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ABSTRACT 
 

This thesis introduces new efficient hardware implementations for the Advanced 

Encryption Standard (AES) algorithm.  Two main contributions are presented in this 

thesis, the first one is a high speed 128 bits AES encryptor, and the second one is a new 32 

bits AES design. In first contribution a 128 bits loop unrolled sub-pipelined AES encryptor 

is presented. In this encryptor an efficient merging for the encryption process sub-steps is 

implemented after relocating them. The second contribution presents a 32 bits AES design. 

In this design, the S-BOX is implemented with internal pipelining and it is shared between 

the main round and the key expansion units. Also, the key expansion unit is implemented to 

work on the fly and in parallel with the main round unit. These designs have achieved 

higher FPGA (Throughput/Area) efficiency comparing to previous AES designs.
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CHAPTER 1 INTRODUCTION 
 

In this chapter the research motivation, research objectives and the thesis organization are 

presented.  

1.1 Motivation 

 

Nowadays cryptography has a main role in embedded systems design. As the number of 

devices and applications which send and receive data are increasing rapidly, the data 

transfer rates are becoming higher. In many applications, this data requires a secured 

connection which is usually achieved by cryptography. 

 

Many cryptographic algorithms were proposed, such as the Data Encryption Standard 

(DES), the Elliptic Curve Cryptography (ECC), the Advanced Encryption Standard (AES) 

and other algorithms. Many researchers and hackers are always trying to break these 

algorithms using brute force and side channel attacks. Some attacks were successful as it 

was the case for the Data Encryption Standard (DES) in 1993, where the published 

cryptanalysis attack [22] could break the DES. 

  

The Advanced Encryption Standard (AES) is considered nowadays as one of the strongest 

published cryptographic algorithms, where it was adopted by the National Institute for 

Standards and Technology (NIST) after the failing of the Data Encryption Standard (DES). 

Moreover, it is used in many applications such as in RFID cards, ATM Machines, 

cell-phones and large servers.   
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Due to the importance of the AES algorithm and the numerous applications that it has, the 

main concern of this thesis will be presenting new efficient hardware implementations for 

this algorithm. 

 

Hardware implementations for the AES algorithm vary according to the application. While 

some applications require very high throughputs as in e-commerce servers, others require 

medium throughput range as in designs for cell phones [17]. Some others require very low 

area implementations to be used in low power application as in RFID cards.  

 

Many hardware designs where suggested for the AES algorithm. Some of these designs 

targeted high speed applications as in the loop unrolled 128 bits designs [2], [3] and [5], 

while others targeted medium and low area implementations as in the designs [14], [15] 

and [17].  

 

As each application requires the AES to have different speed and area, this thesis presents 

two new hardware implementations for the AES algorithm. The first hardware 

implementation is a high speed 128 bits AES encryptor with new merging and pipelining 

techniques, while the second hardware implementation is a medium throughput 32 bits 

AES design with efficient resources sharing and internal pipelining techniques. Both 

designs have achieved better efficiencies and performances comparing to previous AES 

hardware designs.     

 

Field Programmable Gates Arrays (FPGA) is considered as one of the best ways to assess 

digital system designs. Because of this fact and as most of the previous AES hardware 

implementations have used FPGA to assess their performances; the presented designs in 

this thesis have been simulated using FPGA Xilinx devices. 
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1.2 Research Objective 

 

Based on the previous discussion, the main objectives in the two presented AES 

designs are: 

 

1. Present new mathematical models for the AES algorithm which reduces the 

hardware implementations cost. 

 

2. Increasing the systems throughput by parallel processing for the data using 

pipelining techniques. 

 

3. Reduce the repeated operational blocks in the AES design by merging, relocating 

and sharing. 
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1.3 Organization 

 

This thesis is organized as follows: 

 

Chapter 2 will explain the AES algorithm in details. The four encryption/ decryption steps 

are presented: Shift Rows/Inverse Shift Rows, Byte Substitution/ Inverse Byte Substitution, 

Mix Column/Inverse Mix Columns and finally Add Round Key.  

 

In Chapter 3, a high speed 128-bits pipelined loop unrolled AES encryptor using new 

efficient merging technique is presented. A comparison with previous works is also 

provided. 

 

In Chapter 4, a new 32-bits AES design using S-BOX sharing between the main round unit 

and the key expansion unit is presented. Comparison using FPGA implementation with 

previous works is also presented in this chapter. 

 

Finally, the conclusion and the future work are presented in Chapter 5. 

 

 

 



  

5 

 

CHAPTER 2 ADVANCED 

ENCRYPTION STANDARD (AES) 

ALGORITM 
 

This chapter discusses the Advanced Encryption Standard algorithm steps and 

implementations. Also, a literature review which studies previous proposed hardware 

designs for the AES algorithm is presented.  

 

2.1  Definition and History of Cryptography 

 

We refer to the word cryptography as the change of data representation from its original 

form into another different form in order to make it hidden and secured. Cryptography has 

two processes; the first process is the encryption where the original data is converted into 

secured form using certain steps. The second process is the decryption, where the 

encrypted data is restored to the original form by applying the inverse to the steps applied 

in the encryption process. 

 

Classic Cryptography started thousands of years ago. All over the history classic 

cryptography was used for secret communications between people. This kind of 

cryptography is usually applied by substituting the message letters by other letters using 

certain formula [21], for example substituting each letter in a message with the next letter 

in the alphabets so that the word “Test” would become “Uftu”. 
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In modern ages, cryptography development has been a major concern in the fields of 

mathematics, computer science and engineering. One of the main classes in cryptography 

today is the symmetric-key cryptography, where a shared key of a certain size will be used 

for the encryption and decryption processes. Fig. 1 illustrates the concept of 

symmetric-key cryptography. 

 

Encryption
10110110…

Data

Key
10011001…

Decryption
Encrypted Data

01110001…

Key
10011001…

Data

10110110…

Fig. 1 Symmetric-key cryptography 

 

2.2 Finite Field 

 

In algebra, the field that has a finite number of elements is called finite field or Galois field 

(GF). Each finite field has a prime integer which represents its characteristic. For example, 

the finite field GF(p), represents a field with the range of integers {0,1, …., p-1}. The total 

number of elements in the finite field is called the finite field order. Fields with prime 

integer orders has characteristic equal to their order. 

 

Some finite fields uses non prime integer orders; in this case the finite field will be 

represented using the prime number „p‟ which represent the characteristic along with the 

power „n‟. Equation (2.1) shows how to represent the finite field with order „k‟ and using 

the prime number „p‟ and the power „n‟. 
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         (2.1) 

 

The finite field in (2.1) has a range of integers that vary between {0,1,…, k-1}. 

Finite fields are used in many cryptographic algorithms. The Advanced Encryption 

Standard uses the finite field GF(2
8
), where each data byte represents a value between 

(00-FF)H.  

 

Each data byte can be represented as a polynomial over the GF(2
8
). Equation (2.2) shows 

the polynomial representations in GF(2
8
) 

 

        
     

     
     

     
     

          (2.2) 

 

Equation (2.2) can be also written as:  

 

         
 

 

   

 
(2.3) 

Where bi ε {0,1}. 

 

The next sub-sections will explain the arithmetic in finite fields based on the characteristic 

p=2. 

 

2.2.1 Addition in Finite Field 

 

Arithmetic in finite field is different than normal algebra arithmetic. In finite field with 

characteristic of 2, an addition is obtained by applying bit-wise XOR operation between 
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the operands. Equation (2.5) shows the result of the finite field addition in (2.4). 

 

                          
 

 

   

       
 

 

   

 
(2.4) 

 

                      
 

 

   

 
(2.5) 

 

Appendix A shows an example for addition in finite field. 

 

2.2.2 Multiplication in Finite Field 

 

In finite field, the multiplication product of two polynomials will be modulo an irreducible 

polynomial so that the final answer can be within the used finite field. Irreducible 

polynomial means it cannot be factorized and expressed as a product of two or more 

polynomials over the same field [26]. 

 

Equation (2.6) represents the multiplication operation of the polynomials a2(x) and a1(x) 

using the modulus m(x). 

 

                              (2.6) 

 

Appendix A shows a multiplication example using the finite field. 
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2.3 The Data Encryption Standard (DES) 

 

In the early 1970‟s, IBM developed the Data Encryption Standard as a symmetric-key 

cryptography algorithm. This algorithm was adopted by the National Institute of Standard 

and Technology (NIST) in 1977, where it was published in the Federal Information 

Processing Standard (FIPS) Publication 46 [20]. The DES consists of 64 bits data block 

with key size of 56 bits, where 16 encryption rounds will be applied to the data to complete 

the encryption process.  

 

The DES algorithm starts to fail after several published brute force attacks. The linear 

cryptanalysis attack [22] could break the DES and made it insecure algorithm. The NIST 

started to search for another algorithm to replace the DES, where the Rijndael cipher was 

selected as the new Advanced Encryption Standard (AES). 

 

2.4 The Advanced Encryption Standard (AES) 

 

In 1998 Rijndael cipher developed by the two Belgian cryptographers, John Daemen and 

Vincent Rijmen was published. This cipher was selected later on by the NIST as the 

Advanced Encryption Standard to supersede the old Data Encryption Standard. The NIST 

has published full details of AES under the FIPS publication 197 [1].  

 

The AES according to [1] has a constant block size of 128 bits (16 bytes) with 3 different 

key sizes of 128 bits, 192 bits and 256 bits, where 10, 12 and 14 encryption rounds will be 

applied for each key size, respectively. During the encryption and decryption processes, the 
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16 bytes of data will form a changeable (4*4) array called the state array.  During the 

encryption process, the state array consists initially of the input data, this array will keep 

changing until reaching the final enciphered data. In the decryption process the state array 

will start by the enciphered data and will keep changing until retrieving the original data. 

 

S00 S01 S02 S03

S10 S11 S12 S13

S20 S21 S22 S23

S30 S31 S32 S33

O00 O01 O02 O03

O10 O11 O12 O13

O20 O21 O22 O23

O30 O31 O32 O33

I00 I01 I02 I03

I10 I11 I12 I13

I20 I21 I22 I23

I30 I31 I32 I33

Input Array State Array Output Array
 

Fig. 2 Input, State and Output arrays 

 

Each encryption round has 4 main steps, Shift Rows, Byte Substitution using the 

Substitution Box (S-BOX), Mix Columns, and Add Round Key. The decryption process 

consists of the inverse steps, where each decryption round consists of: Inverse Shift Rows, 

Byte Substitution using Inverse S-BOX, Add Round Key and Inverse Mix Columns. The 

round keys will be generated using a unit called the key expansion unit. This unit will be 

generating 176,208 or 240 bytes of round keys depending on the size of the used key, more 

details about the key expansion unit will be explained later in this chapter.  Fig. 3 Shows 

the AES encryption and decryption processes. 

.  
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Byte Sub.

Mix Columns

Shift Rows

Byte Sub.

Shift Rows

Round key (1)

Round key (Last)

Inv. Byte Sub.

Inv. Shift Rows

Inv. Byte Sub.

Inv. Shift Rows

Round key (Last)

Round key (1)

9,11 or 13
iteration

Inv. Mix Columns

Round 
key 

Round 
key 

DecipherEncipher

9,11 or 13
iteration

 

Fig. 3 AES encryption and decryption processes 

 

As can be seen from Fig. 3, the encryption and decryption processes start by adding the 

round key to the data. This round key is called the initial round key and it consists of the 

first 16 bytes of round keys in case of encryption and the last 16 bytes in case of decryption.  

The encryption iteration starts with the Shift Rows step, then the Bytes Substitution is 

applied, followed by the Mix Columns step, and finally the Round Key is added. In the 

decryption iteration the Round Key is obtained before the Inverse Mix Columns step. 

These iterations are repeated 9, 11 and 13 times for the key sizes 128,192 and 256 bits, 

respectively. The last encryption and decryption iterations exclude the Mix column and 

Inverse Mix column steps. 
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This chapter will explain the AES encryption and decryption steps. As most applications 

and designs use the AES with 128 bits key size, the designs proposed in this thesis are 

based on this key size. Also, all the used examples and algorithms in this chapter are based 

on the 128 bits key size. The first sub-section will explain the Shift Rows / Inverse Shift 

Rows step. 

