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Abstract

Knowledge-driven problem solving demands ‘complete’ knowledge about the do-

main and its interpretation under different contexts. Knowledge Morphing aims

at a context-driven integration of heterogeneous knowledge sources—in order to

provide a comprehensive and networked view of all knowledge about a domain-

specific problem, pertaining to the context at hand. In this PhD thesis, we have

proposed a Semantic Web based framework, K-MORPH, for Knowledge Morph-

ing via Reconciliation of Contextualized Sub-ontologies. In order to realize our K-

MORPH framework, we have developed: (i) a sub-ontology extraction method

for generating contextualized sub-ontologies from the source ontologies pertinent to

the problem-context at hand; (ii) two ontology matching approaches: triple-based

ontology matching (TOM) and proof-based ontology matching (POM) for finding both

atomic and complex correspondences between two extracted contextualized sub-

ontologies; and (iii) our approach for resolving inconsistencies in ontologies by

generating minimal inconsistent resolve candidates (MIRCs), where removing any of

the MIRCs from the inconsistent ontology results in a maximal consistent sub-

ontology. Thus, K-MORPH performs knowledge morphing among ontology-

modelled knowledge sources and generates a comprehensive knowledge-base per-

tinent to the problem at hand by (a) extracting problem-specific knowledge com-

ponents from ontology-modelled knowledge sources using our sub-ontology ex-

traction method; (b) aligning and merging the extracted knowledge components

using our matching approaches; and (c) repairing inconsistencies in the morphed

knowledge by applying our approach for detecting and resolving inconsistencies.

We demonstrated the application of our K-MORPH framework in the healthcare

domain, whereK-MORPH generated a merged ontology for providing a compre-

hensive therapeutic knowledge-base for Urinary Tract Infections (UTI) by first (i)

extracting 20 contextualized sub-ontologies from various UTI ontologies, (ii) align-

ing and merging the extracted UTI sub-ontologies, and (iii) detecting and resolving

inconsistencies in the merged UTI ontology.
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Chapter 1

Introduction

Knowledge-driven problem solving demands ‘complete’ knowledge about the do-

main and its interpretation under different contexts [1]. However, complete knowl-

edge, especially as one holistic knowledge object, is rarely available in practice.

Therefore, problem solvers resort to and integrate relevant knowledge from mul-

tiple sources to formulate a knowledge object that is just sufficient for the given

problem context [2]. An example scenario in the healthcare domain, is where

a practitioner’s advice on a disease-specific scenario is carried out via different

reasoning strategies, consulting both strong and weak evidence-based medical

knowledge [3]. The importance of integrating multiple medical knowledge sources

can be realized in cases where a clinical solution from one medical knowledge

source is lacking, or another knowledge source can play a role in deriving alter-

native solutions. For instance, in the absence of explicit algorithms described in

a clinical practice guideline [3, 4], practitioners may need to consult with other

sources of relevant knowledge, such as previously recommended cases and/or the

expertise of domain experts recorded in problem solving scenarios [5, 6]. Hence a

context-driven integration of heterogeneous knowledge sources aims to provide

a comprehensive and networked view of all knowledge pertaining to a domain-

specific problem at hand.

1.1 Knowledge Sharing and Integration: Open Issues

The desirability of Knowledge Sharing and Knowledge Integration has been identi-

fied in the field of Knowledge Management (KM) [2, 7, 8] , where context-specific

knowledge integration was highlighted as one of the milestones to be achieved.

This desirability was initially acknowledge by Nonaka (1994, 1995) [9,10], through

exploring the dynamics of the inter-relationship between tacit and explicit knowl-

edge between individuals and groups. Nonaka focused on the relationships of

1
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communication between such knowledge types (via processes of socialization, ex-

ternalization, combination, and internalization) and viewed all such knowledge as

objects—in order to operationalize and combine tacit forms of knowledge [9].

At the same time, the demand for knowledge sharing and integration in KM

is also realized in various application domains, such as Life Sciences [11–13], E-

Business [14–17], Telecommunications [18], Government Security Services [19, 20],

Web Portals [21–24] and Marine Sciences [25]. In general, practitioners and domain

experts seek an intelligent medium for sharing their behavioural and operational

knowledge among other domain experts, in order to evolve a shared understand-

ing between groups, and also to adapt and update their local policies based on the

shared knowledge [2, 8, 26]. On the other hand, knowledge integration becomes

crucial when experts are aiming to build a comprehensive knowledge-base for var-

ious domain-specific and context-sensitive applications [2,12,13,17]. While aiming

towards integrating or sharing knowledge for different purposes and applications,

selecting relevant knowledge from large knowledge-bases [27, 28] can play an im-

portant role. By selecting relevant knowledge pertinent to the problem at hand,

integration or sharing of knowledge can be restricted only to the relevant knowl-

edge, as opposed to integrating large knowledge-bases and dealing with the un-

desired complexity of the integrated knowledge-base [28]. However, knowledge

selection from large knowledge bases is a non-trivial task [27, 28]. When selecting

knowledge from a knowledge source, the selected knowledge should not compro-

mised the overall consistency and completeness of the original knowledge source.

It is deemed required to make sure that the selected knowledge component must

also comply with all the integrity constraints defined in the original knowledge

source [28].

There have been various attempts in proposing frameworks and approaches

towards knowledge sharing and integration [12–26] (see Chapter 2 for further de-

tails). However, aiming towards a context-driven knowledge integration, the fol-

lowing challenges remain outstanding:

1. How to model the user-defined problem-context, in order to enable context-

driven knowledge sharing and integration?
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2. How to identify and extract knowledge components from available knowl-

edge sources pertinent to the given problem-context?

3. How to integrate heterogeneous knowledge components that are separately

modeled in terms of their individual structures, origins and functionalities?

4. How to ensure that an integration of extracted knowledge components is

carried out within a particular context?

5. How to detect and resolve inconsistencies in the integrated knowledge?

1.2 Knowledge Morphing

Knowledge morphing aims to formulate a comprehensive knowledge object, spe-

cific to a given context, through “the intelligent and autonomous fusion/integration

of contextually, conceptually and functionally related knowledge objects that may

exist in different representation modalities and formalisms, in order to establish a

comprehensive, multi-faceted and networked view of all knowledge pertaining to

a domain-specific problem” Abidi 2005 [29].

The need for knowledge morphing is motivated by the realization that inte-

gration of knowledge sources should be driven by the problem-context—i.e. select

and integrate only those knowledge fragments (within a knowledge source) that

are relevant to the problem [27, 28], as opposed to integrating the entire knowl-

edge source. A well-defined problem-context, therefore, determines the scope of

knowledge that is pertinent to the problem. For instance, in the domain of health-

care, clinical guidelines incorporate broad knowledge about the diagnosis, treat-

ment, prognosis and follow-up care for a particular disease [30]. For the con-

text of therapeutic decision support one needs only therapeutic knowledge, which

should be selected from multiple guidelines to formulate a comprehensive thera-

peutic knowledge-base [31]. We argue that the integration of the entire knowledge

source exacerbates the complexity of establishing knowledge interoperability be-

tween multiple knowledge sources [28]. Hence, knowledge morphing does not

deal with the complete integration of different knowledge sources; rather, it first

identifies relevant knowledge components among knowledge sources based on
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the problem-context, and then it integrates those components to build a compre-

hensive knowledge-base that provides a network-view of all knowledge applied

under the given problem-context.

1.3 Knowledge Representation and Morphing using Ontologies

A necessary step for knowledge morphing is to pursue knowledge formalization

in order to support domain-specific inferencing [32]. We believe Semantic Web

(SW) languages and standards can provide a framework for the semantic model-

ing and markup of knowledge, using its properties, its relations and its underly-

ing semantics [33]. In a SW framework, heterogeneous knowledge sources can be

represented and integrated as ontologies [32]. Knowledge representation via on-

tologies allows: (i) formalization of domain-specific knowledge [32]; (ii) conceptu-

alization of the knowledge along declarative and procedural dimensions [34]; (iii)

annotation of the knowledge based on an ontological model [35]; (iv) re-use and

evolution of the knowledge [36–38]; (v) use of standard terms and concepts [39,40];

and (vi) identification of similar knowledge components [41] that can potentially

be aligned [42] to achieve knowledge morphing.

Ontologies and contexts are used to model a domain with different views. On-

tologies define a shared model that provides a global perspective, whereas contexts

are used to realize a local aspect of a domain [43–45]. A contextualized ontology

deals with an adaptation of the ontology model to support a local view, and pro-

vides: (i) a specific interpretation of the ontology concepts, and (ii) an implemen-

tation of the procedural knowledge that can be applied in a particular context [46].

The Web Ontology Language (OWL) [47] is a language for defining and in-

stantiating Web ontologies. The OWL ontology may include descriptions of RDF

classes, properties and their instances [48]. OWL facilitates greater machine inter-

pretability of Web content than that supported by XML, RDF, and RDF Schema

(RDF-S) [48], by providing additional vocabulary along with a formal semantics

[49]. The OWL language provides three increasingly expressive sub-languages, de-

signed for modelling domain-specific ontologies [50,51]. Given an OWL ontology,

the OWL formal semantics specifies how to derive its logical consequences [49].

In order to enable knowledge morphing between knowledge sources, we argue
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Figure 1.1: Knowledge Morphing at Different Representation Levels

that the knowledge sources are required to be modelled as ontologies [32]. For ex-

ample, two different knowledge sources are represented in two different formats,

namely ontology and relational database (schema), respectively (as shown in Fig-

ure 1.1). In order to perform knowledge morphing among these two knowledge

sources, we argue that by first modeling the database schema in terms of ontologies

will lead to a better morphed knowledge-base. After transforming the database

schema into an ontology schema (Ontology B in Figure 1.1), more domain-specific

knowledge can be inferred using ontology-specific formal semantics [49]. Hence,

in order to enable knowledge morphing between the initially given Ontology A

and the transformed schema Ontology B, various ontology alignment and merging

approaches [41, 42] can play an effective role in merging these two ontologies and

generating a desired morphed knowledge-base.

1.4 The Role of Context in Knowledge Morphing

The term “context” is frequently employed in computer science literature, but its

meaning is mostly left to the reader’s understanding and its usage is considered as

implicit and intuitive [52, 53]. In order to discuss the role of context in the process

of knowledge morphing, we first need to have a clear understanding of the notion

of context. In the following subsections we will first present some informal defini-

tions for context from a number of perspectives, and then discuss an operational

definition of context and its role in knowledge morphing.
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1.4.1 What is Context?

When dealing with the notion of context, the focus in various interpretations [45,

52, 54, 55] remained on the acquisition and processing of contextual information;

while a clear definition of context was given secondary importance [56–58]. The

major drawback of this approach is the lack of generality, flexibility and exten-

sibility [59], which could be overcome by adopting a more generic model and a

semantic representation of context. Addressing the quite limited notions and early

definitions of context, Dey (2001) provided the following general definition, which

is probably the most widely accepted: “Context is any information that can be used

to characterize the situation of an entity. An entity is a person, place, or object that

is considered relevant to the interaction between the user and the application, in-

cluding the user and the applications themselves” Dey 2001 [60].

1.4.2 Problem-context in Knowledge Morphing

In our proposed knowledge morphing problem, the role of context is of major im-

portance, and makes our problem both equally challenging and interesting. For

knowledge morphing, we adopted the operational definition of context [61] to rep-

resent the user-intended context, i.e. problem-context. According to Zimmermann

et. al. [61], a knowledge source may provide five fundamental categories of con-

textual information: individuality, activity, location, time, and relations (as shown in

the right-side of Figure 1.2). Individuality deals with the problem-specific concepts

and properties described within the knowledge source itself. Activity covers all

the tasks in which the knowledge source may be involved in a particular context.

Other contextual information, such as location and time provide the context-specific

spatio-temporal axioms and constraints over the knowledge source. Finally, the re-

lations category represents any possible contextual compatibility between two (or

more) knowledge sources. Hence, for each knowledge source, the five main con-

textual categories may vary based on the different contexts at hand.

For knowledge morphing, a problem-context (as shown in the middle of Figure

1.2) is provided by the user, where the user (i) identifies problem-specific knowl-

edge that affects the individuality, activity and relations aspects of a knowledge

source; (ii) defines context-specific axioms and context-specific constraints to be
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Figure 1.2: Problem-Context in Knowledge Morphing

applied on a knowledge source for the user’s context at hand; and (iii) provides

contextual relation between two (or more) knowledge sources which allows mor-

phing of contextually relevant knowledge components. An example problem-

context for knowledge morphing, Therapeutic Knowledge about Prostate Cancer [31,

62], is shown in the left-side of Figure 1.2. For the given problem-context, problem-

specific concepts and relations are selected by the user from the Prostate Cancer

pathway, and spatio-temporal constraints are also defined. The defined constraints

are limiting the therapeutic knowledge component to only those treatments that

can be performed in Calgary during the follow-up visits.

1.5 Our Solution Approach

We adopt a Semantic Web (SW) architecture to address the above-presented re-

search challenges (see Section 1.1). SW offers a logic-based framework [33] to (a)

semantically model various knowledge sources as ontologies; (b) capture and rep-

resent the underlying domain concepts, and the semantic relationships that are

inherent within a problem-context; (c) ensure interoperability between multiple

ontologically defined knowledge sources together with their ‘trust’; and (d) main-

taining a consistent change, evolution and management of ontologies. We propose

our solution approach for Knowledge Morphing via Reconciliation of Contextual-

ized Sub-ontologies (K-MORPH) as shown in Figure 1.3. K-MORPH is realized

through the following main tasks:
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• Task # 1: Representing the user-defined problem-context.

• Task # 2: Extracting contextualized sub-ontologies from the source ontologies

based on the given problem-context.

• Task # 3: Merging contextualized sub-ontologies based on identified/context-

specific alignments to generate a merged ontology.

• Task # 4: Detecting and resolving inconsistencies in the merged ontology.

Figure 1.3: K-MORPH Solution Approach

Our K-MORPH solution approach is realized in a Semantic Web framework

(as shown in Figure 1.3), where the available knowledge sources are required to

be modelled as ontologies. These ontology-modelled knowledge sources serve

as inputs to K-MORPH. Based on the given knowledge sources (modelled as

ontologies) and a user-defined problem-context, K-MORPH performs a context-

driven integration of knowledge sources by: (a) extracting knowledge components

from the available ontology-modelled knowledge sources pertinent to the given

problem-context by extracting contextualized sub-ontologies; (b) integrating the

extracted knowledge components by merging contextualized sub-ontologies; and

(c) repairing inconsistencies in the morphed knowledge by detecting and resolving
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inconsistencies in the merged ontology. In this way, K-MORPH pursues highly-

specific ontology alignment guided by the problem-context—i.e. a single knowl-

edge morphing context forms the basis of the process. This also means that as the

problem-context changes, a new merged ontology can be readily generated.

1.6 K-MORPH: Technical Challenges and Research Contributions

K-MORPH provides a framework for context-specific knowledge integration of

ontology-modelled knowledge sources by a context-driven reconciliation of on-

tologies. The K-MORPH framework is realized by an active interplay of three

major research areas in Semantic Web: (i) extracting contextualized sub-ontologies,

(ii) aligning and merging ontologies, and (iii) detecting and resolving inconsis-

tencies in ontologies. Although, there have been various attempts in these areas,

whereby (a) various extraction methods were proposed to extract sub-ontologies

from source ontologies [63–68]; (b) various ontology matching and alignment meth-

ods can align and merge ontologies [41,42]; and (c) available approaches can detect

and resolve inconsistencies in the merged ontology [69–72]. However, yet there are

challenges and limitations in the above-mentioned fields [13, 73]. Hence, aiming

towards the knowledge morphing problem, we also made some scientific contri-

butions in all three research areas.

In K-MORPH, we make use of an interplay of the above-mentioned areas to

support our knowledge morphing problem, and propose a context-driven knowl-

edge integration framework, whereby we (i) extract context-specific knowledge

components from available (ontology-modelled) knowledge sources using our sub-

ontology extraction method (see Chapter 4); (ii) integrate the extracted knowledge

components using our alignment and merging approach (see Chapter 5); and (iii)

repair inconsistencies in the morphed knowledge by applying our approach for

detecting and resolving inconsistencies (see Chapter 6). The required technical

challenges and research contributions made in realizing the K-MORPH frame-

work are discussed below:
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1.6.1 Extracting Contextualized Sub-ontologies

Sub-ontology extraction, from a large ontology, leads to the generation of a spe-

cialized knowledge model that is pertinent to solve specific problems. Existing

sub-ontology extraction methods tend to render either a too generalized or a too re-

stricted sub-ontology [64–67]. InK-MORPH, we propose a structured-based sub-

ontology extraction method for extracting contextualized sub-ontologies based on

the user-selected concepts from the ontologies that are pertinent to the problem-

context at hand (see Chapter 4). Our sub-ontology extraction method extracts a

contextualized sub-ontology, whilst extending the semantics of the extracted con-

cepts and their relationships in the sub-ontology. Our approach features the fol-

lowing tenets: (i) identifying the user-selected concepts that are pertinent to the

problem-context at hand; (ii) extracting the user-selected concepts, their properties

and their individuals; and (iii) extracting other concepts, properties and individu-

als that are structurally connected with the user-selected concepts.

1.6.2 Merging Contextualized Sub-ontologies

Matching and alignment of ontologies have been carried out based on their lexical,

conceptual and structural similarities [73]. When dealing with structural similar-

ities, similarity scores between ontology-entities can be further improved based

on the similarities between their structurally connected entities [73]. We believe

alignments can become more ‘trustworthy’ by finding similarities among entities

that are driven from the underlying ontology axioms or assertions. In order to

achieve knowledge morphing using K-MORPH, we have developed two ontol-

ogy matching approaches triple-based ontology matching (TOM) and proof-based on-

tology matching (POM) (see Chapter 5). Both of our matchers (TOM and POM)

can find an alignment between ontologies, not only based on structural similar-

ities over structurally connected entities, but also takes into account similarities

between other deductively-connected complex entity-structures—under the rules

describing both domain-specific and ontology-language semantics [49].
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1.6.3 Detecting and Resolving Inconsistencies

Inconsistencies—whether they occur during the process of ontology evolution or

appear during the ontology reconciliation process—result in potential harm to an

ontology structure, and decrease credibility in representing a consistent and shared

vocabulary of an underlying domain. When an inconsistency occurs, there are

mainly two ways to deal with it: either resolve it, or reason with the inconsistent

ontology [69, 70, 74, 75]. In K-MORPH, we propose our approach for detecting

and resolving inconsistencies in ontologies (see Chapter 6). Our inconsistency de-

tection deals with the identification of contradiction derivations under the integrity

constraint rules, which are given in a logic program [49]. To resolve detected in-

consistencies, we generate all possible Minimal Inconsistent Resolve Candidates

(MIRCs). Removing an MIRC from the inconsistent ontology results in a maximal

consistent sub-ontology w.r.t. the given logic program. To inform the user about

the consequences of removing an MIRC, we also provide a list of all its derived

triples.

1.7 Outline

This PhD thesis is outlined as follows:

Chapter 2 provides an overview of existing knowledge integration approaches,

and also presents a comparison of these approaches with K-MORPH. Chapter

3 presents the overall functionality of the K-MORPH framework by discussing

the interactions between each of its modules. In Chapter 4, we describe our sub-

ontology extraction approach for extracting contextualized sub-ontologies based

on the given problem-context. We present a comparison of our approach with a

few existing sub-ontology extraction approaches, and also demonstrate the use of

our approach by extracting contextualized sub-ontologies from three prostate can-

cer ontologies for the problem-context therapeutic decision support. In Chapter 5, we

describe our ontology matching approaches, triple-based ontology matching (TOM)

and proof-based ontology matching (POM), for aligning and merging contextualized

sub-ontologies. We present a comparison of our matchers TOM and POM with
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other ontology matching approaches, and also demonstrate the use of our match-

ers in aligning and merging the contextualized sub-ontologies for the problem-

context therapeutic decision support and generated a merged prostate cancer ontol-

ogy. Chapter 6 presents our approach for detecting and resolving inconsistencies

in (merged) ontologies. We evaluated our approach on the merged prostate can-

cer ontology, where we detected all the inconsistencies in this ontology and gen-

erated all possible minimal inconsistent resolve candidates (MIRCs) for extracting a

maximal consistent sub-ontology. Chapter 7 demonstrates the application of our

K-MORPH framework in the healthcare domain, where K-MORPH generated

a merged ontology to provide a comprehensive and networked knowledge about

therapeutic treatment plan for urinary tract infections by: (i) extracting 20 contextual-

ized sub-ontologies from various high-level medical ontologies of different health-

care institutions; (ii) aligning and merging the extracted sub-ontologies; and (iii)

detecting and resolving inconsistencies in the merged ontology. Chapter 8 sum-

marizes the technical contributions made in this thesis, and also highlights the

applications of the K-MORPH framework in other domains.
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Related Work: Comparing K-MORPH with State-of-the-Art

The generation of a comprehensive knowledge object has already been pursued as

a knowledge integration problem, and achieved via semantic interoperability be-

tween knowledge sources [76–84]. By modeling knowledge sources as ontologies,

semantic interoperability among knowledge sources can be achieved via ontology

reconciliation [41,85,86]. However, aiming towards a context-driven knowledge in-

tegration of ontology-modelled knowledge sources, ontology reconciliation under

different contexts is still an outstanding challenge [73]. It may be noted that the

literature suggests other approaches towards context-driven knowledge integra-

tion from different perspectives [12–26]; some of the prominent approaches will be

discussed in this chapter.

As knowledge morphing demands a context-driven integration of heteroge-

neous knowledge sources, the main research challenges for knowledge morphing

are (i) dealing with the heterogeneity and semantic interoperability between avail-

able knowledge sources, and (ii) ensuring that the knowledge integration is carried

out within a particular context. Hence, aiming towards knowledge morphing, the

key issues to be solved are dealing with context, semantic interoperability and

heterogeneity [13]. For enabling a context-driven knowledge integration, Zimmer-

mann et. al. [13] highlighted a list of features that a knowledge integration system

should provide:

C1⇒ Context-awareness: Identifying context-specific components from a knowl-

edge source relevant to the context at hand.

C2⇒ Modularity: Reusing context-specific fragments from multiple knowledge sources.

C3⇒ Profile and Policy Management: Treating internal policies or profiles distinc-

tively.

13
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C4⇒ Correspondence Expressiveness: Relating heterogeneous knowledge, either within

or between contexts.

C5⇒ Dealing with Inconsistencies: Repairing or tolerating incompatibilities or in-

consistencies, while solving heterogeneity within or between contexts [13].

In this chapter, we will first perform a ‘technology-check’ of the Semantic Web

(SW) framework by evaluating the formal approaches offered in SW, based on

the above-mentioned criteria, and will present their strengths and short-comings.

Next, we shall also present a comparison of available knowledge integration ap-

proaches based on the same criteria. We will conclude this chapter by comparing

K-MORPH with other state-of-the-art approaches, and highlighting the unique

differences in our K-MORPH approach.

2.1 Support from The Semantic Web Framework Towards Knowledge

Integration

The Semantic Web (SW) framework [33] allows knowledge representation via SW

ontologies [32] by providing constructs that represent shared vocabularies from

multiple domains, such as Medicine and Healthcare [3, 87]. Hence, these days,

various domain experts are developing domain-specific ontologies for maintain-

ing a standardized and shareable knowledge-base that can be used among dif-

ferent parties for implementing different applications [32, 87]. However, when it

comes to satisfying various domain-specific applications, a context-driven recon-

ciliation/networking of domain-specific ontologies is required to provide a network-

view of vocabularies pertaining to the context at hand [88]. Aiming towards context-

driven knowledge integration, there have been various approaches and standards

proposed in the SW community [13] that offer their unique features in resolving

(parts of) the mentioned problem.

In this section, we will highlight the support and limitations of the available

SW standards and languages in solving the knowledge integration problem based

on the above-mentioned criteria [13]. Some of the initial and foundational at-

tempts towards knowledge representation were Description Logics (DL) [89] and

OWL [49]. Given that Description Logics (DL) [89] and OWL [49] appear incapable
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Table 2.1: Support from Semantic Web framework towards Knowledge Integration

Formal Approaches C1 C2 C3 C4 C5
DL/OWL No Very limited No Good Very weak
DDL/C-OWL Yes Yes No Very Good Good
P-DL Yes Yes Very limited Very limited Weak
DDL Revisited Yes Yes No as DDL Medium
E-connections Yes Yes No Good Excellent
IDDL Yes Yes No Good Very good
DeLP/Paraconsistent No No Limited as DL Good
Modular Rule Bases Yes Yes Limited Limited Weak

C1: Context-awareness; C2: Modularity; C3: Profile and Policy Management;
C4: Correspondence Expressiveness; C5: Dealing with Inconsistencies.

of dealing with context-awareness [43] and are intolerant to inconsistent ontolo-

gies, further extensions, such as Distributed Description Logics (DDL) [90] and C-

OWL [91], were proposed to overcome such aspects. On the other hand, Package-

based Description Logics (P-DL) [92] is a formalism that was essentially designed

for the modularity of Web ontologies, and lacks expressivity for ontology align-

ment and has weak tolerance towards inconsistent ontologies. E-connections [93]

is another formalism for reasoning with heterogeneous ontologies, focusing on

context-awareness and modularity aspects, and is fully tolerant to inconsistent

ontologies. E-connections also supports ontology alignment between ontologies

(from different domain) through links. Integrated Distributed Description Logics

(IDDL) [94], when compared to DDL, E-connections and P-DL, allows users to as-

sert ontology alignments from a ‘third party”s point of view, by which correspon-

dences can be manipulated and reasoned independent of the ontologies. One effec-

tive way of tolerating inconsistencies consist of using Paraconsistent Logics [95],

by which reasoning can be done in the presence of inconsistency. Alternatively,

defeasible argumentation [96], such as Defeasible Logic Programs (DeLP) [97], have

been introduced to reason and resolve inconsistencies using provenance. In this

case, the terminology axioms [89] is separated into 2 subsets: (a) one being strict

(i.e. it must always be used in reasoning), and (b) the other being defeatable (i.e.

an argumentation process may defeat them and nullify them for a particular rea-

soning task). A modular web rule bases framework proposed in Analyti et. al. [98]

makes the distinction between global knowledge, local knowledge and internal
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knowledge. The framework is based on a rule-based language rather than DL, and

allow the user to express and reason with modularity on top of Semantic Web. In

this framework, reasoning is possible during inconsistency of knowledge bases.

Based on the findings reported in Zimmermann et. al. [13], possible ways in which

some of the prominent formal approaches can play a role towards context-driven

knowledge integration are highlighted in Table 2.1.

2.2 State-of-the-Art Approaches for Knowledge Integration

It may be noted that the literature suggests other approaches towards context-

driven knowledge integration from different perspectives [12–26]; some of the

prominent approaches are discussed and compared based on the above-mentioned

criteria in the following sub-sections.

2.2.1 ECOIN

ECOIN is one notable framework that performs semantic reconciliation of inde-

pendent data sources under a defined context [99]. Semantic reconciliation is per-

formed at the context level by defining conversion functions between contexts as a

network. The ECOIN approach believes in the single ontology, multiple views no-

tion [99], and introduces the notion of modifiers to explicitly describe the multiple

specializations/views of the concepts used in different data sources. It exploits

the modifiers and conversion functions, to enable context mediation between data

sources, and reconciles and integrates source schemas with respect to their con-

ceptual specializations. ECOIN can be evaluated based on the above-mentioned

criteria as follows:

C1⇒ Context-awareness: Based on the context at hand, ECOIN allows users to de-

fine conversion functions and modifiers on data objects to support context-driven

mediation of data sources.

C2⇒ Modularity: ECOIN does not filter context-specific components from given

data sources. It attempts to reuse available data sources as whole, but does

not have the ability to reuse suitable parts of data sources.
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C3⇒ Profile and Policy Management: ECOIN does not make any distinction between

internal and external policies.

C4⇒ Correspondence Expressiveness: ECOIN uses conversion functions as pre-defined

correspondences. Applying ontology matching and alignment techniques is

one of their future work, but no progress has yet been reported. It performs

a complete integration and mediation among data sources supported by the

conversion functions.

C5⇒ Dealing with Inconsistencies: ECOIN provides no framework for dealing with

inconsistencies or tolerating inconsistencies during data integration and me-

diation processes.

2.2.2 OpenKnowledge

The OpenKnowledge framework [100] supports knowledge sharing among dif-

ferent knowledge sources, not by sharing their asserted statements, instead by

sharing their interaction models. An interaction model provides a context in which

knowledge can be transmitted between two (or more) knowledge sources (i.e.

peers). This approach has a closer relevance with semantic service composition

[101], where each interaction model (stands for a knowledge source) can be seen

as a service that interacts with other services based on their service descriptions

and business logics. The OpenKnowledge project can be evaluated as follows:

C1⇒ Context-awareness: OpenKnowledge uses the interaction model as context for

sharing certain pre-defined knowledge components among knowledge sources.

C2⇒ Modularity: OpenKnowledge offers limited modularity. It only provides a

medium (via interaction model) by which two knowledge sources can exchange

knowledge based on their pre-defined protocols.

C3⇒ Profile and Policy Management: OpenKnowledge allows knowledge sharing

only through interaction models, and keeps and applies the local and foreign

policies distinctively.
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C4⇒ Correspondence Expressiveness: OpenKnowledge does not provide (or use) any

language for defining correspondences between knowledge sources. It rather

relies on the interaction models defined by the users.

C5⇒ Dealing with Inconsistencies: It provides no framework for dealing with incon-

sistencies or tolerating inconsistencies during knowledge sharing process.

Figure 2.1: Dynamic Sub-Ontology Evolution for Collaborative Problem Solving-
—taken from [102]

2.2.3 Dynamic Sub-Ontology Evolution for Collaborative Problem Solving

Mao et. al. [102] use a Semantic Web framework, and propose an agent-oriented

architecture, which adopts a local sub-ontology evolution mechanism for dynamic

self-organization of domain knowledge to support intelligent and efficient plan-

ning for problem solving in a distributed environment like the Web/Grid. Mao et.

al. approach is shown in Figure 2.1. This approach can be evaluated as follows:

C1⇒ Context-awareness: Mao et. al. framework [102] offers limited context-awareness
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for its proposed collaborative problem solving task. It allows to extract sub-

ontologies based on the input/output specifications (represented as concepts

and properties in domain ontologies) for the problem solving services.

C2⇒ Modularity: It supports modularity by extracting and reusing sub-ontologies

that are relevant for solving the given problem.

C3⇒ Profile and Policy Management: Mao et. al. do not make any distinction be-

tween internal and external policies.

C4⇒ Correspondence Expressiveness: Mao et. al. do not aim to merge (sub-)ontologies,

therefore correspondence expressiveness is yet not supported in their frame-

work.

C5⇒ Dealing with Inconsistencies: It provides no framework for dealing with in-

consistencies or tolerating inconsistencies during its sub-ontology evolution

process.

Figure 2.2: Extracting Sub-ontology from Multiple Ontologies—taken from [103]
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2.2.4 Extracting Sub-ontology from Multiple Ontologies

Kang et. al. [103] propose a Semantic Web based framework for (i) extracting

sub-ontologies based on the user requirements, and (ii) integrating extracted sub-

ontologies into a required ontology that satisfies the user demands. Kang et. al.

approach is shown in Figure 2.2. This approach is very much similar to our K-

MORPH framework. In Figure 2.2, (i) Requirements correspond to the Problem-

context, (ii) Bridge Ontology correspond to the Context-specific Alignments, and (iii)

Required Ontology correspond to the Merged Ontology in theK-MORPH approach.

However it is still a proposal, and no concrete results have been presented so far.

This approach can be evaluated as follows:

C1⇒ Context-awareness: Kang et. al. framework [103] allows context-awareness

for integrating context-specific sub-ontologies to obtain the required ontology.

It extracts sub-ontologies based on the given user-specific requirements, and

then merges the extracted sub-ontologies.

C2⇒ Modularity: It supports modularity by extracting and merging sub-ontologies

that are relevant for the given requirements.

C3⇒ Profile and Policy Management: Kang et. al. framework does not make any

distinction between internal and external policies.

C4⇒ Correspondence Expressiveness: The proposed framework uses the bridge on-

tology, based on the Distributed Description Logics (DDL) [90], which allows

complex correspondences between ontologies.

C5⇒ Dealing with Inconsistencies: It provides no framework for dealing with incon-

sistencies or tolerating inconsistencies during its ontology integration pro-

cess.

2.2.5 Knowledge Selection Using Magpie

Similar to Kang et. al. [103], Aquin et. al. [104] plan to extend the knowledge

selection process of Magpie [105] (see Figure 2.3) by (i) extracting relevant and

useful fragments from source ontologies using available ontology modularization
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methods, and (ii) combining the extracted ontology fragments to provide relevant

knowledge for the semantic browsing with Magpie [105]. This approach can be

evaluated as follows:

Figure 2.3: Knowledge selection process and semantic browsing with Magpie—
taken from [104]

C1⇒ Context-awareness: Magpie framework [104] offers limited context-awareness

for selecting and integrating context-specific sub-ontologies to obtain the rel-

evant ontology. It extracts sub-ontologies based on the terms (as concepts and

properties) generated by the term extraction module of the Magpie browser.

C2⇒ Modularity: It supports modularity by extracting and merging sub-ontologies

that are relevant for the Magpie generated terms.

C3⇒ Profile and Policy Management: It does not make any distinction between in-

ternal and external policies.

C4⇒ Correspondence Expressiveness: The proposed framework aims to integrate rel-

evant fragments from source ontologies, however correspondence expres-

siveness issue is not yet dealt in this framework.

C5⇒ Dealing with Inconsistencies: It provides no framework for dealing with incon-

sistencies or tolerating inconsistencies during its ontology integration pro-

cess.

A comparison of the above-mentioned approaches in terms of the mentioned

criteria is shown in Table 2.2.
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Table 2.2: State-of-the-Art Knowledge Integration Approaches
Systems & Input Output
Frameworks Format C1 C2 C3 C4 C5 Knowledge

Integrated
ECOIN Schemas Limited No No Limited No Knowledge
Open- Interaction Shared
Knowledge Models Limited Limited Yes Limited No Knowledge

Collaborative
Mao et. al. Ontologies Limited Yes No No No Knowledge

Integrated
Kang et. al. Ontologies Limited Good No Good No Knowledge

Integrated
Aquin et. al. Ontologies Limited Yes No Limited No Knowledge

Integrated
K-MORPH Ontologies Limited Yes Limited Good Good Knowledge

C1: Context-awareness; C2: Modularity; C3: Profile and Policy Management;
C4: Correspondence Expressiveness; C5: Dealing with Inconsistencies.

2.3 Comparing K-MORPH with other State-of-the-Art Approaches

Our K-MORPH approach is in-line with the above-mentioned approaches. K-

MORPH performs a context-driven knowledge integration of ontology-modelled

knowledge sources by (i) extracting context-specific knowledge components from

available (ontology-modelled) knowledge sources using our sub-ontology extrac-

tion method (see Chapter 4); (ii) integrating the extracted knowledge components

using our alignment and merging approach (see Chapter 5); and (iii) repair incon-

sistencies in the morphed knowledge by applying our approach for detecting and

resolving inconsistencies (see Chapter 6). Based on the above-mentioned criteria,

our K-MORPH approach can be evaluated as follows:

C1⇒ Context-awareness: K-MORPH supports context-awareness and allows users

to define a problem-context, whereby the user can identify problem-specific

concepts, relations and context-specific constraints for extracting contextual-

ized sub-ontologies from available source ontologies.

C2⇒ Modularity: It supports modularity by extracting and merging the contextu-

alized sub-ontologies based on the given problem-context.
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C3⇒ Profile and Policy Management: K-MORPH provides limited support for pro-

file and policy management. Since a contextualized sub-ontology is repre-

sented as an RDF-Graph [106], which allows K-MORPH to identify and

deal with the internal profiles and policies within each sub-ontology distinc-

tively.

C4⇒ Correspondence Expressiveness: K-MORPH provides good support for corre-

spondence expressiveness by finding and representing complex correspon-

dences between ontology-entities. K-MORPH allows users to define context-

specific correspondences between ontologies. These context-specific corre-

spondences are then used in finding complex correspondences—using our

proposed matching and alignment approaches—and merging sub-ontologies.

C5⇒ Dealing with Inconsistencies: K-MORPH repairs inconsistencies in the mor-

phed knowledge using our approach for detecting and resolving inconsis-

tencies in the merged ontology.

