

EFFICIENT HARDWARE IMPLEMENTATIONS FOR THE

ADVANCED ENCRYPTION STANDARD (AES) ALGORITHM

by

Issam Mahdi Hammad

Submitted in partial fulfilment of the requirements

for the degree of Master of Applied Science

at

Dalhousie University

Halifax, Nova Scotia

October 2010

© Copyright by Issam Mahdi Hammad, 2010

ii

DALHOUSIE UNIVERSITY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

The undersigned hereby certify that they have read and recommend to the Faculty of

Graduate Studies for acceptance a thesis entitled “EFFICIENT HARDWARE

IMPLEMENTATIONS FOR THE ADVANCED ENCRYPTION STANDARD (AES)

ALGORITHM” by Issam Mahdi Hammad in partial fulfilment of the requirements for the

degree of Master of Applied Science.

Date: October 25, 2010

Supervisor: _________________________________

 Dr. Kamal El-Sankary

Co-Supervisor: ________________________________

 Dr. Ezz I. El-Masry

Reader: ________________________________

 Dr. William J. Phillips

Reader: ________________________________

 Dr. Jason Gu

iii

DALHOUSIE UNIVERSITY

 DATE: October 25, 2010

AUTHOR: Issam Mahdi Hammad

TITLE:
Efficient Hardware Implementations For The Advanced Encryption

Standard (AES) Algorithm

DEPARTMENT OR SCHOOL : Department of Electrical and Computer Engineering

DEGREE: MASc CONVOCATION: May YEAR: 2011

Permission is herewith granted to Dalhousie University to circulate and to have copied for

non-commercial purposes, at its discretion, the above title upon the request of individuals

or institutions.

Signature of Author

The author reserves other publication rights, and neither the thesis nor extensive extracts

from it may be printed or otherwise reproduced without the author‟s written permission.

The author attests that permission has been obtained for the use of any copyrighted

material appearing in the thesis (other than the brief excerpts requiring only proper

acknowledgement in scholarly writing), and that all such use is clearly acknowledged.

