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Abstract

The magnitude of the document collection in the biology domain boosts the demand

for effective and efficient literature mining and knowledge discovery that can help

biologists to gather and make use of the knowledge encoded in text documents. In this

thesis, we present three different pattern-based techniques to target two important

tasks of biological information extraction: entity recognition and relation extraction.

The first technique is an unsupervised method to automatically extract domain-

specific prefix and suffix characters from biological corpora. The extracted characters

are integrated into the parametrization of an existing system for biological entity

recognition in order to aid the system to annotate biological entities.

The second technique is an approach to identify sentences that describe interac-

tions between co-occurring biological entities using patterns defined as a sequence of

specialized Part-of-Speech (POS) tags that capture the structure of key sentences in

the scientific literature. Each candidate sentence for the classification task is encoded

as a POS array and then aligned to a collection of pre-extracted patterns. The qual-

ity of the alignment is expressed as a pairwise alignment score. The most innovative

component of this work is the use of a Genetic Algorithm (GA) to maximize the

classification performance of the alignment scoring scheme.

The third technique is a graph matching-based approach to extract complex bio-

logical events from the scientific literature. Sentences are represented as dependency

graphs, and biological event rules are extracted from sentences as minimal depen-

dency graphs that capture the typical contextual structures of biological events. We

investigate whether the subgraph matching problem can be used in the BioNLP field

to extract biological events by searching for subgraphs isomorphic to the graphs of

event rules within the graphs of sentences.
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Chapter 1

Introduction

In this thesis, we explore three different pattern-based techniques to extract biological

entities, relations and events in the molecular biology literature. Firstly, we propose

an unsupervised method to automatically extract domain-specific prefix and suffix

characters from biological corpora. The extracted characters are integrated into the

parametrization of an existing system for biological entity recognition in order to aid

the system in annotating biological entities. Secondly, we propose an approach to

identify sentences that describe interactions between co-occurring biological entities

from patterns. A pattern is defined as a sequence of specialized Part-of-Speech (POS)

tags that capture the structure of key sentences in the scientific literature. Thirdly, we

propose a graph matching-based approach to extract biological events from biological

texts with the same objectives as these of the BioNLP’09 shared task [1]. In this

section, sentences and rules of biological event are represented as dependency graphs.

The event extraction process corresponds to matching the graphs of event rules within

the graphs of sentences.

The chapter is organized as follows: In section 1.1, we present the motivation of

the thesis. Our objectives are stated in section 1.2. The outline of the thesis is given

in section 1.3.

1.1 Motivation

Molecular biology is at the forefront of the life science and is of unprecedented com-

plexity. The amount of new discoveries as published in the scientific literature in the

biological domain is growing at an unmanageable pace. PubMed is a service of the

National Library of Medicine (NLM) that provides access to MEDLINE [2], the bib-

liographic database of National Library of Medicine that contains indexed citations,

abstracts and full text articles on life sciences and biomedical topics. PubMed now

has records from more than 4,800 journals accounting for approximately 19.8 million

1
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citations [2], and is increasing its size at the speed of approximately two papers per

minute [3]. This growth makes it practically impossible for molecular biologists to

comprehensively cover all of the literature related to their field. Most biological facts

are available in the unstructured text of scientific articles [4–6]. Therefore, it becomes

very difficult to extract the core information in an efficient manner.

The magnitude of the document collection in the molecular biology domain boosts

the demand for effective and efficient literature mining and knowledge discovery that

can help molecular biologists to gather and make use of the knowledge from text

documents. In order to make organized and structured information available, reliable

and robust biological information extraction becomes critical. Beginning with nat-

ural language text from a biological document source, the goal is to identify biological

entities and relations of specific predefined classes in the text, and represent the ex-

tracted information in an organized manner [7]. Biological information extraction

should enhance researchers’ ability to extract information from the growing corpus

of the biological literature by making the process of analyzing texts more efficient

and comprehensive. Since the information acquired from the literature becomes more

structured through the automated processing, it can be integrated with other informa-

tion. Biological information extraction involves two important tasks that are closely

related to each other: biological entity recognition and biological relation extraction.

Biological entity recognition is a preparatory step in information extraction

for the biological sciences. Proteins, genes, and diseases are examples of relevant

entities in this task. Considering the structure, there are two types of entities: single

word entities and multi-word entities. Recognizing biological entities from texts al-

lows to capture their underlying meaning and further extract semantic relationships

between entities and other useful information. Many systems [6, 8–15] have been

proposed to annotate biological entities based on different methodologies in which

determining entity boundaries is usually the first task. It has been demonstrated,

however, that accurately locating entity boundaries is difficult [16]. This is so be-

cause of the ambiguity of entities, and the peculiarity of the language used in the

biological literature.
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Systems based on machine learning techniques use training data to learn fea-

tures useful for differentiating biological entities from non-biological entities. Domain-

specific prefix and suffix characters are reported as one of the most effective features

in aiding the systems to annotate biological entities. Although various approaches

have been employed to acquire biological prefixes and suffixes, they all have different

limitations [14,16].

In this thesis, we propose an unsupervised method to automatically extract

domain-specific prefix and suffix characters from biological corpora, and explore their

use in the task of biological entity recognition.

Biological relation extraction focuses on the automated extraction of seman-

tic relations between the recognized biological entities from the scientific literature.

Automatic relation extraction has a broad range of applications in molecular biology,

including support for the creation and annotation of pathways, automatic population

or enrichment of databases, and the formulation of new hypothesis. Relation extrac-

tion systems can be trained to recognize a wide range of activities, such as protein-

protein interactions, subcellular localizations, gene regulatory events, and metabolic

or signaling reactions.

One of the most straightforward relation mining approaches is the co-occurrence

search. The assumption is that for describing an interaction between two entities their

names usually occur in the same text or part of the text. However, co-occurrence cer-

tainly does not guarantee that a passage contains an interaction [5,17,18]. Sentence-

level co-occurrence has been shown to be the suitable granularity degree in relation

extraction [18,19].

In this thesis, we identify sentences that describe interactions between co-occurring

biological entities using patterns containing relevant interaction between biological

concepts. A pattern is defined as a sequence of specialized Part-of-Speech (POS) tags

that capture the structure of key sentences in the scientific literature.

Proteins are central molecules in living systems and the description of their func-

tions is one of the key tasks of molecular biology. Recently, the BioNLP’09 shared

task [1] focused on extraction of biological events of proteins. Instead of targeting a

rather simple representation of relations of proteins, e.g., protein-protein interactions,

the shared task was concerned with the detailed behavior of proteins and semantically
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rich biological events.

The definition of a biological event in the shared task is described as a change on

the state of one or more proteins. For instance: phosphorylation of IkB involves a

change on the protein IkB. Biological events are characterized by verbs or nominalized

verbs that code gene and protein interactions in molecular biology articles. Compared

to relations that typically deal with a pair of entities, events involve multiple partici-

pants or arguments of varying numbers. These arguments are assigned semantic roles

and event types are determined based on existing biological ontologies [1], such as

Gene Ontology (GO) [20] and the GENIA ontology [21]. In some cases, events are

recursively embedded and function as arguments in other events, thus allowing the

construction of complex conceptual networks.

In this thesis, we explore the application of the subgraph matching problem in the

BioNLP field of extracting complex biological events from the scientific literature by

searching for subgraphs isomorphic to the graphs of event rules within the graphs of

sentences for the purpose of tackling the primary task of the BioNLP’09 shared task.

1.2 Objectives

This thesis investigates how to efficiently extract entity and relation information from

the ever-growing body of scientific publications in molecular biology. The three main

objectives of this thesis are:

• To achieve more accurate recognition of biological entities by employing the

feature of domain-specific prefix and suffix characters that are systematically

learned by an unsupervised method;

• To achieve more accurate prediction of biological interactions by selecting the

text fragments that contain definite relationships between co-occurring con-

cepts; and

• To provide an efficient way to extract complex biological events by using gram-

matical dependency graphs and solving the problem of pattern matching graph-

ically.



5

1.3 Outline of Thesis

In Chapter 2, we review recent research on two important tasks of biological infor-

mation extraction: biological entity recognition and biological relation extraction.

In Chapter 3, we propose an unsupervised method to automatically extract

domain-specific prefixes and suffixes from biological corpora. The resulting affixes are

then used to aid in biological entity recognition.

In Chapter 4, we propose an approach to automatically identify sentences which

describe important interactions between biology concepts based on patterns that cap-

ture the structure of key sentences in the scientific literature.

In Chapter 5, we propose a graph matching-based approach to extract biological

events from scientific documents by searching for subgraphs isomorphic to the graphs

of event rules within the graphs of sentences for the purpose of tackling the primary

task of the BioNLP’09 shared task on biological event extraction.

In Chapter 6, we conclude our work, summarize our contributions, and discuss

directions for future work.



Chapter 2

Related Work

2.1 Biological Entity Recognition

An entity usually corresponds to an author’s textual representation of a particular

concept. It is not easy to understand an article without precise identification of en-

tities that are used to communicate knowledge. Biological entity recognition denotes

a set of procedures that are used to systematically recognize pertinent entities in

the biological literature, that is, to differentiate between biological entities and non-

biological entities and to highlight lexical units that are related to relevant molecular

biology concepts [10, 11,22], such as protein, DNA, RNA and cell types.

Recognizing biological entities from texts allows for text mining to capture their

underlying meaning and further extract semantic relationships between entities and

other useful information. Because of the importance and complexity of the problem,

biological entity recognition has attracted intensive research and there is a large grow

of published work on this topic [6, 8–15]. Current approaches in biological entity

recognition can be generalized into three main categories: lexicon-based, rule-based

and learning-based [6, 8, 9].

Lexicon-based methods use existing terminological resources, such as dictio-

naries or databases, in order to locate entity occurrences in texts. Given the pace of

biology research, however, it is not realistic to assume that a dictionary can remain

up-to-date. A drawback of lexicon-based methods is thus that they are not able to an-

notate all recently coined biological entities [6,16]. In addition, a dictionary may not

cover all spelling variations of biological entities in texts, so lexicon-based methods

are bound to fail on the tasks that focus on locating exact entity boundaries [6,11,23].

Rule-based approaches attempt to detect biological entities by manually devel-

oping heuristic rules that describe various characteristics of entity formation patterns.

However, rules are often time-consuming to define consistently, and are difficult to

6
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adapt to other types of entities in the biological domain. Early on, the PROPER sys-

tem [24] extracted protein names using hand-coded rules that capture surface clues

of character strings in biological documents based on observation of the dataset. The

system achieved high performance on a small dataset, but received a significant per-

formance drop on another dataset that contains more entity types [16, 25]. Once a

new type of entity is required to be identified, a set of rules specifically for this type

has to be crafted manually. Therefore, rule-based approaches are considered to lack

scalability and generalization.

Learning-based techniques use training data to learn features or patterns use-

ful for recognizing biological entities, and have become the current trend due to the

availability of well-curated biological corpora, such as the GENIA corpus [21] and the

GENETAG corpus [26], in which biological entities are carefully annotated by experts.

Compared to the other two methods, learning-based techniques are theoretically more

capable to identify unseen or multi-word entities, and even entities with various writ-

ing styles by different authors. The JNLPBA shared task [22] is an open challenge task

on recognizing biological entities in the GENIA corpus. All 8 participating systems

in the JNLPBA shared task employed learning-based techniques, including Support

Vector Machines (SVMs) [27], Hidden Markov Models (HMMs) [12, 14], and Condi-

tional Random Fields (CRFs) [13, 28]. The techniques can be divided into two main

approaches in terms of the ways to assign labels to individual tokens: word-based

methods and sequence-based methods.

The word-based methods annotate each word without considering the previously

assigned labels. The ABTA system [16] treats the entity recognition problem as a

classification problem and applies a decision tree classifier to annotate entities in the

biological literature. The system employs a word-by-word classification and a word n-

gram model [29] is used to define each input sentence into classification instances based

on a sliding window of words across sentences. Similarly, other systems employed

SVMs to classify each word in texts into predefined classes [27,30].

The sequence-based methods consider the annotation decisions on other words

in order to assign a label for the current word. The best-performing system in the

JNLPBA shared task employed an HMM combined with a SVM that resolves the

data sparseness problem with the HMM [12]. The HMM finds the most likely labels
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for words in sentences based on the assumption that the label for the current word is

probabilistically dependent on all the previously assigned labels. In addition, models

trained using Maximum Entropy Markov Model (MEMM) [31] and linear-chain CRFs

[13] to annotate biological entities are other representative instances of sequence-based

methods.

Although various approaches have been applied, a main challenge for learning-

based techniques is to select a set of discriminating features that can be used for

accurate annotation of biological entities. Generally, the features fall into 4 classes

[11–14, 32]: (1) simple deterministic features which capture the use of uppercase

letters, digits, Greek letters and other formation patterns of words, (2) morphological

features such as prefix and suffix information, (3) syntactic features like Part-of-

Speech (POS) tags that provide word syntactic information, and (4) semantic trigger

features which capture the evidence by collecting the semantic information of key

words, for instance head noun triggers or special verb triggers.

Various combinations of the features have been attempted by different systems

[11, 14, 16, 32, 33]. The ABTA system [16] extracts features from each word in an

n-gram instance as input for creating the classification model and classifies the word

in the middle of a word n-gram. The extracted features include simple deterministic

features, POS tag information, and prefix and suffix characters. Without using ex-

ternal domain resources, the system achieves comparable precision to state-of-the-art

systems [13, 31] which resort to external knowledge to further improve the perfor-

mance, such as online public databases or dictionaries. POS tag information is shown

to be the most effective feature in aiding the system to annotate biological entities.

This observation is also supported by other systems [14,32] because most entities are

linguistically expressed within noun phrases [7].

In contrast, for some systems [11, 33] morphological features make the most sig-

nificant contribution to the performance of entity recognition. However, since there

is no standard way to obtain morphological features, different approaches have been

investigated [14, 16, 33]. The ABTA system [16] learns the domain-specific affixes by

recording only the first and the last n characters (e.g., n = 3) of each word in clas-

sification instances. A similar approach is also used in [11] and the authors claimed
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that the n characters could provide enough affix information for the entity recogni-

tion task. Shen et al. [14] and Zhou et al. [32] prepared 100 most frequent prefixes

and suffixes from training data as candidates and evaluated them based on the dif-

ference in likelihood of part of a biological entity versus not. At a much larger scale,

Kazama et al. [33] and Lee et al. [15] constructed prefix/suffix lists by sorting 10,000

prefixes/suffixes from the training data. The results show that morphological features

have a substantial positive effect on improving entity annotation accuracy.

In Chapter 3, we propose an unsupervised method to automatically extract

domain-specific prefixes and suffixes from biological corpora. The extracted affixes

are integrated into the parametrization of the ABTA [16] system to investigate their

impact on the performance of biological entity recognition. Successful demonstration

of the quality of this extraction method implies that domain-specific affixes can be

identified for arbitrary corpora without the need to manually generate training sets.

2.2 Biological Relation Extraction

If the biological entities are defined and localized in texts, relations among them can

be inferred. Recent research in information extraction in biological science has fo-

cused on extracting semantic relations between biological entities from the scientific

literature [4, 5, 34–38]. The type of relations includes protein-protein, protein-DNA,

gene regulations and other interactions between macromolecules. A task of significant

interest is the automated protein-protein interaction (PPI) extraction because infor-

mation on relations or interactions between genes and proteins serves as a basis for

generating network models of regulatory or metabolic pathways [4, 17]. Also, state-

of-the-art biological entity recognition methods have achieved reasonable success, for

instance a performance of 88% F-score on annotating proteins [39], which boosts the

interest in biological relation extraction.

There are three main categories of methods that are proposed to extract rela-

tion information from the biological domain: machine learning techniques, pattern

matching approaches, and parsing-based methods.

Machine learning techniques aim to extract biological relations by applying

a set of classifiers to the test set, which is obtained by applying supervised machine

learning algorithms, such as Support Vector Machines (SVMs) [40] and rule induction
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algorithms [41], on the appropriately annotated training set. However, machine learn-

ing techniques were reported to be limited by the quality and extent of the training

sets used to train the algorithms [42, 43]. Recently, with the introduction of corpora

containing the necessary annotations [44, 45], more studies based on machine learn-

ing techniques have been conducted [40, 46, 47]. The best-performing team from the

BioNLP’09 shared task on event extraction [1] used a multi-class SVM classifier incor-

porated with a wide array of features capturing both linear and dependency contexts

to extract complex biological events [46]. Airola et al. extracted protein-protein inter-

actions using a kernel-based learning algorithm in which the kernel function captures

all dependency paths in the resulting dependency graphs [40,47].

Pattern matching approaches try to first generate patterns or rules which

model classes of the underlying biological relations and then use the generated pat-

terns to detect specific relations. The patterns can be either simple rules defined for

extracting general relations, or complicated rules for discovering special interactions.

Therefore, pattern matching approaches are able to extract relations from long or

complex sentences. Also, patterns or rules are usually developed by domain experts

which provide an advantage in evaluation [17] but is a problem to keep current in the

long term. In the “KDD Challenge Cup” [48] for curating biological databases, the

participating systems which applied pattern matching approaches generally outper-

formed systems using other strategies to extract biological relations.

Early on, Blaschke [49] employed patterns to predict the presence of a protein-

protein interaction. A series of patterns was developed manually to cover the common

descriptions of protein functions. This process was based on a set of keywords, includ-

ing interaction verbs, that are commonly used to describe this type of interaction. A

sentence extraction system BioIE [50] also used patterns to extract entire sentences

related to protein families, protein structures, functions and diseases. The patterns

were manually defined and consisted of single words, word pairs, and small phrases. In

GENIES, Friedman and colleagues [34] manually developed more complex patterns

with both syntactic and semantic constraints to extract and structure information

related to molecular pathways.

Although systems relying on hand-coded patterns [34, 35, 49, 50] achieved some

success in extracting biological interactions, the strict requirement of dedicated expert
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work is problematic. Moreover, each type of interaction may require a definition of

many different patterns including different arrangements and different variants of

the same keyword. Manually encoding all patterns encountered in a corpus is time-

consuming and potentially impractical in real applications. Therefore, automatically

learning such patterns is a more practical solution to maintain such resource in the

long term.

An approach which combines dynamic programming and biological sequence align-

ment algorithms [51] was introduced by Huang et al. [36]. This approach is designed

to generate patterns useful for extracting protein-protein interactions. The main

problem with this approach is that the alignment algorithm relies on an alignment

scoring scheme which contains a number of free parameters. We have showed that

finding the optimal scoring scheme of parameters for edit distance-based sequence

classification is an NP-hard problem [52,53].

In Chapter 4, we propose a novel approach to automatically extract sentence pat-

terns that contain interactions involving concepts of molecular biology. The patterns

are then used to identify sentences that contain important relationships between bi-

ological concepts. A pattern is defined as a sequence of specialized Part-of-Speech

(POS) tags that capture the structure of key sentences in the scientific literature.

Each candidate sentence for the classification task is encoded as a POS array and

then aligned to a collection of pre-extracted patterns. The quality of the alignment is

expressed as a pairwise alignment score. The most innovative component of this work

is the use of a Genetic Algorithm (GA) to maximize the classification performance of

the alignment scoring scheme.

GAs were also used as a learning strategy to train finite state automata for finding

biological relation patterns in texts as well as to optimize the extracted patterns

[54]. In addition, phrasal patterns that describe protein functions were mined from

sentences via a strict sentence pattern mining mechanism and patterns were then

matched with new texts to recognize descriptions of protein functions in articles [55].

It was reported [54, 56–58] that automatically learned patterns identify biological

interactions even more accurately than hand-coded patterns.

Pattern matching approaches can cope with long or complex sentences, however,

the linear surface patterns captured by shallow analysis on the biological texts can



12

not process the sentences that have long-range dependencies involving multiple bi-

ological entities or biological processes [42]. In contrast, parsing-based methods

can discover biological relation information from such sentences by determining syn-

tactic relationships between words. In the GENIA event corpus [44], the distances

among proteins and other arguments of biological events in terms of shortest depen-

dency path length are considerably shorter than in terms of their linear order in the

sentence [46].

A study to evaluate four state-of-the-art extraction methods of gene and/or pro-

tein interactions was conducted on five publicly available corpora of biological in-

teractions [59]. The method, AkanePPI [60], combined with a deep syntactic parser

achieved the best overall performance. In practice, full parsing is now the mainstream

approach and the basis for biological relation extraction tasks [1, 4–6, 34, 35, 37, 61].

It is reported that the accuracy for parsing of biological text is now in the 80-90%

range [62, 63]. Recently, a comparative evaluation was performed on eight represen-

tative natural language parsers from different parsing frameworks, focusing on the

task of PPI extraction from biological papers [64]. The contributions of each parser

with multiple parse representations to PPI extraction were evaluated thoroughly by

reporting the relationship between the size of the dataset used to train the parser, the

parser’s accuracy and the overall PPI extraction accuracy when the parser is used as

a component.

In Chapter 5, we explore the application of the subgraph matching problem in the

BioNLP field for extracting complex biological events from the scientific literature.

The approach to extract biological events that we propose here belongs to the category

of parsing-based methods. The approach may also be generalized to extract events

from other domains where training data is available as it requires neither manual

intervention or external domain-specific resources.