K-MORPH provides considerable advancements towards knowledge integra-

tion, compared to other state-of-the-art approaches. Compared to ECOIN [99], K-

MORPH enforces modularity, which scopes the integration to only the context-

specific knowledge components. Furthermore, based on the complex correspon-

dence expressiveness and context-specific alignments provided in K-MORPH,

the semantic reconciliation supported by ECOIN can also be achieved inK-MORPH.

Compared to OpenKnowledge [100], Mao et. al. [102] and Aquin e. al. [104],

K-MORPH not only offers richer context-awareness, but also provides stronger

correspondence expressiveness and policy management. Similar to Kang et. al.

[103], complex and context-specific correspondences can also be expressed in K-

MORPH. In contrast to all the above-mentioned approaches, K-MORPH can

detect and repair inconsistencies in the merged ontology. This feature is not yet

supported by any of the above-mentioned approaches. In the following chapter,

we will describe the K-MORPH framework by demonstrating the active inter-

play of its modules using a motivating example.



Chapter 3

K-MORPH: A Knowledge Morphing Framework

Knowledge morphing aims to formulate a comprehensive knowledge-base, spe-

cific to a given context, through “the intelligent and autonomous fusion/integration

of contextually, conceptually and functionally related knowledge objects that may

exist in different representation modalities and formalisms, in order to establish a

comprehensive, multi-faceted and networked view of all knowledge pertaining

to a domain-specific problem” Abidi 2005 [29]. The need for knowledge mor-

phing can be realized in cases when a solution from one knowledge source is

lacking, or another knowledge source can play a role in deriving alternative solu-

tions [3,9,10]. Although, knowledge integration aims to generate a comprehensive

knowledge-base [2, 12, 13, 17], we argue that the integration of the entire knowl-

edge source exacerbates the complexity of establishing knowledge interoperability

between multiple knowledge sources [28]. Therefore, knowledge morphing does

not deal with the complete integration of different knowledge sources; rather, it

first identifies relevant knowledge components among knowledge sources based

on the context at hand, and then it integrates those components to build a com-

prehensive knowledge-base that provides a network-view of all knowledge de-

scribed/applied under the given problem-context. Knowledge morphing extends

the traditional notion of knowledge integration by providing the ability to reason

over the morphed knowledge to (a) infer context-specific knowledge fragments,

and (b) suggest recommendations and actions for solving domain-specific prob-

lems.

3.1 Knowledge Morphing: Research Challenges

Knowledge morphing aims towards a context-driven knowledge integration of

domain-related knowledge sources [13]. As discussed in the previous chapter,

research challenges for building a knowledge morpher are based on the criteria

24
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mentioned in Zimmermann et. al. [13]. Aiming towards knowledge morphing

leads to three main research challenges, discussed in the following sub-sections.

3.1.1 Context Awareness

In order to obtain a comprehensive knowledge-base from available domain-related

knowledge sources specific to a context at hand, context-awareness becomes cru-

cial for both representing and identifying context-specific knowledge fragments

within available knowledge sources [107]. Context-awareness over the Web has

already been an active research area, and various attempts have been made in the

Semantic Web community by proposing frameworks and approaches, such as Con-

textualizing Ontologies (C-OWL) [91], Distributed Description Logics (DDL) [90],

Package-based Description Logics (P-DL) [92] and Integrated Distributed Descrip-

tion Logics (IDDL) [94].

3.1.2 Semantic Interoperability

Semantic Interoperability aims to resolve heterogeneity between knowledge sources.

Heterogeneities can occur at different levels [76–85, 108–111]. Heterogeneities can

be classified into the following main types:

1. Syntactic Heterogeneity occurs when two knowledge sources are expressed in

two different knowledge representation languages. This kind of mismatch is

generally resolved by establishing equivalences between constructs of differ-

ent languages [77].

2. Terminological Heterogeneity occurs due to variations in vocabulary (i.e. local

names) when referring to the same entities in different knowledge sources.

This can be caused by a number of terminological differences due to (i) the

use of different natural languages, e.g., Paper vs. Articulo, (ii) the use of

different sub-domains, e.g., Paper vs. Memo, or (iii) the use of synonyms,

e.g., Paper vs. Article.

3. Conceptual Heterogeneity stands for the differences in modelling the same do-

main of interest. This can happen due to differences in concept hierarchies
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(i.e. conceptualization mismatch) [83, 112], whereby the same (or similar) con-

cepts are arranged using different (and, sometimes, equivalent) axioms, or

due to the use of similar concepts in expressing totally different concepts (i.e.

explicitation mismatch) [83, 112].

4. Semiotic Heterogeneity, also called pragmatic heterogeneity [113], is concerned

with how entities are interpreted. Entities that may have exactly the same

semantic meaning, are often interpreted differently under different contexts.

The intended use of entities, under different contexts, has a great impact on

their interpretation. For example, although <Person,Chair> may have no

obvious relevance, however under the context conferences, <Person,Chair>

indeed represents a context-specific similarity between two domain-related

concepts.

Ontology Reconciliation [85] addresses the problem of heterogeneity in on-

tologies, which allows an interchange of knowledge that is modeled in various

(domain-related) ontologies. Ontology reconciliation among ontologies is nor-

mally performed by (i) identifying conceptual similarities among two source on-

tologies [41]; (ii) aligning and mapping sources ontologies based on identified

similarities [42]; (iii) merging and integrating source ontologies based on found

mappings/alignments [114]; and (iv) finding and resolving inconsistencies in rec-

onciled ontologies [36].

3.1.3 Dealing with Inconsistencies

As knowledge engineering and sharing require a sharable and convincing con-

sent from a group of domain experts, the evolution and sharing process mostly

faces issues, such as (i) differences in conceptualization, (ii) logical contradictions,

(iii) errors in conceptualization, and (iv) different realizations of the concepts and

properties in different contexts and applications. Most of the above issues affect

the axioms and assertions within a knowledge source, and may also turn a consis-

tent knowledge-base into an incoherent or inconsistent one [69–72].

Regardless of whether an inconsistency occurs during knowledge engineer-

ing [9,10] or knowledge sharing [2,7,8], there are mainly two ways to deal with it:
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either resolve it, or reason with the inconsistent knowledge-base. When reasoning

with an inconsistent knowledge-base, querying is applied on a consistent frag-

ment of the inconsistent knowledge-base [74]. Identifying a consistent fragment is

based on a selection function, which can be defined by some syntactic or semantic

relevance [75]. Ontology evolution and management aims at timely monitoring of

knowledge consistency within ontology-modelled knowledge sources [36,37,115].

Ontology management deals with detecting and resolving inconsistencies in both

being developed and reconciled ontologies [69–72].

3.2 K-MORPH: Knowledge Morphing via Reconciliation of Contextualized

Sub-ontologies

By modeling knowledge sources as ontologies, semantic interoperability among

knowledge sources can be achieved via ontology reconciliation [41]. However, on-

tology reconciliation under different contexts is still a challenge that has not been

undertaken [73]. In this PhD thesis, we propose our solution approach for Knowl-

edge Morphing via Reconciliation of Contextualized Sub-ontologies (K-MORPH)

as shown in Figure 3.1. In K-MORPH, available knowledge sources are required

to be modelled as ontologies. These ontology-modelled knowledge sources serve

as inputs to K-MORPH. In addition to the source ontologies (i.e. initially mod-

elled knowledge sources), K-MORPH also requires the problem-context from the

user as an input. To represent the user-intended context, a problem-context is a

data-structure in which the user provides (i) the user-selected concepts (proper-

ties and individuals) from the source ontologies that are pertinent to the context

at hand; (ii) context-specific axioms and constraints to be applied on the source

ontologies; and (iii) context-specific alignments between the source ontologies.

Based on the given source ontologies and the problem-context from the user, K-

MORPH performs a context-driven reconciliation of source ontologies by: (a)

extracting contextualized sub-ontologies from the source ontologies. The contex-

tualized sub-ontologies get validated for conceptual/contextual consistency and

completeness; (b) aligning and then merging the contextualized sub-ontologies to

generate a merged ontology; and (c) detecting and resolving inconsistencies in the

merged ontology. In this way, K-MORPH pursues knowledge morphing by (i)
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extracting knowledge components from the available ontology-modelled knowl-

edge sources pertinent to the given problem-context by extracting contextualized

sub-ontologies; (ii) integrating the extracted knowledge components by merging

contextualized sub-ontologies; and (iii) repairing inconsistencies in the morphed

knowledge by detecting and resolving inconsistencies in the merged ontology. In

this chapter, we will describe the overall K-MORPH process by demonstrating

the active inter-play of the above-mentioned K-MORPH tasks.

Figure 3.1: K-MORPH Solution Approach

3.2.1 Preliminaries

InK-MORPH, for knowledge representation via ontologies, we consider RDF/OWL

ontologies that are defined based on a vocabulary V = 〈C,R, I,L,Mc,Mp〉, com-

prised of concepts C, properties R, individuals I, literals L, and RDF/OWL con-

structs representing meta-classesMc and meta-propertiesMp. An RDF/OWL on-

tologyO can be expressed as triples of the form 〈s, p, o〉 ∈ (C ∪R∪I)× (C ∪R∪I ∪
Mp)× (C ∪R∪I ∪L∪Mc). In a triple 〈s, p, o〉, s is called subject, p predicate, and o

object. Triples allow to define Terminology and Assertional axioms in O [89]. Ter-

minology axioms (concept axioms and property axioms) T are of the form C v D

(R v S) or C ≡ D (R ≡ S) such that C,D ∈ C and R, S ∈ R. Assertional axioms

(concept assertions and property assertions) A are of the form C(a) or R(b, c) such
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that C ∈ C, R ∈ R, a, b, c ∈ I. The set of matchable entities MO of O is defined as

MO = C ∪ R ∪ I. The semantics of an ontology is defined by an interpretation that

provides mapping from (i) ontology individuals, (ii) ontology concepts and (iii)

ontology properties to (a) elements of the domain, (b) collections of the domain-

elements and (c) binary relations between the domain-elements, respectively. A

model of an ontology is such an interpretation, under which all ontology-axioms

are satisfied. An ontology is called consistent, iff there exists a model for it. An

ontology that has no model is called an inconsistent ontology [116]. The set of on-

tologies is denoted by O.

Definition 1 (Logic Program) A logic program P , over a vocabulary V = 〈C,R, I〉
and a set of variables X , is a set of Horn Logic rules of the form X1, . . . , Xn ⇒ Y , where

Xi, Y ∈ {〈s, p, o〉} ∪ {>,⊥} such that 〈s, p, o〉 ∈ (C ∪R∪ I ∪X )× (C ∪R∪ I ∪Mp ∪
X )× (C ∪R∪I ∪L∪Mc∪X ). A rule of the form X1, . . . , Xn ⇒ ⊥ is called an integrity

constraint rule. TP(O) is the set of all asserted and inferred ontology triples ofO under P .

3.2.2 Task # 1: Representing the Problem-context in K-MORPH

InK-MORPH, a problem-context is given by the user. The user-defined problem-

context serves as a declarative knowledge for (i) extracting contextualized sub-

ontologies from the initial source ontologies, based on the user-selected concepts

(properties or individuals) defined in the problem-context; (ii) applying context-

specific axioms and constraints defined in the problem-context; and (iii) establish-

ing context-dependent interoperability between extracted sub-ontologies based on

the context-specific alignments given in the problem-context. K-MORPH pro-

vides the following data-structure for representing the user-defined problem-context

(shown in Figure 3.2).

Definition 2 (Problem Context) Given a vocabulary V = 〈C,R, I〉, a logic program P
and an alignment A between source ontologies, a problem-contextPC = 〈l, Cx,Rx,Ax,Px〉
is a tuple comprised of a context label l, problem-specific concepts Cx ⊆ C, problem-specific

properties Rx ⊆ R, context-specific alignments Ax ⊆ A between ontologies, and context-

specific constraints and axioms Px ⊆ P to be applied to generate a contextualized sub-

ontology.
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Figure 3.2: Representing Problem-context in K-MORPH

3.2.3 Task # 2: Extracting Contextualized Sub-ontologies

In K-MORPH, the user identifies problem-specific concepts and properties from

the given source ontologies and declares them in the problem-context. These user-

selected concepts and properties serve as inputs to our sub-ontology extraction

method to extract such a contextualized sub-ontology (from the source ontology)

that is pertinent to the user-intended context at hand. Based on the user-selected

concepts (and properties), we apply our structure-based extraction method to ex-

tract a contextualized sub-ontology (i.e. an RDF-Sub-Graph) comprised of triples

that correspond to the axioms and assertions for (i) the user-selected concept C, (ii)

individuals for C, (iii) properties of C, (iv) range-concepts for the properties of C,

(v) sub-concepts of C, (vi) equivalent-concepts for C, (vii) restrictions on C, (viii)

complex concepts that are composed of C, (ix) only the properties of the super-

concepts that are also associated withC, and (x) super-concepts ofC as RDF Blank-

Nodes. The contextualized sub-ontologies are validated for conceptual/contextual

consistency and completeness. We also apply the context-specific constraints and

context-specific ontology alignments on the extracted sub-ontologies. Our ap-

proach for extracting contextualized sub-ontologies is described in detail in Chap-

ter 4. An abstract process for extracting contextualized sub-ontologies can be de-

fined as follows:
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Definition 3 (Contextualized Sub-ontology) Given an RDF/OWL ontology O hav-

ing vocabulary vocabulary V = 〈C,R, I,L,Mc,Mp〉 and a problem-contextPC = 〈l, Cx,
Rx,Ax,Px〉. An ontology O′ is a contextualized sub-ontology of O (denoted as O′ ≺c O)

is constructed on a limited vocabulary V = 〈C ′,R′, I ′,L,Mc,Mp〉, where ontology triples

TP(O′) of the sub-ontology O′ define axioms and assertions for the concepts C ′ such that

Cx ⊆ C ′ ⊆ C, properties R′ such that Rx ⊆ R′ ⊆ R and individuals I ′ ⊆ I; and having

context-specific constraints and axioms Px applied on O′.

Definition 4 (Extracting Contextualized Sub-ontologies) Let OI ⊆ O be the set of

initial source ontologies and PC be the set of problem-contexts, where each problem-context

PC ∈ PC is of the form 〈l, Cx,Rx,Ax,Px〉 representing the user-defined label l to the

problem-context PC, user-selected concepts Cx and propertiesRx from OI , context-specific

axioms and constraints Px and context-specific alignments Ax between ontologies in OI .

Our sub-ontology extraction method extracts a contextualized sub-ontologyO′ ≺c O from

a source ontology O ∈ OI , and is defined as a function:

extract sub onto : 2OI × PC −→ 2O

3.2.4 Task # 3: Merging Contextualized Sub-ontologies

Matching and alignment of ontologies have been carried out based on their lexical,

conceptual and structural similarities [73]. When dealing with structural similar-

ities, similarity scores between ontology-entities can be further improved based

on the similarities between their structurally connected entities [73]. We believe

that alignments between two entities e1 and e2 can become more ’trustworthy’ by

finding similarities in their justifications under a logic program P—in which both

ontology-language and domain-specific rules are defined (see Definition 1). There-

fore we propose our ontology matching approaches triple-based ontology matching

(TOM) and proof-based ontology matching (POM). TOM and POM can find align-

ments not only based on structural similarities but also take into account similar-

ities between other deductively connected complex entity-structures—under the

rules in P describing both domain-specific and ontology-language semantics. Our

TOM and POM methods are described in detail in Chapter 5.

In K-MORPH, we apply our matchers TOM and POM for (i) finding align-

ments between the extracted contextualized sub-ontologies; and (ii) based on found
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alignments, merge these sub-ontologies. TOM and POM can find new alignments

between contextualized sub-ontologies based on the set of pre-defined context-

specific alignments Ax in the given problem-context PC = 〈l, Cx,Rx,Ax,Px〉. Based

on both pre-defined context-specific alignments Ax and new alignments found by

our matchers, we merge the extracted sub-ontologies and generate a merged ontol-

ogy. An abstract process for merging contextualized sub-ontologies can be defined

as follows:

Definition 5 (Merging Contextualized Sub-ontologies) Let O be the set of ontolo-

gies, P be the set of logic programs, and Π be the set of pre-defined context-specific align-

ments. Our ontology merging method is defined as a function:

merge sub onto : 2O × P× Π −→ O

3.2.5 Task # 4: Detecting and Resolving Inconsistencies

Inconsistencies—whether they occur during the process of ontology evolution or

appear during the ontology reconciliation process—result in potential harm to an

ontology structure, and decrease credibility in representing a consistent and shared

vocabulary of an underlying domain. When an inconsistency occurs, there are

mainly two ways to deal with it: either resolve it, or reason with the inconsistent

ontology [69, 70, 74, 75]. In K-MORPH, we propose our approach for detecting

and resolving inconsistencies in (merged) ontologies. Our inconsistency detection

deals with the identification of contradiction derivations under the integrity con-

straint rules, which are given in a logic program P . To resolve detected inconsis-

tencies, we aim to generate all possible Minimal Inconsistent Resolve Candidates

(MIRCs) (see Definition 6). Removing an MIRC from the inconsistent ontology will

result in a maximal consistent sub-ontology w.r.t. the given logic program. To in-

form the user about the consequences of removing an MIRC, we also provide a list

of all its derived triples. Our method for detecting and resolving inconsistencies

is described in detail in Chapter 6. An abstract process for detecting and resolving

inconsistencies can be defined as follows:

Definition 6 (Minimal Inconsistent Resolve Candidate) Given an inconsistent on-

tologyO w.r.t. a logic program P , an inconsistent resolve candidate (IRC) is a set of triples
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M ⊆ TP(O) such that O−M = O′ becomes consistent w.r.t. P . A minimal inconsistent

resolve candidate (MIRC) is such an IRC M such that for any M ′ ⊂ M , O −M ′ = O′

remains inconsistent w.r.t. P . The set of MIRCs is denoted byM.

Definition 7 (Detecting and Resolving Inconsistencies) Let O be the set of ontolo-

gies, P be the set of logic programs, and M be the set of MIRCs M. Our method for

detecting and resolving inconsistencies is defined as a function:

resolve inconsis : O× P −→ O×M

3.2.6 K-MORPH Process

K-MORPH pursues context-driven ontology reconciliation guided by the problem-

context. Based on the above defined tasks, an abstract process of K-MORPH can

be defined as follows:

Definition 8 (K-MORPH Process) Let OI ⊆ O be the set of initial source ontologies,
PC be the set of problem-contexts, Π be the set of pre-defined context-specific alignments,
P be the set of logic programs, and M be the set of MIRCsM. Our K-MORPH process
is defined as a function:
K-MORPH : 2OI × PC −→ O×M, and implemented by the above defined methods:

K-MORPH(OI ,PC) = resolve inconsis(merge sub onto(extract sub onto(OI ,PC),P,Ax),P)

3.3 K-MORPH Applications: Morphing Prostate Cancer Clinical Pathways

for Therapeutic Decision Support

In order to show the support of knowledge morphing for developing different

domain-specific applications, we demonstrate the use of our knowledge morphing

frameworkK-MORPH in the healthcare domain, by generating a comprehensive

and context-sensitive knowledge-base for Prostate Cancer (PC) management. For

this experiment, we use three location-specific PC clinical pathways [62]. All three

PC pathways are modelled as ontologies [62], entailing their institution-specific

knowledge about diagnosis, treatments, tests and follow-up care for PC at three

different locations: Halifax, Winnipeg and Calgary.
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Consider a healthcare practitioner, who is in need of a comprehensive therapeu-

tic knowledge-base that can provide and compare different consensus for treating

PC patients. Thus in this scenario, only the therapeutic (and other related) knowl-

edge fragments should be extracted from the PC pathways, and then merged to

obtain a comprehensive therapeutic knowledge about prostate cancer (as shown

in Figure 3.3).

Figure 3.3: K-MORPH: Generating Therapeutic Workflow Knowledge by Mor-
phing Prostate Cancer Clinical Pathways

The objective of this experiment is to generate a more comprehensive PC on-

tology, whereby one can suggest alternative treatments or extend interventions at

one location based on knowledge contained in other PC ontologies. For instance,

if location L1 is prescribing intervention I1 for condition C, and location L2 is pre-

scribing intervention I2 for condition C ′, where conditions C and C ′ are similar to

each other, then one can imply, after satisfying clinical pragmatics, that condition

C (or C ′) can be treated by both interventions I1 and I2. Likewise, if location L3 has

no information about how to handle condition C (or C ′), then the same inference
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can be applied to suggest interventions I1 and I2.

In order to fulfill the desired objective (i.e. therapeutic decision support) using K-

MORPH, we will first define the given scenario in terms of the problem-context in

K-MORPH, and then briefly demonstrate the main tasks achieved inK-MORPH
for generating a comprehensive therapeutic knowledge about PC.

3.3.1 Task # 1: Defining Problem-context: therapeutic decision support

We define the given scenario/application therapeutic decision support as a problem-

context in K-MORPH:
1. Cx1 = 〈 therapeutic-decision-support,

2. {pc-calgary:Clinician, pc-halifax:Clinician, pc-winnipeg:Clinician,

3. pc-calgary:Treatment, pc-halifax:Treatment, pc-winnipeg:Treatment},
4. ∅,
5. {<winnipeg:Clinician, pc-halifax:Clinician, owl:equivalentClass, 1.0>,

6. <winnipeg:Treatment, pc-halifax:Treatment, owl:equivalentClass, 1.0>}
7. {{?X a pc-calgary:Clinician} => {?X a pc-halifax:Clinician}.
8. {?X a pc-calgary:Treatment} => {?X a pc-winnipeg:Followup}}
9. 〉

Cx1 is annotated by its unique label therapeutic-decision-support and de-

scribed by its context-axioms. For Cx1, the list of concepts (or properties) identi-

fied by the user from each of the three source PC ontologies are Clinician and

Treatment (see line 2-3). Moreover in Cx1, the user has given pre-defined align-

ments between PC ontologies (see line 5-6). In Cx1, context-axioms declare context-

specific knowledge, such as (i) Calgary-Clinicians are to be realized as Halifax-Clinic-

ians; and (ii) Calgary-Treatments can be viewed as Winnipeg-Followups (see line 7-8).

3.3.2 Task # 2: Extracting Contextualized PC Sub-ontologies

For therapeutic decision support context (denoted as Cx1), the user is interested in

such extracted sub-ontologies that describe only (i) the treatments, (ii) their du-

rations, (iii) their follow-ups, (iv) their care-settings, and (v) the practitioners in-

volved for them. We applied our sub-ontology extraction approach (see Chapter 4)

and extracted contextualized ontologies from three PC pathway ontologies. Chap-

ter 4 will present our sub-ontology extraction approach and also demonstrate the
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extraction of contextualized PC sub-ontologies in detail. Figure 3.4 shows a con-

textualized fragment of the PC-Halifax sub-ontology.

Figure 3.4: Contextualized Sub-ontology from PC Pathway Ontology

3.3.3 Task # 3: Merging Contextualized PC Sub-ontologies

The next step in K-MORPH is to merge the extracted contextualized PC sub-

ontologies. We applied our ontology alignment approaches, TOM and POM (see

Chapter 5), and generated a merged ontology that provides a comprehensive ther-

apeutic workflow for PC management. Chapter 5 will present our ontology align-

ment and merging approaches, and also demonstrate the merging of the extracted

PC sub-ontologies in detail.

Figure 3.5 shows one of the exemplar results generated after merging PC sub-

ontologies. In figure 3.5, the merged knowledge has determined that the treatment

Active Surveillance in Halifax (represented by the instance PC-Halifax:ActiveSurv-

eillance) can be conducted by a Primary Urologist. In the actual pathway, this

information was not available for Halifax; but due to the ontology alignments, this

task was found to be similar to one in Calgary, and the actor performing this task

in Calgary was extended to Halifax.
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Figure 3.5: Merged Knowledge about PC-Halifax:ActiveSurveillance (highlighted
in the left panel)

3.3.4 Task # 4: Detecting and Resolving Inconsistencies in PC ontologies

During the reconciliation and merging of these three extracted PC contextualized

sub-ontologies, K-MORPH found inconsistencies in the merged PC ontology. To

resolve the detected inconsistencies, we generated all possible MIRCs for extract-

ing a maximal consistent sub-ontology from the merged PC ontology. Chapter

6 will present our approach for detecting and resolving inconsistencies, and will

also demonstrate the detection and resolution of inconsistencies in the merged PC

ontology.



Chapter 4

Extracting Contextualized Sub-ontologies

A key aspect of Semantic Web research is knowledge modeling that is pursued by

developing a domain-specific ontology [32]. Ontologies [89] serve as the backbone

for the Semantic Web as they provide formal constructs to model the knowledge of

a domain based on domain-specific concepts, their relationships and constraints. A

domain-specific ontology, then, serves as the foundational representation formal-

ism for a variety of activities, such as web-based information sharing, retrieval,

mediation, collaboration and decision support [6, 32]. Knowledge modelers, or

ontology engineers, develop domain ontologies in a variety of ways—i.e. devel-

oping a new ontology by abstracting domain concepts and relations, adding new

concepts to an existing ontology [36], or even aligning/merging multiple existing

ontologies to realize a specialized ontology [41, 42, 85]. For mature domains, such

as medicine, genetics and business [11–13], the common practice is to leverage

large-scale domain ontologies in order to systematically select a sub-set of concepts

or a specialized sub-ontology that is representative of the task at hand [28, 39]. A

sub-ontology presents a focused representation, at a desired level of abstraction, of

selected aspects of the source ontology, whilst offering the operational processing

and knowledge constraints pertinent to the problem-context at hand. The ratio-

nale for extracting contextualized sub-ontologies is that working with the larger

ontologies leads to the introduction of irrelevant concepts to the required knowl-

edge model for a specialized problem, which in turn not only extends the deduc-

tive closure of the model to undesired interpretations, but also compromises the

efficiency, complexity and granularity of the knowledge model [27, 28]. Therefore,

for solving specialized problems in large domains there is a need to extract a sub-

ontology that offers a consistent and relevant fragment of the source ontology.

Structure-based sub-ontology extraction [64–68] is usually guided by a partic-

ular problem-context that may lead to the selection, adaptation, reconciliation, or

38
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merging of concepts from multiple extracted sub-ontologies [41]. However, the

challenge is to ensure that a merged sub-ontology does not lead to (i) differences

in domain conceptualization, (ii) logical contradictions, or (iii) inaccurate realiza-

tions of the concepts and their properties as per context, as these issues render

the sub-ontology inconsistent [116]. In this case, it is important that the extracted

sub-ontology is semantically consistent.

Ontologies and contexts are used to model a domain with different views. On-

tologies define a shared model that provides a global perspective, whereas contexts

are used to realize a local aspect of a domain. A contextualized (sub-)ontology

deals with an adaptation of the ontology model to support a local view, and pro-

vides (i) specific interpretation of the ontology concepts; and (ii) implementation

of the procedural knowledge that can be applied in a particular context [46].

To achieve knowledge morphing via the K-MORPH framework, we have de-

veloped a structure-based method for extracting contextualized sub-ontologies via

N3 rules [117]. Our approach is to exploit the complete inference rules for RDF(S)

and OWL defined in [49], and to extract a sub-ontology that consists of the ax-

ioms and assertions for user-selected concepts and their structurally connected

concepts, properties and individuals—from the source ontology. Although our

extraction rules can be used by various Semantic Web reasoning engines, we use

the Euler inference engine [118] to infer interpretations beyond basic ontological

structures to extract a semantically-rich sub-ontology. In this way, we argue that

our approach extracts a more semantically extensive sub-ontology compared to the

semantics offered by existing sub-ontology extraction approaches [64–67] (see Sec-

tion 4.4). We demonstrate the working of our sub-ontology extraction approach by

extracting contextualized sub-ontologies from three prostate cancer pathway on-

tologies [62]. Furthermore, we present a comparison of our approach with a few

existing sub-ontology extraction approaches.

4.1 Structure-based Sub-ontology Extraction: Overview and Approaches

For structure-based sub-ontology extraction, a source ontology is considered as an

un-directed graph, and an extracted sub-ontology is a sub-graph that describes

the knowledge about the selected concepts pertinent to a specified context [64–68].
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One of the initial attempts at sub-ontology extraction is the Materialized Ontology

View Extraction (MOVE) process [64], where a sub-ontology is extracted based on

the requirements consistency optimization scheme (RCOS) and semantic completeness op-

timization scheme (SCOS). Given a source ontology, MOVE allows the user to label

both concepts and properties as selected or un-selected. For a selected property R,

based on RCOS criteria, MOVE extracts (i) concept axioms for R; (ii) property as-

sertions for R and the concept axioms for concepts that are associated with R; and

so on. SCOS is applied to preserve the defined semantic completeness in MOVE.

For a selected concept C, based on SCOS criteria (a) the super-concepts of C and

their associated properties must be selected; (b) the sub-concepts of C and their

associated properties must be selected; (c) the properties of C that require a mini-

mum cardinality greater than zero, and their property assertions must be selected.

It may be noted that when the MOVE approach is applied to a connected graph

(of an ontology), where there exists a path between every two nodes, due to the

SCOS criterion the extracted sub-graph can potentially result in extracting of the

entire graph itself (i.e. the whole ontology). A more restricted approach compared

to MOVE is reported in Seidenberg et. al. [65], where (i) (similar to SCOS crite-

ria (a)-(c)) all super-concepts, sub-concepts and restrictions of C are extracted; (ii)

their properties and individual are extracted; however (iii) sibling of C and sub-

property axioms of the extracted properties must not be extracted. It also restricts

the depth-limit of the extracted concept hierarchy up to the defined boundary con-

cepts. Similarly, Noy et. al. [66] propose an extraction of sub-ontologies by travers-

ing ontology structure, and also restrict unnecessary expansion of the extracted

graph by defining boundary concepts. Further restricted extraction is described

by Miao et. al. [67] that extracts sub-ontologies from multiple RDF(S) ontologies.

It only finds a restricted sub-graph that is induced by the set of selected nodes

(concepts)—it extracts only the selected nodes (concepts, properties, and individ-

uals), and does not extract any further concepts, properties and individuals asso-

ciated to the selected nodes.

Compared to the existing sub-ontology extraction approaches, in our extraction

approach, we focus on two main aspects:
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1. Controlled Extraction: We deal with the SCOS criterion differently than the ex-

isting MOVE and other approaches [64–66]. The key feature of our approach

is that for a given target concept C, we restrict the recursive selection of the

super-concepts of C in order to avoid the unnecessary selection of the sib-

lings and super-concepts of C that results in the expansion of the sub-graph

to include concepts that are not relevant. However for the semantic com-

pleteness of C and its sub-concepts, the super-concepts of C are replaced by

blank-nodes, and the properties of the super-concepts of C are now described

with C (via extracted blank-nodes). In this way, we avoid a situation where

the sub-ontology is too-generalized by the undesired inclusion of higher lev-

els of concepts that may even extend all the way to owl:Thing.

2. Extraction for both RDF(S) and OWL Ontologies: We improve on the rather re-

stricted sub-ontology extraction approach by Miao et. al. [67], by extending

our approach to both RDF(S) and OWL ontologies, where our sub-ontology

extraction method is applied on the closure of RDF(S) and OWL ontolo-

gies under their complete inference rules [49]. For example, for the con-

cept axiom :C3 owl:intersectionOf (:C1 :C2), based on the OWL in-

ference rules [49], additional axioms :C3 rdfs:subClassOf :C1 and :C3

rdfs:subClassOf :C2 can be inferred—that provide additional RDF(S) se-

mantics for OWL concepts :C1, :C2 and :C3.

4.2 Preliminaries

For our purpose, we consider RDF/OWL ontologies that are defined based on a

vocabulary V = 〈C,R, I,L,Mc,Mp〉, comprised of concepts C, properties R, indi-

viduals I, literals L, and RDF/OWL constructs representing meta-classesMc and

meta-propertiesMp. An RDF/OWL ontology O can be expressed as triples of the

form 〈s, p, o〉 ∈ (C ∪R ∪ I)× (C ∪R ∪ I ∪Mp)× (C ∪R ∪ I ∪ L ∪Mc). In a triple

〈s, p, o〉, s is called subject, p predicate, and o object. Triples allow to define Ter-

minology and Assertional axioms in O [89]. Terminology axioms (concept axioms

and property axioms) T are of the form C v D (R v S) or C ≡ D (R ≡ S) such

that C,D ∈ C and R, S ∈ R. Assertional axioms (concept assertions and property
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assertions) A are of the form C(a) or R(b, c) such that C ∈ C, R ∈ R, a, b, c ∈ I.

The semantics of an ontology is defined by an interpretation that provides mapping

from (i) ontology individuals, (ii) ontology concepts and (iii) ontology properties

to (a) elements of the domain, (b) collections of the domain-elements and (c) bi-

nary relations between the domain-elements, respectively. A model of an ontology

is such an interpretation, under which all ontology-axioms are satisfied. An on-

tology is called consistent, iff there exists a model for it. An ontology that has no

model is called an inconsistent ontology [116]. The set of ontologies is denoted by O.

Definition 9 (Contextualized Sub-ontology) Given an RDF/OWL ontology O hav-

ing vocabulary vocabulary V = 〈C,R, I,L,Mc,Mp〉 and a problem-contextPC = 〈l, Cx,
Rx,Ax,Px〉 (see Definition 2). An ontology O′ is a contextualized sub-ontology of O (de-

noted as O′ ≺c O) is constructed on a limited vocabulary V = 〈C ′,R′, I ′,L,Mc,Mp〉,
where ontology triples TP(O′) of the sub-ontology O′ define axioms and assertions for the

concepts C ′ such that Cx ⊆ C ′ ⊆ C, propertiesR′ such thatRx ⊆ R′ ⊆ R and individuals

I ′ ⊆ I; and having context-specific constraints and axioms Px applied on O′.

One of the Euler built-ins used in our work is (?SCOPE ?SPAN) e:findall

(?SELECT ?WHERE ?ANSWER), which unifies ?ANSWER with a list that contains all

the instantiations of ?SELECT (represented as a N3 formula) satisfying the ?WHERE

clause (represented as a N3 formula) in the ?SCOPE ?SPAN of all asserted N3 for-

mulae and their log:conclusion [118].

4.3 Structure-based Approach for Extracting Contextualized Sub-ontologies

In K-MORPH, the user identifies a set of pertinent concepts (in the problem-

context) from each of the source ontologies to generate contextualized sub-ontologies

(see Section 3.2.2). Based on the user-selected concepts Cs from an ontology O,

we apply our structure-based extraction method to extract a contextualized sub-

ontologyO′ ≺c O (i.e. an RDF-Sub-Graph) comprised of triples that correspond to

the axioms and assertions of the following forms:

1. Selected Concept: The user-selected concept C ∈ Cs.

2. Individuals: Individuals for the selected concept C.
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3. Properties: Properties of C; and their sub-properties.

4. Property Ranges: Range-concepts for the properties of C.

5. Sub-concepts: Sub-concepts of C.

6. Equivalent Concepts: equivalent-concepts for C.

7. Restrictions: Property, cardinality and value restrictions on C.

8. Complex Concepts: Complex concepts, such as union or intersection, that are

composed of C.

9. Associated Properties: Only such properties of the super-concepts that are also

associated with C.

10. Restricted Super-concepts: Super-concepts of C as RDF blank-nodes.

An abstract process for extracting contextualized sub-ontologies can be defined

as follows:

Definition 10 (Extracting Contextualized Sub-ontologies) Let OI ⊆ O be the set of

initial source ontologies and PC be the set of problem-contexts (see Definition 2), where

each problem-context PC ∈ PC is of the form 〈l, Cx,Rx,Ax,Px〉 representing the user-

defined label l to the problem-context PC, user-selected concepts Cx and properties Rx

from OI , context-specific axioms and constraints Px and context-specific alignments Ax

between ontologies in OI . Our sub-ontology extraction method extracts a contextualized

sub-ontology O′ ≺c O from a source ontology O ∈ OI , and is defined as a function:

extract sub onto : 2OI × PC −→ 2O

In the following sub-sections, we will first introduce the preliminary concepts

and definitions, and then describe our sub-ontology extraction approach in detail.

4.3.1 Concept Selection

Let Cs be the set of user-selected concepts, and Ce be the set of extracted concepts,

Re be the set of extracted properties, Ie be the set of individuals to be extracted

from an ontologyO for given Cs. In our method, user-selected concepts are labelled
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as triples of the formO usr:selected C, where C ∈ Cs is an user-selected concept

from an ontologyO for extracting a sub-ontologyO′ ≺c O. Any selected concept is

also extracted (O sbont:extract C) in O′ (by the rule: {?O usr:selected ?C}

=> {?O sbont:extract ?C} ) denoted as C ∈ Ce. We also check whether a con-

cept (or property) is extracted (i.e. sbont:extract) in O′ or not, using the Euler

built-in e:findall. Any concept (or property) that is not extracted in O′ is in-

ferred as triples of the form O sbont:noValue C (denoted as C 6∈ Ce)—under the

following N3 rules:

(i) {?C a rdfs:Class. (?scp 3) e:findall (? {?O sbont:extract ?C} ())} =>

{?O sbont:noValue ?C}.

