For many real world data sets mn is significantly

larger than X. By considering only the portion of the curve intersecting B(P), compact

Hilbert indices allow the ordering of the Hilbert curve to be preserved while only using X

bits to represent each position on the compact curve. This leads to reductions in space-

bounds for algorithms with precomputed Hilbert indices, or reductions in computation time

for algorithms that repeatedly calculate the Hilbert index as needed. In particular, these

results provide the first optimal time in-place Hilbert-order sort for multi-dimensional data

4

sets whose power-of-two-sided bounding boxes are smaller than their power-of-two-sided

bounding hypercubes. Our main technical contribution in this chapter is in the creation

of compact Hilbert curves, generalizations of Hilbert curves that are naturally defined over

B(P) rather than H(P).

1.2.2 Lower bounds

The focus of Chapter 5 is on 3-sided range reporting, 3-d dominance reporting, and 3-d

halfspace range reporting. We prove the novel result that any cache-oblivious data struc-

ture for these problems that achieves the optimal (or in fact a much weaker) query bound

has to use asymptotically more space than a structure with the same query bound in the

I/O model. There exist linear- and O(N log∗N)-space data structures that achieve the

optimal query bound of O(logB N +K/B) for these range searching problems in the I/O

model [2, 7]. In contrast, the best known data structures achieving the same query bound

in the cache-oblivious model use O(N logN) space [13,25,30]. Our lower bound shows that

any cache-oblivious data structure for 3-sided range reporting, 3-d dominance reporting or

3-d halfspace range reporting that achieves a query bound of f(logB N,K/B), for any mono-

tonically increasing function f(·, ·), has to use Ω(N(log logN)ε) space. The only previously

existing separation results between these two models are for sorting and searching. The sort-

ing result used an adversarial argument over only two discrete block sizes [64]; the searching

result applies in the limiting sense over many block sizes, but results in only a constant factor

separation result [36]. Our approach is novel in that it is an explicit construction that argues

simultaneously across many block sizes and yields the first input-size-dependent separation

result between the I/O and cache-oblivious models.

1.2.3 Upper bounds

Chapter 6 focuses on the construction of a generic approximate range counting and range

reporting data structure. Early I/O-efficient data structures for orthogonal range reporting

are based on fairly direct externalizations of internal-memory data structures and tech-

niques [12, 24, 107]. These approaches generally involve nested structures, where non-trivial

secondary search structures are embedded in the nodes of a B-tree, with each secondary

structure being queried on a root-to-leaf path. However, the entire technique of non-trivial

secondary data structures breaks down in the CO model as it is impossible to ensure they

5

are cache aligned for all possible values of B. This incurs a page swap per accessed secondary

data structure, resulting in a non-optimal O(logN)-cost search tree traversal. More recent

I/O-efficient data structures employ shallow cutting and shallow partitions [7], but require

explicit knowledge of B. Shallow partition techniques require the indexing of multiple sec-

ondary data structures and as such do not appear promising in a CO context. Chapter 6

shows how to exploit shallow cuttings to guarantee data locality in a cache-oblivious manner,

something that has not been previously done.

Investigations into 3-sided range searching techniques yielded the insight that existing

data structures in the I/O and COmodel use an approach reminiscent of shallow cuttings [30].

Shallow cuttings being more general and powerful, this led to the development of a unifying

framework that can additionally handle 3-d halfspace and 3-d dominance queries. The results

are constructions for O(N logN)-space cache-oblivious data structures with optimal query

bounds across a family of problems. In the case of 3-sided range reporting, the results match

those previously obtained in [13,25,30], but they are the first of their kind for the problems of

3-d halfspace, circular, 2-d K-nearest neighbour and 3-d orthogonal range reporting. These

reporting data structures are fairly easy to obtain using a standard construction once the

output size of a query can be efficiently determined or at least approximated.

Our main technical contribution is a general framework for constructing cache-oblivious

data structures for the approximate counting versions of the above problems. These data

structures use linear space and provide guaranteed relative (1+ε)-approximate answers using

O(logB(N/K)) block transfers in the worst case, which is optimal. This is in contrast to

previous results even in internal memory, where the optimal query bound was not achieved

in the worst case before, even using superlinear space. The only previous data structure

with the optimal query bound, by Afshani and Chan [6], achieves this bound only in the

expected case. Thus, our construction also provides new worst-case optimal data structures

for approximate 3-d halfspace range counting and approximate 3-d dominance counting in

the pointer machine model. Tables 3.1 and 3.2 contrast our results with previous work.

Chapter 2

Preliminaries

In this chapter we introduce the common terminology, notation and concepts that will be

used throughout this thesis. Definitions that apply only to particular chapters or sections

will be provided as needed.

2.1 Models of Computation

Since the analysis of algorithms from an I/O-complexity point of view is not as well es-

tablished as the analysis of their running time or their space requirements, we dedicate a

few pages to the discussion of various models of computation. We discuss the relationship

between external memory models and internal memory algorithms, allowing the comparison

between existing algorithms for the problems we consider and our algorithms.

2.1.1 The Random Access Machine Model

The most commonly studied internal memory model is the random access machine (RAM)

model. Algorithms designed for this model execute instructions sequentially and all opera-

tions are performed on data items stored in a conceptually unlimited main memory. Valid

instructions consist of elementary arithmetic and logical operations, instructions to read and

write data from or to memory and control instructions allowing the realization of branching,

looping and recursion. Each elementary operation is assumed to take O(1) time on a data

item representable by O(logN) bits, where N is the size of the input. Thus, in order to

estimate the amount of time necessary for an algorithm to solve a given problem, it suffices

to count the number of steps executed by the algorithm.

A number of variants to this model have been proposed, most of which can be distin-

guished based on the set of operations that are considered primitives of the machine. Since

most operations in more powerful RAM models can be emulated at a small (although non-

constant) cost in a weaker RAM model, these variations are of little relevance to us, as

computation cost is ignored in the analysis of external memory algorithms.

6

7

We will be confining ourselves to the standard algebraic model of computation, which

allows only multiplication, division, addition and subtraction as primitive arithmetic opera-

tions. In particular, the floor function is not considered a primitive of this model, although

it may be emulated in O(logN) time. The geometric algorithms discussed in this thesis will

generally (unless stated otherwise) be assuming that the fundamental machine words are

real numbers. This avoids the hassle of dealing with precision problems. However, these

issues must be addressed when actually implementing these algorithms1.

In the real world the size of main memory is limited and it is possible that the problem

does not fit entirely in memory. In this case, it is possible for every read or write operation to

cause data to be swapped between main memory and external memory (disk). Since a mem-

ory swap incurs significant cost (orders of magnitude slower than a primitive computation

operation as permitted by the model [120, 121]), it is possible for optimal RAM algorithms

to perform very poorly when realized on actual hardware. The following sections discuss

models of computation that attempt to address this issue.

2.1.2 The Input-Output Model

The first widely accepted and used model for analyzing the complexity of algorithms in

external memory was the I/O model of Aggarwal and Vitter [21]. This model considers two

levels of memory: a single processor is equipped with a slow but conceptually unlimited disk

(external memory), and a fast random access memory (internal memory) capable of holding

M data items. The disk is partitioned into blocks of B consecutive data items. The processor

may only perform computations on items held in internal memory. In order to access other

data, the processor must first make room in the internal memory by transferring data items

to the external memory or discarding it if no longer needed, at which point it may then

load the desired data items into internal memory. Such memory transfers are called I/O

operations or block transfers. In a single block transfer, the processor may shuttle one block

of data items from external memory to internal memory, or vice-versa. The complexity of

an algorithm in the I/O model is the number of block transfer it performs.

The I/O model explicitly ignores the time taken by the processor to perform any required

computations. This is motivated by the fact that access times to a hard-disk are about six

1Obviously, care must be taken not to abuse the model by exploiting the infinite storage capacity of actual
real numbers.

8

orders of magnitude slower than a computation step [120,121]. An algorithm that performs

fewer block transfers can be expected to be faster than one performing more block trans-

fers, assuming the amount of computation performed by the first remains within reasonable

bounds. Despite this fact, most I/O model algorithms are designed using the algebraic com-

putation model, and thus may be analyzed in terms of RAM model complexity as well. In

fact, it is entirely possible (and often the case) that algorithms exist which are optimal in

both the I/O and RAM models simultaneously.

The I/O model has been widely adopted because it is a conceptually simple model that

captures the main bottleneck in large-scale computations. The simplicity of the model has

been important to its success as it allows relatively complicated problems to be explored

and solved. Moreover, it typically results in solutions that can actually be implemented and

yield real-world performance improvements over internal memory models. The disadvantage

of this model is that the parameters M and B are essentially hardware dependent, and

implementations must be optimized for each individual machine on which the code is to be

run.

2.1.3 The Cache-Oblivious Model

The I/O model of computation only consider two levels of a memory hierarchy. However,

modern computers typically have many memory levels, each higher level being faster yet

also smaller than the previous. An example of such a hierarchy is the following: network

storage, local disk, disk cache, RAM, L2 CPU cache, L1 CPU cache. The straight-forward

extension of the I/O model to a multi-level hierarchy would require the addition of a block-

size parameter between each neighboring pair of levels in the hierarchy. Design and analysis

of algorithms in such a model quickly becomes cumbersome. Over the years, various param-

eterized models have been proposed for handling multi-level cache hierarchies [20, 22], but

they have proven unwieldy.

Frigo et al. proposed an elegant model avoiding this problem [64]: the cache-oblivious

(CO) model. In their model, the algorithm is oblivious of the memory hierarchy and, thus,

cannot initiate block transfers explicitly. Instead, the swapping of data between two levels of

memory is the responsibility of a paging algorithm, which is assumed to be offline optimal.

That is, it performs the minimum number of block transfers possible for the memory access

sequence of the algorithm. Such a paging algorithm will elect to evict the block of memory

9

which will be accessed the furthest in the future. Clearly, it is impossible to know this at

runtime, so real-world caches typically use simpler cache eviction policies:

• Least-Recently Used (LRU). Evict the block which was last accessed the longest time

ago.

• First In, First Out (FIFO). Evict the block which has been in the cache the longest.

Sleator and Tarjan [114] showed that both LRU and FIFO are within a constant factor

of the optimal strategy. More precisely, they showed that

cost(LRU or FIFO cache with size 2M) ≤ 2× cost(optimal cache with size M),

where ‘cost’ counts the number of incurred block transfers. For most algorithms, changing

M by a constant factor incurs at most a constant factor penalty, thus we may generally

assume an optimal paging strategy, justifying use of the model.

Algorithms in this model are thus designed as internal memory algorithms, but analyzed

in the I/O model with respect to an arbitrary block size B. Since the memory parameters

are used only in the analysis, the analysis may be applied to any two consecutive levels of

the memory hierarchy. In particular, if the analysis shows that an algorithm is optimal with

respect to two levels of memory, then it is simultaneously optimal at all levels of the memory

hierarchy. As with the I/O model, it is possible to design algorithms that are optimal in

both the RAM model and the CO model, and as an immediate consequence, the I/O model

as well. Much as the I/O model, the CO model has seen success because it is conceptually

simple enough to allow the study of hard problems.

Remark. While motivated by practical considerations, the CO model has yet to find much

in the way of real-world applications; the few algorithms that have been implemented rarely

perform better than their I/O-model counterparts [41]. Those algorithms that have not been

implemented, including the results of Chapter 6, use complex constructions that would likely

incur very large constant factors.

2.2 Space-Filling Curves and Data Locality

Space-filling curves are continuous one-to-one functions which map a compact interval to a

multi-dimensional unit hypercube. Originally formulated by Giuseppe Peano in 1890 [103],

10

the first space-filling curve was constructed to demonstrate the somewhat counter-intuitive

result that the infinite number of points in a unit interval has the same cardinality as

the infinite number of points in any bounded finite-dimensional set. In this thesis we are

specifically interested in their application to database systems, particularly orthogonal range

queries.

Since Peano introduced the first space-filling curve, numerous others have been con-

structed and extensively studied. Among these further developments is the family of curves

generated by Hilbert [74], which to this day finds many applications. Due to the recursive

geometric nature of the original construction, the Hilbert curve naturally imposes an order-

ing on the points in finite square grids. An ordering with data locality is a one-dimensional

ordering of the points in a set P ⊆ Z
n such that points that are close in the original space

tend to remain close in the one-dimensional ordering. The end result is that leaves contain-

ing a point in a query very likely contain other points belonging to the same query. Thus,

queries need to visit fewer leaves in the resulting data structure, and fewer page swaps are

incurred. The Hilbert curve has been shown to be particularly well suited to this task [100].

While algorithms designed in the I/O and CO models attempt to rigorously categorize

cache performance, space-filling curves are used as a heuristic to improve the cache perfor-

mance of simple internal memory algorithms. The very popular R-tree data structure [68]

(and its many variants) was initially conceived as a spatial variant to B-trees for orthogonal

range queries in n dimensions. In a standard R-tree, data points are clustered into B sets of

similar size with each set being represented in the search tree by its minimum bounding box.

The division is repeated recursively until leaves contain roughly B points. The end result

is a standard B-tree structure over potentially overlapping bounding boxes. Axis-aligned

spatial queries are easily propated through the data structure, allowing efficient queries.

Variants of the R-tree typically play with the method in which points are clustered into

individual boxes at each step of the recursive division, how the boxes themselves are ordered

and stored, as well as the details of how insertions and deletions are performed. Space-filling

curves can be used to both segment data and order individual boxes, resulting in improved

cache performance [78].

11

2.3 Notation

When discussing I/O-efficient and cache-oblivious algorithms we will use N to denote the

size of the problem (number of data items), B to denote the block size and M to denote

the number of data items that fit in internal memory. The use of K will be reserved for

output-sensitive algorithms, and denotes the number of data items produced in the output

or the actual value of the output when it is a single scalar value.

When discussing range searching problems, we will generally use P to refer to a set of

points in R
n, with n being reserved to indicate the dimensionality of the problem. The point

set P is the input to such problems, thus it follows that N = |P |. Similarly, we will generally

use q when referring to a query over P , where q is a query of the type admissible by the

range searching problem being considered. We reserve Q to represent a set of queries and Q
to represent the set of all valid queries admitted by the problem.

When discussing complexity, ε will always refer to a small positive constant. For two

values a and b, if a ≥ (1 − ε)b, then we say a is ε-approximately greater than b. Similarly,

if a ≤ (1 + ε)b, then we say a is ε-approximately less than b. If both conditions hold, we

say that a is ε-approximately equal to b. We will also occasionally use the notation Oε(·) to
hide constant factors that depend on ε.

Although asymptotic notations can more properly be thought of as representing sets of

functions, we will occasionally abuse the notation slightly. For example, rather than writing

4x2+x ∈ O(x2) we will write 4x2+x = O(x2). Similar usage will be made of Θ(·),Ω(·), etc.
We will occasionally make use of the following shorthands for the I/O-complexities of

sorting, permuting and scanning a list of N data items:

sort(N) = Θ

(
N

B
logM

B

N

B

)
,

perm(N) = Θ(min(sort(N), N)), and

scan(N) = Θ

(
N

B

)
.

These shorthands have been introduced in the literature because they arise frequently in the

analysis of I/O algorithms.

Scanning and sorting are fundamental operations in many algorithms. In particular,

external memory algorithms often sort the input data appropriately, before scanning the

elements and processing them one by one. Equivalent internal memory algorithms do not

12

require such preprocessing as the elements may be accessed in a random fashion without any

performance penalty.

These I/O complexities also have important and obvious relations to well-known time-

complexities in internal memory. In particular, sort(N) is the external memory equivalent

of the Θ(N logN) time bound for sorting N data items. As such, if a problem can be solved

in O(N logN) time in internal memory, we hope to be able to solve it in O(sort(N)) I/Os

in external memory. Similarly, the above scanning bound is the external memory equivalent

of linear scanning in internal memory. Hence, we will refer to scan(N) as a linear number

of I/Os, while O(N) I/Os is considered to be superlinear. This is a natural interpretation

as any external memory algorithm spending O(N) I/Os does not utilize the full bandwidth

of the I/O system. Finally, the permutation bound is interesting as it is superlinear, while

permutation in internal memory takes linear time. This is interesting in that it provides a

first separation result between the internal- and external-memory models. It also implies that

a superlinear external-memory lower bound can be shown for many non-trivial problems that

can be solved in linear time in internal memory, simply because these problems inherently

encapsulate some permutation problem.

2.4 Definitions

In this section we introduce standard definitions and conventions used in the range searching

literature. In particular, we precisely define the various range searching problems that will

be addressed in later chapters.

2.4.1 Range Searching Problems

Consider a set P of points in R
n; the problem of geometric range searching is to (efficiently)

preprocess P so that, for any given query range q, information regarding the points in P ∩ q
can be efficiently reported. The exact nature of this information depends on the type of

range searching problem. In range reporting, we are interested in efficiently enumerating

all of the points P ∩ q. In range counting, we are interested in reporting the size of the

intersection, |P∩q|. Range emptiness problems are decision problems where we are interested

in determining if the query range q contains at least one point. Finally, range optimization

problems are interested in finding a single best point in the query range with respect to some

criterion (i.e., that with the largest weight, or with the smallest y coordinate, etc).

13

(a) (b) (c) (d)

(e) (f) (g)

Figure 2.1: Examples of various range searching query types in two dimensions. (a) Simplex.
(b) Halfspace. (c) Dominance (2-sided). (d) Circular. (e) Orthogonal (4-sided). (f) 3-sided.
(g) Parabolic.

In the context of Hilbert curves, we will assume that P consists of points in Z
n, translated

such that all coordinats are positive and the minimum bounding box includes the origin. We

will also make extensive reference to various bounding boxes containing P . Consider the

smallest bounding box [0, s1 − 1] × · · · × [0, sd − 1] containing P and the origin. The side

lengths of this bounding box are si, each requiring mi = �log2 si� bits to represent. We

define B(P) := [0, 2m1] × · · · × [0, 2md] to be the smallest power-of-two-sided bounding box

containing P . Let m = maxi(mi), and define H(P) := [0, 2m]× · · · × [0, 2m] as the smallest

power-of-two-sided bounding hypercube containing P . As will be discussed in Chapter 4, the

Hilbert curve through a set P is naturally defined over the (sometimes much) larger space

H(P).

It is usually the case that Q is restricted to a specific class of geometric objects. A

few important types of geometric range searching include the following (see Figure 2.1 for

example queries):

• Simplex range searching : In this problem, the query object q is a simplex, a convex

hull in R
n formed by n + 1 points. Since any polyhedral object can be decomposed

into simplices, the simplex case is a fundamental problem.

14

• Parabolic range searching : Here we limit ourselves to query regions consisting of the

points lying on and above a parabola in R
n.

• Circular (spherical) range searching : In this problem, the query regions are circles

(hyperspheres) of arbitrary radius in R
2 (Rn). Problems of this type are regularly

encountered in GIS (geographic information systems). As an example, consider the

task of finding all restaurants within a given radius of a given location.

• Orthogonal range searching : Here the query objects are orthogonal boxes. Many prob-

lems outside computational geometry can be reduced to this case. The canonical

example arises naturally in the context of databases. Consider the problem of find-

ing all employees aged between x1 and x2 who earn a salary between y1 and y2. If

employees are represented as points in R
2, then this query amounts to reporting all

points lying in the orthogonal range [x1, x2]× [y1, y2]. In two dimensions, we often refer

to orthogonal range searching as 4-sided range searching. Similarly, the case where

y2 =∞ is referred to as 3-sided range searching.

• Dominance range searching : Here the query range is defined by a single point a ∈ R
n,

and the query region consists of the points of Rn that are smaller than a in each coor-

dinate. In two dimensions, this is the same as 2-sided range searching. Using standard

reductions, solutions to this problem can be used to construct efficient solutions to

3-sided and orthogonal range searching [4, 5]. Additionally, 3-sided range searching

can be reduced to 3-d dominance searching via a simple geometric transformation (see

Lemma 2.1).

• Halfspace range searching : In this problem the query object is a halfspace. Algorithmi-

cally, a halfspace may be considered as a simplex with one vertex placed sufficiently far

away and thus this is a special case of simplex range searching. However, considered on

its own it often allows more efficient specialized solutions. It is also interesting because

both spherical range searching and parabolic range searching in R
n reduce to halfspace

range searching in R
n+1 via elementary geometric transformations (see Lemmas 2.2

and 2.3).

There are a variety of other range searching problems, and different ways to classify them.

We limit ourselves to the above problem types, but more complete lists may be found in [12,

15

59, 96].

For most range reporting problems in up to 3 dimensions the optimal internal memory

query bound is O(logN +K), with the logN corresponding to the cost of a search in some

data structure and the K being the cost of reporting the K items that lie in the given

query range. In external memory the natural cost of reporting K items is scan(K) = K/B.

An information theoretic argument shows that the natural search cost is logB N . Consider a

search tree with N possible outcomes. Specifying a single leaf in this tree requires lgN+O(1)

bits of information. A comparison yields exactly 1 bit of information, yielding the lgN+O(1)

lower bound on the number of comparisons necessary to navigate the tree. However, each

block read reveals where the query element lies with respect to B elements in the tree,

providing at most lgB+O(1) bits of information. Thus the number of block reads is at least

(lgN + O(1))/(lgB + O(1)) = logB N + O(1), yielding an optimal range reporting query

bound of Ω(logB N +K/B).

As mentioned above, it is often the case that a range searching problem of one type

may be transformed to a range searching problem of another type. In fact, there exist

simple geometric transformations that allow 3-sided range queries to be decomposed into

3-d dominance queries, 2-d parabolic queries to be mapped to 3-d halfspace queries, and

circular range searching queries to be mapped to 3-d halfspace queries. Similarly, these

results can easily be lifted to higher dimensions.

Lemma 2.1 (3-sided ⊂ 3-d dominance). Three-sided range queries can be solved by a data

structure for 3-d dominance queries.

Proof. Consider a 3-sided range query [x1, x2] × [y1,∞). We transform points using the

mapping

p �→ (−px, px,−py),

and consider 3d-dominance queries of the form q = (−x1, x2,−y1). The transformed point

is dominated by the query point if and only if

−x1 ≥ −px and x2 ≥ px and − y1 ≥ −py,

which is equivalent to

x1 ≤ px ≤ x2 and y1 ≤ py.

This is exactly the condition required for the original point to fall within the original 3-sided

query.

16

Lemma 2.2 (2-d parabolic ⊂ 3-d halfspace). Parabolic range searching problems in R
2 may

be solved by a data structure for halfspace range searching in R
3.

Proof. A point p = (px, py) is on or above a query parabola with equation s(x− x0)2 + y0 if

and only if

py ≥ s(px − x0)2 + y0.

Consider the halfspace defined by {(x, y, z) ∈ R
3 : ax+ by + cz + z0 ≤ 0}. We transform

points with the map

p �→ (px, py, p
2
x).

Letting the halfspace be parameterized by the 4-tuple (a, b, c, z0), we transform queries with

the map

(s, x0, y0) �→ (−2sx0,−1, s, sx20 + y0).

In this setting, a point (px, py, p
2
x) lies in the halfspace if and only if

0 ≥ −2sx0px − py + sp2x + sx20 + y0

py ≥ s(p2x − 2x0px + x20) + y0

py ≥ s(px − x0)2 + y0.

This is equivalent to the point (px, py) lying above the parabola defined by the 3-tuple

(s, x0, y0).

Lemma 2.3 (Circular ⊂ 3-d halfspace). Circular range searching queries may be solved by

a data structure for halfspace range searching in R
3.

Proof. Consider a circular range searching query consisting of the circle of radius r centered

at the point c = (cx, cy) ∈ R
2. A point p = (px, py) lies within this query if and only if

(px − cx)2 + (py − cy)2 ≤ r2. (2.4)

Consider mapping the point p to a point in R
3 via the mapping

p �→ (px, py, p
2
x + p2y),

and consider mapping a query circle q = (c, r) to the halfspace parameterized by

(c, r) �→ (−2cx,−2cy, 1, c2x + c2y − r2).

17

A point lies in this halfspace if and only if

−2cxpx − 2cypy + p2x + p2y + c2x + c2y − r2 ≤ 0

(p2x − 2cxpx + c2x) + (p2y − 2cypy + c2y) ≤ r2

(px − cx)2 + (py − cy)2 ≤ r2,

which is exactly Equation 2.4.

Straight-forward extensions to Lemmas 2.2 and 2.3 allow the construction of similar

lemmas over Rn.

Since many fundamental range searching problems have strong connections to halfspace

range searching, this problem is of particular importance. Many interesting results on half-

space range searching make use of the natural notion of geometric duality [59], as will be

explored in the following section.

2.4.2 Levels

The concept of levels arises quite naturally when studying problems that deal with sets of

points or arrangements of hyperplanes in R
n. The concept was first explored by Lovász [89]

and Erdős [62]. They defined a K-set for a set P of N points in the plane as a subset of P of

size N that can be separated from the rest of P by a line (see Figure 2.2(a) for an example).

Bounding the maximum number of K-sets as a function of N and K is known as the K-set

problem. The concept of K-sets can be extended to higher dimensions through the use of

separating hyperplanes.

Point-hyperplane duality is a well-known elementary geometric transformation that pre-

serves the spatial relationship between points and hyperplanes [59]. We represent the dual

of a geometric object s (or a set S of geometric objects) with q̄ (or S̄). Through this duality,

a point p below a hyperplane h is mapped to a hyperplane p̄ which passes strictly below

the point h̄. Thus, a subset of points of P below a hyperplane h corresponds to a subset

of hyperplanes of P̄ passing below2 the point h̄. This problem can be thought of as the

(hyperplane) aboveness reporting problem, an example of which is shown in Figure 2.2(b).

Given an arrangement of hyperplanes A in R
n, we define the level of a point p as the

number of hyperplanes passing directly below p (as demonstrated in two dimensions in

2In this context, below can be more precisely defined as P̄ passing through the half-ray extending vertically
downwards from the point h̄.

18

(a) (b)

Figure 2.2: (a) An example K-set (K = 4) in R
2 and a separating line. (b) An example of

a 2-dimensional aboveness reporting query.

(a) (b) (c)

Figure 2.3: (a) A point p with a level of 3. (b) The K-level of an arrangement of lines
(K = 3). (c) The (≤ K)-level of an arrangement of lines (K = 3).

Figure 2.3(a)). Consequently, the K-level of A is the closure of the set of all points of A with

level equal to K (see Figure 2.3(b)). The size of the K-level is the number of vertices of A

contained in it. In dual space, the K-set problem asymptotically translates to bounding the

size of the K-level of A. This is known as the K-level problem.

Research into K-levels has led to many useful generalizations. Many results can be

applied to the K-levels of pseudo-lines or pseudo-halfplanes as well. An arrangement of

x-monotone curves is called an arrangement of pseudo-lines if every two curves intersect at

most once. There are many papers dealing with such generalizations in the plane [15,16,18,

19,47,48,50,91,104,115,116]. Similar generalizations for convex or concave hypersurfaces in

19

higher dimensions have received some attention [49, 83, 113]. These generalizations all have

associated aboveness reporting problems.

In many applications it is more convenient to talk about (≤ K)-levels, the closure of the

set of all points of Rn with level at most K (see Figure 2.3(c)). The 0-level is often referred to

as the lower envelope of an arrangement A. The term complexity is used interchangeably with

size when referring to K- and (≤ K)-levels. It is relatively easy to construct arrangements

where every K-level of A has size Θ(N). Thus, Ω(NK) is an obvious lower bound on the

worst case size of the (≤ K)-level and a matching O(NK) upper bound can be proved.

Here we present a short proof based on the randomized techniques of Clarkson and

Shor [57]. To use this technique we need surprisingly few elementary tools and an upper

bound on the 0-level of the arrangement. In two dimensions, the worst case complexity of

the 0-level is O(N).

Lemma 2.5 ([57]). The complexity of the (≤ K)-level of an arrangement A formed by a

set P of N lines in the plane is O(NK).

Proof. Let S be a random p-sample of P (a subset of P where each element is chosen

independently with probability p). Let L0 be the 0-level of the arrangement formed by S.

Fix p := K−1. We have

E[|L0|] = O(Np) = O

(
N

K

)
. (2.6)

Let C be the set of all the vertices contained in the (≤ k)-level of A. We compute the

probability of a vertex v ∈ C appearing on the lower envelope of S. Let l′ and l′′ be the

two lines incident to v, and let l1, . . . , lt be the lines which pass below v. Since we have

assumed that v lies inside the (≤ K)-level of A, we must have that t ≤ K. The probability

of v appearing on L0 is equal to the probability of l′ and l′′ being chosen in S times the

probability that none of the lines l1, . . . , lt are chosen in S. Since t ≤ K we have

Pr[v ∈ L0] ≥ p2(1− p)K = Θ
(
p2e−Kp

)
= Θ

(
K−2

)
.

Thus, it follows that E[|L0|] = Ω(|C|K−2). Combining with Equation 2.6 we have

|C|K−2 = O

(
N

K

)
,

or equivalently, |C| = O(NK).

20

This is a fundamental upper bound on (≤ K)-level complexity. In three dimensions,

the worst case complexity of the lower envelope is O(N) and the same technique yields the

following bound, stated here without proof.

Lemma 2.7. The complexity of the (≤ K)-level of an arrangement A formed by a set P of

N hyperplanes in R
3 is O(NK2).

2.4.3 Cuttings and Partitions

The divide-and-conquer technique is fundamental to the design of many successful algo-

rithms. Cuttings provide a natural way to divide a geometric problem into balanced and

bounded subproblems. Let H be a set of N hyperplanes in R
n. A 1/r-cutting of H is a set

of disjoint simplices C which cover H such that each simplex s ∈ C intersects at most N/r

hyperplanes of H . For a simplex s ∈ C, we call the subset of H intersecting s the conflict

list of s and we denote it by Δs. The size of the cutting is the number of simplices in C.