 

2.4.1 Shift Rows/ Inverse Shift Rows 

 

In Shift Rows step the second, third and fourth row of the state array are shifted one, two 

and three cyclic shifts to the left, respectively. Most references consider the shift rows step 

as the first step in the encryption iteration; however it can be done after the Byte 

Substitution step without affecting the algorithm. Fig. 4 shows how the Shift Rows step is 

obtained. 

 

S00 S01 S02 S03

S11 S12 S13 S10

S22 S23 S20 S21

S33 S30 S31 S32

Before Shift

S00 S01 S02 S03

S10 S11 S12 S13

S20 S21 S22 S23

S30 S31 S32 S33

After Shift
 

Fig. 4 Shift Rows step 

The Inverse Shift Rows step is obtained during the decryption process by shifting, the 

second, third and fourth rows, one, two and three cyclically shift to the right, respectively. 

Fig. 5 shows how the Inverse Shift Rows step is obtained. 
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S00 S01 S02 S03

S11 S12 S13 S10

S22 S23 S20 S21

S33 S30 S31 S32

Before Shift

S00 S01 S02 S03

S10 S11 S12 S13

S20 S21 S22 S23

S30 S31 S32 S33

After Shift
 

Fig. 5 Inverse Shift Rows step 

 

2.4.2 Byte Substitution and Inverse Byte 

Substitution Using S-BOX and Inverse S-BOX 

 

Byte substitution and Inverse Byte Substitution are the most complex steps in the 

encryption and decryption processes. In these steps each byte of the state array will be 

replaced with its equivalent byte in the S-BOX or the Inverse S-BOX.   

 

S00 S01 S02 S03

S10 S11 S12 S13

S20 S21 S22 S23

S30 S31 S32 S33

S-BOX / 
Inverse S-BOX

S’00 S’01 S’02 S’03

S’10 S’11 S’12 S’13

S’20 S’21 S’22 S’23

S’30 S’31 S’32 S’33

Fig. 6 Byte Substitution 

 

 

As AES algorithm use elements within the GF(2
8
), each element in the state array 

represents a byte with a value that varies between 00H-FFH. The S-BOX has a fixed size of 
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256 bytes represented as (16 * 16) bytes matrix. Fig. 7 shows the AES S-BOX. In this 

figure the variable „b2‟ represents the most significant nibble while the variable „b1‟ 

represents the least significant nibble. 

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76

1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0

2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15

3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75

4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84

5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF

6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8

7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2

8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73

9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB

A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79

B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08

C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A

D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E

E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF

F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

b1

b2

 

Fig. 7 The S-BOX 

 

The Inverse S-BOX which is used during the decryption processes will be retrieving the 

original byte that was substituted using the S-BOX during the encryption process. For 

example from the S-BOX in Fig. 7 we can see that the S-BOX will substitute the byte „00H‟ 

with the byte „63H‟. Also the byte „63H‟ in the Inverse S-BOX shown in Fig. 8 will be 

substituted by „00H‟. 
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0 1 2 3 4 5 6 7 8 9 A B C D E F

0 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB

1 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB

2 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E

3 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25

4 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92

5 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84

6 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06

7 D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B

8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73

9 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E

A 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B

B FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4

C 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F

D 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF

E A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61

F 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

b1

b2

 

Fig. 8 The Inverse S-BOX 

 

The generation of S-BOX is done by two steps, first finding the multiplicative inverse for 

the numbers 00H-FFH in the GF(2
8
), then applying the affine transformation on them. On 

the other hand, the generation of the Inverse S-BOX starts by applying the inverse affine 

transformation followed by finding the multiplicative inverse. The next sub-sections will 

explain these sub-steps in more details. 
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Fig. 9 Generation of S-BOX and Inverse S-BOX 

 

2.4.2.1  Multiplicative Inverse Calculation 

 

The first step of S-BOX generation is finding the multiplicative inverse for the numbers 

00H-FFH, This requires using the irreducible polynomial p(x) defined in the equation (2.7). 

 

                   (2.7) 

 

Since AES is dealing with numbers within the GF(2
8
), it uses the 8

th
 degree irreducible 

polynomial shown in (2.7) as defined by [1]. This polynomial is used as a reduction 

polynomial by applying it as a modulus for the multiplication result of two polynomials so 

that the final result can be within the finite field GF(2
8
). 

 

Calculating the multiplicative inverse requires using the Extended Euclidean algorithm 

[23], which state that for every polynomial a(x) there exists two polynomials b(x) and c(x) 

such that: 

 

                        (2.8) 
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And since: 

                         

 

(2.9) 

We can obtain a(x)
-1

 as: 

                        (2.10) 

 

2.4.2.2  Affine Transformation 

 

The affine transformation is applied after the multiplicative inverse calculation in the Byte 

Substitution step, while it is applied first in the Inverse Byte Substitution step. The affine 

transformation and its inverse have two parts, the multiplication part where a constant 

matrix will be multiplied with the data, then the addition part, where a constant vector is 

added to multiplication result. The matrix „A1‟ and the vector „C1‟ are used for the affine 

transformation as can be seen in (2.11), while the matrix „A2‟ and the vector „C2‟ are using 

for the inverse affine transformation as can be seen in (2.12). 
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(2.12) 

2.4.3 Mix Columns / Inverse Mix Columns Steps 

 

After performing the Byte Substitution step during the encryption process, Mix Columns 

step is applied. In the decryption process the Inverse Mix Columns step is applied after 

adding the Round Key. The Mix Columns step and its inverse are not applied in the last 

encryption or decryption processes as described in [1]. In these steps each column of the 

state array will be processed using 4 polynomials. Each polynomial consists of 4 operands 

representing the old state array column elements and they will be used to obtain the new 

state array element.  

 

S00 S01 S02 S03

S10 S11 S12 S13

S20 S21 S22 S23

S30 S31 S32 S33

S’00 S’01 S’02 S’03

S’10 S’11 S’12 S’13

S’20 S’21 S’22 S’23

S’30 S’31 S’32 S’33

Mix Columns / 
Inverse Mix Columns 

 

Fig. 10 Mix Columns and Inverse Mix Columns steps 
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According to [18], the polynomial c(x) given in (2.13) is used to obtain the Mix Column 

step: 

 

                                 (2.13) 

 

To obtain the Mix Column Step, each 4 bytes state array column is represented as 

polynomials over GF(2
8
) as shown in (2.14). Each polynomial is multiplied by the fix 

polynomial c(x) modulo the polynomial k(x) described in (2.15). 

 

            
        

        
       (2.14) 

 

            (2.15) 

 

According to [18], multiplication between the polynomials c(x) and b(x) modulo k(x) will 

result in the matrix (2.16). 

 

 
 
 
 
   

 

    

   
 

     
 
 
 

  

                 
                 
                 
                 

   

   
   
   
   

  

 

(2.16) 

 

Matrix (2.12) can be written in the polynomials (2.17): 

 

                                          

                                         (2.17) 
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The Inverse Mix Column step is obtained by multiplying the 4 bytes state array column 

polynomial b(x) (2.10) by the Inverse Mix Columns polynomial c(x)
-1

 (2.18) Modulo k(x) 

(2.15). 

 

                                  (2.18) 

 

The latter multiplication can be represented using the matrix in (2.19): 

 

 
 
 
 
   

 

    

   
 

     
 
 
 

  

                 
                 
                 
                 

  

 
 
 
 
   

 

    

   
 

     
 
 
 

 

 

(2.19) 

 

Matrix (2.15) can be written using the polynomials (2.20): 

 

                                                  

                                                 (2.20) 

                                                   

                                                  

  

2.4.4 Key Expansion and Add Round Key Step 

 

Add Round Key step is applied one extra time comparing to the other encryption and 

decryption steps. The first Add Round Key step is applied before starting the encryption 

and decryption iterations, where in the encryption process the first 128 bits of the input key 

the whole key in case of using key size of 128 bits are added to the original data block. This 



21 

 

  

  

round key is called the initial round key. For the decryption process the initial round key is 

the last 128 bits of the generated keys as will be explained later. 

 

S00 S01 S02 S03

S10 S11 S12 S13

S20 S21 S22 S23

S30 S31 S32 S33

S’00 S’01 S’02 S’03

S’10 S’11 S’12 S’13

S’20 S’21 S’22 S’23

S’30 S’31 S’32 S’33

Ri00 Ri01 Ri02 Ri03

Ri10 Ri11 Ri12 Ri13

Ri20 Ri21 Ri22 Ri23

Ri30 Ri31 Ri32 Ri33

 

Fig. 11 Add Round Key 

In addition to the initial 16 bytes round keys, another 16 bytes of round keys will be 

required for each encryption or decryptions iterations, this makes the total as 176 bytes, 

224 bytes and 240 bytes for the key sizes 128,192 and 256 bits, respectively. These round 

keys are generated using an operation called the key expansion. In the key expansion all the 

round keys will be generated from the original input key. The next sub-section explains the 

round keys generation using the key expansion operation. 

 

2.4.4.1 Key Expansion 

 

The key expansion term is used to describe the operation of generating all Round Keys 

from the original input key. The initial round key will be the original key in case of 

encryption and the last group of the generated key expansion keys in case of decryption – 

the first and last 16 bytes in case of key sizes of 192 and 256 bits. As mentioned previously 

this initial round key will be added to the input initially before starting the encryption or 

decryption iterations. Using the 128 bits key size, 10 groups of round keys will be 

generated with 16 bytes size for each.  
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The first 4 bytes column in each group will be generated as follows:  

 

1) Taking the S-BOX equivalent to the last column of the previous group (one 

previous column). 

2) Perform one cyclic permutation “rotate elements [R0r  R1r  R2r  R3r] to [R1r  R2r  R3r  

R0r].  

3) Add the round constant. 

4) Add the result to the first column of the previous group (four previous columns). 

The remaining second, third and fourth column of each group will be created by adding the 

direct previous column with the equivalent column in the previous group (four previous 

columns). This will create a total of 176 bytes of round keys. 

 

In the 192 bits key size, each group consists of six columns. The first column will be 

created in the same way as in the case of 128 bits key size. The remaining second to sixth 

column of each group will be also created by adding the direct previous column with the 

equivalent column in the previous group (six previous columns). In the 192 bits key size, 

192 bytes of round keys will be generated in addition to the original 24 bytes key. The 

round keys will be retaken as groups of four columns each and are applied 13 times during 

the encryption and decryption processes. 

 

Finally, for the 256 key sizes, each group will consists of 8 columns; the first column in the 

group will be created exactly the same way as in the 128 and 192 key sizes. The fourth 

column of each group will be created by applying the byte substitution to the third column 

values and then adding it to the equivalent column in the previous group (eight previous 

columns). The remaining columns are created also by adding the direct previous column 
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with the equivalent column of the previous group. In the 256 bits key size, 208 bytes of 

generated round keys in addition to the original 32 bytes key are applied 15 times as groups 

of 16 bytes in the encryption and decryption processes. 

 

R(i+1)00 R(i+1)01 R(i+1)02 R(i+1)03

R(i+1)10 R(i+1)11 R(i+1)12 R(i+1)13

R(i+1)20 R(i+1)21 R(i+1)22 R(i+1)23

R(i+1)30 R(i+1)31 R(i+1)32 R(i+1)33

R(i)00 R(i)01 R(i)02 R(i)03

R(i)10 R(i)11 R(i)12 R(i)13

R(i)20 R(i)21 R(i)22 R(i)23

R(i)30 R(i)31 R(i)32 R(i)33

S-BOX 

RCON

 

Fig. 12 Key Expansion 

 

The round constant matrix “known as RCON” is a constant matrix used during the key 

expansion process. Each row of the round constant matrix will be added to the first row of 

each group during the key generation as explained previously. The first column of this 

matrix is generated according to (2.21) while the second, third and fourth row are zeros. 

The standard AES reduction polynomial will be used to keep the elements in the GF(2
8
). 

 

             

        (2.21) 
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Fig. 13 shows the round constant values for the AES with 128 bits key size. 

