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Abstract

Applied statisticians are often faced with the problem of dealing with high dimen-

sional data sets when attempting to describe the variability of a single set of vari-

ables, or trying to predict the variation of one set of variables from another. In this

study, two data reduction methods are described: Redundancy Analysis and Partial

Least Squares. A hybrid approach developed by Bougeard et al., (2007) and called

Continuum Redundancy-Partial Least Squares, is described. All three methods are

extended to the frequency domain in order to allow the lower dimensional subspace

used to describe the variability to change with frequency. To illustrate and com-

pare the three methods, and their frequency dependent generalizations, an idealized

coupled atmosphere-ocean model is introduced in state space form. This model pro-

vides explicit expressions for the covariance and cross spectral matrices required by

the various methods; this allows the strengths and weaknesses of the methods to be

identified.
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Chapter 1

Introduction

Applied statisticians are often faced with the problem of dealing with high dimen-

sional data sets in various fields such as environmental studies and bioinformatics.

For example, in a gene expression microarray data set there could be tens or hun-

dreds of dimensions, each of which corresponds to an experimental condition, and the

corresponding multiple regression could have many possible predictors. The problem

is compounded when attempting multivariate regression with many responses. The

problem also appears when attempting to generalize the concept of correlation of

scalar random variables to two high dimensional random vectors. All of the above

problems lead to the need for effective ways of reducing the dimension of high dimen-

sional random vectors. Such reduction techniques may lead not only to more robust

estimates of unknown parameters but also a more parsimonious representation of the

relationship between high dimensional data sets and random vectors, and a better

understanding of the underlying relationships.

There are several well-known statistical dimension reduction methods including

Canonical Correlation Analysis (CCA), Redundancy Analysis (RA) and Partial Least

Squares (PLS). All of these methods are based on the search for a reduced set of

latent variables which are taken to be linear combinations of the original variables.

The differences amongst the methods arise from the different criteria used to select

the latent variables.

Canonical Correlation Analysis was introduced by Hotelling (1936) as a method for

identifying linear combinations of the two sets of variables in order to maximize their

correlation. Although CCA is less popular than some other statistical techniques, it

has been applied across various disciplines e.g., examining the relationship between

adoption of outsourcing services and the characteristics of environments in which the

services operate as discussed by Alpert (1975). CCA is conceptually attractive and

1
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simple to understand. It does however have some problems. For example it will

be shown later that it is possible to obtain highly correlated canonical variates that

explain well the relationship between but are not effective at explaining the variability

within the random vectors.

Redundancy Analysis was introduced by Stewart and Love (1968) and aims to

construct an asymmetrical measure of the dependence of one set of variables on

the other, again using the concept of latent variables. Van den Wollenberg (1977)

derived sets of latent variables which maximize the “redundancy” in each set, instead

of maximizing the canonical correlation (as in CCA). The relationship between RA

and CCA has been discussed by Muller (1981). Israels (1984) generalized redundancy

analysis to qualitative variables and compared it with PCA. Overall RA is a powerful

dimension reduction technique that performs well if the focus is prediction. It does

however have problems as explained in the following paragraph.

Canonical Correlation and Redundancy Analysis share a common problem when

the covariance matrices on which they are based are ill conditioned. For both ap-

proaches, the calculation of the latent vectors involves of the inversion of covariance

matrices and their poor conditioning leads to unwanted sensitivity to small changes

in the predictors and hence unstable results. Poor conditioning can be caused by

small sample size, missing values and multicollinearity amongst predictors (leading

to the risk of rejecting a theoretically sound predictor from a regression model).

Partial Least Squares was introduced by Wold and coworkers (Wold,1966) to over-

come the above mentioned problem of ill conditioning. PLS refers to a wide class of

methods for dimension reduction and also modeling the relationship between sets of

variables (e.g., regression and classification). The underlying assumption of all PLS

methods is that the original variables are driven by a small number of latent variables.

In its general form, PLS creates latent vectors (sometimes called “score vectors”) by

maximizing the covariance between different sets of variables. In the present study

we will consider only the application of PLS to two random vectors.

Based on the above discussion it is clear that there are two classes of problem

requiring dimension reduction techniques. The “symmetrical” case treats the two
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sets of variables, stored in the vectors X1 and X2, on the same footing (e.g., CCA,

PLS). We denote the symmetrical case by X1 ↔ X2. The asymmetrical case arises

when we want to predictX1 fromX2 (e.g., RA and regression based PLS). We denote

the asymmetrical case by X2 → X1. In this study the focus is on the asymmetrical

case.

The similarities and differences among the above techniques have been studied

extensively over recent decades. For example Van den Wollenberg (1977) described

RA as an alternative method of CCA. Israels (1984) compared RA to PCA and CCA

for qualitative variables. The equivalence between CCA and orthonormalized PLS

has been studied in Sun Ji, (2008). In the present study, we note the good fitting

ability of RA and the stability of PLS, and explore a hybrid approach proposed by

Bougeard et al., (2007).

One of the novel aspects of the present study is the extension of RA and PLS to

the frequency domain. In this case, the relationship between X1 and X2 can change

with frequency (e.g., a low dimensional relationship may only hold only a certain

range of frequencies). This point is particularly important in many physically-based

systems e.g., the coupled atmosphere-ocean system where it is well known that the

interaction between the two fluids depends on time scale (Flato and Boer, 2000).

To illustrate RA and PLS, and their extension to the frequency domain, we have

introduced an idealized atmosphere-ocean model in the form of a simple, linear state

space model (Bakalian et al., 2009). The advantages of this model are (i) it is relevant

for climate prediction and is thus practically relevant, (ii) the theoretical covariance

matrices can be calculated explicitly in terms of covariance of forcing and the fre-

quency dependent transfer functions that link the atmosphere and ocean. (There

is thus no sampling variability associated with the covariances matrices used in the

present study.)

In this study we will use the ocean state vector (X2) to predict the atmospheric

state vector (X1) using the different dimension reduction approaches in both the time

and frequency domains. The choice of optimal method would be straightforward if

the covariance matrix of predictors was well conditioned. The focus of the present
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study is however the case of poorly conditioned covariance matrices.

The structure of the thesis is as follows. The linear state space model is introduced

in Chapter 2 in both the time domain and frequency domains. We also introduce

a more physically-based example based on an idealized, coupled atmosphere-ocean

model which we will use to illustrate and evaluate the various dimension reduction

methods. Chapter 3 provides a theoretical overview of CCA, PCA, RA and PLS (with

a focus on two of its variants, PLS-SVD and PLS-W2A). In Chapter 4, the recent

attempt of Bougeard et al., (2007) to develop a common theoretical framework for RA

and PLS is described. Their “hybrid” approach is extended to PLS-SVD and PLS-

W2A specifically. In Chapter 5, the above approaches are extended to the frequency

domain. Chapter 6 illustrates the various methods, including some of their frequency

dependent generalizations, using the idealized atmosphere-ocean model. The main

results are summarized and discussed, and suggestions for future work are made, in

Chapter 7.



Chapter 2

State Space and Coupled Atmosphere-Ocean Models

The overall goals of this study are to compare methods for relating high dimensional

random vectors, using information contained in their covariance matrices, and extend

them to the frequency domain. To make the discussion easier to understand, the linear

state space model is introduced in this chapter. The model leads to analytic forms

for both covariance and cross spectral matrices which are then used to compare the

the dimension reduction methods in the time and frequency domains. Of particular

interest is the case of covariance and cross spectral density matrices that are poorly

conditioned.

The state space model is introduced in the first section and then described in the

frequency domain in the next section. To interpret and specify the parameters of the

state space model we follow Bakalian et al. (2010) and use the state space model to

describe the coupled atmosphere-ocean system. This leads to the idealized coupled

atmosphere-ocean model and it is described in the final section.

2.1 The Linear State Space Model

Let the state of a p dimensional random process at time t be defined by

X t =

⎡
⎢⎢⎢⎢⎢⎣

X1,t

X2,t

...

Xp,t

⎤
⎥⎥⎥⎥⎥⎦ (2.1)

It is assumed that X t evolves according to the following multivariate state equation:

X t = AX t−1 +Mξt (2.2)

where A is a p×p transition matrix and Mξt is the innovation or noise vector which

is assumed uncorrelated with itself for all lags. It is assumed that E(ξt) = 0 and

5
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the eigenvalues of A are all less than one in absolute value (to ensure X t is a zero

mean process that is asymptotically stationary to second order e.g., Priestley, 1982,

p798-799). M is a p × q matrix that controls the covariance of the noise which is

given by MΣξξM
T .

It follows from (2.2) that the asymptotic covariance of X t, i.e., E[X tX
T
t ] as

t → ∞, is given by

ΣXX = AΣXXA
T +MΣξξM

T

where Σξξ = Cov(ξt).

An explicit expression for Cov(Xt) in terms of A, M and ΣXX is given by (e.g.,

Harvey, 1982)

vec ΣXX = (I −A⊗A)−1vec (MΣξξM
T ) (2.3)

where vec is an operator that converts a matrix to a vector by stacking its columns

one upon the other, and ⊗ denotes a Kronecker product.