(ii) {?P a owl:ObjectProperty. (?scp 3) e:findall (? {?O sbont:extract ?P}
())} => {?O sbont:noValue ?P}.

(iii) {?P a owl:DatatypeProperty. (?scp 3) e:findall (? {?O sbont:extract

?P} ())} => {?O sbont:noValue ?P}.

4.3.2 Identification of Selected Concepts, Sub-concepts, and their Properties

Concepts are usually defined in terms of other (sub-)concepts and properties via

concept axioms and property axioms, respectively. Hence when a concept C is

extracted in a sub-ontology O′, it is already deemed necessary to extract all the

sub-concepts and properties of C in O′ so that the complete semantics of C is still

preserved in O′. For this purpose, for any selected concept C, we also select sub-

concepts and properties of C to be extracted in O′ by the following N3 rules:

Sub-concept: All sub-concepts of C are also selected (i.e. usr:selected):

{?O usr:selected ?C. ?C a rdfs:Class. ?S rdfs:subClassOf ?C} =>

{?O usr:selected ?S}, where rdfs:subClassOf a owl:TransitiveProperty.

Properties: All properties of C should also be extracted (i.e. sbont:extract) in O′:
(i) {?O usr:selected ?C. ?C a rdfs:Class. ?P rdfs:domain ?C} =>

{?O sbont:extract ?P}.
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All properties of the super-concepts of C should also be extracted in O′:
(ii) {?O usr:selected ?C. ?C a rdfs:Class. ?C rdfs:subClassOf ?C1.

?P rdfs:domain ?C1} => {?O sbont:extract ?P}.

Property-ranges: All property-range concepts of extracted properties should also be

extracted in O′:
(i) {?O usr:selected ?C. ?C a rdfs:Class. ?P rdfs:domain ?C. ?P rdfs:range

?C1} => {?O sbont:extract ?C1};

(ii) {?O usr:selected ?C. ?C a rdfs:Class. ?C rdfs:subClassOf ?D.

?P rdfs:domain ?D. ?P rdfs:range ?C1} => {?O sbont:extract ?C1}.

4.3.3 Inheriting Properties from Super-concepts

For a selected concept C ∈ Cs, our method does not extract the axioms and as-

sertions of the super-concepts of C; rather it extracts the properties of the super-

concepts that are inherited in C. In order to discuss the rationale behind this step,

consider the extracted sub-ontology shown in Example 4.1. The user is interested

in a specialized concept :C2, but not its super-concept :C1—that is more general

to :C2. Since :C2 rdfs:subClassOf :C1, therefore :P1 is an inherited property

in :C2. Although :P1 is structurally connected with :C2 via its individuals (e.g.

:i2 :P1 :i4.). However for :P1, including its domain concept :C1 would re-

sult in an over-generalized extracted sub-ontology. For this, we replace the super-

concepts (e.g. :C1) of the selected concepts (e.g. :C2) by unique RDF blank-nodes

(e.g. :t8 e:tuple (:C1)), using the Euler built-in e:tuple [118]. Section 4.3.8

and 4.3.7 describe the construction for such RDF blank-nodes. In Example 4.1,

:t8 is the unique RDF blank-node for :C1, and is structurally connected with :C2

by :C2 rdfs:subClassOf :t8 and :P1 rdfs:domain :t8. Hence, due to our

extraction approach for super-concepts, unnecessary expansion of the extracted

sub-ontology through siblings concepts is restricted [65].

4.3.4 Extraction of Complex Concepts

OWL constructs, such as owl:intersectionOf and owl:unionOf, allow users to

define complex concepts using already defined (atomic or complex) concepts. For
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our purposes, when complex concepts (or the concepts that define complex con-

cepts) are required to be extracted, sub-ontology extraction must be scoped to the

required concepts only, not to their more-generalized concepts (see Section 4.3.3).

In the Example 4.1, :C5 is defined as union of the concepts :C2 and :C3, where

:C5 is a more-generalized concept of :C2, and :C5 is not of interest to the user.

Although, for the selected concept :C2, it is important to deal with :C5 as it is

structurally connected (under the concept axiom :C5 owl:unionOf (:C2 :C3))

with :C2. However, extracting :C5 and its axioms would unnecessarily extend

the scope of extraction to other undesired concepts. In order to allow a scoped

extraction of complex concepts, the semantics of such complex concepts (defined

by owl:intersectionOf and owl:unionOf constructs) is described as concepts in

RDF(S) semantics by the following rules:

(a) {?C owl:intersectionOf ?L. ?L a rdf:List. ?X list:in ?L} =>

{?C rdfs:subClassOf ?X}.

(b) {?C owl:unionOf ?L. ?L a rdf:List. ?X list:in ?L} =>

{?X rdfs:subClassOf ?C}.

Using the above rules, complex OWL concepts (that can be nested unions or

intersections of concepts) are defined using the rdfs:subClassOf construct. In

the example ontology O1 (see left-side of Example 4.1), :C4 is defined as an inter-

section of the concepts :C2 and :C3. Therefore, by rule (a), :C4 rdfs:subClassOf

:C2 and :C4 rdfs:subClassOf :C3 are inferred. Similarly, by rule (b), :C2 rdfs-

:subClassOf :C5 and :C3 rdfs:subClassOf :C5 are inferred. Given :C2 as a

selected concept, the extracted sub-ontology from O1 is shown (on the right-side)

in Example 4.1. Given :C4 rdfs:subClassOf :C2 in O1, by sub-concept rule (in

Section 4.3.2), :C4 is also considered as a selected concept. For the selected concept

:C2, the super-concepts are :C1 and :C5. For :C4, the super-concepts are :C1, :C2,

:C3 and :C5. Based on the earlier described rationale (see Section 4.3.3), all the

non-selected super-concepts of the selected concepts :C2 and :C4 are described as

RDF blank-nodes (see bottom-part of Example 4.1).
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Example 4.1: Sub-Ontology extraction with complex concepts
Strikeout Triples: Not included in the extracted sub-ontology.

OWL Ontology (O1): Extracted Sub-ontology (:C2 is user-selected):

:C1 a owl:Class; rdfs:subClassOf owl:Thing :t8 a owl:Class; rdfs:subClassOf owl:Thing

:C2 a owl:Class; rdfs:subClassOf :C1. :C2 a owl:Class; rdfs:subClassOf :t8.

:C3 a owl:Class; rdfs:subClassOf :C1. :C3 a owl:Class; rdfs:subClassOf :t8.

:C4 a owl:Class; :C4 a owl:Class.

owl:intersectionOf (:C2 :C3). :C4 rdfs:subClassOf :C2, :C3, :t8, :t9.

:C5 a owl:Class; owl:unionOf (:C2 :C3). :t9 a owl:Class. :C2 rdfs:subClassOf :t9.

:C3 rdfs:subClassOf :t9.

:C6 a owl:Class; rdfs:subClassOf :C1. :C6 a owl:Class; rdfs:subClassOf :C1.

:P1 a owl:ObjectProperty; :P1 a owl:ObjectProperty;

rdfs:domain :C1; rdfs:range :C2. rdfs:domain :t8; rdfs:range :C2.

:P2 a owl:ObjectProperty; :P2 a owl:ObjectProperty;

rdfs:domain :C2; rdfs:range :C3. rdfs:domain :C2; rdfs:range :C3.

:i1 a :C1. :i11 a :C1. :i1 a :C1. :i11 a :C1.

:i2 a :C2. :i22 a :C2. :i2 a :C2. :i22 a :C2.

:i3 a :C3. :i33 a :C3. :i3 a :C3. :i33 a :C3.

:i4 a :C4. :i5 a :C5. :i6 a :C6. :i4 a :C4. :i5 a :C5. :i6 a :C6.

:i2 :P1 :i4. :i2 :P2 :i3. :i2 :P1 :i4. :i2 :P2 :i3.

:i3 :P1 :i4. :i4 :P1 :i2. :i3 :P1 :i4. :i4 :P1 :i2.

:i6 :P1 :i2. :i6 :P1 :i4. :i6 :P1 :i2. :i6 :P1 :i4.

RDF Blank-Nodes: :t8 e:tuple (:C1).

RDF Blank-Nodes: :t9 e:tuple (:C5).

4.3.5 Dealing with Concept Axioms for Extracted Concepts

For an extracted concept C in a sub-ontology O′, it is deemed required to extract

all the other concepts that are structurally connected through the axioms of C—so

that the complete semantics of C is still preserved inO′. Concept axioms by which

C can be structurally connected with other concepts are: Sub-concept, Equivalent-

class, Complement-of and Restriction. Extraction of concepts that are structurally

connected with C, through its concept axioms, is done by the following N3 rules:

Sub-concept: The sub-concepts of a C are also extracted in O′:
{?O sbont:extract ?C. ?C a rdfs:Class. ?S rdfs:subClassOf ?C.} =>

{?O sbont:extract ?S}, where rdfs:subClassOf a owl:TransitiveProperty.

Equivalent-class: The equivalent concepts C are also extracted in O′:
{?O sbont:extract ?C. ?C owl:equivalentClass ?S.} => {?O sbont:extract ?S},

where owl:equivalentClass a owl:SymmetricProperty, owl:TransitiveProperty.
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Complement-of : The concepts that are complement of C are also extracted in O′:
{?O sbont:extract ?C. ?C owl:complementOf ?S.} => {?O sbont:extract ?S}.

Restriction: The concepts that impose restrictions on C are also extracted in O′:
{?O sbont:extract ?C. ?C a rdfs:Class. ?C rdfs:subClassOf ?R.

?R a owl:Restriction} => {?O sbont:extract ?R}.

4.3.6 Dealing with Property Axioms for Extracted Properties

Property axioms by which an extracted property P can be structurally connected

with other properties are: Sub-property, Equivalent-property and Inverse-property.

Similarly to the approach for concept axioms of C, extraction of properties that

are structurally connected with P , through its property axioms, is done by the fol-

lowing N3 rules:

Sub-property: Implicitly done by the rule Sub-concept (see Section 4.3.2 and 4.3.5).

Equivalent-property: The equivalent properties of P are also extracted in O′:
{?O sbont:extract ?P. ?P owl:equivalentProperty ?P1} =>

{?O usr:selected ?P1}.

Inverse-property: The inverse properties of P are also extracted in O′:
{?O sbont:extract ?P. ?P owl:inverseOf ?P1} => {?O sbont:extract ?P1}.

4.3.7 Extracting RDF-Graphs for Extracted Concepts

For an extracted concept ?C ∈ Ce, we extract an RDF-Sub-Graph that consists of

three types of axioms and assertions of ?C: (i) concept axioms and concept asser-

tions that need to be extracted, (ii) concept axioms that need to be replaced, and

(iii) concept axioms and concept assertions that need to be removed. Although

extraction of an RDF-Sub-Graph for ?C is implemented via N3 rules, however we

present an abstract implementation of the extraction method as follows:
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Let: Cs be the set of user-selected concepts, and Ce be the set of extracted concepts, Re

be the set of extracted properties and Ie be the set of individuals to be extracted from an

ontology O.

Given: ?O sbont:extract ?C (i.e. ?C ∈ Ce).

Method: Extract triples of the form:

1. ?C ?P ?Q in sub-graph ?G1, where ?P ∈ Re, ?Q ∈ Ce.

2. ?i a ?C in sub-graph ?G2, where ?C ∈ Cs (i.e. also user-selected) and ?i ∈ Ie.

3. ?i1 a ?C in sub-graph ?G3, where ?P1 ∈ Re, ?C2 ∈ Ce, ?i1,?i2 ∈ Ie such that

(?i1 a ?C) ∧ (?i2 a ?C2) ∧ (?i1 ?P1 ?i2).

4. ?i2 a ?C in sub-graph ?G4, where ?P1 ∈ Re, ?C1 ∈ Ce, ?i1,?i2 ∈ Ie such that

(?i1 a ?C1) ∧ (?i2 a ?C) ∧ (?i1 ?P1 ?i2).

5. ?C rdfs:subClassOf ?B and ?B a ?Q in sub-graph ?G5, where ?D 6∈ Ce, ?Q ∈ C
such that (?C rdfs:subClassOf ?D) ∧ (?D a ?Q) ∧ (?B e:tuple (?D)).

6. ?C rdfs:subClassOf ?D in sub-graph ?G6, where ?D 6∈ Ce.

7. ?X1 usr:selected ?Y1, ?X2 sbont:extract ?Y2, ?X3 sbont:noValue ?Y3,

?X4 owl:unionOf ?Y4, ?X5 owl:intersectionOf ?Y5 in sub-graph ?G7.

Result: Return ?GRAPH = (?G1 ∪ ?G2 ∪ ?G3 ∪ ?G4 ∪ ?G5)− (?G6 ∪ ?G7)

The first four RDF-Sub-Graphs (?G1, ?G2, ?G3, ?G4) consist of the concept ax-

ioms and concept assertions that need to be extracted for ?C, where (i) ?G1 con-

sists of the concept axioms for ?C; (ii) ?G2 consists of all the concept assertions,

if ?C is also usr:selected (i.e. ?C ∈ Cs); (iii) ?G3 and ?G4 consist of only those

concept assertions of ?C that are also defined via property assertions using other

extracted properties and concepts. In the Example 4.1, since :C2 is a selected con-

cept, therefore all the concept assertions (e.g. :i2 a :C2. :i22 a :C2) for :C2

are also extracted in the sub-ontology (i.e. concept assertions that are collected
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in ?G2). Since :C3 is a sbont:extract concept, therefore the only concept as-

sertion extracted for :C3 is :i3 a :C3 (and not :i33 a :C3); because :i3 is de-

fined via the already extracted property assertion :i2 :P2 :i3 (i.e. concept as-

sertions that are collected in ?G4). The concept assertion :i33 a :C3 is not ex-

tracted in O′, because :i33 does not appear in any of the extracted properties as-

sertions. The RDF-Sub-Graph ?G5 consists of the concept axioms that need to be

replaced. Such concept axioms are of the form ?C rdfs:subClassOf ?D such that

?C ∈ Ce, ?D 6∈ Ce. Based on the described motivation in Section 4.3.3, these concepts

axioms are replaced by the axioms of the following form ?C rdfs:subClassOf

?B, where ?B e:tuple ?D. Axioms of the form ?C rdfs:subClassOf ?D such

that ?C ∈ Ce, ?D 6∈ Ce need to be removed (collected in ?G6). Some other non-

related assertions are collected in ?G7. Thus, for the concept ?C, the final RDF-

Graph ?GRAPH = (?G1 ∪ ?G2 ∪ ?G3 ∪ ?G4 ∪ ?G5)− (?G6 ∪ ?G7) is extracted in O′.

4.3.8 Extracting RDF-Graphs for Extracted Properties

Similar to the extraction approach for concepts (see Section 4.3.7), we extract an

RDF-Sub-Graph for an extracted property ?P ∈ Re that consists of three types of

axioms and assertions of ?P: (i) property axioms and property assertions that need

to be extracted, (ii) property axioms that need to be replaced, and (iii) property

axioms and property assertions that need to be removed. An abstract implemen-

tation for extracting an RDF-Sub-Graph for ?P is shown as follows:

Given: ?O sbont:extract ?P (i.e. ?P ∈ Re).

Method: Extract triples of the form:

1. ?P ?S ?Q in sub-graph ?G1, where ?S ∈ Re, ?Q ∈ Ce.

2. ?S ?Q ?P in sub-graph ?G2, where ?S ∈ Re, ?Q ∈ Re.

3. ?i1 ?P ?i2 in sub-graph ?G3, where ?P1 ∈ Re, ?C1 ∈ Ce, ?C2 ∈ Ce, ?i1,?i2 ∈ Ie
such that (?i1 a ?C1) ∧ (?i2 a ?C2).

4. ?P rdfs:domain ?B, ?C rdfs:subClassOf ?B and ?B a ?Q in sub-graph ?G4, where

?C ∈ Ce, ?D 6∈ Ce, ?Q ∈ C such that (?C rdfs:subClassOf ?D) ∧ (?D a ?Q) ∧
(?B e:tuple (?D)).
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5. ?P rdfs:domain ?D and ?P rdfs:range ?R in sub-graph ?G5, where D,R 6∈ Ce.

6. ?X1 usr:selected ?Y1, ?X2 sbont:extract ?Y2, ?X3 sbont:noValue ?Y3 in

sub-graph ?G6.

Result: Return ?GRAPH = (?G1 ∪ ?G2 ∪ ?G3 ∪ ?G4)− (?G5 ∪ ?G6)

The first three RDF-Sub-Graphs (?G1, ?G2, ?G3) consist of the property axioms

and property assertions that need to be extracted for ?P, where (i) ?G1 and ?G2

consists of the property axioms for ?P; and (ii) ?G3 consists of only those property

assertions for ?P that are defined between the individuals of extracted concepts.

In the Example 4.1, since :i2 :P1 :i4 is a property assertion defined between

extracted concepts :C2 and :C4, therefore :i2 :P1 :i4 is extracted in the sub-

ontology (i.e. property assertions that are collected in ?G3). Whereas, :i6 :P1

:i2 and :i6 :P1 :i4 are not extracted; because :i6 a :C6, :C6 6∈ Ce. Based

on the described motivation in Section 4.3.3, given ?P rdfs:domain ?D and ?C

rdfs:subClassOf ?D such that ?C ∈ Ce, ?D 6∈ Ce, the property axiom for the

domain of ?P is replaced by ?P rdfs:domain ?B and ?C rdfs:subClassOf ?B,

where ?B e:tuple (?D) (collected in ?G4). Axioms of the form ?P rdfs:domain

?D and ?P rdfs:range ?R such that ?D, ?R 6∈ Ce need to be removed (collected in

?G5). Some other non-related assertions are collected in ?G6. Thus, for an extracted

property ?P, the final RDF-Graph ?GRAPH = (?G1∪ ?G2∪ ?G3∪ ?G4)− (?G5∪ ?G6)

is extracted in the sub-ontology O′.

4.3.9 Extraction with Variable Boundedness

In our approach, we also allow sub-ontology extraction with variable boundedness

[65, 66]. Based on the user-selected concepts and user-defined boundedness score

B, we extract all the structurally connected concepts that accumulate a bounded-

ness score b ≤ B . A concept with a boundedness score b = B is known as boundary

concept (similar to [65,66]). For a selected concept C with boundedness score b: (i) a

sub-concept of C is assigned the same boundedness score b; (ii) a super-concept of

C is assigned −1 (meaning, super-concepts need to be replaced by blank-nodes);

(iii) a range-concept C ′ for a property P of C is assigned b+ 1; (iv) a range-concept
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C ′′ for a property P ′ of C ′ is assigned b + 2; and so on. In our extraction method,

any concept C with a boundedness score b ≤ B is treated as a usr:selected con-

cept, and an extracted RDF-Graph for C is obtained using the above extraction

rules. Figure 4.1 shows an extracted sub-ontology for the selected concept C2 with

a boundedness score = 1.

Figure 4.1: Sub-ontology Extraction with Boundedness

4.4 Evaluation

In this section, we present a theoretical comparison1 of our extraction method with

other mentioned approaches, such as MOVE [64], Seidenberg et. al. [65], Noy et.

al. [66] and Miao et. al. [67]—as follows:

4.4.1 Sub-ontology Extraction by MOVE

For a given user-selected concept :C2, Table 4.1 shows a comparison between the

sub-ontologies extracted by existing methods. All methods were applied on the

source ontology O2 (shown in upper-left column of Table 4.1). Sub-ontology ex-

traction using MOVE is performed via the following main criteria:

1. Due to the 1st SCOS criterion in MOVE (see Section 4.1), concepts :C1 and

:C5 (and their properties) also got selected; because :C1 and :C5 are super-

concepts of :C2.

2. Since :C1 and :C5 are selected, therefore by the 2nd SCOS criterion (see Sec-

tion 4.1), all its sub-concepts :C2, :C3, :C4 and :C6 (and their properties) are

also selected.
1Since implementations of the mentioned methods are not available, experimental comparison

is not presented in this thesis.
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3. Hence all the concepts and their properties in O2 are selected, therefore the

extracted sub-ontology results in the same source ontology (shown in upper-

left column of Table 4.1).

It was due to the inclusion of sibling concepts of the user-selected concepts,

which causes unnecessary expansion of the extracted sub-ontology.

4.4.2 Sub-ontology Extraction by Seidenberg et. al.

In order to restrict the recursive expansion of extracted sub-ontology, Seidenberg

et. al. [65] do not extract the (axioms and assertions for) siblings concepts of the

user-selected concepts. Extracted sub-ontology by Seidenberg et. al. [65] is shown

in the lower-left column of Table 4.1, where axioms and assertions of the sibling

concept :C6 are not extracted.

4.4.3 Sub-ontology Extraction by Noy et. al.

The extraction approach presented by Noy et. al. [66] is flexible to a number of

user-defined parameters, such as (i) direct-superclasses, (ii) direct-subclasses,

(iii) every-property, and (iv) instances. For the user-specifications: (i) direct-

superclasses = YES, (ii) direct-subclasses = YES, (iii) every-property =

YES, and (iv) instances = YES, Noy et. al. [66] extracts the same sub-ontology

that was extracted by Seidenberg et. al. [65] (shown in lower-left column).

However, for a modified user-specification direct-superclasses = NO, the

extracted sub-ontology by Noy et. al. [66] is shown in the upper-right column

of Table 4.1. In this setting, Noy et. al. extraction approach is demonstrated as

follows:

1. Super-concepts of user-selected concepts are not extracted in the extracted

sub-ontology (shown in upper-right column).

2. For an user-selected concept :C2, since :C1 (where :C2 rdfs:subClassOf

:C1) is not extracted, the property :P1 of :C1 is also not extracted.

3. As a result, the properties assertions of :P1 (such as :i2 :P1 :i4, : i3

:P1 :i4, :i4 :P1 :i2) are also not extracted.
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Table 4.1: Comparison Between Extracted Sub-ontologies
Strikeout Triples: Not included in the extracted sub-ontology.

Source OntologyO2: Sub-ontology Extracted by Noy et. al. [66]:
:C2 is user-selected for Sub-ontology Extraction:

Extract direct-superclasses: NO
Extract direct-subclasses: YES
Extract every-property: YES
Extract instances: YES

:C1 a owl:Class; rdfs:subClassOf owl:Thing. :C1 a owl:Class; rdfs:subClassOf owl:Thing.
:C2 a owl:Class; rdfs:subClassOf :C1. :C2 a owl:Class; rdfs:subClassOf :C1.
:C3 a owl:Class; rdfs:subClassOf :C1. :C3 a owl:Class; rdfs:subClassOf :C1.
:C4 a owl:Class. :C4 a owl:Class.
:C4 rdfs:subClassOf :C2, :C3, :C1, :C5. :C4 rdfs:subClassOf :C2, :C3, :C1, :C5.
:C5 a owl:Class. :C2 rdfs:subClassOf :C5. :C5 a owl:Class. :C2 rdfs:subClassOf :C5.
:C3 rdfs:subClassOf :C5. :C3 rdfs:subClassOf :C5.
:C6 a owl:Class; rdfs:subClassOf :C1. :C6 a owl:Class; rdfs:subClassOf :C1.
:P1 a owl:ObjectProperty; :P1 a owl:ObjectProperty;
rdfs:domain :C1; rdfs:range :C2. rdfs:domain :C1; rdfs:range :C2.
:P2 a owl:ObjectProperty; :P2 a owl:ObjectProperty;
rdfs:domain :C2; rdfs:range :C3. rdfs:domain :C2; rdfs:range :C3.
:i1 a :C1. :i11 a :C1. :i1 a :C1. :i11 a :C1.
:i2 a :C2. :i22 a :C2. :i2 a :C2. :i22 a :C2.
:i3 a :C3. :i33 a :C3. :i3 a :C3. :i33 a :C3.
:i4 a :C4. :i5 a :C5. :i6 a :C6. :i4 a :C4. :i5 a :C5. :i6 a :C6.
:i2 :P1 :i4. :i2 :P2 :i3. :i2 :P1 :i4. :i2 :P2 :i3.
:i3 :P1 :i4. :i4 :P1 :i2. :i3 :P1 :i4. :i4 :P1 :i2.
:i6 :P1 :i2. :i6 :P1 :i4. :i6 :P1 :i2. :i6 :P1 :i4.

Sub-ontology Extracted by Noy et. al. [66]: Our Extracted Sub-ontology:
Extract direct-superclasses: YES
Extract direct-subclasses: YES RDF Blank-Node: :t8 e:tuple (:C1).
Extract every-property: YES RDF Blank-Node: :t9 e:tuple (:C5).
Extract instances: YES

Sub-ontology Extracted by Seidenberg et. al. [65]):

:C1 a owl:Class; rdfs:subClassOf owl:Thing. :t8 a owl:Class; rdfs:subClassOf owl:Thing.
:C2 a owl:Class; rdfs:subClassOf :C1. :C2 a owl:Class; rdfs:subClassOf :t8.
:C3 a owl:Class; rdfs:subClassOf :C1. :C3 a owl:Class; rdfs:subClassOf :t8.
:C4 a owl:Class. :C4 a owl:Class.
:C4 rdfs:subClassOf :C2, :C3, :C1, :C5. :C4 rdfs:subClassOf :C2, :C3, :t8, :t9.
:C5 a owl:Class. :C2 rdfs:subClassOf :C5. :t9 a owl:Class. :C2 rdfs:subClassOf :t9.
:C3 rdfs:subClassOf :C5. :C3 rdfs:subClassOf :t9.
:C6 a owl:Class; rdfs:subClassOf :C1. :C6 a owl:Class; rdfs:subClassOf :C1.
:P1 a owl:ObjectProperty; :P1 a owl:ObjectProperty;
rdfs:domain :C1; rdfs:range :C2. rdfs:domain :t8; rdfs:range :C2.
:P2 a owl:ObjectProperty; :P2 a owl:ObjectProperty;
rdfs:domain :C2; rdfs:range :C3. rdfs:domain :C2; rdfs:range :C3.
:i1 a :C1. :i11 a :C1. :i1 a :C1. :i11 a :C1.
:i2 a :C2. :i22 a :C2. :i2 a :C2. :i22 a :C2.
:i3 a :C3. :i33 a :C3. :i3 a :C3. :i33 a :C3.
:i4 a :C4. :i5 a :C5. :i6 a :C6. :i4 a :C4. :i5 a :C5. :i6 a :C6.
:i2 :P1 :i4. :i2 :P2 :i3. :i2 :P1 :i4. :i2 :P2 :i3.
:i3 :P1 :i4. :i4 :P1 :i2. :i3 :P1 :i4. :i4 :P1 :i2.
:i6 :P1 :i2. :i6 :P1 :i4. :i6 :P1 :i2. :i6 :P1 :i4.
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4. Although, :P1 provides additional property assertions between instances of

extracted concepts :C2, :C3, :C4. However, the properties assertions of

:P1 are not extracted.

This shows that for direct-superclasses = NO, Noy et. al. [66] extracts a

restricted sub-ontology, where some of the (inherited) properties (and properties

assertions) of user-selected concepts are omitted from the extracted sub-ontology.

The extracted sub-ontology by Miao et. al. [67] is too restricted, and consists of the

single axioms :C2 a owl:Class.

4.4.4 Sub-ontology Extraction by Our Approach

Similar to Seidenberg et. al. [65], our extraction method also restricts the unneces-

sary expansion of extracted sub-ontologies towards recursive inclusion of siblings

of the user-selected concepts. The extracted sub-ontology by our method is shown

in the lower-right column of Table 4.1, and the extraction process is demonstrated

as follows:

1. For the user-selected concept :C2, the sub-concept :C4 and its properties are

also selected.

2. Since :C1 and :C5 are the super-concepts of :C2 and :C4, therefore :C1 and

:C5 are extracted as RDF blank-nodes :t8 and :t9, respectively.

3. However, the property :P1 (and its property assertions) in :C1 and the prop-

erty :P2 (and its property assertions) in :C2 are also extracted (see Section

4.3.3).

4. Axioms and assertions of the sibling concept :C6 (:C6 a owl:Class, :C6

rdfs:subClassOf :C1, :i6 a :C6) are not extracted.

5. Since :C1 and :C5 are not extracted in their original form, therefore their

individuals (:i1 a :C1, :i11 a :C1, :i5 a :C5) are also not extracted.

6. In addition, any property assertions that are described through non-extracted

individuals (e.g. :i6 :P1 :i2, :i6 :P1 :i4) are also not extracted in the

sub-ontology.



56

7. Moreover, concept assertions of the extracted concept (:i33 a :C3) that are

not described through the property assertions for the extracted concepts (:C2,

:C3, :C4) are also not extracted.

Hence compared to MOVE, the sub-ontology extracted by our method restricts

the unnecessary expansion towards sibling concepts. Furthermore, compared to

Seidenberg et. al. [65] and Noy et. al. [66], we treat the super-concepts differently,

and provide all the pertinent axioms and assertions specific to the selected concept

:C2; without describing extra and irrelevant triples for :C2.

4.5 Experiment and Results: Extracting Contextualized Sub-ontologies for

Prostate Cancer Management

For the above discussed prostate cancer (PC) scenario (see Section 3.3), we demon-

strate the extraction of contextualized sub-ontologies from three location-specific

PC clinical pathway ontologies in order to extract therapeutic PC work-flow knowl-

edge for the problem-context therapeutic decision support. Each PC ontology stipu-

lates its care processes based on tasks, treatments, actors and resources pertinent

to local conditions. The objective of this experiment is to generate a more compre-

hensive PC ontology, whereby one can suggest alternative treatments or extend

interventions at one location based on knowledge contained in other PC ontolo-

gies.

In order to fulfill the desired objective (i.e. therapeutic decision support), we

demonstrate the extraction of therapeutic PC work-flow knowledge from three

location-specific PC ontologies by extracting contextualized PC sub-ontologies based

on the given problem-context therapeutic decision support.

4.5.1 Prostate Cancer Pathway Ontologies

We used three PC ontologies that describe PC clinical pathways, namely (i) PC Hal-

ifax Pathway (denoted as OPC−H); (ii) PC Calgary Pathway (denoted as OPC−C);

and (iii) PC Winnipeg Pathway (denoted as OPC−W ) [62]. Each PC ontology is de-

fined using RDF(S) and OWL constructs, and deals with four major types of clin-

ical tasks, namely (a) Consultation Task; (b) Non-consulation Task; (c) Referral Task;



57

and (d) Followup Task (represented as concepts). Such tasks are supported by other

concepts, such as Clinician, Decision Criteria, Frequency, Interval Duration, Investiga-

tion, Patient Condition Severity, Test Result and Treatment. There are 90 concepts, 69

properties and 288 individuals in total in those three ontologies.

4.5.2 Extracting Contextualized Sub-ontologies

To establish integrated knowledge about the treatments and clinician availability

from the three PC pathways, we consider a problem-context therapeutic decision

support:

Cx1 = 〈 therapeutic-decision-support,

{pc-calgary:Clinician, pc-halifax:Clinician, pc-winnipeg:Clinician,

pc-calgary:Treatment, pc-halifax:Treatment, pc-winnipeg:Treatment},

∅,

{<winnipeg:Clinician, pc-halifax:Clinician, owl:equivalentClass, 1.0>,

<winnipeg:Treatment, pc-halifax:Treatment, owl:equivalentClass, 1.0>}

{{?X a pc-calgary:Clinician} => {?X a pc-halifax:Clinician}.

{?X a pc-calgary:Treatment} => {?X a pc-winnipeg:Followup}}

〉

Cx1 is annotated by its unique label therapeutic-decision-support and de-

scribed by its context-axioms. For Cx1, the list of concepts (or properties) identified

by the user, from each of the three source PC ontologies, includes Clinician and

Treatment. In Cx1, context-axioms declare context-specific knowledge, such as (i)

Calgary-Clinicians are to be realized as Halifax-Clinicians; and (ii) Calgary-Treatments

can be viewed as Winnipeg-Followups. For the therapeutic decision support context

Cx1, the user is interested in such extracted sub-ontologies that describe only (i) the

treatments, (ii) their durations, (iii) their follow-ups, (iv) their care-settings, and (v)

the practitioners involved in them.

Based on user interest, two concepts Treatment and Clinician were labelled as

usr:selected concepts. Given the user-selected concepts, their structurally con-

nected concepts, properties and individuals also were extracted. K-MORPH ex-

tracted a contextualized sub-ontology from each of the three PC ontologies. The
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Figure 4.2: Contextualized Sub-ontology from PC Pathway Ontology

extracted sub-ontologies were validated for conceptual consistency and complete-

ness. Concepts (including their axioms and assertions) that were extracted in the

sub-ontologies are Treatment, Followup, Frequency, Interval Duration, and Clinician.

Figure 4.2 shows a fragment of the extracted PC-Halifax sub-ontology. Concepts

and properties (and their associated axioms) that have contextual relevance were

extracted in the PC-Halifax sub-ontology (shown in red-dotted circle), and the

context-axioms were applied on it.

4.6 Summary

Extracting sub-ontologies from source ontologies is viable for supporting special-

ized utilization of knowledge. We have presented our approach for sub-ontology

extraction, where the concepts (and properties) that are pertinent to a target on-

tology are extracted, and then can either be reused or reconciled with other ex-

tracted concepts and relationships. In our sub-ontology extraction approach, we

restrict the recursive selection of the super-concepts of a selected concept C in or-

der to avoid the unnecessary selection of the siblings and super-concepts of C. In

this way, we avoid a situation where the sub-ontology is too-generalized by un-

desired inclusion of higher levels of concepts that may even extend all the way



59

to owl:Thing. We demonstrated the application of our approach in the health-

care domain, where we extracted contextualized sub-ontologies from three dif-

ferent prostate cancer pathway ontologies based on the given problem-context

therapeutic-decision-support.



Chapter 5

Aligning and Merging Contextualized Sub-ontologies

Ontologies are developed by different individuals, institutions and organizations

with different intentions and origins. It is seemingly impossible to develop an

ontology that can model the complete domain knowledge, and then treat it as a

global and standardizes knowledge among various parties. Especially, in open or

evolving systems, such as the Semantic Web, different parties adopt and develop

different ontologies with unique level of domain-related specifications, expressiv-

ity, conceptual coverage and contextual determination. Thus, merely using on-

tologies, does not reduce heterogeneity; it rather raises heterogeneity problems to

a higher level [76–84].

Figure 5.1: Ontology Reconciliation in K-MORPH: Matching, Aligning & Merg-
ing Ontology Modules

60
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Ontology reconciliation addresses the problem of heterogeneity in ontologies

[85]. It allows an interchange of knowledge that is modeled in various (domain-

related) ontologies. In K-MORPH, ontology reconciliation among extracted sub-

ontologies (see Figure 5.1) is performed by the following main tasks:

1. Ontology Matching: Identifying similarities between two ontology-entities from

the extracted sub-ontologies.

2. Ontology Alignment: Identifying or defining a correspondence between two

entities from the extracted sub-ontologies.

3. Ontology Merging: Merging the extracted sub-ontologies based on the pre-

defined/found alignment.

In this chapter, we will discuss some of the existing ontology matching methods

and famous alignment approaches, and also present our matching approaches for

aligning and merging ontologies in K-MORPH.

5.1 Ontology Matching, Alignment & Merging Systems

This section presents an overview of ontology alignment and merging systems

that have emerged during the last decade. There have already been some compar-

isons of such systems [119–126]. Our purpose here is not to compare them in full

detail, but rather to show their variety, in order to demonstrate different ways of

matching and aligning ontologies. We present a list of (≈ 30) ontology alignment

and merging systems [41] in Table 5.11. These systems can be distinguished based

on their (i) input formats, (ii) matching methods, (iii) user interactions and needs,

(iv) output format and (v) matching and alignment approaches. They also vary in

terms of the need of any external assistance by the user/agent, or finding align-

ments in an automatic fashion. Most of the systems output an alignment between

input source ontologies; but some of them go a step beyond, and generate merged

ontologies.

1This table summarizes the list of matching systems discussed in Euzenat et. al. [41].
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Table 5.1: List of Ontology Matching and Alignment Tools

System Input Matching
Method(s)

Needs Output Approach

TranScm
[127]

SGML,
OO

String-
based,
Thesaurus,
Taxonomic
structure,
Matching
of neigh-
bourhood

Semi Translator By using rules, it produces an alignment in a semi-automatic
way. Then, this alignment is used to translate data instances
of the source schema to instances of the target schema.
Matching is performed between nodes of the graphs in a
top-down and one-to-one fashion. Matchers are viewed as
rules. For example, according to the identical rule, two nodes
match if their labels are found to be synonyms based on the
built-in thesaurus.