The main cutting theorem is the following, due to Chazelle [54, 55].

Theorem 2.8 (Cutting Theorem [54, 55]). For every parameter 0 < r < N , there exists a

1/r-cutting of size O(rn) for a set H of hyperplanes in R
n.

The bound O(rn) on the size of the cutting is tight: N hyperplanes form Θ(Nn) vertices

and a simplex intersecting m hyperplanes can contain at most O(mn) vertices of an arrange-

ment. So each simplex in a 1/r-cutting contains O((N/r)n) vertices and thus, there must be

Ω(Nn/(N/r)n) = Ω(rn) simplices in the cutting.

Consider a set P of N points in R
n. A simplicial partition Π for P is a partition of P into

r subsets P1, . . . , Pr of roughly the same size together with a list of simplices s1, . . . , sr such

that Pi lies inside si. The crossing number of any hyperplane h in this simplicial partition is

defined as the number of simplices crossed by h. The maximum value of the crossing number

over all hyperplanes h is called the crossing number of Π. When constructing simplicial

partitions, it is desirable (from a data structure point of view) that the crossing number

of the partition be minimized. Matoušek was the first to construct an optimal simplicial

partition of P [93], where the crossing number is O
(
r1−1/n

)
.

Both cuttings and partitions are useful in building divide-and-conquer data structures

for aboveness reporting problems [7, 95, 96]. Partitions are space efficient in that every

hyperplane is found in exactly one of the subsets. However, each hyperplane has a relatively

21

high crossing number, forcing us to look at multiple secondary data structures as we recurse

down the search tree. Cuttings take the opposite approach; by oversampling the hyperplanes,

super-linear storage space is required but only one substructure needs to be queried as we

descend the search tree. Both approaches work in internal memory, but partitions require

the indexing of too many secondary data structures in external memory models. As such,

cuttings (and particularly shallow cuttings) have received more attention in these models.

2.4.4 Shallow Cuttings

In certain contexts, ‘shallow’ versions of the cutting and the partition theorem can be formu-

lated, as originally noticed by Matoušek [94]. In the shallow version of the cutting theorem

we are not partitioning the entire space. Rather, for parameters K and r a K-shallow 1/r-

cutting for a set P of hyperplanes is a set of disjoint simplices C which cover the (≤ K)-level

of P , and where each simplex c ∈ C intersects at most N/r hyperplanes of P . While any

ordinary cutting is a shallow cutting, better size bounds are obtainable for shallow cuttings.

Lemma 2.9 (Existence of shallow cuttings, [94]). For a set P of hyperplanes in R
n and

parameters r and K < N , a K-shallow 1/r-cutting of size O
(
rn(K/N)�n/2�

)
always exists.

The above lemma is usually most useful when r = N/K. Applying this and a few other

modifications results in the following 3-d variant of the lemma.

Lemma 2.10 (Lemma 1.1.6 of [3]). For any set of N planes in R
3 and a parameter K,

there exists a K-shallow O(K/N)-cutting of size O(N/K) that covers the (≤ K)-level. The

cells in the cutting are all vertical prisms unbounded from below (simplices with one vertex

at (0, 0,−∞)).

Furthermore, we can construct these cuttings for all K of the form �(1 + ε)i� simultane-

ously in Oε(N logN) time. The conflict lists may also be constructed in this time.

Outline of proof. The first part follows from Lemma 2.9. The construction time follows

from an algorithm by Ramos [108]. The fact that vertical prisms suffice was observed by

Chan, and converting to an equivalent prism shallow cutting requires computing the convex

hull of the vertices in the original shallow cutting [45]. To compute the conflict lists we

begin by building a halfspace range reporting data structure in Oε(N logN) expected time.

For each K we issue O(N/K) halfspace range reporting queries (one per prism vertex), each

22

requiring Oε(logN +K) time, for a total of Oε(N(logN +K)/K). Summing this over all

K gives Oε(N logN).

Finding simplices that are all prisms allows us to easily construct a data structure for

querying the level of a point. Consider one level of the cutting. Project the prisms on the

xy-plane, yielding a triangulation composed of O(N/K) faces. Each face of the triangulation

stores the equations of the plane corresponding to the top face of its vertical prism. For any

point q ∈ R
3 we can easily find the face containing the point’s projection on the xy-plane

using a planar point location data structure. For a triangulation containing N faces, such a

structure can be built in O(N logN) time and O(N) space, answering queries in O(logN)

time. Thus, in O(log(N/K)) time we can test whether q lies below a given level of the

cutting and if so, determine the vertical prism containing it.

Remark. It is worth noting that the proofs relating to shallow cuttings are merely existence

results, and say nothing about actually building them. The actual algorithms used for

constructing shallow cuttings (such as that by Ramos [108]) are directly descended from the

powerful randomized techniques of Clarkson and Shor [57]. Thus, while many data structures

based on shallow cuttings have deterministic run times, they only have expected bounds on

the preprocessing required to actually build them.

2.4.5 Planar Point Location

Point location problems are natural and well-studied problems in computational geometry.

Consider a set S of n-dimensional objects in R
n; the point location problem consists of

efficiently preprocessing S so that, for any given query point p ∈ R
n, the objects s ∈ S such

that p ∈ s can be efficiently reported. The problem may be simplified by forcing the objects

to be simplices, forcing them to be disjoint, and/or forcing them to completely cover the

entire space (or some defined portion of it).

Given a planar subdivision, planar point location consists of finding the unique cell

that contains a given query point q (see Figure 2.4). As hinted at in the proof outline

of Lemma 2.10, planar point location structures can be helpful in building and manipulating

data structures based on shallow cuttings. As such, they are useful in the construction of

data structures for solving various range searching problems, as will be seen in Chapter 6.

Arge et al. developed an optimal data structure for planar point location in the CO model [29]

23

Figure 2.4: Planar point location: identifying the face of a planar subdivision containing the
query point q.

which we will use in our data structures.

Chapter 3

Previous Work

3.1 Hilbert Curves

The uses of Hilbert curves are wide and varied, including mathematics [42], image pro-

cessing [86, 122], image compression [99], bandwidth reduction [102], cryptology [92], algo-

rithms [105], scientific computing [51,76], parallel computing [23,77], geographic information

systems [1] and database systems [38, 78, 88].

A large variety of algorithms exist for computing the Hilbert curve [33, 39, 42, 43, 75, 87,

101, 117], each directed towards a particular application. In the context of databases and

GIS, Butz’s classic algorithm [43] is the most commonly used, whose standard implementa-

tion was created by Thomas [117] and later refined by Moore [101]. The algorithms are all

equivalent in complexity, requiring a number of operations proportional to the number of

bits output in the Hilbert index, and vary only in their details. Butz’s algorithm is presented

rather cryptically, introducing seven layers of subscripted variables in order to describe the

algorithms in terms of fundamental bitwise boolean logic operations. The algorithm proved

popular because it uses very little state, and is easily implemented non-recursively for in-

creased performance. Moore [101] later refined Butz’s algorithm to remove the dependency

on lookup tables. Lawder [87] cleaned up the presentation of these algorithms and formally

extended them to higher dimensions. However, all of these presentation obscure the high

level operations that are actually occurring: rotations, reflections and Gray code calcula-

tions. In Chapter 4 we reproduce Butz’s algorithm from a geometric point of view, casting

the bit operations in terms of these high level concepts. Bartholdi [33] concentrates specif-

ically on the rotations and translations that occur when descending through the levels of

recursion, maintaining orientation information using algebraic transition functions. Their

techniques generalize to other families of space-filling curves, but they are meant explicitly

for forward and reverse index calculations, and do not efficiently allow enumerations of the

curve. Jin and Mellor-Crumley [75] trade space for speed and precalculate all possible inputs

and outputs of the state transition function. Their techniques allow for efficient traversal of

24

25

arbitrary space-filling curves, as well as for efficient forward and reverse index calculations.

However, they require separate lookup tables for each possible dimension, and thus do not

gracefully handle arbitrary dimensions. The popularity of Moore’s approach in the context

of databases is due to its seamless handling of arbitrary dimensions. For domains with a

fixed number of dimensions, techniques using precomputed lookup tables or state transition

functions are more efficient [75].

In the context of range searching, Hilbert curves have found use as a sort order in a variety

of spatial data structures [68,78,88,100,101]. Since the Hilbert curve is naturally defined over

a bounding hypercube H(P) that is typically much larger than the bounding box B(P) of the

input points P , converting the points to Hilbert indices requires an increase in space usage.

To combat this, Moore [101] developed Hilbert index comparison routines that compute the

Hilbert indices of two points simultaneously bit-by-bit, stopping when the relative order can

be determined. This introduces an expected O(logN)-cost per comparison [63], resulting

in a sub-optimal expected O
(
N log2N

)
-time sort algorithm. Another approach to solving

this problem is to remove the inefficiency in representation of Hilbert indices. The results

presented in Chapter 4 take this approach, by generating compact Hilbert indices for points

sets where B(P) is smaller than H(P). Our results are the first to generalize Hilbert curves

to ‘rectangular’ sets B(P), and as a corollary, produce the first optimal Hilbert sorting

algorithm for points in B(P). The key insight necessary for this construction was made

possible by revisiting Butz’s algorithm from a geometric point of view.

3.2 Lower Bounds

In internal memory most range searching problems have been rather fully explored and

optimal algorithms found. This includes 2- and 3-d orthogonal range reporting (and its 2-

and 3-sided variants in the plane) [59,98], 3-d dominance reporting [2,90] and 3-d halfspace

range reporting [7]. A notable exception to this general rule is for exact halfspace range

counting in the plane where only an Ω
(
N1−1/n/ logN

)
query lower bound is known for

linear space data structures [53], but the best known data structure (believed to be optimal)

requires O
(
N1−1/n

)
query time [93]. In the plane, the lower bound sharpens to the optimal

Ω
(√

N
)
, but the log factor for higher dimensions is thought to be an artifact of the proof

technique.

26

In the I/O model, Arge et al. [28] showed that Θ(N logB N/ logB logB N) space is suf-

ficient and necessary to obtain a query bound of O(logB N +K/B) block transfers for 2-d

orthogonal range reporting. This lower bound, when applied to blocks of size N ε, implies

that achieving the optimal query bound cache-obliviously requires Ω(N logN) space.

Lower bound proofs for range reporting problems in the I/O model [28, 73, 85, 110] have

involved the construction of a hard point set together with a set of many ‘sufficiently different’

queries of the same size. Combined with counting arguments from extremal set theory,

this ensures that the point set cannot be represented in linear space while guaranteeing a

certain proximity (on disk) of the points reported by each query. Such lower bound results

immediately carry over into the cache-oblivious model, but they are unable to be made

stronger in the CO model because they inherently discuss only a single query size. Our

results are distinct in that they require arguing simultaneously over many different query

sizes. This necessitates the use of new techniques as those from extremal set theory no longer

apply.

There have been very few lower bound results in the cache-oblivious model, but the

results that have been found show that the CO model is inherently less powerful than the

I/O model. In [40], Brodal and Fagerberg established a lower bound on the amount of main

memory (as a function of B) necessary for optimal cache-oblivious sorting. They showed

that sorting in optimal O(sort(N)) time is only possible under the tall cache assumption,

namely that M = Ω(B1+ε). Since sorting is such a fundamental technique underlying many

more complicated data structures this assumption is often made in the CO literature. The

result used an adversarial argument over two block sizes. Such a technique is doomed to

failure for range searching lower bounds as we can build data structures that are optimal

for any constant number of block sizes. In [36], Bender et al. proved that cache-oblivious

searching has to cost a constant factor more than the search bound achieved in the I/O

model using B-trees [34]. Their result applies in the limiting sense over many block sizes.

Our results are unique in that they are the first to establish a gap between the two models

that grows with the input size of the problem, and the first to use an explicit construction

that argues simultaneously across many block sizes.

27

3.3 Upper Bounds

In internal memory, linear-space data structures with the optimal query bound of O(logN +K)

are known for 3-sided range reporting [98], 3-d dominance reporting [2,90], and 3-d halfspace

range reporting [7], as well as for a number of related problems. Using the reductions of Sec-

tion 2.4.1, the results for halfspace range reporting imply the same results for 2-d parabolic,

circular, and 2-d K-nearest neighbour reporting.

Exactly counting the number of points in a query range seems significantly harder than re-

porting if the query bound is to be independent of the output sizeK. For 3-sided range count-

ing Chazelle [52] obtained a linear-space data structure with query time O(logN), which also

immediately implies an O(N logN)-space data structure with query time O
(
log2N

)
for 3-

d dominance counting. For exact 3-d halfspace range counting, Matoušek [95] obtained a

linear-space data structure with a query bound of O
(
N2/3

)
, and this is conjectured to be the

best possible. As a result, much effort has been put into obtaining approximate halfspace

range counting structures with polylogarithmic query bounds.

Aronov and Har-Peled [31] presented a general technique that can be used to construct

an approximate range counting structure from one for range emptiness queries; the obtained

data structure provides a correct approximation of the number of points in the query range

with high probability. The cost of this transformation is an increase of the space bound by

a factor of logN and an increase of the query bound by a factor of logN log logN .

For halfspace range searching, linear-space range emptiness structures with O(logN)

query time have been known for a long time (see, for example, [84]). Thus, the technique by

Aronov and Har-Peled provides an O(N logN)-space approximate halfspace range counting

structure with a query time of O
(
log2N log logN

)
. Kaplan and Sharir [82] improved the

query time by a factor of log logN using an interesting combinatorial lemma concerning the

overlay of lower envelopes in a randomized incremental construction (see also [80,81]). Like

Aronov and Har-Peled, they were able to guarantee correctness only with high probability.

Later, Aronov and Har-Peled showed in an updated version of their paper [32] that an

O
(
log2N

)
query time can be obtained using O(N logN) space without applying the overlay

lemma. Har-Peled and Sharir [71] showed that a worst-case query time of O(logN log logN)

can be achieved using O
(
N logO(1)N

)
space. This was improved by Afshani and Chan [6],

who presented a linear-space data structure with the same worst-case query bound, as well

as another linear-space data structure that uses the overlay lemma to achieve the optimal

28

query time of O(log(N/K)) in the expected case.

The fact that the overlay lemma is a crucial component of Afshani and Chan’s optimal

data structure has a number of limiting implications: the method does not generalize to

other problems, unless a similar overlay lemma is proved for each such problem; a non-

trivial modification of the overlay lemma would be required to use it in models such as the

I/O model or the cache-oblivious model; and, finally, it cannot be used to obtain a worst-

case query bound. The other methods discussed above have similar shortcomings in that

they are tailored to internal-memory models or to specific problems. For example, many of

the logN -factors in the above complexity bounds are the result of applying Chernoff-type

inequalities (completely independent of B) and cannot easily be reduced to logB N in the

I/O model or the cache-oblivious model. Our range counting results are notable in that they

are the first to achieve worst-case optimal queries in linear space (a first even in internal

memory), and they generalize to a variety of problems for which no previous approximate

range counting results were previously known.

In the I/O model, much work has focused on orthogonal range reporting. A num-

ber of linear-space data structures have been proposed that achieve a query bound of

O
(√

N/B +K/B
)
block transfers in 2-d and O

(
(N/B)1−1/n +K/B

)
block transfers in n

dimensions [27,66,67,79,106,109]. In [28], Arge et al. showed how to achieve a query bound

of O(logB N +K/B) for 3-sided range reporting in the plane, using linear space. They also

showed that Θ(N logB N/ logB logB N) space is sufficient and necessary to achieve a query

bound of O(logB N +K/B) block transfers for general 2-d orthogonal range reporting. The

main tool used to prove the 3-sided upper bound is a linear-space I/O-efficient version of

McCreight’s priority search tree [98] with a query bound of O(logB N +K/B) for 3-sided

queries.

For 3-d dominance reporting, Vengroff and Vitter [119] presented a data structure with a

query bound of O((log log logB N) log(N/B) +K/B) block transfers and using

O(N log(N/B)) space in the I/O model. The query bound can be reduced to

O(logB N +K/B) by choosing the parameters in the data structure more carefully [120]. A

recent data structure by Afshani [2] achieves the optimal query bound of O(logB N +K/B)

block transfers using linear space, raising the question whether this result can be achieved in

the cache-oblivious model. This data structure also yields a 3-d orthogonal range reporting

structure that uses O
(
N log3N

)
space and achieves the same query bound.

29

Halfspace range reporting in 3-d has a longer history, in part because it generalizes

various other range searching problems, as was discussed in Section 2.4.1. In internal mem-

ory, Chan described an O(N logN)-space data structure with an expected query time of

O(logN +K) [44]. Building on these ideas, Agarwal et al. [14] obtained an O(N logN)-

space data structure with an expected query bound of O(logB N +K/B) block transfers in

the I/O model. Further research led to the development of internal-memory data structures

with the optimal query bound in the worst case and using O(N log logN) space [46,108]. The

same improvements can be carried over to the I/O model. Recently, Afshani and Chan [7]

described a linear-space data structure with the optimal query bound in internal memory

and an O(N log∗N)-space data structure that answers queries using O(logB N +K/B) block

transfers in the I/O model.

Much less is known in the cache-oblivious model. Orthogonal range reporting queries in

R
n can be answered using O

(
(N/B)1−1/n +K/B

)
block transfers [13, 26]. Cache-oblivious

range reporting structures with a query bound of O(logB N log logN +K/B) block trans-

fers and using O(N logN) space are easily obtained for 3-d halfspace and 3-d dominance

queries using existing techniques [59]. Thus, the interesting questions are whether cache-

oblivious data structures for these problems exist that achieve the optimal query bound of

O(logB N +K/B) block transfers and how much space is necessary to achieve this bound.

For 3-sided queries, data structures with the optimal query bound and using O(N logN)

space were proposed in [13, 25, 30]. The data structure by Arge and Zeh [30] was obtained

using a standard reduction to 2-d dominance queries, for which the paper presented a linear-

space data structure with the optimal query bound. The data structure by Arge et al. [25]

can be seen as being based on some notion of shallow cuttings for 3-sided range searching,

combined with a specialized 2-d dominance counting structure. For the remaining prob-

lems, such as 3-d dominance reporting and 3-d halfspace range reporting as well as their

approximate counting versions, no non-trivial results were previously known in the cache-

oblivious model. Our range reporting results are distinct in that they unify similar previous

approaches, and generalize to a variety of range searching problems for which no equivalent

results were previously known.

30

Query type Model Space Query bound References

3-d halfspace RAM N logN log2 N log logN (MC) Aronov, Har-Peled 2005 [31]

N logN log2 N (MC) Aronov, Har-Peled 2005 [31]
Kaplan 2006 [82]
Kaplan, Sharir 2007 [80]
Kaplan, Sharir 2011 [81]

N logO(1) N logN log logN (WC) Aronov, Har-Peled 2005 [31]
N logN log logN (WC) Afshani, Chan 2009 [6]
N log(N/K) (LV) Afshani, Chan 2009 [6]

3-d halfspace RAM N log(N/K) (WC) new
I/O & CO N logB(N/K) (WC) new

3-d dominance RAM N log(N/K) (WC) new
I/O & CO N logB(N/K) (WC) new

Table 3.1: A comparison of our results on approximate range counting with previous work.
In the listing of query bounds, WC refers to worst-case bounds; LV to Las Vegas bounds,
that is, query bounds that hold in the expected sense; and MC to Monte Carlo bounds, that
is, the answer to a query is correct with high probability. For the sake of clarity, O-notation
has been omitted.

Query type Model Space Query bound References

2-d 3-sided RAM N logN +K McCreight 1985 [98]
I/O N logB N +K/B Arge 1999 [28]
CO N logN logB N +K/B Agarwal 2003 [13]

Arge, Brodal 2005 [25]
Arge, Zeh 2006 [30]
Afshani, Hamilton, Zeh 2009 [9]

3-d dominance RAM N logN +K Makris 1998 [90]
Afshani 2008 [2]

I/O N logB N +K/B Afshani 2008 [2]
CO N logN logB N +K/B new

3-d halfspace RAM N logN +K Afshani, Chan 2009 [7]
I/O N log∗ N logB N +K/B Afshani, Chan 2009 [7]
CO N logN logB N +K/B new

Table 3.2: A comparison of our results on range reporting with previous work. For the sake
of clarity, O-notation has been omitted.

Chapter 4

Compact Hilbert Indices

In the first part of this chapter we recreate Butz’s classic algorithm [43] for Hilbert curves,

but from a geometric point of view. This intuitive approach allows for a deeper level

of understanding of the primitives used in Butz’s algorithm, at the same time provid-

ing insight into other algorithmic approaches such as Bartholdi and Goldsman’s vertex-

labelling approach [33] and Jin and Mellor-Crummey’s table-driven methods [75]. Consider

H(P) = [0, 2m]× · · · × [0, 2m], the power-of-two-sized bounding hypercube of P . By consid-

ering the order in which the Hilbert curve visits the points in H(P) we may assign an index

between 0 and 2mn − 1 to each point. In other words, positions on the curve are naturally

encoded by an mn-bit integer. In the context of database systems this enumeration can be

used to sort the points in P while preserving data locality. This in turn translates to data

structures with excellent range query performance [78, 100].

In the real world, point sets do not have such ideal distributions and consequently the

bounding box B(P) = [0, 2m1]×· · ·× [0, 2mn] may be significantly smaller than the bounding

hypercube H(P). Coordinates along the ith dimension require mi bits to represent, thus

points in B(P) can be represented using X =
∑

imi bits. In the second part of this chapter

we explore the notion of compact Hilbert indices, which assign to points an index requiring

exactly X bits to represent. This is done by only considering the portion of the Hilbert

curve intersecting B(P). This may be done trivially by calculating the Hilbert index of

each point B(P), sorting them based on this index, and then simply assigning indices in 0

through 2X − 1. However, such an approach requires an exhaustive enumeration of B(P).

The approach we discuss in this chapter can generate such an index for a single point of

B(P) in absence of any others.

The algorithms presented in this chapter were implementd in the form of a C++ library

for the computation of both regular and compact Hilbert curves and indices. In the third

part of this chapter we evaluate the performance of this library and validate the utility of

compact Hilbert indices.

31

32

The most important contribution of this chapter is in the development of compact Hilbert

indices. The geometric reconstruction of Butz’s algorithm is only necessary to gain sufficient

insight into the mechanics of the algorithm, allowing us to remove the redundant computation

and space requirements of ordinary Hilbert indices. No previous work attempts to generalize

space-filling curves to non-hypercube lattices. The results of this chapter were published

in [69, 70].

4.1 Hilbert Curves

We begin by building the necessary tools for the exploration of Hilbert curves. We take a

geometric approach, yielding algorithms that are identical to those of Moore [101]. Moore’s

algorithms are refinements based on Thomas’s implementation [117] of Butz’s classic algo-

rithm [43].

The terminology and notation used in this section is largely my own, and I have chosen

to deviate from existing convention in order to highlight the geometric approach taken here,

and the relationship to standard boolean operators. The need for the level of detail in this

construction will become apparent in the construction of algorithms for compact Hilbert

indices in Section 4.2.

We consider first the traditional recursive definition of the two dimensional Hilbert curve.

For reasons that will become apparent later, we consider the Hilbert curve that starts in the

bottom left corner and finishes in the upper left1. The curve is initially defined on a 2 × 2

lattice, as shown in Figure 4.1. Given the order k curve2 defined on a 2k×2k lattice, we may

refine it to visit all points on a 2k+1 × 2k+1 lattice as follows:

• Place a copy of the original curve, rotated counter-clockwise by 90◦, in the lower left

sub-grid.

• Place a copy of the original curve, rotated clockwise by 90◦, in the upper left sub-grid.

• Place a copy of the original curve in each of the right sub-grids.

• Connect these four disjoint curves in the one manner that uses only unit step sizes.

1In the traditional presentation, the two-dimensional Hilbert curve finishes in the bottom right corner.
2The order k curve is the curve after k levels of recursion.

33

This construction may be visualized in Figure 4.2, with the first four iterations of the con-

struction shown in Figure 4.3. In a completely analogous manner one may define the Peano

curve, which travels through lattices of size 3k × 3k as shown in Figure 4.4.

Figure 4.1: Order-1 Hilbert
lattice

Figure 4.2: Building the
order-2 Hilbert lattice

Any finite-order two-dimensional Hilbert curve allows a simple mapping from 2 dimen-

sions into 1, by simply associating a given grid point with its index along the curve. This

same concept can be extended to arbitrary space-filling curves, as well as to higher dimen-

sions. It is worth noting the fact that the Hilbert curves always take steps of unit length:

immediate neighbors on the curve are also immediate neighbors in the plane. This translates

to a notion of data locality: points close to each other in the plane tend to be close to each

other along the Hilbert curve.

4.1.1 Higher Dimensions

The geometric approach to the two-dimensional Hilbert curve starts by considering a 2× 2

grid of points and describes the path through them. It then recurses by replacing each point

with another 2 × 2 grid (making a 22 × 22 grid) and defining the curve through each of

those, appropriately rotated so that the entrance and exit points to these sub-grids remain

adjacent. We consider an analogous recursive approach to the multi-dimensional Hilbert

curve. Consider a grid of 2 × · · · × 2 points in n dimensions, corresponding to the corners

of the unit hypercube in Z
n. The key property of the Hilbert curve is that successive points

are immediate neighbors in the grid. Thus, to maintain this property we are looking for a

walk through the 2n points such that every point will be enumerated, and successive points

will be neighboring corners of the hypercube.

34

(a) (b)

(c) (d)

Figure 4.3: First four iterations of the Hilbert curve.

(a) (b) (c)

Figure 4.4: First three iterations of the Peano curve.

35

We let each of the 2n vertices be labelled by an n-bit string of the form b = [βn−1 · · ·β0][2],
where βi ∈ B := {0, 1} represents the position of the vertex along dimension i (0 for low, 1 for

high). This is easily interpreted as an n-bit non-negative integer value in Z2n , or equivalently,

B
n. Restricting ourselves to taking steps to immediate neighbors implies that in the binary

labels of successive vertices, only one bit may change. In other words, we are looking for an

ordering of the 2n distinct n-bit numbers such that any successive pair of numbers differ in

exactly one bit. This corresponds exactly to the classic Gray code [65].

Gray Code

In general, a Gray code is an ordering of numbers such that adjacent numbers differ in

exactly a single digit with respect to some base. More specifically, we are concerned with a

binary Gray code. Perhaps the simplest form of a binary Gray code is the binary reflected

Gray code, which is intuitively constructed in the following manner:

1. Start with the Gray code over 1-bit numbers:

[[0][2] , [1][2]]

2. Write the sequence forwards and then backwards, prepending zeroes to the first half

and ones to the second half. This creates the Gray code over all 2-bit numbers:

[[00][2] , [01][2] , [11][2] , [10][2]]

3. Repeat step 2, each time growing the Gray code over k-bit numbers to one over k + 1

bits.

Assuming the input to step 2 is itself a Gray code over all k-bit numbers, it is easy to

see that the output will be a valid Gray code over all (k + 1)-bit numbers. The 2-bit Gray

code generated in this manner coincides exactly with the ordering through the four points

in a two-dimensional Hilbert curve (it generates the familiar ‘�’ shape), and it can be used

as a basis to extend the concept of the Hilbert curve to higher dimensions3. Given this

construction of the binary reflected Gray code, we may easily derive a closed form for the

ith Gray code integer. The following results on Gray Codes are well known, but we have

provided our own proofs for the sake of completeness.

3This exact agreement is due to the non-standard orientation we have chosen for the Hilbert curve. Given
the standard orientation, the agreement would only be up to a rotation.

36

Theorem 4.1 (Closed-form Binary Reflected Gray Code). The binary reflected Gray code

sequence is generated by the function

gc(i) = i⊕ (i � 1),

where ⊕ is the exlusive-or operator, and � is the right-shift operator.

Proof. We consider the value of the jth bit of the ith Gray code, bit (gc(i), j). The construc-

tion begins with the Gray code sequence over B. After j iterations we have the Gray code

defined over all (j + 1)-bit values. In this sequence, the first half of the values are defined

such that the jth bit is zero, while the second half has a one for the jth bit. In the next

iteration of this construction the pattern reverses itself such that (for 0 ≤ i < 4(2j)):

bit (gc(i), j) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if 0 ≤ i < 2j,

1, if 2j ≤ i < 2(2j),

1, if 2(2j) ≤ i < 3(2j),

0, if 3(2j) ≤ i < 4(2j)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if � i
2j
� = 0,

1, if � i
2j
� = 1,

1, if � i
2j
� = 2,

0, if � i
2j
� = 3.

In subsequent iterations of the construction this pattern will simply be repeated as it is

already symmetric. Hence, it follows that for all i ≥ 0

bit (gc(i), j) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if � i
2j
� mod 4 = 0,

1, if � i
2j
� mod 4 = 1,

1, if � i
2j
� mod 4 = 2,

0, if � i
2j
� mod 4 = 3.

Since � i
2j+1 � mod 2 = 1 if and only if � i

2j
� mod 4 ∈ {2, 3} we see that

bit (gc(i), j) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if � i
2j
� mod 4 = 0,

1, if � i
2j
� mod 4 = 1,

0, if � i
2j
� mod 4 = 2,

1, if � i
2j
� mod 4 = 3

+

⌊
i

2j+1

⌋
mod 2

=

⌊
i

2j

⌋
+

⌊
i

2j+1

⌋
mod 2

= (i � j) + (i � (j + 1)) mod 2

= bit (i, j) + bit (i, j + 1) mod 2

= bit (i, j)⊕ bit (i � 1, j)

= bit (i⊕ (i � 1), j) .

37

Thus it follows that gc(i) = i⊕ (i � 1).