It is straightforward to show that the covariance between X t and X t−k satisfies

the following recursive equation:

ΣXX(k) = AΣXX(k − 1) k > 0

and so

ΣXX(k) = AkΣXX for any integer k (2.4)

The state state model also includes an equation that relates the state vector to

the observation vector as shown below:

Y t = HX t + νt

This is the so called observation equation. H is the observation operator matrix and

νt is the vector of observation noise. For simplicity, we will assume νt = 0 in this

study.
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2.2 Spectral Representation of the State Space Model

We now focus on the relationship between two random vectors in the frequency do-

main. According to the spectral representation of discrete parameter multivariate

stationary processes, there exists an orthogonal process X(ω) such that the state

vector Xt can be written in the form

X t =

∫ π

−π
eitω dX(ω) (2.5)

for all t. Loosely speaking, dX(ω) can be considered as the complex random am-

plitude of the sinusoidal function at frequency ω that makes up X t (e.g., Priestley,

1982, p245)

Let hXX(ω) and hξξ(ω) denote the cross spectral matrices of X t and ξt respec-

tively. The diagonal elements of these matrices define power spectral density at

frequency ω; the off-diagonal elements defines the cross spectral densities. Note any

cross spectral matrix is a positive semi-definite Hermitian matrix, i.e., h∗(ω) = h(ω)

where ∗ denotes conjugate transpose (Priestley, 1982).

The random orthogonal increment process dX(ω) has the following properties:

E[dX(ω)] = 0

E[|dX(ω)|2] = hXX(ω)dω

E[dX(ω)dX(ω′)∗] = 0 ω �= ω′

If the spectral representation of the multivariate random process ξt is given by

ξt =

∫ π

−π
eitω dξ(ω) (2.6)

it is possible to obtain from (2.2) the following frequency relationship between dX

and dξ:

dX(ω) = e−iωAdX(ω) +Mdξ(ω)

from which it follows that

dX(ω) = (I − e−iωA)−1Mdξ(ω) (2.7)
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Using (2.7) it follows that the cross spectral matrix of the state vector is given by

hXX(ω) = Qhξξ(ω)Q
∗ (2.8)

where

Q = (I − e−iωA)−1M

Equation (2.8) is an elegant expression for the cross-spectral matrix of the state for

each frequency in terms of hξξ(ω) and transition matrix A.

The relationship between the time and frequency domain descriptions of the state

space model follows from the fact that ΣXX(s) is the Fourier transform of hXX(ω):

ΣXX(k) =

∫ π

−π
eikωhXX(ω) dω

and

hXX(ω) =
1

2π

∞∑
−∞

ΣXX(k)e
−ikω

Note that if k = 0 we obtain

ΣXX(0) =

∫ π

−π
hXX(ω) dω

This shows that the variance and covariance of the elements of X can be expressed

as integrals of the corresponding power and cross spectral densities.

Analysis in the time and frequency domains are thus equivalent but take different

perspectives. They provide complementary infomation. For example the time domain

representation is useful in terms of quantifying how quickly information is forgotten

whereas analysis in the frequency domain can be very helpful in the exploration

of the physical meaning of the relationship between random vectors. These points

will be made more explicit in the next subsection which provides a physically-based

application of the state space model.

2.3 An Idealized Coupled Atmosphere-Ocean Model

To provide a more physically-based form of the state space model, we follow Bakalian

et al., (2009) and consider an annular atmosphere sitting above an annular ocean, each



9

divided into N equally spaced sectors. Horizontal diffusion and horizontal advection

link the states in adjacent sectors of each fluid, and vertical processes (e.g., latent

and sensible heat exchange) allow the two fluids to communicate. A schematic of the

model is shown in Figure 2.1.

Figure 2.1: An idealized, coupled atmosphere-ocean model. The atmosphere and
ocean are represented by two tori, each partitioned into N sectors. In the above
schematic N = 7. The sectors within a specific fluid communicate with adjacent
sectors through horizontal advection and diffusion (denoted by the red arrows). The
two fluids also communicate through vertical processes that link changes in overlying
sectors (denoted by the black arrows).

To apply the state space model to the coupled system the state vector and related

quantities are partitioned according to their atmospheric (subscript 1) and oceanic
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(subscript 2) components:

X = [XT
1 XT

2 ]
T ξ = [ξT1 ξT2 ]

T

A =

[
A11 A12

A21 A22

]

ΣXX =

[
Σ11 Σ12

Σ21 Σ22

]

Σξξ =

[
Σξξ11 Σξξ12

Σξξ21 Σξξ22

]

M =

[
M 1 0

0 M 2

]

The state space model takes the form[
X1

X2

]
t

=

[
A11 A12

A21 A22

][
X1

X2

]
t−1

+

[
M 1 ξ1

M 2 ξ2

]
t

(2.9)

According to (2.9) the random vectorsX1 andX2 describe the state of the atmosphere

and the ocean respectively, and ξ1 and ξ2 correspond to the “forcing” vectors that

drive the coupled system from a state of rest. The matrices A11 and A22 control

the independent evolution of atmosphere and ocean, and A12 and A21 control their

interaction.

To specify the parameters in (2.9) we follow Bakalian et al. (2010) and perform

a simple discretization of the horizontal advection and diffusion processes that are

known to operate in the ocean and atmosphere. This leads to (almost) tridiagonal

Aii matrices with terms of the form 1−2α−β on the diagonal, α on the superdiagonal

and α+β on the subdiagonal. The parameters α and β control the strength of diffusion

and advection respectively in the atmosphere and ocean. Deviation from tridiagonal

form is due to the addition of elements in the lower left and upper right of Aii that

result from the periodic nature of the system.

To specify the remaining parameters in (2.9) the vertical exchange processes are

assumed proportional to the vertical difference in the state of the atmosphere and
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ocean. The result is that A12 is of the form η12I, where η12 is an (ocean to at-

mosphere) coupling coefficient. This means that η12 must be subtracted from the

diagonal elements of A11. Similarly A21 is of the form η21I and η21 is subtracted

from the diagonal elements of A22. The exchange parameters η12 and η21 differ owing

to the different heat capacities and densities of the two fluids. Finally a spatially

varying coefficient ηRφi is subtracted from the diagonal elements of A11 to mimic

radiative loss of heat to space from the atmosphere (where i denotes a dependence of

the radiative transfer on sector).

The parameter values used in this thesis are given in Table 2.1.

Table 2.1: Parameters defining the coupled atmosphere-ocean model.

Parameter Description Value

N Number of sectors in each fluid 15
α1 Horizontal advection in atmosphere 0.3
β1 Horizontal diffusion in atmosphere 0.01
η12 Transfer from ocean to atmosphere 0.02
α2 Horizontal advection in ocean 0.1
β2 Horizontal diffusion in ocean 0.001
η21 Transfer from atmosphere to ocean 0.002
ηR Radiative transfer to space 0.04
φi Spatial structure of transfer to space φi = 1 7 ≤ i ≤ 13

φi = 0 Otherwise
σ1 Standard deviation of atmosphere noise 0.6
σ2 Standard deviation of ocean noise 0.1
m1 Number of columns of M 1 3
m2 Number of columns of M 2 2

The covariance matrix of ξ is also written in a partitioned form corresponding to

the different forcing applied to the two fluids:

Σξξ =

[
σ2
1I 0

0 σ2
2I

]
(2.10)

It follows that the covariance matrix between the atmosphere forcing and ocean forc-

ing is zero (i.e., it is assumed there is no interaction between the two forcing vectors)
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and given by

Cov(Mξ) =

[
σ2
1M 1M

T
1 0

0 σ2
2M 2M

T
2

]
(2.11)

To complete the specification of the state space model all that remains is the

specification of the spatial structure of the atmospheric and oceanic forcing. For

this study it is assumed that M 1 is an N × 3 matrix with ith row of the form

[1/4 sin(2πi/N) cos(2πi/N)]. M 2 is taken to be an N × 2 matrix with ith row of the

form [sin(2πi/N) cos(2πi/N)].

It is important to note that the above forms for M 1 and M 2 imply that the

covariance matrices of the atmospheric and oceanic forcing (i.e., σ2
1M 1M

T
1 and

σ2
2M 2M

T
2 ) will be rank deficient (specifically they are of rank m1 and m2 respec-

tively). It follows that the covariance matrices of the atmospheric and oceanic state

(ΣXNXN
=

∑N
n=1 A

n−1MΣξξM
TAn−1T ) will also be poorly conditioned. The reason

that the possibility of poorly conditioned covariance matrices has been allowed in this

study is that it will be shown in Chapter 4 that some of the methods for relating high

dimensional random vectors perform poorly under such circumstances.

The response of atmosphere and ocean to an initial perturbation in the atmosphere

assuming no noise (σ1 = σ2 = 0) is shown in Figure 2.2. The plots in the left panels

show maps of the atmospheric and oceanic response. In the atmosphere, sectors 1 to 7

are non zero at the initial time as expected. The atmospheric state goes to zero as time

passes due to the lose of heat to the ocean and space. The ocean sectors are initialized

with no energy as shown in the figure. As time advances the ocean is warmed by the

atmosphere and the heat is redistributed within the ocean by advection and diffusion.

It is noticeable that the energy contained in the ocean is much less on average than

the atmosphere and the natural period of variability of the ocean is longer than the

atmosphere. In fact, recall the advection speed of atmosphere and ocean set in this

model are 0.3 and 0.1 in (2.1). And then the corresponding natural periods are 50

and 150 time steps respectively. The right panels show the time varying response for

sectors 1 and 10. The two atmospheric time series converge quickly and are close to

zero after time step 150 due to the heat lost by vertical heat exchange. The ocean

sectors converge more slowly and still contain a significant amount of energy at time
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200, although the whole system will finally lose all of the heat to space.

The response of atmosphere and ocean to one realization of stochastic forcing

(i.e., both σ1 and σ2 are non zero) is shown in Figure 2.3. The left panels show

the atmosphere and ocean are dominated by quasi-periodic variations driven by the

stochastic forcing. The natural period of variability is longer in the ocean compared

to the atmosphere as expected (see above). The time varying response for sector 1

and 10 are shown in the right panels. The approach to asymptotic stationarity is

evident in the way the variance builds from zero at the first time step to a constant

value as time advances.