 

0 1 2 3

0 1 0 0 0

1 2 0 0 0

2 4 0 0 0

3 8 0 0 0

4 10 0 0 0

5 20 0 0 0

6 40 0 0 0

7 80 0 0 0

8 1B 0 0 0

9 36 0 0 0

 

Fig. 13 Round Constant 

 

2.5 Literature Review 

 

Since the announcement of the Advanced Encryption Standard algorithm in 2001, various 

hardware implementations were proposed for it. Most of these implementations have 

targeted the AES with 128-bits key size. This key size is considered to be sufficient for 

most of the commercial applications, where using higher key sizes is considered as waste 

of resources as it requires higher area implementations with longer processing time. Key 

sizes of 192-bit and 256 bits are used mainly in top secret military applications to ensure 

the maximum level of security [24].  

 

AES implementations can be divided into three main types depending on data-path width. 

The first type comes with 8-bits data path as implemented in [17] aiming for low area 
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architectures. The second type is the 32-bits data path architectures which process each 

state array row or column together as implemented in [14-16] and [18] targeting a medium 

throughput applications. The last type of implementations is the 128-bits loop unrolled 

architectures which targets very high speed applications as presented in [2-3] and [12]. 

 

Mainly, designs with 8 bits and 32 bits data paths use looping architectures. Looping 

architectures use a one stage of AES encryptor/decryptor with a feedback at the end as 

shown in Fig 14 (a). In this way the data will go through this stage until completing the 

required number of iterations which is determined according to size of the used key. This 

AES stage could be only an encryptor or an encryptor with decryptor and it includes the 

hardware implementation for the four AES steps: Shift Rows Step, Byte Substitution using 

the Substitution Box (S-BOX), Mix Columns and Add Round Key.  

 

For very high speed applications which is implemented as full 128 bits data path, the 

throughput can be doubled ideally N times by applying the loop unrolled architecture. In 

this architecture, replicates of the AES stages are implemented in series, where N number 

of stages is used. In AES 128 bits key size architecture, N is 10, as 10 AES iterations are 

required to complete the encryption/decryption processes. Fig 14 (b) shows the loop 

unrolled architectures with pipelining technique.  

 

In order to get benefit from the loop unrolled architecture, a pipelining stage is 

implemented at the end of each AES stage which allows entering new data at each clock 

cycle, therefore, all AES stage will be working in parallel. The design in [25] presents a 

loop unrolled AES implementation with pipelining techniques. 

 

More advanced pipelining techniques were used in the designs in [2], [5] and [12], where 
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the idea of using sub-pipelining stages is presented. In sub-pipelining, instead of applying 

pipelining stage at the end of each AES stage, the latter is divided into certain number of 

pipelining stages. This method doubles the throughput couple of times compared to what is 

achievable using normal pipelining. Fig 14 (c) shows the loop unrolled architectures with 

sub- pipelining techniques. 

 

AES 
Stage OutputInput

A)

AES 
Stage 1

AES 
Stage 2

AES 
Stage 3

AES 
Stage NInput Output

Looping architectures 

Loop-unrolled architecture with pipelining

B)

AES 
Stage 1

AES 
Stage 2

AES 
Stage 3

AES 
Stage NInput Output

Loop-unrolled architecture with sub-pipelining

C)

 

Fig. 14 AES looping and loop-unrolled architectures 

These loop unrolled sub-pipelined AES designs which achieves tens of gigabytes of 

throughput are used in many applications such as highly traffic servers as in e-commerce 

servers [17].  

 

S-BOX implementation is a main concern in the AES hardware design. Two main methods 

where proposed for the implementation of the S-BOX. The first method is by pre-storing 

the S-BOX elements in BRAMs, where BRAM is an FPGA block of RAM which can be 

used to store data. The design in [3] has used the BRAMs to present high speed loop 
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unrolled architecture. The second method uses the composite field S-BOX as proposed in 

[8], and implemented as high speed loop unrolled sub-pipelined AES design in [2]. 
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Fig. 15 AES encryption stage  

As pipelining cannot be applied to BRAM as it is a one memory block, using it in the 

implementation of S-BOX will limit the number of sub-pipelining stages in the design. 

Also implementation using BRAMs usually requites larger area than the composite field 

arithmetic designs as will be shown later in this thesis. 

 

The next sections will present different proposed designs for the Advanced Encryption 

Standard algorithm. 

 

2.5.1 Composite Field Arithmetic S-BOX 

 

The implementation of the composite field S-BOX is accomplished using combinational 

logic circuits rather than using pre-stored S-BOX values. S-BOX substitution starts by 

finding the multiplicative inverse of the number in GF(2
8
), and then applying the affine 
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transformation. Implementing a circuit to find the multiplicative inverse in the finite field 

GF(2
8
) is very complex and costly, therefore, [4] has suggested using the finite field GF(2

4
) 

to find the multiplicative inverse of elements in the finite field GF(2
8
). First detailed 

implementation for the composite field S-BOX was published in [8]. 

 

Each element in a higher order field can be expressed using the polynomial     , where 

b and c are elements in the lower order field. For example any element in GF(2
8
) can be 

expressed using the polynomial     , where b and c ε GF(2
4
) and they represent the 

most and the least significant nibbles of that element.  

 

After expressing the GF(2
8
) element as a polynomial over GF(2

4
), the Multiplicative 

Inverse can be found using the polynomial shown in (2.22) [4]. 

 

              λ                

        λ             

 

(2.22) 

 

Fig. 16 shows the Composite field S-BOX which was proposed by [8]. This model applies 

equation (2.22) in finding the multiplicative inverse for GF(2
8
) elements. 
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δ

x2 xλ

x-1 δ-18

4

4

4

4

4

8

AT

Multiplicative inverse in GF(28) Affine
Transformation

8

δ

δ-1

Isomorphic mapping

Inverse isomorphic mapping

x-1 Multiplicative inverse in GF(24)

Multiplier in GF(24)

AT Affine Transformation x2 Squarer in GF(24)

xλ Multiplication with constant “λ”XOR Gate

 Fig. 16 Composite field S-BOX implementation 

 

As can be seen from the figure, isomorphic mapping must be applied on the GF(2
8
) 

element before applying it as a polynomial over GF(2
4
). Also, inverse isomorphic mapping 

is required after finding the multiplicative inverse for the number. 

 

According to [8] and [26], higher order fields can be built from lower order field using the 

irreducible polynomials shown in (2.23). 

 

 

                                            

                                        

                                   

   
(2.23) 
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The polynomials             and           , are used in the implementation of the 

composite field S-BOX. The constants   and   are chosen to ensure the polynomials 

irreducibility. The used values for these constants according to the proposed in [8] are 

         and       . These polynomials are mainly used in the derivation of the 

isomorphic mapping and its inverse in addition to the design of the composite field S-BOX 

sub-blocks. Detailed explanations on how to use these polynomials in building the 

composite field S-BOX can be found in [10] and [26]. 

 

Chapter 3 will present the internal architecture for each block in the composite field 

S-BOX, in addition to the used isomorphic and inverse isomorphic matrices.  

 

2.5.2 Loop Unrolled Pipelined Encryptor in [12] 

 

The design in [12] is implemented using a loop unrolled sub-pipelined AES encryptor 

similarly to the architecture shown in Fig. 14 (c). In this design the two main methods for 

S-BOX implementation were used. The first one is by using the composite field S-BOX, 

while the other one is by using pre-stored S-BOX values in BRAMs. 

 

In this design each encryption stage was divided into 4 and 7 pipelining stages. By using 

the composite field S-BOX design with 7 pipelining stages, a throughput of 21.64 Gbps 

where achieved using 9446 Slices. This led to an efficiency of 2.3 Mpbs/Slice using Xilinx 

XC2VP20-7 device. In the BRAM implementation using 4 pipelining stages a throughput 

of 21.54 Gbits/s was achieved using 84 BRAMs and 5177 Slice. Fig. 17 shows the design 

for each AES stage in [12]. 
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In the composite field implementation of this design three separate blocks for isomorphic 

mapping, inverse isomorphic mapping and affine transformation were used. These blocks 

are merged into one block in the proposed design in chapter 3. 

S-BOX
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S-BOX

Mix 
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Mix 
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Fig. 17 AES encryption stage in [12] 

2.5.3 Very High Speed AES design in [2] 

 

The design presented in [2] is a loop unrolled architecture based on the composite field 

arithmetic S-BOX proposed in [8]. This design presented a new GF(2
4
) inversion block 

which is used as a part of the GF(2
8
) Multiplicative inverse block, in addition to presenting 

a joint encryptor/ decryptor architecture for loop unrolled designs. In the encryptor design 

each stage was divided into 3 and 7 sub-pipelining stages. Using 7 sub-pipelining stages, 

this design was able to achieve an efficiency of 1.956 Mbps/Slice using XCV 1000e-8, 

where a throughput of 21556 Mpbs was achieved using 11022 Slices. 
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Fig. 18 shows the proposed encryption stage in [2]. 
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Fig. 18 AES encryption stage in [2] 

 

2.5.4 32 Bits Encryptor/Decryptor Designs 

 

Several 32 bits designs for the AES algorithm were proposed. These designs use the 

looping architecture which can be seen in Fig. 14 (a). One example is the design in [16], 

where a 32 bits encrytor/decyptor was proposed. In [16] a block that mixes between the 

Byte Substitution and Mix Columns steps was implemented. This block pre-stores the 

multiplication results of the S-BOX bytes and the mix columns coefficients in BRAMs. 

Applying this is done by pre-storing the multiplication of the S-BOX bytes with the 

coefficients {2,3} to be used during encryption process and the multiplication results of the 

Inverse S-BOX bytes with the coefficients {9,B,D,E} to be used during the decryption 

process. This block required the usage of (512 * 32) bits BRAM. Fig. 19 demonstrates the 

architecture that was proposed by [16]. 

 



33 

 

  

  

DATA IN

S-BOX/ Mix and 
Inv Mix Columns

KRAM for 
Round Keys

a0 a1 a2

b0
0  1  2  3

b2
8 9 10 11

b3
12 13 14 15

b1
4  5  6  7

Shift Rows/ Inv Shift Rows

CONTROL

32

8

 

Fig. 19 32-Bits AES design in [16] 

 

As can be seen from the figure, three 32-bits shift registers (a2,a1,a0), and four 32-bits 

rotate registers (b3,b2,b1,b0), in addition to two 8-bits 2x1 multiplexers are needed to 

apply the shift columns and inverse shift columns steps. The Byte Substitution and the Mix 

Columns steps are obtained using the new block that mixes between these steps. All the 

Round Keys in this design are pre-calculated using a key expansion unit. This unit 

calculates all round keys prior to the encryption/decryption processes and stores them in 

the KRAM. This KRAM is a (44 x 32 bits) BRAM. 

 

The method of pre-calculation and storage of all round keys before starting the 

encryption/decryption processes is used in several 32-bits AES architectures as presented 

in [14-16]. One example on a key expansion implementation that uses this method is the 

design presented in [14], where Fig. 20 shows the key expansion unit used in this design. 
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Fig. 20 Key Expansion unit in [14] 

 

As can be seen from Fig. 20, this key expansion unit uses a 3 deep shift registers to store the 

columns of the previous group, while the first multiplexer will choose the previous 

columns either directly from the register or after S-BOX substitution and round constant 

addition. The resulting round keys are stored in BRAM to be used in the 

encryption/decryption processes later on. 

 

2.6 Conclusion 

After reviewing different hardware implementations for the Advanced Encryption 

Standard algorithm, different techniques and improvements can be applied to improve the 

efficiency of these designs. 

 

Improvements on high speed loop unrolled designs can be done by applying new methods 

to decrease the critical path of the AES stage and to allow a lower area implementation. For 
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Example in the designs [2] and [12] repeated blocks of isomorphic mapping, inverse 

isomorphic mapping and affine transformation where used at each AES stage. Chapter 3 

introduces a new loop unrolled design which merges these 3 blocks into one new block 

which allows the implementation with shorter critical path and lower area, therefore 

presenting a system with higher efficiency. 