Chapter 3

An Unsupervised Method for Extracting Domain-specific

Affixes in Biological Literature

In this chapter, we propose a method to automatically extract domain-specific prefix

and suffix characters from biological corpora. As one application of the proposed

method, the resulting affix characters are integrated into the parametrization of the

ABTA [16] system to investigate their impact on the performance of entity recogni-

tion. The proposed method is completely unsupervised. For this reason, we suggest

that our method can be generalized for extracting domain-specific affixes from many

domains.

The chapter is organized as follows: In section 3.1, we introduce the problem

of affix extraction in the task of biological entity recognition. Section 3.2 elaborates

the methodology that we propose for affix extraction. The experiment results are

presented and evaluated in section 3.3. Finally, section 3.4 summarizes this work and

introduces future directions.

3.1 Problem Description

Jiampojamarn et al. [16] proposed the ABTA system which applies supervised learn-

ing methods to annotate biological entities in the scientific literature. Given unstruc-

tured texts in biological research, the annotation system first identifies biological

entities based on five word position classes, “Start”, “Middle”, “End”, “Single” and

“Non-relevant”, indicating the position of each word within a biological entity. There-

fore, multi-word biological entities should be in a consistent sequence of classes “Start

(Middle)* End” while single word entities will be indicated by the class “Single”. The

system then classifies the identified entities into biological concepts: proteins, DNA,

RNA, cell types and cell lines. The system employs a word-by-word classification and

a word n-gram model [29] is used to define each input sentence into instances to be

classified. The word n-gram model is a fixed window size of n words sliding from the

13
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beginning to the end of each sentence. The system extracts features from each word

in an n-gram as input for creating the classification model and classifies the word in

the middle of a word n-gram. The extracted features include simple deterministic

features, POS tag information, and prefix and suffix characters.

The ABTA system [16] learns the domain-specific affixes by recording only the

first and the last n characters (e.g., n = 3) of each word in classification instances. A

similar approach is also adopted in [11] and the authors claimed that the n characters

could provide enough affix information for the entity recognition task.

However, it is often observed that most biological entities tend to employ longer

affixes which carry specific semantic meanings about the entities. For instance, the bi-

ological entity “EBNA2-oestrogen” contains a typical prefix “EBNA2-” while another

biological entity “CD8(+)-T-cell” employs a representative suffix “-T-cell”. Using a

specific number of characters to provide affix information could lose important affixes

or generate inaccurate affixes in these cases. It is more likely that a specific list of

typically used prefixes and suffixes of biological words would provide more accurate

information to classifying some biological entities and boundaries. Therefore, we hy-

pothesize that a more flexible affix definition will improve the performance of the task

of biological entity recognition.

Shen et al. [14] explored an adaptation of a general Hidden Markov Model-based

entity recognizer to the biological domain. They experimented with POS tags, prefix

and suffix information and noun heads as features. 100 most frequent prefixes and

suffixes were extracted from training data as candidates, and evaluated based on

difference in likelihood of part of a biological entity versus not. Two limitations of

this affix extraction method are: (1) use of only a biological corpus, so that the

general domain-independent affixes are not removed, and (2) a supervised process of

choosing a score threshold that is used in affix selection.

3.2 PATRICIA-Tree-based Affix Extraction

3.2.1 PATRICIA Trees

The method we propose to extract affixes from biological words is based on the

use of PATRICIA trees. “PATRICIA” stands for “Practical Algorithm To Retrieve
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Information Coded In Alphanumeric”. It was first proposed as an algorithm to provide

a flexible means of storing, indexing, and retrieving information in a large file [65].

A PATRICIA tree uses path compression by grouping common sequences into nodes.

This structure provides an efficient way of storing values while maintaining the lookup

time for a key of O(N ) in the worst case, where N is the length of the longest

key. Because of the outstanding flexibility and efficiency, PATRICIA trees have been

applied to many large information retrieval problems [66,67].

There is a precedent for the use of PATRICIA trees to perform an automatic

extraction of keywords from relevant Chinese documents [66]. The tree structure

helps to reduce the difficulty in processing Chinese language which is known to lack

explicit word boundaries. Refined by a mutual information-based algorithm and a

general-word lexicon, the extracted keywords have proved useful in several Chinese

information retrieval applications, such as book indexing, document classification and

relevance feedback. A learning device based on PATRICIA trees was also developed

to efficiently store and retrieve important information [67]. The original tree struc-

ture was enhanced with a deletion mechanism which allowed memory to be released

by automatically deleting unimportant information for the purpose of storing new

inputs. This enhanced PATRICIA tree has the ability to accept unlimited amounts

of information and the potential to be an online training tool.

Figure 3.1 illustrates a simple example of the growth of a PATRICIA tree under

a sequence of insertions. Suppose “ababb”, “ababa”, “ba” and “aaabba” are four

words to be inserted into PATRICIA tree. Initially, the tree is empty. The word

“ababb” is first inserted as a node of the tree. In order to insert the next word

“ababa”, it is necessary to compare it with the existing node containing the word

“ababb”. The only difference of the two words is the fifth character. Thus, the

common substring “abab” is split out from both words to form a new node, while

the remaining characters of each word, “a” and “b”, become two descendant nodes

of this node. Similarly, it is necessary to compare the next inserted word “ba” with

“ababb”. As they are different from the first character, a new node for “ba” is then

created from the root of the tree. Finally, since the common character of the last

inserted word “aaabba” and “ababb” is “a”, it is then split out as a new node.

In our work, all biological words are inserted and stored in a PATRICIA tree,
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Figure 3.1: Growth of a PATRICIA Tree
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which can be used to efficiently look up specific biological words, extract biological

words that share specified affixes and calculate required statistics.

3.2.2 Terminology

In order to clearly describe our proposed method, it is necessary to introduce and

clarify some terminologies used in the process of affix extraction.

We assume that text is composed of characters from a finite alphabet. The alphabet

is a finite set of symbols Σ. In practice, elements of the alphabet are ASCII characters.

In our further discussion, we will assume that the alphabet is given at the beginning

and always the same, unless specified differently. A string is a finite sequence of

characters from Σ, which can be empty. The length of a string w is the number of

characters in the sequence w, and it is denoted |w|. An empty string, i.e., an empty

sequence of characters, is denoted ε and its length is zero: |ε| = 0.

A text, which is in practice typically a scientific article, is simply a long string.

Two strings s and t can be concatenated by appending one string to another, which

is denoted as st or s · t. This operation is called concatenation. The length of

concatenated string is the sum of length of operand strings; i.e., |st| = |s| + |t|. The

empty string acts as the neutral element with respect to the concatenation operation;

i.e., for any string s, sε = εs = s. We say that string s is a substring of string t if

t = xsy for some strings x and y.

The standard definition of prefix and suffix in the formal languages theory is that

a string s is a prefix of string t if t = sx for some string x, and s is a suffix of string

t if t = xs for some string x. However, since we are going to define terms prefix and

suffix in a different way in our proposed method, we will call these standard notions

of prefix and suffix, general prefix and general suffix, or if we want to include both

terms under one term, general affix. Throughout our work, the word affix will mean

prefix or suffix.

We define words as the maximal substrings of a text consisting only of the charac-

ters from a distinguished subset of Σ, which is the set of all letters, digits, and some

special signs such as the hyphen sign ‘-’ and the slash sign ‘/’. A corpus (pl. corpora)

is a finite set of texts. We say that a word w occurs in a corpus C if there is a text

T ∈ C such that w occurs in T .
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The goal of our method is to extract a set of domain-specific affixes (i.e., prefixes

and suffixes), so that we can use them as a special feature in biological entity detection.

Being a domain-specific affix is not a deterministic feature of a string, however, we use

a probabilistic model next to predict a probability that given an arbitrary occurrence

of an affix in a text, it has a domain-specific function, i.e., its occurrence is related to

the biological domain in some way. The task becomes more difficult by performing

this function in a very unsupervised way in the sense that we do not use information

about annotated biological entities, but treat the domain-specific corpus as unmarked,

uniform text.

The first step is to identify potential affixes, which we define in the following way:

Definition 3.1. (Potential Affix) Given a corpus C over an alphabet Σ, a string

p, |p| ≥ 2, is a potential prefix if there are two distinct words w1 and w2 occurring

in C, such that w1 = px1 and w2 = px2 for two strings x1 and x2. Similarly, a string

s, |s| ≥ 2, is a potential suffix if there are two distinct words w1 and w2 occurring in

C, such that w1 = x1s and w2 = x2s for two strings x1 and x2. A potential affix is a

potential prefix or potential suffix.

It is seen in Figure 3.1 that every node in PATRICIA tree contains exactly one

string of 1 or more characters, which is the preceding substring of its descendant

nodes. Meanwhile, every word is a path of substrings from the root to a leaf. An

efficient algorithmic way of finding all potential prefixes is to collect all words of a

corpus in a PATRICIA tree, and then by concatenating all strings in the nodes of

all paths from the root to any other internal node in the tree we obtain potential

prefixes. The prefixes of length 1 are excluded, since very short prefixes and suffixes

occur too frequently to be useful. The potential suffixes are extracted in a similar

way by reversing all words before adding them to the tree, and then by reversing the

extracted potential prefixes at the end.

Next, affixes are extracted from potential affixes. The definition for a prefix, suffix,

and affix adopted in our proposed method is given as follows, and will be described

in more detail while introducing our probabilistic model.
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Definition 3.2. (Affix) A string p is a prefix in a corpus C if there are two

words w1 and w2 occurring in the corpus C such that w1 = pw2. We say that p

occurs as a prefix in word w1. A string s is a suffix in corpus C if there are a word

w1 and a word or prefix w2 occurring in the corpus C such that w1 = w2s. We say

that s occurs as a suffix in word w1. Affix is prefix or suffix.

3.2.3 Methodology

In this work, we have designed the experiments to extract domain-specific prefixes and

suffixes of biological words from a biological corpus, and investigate the impact of the

extracted affix information on the performance of biological entity recognition. The

overall design of our experiments consists of three major processes: affix extraction,

affix refining and evaluation of experimental results.

In the affix extraction process, we first populate a PATRICIA tree using all words

in the combined corpus(CC) of a Biological Corpus (BC) and a General English Cor-

pus (GEC). GEC is used against BC in order to extract more accurate biological

affix information. Two PATRICIA trees are populated separately for extracting pre-

fixes and suffixes. The suffix tree is based on strings derived by reversing all the

input words from the combined corpus. According to Definition 3.1, all the potential

prefixes and suffixes are then extracted from the populated PATRICIA trees.

In the affix refining process, for each extracted potential affix, we compute its joint

probability of being both an English affix and a biological affix, P (D = Biology, A =

Yes|PA), where D stands for Domain, A stands for Affix and PA represents Potential

Affix. This joint probability can be further decomposed as shown in Eq.(3.1). In the

formula, P (A = Yes|PA) denotes the probability that a given potential affix is a true

English affix while P (D = Biology|A = Yes, PA) refers to the probability that a given

English affix is actually a biological affix.

P (D = Biology, A = Yes|PA) =

P (D=Biology|A=Yes, PA) × P (A=Yes|PA) (3.1)

To calculate P (A = Yes|PA), the probabilities of prefixes and suffixes are mea-

sured separately. According to Definition 3.2, a prefix can be found by enumerating,
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for each node, all descendant substrings and assessing their existence as stand-alone

words. Using some domain-specific words as example, “radioimmunoassay”, “radioio-

dine” and “radiolabeled” have a common starting string “radio”. If we take out the

remaining part of each word, three new strings are obtained, “immunoassay”, “iodine”

and “labeled”. Since all the input words are already stored in PATRICIA tree, we

look up these three strings in PATRICIA tree and find that “immunoassay”, “iodine”

and “labeled” are also meaningful words in the tree. This indicates that “radio” is a

prefix among the input words. On the other hand, it is obvious that “radioimmunoas-

say” and “radioiodine” share another string “radioi”. However, “mmunoassay” and

“odine” are not meaningful words due to their absence in the PATRICIA tree. This

suggests that “radioi” is not a prefix.

For each extracted potential prefix, P (A = Yes|PA) is computed as the proportion

of strings formed by traversing all descendant nodes that are meaningful words. In

our experiments, the measure of assessing if a string is meaningful is to look up

whether each string is an existing word present in the built prefix PATRICIA tree.

Algorithm 1 shows the procedure of populating a PATRICIA tree and calculating

P (A = Yes|PA) for each potential prefix. A time complexity of O(n) is estimated

for the algorithm and n is the size of the combined corpus.

Likewise, a suffix can be also detected in terms of Definition 3.2. Similar to the idea

of calculating P (A = Yes|PA) for potential prefix, we conjecture that the extracted

potential suffix could be a reasonable English suffix if the inverted strings formed

from traversing the descendant nodes of the potential suffix in the suffix PATRICIA

tree are meaningful words. For instance, “Calcium-dependent”, “Erythropoietin-

dependent” and “Ligand-dependent” share a common ending string “-dependent”.

Since the remaining strings of each word, “Calcium”, “Erythropoietin” and “Ligand”

can be found in the “forward” PATRICIA tree, “-dependent” is a potentially useful

suffix.

However, it is often observable that some English words do not begin with another

word but a meaningful prefix, for example, “pre-mRNA” and “pro-glutathione”. It

is known that “-mRNA”and “-glutathione” are good suffixes in biology. “pre” and

“pro”, however, are not typical words but meaningful prefixes, and in fact have been

extracted when calculating P (A = Yes|PA) for potential prefix. Therefore, in order
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Algorithm 1 P (A = Yes|PA) for Prefix

Input: words (w) ∈ Combined Corpus (CC)

Output: P (A = Yes|PA) for each potential prefix

1: PT = ∅ //PT : Patricia Trie

2: for all words w ∈ CC do

3: PT ← Insert(w) //Populating Patricia Trie

4: for all nodes ni ∈ PT do

5: PA ← String(ni) //Concatenate strings in nodes from root to ni, which is a

6: //potential prefix

7: TPA ← PrefixSearch(PA) //PrefixSearch() returns all words w ∈ CC

8: //beginning with PA

9: score ← 0

10: for all words w ∈ TPA do

11: if Extrstr(PA, w) in PT then

12: //Extrstr() returns the remaining string of w without PA

13: score ++

14: P (A = Yes|PA) ← score/|TPA|
15: //|TPA| is the number of words in TPA

to detect and capture such potential suffixes, we further assume that if a word begins

with a recognized prefix instead of another typical word, the remaining part of the

word still has the potential to be an informative suffix. Therefore, strings “-mRNA”

and “-glutathione” can be successfully extracted as potential suffixes. Based on our

probability model, an extracted potential prefix is considered a recognized prefix in

our experiments if its P (A = Yes|PA) is greater than 0.5.

To calculate P (D = Biology|A = Yes, PA), it is necessary to first determine true

English affixes from extracted potential affixes. In our experiments, we consider that

an extracted potential prefix or suffix is a recognized affix only if its P (A = Yes|PA)

is greater than 0.5. It is also necessary to consider the biological corpus BC and

the general English corpus GEC separately. It is assumed that a biology-related

affix tends to occur more frequently in words of BC than GEC. Eq.(3.2) is used to

estimate P (D = Biology|A = Yes, PA).
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P (D = Biology|A = Yes, PA) =

(Number of Words with PA in BC/Size (BC))/

(Number of Words with PA in BC/Size (BC) +

Number of Words with PA in GEC/Size (GEC)), (3.2)

where only PA with P (A = Yes|PA) greater than 0.5 are used, and the number of

words with a certain PA is further normalized by the size of each corpus.

Finally, the joint probability of each potential affix, P (D = Biology, A = Yes|PA),

can be used to parametrize a word beginning or ending with PA.

In the evaluation process of our experiments, the prefix-suffix pair with maximum

joint probability values is used to parametrize a word. Therefore, each word in BC

has exactly two values as affix feature: a joint probability value for its potential prefix

and a joint probability value for its potential suffix. We then replace the original affix

feature of ABTA system with our obtained joint probability values, and investigate

whether these new affix information leads to equivalent or better entity recognition

on BC.

3.3 Results and Evaluation

3.3.1 Dataset and Environment

For our experiments, it is necessary to use a corpus that includes widely used bio-

logical entities and common English words. This dataset, therefore, will allow us to

accurately extract the information of biology related affixes. As a proof-of-concept

prototype, our experiments were conducted on two widely used corpora: GENIA cor-

pus (v3.02) [21] and Brown corpus [68]. The GENIA version 3.02 corpus is used as the

biological corpus BC in our experiments. It contains 2,000 biological research paper

abstracts. They were selected from the search results in the MEDLINE database [2],

and each biological entity has been annotated into different terminal classes based on

the opinions of experts in biology. Used as the general English corpus GEC, Brown

corpus consists of 500 text samples of common English usage, drawn from 15 different

text categories, totaling about a million words.
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All the experiments were executed on a Sun Solaris server Sun-Fire-880. Our

experiments were implemented using Perl and Python.

3.3.2 Experimental Results

We extracted 15,718 potential prefixes and 21,282 potential suffixes from the com-

bined corpus of GENIA and Brown. Among them, there are 2,306 potential prefixes

and 1,913 potential suffixes with joint probability value P (D = Biology, A = Yes|PA)

greater than 0.5. Table 3.1 shows a few examples of extracted potential affixes whose

joint probability value is equal to 1.0. It is seen that most of these potential affixes

are understandable biological affixes which directly carry specific semantic meanings

about certain biological entities. However, some substrings are also captured as po-

tential affixes although they may not be recognized as “affixes” in linguistics, for

example “adenomyo” in prefixes, and “plasias” in suffixes. In the GENIA corpus,

“adenomyo” is the common beginning substring of biological entities “adenomyoma”,

“adenomyosis” and “adenomyotic” , while “plasias” is the common ending substring

of biological entities “neoplasias” and “hyperplasias”. The whole list of extracted

potential affixes is available upon request.

Potential Prefixes

13-acetate
B-cell

endotoxin
I-kappaB

macrophage

adenomyo
Rel/NF-kappaB

anti-CD28
VitD3

cytokine

3-kinase
CD28
HSV-1
ligand

N-alpha-tosyl-L

platelet
pharmaco
adenovirus
chromatin
hemoglobin

Potential Suffixes

-T-cell
-coated

-expressed
-inducer
plasias

-alpha-activated
mopoiesis

-nonresponsive
coagulant
-soluble

cytoid
-bearing

-kappaB-mediated
-globin-encoding
-immortalized

-methyl
lyse

-receptor
glycemia
racrine

Table 3.1: Examples of extracted potential affixes with joint probability value 1.0

In order to investigate whether the extracted affixes improve the performance

of biological entity recognition, it is necessary to obtain the experimental results

of both the original ABTA system and the ABTA system using our extracted affix
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information. In ABTA, the extraction of features is performed on the whole 2000

abstracts of the GENIA corpus, and then 1800 abstracts are used as training set

while the rest 200 abstracts are used as testing set.

The evaluation measures are precision, recall, F-score and classification accuracy.

Precision measures the proportion of the number of correctly recognized words in a

class to all the recognized words in the class. Recall calculates the ratio of the number

of correctly recognized words in a class to all the correct words in the class. F-score is

a weighted harmonic mean of recall and precision, which are given equal importance in

this work. Classification accuracy measures the proportion of the number of correctly

classified words in all classes to the total number of words of all classes.

C4.5 decision tree classifier [69] is reported as the most efficient classifier which

leads to the best performance among all the classifiers experimented in [16]. There-

fore, C4.5 is used as the main classifier in our experiments. The experimental results

of the ABTA system with 10-fold cross-validation based on different combinations of

the original features are presented in Table 3.2 according to the five word position

classes, “Start”, “Middle”, “End”, “Single” and “Non-relevant”, indicating the posi-

tion of each word within a biological entity. “SD” is short for Simple Deterministic

features, “AC” denotes Affix Characters, and “POS” refers to POS tag information

obtained by a statistical tagger Lingua::EN::Tagger [70]. The setting of parameters

in the experiments with ABTA is: the word n-gram size is 3, the number of word

feature patterns is 3, and the number of affix characters is 4. We have reported the

F-score and the classification accuracy of the experiments in the table. It is seen that

there is a tendency with the experimental performance that for a multi-word biolog-

ical entity, the middle position is most difficult to detect while the ending position

is generally easier to be identified than the starting position. The assumed reason

for this tendency is that for multi-word biological entities, many middle words are

seemingly unrelated to biology domain while many ending words directly indicate

their identity, for instances, “receptor”, “virus” and “expression”.

Table 3.3 shows the experimental results of the ABTA system after replacing the

original affix feature with our obtained joint probability values for each word in the

GENIA corpus. “JP” is used to denote Joint Probability values. It is seen that based

on all three features the system achieves a classification accuracy of 87.5%, which
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Feature F-score Classification #
sets Start Middle End Single Non Accuracy (%) Parameters
SD 0.467 0.279 0.495 0.491 0.864 74.59 9
AC 0.709 0.663 0.758 0.719 0.932 85.67 24
POS 0.69 0.702 0.775 0.67 0.908 83.96 3

SD+AC 0.717 0.674 0.762 0.730 0.933 86.02 33
SD+POS 0.726 0.721 0.793 0.716 0.923 85.96 12
AC+POS 0.755 0.741 0.809 0.732 0.930 87.14 27

SD+AC+POS 0.764 0.745 0.811 0.749 0.933 87.59 36

Table 3.2: Performance of original ABTA system with respect to features

is comparable to the results of the original ABTA system. However, the size of the

feature set of the system is significantly reduced, and the classification accuracy of

87.5% is achieved based on only 18 parameters, which is 1/2 of the size of the original

feature set. Meanwhile, the execution time of the experiments generally reduces to

nearly half of the original ABTA system (e.g., reduces from 4 hours to 1.7 hours).