DIKE
[128]

ER String-
based,
WordNet,
Domain
compati-
bility,

Semi Merge DIKE can find matching based on (i) terminological proper-
ties (such as synonyms, homonyms among objects, namely
entities and relationships); (ii) structural properties (such as
object inclusion); (iii) subschema similarities (such as simi-
larities between schema fragments). It works by computing
the above-mentioned properties in a sequential order.

SKAT &
ONION
[129]

RDF String-
based,
Corpus-
based,
Taxonomic
structure

Semi Bridge
rules

It is a rule-based system that semi-automatically discovers
mappings between two ontologies. Rules are provided by
domain experts, and are encoded in First-order Logic. In
particular, experts specify initially desired matches and mis-
matches. Experts are required to approve or reject the auto-
matically suggested matches, thereby producing the result-
ing alignment.

Artemis
[130]

Relational
schema,
OO, ER

Language-
based,
Domain
compat-
ibility,
Common
thesaurus,
Matching
of neigh-
bours,
Clustering

Auto Views It performs affinity-based analysis and hierarchical cluster-
ing of database schema elements. Affinity-based analysis
represents the matching step in a sequential manner, which
calculates the name, structural and global affinity coefficients
exploiting a common thesaurus. Based on global affinity
coefficients, a hierarchical clustering technique categorizes
classes into groups at different levels of affinity. For each
cluster it creates a set of global attributes and the global class.
Logical correspondence between the attributes of a global
class and source schema attributes is determined through a
mapping table.

H-Match
[131]

OWL Language-
based,
Domain
compat-
ibility,
Thesaurus,
Matching
of neigh-
bours,
Domains
& ranges
Relations

Auto Alignment The approach is based on a similarity analysis through affin-
ity metrics, e.g., term to term affinity, datatype compatibil-
ity, and thresholds. H-Match computes two types of affini-
ties, namely linguistic and contextual affinity. These are then
combined by using weighting schemas, thus yielding a final
measure, called semantic affinity. Linguistic affinity builds
on top of a thesaurus-based approach of the Artemis system
[130]. Contextual affinity requires consideration of the neigh-
bour concepts, e.g., linked via taxonomical or mereological
relations, of the actual concept. By applying thresholds, cor-
respondences with semantic (final) affinity higher than the
cut-off threshold value are returned in the final alignment.
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Table 5.1: List of Ontology Matching and Alignment Tools (continued)
System Input Matching

Method(s)
Needs Output Approach

Anchor-
Prompt
[132]

OWL,
RDF

String-
based, Do-
mains and
ranges,
Bounded
paths
matching,
arbitrary
links, Tax-
onomic
structure

User Axioms
(OWL/
RDF)

It is a sequential matching algorithm that takes as input
two ontologies, internally represented as graphs and a set
of anchors-pairs of related terms, which are identified with
the help of string-based techniques, such as edit-distance,
user-defined distance or another matcher computing linguis-
tic similarity. Then the algorithm refines them by analyzing
the paths of the input ontologies limited by the anchors; in
order to determine terms frequently appearing in similar po-
sitions on similar paths. Finally, based on the frequencies
and user feedback, the algorithm determines matching can-
didates.

OntoBuilder
[133]

Web
form,
XML
schema

String-
based,
Language-
based,
Thesaurus
look up

User Mediator The matching algorithm works on terms; sequentially exe-
cuting various matchers. Some examples of the matchers
used are: removing noisy characters and stop terms, sub-
string matching. If all else fail, thesaurus look-up is per-
formed. Finally, mismatched terms are presented to users
for manual matching.

Cupid
[134]

XML
schema,
Rela-
tional
schema

String-
based,
Language-
based,
Datatypes,
Key prop-
erties,
Auxil-
iary the-
sauri, Tree
matching
weighted
by leaves

Auto Alignment The matching algorithm consists of three phases. The first
phase (linguistic matching) computes linguistic similarity co-
efficients between schema element names (labels) based on
morphological normalization, categorization, string-based
techniques, such as common prefix, suffix tests, and thesauri
look-up. The second phase (structural matching) computes
structural similarity coefficients weighted by leaves which
measure the similarity between contexts in which elementary
schema elements occur. The third phase (mapping elements
generation) aggregates the results of the linguistic and struc-
tural matching through a weighted sum and generates a final
alignment, which are higher than a threshold.

COMA &
COMA++
[135]

Relational
schema,
XML
schema,
OWL

String-
based,
Language-
based,
Datatypes,
Thesauri,
Alignment
reuse,
Repos-
itory of
structures,
DAG
matching

User Alignment COMA contains 6 elementary matchers, 5 hybrid match-
ers, and one reuse-oriented matcher. Most of them imple-
ment string-based techniques, such as affix, n-gram, edit dis-
tance; others share techniques with Cupid [134], e.g., the-
sauri look-up. An original component, called reuse-oriented
matcher, tries to reuse previously obtained results for en-
tire new schemas or for their fragments. Distinct features of
the COMA tool with respect to Cupid are (a) a more flex-
ible architecture, and (b) the possibility of performing iter-
ations in the matching process. COMA++ is built on top of
COMA by elaborating in more detail the alignment reuse op-
eration. Also it provides a more efficient implementation of
the COMA algorithms and a graphical user interface.

Similarity
flood-
ing [136]

XML
schema,
Rela-
tional
schema

String-
based,
Datatypes,
Key prop-
erties,
Iterative
fixed point
computa-
tion

User Alignment This approach is based on the ideas of similarity propaga-
tion. The technique starts from string-based comparison,
such as common prefix, suffix tests, of the vertices labels to
obtain an initial alignment which is refined through iterative
computation. From iteration to iteration, the similarity mea-
sure is spread to the (adjacent/neighbouring nodes of) graph
until a fixed point is reached or the computation is stopped.
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Table 5.1: List of Ontology Matching and Alignment Tools (continued)
System Input Matching

Method(s)
Needs Output Approach

MapOnto
[137]

Relational
schema,
XML
schema,
OWL

External
align-
ments,
Structure
compari-
son

Align-
ment

Rules The system produces (in a semi-automatic way) a set of com-
plex mapping formulae expressed in a subset of First-order
Logic (Horn clauses). The list of logical formula’s is also or-
dered by the tool, thereby suggesting the most reasonable
mappings.

OntoMerge
[138]

OWL External
align-
ments,

Align-
ment

Ontology It performs ontology translation by ontology merging and
automated reasoning. Merging two ontologies is performed
by taking the union of the axioms defining them. Bridge ax-
ioms or bridge rules are then added to relate the terms in
one ontology to the terms in the other. Once the merged on-
tology is constructed, the ontology translation tasks can be
performed fully automatically by mechanized reasoning.

CtxMatch/
Ctx-
Match2
[139]

Classifica-
tion,
OWL

String-
based,
Language-
based,
WordNet,
Descrip-
tion Logics

User Alignment CtxMatch translates the ontology matching problem into the
logical validity problem and computes logical relations, such
as equivalence, subsumption between concepts and proper-
ties. CtxMatch2 improves on CtxMatch by handling prop-
erties. At the structure level, it exploits description logic rea-
soners, such as Pellet [140] or FaCT [141] to compute the final
alignment

S-Match
[142]

Classifica-
tion,
XML
Schema,
OWL

String-
based,
Language-
based,
WordNet,
Propo-
sitional
SAT

Auto Alignment It takes as input two graph-like structures, e.g., classifica-
tions, XML schemas, ontologies, and returns as output logic
relations, e.g., equivalence, subsumption, which are sup-
posed to hold between the nodes of the graphs. The relations
are determined by (i) expressing the entities of the ontologies
as logical formulae, and (ii) reducing the matching problem
to a propositional validity problem.

HCONE
[143]

OWL Language-
based (LSI)
WordNet

Auto,
Semi,
User

Ontology It is an approach for domain ontology matching and merg-
ing by exploiting different levels of interaction with users.
First, an alignment between two input ontologies is com-
puted with the help of WordNet. Then, the alignment is
processed straightforwardly by using some merging rules, to
generate a new merged ontology.

MoA
[144]

OWL Language-
based
WordNet

Auto Axiom
OWL

The matching approach is based on concept (dis)similarity
derived from linguistic clues. In this approach, (i) names of
classes and properties are tokenized; (ii) tokens of entities are
associated with their meaning by using WordNet senses; (iii)
meanings of tokens of ancestors of the entity under consider-
ation are also taken into account, thereby extending the local
meanings.

ASCO
[145]

RDF(S),
OWL

String-
based,
Language-
based,
WordNet
Iterative
similarity
propaga-
tion

Auto Alignment The matching is organized sequentially in three phases. Dur-
ing the first phase (linguistic matching) the system nor-
malizes terms and expressions, e.g., by punctuation, upper
cases, special symbols. The second phase (structure match-
ing), computes similarities between classes and relations by
propagating the input of linguistic similarities. In the third
phase, the linguistic and structural similarity are aggregated
through a weighted sum. If the similarities between match-
ing candidates exceed a threshold, they are selected for the
resulting alignment.

BayesOWL
[146]

Classifica-
tion,
OWL

Text clas-
sifier,
Google
thesauri,
Bayesian
inference

Auto Alignment First, two input ontologies are translated into two Bayesian
networks. Matching candidates are generated between two
Bayesian networks, by learning joint probabilities from the
web data. A similarity between two concepts is determined
with the help of the Jaccard coefficient computed from the
joint probabilities. These are used to construct the condi-
tional probability tables. By performing Bayesian inference,
the final alignment is produced.



65

Table 5.1: List of Ontology Matching and Alignment Tools (continued)
System Input Matching

Method(s)
Needs Output Approach

OMEN
[147]

OWL External
alignment,
Bayesian
inference,
Meta-rules

Auto,
Align-
ment

Alignment The approach can be summarized in four logical steps. First,
it creates a Bayesian network, where a node stands for a map-
ping between pairs of classes or properties of the input on-
tologies. During the second step, OMEN uses a set of meta-
rules that capture the influence of the structure of input on-
tologies in the neighbourhood of the input mappings in order
to generate conditional probability tables for the given net-
work. During the third step, inferences are made by Bayesian
Network tools in Java (BNJ) to generate a posteriori probabil-
ities for each node. Finally, a posteriori probabilities, which
are higher than a threshold, are selected to generate the re-
sulting alignment.

DCM
[148]

Web
form

Correlation
mining,
Statistics

Auto Alignment Schema matching is viewed as correlation mining prob-
lem, where co-occurrence patterns often suggest complex
matches. Technically, this means that those attributes are
positively correlated. Contrary, attribute names which are
synonyms, e.g., quantity and amount, rarely co-occur, thus
representing an example of negative correlation between
them.

T-
tree [149]

Ontology Correlation
mining

Auto,
Inst-
ances

Alignment It infers dependencies between classes, called bridges, of dif-
ferent ontologies sharing the same set of instances based only
on the extension of classes.

CAIMAN
[150]

Classifica-
tion

String-
based
(Rocchio
classifier)

Semi Alignment It calculates a probability measure between the concepts of
two ontologies, by applying machine learning techniques for
text classification, e.g., the Rocchio classifier. In particular,
based on the documents, a representative feature vector is
created for each concept in an ontology. Then, the cosine
measure is computed for two of those class vectors. Finally,
with the help of a threshold, the resulting alignment is pro-
duced.

FCA-
merge
[151]

Ontology Formal
concept
analysis

User Ontology The overall process of merging two ontologies consists of
three steps, namely (i) instance extraction, (ii) concept lattice
computation, (iii) interactive generation of the final merged
ontology.

LSD/
GLUE
[152]/
iMAP
[153]

Relational
schema,
XML
schema,
Taxon-
omy

WHIRL,
Naive
Bayes, Do-
main con-
straints,
Hierar-
chical
structure

Auto Alignment LSD approach works in two phases. During the first (train-
ing) phase, using useful objects and manually created align-
ments between them, the system trains multiple basic match-
ers. During the second (matching) phase, by applying the
trained basic matchers and the meta-matcher on the new ob-
jects (the classification operation), LSD obtains a prediction
list of matching candidates. Finally, by taking into account
integrity constraints and applying some thresholds, the final
alignment is extracted. GLUE, a successor of LSD, follows
a multi-strategy learning approach, involving several basic
matchers and a meta-matcher. iMAP uses several matchers,
called searchers, are run in parallel. They provide candidate
matches that can be complex. These candidates are further
selected by applying the similarity estimator, and then, the
final alignment is extracted.

Automatch
[154]

Relational
schema

Naive
Bayes,
Internal
structure
Statistics

User Alignment Automatch acquires probabilistic knowledge from the man-
ually matched schemas, and creates the attribute dictionary,
which accumulates the knowledge about each attribute by
means of its possible values and the probability estimates
of these values. The system first matches each attribute of
the input schemas against the attribute dictionary, thereby
producing individual match scores. Then, these individual
scores are further combined by taking their sum to produce
the scores between the attributes of the input schemas.

Wang &
al. [155]

Web
form

Language-
based,
Mutual in-
formation

Inst-
ances

Alignment The approach works in two phases: (i) query probing and (ii)
instance-based matching.
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Table 5.1: List of Ontology Matching and Alignment Tools (continued)
System Input Matching

Method(s)
Needs Output Approach

sPLMap
[156]

Database
schema

Naive
Bayes,
kNN
classifier,
String-
based

Auto Rules The system operates in three main steps. First, it selects the
set of correspondences that maximizes probability on the ba-
sis of instance data. Second, for each correspondence, match-
ers are used as quality estimators: they provide a measure of
the plausibility of the correspondence. Finally, the computed
probabilities are transformed in correspondence weights by
using the Bayes theorem.

SEMINT
[157]

Relational
schema

Neural
network,
Datatypes,
Value
patterns

Auto Alignment The approach works on four main tasks. First, it extracts all
the necessary information useful for matching. Second, by
using a neural network as a classifier with the self-organizing
map algorithm, it groups the attributes based on similar-
ity of the features for the first database. Third, it uses a
back-propagation neural network for learning and recogni-
tion. Finally, using a trained neural network on the first
database features and clusters, the system recognizes and
computes similarities between the categories and between
the attributes among two databases, and generates a list of
match candidates.

Clio [158] Relational
schema

String-
based,
Language-
based,
Naive
Bayes
Structure
compari-
son

Semi Query It combines, in a sequential manner, instance-based attribute
classification via a variation of a Naive Bayes classifier and
string matching between elements names, e.g., by using an
edit distance. Then, taking the n-m value correspondences
(the alignment) together with constraints coming from the
input schemas, Clio compiles these into an internal query
graph representation.

NOM
[159] &
QOM
[160]

RDF,
OWL

String-
based, Do-
mains and
ranges,
Matching
of neigh-
bours,
Taxonomic
structure

Auto Alignment In NOM, the similarity measures produced by basic match-
ers are refined by using a sigmoid function—thereby empha-
sizing high individual similarities and de-emphasizing low
individual similarities. They are then aggregated through
weighted average. Finally, with the help of thresholds, the
final alignment is produced. QOM is a variation of the NOM
system dedicated to improve the efficiency of the system. It
avoids the complete pairwise comparison of trees in favour
of an incomplete top-down strategy, thereby focusing only
on promising matching candidates.

oMap
[161]

OWL Naive
Bayes,
String-
based,
Similarity
propaga-
tion

Auto Alignment It uses several matchers, which includes: (i) a classifier based
on classic string similarity measure over normalized entity
names; (ii) a Naive Bayes classifier used on instance data,
and (iii) a semantic matcher which propagates initial weights
through the ontology constructors used in the definitions of
ontology-entities.

Xu & al.
[162]

XML
schema,
Taxon-
omy

String-
based,
Language-
based,
WordNet,
Domain
ontology,
Decision
trees

Auto Alignment It is performed by a combination of multiple matchers and
with the help of external knowledge resources, such as do-
main ontologies. The basic element level matchers used in
the approach include name matcher and value-characteristic
matcher. Structure level matchers are used to suggest new
correspondences as well as to confirm correspondences iden-
tified by element level matchers.

OLA
[163]

RDF,
OWL

String-
based,
Language-
based,
Datatypes,
WordNet,
Fixed
point com-
putation,
Matching
of neigh-
bours,
Taxonomic
structure

Auto Alignment It computes similarity between entities based on two princi-
ples: (i) it depends on the category of entity considered, e.g.,
class, property, and (ii) it takes into account all the features
of this category, e.g., superclasses, properties. The similarity
distance between entities are expressed as a system of equa-
tions based on string-based, language-based and structure-
based similarities. For computing these distances, the algo-
rithm starts with base distance measures computed from la-
bels and concrete datatypes. Then, it iterates a fixed point
algorithm until no improvement is produced. From that so-
lution, an alignment is generated which satisfies some addi-
tional criterion on the obtained alignment and the distance
between matched entities.
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Table 5.1: List of Ontology Matching and Alignment Tools (continued)
System Input Matching

Method(s)
Needs Output Approach

IF-Map
[164]

XML
schema

String-
based,
Formal
concept
analysis

Inst-
ances

Transfor-
mation

It matches two local ontologies by looking at how these are
related to a common reference ontology. It generates candi-
date pairs of mappings (called infomorphism in information
flow theory) and artificial instances by heuristics based on
string-based and structure-based methods.

Falcon-
AO [165]

RDF,
OWL

String-
based,
WordNet,
Structural
affinity

Auto Mediator Matching is done via two components, namely, (i) LMO: lin-
guistic matching, and (ii) GMO: structure matching. First,
LMO is used for assessing the similarity between ontology-
entities on the basis of their name and text annotations. If
the result has a high confidence, then it is directly returned
for extracting an alignment. Otherwise, the result is used as
input for the GMO matcher which tries to find an alignment
on the basis of the relationships between entities.

RiMOM
[166]

OWL String-
based,
WordNet,
Taxonomic
structure,
Similarity
propaga-
tion

Auto Alignment Its matching process is organized into 6 tasks: (i) select the
matcher to be used, (ii) execute multiple independent match-
ers, (iii) combine the results by aggregating the similarities
evaluated by individual matchers, (iv) similarity propaga-
tion, (v) extract alignment for a pair of ontologies based on
thresholds, (vi) iterate the above tasks with extracted align-
ments, until no new correspondences are produced.

Detecting
Complex
Corre-
spon-
dences
[176]

RDF,
OWL

Linguistic
analysis,
Linguistic
matching
conditions

Align-
ment

Alignment Ritze et. al. [176] proposed an approach for finding complex
correspondences in absence of matchable instances, and pro-
posed further improvements by employing linguistic analysis
in their matching process to produce an enriched set of cor-
respondence patterns leveraging linguistic matching condi-
tions [190].

TOM RDF,
OWL

Structure-
based
similarity,
Triple-set
similarity

Align-
ment

Alignment Triple-base Ontology Matching (TOM) (see Section 5.4) finds
structural similarities between two entities e1 and e2 based
on the similarities between the set of triples that describe e1

and the set of triples that describe e2. TOM requires source
ontologies and some initial alignments between those on-
tologies to produce new alignments between them.

POM RDF,
OWL

Proof-
based
similarity,
Ancestor-
set similar-
ity

Align-
ment

Alignment Proof-based Ontology Matching (POM) (see Section 5.5)
finds alignments not only based on structural similarities but
also takes into account (similarities between) other deduc-
tively connected complex entity-structures—under the rules
inP describing both domain-specific and ontology-language
semantics. POM requires (i) source ontologies (ii) individ-
uals from those ontologies, (iii) some initial alignments be-
tween those ontologies, and (iv) a logic program P to pro-
duce new alignments. However compared to TOM, POM is
designed to find more complex and non-trivial alignments
between source ontologies.
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The series of alignment approaches considered in this section has utilized a di-

versity of lexical and structure-based techniques [41, 42]. Usually, each individual

system employs a particular strategy. However, there are several common features

that are shared by the majority of systems. Here, we present our general observa-

tion about such features based on the evaluation carried in Euzenat et. al. [41]:

1. Schema-based matching solutions have been so far investigated more inten-

sively than the instance-based solutions.

2. Most of the systems focus on specific application domains, such as books

and music, and are limited to deal with particular ontology types, such as

DTDs, relational schemas and OWL ontologies. Only few systems aim to be

general in (a) suiting with various application domains, and (b) dealing with

multiple types of ontologies. Some examples of the latter include: Cupid,

COMA and COMA++, Similarity flooding and S-Match.

3. Most of the approaches take as input a pair of ontologies, while only few sys-

tems take as input multiple ontologies. Some examples of the latter include:

DCM and Wise-Integrator.

4. Most of the approaches handle only tree-like structures, while only few sys-

tems handle graphs. Some examples of the latter include: Cupid, COMA and

COMA++, and OLA.

5. Most of the systems focus on discovery of one-to-one alignments, while only

few systems have tried to address the problem of discovering more complex

correspondences, such as one-to-many and many-to-many, e.g., iMAP, DCM,

Ritze et. al. [176, 190], TOM (see Section 5.4) and POM (see Section 5.5).

6. Most of the systems focus on computing confidence measures in the [0 1]

range, most often standing for the fact that the equivalence relation holds

between ontology-entities. Only few systems compute logical relations be-

tween ontology-entities, such as equivalence, subsumption, etc. Some exam-

ples of the latter include: CtxMatch and S-Match.
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5.2 Matching Complex Entities

Matching and alignment of ontologies have been carried out based on their lexical,

conceptual and structural similarities [73]. When dealing with structural similar-

ities, similarity scores between ontology-entities can be further improved based

on the similarities between their structurally connected entities [73]. We believe

that alignments between two entities e1 and e2 can become more ’trustworthy’ by

finding similarities in their justifications under a logic program P—in which both

ontology-language and domain-specific rules are defined.

In our knowledge morphing framework K-MORPH, in order to align and

merge the extracted contextualized sub-ontologies, we have developed two ontol-

ogy matching approaches—that aim to find both structure-based and proof-based

similarities between source ontologies—are listed as follows:

1. Triple-based Ontology Matching (TOM): TOM finds structural similarities be-

tween two entities e1 and e2 based on the similarities between the set of triples

that describe e1 and the set of triples that describe e2. TOM requires source

ontologies and some initial alignments between those ontologies to produce

new alignments between them.

2. Proof-based Ontology Matching (POM): POM finds alignments not only based

on structural similarities but also takes into account (similarities between)

other deductively connected complex entity-structures—under the rules in

P describing both domain-specific and ontology-language semantics. POM

requires (i) source ontologies (ii) individuals from those ontologies, (iii) some

initial alignments between those ontologies, and (iv) a logic program P to

produce new alignments. However compared to TOM, POM is designed to

find more complex and non-trivial alignments between source ontologies.

In K-MORPH, we apply both of our matchers, POM and TOM, for (i) finding

alignments between the extracted contextualized sub-ontologies; and (ii) based on

found alignments, merge these sub-ontologies. Our matchers find new alignments
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between contextualized sub-ontologies, based on the set of pre-defined context-

specific alignments in the given problem-context. Based on both pre-defined context-

specific alignments and new alignments found by our matchers, we merge the ex-

tracted sub-ontologies and generate a merged ontology (see Figure 5.1).

We will demonstrate the working of POM and TOM on data-sets of Ontology

Alignment Evaluation Initiative (OAEI) [167] and compare their results with ex-

isting ontology matching systems. Furthermore, we will show the significance of

our matchers in aligning and merging the contextualized sub-ontologies for the

problem-context therapeutic decision support.

5.2.1 Matching Complex Entities: State-of-the-Art

Matching complex entities is a well known problem in database schema match-

ing [168], where complex attributes are first identified and then matched, e.g. a

name is equivalent with concatenation of a first-name and a last-name. On the

other hand, matching complex entities is one of the crucial challenges in the On-

tology Matching field [73]. Most of the state-of-the-art matchers just find (simple)

correspondences between two atomic entities (see Section 5.1). However, prag-

matic issues demand for complex matching. Hence, only the simple correspon-

dences between atomic entities are too limited to capture all meaningful relations

between concepts and properties of two related ontologies.

There are three diverse aspects of complex correspondences: designing (or

defining), finding and representing them. In Scharffe et. al. [169], complex corre-

spondences are analyzed from the design and representation aspects. It provides

a representation format to define complex correspondences as correspondence pat-

terns. Such complex patterns can be defined by domain experts, who can take ad-

vantage of diverse templates for capturing complex and correct matchings. More-

over, as suggested and shown in Scharffe et. al. [169], complex correspondences

can also be exploited by an automated matching approach.

An initial attempt on finding complex correspondences is reported in Zamazal

et. al. [170] using pattern-based detection of different semantic structures in on-

tologies. The most refined pattern is concerned with ‘N-ary’ relation detection.

Once such a pattern-based semantic structure is detected (using query language
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and some string-based similarity methods), additional conditions (such as string-

based comparisons) over the detected entities yields correspondences between

complex entities. The authors showed some experiments with pattern detection,

but experiments to demonstrate matching tasks were missing.

Another pattern-based approach is reported in Zamazal et. al. [171], where

it enables finding originally missed correspondences. First, ontologies are trans-

formed according to transformation patterns, and then any matcher can be ap-

plied to find (complex) correspondences. Authors also emphasized that matchers

can work with certain structures better than with others. This approach uses the

expressive alignment language [172], which extends the original INRIA alignment

format [173]. This language allows users to express a correspondence between two

complex entities/structures (such as set operators, restrictions applied to entities

and relations).

In addition, there have been some attempts towards finding complex corre-

spondences using machine learning approaches [174]. Although such systems can

detect correspondences between two complex entities, but these systems also re-

quire the ontologies to include matchable instances. However, ontologies often

contain disjoint sets of instances, and it is also not trivial to find matchable in-

stances [175]. This issue is addressed in Ritze et. al. [176], where the authors

proposed an approach for finding complex correspondences in absence of match-

able instances [175]. This approach also takes reference alignments (if available)

into account for detecting complex correspondences based on the given reference

alignment composed of simple correspondences.

In K-MORPH, we have proposed our approach for finding both atomic and

complex correspondences, and developed two matchers, TOM and POM, that de-

tects correspondences between two atomic/complex entities. Such entities can be

of the following forms:

1. Complex Concept: A complex concept can be defined as a union/intersection

of other (complex) concepts. A complex correspondence can be detected ei-

ther between two complex concepts, or between a complex and an atomic

concept. An example correspondence is listed below:
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[ a :Cell;

:entity1 {o1:Writer a rdfs:Class};

:entity2 {[ a rdfs:Class; owl:unionOf (o2:Author o2:Person)]};

:measure 0.663913043478261;

:relation rdfs:subClassOf].

The above correspondence represents a subsumption relation (i.e. rdfs:sub-

ClassOf) between a atomic concept o1:Writer and a complex concept de-

fined as a union of two concepts o2:Author and o2:Person.

2. Property-restricted Concept: A property-restricted concept is a complex con-

cept, where a property-specific constraint is defined on the concept. Such

constraints are of two types: owl:allValuesFrom and owl:someValuesFrom.

The property constraint owl:allValuesFrom on a property P specifies that

all the property-values of P must belong to a certain concept. Whereas,

owl:someValuesFrom ensures that there exists at least one property-value

of P that belongs to a certain concept. A property-restricted concept C is

a collection of all such instances that satisfy all the property restrictions on

C. An example correspondence dealing with a property-restricted concept is

listed below:

[ a :Cell;

:entity1 {o1:ConferenceChair a rdfs:Class};

:entity2 {[ a rdfs:Class; a owl:Restriction;

owl:onProperty o2:was a member of;

owl:someValuesFrom o2:Committee]};

:measure 0.233319397993311;

:relation rdfs:subClassOf].

The above correspondence represents a subsumption relation (i.e. rdfs:sub-

ClassOf) between o1:ConferenceChair and a property-restricted concept [

owl:onProperty o2:was a member of; owl:someValuesFrom o2:Commi-

ttee ...].
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3. Cardinality-restricted Concept: A cardinality-restricted concept is a complex

concept C, where a property of C is constraint by fixed (interval of) cardinal-

ity values. Cardinality value constraints can be defined on properties using

two OWL constructs: owl:minCardinality and owl:maxCardinality. The

property constraint owl:minCardinality on a property P specifies the mini-

mal cardinality for the property-values of P . Whereas, owl:maxCardinality

specifies the maximal cardinality for the property-values of P . A cardinality-

restricted concept C is a collection of all such instances that satisfy all the

cardinality restrictions on the properties of C. An example correspondence

dealing with a cardinality-restricted concept is listed below:

[ a :Cell;

:entity1 {o1:Paper a rdfs:Class};

:entity2 {[ a rdfs:Class; a owl:Restriction;

owl:onProperty o2:readByReviewer;

owl:minCardinality "1"ˆˆxsd:int] };

:measure 0.254826254826255;

:relation rdfs:subClassOf].

The above correspondence represents a subsumption relation (i.e. rdfs:sub-

ClassOf) between o1:Paper and a cardinality-restricted concept [ owl:on-

Property o2:readByReviewer; owl:minCardinality "1"ˆˆxsd:int . . . ].

In this way, there is a correspondence between the concept o1:Paper and

a collection of literature that is reviewed by at least one reviewer.

Compared to Ritze et. al. [176], we also take the reference alignments into an

account, and find complex correspondences based on the given simple correspon-

dences. Both TOM and POM can work without matchable instances, however

matchable instances can improve their matching process.

5.3 Preliminaries

For our purpose, we consider RDF/OWL ontologies that are defined based on

a vocabulary V = 〈C,R, I,L,Mc,Mp〉, comprised of concepts C, properties R,
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individuals I, literals L and RDF/OWL constructs representing meta-classesMc

and meta-properties Mp. An RDF/OWL ontology O can be expressed as triples

of the form 〈s, p, o〉 ∈ (C ∪ R ∪ I) × (C ∪ R ∪ I ∪Mp) × (C ∪ R ∪ I ∪ L ∪Mc).

In a triple 〈s, p, o〉, s is called subject, p predicate, and o object. Triples allow to

define terminology and assertional axioms in O [89]. Terminology axioms (concept

axioms and property axioms) T are of the form C v D (R v S) or C ≡ D (R ≡ S)

such that C,D ∈ C and R, S ∈ R. Assertional axioms (concept assertions and

property assertions) A are of the form C(a) or R(b, c) such that C ∈ C, R ∈ R,

a, b, c ∈ I. The set of matchable entities MO of O is defined as MO = C ∪ R ∪ I.

The semantics of an ontology is defined by an interpretation that provides mapping

from (i) ontology individuals, (ii) ontology concepts and (iii) ontology properties to

(a) elements of the domain, (b) collections of the domain-elements and (c) binary

relations between the domain-elements, respectively. A model of an ontology is

such an interpretation, under which all ontology-axioms are satisfied. An ontology

is called consistent, iff there exists a model for it. An ontology that has no model is

called an inconsistent ontology [116]. The set of ontologies is denoted by O. TP(O)

is the set of all asserted and inferred ontology triples of O under a given logic

program P (see Definition 1).

Definition 11 (Correspondence) Given two ontologies O1 and O2 together with their

set of matchable entities MO1 and MO2 respectively, and a confidence interval [0, 1], a

correspondence Φ = 〈e, e′, r, n〉 states that the two matchable entities e ∈ MO1 and e′ ∈
MO2 are related via a relation r with confidence n ∈ [0, 1].

Definition 12 (Alignment) Given two ontologies O1 and O2 together with their set of

matchable entities MO1 and MO2 respectively, an alignment A is a set of correspondences

between pairs of entities belonging to MO1 and MO2 .

Definition 13 (Concept Triples) For a concept C ∈ C in an ontology O, the concept

triples of C, denoted by TC , is a set of ontology triples of the form 〈C, p, o〉 or 〈s, p, C〉.

Definition 14 (Property Triples) For a property R ∈ R in an ontology O, the property

triples of R, denoted by TR, is a set of ontology triples of the form 〈s, R, o〉, 〈R, p, o〉 or

〈s, p, R〉.
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Definition 15 (Individual Triples) For an individual I ∈ I in an ontologyO, the indi-

vidual triples of I , denoted by TI , is a set of ontology triples of the form 〈I, p, o〉 or 〈s, p, I〉.

Definition 16 (Triple Ancestors) Given an ontology triple t ∈ TP(O), triple ancestors

of t, denoted by Ancest, is the set of all the triples corresponding to the internal nodes

and the leaves of the proof-tree T Rt (i.e. the set of all the ontology triples from which t is

derived under P ). For an asserted ontology triple t′, Ancest′ = ∅.

Definition 17 (Concept, Property and Individual Triples Ancestors) Given concept

triples TC for a concept C ∈ C, property triples TP for a property P ∈ R, and individual

triples TI for an individual I ∈ I,

concept triples ancestors AncesC for C is defined as AncesC =
⋃

t∈TC

Ancest

property triples ancestors AncesP for P is defined as AncesP =
⋃

t∈TP

Ancest

individual triples ancestors AncesI for I is defined as AncesI =
⋃

t∈TI

Ancest

5.4 Ontology Alignment using Triple-based Ontology Matching (TOM)

We propose a structure-based ontology matching approach triple-based ontology

matching (TOM). TOM also tries to maximize the similarity between ontology-

entities based on the similarities between their structurally connected entities. TOM

requires two source ontologies O,O′, together with their set of matchable entities

MO and MO′ as inputs. TOM also requires some initial correspondences of the

form Φij = 〈ei, ej, r, n〉. In TOM, for any two entities ek ∈ MO and el ∈ MO′ , we

find a structure-based similarity between ek and el by first collecting all triples of

ek (denoted by Tek
) and all triples of el (denoted by Tel

), and then we calculate a

similarity score between ek and el based on the similarities between the entities

ei ∈ MO and ej ∈ MO′ that are used to describe axioms and assertions of ek and el

stored in Tek
and Tel

, respectively. An abstract algorithm of our TOM method is

shown in Algorithm 1. Algorithm 1 is explained as follows:
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Algorithm 1 Triple-based Ontology Matching (TOM)
Require: Source ontologies O,O′ Similarity threshold H

Require: Pre-defined correspondences Φij = 〈ei, ej , r, n〉
Ensure: Triple-based Alignments A
1: for all ek ∈MO do

2: Tek
= Set of triples where ek appears;

3: end for

4: for all el ∈MO′ do

5: Tel
= Set of triples where el appears;

6: end for

7: for all ek, el do

8: simek
= 0; simTek

= 0; simel
= 0; simTel

= 0;

9: for all t ∈ Tek
do

10: simt = 0;

11: for all t′ ∈ Tel
do

12: for all 〈ei, ej , r, n〉 do

13: simt = simt + s; such that argmax
s

(〈ei, ej , r, n〉), where t ∈ Tei
and t′ ∈ Tej

14: end for

15: end for

16: simTek
= simTek

+ simt;

17: end for

18: for all t′ ∈ Tel
do

19: simt′ = 0;

20: for all t ∈ Tek
do

21: for all 〈ej , ei, r, n〉 do

22: simt′ = simt′ + s; such that argmax
s

(〈ej , ei, r, n〉), where t ∈ Tei
and t′ ∈ Tej

23: end for

24: end for

25: simTel
= simTel

+ simt′ ;

26: end for

27: simek
=

simTek

|Tek
| ; simel

=
simTel

|Tel
| ;

28: if simek
≥ H & simel

≥ H then

29: score = simek
+simel

2 ;

30: A.add(〈ek, el,=, score〉); A.add(〈el, ek,=, score〉);

31: end if

32: end for

33: return A;
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line 1-3: For each entity ek ∈ MO (i.e. concept, property or individual) from an

ontology O, compute the set of triples Tek
where ek appears (see Definition

13, 14, 15).

line 4-6: For each entity el ∈ MO′ (i.e. concept, property or individual) from an

ontology O′, compute the set of triples Tel
where el appears (see Definition

13, 14, 15).

line 7-32: For any two entities ek ∈MO and el ∈MO′ from the source ontologiesO
and O′, compute the triple-set similarity between ek and el as follows.

line 9-17: Calculating the triple-set similarity of ek with respect to triple-set

of el by comparing each triple t ∈ Tek
with an arbitrary triple t′ ∈ Tel

(see

line 11-15), and aggregating the highest of the similarities between t ∈
Tek

and any other triple t′ ∈ Tel
(see line 12-14). A triple-set similarity of

ek triple-set Tek
is stored in simTek

by aggregating the highest similarity

score for each triple t ∈ Tek
with respect to the triple-set Tel

(see line 16).

line 18-26: Calculating the triple-set similarity of el with respect to triple-set

of ek by comparing each triple t′ ∈ Tel
with an arbitrary triple t ∈ Tek

(see line 20-24), and aggregating the highest of the similarities between

t′ ∈ Tel
and any other triple t ∈ Tek

(see line 21-23). A triple-set sim-

ilarity of el triple-set Tel
is stored in simTel

by aggregating the highest

similarity score for each triple t′ ∈ Tel
with respect to the triple-set Tek

(see line 25).

line 27-31: Calculating the triple-set similarity ratios for both entities ek and

el. These ratios get stored in simek
and simel

, which are computed by

dividing the triple-set similarities simTek
and simTel

with the cardinality

of their triple-sets Tek
and Tel

, respectively (see line 27). If the com-

puted ratios simek
and simel

are higher than the given thresholdH , then

their average gets stored in score (see line 29) and two correspondences

〈ek, el,=, score〉 and 〈ek, el,=, score〉 get added into the new alignment

set A (see line 30).

line 33: Return the new alignment set A.
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5.5 Ontology Alignment using Proof-based Ontology Matching (POM)

In addition to TOM, we propose another ontology matching method proof-based

ontology matching (POM) for ontology alignment. POM requires source ontologies

at the proof-level. A proof-level ontology is an ontology O, where for each inferred

triple t′ there exists a unique proof-tree T Rt′ that describes the derivation of t′

under a logic program P (see Definition 1). Each internal node in T Rt′ is derived

from its children nodes using a single rule inP , whereas the leaf nodes corresponds

to the asserted ontology triples. For an asserted ontology triple t, T Rt = ∅. An

ontology at the proof-level can provide the justifications (see Definition 16) behind

inferred triples based on the rules and constraints defined in P .