 

Improvements on 32-bits AES design can be done by applying new methods which reduces 

the hardware cost and prevents pre-processing delays. The designs in [15] and [16] have 

used a block that mixes between the Byte Substitution/Inv Byte Substitution and the Mix 

Column/Inverse Mix Columns Steps. Using this block requires a large memory which 

reduces the system efficiency. Also, the designs in [14-16] used the method of 

pre-calculation and storage of all round keys prior to starting the encryption/decryption 

processes. Using this method requires a pre-processing delay which will be required at the 

system start and at each key change. Chapter 4 introduces a new design that uses on the fly 

calculation for the round keys, which means they are calculated in parallel to the 

encryption/decryption processes. Also, this design uses a shared S-BOX between the key 

expansion and the round unit. This S-BOX has internal pipelining stages which prevent 

any extra delays resulting from the S-BOX sharing. 
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CHAPTER 3  HIGH SPEED AES 

ENCRYPTOR  

 
In this chapter a new architecture for a high speed AES encryptor using 128-bits key size is 

presented [13]. This architecture is implemented using loop unrolled technique with 

sub-pipelining. To apply the sub-pipelining, composite field S-BOX is used which is 

implemented using combinational logic circuits. In this proposed implementation 

re-arrangements for the AES encryption sub-steps is applied to allow an efficient merging 

between them leading to lower area implementation with shorter path length. This new 

architecture has shown higher efficiency in terms of FPGA (Throughput/Area) comparing 

to previous loop unrolled pipelined AES encryptors.  

 

3.1 Introduction 

 

The literature review in chapter 2 presented some loop unrolled AES encryptor designs that 

used the composite field S-BOX in the implementation as in [2] and [12].  This Chapter 

proposes an encryptor that simplifies the implementation of the composite field S-BOX by 

relocating the Mix Column step and merge between the inverse isomorphic mapping, the 

affine transformation multiplication, and the isomorphic mapping of the next encryption 

stage. This merging combines these three operational blocks into one block. Moreover, the 

affine transformation vector “C” shown in (2.11) is implemented in the key expansion unit 

instead of the main round unit. These improvements enabled the implementation to have 

higher efficiency by reducing the area and shortening the total path length, where a less 



37 

 

  

  

number of sub-pipelining stages will be required for achieving certain throughput. 

 

3.2 Implementation of Composite Field Arithmetic 

S-BOX 

 

Chapter 2 presented the implementation of the composite field S-BOX as it was proposed 

in [8]. Using the composite field S-BOX requires applying isomorphic mapping and its 

inverse at the start and the end of the Multiplicative Inverse block. Matrices (3.1) and (3.2) 

represent the isomorphic mapping and its inverse based on the values          

and       . Derivation for the isomorphic mapping matrix can be obtained using the 

algorithms presented in [7] and [26]. 
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   (3.2) 

 

Fig. 21 represents the pre-calculated multiplicative inverse results for the numbers in 

GF(2
8
) starting from 00H till FFH, b2 and b1 represent the most significant and least 

significant nibbles , respectively. 
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0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 01 8D F6 CB 52 7B D1 E8 4F 29 C0 B0 E1 E5 C7

1 74 B4 AA 4B 99 2B 60 5F 58 3F FD CC FF 40 EE B2

2 3A 6E 5A F1 55 4D A8 C9 C1 0A 98 15 30 44 A2 C2

3 2C 45 92 6C F3 39 66 42 F2 35 20 6F 77 BB 59 19

4 1D FE 37 67 2D 31 F5 69 A7 64 AB 13 54 25 E9 09

5 ED 5C 05 CA 4C 24 87 BF 18 3E 22 F0 51 EC 61 17

6 16 5E AF D3 49 A6 36 43 F4 47 91 DF 33 93 21 3B

7 79 B7 97 85 10 B5 BA 3C B6 70 D0 06 A1 FA 81 82

8 83 7E 7F 80 96 73 BE 56 9B 9E 95 D9 F7 02 B9 A4

9 DE 6A 32 6D D8 8A 84 72 2A 14 9F 88 F9 DC 89 9A

A FB 7C 2E C3 8F B8 65 48 26 C8 12 4A CE E7 D2 62

B 0C E0 1F EF 11 75 78 71 A5 8E 76 3D BD BC 86 57

C 0B 28 2F A3 DA D4 E4 0F A9 27 53 04 1B FC AC E6

D 7A 07 AE 63 C5 DB E2 EA 94 8B C4 D5 9D F8 90 6B

E B1 0D D6 EB C6 0E CF AD 08 4E D7 E3 5D 50 1E B3

F 5B 23 38 34 68 46 03 8C DD 9C 7D A0 CD 1A 41 1C

b1

b2

 

Fig. 21 Multiplicative Inverse results for the numbers in GF(2
8
) 

 

The next sub-sections demonstrate the implementation of each sub-block in the composite 

field S-BOX. 

 

3.2.1 Square Block 

 

According to (2.22) and as can be seen from Fig. 16, square operation is required over 

GF(2
4
) as a part of the multiplicative inverse calculation. This square operation will be 

applied for the higher nibble of the input byte.  
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Equation (3.3) shows the implementation of this square block. Derivation of (3.3) can be 

found in [10]. 

 

        

           

           

              

 

 

(3.3) 

 

Fig. 22 shows the square results for all the values in GF(2
4
), starting from 0H to FH. 

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

x2 0 1 3 2 6 7 5 4 D C E F B A 8 9

 

Fig. 22 Square block input/output 

 

3.2.2 Multiplication with the constant λ 

 

Following the square operation, the higher nibble of the data will be multiplied by the 

constant λ. This constant is chosen to be equal {1100} to guarantee reduction polynomial 

irreducibility. Equation (3.4) shows the implementation for the λ multiplication block. Full 

derivation of this block can also be found in [10]. 

 

           

                 

        

        

 

(3.4) 
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Fig. 23 shows the multiplication with λ results for all the values in GF(2
4
), starting from 0H 

to FH. 

 

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

xλ 0 C 4 8 D 1 9 5 6 A 2 E B 7 F 3

 

Fig. 23 Multiplication with λ block input/output 

 

3.2.3 Multiplicative Inverse in GF(24) 

 

Several architectures were suggested for the implementation of GF (2
4
) Multiplicative 

Inverse block. In [2] a comparison between these different implementations is presented. 

The first design was build using two square blocks with three GF(2
2
) multipliers, while the 

second one used similar block to what is proposed in Fig. 16, but using GF(2
2
) in finding 

the multiplicative inverse for GF(2
4
).  The third design which is considered the best in 

terms of gates number and critical path is designed by direct mapping between the input 

and output bits. Equation (3.5) shows the implementation GF(2
4
) Multiplicative Inverse 

block.  

 

                           

                                       

                                       

                                                     

                

 

(3.5) 
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Fig. 24 shows the inversion results for all the values in GF(2
4
), starting from 0H to FH. 

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

x-1 0 1 3 2 F C 9 B A 6 8 7 5 E D 4

 

Fig. 24 GF(2
4
) Multiplicative inverse block input/output 

3.2.4 Multiplication in GF(24) and GF(22) 

 

As can be seen from Fig. 16 and according to (2.22), three multipliers in GF(2
4
) are 

required as a part of finding the multiplicative inverse in GF(2
8
). Fig. 25 shows the GF(2

4
) 

multiplier circuit. As can be seen from the figure the GF(2
4
) multipliers consist of 3 GF(2

2
) 

multipliers with 4 XOR Gates and with constant multiplier θ. This constant multiplier 

which has 2 bits input extracts the lower bit output as the higher bit input, while the higher 

output bit will be the result of XOR operation between the 2 input bits. Full derivation of 

this multiplier circuit can be found in [2] and [10].  

4

4

2

2

2

2

4

A

B
C

A

B

C

xθ

Multiplier in GF(22)

4
4

4

 

Fig. 25 GF(2
4
) Multiplier   
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The next figure shows the multiplication results in GF(2
4
) for the nibble inputs „a‟ and „b‟. 

These inputs vary between 0H to FH.  

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9 A B C D E F

2 0 2 3 1 8 A B 9 C E F D 4 6 7 5

3 0 3 1 2 C F D E 4 7 5 6 8 B 9 A

4 0 4 8 C 6 2 E A B F 3 7 D 9 5 1

5 0 5 A F 2 7 8 D 3 6 9 C 1 4 B E

6 0 6 B D E 8 5 3 7 1 C A 9 F 2 4

7 0 7 9 E A D 3 4 F 8 6 1 5 2 C B

8 0 8 C 4 B 3 7 F D 5 1 9 6 E A 2

9 0 9 E 7 F 6 1 8 5 C B 2 A 3 4 D

A 0 A F 5 3 9 C 6 1 B E 4 2 8 D 7

B 0 B D 6 7 C A 1 9 2 4 F E 5 3 8

C 0 C 4 8 D 1 9 5 6 A 2 E B 7 F 3

D 0 D 6 B 9 4 F 2 E 3 8 5 7 A 1 C

E 0 E 7 9 5 B 2 C A 4 D 3 F 1 8 6

F 0 F 5 A 1 E 4 B 2 D 7 8 3 C 6 9

a

b

 

Fig. 26 GF(2
4
) Multiplication results  

Fig. 27 shows the implementation of the GF(2
2
) Multiplier. 

 

2

2

1

1

1

1

2

A

B
C

A

B

C

2

2

2

 

Fig. 27 GF(2
2
) Multiplier   
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Fig. 28 shows all the possible multiplication results in GF(2
2
) by varying the inputs a and b 

between 0H to 3H.  

0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 3 1

3 0 3 1 2

a

b

 

Fig. 28 GF(2
2
) Multiplier outputs  

3.3 I-BOX  

 

Applying the current composite field design in a loop unrolled system resulted in repeated 

isomorphic mapping , inverse isomorphic mapping and affine transformation operations in 

each encryption stage as happened in [2] and [12]. 

 

This section presents the new proposed composite field loop unrolled design for the AES 

encryptor. In this design the mix column step is relocated and performed before the inverse 

isomorphic mapping and the affine transformation operations which are required in the 

byte substitution step, while the round keys are mapped with the isomorphic mapping. This 

relocation for the mix column and the mapping for the round keys allowed an efficient 

merging between the inverse isomorphic mapping, the affine transformation multiplication 

and the required isomorphic mapping in the next encryption stage. By this merging these 3 

operations where substituted by a new operational block called the “ζ” transformation. 
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Moreover, the affine transformation addition where placed in the key expansion unit 

instead of the encryption stages. This allowed the reduction of these addition blocks from 

160 blocks in all encryption stages to only 16 blocks implemented in the key expansion 

unit.  

 

With these merging techniques, a new block which is called the I-BOX “Integrated-BOX” 

is introduced. This block will be responsible for obtaining one encryption iteration for each 

state matrix column. To derive the I-BOX equations and to explain the mathematical theory 

behind this proposed merging and rearrangements, we start by (3.6) which represent the 

state array element after applying the inverse isomorphic mapping and the affine 

transformation to the multiplicative inverse result in (2.22). Parameters “r” and “c” 

represents the row and column locations for the state matrix element, where it is assumed 

to be at the i‟th encryption stage. 

 

                         
   
   (3.6) 

 

After byte substitution is performed using (3.6), the mix column step is applied on the state 

array elements using the matrix in (3.7): 

 

 
 
 
 
   

  

     

   
  

      
 
 
 

  

       
       
       
       

  

 
 
 
 
   

 

    

   
 

     
 
 
 

 

 

 (3.7) 

 

 

 

 



45 

 

  

  

Where the state array element after the mix columns step can be written as: 

 

                                                      

                                                                   

 

(3.8) 

 

By rewriting (3.10) and adding the Round Key, the state array element will be written as: 

 

                                                           

                                                                

 

(3.9) 

 

By letting             and                           we obtain: 

 

                                                         

                                                                         

                                                                    

 

 

(3.10) 

 

S r,‟c‟(i+1) in (3.10) represents the isomorphic mapped value of state element after shifting 

and before applying it to the byte substitution in (i+1) stage, where the affine 

transformation vector “C” in each operand is cancelled by XOR addition with the vector 

“C” in the next operand. By rearranging the location of the mix columns coefficient {02} 

matrix, and replacing it with a new matrix {02}‟, and by taking the affine transformation 

and the inverse isomorphic mapping as common factors (3.10) can be rewritten as: 
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(3.11) 

 

From (3.11) we can define the new transformation ζ as:  

 

                  (3.12) 

 

  

 
 
 
 
 
 
 
 
               
               
               
               
               
               
               
                

 
 
 
 
 
 
 

  

 
 
 
 
 
 
 
 
               
               
               
               
               
               
               
                

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
               
               
               
               
               
               
               
                

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
               
               
               
               
               
               
               
                

 
 
 
 
 
 
 

 

 

     

 
 
 
 
 
 
 
 
               
               
               
               
               
               
               
                

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
  
  
  
  
  
  
  
   
 
 
 
 
 
 
 

 

 

 

(3.13) 
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Fig. 29 shows   transformation for the values 00H-FFH, where „b1‟ represents the least 

significant nibble, while „b2‟ represents the most significant nibble. 