Furthermore, when the feature set contains only our extracted affix information, the

system reaches a classification accuracy of 81.46% based on only 6 parameters. It is

comparable with the classification accuracy achieved by using only POS information

in the system. In addition, Table 3.3 also presents the experimental results when

our extracted affix information is used as an additional feature to the original feature

set. It is expected that the system performance is further improved when the four

features are applied together. However, the size of the feature set increases to 42

parameters, which increases the data redundancy. This proves that the extracted

affix information has a positive impact on locating biological entities, and it could be

a good replacement of the original affix feature.

Feature F-score Classification #
sets Start Middle End Single Non Accuracy (%) Param.
JP 0.652 0.605 0.713 0.602 0.898 81.46 6

SD+JP 0.708 0.680 0.756 0.699 0.919 84.84 15
JP+POS 0.753 0.740 0.805 0.722 0.928 86.92 9

SD+JP+POS 0.758 0.749 0.809 0.74 0.933 87.50 18
SD+AC+POS+JP 0.767 0.746 0.816 0.751 0.934 87.77 42

Table 3.3: Performance of ABTA system with extracted affix information with respect
to features
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Moreover, we also evaluated the performance of the exact matching of biological

entity recognition based on the obtained experimental results of the ABTA system.

The exact matching annotation in the ABTA system is to accurately identify every

biological entity, including both multi-word entities and single word entities, there-

fore, all the word position classes of an entity have to be classified correctly at the

same time. An error occurring in any one of “Start” “Middle” and “End” classes

leads the system to annotate multi-word entities incorrectly. Consequently, the accu-

mulated errors will influence the exact matching annotation performance. Table 3.4

presents the best obtained exact matching annotation results of different combination

of features based on 10-fold cross-validation over the GENIA corpus. It is seen that

after replacing the original affix feature of the ABTA system with our obtained joint

probability values for each word in the GENIA corpus, the system achieves an 0.702

F-score on exact matching of biological entity recognition, comparable to the exact

matching performance of the original ABTA system. In addition, when the feature

set contains only our extracted affix information, the system reaches a 0.583 F-score

on exact matching. Although it is a little lower than the exact matching performance

achieved by using only the original affix features in the system, the feature set size of

the system is significantly reduced from 24 to 6.

Feature Exact Matching Annotation #

sets Precision Recall F-score Parameters

AC 0.637 0.577 0.606 24

SD+AC+POS 0.748 0.666 0.705 36

JP 0.618 0.552 0.583 6

SD+JP+POS 0.745 0.663 0.702 18

Table 3.4: Exact matching annotation performance with respect to features

In order to further compare our method with the original ABTA system, we

attempted eleven different sizes of training data set to run the experiments separately

based on our method and the original ABTA system. They can then be evaluated in

terms of their performance on each training set size. These eleven different training

set sizes are: 0.25%, 0.5%, 1%, 2.5%, 5%, 7.5%, 10%, 25%, 50%, 75% and 90%. For

instance, 0.25% denotes that the training data set is 0.25% of the GENIA corpus [21]

while the rest 99.75% becomes the testing data set for experiments. It is observed
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that there are about 21 paper abstracts in training set when its size is 1% , and 52

abstracts when its size is 2.5%.

For each training set size, we randomly extracted 10 different training sets from

the GENIA corpus to run the experiments. We then computed the mean F-score of

10 obtained overall F-scores for the exact matching of biological entity recognition.

Figure 3.2 is drawn to illustrate the distribution of mean F-score of each training set

size for both methods, with the incremental proportion of training data. The X axis

in Figure 3.2 has been log-scaled with base 10 in order to better compare the results

of two methods. It is noted that the change patterns of mean F-score obtained by our

method and the original ABTA system are similar. It is also seen that our method

achieves marginally better annotation performance when the proportion of training

data is under 2.5%.

Figure 3.2: Distribution of Mean F-score

In order to determine if the annotation performance difference between our method

and the original ABTA system is statistically significant, we performed one-tailed t-

Test [69] on the annotation results with our hypothesis that the mean F-score of

our proposed method is higher than the mean F-score of the original ABTA system.
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The level of significance α is set to be the conventional value 0.05. As a result, the

annotation performance difference between two methods is statistically significant

when the proportion of training data is 0.25%, 0.5%, 1% or 2.5%. Table 3.5 shows

the P values of t-Test results for the various training set sizes. This demonstrates

that the ABTA system adopting our method outperforms the original ABTA system

when the proportion of training data is lower than 2.5% of the GENIA corpus, and

achieves comparable performance with the original ABTA system when the proportion

continuouly increases.

A pre-annotated data set is not always available for some domains, for example the

biological domain. Therefore, it is necessary for domain experts to manually annotate

the raw data sets. Instead of annotating a large data set by hand, it is understandable

that domain experts are more willing to manually evaluate small amount of data.

The annotated data can then be used as a seed training data set for the annotation

system to further annotate the experimental data. Hence, our method would be more

preferable in this case as it performs better with small amount of training data.

One-tailed Training set size

t-Test 0.25% 0.5% 1% 2.5%

P value 0.0298 0.0006 0.0002 0.0229

Table 3.5: One-tailed t-Test results

Since the original ABTA system [16] was also evaluated on the JNLPBA shared

task of biological entity recognition [22] by classifying identified entities into biolog-

ical concept classes, we further applied our modified ABTA system on the JNLPBA

dataset. The training set contains 2,000 Medline abstracts labeled with biological

classes in the “IOB” style, which utilizes three types of tags: <B> for the beginning

word of an entity, <I> for the remaining words of an entity and <O> for non-entity

words. The testing set is composed of 404 new Medline abstracts. The performances

of the original ABTA system and the ABTA system adopting our method on the

testing set with respect to each biological concept class are given in Table 3.6 and

Table 3.7 respectively. It is observed that the ABTA system adopting our method

outperforms the original ABTA system in identifying proteins, DNA and RNA but

obtains lower performance in discovering cell types and cell lines. This suggests that

the extracted affix information tends to be more decisive for protein, DNA and RNA
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entities due to their characteristic morphology.

Class (# of entities) Precision Recall F-score

Protein (5,067) 0.663 0.596 0.628

DNA (1,056) 0.647 0.509 0.570

RNA (118) 0.616 0.340 0.438

Cell type (1,921) 0.566 0.513 0.538

Cell line (500) 0.410 0.361 0.384

All classes 0.649 0.526 0.581

Table 3.6: Performance of original ABTA system on testing set of JNLPBA

Class (# of entities) Precision Recall F-score

Protein (5,067) 0.670 0.594 0.630

DNA (1,056) 0.653 0.507 0.571

RNA (118) 0.622 0.341 0.441

Cell type (1,921) 0.548 0.501 0.523

Cell line (500) 0.397 0.353 0.374

All classes 0.652 0.522 0.580

Table 3.7: Performance of ABTA system with extracted affix information on testing
set of JNLPBA

In addition, Table 3.8 presents a comparison of our results with the results of the

top four participating systems in the JNLPBA shared task, which are taken from

the task report [22]. The table also includes the baseline system provided for the

task, which is based on the longest string matching against a list of entities from the

training data. Without using any dictionary or other external domain resources, the

original ABTA system and our modified ABTA system achieve comparable precision

with those participating systems, and the overall performances in F-score are all much

higher than the baseline system. It is also obvious that our modified ABTA system

obtains a better precision compared to the original ABTA system. However, the less

performance in recall leads to a comparable F-score in overall performance.

3.4 Summary

In this chapter, we have presented an unsupervised method to extract domain-specific

prefixes and suffixes from a biological corpus based on the use of PATRICIA tree.
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System Precision Recall F-score

Zhou and Su [12] 0.694 0.760 0.726

Finkel [31] 0.686 0.716 0.701

Settles [13] 0.693 0.703 0.698

Song [28] 0.648 0.678 0.663

Original ABTA [16] 0.649 0.526 0.581

Our Modified ABTA 0.652 0.522 0.580

Baseline [22] 0.476 0.508 0.491

Table 3.8: Performance comparison with respect to JNLPBA task

As one application of our proposed method, the ABTA system [16] adopting our

method achieves an overall classification accuracy of 87.5% in locating biological

entities, and derives an 0.702 F-score in exact entity matching annotation, which are

all comparable to the experimental results obtained by the original ABTA system.

However, our method helps the system significantly reduce the size of feature set and

thus improves the system efficiency. The system also obtains a classification accuracy

of 81.46% based only on our extracted affix information. This demonstrates that

the affix information achieved by the proposed method is important to accurately

locating biological entities. The evaluation on the JNLPBA shared task suggests

that the extracted affix information is more sensitive in identifying proteins, DNA

and RNA.

We further explored the reliability of our method by gradually increasing the

proportion of training data from 0.25% to 90% of the GENIA corpus. One-tailed

t-Test results confirm that the ABTA system adopting our method achieves more

reliable performance than the original ABTA system when the training corpus is

small.



Chapter 4

Sentence Identification of Biological Interactions using

Generated Patterns and Optimized Parameters

In this chapter, we propose an approach to automatically extract sentence patterns

containing relevant interaction involving concepts of molecular biology. This extrac-

tion is based on the assumption that biological interactions are articulated by a lim-

ited number of POS patterns embedded in sentences where entities/concepts are co-

occurring. The extracted patterns are then applied to identify interaction sentences

which describe interactions between biological entities. Our work aims to identify

precise sentences rather than passages. Because of the nature of the patterns, we

hope that some of the contextual information present in interaction sentences also

play a role in the classification task.

The chapter is organized as follows: In Section 4.1, we introduce the problem of

sentence identification of biological interactions. Section 4.2 describes an experimen-

tal system designed for this work. Sections 4.3, 4.4 and 4.5 elaborate the approaches

and algorithms applied in the system. The performance of the system is evaluated in

Section 4.6. Finally, Section 4.7 summarizes this work and introduces future direc-

tions.

4.1 Problem Description

An important task in information extraction (IE) in biological science is to iden-

tify sentences from research communications that contain important interactions be-

tween biological entities. The type of interaction of interest includes protein-protein,

protein-DNA, gene regulations and other interactions between macromolecules. This

work broadens the definition of the term “interaction” to include other types of con-

cepts that are semantically related to cellular components and processes. This con-

trasts with the past efforts focusing strictly on molecular interactions [49, 71]. We

hypothesize that identifying the relationships between concepts of molecular biology

31
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will facilitate the building of knowledge models, improve the sensitivity of IE tasks

and ultimately facilitate the formulation of new hypotheses by experimentalists.

The extraction of interactions is based on the heuristic premise that interacting

concepts co-occur within a given section of text. The challenge is that co-occurrence

certainly does not guarantee that a passage contains an interaction [5, 17, 18]. Co-

occurrence is highly dependent on the definition of the section of text within which

the target terms are expected to be found. A thorough comparison on the prediction

of protein-protein interaction between abstract-level co-occurrence and sentence-level

co-occurrence was undertaken [19]. It is demonstrated that abstract co-occurrence

is more sensitive but less specific for interactions. At the cost of wide coverage,

sentence co-occurrence increases the accuracy of interaction prediction. Since the

ultimate goal of IE is to extract knowledge and accuracy is the most important

aspect in evaluating the performance of such systems, it makes sense to focus the

effort in seeking interaction sentences rather than passages or abstracts. Not every

co-occurrence in sentences implies a relationship that expresses a fact. In the 2005

Genomics Track dataset, 50% of all sentence co-occurrences of entities correspond to

definite relationships while the rest of the co-occurrences only convey some possible

relationships or contain no relationship of interest [18]. Therefore, more sophisticated

text mining strategies are required to classify sentences that describe interactions

between co-occurring concepts.

In the BioCreative II challenge [72], participating teams were asked to determine

whether a given passage of biological texts contained information about the inter-

action between two proteins. Although the best F-score of 78% was reported, this

classification task worked at the abstract level and the interacting protein pairs were

not required to be extracted. The task for the Learning Language in Logic (LLL’05)

challenge [73] was to build systems that extract interactions between genes or proteins

from the biological literature. From individual sentences annotated with agent-target

relations and other linguistic information, patterns or models had to be learned to

extract these interactions. The task focused on extracting only the interacting part-

ners. The context of an interaction may also be critical to the validity of the extracted

knowledge since not all statements found in the literature are facts.
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4.2 Overview of System Design

In this work, we have designed an experimental system to extract biological inter-

action patterns and identify sentences that contain these interactions. Figure 4.1

illustrates the overall data flow of the system, which consists of three major modules:

biological text preprocessing, interaction pattern extraction, and interaction sentence

identification.

A text preprocessing reformats the original texts into a set of candidate sentences.

A pattern learning method is then proposed to automatically extract the represen-

tative patterns of biological interactions. The obtained patterns are then used to

identify sentences that describe biological interactions. Poor performance during pre-

processing will have detrimental effects on later stages. In the following sections, we

will describe each component of the system in detail.

4.3 Biological Text Preprocessing

Processing text from the biological literature is more challenging than from the gen-

eral English texts. This is due to the domain-specific terminology and the ambiguity

in some technical terms. Generally, several preprocessing steps need to be completed

before performing text mining strategies. For our work, these include sentence prepa-

ration, Part-of-Speech tagging, biological entity recognition, and text chunking.

4.3.1 Sentence Preparation

Since our system aims to extract biological interaction patterns at the sentence level,

a rule-based heuristic method is implemented to detect sentence boundaries [74].

Captions and headings that are not grammatically valid sentences are eliminated.

4.3.2 Part-of-Speech Tagging

POS tagging is then performed to associate each word in a sentence with its most

likely Part-of-Speech tag. Because subsequent processing steps typically depend on

the tagger’s output, high accuracy at this level is crucial for success in later stages.

A statistical tagger Lingua::EN::Tagger [70] is used to perform this task.
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Figure 4.1: System Dataflow Diagram
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4.3.3 Biological Entity Recognition

A learning-based biological entity recognition system, ABTA [16,75], is embedded in

our system. Given unstructured texts from the biological literature, ABTA locates

biological entities based on five word position classes, “Start”, “Middle”, “End”,

“Single” and “Non-relevant”. Therefore, multi-word entities should be in a consistent

sequence of classes “Start (Middle)* End” while single word entities will be indicated

by the class “Single”. The type of entities includes molecules, such as genes, proteins

and cell lines, and also biological processes. Examples of biological processes as

entities are: “T cell activation” and “IL-2 gene transcription”. We consider that a

broader definition of biological entity will include more facts from literature, thus

leading to more general use of interaction patterns for IE tasks.

ABTA considers the longest expression and ignores embedded entities. For exam-

ple, “IL-2 receptor” is annotated for one kind of protein molecule and the embedded

entity “IL-2” for another kind is not annotated. Also, parenthesized abbreviations of

biological entities are not processed since their immediately preceding full forms will

contribute to the patterns. We simply remove the parenthesized texts that follow the

biological entities. Further, instead of distinguishing entities from their relevant biol-

ogy concepts, a unified tag “BIO” is assigned to all the identified biological entities.

We aim to discover patterns of the general interactions between biological concepts,

not only the interactions between molecules, e.g., protein-protein interaction.

Tags like NN(noun) and VB(verb) are typically used to define entities and the

action type of interactions, and thus they are indispensable. However, tags such as

JJ(adjective), RB(adverb) and their comparative or superlative forms could occur

at different positions in a sentence. We decided to remove these tags to prevent the

combinatorial effect that these tags would induce within the set of extracted patterns.

Meanwhile, other tags such as PP(sentence ending punctuation) were not considered

in pattern definitions.

4.3.4 Text Chunking

Next, a rule-based text chunker [76] is applied on the tagged sentences to further

identify base noun phrases NP, which are defined as nonrecursive noun phrases that
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end after their nominal head and exclude any type of postmodification (e.g., preposi-

tional phrases, genitives), such as <NP>oxygen production</NP> and <NP>long

enhancer transcripts</NP>, and combine verbal elements into their verbal unit VB,

for instance <VB>have been identified<VB>. This allows us to focus on the holistic

structure of each sentence. Text chunking is not applied on the identified biological

entities although they might also be labeled as NPs since most biological entities are

linguistically expressed within noun phrases. In order to achieve more generalized in-

teraction patterns, a unified tag “VB” is used to represent every verbal unit instead

of employing different tags for various tenses of verbs.

As a result of preprocessing, every sentence is represented by its generalized form

as a sequence of corresponding tags consisting of POS tags and predefined tags.

Table 4.1 summarizes the main tags in the system.

Tag name Tag description Tag type

BIO Unified tag for biological entities Predefined

NP Base noun phrase Predefined

VB Verbal unit Predefined

IN Preposition, subordinating conjunction POS

CC Coordinating conjunction POS

TO to POS

PPC Punctuation comma POS

PRP Determiner of possessive second POS

DET Determiner POS

POS Possessive POS

Table 4.1: Main tags used in the system

For a sentence extracted from MEDLINE [2] “IL-2 gene expression and NF-kappa

B activation through CD28 requires reactive oxygen production by 5-lipoxygenase.”

(MEDLINE: 95369245), the preprocessed result is:

<BIO>IL-2 gene expression</BIO> <CC>and</CC> <BIO>NF-kappa B activation

</BIO> <IN>through</IN> <BIO>CD28</BIO> <VB>requires</VB>

<NP>oxygen production</NP> <IN>by</IN> <BIO>5-lipoxygenase</BIO>

A biological interaction tends to involve at least three objects: a pair of co-

occurring biological entities connected by a verb which specifies the action type of

the interaction. Therefore, a constraint is applied that only sentences satisfying form
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“BioEntity A – Verb – BioEntity B” will be preserved as candidate sentences to be

further processed in the system. It is possible that the presence of two entities in

different sentence structures implies a relationship. However, this work assumes the

underlying co-occurrence of two concepts and a verb in the interest of improving the

classification accuracy. This type of “object-relation-object” inference is also assumed

in other work [49,61,77,78].

The obtained candidate sentences are split into training and testing sets. The

training set is used to extract the representative patterns of biological interactions.

The testing set is prepared for identifying sentences that evidently describe biological

interactions.

4.4 Interaction Pattern Extraction

4.4.1 PATRICIA Trees

The method we propose to extract interaction patterns from candidate sentences is

based on the use of PATRICIA trees [65]. In our work, a PATRICIA tree is used for

the first time to facilitate the automatic extraction of interaction patterns. All the

training sentences are inserted and stored in a generic PATRICIA tree. From this

tree, the common patterns of POS tags can be efficiently stored and the tree structure

used to compute relevant usage statistics.

4.4.2 Potential Pattern Extraction

The premise of this work is that there is a set of frequently occurring interaction

patterns that match a majority of stated facts about molecular biology. In this work,

a biological interaction pattern is defined as follows:

Definition 4.1. (Biological Interaction Pattern) A biological interaction pat-

tern bip is a sequence of tags defined in Table 4.1 that captures an aggregate view

of the description of certain types of biological interactions based on the consis-

tently repeated occurrences of this sequence of tags in different interaction sentences.

BIP = {bip1, bip2, · · · , bipk} represents the set of biological interaction patterns.
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We first extract potential interaction patterns by populating a PATRICIA tree

using training sentences. Every node in the tree contains one or more system tags,

which is the preceding tag sequence of its descendant nodes in each sentence. Every

sentence is composed of a path of system tags from the root to a leaf. Hence, we

propose that the sequence of system tags that can be formed from traversing the

nodes of the tree is a potential pattern of biological interactions.

Figure 4.2 illustrates a simple example of the process of extracting potential in-

teraction patterns from a PATRICIA tree populated by the tagged forms of four

simplified sentences discussing various interactions between different biological en-

tities symbolized as A, B, C, and D. Dotted circles represent leaf nodes while solid

circles denote internal nodes. By traversing the nodes of the tree, 6 potential patterns

are recursively retrieved: (1) BIO CC BIO VB BIO (2) BIO VB (3) BIO VB BIO (4)

BIO VB IN BIO (5) BIO VB BIO IN BIO (6) BIO VB BIO CC VB BIO. Meanwhile,

the occurrence frequency of each pattern is also retrieved and recorded from the tree.

VB

BIO

BIO

CC  BIO  VB  BIO

S1:  A  interacts  with  C.

S2:  A  activates  B  through  C.

S3:  A induces B but inhibits C.

S4:  A  and  B  inhibit  C.