POM requires two source ontologies (O and O′) at proof-level, together with

their set of matchable entities MO and MO′ as inputs. POM also needs a set of pre-

defined correspondences of the form Φ = 〈ei, ej, r, n〉, where n is a similarity score

to construct a relation r between any two matchable entities ei ∈MO and ej ∈MO′ .
Given pre-defined correspondences Φ = 〈ei, ej, r, n〉, we calculate a similarity score

between two matchable entities ek ∈ MO and el ∈ MO′ , based on the similarity

score 〈ei, ej, r, n〉 of entities ei and ej such that ei ∈ Ancesek
and ej ∈ Ancesel

.

Therefore, POM finds alignments not only based on structural similarities but

also takes into account (similarities between) other deductively connected com-

plex entity-structures—under the rules in P describing both domain-specific and

ontology-language semantics. An abstract algorithm of our POM method is shown

in Algorithm 2.

line 1-3: For each entity ek ∈ MO (i.e. concept, property or individual) from an

ontologyO, compute the set of triplesAncesek
that derived triples Tek

where

ek appears (see Definition 17).

line 4-6: For each entity el ∈ MO′ (i.e. concept, property or individual) from an

ontology O′, compute the set of triples Ancesel
that derived triples Tel

where

el appears (see Definition 17).

line 7-32: For any two entities ek ∈MO and el ∈MO′ from the source ontologiesO
and O′, compute the triple-set similarity between ek and el as follows.
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Algorithm 2 Proof-based Ontology Matching (POM)
Require: Source ontologies O,O′ Similarity threshold H

Require: Pre-defined correspondences Φij = 〈ei, ej , r, n〉
Ensure: Proof-based Alignments A

1: for all ek ∈MO do

2: Ancesek
= Set of triples that derived triples Tek

;

3: end for

4: for all el ∈MO′ do

5: Ancesel
= Set of triples that derived triples Tel

;

6: end for

7: for all ek, el do

8: simek
= 0; simAncesek

= 0; simel
= 0; simAncesel

= 0;

9: for all t ∈ Ancesek
do

10: simt = 0;

11: for all t′ ∈ Ancesel
do

12: for all 〈ei, ej , r, n〉 do

13: simt = simt + s; such that argmax
s

(〈ei, ej , r, n〉), where t ∈ Tei and t′ ∈ Tej

14: end for

15: end for

16: simAncesek
= simAncesek

+ simt;

17: end for

18: for all t′ ∈ Ancesel
do

19: simt′ = 0;

20: for all t ∈ Ancesek
do

21: for all 〈ej , ei, r, n〉 do

22: simt′ = simt′ + s; such that argmax
s

(〈ej , ei, r, n〉), where t ∈ Tei and t′ ∈ Tej

23: end for

24: end for

25: simAncesel
= simAncesel

+ simt′ ;

26: end for

27: simek
=

simAncesek

|Ancesek
| ; simel

=
simAncesel

|Ancesel
| ;

28: if simek
≥ H & simel

≥ H then

29: score = simek
+simel

2 ;

30: A.add(〈ek, el,=, score〉); A.add(〈el, ek,=, score〉);

31: end if

32: end for

33: return A;
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line 9-17: Calculating the ancestor-set similarity of ek with respect to ancestor-

set of el by comparing each triple t ∈ Ancesek
with an arbitrary triple

t′ ∈ Ancesel
(see line 11-15), and aggregating the highest of the simi-

larities between t ∈ Ancesek
and any other triple t′ ∈ Ancesel

(see line

12-14). An ancestor-set similarity of ek ancestor-set Ancesek
is stored

in simAncesek
by aggregating the highest similarity score for each triple

t ∈ Ancesek
with respect to the ancestor-set Ancesel

(see line 16).

line 18-26: Calculating the ancestor-set similarity of el with respect to ancestor-

set of ek by comparing each triple t′ ∈ Ancesel
with an arbitrary triple

t ∈ Ancesek
(see line 20-24), and aggregating the highest of the similar-

ities between t′ ∈ Ancesel
and any other triple t ∈ Ancesek

(see line

21-23). An ancestor-set similarity of el ancestor-set Ancesel
is stored

in simAncesel
by aggregating the highest similarity score for each triple

t′ ∈ Ancesel
with respect to the ancestor-set Ancesek

(see line 25).

line 27-31: Calculating the ancestor-set similarity ratios for both entities ek

and el. These ratios get stored in simek
and simel

, which are computed

by dividing the ancestor-set similarities simAncesek
and simAncesel

with

the cardinality of their ancestor-set Ancesek
and Ancesel

, respectively

(see line 27). If the computed ratios simek
and simel

are higher than the

given threshold H , then their average gets stored in score (see line 29)

and two correspondences 〈ek, el,=, score〉 and 〈ek, el,=, score〉 get added

into the new alignment set A (see line 30).

line 33: Return the new alignment set A.

5.6 Evaluation

We found the matching approach mentioned in Ritze et. al. [176] competitive to

our matchers. So, we compared our matching results with the results of Ritze et.

al. [176] on the Conference data-set of the Ontology Alignment Evaluation Initiative

(OAEI) [167]. The Conference data-set is comprised of 16 ontologies from the same

domain (conference organization). These ontologies are quite suitable for ontology
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alignment task because of their heterogeneous character of origin. Based on the

following input ontologies from the conference data-set, we compare the results

generated by our matchers with the results generated by Ritze et. al. [176]:

1. Source Ontology # 1 (cmt.owl): 36 Concepts, 10 Datatype Properties, 49 Ob-

ject Properties, 0 Individuals.

2. Source Ontology # 2 (conference.owl): 60 Concepts, 18 Datatype Proper-

ties, 46 Object Properties, 0 Individuals.

3. Initial Alignments (cmt-Conference.owl): Total of 15 Correspondences be-

tween atomic entities (concepts and properties) from the source ontologies.

4. Similarity Threshold (0.3): Considering all the correspondences that have a

similarity score above 0.3.

5.6.1 Ritze et. al. Matching Results

Based on the above-mentioned input ontologies (cmt.owl and conference.owl)

and initial alignments between them (cmt-Conference.owl), results generated by

Ritze et. al. [176] approach are shown in Table 5.2.

Table 5.2: Ritze et. al. Matching Results: Complex Correspondences
CMT Ontology Relation Conference Ontology Score

1 Meta-Review ⇔ [ owl:onProperty reviews;
owl:someValuesFrom Camera ready contribution] 1.0

2 Meta-Reviewer ⇔ [ owl:onProperty contributes;
owl:someValuesFrom Camera ready contribution] 1.0

3 ExternalReviewer ⇔ [ owl:onProperty contributes;
owl:someValuesFrom Extended abstract] 1.0

4 ConferenceChair ⇔ [ owl:onProperty contributes;
owl:someValuesFrom Poster] 1.0

5 AssociatedChair ⇔ [ owl:onProperty contributes;
owl:someValuesFrom Abstract] 1.0

6 Reviewer ⇔ [ owl:onProperty contributes;
owl:someValuesFrom Reviewed contribution] 1.0

7 AuthorNotReviewer ⇔ [ owl:onProperty contributes;
owl:someValuesFrom Reviewed contribution] 1.0

8 ConferenceMember ⇔ [ owl:onProperty contributes;
owl:someValuesFrom Poster] 1.0

9 User ⇔ [ owl:onProperty contributes;
owl:someValuesFrom Poster] 1.0

10 ProgramCommitteeChair ⇔ [ owl:onProperty was a committee chair of;
owl:someValuesFrom Program committee] 1.0
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Ritze et. al. approach identifies only boolean correspondences for establish-

ing an equivalence relation between two complex entities (i.e. equivalence relation

with 100% confidence). Hence, the detected correspondences are either correct or

incorrect with 100% confidence. On the Conference data-set, from the Ritze et. al.

results (shown in Table 5.2), only two of the complex correspondences were found

correct. First correct correspondence (see line 6 in Table 5.2) provides an equiv-

alence relation between the concept Reviewer (from cmt.owl) and a property-

restricted concept (from Conference.owl), where its property contributes must

have some property values from the concept Reviewed contribution. Similarly,

the second one (see line 7) defines a correspondence between the concept Author-

NotReviewer (from cmt.owl) and same the property-restricted concept (defined

in the first correspondence; see line 6).

5.6.2 TOM Matching Results

Our matching approach in TOM identified correspondences between both atomic

and complex entities. Detected atomic correspondences are listed in Table 5.3;

whereas complex correspondences are shown in Table 5.4.

TOM found very promising matching results between the two source ontolo-

gies. Most of the correspondences listed in Table 5.3 were found correct. The corre-

spondences, which were found to be incorrect are <Document,Conference annou-

ncement>, <Document,Conference www>, <Document,Review>, <Meta-Review,

Conference document> and <Review,Conference document>. Although, for some

of the of the above correspondences (such as <Meta-Review,Conference document>

and <Review, Conference document>), neither an equivalence nor a subsump-

tion relation can be established among their entities. However, such correspon-

dences can still be realized by other domain-specific relations. For example a

Review or a Meta-Review can be related with Conference document by a domain-

specific relation is review for.

One of the most interesting correspondences, that really showed the strength of

our structure-based approach TOM, is <Person,Chair> (see line 8 in Table 5.3). If
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Table 5.3: TOM Matching Results: Atomic Correspondences
CMT Ontology Conference Ontology Score

1 Author ns1:Contribution co-author 1.0
2 Author Person 1.0
3 Co-author Person 1.0
4 Co-author Regular author 1.0
5 Person ns1:Contribution co-author 1.0
6 Person Regular author 1.0
7 Chairman Person 1.0
8 Person Chair 1.0
9 Document Abstract 1.0
10 PaperAbstract Conference document 1.0
11 Document Review 1.0
12 Review Conference document 1.0
13 assignedByReviewer invites co-reviewers 1.0
14 assignExternalReviewer invited by 1.0
15 Meta-Review Conference document 0.75
16 Meta-Review ns1:Review 0.75
17 Author Contribution 1th-author 0.6818
18 Co-author Contribution 1th-author 0.6818
19 Person Contribution 1th-author 0.6818
20 Paper Conference document 0.6818
21 Document Call for paper 0.6666
22 Document Call for participation 0.6666
23 Document Conference announcement 0.6666
24 Document Conference www 0.6666
25 Document Information for participants 0.6666
26 Author Conference contributor 0.65
27 Co-author Conference contributor 0.65
28 Person Conference contributor 0.65
29 User Contribution co-author 0.65
30 User Person 0.65
31 User Regular author 0.65
32 User ns1:Contribution 1th-author 0.3318
33 User Conference contributor 0.3

we consider entities from the source ontologies without any underlying ontology-

structure or domain application in mind, it will not be possible to find a corre-

spondence between two concepts Person and Chair. First of all, there is no lexical

or string-based similarity between these two concepts [41]. Also other thesauri-

based approaches might not find any similarities between these concepts [41]. It

is only the ontology structure that can provide the domain semantics to identify

the domain-specific similarities between ontology-entities and can find domain-

dependent correspondences between concepts, such as <Person,Chair>.

In addition to atomic correspondences (shown in Table 5.3), TOM also found

correspondences between complex entities. Complex correspondences found by

TOM are listed in Table 5.4. Compare to the results generated by Ritze et. al. ap-

proach (see Table 5.2), TOM not only found complex correspondences between

restricted concepts (see lines 3, 8, 9), but also found correspondences between
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Table 5.4: TOM Matching Results: Complex Correspondences

CMT Ontology Conference Ontology Score
1 [ owl:unionOf (AssociatedChair Chair 0.6666

ConferenceChair ProgramCommitteeChair)]
2 [ owl:unionOf (AssociatedChair Person 0.6666

ConferenceChair ProgramCommitteeChair)]
3 [ owl:unionOf (AssociatedChair [ owl:onProperty was a committee chair of 0.6666

ConferenceChair ProgramCommitteeChair)] owl:someValuesFrom Committee]
4 Author [ owl:intersectionOf ( :e24 :e25)] 0.6875

:e24 owl:unionOf (Contribution 1th-author
Contribution co-author)

:e25 owl:onProperty ns1:contributes
:e25 owl:someValuesFrom ns1:Conference contribution

5 Co-author [ owl:intersectionOf ( :e24 :e25)] 0.6875
6 Person [ owl:intersectionOf ( :e24 :e25)] 0.6875
7 User [ owl:intersectionOf ( :e24 :e25)] 0.3375
8 Chairman [ owl:onProperty was a committee chair of 0.6666

owl:someValuesFrom Committee]
9 Person [ owl:onProperty was a committee chair of 0.6666

owl:someValuesFrom Committee]

concepts that are union or intersection of other complex concepts (see lines 1-8).

Examples of such correspondences are listed in lines 1-3 in Table 5.4. First corre-

spondence (see line 1) presents a similarity between the concept Chair and a com-

plex concept, which is union of concepts AssociatedChair, ConferenceChair

and ProgramCommitteeChair. Similarly the second correspondence (see line 2)

presents a similarity between the same unioned concept and the concept Person.

The third correspondence (see line 3) presents a similarity between two complex

concepts: (i) a collection of the concepts: AssociateChair, ConferenceChair and

ProgramCommitteeChair; and (ii) a restricted concept, whereby any Associate-

Chair, ConferenceChair, or ProgramCommitteeChair should have been assigned

as a committee chair of some previous Committee. All other correspondences (see

line 4-9 in Table 5.4) were found correct as well.

5.6.3 POM Matching Results

POM also identified correspondences between both atomic and complex entities.

Detected atomic correspondences are listed in Table 5.5; whereas complex corre-

spondences are shown in Table 5.6. All the atomic correspondences detected by

POM (shown in Table 5.5) were found correct. Similar to TOM, POM also found

domain-dependent correspondences, such as <AssociatedChair, Person>,
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Table 5.5: POM Matching Results: Atomic Correspondences
CMT Ontology Conference Ontology Score

1 Co-author Contribution co-author 0.5647
2 AuthorNotReviewer Contribution 1th-author 0.5019
3 AuthorNotReviewer Contribution co-author 0.5019
4 Co-author Contribution 1th-author 0.5019
5 Co-author Regular author 0.5
6 Meta-Review Review 0.5
7 AuthorNotReviewer Regular author 0.5
8 Person Contribution co-author 0.4919
9 User Contribution co-author 0.4919
10 Co-author Conference contributor 0.4833
11 Co-author Person 0.4792
12 Person Chair 0.4772
13 User Contribution 1th-author 0.4625
14 Person Contribution 1th-author 0.4625
15 Person Regular author 0.4606
16 ConferenceMember Contribution co-author 0.4570
17 AuthorNotReviewer Conference contributor 0.45
18 ConferenceChair Chair 0.45
19 AssociatedChair Chair 0.45
20 AuthorNotReviewer Person 0.4459
21 ProgramCommitteeChair Chair 0.4404
22 Author Contribution 1th-author 0.4352
23 Author Contribution co-author 0.4352
24 Author Regular author 0.4333
25 ConferenceMember Contribution 1th-author 0.4276
26 ConferenceMember Regular author 0.4256
27 User Person 0.4065
28 User Regular author 0.4606
29 Author Person 0.3792
30 ConferenceMember Person 0.3715
31 AssociatedChair Person 0.3603
32 ConferenceChair Person 0.3603
33 ProgramCommitteeChair Person 0.3508
34 Chairman Person 0.3445

<Person,Chair>, and so on.

Compared to TOM, POM found more correspondences between complex enti-

ties. Complex correspondences detected by POM are listed in Table 5.6. POM also

gave promising results on the Conference data-set. For example, a correspondence

(shown in line 13 in Table 5.6) presents a similarity between concepts Associate-

Chair and a restricted concept, whereby any AssociateChair should have been

assigned as a committee chair of some previous Committee. Despite the good

results on the Conference data-set, POM also generated some incorrect correspon-

dences, e.g. line 1 in Table 5.6 presents a correspondence between Person and a

union concept (Conference∪Person). Two concepts, Person and (Conference∪
Person), found similar (see line 1 in Table 5.6) due to the following criteria:

1. The concept Person was present in both ontologies and hence found similar.



86

Table 5.6: POM Matching Results: Complex Correspondences

CMT Ontology Conference Ontology Score
1 [ owl:unionOf (Conference Person)] Person 0.4139
2 [ owl:unionOf (AssociatedChair Chair 0.4444

ConferenceChair ProgramCommitteeChair)]
3 [ owl:unionOf (AssociatedChair Person 0.3548

ConferenceChair ProgramCommitteeChair)]
4 [ owl:unionOf (AssociatedChair [ owl:onProperty was a committee chair of 0.3694

ConferenceChair ProgramCommitteeChair)] owl:someValuesFrom Committee]
5 Author [ owl:intersectionOf ( :e24 :e25)] 0.4777

:e24 owl:unionOf (Contribution 1th-author
Contribution co-author)

:e25 owl:onProperty ns1:contributes
:e25 owl:someValuesFrom ns1:Conference contribution

6 AuthorNotReviewer [ owl:unionOf (Invited speaker Regular author)] 0.4
7 AuthorNotReviewer [ owl:intersectionOf ( :e24 :e25)] 0.5444
8 Co-author [ owl:unionOf (Invited speaker Regular author)] 0.4333
9 Co-author [ owl:intersectionOf ( :e24 :e25)] 0.5777
10 ConferenceMember [ owl:intersectionOf ( :e24 :e25)] 0.4700
11 Person [ owl:intersectionOf ( :e24 :e25)] 0.5050
12 User [ owl:intersectionOf ( :e24 :e25)] 0.5050
13 AssociatedChair [ owl:onProperty was a committee chair of 0.375

owl:someValuesFrom Committee]
14 Chairman [ owl:onProperty was a committee chair of 0.3592

owl:someValuesFrom Committee]
15 ConferenceChair [ owl:onProperty was a committee chair of 0.375

owl:someValuesFrom Committee]
16 Person [ owl:onProperty was a committee chair of 0.4022

owl:someValuesFrom Committee]
17 ProgramCommitteeChair [ owl:onProperty was a committee chair of 0.3654

owl:someValuesFrom Committee]

2. The concept Person was also appearing in the union concept (Conference ∪
Person).

3. Since the concept Person was appearing in both Person and (Conference ∪
Person), their ancestors were found similar, where triples in both ancestor-

sets were deriving new inferred triples about Person.

Another observation is that POM generated lower similarity scores between

ontology-entities, as compared to TOM. The reason behind the lower similarity

scores generated by POM was the lack of ontology individuals. POM operates on

the proof-steps that are generated from the ontology model under a given logic

program P . In the given logic program P defining RDF/OWL semantics, most of

the rules were defined on assertional axioms A that require individuals; where as

the source Conference ontologies lack in individuals. Hence there were lesser proof-

steps generated, and therefore generated similarity scores were compromised.
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5.7 Merging Contextualized Sub-ontologies

Ontology merging is achieved by (i) asserting the source ontologies and an align-

ment between them in an ontology reasoner [118, 140, 141, 177], and then (ii) infer-

ring new relations in the merged ontology (see Figure 5.1). An ontology alignment

consists of correspondences that define a relation between two entities from differ-

ent source ontologies (see Definition 12). Our matchers, TOM and POM, based on

their defined similarity measures (see Sections 5.4 and 5.5), generate only a simi-

larity score between (both atomic and complex) entities, but not a relation between

those entities. Thus, based on the found similarity between two ontology-entities

e1 and e2, a correspondence relation between e1 and e2 (see Definition 11) is then

defined by the user. OWL and RDF(S) offer constructs that allow users to define

correspondences (see Definition 11) by providing a semantic relation between two

different ontology-entities (concepts, properties or individuals). Such OWL and

RDF(S) constructs are listed as follows:

1. owl:equivalentClass: declares an equivalence relation between two ontol-

ogy concepts. Semantics of owl:equivalentClass is defined via the follow-

ing N3 rules:

(a) {?A owl:equivalentClass ?B} => {?B owl:equivalentClass ?A}:

owl:equivalentClass is a symmetric relation.

(b) {?A owl:equivalentClass ?B. ?B owl:equivalentClass ?C} =>

{?A owl:equivalentClass ?C}: owl:equivalentClass is a transitive

relation.

(c) {?A owl:equivalentClass ?B} => {?A rdfs:subClassOf ?B}: If two

concepts have an equivalence relation, then both concepts are subsumed

by each other.

2. rdfs:subClassOf: declares a subsumption relation between two ontology

concepts. Semantics of rdfs:subClassOf is defined via the following rules:

(a) {?C rdfs:subClassOf ?D. ?X a ?C} => {?X a ?D}: Given concept

C is a sub-concept of concept D, then any individual of C is also an

individual of D.
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(b) {?C rdfs:subClassOf ?D. ?D rdfs:subClassOf ?E} =>

{?C rdfs:subClassOf ?E}: rdfs:subClassOf is a transitive relation.

3. owl:disjointWith: declares a disjointness relation between two ontology

concepts. Semantics of owl:disjointWith is defined via the following rules:

(a) {?C owl:disjointWith ?D. ?X a ?C. ?Y a ?D } =>

{?X owl:differentFrom ?Y}: Given two concepts C and D are dis-

joint with each other, then any individual of C is different from any

individual of D.

(b) {?C owl:disjointWith ?D. ?X a ?C. ?X a ?D} => false: Given two

concepts C and D are disjoint with each other, then any individual be-

longing to both C and D makes an ontology inconsistent.

4. owl:equivalentProperty: declares an equivalence relation between two

ontology properties. Semantics of owl:equivalentProperty is defined via

the following N3 rules:

(a) {?P owl:equivalentProperty ?Q. ?S ?P ?O} => {?S ?Q ?O}: Given

two properties P and Q have an equivalence relation between them,

then all extensions of P are also the extensions of Q.

(b) {?P owl:equivalentProperty ?Q} => {?Q owl:equivalentProperty

?P}: owl:equivalentProperty is a symmetric relation.

(c) {?P owl:equivalentProperty ?Q. ?Q owl:equivalentProperty ?R}

=> {?P owl:equivalentProperty ?R}: owl:equivalentProperty is

a transitive relation.

(d) {?P owl:equivalentProperty ?Q} => {?P rdfs:subPropertyOf ?Q.

?Q rdfs:subPropertyOf ?P}: If two properties P andQ have an equiv-

alence relation between them, then both P and Q are subsumed by each

other.

5. rdfs:subPropertyOf: declares a subsumption relation between two ontol-

ogy properties. Semantics of rdfs:subPropertyOf is defined via the follow-

ing N3 rules:
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(a) {?P rdfs:subPropertyOf ?Q. ?S ?P ?O} => {?S ?Q ?O}: Given a

property P is a sub-property of Q, then all extensions of P are also the

all extensions of Q.

(b) {?P rdfs:subPropertyOf ?Q. ?Q rdfs:subPropertyOf ?R} =>

{?P rdfs:subPropertyOf ?R}: rdfs:subPropertyOf is a transitive

relation.

(c) {?P rdfs:subPropertyOf ?Q. ?Q rdfs:domain ?C} =>

{?P rdfs:domain ?C}: Given a property P is a sub-property of Q, then

the domain of Q is also the domain of P .

(d) {?P rdfs:subPropertyOf ?Q. ?Q rdfs:range ?C} =>

{?P rdfs:range ?C}: Given a property P is a sub-property of Q, then

the range of Q is also the range of P .

6. owl:propertyDisjointWith: declares a disjointness relation between two

ontology properties. Semantics of owl:propertyDisjointWith is defined

via the following N3 rule:

{?P owl:propertyDisjointWith ?Q. ?X ?P ?Y. ?X ?Q ?Y} => false:

Given two properties P and Q are disjoint with each other, then any pair of

extensions belonging to both P and Q makes an ontology inconsistent.

7. owl:sameAs: declares an equivalence relation between two (different) ontol-

ogy individuals. Semantics of owl:sameAs is defined via the following N3

rules:

(a) {?X owl:sameAs ?Y} => {?Y owl:sameAs ?X}: owl:sameAs is a sym-

metric relation.

(b) {?X owl:sameAs ?Y. ?Y owl:sameAs ?Z} => {?X owl:sameAs ?Z}:

owl:sameAs is a transitive relation.

(c) {?X owl:sameAs ?Y. ?X owl:differentFrom ?Y} => false: Two on-

tology individuals that have both equivalence and nonequivalence rela-

tion makes an ontology inconsistent.
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8. owl:differentFrom: declares a nonequivalence relation between two ontol-

ogy individuals. Semantics of owl:differentFrom is defined via the follow-

ing N3 rule:

{?A owl:differentFrom ?B} => {?B owl:differentFrom ?A}:

owl:differentFrom is a symmetric relation.

In K-MORPH, after extracting contextualized sub-ontologies (see Chapter 4),

we align and merge the extracted contextualized sub-ontologies. In order to align

these sub-ontologies, we use two of our developed matchers, TOM and POM (see

Sections 5.4 and 5.5), that find similarities between two ontology-entities from

the extracted sub-ontologies based on the given context-specific alignments Ax

(see Definition 2). Based on the found similarities between ontology-entities e1
and e2, a user then defines a correspondence relation between e1 and e2 using

the above-described OWL and RDF(S) constructs. Hence, by defining correspon-

dences between similar ontology-entities, an alignment A between the extracted

sub-ontologies is obtained. The defined alignment A serves as the basis for merg-

ing the extracted contextualized sub-ontologies, where new correspondences in A
(see Definition 11) provides new semantic relations between different ontology-

entities (see Figure 5.1). Hence, in the merged ontology, entities from two different

ontologies are aligned based on the above-mentioned semantic relations. Such

an alignment supports semantic interoperability between two different ontolo-

gies by relating corresponding entities; and by using an ontology reasoner [118,

140, 141, 177], inferring new knowledge from the aligned entities under the above-

mentioned rules. An abstract process for merging contextualized sub-ontologies

can be defined as follows:

Definition 18 (Merging Contextualized Sub-ontologies) Let O be the set of ontolo-

gies, P be the set of logic programs (see Definition 1), and Π be the set of pre-defined

context-specific alignments (see Definition 2). Our ontology merging method is defined as

a function:

merge sub onto : 2O × P× Π −→ O
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5.7.1 Merging Conference Ontologies

As discussed in the previous section, TOM and POM can only generate a similar-

ity score between two ontology entities; but not a correspondence relation between

them. Therefore, in order to demonstrate the merging of the source conference on-

tologies (see Section 5.6), we defined a correspondence relation for each of the cor-

respondences found in Tables 5.3 and 5.5. Based on the defined correspondences,

Table 5.7 highlights some of the inferred results found in the final merged ontology.

Table 5.7: Merged Conference Ontology: Inferred Results
Alignment Inferred Knowledge

1 ctm:ProgramCommitteeChair ctm:ProgramCommitteeChair v conf:Committee member.
v conf:Chair ctm:ProgramCommitteeChair v ctm:Chairman

2 conf:Contribution co-author conf:Contribution co-author v ctm:ConferenceMember.
v ctm:Author conf:Contribution co-author v conf:Person

3 ctm:Author ctm:AuthorNotReviewer v conf:Person.
v conf:Person conf:Contribution 1th-author v conf:Person.

conf:Contribution co-author v conf:Person
4 conf:Conference contributor conf:Active conference participant v ctm:Person.
v ctm:Person conf:Invited speaker v ctm:Person

5 ctm:Person ctm:Person ≡ ctm:User. ctm:Chairman v ctm:User.
≡ conf:Person ctm:ConferenceMember v conf:Person. ctm:ConferenceMember v ctm:User.

ctm:ExternalReviewer v conf:Person. ctm:ExternalReviewer v ctm:User.
ctm:ProgramCommitteeMember v conf:Person.
ctm:ProgramCommitteeMember v ctm:User. ctm:Reviewer v conf:Person.
conf:Committee member v ctm:Person.
conf:Conference applicant v ctm:Person.
conf:Conference participant v ctm:Person.
conf:Passive conference participant v ctm:Person.
conf:Registeered applicant v ctm:Person. conf:Reviewer v ctm:Person.
conf:Track-workshop chair v ctm:Person. conf:Chair v ctm:User.
ctm:Meta-Reviewer v conf:Person. conf:Co-chair v ctm:Person.
conf:Early paid applicant v ctm:Person.
conf:Late paid applicant v ctm:Person

6 ctm:User ctm:User ≡ ctm:User. ctm:Administrator v conf:Person.
≡ conf:Person ctm:Chairman v ctm:User. ctm:ConferenceMember v ctm:User.

ctm:ExternalReviewer v ctm:User.
ctm:ProgramCommitteeMember v ctm:User.
...

...
...

...
...

...
conf:Late paid applicant v ctm:User

7 conf:Conference document conf:Conference contribution v ctm:Document.
v ctm:Document conf:Poster v ctm:Document. conf:Presentation v ctm:Document.

conf:Written contribution v ctm:Document.
conf:Regular contribution v ctm:Document.
conf:Invited talk v ctm:Document. conf:Paper v ctm:Document.
conf:Extended abstract v ctm:Document.
conf:Submitted contribution v ctm:Document.
conf:Accepted contribution v ctm:Document.
conf:Camera ready contribution v ctm:Document.
conf:Rejected contribution v ctm:Document.
conf:Reviewed contribution v ctm:Document

8 ctm:PaperAbstract ctm:PaperAbstract v conf:Extended abstract.
v conf:Abstract ctm:PaperAbstract v conf:Regular contribution.

ctm:PaperAbstract v conf:Written contribution.
ctm:PaperAbstract v conf:Conference contribution

≡: owl:equivalentClass; v: rdf:subClassOf;
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5.8 Experiment and Results: Merging Contextualized Sub-ontologies for

Prostate Cancer Management

We extended our earlier experiment (see section 4.5) for the prostate cancer (PC)

scenario (see Section 3.3) to demonstrate the merging of the extracted contextu-

alized sub-ontologies from three location-specific PC clinical pathway ontologies,

in order to generate comprehensive therapeutic PC work-flow knowledge for the

problem-context therapeutic decision support. The objective of this experiment is to

generate a more comprehensive PC ontology, whereby one can suggest alternative

treatments or extend interventions at one location based on knowledge contained

in other PC ontologies. For instance, if location L1 is prescribing intervention I1 for

condition C, and location L2 is prescribing intervention I2 for condition C ′, where

conditions C and C ′ are similar to each other, then one can imply, after satisfying

clinical pragmatics, that condition C (or C ′) can be treated by both interventions I1
and I2. Likewise, if location L3 has no information about how to handle condition

C (or C ′), then the same inference can be applied to suggest interventions I1 and

I2.

In order to fulfill the desired objective (i.e. therapeutic decision support), we

demonstrate the merging of therapeutic PC work-flow knowledge from three location-

specific PC ontologies.

5.8.1 Extracted Contextualized Sub-ontologies

We used three PC ontologies that describes PC clinical pathways, namely: (i) PC

Halifax Pathway, (ii) PC Calgary Pathway, and (iii) PC Winnipeg Pathway [62].

For therapeutic decision support context, the user is interested in such extracted sub-

ontologies that describes only (i) the treatments, (ii) their durations, (iii) their follow-

ups, (iv) their care-settings, and (v) the practitioners involved for them. K-MORPH
extracted a contextualized sub-ontology from each of the three PC ontologies (see

Section 4.5.2 for details). Concepts (including their axioms and assertions) that

were extracted in the sub-ontologies are Treatment, Followup, Frequency, Interval Du-

ration, and Clinician.
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@prefix pc1: $<http://www.owl-ontologies.com/PC-Halifax.owl#>.$
@prefix pc2: $<http://www.owl-ontologies.com/PC-Calgary.owl#>.$
@prefix pc3: $<http://www.owl-ontologies.com/PC-Winipeg.owl#>.$

Alignments Between Classes:

pc1:Clinician owl:equivalentClass pc2:Clinician.
pc1:Clinician owl:equivalentClass pc3:Clinician.

pc1:Treatment owl:equivalentClass pc2:Treatment.
pc1:Treatment owl:equivalentClass pc3:Treatment.

Alignments Between Properties:

pc1:hasTask owl:equivalentProperty pc2:hasTask.
pc1:hasTask owl:equivalentProperty pc3:hasTask.

pc1:applyToCareSetting owl:equivalentProperty
pc2:applyToCareSetting.
pc1:applyToCareSetting owl:equivalentProperty
pc3:applyToCareSetting.

pc1:hasFrequency owl:equivalentProperty pc2:hasFrequency.
pc1:hasFrequency owl:equivalentProperty pc3:hasFrequency.

pc1:hasInterval owl:equivalentProperty pc2:hasInterval.
pc1:hasInterval owl:equivalentProperty pc3:hasInterval.

pc1:hasFollowUpCare owl:equivalentProperty
pc2:hasFollowUpCare.
pc1:hasFollowUpCare owl:equivalentProperty
pc3:hasFollowUpCare.

pc1:hasDecisionCriteria owl:equivalentProperty
pc2:hasDecisionCriteria.
pc1:hasDecisionCriteria owl:equivalentProperty
pc3:hasDecisionCriteria.

pc1:HasDuration owl:equivalentProperty pc2:HasDuration.
pc1:HasDuration owl:equivalentProperty pc3:HasDuration.

pc1:IsPerformedBy owl:equivalentProperty pc2:IsPerformedBy.
pc1:IsPerformedBy owl:equivalentProperty pc3:IsPerformedBy.

pc1:isFollowedByFrequency owl:equivalentProperty
pc3:isFollowedByFrequency.

pc1:applyToInvestigation owl:equivalentProperty
pc2:applyToInvestigation.

pc1:isFollowedBy owl:equivalentProperty pc3:isFollowedBy.

Alignments Between Individuals:

pc2:ActiveSurveillance owl:sameAs pc1:ActiveSurveillance.
pc2:ActiveSurveillance owl:sameAs pc3:ActiveSurveillance.

pc2:ExternalBeamRadiationTherapy owl:sameAs
pc1:ExternalBeamRadiationTherapy.
pc2:ExternalBeamRadiationTherapy owl:sameAs
pc3:ExternalBeamRadiationTherapy.

pc2:Surgery owl:sameAs pc1:Surgery.
pc2:Surgery owl:sameAs pc3:Surgery.

pc2:Brachytherapy owl:sameAs pc3:Brachytherapy.

pc2:Cryotherapy owl:sameAs pc3:Cryotherapy.

pc2:Urologist owl:sameAs pc1:Urologist.
pc2:Urologist owl:sameAs pc3:Urologist.

pc2:RadiationOncologist owl:sameAs pc1:RadiationOncologist.
pc2:RadiationOncologist owl:sameAs pc3:RadiationOncologist.

pc2:FamilyPhysician owl:sameAs pc1:FamilyPhysician.
pc2:FamilyPhysician owl:sameAs pc3:FamilyPhysician.

Figure 5.2: Alignments for Contextualized PC Sub-ontologies

5.8.2 Merging Contextualized Sub-ontologies

Based on the pre-defined context-specific alignments among three contextualized

sub-ontologies (see section 4.5), new correspondences were found between classes,

including their properties and instances, for Treatment, Followup, Frequency, Inter-

val Duration, and Clinician. Correspondences obtained through TOM and POM

are shown in Figure 5.2. Based on the identified correspondences, and the given

context-specific axioms and alignments, extracted contextualized sub-ontologies

were then merged to generate possible ‘knowledge-links’ between the aligned PC

treatments.