Given a non-negative integer we may wish to find at which position it lies in the Gray

code sequence. In other words, we may wish to determine the inverse of the Gray code.

Theorem 4.2 (Binary Reflected Gray Code Inverse). Consider a non-negative integer i.

Let m be the precision of i. That is, let m = �log2(i + 1)� such that i requires m bits in its

binary representation. Then it follows that

bit (i, j) =

m−1∑
k=j

bit (gc(i), k) mod 2,

where bit (i, k) refers to the kth bit in the binary representation of i, with 0 being the least

significant bit and m− 1 the most significant.

Proof. By Theorem 4.1 we have

bit (gc(i), j) = bit (i, j) + bit (i, j + 1) mod 2.

Summing over j ≤ k < m we find that

m−1∑
k=j

bit (gc(i), k) =

m−1∑
k=j

(
bit (i, k) + bit (i, k + 1)

)
mod 2

=

(
m−1∑
k=j

bit (i, k) +

m∑
k=j+1

bit (i, k)

)
mod 2

= bit (i, j) +

(
2

m−1∑
k=j+1

bit (gc(i), k)

)
+ bit (i,m) mod 2

= bit (i, j) + bit (i,m) mod 2.

By the definition of m we see that bit (i,m) = 0 and the result follows.

We use Theorem 4.2 to construct Algorithm 1, which computes the inverse as desired.

Additionally, we are interested in knowing along which bit the Gray code will change

when preceding from one term to the next. Equivalently, we are interested in knowing along

which dimension we will step when proceeding from one vertex to another on the Hilbert

curve. To this end, we define g(i) as

g(i) = k, such that gc(i)⊕ gc(i+ 1) = 2k, 0 ≤ i < 2n − 1.

38

Algorithm 1 GrayCodeInverse(g)

Given a non-negative integer g, calculates the non-negative integer i such that gc(i) = g.

Input: A non-negative integer g.

Output: The non-negative integer i such that gc(i) = g.

1: m← number of bits required to represent g

2: (i, j)← (g, 1)

3: while j < m do

4: i← i⊕ (g � j)

5: j ← j + 1

6: end while

Lemma 4.3 (Dimension of Change in the Gray Code). The sequence g(i) is given by

g(i) = tsb(i),

where tsb is the number of trailing set bits in the binary representation of i.

Proof. We examine the difference between two consecutive values of the Gray code:

gc(i)⊕ gc(i+ 1) = i⊕ (i � 1)⊕ (i+ 1)⊕ ((i+ 1) � 1)

= (i⊕ (i+ 1))⊕ ((i � 1)⊕ ((i+ 1) � 1))

= (i⊕ (i+ 1))⊕ ((i⊕ (i+ 1)) � 1).

We consider first the portion i⊕ (i+ 1). Adding 1 to i will cause a carry past the first digit

if the first digit is 1. Similarly past the second digit and so on. Letting k be the number of

trailing ones in the binary representation of i (or, alternatively, the index of the first zero

valued bit), it follows that i+ 1 will have a one at position k, zeroes at positions 0 through

k − 1, and be identical to i elsewhere. Thus, taking the exclusive-or of these two will result

in a number with k + 1 trailing one bits. Similarly, the result of (i ⊕ (i + 1)) � 1 will be a

number with k trailing one bits. Taking the exclusive-or of these two results in a number

with a single non-zero bit at the kth position. Hence, between the ith and (i + 1)th Gray

code integers it is the kth bit that changes. This corresponds exactly to the definition of

‘tsb’ thus it follows that g(i) = tsb(i).

Lemma 4.4 (Symmetry of the Gray Code). Given n ∈ N and 0 ≤ i < 2n, it follows that

gc(2n − 1− i) = gc(i)⊕ 2n−1.

39

Proof. This property follows immediately from the construction algorithm for the reflected

binary Gray code. The second 2n−1 values are simply equal to the first 2n−1 values in reverse,

with the (n− 1)th bit set as a 1. Thus we see that

gc(2n − 1− i) = gc(i) ∨ 2n−1, for 0 ≤ i < 2n−1.

Replacing the ‘or’ operation by an ‘exclusive-or’ (justified in this case as exaclty one of

gc(2n − 1− i) or gc(i) will have a zero in the (n− 1)th bit) leads to the desired result.

Corollary 4.5 (Symmetry of g(i)). The sequence g(i) is symmetric such that g(i) = g(2n−
2− i) for 0 ≤ i ≤ 2n − 2.

Proof. Without loss of generality we consider i ≤ 2n−2
2

. Lemma 4.4 tells us that

gc(2n − 2− i) = gc(i+ 1)⊕ 2n−1.

By the definition of gc we know that gc(i+ 1) = gc(i) ⊕ 2g(i) and gc(2n − 2 − i) = gc(2n −
1− i)⊕ 2g(2

n−2−i). Substituting these into the above equation yields

gc(2n − 1− i)⊕ 2g(2
n−2−i) = gc(i)⊕ 2g(i) ⊕ 2n−1.

By Lemma 4.4 this simplifies to the desired result,

g(2n − 2− i) = g(i).

Analogous to the Hilbert curve in two dimensions, the Gray code ordering can be used

to give an ordering through the vertices of a unit hypercube in Z
n. As in the recursive

construction in two dimensions, we will recursively define the Hilbert curve by zooming in

on each point in the sequence (each sub-hypercube) and iterating through the points within

using a transformed/rotated version of the original curve. Like the two-dimensional case, we

must determine orientations for the Hilbert curve through each of the 2n sub-hypercubes.

These orientations must be consistent in that the exit point of the curve through one sub-

hypercube must be immediately adjacent to the entry point of the next sub-hypercube.

Additionally, the entry and exit points of the parent hypercube must coincide with the entry

point of the first sub-hypercube and the exit point of the last sub-hypercube, respectively.

These constraints on entry and exit points are visualized for the two-dimensional case in

Figure 4.5.

40

Entry Points

Using the same labelling as the vertices of the parent hypercube, we let e(i) and f(i) refer,

respectively, to the entry and exit vertices of the ith sub-hypercube in a Gray code ordering

of the sub-hypercubes. Since the ith and (i + 1)th sub-hypercubes are neighbors along the

g(i)th coordinate, we must have that f(i)⊕ 2g(i) = e(i+1). Like the entry and exit points of

the parent hypercube, entry and exit points of a given sub-hypercube must be neighboring

corners. That is, e(i) and f(i) may only differ in exactly one bit position, meaning we must

have that e(i)⊕ f(i) = 2d(i) for some d(i) ∈ Zn. We refer to d(i) as the intra sub-hypercube

direction, and g(i) as the inter sub-hypercube direction. Combining these two results shows

that entry points must satisfy the relation

e(i+ 1) = e(i)⊕ 2d(i) ⊕ 2g(i), 0 ≤ i < 2n − 1. (4.6)

Additionally, as mentioned earlier, we must have that e(0) is the same as the entry point of

the parent hypercube and f(2n − 1) is the same as the exit point of the parent hypercube.

These constraints are displayed graphically for the two-dimensional case in Figure 4.5.

In order to fully determine closed forms for e(i), d(i) and f(i), we first explore various

properties of these sequences. The process is guided by exploring a small two-dimensional

example, as shown in Figure 4.5. From the symmetry of the Gray Code itself (an immediate

consequence of its definition), we can infer similar symmetry relationships on the entry

and exit corner sequences. This in turn allows us to infer the symmetry of the intra sub-

hypercube direction sequence d(i). Aided by our small example, we can then posit a closed

form that satisfies the symmetry constraint and the observed example values. The form of

the hypothesis is then confirmed by verifying that it satisfies Equation 4.6.

Lemma 4.7 (Symmetry of e(i) and f(i)). The sequences e(i) and f(i) are symmetric such

that e(i) = f(2n − 1− i)⊕ 2n−1.

Proof. We consider walking through the Hilbert curve backwards, such that ēi = f(2n−1−i)
and the ith sub-hypercube is gc(i) = gc(2n − 1 − i). By Lemma 4.4 this is equivalent to

gc(i) = gc(i)⊕ 2n−1. Thus, it follows that f(2n − 1− i) = ēi = e(i)⊕ 2n−1.

Corollary 4.8 (Symmetry of d(i)). The sequence d(i) is symmetric such that d(i) = d(2n−
1− i) for 0 ≤ i ≤ 2n − 1.

41

3 2

10

f(3) = 10e(3) = 11 f(2) = 10

e(2) = 00

f(1) = 10

e(1) = 00f(0) = 01e(0) = 00

i e(i) f(i) d(i) g(i)
0 [00][2] [01][2] 0 0

1 [00][2] [10][2] 1 1

2 [00][2] [10][2] 1 0

3 [11][2] [10][2] 0 −

Figure 4.5: Entry and exit points of the 2 dimensional Hilbert curve (the x-axis corresponds
to the least significant bit and the y-axis the most significant).

Proof. Lemma 4.7 tells us that e(i) = f(2n − 1− i)⊕ 2n−1 and equivalently e(2n − 1− i) =
f(i)⊕ 2n−1. Combining these two yields

e(i)⊕ f(i) = e(2n − 1− i)⊕ f(2n − 1− i).

By the definition of d(i) we have that e(i)⊕ d(i) = f(i) thus we see

d(i) = d(2n − 1− i).

Lemma 4.9. Suppose that

d(i) =

⎧⎪⎪⎨
⎪⎪⎩

0, i = 0;

g(i− 1) mod n, i = 0 mod 2;

g(i) mod n, i = 1 mod 2,

for 0 ≤ i ≤ 2n − 1. Then d(i) is symmetric as per Corollary 4.8.

Proof. Suppose i = 0. Then d(0) = 0. Similarly, d(2n − 1) = g(2n − 1) = tsb 2n − 1 =

n mod n = 0. Suppose i = 0 mod 2. Then d(i) = g(i− 1). Since 2n − 1− i = 1 mod 2, we

see that d(2n− 1− i) = g(2n− 1− i) = g(2n− 2− (i− 1)) = g(i− 1). Suppose i = 1 mod 2.

Then d(i) = g(i). Since 2n−1− i = 0 mod 2, we see that d(2n−1− i) = g(2n−2− i) = g(i).

Thus, this form for d(i) meets the symmetry requirement of Corollary 4.8.

42

Theorem 4.10 (Intra Sub-hypercube Directions). The formula of Lemma 4.9 satisfies Equa-

tion 4.6, and hence defines the sequence of intra sub-hypercube directions, d(i).

Proof. Let d(i, n) be the sequence of intra sub-hypercube directions for a fixed dimension

n. By inspection (see Figure 4.5) we see that the above definition holds for the case n = 2.

Suppose that the definition holds for 1, . . . , n and consider the case n+1. As long as g(i) < n,

then g(i) mod n + 1 = g(i) mod n. Thus, we consider the first i such that g(i) ≥ n. By

Lemma 4.3 we see that this occurs when i = 2n − 1, the smallest positive integer with n

trailing set bits. Hence, for i < 2n− 1 we must have that d(i, n+1) = d(i, n). Now consider

d(2n − 1, n+ 1). Since the exit point of the ith cell must touch the face of the (i+ 1)th cell

along the g(i)th axis, we must have that

bit (f(i), g(i)) = bit (gc(i+ 1), g(i)) .

Substituting Equation 4.6 into this we must have that

bit

(
2n−1⊕
j=0

2d(j,n+1) ⊕
2n−2⊕
j=0

2g(j), g(2n − 1)

)
= bit

(
2n−1⊕
j=0

2g(j), g(2n − 1)

)
,

which simplifies to

bit

(
2n−1⊕
j=0

2d(j,n+1), g(2n − 1)

)
= 1,

bit

(
2n−2⊕
j=0

2d(j,n+1) ⊕ 2d(2
n−1,n+1), g(2n − 1)

)
= 1,

bit

(
2n−2⊕
j=0

2d(j,n) ⊕ 2d(2
n−1,n+1), g(2n − 1)

)
= 1.

By the symmetry of d(i, n) most of the first term cancels, leaving

bit
(
2d(0,n) ⊕ 2d(2

n−1,n+1), g(2n − 1)
)
= 1.

Since d(0, n) = 0 then we must have that d(2n − 1, n + 1) = g(2n − 1). We know that

d(i, n+1) holds for 0 ≤ 0 ≤ 2n−1, and by Lemma 4.9 we know that this holds for the other

half, 2n ≤ i ≤ 2n+1 − 1. Hence that definition holds for the case n + 1 and by the inductive

hypothesis it holds for all n ≥ 2.

With a closed form for d(i) we are able to determine the closed form for e(i).

43

Theorem 4.11 (Entry Points). The sequence of entry points is defined by

e(i) =

{
0, i = 0,

gc(2� i−1
2
�), 0 < i ≤ 2n − 1.

Proof. By recursive application of Equation 4.6 we have that

e(i) =
i−1⊕
j=0

2d(j) ⊕
i−1⊕
j=0

2g(j).

By definition, for all n we have that e(0) = 0, thus we consider only the case i > 0.

Simplifying the above yields

e(i) = 2g(0) ⊕
i−1⊕
j=1

2d(j) ⊕ gc(i)

= 2g(0) ⊕ 2d(0) ⊕ 2d(1)︸ ︷︷ ︸⊕ 2d(2) ⊕ 2d(3)︸ ︷︷ ︸⊕ . . .⊕ 2d(i−1) ⊕ gc(i).

Suppose i = 0 mod 2. Then by Theorem 4.10 all of the d(i) cancel out except d(i − 1),

leaving us with e(i) = 2g(0) ⊕ 2d(i−1) ⊕ gc(i). Since g(0) = tsb(0) = 0 = tsb(i) = g(i) this

yields e(i) = gc(i)⊕2d(i−1)⊕2g(i) = gc(i)⊕2g(i−1)⊕2g(i) = gc(i−2). Thus, e(i) = gc(2� i−1
2
�).

Suppose now that i = 1 mod 2. All of the d(i) cancel, leaving e(i) = gc(i)⊕ 2g(0). Since

g(0) = tsb(0) = 0 = tsb i− 1 = g(i− 1) this simplifies to e(i) = gc(i− 1). For i = 1 mod 2

we have that i− 1 = 2� i−1
2
�, hence e(i) = gc(2� i−1

2
�).

Rotations and Reflections

As noted in Section 4.1.1 the recursive construction of the Hilbert curve requires us to

construct a curve through the corners of a hypercube when provided with a particular entry

and exit point. The classic Gray code explored earlier starts at gc(0) = 0 and ends at

gc(2n − 1) = 2n−1, thus implicitly has an entry point e = 0, an internal direction d = n− 1

and an exit point f = 2n−1. We wish to define a geometric transformation such that the

Gray code ordering of sub-hypercubes in the Hilbert curve defined by e and d will map to

the standard binary reflected Gray code.

To this end, let us define the right bit rotation operator � as

b � i =
[
b(n−1+i mod n) · · · b(i mod n)

]
[2]
, where b = [bn−1 · · · b0][2] .

Conceptually, this function rotates the n bits of b to the right by i places. Analogously,

we define the left bit rotation operator, �. Trivially, both the left and right bit rotation

44

operators are bijective over Zn
2 (or equivalently B

n) for any given i. Given e and d, we may

now define a transformation T as

T(e,d)(b) = (b⊕ e) � (d+ 1).

Being the composition of two bijective operators, we see that the mapping is itself bijective

for fixed e and d. We first explore the behaviour of the mapping on the entry and exit points.

Lemma 4.12 (Transformed Entry and Exit Points). The transform

T(e,d) maps e and f to the first and last terms, respectively, of the binary reflected Gray code

sequence over B
n. That is,

T(e,d)(e) = 0, and T(e,d)(f) = 2n−1.

Proof. Straightforward:

T(e,d)(e) = (e⊕ e) � (d+ 1) = 0 � d+ 1 = 0; and,

T(e,d)(f) = (f ⊕ e) � (d+ 1)

= (e⊕ 2d ⊕ e) � (d+ 1)

= 2d � (d+ 1)

=

⎡
⎣ 0 · · · 0︸ ︷︷ ︸
n− d− 1

1 0 · · ·0︸ ︷︷ ︸
d

⎤
⎦

[2]

� (d+ 1)

=

[
1 0 · · ·0︸ ︷︷ ︸

n− 1

]
[2]

= 2n−1.

Given the nature of bit-rotation and the exclusive-or operator, it is also easy to see that

if neighboring elements of a sequence differ in only one bit position, then the same will hold

true for the two transformed points. Hence, they will be neighbors as well. This and the

fact that the mapping is bijective tells us that T preserves this critical property of a Gray

code sequence. It is easy to show that the inverse of a T -transform is itself a T -transform.

Lemma 4.13 (Inverse Transform). The inverse of the transform T(e,d) is itself a T -transform,

given by

T−1
(e,d) = T(e�(d+1),n−d−1).

45

Proof. It is easy to see that (T(e,d)(a) � (d+ 1))⊕ e = a, simply by reversing the individual

operations of T(e,d). Letting b = T(e,d)(a), this simplifies to

(b � (d+ 1))⊕ e = (b � (n− d− 1))⊕ e

=
(
b � (n− d− 1)

)
⊕
(
e � (n− d− 1) � (n− d− 1)

)
=
(
b⊕ (e � (n− d− 1))

)
� (n− d− 1)

=
(
b⊕ (e � (d+ 1)

)
� (n− d− 1).

We are now ready to construct the Hilbert curve starting at e with direction d. We define

gc(e,d)(i) = T−1
(e,d)(gc(i)). By our earlier discussion it follows that the sequence generated by

gc(e,d) is a Gray code sequence. Furthermore, by Lemmas 4.12 and 4.13 it follows that

this Gray code sequence begins and ends on the desired points, and the mapping T(e,d)

maps it back to the standard binary reflective Gray code. We now have the tools necessary

to consistently construct Hilbert curves through hypercubes with arbitrarily defined entry

points and directions. We finish this section with one last result on composed transforms

which will be necessary later to deal with the recursive nature of the Hilbert curve.

Lemma 4.14 (Composed Transforms). Consider the composed transform

b = T(e2,d2)
(
T(e1,d1)(a)

)
.

Then it follows that

b = T(e,d)(a)

where e = e1 ⊕ (e2 � (d1 + 1)) and d = d1 + d2 + 1.

Proof. Straightforward:

T(e2,d2)
(
T(e1,d1)(a)

)
= T(e2,d2)

(
(a⊕ e1) � (d1 + 1)

)
= T(e2,d2)

((
a � (d1 + 1)

)
⊕
(
e1 � (d1 + 1)

))

=

((
a � (d1 + 1)

)
⊕
(
e1 � (d1 + 1)

)
⊕ e2

)
� (d2 + 1)

=

(
a⊕ e1 ⊕

(
e2 � (d1 + 1)

)︸ ︷︷ ︸
e

)
� (d1 + d2 + 1︸ ︷︷ ︸

d

+1).

46

It is important to note that T -transforms do in fact have the desired geometric interpreta-

tion when applied to our binary labels of the vertices of the unit hypercube. The bit rotation

operator can be interpreted as a rotation operator in Z
n, while the exclusive-or operation

can be interpreted as a mirroring operation, inverting the axes i where bit (e, i) = 1. Hence,

the T -transform may be interpreted as a rotation and reflection operator over the space Z
n.

Algorithms

We consider a space of n-dimensional vectors where each component is an integer of precision

m; that is, where each component may be represented using m bits. Given the Hilbert

curve through this space B
n
m, we wish to determine the Hilbert index, h, of a given point

p = [p0, . . . , pn−1], pi ∈ B
m.

The result may be found in a series of m projections and Gray code calculations. Given

p, we may extract an n-bit number

lm−1 = [bit (pn−1, m− 1) · · ·bit (p0, m− 1)][2] .

Each bit of l tells us whether the point p is in the lower or upper half set of points with

respect to a given axis. Thus, the point lm−1 locates in which sub-hypercube the point p

may be found. Equivalently, it tells us the vertex of the Hilbert curve through the vertices

of the unit hypercube to which p belongs. We wish to determine the Hilbert index of the

sub-hypercube containing p, given e and d. As discussed in Section 4.1.1, we do this in

two steps: (1) rotate and reflect the space such that the Gray code ordering corresponds

to the binary reflected Gray code, l̄m−1 = T(e,d)(lm−1); and, (2) determine the index of the

associated sub-hypercube, wm−1 = gc−1(l̄m−1).

We may now calculate e(wm−1) and d(wm−1) in order to determine the entry point and di-

rection through the sub-hypercube containing the point p. The values e(wm−1) and d(wm−1)

are relative to the transformed space, thus we may compose this transformation with the

existing transformation using Lemma 4.14, calculating e = e ⊕ (e(wm−1) � (d + 1)) and

d = d + d(wm−1) + 1. At this point, the parameters e and d describe the rotation and re-

flection necessary to map the sub-hypercube containing p back to the standard orientation.

We then narrow our focus on the sub-hypercube containing p. We repeat the above steps

to calculate wm−2 and update e and d appropriately. We continue for wm−3 through w0 and

47

i = 2 i = 1 i = 0

p = [5, 6] = [[101][2] , [110][2]]

i l T(e,d)(l) w e(w) d(w) e d h
- - - - - - 0 1 0
2 [11][2] = 3 3 2 0 1 0 1 2

1 [10][2] = 2 2 3 3 0 3 0 11

0 [01][2] = 1 1 1 0 1 3 0 45

Figure 4.6: Running algorithm HilbertIndex with n = 2, m = 3 and p = [5, 6].

finally calculate the full Hilbert index as

h = [wm−1wm−2 · · ·w0][2] =

m−1∑
i=0

2niwi =
m−1∨
i=0

(wi � ni).

We formalize this approach in Algorithm 2. Inverting the HilbertIndex algorithm is

straightforward, with the inverse given by Algorithm 34.

We consider an example in two dimensions where m = 3. Let p be the point at x = 5

and y = 6. Figure 4.6 displays both graphically and in tabular form the results of running

Algorithm 2 on the point p.

4In these algorithms we have chosen to initialize the direction d as 0, instead of n− 1. This corresponds
to the standard orientation where the Hilbert curve starts and finishes at opposite ends of the x-axis, the
orientation we had originally shunned in Section 4.1.

48

Algorithm 2 HilbertIndex(n,m,p)

Calculates the Hilbert index h ∈ B
mn of a point p ∈ B(P).

Input: n,m ∈ Z+ and a point p ∈ B(P).

Output: h ∈ B
X , the Hilbert index of the point p.

1: (h, e, d)← (0, 0, 0)

2: for i = m− 1 to 0 do

3: l ← [bit (pn−1, i) · · ·bit (p0, i)][2]
4: l ← T(e,d)(l)

5: w = gc−1(l)

6: e← e⊕ (e(w) � (d+ 1))

7: d← d+ d(w) + 1 mod n

8: h← (h � n) ∨ w
9: end for

Algorithm 3 HilbertIndexInverse(n,m, h)

Calculates the point p ∈ B(P) corresponding to a given Hilbert index h ∈ B
mn.

Input: n,m ∈ Z+ and h ∈ B
mn, the Hilbert index of the point p.

Output: A point p ∈ B(P).

1: (e, d)← (0, 0)

2: p = [p0, . . . , pn−1]← [0, . . . , 0]

3: for i = m− 1 to 0 do

4: w ← [bit (h, in+ n− 1) · · ·bit (h, in + 0)][2]

5: l = gc(w)

6: l ← T−1
(e,d)(l)

7: for j = 0 to n− 1 do

8: bit (pj, i)← bit (l, j)

9: end for

10: e← e⊕ (e(w) � (d+ 1))

11: d← d+ d(w) + 1 mod n

12: end for

49

4.2 Compact Hilbert Indices

Consider an n-dimensional data-set consisting of points p ∈ B
m0 × · · · × B

mn−1 = B(P),

where mi ∈ Z+ is the precision of the data in the ith dimension. Storing a point of data

requires X =
∑

imi bits. However, a Hilbert index must be calculated with respect to a

hypercube H(P) of precision m = maxi{mi}, and requires mn ≥ X bits of storage. As

an example, we consider a customer database containing an id, a province and a gender of

16, 4 and 1 bits respectively. Points in their native space require 16 + 4 + 1 = 21 bits to

store, while the associated Hilbert indices will require 3 × 16 = 48 bits, representing a data

expansion factor of 48/21 ≈ 2.29.

As the regular Hilbert walks through the hypercube H(P), it repeatedly leaves and

reenters the smaller bounding box of the input points B(P). The points along the curve

outside of B(P) will never be used as indices for the points inside B(P), hence the inherent

inefficiency. A simple way to address this inefficiency is to imagine deleting the portions of

the curve that lie outside of B(P), replacing them with a single straight line from where

the curve leaves B(P) to where it reenters, and reindexing the point along the now shorter

curve.

We wish to find an indexing scheme that preserves completely the ordering of the Hilbert

indices, but requires only X bits to represent. A simple method to do this is to walk through

all the points in B(P), calculate their Hilbert indices and sort them based on these Hilbert

indices. Then, assign to each point its rank as an index. Trivially, this index has the same

ordering as the Hilbert ordering over B(P), and it requires only
∑

imi bits to represent.

However, in order to generate such an index we must first enumerate the entire space,

a prohibitive cost. The key to calculating this index directly, referred to as the compact

Hilbert index, lies in a simple observation about Gray Codes.

4.2.1 Gray Code Rankings

We consider an n-bit Gray code gc(i) where some subset of the bits are fixed. We let μ

be a mask and π be a pattern such that π ∧ μ = 0, where ∧ is the binary-and operator.

We restrict ourselves to values gc(i) where bit (gc(i), j) = bit (π, j) when bit (μ, j) = 0.

This is equivalent to restricting ourselves to values gc(i) such that gc(i) ∧ ¬μ = π, where ¬
represents the binary-not or negation operator. We let I be the set of integers that satisfy

50

this condition, I = {i| gc(i) ∧ ¬μ = π}. Let ‖μ‖ count the number of set bits of μ, or

equivalently, the number of unconstrained bits in the definition of I. It is easy to see that

|I| = 2‖μ‖ ≤ 2n. We wish to determine ‖μ‖-bit values, the Gray code ranks gcr(·), such that

for all i �= j ∈ I, i < j if and only if gcr(i) < gcr(j). It is plain to see that gcr(i) must be

equal to the rank of i with respect to all entries in I. However, we wish to calculate the

rank directly without having to enumerate over the entire set I.

gc(i) 8 10 12 14 20 26 28 30
i 15 12 8 11 16 19 23 20

gcr(i) 3 2 0 1 4 5 7 6

[gc(i)][2] 001000 001010 001100 001110 011000 011010 011100 011110

[i][2] 001111 001100 001000 001011 010000 010011 010111 010100

[gcr(i)][2] 011 010 000 001 100 101 111 110

Table 4.1: Values of gc(i), i and gcr(i) for μ = [010110][2] and π = [001000][2].

We consider an example where n = 6, ‖μ‖ = 3, μ = [010110][2] and π = [001000][2], shown

in Table 4.1. The unconstrained bits are shown underlined to help in visualizing the effect

of the mask and pattern. With a quick visual inspection it becomes readily apparent that

the gcr(i) values can be constructed simply by concatenating the unconstrained bits from i.

We formalize this concept with the following result.

Theorem 4.15 (Gray Code Rank). Let U = {u0 < · · · < u‖μ‖−1} be the indices of the

unconstrained bits of a mask μ, such that bit (μ, uk) = 1 for all 0 ≤ k < ‖μ‖, and let π be a

pattern with respect to μ. Consider i �= j ∈ I, and define

ı̄ =
[
bit
(
i, u‖μ‖−1

)
· · ·bit (i, u0)

]
[2]
.

Then i < j if and only if ı̄ < j̄. That is, the Gray code rank is given by gcr(i) = ı̄.

Proof. It is obvious that two values i �= j may only differ at bit positions u ∈ U . In other

words, the only bits necessary to compare the relative order of i and j are precisely the bits

of index u ∈ U . If we remove the constrained bits from i, and keep the unconstrained bits

in the same relative order, we are left with ı̄. Thus, it follows that ı̄ and j̄ will always have

the same relative ordering as i and j. Since ı̄ is a ‖μ‖ digit binary number, it follows by the

definition of gcr that gcr(i) = ı̄.

51

Algorithm 4 GrayCodeRank(n, μ, π, i)

Given μ, π and n as per Lemma 4.15 and a value i ∈ I, calculates r ∈ B
‖μ‖ such that

r = gcr(i).
Input: n ∈ Z+, μ ∈ B

n and i ∈ I.
Output: r ∈ B

‖μ‖ such that r = gcr(i).

1: r ← 0

2: for k = n− 1 to 0 do

3: if bit (μ, k) = 1 then

4: r ← (r � 1) ∨ bit (i, k)

5: end if

6: end for

As per Theorem 4.15, Algorithm 4 computes gcr(i) given n, μ, π and i. Given gcr(i) it is

natural to want to reconstruct one or both of i and gc(i). We work in parallel to reconstruct

the values of gc(i) and i given gcr(i). Since i ∈ I it follows that bit (gc(i), k) = bit (π, k)

for k �∈ U . Additionally, when k ∈ U it follows that bit (i, k) = bit (gcr(i), j) where k = uj.

Given any k, exactly one of bit (i, k) or bit (gc(i), k) is known. Theorem 4.1 lets us fill in the

blanks as bit (gc(i), k) = bit (i, k) + bit (i, k + 1). If we work from the most significant bit

to the least significant bit, bit (i, k + 1) will be known at step k, allowing us to solve for the

unknown bit. We formalize this procedure in Algorithm 5.

4.2.2 Algorithms

When calculating the Hilbert index, we determine in which side of the half-plane the coor-

dinate p lies in with respect to each of the axes. The integer l is calculated at each iteration

i of the algorithm as

l = T(e,d)([bit (pn−1, i) · · ·bit (p0, i)][2])

=
(
[bit (pn−1, i) · · ·bit (p0, i)][2] � (d+ 1)

)
⊕
(
e � (d+ 1)

)
.