S1:  BIO  VB  IN  BIO

S2:  BIO  VB  BIO  IN  BIO

S3:  BIO  VB  BIO  CC  VB  BIO

S4:  BIO  CC  BIO  VB  BIO IN BIO CC VB BIO

IN BIO

Figure 4.2: Example of Potential Pattern Extraction

A frequency threshold fmin is used as a constraint to filter out patterns that

occur less than fmin times. It has been demonstrated that if an interaction is well

recognized, it will be consistently repeated [49,71]. While maintaining the size of the

pattern set, the generalization and the usability of patterns can be also controlled by

tuning fmin. The larger the threshold is, the more accurate patterns are. Further,

some filtering rules are adapted to control the form of a pattern and enhance the

quality of the discovered patterns, such as if a pattern ends with a tag IN, VB, CC or
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TO, the pattern will be rejected. Flexibility in setting this threshold can be applied

to meet special demands. As a result, the only valid pattern in the above example

is “BIO VB BIO”, if we set fmin = 2. For our system, we found that about 70% of

patterns extracted from the training set appeared at least 5 times. We consider that

these patterns are representative patterns, which have been intensively employed in

expressing biological interactions. Therefore, we finally set fmin = 5. Algorithm 2

shows our pattern learning method which has a time complexity of O(n) in the size

of candidate sentences, n.

Algorithm 2 Patricia-Tree-based Extraction of Biological Interaction Patterns

Input: Candidate Sentences CS ∈ Biological text; a frequency threshold fmin; a set

of filtering rules FR

Output: BIP : Set of biological interaction patterns

1: PT ← ∅ //PT : Patricia Tree

2: BIP ← ∅
3: for all sentences s ∈ CS do

4: PT ← Insert(s) //Populating Patricia Tree

5: for all nodes ni ∈ PT do

6: bipi ← Pattern(ni) //Concatenating tags in nodes from root to ni, which is a

7: //potential pattern

8: if Count(bipi) ≥ fmin and bipi does not meet FR then

9: //Count(bipi) returns the number of occurrences of bipi;

10: BIP ← bipi

4.4.3 Interaction Verb Mining

Although the obtained patterns are derived from the candidate sentences possessing

the form “BioEntity A – Verb – BioEntity B”, some of them may not contain facts

about biological interactions. This is possible if the action verbs do not describe an

interaction. Quite a few verbs, for instance, “report”, “believe”, and “discover”, do

not define interactions at all, but only serve a narrative discourse purpose. Therefore,

mining the correct interaction verbs becomes an important step in the automatic

discovery of patterns.
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An automatic approach was proposed in [78] to discover interaction verbs that

code gene and protein interactions in molecular biology articles. The authors applied

statistical tests and a logistic regression statistical model to determine whether a

given verb was an interaction verb. The features used in the experiments included the

frequencies of a verb before and after gene or protein names, and the frequencies of the

verb in different domains. Another simpler method was applied to mine interaction

verbs by raising the threshold value of the frequency of the extracted interaction

patterns [36]. The authors assumed that a verb in a pattern is more likely to act as

an interaction verb when the frequency of the pattern is comparatively high. The

mined verbs were then manually evaluated by domain experts to remove inaccurate

candidates.

We perform the latter method to mine a list of interaction verbs. This will be

used to further improve the relevance of achieved patterns by filtering out patterns

formed by the sentences in which the action verbs are not on the list.

4.5 Interaction Sentence Identification

Identifying interaction sentences is treated as a classification problem to differentiate

between interaction sentences and non-interaction sentences. Each sentence in the

training set is identified as either containing an interaction or not. An interaction is

a binary relationship between two concepts relevant to molecular or cell biology.

4.5.1 Pattern Matching Scoring

We first perform pattern matching by conversion of each sentence to be classified into

a sequence of tags. This sequence is then compared to every previously extracted

pattern. This is done using sequence alignment which calculates the degree of the

similarity of a sentence to an interaction pattern. Our hypothesis is that the alignment

scores can be used to discriminate interaction sentences from other types of sentences.

The language used in this discussion borrows heavily on the language used in the

pairwise sequence alignment literature. The scoring scheme involved in the process

of pattern matching consists of penalties for introducing gaps, match rewards and

mismatch penalties for a selection of system tag pairs. Table 4.2 presents a practical
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scoring scheme derived from previous experiments for main tags used in the system.

Penalties and rewards are denoted respectively by negative and positive values.

Tag Gap Match Mismatch

BIO -10 +8 -3

NP -8 +6 -3

VB -7 +7 -3

IN -6 +5 -1

CC -6 +5 -1

TO -1 +5 -1

PPC -1 +3 -1

PRP -1 +3 -1

DET -1 +3 -1

POS -1 +3 -1

Table 4.2: An alignment scoring scheme for system tags

As a variation of global alignment [79], an end-space free alignment algorithm [80]

is implemented to facilitate the comparison of patterns and testing sentences. It

assumes that gaps at the beginning or ending positions of a sentence always have a cost

of zero. This enables the detection of embedded interactions within longer sentences.

In this work, the shortest pattern is selected when multiple patterns align with the

same score. As a result, each sentence is assigned to its most compact pattern that

maximizes the alignment score. Therefore, high-scoring interaction sentences should

be distinguishable from non-interaction sentences which are scoring low against all

considered patterns. Essentially, this procedure can be seen as a variation of the k

Nearest Neighbors (kNN) classification method, with k = 1.

4.5.2 Performance Evaluation

We then evaluate whether the alignment scores can be used to classify the testing sen-

tences. We have proposed two independent evaluation measures: statistical analysis

(SA) and classification accuracy (AC).

Since it is assumed that interaction sentences achieve much higher alignment scores

in pattern matching than non-interaction sentences, SA measures whether the scoring

difference between the mean of interaction sentences and the mean of non-interaction

sentences should be attributed to chance, or whether it is statistically significant. If
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the scoring difference between the means is statistically significant, there will be a

tendency that interaction sentences outscore non-interaction sentences in alignment.

Hence, it would be reliable to use alignment scores to classify testing sentences.

Although non-interaction sentences come from the same documents as interaction

sentences, we assume that interaction sentences and non-interaction sentences are

two independent samples. Meanwhile, the Shapiro-Wilk test [81] package in SAS

(v8.02) [82] was employed to test the normality of the score distribution for the

two samples. Both distributions are normal distribution. Statistical analysis is then

performed based on the following theory. If x1 and x2 are the means of the two

samples, the mean and the standard deviation of the sampling distribution of the

statistic x1 − x2 are:

μx1−x2 = μ1 − μ2 and σx1−x2 =

√
σ2

1

n1

+
σ2

2

n2

where μ1, μ2, σ1 and σ2 are the means and the standard deviations of the two samples

respectively.

Then, the formula for statistical two-sample z test is given in the Eq.(4.1) with

the null hypothesis μ1 − μ2 = δ.

z =
x1 − x2 − δ√

σ2
1

n1
+

σ2
2

n2

(4.1)

Although δ can be any constant, in this work we test only the null hypothesis that

there is no scoring difference between the means of interaction and non-interaction

sentences, namely δ = 0. The conventional value of 0.05 is used for the level of

significance α in the analysis.

A comparatively large z will lead to the rejection of the null hypothesis. In other

words, the scoring difference is statistically significant. Consequently, interaction

sentences can be separated from non-interaction sentences according to alignment

scores. In practice, it is reasonable to assume that the two classes are not perfectly

separable but that the scoring scheme can be optimized to minimize the overlap of

the distribution of scores for both classes of sentences. Under the assumption of

normality, maximizing z would accomplish this task.

Conversely, AC measures the proportion of correctly classified testing sentences,
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including both interaction and non-interaction sentences, to the total testing sen-

tences. An appropriate threshold T is determined for obtained alignment scores to

differentiate between interaction and non-interaction sentences, and to facilitate the

calculation of classification accuracy.

While two evaluation measures are proposed, it is not possible to evaluate the

performance without correctly pre-labeled testing sentences. We decided to manually

classify the testing sentences in advance by assigning each sentence an appropriate

label of interaction or non-interaction. This work was done by me and Dr. Christian

Blouin who has a Ph.D. degree in molecular biology, and an agreement was reached

before pre-labeling the sentences, that is, the class label assigned to each testing

sentence must be in accordance with the main intention of the sentence. We studied

the contents of each sentence, judged the principal idea, and then concluded the class

label.

4.5.3 Scoring Scheme Optimization

NP-hardness

The scoring scheme applied in pattern matching has a crucial impact on the perfor-

mance of interaction sentence identification since it is based on the pattern matching

scores directly determined by the different costs specified in the scoring scheme. Op-

timizing the scoring scheme to minimize the overlap of the distribution of scores is

not a trivial problem. So far, an empirical or arbitrary scoring scheme was adopted

in previous research publications for the pairwise alignments [36,58]. We have proved

that finding the optimal solution for a variation of this problem is NP-hard by re-

ducing a well-known NP-hard problem 3-SAT to the problem [52]. Therefore, our

hypothesis is that this problem is NP-hard as well. This is an important claim to

justify the use of heuristic methods for determining the best parameter settings.

Heuristic approach using genetic algorithm

A genetic algorithm (GA) [83] is used as a heuristic method to optimize parameters

of the scoring scheme for sentence classification. The Perl package AI::Genetic [84] is

applied to perform the canonical genetic algorithm.
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In practice, our GA works with a population of potential solutions (scoring ma-

trices). Ultimately, the resulting optimized scoring scheme is the solution scheme for

sentence classification. The costs of penalties and rewards for different system tags

are encoded by integer values within two predefined ranges: [-50, 0) and (0, 50], and

assembled as a potential solution of scoring scheme, which consists of 30 parameters

covering the costs for tags in the alignment as listed in Table 4.2. For each poten-

tial solution, the fitness function of GA performs the pattern matching procedure,

evaluates the resulting alignment scores using the two evaluation measures SA and

AC respectively, and returns a z value in terms of the formula (1) or a corresponding

classification accuracy. GA iterates the fitness function with a goal of maximizing z

value or classification accuracy. A predefined strategy of AI::Genetic, “rouletteSingle-

Point”, is specified to implement roulette-wheel selection and single-point crossover.

The crossover and mutation probabilities are set to the empirical values, 0.95 and

0.01, according to the genetic algorithm package.

Our GA is set up to evolve for 100 generations, each of which consists of a pop-

ulation of 100 potential solutions of scoring scheme. GA starts with a randomly

generated population of 100 potential solutions and proceeds until 100 generations

are reached. The number of generations and the population size are decided with

consideration of the runtime cost of evaluating the fitness function, which requires

running the scoring algorithm with each sentence. GA evaluates all individuals in

a population, and the population is replaced on a generational basis. The members

of the population reproduce, and therefore their offspring must then be evaluated.

Consequently, a large number of generations or a large population size would incur

an expensive runtime cost of evaluation.

4.6 Results and Evaluation

This section starts with the description of our experimental dataset. Biological text

preprocessing results are then presented in section 4.6.2 followed by results of in-

teraction pattern extraction in which representative interaction patterns are derived

from refining the extracted potential patterns based on two types of annotations.

Next, results of interaction sentence identification are described in detail. In the

end, we conduct experiments to evaluate another state-of-the-art pattern generating
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algorithm in order to compare with our proposed method for interaction sentence

identification.

4.6.1 Dataset

Our experiments have been conducted on the GENIA corpus (v3.02) [21], the largest

annotated corpus in the molecular biology domain available to the public. It consists

of 2,000 biological research paper abstracts selected from the search results in the

MEDLINE database. It is intended to cover biological reactions concerning tran-

scription factors in human blood cells. The carefully curated information of sentence

segmentation, word tokenization, POS tagging and biological entity recognition has

also been encoded in the corpus.

4.6.2 Biological Text Preprocessing Results

Evaluated using the inherently equipped annotation information, our system achieves

nearly 99% accuracy on segmenting sentences and extracts 18,355 sentences from the

GENIA corpus. About 99% of sentences in the corpus end with a period, and nearly

94% of periods are sentence boundaries (6% at the end of abbreviations and about

0.3% as both).

Furthermore, the system obtains an overall POS tagging accuracy of 91.0% on

364,208 individual words. Table 4.3 shows the tagging results of main POS tags. We

noticed that the tagging information encoded in the GENIA corpus is not always

consistent throughout the whole corpus, thus introducing detrimental effects on the

tagging performance. For instance, in the GENIA corpus the word “stimulated” is

tagged as VBN for terms “stimulated human endothelial cells” (MEDLINE:95202809)

and “minimally stimulated T cells” (MEDLINE:92156807) but tagged as JJ for terms

“stimulated IL-5 promoter activation” (MEDLINE:97407957) and “Fc gamma RIIA

stimulated cells” (MEDLINE:96289501). Also, considering that the tagger used in

the system is developed and parameterized according to the general English domain,

porting this tagger to biology domain is accompanied by some loss in performance.

We expect that retraining our tagger on annotated biological language corpora will

improve the tagging performance.
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Tag name Tagging accuracy (%) Total count

NN 97.5 134,044

IN 99.8 62,348

JJ 70.5 46,414

NNS 99.6 32,522

CC 92.2 17,449

VBN 86.8 14,702

RB 88.5 12,393

VBD 96.0 10,342

TO 100.0 7,616

VB 93.9 5,452

VBG 87.6 4,940

VBZ 89.0 9,172

VBP 89.9 6,814

Overall 91.0 364,208

Table 4.3: Part-of-Speech tagging accuracy

The system reaches an F-score of 0.705 on annotating all biological entities in-

cluding both multi-word and single word entities. After performing text chunking,

the system produces a set of candidate sentences. We further perform text chunking

on the GENIA corpus based on its encoded annotations and use the resulting set of

sentences for the subsequent experiments to provide a gold standard to which results

produced based on system annotations can be compared. Table 4.4 presents some

statistics of the preprocessed dataset. For GENIA annotations, we extracted 16,272

candidate sentences which possess the form “BioEntity A – Verb – BioEntity B”. For

system annotations, we obtained 1,250 more candidate sentences than GENIA anno-

tations due to the annotation differences. For each type of annotation, we randomized

the candidate sentence set and chose 12,525 candidate sentences as the training set to

extract biological interaction patterns. The rest of candidate sentences are prepared

as the testing set for interaction sentence identification.

4.6.3 Interaction Pattern Extraction Results

For our system, a frequency threshold fmin = 5 is used to filter out the potential pat-

terns that appear less than 5 times in the training set. Evaluated by domain experts,

a list of 300 interaction verbs and a list of 700 non-interaction verbs are obtained from
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Attributes GENIA System

Total preprocessed sentences 18,545 18,355

Candidate sentences 16,272 17,525

Training set sentences 12,525 12,525

Testing set sentences 6,020 5,000

Table 4.4: Statistics of experimental dataset

12,525 training sentences with GENIA annotations. Further, inflectional variants of

the verbs are also added into the lists. For example, for an interaction verb “stimu-

late”, its inflectional variants including “stimulates”, “stimulated” and “stimulating”

are added. Table 4.5 gives some examples of mined interaction verbs.

activate consolidate inhibit moderate repress

antagonize depress intensify modulate reproduce

augment degenerate interact neutralize translocate

bind dissociate interfere prevent trigger

block hamper localize prohibit ubiquitinate

catalyze induce magnify reduce unphosphorylate

Table 4.5: Examples of mined interaction verbs

Refined by the filtering rules and the list of interaction verbs, a final set of repre-

sentative patterns of biological interactions are obtained. We performed our proposed

pattern learning method on training sentences of both GENIA and system annota-

tions. As shown in Table 4.6, while system annotations achieve more patterns than

GENIA annotations, there are 97 common patterns between them.

Attributes GENIA System

Potential patterns (fmin = 5) 241 329

Extracted patterns (fmin = 5) 209 302

Table 4.6: Pattern extraction results

Moreover, Table 4.7 lists the 10 most frequent interaction patterns based on GE-

NIA annotations. For instance, a training sentence conforming to the second pattern

is “The expression of the QR gene is regulated by the transcription factor AP-1.”

(MEDLINE: 96146856).
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Pattern count Pattern form

264 BIO VB BIO IN BIO

261 NP IN BIO VB IN BIO

182 NP IN BIO VB BIO

162 BIO IN BIO VB IN BIO

160 BIO VB IN BIO IN BIO

143 NP IN BIO VB IN NP IN BIO

142 NP VB IN BIO VB BIO

138 PRP VB IN BIO VB BIO

126 BIO VB NP IN BIO IN BIO

121 NP IN BIO VB NP IN BIO

Table 4.7: Extracted biological interaction patterns

4.6.4 Interaction Sentence Identification Results

Four hundred sentences were randomly extracted from the testing set. All of these

sentences contained the “BioEntity A – Verb – BioEntity B” set of system tags.

Each was manually labeled into two classes: interaction and non-interaction. The

distribution of class labels of the sample sentences is shown in Table 4.8.

Class label 400 sentences

Number Proportion(%)

Interaction 211 52.75

Non-interaction 189 47.25

Table 4.8: Class distribution of sample sentences

Validation of convergence property of GA

We generated an optimized scoring scheme using a GA (100 individuals, 100 gen-

erations) on the 400 testing sentences and obtained its classification. To simulate

a perfect classifier, we treated this classification as absolute truth in a second GA

optimization of the scoring scheme on the testing sentences. The resulting scheme

converged with a 97.75% classification accuracy. This provides an evidence of the

stability of the problem with respect to the parameter values for the population size

and the number of generations.
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Comparison between two evaluation measures

We applied the evaluation measures, SA and AC, respectively in the fitness function of

GA to the 400 testing sentences, and recorded the scoring scheme of every generation

resulted from GA. Then, the classification accuracy in terms of each scoring scheme

derived from SA is computed for comparison. Figure 4.3 presents the distribution

of achieved classification accuracy in terms of each scoring scheme optimized by GA.

This comparison is done with respect to the generation and evaluated on 400 testing

sentences using the annotation from the GENIA corpus.

Figure 4.3: Classification Accuracy Comparison between Two Measures

The achieved classification accuracy for AC increases in a ladder-like fashion,

and generally outperforms the classification accuracy derived by SA. It reaches its

highest classification accuracy 80.75% from the 78th generation. In contrast, for SA

the increase of z does not correspond to the increase of classification accuracy. The

highest classification accuracy, 78%, is reached at the 56th and 57th generations.

Therefore, AC is considered more efficient with the system and becomes our final

choice of the evaluation measure used in the fitness function of GA.
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Results of sentence identification

Since our sample set is comparatively small, we implemented a strategy of cross-

validation, and calculated the average performance over 8 runs of labeled sentences.

First we divided the 400 sentences into 8 equal subsets. Then we used 7 subsets, 350

sentences, as training data, and the remaining 50 sentences as testing data. Based on

the obtained interaction patterns, GA results in an optimized scoring scheme on the

350 sentences along with its associated scoring threshold T , which are then applied

together to the other 50 testing sentences for sentence classification. This procedure

was repeated 8 times. Classification performances were averaged over these 8 runs

to produce a single estimation. Table 4.9 and Table 4.10 report the averaged system

performances and the corresponding standard deviation (STDEV) on the sample set

respectively to both GENIA and our system annotations.

Experimental GENIA annotation

Results Interaction STDEV Non-interaction STDEV

Precision 0.736 0.052 0.898 0.080

Recall 0.921 0.075 0.694 0.066

F-score 0.816 0.042 0.781 0.070

Overall AC(%) 80.25 0.046

Table 4.9: Cross-validated performance based on GENIA annotation

Experimental Our system annotation

Results Interaction STDEV Non-interaction STDEV

Precision 0.711 0.056 0.750 0.062

Recall 0.800 0.068 0.626 0.035

F-score 0.747 0.054 0.670 0.047

Overall AC(%) 72.50 0.043

Table 4.10: Cross-validated performance based on our system annotation

Table 4.9 shows that when using the GENIA annotations the system achieves on

average 0.816 F-score in identifying interaction sentences and an overall AC of 80.25%,

which is much higher than the proportion of either interaction or non-interaction

sentences in the 400 sentence subset. This indicates that the system performs well on

both classes. Meanwhile, in 100 generations GA is not able to evolve a scoring scheme

that leads to an AC above 86%. We have also tested 20 more generations but AC
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shows no improvement when GA reaches the 120th generation. This indicates that the

scoring scheme and threshold resulted from the 350 training sentences cannot provide

enough distinction to correctly classify some of the 50 testing sentences. Compared to

GENIA annotations, our system annotations achieve a lower performance shown in

Table 4.10. We attribute the difference to the accuracy loss of system annotations in

the preprocessing steps as inaccurate annotations will lead to inappropriate patterns,

thus harming the performance of sentence identification.

There are a number of preprocessing steps that affect the final classification per-

formance. However, even assuming an ideal preprocessing of the unstructured text,

our method relies on the assumption that all interaction sentences are articulated by

a set of POS patterns that are distinct to all other types of sentences. The manual

annotation of the training/testing set was a difficult task, so it is reasonable to as-

sume that this will also be difficult for the classifier. The use of passive voice and

the common use of comma splicing within patterns makes sentence-level classification

an especially difficult task. Another source of interactions that our system cannot

identify are implied and assume a deeper semantic understanding of the concepts

themselves. Other sentences are long enough that the interaction itself is merely a

secondary purpose to another idea. All of these factors pose interesting challenges for

future development of this work.

Moreover, we also experimented with 10 empirical scoring schemes derived from

previous experiments on the 400 sentences, including the scheme shown in Table 4.2.

Several fixed thresholds were attempted for obtained alignment scores to differentiate

between interaction and non-interaction sentences. Without using GA to optimize

parameters of the scoring scheme, the best performance of 10 empirical schemes is

an overall AC of 66%, which has been outperformed at the 3rd generation of GA

optimization with GENIA annotations.