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 10 33 23 45 55 76 66 80 90 B3 A3 C5 D5 F6 E6

1 71 61 42 52 34 24 07 17 F1 E1 C2 D2 B4 A4 87 97

2 37 27 04 14 72 62 41 51 B7 A7 84 94 F2 E2 C1 D1

3 46 56 75 65 03 13 30 20 C6 D6 F5 E5 83 93 B0 A0

4 36 26 05 15 73 63 40 50 B6 A6 85 95 F3 E3 C0 D0

5 47 57 74 64 02 12 31 21 C7 D7 F4 E4 82 92 B1 A1

6 01 11 32 22 44 54 77 67 81 91 B2 A2 C4 D4 F7 E7

7 70 60 43 53 35 25 06 16 F0 E0 C3 D3 B5 A5 86 96

8 1F 0F 2C 3C 5A 4A 69 79 9F 8F AC BC DA CA E9 F9

9 6E 7E 5D 4D 2B 3B 18 08 EE FE DD CD AB BB 98 88

A 28 38 1B 0B 6D 7D 5E 4E A8 B8 9B 8B ED FD DE CE

B 59 49 6A 7A 1C 0C 2F 3F D9 C9 EA FA 9C 8C AF BF

C 29 39 1A 0A 6C 7C 5F 4F A9 B9 9A 8A EC FC DF CF

D 58 48 6B 7B 1D 0D 2E 3E D8 C8 EB FB 9D 8D AE BE

E 1E 0E 2D 3D 5B 4B 68 78 9E 8E AD BD DB CB E8 F8

F 6F 7F 5C 4C 2A 3A 19 09 EF FF DC CC AA BA 99 89

b1

b2

ζ-Transform
 

Fig. 29 ζ-Transformation 

Due to changing Mix Columns Step location, the new {02}‟ multiplication matrix is 

required because the multiplication is obtained before the inverse isomorphic mapping and 

the affine transformation. This matrix is derived by implementing a relation between the 

inputs 00H-FFH and the values which will yield to the {02} multiplication after applying 

the inverse isomorphic mapping and the affine transformation .Equation (3.14) represents 

the multiplication of input byte „q‟ by the new matrix {02}‟. 
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(3.14) 

Using (3.12) we can rewrite (3.11) as: 

 

                
                                 

                                 

    

                                                    

 

 

(3.15) 

 

Equation (3.15) represents one encryption stage calculation for state array element in the 

I-BOX, where each I-BOX will be calculating 4 state array elements. Fig. 30 shows the 

state array element calculation inside the I-BOX based on (3.15). As can be seen from the 

figure each state element calculator in I-BOX consists of the multiplicative inverse block 

GF(2
8
), followed by the mix column step which uses the new {02}‟ multiplier. After the 

mix columns part the new “ζ” transformation block is used, this block as explained 

previously resulted from the merging between the inverse isomorphic mapping, the affine 

transformation multiplication and the isomorphic mapping for the next stage. Finally the 

Add Round Key XOR gate can be found.
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x2 λ

4

4
4

4

4

8

x-1 x2 ζ

8

Sr,c

S mod(r+1,4),c + S mod(r+2,4),c

+ S mod(r+3,4),c

S mod(r+3,4),c

S mod(r+1,4),c RK r,c (i)

p= 5 

p= 9

8

Fig. 30 I-BOX state array element calculation  

By placing the mix column step before the inverse isomorphic mapping and the affine 

transformation and obtaining the Round Keys in the isomorphic mapping the three 

transformation blocks were placed to be in sequence, therefore, the merging is among them. 

Fig. 31 depicts the implementation of this merging and rearrangement. Also the affine 

transformation vector δ(C), has been added to each round key prior to adding it to the state 

array element, where the vector δ(C) is implemented in the key expansion unit. In this case 

it will be implemented 16 times “one block for each byte” instead of 160 times in the main 

round units.  
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Fig. 31 Rearrangements and merging steps 
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Table 1 demonstrates the number of gates and the critical path for the isomorphic mapping, 

inverse isomorphic mapping and the affine transformation compared to the new    

transformation. 

 

Table 1: Number of gates and critical path for the mappings and the transformations 

Operation          ζ 

Total Number of Gates 12 14 20 15 

Critical Path 4 3 4 3 

 

Another simplification is presented in the I-BOX by merging between the λ Multiplier and 

the Square block. Equation (3.16) presents the merged squaring block with λ 

Multiplication. 

 

                       

                           

              

                

 

(3.16) 

 

Fig. 32 shows the outputs for the merged Squaring block with λ multiplication input/output 

for the values 0H-FH. 

 

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

x2λ 0 C 8 4 9 5 1 D 7 B F 3 E 2 6 A

 

Fig. 32 Merged squaring block with λ multiplication input/output 
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3.4 Key Expansion Unit 

 

The key expansion unit is responsible of generating the 176 bytes of round keys required 

during the encryption process. Fig. 33 shows the proposed key expansion unit. This unit 

will be using 4 S-BOXES in processing the first column of each group of the round keys, 

while the XOR gates will be used in processing all the columns by adding the direct 

previous column with the equivalent column from the previous group. The 4 registers 

following the multiplexers will be used to store the direct previous group of Round Keys to 

be used in generation for the ongoing group, while the registers (R1-R11) will be storing 

the all the 176 bytes of round keys.  

 

To work in compatible with the I-BOX state array element calculation described in (3.15). 

The original input key will be transformed to the isomorphic mapping so that all generated 

round keys will also be in the isomorphic transformation as required in (3.15). The S-BOX 

in the key expansion unit is implemented using multiplicative inverse block with the “ζ” 

transformation block. The affine transformation constant δ(C) are implemented in the key 

expansion unit, where it is added to the Round Keys before being stored in the registers.  
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S-BOX

δ

RCON

R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

δ
128

128

32323232

32

32323232

32

Key

R1

δ(C)

Register

δ(C) δ(C) δ(C)

 

Fig. 33 Key Expansion unit for the 128 bits AES 

 

3.5 AES Encryptor 

 

This AES encryptor consists of 10 encryption stages. The first 9 stages is implemented 

using 4 I-BOXES in each stage, while the last encryption stage is implemented using 

normal S-BOXES as the Mix Columns step is not required in the last encryption iteration. 

Each S-BOX in the last stage is similar to the S-BOX in the key expansion unit, where it 

will consist of the multiplicative inverse block with “ζ” transformation.  As I-BOX uses 

the “ζ” transformation, isomorphic mapping and inverse isomorphic mapping will be 

required at the start and the end of the encryptor only. Shift Rows step is obtained directly 

during the input/output operation between the I-BOX and S-BOX stages. Fig 34 shows the 

AES encryptor using the I-BOX technique.  
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Fig. 34 AES encryptor using I-BOX technique 

 

Appendix A shows a step by step example of AES Encryption using the I-BOX techniques. 

 

3.6 Results and Comparison 

 

The next two sub-sections present the sub-pipelining simulation results and the simulation 

results in comparison with previous proposed designs. 

 

3.6.1 Sub-pipelining Simulation Results 

 

The I-BOX has a total critical path of 26 gates, where each of its sub-blocks has a different 

critical path that plays a main role in determining the best number of used pipelining stages. 

Table 2 shows the number of gates and the critical path for each block for the composite 

field S-BOX [2]. 

 

To determine the number of the used sub-pipelining stages the AES encryptor was 
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simulated with 1-9 sub-pipelining stages and the best efficiency was achieved using 9 

sub-pipelining stages, while the second best efficiency was achieved with 5 sub-pipelining 

stages. Table 3 shows the simulation results for architectures with 1-9 sub-pipelining stages 

using Xilinx XC2V6000-6. 

 

Table 2: Gates and the critical path for the GF(2
8
) Multiplicative Inverse sub-blocks 

Block Critical Path Total Number of Gates 

GF(2
4
) Multiplier 5 30 

GF(2
2
) Multiplier 3 7 

(x
-1

) Inverse Block 5 25 

Merged (x
2
) and (xλ) Block  2 4 

ζ-Transformation 3 15 

 

Table 3: Simulation result based on the number of sub-pipelining stages 

Sub-Pipelining 

Stages 

Frequency 

(Mhz) 

Throughput 

(Mpbs) 

Slices Critical 

Path 

Efficiency 

(Mbps/Area) 

1 87.4 11187 6462 26 1.731 

2 122.1 15629 6767 13 2.310 

3 169.9 21747 7092 9 3.066 

4 188.4 24115 7501 7 3.215 

5 218.3 27942 7884 6 3.544 

6 236.0 30208 8743 5 3.455 

7 258.8 33126 9461 4 3.501 

8 261.9 33523 9981 4 3.359 

9 305.1 39053 10662 3 3.663 
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Fig. 35 plots the relation between the number of used sub-pipelining stages and the 

efficiency for the proposed loop unrolled AES Encryptor. 

 

Fig. 35 Pipelining stages and Efficiency relationship for the proposed AES encryptor 

 

As can be seen from Table 3 and Fig 35, applying one pipelining stage achieves the lowest 

efficiency. This kind of pipelining is shown in Fig 14 (b), where a pipelining stage is 

applied between the AES stages without the usage of any sub-pipelining stages. In the case 

of 2-5 pipelining stages the efficiency will increase as more pipelining stages are added. 

Applying 6 pipelining stages leads to less efficiency comparing to what can be achieved 

using 5 pipelining stages. In the case of 6 pipelining stages an internal pipelining must be 

applied in some of the sub-blocks of the composite field arithmetic S-BOX. This requires 

applying registers in each branch inside these sub-blocks, which result in higher usage of 
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registers comparing to case of 5 pipelining stages where the pipelining registers are needed 

only at the main buses in the composite field S-BOX. 

 

Using 8 pipelining stages also achieved less efficiency than using 7 pipelining stages. The 

main reason for this is that in both cases the critical path of the system is 4 logic gates 

which prevent a significant increase in the system throughput. Using 9 pipelining stages 

achieves the best possible efficiency while applying more than 9 pipelining stages will 

cause a reduction in the efficiency as the critical path cannot be reduced to less than 3 gates 

until reaching a system with 13 pipelining stages. The key expansion unit has to be divided 

into the same number of sub-pipelining stages to maintain the synchronization between the 

main round units and the key expansion unit. Fig 30 shows the implementation of 5 and 9 

sub-pipelining stages for the I-BOX where, “p” in this figure represents the number of 

sub-pipelining stages in each case. 

 

3.6.2 Comparison with Previous Designs 

 

Many designs rely on BRAMs in the implementation of AES encryptors, therefore, [6] 

suggested using the metric Mbps/Area for a better performance-area relationship instead of 

the metric Mbps/Slice to take into account the use of BRAMs in the efficiency calculation. 

The total area is obtained by adding the total slices and by considering each dual port 

256*8 bit BRAM as equivalent to 128 slices [6]. 

 

Owing to the proposed merging techniques, this design was able to achieve higher 

efficiencies than the previous loop unrolled designs. By using 5 sub-pipelining stages this 

design achieves almost the same throughput obtained by 7 sub-pipelining stages in [2]. By 
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comparing this design with [12], a 37% improvement in efficiency was achieved based on 

the simulation results of the same FPGA device. The encryptor in [3] used BRAMs to 

implement the S-BOX. According to [3] these BRAMs are equivalent of 10240 extra 

slices. Simulated on the same device, the proposed design was able to achieve higher 

efficiency and throughput. Also, the proposed design was able to achieve higher efficiency 

than the designs in [11] and [5]. Table 4 summarizes the obtained results and the 

comparison with previous different implementations. 

 

Table 4: Results and comparison of AES 128-bits encryptors  

Design Device Freq. 