iv

To my loving parents Mahdi & Bushra and to all my friends

v

TABLE OF CONTENTS

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

LIST OF ABBREVIATIONS .. xi

ACKNOWLEDGEMENTS .. xii

ABSTRACT ... xiii

CHAPTER 1 INTRODUCTION .. 1

1.1 MOTIVATION .. 1

1.2 RESEARCH OBJECTIVE ... 3

1.3 ORGANIZATION .. 4

CHAPTER 2 ADVANCED ENCRYPTION STANDARD (AES) ALGORITM 5

2.1 DEFINITION AND HISTORY OF CRYPTOGRAPHY .. 5

2.2 FINITE FIELD .. 6

2.2.1 Addition in Finite Field ... 7

2.2.2 Multiplication in Finite Field .. 8

2.3 THE DATA ENCRYPTION STANDARD (DES) .. 9

2.4 THE ADVANCED ENCRYPTION STANDARD (AES) ... 9

2.4.1 Shift Rows/ Inverse Shift Rows .. 12

2.4.2 Byte Substitution and Inverse Byte Subsititution ... 13

2.4.2.1 Multiplicative Inverse Calculation .. 16

2.4.2.2 Affine Transformation .. 17

2.4.3 Mix Columns / Inverse Mix Columns Steps ... 18

vi

2.4.4 Key Expansion and Add Round Key Step .. 20

2.4.4.1 Key Expansion .. 21

2.5 LITERATURE REVIEW ... 24

2.5.1 Composite Field Arithmetic S-BOX ... 27

2.5.2 Loop Unrolled Pipelined Encryptor in [12] .. 30

2.5.3 Very High Speed AES design in [2] .. 31

2.5.4 32 Bits Encryptor/Decryptor Designs ... 32

2.6 CONCLUSION .. 34

CHAPTER 3 HIGH SPEED AES ENCRYPTOR .. 36

3.1 INTRODUCTION .. 36

3.2 IMPLEMENTATION OF COMPOSITE FIELD ARITHMETIC S-BOX 37

3.2.1 Square Block ... 38

3.2.2 Multiplication with the constant λ .. 39

3.2.3 Multiplicative Inverse in GF(2
4
) ... 40

3.2.4 Multiplication in GF(2
4
) and GF(2

2
)... 41

3.3 I-BOX ... 43

3.4 KEY EXPANSION UNIT .. 51

3.5 AES ENCRYPTOR ... 52

3.6 RESULTS AND COMPARISON ... 53

3.6.1 Sub-pipelining Simulation Results ... 53

3.6.2 Comparison with Previous Designs .. 56

CHAPTER 4 EFFICIENT 32-BITS AES IMPLEMENATION 58

4.1 INTRODUCTION .. 58

4.2 MAIN ROUND UNIT IMPLEMENTATION. .. 59

4.2.1 Shift Rows/Inverse Shift Rows ... 61

vii

4.2.2 Byte Substitution / Inverse Byte Substitution ... 61

4.2.3 Mix Columns / Inverse Mix Columns .. 64

4.2.4 Add Round Key .. 66

4.3 KEY EXPANSION UNIT .. 66

4.4 RESULTS AND COMPARISON ... 68

4.4.1 Internal Pipelining Simulation Results ... 68

4.4.2 Comparison with Previous Designs .. 70

CHAPTER 5 CONCULSION AND FUTURE WORK ... 73

5.1 CONCLUSION .. 73

5.2 FUTURE WORK ... 74

BIBLIOGRAPHY ... 75

APPENDIX A: FINITE FIELD ARITHMETIC EXAMPLES .. 79

APPENDIX B: ENCRYPTION EXAMPLE USING I-BOX ... 82

viii

LIST OF TABLES

Table 1: Number of gates and critical path for the mappings and the transformations 50

Table 2: Gates and the critical path for the GF(2
8
) Multiplicative Inverse sub-blocks 54

Table 3: Simulation result based on the number of sub-pipelining stages 54

Table 4: Results and comparison of AES 128-bits encryptors ... 57

Table 5: Simulation results based on number of internal pipelining stages 69

Table 6: Simulation results of the proposed AES 32-bits design using different devices 70

Table 7: Comparison with other AES 32-bits designs .. 71

ix

 LIST OF FIGURES

Fig. 1 Symmetric-key cryptography ... 6

Fig. 2 Input, State and Output arrays .. 10

Fig. 3 AES encryption and decryption processes ... 11

Fig. 4 Shift Rows step ... 12

Fig. 5 Inverse Shift Rows step .. 13

Fig. 6 Byte Substitution .. 13

Fig. 7 The S-BOX ... 14

Fig. 8 The Inverse S-BOX .. 15

Fig. 9 Generation of S-BOX and Inverse S-BOX... 16

Fig. 10 Mix Columns and Inverse Mix Columns steps .. 18

Fig. 11 Add Round Key .. 21

Fig. 12 Key Expansion .. 23

Fig. 13 Round Constant .. 24

Fig. 14 AES looping and loop-unrolled architectures .. 26

Fig. 15 AES encryption stage ... 27

Fig. 16 Composite field S-BOX implementation ... 29

Fig. 17 AES encryption stage in [12].. 31

Fig. 18 AES encryption stage in [2].. 32

Fig. 19 32-Bits AES design in [16] ... 33

Fig. 20 Key Expansion unit in [14] ... 34

Fig. 21 Multiplicative Inverse results for the numbers in GF(2
8
) 38

Fig. 22 Square block input/output ... 39

x

Fig. 23 Multiplication with λ block input/output .. 40

Fig. 24 GF(2
4
) Multiplicative inverse block input/output .. 41

Fig. 25 GF(2
4
) Multiplier .. 41

Fig. 26 GF(2
4
) Multiplication results .. 42

Fig. 27 GF(2
2
) Multiplier .. 42

Fig. 28 GF(2
2
) Multiplier outputs ... 43

Fig. 29 ζ-Transformation .. 47

Fig. 30 I-BOX state array element calculation ... 49

Fig. 31 Rearrangements and merging steps .. 49

Fig. 32 Merged squaring block with λ multiplication input/output 50

Fig. 33 Key Expansion unit for the 128 bits AES... 52

Fig. 34 AES encryptor using I-BOX technique .. 53

Fig. 35 Pipelining stages and Efficiency relationship for the proposed AES encryptor ... 55