The standard deviation and correlation of the atmospheric and oceanic states are

shown in Figure 2.4. The left panels show the standard deviation for the atmosphere

and ocean as a function of position. The standard deviation of the atmosphere is

higher than the ocean for each sector. The atmosphere in sectors 7 to 13 has relative

low standard deviation because the atmospheric variability is more heavily damped

in these regions of enhanced radiative loss to space (see φ in Table 2.1). By contrast,

the standard deviations of the ocean sectors, which do not radiate heat to space, are

relatively stable. The right panels show the correlation between the atmospheric state

for sector 5 with the complete atmosphere (upper panel) and ocean (lower panel). The

plot for the atmosphere shows a sinusoidal pattern with a maximum correlation of 1

for sector 5 as expected. The correlation of the atmosphere in sector 5 with the ocean

(lower panel) also present a sinusoidal pattern but the correlations are much weaker.

Representative power, coherence and phase spectra are shown in Figure 2.5. The

power spectra (left panels) show that the atmospheric energy is centered on a fre-

quency corresponding to a period of 50 time steps which is just the natural advection

period of the atmosphere. In the ocean the energy is found mostly around the fre-

quency 0.007. It corresponds to a period which is equal to the natural advection

period of the atmosphere. We can also note a peak in the power spectrum for the

atmosphere due to the feedback of the heat from ocean. The right panels show the

coherence and phase spectra for the atmosphere and underlying oceanic state for sec-

tor 1. The coherence is maximum at a frequency of 0.0071 where the atmospheric

state and oceanic state have relatively high energy levels. The coherence drops as
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frequency increases and is almost zero as the frequency approaches 0.1. The bottom

right panel shows the phase spectrum which is clearly quite complicated.

From the discussion above, it is clear that this idealized model supports quite

complex covariance and spectral structures. This idealized atmosphere-ocean model

is used in Chapter 6 to illustrate and evaluate the dimension reduction techniques

described in the next chapter.
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Figure 2.2: Response of atmosphere and ocean to an initial perturbation in the atmo-
sphere. The upper and lower left panels show the atmospheric and oceanic response
respectively. The right panels show the time varying response for sector 1 (blue line)
and sector 10 (green line). The initial condition is that the atmospheric state is unity
for sectors 1 through 7 inclusive, and zero elsewhere. The parameters are defined in
Table 2.1 except that the noise is set to zero (σ1 = σ2 = 0).



16

Figure 2.3: Response of atmosphere and ocean to one realization of stochastic forcing.
Same format and parameters as Figure 2.2 except that the noise is not set to zero
(see Table 2.1) and the model is integrated for 500 time steps.
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Figure 2.4: Standard deviation and autocorrelation of the state. The left panels show
the standard deviation for the atmosphere (upper) and ocean (lower) as a function
of sector. The right panels show the correlation at zero lag between the atmospheric
state from sector 5 with the other atmospheric variables (upper) and ocean variables
(lower) as a function of sector. The parameters are defined in Table 2.1.
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Figure 2.5: Power, coherence and phase spectra of the state. The left panels show
the power spectral density for the atmosphere (upper) and ocean (lower) for sector 1.
The right panels show the coherence (upper) and phase (lower) for the atmospheric
and underlying oceanic state from sector 1. The parameters are defined in Table 2.1.



Chapter 3

Relating High Dimensional Random Vectors

Several statistical methods that provide a low dimensional representation of the rela-

tionship between two, high dimensional random vectors, X1 and X2, are reviewed in

this chapter. It is assumed that both vectors have zero mean and the stacked vector

X =
[
XT

1 XT
2

]T
has the following covariance matrix:

Cov(X) = ΣXX =

[
Σ11 Σ12

Σ21 Σ22

]
(3.1)

where Σ11 is the p1×p1 covariance matrix of X1, Σ22 is the p2×p2 covariance matrix

of X2, Σ12 is the p1 × p2 covariance matrix of X1 and X2 and Σ21 = ΣT
12.

Two classes of method are discussed. The first class treats the two random vec-

tors in a symmetric fashion and includes Canonical Correlation Analysis (CCA) and

Principal Component Analysis (PCA). We denote such methods by X1 ↔ X2. The

other class of methods treats X1 and X2 asymmetrically in the sense that one vec-

tor is treated as the predictor and the other as the response. This class of methods

includes Multivariate Regression Analysis (MRA), Redundancy Analysis (RA) and

Partial Least Squares (PLS) regression. Without loss of generality X2 is taken as

the predictor and X1 as the response. The asymmetric methods are denoted by

X2 → X1.

The rest of this section reviews the above methods starting first with the sym-

metric methods.

3.1 Principal Component Analysis (X1 ↔ X2)

Principal Component Analysis is a well-known method of dimension reduction (e.g.,

Pearson, 1901 and Jolliffe, 1986). PCA can be used to provide a low dimensional

19
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representation of the covariation of X1 and X2 by carrying out the analysis on the

full covariance matrix Σ given in (3.1).

The basic idea of PCA is to find a set of “latent variables” that account for as much

of the total variance of the p-dimensional random vector X (tr Σ) as possible. The

first principal component is defined by Z1 = eT
1X. The loading vector e1 is obtained

by maximizing Var(eTX) with respect to e subject to the constraint |e| = 1. The

second principal component Z2 = eT
2X is obtained by maximizing Var(eTX) with

respect to e subject to the constraints |e| = 1 and eTe1 = 0 and so on for higher

order principal components.

The loading vectors are the eigenvectors of the covariance matrix of X:

Σei = λiei, i = 1 . . . r

where λ1 ≥ · · · ≥ λr are the ordered, real eigenvalues of Σ. In matrix notation the

vector of principal components is given by

Z = ETX

where Z = [Z1, · · · , Zp]
T is a p×1 random vector and E is a p×p orthogonal loading

matrix with ith column given by the ith eigenvector ei.

Principal Component Analysis is a very useful dimension reduction technique and

is fundamental to Multivariate Analysis. In terms of the objectives of this thesis

it does however have some limitations. First, the results of the PCA are strongly

dependent on the units used to define X. This can be problematic if the subvectors

X1 and X2 correspond to different variables (e.g., how do you weight a temperature

measurement relative to a pressure measurement?). Second, the loading vectors and

corresponding principal components can be hard to interpret for i > 1. Third, PCA

is not designed to predict one subvector from the other and can perform poorly in

such situations.

3.2 Canonical Correlation Analysis (X1 ↔ X2)

Canonical Correlation Analysis is a way of measuring the strength of the linear rela-

tionship between two random vectors. The basic idea is to first determine the pair of
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linear combinations with the largest correlation among all possible pairs. The next

pair is found by maximizing correlation subject to the constraint it is uncorrelated

with the initially selected pair, and so on for higher order pairs. The pairs of lin-

ear combinations are called the canonical variables, and their correlations are called

canonical correlations. The maximization aspect of the technique represents an at-

tempt to concentrate a high-dimensional relationship between two sets of variables

into a small number of canonical variables.

Mathematically CCA finds two bases, one for each variable, that are optimal

with respect to correlation. More specifically CCA finds two bases for which the

correlation matrix between the new variables is diagonal and the correlations on the

diagonal are maximized. The dimensionality of the new bases is equal to, or less

than, the smallest dimension of X1 and X2. An important property of the canonical

correlations is that they are invariant with respect to affine transformations of X1

and X2. This is an most important difference between CCA and ordinary correlation

analysis which depends strongly on the bases used to define the variables.

The canonical variables are defined by

Z1 = ATX1 (3.2)

Z2 = BTX2 (3.3)

where Z1 and Z2 are r× 1 random vectors, A is a p1× r loading matrix for X1 with

ith column ai, and B is a p2 × r loading matrix for X2 with ith column bi. A and

B are called CCA coefficients. To find the CCA coefficients, consider the following

singular value decomposition:

Σ
− 1

2
11 Σ12Σ

− 1
2

22 = UΛV T

where U and V are p1× p1 and p2× p2 orthogonal matrix respectively. It is straight-

forward to show (see Appendix B) that ai is Σ
− 1

2
11 ui and bi is Σ

− 1
2

22 vi.

Although CCA is straightforward to understand and implement, it has several dis-

advantages when used to provide a low dimensional representation of the relationship

between two high dimensional random vectors. First, the method cannot be applied
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if Σ11 and Σ22 are singular. Second, the CCA coefficients can be hard to interpret

because a high canonical correlation does not necessarily mean that the canonical

variates account for a significant proportion of the total variance of X1 or X2. This

is illustrated in Appendix A by means of a simple example.

3.3 Multivariate Regression Analysis (X2 → X1)

Consider now the situation where X2 is treated as the predictor and X1 is the

response. Assume both have zero means and predict X1 with a linear predictor of

the form

X̂1 = BX2

The value of B that minimizes the trace of Cov(X1 −BX2) is

B = Σ12Σ
−1
22

and the associated prediction error is

R1 = X1 − X̂1 (3.4)

= X1 −Σ12Σ
−1
22 X2 (3.5)

Note that Cov(R1, X̂1) = 0 and so the covariance of the response partitions into a

part related to the predictor and an uncorrelated part associated with the prediction

error:

Σ11 = Σ11·2 +ΣRR

where

Σ11·2 = Σ12Σ
−1
22 Σ21

ΣRR = Σ11 −Σ12Σ
−1
22 Σ21

Note that under the assumption of normality the predictor is consistent with the

conditional mean of X1 given X2 = x2. Specifically X1|X2 = x2 is distributed as

Np1(Σ12Σ
−1
22 x2, Σ11·2).
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Multivariate Regression is one of the most important concepts of Multivariate

Analysis. It does not however provide a low dimensional representation of the rela-

tionship between X1 and X2. This requires more advanced techniques including the

two described next.

3.4 Redundancy Analysis (X2 → X1)

Redundancy Analysis provides a low dimensional representation of the linear rela-

tionship between two random vectors (e.g.,Van den Wollenberg, 1977). The basic

idea is to perform a principal component analysis on that part of the response X1

that is linearly related to X2, i.e., X̂1 = Σ12Σ
−1
22 X2.