(Mhz) 

TP 

(Mbps) 

Slices B- 

RAMs 

Efficiency 

(Mbps/Area) 

Jarvinen et al.[5] XCV-1000e-8 129.2 16500 11719 0 1.408 

Zhang et al.[2] XCV-1000e-8 168.4 21556 11022 0 1.956 

This work (p=5) XCV1000e-8 168.3 21542 9104 0 2.366 

Hodjat et al. [12] XC2VP20-7 169.1 21645 9446 0 2.291 

This work (p=5) XC2VP20-7 220.7 28250 9028 0 3.129 

Zambreno al. [11] XC2V4000 184.2 23572 16938 0 1.392 

This work (p=5) XC2V4000-6 211.6 27087 8503 0 3.186 

Granado. et al [3] XC2V6000-6 194.7 24920 3576 80 1.804 

This work (p=5) XC2V6000-6 218.3 27942 7884 0 3.544 

This work (p=9) XC2V6000-6 305.1 39053 10662 0 3.663 
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CHAPTER 4 EFFICIENT 32-BITS AES 

IMPLEMENATION 

 

This chapter presents a new hardware implementation for the Advanced Encryption 

Standard (AES) algorithm using 32 bits data path [19]. This architecture is presented using 

composite field arithmetic approach, with on-the-fly calculation for the round keys. To 

achieve higher efficiency the main round unit is implemented with internal pipelining and 

the S-BOX is shared between the main round unit and the key expansion unit. This design 

is implemented using FPGA technology, where higher efficiency in terms of 

(Throughput/Area) is achieved compared to previously proposed 32 bits AES designs. 

 

4.1 Introduction  

  

As mentioned in Chapter 2, AES Design can be categorized according to their data path 

width. Some design targeted very high speeds using 128 bits loop unrolled pipelined 

architectures as in [2] and [13]. Other architectures have targeted very low area 

implementations as in [17], where 8-bits data path architecture was implemented. 

Moreover, several other designs have suggested the implementation with 32-bits data path 

architectures targeting a medium throughput range as in [14-16]. 

 

This medium throughput ranges are needed in many applications such as cell-phones and 

portable devices, which cannot afford the excessive area needed in the 128 bits loop 

unrolled systems and do not require their tens of gigabits throughputs. 

 

Most of the previous 32-bits AES designs such as in [14-16], used the technique of 

pre-calculation and storage of all round keys before starting the encryption/decryption 
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process. This method requires a large area to store all the round keys; also it is inefficient in 

case of frequent key changing. In these architectures, each time the key changes a 

pre-calculation for all round keys must be obtained before starting the 

encryption/decryption process, which leads to a considerable reduction in the system 

throughput. 

 

This chapter presents a new efficient 32 bits AES design for the 128 bits key size. In this 

design the main round unit is implemented with internal pipelining stages to increase the 

throughput and the efficiency by parallel processing for the data and to allow efficient 

sharing for the S-BOX between the round and the key expansion units. 

 

Instead of pre-calculation and storage of all round keys as in [14-16], the round keys are fed 

by the key expansion unit on-the-fly and that permits this unit to work in parallel with the 

main round unit. This key expansion unit will store only the round keys for the ongoing 

iteration and the last encryption/decryption iterations, where all the other keys will be 

calculated in forward and reserve orders during the encryption and decryption processes.  

 

Owing to the internal pipelining for the main round unit, the on-the-fly calculation for the 

round keys, and the S-BOX sharing between the main round unit and the key expansion 

unit. This proposed AES architecture achieves higher FPGA efficiency compared to 

previous reported 32 bits designs in addition to cancelling the delay resulted by 

pre-calculation of all round keys at each key change.  

 

4.2 Main Round Unit Implementation. 

 

As described in [1], each AES data block consists of 128 bits (16 bytes) of data. During the 

encryption and decryption processes these 16 bytes will create a changeable (4*4) array 

called the state array. The proposed main round unit shown in Fig. 36 processes the state 

array column by column. This round unit is designed mainly with four “4*8 bits” 



60 

 

  

  

distributed RAMs, shared S-BOX/ Inverse S-BOX, shared Mix Columns/ Inverse Mix 

Columns, and finally the Add Round Key XOR gates. In this unit, 3 stages of internal 

pipelining are inserted inside the S-BOX/ Inverse S-BOX which allows parallel processing 

of the state array columns. Also with this internal pipelining, the S-BOXES can be shared 

with the key expansion unit with no extra delay where these S-BOXES will be accessed 

during the storage of the new state array in the RAMs.  

 

S/S-1

Mix Column / Inv Mix Column 

S/S-1 S/S-1 S/S-1

From KE 

New 
Input

Round 
Key

d4 d3 d2 d1 e4                e3                 e2                  e1 

8

MUXMUXMUXMUX

MUXMUXMUXMUX

MUXMUXMUXMUX

MUXMUXMUXMUX

4 Bytes 
RAM

 

Fig. 36 Round unit for the AES with 32 bits data path 

 

In the next sub-sections the different steps of the proposed AES system are presented. 
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4.2.1 Shift Rows/Inverse Shift Rows 

 

As mentioned previously, the Shift Rows step is obtained by shifting the second, third, and 

fourth rows one, two and three cyclic shifts to the left, respectively, as shown in Fig. 37(a). 

The Inverse Shift Rows is obtained by shifting the second, third and fourth rows three, two 

and one cyclic shifts to the left, respectively, as shown in Fig. 37(b). In the main round unit, 

the four “4*8 bits” dual port distributed RAMs are used to store the state array bytes, and 

hence each distributed RAM will be storing one column of the state array.  The Shift Rows 

and Inverse Shift Rows steps are obtained directly by the read/write operation in these 

distributed RAMs. While no shift is required in the RAM used to store the first row of the 

state array, the second, third and fourth RAMs need to perform one, two, and three shifts 

respectively. The second and fourth column of RAMs will be processing the second and 

fourth state array rows for the encryption and decryption processes interchangeably.  

 

 

S00 S01 S02 S03

S10 S11 S12 S13

S20 S21 S22 S23

S30 S31 S32 S33

S00 S01 S02 S03

S11 S12 S13 S10

S22 S23 S20 S21

S33 S30 S31 S32

S00 S01 S02 S03

S10 S11 S12 S13

S20 S21 S22 S23

S30 S31 S32 S33

S00 S01 S02 S03

S13 S10 S11 S12

S22 S23 S20 S21

S31 S32 S33 S30

Shift
Rows

Inverse 
Shift 
Rows

(a)

(b)

 

Fig. 37 Shift Rows and Inverse Shift Rows 

 

4.2.2 Byte Substitution / Inverse Byte Substitution 

 

As mentioned before, the main methods for implementing S-BOX are, either by 
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pre-storing the S-BOX elements, where the S-BOX elements are stored in a BRAM, or by 

using composite field arithmetic, where the S-BOX elements are calculated using 

combinational logic circuit. 

 

Using BRAMs in the implementation requires storing the S-BOX and the Inverse S-BOX 

separately in different BRAMs. This method cannot get benefit from the shared operations 

between the S-BOX and its inverse and also it is not possible to apply pipelining using the 

BRAMs. Hence the S-BOX used in this proposed design is implemented using the 

composite field arithmetic method.  

 

Applying the I-BOX, which was proposed in chapter 3 in looping architectures is not 

beneficial. The I-BOX applies merging between the inverse isomorphic mapping, the 

affine transformation and the isomorphic mapping for the next encryption stage in the loop 

unrolled system. Looping architecture has one looping encryption/decryption stage in 

comparison with series of stages in loop unrolled system where the merging is beneficial.  

 

However, and as suggested by [8], the inverse isomorphic mapping block is merged with 

the affine transformation for the S-BOX, while the isomorphic transformation is merged 

with inverse affine transformation for the Inverse S-BOX. Fig. 39 shows the used shared 

S-BOX/Inverse S-BOX. As it can be seen from this figure, the Multiplicative inverse block 

is shared between the S-BOX and the Inverse S-BOX, also; the affine transformation and 

its inverse are merged with the isomorphic mapping and its inverse before and after the 

Multiplicative inverse block.  

 

The S-BOX/Inverse S-BOX occupies the major part in the round unit‟s critical path, 

therefore, and in order to allow parallel processing for the state array columns, 3 pipelining 

stages were applied to this block. These pipelining stages allow also the key expansion unit 

to access the S-BOXES with no extra delay at the time of storing the new state array back 

into the RAMs. 
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Fig. 38 Merged and pipelined S-BOX/Inverse S-BOX 

 

With this pipelining each encryption/decryption iteration requires 7 clock cycles to be 

completed. This system has 32 bits data path architecture and it is not taking a new data at 

each clock cycle as in 128 bits loop unrolled systems, however pipelining this system will 

increase the throughput, especially, when the S-BOX is shared between the round and the 

key expansion units. Assume that the latency required to process each state array column is 

“n” so, ideally 3 pipelining stages will increase the clock frequency by 3 times while the 

latency is reduced to “n/3”. A non-pipelined system with shared S-BOX will have a latency 

of “5n” for one encryption/decryption iteration as “4n” latency is required to process the 4 

columns of the state array while an additional “n” for the access of the S-BOX by the key 

expansion unit. This system with 3 pipelined stages will have ideally a latency of “7*n/3” 

to complete one encryption/decryption iteration, which is a substantial reduction compared 

to the non-pipelined system. Fig. 39 shows the 7 clock cycles iteration for this system, in 

this figure the first RAM which stores the first state array row and requires no shift is used 

as an example. The symbols (C),(C‟) followed by a number, refers to the old and new state 

array element at the first row and at that specified column, while the (R) symbols refers to 
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the round key byte which is accessing the S-BOX. The 7 clock cycles starts with the new 

state array columns stored in the RAM, while the round key byte is under processing 

waiting to be stored at the second pipelining stage. In the next clock cycles, the state array 

bytes will go through these 3 pipelining stages to complete the encryption/decryption 

iteration. In the last clock cycle the element which was at the forth column is under 

processing and waiting to be stored back in the RAM at the next clock cycle, while the 

other 3 elements processing is completed. The shift rows step for other RAMs will be done 

by directly storing the new state array element in the proper location in the RAM. 

 

C4 C3 C2 C1 R X X

RAM Pipelining Stages

C4 C3 C2 X C1 R X

C4 C3 X X C2 C1 R

C4 X X X C3 C2 C1

X X X C1’ C4 C3 C2

X X C2’ C1’ X C4 C3

X C3’ C2’ C1’ X X C4

C4 C3 C2 C1 R X X

1)

2)

3)

4)

5)

6)

7)

Next iteration  1)

 

Fig. 39 7 Clock cycles iteration 

4.2.3 Mix Columns / Inverse Mix Columns 

 

For compact implementation, resource sharing is applied between the Mix Column and the 

Inverse Mix Column as will be explained in this section. Equation (4.1) represents the 

formula of the Mix Column polynomials, while (4.2) represents the Inverse Mix Column 

polynomials formula. The parameters “r” and “c” in (4.1) and (4.2) represent the state 

array row and column, respectively. 
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                                                                        (4.1) 

 

                                                                              (4.2) 

  

To achieve resource-sharing, first the Mix column polynomial in (4.1) is written as (4.3) 

where the constant {02} is taken as a common factor for the state array elements       and 

                and another single term for the state array element               is added to 

the equation. Inverse Mix Column polynomial in (4.2) is rewritten as in (4.4), where the 

multiplication with the constants {0E}, {0B}, {0D} and {09} are obtained by the 

multiplication with the constants {02}, {04} and {08}, and re-arranging the equation 

according to (4.4). 

 

e(c) =                                                                    

                                                

(4.3) 

 

                                                                          

                                                                                 +  

                   {08}                                                       

 

(4.4) 

 

Finally (4.4) is written in (4.5) using (4.3) to achieve resource sharing: 

 

                                                 +  

        {08}                                                         

 

(4.5) 

 

Equation (4.5) reveals that the Inverse Mix Column polynomial uses the Mix column 

polynomial in part of its calculation to simplify the needed resources.  
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4.2.4 Add Round Key 

 

In the main round unit each round key XOR gate is preceded by 3-to-1 MUX as shown in 

Fig 31 The first input is used during the decryption process and the last encryption 

iteration to select the output of the S-BOX/Inverse S-BOX block. The second input is used 

to select the Mix Columns step output during the first 9 encryption iterations, while the 

third input is used for to enter a new data. Before storing the data back to the RAMs 2-to-1 

MUXs are used to either choose the output of the Round Key XOR gates in case of 

encryption or the Inverse Mix Columns Step bytes in case of decryption. 