Fig. 36 Round unit for the AES with 32 bits data path ... 60

Fig. 37 Shift Rows and Inverse Shift Rows .. 61

Fig. 38 Merged and pipelined S-BOX/Inverse S-BOX .. 63

Fig. 39 7 Clock cycles iteration .. 64

Fig. 40 Key Expansion unit for the 32 bits AES Design .. 67

Fig. 41 Pipelining stages and Efficiency relationship for the proposed 32- bits design ... 69

xi

LIST OF ABBREVIATIONS

AES Advanced Encryption Standard

DES Data Encryption Standard

FIPS Federal Information Processing Standard

NIST National Institute of Standards and Technology

S-BOX Substitution Box

I-BOX Integrated Box

RFID Radio Frequency Identification

ATM Automated Teller Machine

FPGA Field Programmable Gate Array

KE Key Expansion

ECC Elliptic Curve Cryptography

GF Galois Field

TP Throughput

RAM Random Access Memory

BRAM Block RAM

ROM Read Only Memory

xii

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor Dr. Kamal El-Sankary and

Co-supervisor Dr. Ezz I. El-Masry, for their guidance, encouragement and support during

my graduate study. Their deep insight and extensive knowledge supported me in my

research in digital circuits and especially in the cryptography field. As well, I am would

like to thank Dr. Jason Gu and Dr. William J. Phillips for being a part of my supervisory

committee.

Many thanks to the group mates in VLSI group for sharing their knowledge and

experience. I would also like to express my gratitude to the department staff Selina Cajolais

and Nicole Smith.

Most of all, I would like to express my special thanks and appreciation to my parents for

their support and encouragement throughout my 2 years masters degree. Also, many

thanks to my friends in Halifax for their support.

xiii

ABSTRACT

This thesis introduces new efficient hardware implementations for the Advanced

Encryption Standard (AES) algorithm. Two main contributions are presented in this

thesis, the first one is a high speed 128 bits AES encryptor, and the second one is a new 32

bits AES design. In first contribution a 128 bits loop unrolled sub-pipelined AES encryptor

is presented. In this encryptor an efficient merging for the encryption process sub-steps is

implemented after relocating them. The second contribution presents a 32 bits AES design.

In this design, the S-BOX is implemented with internal pipelining and it is shared between

the main round and the key expansion units. Also, the key expansion unit is implemented to

work on the fly and in parallel with the main round unit. These designs have achieved

higher FPGA (Throughput/Area) efficiency comparing to previous AES designs.

1

CHAPTER 1 INTRODUCTION

In this chapter the research motivation, research objectives and the thesis organization are

presented.

1.1 Motivation

Nowadays cryptography has a main role in embedded systems design. As the number of

devices and applications which send and receive data are increasing rapidly, the data

transfer rates are becoming higher. In many applications, this data requires a secured

connection which is usually achieved by cryptography.

Many cryptographic algorithms were proposed, such as the Data Encryption Standard

(DES), the Elliptic Curve Cryptography (ECC), the Advanced Encryption Standard (AES)

and other algorithms. Many researchers and hackers are always trying to break these

algorithms using brute force and side channel attacks. Some attacks were successful as it

was the case for the Data Encryption Standard (DES) in 1993, where the published

cryptanalysis attack [22] could break the DES.