Figures 5.3 and 5.4 show exemplar results based on the merging of ontology

concepts: Clinician, Treatment, Followup and Interval. In figure 5.3, the merged

knowledge has determined that the treatment Active Surveillance in Halifax (rep-

resented by the instance PC-Halifax:ActiveSurveillance) can be conducted by a

Primary Urologist. In the actual pathway, this information was not available for
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Figure 5.3: Merged Knowledge about PC-Halifax:ActiveSurveillance (highlighted
in the left panel)

Figure 5.4: Merged knowledge about PC-Winnipeg:Brachytherapy

Halifax; but due to the ontology alignments (see Figure 5.2) this task was found

to be similar to one in Calgary, and the actor performing this task in Calgary was

extended to Halifax. In figure 5.4, we have inferred that in Winnipeg the treatment

Brachytherapy (represented as PC-Winnipeg:Brachytherapy) can have a follow-up

treatment because in Calgary a similar treatment has a follow-up treatment. In

the Winnipeg PC ontology, this information was not initially present, and merging

of contextualized PC sub-ontologies have extended the original knowledge about

treatments.
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5.9 Summary

Semantic Web enabled applications usually demand a networking of ontologies

for providing a comprehensive knowledge-base to derive domain-specific solu-

tions under different contexts. This involves solving heterogeneity among source

ontologies under different contexts, which is an outstanding challenge in the field

of Ontology Matching and Alignment [73]. Context-driven reconciliation of on-

tologies aims to extract contextualized sub-ontologies and then merge those sub-

ontologies to generate a merged ontology for facilitating the problem-context at

hand. In this chapter, we described two of our ontology matching approaches

TOM and POM for finding complex correspondences between two source ontolo-

gies. We evaluated our matchers TOM and POM on data-sets of OAEI [167] and

compared its results with existing ontology matching systems. Furthermore, we

demonstrated the use of our matchers in finding correspondences among three

prostate cancer pathway ontologies and merging those ontologies for establishing

therapeutic PC work-flow knowledge for the problem-context therapeutic decision

support.



Chapter 6

Detecting and Resolving Inconsistencies in Ontologies Using

Contradiction Derivations

Knowledge representation via Semantic Web (SW) ontologies requires a careful

analysis of a domain of discourse for identifying domain-related concepts, prop-

erties and constraints [32]. Ontologies [89] serve as a backbone for the Seman-

tic Web as they provide constructs that represent shared vocabularies from mul-

tiple domains, such as Medicine and Healthcare [3, 87]. For different domain-

specific applications, domain experts try to maintain a standardized and shareable

knowledge-base by modelling their domain knowledge as ontologies through SW

languages and standards [32, 87]. Given that domain-specific concepts and prop-

erties are modelled in an ontology, the next step is to infer new knowledge based

on the domain-specific semantics and ontology-language constructs. A Logic Pro-

gram (LP) is comprised of rules that define semantics for both the ontology-language

constructs and the domain-specific knowledge modelled into the ontology struc-

ture. Hence by declaring a logic program and executing it, domain experts can

obtain inferred knowledge and also can define domain-specific constraints. When

modelling knowledge sources in terms of ontologies, two kind of ontology con-

straints can be defined:

1. Ontology Language Constraints define such situations, based on the ontology

language semantics, which should not be reasoned and inferred. Ontology

language semantics and constraints are represented in well-defined rules [49]

and are usually embedded in SW reasoners [140, 141, 177].

2. Domain-specific Constraints define such domain-specific situations, based on

the domain knowledge, which should not be reasoned and inferred. These

constraints are defined by the user, using ontology-modelled knowledge and

ontology constructs [178].

96
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Both types of constraints are modelled in terms of integrity constraint rules (in a

logic program), which are used to detect logical contradictions in the ontology

model. Thus when a logical contradiction is raised, the ontology is considered in-

consistent [69,70]. Logical contradictions may occur due to a number of reasons in-

cluding: (i) difference in conceptualization, (ii) contradictory domain knowledge,

(iii) errors in conceptualization, and (iv) different realizations of the concepts and

properties in different contexts and applications. Most of the above issues affect

the ontology model, and may turn a consistent ontology into an incoherent or in-

consistent one [70, 179].

In contrast to finding inconsistencies in evolving ontologies [36, 70], inconsis-

tencies can also appear in a networked ontology when reconciling various source

ontologies [180]. OurK-MORPH framework performs a context-driven ontology

reconciliation among ontology-modelled knowledge sources, and generates a net-

worked ontology for providing a comprehensive knowledge-base pertinent to the

problem-context at hand (see Chapter 3). In K-MORPH, during reconciliation of

ontologies, based on the identified alignments between consistent source ontolo-

gies, a networked (i.e. merged or integrated or mediated) ontology may also have

inconsistencies [116, 180]. Thus, in order to ensure consistency in the K-MORPH
generated ontology, we have developed a method for detecting and resolving in-

consistencies. In this chapter, we will describe our approach for detecting and

resolving inconsistencies in networked ontologies.

6.1 Dealing with Inconsistencies: State-of-the-Art

Regardless whether an inconsistency occurs during ontology evolution [36] or on-

tology reconciliation [180], there are mainly two ways to deal with it: either resolve

it, or reason with the inconsistent ontology.

6.1.1 Reasoning with an Inconsistent Ontology

When reasoning with an inconsistent ontology, querying is applied on a consistent

fragment of the inconsistent ontology [74]. Identifying a consistent fragment is

based on a selection function, which can be defined by some syntactic or semantic
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relevance [75]. One of the recent attempts was reported in [74], where ontologies

are expressed as defeasible logic programs (DeLP). For a given query, a dialectical

analysis is performed on the corresponding DeLP program, where all arguments

in favor and against the query results will be taken into account [74].

6.1.2 Detecting and Resolving Inconsistencies

In contrast to reasoning with inconsistent ontologies, there have been various at-

tempts towards measuring and resolving inconsistencies [116, 179, 181]. Radon is

one of these approaches that generates minimal inconsistent subsets for resolving

inconsistencies [180]. The proposed work in Haase et. al. [36, 70] deals with con-

sistent evolution of ontologies. The evolution process consists of two main phases:

(i) inconsistency detection and (ii) change generation. During inconsistency detection,

based on the defined consistency conditions, certain parts in the ontology that do

not meet consistency conditions are identified and presented as inconsistencies.

Identifying relevant axioms that contribute to an inconsistency are based on a se-

lection function, which determines how the ontology axioms are structurally con-

nected with the inconsistency. Change generation ensures the consistency of the

ontology by removing identified axioms that resolve detected inconsistencies. This

approach provides methodologies for extracting minimal inconsistent sub-ontologies

and maximal consistent sub-ontologies. One of the recent attempts was reported in

Scharrenbach et. al. [71] that uses default logics for relaxing the axioms that cause

incoherency [69, 70], and shows how probabilistic description logics can be used to

resolve conflicts and retrieve a consistent knowledge base.

Both (i) reasoning with inconsistencies and (ii) resolving inconsistencies share a com-

mon goal: extracting a (maximal) consistent sub-ontology from an inconsistent

one. The former reasons only on the identified consistent sub-ontology; whereas

the latter first removes the inconsistent part, and then applies the reasoner on the

resultant consistent sub-ontology to find satisfiable deductions. Nowadays, on-

tologies are usually evolved by either re-using or reconciling other ontologies [41].

During ontology development, re-using or reconciling an inconsistent source on-

tology into a native ontology will also make the native ontology inconsistent [180].
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Thus, we argue that compared to reasoning with inconsistencies, resolving incon-

sistencies first shall be more beneficial for a consistent ontology evolution [36, 70].

When resolving inconsistencies in an inconsistent ontology, the target is to extract

a consistent sub-ontology [36]. Thus, by resolving all the detected inconsistencies,

a consistent fragment of an inconsistent ontology can still be re-used or reconciled

with other ontologies, without importing its inconsistencies.

In our approach, we focus on detecting and resolving inconsistencies in on-

tologies when combined with a logic program (LP) [72]. A logic program consists

of rules of the form X1, . . . , Xn ⇒ Y to be applied on an ontology, from which

inferences can be drawn [49]. Our approach for detecting inconsistencies in an on-

tology deals with the identification of contradiction derivations under the integrity

constraint rules defined in an LP. For resolving detected inconsistencies, we gen-

erate all possible minimal inconsistent resolve candidates (MIRCs). An inconsistent

resolve candidate of an inconsistent ontology is a set of asserted ontology triples

whose removal results in a consistent sub-ontology. Removing an MIRC from the

inconsistent ontology will result in a maximal consistent sub-ontology w.r.t. the

given logic program. To inform the user about the consequences of removing an

MIRC, we also provide a list of all its derived triples. We evaluated our approach

on the prostate cancer ontology [62], where we detected all the inconsistencies in

this ontology and generated all possible MIRCs for extracting a maximal consistent

sub-ontology.

6.2 Preliminaries

For our purpose, we consider RDF/OWL ontologies that are defined based on

a vocabulary V = 〈C,R, I,L,Mc,Mp〉, comprised of concepts C, properties R,

individuals I, literals L and RDF/OWL constructs representing meta-classesMc

and meta-propertiesMp. An RDF/OWL ontologyO can be expressed as triples of

the form 〈s, p, o〉 ∈ (C ∪ R ∪ I) × (C ∪ R ∪ I ∪Mp) × (C ∪ R ∪ I ∪ L ∪Mc). In a

triple 〈s, p, o〉, s is called subject, p predicate, and o object. Triples allow to define

terminology and assertional axioms in O [89]. Terminology axioms (concept axioms

and property axioms) T are of the form C v D (R v S) or C ≡ D (R ≡ S) such

that C,D ∈ C and R, S ∈ R. Assertional axioms (concept assertions and property
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assertions) A are of the form C(a) or R(b, c) such that C ∈ C, R ∈ R, a, b, c ∈ I.

The semantics of an ontology is defined by an interpretation that provides mapping

from (i) ontology individuals, (ii) ontology concepts and (iii) ontology properties to

(a) elements of the domain, (b) collections of the domain-elements and (c) binary

relations between the domain-elements, respectively. A model of an ontology is

such an interpretation, under which all ontology-axioms are satisfied. An ontology

is called consistent, iff there exists a model for it. An ontology that has no model is

called an inconsistent ontology [116]. The set of ontologies is denoted by O.

Definition 19 (Logic Program) A logic program P , over a vocabulary V = 〈C,R, I〉
and a set of variables X , is a set of Horn Logic rules of the form X1, . . . , Xn ⇒ Y , where

Xi, Y ∈ {〈s, p, o〉} ∪ {>,⊥} such that 〈s, p, o〉 ∈ (C ∪R∪ I ∪X )× (C ∪R∪ I ∪Mp ∪
X )× (C ∪R∪I ∪L∪Mc∪X ). A rule of the form X1, . . . , Xn ⇒ ⊥ is called an integrity

constraint rule.

A triple t′ is an inferred ontology triple, if t′ is derived from a set of ontology

triples under a logic program P . For each inferred triple t′ there exists a unique

proof-tree T Rt′ that describes the derivation of t′ under P . Each internal node in

T Rt′ is derived from its children nodes using a single rule in P , whereas the leaf

nodes correspond to the asserted ontology triples. TP(O) is the set of all asserted

and inferred ontology triples of O under P . A derivation of ⊥ under P over the

ontology triples TP(O) is called a contradiction derivation under P .

Definition 20 (Minimal Contradictory Triple Set) Given an ontology O and a logic

program P , a contradictory triple set (CTS) E ⊆ TP(O) is a set of triples used to derive

⊥ in a single derivation step under P . A CTS E is a minimal contradictory triple set

(MCTS), if there exists no CTS E ′ such that E ′ ⊂ E. The set of MCTSs is denoted by E.

Definition 21 (Asserted Ancestor Triple Set) Given a minimal contradictory triple set

E ⊆ TP(O), an asserted ancestor triple set S for E is the set of all asserted ontology triples

used to derive all the triples in E under P .

Definition 22 (Inconsistent Ontology) If a contradiction derivation is possible in an

ontology O under a logic program P , then O is called inconsistent w.r.t. P .
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Definition 23 (Sub-Ontology) Given an ontology O, an ontology O′ is a sub-ontology

ofO (denoted asO′ ≺ O) is constructed on a limited vocabulary V = 〈C ′,R′, I ′,L,Mc,Mp〉,
where ontology triples TP(O′) of the sub-ontology O′ define axioms and assertions for the

concepts C ′ ⊆ C, propertiesR′ ⊆ R and individuals I ′ ⊆ I.

Definition 24 (Maximal Consistent Sub-Ontology) Given an inconsistent ontology

O w.r.t. a logic program P , an ontology O′ ≺ O is a maximal consistent sub-ontology, iff

O′ is consistent w.r.t. P ; and any ontologyO′′ such thatO′ ≺ O′′ ≺ O,O′′ is inconsistent

w.r.t. P .

Definition 25 (Minimal Inconsistent Resolve Candidate) Given an inconsistent on-

tologyO w.r.t. a logic program P , an inconsistent resolve candidate (IRC) is a set of triples

M ⊆ TP(O) such that O−M = O′ becomes consistent w.r.t. P . A minimal inconsistent

resolve candidate (MIRC) is such an IRC M ′ ⊂ M such that O −M ′ = O′′ is a maximal

consistent sub-ontology of O w.r.t. P . The set of MIRCs is denoted by M.

An abstract process for detecting and resolving inconsistencies can be defined

as follows:

Definition 26 (Detecting and Resolving Inconsistencies) Let O be the set of ontolo-

gies, P be the set of logic programs, and M be the set of MIRCs M. Our method for

detecting and resolving inconsistencies is defined as a function:

resolve inconsis : O× P −→ O×M

Below we present an example that illustrates the concepts and definitions pre-

sented above. Consider an example logic program P ′ applied on the ontology

O1 as shown in Example 6.1. Based on the RDF(S) subsumption rule in the logic

program P ′ [49], two additional concept assertions :Whale a :Fish and :Whale a

:Mammal are inferred. The ontology O1 is found inconsistent because two contra-

diction derivations were generated under the logic program P ′ (shown in the Con-

tradiction Derivations Section of Example 6.1). The first contradiction derivation

identified a situation where Whale has been classified both as a Fish and Mammal;

whereas Fish and Mammal are defined as disjoint concepts. The second contradic-

tion derivation described an error in date and time consistency (i.e. start-tracking
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time is later than end-tracking time) over tracking intervals of marine animals.

Thus, minimal contradictory triple sets (MCTSs) were generated (shown in the

Minimal Contradictory Triple Sets Section). Based on the generated MCTSs, their as-

serted ancestor triple sets (AATSs) were computed (shown in the Asserted Ancestor

Triple Sets Section).

Example 6.1 (Detecting and Resolving Inconsistencies):

OntologyO1: Logic Program P ′: Inferred Triples:

:Fish a owl:Class. {?I a ?C1. ?C1 rdfs:subClassOf ?C2} ⇒ {?I a ?C2} :Whale a :Fish.

:Mammal a owl:Class. {?I a ?C1. ?I a ?C2. ?C1 owl:disjointWith ?C2} ⇒ ⊥ :Whale a :Mammal.

:BigFish a owl:Class. {?F :trackingStart ?S. ?F :trackingEnd ?E.

:Fish owl:disjointWith :Mammal. ?S math:greaterThan ?E } ⇒ ⊥
:BigFish rdfs:subClassOf :Fish.

:BigFish rdfs:subClassOf :Mammal.

:Whale a :BigFish.
:Whale :trackingStart ”2006-04-10T00:00:00” ˆˆ xsd:dateTime.

:Whale :trackingEnd ”2003-04-21T00:00:00” ˆˆ xsd:dateTime.

Contradiction Derivations:

(i)
:Whale a :BigFish

:BigFish rdfs:subClassOf :Fish `P′ :Whale a :Fish

:Fish owl:disjointWith :Mammal `P′ ⊥
:Whale a :BigFish

:BigFish rdfs:subClassOf :Mammal `P′ :Whale a :Mammal

(ii) :Whale :trackingStart ”2006-04-10T00:00:00”

:Whale :trackingEnd ”2003-04-21T00:00:00” `P′ ⊥
”2006-04-10T00:00:00” math:greaterThan ”2003-04-21T00:00:00”

Minimal Contradictory Triple Sets (MCTSs):

E1 = {:Whale a :Fish. :Fish owl:disjointWith :Mammal. :Whale a :Mammal}
E2 = {:Whale :trackingStart ”2006-04-10T00:00:00”. :Whale :trackingEnd ”2003-04-21T00:00:00”. ”2006-04-10T00:00:00”

math:greaterThan ”2003-04-21T00:00:00”}

Asserted Ancestor Triple Sets:

S1 = {:Whale a :BigFish. :BigFish rdfs:subClassOf :Fish. :BigFish rdfs:subClassOf :Mammal. :Fish owl:disjointWith

:Mammal}
S2 = {:Whale :trackingStart ”2006-04-10T00:00:00”. :Whale :trackingEnd ”2003-04-21T00:00:00”}

Minimal Inconsistent Resolve Candidates:

M1 = {:Whale a :BigFish. :Whale :trackingStart ”2006-04-10T00:00:00”}
M2 = {:BigFish rdfs:subClassOf :Fish. :Whale :trackingStart ”2006-04-10T00:00:00”}
M3 = {:BigFish rdfs:subClassOf :Mammal. :Whale :trackingStart ”2006-04-10T00:00:00”}
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M4 = {:Fish owl:disjointWith :Mammal. :Whale :trackingStart ”2006-04-10T00:00:00”}
M5 = {:Whale a :BigFish. :Whale :trackingEnd ”2003-04-21T00:00:00”}
M6 = {:BigFish rdfs:subClassOf :Fish. :Whale :trackingEnd ”2003-04-21T00:00:00”}
M7 = {:BigFish rdfs:subClassOf :Mammal. :Whale :trackingEnd ”2003-04-21T00:00:00”}
M8 = {:Fish owl:disjointWith :Mammal. :Whale :trackingEnd ”2003-04-21T00:00:00”}

For resolving all detected inconsistencies in O1 w.r.t. P ′, we generated all the

possible MIRCs M1, . . . ,M8. Each MIRC Mi consists of a minimal set of asserted

ontology triples used in generating contradiction derivations under P ′. Removing

any MIRC Mi from O1 will result in a maximal consistent sub-ontology O′1 ≺ O1

w.r.t. P ′; i.e. O′1 will not produce any contradiction derivations under P ′. In the

following sections, we will describe our approach for (i) detecting inconsistencies

based on found contradiction derivations; and (ii) generating MIRCs for resolving

all detected inconsistencies.

6.3 Inconsistency Detection via Contradiction Derivations

In addition to the ontology language semantics rules (such as RDF(S) and OWL-

DL rules) [49], a logic program P can also incorporate domain-specific rules. Al-

though available reasoners, such as Pellet [140], RACER [177] and FaCT [141], can

detect inconsistencies in an ontology w.r.t. the ontology language semantics (such

as RDF(S) and OWL-DL) [49], none of these reasoners can detect and resolve in-

consistencies under the semantics of the domain, captured as a logic program.

Therefore, we still require techniques for detecting and resolving inconsistencies

in an ontology O under a logic program P—that can incorporate both ontology

language semantics and domain-specific constraints—in order to extract a maxi-

mal consistent sub-ontology O′ ≺ O w.r.t. P . Thus in our work, we check the

consistency of an ontology O under a logic program P by detecting any produced

contradiction derivations under P .

Considering the Example 6.1, the ontology O1 is found inconsistent because

two contradiction derivations were generated under the logic program P ′. The

first contradiction derivation is due to the ontology language semantic rules of

RDF(S) subsumption and OWL disjointness over the asserted concept axioms in

O1. The second contradiction derivation is due to the domain-specific rule {?F
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:trackingStart ?S. ?F :trackingEnd ?E. ?S math:greaterThan ?E } ⇒ ⊥, incor-

porating date and time consistency over tracking intervals of marine animals. Thus,

our inconsistency detection approach is scalable to both ontology-language and

domain-specific constraints, and can detect inconsistencies that violate both types

of constraints.

6.4 Resolving Inconsistencies: Generating Minimal Inconsistent Resolve

Candidates

In our approach, we resolve all the detected inconsistencies by the following step-

wise process:

Step # 1 (Identifying Minimal Contradictory Triple Sets): We first identify minimal

contradictory triple sets (MCTSs) from all produced contradiction derivations un-

der a logic program P (see Definition 20) .

Step # 2 (Computing Asserted Ancestor Triple Sets): For each MCTS Ei, we compute

its asserted ancestor triple set (AATS) Si (see Definition 21) .

Step # 3 (Computing Minimal Inconsistent Resolve Candidates): We generate all pos-

sible MIRCs M1, . . . ,Mn (see Definition 25), where removing any MIRC Mi

from O will result in a maximal consistent sub-ontology O′ ≺ O w.r.t. P (see

Definition 24).

Step # 4 (Generating MIRCs and its Descendants): To inform the user about the con-

sequences of removing Mi from O, we also provide a list of all its derived

triples (see Definition 25).

In the following sub-sections, we will first describe the extraction of MCTSs

and AATSs (i.e. Step # 1 and Step # 2) from the produced contradiction derivations

under P in Euler generated proofs. Later, we will focus on Step # 3 and Step #

4 of the above-mentioned process, and describe our approach for generating all

possible MIRCs from the AATSs of the produced contradiction derivations under

P .
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6.4.1 Computing MCTSs and AATSs in Euler

We have implemented our inconsistency detection and resolution approach us-

ing N3 rules [117] that are reasoned in Euler [118]. Euler is an inference engine

supporting logic based proofs based on Coherent Logic (CL) [182]. Due to CL ex-

pressivity, disjunctions are possible in a conclusion (i.e. head of a CL clause). In

order to satisfy such disjunctions, Euler generates all possible models that hold un-

der given set of Prolog CL formulae. It can also generate all the (possible-)models

that leads to ⊥, denoted as false models (i.e. contradiction derivations).

Figure 6.1: Structure of Reason Ontology—adopted from [183]

Euler uses the Cwm’s reason ontology [183] to represent the proofs generated

by Euler. An abstract structure of the reason ontology is shown in Figure 6.1. In

order to compute the asserted ancestor triple sets (AATSs), we first parse the Euler-

generated proof to extract all the minimal contradictory triple sets (MCTSs). Once

all the MCTSs are extracted, the next step is to extract the AATS for each of the

MCTSs. An AATS Si for a MCTS Ei is extracted from the generated proof through

a recursive parsing from all triples tj ∈ Ei, appearing as instances of the con-

cept Inference (in reason ontology; see Figure 6.1), to the triple sets that are con-

nected with tj by the property evidence and appearing as instances of the concept
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Extraction. We apply the same parsing for all MCTSs and compute their AATSs.

6.4.2 Generating MIRCs and its Descendants

Our algorithm for computing MIRCs is shown in Algorithm 3, and an example

trace of this algorithm is shown in Figure 6.2. Computing MIRCs requires the set of

AATSs S = {S1, . . . , Sn} and a (indexed) set of triples I =
⋃n

i=1 Si = {t1, . . . , tm} as

inputs. For a candidate MIRC M j
i ⊆ I, the function compute triple existence(M j

i )

calculates the set Lj
i of those Si’s that contain any t ∈ M j

i , and implemented as

follows:

compute triple existence(M j
i ){

S′ = ∅;
for all t ∈M j

i do

for all Si ∈ S do

if t ∈ Si then

S′.add(Si);

end if

end for

end for

return S′;
}

line 1: Declare i = 1, set of MIRCs M = ∅, and non-MIRC sets N1 = ∅ . . . Nn = ∅.

line 2-11: Construct singleton triple setsM1
1 , . . . ,M

1
m1

from all triples in I. For each

singleton triple set M j
i (where i denotes the index and j denotes the cardinal-

ity of M j
i ; for singletons j = 1):

line 3: Compute a candidate MIRC M j
i = {ti}, and also store the highest

index of the triples appearing in M j
i , ηj

i = i.

line 4: For M j
i , compute Lj

i = compute triple existence(M j
i )

line 5-6: In case |Lj
i | = |S| (i.e. M j

i is an MIRC), therefore M j
i is added into

the set of MIRCs M.

line 7-9: Otherwise, M j
i is added into a non-MIRC set of singletons Nj .
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Algorithm 3 Computing Minimal Inconsistent Resolve Candidates (MIRCs)
Require: AATSs S = {S1, . . . , Sn} and I =

⋃n
i=1 Si = {t1, . . . , tm}

Ensure: Minimal Inconsistent Resolve Candidates M

1: M = ∅; i = 1; N1 = ∅; . . . Nn = ∅;
2: for i = 1 to m do

3: M1
i = {ti}; η1

i = i;

4: L1
i = compute triple existence(M1

i );

5: if |L1
i | = |S| then

6: M.add(M1
i );

7: else

8: N1.add(M1
i );

9: end if

10: i = i+ 1;

11: end for

12: for j = 2 to n do

13: Nj = ∅; i = 1;

14: for all M j−1
l ∈ Nj−1 do

15: for all M1
x ∈ N1 do

16: if η1
x > ηj−1

l then

17: M j
i = M j−1

l ∪M1
x ; ηj

i = η1
x;

18: Lj
i = compute triple existence(M j

i );

19: if |Lj
i | > |L

j−1
i | then

20: if |Lj
i | = |S| then

21: M.add(M j
i );

22: else

23: Nj .add(M j
i );

24: end if

25: end if

26: i = i+ 1;

27: end if

28: end for

29: end for

30: end for

31: return M;

In the example trace (shown in Figure 6.2), singleton triple sets M1
1 and M1

3

were found to be MIRCs (i.e. they appear in all the AATSs) and added into

M. Whereas all other singleton triple sets M1
2 ,M

1
4 , . . . ,M

1
m1

were added into
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Figure 6.2: Computing Minimal Inconsistent Resolve Candidates

a non-MIRC singletons set N1.

line 12-30: Construct triple sets M j
i of cardinality j = 2 to n, by successively

adding singleton triple sets M1
x ∈ N1 (line 15-28) into each M j−1

i (line 14-29).

line 14-29: For all M j−1
l ∈ Nj−1

line 15-28: For all M1
x ∈ N1

line 16-17: Compute a candidate MIRC M j
i = M j−1

l ∪M1
x , and also

store the highest index of the triples appearing in M j
i , ηj

i = η1
x

line 18: For M j
i , compute Lj

i = compute triple existence(M j
i )

line 19-21: In case |Lj
i | = |S|, M

j
i is added into the set of MIRCs M

line 22-25: Otherwise, M j
i is added into an non-MIRCs set Nj

In the example trace (shown in Figure 6.2), M2
2 = {t2, t5} is found to be an

MIRC and added into M; whereas all other triple sets (of cardinality 2) were

added into a non-MIRC set N2. Similarly a triple set M3
2 = {t2, t4, t6} (of

cardinality 3) is computed by combining two non-MIRCs M2
1 = {t2, t4} and
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M1
6 = {t6}. The triple set M3

1 was found to be an MIRC and added into M.

The construction ofM j
i (where j > 1) using Nj−1 ensures that IRCs containing

smaller MIRCs are not computed; e.g. M3
1 = {t2, t4, t5} is not computed since

there exists an MIRC M2
2 ⊂M3

1 .

line 31: Return the computed MIRCs M

6.5 Evaluation: Detecting and Resolving Inconsistencies in Prostate Cancer

Ontologies

Here, we extended our prostate cancer (PC) test-case (see Section 3.3). During the

reconciliation and merging of three extracted PC contextualized sub-ontologies,

K-MORPH found inconsistencies in the merged PC ontology OPC−Merge. In this

section, we will demonstrate the detection and resolution of inconsistencies in the

merged PC ontology.

Based on the pre-defined context-specific correspondences among three contex-

tualized sub-ontologies (see Section 4.5), alignments were found between classes,

including their properties and instances, for Treatment, Followup, Frequency, Inter-

val Duration, and Clinician (using our TOM and POM; see Sections 5.4 and 5.5).

Based on the found alignments shown in Figure 5.2 and also the context-specific

alignments (defined in Cx1; see Section 4.5), three extracted PC contextualized sub-

ontologies were then merged to generate possible ‘knowledge-links’ between the

aligned PC treatments. One of such context-specific correspondence given by the

user (in Cx1; see Section 4.5) is calgary:Treatment rdfs:subClassOf winnipeg:Foll-

owUp, stating that treatments modelled in the Calgary PC ontology can be realized

as Follow-ups in the Winnipeg PC ontology. However, on the other hand in the

Winnipeg PC ontology, winnipeg:Treatment and winnipeg:FollowUp are defined

as disjoint concepts. Also, at the same time, the Treatment concept is found to be

equivalent across all three PC ontologies (see Figure 5.2). Hence in this case, the

combination of the given context-specific alignments and found alignments caused

inconsistencies in the merged PC ontology OPC−Merge, due to the following kinds

of contradictions:
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Case # 1:

Align # 1: Halifax Treatment is equivalent to Calgary Treatment

Therefore: Halifax treatments are realized as Calgary treatments.

Align # 3: Calgary Treatment is sub-class of Winnipeg winnipeg:FollowUp

Therefore: Halifax treatments are also realized as Winnipeg follow-ups.

Case # 2:

Align # 2: Halifax Treatment is equivalent to Winnipeg Treatment

Therefore: Halifax treatments are realized as Winnipeg treatments.

Inconsistencies: Case #1 ∧ Case # 2 `PPC ⊥.

Contradiction: Halifax treatments can not be realized as both Winnipeg treatments and Winnipeg

follow-ups; because Winnipeg treatments and Winnipeg follow-ups are defined as disjoint con-

cepts!

Example 6.2 demonstrates the working of our approach for detecting and re-

solving inconsistencies in the merged PC ontologyOPC−Merge by (i) finding contra-

diction derivations of the above discussed forms, and then (ii) generating MIRCs

for resolving all the detected inconsistencies in OPC−Merge. A relevant fragment of

alignments is shown in the Alignments section of Example 6.2; whereas the logic

program PPC—under which inferences were made—is shown in the Logic Program

section. Based on the alignments and the source ontologies, found MCTSs are

shown in the Minimal Contradictory Triple Sets section, and computed AATSs are

shown in the Asserted Ancestor Triple Sets section.

Example 6.2 (Detecting and Resolving Inconsistencies in PC Ontologies):

Alignments: Winnipeg Ontology:

1) halifax:Treatment owl:equivalentClass calgary:Treatment. winnipeg:Treatment owl:disjointWith winnipeg:FollowUp.

2) halifax:Treatment owl:equivalentClass winnipeg:Treatment.

3) calgary:Treatment rdfs:subClassOf winnipeg:FollowUp.
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Logic Program PPC :

{?A owl:equivalentClass ?B. ?X a ?A} ⇒ {?X a ?B}.

{?C rdfs:subClassOf ?D. ?X a ?C} ⇒ {?X a ?D}.

{?C rdfs:subClassOf ?D. ?D rdfs:subClassOf ?E} ⇒ {?C rdfs:subClassOf ?E}.

{?X a ?A. ?X a ?B. ?A owl:disjointWith ?B} ⇒ false.

Minimal Contradictory Triple Sets (MCTSs):

E1 = {halifax:ActiveSurveillance a winnipeg:Treatment, halifax:ActiveSurveillance a winnipeg:FollowUp, winnipeg:Treat-

ment owl:disjointWith winnipeg:FollowUp}.

E2 = {halifax:ExternalBeamRadiationTherapy a winnipeg:Treatment, halifax:ExternalBeamRadiationTherapy a

winnipeg:FollowUp, winnipeg:Treat- ment owl:disjointWith winnipeg:FollowUp}.

E3 = {halifax:Surgery a winnipeg:Treatment, halifax:Surgery a winnipeg:FollowUp, winnipeg:Treatment owl:disjointWith

winnipeg:FollowUp}.

Asserted Ancestor Triple Sets (AATSs):

S1 = {:Treatment owl:equivalentClass winnipeg:Treatment, :ActiveSurveillance a halifax:Treatment, calgary:Treatment

rdfs:sub-

ClassOf winnipeg:FollowUp, :Treatment owl:equivalentClass calgary:Treatment, winnipeg:Treatment owl:disjointWith

winnipeg:FollowUp}.

S2 = {:Treatment owl:equivalentClass winnipeg:Treatment, :ExternalBeamRadiationTherapy a halifax:Treatment, cal-

gary:Treatment rdfs:subClassOf winnipeg:FollowUp, :Treatment owl:equivalentClass calgary:Treatment, winnipeg:Treatment

owl:disjointWith winnipeg:FollowUp}.

S3 = {:Treatment owl:equivalentClass winnipeg:Treatment, :Surgery a halifax:Treatment, calgary:Treatment rdfs:subClassOf

winnipeg:FollowUp, :Treatment owl:equivalentClass calgary:Treatment, winnipeg:Treatment owl:disjointWith

winnipeg:FollowUp}.

Generated MIRCs (M1, . . . , M5 << M1, . . . , . . . , M57):

Generated MIRC: M1 = {halifax:Treatment owl:equivalentClass winnipeg:Treatment}.

MIRC-Descendants (M1) = {halifax:ActiveSurveillance a winnipeg:Treatment, halifax:ExternalBeamRadiationTherapy a

winnipeg:Treatment, halifax:Surgery a winnipeg:Treatment}

numberofTriplesRemove = 4

Generated MIRC: M2 = {calgary:Treatment rdfs:subClassOf winnipeg:FollowUp}.

MIRC-Descendants (M2) = {halifax:ActiveSurveillance a winnipeg:FollowUp, halifax:ExternalBeamRadiationTherapy a

winnipeg:FollowUp, halifax:Surgery a winnipeg:FollowUp}

numberofTriplesRemove = 4

Generated MIRC: M3 = {halifax:Treatment owl:equivalentClass calgary:Treatment}

MIRC-Descendants (M3) = {halifax:ActiveSurveillance a winnipeg:FollowUp, halifax:ActiveSurveillance a calgary:Treatment,

halifax:ExternalBeamRadiationTherapy a winnipeg:FollowUp, halifax:ExternalBeamRadiationTherapy a calgary:Treatment,

halifax:Surgery a winnipeg:FollowUp, halifax:Surgery a calgary:Treatment}

numberofTriplesRemove = 7

Generated MIRC: M4 = {winnipeg:Treatment owl:disjointWith winnipeg:FollowUp}

MIRC-Descendants (M4) = ∅

numberofTriplesRemove = 1
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Generated MIRC: M5 = {halifax:Surgery a halifax:Treatment, halifax:ExternalBeamRadiationTherapy a halifax:Treatment,

halifax:ActiveSurveillance a halifax:Treatment}
MIRC-Descendants (M5) = {halifax:Surgery a winnipeg:Treatment, halifax:Surgery a winnipeg:FollowUp, halifax:Surgery

a calgary:Treatment, halifax:ExternalBeamRadiationTherapy a winnipeg:Treatment, halifax:ExternalBeamRadiationTherapy

a winnipeg:FollowUp, halifax:ExternalBeamRadiationTherapy a calgary:Treatment, halifax:ActiveSurveillance a win-

nipeg:Treatment, halifax:ActiveSurveillance a winnipeg:FollowUp, halifax:ActiveSurveillance a calgary:Treatment}
numberofTriplesRemove = 12

Three unique AATSs were computed (shown in the Asserted Ancestor Triple Sets

section) from the contradiction derivations under PPC , where each AATS consists

of 5 asserted triples from the merged PC ontology OPC−Merge. There are in total

57 possible inconsistent resolve candidates, where removing any of these candidates

fromOPC−Merge results in a consistent sub-ontology; but not necessarily a maximal

consistent sub-ontology. However using our algorithm (see Algorithm 3), we com-

puted only 5 MIRCs (shown in the Minimal Inconsistent Resolve Candidates section

in Example 6.2). These are in fact all possible MIRCs, where removing any of these

minimal candidates from the merged PC ontology OPC−Merge results in a maximal

consistent sub-ontology of OPC−Merge w.r.t. PPC . For each extracted MIRC Mi, we

generated the list of its derived triples and also provided the total number of (as-

serted and their derived) triples, which will be removed in the maximal consistent

sub-ontology by removing Mi from OPC−Merge (as shown in Example 6.2). Based

on the cardinality of Mi, the cardinality of its derived triples set and the total num-

ber of triples removed for each MIRCMi, the computed MIRCs can be ordered and

shown to the users. Such an ordering can be helpful for the users in selecting an

MIRC suitable for user’s needs. Thus, the user-selected MIRC can then be removed

from an inconsistent ontology to extract a maximal consistent sub-ontology.