 

4.3 Key Expansion Unit 

 

The proposed key expansion unit is designed to work using on-the-fly technique, which 

means generation of all Round Keys during the encryption/decryption processes. This unit 

will store only the round keys for the present iteration and the last group of round keys. 

This will make it capable of generating the round keys in forward and reverse orders to be 

used in the encryption and decryption processes. Generation of Round Keys in forward 

order will be used during the encryption process starting from the original key, while the 

reverse order generation will be used during the decryption process starting from the last 

group of round keys. Fig. 40 shows the proposed design for this unit.  
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Fig. 40 Key Expansion unit for the 32 bits AES Design 

 

As can be seen from Fig. 40, the key expansion unit has dual port RAM of size (4*32 bits). 

This RAM will be used to store the Round keys for the ongoing iteration. As mentioned 

previously, the S-BOXES are shared between the key expansion unit and the round unit. 

These S-BOXES will be accessed by the key expansion unit before the main round unit, at 

the time of storing the new state array bytes back in the RAMs. Another (4*32 bits) dual 

port RAM will be responsible of storing the last 16 bytes of round keys is added to the 

system. This RAM is beneficial in case of the occurrence of two sequential decryption 

processes working on the same key or the occurrence of encryption process followed by a 

decryption one. Decryption process use the reverse order generation of round keys starting 

from the last group, where by storing them there will be no need to re-calculate all round 

keys to get the last group back. As shown in Fig. 40, the RAM for the ongoing iteration of 

round keys have 3 input sources: new key, the last group of the round keys, and the 

previous round keys which will be used to generate next round keys.    
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4.4 Results and Comparison 

 

The next two sub-sections present the internal pipelining simulation results and the 

simulation results in comparison with previous proposed designs. 

 

4.4.1 Internal Pipelining Simulation Results 

 

This design was implemented using 3 internal pipelining stages as it achieves the optimum 

(Mbps/Area) efficiency comparing to designs with other number of internal pipelining 

stages. Designs with 1 or 2 pipelining stages allows an efficient S-BOX sharing between 

the main round unit and the key expansion unit, however, designing with 3 pipelining 

stages achieves the highest efficiency. Adding more than 3 internal pipelining stages is 

considered as a waste of resources. In this 32 bits looping design, the system is not 

receiving a new data at each clock cycle as in 128 bits loop unrolled systems. Since the 

AES has 128 bits data block and the used bus width is 32 bits, adding more than 3 

pipelining stages will result in creating clock cycles with no data under processing, 

therefore, the systems latency increases without achieving higher throughputs. 

 

Design without pipelining stages requires the same latency of a design with one pipelining 

stage. Parallel processing between the main round unit and the key expansion unit will not 

be applicable in case of not applying pipelining stages. Table 5 shows the simulation results 

for system with 0 to 3 internal pipelining stages using Xilinx XC2VP2. Fig. 41 shows 

the relation between the number of used internal pipelining stages and the efficiency for the 

proposed loop 32-bits AES design. 
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Table 5: Simulation results based on number of internal pipelining stages 

Pipelining 

Stages 

Frequency 

(Mhz) 

Throughput 

(Mpbs) 

Slices Latency 

(Clock Cycles) 

Efficiency 

(Mbps/Area) 

0 59.7 142 372 54 0.382 

1 96.8 230 389 54 0.590 

2 136.2 272 407 64 0.668 

3 172.6 299 426 74 0.702 

 

 

Fig. 41 Pipelining stages and Efficiency relationship for the proposed 32- bits design 
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4.4.2 Comparison with Previous Designs 

 

The proposed AES design using on-the-fly key expansion unit, the S-BOXES sharing 

between the key expansion and the main round units and also the internal pipelining, is able 

to achieve higher FPGA efficiency comparing to the previous 32-bits data path AES 

design.  

 

Another important factor to be taken into the consideration is the delay required at every 

key changing. This delay is needed for all the designs that use the pre-calculation and 

storage for round keys prior to the encryption/ decryption processes. Table 6 shows the 

simulation results of this design based on different FPGA Xilinx devices, while Table 7 

shows a comparison with previous proposed designs. 

 

Table 6: Simulation results of the proposed AES 32-bits design using different devices  

Device XC2VP2 XC2V40-6 XC2S30 

Frequency(Mhz) 172.6 150.6 69.1 

Throughput(Mpbs) 299 260 120 

Slices 426 427 413 

Efficiency (Mbps/Area) 0.702 0.609 0.291 

BRAMs 0 0 0 

Key Expansion Delay Required No No No 
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Table 7: Comparison with other AES 32-bits designs  

Design Gaj [14] Rouvroy [15] Chang [16] This Work 

Device XC2S30 XC2V40-6 XC2VP2 XC2VP2 

Frequency (Mhz) 60 71.5 306 172.6 

Throughput(Mpbs) 166 358 876 299 

Slices 222 146 156 426 

BRAMs used 3 3 3 0 

Bytes in BRAMs 1200 4676 3248 0 

Equiv. BRAM Slices (est.) 600 2338 1624 0 

Total Area in Slices (est.) 822 2484 1780 426 

Efficiency (Mpbs/Area) 0.202 0.144 0.492 0.702 

KE Delay Required  Yes Yes Yes No 

 

 

As can be seen from Table 6 and Table 7, the proposed architecture shows higher efficiency 

than the designs in [14], [15] and [16]. Table 6 shows that this design achieved an 

efficiency of 0.291 (Mbps/Area) using Xilinx Spartan II - XC2S30 , while design [14] as 

can be seen from Table 5 achieved an efficiency of 0.202 (Mbps/Area) based on the same 

device. This design also achieved an improvement of 433% in terms of (Mpbs/Area) 

efficiency comparing to the design in [15], where both designs used Xilinx Vertix-2P 

XC2V40-6 in the simulation. Moreover, higher efficiency is achieved comparing to design 

[16] as can be seen from Table 7.   

 

The area required to store all round keys in [14-16] in addition to the area needed for 

storing the S-BOXES in [14] and the combination of S-BOX/Mix Column in [15] and [16], 

has a main role in increasing the total area and reducing the efficiency.  Moreover, our 
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proposed design avoids the need for any delay to pre-calculate the Round Keys since it is 

done on-the-fly. The designs [14-16] require delay of 44 clock cycles at the system start-up 

and at every key change. We have used distributed selected RAMs instead of BRAMs in 

our design as we are using very small size RAMs. The area of these RAMs was already 

counted for in the total number of slices needed for the proposed AES.  
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CHAPTER 5  CONCULSION AND 

FUTURE WORK 

 

This chapter presents the conclusion of this thesis and the proposed future work. 

 

5.1 Conclusion 

 

In this thesis, two new hardware architectures for the Advanced Encryption Standard (AES) 

algorithm were presented. FPGA Xilinx technology was used to synthesis the designs and 

provide post placement results using Xilinx ISE 10.1.      

 

In the first architecture a new design for high speed loop unrolled sub-pipelined AES 

encryptor was presented. This design took advantage from the repeated operations in each 

stage of the encryptor to achieve resources merging and sharing. In this encryptor the mix 

columns step is relocated and all the round keys are obtained in the isomorphic mapping. 

By applying these modifications an efficient merging between the inverse isomorphic 

mapping, the affine transformation multiplication, and the isomorphic mapping for the 

next encryption stage is achieved. This merging allowed the implementation to have lower 

area with shorter path length, which allowed higher FPGA (Throughput/Area) efficiency 

comparing to previous loop unrolled designs.  

 

In the second architecture a new design for 32-bits data path AES encryptor/decryptor was 

presented. In this design internal pipelining for the composite field S-BOX was applied. 

This pipelining allowed parallel processing for the state array columns in addition to 

S-BOX sharing between the main round unit and the key expansion unit. Moreover, this 

design used on the fly generation for all round keys which prevents using large area to store 



74 

 

  

  

all the keys in addition to cancelling the extra delay resulting in pre-calculation and storage 

for all round keys. This architecture has achieved higher FPGA(Throughput/Area) 

efficiency compared to previous 32-bit AES designs. 

 

5.2 Future Work 

 

The research works achieved in this thesis are behind our motivation to present the 

following recommendations for future research investigations in the hardware design for 

the AES algorithm and other possible cryptography algorithms. 

 

1. The I-BOX technique which was presented could be adopted in design of the AES 

with 192 and 256 bits key sizes. 

 

2. Very high speed universal AES Processor that works on all key sizes could be 

implemented by getting benefit from the I-BOX technique using a loop unrolled 

system. 

 

3. Future AES designs with 8-bits data path could be designed based on the   S-BOX 

sharing and the pipelining techniques presented in Chapter 4. 

 

4. Other cryptography algorithms might benefit from the ideas of merging and 

relocating techniques, especially in loop unrolled systems. 
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APPENDIX A: FINITE FIELD 

ARITHMETIC EXAMPLES  

 

Example 1: Addition in Finite Field 

 

Adding the polynomials (x
5
+x

3
+x

2
+x) + (x

6
+x

5
+x+1) 

(x
5
+x

3
+x

2
+x) = {101110} 

(x
6
+x

5
+x+1) = {1100011} 

  

(x
5
+x

3
+x

2
+x) + (x

6
+x

5
+x+1) = x

6
+2x

5
+x

3
+x

2
+2x+1. 

 

And since we use XOR operation instead of addition any operands 

with even coefficients will be eliminated. 

 

Final Answer: x
6
+x

3
+x

2
+1 = {1001101}. 

 

As can be seen from example 1, the addition operation in finite field is considered as XOR 

operation, where any operand with even coefficient will be eliminated. 

 

The next example shows the multiplication operation in the GF(2
8
) and using the reduction 

polynomial defined in (2.7). 

 

Example 2: Multiplication in Finite Field 

Multiplication of the Polynomials (x
3
+x

2
+1).(x

5
+x

2
+x)  

Modulus (x
8
+ x

4
+ x

3
+ x+1) 

 

(x
3
+x

2
+1) =  {1101} 
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(x
5
+x

2
+x) = {100110} 

(x
8
+x

4
+x

3
+x+1) = {100011011} 

 

(x
3
+x

2
+1).(x

5
+x

2
+x) = x

8
+x

5
+x

4 

   
   + x

7
+x

4
+x

3
 

      + x
5
+x

2
+x

1 

    = x
8
+x

7
+x

3
+x

2
+x

1
 = {110001110} 

 

And by using the modulus (x
8
+x

4
+x

3
+x+1) 

 

(x
8
+x

7
+x

3
+x

2
+x

1
)
 
Mod (x

8
+x

4
+x

3
+x+1) 

=( x
8
+x

7
+ x

3
 +x

2
+ x

1
) + (x

8
+x

4
+x

3
+x+1) = x

7
+x

4
+x

2
+1 ={10010101} 

 

As can be seen from example 2, after the multiplication is obtained. The reduction 

polynomial will be applied to get a value that exists in the GF(2
8
). 

 

The next example shows how modulo operation is obtained on polynomials with high 

degrees. 

 

Example 3: Using Modulo with Large Numbers. 

Finding (x
14
+x

13
+x) Mod (x

8
+x

4
+x

3
+x+1) 

 

(x
14
+x

13
+x) = {110000000000010} 

(x
8
+x

4
+x

3
+x+1) = {100011011} 

 

First: Shifting the modulus to the same degree of the input 

 

(x
8
+x

4
+x

3
+x+1)   Shifting  (x

14
+x

10
+x

9
+x

7
+x

6
)= {100011011000000} 

 

Second: Obtain XOR Operation between both numbers. 



81 

 

  

  

 

{110000000000010} XOR  {100011011000000} = {10011011000010} = 

x
13
+ x

10
+x

9
+x

7
+x

6
+x 

 

Repeat the operation until the output is in 7
th
 degree at max. 

 

(x
8
+x

4
+x

3
+x+1)   Shifting  (x

13
+x

9
+x

8
+x

6
+x

5
) = {10001101100000} 

 

{10011011000010} XOR  {10001101100000} = {10110100010} = 

x
10
+x

8
+x

7
+x

5
+x 

 

Repeat again. 