The Advanced Encryption Standard (AES) is considered nowadays as one of the strongest

published cryptographic algorithms, where it was adopted by the National Institute for

Standards and Technology (NIST) after the failing of the Data Encryption Standard (DES).

Moreover, it is used in many applications such as in RFID cards, ATM Machines,

cell-phones and large servers.

2

Due to the importance of the AES algorithm and the numerous applications that it has, the

main concern of this thesis will be presenting new efficient hardware implementations for

this algorithm.

Hardware implementations for the AES algorithm vary according to the application. While

some applications require very high throughputs as in e-commerce servers, others require

medium throughput range as in designs for cell phones [17]. Some others require very low

area implementations to be used in low power application as in RFID cards.

Many hardware designs where suggested for the AES algorithm. Some of these designs

targeted high speed applications as in the loop unrolled 128 bits designs [2], [3] and [5],

while others targeted medium and low area implementations as in the designs [14], [15]

and [17].

As each application requires the AES to have different speed and area, this thesis presents

two new hardware implementations for the AES algorithm. The first hardware

implementation is a high speed 128 bits AES encryptor with new merging and pipelining

techniques, while the second hardware implementation is a medium throughput 32 bits

AES design with efficient resources sharing and internal pipelining techniques. Both

designs have achieved better efficiencies and performances comparing to previous AES

hardware designs.

Field Programmable Gates Arrays (FPGA) is considered as one of the best ways to assess

digital system designs. Because of this fact and as most of the previous AES hardware

implementations have used FPGA to assess their performances; the presented designs in

this thesis have been simulated using FPGA Xilinx devices.

3

1.2 Research Objective

Based on the previous discussion, the main objectives in the two presented AES

designs are:

1. Present new mathematical models for the AES algorithm which reduces the

hardware implementations cost.

2. Increasing the systems throughput by parallel processing for the data using

pipelining techniques.

3. Reduce the repeated operational blocks in the AES design by merging, relocating

and sharing.

4

1.3 Organization

This thesis is organized as follows:

Chapter 2 will explain the AES algorithm in details. The four encryption/ decryption steps

are presented: Shift Rows/Inverse Shift Rows, Byte Substitution/ Inverse Byte Substitution,

Mix Column/Inverse Mix Columns and finally Add Round Key.

In Chapter 3, a high speed 128-bits pipelined loop unrolled AES encryptor using new

efficient merging technique is presented. A comparison with previous works is also

provided.

In Chapter 4, a new 32-bits AES design using S-BOX sharing between the main round unit

and the key expansion unit is presented. Comparison using FPGA implementation with

previous works is also presented in this chapter.

Finally, the conclusion and the future work are presented in Chapter 5.

5

CHAPTER 2 ADVANCED

ENCRYPTION STANDARD (AES)

ALGORITM

This chapter discusses the Advanced Encryption Standard algorithm steps and

implementations. Also, a literature review which studies previous proposed hardware

designs for the AES algorithm is presented.

2.1 Definition and History of Cryptography

We refer to the word cryptography as the change of data representation from its original

form into another different form in order to make it hidden and secured. Cryptography has

two processes; the first process is the encryption where the original data is converted into

secured form using certain steps. The second process is the decryption, where the

encrypted data is restored to the original form by applying the inverse to the steps applied

in the encryption process.

Classic Cryptography started thousands of years ago. All over the history classic

cryptography was used for secret communications between people. This kind of

cryptography is usually applied by substituting the message letters by other letters using

certain formula [21], for example substituting each letter in a message with the next letter

in the alphabets so that the word “Test” would become “Uftu”.

6

In modern ages, cryptography development has been a major concern in the fields of

mathematics, computer science and engineering. One of the main classes in cryptography

today is the symmetric-key cryptography, where a shared key of a certain size will be used

for the encryption and decryption processes. Fig. 1 illustrates the concept of

symmetric-key cryptography.