Principal component analysis of Cov(X̂1) yields an ordered set of principal com-

ponents of the predictable part of X1 and a corresponding set loading vectors stored

in the orthogonal matrix U :

Σ12Σ
−1
22 Σ21 = UΛUT

where Λ denotes the diagonal matrix of eigenvalues, ordered from largest to smallest.

Principal Component Analysis provides the following optimal (in terms of tr[Cov(X̂1)])

rank r representation of X̂1:

X̂
r

1 = U rU
T
r X̂1

= U rU
T
r Σ12Σ

−1
22 X2

where the columns of U r are the first r eigenvectors of Cov(X̂1). According to this

representation, the r dimensional random vector UT
r Σ12Σ

−1
22 X2 defines the associated

r latent variables; multiplying these latent variables by U r transforms them into

reduced rank representation of X̂1, and thus X1.

To assess the effectiveness of the dimension reduction it is possible to write (3.5)

in the form

X1 = U rU
T
r X̂1 + (I −U rU

T
r )X̂1 +R (3.6)

where R is the multivariate regression residual. According to this expression the

response is expressed as the sum of (i) the rank r approximation of the predictable
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part of X1, (ii) the remainder of the predictable part, and (iii) the part of X1 that is

not predictable by X2. Taking the trace of (3.6) gives the the following breakdown

in the total variance of the response:

tr Σ11 = (λ1 + . . . λr) + (λr+1 + . . . λp1) + tr ΣRR

where λi is the i
th eigenvalue of Σ12Σ

−1
22 Σ21. Thus the proportion of the total variance

ofX1 accounted for by the first r latent variables is given by the so-called Redundancy

Index:

R2
12(r) =

∑r
i=1 λi

tr Σ11

(3.7)

It is straightforward to show that the Redundancy Index is constrained to lie between

0 and 1.

Based on the above description it is clear that RA makes the optimal prediction

based on reduced number of latent variables derived from the predictors. One draw-

back of RA is that it is difficult to calculate the inverse of Σ22 when it is poorly

conditioned. The technique described in the following section solves this problem.

3.5 Partial Least Squares Regression (X2 → X1)

Partial Least Squares refers to a wide class of methods for dimension reduction.

The underlying assumption of all PLS methods is that the original variables are

generated by a system or process which is driven by a small number of latent variables.

Projections of the original variables onto their latent structure by means of PLS

was proposed and developed by Herman Wold and coworkers (see Chapter 1 for

references).

PLS covers regression and classification as well as dimension reduction and mod-

eling. The goal of partial least squares regression is to predict X1 from X2 and

to describe the common structure underlying the two random vectors. Partial least

squares regression allows for the identification of underlying factors (Talbot, 1997).

Although similar to PCA and CCA, PLS is considered to be a better alternative to

multiple linear regression and principal component-based regression because it pro-

vides more robust model parameters that do not change with new calibration samples
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from the population (Falk Miller, 1992, Geladi Kowalski, 1986). PLS is an improve-

ment over PCA because it is constrained by the part of the covariance matrix that is

directly related to the experimental manipulation or that relates to behavior (McIn-

tosh, Chau, Protzner, 2004).

PLS can be applied to classification problems by encoding the class membership

in an appropriate indicator matrix, although we mainly use it for prediction in this

study. There is a close connection between PLS when used for classification and

Fisher Discriminant Analysis.

Recently, PLS is also developed by connecting some statistical tools. For example,

the powerful machinery of kernel-based learning can be applied to PLS. It is an elegant

way to extend linear data analysis to nonlinear problems. The motivation of extending

PLS in this way is that people sometimes prefer to set PLS latent variables as linear

projections of the original variables is not adequate. The idea of the kernel PLS

method is based on the mapping of the original random variables space into a high

dimensional space.

Partial Least Squares is designed to cope with problems that result from small

sample sizes, missing values and strong multicollinearity. By way of contrast, ordi-

nary least squares regression can preform poorly when faced with such difficulties.

Multicollinearity amongst predictors is a particularly important problem as it can

increase the standard error of the estimated regression coefficients. Then it leads to

theoretically predictors being omitted from the regression model because they are not

statistically significant.

In its general form, PLS creates latent vectors (in some papers they are referred

to as score vectors) by maximizing the covariance amongst different sets of variables.

This study focuses on the application of PLS to only two random vectors, X1 and

X2. The first pair of latent variables, uTX1 and vTX2, are defined by maximizing

their squared covariance as follows:

max
|u|=|v|=1

Cov(uTX1,v
TX2)

2

PLS can be readily extended to regression problems by treating the latent vectors as

new predictor and response variables.
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Partial Least Squares usually finds the latent vectors in an iterative fashion. (This

is not true for PLS-SVD as explained below.) After the extraction of the first latent

vectors of X1 and X2, the matrices involved with Σ12 are “deflated” by subtracting

their rank-one approximations generated by u and v . The different forms of deflation

define different variants of PLS. The description below focuses on two variants of PLS:

the non iterative PLS-SVD method and the iterative PLS-W2A method.

3.5.1 PLS-SVD

The core part of PLS is the calculation of the loading vectors for X1 and X2 which

are stored as the columns of the matrices U and V respectively. The latent variables

are then given by

Z1 = UTX1 Z2 = V TX2

By construction, the first pair of latent variables has the greatest covariance of

any pair of linear combinations for which the latent vectors are of unit length, i.e.,

|u1| = |v| = 1. In PLS-SVD the squared covariance of subsequent pairs of latent

variables is maximized subject to the constraint that the next latent variable for X1

is uncorrelated with all previous latent variables for X1 and similarly for the next

latent variables for X2. It is then straightforward to show that the latent vectors are

the left and right singular vectors of Σ12, i.e.,

Σ12 = UΛV T

where U is a p1×p1 orthonormal matrix, V is a p2×p2 orthonormal matrix and Λ is

a p1 × p2 diagonal matrix with ith diagonal element given by the ith singular value,

λi.

Pre and postmultiplying Σ12 by UT and V respectively gives the covariance of

the latent vectors, Z1 and Z2:

Cov(Z1, Z2) = UTΣ12V = Λ

which, by construction, is a diagonal matrix. Note also that the latent vectors for X1

are orthogonal (UTU = I) and similarly for the latent vectors of X2 (V TV = I).
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The latent vectors calculated by PLS-SVD have another useful property that

follows the fact that if M (j) denotes a p1 × p2 matrix of rank less than or equal to j,

the choice of M (j) that minimizes

tr (Σ12 −M (j))(Σ12 −M (j))T (3.8)

is

M (j) = U (j)Λ(j)V (j)T (3.9)

where U (j) and V (j) hold the first j columns of U and V respectively, and Λ(j) is a

j × j diagonal matrix holding the j largest singular values of Σ12. According to this

result λ1u1v
T
1 is the best rank-one approximation of Σ12 in a least-squares sense. The

goodness of fit given by (3.8) serves as a figure of merit for the overall PLS analysis.

One way to interpret (3.9) is to note that the vector u1 can be considered as the

first sample principal component of the columns of Σ12. Thus u1 best fits the p2

columns of covariance across the p1 variables of X1. Similarly v1 best fits the p1 rows

of covariance across the p2 variables of X2.

To interpret λ1 note that it can be written as

λ1 =

p1∑
i=1

u1iCov(xi,Z21)

where u1i is the ith element of the vector u1. This implies u1i is proportional to

the covariances of the corresponding X1 variable with Z21, which is the first latent

variable of X2. Following the same reason, v1j, the jth element of the vector v1, is

proportional to the covariances of the corresponding X2 variable with Z11, the first

latent variable of X1.

An attractive property of PLS-SVD from a theoretical perspective is that the

loading vectors are found in a single step based on the singular decomposition on Σ12.

It does not need to repeat the process of deflating Σ12 like other PLS algorithms such

as PLS-W2A (see below). The PLS-SVD algorithm also generates the latent variables

of X1 and X2 symmetrically (in contrast to some variants of PLS such like PLS2).

An iterative form of PLS is described in the next section.
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3.5.2 PLS-W2A

The goal of PLS-W2A is the same as that of PLS-SVD: to find a sequence of pairs of

normalized loading vectors that together provide a low dimensional representation of

the covariance of X1 and X2. PLS-W2A differs from PLS-SVD in that it is an iter-

ative method for calculating the loading vectors based on “deflating” the covariance

matrix Σ12 each step. Details are given below.

Step 1: Initialize covariance matrix, random vectors and index

Σ
(1)
12 = Σ12 X

(1)
2 = X2 X

(1)
1 = X1 r = 1

Step 2: Extract loading vector

Calculate u
(r)
1 and v

(r)
1 , the first left and right singular vectors of Σ

(r)
12 ,

and λ
(r)
1 , the corresponding singular value.

Step 3: Obtain the latent variables

ωr = u
(r)T
1 X

(r)
1

ξr = v
(r)T
1 X

(r)
2

Step 4: Regress the deflated random vectors on the latent variables

X̂
(r)

1 =
Cov(X

(r)
1 , ωr)

Var(ωr)
ωr

X̂
(r)

2 =
Cov(X

(r)
2 , ξr)

Var(ξr)
ξr

These equations can be written in the form

X̂
(r)

1 = Q
(r)
1 X

(r)
1 Q

(r)
1 =

1

u
(r)T
1 Σ

(r)
11 u

(r)
1

Σ
(r)
11 u

(r)
1 u

(r)T
1

X̂
(r)

2 = Q
(r)
2 X

(r)
2 Q

(r)
2 =

1

v
(r)T
1 Σ

(r)
22 v

(r)
1

Σ
(r)
22 v

(r)
1 v

(r)T
1

Step 5: Update the random vectors

X
(r+1)
2 = X

(r)
2 − X̂

(r)

2

X
(r+1)
1 = X

(r)
1 − X̂

(r)

1
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Step 6: More deflation required?