We consider the case where axis j has precision mj instead of all axes having precision m.

Regardless of p it follows that bit (pj, i) = 0 when i ≥ mj . At iteration i, we define

μ = [αn−1 · · ·α0][2] � (d+ 1), where αj =

{
1, if mj > i,

0, otherwise;

52

Algorithm 5 GrayCodeRankInverse(n, μ, π, r)

Given μ, π and n as per Lemma 4.15 and a value r ∈ B
‖μ‖, calculates i ∈ I, and gc(i) ∈ B

n

such that r = gcr(i).

Input: n ∈ Z+, μ, π ∈ B
n and r ∈ B

‖μ‖.

Output: i ∈ I such that r = gcr(i); and g = gc(i) ∈ B
n.

1: (i, g, j)← (0, 0, ‖μ‖ − 1)

2: for k from n− 1 to 0 do

3: if bit (μ, k) = 1 then

4: bit (i, k)← bit (r, j)

5: bit (g, k)← bit (i, k) + bit (i, k + 1) mod 2

6: j ← j − 1

7: else

8: bit (g, k)← bit (π, k)

9: bit (i, k)← bit (g, k) + bit (i, k + 1) mod 2

10: end if

11: end for

and π =
(
e � (d+1)

)
∧¬μ. It can be seen that l∧¬μ = π, thus we may apply Theorem 4.15

to gc−1(l) to calculate a ‖μ‖-bit rank that maintains the same relative ordering as gc−1(l).

Thus, at each iteration i, instead of appending the n-bit value gc−1(l) to h, we may append

the ‖μ‖-bit value gcr(gc−1(l)). Each dimension j will contribute a 1-bit to μ for iterations

0 ≤ i < mj , each time contributing a single bit to h. Thus, each dimension j will contribute

exactly mj bits to h, yielding a final index X =
∑

j mj bits in length. As desired, the

constructed compact Hilbert code will have the same precision as the original point p. We

formalize this approach with Algorithms 6 and 7. The inverse procedure is equally straight-

forward and is shown in Algorithm 8.

Given the tools presented in this chapter, it is relatively straight-forward to construct

algorithms for efficiently iterating through all points on a regular or compact Hilbert curve,

as well as for calculating various other quantities as per Moore [101].

Remark. The approach discussed here simply deletes the portions of the full Hilbert curve

that lie outside of H(P). This approach maintains completely the ordering imposed by the

full Hilbert curve, but the compact curve no longer has a guarantee that successive points on

53

Algorithm 6 ExtractMask(n,m0, . . . , mn−1, i)

Extracts a mask μ indicating which axes are active at a given iteration i of the Com-

pactHilbertIndex algorithm.
Input: n,m0, . . . , mn−1 ∈ Z+ and i ∈ Zn.

Output: The mask μ of active dimensions at iteration i.

1: μ← 0

2: for j = n− 1 to 0 do

3: μ← μ � 1

4: if mj > i then

5: μ← μ ∨ 1

6: end if

7: end for

Algorithm 7 CompactHilbertIndex(n,m0, . . . , mn−1,p)

Calculates the compact Hilbert index h ∈ B
X of a point p ∈ B(P).

Input: n,m0, . . . , mn−1 ∈ Z+ and a point p ∈ B(P).

Output: h ∈ B
H , the compact Hilbert index of the point p ∈ B(P).

1: (h, e, d)← (0, 0, 0)

2: m← maxi{mi}
3: for i = m− 1 to 0 do

4: μ← ExtractMask(n,m0, . . . , mn−1, i)

5: μ← μ � (d+ 1)

6: π ← (e � (d+ 1)) ∧ ¬μ
7: l ← [bit (pn−1, i) · · ·bit (p0, i)][2]
8: l ← T(e,d)(l)

9: w = gc−1(l)

10: r = GrayCodeRank(n, μ, π, w)

11: e← e⊕ (e(w) � (d+ 1))

12: d← d+ d(w) + 1 mod n

13: h← (h � ‖μ‖) ∨ r
14: end for

54

Algorithm 8 CompactHilbertIndexInverse(n,m0, . . . , mn−1, h)

Calculates the point p ∈ B(P) corresponding to a given compact Hilbert index h ∈ B
X .

Input: n,m0, . . . , mn−1 ∈ Z+ and h ∈ B
X , the compact Hilbert index of the point p.

Output: A point p ∈ B(P).

1: (e, d, k)← (0, 0, 0)

2: p = [p0, . . . , pn−1]← [0, . . . , 0]

3: m← maxi{mi}
4: X ←

∑
i{mi}

5: for i = m− 1 to 0 do

6: μ← ExtractMask(n,m0, . . . , mn−1, i)

7: μ← μ � (d+ 1)

8: π ← (e � (d+ 1)) ∧ ¬μ
9: r ← [bit (h,X − k − 1) · · ·bit (j,X − k − ‖μ‖)][2]
10: k ← k + ‖μ‖
11: w ← GrayCodeRankInverse(n, μ, π, r)

12: l = gc(w)

13: l ← T−1
(e,d)(l)

14: for j = 0 to n− 1 do

15: bit (pj, i)← bit (l, j)

16: end for

17: e← e⊕ (e(w) � (d+ 1))

18: d← d+ d(w) + 1 mod n

19: end for

55

the curve are seperating by a unit distance. A complementary approach to creating compact

Hilbert curves would consider creating a Hilbert-like curve that walks through B(P) while

respecting the property that adjacent points along the curve must always be seperated by a

unit distance.

4.3 Experimental Results

To explore the performance of compact Hilbert indices we performed a series of experiments

with both synthetic and real multi-dimensional data. In both cases, in addition to significant

space savings, the use of compact Hilbert curves reduced the time required to sort data in

Hilbert order. For example, for a 4-dimensional data-set extracted from a large Apache web

log, compact Hilbert indices achieved a data size reduction of 2.2 and sorting based on these

indices was 4.3 times faster than the dynamic comparison routine implemented in Moore’s

widely used library [101].

We implemented routines for mapping to and from both regular and compact Hilbert

indices using the algorithms developed here. The algorithms are written in C++ and seam-

lessly handle arbitrary precision data5. Our Hilbert curve algorithms were then compared to

Moore’s [101] implementation of Butz’s [43] algorithms for various precisions and dimensions

(up to nm ≤ 64, the maximum supported by Moore’s code) on both artificial and real data.

The running times of our compact Hilbert indices were then compared to those of regular

Hilbert indices over these and other data-sets. Finally, we examined the effect of using

compact Hilbert indices in applications where regular Hilbert indices are currently used. All

experiments were performed on a commodity Dual Intel Xeon 3.06GHz based computer with

2GB of main memory. All quoted times are wall time.

A variety of data-sets were used in the testing. The WEBLOG data-set consists of the log

files of an Apache web server, taken over a 139 day period from August to September of

2004. A 4-dimensional data-set of ∼ 7.7 million points was extracted from the over 154

million rows of log data. The four dimensions recorded the IP address, day of access, hour of

access and HTTP return code for each log entry. They had cardinalities of 834406, 139, 24

and 16, respectively, with bit sizes of 20, 8, 5 and 4. A regular Hilbert index requires 80 bits

to represent while a compact Hilbert index requires only 37, a savings of over 2.16 times.

5See http://web.cs.dal.ca/~chamilto/hilbert/.

56

Further data-sets were taken from the pgFoundry sample database project6, summarized in

Table 4.2.

4.3.1 Space Savings

We evaluated the size of each column of each data-set and used this information to determine

the bounding hypercube H(P) size m, and the boundings box B(P) sizes mi. These values

were then used to calculate the space savings factor that would be achieved by using compact

Hilbert indices. The sizes of text columns were determined using the unique number of

entries in the columns. Floating point columns were mapped to fixed-precision floating

point columns, and treated as integers (effectively ignoring the decimal point). The results

of this evaluation can be found in Table 4.2. Savings factors of up to 3.33 were seen, but the

aggregate savings factor across all tested data-sets was 1.97. Thus a savings factors value of

2 was used as a baseline for the performance testing of the following section.

4.3.2 Performance

In order to characterize the performance of our algorithms we compared them to Moore’s code

over randomly generated data-sets for varying choices of N,m, n and X. For the purposes

of compact Hilbert indices, precisions mi were chosen in a monotonically decreasing fashion

such that X = nm/2. Figure 4.7 shows the basic results. The jump visible at n = 32

in Figure 4.7(a) arises from the code switching to multiple precision representations of n-

bit intermediate variables. In general, our regular Hilbert curve implementation slightly

outperforms Moore’s implementation. When n ≤ 32 the overhead associated with compact

Hilbert indices is as much as 2.5 times. However, as both n and m increase this reduces to

a more reasonable ratio of 1.4. Although the compact Hilbert indices take slightly longer to

compute, they are smaller than full Hilbert indices allowing data points to be replaced with

compact Hilbert indices in-place. The results for Moore’s implementation are not displayed

as the total precision mn of these algorithms is limited to machine precision, 64 bits.

4.3.3 Sorting

As discussed earlier, a common application of Hilbert curves is to use them as a sort order

for multi-dimensional data. There are typically two approaches used for doing this:

6See http://pgfoundry.org/projects/dbsamples/.

57

Dataset Table n m nm X nm/X

WEBLOG 4 20 80 37 2.16

booktown alternate stock 4 7 28 21 1.33
booktown authors 3 15 45 25 1.80
booktown books 4 16 64 39 1.64
booktown customers 3 11 33 21 1.57
booktown daily inventory 2 3 6 4 1.50
booktown distinguished authors 4 15 60 18 3.33
booktown editions 6 32 192 63 3.05
booktown employees 3 10 30 16 1.88
booktown recent shipments 3 32 96 39 2.46
booktown shipments 4 32 128 57 2.25
booktown states 3 4 12 6 2.00
booktown stock 4 7 28 21 1.33
booktown stock view 3 7 21 16 1.31
booktown subjects 3 4 12 11 1.09

dellstore cust hist 3 15 45 43 1.05
dellstore customers 20 17 340 199 1.71
dellstore inventory 3 14 42 32 1.31
dellstore orderlines 5 32 160 66 2.42
dellstore orders 6 32 192 85 2.26
dellstore products 7 14 98 66 1.48
dellstore reorder 6 32 192 99 1.94

world city 5 24 120 67 1.79
world country 15 32 480 220 2.18
world countrylanguage 4 32 128 50 2.56

Table 4.2: Sample datasets and their dimensions, sizes and space-savings factors.

• Precomputed. In this approach, the Hilbert index of each point is pre-calculated, and

either stored alongside the original coordinate or in place of the original coordinate.

The data is then sorted based on this key, and the Hilbert index discarded. This

approach is efficient in that Hilbert indices are only calculated once, but it may incur

a space penalty as the Hilbert indices require mn ≥ X bits to represent. In fact, in

the worst case the space-waste factor may be as high as O(nm/(n+m)).

• Online. In this approach, the Hilbert index is never explicitly stored. Instead, a

sort algorithm is run directly on the underlying coordinates and Hilbert indices are

calculated on-the-fly as two coordinates are compared. A small optimization allows

for simultaneous computation of the two Hilbert coordinates, one bit at a time, until

they can be distinguished and ordered. When comparing values over a uniformly

distributed random set of N values with precisions of Ω(logN), it is expected that a

58

0 20 40 60 80 100

0
2

4
6

8
1
0

Time vs # of Dimensions

(N=1000000, m=4, X=nm/2)
of Dimensions (n)

T
i
m
e

(
s
)

regular
compact

(a)

0 20 40 60 80 100

0
5

1
0

1
5

Time vs Max Precision

(N=1000000, n=4, X=nm/2)
Max Precision (m)

T
i
m
e

(
s
)

regular
compact

(b)

Figure 4.7: Comparing performance over random data-sets. (a) Time to calculate N indices
with m = 4 as n varies. (b) Time to calculate N indices with n = 4 as m varies.

single comparison will need to look at O(logN) bits before distinguishing between the

two numbers [63]. Since each bit of the Hilbert index requires O(1) time to compute,

a sort of this type will have an expected complexity of O
(
N log2N

)
. This result

assumes a quick-sort type algorithm is being used, but it is thought to hold for the

general problem of sorting7. Since Algorithm 1 computes bits one at a time and is

linear in the number of bits computed, the expected cost of an online comparison of

compact Hilbert indices is proportional to the number of bits required to resolve the

comparison, namely O(logN).

Thus, it can be seen that sorting based on Hilbert indices introduces either a space inef-

ficiency or a computation-time inefficiency. Compact Hilbert indices allow us to take the

precomputation approach, but without paying a space penalty. This allows us to perform an

in-place optimal-time sort of the original data, something which was not previously possible.

Figure 4.8a shows the results of sorting the WEBLOG data-set using both dynamic Hilbert

indices and compact Hilbert indices. As predicted, for this and all other data-sets tested, the

compact Hilbert sorting proved to be much more efficient. As shown in Figure 4.8b, for as

little as 100K data items a speedup of 2 was observed. By 1M data items that speedup had

7Under the constraint that in order to compare a bit, we must first have compared all bits more significant
than it; if we have random bit access a radix sort can generally do better. However, Hilbert indices are
calculated incrementally precluding random bit access.

59

grown to a factor of 3.4. Speedup continued to increase beyond this point until it reached

a factor of over 4.3 on the whole data-set. The shape of Figure 4.8 strongly validates the

expected O(logN)-factor improvement. Note that in distributed applications that order

and partition data using Hilbert curves, such as [60,111,112], the benefits of using compact

Hilbert curves would be even more pronounced. The use of compact Hilbert curves would

result in the memory and time savings illustrated in Figure 4.8 as well as a corresponding

reduction in the overall comunication volume and time.

0e+00 2e+06 4e+06 6e+06 8e+06

0
2
0

4
0

6
0

8
0

1
2
0

Time vs # of elements

of elements (N)

T
i
m
e

(
s
)

dynamic
compact

(a)

0e+00 2e+06 4e+06 6e+06 8e+06

2
.
0

2
.
5

3
.
0

3
.
5

4
.
0

Speedup vs # of elements

of elements (N)

S
p
e
e
d
u
p

(b)

Figure 4.8: A comparison of dynamic Hilbert sorting and compact Hilbert sorting using
the WEBLOG data-set. The compact curve includes the cost of converting both to and from
compact Hilbert indices. (a) Wall times. (b) Relative speed-up.

Chapter 5

Lower Bounds

In this chapter, we study 3-sided range reporting, 3-d dominance reporting, and 3-d halfs-

pace range reporting in the cache-oblivious model. We prove that any cache-oblivious data

structure for these problems that achieves the optimal (or even a much weaker) query bound

has to use asymptotically more space than a data structure with the same query bound in

the I/O model.

As discussed in Chapter 3, there exist linear- or O(N log∗N)-space data structures that

achieve the optimal query bound of O(logB N +K/B) block transfers for 3-sided range re-

porting, 3-d dominance reporting, and 3-d halfspace range reporting in the I/O model. In

contrast, the best known data structures achieving the same query bound in the cache-

oblivious model use O(N logN) space. This raises the question whether linear-space cache-

oblivious data structures with the optimal query bound exist for these problems. In this

chapter, we give a negative answer to this question. We prove that any cache-oblivious

data structure for 3-sided range reporting, 3-d dominance reporting or 3-d halfspace range

reporting that achieves a query bound of f(logB N,K/B), for any monotonically increasing

function f(·, ·), has to use Ω(N(log logN)ε) space.1 This lower bound holds also for the

expected size of Las-Vegas-type data structures, that is, data structures with randomized

construction and query algorithms that guarantee correct query answers but achieve the de-

sired query bound only in the expected case. The exponent ε depends on the function f(·, ·)
and on the range of permissible block sizes. Our results are shown in a multi-level extension

of the indexability model of [73], which is discussed in more detail in Section 5.1. In particu-

lar, they are independent of the set of supported internal-memory operations (comparisons,

algebraic operations, etc.).

As a consequence of our lower bound for 3-sided range reporting, it follows that there is no

linear-space cache-oblivious persistent B-tree that achieves the optimal 1-d range reporting

bound of O(logB N +K/B) block transfers in the worst or expected case, while such a data

1We call a function f(·, ·) monotonically increasing if x ≥ x′ and y ≥ y′ imply f(x, y) ≥ f(x′, y′).

60

61

structure exists in the I/O model [35].

As discussed in Section 3.2, there have been previous results showing that the cache-

oblivious model is less powerful than the I/O model. Brodal and Fagerberg [40] established

a lower bound on the amount of main memory (as a function of B) necessary for optimal

cache-oblivious sorting, while Bender et al. [36] proved that cache-oblivious searching has

to cost a constant factor more than the search bound achieved in the I/O model using B-

trees [34]. Our result is the first to establish an asymptotically growing gap between the

space used by cache-oblivious and I/O-efficient data structures.

The key to obtaining our result is the construction of a hard point set and of a set of hard

queries over this point set in combination with techniques to explicitly use the multi-level

structure of the cache-oblivious model. Previous lower bound proofs for range reporting

problems in the I/O model [28, 73, 85, 110] involved the construction of a hard point set

together with a set of many “sufficiently different” queries of the same size. Combined with

counting arguments, this ensured that the point set cannot be represented in linear space

while guaranteeing a certain proximity (on disk) of the points reported by each query. The

problems we study in this chapter allow linear-space or O(N log∗N)-space solutions in the

I/O model [2, 7, 28], as well as linear-space cache-oblivious solutions for queries of any fixed

output size [9, 13, 25]. This means the previous techniques are ineffective for our purposes.

In order to force a given point set to be hard for the problems we study, we construct many

queries of different sizes. Combined with the multi-level nature of the cache-oblivious model,

this allows us to create many incompatible proximity requirements for subsets of the point

set and, thus, force duplication. It should be noted here that our construction of a hard

point set (as well as the proof of Lemma 5.5) is inspired by a similar construction used by

Afshani and Chan to prove a lower bound on the shallow partition theorem [7].

The results of this chapter have been published in [8].

5.1 A Multi-Level Indexability Model

The results in this chapter are proved in a multi-level extension of the indexability model

of [73]. In particular, apart from a change of notation, the model of [73] is the same as our

model restricted to one block size. This model allows us to prove lower bounds for (cache-

oblivious and cache-aware) data structures for multi-level memory hierarchies without any

restrictions of the set of supported internal-memory operations. The two main concepts

62

of the model are those of workload, which captures a particular combination of problem

instance and memory hierarchy, and indexing scheme, which provides an abstraction of a

data structure. Next we define these two concepts, as well as the size and efficiency of an

indexing scheme, and discuss their relationships to the data structure concepts they capture.

A workload is a triple W = (S,Q,B), where S is a set, Q is a set of subsets of S, and

B is a set of integers. We call S the base set, Q the query set, and the elements of B block

sizes. Intuitively, S is the set of elements to be stored in a data structure, every element of Q

contains the set of elements in S to be reported by a particular query, and the elements of B
are the cache block sizes of a particular memory hierarchy. We call a workload realizable as

a range reporting problem of a given type if the elements in S can be identified with points

in R
n so that, for every set q ∈ Q, there exists a query range of the given type containing

exactly those points in S that correspond to the elements of q.

A block cover of S with block size B (short: B-cover) is a set of subsets (blocks) of S,

each of size at most B and such that their union is S. An indexing scheme for the workload

W = (S,Q,B) is a set of block covers of S, one for each block size in B. Intuitively, an

indexing scheme provides an abstraction of a data structure, as every layout of a concrete

data structure D in external memory can place only Bi elements of S into each cache block

of size Bi ∈ B. We refer to the indexing scheme representing this placement of elements into

cache blocks as ID.

For a workload W = (S,Q,B) and an indexing scheme I for W, we say that a Bi-cover

Ci in I is f -efficient, for a function f(·, ·), if every query q ∈ Q can be covered with at

most f(logBi
N,K/Bi) blocks in Ci, where N := |S| and K := |q|. The indexing scheme

I is f -efficient if all its block covers are f -efficient. Applied to the indexing scheme ID
corresponding to a data structure D, this captures the number of cache blocks at each level

of the memory hierarchy that need to be retrieved from D to answer any query q ∈ Q. As

in [73], the cost of locating these blocks is ignored. In particular, a lower bound proved in

this model is independent of the set of supported internal-memory operations.

For a block cover C of S, the multiplicity μC(x) of an element x ∈ S is the number of

blocks in C that contain x. For an indexing scheme I for a workload W = (S,Q,B), the
multiplicity of x is defined as μI(x) = maxCi μCi(x), where Ci ranges over all block covers in

I. The size of I is
∑

x∈S μI(x). For the indexing scheme ID representing a data structure

D and a Bi-cover Ci in ID, every element x ∈ S is stored in μCi(x) cache blocks of size Bi

63

in D. Hence, the multiplicity μCi(x) of an element x ∈ S is a lower bound on the number of

times x is stored in D. Since this is true for every block cover in ID, μID(x) is also a lower

bound on the number of times x is stored in D, and the size of ID is a lower bound on the

size of D. Thus, given a workload W = (S,Q,B), it suffices to prove a lower bound on the

size of any f -efficient indexing scheme for W in order to obtain a lower bound on the size

of any data structure that achieves a query cost of f(logB N,K/B) block transfers for all

queries in Q and all block sizes B ∈ B.
The workloads W = (S,Q,B) we construct in this chapter have a large number of block

sizes in B. Thus, our lower bounds apply to cache-aware data structures with query cost

bounded by f(logB N,K/B) block transfers only under the assumption of a very deep mem-

ory hierarchy. A cache-oblivious data structure, on the other hand, is independent of the

specific memory hierarchy. If it achieves a query bound of f(logB N,K/B) block transfers

for an arbitrary two-level hierarchy with block size B, it achieves this query bound at all

levels of a multi-level hierarchy with the block sizes in B. Thus, any lower bound we prove on

the size of an f -efficient indexing scheme forW applies to any cache-oblivious data structure

with a query cost of f(logB N,K/B) block transfers.

5.2 A Lower Bound for Three-Sided Range Reporting

In this section, we present the main result of our chapter: a lower bound on the space used

by any deterministic cache-oblivious data structure that supports 3-sided range reporting

queries using at most f(logB N,K/B) block transfers in the worst case, as stated in Theo-

rem 5.1. The lower bounds for 3-d dominance reporting and 3-d halfspace range reporting are

obtained from this result using reductions and are discussed in Section 5.4. The same section

discusses how to extend the lower bound to Las-Vegas-type randomized data structures.

Theorem 5.1. Let f(·, ·) be a monotonically increasing function, and 0 < δ ≤ 1/2 a con-

stant. Any cache-oblivious data structure capable of answering 3-sided range reporting queries

using at most f(logB N,K/B) block transfers in the worst case, for every block size B ≤ N2δ,

must use Ω(N(log logN)ε) space, where ε := 1/f(δ−1, 1).

We prove Theorem 5.1 by constructing a workload W realizable as a 3-sided range re-

porting problem such that any f -efficient indexing scheme for W has size Ω(N(log logN)ε);

see Lemma 5.2 below. As discussed in Section 5.1, this implies Theorem 5.1. However, while

64

an indexing scheme and its efficiency are defined without reference to cache sizes, a data

structure can take advantage of the amount of available cache to speed up its queries. Our

proof of Lemma 5.2 considers block sizes between N δ and N2δ. Thus, a sufficiently strong

tall cache assumption (M = ω
(
B1/δ

)
, for all 0 < δ ≤ 1/2) implies that the entire point

set fits in cache, and the queries in Q can be answered without any block transfers after

loading S into cache. This means that Theorem 5.1 holds only under the assumption that

M is polynomial in B. In practice, this is a reasonable assumption. In the remainder of this

section, we prove the following lemma.

Lemma 5.2. Let f(·, ·) be a monotonically increasing function, and 0 < δ ≤ 1/2 a constant.

For every integer N > 0, there exists a workload W = (S,Q,B) realizable as a 3-sided range

reporting problem, with |S| = N and Bi ≤ N2δ, for all Bi ∈ B, and such that any f -efficient

indexing scheme for W has size Ω(N(log logN)ε), where ε := 1/f(δ−1, 1).

First we show that, to prove Lemma 5.2, it suffices to focus on the case δ = 1/2, that is,

to allow arbitrarily large block sizes Bi ≤ N in B.

Lemma 5.3. If Lemma 5.2 holds for δ = 1/2, it holds for any 0 < δ ≤ 1/2.

Proof. Consider a particular choice of N , f , and δ in Lemma 5.2, and let N ′ := N2δ and

f ′(x, y) := f(x/(2δ), y). Since we assume that Lemma 5.2 holds for δ = 1/2, there exist a

workload W ′ = (S ′, Q′,B) realizable as a 3-sided range reporting problem, with |S ′| = N ′

and Bi ≤ N ′, for all Bi ∈ B, and such that any f ′-efficient indexing scheme for W ′ has size

Ω(N ′(log logN ′)ε), where ε := 1/f ′(2, 1) = 1/f(δ−1, 1).

Now we construct a workload W = (S,Q,B) with |S| = N as follows. Let m := N/N ′.

For 1 ≤ i ≤ m, we define sets Si := {(x, i) | x ∈ S ′} and Qi := {{(x, i) | x ∈ q} | q ∈ Q′}.
The sets S and Q are defined as S := S1 ∪S2 ∪ · · · ∪Sm and Q := Q1 ∪Q2 ∪ · · · ∪Qm. Since

W ′ is realizable as a 3-sided range reporting problem, so is W: it suffices to place m copies

of the point set representing S ′ side by side.

The workload Wi = (Si, Qi,B) is the same as W ′ after renaming every element x ∈ S ′

to (x, i). Thus, every f ′-efficient indexing scheme for Wi has size Ω(N ′(log logN ′)ε). Now

observe that f ′(logB N
′, K/B) = f((logB(N

2δ))/(2δ), K/B) = f(logB N,K/B), that is, the

restriction of every f -efficient indexing scheme for W to the elements of Si is an f
′-efficient

indexing scheme for Wi. This implies that every f -efficient indexing scheme for W has size

Ω(mN ′(log logN ′)ε) = Ω(N(log logN)ε).

65

By Lemma 5.3, it suffices to prove Lemma 5.2 for arbitrarily large block sizes. For a

given size N of the set S, we construct the sets S, Q, and B in the workload W = (S,Q,B)
recursively. Since the workload is to be realizable as a 3-sided range reporting problem, we

do not distinguish between the elements in S and the points in R
2 representing them, nor

between the queries in Q and their corresponding 3-sided query ranges.

The recursive construction of the point set S is illustrated in Figure 5.1(a). At the first

level of recursion, we divide the plane into a t× 2t−1-grid T , for a parameter t to be chosen

later, and place different numbers of points into its cells. The points within each cell are

arranged by dividing the cell into a t× 2t−1-grid of subcells and distributing the points over

those subcells. This process continues recursively as long as each cell of the current subgrid

contains more than
√
N points.

The construction of the query set Q follows the recursive construction of the point set S.

Each query at the top level comprises a union of cells of T chosen so that each top-level query

outputs roughly the same number of points. For each grid cell, we construct a set of queries

over the subgrid in this cell in a similar fashion. We repeat this construction recursively

until we reach the last level in the recursive construction of the point set S.

The main idea now is to prove that, by choosing the top-level queries in Q appropriately

and including an appropriate block size in B, we can ensure that, for every f -efficient indexing

scheme I for W, there exists a grid cell in T at least half of whose points have multiplicity

Ω(tε) in I. For each subgrid at the next level of recursion, we add another block size to B
that ensures that this subgrid has a cell at least half of whose points have multiplicity Ω(tε),

and so on for every level of recursion. By making the recursion sufficiently deep, we achieve

that at least a constant fraction of the points have multiplicity Ω(tε). The required recursion

depth depends on t, and the largest value of t that allows for a sufficient recursion depth is

t ≈ log logN (see remark at the end of Section 5.2.1). This gives the lower bound stated in

Lemma 5.2.

We divide the details of our proof into two parts. In Section 5.2.1, we discuss the con-

struction of the point set S and of the query set Q more precisely and prove that Lemma 5.2

follows if we can force at least half the points in one cell of each of the subgrids in the

recursive construction to have the claimed multiplicity. In Section 5.2.2, we discuss how to

achieve this duplication of points for each subgrid by including appropriate block sizes in B.

66

2t−12t−1

t

t

t

2t−1

t

t

(a)

2t−1

(b)

2t−1

(c)

Figure 5.1: (a) The recursive construction of the point set. Fat solid lines bound grid cells,
dotted lines separate subcolumns. (b) The set of queries in QT . Only one query is shown
for each level of QT . (c) Queries at recursive levels output only points from their subgrids.

5.2.1 The Point Set and Query Set

To define the point set S, we construct a t× 2t−1-grid T , for a parameter t := (log logN)/4.

This parameter remains fixed throughout the recursive construction. We refer to the grid

cell in row i and column j as Tij, for 1 ≤ i ≤ t and 1 ≤ j ≤ 2t−1. Every column of T is

divided into t subcolumns, which also splits each cell Tij into t subcells Tijk, for 1 ≤ k ≤ t.

We now place 2i−1N1 points into each cell in row i, where N1 := N/(22t−1 − 2t−1). The

points in cell Tij are placed into subcell Tiji. This is illustrated in Figure 5.1(a). Observe

that this ensures that each column of the grid receives (2t − 1)N1 points. Since there are

2t−1 columns, the total number of points in the grid is (22t−1 − 2t−1)N1 = N . The layout

of the points within each cell is now obtained by applying the same procedure recursively

to the set of points assigned to each cell. The recursion stops when the smallest cell in the

current subgrid receives at most
√
N points.