Impact of verb tags

Instead of using the unified tag “VB” for all verbal units, we further employed different

tags to differentiate between interaction and non-interaction verbs, and investigated

the impact of the tags on the system performance. “IVB”, “NONIVB”, and “VB”

are used to represent interaction verbs, non-interaction verbs, and verbs that are not
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on both lists.

Following the same experimental procedures, candidate sentences with new verb

tags are prepared and corresponding interaction patterns are then derived. An addi-

tional filtering rule is applied if a pattern does not contain tag “IVB”, the pattern

will be rejected. Table 4.11 shows the pattern extraction results with new verb tags.

Attributes GENIA System

Potential patterns (fmin = 5) 180 289

Extracted patterns (fmin = 5) 116 154

Table 4.11: Pattern extraction results with new verb tags

New verb tags generally result in fewer interaction patterns than the unified tag.

Based on fewer patterns, the system adopting new tags achieves a noticeable improve-

ment in performance on testing sentences in terms of both GENIA and our system

annotations compared to the original system. Table 4.12 and Table 4.13 report the

detailed results.

Experimental GENIA annotation

Results Interaction STDEV Non-interaction STDEV

Precision 0.894 0.086 0.803 0.044

Recall 0.806 0.033 0.891 0.086

F-score 0.845 0.046 0.842 0.051

Overall AC(%) 84.50 0.042

Table 4.12: Cross-validated performance based on GENIA annotation with new tags

Experimental Our system annotation

Results Interaction STDEV Non-interaction STDEV

Precision 0.778 0.044 0.752 0.068

Recall 0.821 0.076 0.739 0.057

F-score 0.796 0.040 0.742 0.064

Overall AC(%) 77.50 0.034

Table 4.13: Cross-validated performance based on our system annotation with new
tags
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4.6.5 System Performance Comparison

Within the framework of our system, we further conducted experiments on the same

dataset for sentence identification using interaction patterns generated by another

pattern generating algorithm (PGA) [36] in order to compare with the performance

of patterns obtained by our proposed pattern learning method.

The algorithm is based on sequence alignment, which calculates a consensus se-

quence in addition to the similarity score. This consensus sequence represents all

common parts (POS tags and their positions) in the aligned sequences and could be

used directly to form a pattern. The local alignment algorithm [51] was implemented

for the alignment and scoring of sentence pairs [36]. Thus, the aligned sentences could

be quite dissimilar overall, but contain regions that are highly similar.

In our implementation, PGA iterates over all pairs of candidate sentences in the

training set and calculates the best alignment for each pair in terms of the cost scheme

of gap penalties proposed [36]. Each consensus sequence from the optimal alignment

of each pair forms a pattern. The number of occurrences of each pattern is also

calculated as the support for each. In principle, the maximum number of patterns

for n sentences is n(n − 1)/2, but in practice not all will be generated since a set of

different alignments can lead to the same consensus sequence. On the other hand, if

multiple optimal alignments exist when aligning a sentence pair, all alignments will

be considered to form patterns. The filter rules proposed in [36] are also applied in

our implementation. All patterns below a minimum support are removed from the

set of generated patterns.

Algorithm 3 shows the procedure of the pattern generating algorithm, which has

a time complexity of O(n2) in the size of candidate sentences, n. Hence, our proposed

pattern learning method is much more efficient when dealing with large collections of

biological texts.

As shown in Table 4.14, PGA produces a large number of patterns, even with

fmin = 5 and other filtering criteria. There are 37,319 common patterns between two

types of annotations.

In order to make a direct comparison, we decided to experiment with the same

number of interaction patterns. For GENIA annotations, we chose the most frequent

209 patterns generated by PGA to compare with the 209 patterns by our method. For
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Algorithm 3 Pattern Generating Algorithm

Input: Candidate Sentences CS ∈ Biological text; a frequency threshold fmin; a set

of filtering rules FR

Output: BIP : Set of biological interaction patterns

1: BIP ← ∅
2: for all (si, sj) ∈ CS(i �= j) do

3: alignmenti,j ← Align(si, sj) //Alignment for si and sj

4: bip ← Consensus(alignmenti,j) //Consensus sequence to form a pattern

5: if bip does not meet FR then

6: if bip /∈ BIP then

7: BIP ← bip

8: countbip = 1

9: else

10: countbip + +

11: for all bip ∈ BIP do

12: if countbip < fmin then

13: remove bip from BIP

Attributes GENIA System

Potential patterns (fmin = 5) 476,600 387,302

Extracted patterns (fmin = 5) 176,082 88,800

Table 4.14: Pattern extraction results of PGA

system annotations, two sets of 302 patterns are employed. Further, it is found that

for GENIA annotations there are 96 common patterns between the two sets of 209

patterns, and there are 153 common patterns between the two sets of 302 patterns

for our system annotations. 8-fold cross-validation is performed on the 400 testing

sentences for sentence identification. Table 4.15 and Table 4.16 present the averaged

results of sentence identification of PGA over 8 runs with respect to both GENIA

and our system annotations.

The results show that patterns generated by PGA do not perform as well as

patterns obtained by our method. We further experimented with new verb tags.

Although new tags help to improve the performances, they are generally inferior
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Experimental GENIA annotation

Results Interaction STDEV Non-interaction STDEV

Precision 0.706 0.046 0.846 0.066

Recall 0.870 0.069 0.635 0.053

F-score 0.776 0.043 0.724 0.057

Overall AC(%) 75.50 0.047

Table 4.15: Cross-validated performance of PGA based on GENIA annotation

Experimental Our system annotation

Results Interaction STDEV Non-interaction STDEV

Precision 0.677 0.049 0.738 0.057

Recall 0.814 0.072 0.565 0.043

F-score 0.732 0.053 0.634 0.051

Overall AC(%) 69.50 0.044

Table 4.16: Cross-validated performance of PGA based on our system annotation

to the results using patterns obtained by our method. We therefore infer that our

proposed method is more efficient in producing biological interaction patterns to

identify interaction sentences.

4.7 Summary

In this chapter, a novel approach is presented to automatically extract the repre-

sentative patterns of biological interactions, which are then used to detect sentences

that describe biological interactions. We have conducted the experiments on our

designed system based on the GENIA corpus. By means of a genetic algorithm to

define the scoring scheme, the system achieves on average 0.845 F-score using GENIA

annotations and 0.796 F-score using our system annotations by cross-evaluating 400

sentences in which at least two biological concepts co-occur.

We further investigated the impact of different verb tags on the system perfor-

mance. Based on fewer interaction patterns, the system adopting new tags achieves a

noticeable improvement in performance on testing sentences in terms of both GENIA

and our system annotations compared to the original system. By comparing with

another pattern generating algorithm, we infer that our proposed method is more

efficient in producing interaction patterns to identify interaction sentences.
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Biological Event Extraction using Subgraph Matching

In this chapter, we extract complex biological events from the scientific literature in

tackling the primary task of the BioNLP’09 shared task on event extraction [1]. We

represent sentences as grammatical dependency graphs and extract biological event

rules from training sentences as minimal dependency graphs. We then investigate

whether subgraph matching of event rules into testing sentences can be used to extract

new biological events from the literature.

The chapter is organized as follows: In Section 5.1, we describe the problems in

the task of biological relation extraction and introduce the BioNLP’09 shared task on

event extraction. Section 5.2 elaborates the approaches and algorithms proposed in

our graph matching-based method. Section 5.3 discusses important implementation

issues. The performance of our method is evaluated and analyzed in Section 5.4.

Finally, Section 5.5 summarizes this work and introduces future directions.

5.1 Problem Description

Much research in information extraction in the biological domain has focused on

extracting semantic relations between molecular biology concepts [4,5,34–38]. State-

of-the-art protein annotation methods have achieved reasonable success with a per-

formance of 88% F-score [39]. A task of interest is to automatically extract protein-

protein interactions (PPI). To date, most of the biological knowledge about these in-

teractions is only available in the unstructured texts from scientific articles [6,85]. Al-

though various approaches were proposed for the PPI extraction, the best-performing

system from the BioCreative II challenge [86] only achieved a 29% F-score in identi-

fying protein pairs in a sentence that have a biologically relevant relationship. This

suggests that the problem of biological relation extraction is difficult and far from

solved.

Sentences in the biological literature tend to be long and complex, and often

56
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have long-range dependencies. Therefore, co-occurrence based or surface pattern

based shallow analysis on biological texts suffers from either low precision or low

recall [4, 6, 87]. As a result, full parsing has been explored as the basis for relation

extraction to perform intensive syntactical and semantical analysis [4–6,34,35,37,61].

In the BioNLP’09 shared task on biological event extraction [1], 20 out of the total 24

participating teams resorted to a full parsing strategy, including all top 10 performing

teams. However, most previous work extracts relevant relations based on a limited set

of manually designed rules that map interpreted syntactic structures into the semantic

relations [4,5,34,35,37,61]. We propose an approach to automatically learn rules that

characterize a wide range of biological relations and events from a syntactically and

semantically annotated corpus. Our approach is also based on full parsing of biological

texts.

More recently, the dependency representation obtained from full parsing, with its

ability to reveal long-range dependencies, has shown an advantage in biological rela-

tion extraction over the traditional Penn Treebank-style phrase structure trees [64].

Biological relations are generally extracted from the dependency representation by

two main approaches. In one approach, the dependency representation is traversed

and paths that contain the relevant terms describing the relations predefined in the

rules are extracted as candidate relations [4,61,87]. In the other, relations are learned

from the dependency representation using supervised machine learning based on spe-

cialized feature representations or kernels, encoded with dependency paths from the

representation [40,46,47].

Graphs provide a powerful primitive for modeling biological data such as pathways

and protein interaction networks [88–90]. As a result, subgraph matching has been

intensively explored in the biological community to find a query graph of pathways

in a graph database of known biological processes by measuring the graph similar-

ity. Since the dependency representation maps straightforwardly onto a directed

graph [91], properties and operations of graphs can be naturally applied to the prob-

lem of biological relation extraction. Rather than the above two approaches, we

propose a graph matching-based approach using subgraph matching to extract bio-

logical relations and events from the scientific literature for the purpose of tackling

the primary task of the BioNLP’09 shared task on biological event extraction. The
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relation extraction is performed by matching the dependency representation of auto-

matically learned rules to the dependency representation of biological sentences. This

process is treated as a subgraph matching problem, which corresponds to the search

for a subgraph isomorphic to a rule graph within a sentence graph.

5.1.1 BioNLP’09 Shared Task on Event Extraction

The BioNLP’09 shared task [1] focused on the recognition of biological events that

appear in the biological literature. The goal of the shared task was to competitively

evaluate information extraction (IE) systems targeting complex biological events. A

biological event describes a change on the state of one or more biological molecules. It

involves multiple participants or arguments of varying numbers. These arguments are

assigned semantic roles and event types are determined based on existing biological

ontologies. A biological event can be recursively embedded as a sub-event that func-

tions as an argument in other events, thus facilitating the construction of complex

biological networks.

When a biological event is described in scientific literature, we can analyze it by

recognizing an event type, the event trigger which signals the event in texts, one or

more event arguments, and the source text (ST ), where the event is described. The

source text is composed of tokens. We define tokens as finite strings of characters

from a finite alphabet. The alphabet is a finite set of symbols Σ, or a subset of it. In

practice, elements of the alphabet are ASCII characters. Tokens come from W , the

set of all finite strings of characters from Σ. The source text is a finite sequence of

tokens, i.e., any member of W ∗.

Events are normally characterized by verbs or nominalized verbs that indicate the

state change of a biological molecule or interactions between various biological entities.

In the sentence “Tumor necrosis factor induced slightly c-fos and had almost no effect

on c-jun and AP1.” (MEDLINE: 1314139), an event is specified by the trigger verb

“induced”, and the event arguments are defined as “Tumor necrosis factor” and “c-

fos”. Semantic roles are assigned to the two arguments. The trigger “induced” has

the first argument “Tumor necrosis factor”, whose semantic role is an agent or cause,

and the second argument “c-fos”, whose semantic role is a theme. The type of the

event is Positive regulation, which is determined based on Gene Ontology (GO) [20]



59

and the GENIA ontology [21].

Since our focus is on description of biological events in text, we define a biological

event in a way consistent with the shared task, which is as follows:

Definition 5.1. (Biological Event) A biological event is a four-tuple e = (Type,

Trigger, Arguments, ST ). ST ∈ W ∗, called the source text, is a sequence of tokens

that contains the event; Type ∈ Te is an event type from a finite set of event types

Te; Trigger is a substring of tokens from ST that signals the event; Arguments is a

non-empty, finite set of pairs (l, a) where l ∈ L is a label from a finite set of semantic

role labels L, and a is a token from ST, or another biological event.

For the BioNLP’09 shared task, Te consists of nine event types defined in Table 5.1,

and L = {Theme, Cause}. A gold event denotes a biological event where all the

information has been manually annotated by domain experts.

Similarly to the previous shared tasks, LLL [73] and BioCreative [72], which fo-

cused on biological information extraction to seek relations between biological mole-

cules, the BioNLP’09 shared task also addressed biological IE, but took a definitive

step further toward finer-grained information extraction. While LLL and BioCre-

ative targeted a rather simple representation of relations of biological molecules, i.e.,

protein-protein interactions, the BioNLP’09 shared task was concerned with the de-

tailed behavior of biological molecules and semantically rich biological events. It was

the first competitive evaluation of its kind in the BioNLP field as the extraction of

complex biological events became possible only recently with the introduction of cor-

pora containing the necessary annotations: the GENIA event corpus [44] and the

BioInfer corpus [45].

The shared task focused on extraction of biological events particularly on proteins

or genes, which were not distinguished in the task. In order to concentrate efforts on

the novel aspects of the event extraction, it was assumed that the protein recognition

had been already performed, and the task was thus equipped with a given set of gold

protein annotation. In order to facilitate evaluation on different aspects of the overall

task, the task was further divided into three subtasks to address event extraction at

different levels of specificity [1]:
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Task 1. Core event detection: involves the detection of typed events and

assignment of given proteins as their primary arguments.

Task 2. Event enrichment: involves the recognition of entities that serve as

secondary arguments to further specify the events extracted by Task 1.

Task 3. Negation and Speculation detection: involves the detection of

negations and speculation statements regarding events extracted by Task 1.

The primary task, Task 1, was to detect biological events such as protein binding

and phosphorylation, given only the annotation of protein names. It was required to

extract type, trigger, and primary arguments of each event. This task is an example

of extraction of semantically typed, complex events for which the arguments can

also be other events. Such embedding results in a nested structure that captures

the underlying biological statements more accurately compared to the previously

prevailing approach of detecting binary interactions between biological entities [72,73].

In this work, we focus on Task 1 and propose a graph matching-based method to cope

with the problem.

5.1.2 Dataset

For our experiments, the same datasets from the BioNLP’09 shared task are used.

The organizers provided three human-curated datasets for training and evaluating

participating systems. A training set and a development set are provided together for

the purpose of training. They are prepared based on the publicly available portion

of the GENIA event corpus [44] with the gold protein annotation and the gold event

annotation given. There are 800 biological research abstracts in the training set

and 150 abstracts in the development set. Also, a testing set of 260 abstracts is

prepared from a held-out part of the same corpus and provided without the gold event

annotation. The objective is to recreate the gold event annotation of the testing set

based on the information induced from the training data. Results on the testing set

are required to be submitted to the website of the shared task [92] in order to receive

official evaluations on the testing data.

Table 5.1 shows the nine event types considered in the shared task. The event

types were selected on the basis of their frequency and importance in the GENIA

event corpus. Since these types are all related to protein biology, they take proteins
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as their theme. The first three types are related to protein metabolism, i.e., protein

production and breakdown. Phosphorylation is a typical protein modification event,

while Localization and Binding are two types of molecular events. Regulation, in-

cluding the sub-types Positive and Negative regulation, represents regulatory events

and causal relations.

As shown in Table 5.1, the themes of events are primary arguments that are critical

in its identification. For regulation events, the entity or event stated as the cause of

the regulation is also regarded as the primary argument. The first five event types

require only one theme, and the task can be cast as relation extraction between an

event trigger and a protein name. Binding events are more complicated in requiring

the detection of an arbitrary number of themes. Regulation events always take a

theme argument and, when expressed, also a cause argument. As a unique feature of

the BioNLP task, regulation events may take another event, namely sub-event, as its

theme or cause.

Event type Primary arguments

1 Gene expression Theme(Protein)

2 Transcription Theme(Protein)

3 Protein catabolism Theme(Protein)

4 Phosphorylation Theme(Protein)

5 Localization Theme(Protein)

6 Binding (Theme(Protein))+

7 Regulation Theme(Protein/Event), (Cause(Protein/Event))?

8 Positive regulation Theme(Protein/Event), (Cause(Protein/Event))?

9 Negative regulation Theme(Protein/Event), (Cause(Protein/Event))?

Table 5.1: Event types and primary arguments

Figure 5.1 illustrates an example of the format of the training data. Each target

text file contains two lines, one for the title and the other for the abstract. The

sentence segmentation is not provided and events may involve proteins that appear

in different sentences. In the annotation file, each annotation is specified on a separate

line. There are two types of annotation: (1) protein and event trigger annotations

whose IDs begin with “T”, and (2) event annotations whose IDs begin with “E”.
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RFLAT-1: a new zinc finger transcription factor that

activates RANTES gene expression in T lymphocytes.

RANTES (Regulated upon Activation, Normal T cell

Expressed and Secreted) is a chemoattractant cytokine

(chemokine) important in the generation of inflammatory

infiltrate and human immunodeficiency virus entry into

immune cells. RANTES is expressed late (3-5 days) after

activation in T lymphocytes.

The target text file:

The annotation file:

T3 Protein 0 7 RFLAT-1

T4 Protein 63 69 RANTES

T5 Protein 104 110 RANTES

T7 Gene_expression 75 85 expression

T8 Positive_regulation 53 62 activates

E1 Gene_expression:T7 Theme:T4

E2 Positive_regulation:T8 Theme:E1 Cause:T3

.
.
.

.
.
.

Figure 5.1: Format of Training Data

Each annotation is assigned a unique ID. The protein and event trigger annota-

tions are presented as a four-tuple of entity type, offset-begin, offset-end and text

span. The offset-begin is the index of the first character in the entity. The offset-end

is the index of the first character after the entity. The text span is then the text

substring specified by the offset-begin and the offset-end. Each event annotation is

expressed as an N-tuple of event-type and arguments. Participants are required to

produce the annotations for events in the testing set. This involves producing event

trigger annotations and event annotations by associating the annotated proteins and

event triggers to an event.

5.2 Subgraph Matching-based Event Extraction

In this section, we formally describe a graph matching-based method to extract bio-

logical events from the biological literature in tackling the primary task of the BioNLP

shared task. A graph is a pair of sets G = (V, E) where V is a set of nodes and E is
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a set of edges that connect pairs of nodes. Each edge is an ordered pair of nodes, i.e.,

E ⊆ V 2. A graph may be undirected, meaning that there is no distinction between

the two nodes associated with each edge, or its edges may be directed from one node

to another. A graph S = (V ′, E ′) is a subgraph of G = (V, E) if V ′ ⊆ V and E ′ ⊆ E.

We use notation S ⊆ G.

In this section, we first introduce the dependency representation and define the

dependency graph which serves as the basis for our event extraction approach. We

then propose an event rule induction method to automatically learn rules for detection

of biological events from the dependency graphs of training sentences based on the

gold event annotation. In the end, we describe our sentence matching approach that

uses subgraph matching to match the event rules with each testing sentence in order

to extract events in the sentence.

5.2.1 Dependency Representation

The dependency representation is designed to provide a simple description of the

grammatical relationships in a sentence that can be effectively used to extract textual

relations [91]. The dependency representation is often used in information extraction,

including applications in the biological domain [4, 47, 93–95]. It was evaluated as

the representation scheme for different natural language parsers to unify syntactic

annotations of biological corpora [93,94]. It was also used for extracting interactions

between genes and proteins from the scientific literature [4, 47, 95].

The dependency representation for a sentence is formed by words or tokens in

the sentence and the relationships between tokens. A single dependency relation

is represented as relation(governor, dependent) where governor and dependent are

tokens in the sentence, and relation is the abbreviated grammatical dependency

relation between the pair of tokens, which is determined based on existing relation

hierarchies.

Since the dependency representation characterizes all sentence relationships uni-

formly as typed dependency relations between pairs of tokens, it can be presented as

a directed graph, which is named dependency graph and defined in this work as follows:

Definition 5.2. (Dependency Graph) A dependency graph is a pair of sets
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G = (V,E) where V is a set of nodes that correspond to the tokens in a sentence,

and E is a set of directed edges for which the edge labels correspond to grammatical

dependency relations between the tokens, and the direction exists pointing from the

governor token to the dependent token.

The graphs discussed in the subsequent sections all refer to the dependency graphs.

Figure 5.2 illustrates the dependency representation and the dependency graph for the

sentence: “Interferons inhibit activation of STAT6 by interleukin 4 in human mono-

cytes by inducing SOCS-1 gene expression.” (MEDLINE: 10485906). The token

number in the sentence is appended to each token in order to differentiate identi-

cal tokens that co-occur in a sentence. All the protein names in the sentence have

been replaced with a unified tag “BIO Entity”. The POS tag of each token is noted.

“BIO Entity” tokens are uniformly tagged as a proper noun.