If yes, set r = R, exit.

If no, continue.

Step 7: Deflate the covariance matrix and reset the index

Σ
(r+1)
12 =

(
I −Q

(r)
1

)
Σ

(r)
12

(
I −Q

(r)
2

)T

(3.10)

Note that for the PLS-SVD method the deflation step takes the form

Σr+1
12 = Σ12 −

r∑
s=1

λsU .sV
T
.s

Set r to r + 1 and go to Step 2.

The main difference between PLS-SVD and PLS-W2A is that Cov(X̂
(r)

1 , X̂
(s)

1 ) and

Cov(X̂
(r)

2 , X̂
(s)

2 ) are generally nonzero for PLA-W2A when r �= s. The difference

between the two methods is discussed in more detail in Appendix B.



Chapter 4

Comparison of Methods and Development of a Hybrid

Three methods (CCA, RA, and PLS) were introduced in Chapter 3 to provide a low

dimensional representation of the relationship between two high dimensional vectors,

X1 and X2, based on the concept of latent variables.

Redundancy Analysis treats one vector as the predictor (X2) and the other (X1)

as the response (i.e., the method treats the vectors asymmetrically). The choice of

latent variables is based on PCA of that part ofX1 that can be predicted byX2 using

multivariate regression. PLS and CCA are similar in the sense they both treat X1

and X2 symmetrically. The methods differ in that PLS find pairs of latent variables

with the largest covariance, while CCA find pairs of latent variables with the largest

correlation.

Although the three methods are similar in principle, they differ fundamentally in

their numerical properties. Redundancy Analysis is based on a PCA of Σ12Σ
−1
22 Σ21

and requires the computation of inverse of Σ22. This can be problematic if Σ22

is singular or poorly conditioned. Canonical Correlation Analysis is based on the

singular value decomposition ofΣ
− 1

2
11 Σ12Σ

− 1
2

22 and so, like RA, depends on the inversion

of potentially poorly conditioned covariance matrices. Partial Least Squares differs

from CCA and RA is that it does not require the inverse of Σ−111 or Σ−122 and is thus

a more robust method.

There are many papers on the relationship between CCA and RA (e.g., Muller,

1981) and the relationship between CCA and PLS (e.g., Jacob, 2000). In this chapter,

we focus on the relationship between RA and PLS, and pay particular attention to a

hybrid method developed recently by Bougeard et al., (2007). A new, highly idealized

model (simpler than the coupled atmosphere-ocean model) is introduced to better

understand the differences between RA, PLS and the hybrid.
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4.1 Comparison of PLS and RA Using an Idealized Example

A highly idealized model is now introduced to illustrate the differences between PLS

and RA. Consider two random vectors that are related according to the following

linear model:

X1 = E1SE
T
2X2 + n (4.1)

where E1 and E2 are p1 × r and p2 × r matrices with orthonormal columns, S is

an r × r diagonal “scale” matrix with positive diagonal elements (sk), and n is an

additive noise random vector. The columns of E2 are taken to be the r eigenvectors

of Σ22 with the r largest eigenvalues.

It is straightforward to show

Σ12 = E1SΛ2E
T
2 Σ12Σ

−1
22 = E1SE

T
2 Σ12Σ

−1
22 Σ21 = E2SΛ2SE

T
2 (4.2)

where Λ2 is a diagonal matrix holding the r largest eigenvalues of Σ22.

The matrix Σ12Σ
−1
22 defines the regression coefficients for predicting X1 from X2.

To predict X1, first project X2 onto its principal components, scale by the diagonal

elements of Λ2 (the sk), and then transform to the X1 prediction by multiplying by

E1.

In PLS, the latent variables are based on the singular value decomposition of

Σ12. From (4.2) it is clear that PLS-SVD will select X2 latent variables that are the

principal components of X2 ordered by skλk. To interpret this result, note that the

term skλk can be written (sk
√
λk)

√
λk which, roughly speaking, can be thought of as

the product of the standard deviation of the predictable part of X1 and the standard

deviation of X2.

In RA, the loading vectors are based on the eigenvalues and vectors of Σ12Σ
−1
22 Σ21.

From (4.2) it is clear that RA will again select latent variables that are the principal

components of X2 but now ordered by s2kλk. To interpret this result, note that the

term s2kλk which can be thought of as the variance of the predictable part of X1.

Thus according to this highly idealized model, the X2 latent variables for PLS-

SVD and RA are simply the principal components of X2 but the choice of principal
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component depends on skλk and s2kλk respectively. This is illustrated in Figure 4.1

for a particular choice of sk and λk. The left panels show the eigenvalues (λk) of Σ22

and the diagonal elements of the “scale” matrix (sk). Note the sk are assumed to

increase with k meaning that the strength of the directed relationship from X2 to

X1 is stronger for the higher principal components. The right panels show skλk and

s2kλk. For PLS, the first X2 latent variable will be the eleventh principal component

of X2; for RA it will be the fourteenth principal component, reflecting the greater

emphasis on prediction.

4.2 Combining the Strengths of RA and PLS: A Hybrid Approach

Given the good prediction ability of RA, and the robustness of PLS, we now follow

Bougeard et al., (2007) and construct a blend of these two approaches using a hybrid

approach. As shown in Chapter 3, the loading vectors (v) for the X2 latent variables

for PLS-SVD and RA satisfy the following equations:

PLS: Σ21Σ12v = λv

RA: Σ−122 Σ21Σ12v = λv

Following Bougeard et al., (2007) we treat PLS and RA as the two endpoints of

a hybrid approach to calculating the loading vector v which is assumed to satisfy

[αI + (1− α)Σ22]
−1Σ21Σ12v = λv (4.3)

where the parameter α can be selected to be any real number between 0 and 1. Note

that α = 0 we recover RA, and if α = 1 we recover PLS.

To calculate the loading vector v, pre-multiply both sides of (4.3) by P
1
2 to get

P− 1
2Σ21Σ12P

− 1
2P

1
2v = λP

1
2v (4.4)

where

P = αI + (1− α)Σ22

It is more convenient to rewrite (4.4) as a pair of equations:

v = P− 1
2u (4.5)

λu = P− 1
2Σ21Σ12P

− 1
2u (4.6)
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Figure 4.1: Selection of the latent variables of the highly idealized model for RA, PLS
and CR-PLS. The upper panels show the eigenvalues of Σ22 (λk) and the diagonal
elements of the “scale” matrix S (sk). The lower left panel shows skλk versus k. This
is used to order the principal components of X2 when finding the latent variables
for PLS. The lower middle panel shows 2(s2kλk) versus k. This is used to order the
principal components when finding the latent variables for CR-PLS with α = 0.5. The
lower right panel shows s2kλk versus k. This is used to order the principal components
when finding the latent variables for RA. In this example, λk = 0.01× (16− k)2 and

sk = 0.01× 3
k−1
2 .
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From (4.6), it gives

λ = uTP− 1
2Σ21Σ12P

− 1
2u (4.7)

This means that for a specified α, we can get v by first calculating u as the first

eigenvector of (4.6) and then calculating v from (4.5).

It is interesting to consider the behavour of CR-PLS as α → 0 in the case that

Σ22 is singular. It is straightforward to show from (4.3) that in this limit the loading

vector for X2 satisfies

Σ+
22Σ21Σ12v = λv

where Σ+
22 is the pseudo inverse of Σ22.

The hybrid method is a simple blend of PLS and RA. In prediction problems,

the goal is to find an optimal value of α that simultaneously provides stable latent

vectors and good fitting ability. Following Bougeard et al. (2007) we will refer to this

approach as CR-PLS (Continuum Redundancy-Partial Least Squares).

The ratio of largest eigenvalue to the smallest eigenvalue of P , denoted by β,

reflect the stability of the model. A large β indicates serious multicolinearity of Σ22

and this will lead to a unstable model. In CR-PLS,

β =
(1− α)λ1 + α

(1− α)λp + α
(4.8)

where λ1 and λp are the largest and smallest eigenvalues of Σ22. It is easy to prove

that (4.8) is a decreasing function of α. Thus, as α increases, CR-PLS goes to the

end point corresponding to PLS and the stability of model is enhanced.

We can take a closer look of the hybrid technique by applying it to the highly

idealized example introduced earlier in this chapter. It is straightforward to show

that the X2 loading vector satisfies

[αI + (1− α)EΛET ]−1E2Σ2SE
T
1E1SΛ2E

T
2 v = λv

which simplifies to

E2[αI + (1− α)Λ2]
−1S2Λ2

2E
T
2 v = λv
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Thus for the highly idealized model, the latent variables are simply the principal

components of X2 but ordered according to

s2kλ
2
k

α + (1− α)λk

This again shows that CR-PLS is balancing the variance of X2 and the causal rela-

tionship between X1 and X2 by varying α.

The implementation of CR-PLS in PLS-SVD and PLS-W2A is described in Ap-

pendix C.



Chapter 5

Allowing for Frequency Dependent Relationships

All of the covariance-based methods for dimension reduction discussed so far can be

readily generalized to the frequency domain. The original random vectors and their

covariance matrices are

X1, X2 : Σ11 Σ12 Σ22

Their counterparts in the frequency domain are

dX1(ω), dX2(ω) : h11(ω) h12(ω) h22(ω)

where h11(ω) is the power spectral matrix of X1, h22(ω) is the power spectral matrix

ofX2, and h12(ω) = h21(ω)
∗ is the cross spectral matrix ofX1 andX2. As mentioned

in Chapter 2, the dX(ω) can be thought of as the complex amplitudes of the sinusoidal

components that make up X t (similar to a Fourier series expansion):

X t =

∫ π

−π
eiωt dX(ω)

The cross spectral and covariances matrices form a Fourier transform pair and thus

essentially provide the same information but presented from differing perspectives

(i.e., time and frequency domains). For example, the covariance between X1 and X2

can be written

Σ12 =

∫ π

−π
h12(ω)dω

Thus the cross spectral matrix h12(ω) cab be thought of as the contribution to the

covariance of X1 and X2 at frequency ω. Note that the elements of h12 will, in

general, be complex.