The query set Q is constructed by following the recursive construction of S. For the

top-level grid T , we construct a set QT of queries consisting of t levels. For 1 ≤ i ≤ t,

level i contains 2i−1 queries, the kth of which is the union of all grid cells Ti′j′ satisfying

0 < i′ ≤ i and (k − 1)2t−i < j′ ≤ k2t−i; see Figure 5.1(b). It is easily verified that every

query in QT contains between 2t−1N1 and (2t − 1)N1 points. Note that, even though we

specify these queries as unions of grid cells, that is, effectively, as 4-sided queries, we can

move their top boundaries to infinity without changing the set of points they report. To

complete the construction of the query set Q, we apply the same construction recursively to

each cell, adding a query set QT ′ to Q, for each subgrid T ′ in the recursive construction of

67

S. Again, we can move the top boundary of each query in QT ′ to infinity to make it 3-sided

without changing the set of points it reports. Indeed, this clearly does not change the set

of points from T ′ reported by the query, and the staggered layout of the points in each grid

column into x-disjoint subcolumns ensures that there are no points in S that belong to the

x-range of T ′ but are outside its y-range. This is illustrated in Figure 5.1(c).

Now letW = (S,Q,B) be a workload with S and Q as just defined. The following lemma

provides the framework we use to prove Lemma 5.2.

Lemma 5.4. Let I be an arbitrary indexing scheme for W and assume that every subgrid

T ′ in the construction of S has a cell at least half of whose points have multiplicity Ω(m) in

I. Then the size of I is Ω(mN).

Proof. We construct a set of disjoint cells such that at least half of the points in each cell

have multiplicity Ω(m) and the total number of points in these cells is Ω(N). This proves

that I has size Ω(mN).

To construct this set of cells, we apply the following recursive selection process, starting

with T ′ = T . By the assumption of the lemma, the grid T ′ has a cell C ′ at least half of

whose points have multiplicity Ω(m). We add C ′ to the set of selected cells and recurse on

the subgrids in each of the remaining cells of T ′ unless the current grid T ′ is already at the

lowest level of recursion in the construction of the point set S.

The set of cells selected in this fashion is easily seen to be disjoint, since we recursively

select cells only from subgrids in cells not selected at the current level. We call a point

selected if it is contained in one of the selected cells. We have to show that there are Ω(N)

selected points in T .

For a grid T ′ containing N ′ points, the construction of S implies that each cell contains at

least N ′/(22t−1 − 2t−1) > N ′/4t points. This allows us to show that at most N ′(1− 4−t)r
′+1

points from T ′ are not selected by the recursive selection process, where r′ denotes the

minimum recursion depth inside the cells of T ′. Indeed, if r′ = 0, exactly the points in C ′

are selected, leaving at most N ′′ = N ′(1− 4−t) points in T ′ unselected. If r′ > 0, we observe

that, by induction, at most N ′′(1 − 4−t)r
′
= N ′(1 − 4−t)r

′+1 points in the cells of T ′ other

than C ′ are not selected, while all points in C ′ are selected.

Since the recursion stops when the smallest cell of the current subgrid contains at most
√
N points and, as just argued, every cell of a grid T ′ containing N ′ points contains at least

68

N ′/4t points, the recursion depth r inside each cell of the top-level grid T is at least

log4t
N√
N

=
(logN)/2

2t
=

logN

log logN
>
√
logN,

for N sufficiently large. Hence, the number of points in T that are not selected is at most

N(1− 4−t)r+1 ≤ Ne−(r+1)/4t ≤ N/e

because t = (log logN)/4. Therefore, at least (1 − 1/e)N = Ω(N) points in T are selected.

This completes the proof.

The proof of Lemma 5.4 is the reason we cannot choose a value of t = ω(log logN). To

bound the number of unselected points by N/e, we need that r+1 ≥ 4t. Since the recursion

depth r is at most logarithmic in N , we cannot have t = ω(log logN).

5.2.2 Forcing Duplication in at Least One Cell

In this section, we prove that there exists a block size BT ′, for every subgrid T ′ in the

recursive construction of S, such that every f -efficient BT ′-covering C of S has the property

that there exists a cell of T ′ at least half of whose points have multiplicity Ω(tε) in C. By

including the block size BT ′ in B, for every subgrid T ′ in the recursive construction of S,

we obtain that every f -efficient indexing scheme I for the workload W = (S,Q,B) satisfies
Lemma 5.4 with m = tε. Lemma 5.2 follows.

The argument is the same for all subgrids T ′. Therefore, we focus on the top-level grid T

and its corresponding query set QT in the remainder of this section. Recall that every query

inQT contains between N12
t−1 andN1(2

t−1) points. We choose a block size BT := (2t−1)N1.

Then every query q ∈ QT satisfies |q| ≤ BT . Furthermore, BT ≥ N1 ≥
√
N and, therefore,

logBT
N ≤ 2. Thus, by the monotonicity of f(·, ·), every f -efficient BT -covering C of S covers

every query in QT with at most α := f(2, 1) blocks.

In the remainder of this section, we fix an arbitrary f -efficient BT -covering C of S. We

can represent every block in C by a unique colour and assign corresponding colour sets to

the points in S and queries in QT . The colour set C(p) of a point p comprises the colours of

those blocks in C that contain p. Every query q ∈ QT can be covered using at most α blocks

in C; we fix such a set of α blocks and define C(q) to be the set of their colours. Our goal

can now be rephrased as showing that there exists a cell in T at least half of whose points

69

have Ω(tε) colours, for ε := 1/α. We do this in two steps. In Lemma 5.5, we show that there

exists a set of s := Ω(t/ logα) cells in the same column of T such that half of the points in

each cell are “exposed” in a sense defined below. Then we show that there exists at least

one cell among these s cells such that every exposed point in this cell has at least sε = Ω(tε)

colours.2

Consider a subset Z of cells of T . Each cell c ∈ Z has a corresponding query qc ∈ QT

that contains the points in c but not the points in the cell of T immediately below c. Let

QZ be the set of queries corresponding to the cells in Z. We say a query q covers a point

p if C(p) ∩ C(q) �= ∅, that is, p is contained in one of the α blocks of C chosen to cover

q. A point p in the ith row of T is Z-exposed if no query qc ∈ QZ that belongs to a level

j < i in QT covers p. A cell of T is Z-exposed if at least half its points are Z-exposed. An

observation we use in the proof of the following lemma is that a Z-exposed point or cell is

also Z ′-exposed, for every subset Z ′ ⊆ Z.

Lemma 5.5. There exists a column in T containing a set Z of Ω(t/ logα) Z-exposed cells.

Proof. Let h be a parameter to be chosen later, and consider the subgrid Th of T consisting

of the rows with numbers 1, h + 1, 2h + 1, As each cell in row ih + 1 contains N12
ih

points, and there are 2t−1 cells in each row, the total number of points in row ih + 1 is

Xi := N12
t+ih−1.

Next we bound the number of points in row ih + 1 covered by queries at levels 1, h +

1, . . . , (i− 1)h + 1 of the query set QT . Level jh + 1 contains 2jh queries. Hence, the total

number of queries at levels 1, h+ 1, . . . , (i− 1)h + 1 is
∑i−1

j=0 2
jh < 2(i−1)h+1. The colour set

of each such query contains at most α colours, and there are at most B = N1(2
t − 1) points

with the same colour. Hence, at most Yi := αN12
t+(i−1)h+1 = (4α/2h)Xi points have a colour

belonging to the colour set of at least one of these queries and, thus, can be covered by these

queries.

Now we choose h = �log(16α)�. Then Yi ≤ Xi/4. This implies that at least half of the

cells in row ih+1 are Th-exposed. Since this applies to all rows in Th, there exists a column

in Th at least half of whose cells are Th-exposed. Let Z be the set of Th-exposed cells in this

column. Since Th has �t/h� = Ω(t/ logα) rows, Z contains Ω(t/ logα) cells, all of which are

Z-exposed because Z ⊆ Th.

2Since α = 1/ε, we have sε = Ω((t/ log(1/ε))ε), and it is not hard to show that (log(1/ε))−ε > 1/2, for
all 0 < ε < 1.

70

By Lemma 5.5, there exists a sequence Z = 〈c1, c2, . . . , cs〉 of s = Ω(t/ logα) Z-exposed

cells in some column of T . Now, for all 1 ≤ i ≤ s, we choose pi to be a Z-exposed point in

cell ci with the minimum number of colours. It suffices to show that there exists an index

i such that pi has at least s
ε colours, as this implies that all Z-exposed points in ci have at

least this many colours and at least half the points in ci are Z-exposed. To prove this, we

consider the point-query sequence 〈(p1, q1), (p2, q2), . . . , (ps, qs)〉, where pi is chosen from the

set of Z-exposed points in cell ci as just discussed, and qi := qci, for all 1 ≤ i ≤ s. The

sequence 〈(p1, q1), (p2, q2), . . . , (ps, qs)〉 has the following three properties.

(i) For 1 ≤ i ≤ j ≤ s, C(pi) ∩ C(qj) �= ∅ (because pi ∈ qj).

(ii) For 1 ≤ j < i ≤ s, C(pi) ∩ C(qj) = ∅ (because pi is exposed).

(iii) For 1 ≤ j ≤ s, |C(qj)| ≤ α.

We prove that any assignment of colour sets to the points and queries in

〈(p1, q1), (p2, q2), . . . , (ps, qs)〉 that satisfies these three properties also has the property that

|C(pi)| ≥ s1/α = sε, for some 1 ≤ i ≤ s. We use the following terminology and notation.

We call an assignment of colour sets to the points and queries in the sequence

〈(p1, q1), (p2, q2), . . . , (ps, qs)〉 a colouring. The colouring is proper if it satisfies conditions (i)

and (ii). The colouring is an (α, β)-colouring if each query is assigned at most α colours (con-

dition (iii)) and each point is assigned at most β colours. We say that a point-query sequence

〈(p1, q1), (p2, q2), . . . , (ps, qs)〉 is (α, β)-colourable if it has a proper (α, β)-colouring. Finally,

let L(α, β) be the maximum length s such that the sequence 〈(p1, q1), (p2, q2), . . . , (ps, qs)〉
is (α, β)-colourable, and �(α, β) := L(α, β − 1) + 1 the minimum length s such that the

sequence 〈(p1, q1), (p2, q2), . . . , (ps, qs)〉 is not (α, β − 1)-colourable. With this notation, our

goal is to show that �(α, β) ≤ βα because it implies that �(α, s1/α) ≤ s, that is, a colouring of

a point-query sequence 〈(p1, q1), (p2, q2), . . . , (ps, qs)〉 of length s that satisfies conditions (i)–
(iii) assigns at least s1/α points to at least one point pi.

Lemma 5.6. For α ≥ 0 and β ≥ 1, �(α, β) =
(
α+β−1

α

)
≤ βα.

Proof. First we prove that �(α, β) satisfies the recurrence relation

�(α, β) =

⎧⎨
⎩1 α = 0 or β = 1

�(α, β − 1) + �(α− 1, β) α > 0 and β > 1.
(5.7)

71

The base case (α = 0 or β = 1) is fairly obvious: a point-query sequence of length 1 is neither

(0, β)-colourable, for any β, nor (α, 0)-colourable, for any α, while a point-query sequence of

length 0 is (α, β)-colourable, for any α and β.

For the inductive step (α > 0 and β > 1), we prove that L(α, β) = �(α, β) +L(α− 1, β).

This implies that

�(α, β) = L(α, β − 1) + 1

= �(α, β − 1) + L(α− 1, β − 1) + 1

= �(α, β − 1) + (�(α− 1, β)− 1) + 1

= �(α, β − 1) + �(α− 1, β).

First we prove that L(α, β) ≤ �(α, β)+L(α−1, β). To this end, we consider a point-query
sequence 〈(p1, q1), (p2, q2), . . . , (ps, qs)〉, where s := L(α, β). Since L(α − 1, β) ≥ 0, for all α

and β, s ≤ �(α, β) would immediately imply s ≤ �(α, β)+L(α− 1, β). Thus, we can assume

that s > �(α, β). Let s′ := �(α, β).

Now let C be a proper (α, β)-colouring of 〈(p1, q1), (p2, q2), . . . , (ps, qs)〉. Since the re-

striction of the C to the point-query sequence 〈(p1, q1), (p2, q2), . . . , (ps′, qs′)〉 is a proper

(α, β)-colouring of this sequence, the definition of �(α, β) implies that there exists a point

pk, 1 ≤ k ≤ s′, such that |C(pk)| = β and C(pk) ⊆
⋃s′

j=1C(qj). We use this to construct

a proper (α− 1, β)-colouring C ′ of the subsequence 〈(ps′+1, qs′+1), (ps′+2, qs′+2), . . . , (ps, qs)〉,
thereby showing that its length s − s′ is at most L(α − 1, β), which implies that L(α, β) =

s = s′ + (s− s′) ≤ �(α, β) + L(α− 1, β).

To obtain such a colouring C ′, we define C ′(pi) = C(pi) and C ′(qi) = C(qi) \ C(pk),
for all s′ < i ≤ s. By property (i) of C, C(qi) ∩ C(pk) �= ∅, for s′ < i ≤ s and, hence,

|C ′(qi)| < |C(qi)| ≤ α, while |C ′(pi)| = |C(pi)| ≤ β. Thus, C ′ is an (α − 1, β)-colouring of

the sequence 〈(ps′+1, qs′+1), (ps′+2, qs′+2), . . . , (ps, qs)〉. Next we show that C ′ is proper.

First observe that, for s′ < j < i ≤ s, C ′(pi)∩C ′(qj) ⊆ C(pi)∩C(qj) = ∅, by property (ii)

of C. Hence, C ′ satisfies property (ii).

For s′ < i ≤ j ≤ s, we have C(pi) ∩ C(pk) ⊆ C(pi) ∩
⋃s′

h=1C(qh) = ∅, by property (ii)

of C. Hence, C ′(pi) ∩ C ′(qj) = C(pi) ∩ (C(qj) \ C(pk)) = C(pi) ∩ C(qj) �= ∅, by property (i)

of C. Thus, C ′ satisfies property (i). This concludes the proof of the inequality L(α, β) ≤
�(α, β) + L(α− 1, β).

Next we prove that a point-query sequence 〈(p1, q1), (p2, q2), . . . , (ps, qs)〉 of length s :=

72

�(α, β) + L(α − 1, β) = L(α, β − 1) + L(α − 1, β) + 1 is (α, β)-colourable. This proves that

L(α, β) ≥ �(α, β) + L(α− 1, β).

We divide the sequence into three subsequences

〈(p1, q1), (p2, q2), . . . , (ps1, qs1)〉 ,

〈(ps1+1, qs1+1)〉 , and

〈(ps1+2, qs1+2), (ps1+3, qs1+3), . . . , (ps, qs)〉 ,

where s1 := L(α, β − 1) and s3 := s − s1 − 1 = L(α − 1, β). By the choice of s1 and s3,

the sequence 〈(p1, q1), (p2, q2), . . . , (ps1, qs1)〉 has a proper (α, β − 1)-colouring C1, and the

sequence 〈(ps1+2, qs1+2), (ps1+3, qs1+3), . . . , (ps, qs)〉 has a proper (α − 1, β)-colouring C3. We

can assume that the two colourings use different colours. We define a colouring C of the

sequence 〈(p1, q1), (p2, q2), . . . , (ps, qs)〉 as

C(pi) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
C1(pi) ∪ {γ} 1 ≤ i ≤ s1

{γ} i = s1 + 1

C3(pi) s1 + 2 ≤ i ≤ s

and

C(qi) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
C1(qi) 1 ≤ i ≤ s1

{γ} i = s1 + 1

C3(qi) ∪ {γ} s1 + 2 ≤ i ≤ s

,

where γ is a new colour not used by either C1 or C3. Since C1 is an (α, β − 1)-colouring of

the sequence

〈(p1, q1), (p2, q2), . . . , (ps1, qs1)〉

and C3 is an (α− 1, β)-colouring of

〈(ps1+2, qs1+2), (ps1+3, qs1+3), . . . , (ps, qs)〉 ,

C is an (α, β)-colouring of

〈(p1, q1), (p2, q2), . . . , (ps, qs)〉 .

Next we show that C is proper.

73

First consider property (i). For a point pi and a query qj with 1 ≤ i ≤ j ≤ s, we

distinguish three cases. If j ≤ s1, then C(pi) ⊃ C1(pi) and C(qj) = C1(qj). Hence, since

C1(pi) ∩ C1(qj) �= ∅ (by property (i) of the colouring C1), we have C(pi) ∩ C(qj) �= ∅. If

i ≤ s1 + 1 ≤ j, we have γ ∈ C(pi) ∩ C(qj). If s1 + 1 < i, then C(pi) = C3(pi) and

C(qj) ⊃ C3(qj). Hence, since C3(pi) ∩ C3(qj) �= ∅ (by property (i) of the colouring C3), we

have C(pi) ∩ C(qj) �= ∅.
Next we verify property (ii). Consider a point pi and a query qj with 1 ≤ j < i ≤ s.

If i ≤ s1, we have C(pi) ∩ C(qj) = ∅ because C1(pi) ∩ C(qj) = C1(pi) ∩ C1(qj) = ∅ (by

property (ii) of the colouring C1) and γ �∈ C(qj). If j ≤ s1 < i, we have C(qj) ∩ C(pi) = ∅
because γ �∈ C(qj) and colourings C1 and C3 use different colours. Finally, if s1 + 1 ≤ j,

then C(pi)∩C(qj) = ∅ because C(pi)∩C3(qj) = C3(pi)∩C3(qj) = ∅ (by property (ii) of the

colouring C3) and γ �∈ C(pi).
This shows that C is a proper (α, β)-colouring of the sequence 〈(p1, q1), (p2, q2), . . . , (ps, qs)〉

and, hence, that �(α, β) + L(α− 1, β) = s ≤ L(α, β).

Having established the correctness of (5.7), it remains to derive a closed form for �(α, β).

We do this using induction. For the base case, we have �(0, β) = 1 =
(
β−1
0

)
and �(α, 1) =

1 =
(
α
α

)
. For the inductive step, we obtain

�(α, β) = �(α, β − 1) + �(α− 1, β)

=

(
α + β − 2

α

)
+

(
α + β − 2

α− 1

)

=

(
α + β − 1

α

)
.

This finishes the proof.

To summarize, Lemma 5.2 is established by invoking Lemma 5.5 to prove that there

exists a set Z of s = Ω(t/ logα) Z-exposed cells in T . Using Lemma 5.6, we show that the

Z-exposed point with the minimum number of colours in at least one of these cells has at

least sε = Ω(tε) colours, for ε = 1/α and α = f(2, 1). Thus, every Z-exposed point in this cell

has at least Ω(tε) colours. Since at least half the points in a Z-exposed cell are Z-exposed,

at least half the points in this cell have Ω(tε) colours. The same argument can be applied

to every subgrid in the recursive construction of the point set S, which implies that every

74

f -efficient indexing scheme for the workload W satisfies Lemma 5.4 with m = Ω(tε), which

proves Lemma 5.2 for δ = 1/2. By Lemma 5.3, this implies Lemma 5.2 for any 0 < δ ≤ 1/2.

5.3 Tightness of the Lower Bound

In this section, we show that the lower bound of Lemma 5.2 is tight for the workload

W = (S,Q,B) we constructed in the previous section, up to the dependence of ε on f(·, ·).

Theorem 5.8. Let f(·, ·) be a monotonically increasing function such that f(x, y) ≥ �y�, and
let α := f(2, 1). There exists a g-efficient indexing scheme I forW of size O

(
N(log logN)1/α

)
,

for some function g(·, ·) that satisfies g(x, y) = O(f(x, y)).

The condition that f(x, y) ≥ �y� is not a restriction because every function f(·, ·) such
that there exists an f -efficient indexing scheme for W satisfies this condition. To prove

Theorem 5.8, we define a linear layout of the points in S that stores each point O
(
t1/α
)
times

and such that every query q ∈ Q can be decomposed into O(α + 1) contiguous subsequences

of this linear layout. By partitioning the layout into blocks of size B, for any B, we obtain a

B-cover of S that can cover every query in Q with O(α + 1 +K/B) = O(f(logB N,K/B))

blocks because α = f(2, 1) = O(1) and f(logB N,K/B) ≥ �K/B�. In particular, the Bi-

covers obtained in this fashion, for all Bi ∈ B, form a g-efficient indexing scheme of size

O
(
Nt1/α

)
= O

(
N(log logN)1/α

)
for W, where g(x, y) = O(f(x, y)).

The layout. To construct the layout of the points in S, let β be the smallest integer such

that �(α, β + 1) ≥ t; that is, β = O
(
t1/α
)
= O

(
(log logN)1/α

)
. To simplify the argument,

we can assume that �(α, β + 1) = t, which we can achieve by padding each grid with empty

rows at the bottom. Our layout consists of β copies of S, which immediately implies that

the layout uses Nβ = O
(
N(log logN)1/α

)
space.

In the first copy, we divide the rows of the top-level grid T into α+1 groupsG0, G1, . . . , Gα,

ordered from top to bottom. The size of group Gi is �(α− i, β). The cells in each group are

laid out in column-major order. This is illustrated in Figure 5.2(a). Note that the groups

G0, G1, . . . , Gα cover all the rows of T because t = �(α, β + 1) =
∑α

i=0 �(i, β); the second

equality follows from the classic equality
(
n+1
m+1

)
=
∑n

i=0

(
i
m

)
. To complete the layout of

the points in the first copy of S, we have to determine the order in which to arrange the

points in each cell of T . Since each cell of T is divided recursively into t × 2t−1 subgrids,

75

Copy 1 Copy 2

G1

G0

G2

G3

G0,0

G0,1

G0,2

G1,0

G1,1

G0,3

G1,2

G2,0

G2,1

G3,0

Copy β

(a)

Copy 1 Copy 2S

(b)

Figure 5.2: (a) An O
(
N(log logN)1/α

)
-space layout for the point set S (layout shown for

α = 3). (b) Answering a query on the first two levels of the layout. The dark portion of the
query in each copy of S forms a contiguous subsequence of the column-major layout of the
respective group. The light portion is answered using subsequent copies of S.

we can divide the rows of each such subgrid T ′ into groups G′
0, G

′
1, . . . , G

′
α in the same

fashion as just described and lay out the cells in each group in column-major order. This

continues recursively until we reach subgrids T ′ whose cells have not been divided further

in the construction of the point set S. For each such subgrid, we arrange the points in each

cell in an arbitrary order.

For 1 < k ≤ β, the layout of the points in the kth copy of S is obtained by dividing

the groups used to define the (k − 1)st copy into subgroups and laying out the cells in each

subgroup in column-major order. In particular, a group G in the (k − 1)st copy consisting

of �(α′, β − k + 2) rows is divided into α′ + 1 subgroups G0, G1, . . . , Gα′ , with Gi covering

�(i, β − k + 1) rows. This is illustrated in Figure 5.2(a) for the second copy of S. Similar to

the argument for the first copy of S, we have �(α′, β − k+ 2) =
∑α′

i=0 �(i, β − k+ 1), that is,

the subgroups cover the rows of G exactly. To determine the order in which to lay out the

points in each cell of T , we apply the same refinement process to the groups in each subgrid

T ′ in the recursive construction of S.

By continuing in this fashion until k = β, we obtain that every group in the βth copy

of S consists of �(α′, 1) = 1 rows, for some α′. Hence, the βth copy of S stores the cells in

each row of T (and of any subgrid T ′) in x-sorted order. This is illustrated on the right of

Figure 5.2(a).

76

Answering queries. Since the layout arranges the cells of each subgrid T ′ in the recursive

construction of S in the same fashion as the cells of T , it suffices to prove that any query

q ∈ QT can be partitioned into at most α + 1 contiguous subsequences in the layout.

Assume the query q is at the ith level of QT , that is, its bottom boundary coincides

with the bottom boundary of the ith row of T . If this row is the bottom-most row of some

group Gj1 in the first copy of S, observe that the points in q that belong to any group Gj ,

0 ≤ j ≤ j1, are stored contiguously in the first copy of S. Hence, the points in q are divided

into j1 + 1 contiguous subsequences.

If row i belongs to group Gj1 but is not its bottom row, we use the first copy of S to

report all points of q that belong to groups G0, G1, . . . , Gj1−1 and use subsequent copies of

S to report all points in q that belong to Gj1. We say that group Gj1 is the partial group of

q in the first copy of S. By the arguments in the previous paragraph, the points of q that

belong to groups G0, G1, . . . , Gj1−1 form j1 contiguous subsequences in the first copy of S.

To see how subsequent copies of S are used to report the remaining points of q, consider

the kth copy and let G be the partial group of q in the (k − 1)st copy. This group has

�(α′, β − k + 2) rows, for some α′. Then we consider the subgroup Gjk of G containing row

i. As for the first copy of S, if row i is the bottom-most row of group Gjk , we use groups

G0, G1, . . . , Gjk to report all points in G that belong to q. These points are stored in jk + 1

contiguous subsequences of the kth copy of S. If row i is not the bottom-most row of group

Gjk , then Gjk is once again a partial group of q, and we report only those points in q that

belong to G0, G1, . . . , Gjk−1 using the kth copy of S, and use subsequent copies of S to report

the points in q that belong to Gjk . Figure 5.2(b) illustrates this recursive partitioning of

query q for the first two copies of S. Note that this procedure terminates at the latest when

reaching the last copy of S because this copy stores all rows in x-sorted order, that is, the

group Gjβ cannot be partial.

It remains to bound the number of contiguous subsequences into which the points of q

are divided by this procedure. If the procedure terminates after inspecting the first s copies

of S, the points in q are divided into 1 +
∑s

k=1 jk contiguous subsequences, jk in the kth

copy of S, for 1 ≤ k < s, and js + 1 in the sth copy. For all 1 < k ≤ s, if the partial

group G of q in the (k − 1)st copy of S has �(α′, β − i + 2) rows, then jk ≤ α′ and Gjk has

�(α′− jk, β− i+1) rows. Since j1 ≤ α, this implies that 1 +
∑s

k=1 jk ≤ α+1 using a simple

inductive argument, that is, each query q ∈ Q is partitioned into at most α + 1 contiguous

77

subsequences of the layout.

5.4 Further Lower Bounds

In this section, we show that the proof technique from Section 5.2 can be used to obtain

the same lower bound as in Theorem 5.1 for other range searching problems and to obtain a

lower bound on the space consumption of cache-oblivious persistent B-trees with optimal 1-d

range queries. The lower bounds in Section 5.4.1, for 3-d dominance reporting and persistent

B-trees, are obtained using direct reductions from 3-sided range reporting. In Section 5.4.2,

we prove the same lower bound for 3-d halfspace range reporting, but this requires more care,

as there is no direct reduction from 3-sided range reporting to 3-d halfspace range reporting.

Finally, in Section 5.4.3, we show that all lower bounds proved in Sections 5.2, 5.4.1, and 5.4.2

also hold for the expected size of Las-Vegas-type data structures that achieve an expected

query bound of at most f(logB N,K/B) block transfers.

5.4.1 3-D Dominance Reporting and Persistent B-Trees

The first result in this section is a lower bound on the space consumption of any cache-

oblivious data structure for 3-d dominance reporting, as summarized in the following theo-

rem.

Theorem 5.9. Let f(·, ·) be a monotonically increasing function, and 0 < δ ≤ 1/2 a con-

stant. Any cache-oblivious data structure capable of answering 3-d dominance reporting

queries using at most f(logB N,K/B) block transfers in the worst case, for every block size

B ≤ N2δ, must use Ω(N(log logN)ε) space, where ε = 1/f(δ−1, 1).

Proof. Just as Theorem 5.1, this result follows if we can show that the workload W =

(S,Q,B) constructed in Section 5.2 to prove Lemma 5.2 is realizable as a 3-d dominance

reporting problem. We do this using a simple geometric transformation. We map each input

point p = (xp, yp) in S to the point φ(p) = (−xp, xp,−yp) in R
3, and every 3-sided query

range q = [l, r]× [b,+∞) in Q to the query range φ(q) = (−∞,−l] × (−∞, r]× (−∞,−b].
A point p ∈ S belongs to a 3-sided query range q ∈ Q if and only if φ(p) belongs to φ(q),

that is, the mapping provides a realization of W as a 3-d dominance reporting problem.

A similar reduction shows the following result.

78

Theorem 5.10. Let f(·, ·) be a monotonically increasing function, and 0 < δ ≤ 1/2 a

constant. Any (partially) persistent cache-oblivious B-tree capable of answering 1-d range

reporting queries on any previous version of the tree using at most f(logB N,K/B) block

transfers in the worst case, for every block size B ≤ N2δ, must use Ω(N(log logN)ε) space

to represent a sequence of N update operations, where ε = 1/f(δ−1, 1).

Proof. Again, we need to show that the workloadW = (S,Q,B) from Section 5.2 is realizable

in the framework of 1-d range reporting queries on persistent B-trees. We say that W is

realizable as a persistent 1-d range reporting problem if there exists a sequence of insertions

and deletions of the elements in S and a mapping of the elements in S to points on the real

line such that, for every query q ∈ Q, there exists an interval [l, r] and an integer t with the

property that a 1-d range reporting query with interval [l, r] after the tth operation in the

update sequence reports exactly the points in q.

To obtain such a realization of the workload W, we map each point p = (xp, yp) in S

to the point xp on the real line and define an update sequence that inserts the points in S

by decreasing y-coordinates. For a query q = [l, r] × [b,+∞) in Q, let t be the number of

points p ∈ S with yp ≥ b. Then a 1-d range query with interval [l, r] after the tth insertion

reports exactly the points in q. Thus, W is realizable as a persistent 1-d range reporting

problem.

5.4.2 Halfspace Range Reporting in Three Dimensions

In this section, we prove the same lower bound as in Theorem 5.1 for 3-d halfspace range

reporting.