5.2.2 Event Rule Induction

The premise of this work is that there is a set of frequently occurring event rules that

match a majority of stated events about molecular biology. We consider that a biolog-

ical event rule encodes the detailed description and the typical contextual structure

of a group of biological events. In this work, a biological event rule is defined as follows:

Definition 5.3. (Biological Event Rule) A biological event rule is a pair

r = (f,Gr). Gr = (Vr, Er) is a dependency graph, which characterizes the con-

textual structure of events. f = (Type, Trigger, Arguments) encodes a detailed event

frame, where Type is the event type, Trigger = {(t1, v1), (t2, v2), · · ·} records the event

trigger and is a non-empty finite sequence of tokens associated with nodes in Gr, i.e.,

Trigger ∈ (W × Vr)
+, and Arguments = {(t1, l1, v1), (t2, l2, v2), · · ·} records the event

arguments and is a non-empty finite sequence of tokens associated with semantic role

labels and nodes in Gr, i.e., Arguments ∈ (W × L × Vr)
+.

The event rule induction method that we propose to automatically learn biologi-

cal event rules from training sentences is based on the use of gold event annotation.
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Dependency representation:

nsubj(inhibit-2/VBP, Interferons-1/NNS)

dobj(inhibit-2/VBP, activation-3/NN)

prep_of(activation-3/NN, BIO_Entity-5/NNP)

prep_by(BIO_Entity-5/NNP, BIO_Entity-7/NNP)

amod(monocytes-10/NNS, human-9/JJ)

prep_in(BIO_Entity-7/NNP, monocytes-10/NNS)

prepc_by(inhibit-2/VBP, inducing-12/VBG)

nn(expression-15/NN, BIO_Entity-13/NNP)

nn(expression-15/NN, gene-14/NN)

dobj(inducing-12/VBG, expression-15/NN)

Tokenized & Protein-replaced Sentence:

Interferons inhibit activation of BIO_Entity by

BIO_Entity in human monocytes by inducing BIO_Entity

gene expression .

Dependency graph:

inhibit-2/VBP

Interferons-1/NNS

nsubj

activation-3/NN

dobj

inducing-12/VBG

prepc_by

BIO_Entity-5/NNP

(STAT6)

prep_of

BIO_Entity-7/NNP

(interleukin 4)

prep_by

monocytes-10/NNS

prep_in

human-9/JJ

amod

expression-15/NN

dobj

BIO_Entity-13/NNP

(SOCS-1)

nn

gene-14/NN

nn

Figure 5.2: Dependency Representation and Dependency Graph Example
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For the dependency graph of each training sentence, the directions of edges are first

removed so the directed graph is transformed into an undirected graph, in which

every edge can be traveled in either direction, and therefore a path must exist be-

tween any two nodes since the graph is always connected. For each gold event, the

shortest dependency path in the undirected graph connecting the event trigger nodes

to each event argument node is extracted. The union of all the shortest dependency

paths is then computed for each event. In the end, the original directed dependency

representation on the path union is retrieved and used as the graph representation of

the event.

For multi-token event triggers, the shortest dependency path connecting the node

of every trigger token to the node of each event argument is extracted, and the union of

the paths is then computed for each trigger. For regulation events, when a sub-event

is used as an argument, only the type and the trigger of the sub-event are preserved

as the argument of the main events. The shortest dependency path is extracted so as

to connect the trigger nodes of the main event to the trigger nodes of the sub-event.

In case that there exists more than one shortest path, all of the paths are considered.

As a result, each gold event is transformed into the form of a biological event rule.

Algorithm 4 shows the details of inducing event rules from the gold events of each

training sentence. The obtained biological event rules are categorized in terms of the

nine event types of the shared task.

Figure 5.3 presents the undirected graph of the sentence exemplified in the Fig-

ure 5.2 and an event rule built from one of the gold events (Positive regulation E1)

of the sentence following the procedure of Algorithm 4. The detailed description and

the dependency graph of the event rule are separated by an arrow. The tokens regard-

ing proteins and event triggers in the sentence have been attached to the gold event

annotation. The nodes involved in the dependency graph of the generated biological

event rule are highlighted in the sentence graph.

5.2.3 Sentence Matching

We propose a sentence matching approach to attempt to match event rules to each

testing sentence. Since the event rules and the sentences all possess a dependency

graph, the matching process is a subgraph matching problem, which corresponds to
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Gold event E1:

ID   entity_type offset-begin offset-end text_span    token

T1   Protein      34            39       STAT6       (BIO_Entity-5/NNP)

T2   Protein      43            56    interleukin 4  (BIO_Entity-7/NNP)

T3   Protein      88            94       SOCS-1 (BIO_Entity-13/NNP)

T4   Positive_regulation   20   30     activation (activation-3/NN)

Interferons inhibit activation of STAT6 by interleukin 4

in human monocytes by inducing SOCS-1 gene expression.

Original Sentence:

Event rule of E1:

E1:    Positive_regulation:(activation-3/NN)

Theme:(BIO_Entity-5/NNP) Cause:(BIO_Entity-7/NNP)  <==

prep_by(BIO_Entity-5/NNP, BIO_Entity-7/NNP);

prep_of(activation-3/NN, BIO_Entity-5/NNP)

Undirected dependency graph:

ID   event_type       event_trigger     argument_1       argument_2

E1   Positive_regulation:    T4         Theme:T1         Cause:T2

activation-3/NN

(Event trigger)

BIO_Entity-5/NNP

(STAT6)

prep_of

BIO_Entity-7/NNP

(interleukin 4)

prep_by

monocytes-10/NNS

prep_in

inhibit-2/VBP

dobj

Interferons-1/NNS

nsubj

inducing-12/VBG

prepc_by

human-9/JJ

amod

expression-15/NN

dobj

BIO_Entity-13/NNP

(SOCS-1)

nn

gene-14/NN

nn

Figure 5.3: Event Rule Induction Example
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Algorithm 4 Biological Event Rule Induction Algorithm

Input: Dependency graph of a training sentence s, Gs = (Vs, Es) where Vs is the set

of nodes and Es is the set of edges of the graph; a finite set of gold biological

events that appear in s, Ev = {e1, e2, · · · , ei, · · ·}, where ei = (Type, Trigger, Ar-

guments, s).

Output: A finite set of biological event rules R = {r1, r2, · · · , ri, · · ·}, where ri =

(fi, Gri
). Gri

= (Vri
, Eri

) is the dependency graph of ri.

1: R ← ∅
2: for all ei ∈ Ev do

3: uGs ← Undirected(Gs)

4: //Undirected() transforms the directed graph Gs into an undirected graph uGs

5: Path ← ∅ // the initial Path set is empty

6: for all argument ∈ ei.Arguments do

7: Path ← Path ∪ { Shortest path(uGs, ei.Trigger, argument) }
8: //Shortest path() finds the shortest path(s) between trigger and argument

9: //in the graph uGs

10: Gri
← directed(Gs, Path) //directed() retrieves the original directed

11: //dependencies on the Path and generates the dependency graph Gri

12: fi ← (ei, Gri
)

13: R ← R ∪ { ri = (fi, Gri
) }

14: return R

the search for a subgraph isomorphic to an event rule graph within the graph of

a testing sentence. The subgraph matching problem is also called subgraph iso-

morphism [96]. Given an event rule graph Gr = (Vr, Er) and a sentence graph

Gs = (Vs, Es), the subgraph isomorphism problem investigates if a graph Gr is iso-

morphic to a subgraph of Gs. If the answer is yes, a subgraph Ss of Gs to which Gr is

isomorphic, as well as a bijective mapping of Gr to Ss which defines the isomorphism,

will be provided. In this work, the subgraph isomorphism problem is defined as follows:

Definition 5.4. (Subgraph Isomorphism) An event rule graph Gr = (Vr, Er) is

isomorphic to a subgraph of a sentence graph Gs = (Vs, Es), denoted by Gr
∼= Ss ⊆

Gs, if there is an injective mapping f : Vr → Vs such that, for every directed pair of
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nodes vi, vj ∈ Vr, if (vi, vj) ∈ Er then (f(vi), f(vj)) ∈ Es, and the edge label of (vi, vj)

is the same as the edge label of (f(vi), f(vj)).

Graph matching is a computationally expensive procedure. It has been proved

that the subgraph isomorphism problem is NP-complete [97]. Therefore, it would be

hard, and currently practically impossible, to find a polynomial, efficient algorithm for

this problem. A number of algorithms has been designed to tackle the problem of sub-

graph isomorphism in different applications [98–104]. One of the well known methods

was proposed by Ullmann based on the depth-first backtracking search with a for-

ward checking procedure which greatly reduces the number of backtracking steps [98].

Considering that the graphs of rules and sentences involved in our matching process

are small, a simpler subgraph matching algorithm using a backtracking approach is

appropriate. The algorithm is named “Injective Graph Embedding Algorithm” and

designed based on the Huet’s graph unification algorithm [105]. The main algorithm

and the recursive part of the algorithm are formalized in Algorithm 5 and Algorithm 6

respectively.

In the main algorithm, line 1 initializes the set MR to the empty set. For each

event rule, line 3 finds the start node of the rule graph and line 5 determines the start

nodes of the sentence graph. Each rule is only allowed to have one start node while

each sentence can possess a set of start nodes.

Two scenarios are considered in the algorithm in finding the start nodes. First,

if the rule contains at least one “BIO Entity” token, the “BIO Entity” token that

has the lowest token number becomes the start node of the rule. For instance,

“BIO Entity-3/NNP” becomes the start node if the rule contains the two “BIO Entity”

tokens: “BIO Entity-3/NNP” and “BIO Entity-6/NNP”. This does not reduce the

set of found solutions. In the meantime, every “BIO Entity” token in the sentence be-

comes an alternate start node for the sentence. Second, if the rule does not have any

“BIO Entity” token, the token with the lowest token number becomes the start node

of the rule, while every token in the sentence becomes one of the start nodes. The

second scenario applies especially to the event rules that are obtained from regulation

events that take only sub-events as their primary arguments. In this case, it is quite

likely that there is no “BIO Entity” token involved on the shortest dependency path
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Algorithm 5 Injective Graph Embedding Algorithm (Main algorithm)

Input: Dependency graph of a testing sentence s, Gs = (Vs, Es) where V is the set of

nodes and E is the set of edges of the graph; a finite set of biological event rules

R = {r1, r2, · · · , ri, · · ·}, where ri = (ei, Gri
). Gri

= (Vri
, Eri

) is the dependency

graph of ri.

Output: MR : a set of biological event rules from R matched with s together with

the injective mapping

Main algorithm:

1: MR ← ∅
2: for all ri ∈ R do

3: stri
← StartNode(Gri

)

4: //StartNode finds the start node stri
of the rule graph Gri

5: STs ← {sts1 , sts2 , · · · , stsj
, · · ·}

6: //STs : the set of start nodes of the sentence graph Gs

7: for all stsj
∈ STs do

8: create an empty stack σ and push (stri
, stsj

) onto the stack σ

9: IM ← ∅ //IM : records of injective matches between nodes in Gri
and Gs

10: call MatchNode(σ, rIM, Gri
, Gs) //rIM : reference of IM

11: if MatchNode() returned TRUE then

12: MR ← MR ∪ {ri with IM }
13: return MR

connecting the trigger nodes of the main event to the trigger nodes of the sub-event.

The for loop of lines 7–12 attempts to match the rule graph to the sentence graph,

starting from matching the start node of the rule graph with each start node of the

sentence graph via the recursive subroutine MatchNode. By allowing the rule to

match the sentence at different positions, the algorithm is capable to extract all the

underlying biological events in the sentence.

In the recursive subroutine MatchNode, line 1 initializes the current-level match

records between nodes in the rule graph and the sentence graph to the parent-level

match records. In the while loop of lines 2–27, lines 4–5 check if an injective match

exists between the current rule node vr and the current sentence node vs. In de-

termining an injective match between two nodes, the algorithm can compare the
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Algorithm 6 Injective Graph Embedding Algorithm (Recursive subroutine)

Recursive subroutine: MatchNode(σ, rIMparent, Gri , Gs)

1: IMcurrent ← IMparent //assign IMparent from the parent level to the current IMcurrent

2: while stack σ is not empty do

3: pop node pair (vr, vs) from stack σ

4: if an injective match between vr and vs already exists in IMcurrent then

5: do nothing

6: else if an injective match is possible between vr and vs then

7: IMcurrent ← IMcurrent ∪ { the match between vr and vs }
8: else

9: return FALSE

10: for all edges er adjacent to node vr in Gri do

11: let (vr, nr) be the edge er

12: for all edges es adjacent to node vs in Gs do

13: let (vs, ns) be the edge es

14: if er and es share a same direction and possess identical edge labels then

15: S ← S ∪ ns //S : the set of candidate nodes for matching nr

16: for all ns ∈ S do

17: if an injective match between nr and ns already exists in IMcurrent then

18: go to Line 10 and proceed with next edge er

19: else if an injective match is possible between nr and ns then

20: σn ← σ //copy σ to a new stack σn

21: push (vr, vs, nr, ns) onto the stack σn

22: call MatchNode(σn, rIMcurrent, Gri , Gs)

23: //rIMcurrent : reference of IMcurrent

24: if MatchNode() returned TRUE then

25: IMparent ← IMcurrent //update IMparent using IMcurrent

26: return TRUE

27: return FALSE

28: IMparent ← IMcurrent

29: return TRUE
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corresponding tokens and their attached POS tags of the nodes. The attached token

number indicates only the relative position of a token in its original sentence, and so

is not used in matching. Therefore, nodes involving protein names can always match

with each other because they are represented by the unified tag “BIO Entity” and

possess the same POS tag NNP.

If an injective match is created between vr and vs, for each edge er adjacent to

vr, line 14 checks if there exists an edge es adjacent to vs that has the same direction

and the same edge label as er. The two edges can match only if they share the same

direction and the edge labels are identical. In terms of each matched edge es, line 15

retrieves a set of nodes that appears on the other end of es as the candidate nodes

to match with the node nr on the other side of er. S is the set of candidate nodes,

which will be used in backtracking. For each candidate node ns, line 19 checks if

an injective match is possible between ns and nr. If the match does not exist, the

algorithm attempts to match nr with the next candidate node ns through line 16.

If the match exists between ns and nr, lines 20–22 push the nodes vr, vs, nr and ns

for future matching, invoke the subroutine MatchNode recursively, and repeat the

matching process for these nodes in the next level. In line 21, the parent node pair

(vr, vs) of (nr, ns) is also passed with the node pair (nr, ns) to the next level to make

sure that every child node of vr has an injective match with a child node of vs before

signaling the parent level the success of matching in the current level. If MatchNode

returns TRUE, lines 25–26 update the parent-level match records using the current-

level match records, and return to the parent-level program with TRUE. Otherwise,

the algorithm backtracks and attempts to match nr with the next candidate node ns

via line 16.

An example of the backtracking process when matching a rule graph with a sen-

tence graph is illustrated in Figure 5.4. The matches are highlighted by dotted lines.

As shown in (a), the algorithm finds the injective match between the A nodes in the

rule graph and the sentence graph, and then proceeds to detect the injective matches

1 between B nodes and 2 between C nodes. Before signaling the parent level the

success of the matches of nodes in the right branch of the node A in the rule graph, the

algorithm checks if the nodes in the left branch can also find their injective matches

in the sentence graph based on the available parent node pair information (vr, vs).
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Figure 5.4: Example of Backtracking Process (a) initial injective matches (b)
wrong matches detected (c) backtracking to the A node (d) correct matches found

The algorithm further detects the injective matches 3 and 4 . However, the node D

in the left branch of the node A in the rule graph does not have its injective match

in the sentence graph. (b) The algorithm detects the current matches 1 between B

nodes and 2 between C nodes cannot guarantee that every node in the left branch of

the node A in the rule graph find their injective matches in the sentence graph. (c)

The algorithm gives up the matches between B nodes and C nodes, backtracks to the

A nodes, and attempts to match the B node in the right branch of the node A in the

rule graph with the other candidate node in the sentence graph. (d) The algorithm

finds the correct matches leading to a subgraph matching between the rule graph and

the sentence graph.
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The complexity of Algorithm 5 (Injective Graph Embedding Algorithm) is expo-

nential, as we could expect since the problem of subgraph isomorphism is known to

be NP-hard. However, we observed that the algorithm is relatively efficient in prac-

tice and we have successfully run it on the BioNLP’09 shared task. We explain here

why this efficient performance in practice can be expected. Let us assume that the

sentence dependency graph Gs and the rule graph Gri
have a total of n vertices and m

edges, and the vertex degree (number of adjacent edges) is always less than or equal

to k. The main algorithm has two nested loops so it calls the recursive part MatchN-

ode O(|R| · n) times. When calling the recursive part, MatchNode, the main source

of inefficiency is the occurrence of several edges with the same label, adjacent to one

node. This is more an exception than the rule. If we had two graphs with no adjacent

same-label edges, a Huet-style algorithm would test for matching in practically linear

time O(n + m), which would give O(|R| · n(n + m)) total running time. However,

in our case, if the two graphs do not have same-labeled, adjacent edges, MatchNode

would be called for each pair of matchable nodes, which makes O(n) invocations. The

nested loops iterate O(nk2) times. Since line 20 requires O(n) time to copy the stack,

the total time would be O(|R| · n3k2) time. However, if same-label adjacent edges

are present, the algorithm may backtrack to try to match each edge with k possible

edges in the other graph, which gives O(kn) possible invocations of MatchNode, with

the total worst-case algorithm complexity O(|R| · n2kn).

According to the GENIA corpus, on average there are about 24 words in each

sentence [21], which correspond to the nodes in the dependency graph. Therefore,

the input graphs of sentences and rules are not large graphs. In addition, by matching

from pairs of start nodes, the search can be efficiently narrowed. In practice, it only

takes the algorithm a couple of seconds to return the results. Hence, our algorithm

is efficiently solving the subgraph matching problem in this work.

The algorithm proceeds until a subgraph isomorphic to the rule graph is found

in the sentence graph. For each sentence, the algorithm returns all the matched

rules together with the corresponding injective mappings from rule nodes to sentence

tokens. Biological events in the testing sentence are then extracted using the event

descriptions of tokens in each matched rule consisting of the type, the trigger and the

arguments to the corresponding tokens of the sentence. Figure 5.5 presents a simple
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example of the event extraction process by matching an event rule to a sentence

to extract a Positive regulation event in the sentence. The matching criteria in the

example require that edges be matched if they share a same direction and possess

identical edge labels while nodes be matched as long as the POS tags of the tokens

are the same.

The subgraph isomorphism problem defined here can also be adapted to determine

the relationship between any pair of event rules. The detailed application is presented

in Section 5.4.2.

5.3 Implementation

Figure 5.6 illustrates the overall architecture of our event extraction process, which

consists of four major components: preprocessing, rule induction, sentence matching

and postprocessing.

5.3.1 Preprocessing

In our work, several standard preprocessing steps are completed on both training

and testing data before performing text mining strategies. These include sentence

segmentation and tokenization, Part-of-Speech tagging, and sentence parsing.

Sentence segmentation and tokenization

We assume that a sentence is the suitable granularity degree in event extraction.

Therefore, the target text is first segmented into sentences. Then, each sentence is

tokenized with whitespace separating tokens. These processes are done using tools

integrated into U-compare, an integrated text mining system based on the UIMA

Framework [106]. Penn Treebank escapes, e.g., “-LRB-” for “(“, are used in the

tokenization. Since the gold annotation of proteins or events is provided based on

the entire target text, the annotation is then divided and attached to each tokenized

sentence. For training data, only sentences that contain at least one protein and one

event are considered for further processing. For testing data, sentences that contain

no protein names are removed. Next, we require that every protein be separated

from surrounding texts and become one individual token. For instance, the word
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Positive_regulation:(acceleration-2/NN)

Theme:(BIO_Entity-1/NNP) Cause:(BIO_Entity-6/NNP)  <==

prep_by(BIO_Entity-1/NNP, BIO_Entity-6/NNP);

prep_of(acceleration-2/NN, BIO_Entity-1/NNP)

Input:

Event rule:

Sentence:

Interferons inhibit activation of STAT6 by interleukin 4

in human monocytes by inducing SOCS-1 gene expression.

Subgraph matching:

acceleration-2/NNBIO_Entity-1/NNPBIO_Entity-6/NNP
prep_ofprep_by

BIO_Entity-7/NNP
(interleukin 4)

BIO_Entity-5/NNP
(STAT6)activation-3/NN

prep_byprep_of
inhibit-3/VBP

Extracted event:

Positive_regulation:(activation)  Theme:(STAT6)

Cause:(interleukin 4)

Injective mapping:

acceleration-2/NN (trigger)             activation-3/NN

Rule                                   Sentence

BIO_Entity-1/NNP  (Theme)               STAT6

BIO_Entity-6/NNP  (Cause)               interleukin 4

dobj

Rule graph

Segment of sentence graph

Figure 5.5: Event Extraction Example
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Sentence Matching
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Training data Testing data

Figure 5.6: General Architecture of Event Extraction

“HIV-TF1-binding” forms two tokens “HIV-TF1” and “-binding” as “HIV-TF1” is a

protein name.