The extension of the covariance-based methods for dimension reduction to the

frequency domain is straightforward in practice and simply involves replacing the co-

variance matrices by their spectral equivalents. This is illustrated below for principal

36
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component analysis and multivariate regression. The extension of the other methods,

including the hybrid introduced in Chapter 4, is straightforward.

5.1 Principal Component Analysis in the Frequency Domain

Statisticians sometimes face the problem of dealing with redundant information, or

the need for fewer “input” variables, in the frequency domain. Here we follow the

development of Priestley (1973) and introduce principal component analysis in the

frequency domain and show it is analogous to ordinary principal component analysis.

Ordinary PCA (see Chapter 3) searches for a latent variable

Z = eTX (5.1)

where e is selected to maximize Var(Z) = eTΣxxe subject to the constraint eTe = 1.

Based on the spectral representation, (5.1) may be generalized to

dZ(ω) = e(ω)TdX(ω)

where the loading vector is now allowed to vary with frequency. It follows that

Var(Z) =

∫ π

−π
e(ω)Thxx(ω)e(ω)dω

This shows if we treat each frequency component separately, the loading vector is just

the eigenvector of hxx with the largest eigenvalue. Note that the loading vector will in

general be complex but the eigenvalue will be real because hxx is an Hermitian matrix.

The extension to higher order loading vectors and principal components follows as

an obvious generalization of the approach described in Chapter 3. The result is that

the loading vector for the ith frequency dependent principal component is the ith

eigenvector of hxx.

5.2 Multivariate Regression in the Frequency Domain

The ordinary multivariate regression model is of the form

X1 = BX2 + ε
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where X1 is the response, X2 is the predictor and ε is a noise vector assumed uncor-

related with X2. The B matrix transforms the predictor into the response. We now

generalize this model to allow B to vary with frequency according to the following

equation:

dX1(ω) = B(ω)dX2(ω) + dE(ω)

where dX1, dX2 and dE come from the spectral representations of X1, X2 and ε.

If we assume dX2(ω) and dE(ω) are uncorrelated, and multiply both sides of the

above equation by dX2(ω)
∗ and take expectations, we obtain

B(ω) = h12h
−1
22

It is straightforward to show that this expression for B(ω) minimizes the trace of the

power spectral matrix of prediction errors at each frequency.

In general, the elements ofB(ω) are complex and the i, jth element can be written

in the form

Bij(ω) = |Bij(ω)|eiφ(ω) (5.2)

According to the language of filtering theory, Bij is called the “gain” of the transfer

function linking the j element of dX2 with the ith element of dX1. The quantity

φij(ω) is the corresponding “phase”. Both vary with frequency and so we will refer

to the gain spectrum and phase spectrum.

To interpret the gain and phase we refer to (Priestley, 1982) and note that the ith

element of X1 can be written

dX1i(ω) =
∑
j

|Bij(ω)|eiφ(ω)dX2j(ω)

Thus in frequency domain, the ith element of dX1(ω) is obtained by scaling the

amplitude of the jth element of dX2 by the gain |Bij(ω)| and shifting the phase by

φ(ω).



Chapter 6

Comparing Approaches Using the Coupled Model

We now illustrate the dimension reduction methods using covariances calculated from

the coupled atmosphere-ocean model introduced in Chapter 2. This model is more

complicated than the highly idealized model introduced in Chapter 4 (see (4.1)), is

physically realistic and relevant, and provides explicit covariance and cross spectral

matrices (see (2.3) and (2.8)) . It follows that all of the results shown in this chapter

are not subject to sampling variability.

The covariance structure of the noise, Mξ, is controlled by the variance of ξ

(denoted by Σξξ) and the spatial structure of the noise (determined by the columns

of M ). If the ocean component of the noise has a covariance matrix that is full

rank, and the ocean noise is large compared to the atmospheric noise, the covariance

matrix of the ocean state, Σ22, will in general be well conditioned. In this study,

however, we are interested in the opposite situation where Σ22 is poorly conditioned.

This can be caused by weak ocean noise or a small number of columns for the ocean

part of M . The variances of the atmosphere and ocean components of ξ are given in

Table 2.1 and the spatial structure of the noise is controlled by the M matrix; both

were chosen to ensure Σ22 is poorly conditioned.

In the remainder of this chapter, covariance and cross spectral matrices from the

coupled atmosphere-ocean model are used to illustrate and evaluate PCA, CCA, RA

, PLS and finally the hybrid approach. All of the covariance matrices, and their

frequency dependent generalizations (e.g., h22) are identical to those introduced in

Chapter 2. We also use the theoretical correlation (R) and coherency (W ) matrices

of the state vector X. The correlation matrix is shown below in partitioned form:

R =

[
R11 R12

R21 R22

]

39
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whereR11 and R22 are the correlation matrices of atmosphere and ocean state respec-

tively, and R12 is the correlation matrix between atmosphere and ocean state. The

coherency matrix takes on a similar form but the off diagonal elements are complex,

the matrix is Hermitian, and it depends of frequency.

6.1 Principal Component Analysis

A principal component analysis was performed on the correlation matrix R (cor-

responding to an analysis of the standardized state vector, X). The reason the

correlation matrix is used is that the variability in the atmosphere is much greater

than the variability in the ocean (see Figure 2.4).

The “scree” plot (Figure 6.1) shows that almost all of the total variance of the

standardized state (equal to 2N) is captured by the first six principal components;

the rest of the principal components have relative small variances (i.e., the eigenvalues

of R). This implies Σ is ill-conditioned as expected.

The loading vectors for the principal components are given by the eigenvectors of

R. The first eigenvector, e1, is shown in the left panels of Figure 6.2. The upper

panel shows the loadings for the atmosphere, and the lower panel shows the loadings

for the ocean. The loadings for the ocean and atmosphere each correspond to a wave-

like pattern with a wavelength that is equal to the circumference of the torus. We

will call such spatial structures a mode 1 pattern. It can be seen that e3 has the

same mode 1 structure as e1 but it is in quadrature. The second eigenvector, e2, is

similar to e1 except the mode 1 variations in the ocean are shifted by half a cycle.

The fourth eigenvector, e4, is similar to e2 but in quadrature. The fifth and sixth

eigenvectors describe changes in the mean temperature of the atmosphere and ocean.

Eigenvectors e7 and e8 are similar to e1 and e2 except they describe mode 2 variations

(i.e., variations with two peaks during one circuit of the torus). Taken together the

loading vectors are similar to a Fourier decomposition of the spatial variations in the

atmosphere and ocean.
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6.2 Canonical Correlation Analysis

The canonical correlations are shown in Figure 6.3. The first three correlations are

very close to one; the last pair of canonical variates have almost zero correlation.

The loading vectors used to define the first three pairs of canonical variates (see

(3.3)) are plotted in Figure 6.4. The first pair are plotted in the leftmost column

of panels. Unlike the simple mode 1 patterns of the eigenvectors of Σ22, the spatial

pattern of the canonical coefficients are highly irregular and difficult to interpret

physically. The first three canonical variates also do not describe well the variability

in X1 and X2 as shown by Table 6.1.

Table 6.1: Proportion of total variance of X1 and X2 that can be predicted by the
first canonical variate (column 2), the first two canonical variates (column 3) and the
first three canonical variates (column 3).

Vector Z1 Z1, Z2 Z1, Z2, Z3

X1 0.12 0.45 0.46
X2 0.01 0.01 0.02

The results based on the coupled atmosphere-ocean model clearly demonstrate

the problems that can occur with CCA: (i) loading vectors are unstable and difficult

to interpret (ii) canonical variables may not able to represent well the trace of Σ11 or

Σ22.

6.3 Redundancy Analysis

Proportion of the total variance of X1 predicted by the latent variables of X2 from

RA. The blue line shows the proportion of total variance account for by the kth

latent variable. The green line shows the cumulative proportion of variance account

for by the first k latent variables and red line plot gives the proportion of the total

variance of X1 accounted for by multivariate regression. As discussed in Chapter 3,

the proportion of variance explained by multivariate regression is the largest scale

of any statistical technique can reach. In this example, the variance accounted by
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multivariate regression is

R2 =
tr(Σ12Σ

−1
22 Σ

T
21)

tr(Σ11)
= 0.65

It is noted that the redundancy index based on the first 3 RA latent variables is

pretty much the same as 0.65. This indicates RA provides a very good prediction

and accounts for as much total variance of X1 as possible in this example.

The loading vectors for RA are shown in Figure 6.6 as a function of sector position.

Note that although the loading vectors for the atmosphere have a simple mode 1

shape, the corresponding loading vectors for the ocean have a very irregular pattern

which is caused by the poor condition of Σ22. This implies that the ocean latent

variables generated by RA are not stable with respect to small perturbations in Σ22.

6.4 Partial Least Squares

In this section we focus on PLS-SVD which is more amenable to theoretical analysis.

The loading vectors for the first three latent variables for the atmosphere and

ocean, calculated from PLS-SVD of Σ12, are shown in the left panels of Figure 6.7.