6.6 Summary

Detecting and resolving inconsistencies is a non-trivial task, as it requires an in-

depth understanding of the ontology axioms—in order to select axioms (either

manually or automatically), which are either to be removed or repaired for re-

solving the identified inconsistencies. We have presented our approach for de-

tecting and resolving inconsistencies in ontologies that (i) detects inconsistencies

by finding contradiction derivations produced under a given logic program; and
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(ii) generates minimal inconsistent resolve candidates MIRCs, where removing any

of the MIRCs from the inconsistent ontology results in a maximal consistent sub-

ontology w.r.t. the logic program. We evaluated our approach on the prostate

cancer ontology [62], where during our knowledge morphing process we detected

all the inconsistencies in this ontology and generated all possible MIRCs for ex-

tracting a maximal consistent sub-ontology.



Chapter 7

K-MORPH Evaluation and Results: Morphing Healthcare

Ontologies for Generating Therapeutic Knowledge about Urinary

Tract Infections

Clinical decision making involves an active interplay between various medical

knowledge sources, and enables various reasoning strategies to achieve solutions

for a clinical problem [3]. Medical knowledge sources can be categorized as (a)

the tacit knowledge of a practitioner in terms of problem solving skills, judg-

ment and intuition [5]; (b) clinical experiences (both recorded and observed) and

lessons learnt [5, 6]; (c) collaborative problem solving discussions or consultations

between practitioners; (d) published medical literature and clinical practice guide-

lines [4, 30]; (e) operational knowledge in terms of clinical protocols and path-

ways [62, 184]; (f) medical education content for practitioners and patients; (g)

social networks eliciting members of a community of practice and their communi-

cation patterns, interests and maybe even expertise; and (h) data-mediated knowl-

edge based on data of clinical observations, diagnostic tests and therapeutic treat-

ments, recorded in medical records and stored in clinical data-warehouses [87].

A practitioner’s decision for providing his/her clinical advice on a disease-

specific scenario is carried out via different reasoning strategies using both strong

and weak evidence-based medical knowledge [3]. The importance of integrating

multiple medical knowledge sources can be realized in cases when a clinical solu-

tion from one medical knowledge source is lacking, or another knowledge source

can play a role in deriving alternative solutions. For instance, in the absence of ex-

plicit algorithms described in a clinical practice guideline [3, 4], practitioners may

need to refer to other modalities of knowledge, such as previously recommended

cases and/or the expertise of domain experts recorded in problem solving scenar-

ios [5]. For efficient and flexible decision making, we argue that the morphing of

heterogeneous knowledge sources may provide an overall view of all knowledge

114
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pertaining to a specific problem for identifying which solution will work, why it

will work, and how to make it work.

Figure 7.1: K-MORPH Evaluation: Therapeutic Knowledge about Urinary Tract
Infections

In this chapter, we will demonstrate the use of our K-MORPH framework in

the healthcare domain by showing the morphing of various high-level medical on-

tologies to obtain a comprehensive and networked knowledge-base for generating

treatment plans for urinary tract infections (UTI). The overall morphing activity

is shown in Figure 7.1. In order to realize this test-case, within our K-MORPH
framework, we consider 20 medical ontologies developed by three groups of med-

ical experts from three different institutions. Hence, these ontologies can be clas-

sified into three categories: (i) BioTop Ontology, (ii) DCO Ontology, and (iii) Agfa

Ontologies (18 ontologies). The desired objectives of this experiment are listed as

follows:

1. Identifying and extracting context-specific fragments (i.e. knowledge dealing

with UTI treatments) from the DCO, BioTop and Agfa ontologies.

2. Establishing semantic interoperability between context-specific fragments from

the DCO/BioTop and Agfa ontologies.

3. Generating a comprehensive knowledge-base for providing therapeutic knowl-

edge about UTIs.

In order to fulfill the above listed objectives in K-MORPH, we first extracted

20 contextualized sub-ontologies from the initial source ontologies based on the
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user-defined problem-context Therapeutic Knowledge about Urinary Tract Infections.

K-MORPH also validated the conceptual/contextual consistency and complete-

ness of the extracted contextualized sub-ontologies. Based on the provided context-

specific alignments and constraints (in the problem-context), we applied our match-

ers TOM and POM, and found new correspondence between the extracted DCO/Bio-

Top and Agfa sub-ontologies. Based on the identified correspondence,K-MORPH
aligned the extracted sub-ontologies and generated a merged ontology to provide

a networked medical knowledge-base for generating treatment plans for UTIs.

This test-case is explained in further details in the following sections.

7.1 Source Ontologies

In this experiment, we consider 20 medical ontologies developed by three groups

of medical experts from three different institutions. Hence, these ontologies can

be classified into three categories: (i) BioTop Ontology, (ii) DCO Ontology, and (iii)

Agfa Ontologies (18 ontologies). These 20 ontologies provide knowledge about

prognosis, diagnosis, treatment and follow-up for various infectious diseases. These

ontologies are briefly described as follows:

7.1.1 Biological Top Level Ontology

The Biological Top Level (BioTop) ontology [185] is an upper domain ontology

for molecular biology. It provides an interface to a selected set of Open Biomedical

Ontologies (OBO)1, which contains more detailed terminological knowledge about

specific areas of molecular biology; e.g. cell types, molecular functions, biological

processes and chemical compounds.

BioTop has extended the original structure of the GENIA ontology2 for pro-

viding an ontologically sound layer for linking and integrating various domain-

specific ontologies from the Life Sciences domain. In BioTop, some of the GE-

NIA classes were removed and new BioTop classes were introduced, which signif-

icantly extended the scope of the original ontology. Instead of reusing GENIA’s

1http://obo.sourceforge.net/
2http://www-tsujii.is.s.u-tokyo.ac.jp/˜genia/topics/Corpus/

genia-ontology.html
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top-level distinction between source and substance, the general top-level ontology

BFO [186] was set on top of BioTop. The BioTop ontology contains a total of 175

classes arranged in class hierarchies, 171 relations between classes arranged in 9

semantic hierarchies, and 171 restrictions.

7.1.2 DebugIT Core Ontology

The DebugIT Core Ontology (DCO) is an application ontology that enables data

miners to query distributed clinical information systems in a semantically-rich and

content-driven manner [187]. DCO serves as the core component of the interoper-

ability platform for the DebugIT project [188] and covers the complete conceptual

space of the domain of interest in the DebugIT project. The ontology provides a

semantic model to formally represent all basic kinds of entities in the domain of

interest, together with their invariant and context-independent properties. DCO

ontology provides a semantic glue function, in order to standardize and formally

describe meaning identifiers across the whole project—hence, solving interoper-

ability issues among health institutions.

7.1.3 AGFA Ontologies

Researchers at Advanced Clinical Applications (ACA) Group, Agfa Healthcare are

contributing actively in the DebugIT project [188] and have developed a series of

healthcare ontologies. In order to fulfill the desired objectives of this experiment,

the following Agfa ontologies are used as source ontologies in K-MORPH:

1. Organism Ontology models living entities, states they can be in, and roles they

can play; e.g. the state ‘pregnant’.

2. Human Ontology describes aspects of a human; e.g. gender, age related cate-

gories.

3. HumanBody Ontology represents general aspects of a human body; e.g. struc-

ture, weight.

4. Agent Ontology models agents and their roles in different actions; e.g. general

property ‘plays role’ e.g. of a patient.
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5. HealthCare Ontology provides general knowledge about the healthcare envi-

ronment; e.g. patient, physician.

6. ClinicalObservation Ontology describes general clinical findings; e.g. pain,

fever, etc.

7. HumanDisorder Ontology provides high-level description of human disorders;

e.g. ‘Lower Urinary Tract Disorder’

8. InfectiousDisorder Ontology describes different types of infections; e.g. viral,

bacterial, vaginal, etc.

9. UrinaryTractInfection Ontology focuses on detailed descriptions of Urinary Tract

Infections.

10. ClinicalEvaluation Ontology describes general clinical evaluative concepts; e.g.

diagnosis, prognosis, etc.

11. Therapy Ontology represents general aspects of clinical therapy; e.g. intention

‘curative’, property ‘treatedBy’.

12. DrugTherapy Ontology provides a general description about drug therapy;

e.g. class ‘dosage’ and property ‘hasDosage’.

13. Antibiotics Ontology models various kinds antibiotics applied in human medicine.

14. AdministrationRoutes Ontology describes routes/workflows for drug admin-

istration to a patient.

15. ClinicalMorphology Ontology provides descriptions about altered human mor-

phology; e.g. ‘Inflammation’.

16. Anatomy Ontology represents a high-level description of human anatomy; e.g.

‘Lower Urinary Tract Structure’.

17. ClinicalProcedure Ontology models general clinical procedures; e.g. ‘preven-

tive’ being an intention of a procedure.

18. Event Ontology models events, actions, and temporal relations; e.g. to de-

scribe the start and end of a UTI.
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Table 7.1: Concepts and Alignments for Therapeutic Knowledge about UTI

BioTop Ontology AGFA Ontologies DebugIT Core Ontology
Inflammation <=============> InflammatoryMorphology

AcquiredAbnormalStructure <======> MorphologicallyAbnormalStructure
Infection <=================> InfectiousDisease
Infector <==================> InfectorRole

PathologicalState <==============> Finding
AcquiredPathologicalState <=======> Disorder

UrinarySystemDisorder <======> DisorderOfUrinaryTract
LowerUrinaryTractDisorder
LowerUrinaryTractInfection

OrganismPart <================> AnatomicalStructure
Cystitis <==================> Cystitis
UrinaryTractInfection <=======> UrinaryTractInfection
AutoimmuneDisorder <=======> AutoimmuneDisorder
ImmuneSystemDisorder <======> DisorderOfImmuneFunction
Patient <==================> PatientRole

Human <=====================> Human
TaxonQuality <=================> Taxon
SpeciesHomoSapiensRegion <======> subspeciesHomoSapiensSapiens

Therapy <=================> AntibioticTherapy
AdministrationRoute <=======> RouteOfAdministration
Antibiotic <================> Antibiotic
Amoxicillin <===============> PortionOfMixture
Fluoroquinolone <===========> PortionOfMixture

AntibioticRole <================> AntibioticRole
Drug <===================> PharmacologicSubstance

DrugRole <===================> DrugRole
AmountOfSubstance <===========> PhysicalResource

Therapy <=================> TherapeuticOrPreventiveProcedure
Action <=====================> Action <===================> HealthCareActivity
ProcessualEntity <==============> Process
TemporalEntity <===============> Event

Diagnosis <================> Diagnosis
Diagnosing <===============> Diagnosing
DiagnosticRole <============> DiagnosticRole

PhysicianRole <================> Physician
Role <=======================> Role
hasAgent <===================> hasAgent
agentIn <=====================> actsIn
hasParticipant <================> hasAgent
participatesIn <=================> actsIn
hasLocus <===================> hasSite

hasSnapshot <==============> hasDateTime
hasDuration <==============> hasDuration
begins <===================> hasStartDateTime
ends <====================> hasEndDateTime
hasBirthDate <==============> hasDateTimeOfBirth

7.2 Task #1: Defining Problem-context: Therapeutic Knowledge about UTI

Based on the desired objectives of the experiment, the user selected the problem-

specific concepts and properties from the source ontologies (DCO, BioTop and

Agfa). In addition to providing problem-specific concepts and properties, the user
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also specified context-specific alignments between the selected concepts and prop-

erties. The problem-context data-structure (see Definition 2) represented the user-

specified concepts, properties and alignments in K-MORPH (see Section 3.2.2).

For the given problem-context Therapeutic Knowledge about Urinary Tract Infections,

Table 7.1 shows the user-selected concepts and the user-defined context-specific

alignments between them. Context-specific alignments between Agfa and DCO/

BioTop ontologies are highlighted by <===>.

7.3 Task # 2: Extracting Contextualized UTI Sub-ontologies

In order to extract contextualized sub-ontologies, we used our structure-based ex-

traction method (see Chapter 4). Based on the user-selected concepts (as shown

in Table 7.1) defined in the problem-context, we obtained a contextualized sub-

ontology from each of the 20 source ontologies. Hence K-MORPH extracted 20

contextualized sub-ontologies from the initially given source ontologies. One of

the extracted sub-ontologies is shown in Figure 7.2. The Infection Ontology OINF

(one of the AGFA ontologies) is shown on the left side of Figure 7.2. Based on the

user-selected concept LowerUrinaryTractInfection, the concept-hierarchy from

OINF extracted in the sub-ontology for UTIO′UTI is shown on the right side. Using

our structure-based ontology extraction method (see Chapter 4), K-MORPH ex-

tracted only the concept LowerUrinaryTractInfection and its related concepts

into the generated sub-ontologyO′UTI . Although, in the right side of Figure 7.2, we

only show the extracted concept-hierarchy in O′UTI . However, we also extracted

properties, property-hierarchies and individuals relevant to LowerUrinaryTract-

Infection in O′UTI . All the extracted sub-ontologies were then treated as contex-

tualized sub-ontologies in K-MORPH, and were reconciled to generate the final

merged ontology pertinent to the problem-context Therapeutic Knowledge about Uri-

nary Tract Infections.
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Figure 7.2: Contextualized UTI Sub-ontology Extraction

7.4 Task # 3: Aligning and Merging Contextualized Sub-ontologies

Based on the defined context-specific alignments in the given problem-context (as

shown in Table 7.1), the next steps to be performed by K-MORPH were: (i) find-

ing new alignments between the extracted DCO/BioTop and Agfa contextualized

sub-ontologies, and then (ii) merging those sub-ontologies to generate a merged

ontology that provides a comprehensive therapeutic knowledge about UTIs. For

finding new alignments between the extracted sub-ontologies, we used two of

our matchers TOM and POM (see Chapter 5) and found similarities between both

atomic and complex ontology-entities. Detected similarities by our matchers are

shown in Tables 7.4, 7.5, 7.6 and 7.7.

We tested both of our matchers on various thresholds. In Tables 7.2 and 7.3,

each row provides the number of correct and incorrect correspondences found be-

tween ontology-entities based on different similarity thresholds. In Table 7.2, the

first 3 rows show the accuracy results of TOM on atomic entities, and the last 3

rows show the accuracy of complex correspondences found under different thresh-

olds. Similarly in Table 7.3, the first 3 rows present the accuracy results of POM

on atomic entities, and the last 3 rows present the accuracy of complex correspon-

dences found under different thresholds.
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Table 7.2: TOM Matching Results: Correspondence Accuracy
Entities Threshold Total Evaluated Correct Incorrect Accuracy
Atomic 0.5 146 146 145 1 99.31%
Atomic 0.6 51 51 51 0 100%
Atomic 0.7 4 4 4 0 100%
Complex 0.4 62 57 36 21 63.15%
Complex 0.5 59 54 36 18 66.66%
Complex 0.6 1 1 1 0 100%

As shown in Tables 7.2 and 7.3, TOM and POM were able to find non-trivial cor-

respondences between both atomic and complex entities. Due to the fact that com-

plex correspondences were missing in the initial alignments (see Table 7.1), com-

plex correspondences generated by TOM and POM cannot be compared against

a gold standard, resulting in missing recall values. Also the initially given align-

ment (see Table 7.1) provides some of the desired correspondences between the

source ontologies (DCO/BioTop and Agfa ontologies); but not all possible corre-

spondences between those ontologies. Therefore investigating the specificity and

sensitivity of our matching results on both atomic and complex correspondences

was not possible. Even though it might be possible to construct a complete refer-

ence alignment for a finite number of entity structures, it will be extremely labo-

rious to construct a complete reference alignment among large and complicated

ontologies that contains all non-trivial atomic and complex correspondences.

Table 7.3: POM Matching Results: Correspondence Accuracy
Entities Threshold Total Evaluated Correct Incorrect Accuracy
Atomic 0.2 47 47 46 1 97.87%
Atomic 0.4 31 31 31 0 100%
Atomic 0.6 18 18 18 0 100%
Complex 0.6 116 49 48 1 97.95%
Complex 0.7 65 24 23 1 95.83%
Complex 0.8 37 16 16 0 100%

Our matching results were manually evaluated by the domain experts and the

original ontology developers [185, 187]. For each correspondence found between

two ontology-entities, the domain experts evaluated the correspondence and as-

signed a correspondence relation between those entities. Moreover, since some of

the found correspondences were very complex for the domain experts, they were
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Table 7.4: TOM Matching Results: Atomic Correspondences
DCO & BioTop Ontologies Relation Agfa Ontologies Score
DisorderOfUrinaryTract w Cystitis 1.0.
Cystitis v UrinarySystemDisorder 1.0.
DisorderOfImmuneFunction w AutoimmuneDisorder 1.0.
AutoimmuneDisorder v ImmuneSystemDisorder 1.0.
RouteOfAdministration w Oral 0.666.
RouteOfAdministration w Intravenous 0.666.
RouteOfAdministration w Subcutaneous 0.666.
Chloramphenicol v Antibiotic 0.625.
Clofazimine v Antibiotic 0.625.
Colistin v Antibiotic 0.625.
FusidicAcid v Antibiotic 0.625.
Linezolid v Antibiotic 0.625.
Nitroxoline v Antibiotic 0.625.
MyastheniaGravis v ImmuneSystemDisorder 0.6.
MyastheniaGravis v AutoimmuneDisorder 0.6.
Amphotericin v Antibiotic 0.6.
Dalfopristin v Antibiotic 0.6.
Fosfomycin v Antibiotic 0.6.
NitrofuranDerivative v Antibiotic 0.6.
Nitroimidazole v Antibiotic 0.6.
Polymyxin v Antibiotic 0.6.
Quinupristin v Antibiotic 0.6.
Amikacin v Antibiotic 0.6.
AmphotericinB v Antibiotic 0.6.
Azithromycin v Antibiotic 0.6.
HealthCareActivity w HealthCaring 0.6.
PresumptiveDiagnosis v Diagnosis 0.6.
PrimaryDiagnosis v Diagnosis 0.6.
SecondaryDiagnosis v Diagnosis 0.6.
VerifiedDiagnosis v Diagnosis 0.6.

≡: owl:equivalentClass; ≡P : owl:equivalentProperty; v: rdf:subClassOf;
simThreshold = 0.6.

able to evaluate only a fragment of the total correspondences. For example as

shown in Table 7.2, row 4, there were total 62 correspondences found between the

complex entities. Out of 62 complex correspondences, domain experts were able to

evaluate 57, and found 36 correct and 21 incorrect. Although finding and evaluat-

ing complex correspondences are challenging tasks [176], our matchers TOM and

POM successfully found some of the non-trivial correspondences between fairly

complicated and complex entities (see Tables 7.6 and 7.7).

Tables 7.4 and 7.5 show a similarity score between atomic entities from Agfa

ontologies and DCO/BioTop ontologies, calculated by matchers TOM and POM,
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Table 7.5: POM Matching Results: Atomic Correspondences
Agfa Ontologies Relation DCO & BioTop Ontologies Score
AcquiredStructure w AcquiredAbnormalStructure 0.6
Drug w Antibiotic 0.875
AntiInfectiveSubstance w Drug 0.7142
Drug v AmountOfSubstance 0.618
Drug v AmountOfSubstanceByHomogenityPartition 0.618
Drug v PortionOfMonosubstance 0.628
Action ≡ Action 0.642
Evaluation v IntellectualProduct 0.75
Evaluating v BiologicalAction 0.625
Action v BiologicalAction 0.625
Evaluating v OrganismAction 0.625
Action v OrganismAction 0.625
Evaluating v HumanAction 1.0
Action v HumanAction 1.0
ns3:infector1 = i:infectorRole2 0.6
ns3:patient1 = i:patientRole2 0.611
ns3:abTherapy1 = i:antibioticTherapy2 0.616
ns3:diagnosticRole1 = i:diagnosticRole2 0.625

≡: owl:equivalentClass; v: rdf:subClassOf; =: owl:sameAs
simThreshold = 0.6.

and also present a correspondence relation (assigned by the domain experts) be-

tween those entities. The matching results generated from TOM, based on a given

similarity threshold of 0.7, are shown in Table 7.4. Similarly, the results generated

from POM, based on a given similarity threshold of 0.6, are shown in Table 7.5.

Tables 7.6 and 7.7 show a similarity score between complex entities from Agfa

ontologies and DCO/BioTop ontologies, calculated by matchers TOM and POM,

and also present a correspondence relation (assigned by the domain experts) be-

tween those entities. Since the generated alignments consisted of fairly complex

correspondences, we present only some of the prominent correspondences in Ta-

bles 7.6 and 7.7.

In Table 7.6, line 1 shows an equivalence relation between (i) the concept Infec-

tion (in Agfa ontologies) and (ii) any arbitrary concept that has an equivalence

relation with DCO concept InfectiousDisease as well as a subsumption rela-

tion with another DCO concept AcquiredPathologicalState. Therefore, any in-

stance of Infection in Agfa ontologies can be treated as an InfectiousDisease

(or AcquiredPathologicalState) in the DCO/BioTop ontologies, and vice versa.
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Hence we have obtained extensive knowledge about UTIs, such as Infection

is an InfectiousDisease and also an AcquiredPathologicalState. Another

correspondence on line 7 shows a subsumption relation between a DCO/BioTop

concept Cystitis and a property restricted Agfa concept. Based on this corre-

spondence, all instances of Cystitis can also be realized in the Agfa ontolo-

gies as diseases that are found in LowerUrinaryTractStructure. Hence due

to such a correspondence, we have obtained extended knowledge about Cysti-

tis, such as Cystitis is one of the diseases of LowerUrinaryTractStructure.

Similarly, based on the correspondence on line 8, we have gathered more knowl-

edge about Cystitis, such as Cystitis is one of the diseases of Urinary bladder.

Moreover, correspondences on lines 9 and 10 extend the knowledge about An-

tibiotic Therapies, such as AntibioticTherapy plays an AntibioticRole, and

AntibioticTherapy requires Administering. Lines 2-6 and 11 present corre-

spondences of a similar nature.

Table 7.7 presents some of the prominent complex correspondences found by

POM, whereby POM found more complex correspondences as compared to TOM

(see Table 7.6). Each of the correspondences generated by TOM (in Table 7.6)

presents a relation between a complex and an atomic entity, whereas POM gener-

ated correspondences between two complex entities. For example, Table 7.7 line 1

presents an equivalence relation between complex concepts from Agfa and DCO/

BioTop ontologies. Based on this correspondence, all kinds of urinary bladder dis-

eases modelled in Agfa ontologies are also realized as urinary bladder diseases

in the DCO/BioTop ontologies, and vice versa. Similarly, based on the corre-

spondence in line 7, any antibiotic treatment that plays an AntibioticRole, shall

also be the bearer of PharmacologicSubstanceIntakeDose. Lines 2-6 and 8-10

present correspondences of a similar nature.

7.5 Task # 4: Detecting and Resolving Inconsistencies

During the reconciliation of the extracted contextualized sub-ontologies (see Sec-

tion 7.4),K-MORPH found inconsistencies in the merged UTI ontologyOUTI−Merge

using our inconsistency detection approach. In order to resolve the detected incon-

sistencies in OUTI−Merge, K-MORPH generated all possible MIRCs (see Chapter
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Table 7.6: TOM Matching Results: Complex Correspondences

Agfa Ontologies Rel DCO & BioTop Ontologies Score
1 [ v AcquiredPathologicalState

Infection ≡ ≡ InfectiousDisease] 0.5230
2 [ v AntiInfectiveSubstance

Antibiotic ≡ ≡ Antibiotic] 0.6111
3 [ OnP bearerOf

Infector ≡ Vsome InfectorRole] 0.5833
4 [ OnP rolePlayedBy

Vsome Infector] ≡ InfectorRole 0.5714
5 [ OnP hasSite

Vsome UrinarySystemStructure] w DisorderOfUrinaryTract 0.5833
6 [ OnP hasSite

Vsome GenitourinarySystemStructure] w DisorderOfUrinaryTract 0.5714
7 [ OnP hasSite

Vsome LowerUrinaryTractStructure] w Cystitis 0.55
8 [ OnP hasSite

Vsome Urinary bladder] w Cystitis 0.5714
9 [ OnP hasSubProcedure

Vsome Administering] ≡ AntibioticTherapy 0.5714
10 [ OnP hasPlayedRole

Vsome AntibioticRole] ≡ AntibioticTherapy 0.5714
11 [ OnP after

Vsome Evaluating] w Diagnosing 0.5714

≡: owl:equivalentClass; v: rdf:subClassOf; OnP : owl:onProperty;
Vsome: owl:someValuesFrom

6), where removing any MIRC fromOUTI−Merge will result in a maximal consistent

sub-ontology.

Based on the context-specific correspondences among AGFA and DCO/BioTop

ontologies (see Table 7.1), new alignments were found using our TOM and POM

matching approaches (see Tables 7.4 and 7.5). Based on the found alignments

and also the context-specific correspondences, the extracted contextualized sub-

ontologies were then merged to generate possible ‘knowledge-links’ between the

aligned UTI treatments. Two such context-specific correspondences given by the

user are antibio:Fluoroquinolone owl:equivalentClass dco:PortionOfMixture

and antibio:Amoxicillin owl:equivalentClass dco:PortionOfMixture, stating that

Fluoroquinolone and Amoxicillin drugs should be realized as a Portion of Mixture.

Also, drugs are modelled as a kind of Portion of Monosubstances. On the other

hand, in DCO ontology, dco:PortionOfMixture and PortionOfMonosubstance are
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Table 7.7: POM Matching Results: Complex Correspondences

Agfa Ontologies Rel DCO & BioTop Ontologies Score
1 [ OnP hasSite [ OnP hasLocus

Vsome Urinary bladder] ≡ Vsome UrinaryBladder] 1.0
2 [ OnP hasSubProcedure [ OnP bearerOf

Vsome Administering] v Vsome PharmacologicSubstanceIntakeDose] 1.0
3 [ v AntiInfectiveSubstance

Drug w ≡ Antibiotic] 0.9166
4 [ OnP hasPlayedRole

Vsome Professional] v HumanAction 1.0
5 [ OnP precededBy

Action w Vsome PatientAdmissionActivity] 1.0
6 [ OnP hasPlayedRole [ OnP precededBy

Vsome Professional] w Vsome PatientAdmissionActivity] 1.0
7 [ OnP hasPlayedRole [ OnP bearerOf

Vsome AntibioticRole] v Vsome PharmacologicSubstanceIntakeDose] 1.0
8 [ OnP hasSubProcedure [ OnP bearerOf

Vsome Administering] v Vsome RouteOfAdministration] 1.0
9 [ OnP hasSubProcedure [ OnP hasParticipant

Vsome Administering] ≡ Vsome Antibiotic] 1.0
10 [ OnP hasPlayedRole [ OnP hasParticipant

Vsome AntibioticRole] ≡ Vsome Antibiotic] 1.0

≡: owl:equivalentClass; v: rdf:subClassOf; OnP : owl:onProperty;
Vsome: owl:someValuesFrom

defined as disjoint concepts. Hence in this case, the combination of the given

context-specific correspondences and found alignments caused inconsistencies in

the merged UTI ontology OUTI−Merge due to the following kinds of contradictions:

Case # 1: Fluoroquinolone

Agfa # 1: Agfa Fluoroquinolone is a kind of Agfa Antibiotic

Therefore: Fluoroquinolone is realized as Antibiotics.

Agfa # 3: Agfa Antibiotic is a kind of Agfa Drug

Therefore: Fluoroquinolone is realized as Drugs.

Align # i: Agfa Drug is a kind of DCO PortionOfMonosubstance

Therefore: Fluoroquinolone is realized as Portion of Monosubstances.

Align # ii: Agfa Fluoroquinolone is equivalent to DCO PortionOfMixture

Therefore: Fluoroquinolone is realized as both Portion of Monosubstances &

Portion Of Mixture.



128

DCO # 1: PortionOfMonosubstance& PortionOfMixture are disjoint

DCO concepts

Contradiction # 1: Fluoroquinolone can not be realized as both Portion of

Monosubstances & Portion Of Mixture!

Case # 2: Amoxicillin

Analogous to Case # 1:

Contradiction # 2: Amoxicillin can not be realized as both Portion of

Monosubstances & Portion Of Mixture!

Inconsistencies: Merged UTI ontology is inconsistent due to contradiction # 1 and # 2.

Example 7.1 demonstrates the working of our approach for detecting and re-

solving inconsistencies in the merged UTI ontology OUTI−Merge in K-MORPH by

(i) finding contradiction derivations of the above discussed forms, and then (ii)

generating MIRCs for resolving all the detected inconsistencies in OUTI−Merge. A

relevant fragment of alignments is shown in the Alignments section of Example 7.1,

whereas the logic program PUTI—under which inferences were made—is shown

in the Logic Program section. Based on the alignments and the source ontologies,

found MCTSs are shown in the Minimal Contradictory Triple Sets section, and com-

puted AATSs are shown in the Asserted Ancestor Triple Sets section.

Example 7.1 (Detecting and Resolving Inconsistencies in UTI Ontologies):

Agfa Ontology: DCO Ontology:

1) antibio:Fluoroquinolone rdfs:subClassOf antibio:Antibiotic. 1) :PortionOfMixture owl:disjointWith

2) antibio:Amoxicillin rdfs:subClassOf antibio:Antibiotic. :PortionOfMonosubstance.

3) antibio:Antibiotic rdfs:subClassOf drug:Drug.

Alignments: Agfa 〈====〉 DCO

(i) drug:Drug rdfs:subClassOf :PortionOfMonosubstance.

(ii) antibio:Fluoroquinolone owl:equivalentClass :PortionOfMixture.

(iii) antibio:Amoxicillin owl:equivalentClass :PortionOfMixture.

Logic Program PUTI :

{?A owl:equivalentClass ?B. ?X a ?A} ⇒ {?X a ?B}.
{?A owl:equivalentClass ?B} ⇒ {?B owl:equivalentClass ?A}.
{?A owl:equivalentClass ?B. ?B owl:equivalentClass ?C} ⇒ {?A owl:equivalentClass ?C}.

{?C rdfs:subClassOf ?D. ?X a ?C} ⇒ {?X a ?D}.
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{?C rdfs:subClassOf ?D. ?D rdfs:subClassOf ?E} ⇒ {?C rdfs:subClassOf ?E}.

{?X a ?A. ?X a ?B. ?A owl:disjointWith ?B} ⇒ false.

Minimal Contradictory Triple Sets (MCTSs):

E1 = {:PortionOfMixture owl:disjointWith :PortionOfMonosubstance, i:coTrimoxazole2 a :PortionOfMixture,

i:coTrimoxazole2 a :PortionOfMonosubstance}.

E2 = {:PortionOfMixture owl:disjointWith :PortionOfMonosubstance, ns3:amoxicillin1 a :PortionOfMixture,

ns3:amoxicillin1 a :PortionOfMonosubstance}.

E3 = {:PortionOfMixture owl:disjointWith :PortionOfMonosubstance, ns3:fluoroquinolone1 a :PortionOfMixture,

ns3:fluoroquinolone1 a :PortionOfMonosubstance}.

E4 = {:PortionOfMixture owl:disjointWith :PortionOfMonosubstance, ns3:ciprofloxacin1 a :PortionOfMixture,

ns3:ciprofloxacin1 a :PortionOfMonosubstance}.

Asserted Ancestor Triple Sets (AATSs):

S1 = {:PortionOfMixture owl:disjointWith :PortionOfMonosubstance, i:coTrimoxazole2 a :PortionOfMixture, drug:Drug

rdfs:subClassOf :PortionOfMonosubstance, antibio:Fluoroquinolone rdfs:subClassOf drug:Drug, antibio:Fluoroquinolone

owl:equivalentClass :PortionOfMixture}.

S2 = {:PortionOfMixture owl:disjointWith :PortionOfMonosubstance, ns3:amoxicillin1 a antibio:Amoxicillin,

antibio:Amoxicillin owl:equivalentClass :PortionOfMixture, drug:Drug rdfs:subClassOf :PortionOfMonosubstance, an-

tibio:Antibiotic rdfs:subClassOf drug:Drug, ns3:amoxicillin1 a antibio:Antibiotic}.

S3 = {:PortionOfMixture owl:disjointWith :PortionOfMonosubstance, ns3:fluoroquinolone1 a antibio:Fluoroquinolone,

antibio:Fluoroquinolone owl:equivalentClass :PortionOfMixture, drug:Drug rdfs:subClassOf :PortionOfMonosubstance,

antibio:Antibiotic rdfs:subClassOf drug:Drug, ns3:fluoroquinolone1 a antibio:Antibiotic}.

S4 = {:PortionOfMixture owl:disjointWith :PortionOfMonosubstance, ns3:ciprofloxacin1 a antibio:Fluoroquinolone, an-

tibio:Fluoroquinolone owl:equivalentClass :PortionOfMixture, drug:Drug rdfs:subClassOf :PortionOfMonosubstance, an-

tibio:Antibiotic rdfs:subClassOf drug:Drug, ns3:ciprofloxacin1 a antibio:Antibiotic}.

Generated MIRCs (M1, . . . , M32 << M1, . . . , . . . , M578):

Generated MIRC: M1 = {:PortionOfMixture owl:disjointWith :PortionOfMonosubstance}.

MIRC-Descendants (M1) = ∅

numberofTriplesRemove = 1

Generated MIRC: M2 = {drug:Drug rdfs:subClassOf :PortionOfMonosubstance}.

MIRC-Descendants (M2) = {ns3:amoxicillin1 a :PortionOfMonosubstance, ns3:fluoroquinolone1 a :PortionOfMonosub-

stance, ns3:ciprofloxacin1 a :PortionOfMonosubstance, i:coTrimoxazole2 a :PortionOfMonosubstance}

numberofTriplesRemove = 5

Generated MIRC: M3 = {antibio:Fluoroquinolone owl:equivalentClass :PortionOfMixture, antibio:Amoxicillin

owl:equivalentClass :PortionOfMixture}

MIRC-Descendants (M3) = {ns3:fluoroquinolone1 a :PortionOfMixture, antibio:Fluoroquinolone rdfs:subClassOf :Por-

tionOfMixture, ns3:ciprofloxacin1 a :PortionOfMixture, i:coTrimoxazole2 a :PortionOfMonosubstance, i:coTrimoxazole2

a drug:Drug, i:coTrimoxazole2 a antibio:Fluoroquinolone, :PortionOfMixture rdfs:subClassOf antibio:Fluoroquinolone,

:PortionOfMixture owl:equivalentClass antibio:Fluoroquinolone, ns3:amoxicillin1 a :PortionOfMixture, antibio:Amoxicillin

rdfs:subClassOf :PortionOfMixture}

numberofTriplesRemove = 12

...
...

...
...
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Generated MIRC: M32 = {i:coTrimoxazole2 a :PortionOfMixture, ns3:ciprofloxacin1 a antibio:Antibiotic, ns3:fluoroquinolone1

a antibio:Antibiotic, ns3:amoxicillin1 a antibio:Antibiotic}

MIRC-Descendants (M32) = {i:coTrimoxazole2 a :PortionOfMonosubstance, i:coTrimoxazole2 a drug:Drug, i:coTrimoxazole2

a antibio:Fluoroquinolone, ns3:ciprofloxacin1 a :PortionOfMonosubstance, ns3:ciprofloxacin1 a drug:Drug, ns3:fluoroquinolone1

a :PortionOfMonosubstance, ns3:fluoroquinolone1 a drug:Drug, ns3:amoxicillin1 a :PortionOfMonosubstance, ns3:amoxicillin1

a drug:Drug}

numberofTriplesRemove = 13

There were 4 unique AATSs computed (shown in the Asserted Ancestor Triple

Sets section) from the contradiction derivations under PUTI , where each AATS

consists of 6 asserted triples from the merged UTI ontology OUTI−Merge. There are

578 possible inconsistent resolve candidates, where removing any of these candidates

fromOUTI−Merge results in a consistent sub-ontology, but not necessarily a maximal

consistent sub-ontology. However using our algorithm (see Algorithm 3), we com-

puted only 32 MIRCs (shown in the Minimal Inconsistent Resolve Candidates section

in Example 7.1). These are in fact all possible MIRCs, where removing any of these

minimal candidates from the merged UTI ontology OUTI−Merge results in a maxi-

mal consistent sub-ontology of OUTI−Merge w.r.t. PUTI . For each extracted MIRC

Mi, we generated a list of its derived triples and also provided the total number of

(asserted and their derived) triples that will be removed in the maximal consistent

sub-ontology by removing Mi from OUTI−Merge (as shown in Example 7.1). Based

on the cardinality of Mi, cardinality of its derived triples set and the total number

of triples removed for each MIRC Mi, the computed MIRCs can be ordered and

shown to the users. Such an ordering can be helpful for the users in selecting an

MIRC suitable for user’s needs. The user-selected MIRC can then be removed from

an inconsistent ontology to extract a maximal consistent sub-ontology.