Theorem 5.11. Let f(·, ·) be a monotonically increasing function, and 0 < δ ≤ 1/2 a con-

stant. Any cache-oblivious data structure capable of answering 3-d halfspace range reporting

queries using at most f(logB N,K/B) block transfers in the worst case, for every block size

B ≤ N2δ, must use Ω(N(log logN)ε) space, where ε = 1/f(δ−1, 1).

As in the proofs of Theorems 5.9 and 5.10, we need to show that the workload W =

(S,Q,B) from Section 5.2 is realizable as a 3-d halfspace range reporting problem. This

requires more care than for 3-d dominance reporting and persistent 1-d range reporting. We

begin with a reduction from 2-d parabolic range reporting to 3-d halfspace range reporting

(see, e.g., [7]). A parabolic range reporting query is defined by a parabola y = a(x− b)2 + c,

79

for a ≥ 0, and asks to report all points p = (xp, yp) in S that satisfy yp ≥ a(xp− b)2+ c. The
reduction from [7] maps each point p in R

2 to a point ψ(p) in R
3 and each parabola q to a

halfspace ψ(q) such that p ∈ q if and only if ψ(p) ∈ ψ(q). Thus, every workload realizable as

a 2-d parabolic range reporting problem is also realizable as a 3-d halfspace range reporting

problem. In particular, it suffices to show that W is realizable as a 2-d parabolic range

reporting problem. We do this by distorting the point set S so that there exists a parabolic

query range φ(q) for every 3-sided query q ∈ Q with the property that q and φ(q) contain

the same points in S.

We follow the recursive construction of S and Q from Section 5.2 and, for every subgrid

T ′ in the construction, replace the 3-sided queries in QT ′ with parabolic ones as shown in

Figure 5.3(a). If we embed the subgrids of T ′ inside the white squares in the figure, each

query outputs the same set of points in T ′ as its corresponding 3-sided query. However, we

also have to ensure that the queries in QT ′ output only points from T ′. For 3-sided queries, we

achieved this by ensuring that there are no points in the x-range of T ′ but outside its y-range.

As shown in Figure 5.3(b), this is not sufficient for parabolic queries, as parabolic queries

over T ′ cannot be confined to the x-range of T ′. Instead, we use the following construction,

which extends a construction from [7].

Given a grid cell and a subgrid T ′ to be embedded inside this cell, we use G to denote the

portion of the cell where the points in T ′ are to be placed (the white squares in Figure 5.3(a)).

We call G the grid box of T ′. Every parabolic query over T ′ is guaranteed to output only

points from T ′ if it leaves the x-range of G only above the top boundary of the top-level grid

T . We represent this using a column box C that shares its left, right, and bottom boundaries

with G and whose top boundary is the top boundary of T ; see Figure 5.3(c). The parabolic

queries over T ′ must intersect only the top boundary edge of C. Once we have obtained an

embedding of T ′ inside G and a set of parabolic queries over T ′ that output the same set

of points as the 3-sided queries in QT ′ and intersect only the top boundary of C, we can

define grid and column boxes for the subgrids of T ′ as above and apply this construction

recursively. Thus, to prove that W is realizable as a 2-d parabolic range reporting problem,

it suffices to prove that, given any grid box G and any column box C ⊇ G, we can embed

T ′ inside G and construct appropriate parabolic queries over T ′ that intersect only the top

boundary of C.

Lemma 5.12. Given a column box C and a grid box G ⊆ C, a subgrid T ′ can be embedded

80

(a) (b)

G

C

T ′

T

(c)

hi−1

A = (0, 0)

pij2

row i
pij1

hi

δ

bi

(d)

Figure 5.3: (a) Replacing 3-sided queries with parabolic ones. The white squares are the
areas where the subgrids in each grid cell are to be placed. (b) A naively constructed query
in the subgrid in cell T3,6 also reports points in other cells (e.g., T2,6). (c) Placement of a
subgrid within a grid box G that is nested inside a column box C. (d) Incremental embedding
of a subgrid T ′ inside a grid box.

inside G so that, for every 3-sided range reporting query q ∈ QT ′, there exists a parabolic

range reporting query q′ that reports the same set of points in T ′ as q and intersects only the

top boundary of C.

Proof. For the sake of this proof, we can assume that each grid cell of T ′ contains exactly

one point, as we can embed the subgrid represented by each such point in a sufficiently small

neighbourhood of the point without altering the properties of the construction. We can

further assume that the bottom boundaries of C and G coincide, that C is twice as wide as

G, and that G is horizontally centred inside C, as this can be enforced by shrinking G and C

appropriately without relaxing the constraints placed by these two boxes on the embedding

of T ′ and on the queries constructed over T ′. We denote the widths and heights of G and C

by wG, wC , hG, and hC , respectively.

We construct T ′ row by row, placing the points in each row at the same y-coordinate and

spacing them evenly in x-direction. The top row of T ′ coincides with the top boundary of G,

and we centre T ′ horizontally in G. The points in each row have distance δ > 0 between every

pair of consecutive points. After placing the points in the ith row, we construct parabolic

queries for all queries at level i in QT ′ that output exactly those points in rows 1 through

i contained in their 3-sided counterparts in QT ′ . The next row of points is then placed

infinitesimally below the horizontal line through the apexes of these level-i queries. This is

illustrated in Figure 5.3(d).

Once we have placed the points of all rows of T ′ in this fashion, we obtain an embedding

of T ′ inside a box of width δ(2t−1− 1) and height ht. We derive a bound on ht as a function

81

of δ. By choosing δ small enough, we can ensure that the constructed box (and, hence, T ′)

is completely contained in G.

To discuss this construction in detail, consider the construction of the ith row. Let Bi−1

be the smallest box containing all points already placed in rows 1 and i − 1 and such that

its bottom boundary passes through the apexes of all level-(i − 1) queries we have just

constructed. The width of Bi−1 is δ(2t−1 − 1), and we denote its height by hi−1. For i = 1,

we assume that h0 = 0, that is, that B0 is a line segment contained in the top boundary of

G. To construct the ith row of T ′, we evenly distribute 2t−1 points along a horizontal line

segment of the same width as Bi−1 and infinitesimally below the bottom boundary of Bi−1.

This ensures that no point in the ith row is contained in any query at a level less than i.

To construct the queries at the ith level, we observe that each such query q′ has to output

points pi′j′ with 1 ≤ i′ ≤ i and (k′ − 1)2t−i < j′ ≤ k′2t−i, for some 0 < k′ ≤ 2i−1, where

pij denotes the jth point in the ith row. For ease of notation, let j1 = (k′ − 1)2t−i + 1 and

j2 = k′2t−i. We construct the parabola q′ so that it passes through points pij1 and pij2 and

such that points p1,j1−1 and p1,j2+1, as well as the two top corners of C, lie below q′. This

ensures that q′ outputs exactly the desired set of points and intersects only the top boundary

edge of C.

To obtain a bound on the height ht of the final box Bt, we first derive a bound on the

distance bi between the apex A of q′ and the ith row of points, for all 1 ≤ i ≤ t, and then

use the recurrence hi > hi−1 + bi. To ease the exposition, we assume that the apex A of q′ is

at the origin, so that q′ is given by an equation of the form y = aix
2. Let di = δ(2t−i − 1)/2

be half the distance between points pij1 and pij2 . Since A has distance bi from the ith row

of points and q′ passes through points pij1 and pij2, q
′ must satisfy

bi = aid
2
i . (5.13)

In order for points p1,j1−1 and p1,j2+1 to lie below q′, q′ must satisfy

hi−1 + bi < ai(di + δ)2, (5.14)

as the distance of A from the first row is infinitesimally greater than hi−1+bi and the distance

between two neighbouring columns of T ′ is δ. Finally, if we can satisfy (5.13) and (5.14)

while placing A inside G, then q′ intersects only the top boundary edge of C if

hC < ai
w2

G

4
, (5.15)

82

as the height of C is hC and the distance between G and either of the two vertical boundary

edges of C is wG/2.

By substituting (5.13) into (5.14) and rearranging the result, we obtain that (5.14) holds

if

ai >
hi−1

2diδ + δ2
. (5.16)

Inequalities (5.15) and (5.16) are both satisfied if

ai >
hi−1

2diδ + δ2
+

4hC
w2

G

, (5.17)

which gives

bi >

(
hi−1

2diδ + δ2
+

4hC
w2

G

)
d2i (5.18)

by substituting (5.17) into (5.13). By using the equation di = δ(2t−i − 1)/2 and simplifying

appropriately, we obtain that (5.18) holds if

bi > 2t−i−2hi−1 +
4t−iδ2hC
w2

G

. (5.19)

By substituting this into the recurrence hi > hi−1 + bi, we obtain that we can satisfy (5.19)

as long as

hi > hi−1(1 + 2t−i−2) +
4t−iδ2hC
w2

G

,

which holds if we set h0 = 0 and hi = 4itδ2hC/w
2
G and as long as t ≥ 2. Thus, by choosing δ

no greater than min
(
wG/2

t,
√
hGw2

G/(4
t2hC)

)
, we can ensure that all points of T ′ lie inside

G, and that all parabolas in QT ′ have their apexes inside G, output the same set of points

as their corresponding 3-sided queries, and intersect only the top boundary edge of C. This

completes the proof.

5.4.3 Las-Vegas-Type Data Structures

The lower bounds we have proved so far apply to data structures with deterministic con-

struction algorithms and worst-case query bounds. In many cases, however, it is significantly

easier to obtain efficient randomized data structures of the Las Vegas kind, that is, with ex-

pected query bounds resulting from randomness in their construction and in the query pro-

cedure (see, e.g., [46]). Therefore, we obtain a much stronger statement of the difficulty of

cache-oblivious range reporting if we can show that the lower bounds shown in the previous

sections apply also to this type of data structure.

83

Formally, we consider data structures whose construction algorithm and query procedure

both have access to a sequence of random bits. The random bits used during the construction

influence the shape of the data structure, while the random bits used by the query procedure

influence which blocks are read to answer a given query. In a Las-Vegas-type data structure,

the random bits may influence the costs of individual queries, but the answer provided by

a query must always be correct. The following theorem extends the lower bounds we have

proved for deterministic data structures with worst-case query bounds to randomized data

structures of the Las Vegas kind.

Theorem 5.20. Let f(·, ·) be a monotonically increasing function, and 0 < δ ≤ 1/2 a

constant. Any cache-oblivious data structure for 3-sided range reporting, 3-d dominance re-

porting or 3-d halfspace range reporting constructed by a randomized algorithm and capable of

answering queries using at most f(logB N,K/B) block transfers in the expected sense, for ev-

ery block size B ≤ N2δ, must use expected Ω(N(log logN)ε) space, where ε = 1/(4f(δ−1, 1)).

A cache-oblivious persistent B-tree that supports 1-d range reporting queries on any previ-

ous version of the tree using at most f(logB N,K/B) block transfers in the expected sense, for

every block size B ≤ N2δ, must use expected Ω(N(log logN)ε) space to represent a sequence

of N update operations.

To prove Theorem 5.20, it suffices to prove it for 3-sided range reporting and δ = 1/2.

As before, Lemma 5.3 then extends the result to smaller values of δ, and the reductions in

Sections 5.4.1 and 5.4.2 extend the lower bound to 3-d dominance reporting, 3-d halfspace

range reporting, and cache-oblivious persistent B-trees.

Again, we formulate our proof in the multi-level indexability model from Section 5.1.

To do so, we need to extend the model to allow for randomness in the construction of

the indexing scheme. The randomness in the query procedure can be eliminated using the

following argument. A randomized query procedure for an indexing scheme I would make

random choices in selecting the blocks to cover a given query q. The efficiency of an indexing

scheme, however, is defined based on the existence of a small set of blocks to cover each query

q ∈ Q. This is equivalent to a query procedure that deterministically selects the minimum

number of blocks to cover each query in Q, and randomness cannot improve on this query

cost.

As a model of randomness in the construction of an indexing scheme for a workload

W = (S,Q,B), we define the concepts of a randomized block cover and of a randomized

84

indexing scheme. If the construction of an indexing scheme uses b random bits, it is capable

of constructing n := 2b different indexing schemes I1, I2, . . . , In, depending on the value

of these bits. For a block size Bi ∈ B, let Cki be the Bi-cover in Ik. Then we call the set

Ci = {C1i , C2i , . . . , Cni } a randomized Bi-cover and the set I = {I1, I2, . . . , In} a randomized

indexing scheme for W. The expected size of I is the average size of I1, I2, . . . , In. We say

the randomized Bi-cover Ci in I is f -efficient if the average number of blocks needed to cover

each query in Q is at most f(logBi
N,K/Bi), where the average is taken over all block covers

C1i , C2i , . . . , Cni in Ci. The randomized indexing scheme I is f -efficient if all its randomized

block covers are f -efficient. As such, the efficiency of a randomized indexing scheme and

its expected size capture the expected query cost and the expected size of a cache-oblivious

data structure, assuming that each of the n data structures that can be constructed using b

random bits is equally likely.

To prove Theorem 5.20, we show now that an f -efficient randomized indexing scheme

I = {I1, I2, . . . , In} for the workload W = (S,Q,B) from Section 5.2 has expected size

Ω(N(log logN)ε). To this end, we represent the construction of the point set S using a

tree T . The root of T is the top-level grid T , and its internal nodes represent the subgrids

constructed recursively. A grid T ′′ is a child of a grid T ′ in T if T ′′ is the subgrid constructed

in one of the cells of T ′. Now we make n copies T 2, T 2, . . . , T n of T and associate the copy

T k with the indexing scheme Ik, for all 1 ≤ k ≤ n. We refer to the copy of a node T ′ ∈ T
in T k as T ′

k, and we say that a point p in T ′
k has multiplicity m if its multiplicity in Ik is m.

To prove the desired lower bound on the expected size of I, we mimic the proof of

Lemma 5.2. To prove Lemma 5.2, we first showed that every grid T ′ ∈ T has a cell at

least half of whose points have multiplicity Ω(tε) in an f -efficient (deterministic) indexing

scheme I. By Lemma 5.4, this implied Lemma 5.2. This proof was based on the fact that

every query q ∈ QT ′ can be covered with at most α blocks in the BT ′-cover in I. In a

randomized indexing scheme {I1, I2, . . . , In}, there may be no indexing scheme Ik whose

BT ′-cover can cover every query in QT ′ with at most α blocks. Nevertheless, we can prove

that at least n/4 of the copies T ′
1, T

′
2, . . . , T

′
n of each grid T ′ ∈ T have a cell at least half

of whose points have multiplicity Ω(tε) (Lemma 5.21 below). This suffices to show that the

total size of the indexing schemes I1, I2, . . . , In is Ω(nN(log logN)ε), that is, their average

size is Ω(N(log logN)ε).

Lemma 5.21. Every node T ′ ∈ T has at least n/4 copies among T ′
1, T

′
2, . . . , T

′
n such that

85

each has a cell at least half of whose points have multiplicity Ω(tε).

Proof. Consider the Bi-covers C1i , C2i , . . . , Cni , where Bi = BT ′ is the block size in B corre-

sponding to the grid T ′. We consider a query q ∈ QT ′ cheap for Cki if q can be covered using

at most 4f(2, 1) blocks in Cki , and expensive otherwise. Since the randomized Bi-cover Ci is
f -efficient, q must be cheap for at least 3n/4 of the Bi-covers C1i , C2i , . . . , Cni . The jth row of

T ′
k is cheap if at least half of the level-j queries in QT ′ are cheap for Cki ; otherwise the row is

expensive. As each query is cheap for at least 3n/4 of the Bi-covers C1i , C2i , . . . , Cni , every row

of T ′ is cheap in at least n/2 of the copies T ′
1, T

′
2, . . . , T

′
n. Thus, the total number of cheap

rows over all copies of T ′ is at least tn/2, which implies that there are at least n/4 copies

of T ′ that have at least t/3 cheap rows each. We show that each such copy T ′
k has a cell at

least half of whose points have multiplicity Ω(tε).

The block cover Cki defines a colouring of the points in T ′
k and of the queries in QT ′ as

in Section 5.2.2. For a subset Z of cells of T ′
k, we call a point p in a cell c in row j of

T ′
k weakly Z-exposed if no cheap query q ∈ QZ that belongs to a level less than j in QT ′

k

covers p, that is, if it is Z-exposed in the sense defined in Section 5.2.2. Point p is strongly

Z-exposed if it is weakly Z-exposed and the query qc is cheap for Cki . As in Section 5.2.2, we

call a cell of T ′
k weakly or strongly Z-exposed if at least half its points are weakly or strongly

Z-exposed. Now it suffices to show that T ′
k contains a set Z := {c1, c2, . . . , cs} of cells in the

same column whose length is s = Ω(t/ logα) and all of whose cells are strongly Z-exposed,

for α := 4f(2, 1). Since each query qci is α-coloured in this case, Lemma 5.6 then shows that

the Z-exposed points in at least one of these cells have at least sε = Ω(tε) colours. This

finishes the proof because at least half the points in a Z-exposed cell are Z-exposed.

Let T c be the subgrid of T ′
k consisting of only the cheap rows of T ′

k, and, similarly to the

proof of Lemma 5.5, let T c
h be the subgrid of T c consisting of rows 1, h+1, 2h+1, . . . of T c.

Using the same arguments as in the proof of Lemma 5.5, at most a (4α/2h)-fraction of the

points in each row of T c
h can be covered by cheap queries at higher levels of T c

h. Thus, for

h = �log(32α)�, at least a 7/8-fraction of the points in each row of T c
h are weakly T c

h-exposed.

Since a cell is weakly T c
h-exposed if at least half of its points are weakly T c

h-exposed, this

implies that at least a 3/4-fraction of the cells in each row of T c
h are weakly T c

h-exposed. It

follows that at least a 1/4-fraction of the cells in each row are strongly T c
h-exposed because

every row of T c
h is cheap. This, however, implies that there exists a column of T c

h such that

at least a 1/4-fraction of its cells are strongly T c
h-exposed. Since the height of T c

h is at least

86

t/(3h) = Ω(t/ logα), this shows that T ′
k contains a set Z of Ω(t/ logα) strongly T c

h-exposed

cells in the same column. These cells are also strongly Z-exposed because Z ⊆ T c
h .

Using Lemma 5.21, we can now prove that the average size of the indexing schemes

I1, I2, . . . , In—that is, the expected size of I—is Ω(N(log logN)ε). To this end, we call

a node T ′
k ∈ T k accounted for if there exists an ancestor T ′′

k of T ′
k in T k for which we

can guarantee that at least half the points in T ′′
k have multiplicity Ω(tε). We call a point

accounted for if it is contained in a grid T ′
k that is accounted for. Our goal now is to show

that there exists a level i in T such that at least a constant fraction of the points in all

level-i nodes of trees T 1, T 2, . . . , T n are accounted for. Since at least half of the accounted-

for points have multiplicity Ω(tε), this shows that the total size of the indexing schemes

I1, I2, . . . , In is Ω(nNtε), and their average size is Ω(Ntε) = Ω(N(log logN)ε), as claimed.

For a given level i in T , we consider all nodes at level i in T that have more than 7n/8

unaccounted-for copies in trees T 1, T 2, . . . , T n. Let Ni be the total number of points in these

nodes of T . By Lemma 5.21, each such node T ′ has at least n/8 copies in trees T 1, T 2, . . . , T n

that are unaccounted for and such that each has a child that is accounted for at level i+ 1.

If T ′ contains N ′ points, then any child of T ′ contains at least N ′/4t points, as argued in

Section 5.2.1. Hence, at least (n/8) · (Ni/4
t) new points are accounted for at level i+ 1.

For Ni > N/2, this shows that at least nN/(16 · 4t) = nN/(16
√
logN) new points are

accounted for at depth i+1. Since there are only nN points in total, this implies that there

can be at most 16
√
logN levels in T that satisfy Ni > N/2. However, we have shown in

Section 5.2.1 that the height of T is at least logN/ log logN , which is greater than 16
√
logN ,

for N sufficiently large. Hence, there exists a level i in T with Ni ≤ N/2, and at least N/2

of the points in S are accounted for in at least n/8 of the trees T 1, T 2, . . . , T n. Since at least

half of the accounted for points have multiplicity Ω(tε), the total size of the indexing schemes

I1, I2, . . . , In is thus Ω(nNtε), as claimed. This concludes the proof of Theorem 5.20.

Chapter 6

Upper Bounds

In this chapter we develop a general framework for approximate range counting and range

reporting in the cache-oblivious model. The framework is sufficiently general to be applicable

to a wide variety of range searching problems, including 3-sided range reporting, 3-d halfspace

range reporting, 3-d dominance reporting, circular range reporting, 2-d K-nearest neighbour

searching, and 3-d orthogonal range reporting. Section 6.1 discusses the setting in which our

framework is constructed and describes the family of admissible range searching problems.

Section 6.2 constructs a general cache-oblivious data structure for approximate range

counting. This data structure use linear space and provides guaranteed (1+ ε)-approximate

answers using O(logB(N/K)) block transfers in the worst case (where K is the reported

count), which is optimal. This is in contrast to previous results even in internal memory,

where the optimal query bound was not achieved in the worst case before, even using super-

linear space. The only previous data structure with the optimal query bound, by Afshani

and Chan [6], achieves this bound only in the expected case. Thus, our construction also pro-

vides new worst-case optimal data structures for approximate 3-d halfspace range counting

and approximate 3-d dominance counting in the pointer machine model.1

Section 6.3 describes the first cache-oblivious data structures with the optimal query

bound of O(logB N +K/B) block transfers for 3-d halfspace range reporting, 3-d dominance

reporting and, as a consequence, for circular range reporting, 2-dK-nearest neighbour search-

ing, and 3-d orthogonal range reporting. All our data structures, except the 3-d orthogonal

range reporting structure, use O(N logN) space. Using a standard transformation, our 3-d

dominance reporting structure also provides a new O(N logN)-space data structure with

the optimal query bound for 3-sided range reporting, thereby matching the previous results

obtained in [13, 25, 30]. These results are fairly easy to obtain using standard constructions

based on shallow cuttings once the output size of a query can be efficiently determined or

at least approximated (using the results of Section 6.2). A full list of new results contrasted

1It is easy to verify that we use only operations available on a pointer machine equipped with the necessary
algebraic operations to compute intersections of curves and determine the side of a curve a point is on.

87

88

with existing results is shown in Tables 3.1 and 3.2.

The main tool used in our data structures is that of shallow cuttings, which can be

obtained for a general class of problems, albeit using a randomized construction [17]. The

use of shallow cuttings in problems related to range searching is by now fairly standard; the

novelty of our approach lies in the manner in which we combine them with other equally

standard techniques to obtain the above series of new results.

All data structures presented in this chapter are static, and no efficient construction

methods for these structures are known in the I/O or cache-oblivious model. The main

obstacle is the lack of an I/O-efficient or cache-oblivious construction procedure for shallow

cuttings. Even in internal memory, the running time of the general construction procedure

of [17] is analyzed only for shallow cuttings of constant size. For 3-d halfspace arrange-

ments, Ramos [108] gave a fairly complicated algorithm that constructs a shallow cutting

in O(N logN) time, but it is not clear whether an efficient cache-oblivious construction

procedure can be obtained using the same ideas.

The results of this chapter have been published in [9, 10].

6.1 Family of Admissible Problems

The framework presented in this chapter is applicable to any range searching problem that,

through application of duality or other techniques, can be translated into the following type

of ‘aboveness reporting problem’ and satisfies a number of additional properties discussed

below. Let F be a collection of continuous and totally defined algebraic functions f : R2 → R

of constant degree. Each such function defines a continuous surface in R
3 consisting of the

points (x, y, f(x, y)), and we do not distinguish between a function and the surface it defines.

We say that a function f passes below a point q = (xq, yq, zq) if f(xq, yq) < zq. Our goal is to

preprocess F so that, given any query point q, we can efficiently report or (approximately)

count the functions in F passing below q. Since we assume that such an aboveness query is

an alternative representation of a range query, we refer to reporting or counting the functions

that pass below a query point as range reporting or range counting throughout this chapter.

The arrangement of a collection F of functions is a subdivision of R3 into cells ; see

Figure 6.1(a).2 Each such cell is a maximal connected set of points that are contained in a

2For the sake of keeping the figures simple, all figures in this chapter illustrate 2-dimensional versions of
the discussed 3-dimensional structures.

89

(a) (b) (c) (d)

Figure 6.1: (a) An arrangement of lines. The shaded region, excluding its boundary is a
2-dimensional cell. The fat line segment excluding its endpoints is a 1-dimensional cell. The
highlighted vertex is a 0-dimensional cell. (b) The lower envelope of the arrangement is
shaded dark gray. The (≤ 2)-level includes all light gray and all dark gray faces. (c) The
regions bounded by fat lines are a shallow cutting for the (≤ 2)-level of the arrangement.
(d) The fat lines belong to the conflict list of the shaded cell.

subset F ′ ⊆ F of functions and in no other functions in F . We define the level of a point q

to be the number of functions in F that pass below q. The k-level or (≤ k)-level of F is the

closure of the set of points in R
3 at level k or at most k, respectively; see Figure 6.1(b). The

0-level of F is also known as the lower envelope of F . Any k- or (≤ k)-level is a collection

C of cells. Its complexity |C| is defined as the number of cells in C.
A shallow cutting for the (≤ k)-level of F is a collection C of disjoint cells that cover the

(≤ k)-level of F and have the property that every cell C ∈ C intersects O(k) functions in F ;
see Figure 6.1(c). Without loss of generality, we can assume that every cell in C intersects

the (≤ k)-level of F (otherwise, we can obtain a smaller shallow cutting for the (≤ k)-level

by removing all cells from C that do not intersect this level). The conflict list ΔC of a cell C

is the set of functions in F that intersect C or pass below it; see Figure 6.1(d). By the above

assumption, we have |ΔC | = O(k) and, for every point p ∈ C, all functions in F that pass

below p are included in ΔC .

For our approximate range counting framework to be applicable, the collection, F , of
functions has to satisfy the following properties:

(i) For every k, there exists a shallow cutting for the (≤ k)-level of F consisting of

O(|F| /k) cells, each bounded by a constant number of algebraic curves of constant

degree.

(ii) For every shallow cutting C as in (i), there exists a cache-oblivious point location

structure L(C). For any query point q, this data structure finds the cell C of C that

contains q, or reports that no such cell exists. We require that this data structure uses

90

O(|C|) space and supports queries using O(logB |C|) block transfers.

(iii) Consider the 2-d arrangement A formed by projecting a number of shallow cuttings as

in (i) into the xy-plane. Then there exists a cache-oblivious point location structure

for A with a query bound of O(logB |A|) block transfers and with space complexity

polynomial in |A|.

By using results by Agarwal et al. [17], it is possible to replace (i) with a weaker condition

that implies (i):

(i′) The lower envelope of every subset F ′ ⊂ F has complexity O(|F ′|).

For the problems we are interested in—3-d halfspace range searching and 3-d dominance

searching—shallow cuttings satisfying condition (i) exist [2,94]. In addition, each cell of these

shallow cuttings is a vertical prism bounded by O(1) linear functions. Hence, the projection

of such a shallow cutting C into the xy-plane is a planar straight-line subdivision of size

O(|C|), and conditions (ii) and (iii) can both be satisfied using the cache-oblivious planar

point location structure by Bender et al. [37]. We discuss this in more detail in Section 6.2.5.

In general, condition (i) does not hold as soon as we consider dimensions higher than

three. Even in three dimensions, one can easily construct simple examples where this con-

dition fails. For example, consider a collection of functions F = {f1, f2, . . . , fN}, where

fi(x, y) = (x − i)2 and fi+N/2(x, y) = (y − i)2, for all 1 ≤ i ≤ N/2. These functions are

algebraic of constant degree, but their lower envelope has quadratic size.

Condition (ii) requires a linear-space data structure that supports point location in a

3-d arrangement (the shallow cutting) in logarithmic time. In general, it is not known

whether such a structure exists. It is fortunate that, for 3-d halfspace range searching and

3-d dominance searching, the shallow cuttings have a structure that allow us to reduce this

problem to 2-d point location.

Condition (iii) is easy to satisfy for any set of algebraic functions of constant degree

because a point location structure of size O(N3) and with the required query bound can be

obtained for the arrangement of any set of N algebraic functions of constant degree in the

plane using the slab method.

91

6.2 Approximate Range Counting

This section presents the main result of this chapter: a general framework for constructing a

cache-oblivious approximate range counting structure for any range searching problem that

satisfies the conditions discussed in Section 6.1. The following theorem states this precisely.

Theorem 6.1. For a set F of N functions satisfying conditions (i)–(iii), there exists a

cache-oblivious data structure that uses O(N(1 + ε−2 log ε−1)) space and supports (1 + ε)-

approximate range counting queries using O(logB(N/K) + (ε−2/B) log ε−1) block transfers

in the worst case, where K is the actual value of the count.

Throughout this chapter, we use q to refer to a particular query point, and K to denote

the number of functions in F that pass below q. Our goal is to compute a number K ′ that

satisfies K ≤ K ′ ≤ (1 + ε)K. The first step towards proving Theorem 6.1 is to show that

the difficult part of the problem is to obtain any constant-factor approximation of K.

Lemma 6.2. Consider a set F of N functions satisfying conditions (i)–(iii) and assume

there exists a linear-space cache-oblivious data structure D that supports c-approximate range

counting queries over F using O(logB(N/K)) block transfers, where c is an arbitrary constant

and K is the actual value of the count. Then there exists a cache-oblivious data structure that

uses O(N(1 + ε−2 log ε−1)) space and supports (1 + ε)-approximate range counting queries

using O(logB(N/K) + (ε−2/B) log ε−1) block transfers.