Note that for both atmosphere and ocean, the loading vectors show a simple mode 1

pattern with similar amplitudes. This implies that PLS-SVD regression based on

the ocean latent variables will be robust. The right panels show the proportion of

the trace of Σ11 and Σ22 that can be accounted for regression of X1 and X2 on

an increasing number of ocean latent variables. In the right upper panel, it can be

seen that the first latent variable is a poor predictor of the atmospheric state and

the increase in prediction skill is quite slow as more latent variables are added to the

regression model. The right lower panel, on the other hand, shows the proportion of

total variance of the ocean state vector X2 that can be accounted for regression on

the ocean latent variables. PLS performs very well from this perspective, and almost

all of the total variance of X2 is accounted for by the first three latent variables.

Differences in the performance of PLS-based regression and RA are further high-

lighted by Figures 6.7 and Figure 6.8. Both figures have the same format to aid

comparison. As expected, RA clearly places more emphasis on prediction whereas
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PLS balances prediction against an ability to recover the predictor variability from

the selected latent variables.

6.5 Hybrid Approach

The proportions of the total variance of Σ11 and Σ22 accounted for by regression

on the predictor latent variables from the hybrid approach are shown in Figure 6.9.

The proportions of explained variance are plotted as a function of α in separate

panels. The lines in each panel correspond to the number of predictor latent variables

included in the regression. The upper panel shows that as α increases from 0 to

1, corresponding to a gradual shift from RA to PLS, the proportion of explained

tr Σ11 decreases; the lower panel shows the opposite behavior with the proportion of

explained tr Σ22 increasing with α. These results are in accord with the discussion

in Chapter 4 and clearly illustrate the trade off between predictive skill and stability

of the predictors that can be controlled with α.

The sensitivity of the loading vectors, and the proportion of explained variance,

is shown in Figure 6.10. Each row corresponds to a different value of α. The first

column of panels shows the first two loading vectors for X1 calculated by PLS-SVD

as a function of sector. The second column shows the corresponding first two loading

vectors for X2. The third and fourth columns show the proportion of total variance

of tr Σ11 and tr Σ22 accounted for by k predictor latent variables as a function of

k. It is clear that as α increases, the predictor loading vectors become smoother

and eventually take on a mode 1 pattern. This shows that CR-PLS becomes more

stable with increasing α. The third and fourth columns show how the proportion

of explained variance for X1 and X2 increase with the number of predictor latent

variables.

6.6 Extension in Frequency Domain

The extension of several of the dimension reduction methods to the frequency domain

is illustrated in this section. As discussed in Chapter 5, the computation of latent

variables can be readily applied in the frequency domain by replacing the covariance
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matrices by the corresponding cross spectral matrices.

Principal Component Analysis: The proportion of variance accounted for by

the first principal component is shown as a function of frequency in Figure 6.11. The

analysis is based on the coherency matrix, W . This principal component accounts for

a relative high proportion of the power spectral density (almost 0.9) at low frequencies.

The proportion reaches a minimum at a frequency of about 1.5 × 10−3 cycles per

unit time, corresponding a minimum in the power spectral density of the ocean and

atmosphere (see Figure 6.11).

The scree plot for a frequency of 0.01 (corresponding to a period of 100 time steps)

shows that almost all of the power is captured by the first three principal components

(Figure 6.12). The remaining principal components have relative small variances.

This implies W is ill-conditioned as expected.

The first four loading vectors computed by PCA (i.e. the eigenvectors of W ,

e1 to e4) at the same frequency of 0.01 are plotted in Figure 6.13. The real parts

and imaginary parts are plotted separately. Each column of panels corresponds to a

particular eigenvector; the atmosphere and ocean subvectors are plotted in the upper

and lower panels respectively. For e1 and e2 the atmosphere atmosphere and ocean

loadings each have simple mode 1 pattern with similar amplitude. The situation is

similar for e3 and e4 except that the ocean amplitudes are small and also have a

relatively strong contribution from the mean. Higher order eigenvectors (not shown)

exhibit more spatial variability (e.g., mode 2 patterns).

Partial Least Squares: The total power of X1 and X2 (i.e., the trace of h11

and h22) as a function of frequency are shown by the black lines in the upper and

lower panels of Figure 6.14. The peaks in the power spectra are in agreement with the

spectra shown and discussed in Chapter 2. The remaining lines in each panel show

the prediction of the total power using the predictor latent variables from frequency

dependent PLS-SVD. Note that as the number of predictors increases so does the

proportion of explained power. When all N predictors are used, all of the power is

recovered (i.e., multiple squared coherence is 1). It can also be seen that trh22 is

accounted for with far fewer predictors than trh11. This is in accord with the above
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covariance-based discussion of the way PLS balances prediction skill and ability to

explain variability in the predictors.
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Figure 6.1: A “scree plot” for the principal component analysis of the atmosphere-
ocean state vector based on the correlation matrix, R. The blue line shows the
proportion of total variance account for by the kth principal component. The green
line shows the cumulative proportion of variance account for by the first k principal
components.
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Figure 6.2: Loading vectors for the first eight principal components from a PCA of the
atmosphere-ocean state vector based on the correlation matrix, R. For each panel
the x-axis corresponds to sector (i.e., position). The upper panels are the loading
subvectors for the atmosphere and the lower panels are the loading subvectors for the
ocean. The ith principal component corresponds to the the ith column of panels.
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Figure 6.3: Canonical correlations based on a CCA of the state vector from the
coupled atmosphere-ocean model.
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Figure 6.4: Loading vectors for the first three canonical variates from a CCA of the
state vector from the coupled atmosphere-ocean model. For each panel the x-axis
corresponds to sector (i.e., position). The upper panels are the loading subvectors for
the atmosphere and the lower panels are the loading subvectors for the ocean. The
ith loading vectors corresponds to the the ith column of panels.
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Figure 6.5: Proportion of the total variance of X1 predicted by the latent variables
of X2 from RA. The blue line shows the proportion of total variance account for by
the kth latent variable. The green line shows the cumulative proportion of variance
account for by the first k latent variables (i.e., the Redundancy Index, see (3.7)).
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panel) and ocean (lower panel) as a function of sector (i.e., position). The right panels
show the proportion of the total variance of the atmosphere (upper) and ocean (lower)
explained by the first k predictor latent variables as a function of k.
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Figure 6.8: Loading vectors and proportion of variance explained by latent variables
from an RA of the state vector from the coupled atmosphere-ocean model. Same
format as Figure 6.7.
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Figure 6.9: Proportion of the total variance of the atmosphere (upper panel) and
ocean (lower panel) accounted for by CR-PLS, the hybrid of RA and PLS. The x-
axis corresponds to α which ranges from 0 (RA) to 1 (PLS). The lines in each panel
correspond to different numbers of predictor latent variables.
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Figure 6.10: The sensitivity of the loading vectors, and the proportion of explained
variance. Each row corresponds to a different value of α (α = 10−10, 10−5, 10−1 and
1 respectively). The first column of panels shows the first two loading vectors for
X1 calculated by PLS-SVD as a function of sector. The second column shows the
corresponding first two loading vectors for X2. The third and fourth columns show
the proportion of total variance of tr Σ11 and tr Σ22 accounted for by k predictor
latent variables as a function of k.
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Figure 6.11: Proportion of total power spectral density of the state vector from the
coupled atmosphere-ocean model accounted for by first frequency dependent principal
component. The coherency matrix (W , see Chapter 2) was used.
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Figure 6.12: Scree plot for the frequency-dependent principal component analysis
of the atmosphere-ocean state for a frequency of 0.01 cycles per unit time. The
coherency matrix, W , was used. The format is the same as Figure 6.1.
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used. The format is the same as Figure 6.2 expect that there are two curves for each
panel corresponding the real (blue) and imaginary (green) parts of each eigenvector.
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using the predictor latent variables from frequency dependent PLS-SVD.



Chapter 7

Summary and Discussion

Several dimension reduction methods have been reviewed in this study including

principal component analysis, canonical correlation analysis, redundancy analysis and

partial least squares. The focus of this study is the prediction of a random response

vector (X1) from a random predictor vector (X2). Two variants of partial least

squares (PLS-SVD and PLS-W2A), and also a hybrid method that blends redundancy

analysis and partial least squares, were also reviewed.

One of the novel features of this study is the extension of some of the dimension

reduction techniques to the frequency domain based on the spectral representation

of stationary random processes. The corresponding results are explicit and similar

to those obtained with standard techniques; the frequency dependent generalizations

were obtained by replacing covariance matrices by cross spectral matrices. By way of

illustration, it was shown in Chapter 5 that the extension of PCA to the frequency

domain lead to new insights into the covariation of X1 and X2; not only was it

shown that the proportion of variance accounted for by the first principal component

changed with frequency but so did the loading vector that defined the first principal

componnet.

Although CCA, PCA and PLS are easy to understand and powerful in terms of

defining latent variables, they do not perform efficiently in terms of prediction. Re-

dundancy Analysis on the other hand is derived directly from multivariate regression

and naturally has a better ability to predict. It was shown however that the perfor-

mance of RA is seriously impaired by poor conditioning of Σ22 and that under such

circumstances RA is not robust. Noting that PLS is not affected by ill-conditioned

Σ22, we followed S. Bougeard et al. (2007) and constructed a blend of RA and PLS

that trades off prediction skill against robustness of the prediction model.

Another feature of the present study is the use of idealized models to illustrate
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the strengths and weaknesses of the various methods. The main advantage of the use

of such models is that explicit covariance and cross spectral matrices can be defined

leading to results that are not subject to sampling variability. Extensive use was

made in Chapter 6 of an idealized coupled atmosphere-ocean model. It is important

to note however that the methods described in this study have applicability beyond

just climate prediction. The results shown in Chapter 6 are generally in accord with

the corresponding theoretical conclusion e.g., the loading vectors from PCA, CCA

and RA show irregular patterns when Σ22 is poorly conditioned, leading to results

that are unstable and difficult to interpret. PLS on the other hand was shown to

give stable results but poor prediction skill using a small number of latent variables.