Biological sentences are generally complex because occurrences of multi-word

named entities are common in biological texts. First, such entities are not likely

to appear in the dictionary of a general English parser, and will force the parser to

use morpho-guessing and unknown word guessing. This is time consuming and prone

to error. Second, such entities consist of many words that have various morpholog-

ical tags. One named entity can be divided into different phrases. This causes the

sentence structure to collapse, and thus makes biological texts difficult to parse.

It has been demonstrated in recent research publications [5,107] that substituting

named entity with one predefined word effectively simplifies the structures of biologi-

cal sentences, reduces ambiguities arising from complex sentences, and thus improves

both the accuracy and efficiency of the parsing process in the later stages. Therefore,

in our work all the protein names are replaced with a unified tag “BIO Entity”. For

instance, the five-token protein name “cAMP response element binding protein” then

becomes one individual token “BIO Entity”.

Part-of-Speech tagging

POS tagging is performed on the tokenized sentences to associate each word in a

sentence with its most likely Part-of-Speech tag. Because subsequent processing steps

typically depend on the tagger’s output, high accuracy at this level is crucial for
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success in later phases. Therefore, a domain specific tagger, GENIA tagger [108], is

used to perform this task. It is assumed that the parser can produce better parsing

results if it receives the results from an in-domain tagger instead of its embedded

tagger for general English. The reported POS tagging accuracy of GENIA tagger on

the GENIA corpus is 98.55% [108]. We have tuned GENIA tagger to tag the token

“BIO Entity”as a proper noun NNP.

Sentence parsing

The POS-tagged sentences are then submitted to the Stanford unlexicalized natural

language parser [109] to analyze the syntactic and semantic structure of the sentences.

Some work has been done on evaluating the performance of state-of-the-art parsers on

general English [110, 111]. The Stanford parser achieves a 84.2% F-score of labeled

attachment on section 22 of the Penn TreeBank, and is reported to be one of the

best parsers in terms of speed and accuracy [111]. The Stanford parser has also been

successfully applied to the biological domain. It achieves top performance on the task

of extracting protein-protein interactions from the biological literature [64], and helps

to identify correct patterns for constructing a comprehensive dictionary of medical

treatment terms from randomized clinical trial (RCT) reports [112].

The Stanford parser returns the dependency representation for each sentence. The

current representation contains a hierarchy of 55 grammatical relations. The most

generic relation, dependent (dep), will be used when a more precise relation in the

hierarchy does not exist or cannot be retrieved by the parser.

5.3.2 Rule Induction

For each gold event, the shortest dependency path in the undirected graph connecting

the event trigger to each event argument is extracted using Dijkstra’s algorithm [113].

Dijkstra’s algorithm is an efficient algorithm for finding the shortest path between

any two nodes in a weighted graph. In this work, we assign each edge an equal weight.

5.3.3 Sentence Matching and Postprocessing

Sentence matching is performed following the procedure of Algorithm 5 and Algo-

rithm 6. Some postprocessing rules are then applied to the raw sentence matching
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results to produce the event annotations in the right format for evaluation by the

shared task. All the applied rules in our work have been defined in the specifications

of the BioNLP shared task [1]:

• Trigger cannot be a protein name or an event.

• Only a protein or an event can be a theme or a cause for regulation events.

• Only a protein can be a theme for non-regulation events.

• Duplicate events should be removed.

• All regulation events involving sub-events that are not extracted should be

removed.

5.4 Results and Evaluation

This section starts with the description of preprocessing results on the datasets of

the BioNLP’09 shared task. Event rule induction results are then presented. Next,

the results of three different experimental methods in processing the obtained event

rules are described in detail. In the end, the evaluation results on the extracted

biological events based on the evaluation measures of the shared task are reported

and discussed. Compared to the reported results of the 24 participating teams of

the shared task [1], the official evaluation shows that our results would rank 6th in

extracting biological events in the testing data.

5.4.1 Preprocessing Results

For the training dataset which consists of 800 biological research abstracts, there

are 8,597 biological events according to the gold event annotation. Among them,

946 events involve proteins or sub-events that span more than one sentence. Our

proposed graph matching-based method focuses on extracting biological events from

sentences. Therefore, only sentence-based events will be considered in this work.

The remaining 7,651 events all occur in individual sentences and are distributed in

the 3,036 candidate training sentences, each of which contains at least one protein

and one event. For the development dataset, 988 candidate sentences are extracted,
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each of which contains at least one protein. For the testing dataset, 1,670 candidate

sentences are extracted using the same criterion. Table 5.2 presents some statistics

of the preprocessed datasets.

Attributes Training set Development set Testing set

Abstracts 800 150 260

Total sentences 7,482 1,450 2,448

Candidate sentences 3,036 988 1,670

Total events 8,597 1,789 hidden

Sentence-based events 7,651 1,639 hidden

Table 5.2: Statistics of experimental datasets

5.4.2 Rule Induction Results

A dependency graph is built for each preprocessed sentence based on the default

typed dependency representation of the Stanford parser, namely, collapsed dependen-

cies with propagation of conjunct dependencies [91]. We were able to build biological

event rules for 7,544 gold events. Gold events in which the event trigger and an event

argument are not connected by a path in the undirected dependency graph of the

sentence could not be transformed into a biological event rule. After removing dupli-

cate rules, we obtained 6,435 event rules, which are distributed over nine predefined

event types of the shared task shown in Table 5.3.

Instead of directly matching the biological event rules to each of the preprocessed

sentences in the development and testing sets, we processed the rules of each event

type via three different experimental methods for the purpose of refining the obtained

event rules. The three resulting rule sets are: partial order rule set, all rule set

and non-overlapping rule set. The detailed results are presented as follows, which

demonstrate that the non-overlapping rule set is more appropriate to become our

final choice of rule set.

Partial order rule set

In order theory, a partial order set (poset) is defined as a set together with a binary

relation that is reflexive, antisymmetric, and transitive [114]. For certain pairs of
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Event type Number of event rules

Gene expression 1,163

Transcription 461

Protein catabolism 91

Phosphorylation 139

Localization 223

Binding 774

Regulation 734

Positive regulation 2,125

Negative regulation 725

Grand total 6,435

Table 5.3: Event rule distribution

elements in the set, one of the elements precedes the other. For some pairs, neither

element precedes the other in the set since not every pair of elements of a poset needs

to be related. Based on the graph representation of each event rule, a partial order

rule set is built for each event type, in which for certain pairs of rules, the more

general rule precedes the more specific rule.

First, the proposed injective graph embedding algorithm is performed for each pair

of rules within the event type by matching the dependency graphs of two rules, rule

A and rule B, with each other. Three independent resulting scenarios are considered:

(1) if the graph of rule A is isomorphic to a subgraph of the graph of rule B, and vice

versa, rule A is then considered isomorphic to rule B. We keep only one rule for the

event type and randomly remove the other from the poset. (2) if the graph of rule

A is isomorphic to a subgraph of the graph of rule B, but the graph of rule B is not

isomorphic to any subgraph of the graph of rule A, rule A is then considered more

general than rule B. We relate rule A with rule B in the poset with rule A preceding

rule B. (3) if the graph of rule A is not isomorphic to any subgraph of the graph of

rule B, and vice versa, rule A is then considered independent of rule B. We insert

both rule A and rule B into the poset but neither rule precedes the other. As a result,

the general-specific relation between the dependency graphs of certain event rules in

the built poset is reflexive, antisymmetric, and transitive.

When matching between rule graphs, different combinations of matching features

are applied, resulting in different partial order rule sets. The features include edge
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features (Edge) which are edge label and edge direction, and node features which are

POS tags (POS), trigger tokens (Trigger), and all tokens (All), ranging from the least

specific matching criterion, Edge, to the much stricter criterion, All. Table 5.4 shows

the event rule distribution of one of the resulting partial order rule sets based on the

combination of 3 matching features, edges, POS tags and trigger tokens, denoted by

“Edge+POS+Trigger”, which means that the edge directions and labels, the POS

tags of tokens and the event trigger tokens have to be exactly the same for the edges

and the nodes of two rules to match with each other. Compared to the statistics in

Table 5.3, the number of event rules is reduced by some degree for every event type

due to the removal of the isomorphic rules, as described in the scenario (1).

Event type POset Original set Reduction Percentage

Gene expression 522 1,163 55%

Transcription 241 461 48%

Protein catabolism 46 91 49%

Phosphorylation 68 139 51%

Localization 136 223 39%

Binding 559 774 28%

Regulation 516 734 30%

Positive regulation 1,410 2,125 34%

Negative regulation 512 725 29%

Grand total 4,010 6,435 38%

Table 5.4: Distribution of distinct event rules of poset (Edge+POS+Trigger)

Next, the proposed injective graph embedding algorithm is performed again be-

tween the rules in each of the resulting posets and the sentences in the training set

in order to extract biological events from training sentences. For each sentence, rules

are matched with it respectively following the inherent order of the poset. Instead

of returning all the matched rules, only the most specific rules among them are pre-

ferred, i.e., the matched rules to which there is no matched rule in the poset more

specific. We have experimented with all the posets in terms of different combinations

of matching features. Table 5.5 gives the results of the event extraction on training

sentences using the partial order rule set based on “Edge+POS+Trigger”.

The performance is evaluated using “Approximate Span Matching/Approximate
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Recursive Matching”, the primary evaluation criterion of the shared task. The approx-

imate span matching is defined by relaxing the requirement for text span matching

for identified event trigger expressions. Specifically, a given span is equivalent to a

gold span if it is entirely contained within an extension of the gold span by one word

both to the left and to the right. The approximate recursive matching is defined by

relaxing the requirement for recursive event matching, so that an event can match

even if the events it refers to are only partially correct. Specifically, events can match

even if referred events differ in non-Theme arguments.

Event type Precision(%) Recall(%) F-score(%)

Gene expression 73.06 90.41 80.81

Transcription 29.73 86.60 44.26

Protein catabolism 92.45 95.15 93.78

Phosphorylation 92.99 93.59 93.29

Localization 22.85 89.84 36.43

Binding 82.35 84.00 83.17

Regulation 69.83 63.01 66.24

Positive regulation 58.62 61.12 59.84

Negative regulation 68.31 58.16 62.83

All total 57.93 73.30 64.71

Table 5.5: Event extraction of poset (Edge+POS+Trigger) on training sentences
evaluated by Approximate Span Matching/Approximate Recursive Matching

Since the event rules are induced originally from the gold events that appear in

the training sentences, ideally, mapping event rules back to the training sentences

will retrieve all the gold biological events, i.e., 100% recall. According to the results

in Table 5.5, the recalls of the first 6 event types including Binding still are less

than 100%, while the recalls of regulation event types are only in the 60% range.

By investigating the biological events that cannot be extracted from the training

sentences, two problems are observed with regard to the obtained partial order rule

sets. We will illustrate the two observed issues using two examples.

(1) Suppose we have the following two Binding event rules:

rule A:

Binding:(binding-11/VBG) Theme:(BIO Entity-15/NNP) ⇐=

prep to(binding-11/VBG, BIO Entity-15/NNP)
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rule B:

Binding:(binding-11/VBG) Theme:(BIO Entity-13/NNP) ⇐=

nn(BIO Entity-18/NNP, BIO Entity-13/NNP);

prep to(binding-11/VBG, BIO Entity-18/NNP)

Rule A precedes rule B in the built Binding poset in terms of the

“Edge+POS+Trigger” matching because rule A is more general than rule B according

to the graph representation on the right hand side of the rules. Therefore, rule B is

more specific and rule A will not be considered if both rules match with a sentence.

However, the detailed event information about the two rules on the left hand side are

actually quite different. For rule A, the event information describes Binding events

involving the trigger “binding” and a protein that has a dependency relation with

the trigger. For rule B, the event information discusses Binding events involving

the trigger “binding” and a protein that has no direct dependency relation with the

trigger. Therefore, returning only rule B will miss the potential events that rule A is

able to extract from the sentence.

(2) Suppose we have the following two Regulation event rules:

rule A:

Regulation:(DNA-binding-1/JJ) Theme:(BIO Entity-4/NNP) ⇐=

amod(properties-2/NNS, DNA-binding-1/JJ);

prep of(properties-2/NNS, BIO Entity-4/NNP)

rule B:

Regulation:(DNA-binding-1/JJ) Theme:(Binding:properties-2/NNS) ⇐=

amod(properties-2/NNS, DNA-binding-1/JJ);

prep of(properties-2/NNS, BIO Entity-4/NNP)

Only one of the rules will be kept in the Regulation poset in terms of

the “Edge+POS+Trigger” matching because rule A is isomorphic to rule B accord-

ing to the graph representation on the right hand side of the rules. For rule A, the

event information describes Regulation events involving the trigger “DNA-binding”

and a protein. However, for rule B, the event information describes Regulation events

involving the trigger “DNA-binding” and a Binding sub-event whose trigger is “prop-

erties”. Therefore, removing either rule will miss the potential events that the other

rule can extract from a sentence. This explains why the recall is especially low for all
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the regulation events.

All rule set

We consider using the set of all obtained event rules shown in Table 5.3. Table 5.6

shows the results of matching all the rules with the training sentences for event

extraction based on the matching feature “Edge+POS+Trigger”. Duplicate events

are removed from the extracted events in the postprocessing step.

Event type Precision(%) Recall(%) F-score(%)

Gene expression 71.34 98.75 82.84

Transcription 25.04 96.60 39.77

Protein catabolism 91.82 98.06 94.84

Phosphorylation 92.17 98.08 95.03

Localization 24.16 99.19 38.86

Binding 72.92 92.25 81.45

Regulation 56.31 88.67 68.88

Positive regulation 51.31 86.12 64.31

Negative regulation 57.37 82.54 67.69

All total 52.09 90.81 66.20

Table 5.6: Event extraction of all rule set on training sentences evaluated by Approx-
imate Span Matching/Approximate Recursive Matching

The recalls of the first 6 event types are approaching 100%, while the recalls of

regulation event types are a little lower but still at an average of about 86%, which

we attribute to the accumulated errors in the first 6 event types that also serve as

sub-events of the regulation events because incorrect sub-events will lead to wrong

regulation events. However, the precision of Transcription and Localization is much

lower than of other event types, staying only at the 20% level.

By investigating the false positives of the extracted biological events, an inter-

esting problem is found. We observed that some event rules of Transcription and

Localization are overlapped with rules of other event types. For instance, for the

following two rules, the Transcription rule is isomorphic to the Gene expression rule

in terms of the graph representation and they also share a same event trigger to-

ken. In fact, tokens like “gene expression” and “induction” are used as event triggers
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of both Transcription and Gene expression in training data. Therefore, the detec-

tion of some Gene expression events is always accompanied by certain Transcription

events. This will have detrimental effect on the precision of both Transcription and

Gene expression event types.

Transcription is the process of creating an equivalent RNA copy of a sequence

of DNA. According to the central dogma of molecular biology, transcription is the

first step leading to gene expression [7]. Therefore, there exist some correlations or

associations between the two event types. In tackling this problem, we processed the

rules and built a non-overlapping rule set.

rule A:

Transcription:(express-10/VB) Theme:(BIO Entity-11/NNP) ⇐=

dobj(express-10/VB, mRNA-12/NN); nn(mRNA-12/NN, BIO Entity-11/NNP)

rule B:

Gene expression:(express-5/VB) Theme:(BIO Entity-6/NNP) ⇐=

dobj(express-5/VB, mRNA-7/NN); nn(mRNA-7/NN, BIO Entity-6/NNP)

Non-overlapping rule set

When the dependency graphs of two rules across different event types are isomorphic

to each other and two rules share a same event trigger token, we keep the rule of the

event type in which the trigger token of the rule occurs more frequent as a trigger

in the training data, and remove the rule of the other event type from the set. For

the overlapping Transcription and Gene expression rules in the above example, since

the event trigger token “express” appear more often as trigger in Gene expression

than Transcription, the Transcription rule will be eliminated from the rule set. Ta-

ble 5.7 displays the results of the event extraction on training sentences using the

non-overlapping rule set based on “Edge+POS+Trigger”.

Compared to the Table 5.6, the non-overlapping rule set helps to improve the

overall precision by nearly 20% at a cost of about 4% drop on the overall recall. The

precision of Localization is increased from 24% to 93%. We consider that this rule

set is more appropriate for event extraction and therefore it becomes our final choice

of rule set.
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Event type Precision(%) Recall(%) F-score(%)

Gene expression 80.40 96.87 87.87

Transcription 56.08 76.60 64.75

Protein catabolism 91.82 98.06 94.84

Phosphorylation 92.12 97.44 94.71

Localization 92.98 91.46 92.21

Binding 72.92 92.25 81.45

Regulation 67.02 84.94 74.92

Positive regulation 65.70 81.78 72.86

Negative regulation 70.42 78.00 74.02

All total 70.89 86.42 77.89

Table 5.7: Event extraction of non-overlapping set on training sentences evaluated by
Approximate Span Matching/Approximate Recursive Matching

5.4.3 Event Extraction Results on Development Set

The non-overlapping rule sets in terms of different combinations of matching features

are then applied respectively on the 988 candidate sentences in the development set

using the proposed graph matching algorithm. The overall performance of the event

extraction based on each feature is provided in Table 5.8.

The least specific matching criterion when matching between rules and sentences

is “Edge”, in which, without checking any information about nodes, as long as edge

directions and labels are the same, both edges and nodes of a rule and a sentence

can match with each other. It achieves the highest recall among all the runs and

captures more than half of the gold events in the development sentences. However,

the precision is quite low, leading to a very low F-score as too many false positives

are generated due to disregard of node information.

As the strictest matching criteria, “Edge+POS+All” requires that the edges, the

POS tags and all tokens be exactly the same for the edges and the nodes of a rule and

a sentence to match with each other. It achieves the highest precision 69.72% and an

F-score over 40%. This indicates that many biological events are actually described

in very similar ways in the literature, involving the same grammatical structures and

identical contextual contents. Comparing to the use of “POS+All”, it is noticed

that adding the edge features improves the overall precision of event extraction by a
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large margin, nearly 13%. However, “POS+All” achieves a better recall due to the

exclusion of edge labels, leading to a higher F-score. “Edge+POS+Trigger” requires

that edge directions and labels of all edges be identical, POS tags of all tokens be

identical, and tokens of only event triggers be identical. It achieves better performance

than “Edge+POS+All” when relaxing the matching criteria from all tokens being the

same to only event trigger tokens having to be identical. The best 2 of the first 6

runs in Table 5.8 are “Edge+POS+Trigger” and “POS+All”, having an F-score of

40.63% and 41.42% respectively.

Next, we attempted to relax the matching criterion of POS tags for nouns and

verbs. For nouns, the plural form of nouns is allowed to match with the singular form,

and proper nouns are allowed to match with regular nouns. For verbs, past tense,

present tense and base present form are allowed to match with each other. Further,

the event trigger tokens are stemmed to their root forms using the Porter’s stemming

algorithm allowing the trigger tokens derived from a same root word to match [115].

“Edge+Relaxed POS+Trigger Stemming” and

“Relaxed POS+All+Trigger Stemming” in Table 5.8 demonstrate the improved per-

formance to the above best two runs. These modifications improve the recall but

produce many incorrect events, leading to only a small increase on the overall F-

score.

Feature Precision(%) Recall(%) F-score(%)

Edge 1.22 52.26 2.38

Edge+POS 2.23 45.33 4.25

Edge+POS+All 69.72 28.06 40.02

Edge+POS+Trigger 58.85 31.02 40.63

POS+All 57.00 32.53 41.42

POS+Trigger 40.65 36.95 38.71

Edge+Relaxed POS+Trigger Stemming 50.86 34.71 41.26

Relaxed POS+All+Trigger Stemming 51.51 35.22 41.84

Table 5.8: Event extraction of non-overlapping set on development set using different
features evaluated by Approximate Span Matching/Approximate Recursive Matching
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5.4.4 Event Extraction Results on Testing Set

According to the performance on the development set, we decided to conduct four

runs on the testing sentences in terms of 4 features: “Edge”, “Edge+POS+All”,

“Edge+Relaxed POS+Trigger Stemming” and

“Relaxed POS+All+Trigger Stemming”. For “Edge” and “Edge+POS+All”, we aim

to investigate the highest recall and precision on the testing sentences that can be

achieved by our method. We submitted the results to the shared task website [92] to

receive official evaluations. Table 5.9 gives the event extraction results on the 1,670

testing sentences using the non-overlapping rule sets in terms of the 4 features.

Feature Precision(%) Recall(%) F-score(%)

Edge 0.84 52.17 1.65

Edge+POS+All 58.64 26.02 36.05

Edge+Relaxed POS+Trigger Stemming 41.77 33.66 37.28

Relaxed POS+All+Trigger Stemming 39.61 32.18 35.51

Table 5.9: Event extraction of non-overlapping set on testing sentences using different
features evaluated by Approximate Span Matching/Approximate Recursive Matching

“Edge+Relaxed POS+Trigger Stemming” achieves the best overall F-score of

37.28% among all the runs. Similarly to the development set, the highest preci-

sion 58.64% on the testing sentences is achieved by the strictest matching criteria

“Edge+POS+All”. The highest recall 52.17% is obtained by the least specific match-

ing criterion “Edge”, indicating that a large amount of biological events are described

in quite different grammatical structures in the literature. Although

“Relaxed POS+All+Trigger Stemming” produced the best performance on the de-

velopment set, it does not perform as well on the testing set. This clearly suggests

that when requiring every token to be exactly the same for matching nodes of a rule

and a sentence, the event rules have less stable generalization power to capture the

underlying events. Table 5.10 shows the detailed results of the best run

“Edge+Relaxed POS+Trigger Stemming”. It can be seen that the performance of

regulation events is much lower than other event types. This is not surprising because

regulation events can have multiple arguments which might involve sub-events. For a

regulation event to be detected successfully, the nested sub-events must be correctly
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extracted first.