Proof. The (1 + ε)-approximate range counting structure we construct for F consists of D
and data structures representing shallow cuttings C0, C1, . . . , Cn, where n = �logN� and Ci
is a shallow cutting for the (≤ 2i)-level of F . The data structure representing each shallow

cutting Ci consists of the point location structure L(Ci) of Ci and a collection of δ-approximate

conflict lists for the cells of Ci, where δ > 0 is a constant defined below. The δ-approximate

conflict list Δ̃C of a cell C ∈ Ci is a sublist of ΔC such that the level of a query point q ∈ C
can be approximated to within an additive error of δ |ΔC | using only the level of q in Δ̃C .

Section 6.4 discusses how to apply results in VC-dimension to obtain such a sublist Δ̃C of

ΔC of size O(δ−2 log δ−1) for each cell C ∈ Ci.
Now consider a query point q. The query procedure is illustrated in Figure 6.2. We

use D to obtain a c-approximation K ′ of K. The shallow cutting Ci with i = �logK ′�
contains q because K ′ ≥ K. We use L(Ci) to find the cell C ∈ Ci that contains q. Next we

92

C

Ci

20

21

2n

2i

q

Figure 6.2: Illustration of the query procedure in the proof of Lemma 6.2. Thin solid lines
show the top boundaries of some (≤ 2j)-levels. The shallow cutting Ci with i = �logK ′� is
shown using fat dashed lines. The approximate conflict list Δ̃C of the cell C ∈ Ci containing
the query point q contains the fat solid curves crossing C but not the thin ones, solid or
dashed.

compute the level of q in Δ̃C and use it to compute an approximation K ′′ of K that satisfies

K ≤ K ′′ ≤ K + δ |ΔC |. Since K ′ ≤ cK and |ΔC | ≤ c′K ′, for some constant c′, K ′′ is a

(1 + ε)-approximation of K if we choose δ = ε/(cc′) = Θ(ε).

The size of the data structure is O(N(1 + δ−2 log δ−1)) = O(N(1 + ε−2 log ε−1)). By the

assumptions in the lemma, the c-approximate counting structure D uses linear space. By

condition (i), each shallow cutting Ci has size O(N/2i); that is, the total size of all shallow

cuttings C0, C1, . . . , Cn is O(N). By condition (ii), this implies that the total size of the

point location structures L(C0),L(C1), . . . ,L(Cn) is O(N). Each cell in a shallow cutting Ci
has an associated approximate conflict list of size O(δ−2 log δ−1). As the total number of

cells in C0, C1, . . . , Cn is O(N), the total space used to store all approximate conflict lists is

O(Nδ−2 log δ−1). By summing the sizes of the different parts of the data structure, we obtain

the claimed space bound.

The query cost is O(logB(N/K) + (δ−2/B) log δ−1) = O(logB(N/K) + (ε−2/B) log ε−1)

block transfers: querying D takes O(logB(N/K)) block transfers, as does querying L(Ci), by
condition (ii) and because |Ci| = O(N/K); given the cell C ∈ Ci that contains q, scanning
Δ̃C to compute the level of q in Δ̃C takes O((δ−2/B) log δ−1) block transfers because

∣∣∣Δ̃C

∣∣∣ =
O(δ−2 log δ−1).

By Lemma 6.2, it suffices to construct a range counting structure for F that approximates

K to within any constant factor. We split the construction of such a structure into three

93

parts. We say that a query q is polynomial or polylogarithmic if K ≥ Nα or K ≥ logτ N ,

respectively, for appropriate constants α > 0 and τ > 0. The first step is to obtain a data

structure for polynomial queries that uses sublinear space and achieves the query bound

stated in Lemma 6.2. Using this structure, we can obtain a data structure for polylogarithmic

queries. By applying this construction a second time, the structure for polylogarithmic

queries can be made to support arbitrary approximate range counting queries and, thus, can

be used as the data structure D in Lemma 6.2.

6.2.1 Overview

Shallow cuttings provide a natural framework for approximate range counting. In order to

determine a relative 2-approximation to the size of a query we need only find i such that

the query q is a member of the (≤ 2i)-level, but not a member of the (≤ 2i−1)-level. Then

by definition, we have that 2i−1 < K ≤ 2i and K ′ = 2i is the 2-approximation we desire.

We do not even require the full conflict lists of each cell in the shallow cutting, rather we

need only maintain a description of the top surface of each of the O(logN) (≤ 2i)-levels, for

0 ≤ i ≤ �logN�. Such a structure will be linear in size, but a binary search through the

O(logN) levels will require O(log logN) tests, with a test at level i costing O(log(N/2i))

comparisons. In order to improve on this simple bound we need to find ways to test against

multiple levels simultaneously.

Previous approaches have used a variety of complicated overlay lemmas that are specific

to individual problem types [6,80,81]. The fact that the overlay lemma is a crucial component

of these approaches has a number of limiting implications: the method does not generalize

to other problems, unless a similar overlay lemma is proved for each such problem; a non-

trivial modification of the overlay lemma would be required to use it in models such as the

I/O model or the cache-oblivious model; and, finally, it is inherently non-deterministic and

cannot be used to obtain a worst-case query bound.

Our approach is unique in that it considers the problem at various independent output

sizes: polynomial, polylogarithmic, and smaller than polylogarithmic. Specifically, by con-

sidering polynomial-sized queries we are able to find a sublinear -space data structure using

simple overlay techniques. This data structure can then be used to bootstrap data structures

for the remaining query sizes, a technique that had not been tried before.

Our structure for polynomial queries only considers queries such that K ≥ N1−δ/2c. By

94

doing this, we are able to ignore the bottom O((1− δ) logN) shallow cuttings, an important

space savings. Next we use a simple overlay technique to combine the top O(2i) levels. This

allows us to test against O(2i) levels at once using a single point location in the overlay,

followed by a linear scan. If the procedure fails for the overlay of size O(2i), we continue on

to the more detailed and larger overlay of size O(2i+1) and continue the search. The nature

of the search is such that it terminates sooner for larger K, leading to a natural query bound

of O(log(N/K)). Judiciously choosing the parameter δ allows us to limit the entire data

structure to sublinear space.

The sublinear-space data structure is then used as the basic building block in a recur-

sive data structure that can handle polylogarithmic queries, where K > logτ N . Carefully

choosing τ limits the recursion depth and keeps the data structure to linear space.

Finally, queries that fail on the polylogarithmic structure are sufficiently small that we

can treat them using a brute force approach with another linear sized data structure. The

next three subsections discuss these three parts of our construction in detail.

6.2.2 A Structure for Polynomial Queries

In this section, we prove that we can achieve the desired query bound for polynomial queries

using sublinear space, as stated in the next lemma. The sublinear space bound is crucial to

ensure that our data structure for polylogarithmic queries, discussed in Section 6.2.3, uses

linear space.

Throughout the next two sections, we fix c to be an integer constant such that the conflict

list of any cell C in a shallow cutting for the (≤ k)-level of F has size less than 2ck. By the

definition of a shallow cutting, such a constant exists.

Lemma 6.3. For a set F of N functions satisfying conditions (i)–(iii), there exists a cache-

oblivious data structure that uses O
(√

N
)
space and supports 2c+1-approximate range count-

ing queries using O(logB(N/K)) block transfers in the worst case, as long as the count K

satisfies K ≥ N1−δ/2c, for a sufficiently small constant δ > 0.

Data structure To obtain a data structure as in Lemma 6.3, we choose a constant δ > 0

to be defined later and construct a shallow cutting Cj for the (≤ N/2j)-level of F , for

each 0 ≤ j ≤ 2(c + δ logN). Let Aj be the 2-d arrangement obtained by projecting

the cells of Cj into the xy-plane. Next we construct arrangements A∗
0,A∗

1, . . . ,A∗
n, where

95

n = �log(2δ logN)� and A∗
i is obtained by overlaying arrangements A0,A1, . . . ,A2c+2i. We

represent each arrangement A∗
i using a point location structure as in condition (iii) and store

for each face f ∈ A∗
i , the list of cells of the shallow cuttings C0, C1, . . . , C2c+2i that project

onto f ; if more than one cell of a shallow cutting Cj projects onto f , we store only the

highest one. These representations of arrangements A∗
0,A∗

1, . . . ,A∗
n are stored consecutively

in memory, in order of increasing indices.

Space bound To bound the space used by this data structure, we observe that |Cj | =
O(2j) and, hence, that the total number of cells in the shallow cuttings C0, C1, . . . , C2c+2i is

O
(
22

i
)
. This implies that A∗

i has size polynomial in 22
i
because, by condition (i), each cell

in each shallow cutting Cj is bounded by a constant number of algebraic curves of constant

degree. In particular, the size of the largest arrangement A∗
n—and, thus, the total size

of all arrangements A∗
0,A∗

1, . . . ,A∗
n— is polynomial in 22

n ≤ N2δ. Since each face of an

arrangement A∗
i stores a list of 2c+ 1 + 2i = O(logN) cells and, by condition (iii), the size

of the point location structure for each arrangement A∗
i is polynomial in |A∗

i |, this implies

that the entire data structure uses space polynomial in N2δ. Thus, by choosing a sufficiently

small δ > 0, we can ensure that the data structure uses O
(√

N
)
space.

Query procedure To answer a query q, note that it suffices to find an index j such that

Cj contains q but Cj+1 does not: the former condition implies that K ≤ 2cN/2j , because q is

contained in a cell of Cj; the latter condition implies that K > N/2j+1, because q does not

belong to the (≤ N/2j+1)-level of F ; thus, K ′ = 2cN/2j is a 2c+1-approximation of K.

To find such an index j, we start from i = 0 and decide for each of the shallow cuttings

C0, C1, . . . , C2c+2i whether it contains q. If we find an index 0 ≤ j < 2c+ 2i such that q ∈ Cj
but q /∈ Cj+1, we report K ′ = 2cN/2j . Otherwise, if i < n, we increment i and repeat this

procedure or, if i = n, report that K is too small, and the query fails.

To determine in iteration i which of the shallow cuttings C0, C1, . . . , C2c+2i contain the

query point q, note that q ∈ Cj , for some 0 ≤ j ≤ 2c+ 2i if and only if q lies in or below the

cell C of Cj stored with the face f of A∗
i that contains the projection of q into the xy-plane.

Hence, we implement the ith iteration of our query procedure by finding this face f , using

the point location structure of A∗
i , and then scanning the list of cells of the shallow cuttings

C0, C1, . . . , C2c+2i stored with f .

96

Correctness We have already argued that the query procedure outputs a 2c+1-approxim-

ation of K unless it fails. Thus, it suffices to show that the query procedure does not fail for

any K ≥ N1−δ/2c. For any such K, we have K ≥ N1−δ/2c ≥ N/22
�log(2δ logN)�+c = N/22

n+c,

and the choice of the constant c implies that q �∈ C2c+2n , that is, the query does not fail.

Query bound To bound the cost of a successful query, we observe that 2c + 2i−1 ≤ j <

2c+ 2i when the query terminates. Since the size of the representation of each arrangement

A∗
i is polynomial in 22

i
, the combined size of the representations of the first i0 := log logB−a

arrangements A∗
0,A∗

1, . . . ,A∗
i0
is O(B), for an appropriate constant a. Thus, these structures

fit in O(1) blocks and can be queried using O(1) block transfers; that is, the query cost is

O(1) when i ≤ i0. For i′ > i0, the cost of the (i′)th iteration, is O
(
logB 22

i′
+ 2i

′
/B
)
. The

first term is the cost of querying the point location structure for the arrangement A∗
i′ . The

second term is the cost of scanning the cell list associated with a face of A∗
i′ , as this list has

size O
(
2i

′)
. The query cost in the case i > i0 is therefore bounded by

O(1) +
i∑

i′=i0+1

O
(
logB 22

i′
+ 2i

′
/B
)
= O

(
logB 22

i
)
.

Observe, however, that K = Θ(N/2j) and 22c+2i−1 ≤ 2j < 22c+2i. This implies that 22
i
=

O((N/K)2), and the query bound is O(logB(N/K)).

For an unsuccessful query, the query terminates when i = n. By substituting this into

the previous summation, we obtain a query bound of O
(
logB N

δ
)
block transfers, which is

O(logB(N/K)), as K ≤ N1−δ/2c in this case.

6.2.3 A Structure for Polylogarithmic Queries

In this section, we present the second building block of our data structure, a linear-space data

structure for answering polylogarithmic approximate range counting queries, as summarized

in the following lemma. Note that the query bound is O(logB N), not O(logB(N/K)). This

is sufficient for the purposes of our final data structure discussed in Section 6.2.4.

Lemma 6.4. For a set F of N functions that satisfy conditions (i)–(iii), there exists a

cache-oblivious data structure that uses O(N) space and supports 2c+1-approximate range

counting queries using O(logB N) block transfers in the worst case, as long as the count K

satisfies K > logτ N , for a sufficiently large constant τ > 0.

97

D L(C) D1 L(C1) D2 L(C2) D3 L(C3)

C1 C2 C3

C1
C2

C3
C

C1 C2

C3

�

Figure 6.3: Two levels of the recursive structure for polylogarithmic queries. The entire
structure consists of of an approximate counting structure D for polynomial queries over F ,
a point location structure L(C) for the shallow cutting C of the (≤ N1−δ/2c)-level of F , as well
as structures constructed recursively for the cells C1, C2, C3 of C. The representation of each
cell Ci consists of an approximate counting structure Di for polynomial queries over ΔCi

, a
point location structure L(Ci) for a shallow cutting Ci of ΔCi

, as well as structures constructed
recursively for the cells of Ci, indicated by the different shading of cells. Note that, even
though the shallow cuttings define a recursive partition of space, this does not necessarily
produce a partition of F . For instance, if the structure represents an arrangements of lines,
the line � would be represented in the data structures of all three cells C1, C2, and C3 and
of some sub-cells of C2 and C3.

Data structure To obtain a data structure as in Lemma 6.4, we apply Lemma 6.3 recur-

sively; see Figure 6.3. Let D be the data structure for F provided by Lemma 6.3, and let

C be a shallow cutting for the (≤ N1−δ/2c)-level of F , for the same constants c and δ as

in Section 6.2.2. In the memory layout, we represent F using the point location structure

L(C) for C, the data structure D, and data structures representing the cells of C, arranged
in this order. The data structure representing each cell C ∈ C is constructed by recursively

applying the construction just described to ΔC . The recursion stops as soon as we obtain

conflict lists of size at most logτ N , for a constant τ to be chosen below.

Space bound Let S(N) be the space complexity of our data structure for a set of N

functions. The data structure D for polynomial queries has size O
(√

N
)
, by Lemma 6.3,

and the point location structure for C has size O
(
N δ
)
= O

(√
N
)
, for sufficiently small δ, by

condition (ii) and because C is a shallow cutting for the (≤ N1−δ/2c)-level of F and, thus,

has O
(
N δ
)
cells. Since each cell of C has a conflict list of size at most N1−δ, and we do not

98

recurse on conflict lists of size logτ N , this implies that S(N) is bounded by the recurrence

S(x) ≤

⎧⎨
⎩ax

δS(x1−δ) + O(
√
x) x > logτ N

O(1) x ≤ logτ N
,

for an appropriate constant a > 0. After i steps of recursion applied to S(N), we have

S(N) ≤ aiN1−(1−δ)iS(N (1−δ)i) + O
(
aiN1−(1−δ)i/2

)
.

For i = log(1−δ)(log log
τ N/ logN), we obtain

S(N) = O

(
a(log logN)/δ N

logτ N
S(logτ N) + a(log logN)/δ N

logτ/2N

)
,

as log(1−δ)(log log
τ N/ logN) ≤ (log logN)/δ, for all τ ≥ 1 and N ≥ 4. By choosing τ large

enough, we thus obtain S(N) = O(N) because S(logτ N) = O(1).

Query procedure To answer a query with a query point q, we use L(C) to decide whether

q is contained in C and, if so, determine the cell C ∈ C that contains q. If q ∈ C, we recurse

on the data structure representing ΔC or report a failure if we are already at the last level

of recursion in the structure. If q �∈ C, we use D to answer the query.

Correctness First assume that the query does not fail. If q �∈ C, then K ≥ N1−δ/2c,

and Lemma 6.3 shows that D provides a 2c+1-approximation of K in this case. If q belongs

to a cell C of C, then ΔC contains all functions in F that pass below q, and an inductive

argument shows that recursing on ΔC produces a 2c+1-approximation of K. Thus, in both

cases, we obtain a correct approximation of K.

If the query fails, on the other hand, then q is contained in a shallow cutting used at the

last level of recursion. Since each cell of this cutting has a conflict list of size at most logτ N ,

this means that K ≤ logτ N . Thus, for K > logτ N , the query procedure does not fail.

Query bound The query bound obeys the recurrence

Q(N) =

⎧⎨
⎩Q(N

1−δ) + O(logB N) N > B

O(1) N ≤ B
.

The bound for N ≤ B follows because S(B) = O(B) and, hence, the entire recursive

structure for a conflict list of size B fits in O(1) blocks. The bound for N > B follows

99

because querying L(C) and D requires O(logB N) block transfers, and querying the structure

for the conflict list ΔC in the case when q ∈ C takes Q(|ΔC |) ≤ Q(N1−δ) block transfers.

This recurrence is easily seen to yield Q(N) = O(logB N), that is, the constructed data

structure achieves the query bound claimed in Lemma 6.4.

6.2.4 The Final Structure

In this section, we combine Lemmas 6.3 and 6.4 to obtain a linear-space data structure that

supports constant-factor approximate range queries with the optimal query bound, for any

query range. By Lemma 6.2, this implies Theorem 6.1.

Lemma 6.5. For a set F of N functions satisfying conditions (i)–(iii), there exists a cache-

oblivious data structure that uses linear space and supports 2c+1-approximate range counting

queries using O(logB(N/K)) block transfers in the worst case.

Data structure Our final data structure consists of the following components; see Fig-

ure 6.4. Let Cs and Cb be shallow cuttings for the (≤ logN)-level and for the (≤ logτ N)-level

of F , respectively. We represent F using four data structures: a structure Db for polynomial

queries, a structure Ds for polylogarithmic queries, and the two point location structures

L(Cs) and L(Cb) for the two shallow cuttings Cs and Cb. In addition, we store for each cell

C ∈ Cb, a data structure DC for polylogarithmic queries over ΔC , and for each cell C ′ ∈ Cs,
the list of functions in ΔC′.

Space bound By Lemmas 6.3 and 6.4, both, Db and Ds, use linear space. The data

structure representing each cell C ∈ Cb has size O(|ΔC |) = O(logτ N), and the number of

cells in Cb is O(N/ logτ N). Thus, the representation of Cb uses linear space. Similarly, the

conflict list of each cell C ′ ∈ Cs can be stored in O(logN) space, and there are O(N/ logN)

such cells, that is, the representation of Cs uses linear space. By summing these space bounds,

we obtain that the entire data structure uses linear space.

Query procedure Given a query point q, we first query Db to see whether q is polynomial

(K ≥ N1−δ/2c) and, if so, obtain the desired approximation of K. If this fails, we try Ds.

If this also fails, that is, K ≤ logτ N , then q ∈ Cb. In this case, we query L(Cs) to decide

whether q ∈ Cs and, if so, determine the cell C ′ ∈ Cs that contains q. If q ∈ Cs, we scan ΔC′

100

N1−δ/2c

logτ N

log N

Db

Ds

Cs

Cb

C

C′

DC

ΔC′

Figure 6.4: For queries above the (N1−δ/2c)-level, Db is used to answer the query. For queries
between the (logτ N)-level and the (N1−δ/2c)-level, Ds is used. For queries between Cs and
Cb, L(Cb) is used to locate the cell C ∈ Cb containing the query point, and the final answer
is obtained using DC . For queries contained in Cs, L(Cs) is used to locate the cell C ′ ∈ Cs
containing the query point, and the final answer is obtained by scanning ΔC′.

to count the number of functions passing below q. If q �∈ Cs, we query L(Cb) to find the cell

C ∈ Cb that contains q and then use DC to obtain the desired approximation of K. (As we

argue next, the query on DC does not fail.)

Correctness By Lemmas 6.3 and 6.4, if one of the queries on Db and Ds succeeds, it

reports a 2c+1-approximation of K. As already observed, if both queries fail, then q ∈ Cb.
If q ∈ Cs, then all functions passing below q belong to ΔC′ , where C ′ is the cell of Cs that

contains q; thus, scanning ΔC′ in this case allows us to determine K exactly. If q �∈ Cs, then
K ≥ logN . This implies in particular that q is a polylogarithmic query for the conflict list

ΔC of the cell C of Cb that contains q. Hence, the query on DC does not fail in this case and

reports a 2c+1-approximation of K.

Query bound We divide the analysis of the query cost into polynomial queries and sub-

polynomial queries. If K ≥ N1−δ/2c, the query on Db succeeds and takes O(logB(N/K))

block transfers, by Lemma 6.3. Since no further queries are performed after a successful

query on Db, this shows that polynomial queries can be answered using O(logB(N/K))

block transfers.

If K < N1−δ/2c, the cost of the query procedure is bounded by the cost of one query

on each of Db, Ds, L(Cb), and L(Cs), plus the cost of querying the approximate count-

ing structure DC associated with a cell C of Cb or scanning the conflict list ΔC′ of a cell

101

C ′ of Cs. Querying any of the point location or approximate counting structures takes

O(logB N) block transfers, by Lemmas 6.3 and 6.4 and by condition (ii). Scanning ΔC′ takes

O((logN)/B) = O(logB N) block transfers, as |ΔC′| = O(logN). Hence, the total query

cost for sub-polynomial queries is O(logB N) block transfers. Since K < N1−δ/2c, however,

we have O(logB N) = O
(
logB(N

δ)
)
= O(logB(N/K)); that is, the query procedure achieves

the query bound claimed in Lemma 6.5 in this case as well.

6.2.5 Applications

By verifying that halfspace range counting and dominance counting satisfy conditions (i)–

(iii), we obtain the following result as an immediate consequence of Theorem 6.1.

Theorem 6.6. There exist cache-oblivious data structures that use O(N(1 + ε−2 log ε−1))

space and respectively support (1 + ε)-approximate 3-d halfspace range counting queries and

approximate 3-d dominance counting queries using O(logB(N/K) + (ε−2/B) log ε−1) block

transfers and O(log(N/K) + ε−2 log ε−1) time in the worst case.

Proof. The dual problem to 3-d halfspace range counting is to count all the planes in a set F
that pass below a query point q [59]. It is well known that the lower envelope of a set of N lin-

ear functions corresponds to the convex hull of the points dual to the functions and, thus, has

worst-case complexity O(N) [59]. Therefore, the set F of planes satisfies condition (i′) and,

hence, condition (i). In fact, halfspace range searching was the problem used by Matoušek

to introduce the notion of shallow cuttings [94]. A structure satisfying condition (ii) can be

obtained by projecting the cells of the given shallow cutting into the plane and preprocessing

the resulting planar straight-line subdivision for point location queries (see [7, 45]). Using

the linear-space cache-oblivious planar point location structure by Bender et al. [37], point

location queries on this arrangement can be answered using O(logB N) block transfers. The

same data structure can be used to satisfy condition (iii).

For 3-d dominance counting, we can represent every input point p using a range p con-

taining all points that dominate p; see Figure 6.5(b). The boundary of this range is not

a totally defined function. However, a small perturbation turns the boundary of p into a

totally defined function composed of three linear functions; see Figure 6.5(c). This allows us

to phrase a dominance query with a query point q as identifying all such boundary functions

that pass below q. Thus, our framework can be applied to dominance reporting as well, if

102

q

p1

p2

p3

(a)

p1

p2

p3 q

(b)

q

p1

p2

p3

(c)

Figure 6.5: Reduction of dominance queries to aboveness queries in 2-d. (The construction in
3-d is identical, except that the last step requires two 45◦-rotations.) (a) A point set (white)
and a query range defined by the black corner point q. Points p1 and p2 are contained in the
query range; p3 is not. (b) Piecewise linear functions corresponding to the white points. q is
a above the functions defined by query points p1 and p2, but not above the one defined by
p3. (c) Rotating the figure 45◦ to the left makes all functions totally defined and does not
change aboveness.

we can verify that any collection of such boundary functions satisfies conditions (i)–(iii). It

is not difficult to show, however, that the lower envelope of this set of functions has linear

complexity (see, e.g., [2]). Thus, conditions (i′) and (i) are satisfied once again. Further-

more, as with halfspace queries, conditions (ii) and (iii) reduce to point location in a planar

straight-line subdivision [2] and, hence, can be satisfied using the point location structure

by Bender et al.

6.3 Range Reporting

We can use the approximate range counting structure provided by Theorem 6.1 as a building

block to quite easily obtain a cache-oblivious data structure that answers range reporting

queries for any problem that fits in our framework. This data structure uses O(N logN)

space and achieves the optimal query bound.

Given a set F of N functions satisfying conditions (i)–(iii), such a data structure can be

obtained as follows. For 0 ≤ i ≤ logN , let Ci be a shallow cutting for the (≤ 2i)-level of F .
For each cell C ∈ Ci, we store the conflict list ΔC contiguously. Since Ci contains O(N/2i)

cells and each cell has a conflict list of size O(2i), the representation of each shallow cutting

Ci uses linear space. As there are logN shallow cuttings, the total space consumption is

O(N logN). Finally, we add a 2-approximate counting structure for F as in Theorem 6.1,

as well as a point location structure L(Ci) for each shallow cutting Ci. This adds only O(N)

103

to the total space bound.

To answer a range reporting query with a query point q, we query the counting structure

to obtain a 2-approximation K ′ of K. This incurs O(logB N) block transfers. Next we

use another O(logB N) block transfers to query L(Ci), for i = �logK ′�, and determine the

cell C ∈ Ci that contains the point q. Finally, we scan the conflict list ΔC and output all

functions in ΔC that pass below q. This incurs another O(1 + |ΔC | /B) = O(1 +K/B)

block transfers. The total query cost is thus O(logB N +K/B), and we obtain the following

theorem.

Theorem 6.7. For a given set F of N functions satisfying conditions (i)–(iii), there exists

a cache-oblivious data structure that uses O(N logN) space and supports range reporting

queries using O(logB N +K/B) block transfers, where K is the output size of the query.

Following the discussion in Section 6.2.5, this immediately implies the following corollary.

Corollary 6.8. There exist cache-oblivious data structures that use O(N logN) space and

support 3-d dominance reporting and 3-d halfspace range reporting queries using

O(logB N +K/B) block transfers.

Using the reductions of Section 2.4.1, Corollary 6.8 immediately implies further results

on cache-oblivious 3-sided range reporting and circular range reporting. Moreover, the con-

struction of Theorem 6.7 can also be used to obtain a cache-oblivious data structure for

K-nearest neighbour searching in the plane: using the reduction from circular range re-

porting to 3-d halfspace range reporting of Lemma 2.3, a K-nearest neighbour query in the

plane can be converted into the problem of reporting the K lowest planes in 3-d stabbed

by a vertical line �; we can identify these planes using O(logB N +K/B) block transfers by

identifying the shallow cutting Ci with i = �logK�, using L(Ci) (which is a planar point

location structure on the xy-projection of Ci) to find a cell C ∈ Ci stabbed by �, and finally

applying a linear-time selection algorithm (e.g., see [58, Chapter 9]) to ΔC to find the K

lowest planes in ΔC stabbed by �. Except for 3-sided range reporting, similar results were

not known in the cache-oblivious model before.

Corollary 6.9. There exist cache-oblivious data structures that use O(N logN) space and

achieve the optimal query bound of O(logB N +K/B) block transfers for 3-sided and circular

range reporting in the plane, and for 2-d K-nearest neighbour searching.

104

The final consequence of Corollary 6.8 is the first cache-oblivious data structure for 3-d

orthogonal range reporting using the optimal query bound. This structure is obtained using

a standard reduction of this problem to 3-d dominance reporting [56].

Corollary 6.10. There exists a cache-oblivious 3-d range reporting structure that uses

O
(
N log4N

)
space and supports queries using O(logB N +K/B) block transfers.

6.4 Approximate Conflict Lists

For the construction of the δ-approximate conflict lists in Lemma 6.2, we use the notion of

an ε-approximation from VC-dimension theory. A set system (S,R) consists of a base set

S and a collection R ⊆ 2S of subsets of S. An ε-approximation of (S,R) is a subset S̃ ⊆ S

such that ∣∣∣∣∣∣
∣∣∣S̃ ∩ R∣∣∣∣∣∣S̃∣∣∣ − |R||S|

∣∣∣∣∣∣ ≤ ε,

for all R ∈ R.

The conflict list ΔC of a cell C defines a set system (ΔC ,RC), where RC = {Rp | p ∈ R
3}

and Rp is the set of functions in ΔC that pass below the point p. We choose the δ-approximate

conflict list Δ̃C of the cell C to be a (δ/2)-approximation of the set system (ΔC ,RC). For a

query point q ∈ C, its level is K = |Rq|, and its level in Δ̃C is K̃ :=
∣∣∣Rq ∩ Δ̃C

∣∣∣. Since Δ̃C

is a (δ/2)-approximation of ΔC , we have K − (δ/2) |ΔC | ≤ K̃ |ΔC | /
∣∣∣Δ̃C

∣∣∣ ≤ K + (δ/2) |ΔC |,

and the value K ′ := K̃ |ΔC | /
∣∣∣Δ̃C

∣∣∣+ (δ/2) |ΔC | satisfies K ≤ K ′ ≤ K + δ |ΔC |, which is the

approximation of K we require in Lemma 6.2.

By results from [97, 118] we can find a (δ/2)-approximation of (ΔC ,RC) of size

O(δ−2 log δ−1) for every conflict list ΔC . Vapnik and Chervonenkis showed that every set

system of constant VC-dimension has an ε-approximation of size O(ε−2 log ε−1) [118]. The

set system defined by a set of algebraic functions of constant degree has constant VC-

dimension [97].