It was also shown that the hybrid approach provided the required trade off between

prediction skill and robustness, and that the generalization to frequency dependence

of PCA was useful.

As to future work, we note that the hybrid method is determined by its two end

members; in the present case they are RA (α = 0) and PLS (α = 1). The choice of RA

as an end member is quite reasonable because it is based on maximizing prediction

skill. The choice of PLS as the other end member is less clear and one could argue

that it is somewhat arbitrary in terms of maximizing robustness and ability to identify

physically meaningful latent variables. A useful avenue for future work would be to

construct a hybrid based on a Bayesian perspective and the introduction of additional

prior information on the structure of the loading vectors.



Appendix A

Canonical Correlation Analysis

Proof. For any pair of a weight vectors, say a and b, the correlation between the

latent variables aTX1 and bTX2 is

Corr(aTX1, b
TX2) =

aTΣ12b√
aTΣ11a

√
bTΣ22b

(A.1)

If we set c = Σ
1
2
11a and d = Σ

1
2
22b, then (A.1) becomes

Corr(aTX1,b
TX2) =

cTΣ
− 1

2
11 Σ12Σ

− 1
2

22 d√
cTc

√
dTd

Using the extended Cauchy-Schwarz inequality, it can be shown

Corr(aTX1,b
TX2) ≤ cTΣ

− 1
2

11 Σ12Σ
−1
22 Σ21Σ

− 1
2

11 c√
cTc

≤
√

λ1

where λ1 is the largest eigenvalue of Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11 . Equivalently,
√
λ1 is the

largest singular value of Σ
− 1

2
11 Σ12Σ

− 1
2

22 and c and d are selected as the first pair of

eigenvectors of Σ
− 1

2
11 Σ12Σ

− 1
2

22 , say u1 and v1. If we take a = Σ
− 1

2
11 u1 and b = Σ

− 1
2

22 v1,

then (A.1) reaches the maximum value.

Similarly, the kth pair of weight vectors, whose corresponding latent variables are

uncorrelated with preceding latent variables, are given by

ak = Σ
− 1

2
11 uk, bk = Σ

− 1
2

22 vk

where uk and vk are the kth pair of eigenvectors of Σ
− 1

2
11 Σ12Σ

− 1
2

22 .
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Appendix B

Comparison of PLS-SVD and PLS-W2A

As introduced in Chapter 3, there is no difference between PLS-SVD and PLS-W2A

in the process of calculating the first pair of latent variables. Two methods give the

same patterns of u1 and v1. For the subsequent latent variables, PLS-SVD computes

loading vectors as the corresponding singular vectors of Σ12. On the other hand, this

is not true for PLS-W2A in general.

In some particular situation, however, the outcomes generated by the PLS-SVD

algorithm are equivalent to those from the PLS-W2A algorithm. Consider the case

where the first eigen-vector of Σ
(r)
11 is proportional to u

(r)
1 and the first eigen-vector

of Σ
(r)
22 is proportional to v

(r)
1 . According to PLS-W2A, Σ

(r)
12 is simplified into:

λ
(r)
1

[
Q

(r)
1 u

(r)
1 v

(r)T
1 + u

(r)
1 v

(r)T
1 Q

(r)T
2 −Q

(r)
1 u

(r)
1 v

(r)T
1 Q

(r)T
2

]
= λ

(r)
1 u

(r)
1 v

(r)T
1

which has the same form of deflation with the one in PLS-SVD.

The difference and similarity between PLS-SVD and PLS-W2A can be also studied

from the geometrical angle. For simplicity, we focus on a two dimensional example.

The spectral representation of Σ22 is

Σ22 = μ1e1e
T
1 + μ2e2e

T
2 ,

where μ1 is the largest eigenvalue of Σ22, μ2 is the smallest one. e1, e2 are the

corresponding eigenvectors. And rewrite the fifth step in the algorithm of PLS-W2A

by replacing Σ22 with its spectral representation form. The equation becomes

X̂2 =
1

μ1 cos(θ1)2 + μ2 cos(θ2)2
(μ1 cos(θ1)e1 + μ2 cos(θ2)e2)v

T
1X2, (B.1)

where θ1 and θ2 are the angles between e1 and v1, e2 and v1 respectively.
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Geometrically, (B.1) means that random vector X2 is projected down onto v1 and

then re-expanded back through the vector w1, where

w1 =
1

μ1 cos(θ1)2 + μ2 cos(θ2)2
[μ1 cos(θ1)e1 + μ2 cos(θ2)e2].

From the equation above, we can see w1 is determined by the eigen-structure of Σ22.

It is easy to prove that for fixed vector X̂2 and v1 = [1, 0]T , the polar coordinates

for w1 according to different ‘shapes’ of Σ22, are given explicitly by[
a

μ1 cos(θ1)2 + μ2 cos(θ2)2
(μ2

1 cos(θ1)
2 + μ2

2 cos(θ2)
2)

1
2 , arctan(

μ2

μ1

tan θ1)

]
(B.2)

where a = |X2|vT
1X2.

On the other hand, if we just re-expand vT
1X2 back across v1 without the influence

of Σ22, the approximation of X̂2 becomes

X̂2 = v1v
T
1X2. (B.3)

This result is equivalent to re-expanding vT
1X2 using the PLS-SVD algorithm.

In summary, in order to compute the one dimensional approximation of X2, both

PLS-SVD and PLS-W2A project X2 on the loading vector v1 at first. The difference

appears in the process of re-expanding it back: with PLS-SVD, vT
1X2 is re-expanded

through the direction across v1; by PLS-W2A, it is re-expanded back through the

direction across w1 which is determined by the eigen-structure of Σ22. Note, when v1

and e1 are parallel, that is θ1 = 0 or θ1 = π, by (B.2) the angle between X̂2 and v1

is zero. It means that PLS-W2A method also re-expand vT
1X2 across v1 direction.

Thus, PLS-SVD and PLS-W2A give the exactly same one dimensional approximation

of X2 when e1 = ±v1. Recall the situation discussed at the beginning part in this

section; we come to the same conclusion geometrically.

PLS only uses one step of singular decomposition to find all the latent variables.

This makes mathematical analysis much simpler to understand and express. This

property also allows PLS-SVD to be more time saving when dealing with large data

sets. On the other hand, PLS-W2A has to perform a singular decomposition of

updated covariance matrix for every iteration of the loop.
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It is important to note that the property of full rank in PLS-SVD regression is

requiring the number of selected latent variables is smaller or equivalent to the rank of

Σ12. If this is not true, PLS-SVD regression will perform poorly. According to PLS-

SVD, if we select more pairs of latent variables than the rank of Σ12, their covariance

will be zero. That means those extra latent variables would contribute nothing to

reconstruction of Σ12.

To show this, assume Σ12 has rank one and Σ22 has full rank. PLS-SVD latent

variables are selected essentially by the eigenvector of Σ21Σ12 whose rank is one as

well. Thus, there is no useful information about covariance of the remaining latent

variables. The regression of X1 on X2 based on one pair of latent variables is

X̂
(1)

1 = λ1u1
1

a
vT
1X2,

and the regression of X1 the two pairs of latent variables is

X̂1

(2)
=

[
u1 u2

] [ λ1 0

0 0

]
[

[
vT
1

vT
2

]
Σ22

[
v1 v2

]
]−1

[
vT
1

vT
2

]
X2.

This equation can be simplified to give

X̂1

(2)
= λ1u1[

1

ad− b2
(dv1 − bv2)

T ]X2. (B.4)

where a = vT
1Σ22v1, b = vT

1Σ22v2 = vT
2Σ22v1 and d = vT

2Σ22v2.

In this example, when we choose two pairs of latent variables, the expression for

X̂1 finally degenerates to using one pair of latent variables. The reason is rank-

deficient Σ12 leads to a diagonal matrix Λ which is rank-deficient and vanishes the

loading vector of the second pair of latent variables. (B.4) basically chooses one pair

of variables but not with the largest covariance. Thus, this example illustrates PLS-

regression’s drawback under the condition that the number of selected pairs of latent

variables is larger than the rank of Σ12. But in PLS-W2A, it is possible to have

nonzero covariance for all the latent variables, even when Σ12 has a low rank.



Appendix C

Implementing CR-PLS

A hybrid method, Continuum Redundancy-Partial Least Squares, has been intro-

duced in chapter 4 as a mean of relating PLS and RA based on the eigen-structure

of various covariance matrices. Now, we will implement this approach specifically on

those two specific variants of PLS (PLS-SVD and PLS-W2A) respectively.

As discussed in the latter part in Chapter 3, the essential difference between PLS-

W2A and PLS-SVD is the way they use to deflate the covariance matrix. The PLS-

SVD approach deflates Σ12 once and for all by calculating the singular decomposition

of the original covariance matrix instead of iterative computation. In the hybrid case,

where PLS-SVD and RA are combined together, this attractive property has been

retained.

Combining RA and PLS-SVD:

For convenience, we review the algorithm of PLS-SVD and RA:

PLS: Σ21Σ12v = λv

RA: Σ−122 Σ21Σ12v = λv

From (4.5),CR-PLS combines RA and PLS-SVD and is based on the following

equation:

V = [αI + (1− α)Σ22]
− 1

2U (C.1)

where V CR−PLSSV D is a p2 × r matrix and U is the matrix of first r eigenvectors of

P− 1
2Σ21Σ12P

− 1
2 .

Combining RA and PLS-SVD:

The iterative process of deflating covariance matrices is still needed to combine

RA and PLS-W2A. Specifically, for a selected α, let u
(r)
1 be the first eigen-vector of
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Σ
(r)
12 [αI + (1− α)Σ

(r)
22 ]

−1Σ(r)
21 . We compute v

(r)
1 as follows:

v
(r)
1 = [αI + (1− α)Σ

(r)
22 ]

−1Σ(r)
21 u

(r)
1
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