7.6 Results: Morphed Therapeutic Knowledge Generated by K-MORPH

Based on the correspondences found by our matchers TOM and POM (see Sec-

tion 7.4), K-MORPH merged the Agfa and DCO/BioTop contextualized sub-

ontologies to generate a merged ontology that can provide comprehensive ther-

apeutic knowledge about UTIs. Based on the found correspondences, there were

39, 317 new inferred relations (between Agfa and DCO/BioTop ontologies) found
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in the generated merged ontology. Hence the generated merged ontology pro-

vided the combined and extended therapeutic knowledge about UTIs by inferring

39, 317 new knowledge links that were not initially present in the source ontolo-

gies.

While obtaining the merged ontology, inferred relations were generated from

both atomic and complex correspondences. Since explaining and understanding

all inferred results generated from the complex correspondences are seemingly

difficult, in this section we will focus only on atomic correspondences and present

some of their inferred results (i.e. new therapeutic knowledge) generated by K-

MORPH.

Table 7.8: K-MORPH Results: Case # 1
Correspondence Inferred Knowledge
event:Evaluating v biotop:BiologicalAction clineva:Diagnosing v biotop:BiologicalAction

clineva:Evaluating v biotop:BiologicalAction
clineva:Prognosing v biotop:BiologicalAction
ns3:diagnosing1 a biotop:BiologicalAction

Case # 1: event:Evaluating v biotop:BiologicalAction

In this case (see Table 7.8), given the correspondence that event:Evaluating (in

Agfa ontologies) is a biotop:BiologicalAction (in DCO/BioTop ontologies),

therefore all related kinds of clinical actions modelled in Agfa ontologies are now

known as a biotop:BiologicalAction. As a result, an instance diagnosing1 (of

the concept Diagnosing) is also an instance of biotop:BiologicalAction.

Table 7.9: K-MORPH Results: Case # 2
Correspondence Inferred Knowledge
heca:Action v biotop:BiologicalAction heca:HealthCaring v biotop:BiologicalAction

heca:Encounter v biotop:BiologicalAction
heca:Action v biotop:Action
heca:HealthCaring v biotop:Action
heca:Encounter v biotop:Action
ns3:hcAction1 a biotop:Action
ns3:hcAction1 a biotop:BiologicalAction
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Case # 2: heca:Action v biotop:BiologicalAction

Similarly, based on the correspondence heca:Action v biotop:BiologicalAct-

ion, various kinds of healthcare actions (modelled in Agfa ontologies) now can be

realized as a biotop:BiologicalAction (see Table 7.9).

Table 7.10: K-MORPH Results: Case # 3

Correspondence Inferred Knowledge
event:Evaluation v clineva:Diagnosis v biotop:ImmaterialNonphysicalEntity
biotop:Immaterial- clineva:PrimaryDiagnosis v biotop:ImmaterialNonphysicalEntity
NonphysicalEntity clineva:SecondaryDiagnosis v biotop:ImmaterialNonphysicalEntity

clineva:PresumptiveDiagnosis v biotop:ImmaterialNonphysicalEntity
clineva:CertainDiagnosis v biotop:ImmaterialNonphysicalEntity
clineva:Evaluation v biotop:ImmaterialNonphysicalEntity
clineva:AbsentDiagnosis v biotop:ImmaterialNonphysicalEntity
clineva:Prognosis v biotop:ImmaterialNonphysicalEntity
event:whereinExamined rdfs:domain biotop:ImmaterialNonphysicalEntity
event:whereinEvaluated rdfs:domain biotop:ImmaterialNonphysicalEntity
ns3:diagnosis1 a biotop:ImmaterialNonphysicalEntity
ns3:evaluation1 a biotop:ImmaterialNonphysicalEntity

Case # 3: event:Evaluation v biotop:ImmaterialNonphysicalEntity

In this case (see Table 7.10), given event:Evaluation v biotop:Immaterial-

NonphysicalEntity, various kind of diagnostic steps (modelled in Agfa ontolo-

gies) can now be extended as biotop:ImmaterialNonphysicalEntity. As a re-

sult, properties modelled in Agfa ontologies event:whereinExamined and

event:whereinEvaluated are now became the properties of biotop:Immaterial-

NonphysicalEntity. Also all instances of diagnosis and evaluation are now also

treated as instances of biotop:ImmaterialNonphysicalEntity.

Case # 4: event:Evaluation v biotop:IntellectualProduct

Similarly, based on the correspondence event:Evaluation v biotop:Intelle-

ctualProduct, various kinds of diagnostic steps (modelled in Agfa ontologies)

can now be extended as biotop:IntellectualProduct (see Table 7.11). As a re-

sult, properties modelled in Agfa ontologies event:whereinExamined and

event:whereinEvaluated now become the properties of biotop:Intellectual-



133

Table 7.11: K-MORPH Results: Case # 4
Correspondence Inferred Knowledge
event:Evaluation v clineva:Diagnosis v biotop:IntellectualProduct
biotop:Intellectual- clineva:PrimaryDiagnosis v biotop:IntellectualProduct
Product clineva:SecondaryDiagnosis v biotop:IntellectualProduct

clineva:PresumptiveDiagnosis v biotop:IntellectualProduct
clineva:CertainDiagnosis v biotop:IntellectualProduct
clineva:Evaluation v biotop:IntellectualProduct
clineva:AbsentDiagnosis v biotop:IntellectualProduct
clineva:Prognosis v biotop:IntellectualProduct
event:whereinExamined rdfs:domain biotop:IntellectualProduct
event:whereinEvaluated rdfs:domain biotop:IntellectualProduct
event:hasEvaluationTimeStamp rdfs:domain biotop:IntellectualProduct
event:evaluatedIn rdfs:range biotop:IntellectualProduct
ns3:diagnosis1 a biotop:IntellectualProduct
ns3:evaluation1 a biotop:IntellectualProduct

Product. Also all instances of diagnosis and evaluation are now also treated as in-

stances of biotop:IntellectualProduct.

Table 7.12: K-MORPH Results: Case # 5
Correspondence Inferred Knowledge
dco:Cystitis v dis:UrinarySystemDisorder dco:Cystitis v dis:Disorder.

dco:Cystitis v clinobs:Finding.
dco:Cystitis v event:AdverseProcess.
dco:Cystitis v event:Action.
dco:Cystitis v event:Finding.
dco:Cystitis v event:Event.
dco:Cystitis v event:Process.
i:cystitis2 a dis:UrinarySystemDisorder.
i:cystitis2 a dis:Disorder.
i:cystitis2 a clinobs:Finding.
i:cystitis2 a event:AdverseProcess.
i:cystitis2 a event:Action.
i:cystitis2 a event:Event.

Case # 5: dco:Cystitis v dis:UrinarySystemDisorder

In this case (see Table 7.12), based on the correspondence dco:Cystitis v

dis:UrinarySystemDisorder, a DCO concept dco:Cystitis can be further clas-

sified and related with other concepts in Agfa ontologies. Hence, now dco:Cystitis

can be seen as a dis:UrinarySystemDisorder, dis:Disorder, clinobs:Finding,

event:AdverseProcess, event:Action, event:Finding, event:Event, or
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event:Process. As a result, all instances of dco:Cystitis now became instances

of the above-mentioned concepts.

Table 7.13: K-MORPH Results: Case # 6
Correspondence Inferred Knowledge
dco:AutoimmuneDisorder v dco:MyastheniaGravis v dis:ImmuneSystemDisorder
dis:ImmuneSystemDisorder dco:AutoimmuneDisorder v dis:Disorder

dco:AutoimmuneDisorder v clinobs:Finding
dco:AutoimmuneDisorder v event:AdverseProcess
dco:AutoimmuneDisorder v event:Action
dco:AutoimmuneDisorder v event:Finding
dco:AutoimmuneDisorder v event:Event
dco:AutoimmuneDisorder v event:Process
dco:MyastheniaGravis v dis:Disorder
dco:MyastheniaGravis v clinobs:Finding
dco:MyastheniaGravis v event:AdverseProcess
dco:MyastheniaGravis v event:Action
dco:MyastheniaGravis v event:Finding
dco:MyastheniaGravis v event:Event
dco:MyastheniaGravis v event:Process
i:autoimmuneDisorder2 a dis:ImmuneSystemDisorder
i:autoimmuneDisorder2 a dis:Disorder
i:autoimmuneDisorder2 a clinobs:Finding
i:autoimmuneDisorder2 a event:AdverseProcess
i:autoimmuneDisorder2 a event:Action
i:autoimmuneDisorder2 a event:Event

Case # 6: dco:AutoimmuneDisorder v dis:ImmuneSystemDisorder

Similarly, in this case (see Table 7.13), based on the correspondence dco:Autoimmune-

Disorder v dis:ImmuneSystemDisorder, various kinds of immune disorders

(modelled in DCO/BioTop ontologies) can be further classified and related with

other concepts in Agfa ontologies. Hence, now DCO immune disorders can be

seen as a dis:UrinarySystemDisorder, dis:Disorder, clinobs:Finding, eve-

nt:AdverseProcess, event:Action, event:Finding, event:Event, or event:Pr-

ocess. As a result, all instances of DCO immune disorders now became instances

of the above-mentioned concepts.

Case # 7: ther:Therapy v dco:TherapeuticOrPreventiveProcedure

Based on the correspondence ther:Therapy v dco:TherapeuticOrPreventive-

Procedure, following inferences were generated (see Table 7.14):
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Table 7.14: K-MORPH Results: Case # 7
Correspondence Inferred Knowledge
ther:Therapy v ther:CausalTherapy v dco:TherapeuticOrPreventiveProcedure
dco:TherapeuticOr- ther:NonCausalTherapy v dco:TherapeuticOrPreventiveProcedure
PreventiveProcedure ther:BlindTherapy v dco:TherapeuticOrPreventiveProcedure

ther:EmpiricalTherapy v dco:TherapeuticOrPreventiveProcedure
ther:SurgicalProcedure v dco:TherapeuticOrPreventiveProcedure
ther:EvacuationProcedure v dco:TherapeuticOrPreventiveProcedure
ther:DrainageProcedure v dco:TherapeuticOrPreventiveProcedure
ther:Therapy v dco:HealthCareActivity
ther:Therapy v biotop:Action
ther:hasIntent rdfs:domain dco:TherapeuticOrPreventiveProcedure
ther:replaces rdfs:domain dco:TherapeuticOrPreventiveProcedure
ther:addedTo rdfs:domain dco:TherapeuticOrPreventiveProcedure
...

...
...

...
...

...
ther:replaces rdfs:range dco:TherapeuticOrPreventiveProcedure
ther:addedTo rdfs:range dco:TherapeuticOrPreventiveProcedure
...

...
...

...
...

...
ther:CausalTherapy v dco:HealthCareActivity
ther:CausalTherapy v biotop:Action
...

...
...

...
...

...
ns3:therapy1 a dco:TherapeuticOrPreventiveProcedure
ns3:therapy1 a dco:HealthCareActivity
ns3:therapy1 a biotop:Action

1. Various therapies modelled in the Agfa ontologies, such ther:CausalTherapy,

ther:NonCausalTherapy, ther:BlindTherapy, ther:EmpiricalTherapy,

ther:SurgicalProcedure, ther:EvacuationProcedure and ther:Draina-

geProcedure, can now be classified under dco:TherapeuticOrPreventive-

Procedure.

2. Therapies can now be referred as dco:HealthCareActivity and biotop:Ac-

tion.

3. Properties related to therapies, such as ther:hasIntent, ther:replaces,

ther:addedTo, now also deal with dco:TherapeuticOrPreventiveProce-

dure.
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Table 7.15: K-MORPH Results: Case # 8
Correspondence Inferred Knowledge
dco:AntiInfectiveSubstance v dco:AntimycoticSubstance v drug:Drug
drug:Drug dco:ImmuneSerum v drug:Drug

dco:Immunoglobulin v drug:Drug
dco:Vaccine v drug:Drug
dco:BacterialVaccine v drug:Drug
dco:Caspofungin v drug:Drug
dco:DiphteriaVaccine v drug:Drug
dco:Fluconazole v drug:Drug
dco:Flucytosine v drug:Drug
dco:HelminthiasisVaccine v drug:Drug
dco:Itraconazole v drug:Drug
...

...
...

...
...

...
dco:ImmuneSerum v ther:Substance
dco:ImmuneSerum v biotop:AmountOfSubstance
dco:ImmuneSerum v dco:PortionOfMonosubstance
dco:ImmuneSerum v biotop:CollectiveMaterialEntity
dco:ImmuneSerum v biotop:MaterialEntity
...

...
...

...
...

...

Case # 8: dco:AntiInfectiveSubstance v drug:Drug

In this case (see Table 7.15), based on the correspondence dco:AntiInfectiveSubst-

ance v drug:Drug, following inferences were generated:

1. Various kinds of anti-infective substances, such as dco:AntimycoticSubst-

ance, dco:ImmuneSerum, dco:Immunoglobulin, dco:Vaccine, dco:Bacte-

rialVaccine, dco:Caspofungin, dco:DiphteriaVaccine, dco:Fluconazole,

dco:Flucytosine, dco:HelminthiasisVaccine, dco:Itraconazole, are now

classified under drug:Drug.

2. All kinds of anti-infective substances are also further classified under other

related kinds of substances and material entities, such as ther:Substance,

biotop:AmountOfSubstance, dco:PortionOfMonosubstance, biotop:Co-

llectiveMaterialEntity, biotop:MaterialEntity.

Case # 9: drug:Drug v biotop:AmountOfSubstance

Based on the correspondence drug:Drug v biotop:AmountOfSubstance, follow-

ing inferences were generated (see Table 7.16):
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Table 7.16: K-MORPH Results: Case # 9
Correspondence Inferred Knowledge
drug:Drug v antibio:Antibiotic v biotop:AmountOfSubstance
biotop:AmountOfSubstance antibio:Fluoroquinolone v biotop:AmountOfSubstance

antibio:Ciprofloxacin v biotop:AmountOfSubstance
antibio:Trimethoprim v biotop:AmountOfSubstance
antibio:Sulfamethoxazole v biotop:AmountOfSubstance
antibio:Benzylpenicillin v biotop:AmountOfSubstance
antibio:Amoxicillin v biotop:AmountOfSubstance
...

...
...

...
...

...
dco:AntiInfectiveSubstance v biotop:AmountOfSubstance
...

...
...

...
...

...
drug:hasGenericName rdfs:domain biotop:AmountOfSubstance
drug:hasStrength rdfs:domain biotop:AmountOfSubstance
drug:activePartOf rdfs:domain biotop:AmountOfSubstance
drug:affects rdfs:domain biotop:AmountOfSubstance
drug:affects rdfs:range biotop:AmountOfSubstance
drug:hasActivePart rdfs:range biotop:AmountOfSubstance
ns3:drug1 a biotop:AmountOfSubstance
ns3:antibiotic1 a biotop:AmountOfSubstance
ns3:fluoroquinolone1 a biotop:AmountOfSubstance
ns3:ciprofloxacin1 a biotop:AmountOfSubstance
ns3:trimethoprim1 a biotop:AmountOfSubstance
ns3:sulfamethoxazole1 a biotop:AmountOfSubstance
ns3:benzylpenicillin1 a biotop:AmountOfSubstance
ns3:amoxicillin1 a biotop:AmountOfSubstance

1. Various kind of drugs modelled in Agfa ontologies, such as antibio:Antibi-

otic, antibio:Fluoroquinolone, antibio:Ciprofloxacin, antibio:Tri-

methoprim, antibio:Sulfamethoxazole, antibio:Benzylpenicillin,

antibio:Amoxicillin, etc, are now classified under a high-level concept

biotop:AmountOfSubstance.

2. Some of the DCO drugs, such as dco:AntiInfectiveSubstance, are also

classified as a biotop:AmountOfSubstance.

3. Properties associated with a drug, such as drug:hasGenericName, drug:has-

Strength, drug:activePartOf, drug:affects and drug:hasActivePart,

now also incorporate biotop:AmountOfSubstance.

4. Specific instances of various drugs are now also realized as a biotop:Amount-

OfSubstance.
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Case # 10: drug:Drug v biotop:CollectiveMaterialEntity

Similar to case # 9, based on the correspondence drug:Drug v biotop:Collective-

MaterialEntity, following inferences were generated (see Table 7.17):

1. Various kind of drugs modelled in Agfa ontologies, such as antibio:Antibio-

tic, antibio:Fluoroquinolone, antibio:Ciprofloxacin, antibio:Trime-

thoprim, antibio:Sulfamethoxazole, antibio:Benzylpenicillin, antib-

io:Amoxicillin, etc, are now classified under a high-level concept biotop:Co-

llectiveMaterialEntity.

2. Properties associated with a drug, such as drug:hasGenericName, drug:has-

Strength, drug:activePartOf, drug:affects and drug:hasActivePart,

now also incorporate biotop:CollectiveMaterialEntity.

3. Various drug instances are realized as biotop:CollectiveMaterialEntity.

Table 7.17: K-MORPH Results: Case # 10
Correspondence Inferred Knowledge
drug:Drug v antibio:Antibiotic v biotop:CollectiveMaterialEntity
biotop:Collective- antibio:Fluoroquinolone v biotop:CollectiveMaterialEntity
MaterialEntity antibio:Sulfamethoxazole v biotop:CollectiveMaterialEntity

...
...

...
...

...
...

dco:BacterialVaccine v biotop:CollectiveMaterialEntity
dco:Caspofungin v biotop:CollectiveMaterialEntity
...

...
...

...
...

...
drug:hasStrength rdfs:domain biotop:CollectiveMaterialEntity
drug:activePartOf rdfs:domain biotop:CollectiveMaterialEntity
drug:affects rdfs:domain biotop:CollectiveMaterialEntity
drug:affects rdfs:range biotop:CollectiveMaterialEntity
drug:hasActivePart rdfs:range biotop:CollectiveMaterialEntity
ns3:drug1 a biotop:CollectiveMaterialEntity
ns3:antibiotic1 a biotop:CollectiveMaterialEntity
ns3:fluoroquinolone1 a biotop:CollectiveMaterialEntity
ns3:ciprofloxacin1 a biotop:CollectiveMaterialEntity
ns3:trimethoprim1 a biotop:CollectiveMaterialEntity
ns3:sulfamethoxazole1 a biotop:CollectiveMaterialEntity
ns3:benzylpenicillin1 a biotop:CollectiveMaterialEntity
ns3:amoxicillin1 a biotop:CollectiveMaterialEntity
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7.7 Summary

Clinical decision making demands different reasoning strategies using both strong

and weak evidence-based medical knowledge [3]. The importance of integrating

multiple medical knowledge sources can be realized in cases when a clinical solu-

tion from one medical knowledge source is lacking, or another knowledge source

can play a role in extending the initial knowledge to provide alternative solu-

tions. In this experiment, we focused on the same objective and demonstrated

the use of our K-MORPH framework in generating a comprehensive therapeutic

knowledge-base for UTIs. By morphing 20 healthcare ontologies in K-MORPH,

we achieved a context-driven knowledge sharing and integration among those on-

tologies by establishing semantic interoperability between them. In this way, ther-

apeutic UTI knowledge—that were separately modelled in the initial ontologies-

—are now shared and extended to provide knowledge about treatments and drug

therapies to UTI patients.



Chapter 8

Conclusion and Future Work

A domain-specific problem is not often solved by an individual knowledge source,

but rather requires an interplay between multiple knowledge sources [1]. Since

the availability of complete knowledge, especially as one holistic knowledge ob-

ject, is always challenging; therefore problem-solvers manually integrate knowl-

edge from multiple sources to formulate a comprehensive knowledge object that

satisfies the problem’s context [2]. In order to obtain context-sensitive and com-

prehensive knowledge, a context-driven integration of heterogeneous knowledge

sources is required to provide a comprehensive and networked view of all knowl-

edge pertaining to a domain-specific problem at hand [12–26].

Knowledge morphing aims to formulate a comprehensive knowledge-base, spe-

cific to a given context, through “the intelligent and autonomous fusion/integration

of contextually, conceptually and functionally related knowledge objects that may

exist in different representation modalities and formalisms, in order to establish

a comprehensive, multi-faceted and networked view of all knowledge pertaining

to a domain-specific problem” Abidi 2005 [29]. Knowledge morphing extends the

traditional notion of knowledge integration by providing the ability to reason over

the morphed knowledge to (a) infer context-specific knowledge fragments, and (b)

suggest recommendations and actions for solving domain-specific problems.

In this PhD thesis, we have presented our solution approach for Knowledge

Morphing via Reconciliation of Contextualized Sub-ontologies (K-MORPH) as

shown in Figure 3.1. In K-MORPH, available knowledge sources are required to

be modelled as ontologies. These ontology-modelled knowledge sources serve as

inputs to K-MORPH. In addition to the source ontologies (i.e. initially modelled

knowledge sources), K-MORPH also requires the problem-context from the user

as an input. To represent the user-intended context, a problem-context is a data-

structure in which the user provides (i) the user-selected concepts (properties and

140
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individuals) from the source ontologies that are pertinent to the context at hand; (ii)

context-specific axioms and constraints to be applied on the source ontologies; and

(iii) context-specific alignments between the source ontologies. Based on the given

source ontologies and the problem-context from the user, K-MORPH performs a

context-driven reconciliation of source ontologies by: (a) extracting contextualized

sub-ontologies from the source ontologies. The contextualized sub-ontologies get

validated for conceptual/contextual consistency and completeness; (b) aligning

and then merging the contextualized sub-ontologies to generate a merged ontol-

ogy; and (c) detecting and resolving inconsistencies in the merged ontology. In this

way,K-MORPH pursues knowledge morphing by (i) extracting knowledge com-

ponents from the available ontology-modelled knowledge sources pertinent to the

given problem-context by extracting contextualized sub-ontologies; (ii) integrating

the extracted knowledge components by merging contextualized sub-ontologies;

and (iii) repairing inconsistencies in the morphed knowledge by detecting and re-

solving inconsistencies in the merged ontology. In this chapter, we will first assess

the research contributions of this thesis and then highlight some of the applications

and possible future directions for knowledge morphing.

8.1 Assessment of Research Contributions

K-MORPH provides a framework for context-specific knowledge integration of

ontology-modelled knowledge sources by a context-driven reconciliation of on-

tologies. The K-MORPH framework is realized by an active interplay of three

major research areas in Semantic Web: (i) extracting contextualized sub-ontologies,

(ii) aligning and merging ontologies, and (iii) detecting and resolving inconsisten-

cies in ontologies. There have been various attempts these above fields, whereby

(a) various extraction methods were proposed to extract sub-ontologies from source

ontologies [63–68]; (b) various ontology matching and alignment methods can

align and merge ontologies [41, 42]; and (c) available approaches can detect and

resolve inconsistencies in the merged ontology [69–72]. However, there are still

challenges and limitations in the above-mentioned fields [13, 73]. Hence, in solv-

ing the knowledge morphing problem, we have also made scientific contributions

in all three research areas (see Chapters 4, 5 and 6). In this section, we will assess
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the main research contributions to these areas, made in realizing our K-MORPH
framework, by highlighting their unique features and addressing their limitations

in solving the knowledge morphing problem.

8.1.1 Extracting Contextualized Sub-ontologies

In order to perform knowledge morphing using K-MORPH, we have developed

a structure-based extraction method for extracting contextualized sub-ontologies

(see Chapter 4). In contrast to existing structure-based methods [64–67], in our

sub-ontology extraction approach, we restrict the recursive selection of the super-

concepts of a selected concept C in order to avoid the unnecessary selection of the

siblings and super-concepts of C, which would otherwise result in the expansion

of the sub-graph to include concepts that are not relevant. In this way, we avoid

a situation where the sub-ontology is overly generalized by the undesired inclu-

sion of higher-level concepts that may even extend all the way to owl:Thing (see

Chapter 4 for details).

In addition to existing structure-based extraction methods [64–67], there have

been attempts towards sub-ontology extraction using logic-based approaches [68,

189]. Logic-based sub-ontology extraction aims to modularize a source ontology

based on the semantics of its domain and ontology language. It allows the extrac-

tion of relevant and semantically consistent ontology modules from a source ontol-

ogy [189]. The extracted modules (i.e. sub-ontologies) generated by the logic-based

methods provide modular fragments from the source ontology and also their de-

ducible consequences (i.e. deductively obtained axioms and assertions)—under

domain-specific and ontology language semantics. Compared to logic-based ex-

traction approaches, structure-based approaches lack the ability to generate se-

mantically consistent and complete ontology modules. Although our proposed

extraction method can generate relevant sub-ontologies to support the knowledge

morphing problem, we believe that by applying and extending available logic-

based approaches in K-MORPH, users can extract more complete and semanti-

cally consistent sub-ontologies.
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8.1.2 Aligning and Merging Ontologies

K-MORPH performs a context-driven reconciliation of ontologies by merging the

contextualized sub-ontologies to generate a merged ontology for facilitating the

problem-context at hand. In order to align and merge sub-ontologies, we have de-

veloped two ontology matching approaches, triple-based ontology matching (TOM)

and proof-based ontology matching (POM), for finding both atomic and complex cor-

respondences between two source ontologies (see Chapter 5) . We evaluated our

matchers TOM and POM on data-sets of the Ontology Alignment Evaluation Ini-

tiative (OAEI) [167] and compared their results with existing ontology matching

systems (see Chapter 5 for details).

Our matching approaches TOM and POM do not perform lexical similarity

analysis in their matching process. They find new correspondences between ontology-

entities based on the pre-defined correspondences provided in the initially given

alignment. However, as demonstrated in Ritze et. al. [176,190], finding lexical and

linguistic similarities between ontology-entities upfront can improve the matching

process in finding both atomic and complex correspondences [176, 190]. In TOM

and POM, we plan to utilize existing lexical matching approaches [41] for finding

name-based and thesauri-based similarities between ontology-entities to further

enhance our matching process for finding both atomic and complex correspon-

dences.

Correspondences between source ontologies can be complex. As such, rep-

resenting and validating them becomes a challenging task [176]. In order to ap-

ply and evaluate correspondences, they must be represented in a standardize for-

mat [169]. Euzenat et. al. proposed the EDOAL: Expressive and Declarative On-

tology Alignment Language [172], which extends the original INRIA alignment

format [173]. This language allows users to express a correspondence between two

complex entities/structures (such as set operators, restrictions applied on entities

and relations). In our work, our matchers (TOM and POM) represent correspon-

dences between entities using RDF-Graphs. However, we believe that representing

TOM and POM results in a standard format (such as EDOAL) is crucial to enable

interoperability with other existing matchers, and also to evaluate complex corre-

spondences.
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8.1.3 Detecting and Resolving Inconsistencies in Ontologies

Detecting and resolving inconsistencies is a non-trivial task, as it requires an in-

depth understanding of the ontology axioms—in order to select axioms (either

manually or automatically), which are either to be removed or repaired for re-

solving the identified inconsistencies. We have presented our approach for de-

tecting and resolving inconsistencies in ontologies that (i) detects inconsistencies

by finding contradiction derivations produced under a given logic program; and

(ii) generates minimal inconsistent resolve candidates MIRCs, where removing any

of the MIRCs from the inconsistent ontology results in a maximal consistent sub-

ontology w.r.t. the logic program (see Chapter 6 for details).

Our proposed algorithm (see Algorithm 3 in Chapter 6) for computing MIRCs

is a form of an apriori/level-wise algorithm [191]. Hence the complexity of our

MIRCs algorithm isO(2k|M|), where M is the set of generated MIRCs and k = |S| is
the total number of AATSs. However, the time complexity for MIRCs computation

can be improved by formulating this problem as hypergraph [192]. A hypergraph

H = 〈V,E〉 is a generalized graph defined on a finite set of vertices V, with every

hyper-edge E of V being a subset of V. The transversal hypergraph problem is the

problem of computing, given a hypergraph H, the set of its minimal transversals,

i.e. the hypergraph whose hyperedges are all minimal hitting sets of the given one.

A minimal transversal tr(H) consists of vertices V′ ⊆ V such that (a) V′ intersects

all hyperedges of H, and (b) no proper subset of V′ does. There have been various

attempts towards the transversal hypergraph problem to develop a number of opti-

mized algorithms for finding minimal transversals. Most efficient algorithm runs in

nearly quasi-polynomial time O(nlog n), where n is the combined size of the input

and the output [193]. In our work, we can consider the asserted ontology triples

I as vertices of a hypergraph H1, and AATSs S become hyperedges of H1. Hence

MIRCs can be generated efficiently by computing minimal transversals of H1.

8.2 K-MORPH Applications: Clinical Decision Making

The demand for context-driven knowledge sharing and integration is realized in

various application domains, such as Life Sciences [11–13], E-Business [14–17],
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Telecommunications [18], Government Security Services [19, 20], Web Portals [21–

24] and Marine Sciences [25]. In general, practitioners and domain experts seek

an intelligent medium for sharing their behavioural and operational knowledge

among other domain experts, in order to evolve a shared understanding between

groups, and also to adapt and update their local policies based on the shared

knowledge [2, 8, 26]. On the other hand, knowledge integration becomes crucial

when experts are aiming to build a comprehensive knowledge-base for various

domain-specific and context-sensitive applications [2, 12, 13, 17].

Our knowledge morphing framework K-MORPH can be applied in various

application domains. In this thesis, we have particularly demonstrated the use of

ourK-MORPH framework in the healthcare domain by showing the morphing of

various medical ontologies for two different diseases, Prostate Cancer and Urinary

Tract Infections, under two different problem-contexts. The discussed test-case can

be summarized as follows:

Test-case # 1: Therapeutic Workflow Knowledge about Prostate Cancer: For this ex-

periment, we used three location-specific Prostate Cancer (PC) clinical path-

ways [62], entailing their institution-specific knowledge about the diagnosis,

treatments, tests and follow-up care for PC at three different locations: Hal-

ifax, Winnipeg and Calgary. K-MORPH generated a merged PC ontology

that provides a comprehensive and context-sensitive knowledge-base for PC

management by (i) extracting 3 contextualized sub-ontologies from the three

location-specific PC ontologies; (ii) aligning and merging the extracted sub-

ontologies; and (iii) detecting and resolving inconsistencies in the merged PC

ontology (see Section 3.3 for details).

Test-case # 2: Therapeutic Knowledge for Treating Urinary Tract Infections: In this ex-

periment, we considered 20 medical ontologies developed by three groups

of medical experts from three different institutions. Hence, these ontologies

can be classified into three categories: (i) BioTop Ontology, (ii) DCO Ontol-

ogy, and (iii) Agfa Ontologies (18 ontologies). These 20 ontologies provide
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knowledge about the prognosis, diagnosis, treatment and follow-up for var-

ious infectious diseases. K-MORPH generated a merged ontology to pro-

vide a comprehensive and networked knowledge-base for Urinary Tract In-

fections (UTIs) by (i) extracting 20 contextualized sub-ontologies from DCO,

BioTop and AGFA ontologies; (ii) aligning and merging the extracted sub-

ontologies; and (iii) detecting and resolving inconsistencies in the merged

UTI ontology (see Chapter 7 for details).

8.3 Future Work

Based on the assessment of the research contributions in this PhD thesis (see Sec-

tion 8.1), we highlight some of the future directions to enhance our K-MORPH
framework for supporting knowledge morphing.

1. Investigating other approaches (e.g. C-OWL, E-connections, etc. [90, 91, 93])

dealing with context-awareness [13] and their support for extracting contex-

tualized sub-ontologies.

2. Based on context-awareness, applying logic-based extraction approaches for

identifying entities from the source ontologies that are pertinent to the appli-

cation context in mind.

3. Dealing with scalability issues: As source ontologies can be very large, per-

forming efficient reasoning for extracting contextualized sub-ontologies [189].

4. Dealing with policy management: Identifying and extracting both local and

context-specific constraints—that can be applied on extracted sub-ontologies.

5. Investigating other ontology matching approaches for finding correspondences

between the extracted sub-ontologies [176, 194].

6. Representing complex correspondences in a standard format [169] to enable

interoperability with other existing matchers, and also to evaluate them.

7. Using defeasible argumentation [96, 97] for resolving inconsistencies. This

way, when an inconsistency is raised, ‘local’ policy (i.e. integrity constraints
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and axioms) are considered strict, and only the ‘foreign’ policy will be de-

feated by the argumentation process.

8. Optimizing the MIRCs computation by formulating this problem as a hyper-

graph [192], and generating MIRCs efficiently by computing minimal transver-

sals of the Hypergraph.

9. Automatically resolving inconsistencies using provenance [195]. This way,

when an inconsistency is raised, triples driven from the foreign policies will

be removed, while triples driven from local policy will remain unchanged.

10. Dealing with scalability issues: As inconsistencies may appear in very large

and networked ontologies, optimized algorithms are required to either re-

solve inconsistencies, or reason with the inconsistent ontology efficiently [195].

8.4 Final Words

Optimal and complete decision support needs a comprehensive knowledge-base

[1]. Developing such a self-contained knowledge-base, as an independent entity,

is a non-trivial task [13,29]. There have been various attempts in proposing frame-

works and approaches towards knowledge sharing and integration [12–26] (see

Chapter 2 for details). However, for achieving a context-driven knowledge in-

tegration, Knowledge Morphing aims to formulate a comprehensive knowledge

object, specific to a given context, through “the intelligent and autonomous fu-

sion/integration of contextually, conceptually and functionally related knowledge

objects that may exist in different representation modalities and formalisms, in or-

der to establish a comprehensive, multi-faceted and networked view of all knowl-

edge pertaining to a domain-specific problem” Abidi 2005 [29].

In this PhD thesis, we have proposed our Semantic Web based framework K-

MORPH to support knowledge morphing among ontology-modelled knowledge

sources (see Chapter 3). In order to realize our K-MORPH approach, we have

developed: (i) our sub-ontology extraction method for generating contextualized

sub-ontologies from the source ontologies pertinent to the problem-context at hand
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(see Chapter 4); (ii) two ontology matching approaches, triple-based ontology match-

ing (TOM) and proof-based ontology matching (POM), for finding both atomic and

complex correspondences between two source ontologies (see Chapter 5); and (iii)

our approach for resolving inconsistencies in ontologies by generating minimal in-

consistent resolve candidates (MIRCs), where removing any of the MIRCs from the

inconsistent ontology results in a maximal consistent sub-ontology w.r.t. the given

logic program (see Chapter 6). Thus, our developed methodologies not only sup-

port solving the knowledge morphing problem and its applications in the health-

care domain (see Chapter 7), but also provide scientific contributions in the areas

of (a) Sub-ontology Extraction [64–67], (b) Ontology Reconciliation [41,85,86], and

(c) Ontology Debugging [116, 179–181].
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and Deborah McGuinness, editors, The emerging semantic web, pages 245–
260. IOS press, Amsterdam (NL), 2002.

[85] Adil Hameed, Alun Preece, and Derek Sleeman. Ontology reconciliation. In
Steffen Staab and Rudi Studer, editors, Handbook on ontologies, chapter 12,
pages 231–250. Springer Verlag, Berlin (DE), 2004.

[86] Avigdor Gal, Ateret Anaby-Tavor, Alberto Trombetta, and Danilo Montesi. A
framework for modeling and evaluating automatic semantic reconciliation.
The VLDB Journal, 14(1):50–67, 2005.

[87] S S R Abidi and Sajjad Hussain. Medical knowledge morphing via a seman-
tic web framework. In 20th IEEE Symposium on Computer-Based Medical
Systems. IEEE Press, June 20-22 2007.

[88] Sajjad Hussain and S S R Abidi. K-MORPH: A semantic web based knowl-
edge representation and context-driven morphing framework. In Workshop
on Context and Ontologies, at ECAI’2008, Patras, Greece, July 21-25 2008.



159

[89] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider, editors. The Description Logic Handbook:
Theory, Implementation, and Applications. Description Logic Handbook.
Cambridge University Press, 2003.

[90] Alexander Borgida and Luciano Serafini. Distributed description logics: As-
similating information from peer sources. Journal on Data Semantics, I:153–
184, 2003.

[91] Paolo Bouquet, Fausto Giunchiglia, Frank van Harmelen, Luciano Serafini,
and Heiner Stuckenschmidt. C-OWL – contextualizing ontologies. In Proc.
2nd International Semantic Web Conference (ISWC), volume 2870 of Lecture
notes in computer science, pages 164–179, Sanibel Island (FL US), 2003.

[92] J. Bao, D. Caragea, and V. G. Honavar. On the semantics of linking
and importing in modular ontologies. In 5th International Semantic Web
Conference ISWC 2006, volume 4273, pages 72–86. Springer, 2006.

[93] O O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. E-connections of ab-
stract description systems. Artificial Intelligence, 156(1):1–73, 2004.

[94] A. Zimmermann. Integrated distributed description logics. In D. Calvanese,
E. Franconi, V. Haarslev, D. Lembo, B. Motik, S. Tessaris, and A. Y. Turhan,
editors, 20th International Workshop on Description Logics, DL’07, pages
507–514. Bolzano University Press, 2007.
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