Chapter 7

Conclusions

In this thesis we have outlined the natural importance of range searching problems, and

the emerging importance of data locality in data structures for solving them. We have

discussed practical heuristic data structures, as well as theoretically optimal data structures

in the cache-oblivious model. We have also explored the problem in depth in the cache-

oblivious model providing a strong space separation result between the I/O model and the

cache-oblivious model.

On the heuristic side of things we have explored the use of space-filling curves, notably

the Hilbert curve. We reverse engineered Butz’s algorithm presenting it in a much more

intuitive and rigorous geometric setting. We identified a common short-coming in regular

usage which either imposes an logN -factor time overhead, or an O
(
mn
X

)
-space overhead

when sorting data sets by Hilbert curve position. Couching Butz’s algorithm in a geometric

setting permits a key insight into the nature of this redundancy. We introduced the novel

idea of a compact Hilbert index, as well as efficient algorithms for computing them. These

indices allow for sorting by Hilbert curve position in optimal space and time complexity.

Experimental results have validated our theorized improvements, and have shown that our

implementation is able to compete with the best existing implementations. Since its initial

publication the software developed as a part of this research has been adopted by several

projects.

For the problem of space-filling curves, there remain many interesting questions. Our

approach to compact Hilbert indices breaks one aspect of the fundamental behaviour of

Hilbert curves. We were interested in preserving exactly the ordering provided by the full

Hilbert curve, thus the generated compact curves no longer take unit step sizes between

every two successive points. It would be interesting to explore alternative techniques that

preserve this property rather than the original ordering. Similarly, it would be interesting

to generalize the ideas of compact Hilbert indices to input hyperboxes whose sidelengths are

not powers of two. In a recent paper Haverkort [72] explores why some space-filling curves

105

106

behave better than others at preserving data locality though the exploration of Arwwid

numbers; it would be interesting to determine and compare the Arwwid numbers of various

competing compact space-filling curves.

We also explored range searching in the cache-oblivious model, providing a general frame-

work for constructing cache-oblivious data structures for approximate range counting and

exact range reporting for range searching problems that have appropriate shallow cuttings.

This includes 3-sided range searching, for which matching results were obtained before using

different techniques, as well as 3-d dominance searching and 3-d halfspace range searching,

for which no such cache-oblivious structures were previously known.

The obtained counting structures use linear space, while the reporting structures use

O(N logN) space, which is a logN factor away from the space needed to obtain equivalent

query complexities in internal memory or in the I/O model. However, we also showed that

it is in fact impossible to achieve the optimal query bound of O(logB N +K/B) for these

range reporting problems using linear space.

Our lower bound result shows an Ω((log logN)ε) gap between the space bounds of range

reporting data structures with optimal query bounds in the I/O and CO models. While

previous separation results between the two models had been obtained (with considerable

technical difficulty and using sophisticated techniques), our result is the first one that proves

a gap that grows with the input size. Our proof of the lower bound continues to hold even if

the data structure is aware of the block sizes we use. That is, the lower bound holds even for

cache-aware multi-level memory hierarchy models. In that case, however, our proof makes

the somewhat unrealistic assumption that the memory hierarchy has
√
logN levels.

While we have made progress on the problems we have considered, there are still questions

left open. Most obviously, the gap between the range searching data structures of Chapter 6

and the lower bound of Chapter 5 remains open. Recent results by Afshani and Zeh [11]

have extended the work presented here, tightening the lower bound from Ω(N(log logN)ε)

to Ω(N(logN)ε)1. The same paper uses the approximate counting structure of Section 6.2

as the basis of an O
(
N
√
logN log logN

)
-space structure for optimal 3-d dominance and 3-

sided range reporting, only an O(log logN)-factor away from matching the tightened lower

bound. These results have narrowed the gap even further, but it still remains open. It seems

plausible that the lower bound of O(N logεN) space should be achievable for these problems,

1The proof is quite similar but starts with ‘harder’ point and query sets that have a natural ‘depth’ of
Ω(logN) rather than Ω(log logN).

107

which would close the gap completely.

Our reporting structures follow the standard framework of cache-oblivious geometric

search structures: obtain an approximation of the output size of the query and then query

the appropriate level in a multi-level reporting structure whose levels are tailored to support

different output sizes. Since our counting structures use linear space and provide good

enough approximations of the output size, the main challenge in obtaining more space-

efficient cache-oblivious range reporting structures is to reduce the space required by such

structures that know the output size. The recent results by Afshani and Zeh [11] succeed

in this task for 3-d dominance and 3-sided range reporting, but the approach is limited to

these particular problems and does not appear easily generalizable. It also does not address

the fundamental issue of secondary data structures in the CO model, which remains an

interesting open problem.

This thesis presents a comprehensive review of current heuristic, applied and theoretical

results for range searching data structures with cache locality, and introduces new results

for each. These results have already formed the basis for further improvements [11], and it

is hoped that the techniques and results developed in this thesis will continue to see use.

Bibliography

[1] David J. Abel and David M. Mark. A comparative analysis of some two-dimensional
orderings. International Journal of Geographic Information Systems, 4(1):21–31, Jan-
uary 1990.

[2] Peyman Afshani. On dominance reporting in 3D. In Proceedings of the 16th European
Symposium on Algorithms, volume 5193 of Lecture Notes in Computer Science, pages
41–51. Springer-Verlag, 2008.

[3] Peyman Afshani. On Geometric Range Searching, Approximate Counting and Depth
Problems. PhD thesis, University of Waterloo, September 2008.

[4] Peyman Afshani, Lars Arge, and Kasper Dalgaard Larsen. Orthogonal range reporting
in three and higher dimensions. In FOCS’09: Proceedings of the 50th IEEE Symposium
on Foundations of Computer Science, pages 149–158, 2009.

[5] Peyman Afshani, Lars Arge, and Kasper Dalgaard Larsen. Orthogonal range reporting:
query lower bounds optimal structures in 3-d and higher dimensional improvements.
In SOCG’10: Proceedings of the 26th ACM Symposium on Computational Geometry,
pages 240–246, 2010.

[6] Peyman Afshani and Timothy M. Chan. On approximate range counting and depth.
Discrete and Computational Geometry, 42:3–21, 2009.

[7] Peyman Afshani and Timothy M. Chan. Optimal halfspace range reporting in three
dimensions. In Proceedings of the 20th ACM-SIAM Symposium on Discrete Algorithms,
pages 180–186, 2009.

[8] Peyman Afshani, Chris H. Hamilton, and Norbert Zeh. Cache-oblivious range report-
ing with optimal queries requires superlinear space. In Proceedings of the 25th ACM
Symposium on Computational Geometry, pages 277–286, June 2009.

[9] Peyman Afshani, Chris H. Hamilton, and Norbert Zeh. A general approach for cache-
oblivious range reporting and approximate range counting. In Proceedings of the 25th
ACM Symposium on Computational Geometry, pages 287–295, June 2009.

[10] Peyman Afshani, Chris H. Hamilton, and Norbert Zeh. A general approach for cache-
oblivious range reporting and approximate range counting. Computational Geometry:
Theory and Applications, 43(8):700–712, October 2010.

[11] Peyman Afshani and Norbert Zeh. Improved space bounds for cache-oblivious range
reporting. In SODA’11: Proceedings of the 22nd ACM-SIAM Symposium on Discrete
Algorithms, pages 1745–1758, 2011.

108

109

[12] Pankaj K. Agarwal. Range searching. In Jacob E. Goodman and Joseph O’Rourke,
editors, CRC Handbook of Discrete and Computational Geometry. CRC Press, Inc.,
2004.

[13] Pankaj K. Agarwal, Lars Arge, Andrew Danner, and Bryan Holland-Minkley. Cache-
oblivious data structures for orthogonal range searching. In Proceedings of the 19th
ACM Symposium on Computational Geometry, pages 237–245, 2003.

[14] Pankaj K. Agarwal, Lars Arge, Jeff Erickson, Paulo G. Franciosa, and Jeffrey Scott
Vitter. Efficient searching with linear constraints. Journal of Computer and System
Sciences, 61(2):194–216, 2000.

[15] Pankaj K. Agarwal, Boris Aronov, Timothy M. Chan, and Micha Sharir. On levels
in arrangements of lines, segments, planes, and triangles. Discrete and Computational
Geometry, Volume 19:315–331, 1998.

[16] Pankaj K. Agarwal, Boris Aronov, and Micha Sharir. On levels in arrangements of lines,
segments, planes, and triangles. In SCG’97: Proceedings of the 13th ACM Symposium
on Computational Geometry, pages 30–38. ACM, 1997.

[17] Pankaj K. Agarwal, Alon Efrat, and Micha Sharir. Vertical decomposition of shallow
levels in 3-dimensional arrangements and its applications. SIAM Journal on Comput-
ing, 29(3):912–953, 2000.

[18] Pankaj K. Agarwal, Eran Nevo, János Pach, Rom Pinchasi, Micha Sharir, and Shakhar
Smorodinsky. Lenses in arrangements of pseudo-circles and their applications. Journal
of the ACM, 51(2):139–186, 2004.

[19] Pankaj K. Agarwal and Micha Sharir. Pseudo-line arrangements: duality, algorithms,
and applications. SIAM Journal on Computing, 34(3):526–552, 2005.

[20] Alok Aggarwal, Bowen Alpern, Ashok K. Chandra, and Marc Snir. A model for
hierarchical memory. In STOC’87: Proceedings of the 19th Annual ACM Symposium
on Theory of Computing, pages 305–314, May 1987.

[21] Alok Aggarwal and Jeffrey Scott Vitter. The input/output complexity of sorting and
related problems. Communications of the ACM, 31(9):1116–1127, September 1988.

[22] Bowen Alpern, Larry Carter, and Ephraim Feig. Uniform memory hierarchies. In
FOCS’90: Proceedings of the 31st IEEE Symposium on Foundations of Computer Sci-
ence, pages 600–608, October 1990.

[23] Charles J. Alpert and Andrew B. Kahng. Multi-way partitioning via spacefilling curves
and dynamic programming. In Proceedings of the 31st Annual Conference on Design
Automation, pages 652–657, San Diego, California, June 6-10 1994.

[24] Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. New data structures for
orthogonal range searching. In FOCS’00: Proceedings of the 41st IEEE Symposium on
Foundations of Computer Science, page 198. IEEE Computer Society, 2000.

110

[25] Lars Arge, Gerth Stølting Brodal, Rolf Fagerberg, and Morten Laustsen. Cache-
oblivious planar orthogonal range searching and counting. In Proceedings of the 21st
ACM Symposium on Computational Geometry, pages 160–169, 2005.

[26] Lars Arge, Mark de Berg, and Herman J. Haverkort. Cache-oblivious R-trees. In
Proceedings of the 21st ACM Symposium on Computational Geometry, pages 170–179,
2005.

[27] Lars Arge, Mark de Berg, Herman J. Haverkort, and Ke Yi. The priority R-tree: A
practically efficient and worst-case optimal R-tree. In Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data, pages 347–358, 2004.

[28] Lars Arge, Vasilis Samoladas, and Jeffrey Scott Vitter. On two-dimensional indexabil-
ity and optimal range search indexing. In PODS’99: Proceedings of the 18th Symposium
on Principles of Database Systems, pages 346–357. ACM, 1999.

[29] Lars Arge, Vasilis Samoladas, and Ke Yi. Optimal external memory planar point
enclosure. In ESA’04: Proceedings of the 14th European Symposium on Algorithms,
pages 40–52, 2004.

[30] Lars Arge and Norbert Zeh. Simple and semi-dynamic structures for cache-oblivious
orthogonal range searching. In Proceedings of the 22nd ACM Symposium on Compu-
tational Geometry, pages 158–166, 2006.

[31] Boris Aronov and Sariel Har-Peled. On approximating the depth and related prob-
lems. In SODA’05: Proceedings of the 16th ACM-SIAM Symposium on Discrete Al-
gorithms, pages 886–894. Society for Industrial and Applied Mathematics, 2005. see
http://valis.cs.uiuc.edu/~sariel/research/papers/04/depth/

[32] Boris Aronov, Sariel Har-Peled, and Micha Sharir. On approximate halfspace range
counting and relative epsilon-approximations. In SCG’07: Proceedings of the 23rd
ACM Symposium on Computational Geometry, pages 327–336. ACM, 2007.

[33] John J. Bartholdi III and Paul Goldsman. Vertex-labeling algorithms for the Hilbert
spacefilling curve. Software–Practice and Experience, 31(5):395–408, May 2001.

[34] Rudolf Bayer and Edward M. McCreight. Organization and maintenance of large
ordered indices. Acta Informatica, 1:173–189, 1972.

[35] Bruno Becker, Stephan Gschwind, Thomas Ohler, Bernhard Seeger, and Peter Wid-
mayer. An asymptotically optimal multiversion B-tree. The VLDB Journal, 5(4):264–
275, 1996.

[36] Michael A. Bender, Gerth Stølting Brodal, Rolf Fagerberg, Dongdong Ge, Simai He,
Haodong Hu, John Iacono, and Alejandro López-Ortiz. The cost of cache-oblivious
searching. In Proceedings of the 44th IEEE Symposium on Foundations of Computer
Science, pages 271–282, 2003.

111

[37] Michael A. Bender, Richard Cole, and Rajeev Raman. Exponential structures for effi-
cient cache-oblivious algorithms. In Proceedings of the 29th International Colloquium
on Automata, Languages and Programming, volume 2380 of Lecture Notes in Computer
Science, pages 195–207. Springer-Verlag, 2002.

[38] Christian Böhm, Stefan Berchtold, and Daniel A. Keim. Searching in high-dimensional
spaces: Index structures for improving the performance of multimedia databases. ACM
Computing Surveys, 33(3):322–373, September 2001.

[39] Greg Breinholt and Christoph Schierz. Algorithm 781: Generating Hilbert’s space-
filling curve by recursion. ACM Transactions on Mathematical Software, 24(2):184–
189, June 1998.

[40] Gerth Stølting Brodal and Rolf Fagerberg. On the limits of cache-obliviousness. In
Proceedings of the 35th ACM Symposium on Theory of Computing, pages 307–315,
2003.

[41] Gerth Stølting Brodal, Rolf Fagerberg, and Kristoffer Vinther. Engineering a cache-
oblivious sorting algorithm. ACM Journal of Experimental Algorithmics, 12, June
2008. Article 2.2.

[42] Arthur R. Butz. Convergence with Hilbert’s space-filling curve. Journal of Computer
and System Sciences, 3(2):128–146, May 1969.

[43] Arthur R. Butz. Alternative algorithm for Hilbert’s space-filling curve. IEEE Trans-
actions on Computers, pages 424–426, April 1971.

[44] Timothy M. Chan. Random sampling, halfspace range reporting, and construction of
(≤ k)-levels in three dimensions. In FOCS’98: Proceedings of the 39th IEEE Sympo-
sium on Foundations of Computer Science, pages 586–595, 1998.

[45] Timothy M. Chan. Low-dimensional linear programming with violations. SIAM Jour-
nal on Computing, 34:879–893, 2000.

[46] Timothy M. Chan. Random sampling, halfspace range reporting, and construction of
(≤ k)-levels in three dimensions. SIAM Journal on Computing, 30(2):561–575, 2000.

[47] Timothy M. Chan. On levels in arrangements of curves. Discrete and Computational
Geometry, 29:375–393, 2003.

[48] Timothy M. Chan. On levels in arrangements of curves, II: A simple inequality and
its consequences. Discrete and Computational Geometry, 34:11–24, 2004.

[49] Timothy M. Chan. On levels in arrangements of surfaces in three dimensions. In
SODA’05: Proceedings of the 16th annual ACM-SIAM symposium on Discrete algo-
rithms, pages 232–240. Society for Industrial and Applied Mathematics, 2005.

112

[50] Timothy M. Chan. On levels in arrangements of curves, III: further improvements. In
SCG’08: Proceedings of the 24th ACM Symposium on Computational Geometry, pages
85–93, 2008.

[51] Siddhartha Chatterjee, Alvin R. Lebeck, Praveen K. Patnala, and Mithuna Thot-
tethodi. Recursive array layouts and fast parallel matrix multiplication. In Proceedings
of the Eleventh Annual ACM Symposium on Parallel Algorithms and Architectures,
SPAA 1999, pages 222–231, Saint-Malo, France, June 27-30 1999.

[52] Bernard Chazelle. A functional approach to data structures and its use in multidimen-
sional searching. SIAM Journal on Computing, 17(3):427–462, 1988.

[53] Bernard Chazelle. Lower bounds on the complexity of polytope range searching. Jour-
nal of the American Mathematical Society, 2:637–666, 1989.

[54] Bernard Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete and Compu-
tational Geometry, 9(2):145–158, 1993.

[55] Bernard Chazelle. Cuttings. In Handbook of Data Structures and Applications. Chap-
man and Hall/CRC, 2005.

[56] Bernard Chazelle and Leonidas J. Guibas. Fractional cascading: II. applications. Al-
gorithmica, 1:163–191, 1986.

[57] Kenneth L. Clarkson and Peter W. Shor. Applications of random sampling in compu-
tational geometry, II. Discrete and Computational Geometry, 4:387–421, 1989.

[58] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms. The MIT Press, 2nd edition, 2001.

[59] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Compu-
tational Geometry: Algorithms and Applications. Springer-Verlag, 1997.

[60] Frank Dehne, Todd Eavis, and Andrew Rau-Chaplin. Parallel multi-dimensional RO-
LAP indexing. In CCGrid’03: Proceedings of the 2003 IEEE International Symposium
on Cluster Computing and the Grid, pages 86–93, 2003.

[61] Christian A. Duncan, Michael T. Goodrich, and Stephen Kobourov. Balanced aspect
ratio trees: combining the advantages of k-d trees and octrees. Journal of Algorithms,
38(1):303–333, 2001.

[62] Paul Erdős, László Lovász, Gustavus J. Simmons, and Ernst G. Straus. Dissection
graphs of planar point sets. In Jagdish N. Srivastava, editor, A Survey of Combinatorial
Theory, pages 139–154. North-Holland, 1973.

[63] James A. Fill and Svante Janson. The number of bit comparisons used by quicksort: an
average-case analysis. In SODA’04: Proceedings of the 15th ACM-SIAM Symposium
on Discrete Algorithms, pages 300–307, 2004.

113

[64] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.
Cache-oblivious algorithms. In Proceedings of the 40th IEEE Symposium on Foun-
dations of Computer Science, pages 285–297, 1999.

[65] Frank Gray. Pulse code communication. US Patent Number 2,632,058, March 17 1953.

[66] Roberto Grossi and Giuseppe F. Italiano. Efficient cross-tree for external memory. In
James M. Abello and Jeffrey Scott Vitter, editors, External Memory Algorithms and
Visualization, pages 87–106. American Mathematical Society, 1999.

[67] Roberto Grossi and Giuseppe F. Italiano. Efficient splitting and merging algorithms
for order decomposable problems. Information and Computation, 154(1):1–33, 1999.

[68] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In
Proceedings of the 1984 ACM SIGMOD International Conference on Management of
Data, pages 47–57, 1984.

[69] Chris H. Hamilton and Andrew Rau-Chaplin. Compact Hilbert Indices for multi-
dimensional data. In CISIS’07: Proceedings of the 1st International Conference on
Complex, Intelligent and Software Intensive Systems, pages 139–146, 2007.

[70] Chris H. Hamilton and Andrew Rau-Chaplin. Compact Hilbert Indices: Space-filling
curves for domains with unequal side lengths. Information Processing Letters, 105:155–
163, February 2008.

[71] Sariel Har-Peled and Micha Sharir. Relative ε-approximations in geometry, 2006. see
http://valis.cs.uiuc.edu/~sariel/research/papers/06/relative/

[72] Herman J. Haverkort. Recursive tilings and space-filling curves with little fragmenta-
tion. In EuroCG’10: Proceedings of the 26th European Workshop on Computational
Geometry, pages 185–189, 2010. Full manuscript acommpanying original abstract at
http://arxiv.org/abs/1002.1843.

[73] Joseph M. Hellerstein, Elias Koutsoupias, and Christos H. Papadimitriou. On the
analysis of indexing schemes. In Proceedings of the 16th ACM Symposium on Principles
of Database Systems, pages 249–256, 1997.

[74] David Hilbert. Über die stetige Abbildung einer Linie auf ein Flächenstück. Mathe-
matische Annalen, 38:459–460, 1891.

[75] Guohua Jin and John M. Mellor-Crummey. SFCGen: A framework for efficient gen-
eration of multi-dimensional space-filling curves by recursion. ACM Transactions on
Mathematical Software, 31(1):120–148, March 2005.

[76] Guohua Jin, John M. Mellor-Crummey, and Robert J. Fowler. Increasing temporal
locality with skewing and recursive blocking. In Proceedings of the 2001 ACM/IEEE
Conference on Supercomputing, page 43, Denver, Colorado, November 10-16 2001.

114

[77] Maher Kaddoura, Chao-Wei Ou, and Sanjay Ranka. Partitioning unstructured com-
putational graphs for nonuniform and adaptive environments. IEEE Parallel and Dis-
tributed Technology: Systems and Technology, 3(3):63–69, September 1995.

[78] Ibrahim Kamel and Christos Faloutsos. Hilbert R-tree: An improved R-tree using
fractals. In Proceedings of the Twentieth International Conference on Very Large
Databases, pages 500–509, Santiago, Chile, September 1994.

[79] K. V. Ravi Kanth and Ambuj K. Singh. Optimal dynamic range searching in non-
replicated index structures. In Proceedings of the 7th International Conference on
Database Theory, volume 1540 of Lecture Notes in Computer Science, pages 257–276.
Springer-Verlag, 1999.

[80] Haim Kaplan, Edgar A. Ramos, and Micha Sharir. The overlay of minimization dia-
grams in a randomized incremental construction. Manuscript, 2007.

[81] Haim Kaplan, Edgar A. Ramos, and Micha Sharir. Range minima queries with respect
to a random permutation, and approximate range counting. Discrete and Computa-
tional Geometry, 2011. to appear.

[82] Haim Kaplan and Micha Sharir. Randomized incremental constructions of three-
dimensional convex hulls and planar Voronoi diagrams, and approximate range count-
ing. In Proceedings of the 17th ACM-SIAM Symposium on Discrete Algorithms, pages
484–493. ACM Press, 2006.

[83] Naoki Katoh and Takeshi Tokuyama. -levels of concave surfacesk. Discrete and Com-
putational Geometry, 27:567–584, 2002.

[84] David Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Comput-
ing, 12:28–35, 1983.

[85] Elias Koutsoupias and David Scot Taylor. Tight bounds for 2-dimensional indexing
schemes. In Proceedings of the 17th ACM Symposium on Principles of Database Sys-
tems, pages 52–58, 1998.

[86] Claude-Henri Lamarque and Frédéric Robert. Image analysis using space-filling curves
and 1d wavelet bases. Pattern Recognition, 29(8):1309–1322, August 1996.

[87] Jonathan K. Lawder. Calculations of mappings between one and n-dimensional val-
ues using the Hilbert space-filling curve. Technical Report JL1/00, Birkbeck College,
University of London, August 2000.

[88] Jonathan K. Lawder and Peter J. H. King. Querying multi-dimensional data indexed
using the Hilbert space-filling curve. SIGMOD Record, 30(1):19–24, March 2001.

[89] László Lovász. On the number of halving lines. Annal. Univ. Scie. Budapest. de
Rolando Eötvös Nominatae, Sectio Math., 14:107–108, 1971.

115

[90] Christos Makris and Athanasios Tsakalidis. Algorithms for three-dimensional domi-
nance searching in linear space. Information Processing Letters, 66(6):277–283, 1998.

[91] Adam Marcus and Gábor Tardos. Intersection reverse sequences and geometric appli-
cations. Journal of Combinatorial Theory, Series A, 113(4):675–691, 2006.

[92] Yossi Matias and Adi Shamir. A video scrambling technique based on space filling
curves. In Proceedings of Advances in Cryptology - CRYPTO’87, pages 398–417, Santa
Barbara, California, August 16-20 1987.

[93] Jǐri Matoušek. Efficient partition trees. Discrete and Computational Geometry,
8(3):315–334, 1992.

[94] Jǐri Matoušek. Reporting points in halfspaces. Computational Geometry: Theory and
Applications, 2(3):169–186, 1992.

[95] Jǐri Matoušek. Range searching with efficient hierarchical cuttings. Discrete and Com-
putational Geometry, 10(2):157–182, 1993.

[96] Jǐri Matoušek. Geometric range searching. ACM Computing Surveys, 26:421–461,
1994.

[97] Jǐri Matoušek. Geometric set systems. European Congress of Mathematics, 2:1–27,
1998.

[98] Edward M. McCreight. Priority search trees. SIAM Journal on Computing, 14(2):257–
276, 1985.

[99] Baback Moghaddam, Kenneth J. Hintz, and Clayton V. Stewart. Space-filling curves
for image compression. In Proceedings of the First Annual SPIE Conference on Au-
tomatic Object Recognition, volume 1471, pages 414–421, Orlando, Florida, April 1-5
1991.

[100] Bongki Moon, Hosagrahar V. Jagadish, Christos Faloutsos, and Joel H. Saltz. Analysis
of the clustering properties of the Hilbert space-filling curve. Knowledge and Data
Engineering, 13(1):124–141, January 2001.

[101] Doug Moore. Fast Hilbert curve generation, sorting, and range queries.
see http://web.archive.org/web/20050212162158/http://www.caam.rice.edu/

~dougm/twiddle/Hilbert/, 1999.

[102] Edward A. Patrick, Douglas R. Anderson, and Friend K. Bechtel. Mapping multidi-
mensional space to one dimension for computer output display. IEEE Transactions on
Computers, 17(10):949–953, October 1968.

[103] Giuseppe Peano. Sur une courbe, qui remplit toute une aire plane. Mathematische
Annalen, 36:157–160, 1890.

116

[104] Rom Pinchasi and Radoa Radoicic. Topological graphs with no self-intersecting cycle
of length 4. In SCG’03: Proceedings of the 19th ACM Symposium on Computational
Geometry, pages 98–103. ACM, 2003.

[105] Loren K. Platzman and John J. Bartholdi III. Spacefilling curves and the planar
travelling salesman problem. Journal of the ACM, 36(4):719–737, October 1989.

[106] Octavian Procopiuc, Pankaj K. Agarwal, Lars Arge, and Jeffrey Scott Vitter. Bkd-
tree: A dynamic scalable kd-tree. In Proceedings of the 8th International Symposium
on Advances in Spatial and Temporal Databases, volume 2750 of Lecture Notes in
Computer Science, pages 46–65. Springer-Verlag, 2003.

[107] Subramanian Ramaswamy. The p-range tree: A new data structure for range searching
in secondary memory. In Proceedings of the 6th ACM-SIAM Symposium on Discrete
Algorithms, pages 378–387, 1995.

[108] Edgar A. Ramos. On range reporting, ray shooting and k-level construction. In
Proceedings of the 15th ACM Symposium on Computational Geometry, pages 390–399,
1999.

[109] John T. Robinson. The K-D-B tree: A search structure for large dimensional dy-
namic indexes. In Proceedings of the 1981 ACM SIGMOD International Conference
on Management of Data, pages 10–18, 1981.

[110] Vasilis Samoladas and Daniel P. Miranker. A lower bound theorem for indexing schemes
and its application to multidimensional range queries. In Proceedings of the 17th ACM
Symposium on Principles of Database Systems, pages 44–51, 1998.

[111] Cristina Schmidt and Manish Parashar. Enabling flexible queries with guarantees in
P2P systems. IEEE Internet Computing, 8(3):19–26, 2004.

[112] Cristina Schmidt, Manish Parashar, Wenjin Chen, and David J. Foran. Engineering a
peer-to-peer collaboratory for tissue microarray research. In CLADE’04: Proceedings
of the 2nd International Workshop on Challenges of Large Applications in Distributed
Environments, page 64, 2004.

[113] Micha Sharir, Shakhar Smorodinsky, and Gábor Tardos. An improved bound for k-sets
in three dimensions. Discrete and Computational Geometry, 26:195–204, 2001.

[114] Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list update
and paging rules. Communications of the ACM, 28(2):202–208, 1985.

[115] Hisao Tamaki and Takeshi Tokuyama. How to cut pseudoparabolas into segments.
Discrete and Computational Geometry, 19:265–290, 1998.

[116] Hisao Tamaki and Takeshi Tokuyama. A characterization of planar graphs by pseudo-
line arrangements. Algorithmica, 35:269–285, 2003.

117

[117] Spencer W. Thomas. Utah raster toolkit. Internet:
http://web.mit.edu/afs/athena/contrib/urt/src/urt3.1/urt-3.1b.tar.gz,
1991.

[118] Vladimir Vapnik and Alexey Chervonenkis. On the uniform convergence of relative
frequencies of events to their probabilities. Theory of Probability and its Applications,
16:264–280, 1971.

[119] Darren Erik Vengroff and Jeffrey Scott Vitter. Efficient 3-D range searching in external
memory. In Proceedings of the 28th ACM Symposium on Theory of Computing, pages
192–201. ACM, 1996.

[120] Jeffrey Scott Vitter. External memory algorithms and data structures: deal-
ing with massive data. ACM Computing Surveys, 33(2):209–271, 2001. see
http://www.cs.purdue.edu/~jsv/Papers/Vit.IO_survey.pdf

[121] John Wilkes and Chris Ruemmler. An introduction to disk drive modelling. IEEE
Computer, 27(3):17–28, 1994.

[122] Yuefeng Zhang and Robert E. Webber. Space diffusion: An improved parallel halfton-
ing technique using space-filling curves. In Proceedings of the 20th Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH 93, pages 305–312,
Anaheim, California, August 2-6 1993.