Event type Precision(%) Recall(%) F-score(%)

Gene expression 66.67 55.68 60.68

Transcription 31.37 35.04 33.10

Protein catabolism 77.78 50.00 60.87

Phosphorylation 66.38 57.04 61.35

Localization 90.77 33.91 49.37

Binding 42.13 30.84 35.61

Regulation 23.32 15.46 18.60

Positive regulation 27.09 25.33 26.18

Negative regulation 30.56 20.32 24.41

All total 41.77 33.66 37.28

Table 5.10: Event extraction of “Edge+Relaxed POS+Trigger Stemming” on testing
sentences evaluated by Approximate Span Matching/Approximate Recursive Match-
ing

Table 5.11 gives the performance comparison of our method with the

top-performing teams in the BioNLP shared task [1]. The official evaluation shows

that our best results would rank 6th in extracting biological events in the testing data

compared to the reported results of the 24 participating teams of the shared task.

Specifically, the performance of Binding event type and the overall performance of

regulation event types would all rank 5th. In addition, the results of our second best

run with the matching criteria “Edge+POS+All” would rank 7th in overall F-score

but rank 2nd in precision compared to the top 7 performing systems.

Team Precision(%) Recall(%) F-score(%)

UTurku 58.48 46.73 51.95

JULIELab 47.52 45.82 46.66

ConcordU 61.59 34.98 44.62

UT+DBCLS 55.59 36.90 44.35

VIBGhent 51.55 33.41 40.54

DalhousieU 41.77 33.66 37.28

UTokyo 53.56 28.13 36.88

UNSW 45.78 28.22 34.92

Table 5.11: Performance comparison of our method with participating teams
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5.4.5 Error Classification

Since the gold event annotation of testing data is hidden, we decided to examine

the event extraction results of the development data based on its provided gold

events to analyze the underlying errors in the results. Since the matching feature

“Edge+Relaxed POS+Trigger Stemming” achieves the best F-score of 37.28% on

the testing set, we therefore focused on the results of the development set using

“Edge+Relaxed POS+Trigger Stemming” and analyzed 20 abstracts randomly ex-

tracted from the set. The detailed analysis is reported in terms of false negatives, the

events that our method is not able to identify, and false positives, the events that our

method extracts incorrectly.

False negatives

It is shown that false negative events have a substantial impact on the performance

of all 24 participating teams of the shared task [1]. The best recall, 46.73%, achieved

by University of Turku [46], captures less than half of the gold events in the testing

set. In our work, four major causes of false negatives are determined: low coverage

of event trigger tokens, low coverage of rule set, compound error effect, and anaphora

and coreference.

(1) Low coverage of event trigger tokens

According to the Table 5.8, by adding only one extra matching criterion that the

same event trigger tokens of the rules have to also appear in the matching sentences,

“Edge+POS+Trigger” outperforms “Edge+POS” by more than 36% in F-score. This

indicates that event trigger tokens play an important role in identifying biological

events.

We found that many trigger tokens in the development sentences do not appear

as triggers in the training set. Therefore, these trigger tokens are not covered by

our event rules induced only from the training sentences. This leads to the failure

of extracting the corresponding events since some trigger tokens in the sentences can

not find their exact match in the event rules and therefore the matching criteria can

not be satisfied. This problem contributes about one third of all false negative events.
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Stemming the trigger tokens by Porter’s algorithm [115] helps to detect more

events by allowing the inflectional or derivational forms of the triggers to match.

However, some variants of trigger tokens will still not be covered. For instance, a false

negative event occurs because the trigger of a rule “coexpressing” is not able to match

the hyphenated trigger “co-expressing” in the sentence as the standard stemming can

not determine that both are derived from a same root word. Similar false negative

results involve event triggers with other prefixes such as “down-regulation” and “up-

regulation”. Also, synonyms of trigger tokens can not be handled by stemming. For

instance, “critical”, the trigger of a rule, can not match “crucial”, the trigger token

in the sentence, although they are synonyms and every other token of the rule can

find its match in the sentence, thus leading to another false negative.

Therefore, since the training data is the only source of event trigger tokens in our

work, the coverage of triggers is limited, thus limiting the generalization power of

event rules when fixing trigger tokens in the matching. It has been demonstrated by

UTurku, the best-performing team in the primary task of the BioNLP shared task,

that a sophisticated supervised machine learning technique can better detect event

triggers [46]. In their work, a multi-class support vector machine classifier was used

to assign event types to individual tokens, one at a time. A wide array of features

was adopted including token features, frequency features and dependency features. In

addition, trigger detection parameters were tuned experimentally using a grid search

to find the global optimal performance on the training set. High performance in de-

tecting triggers in the sentences explains in part their success in the event extraction.

Using external biological lexical resources to enrich the set of event trigger tokens

has also been shown effective by JULIE Lab who achieved second place in the event

extraction task [116]. They manually built an event trigger dictionary using the

original GENIA event corpus [44]. Therefore, the dictionary naturally contains the

underlying triggers of the testing set. Then, the dictionary was assessed and further

extended by two biologists based on their domain knowledge. Next, a separate event

trigger disambiguation process was proposed to assign each trigger token to one fixed

event type based on a conditional probability. Compared to their “once a trigger,

always a trigger” method, however, triggers are treated in a more flexible way in our

work. A token is not necessarily always a trigger unless it appears in the appropriate
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context. Also, the same token can serve as trigger for different event types as long as

it appears in the different context. A trigger will only be classified into a fixed event

type when it could serve as trigger for different event types in the same context.

(2) Low coverage of rule set

Other than the low coverage of event trigger tokens, we found that many gold events

are described in different grammatical structures that are not covered by the existing

event rules induced from the training sentences. These structures tend to be more

complex, involving a long dependency path from the event trigger to event arguments

in the graph representation of sentences. Events that consist of these structures are

not recognized as no matched rules will be returned from the subgraph matching.

This is supported by Table 5.9 in which by matching only the dependency relations

between tokens, the least specific criterion “Edge” captures only 52.17% of the gold

events in the testing set. This problem results in another third of all false negatives,

but could be alleviated if a bigger training set, which contains more complex events,

was available.

Careful evaluation reveals three specific scenarios. First, the existing rules in the

rule set cannot extract any argument of the gold event, not to mention the entire

event. Second, the existing rules are not able to detect all the arguments of multi-

argument events. For instance, only one theme of a two-Theme Binding event can

be identified by the Binding rule set. The entire gold event is thus treated undiscov-

ered under the primary evaluation measure of the shared task, “Approximate Span

Matching/Approximate Recursive Matching”. Third, an existing rule is capable of

extracting the entire gold event if some modifications of dependency relation can

be made to the rule without changing the meaning of the relation. For example,

the dependency representation prep of(increase, immunoreactivity) in rules should

match with prep in(increase, immunoreactivity) in sentences in order to successfully

extract the gold event as “increase of immunoreactivity” possesses a same meaning

as “increase in immunoreactivity”. In addition, the most generic relation, depen-

dent (dep), should be relaxed to match any relation, so dobj(increase, BIO Entity)

in rules can match dep(increase,BIO Entity) in sentences. However, a significant

amount of manual work is required to carefully tune the grammatical relations of the
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Stanford dependency representation [91].

(3) Compound error effect

Defined in the shared task, events of Regulation, Positive regulation and

Negative regulation types can take sub-events as arguments. Therefore, if the nested

sub-events are not correctly identified, the main events will not be extracted due to

the compound error effect which contributes another source of false negatives.

(4) Anaphora and coreference

Since our proposed graph matching-based method focuses on extracting biological

events from sentences, events that contain protein names that span multiple sentences

will not be captured. Recognition of these events from the data requires the ability

to do anaphora and coreference resolution in biological text [117–119]. This problem,

together with the compound error effect, accounts for the rest one third of false

negative effects.

False positives

Four major causes of false positives are generalized from our analysis: loose matching

criteria, assignment of overlapped event rules, lack of postprocessing rules, and in-

consistencies in gold annotation. Each of the problems contributes about one fourth

of all false positive events.

(1) Loose matching criteria

Some false positives are generated due to the looseness of the matching feature

“Edge+Relaxed POS+Trigger Stemming” in two aspects. First, it allows trigger

tokens to match if the stemmed tokens are identical. Some tokens are thus erro-

neously matched because they happen to have the same root word. For instance,

the trigger token “activation” of a Positive regulation rule is able to match with the

token “activity” of a sentence because they share a same root word “activ” after

stemming. Then, “activity” is treated as the event trigger, resulting in an erroneous
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Positive regulation event for the sentence. Second, the matching feature allows non-

trigger tokens to match as long as they possess a same POS tag. This, however, leads

to a number of wrong events. For example, “NF-kappa B-dependent BIO Entity

gene” is able to match a Regulation rule originally induced from a phrase “Kappa

B-dependent BIO Entity promoter” in a training sentence as they have a same event

trigger “B-dependent” and every other token has its match. However, “gene” is se-

mantically distinct from “promoter” although they appear in the same context and

share a same relaxed POS tag “NN”, leading to a wrong Regulation event. Similarly,

erroneous Gene expression events are also found caused by the POS tag matching be-

tween non-trigger tokens “expression” and “gene”. More stringent matching criteria

between tokens are expected to help with this problem.

(2) Assignment of overlapped event rules

In our work, when rules of different event types are overlapped with each other, we

keep the rule of the event type in which the trigger occurs most frequent as a trigger

in the training data, and remove rules of other event types. This method, while

simplistic, effectively improves the event extraction performance by greatly reducing

the number of event candidates. However, it also leads to errors. One such example is:

“levels” are used as the trigger for two overlapped rules of event types Transcription

and Positive regulation. Since “levels” is used more often as a Transcription trigger in

the training data, the overlapped Positive regulation rule is then removed. Therefore,

an erroneous Transcription event is then detected from a development sentence instead

of the gold Positive regulation event. Although the trigger and the argument are all

identified correctly, the event type is assigned wrongly.

A more sophisticated approach based on the conditional probability of an event

trigger given an event type from training data, as applied in the work of JULIE

Lab [116], could aid in better assigning overlapped event rules to the correct event

type.
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(3) Lack of postprocessing rules

The postprocessing rules applied in our work to screen candidate events come directly

from the specifications of the BioNLP shared task. They can help with the general fil-

tering purpose, however, some misidentified events require customized postprocessing

rules. For instance, a Gene expression event is detected from the phrase “Tax ex-

pression vector” of a development sentence because an expression event is annotated

from a standalone phrase“Tax expression” in the training set. However, since “Tax

expression” is only used as an adjective to describe the token “vector” in this context,

the identified Gene expression event is not appropriate. Likewise, “Sp1 transcription”

should not be identified as an event in the context of “Sp1 transcription factors”. In

addition, two Gene expression events are detected from “BIO Entity DNA binding

subunit” using “binding” and “binding subunit” as trigger respectively as the phrase

can match two event rules. However, the event triggered by “binding” should not be

recognized according to the gold annotation since a more specific trigger token is al-

ways preferred. These problems can be addressed effectively by adding corresponding

postprocessing rules.

(4) Inconsistencies in gold annotation

Some extracted events are considered biologically meaningful but evaluated as false

positives due to the inconsistencies in the gold annotation. Some such examples

are provided below: (a) a Binding event is annotated from “p49(100) DNA binding

subunit” in training data but not annotated for “p50 DNA binding subunit” in the

development set. (b) a Positive regulation event and a Gene expression event are

annotated with a same trigger “overexpression” from “Overexpression of BIO Entity

is implicated.” in training data. However, only one Gene expression event triggered

by “overexpression” is annotated for “BIO Entity overexpression is required.” in the

development set, and the Positive regulation event is missing. (3) a Binding event

is annotated from “hRXR alpha receptor” in training data but not annotated for

“c-erbA/T3 receptor” within a same context in the development set. These are the

evidence for the difficulty of annotating biological events correctly and consistently.
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5.5 Summary

In this chapter, dependency graphs are used to automatically induce biological event

rules from annotated events. These rules are then used to extract biological events

from the biological literature. The extraction process is treated as a subgraph match-

ing problem to search for a subgraph isomorphic to the graph of an event rule within

the graph of a sentence. We conducted the experiments on the GENIA event corpus

to cope with the primary task of the BioNLP shared task. We further explored dif-

ferent methods of refining the obtained event rules for the purpose of improving the

performance of the event extraction. By means of the primary evaluation measure of

the shared task, our method achieves an 41.84% F-score on the development data and

an 37.28% F-score on the testing data in detecting biological events across nine event

types, ranking 6th compared to the reported results of the 24 participating teams. We

consider our results important for two reasons: (1) our method does not require any

manual intervention. (2) our method does not resort to any external domain-specific

resources, and could thus be generalized to extract events from other domains where

training data is available.



Chapter 6

Conclusion

In this thesis, we have presented three works around biological entity recognition

and biological relation extraction. These two topics are closely related as the poor

performance in the entity recognition will have detrimental effects on relation extrac-

tion [59]. For biological entity recognition, we extract characters of representative

biological prefixes and suffixes to aid the entity recognition system to annotate bio-

logical entities. For biological relation extraction, we identify sentences that describe

interactions between biological entities using patterns defined as a sequence of spe-

cialized POS tags that capture the structure of key sentences in the scientific litera-

ture. Furthermore, we detect biological events from texts using subgraph matching

by matching dependency graphs of sentences with the dependency graphs of event

rules that encode the detailed descriptions and the typical contextual structures of

biological events.

The chapter is organized as follows: In section 6.1, we conclude the contributions

of the thesis. In section 6.2, we discuss the directions for future work.

6.1 Contributions

In the first work, we presented an unsupervised method to automatically extract

domain-specific prefix and suffix characters from biological corpora. The extraction

method is based on the use of PATRICIA trees [65], and a probabilistic model is

proposed to determine whether a substring is both an English affix and a domain-

specific affix. The detailed procedure of the PATRICIA tree-based affix extraction is

shown in Algorithm 1.

As one application of our proposed method, the extracted affix characters are

integrated into the parametrization of the ABTA system [16]. The system achieves

an overall classification accuracy of 87.5% in locating biological terms based on five

word position classes, and an 0.702 F-score in exact entity matching annotation,

98
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which are all comparable to the experimental results obtained by the original ABTA

system. However, our method helps the system significantly reduce the size of feature

set and thus improves the system efficiency. The system also obtains a classification

accuracy of 81.46% based only on our extracted affix information. This demonstrates

that the affix information achieved by the proposed method is important to accurately

locating biological entities. The evaluation on the JNLPBA shared task on biological

entity recognition [22] suggests that the extracted affix information is more sensitive

in identifying proteins, DNA and RNA.

We further explored the reliability of our method by gradually increasing the

proportion of training data from 0.25% to 90% of the GENIA corpus. One-tailed

t-Test results confirm that the ABTA system integrated with our method achieves

more reliable performance than the original ABTA system when the training corpus

is small. The demonstration of this extraction method implies that domain-specific

affixes can be identified for arbitrary corpora without the need to manually generate

training sets. The extracted affix characters can be used to aid in the domain-specific

entity recognition.

In the second work, we proposed an approach to automatically extract sen-

tence patterns that contain interactions involving concepts of molecular biology. A

PATRICIA tree [65] is used for the first time to facilitate the automatic extraction

of biological interaction patterns. A pattern is defined in this work as a sequence of

specialized Part-of-Speech (POS) tags that capture the structure of key sentences in

the scientific literature. Our pattern learning method has a time complexity of O(n)

in the size of candidate sentences, and presented in Algorithm 2.

Each candidate sentence for the classification task is encoded as a POS array

and then aligned to a collection of pre-extracted patterns using an end-space free

alignment algorithm [80]. The quality of the alignment is expressed as a pairwise

alignment score. The most innovative component of this work is the use of a Genetic

Algorithm (GA) to maximize the classification performance of the alignment scoring

scheme. Two evaluation measures are investigated in the fitness function of GA:

statistical analysis and classification accuracy.

We conducted the experiments on our designed system based on the GENIA cor-

pus. By means of a genetic algorithm to define the scoring scheme, the system achieves
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on average 0.845 F-score using GENIA annotations and 0.796 F-score using our sys-

tem annotations by cross-evaluating 400 sentences in which at least two biological

concepts co-occur. We further investigated the impact of different verb tags on the

system performance. Based on fewer interaction patterns, the system adopting new

tags achieves a noticeable improvement in performance on testing sentences in terms

of both GENIA and our system annotations compared to the original system.

In addition, within the framework of our system, we conducted experiments on

the same dataset for sentence identification using interaction patterns generated by

another state-of-the-art pattern generating algorithm (PGA) [36] in order to compare

with the performance of patterns obtained by our proposed pattern learning method.

The results show that patterns generated by PGA do not perform as well as patterns

obtained by our method. We infer that our proposed method is more efficient in

producing interaction patterns to identify interaction sentences.

In the third work, we defined biological event rules and designed a graph-based

algorithm to automatically learn event rules based on the use of gold events annotated

by domain experts. Biological event rules encode the detailed descriptions and the

typical contextual structures of biological events. Training sentences are represented

by dependency graphs and the event rules are induced by extracting the shortest

dependency path connecting the event trigger to each event argument. The detailed

procedure of the algorithm is presented in Algorithm 4.

As the most innovative component of this work, we explored the application of

the subgraph matching problem in the BioNLP field of extracting biological rela-

tions or events. We defined subgraph isomorphism in the context of biological event

extraction, and we developed a subgraph matching algorithm using a backtracking ap-

proach, namely “Injective Graph Embedding Algorithm”, to extract biological events

by searching for subgraphs isomorphic to the dependency graphs of event rules within

the dependency graphs of sentences. The algorithm has an estimated time complexity

of O(|R| · n2kn) where n is the total number of vertices in the rule graph and the

sentence graph, k is the vertex degree, and |R| is the number of event rules. Since

the input graphs of sentences and event rules are small, our algorithm is efficiently

solving the subgraph matching problem in this work. The main and the recursive

part of the algorithm are formalized in Algorithm 5 and Algorithm 6 respectively.
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We conducted the experiments on the GENIA event corpus to cope with the pri-

mary task of the BioNLP shared task on event extraction [1]. We further explored

three different methods of refining the automatically learned event rules for the pur-

pose of improving the performance of the event extraction. We also investigated the

impact of different combinations of graph matching features on the performance of

event extraction. By means of the primary evaluation measure of the shared task, our

subgraph matching-based event extraction method achieves an 41.84% F-score on the

development data and an 37.28% F-score on the testing data in detecting biological

events across nine event types, which would rank 6th compared to the reported re-

sults of the 24 participating teams [1]. In the end, we examined the event extraction

results and reported the detailed analysis on both false negatives and false positives,

which is valuable for future improvements.

The achieved performance is considered important for two reasons: (1) our event

extraction method does not require any manual intervention. (2) our event extraction

method does not resort to any external domain-specific resources, and could thus be

generalized to extract events from other domains where training data is available.

6.2 Future Work

The following topics are of considerable research interest to us for improving biological

information extraction in future work:

For biological entity recognition, since the ABTA system employs a word-based

method which annotates each word without taking previously assigned tags into ac-

count, we would like to incorporate the extracted prefix and suffix characters into

other biological entity recognition systems using sequence-based methods, for instance

Hidden Markov Model (HMM) that takes previous annotation decisions into account

in order to decide on the tag for the current word.

Specifically, two HMM-based methods have been compared in terms of the

JNLPBA shared task on biological entity recognition [22]: the traditional HMM ap-

proach and the Perceptron HMM algorithm [11]. The results show that the overall

F-score of the traditional HMM approach is 53.9%, which is higher than the provided

baseline but lower than the ABTA system. The results of the Perceptron HMM al-

gorithm are more promising, that is, 69.1% without resorting to external resources.
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However, characters of a fixed length are still adopted as the affix feature. We plan to

integrate our method into the Perceptron HMM algorithm to investigate the impact

of the extracted affix information on the performance of biological entity recognition.

For biological relation extraction, we are interested in investigating the impact of

more sophisticated approaches of refining overlapped event rules across event types on

the biological event extraction performance. Borrowing the idea of JULIE Lab [116],

we attempt to employ the approach based on the conditional probability of an event

trigger given an event type from training data to aid in assigning overlapped event

rules to the correct event type.

Furthermore, we will experiment with more matching criteria when mapping event

rules to sentences. For instance, since we only attempted to relax the matching criteria

of POS tags and trigger tokens, we want to relax edge labels by manually tuning

the grammatical relations of the dependency representation based on the existing

hierarchy of typed dependencies [91]. Moreover, we plan to expand the coverage of

event trigger tokens using external lexical resources, such as UMLS SPECIALIST

lexicon [120] and WordNet [121], for new event triggers and synonyms of existing

triggers. In addition, once the specific relations or events are discovered, further

reasoning processes can be performed by means of available biological ontologies,

such as UMLS Semantic Network [122] and Gene Ontology [20], to infer more general

relations from facts extracted from the biological literature.
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