 

(x
8
+x

4
+x

3
+x+1)   Shifting  (x

10
+x

6
+x

5
+x

3
+x

2
) = {10001101100} 

 

{10110100010} XOR{10001101100} = 111001110 = x
8
+x

7
+x

6
+x

3
+x

2
+x 

 

And Finally, 

 

{111001110} XOR  {100011011} = {11010101} = x
7
+x

6
+x

4
+x

2
+1 

 

And since the value x
7
+x

6
+x

4
+x

2
+1 exists in GF(2

8
), it is the final 

answer. 

 

Example 3, showed how the reduction polynomial is used repeatedly until the answer 

exists in the GF(2
8
).
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APPENDIX B: ENCRYPTION 

EXAMPLE USING I-BOX  

 

This Appendix shows an encryption example using the I-BOX technique with128 bits key 

size. According to [1] the test vector shown in (A.1) with the key in (A.2) will result in the 

enciphered output shown in (A.3). 

 

                                                         (A.1) 

                                                        (A.2) 

                                                           (A.3) 

The new I-BOX technique will result in the same output (A.3) using the data (A.1) 

and the key (A.2). By using the I-BOX technique all Round keys will be mapped to 

the isomorphic mapping with the constant δ(C) which equals A5H added to them as 

described in (A.4): 

 

                   

 

The input key shown in (A.2) will be entered column by column as shown below: 

 

 

 

 

 

 

Original 128-bits key 

 

2B 28 AB 09 

7E AE F7 CF 

15 D2 15 4F 

16 A6 88 3C 

(A.4) 
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By applying the key expansion operation explained in Chapter 2, and according to 

(A.4), the 176 bytes of round keys, which will be generated as 11 group with 16  

bytes each is shown below: 

 

 

Initial Round Keys 

9A C4 66 75 

EA 1B 63 E1 

3B AE 3B 1D 

65 6F 88 FE 

 

2
nd

 Group of Round Keys 

E9 2D 4B 3E 

CF D4 B7 56 

B3 1D 26 3B 

C1 AE 26 D8 

 

3
rd

 Group of Round Keys 

 

BB 33 DD 46 

4D 3C 2E DD 

62 DA 59 C7 

BB B0 33 4E 

 

4
th

 Group of Round Keys 

5A CC B4 57 

59 C0 4B 33 

CC B3 4F 2D 

11 04 92 79 

 

5
th

 Group of Round Keys 

 

F4 9D 8C 7E 

92 F7 19 8F 

94 82 68 E0 

EF 4E 79 A5 

 

6
th

 Group of Round Keys 

 

28 10 39 E2 

55 07 BB 91 

31 16 DB 9E 

90 7B A7 A7 

 

7
th

 Group of Round Keys 

57 E2 7E 39 

2D 8F 91 A5 

B7 04 7A 41 

33 ED EF ED 

 

8
th

 Group of Round Keys 

B9 FE 25 B9 

D4 FE CA CA 

C6 67 B0 5C 

F2 BA F0 BB 

 

9
th

 Group of Round Keys 

 

89 D2 52 4E 

0B 50 3F 50 

46 84 99 60 

14 0B 5E 43 
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10
th

 Group of Round Keys 

E1 96 61 8A 

3A CF 55 A0 

7D 5C 60 A5 

BA 14 EF 09 

 

11
th

 Group of Round Keys 

54 67 A3 8C 

9F F5 05 00 

91 68 AD AD 

9D 2C 66 CA 

 

 

 

 

 

 

 

The AES encryptor using the I-BOXES as shown in Fig. 30 starts by mapping the input 

data using the isomorphic, then adding the initial Round Key. After adding the initial 

Round Key the I-BOXES are used for 9 stages. Each I-BOX will process a column of the 

state matrix, therefore each stage will consist of 4 I-BOXES. Finally, at the last encryption 

stage the bytes are substituted using the S-BOX and then they are added to the last group of 

round keys. Shift Rows step is obtained during the input/output operations between the 

stages.   

 

It is important to notice that the multiplicative inverse calculations shown in the example 

below are obtained without the isomorphic mapping and its inverse as done in Fig. 21. Also, 

the S-BOX substitution used in the example exclude the isomorphic mapping from the 

calculation as the ζ-Transform is applied. This substitution differs from the S-BOX 

Substitution values shown in Fig. 7 which uses the isomorphic mapping in the calculation. 

 

 

 

 

 

 

 

Original Data Input 

 

 

32 88 31 E0 

43 5A 31 37 

F6 30 98 07 

A8 8D A2 34 
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At Encryption starting: 

 

 

 

 

 

 

After isomorphic mapping 

A9 88 F7 07 

15 26 F7 D4 

62 F6 CE 22 

38 F5 13 8A 

 

 

 

 

 

After adding initial Round Key 

33 4C 91 72 

FF 3D 94 35 

59 58 F5 3F 

5D 9A 9B 74 

 

 

First I-BOXES Stage: 

 

First I-BOXES Input 

 

33 4C 91 72 

3D 94 35 FF 

F5 3F 59 58 

74 5D 9A 9B 

After Multiplicative Inverse 

A0 6B EC 1C 

8F 7B F8 20 

5F 6E 2D D2 

73 DF 3B CE 

After Mix Columns 

B8 6B CA 11 

A5 A1 09 7E 

D0 7F C3 40 

CE 14 02 0F 

After ζ- Transform 

D9 A2 9A 61 

7D 38 90 86 

58 96 0A 36 

DF 34 33 E6 

After Add Round Key 

30 8F D1 5F 

B2 EC 27 D0 

EB 8B 2C 0D 

1E 9A 15 3E 
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Second I-BOXES Stage: 

 

Second I-BOXES Input 

30 8F D1 5F 

EC 27 D0 B2 

2C 0D EB 8B 

3E 1E 9A 15 

After Multiplicative Inverse 

AA 3D A7 F5 

91 41 BB 34 

D3 0E A3 83 

87 82 3B D9 

After Mix Columns 

 

FA B9 91 B9 

6F 6C 08 52 

C1 3C C1 BE 

3B 19 DC CE 

After ζ- Transform 

DC C9 7E C9 

E7 C4 80 74 

39 83 39 AF 

E5 E1 9D DF 

After Add Round Key 

67 FA A3 8F 

AA F8 AE A9 

5B 59 60 68 

5E 51 AE 91 

 

 

Third I-BOXES Stage: 

 

Third I-BOXES Inputs 

67 FA A3 8F 

F8 AE A9 AA 

60 68 5B 59 

91 5E 51 AE 

After Multiplicative Inverse 

19 5A EB 3D 

35 1B E5 30 

66 3C 64 2D 

EC 62 54 1B 

After Mix Columns 

 

33 43 0E 4A 

FC 89 55 E6 

4F 00 64 65 

26 D5 01 F2 

After ζ- Transform 

65 15 F6 85 

AA 8F 12 68 

D0 00 44 54 

41 0D 10 5C 

After Add Round Key 

3F D9 42 D2 

F3 4F 59 5B 

1C B3 0B 79 

50 09 82 25 
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Fourth I-BOXES Stage: 

 

Fourth I-BOXES Inputs 

3F D9 42 D2 

4F 59 5B F3 

0B 79 1C B3 

25 50 09 82 

After Multiplicative Inverse 

6E 15 CD 58 

4B 2D 64 A8 

07 32 72 F9 

45 11 06 1E 

After Mix Columns 

 

4C A6 97 F9 

66 13 55 18 

F1 21 4D EB 

BC 8F 52 1D 

After ζ- Transform 

F3 5E 08 FF 

77 52 12 F1 

7F 27 E3 BD 

9C F9 74 A4 

After Add Round Key 

07 C3 84 81 

E5 A5 0B 7E 

EB A5 8B 5D 

73 B7 0D 01 

 

 

Fifth I-BOXES Stage: 

 

Fifth I-BOXES Input 

07 C3 84 81 

A5 0B 7E E5 

8B 5D EB A5 

01 73 B7 0D 

After Multiplicative Inverse 

0B 39 D6 E3 

AF 07 31 A9 

83 DF A3 AF 

01 74 2A 0E 

After Mix Columns 

 

E6 49 BD 0F 

05 2D E7 0F 

BC 05 D5 55 

79 F4 E1 BE 

After ζ- Transform 

68 A6 8C E6 

55 E2 78 E6 

9C 55 0D 12 

E0 2A 0E AF 

After Add Round Key 

40 B6 B5 04 

00 E5 C3 77 

AD 43 D6 8C 

70 51 A9 08 
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Sixth I-BOXES Stage: 

 

Sixth I-BOXES Input 

40 B6 B5 04 

E5 C3 77 00 

D6 8C AD 43 

08 70 51 A9 

After Multiplicative Inverse 

EE C4 4D 0F 

A9 39 C0 00 

84 DB DC 71 

0A CC 54 E5 

After Mix Columns 

 

6C D4 D5 10 

B3 0C 77 A3 

47 82 9E 1F 

51 B0 39 37 

After ζ- Transform 

C4 1D 0D 71 

7A C5 16 0B 

50 2C 98 97 

57 59 D6 20 

After Add Round Key 

93 FF 73 48 

57 4A 87 AE 

E7 28 E2 D6 

64 B4 39 CD 

 

 

Seventh I-BOXES Stage: 

 

Seventh I-BOXES Inputs 

93 FF 73 48 

4A 87 AE 57 

E2 D6 E7 28 

CD 64 B4 39 

After Multiplicative Inverse 

38 20 74 6D 

16 3E 1B 7A 

98 84 13 BC 

42 5B 6A C3 

After Mix Columns 

 

88 9B 20 B6 

E8 4E 9B D7 

1B E8 AB 37 

8F FC 06 3E 

After ζ- Transform 

9F CD 37 2F 

9E C0 CD 3E 

D2 9E 8B 20 

F9 AA 76 B0 

After Add Round Key 

 

26 33 12 96 

4A 3E 07 F4 

14 F9 33 7C 

0B 10 86 08 
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Eighth I-BOXES Stage: 

 

Eighth I-BOXES Inputs 

26 33 12 96 

3E 07 F4 4A 

33 7C 14 F9 

08 0B 10 86 

After Multiplicative Inverse 

EF A0 E9 F1 

87 0B 63 16 

A0 9D D4 B3 

0A 07 55 6F 

After Mix Columns 

 

7D DE 6D CF 

C8 07 95 B9 

72 82 51 B2 

05 6A A2 FF 

After ζ- Transform 

A5 AE D4 CF 

A9 66 3B C9 

43 2C 57 6A 

55 B2 1B 89 

After Add Round Key 

2C 7C 86 81 

A2 36 04 99 

05 A8 CE 0A 

41 B9 45 CA 

 

 

Ninth I-BOXES Stage: 

 

Ninth I-BOXES Inputs 

2C 7C 86 81 

36 04 99 A2 

CE 0A 05 A8 

CA 41 B9 45 

After Multiplicative Inverse 

D3 9D 6F E3 

F7 0F 80 FC 

9B 08 0C F3 

8D 27 37 25 

After Mix Columns 

 

FB 98 28 0F 

10 A0 96 B1 

45 AE E7 5E 

9C 2B 8D 29 

After ζ- Transform 

CC EE B7 E6 

71 28 18 49 

63 DE 78 B1 

AB 94 CA A7 

After Add Round Key 

2D 78 D6 6C 

4B E7 4D E9 

1E 82 18 14 

11 80 25 AE 
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Last S-BOXES Stage: 

 

Last S-BOXES inputs 

2D 78 D6 6C 

E7 4D E9 4B 

18 14 1E 82 

AE 11 80 25 

After Multiplicative Inverse 

59 A1 84 BF 

13 B5 12 4F 

61 D4 82 1E 

1B 50 99 45 

After ζ- Transform 

 

D7 38 5A BF 

52 0C 42 D0 

11 1D 2C 87 

D2 47 FE 63 

Last Encryption Steps: 

 

 

 

 

 

 

After Adding Last Round Keys 

83 5F F9 33 

CD F9 47 D0 

80 75 81 2A 

4F 6B 98 A9 

 

 

 

 

 

After inverse isomorphic mapping 

39 02 DC 19 

25 DC 11 6A 

84 09 85 0B 

1D FB 97 32 

 

 

The last block of data after the inverse isomorphic mapping represents the output 

enciphered data. As can be seen below this data same to enciphered output (A.3) according 

to [1]. 

 

 

 

 

 

 

Enciphered Output Data 

39 02 DC 19 

25 DC 11 6A 

84 09 85 0B 

1D FB 97 32 