Encryption
10110110…

Data

Key
10011001…

Decryption
Encrypted Data

01110001…

Key
10011001…

Data

10110110…

Fig. 1 Symmetric-key cryptography

2.2 Finite Field

In algebra, the field that has a finite number of elements is called finite field or Galois field

(GF). Each finite field has a prime integer which represents its characteristic. For example,

the finite field GF(p), represents a field with the range of integers {0,1, …., p-1}. The total

number of elements in the finite field is called the finite field order. Fields with prime

integer orders has characteristic equal to their order.

Some finite fields uses non prime integer orders; in this case the finite field will be

represented using the prime number „p‟ which represent the characteristic along with the

power „n‟. Equation (2.1) shows how to represent the finite field with order „k‟ and using

the prime number „p‟ and the power „n‟.

7

 (2.1)

The finite field in (2.1) has a range of integers that vary between {0,1,…, k-1}.

Finite fields are used in many cryptographic algorithms. The Advanced Encryption

Standard uses the finite field GF(2
8
), where each data byte represents a value between

(00-FF)H.

Each data byte can be represented as a polynomial over the GF(2
8
). Equation (2.2) shows

the polynomial representations in GF(2
8
)

 (2.2)

Equation (2.2) can be also written as:

(2.3)

Where bi ε {0,1}.

The next sub-sections will explain the arithmetic in finite fields based on the characteristic

p=2.

2.2.1 Addition in Finite Field

Arithmetic in finite field is different than normal algebra arithmetic. In finite field with

characteristic of 2, an addition is obtained by applying bit-wise XOR operation between

8

the operands. Equation (2.5) shows the result of the finite field addition in (2.4).

(2.4)

(2.5)

Appendix A shows an example for addition in finite field.

2.2.2 Multiplication in Finite Field

In finite field, the multiplication product of two polynomials will be modulo an irreducible

polynomial so that the final answer can be within the used finite field. Irreducible

polynomial means it cannot be factorized and expressed as a product of two or more

polynomials over the same field [26].

Equation (2.6) represents the multiplication operation of the polynomials a2(x) and a1(x)

using the modulus m(x).

 (2.6)

Appendix A shows a multiplication example using the finite field.

9

2.3 The Data Encryption Standard (DES)

In the early 1970‟s, IBM developed the Data Encryption Standard as a symmetric-key

cryptography algorithm. This algorithm was adopted by the National Institute of Standard

and Technology (NIST) in 1977, where it was published in the Federal Information

Processing Standard (FIPS) Publication 46 [20]. The DES consists of 64 bits data block

with key size of 56 bits, where 16 encryption rounds will be applied to the data to complete

the encryption process.

The DES algorithm starts to fail after several published brute force attacks. The linear

cryptanalysis attack [22] could break the DES and made it insecure algorithm. The NIST

started to search for another algorithm to replace the DES, where the Rijndael cipher was

selected as the new Advanced Encryption Standard (AES).

2.4 The Advanced Encryption Standard (AES)

In 1998 Rijndael cipher developed by the two Belgian cryptographers, John Daemen and

Vincent Rijmen was published. This cipher was selected later on by the NIST as the

Advanced Encryption Standard to supersede the old Data Encryption Standard. The NIST

has published full details of AES under the FIPS publication 197 [1].

The AES according to [1] has a constant block size of 128 bits (16 bytes) with 3 different

key sizes of 128 bits, 192 bits and 256 bits, where 10, 12 and 14 encryption rounds will be

applied for each key size, respectively. During the encryption and decryption processes, the

10

16 bytes of data will form a changeable (4*4) array called the state array. During the

encryption process, the state array consists initially of the input data, this array will keep

changing until reaching the final enciphered data. In the decryption process the state array

will start by the enciphered data and will keep changing until retrieving the original data.

S00 S01 S02 S03

S10 S11 S12 S13

S20 S21 S22 S23

S30 S31 S32 S33

O00 O01 O02 O03

O10 O11 O12 O13

O20 O21 O22 O23

O30 O31 O32 O33

I00 I01 I02 I03

I10 I11 I12 I13

I20 I21 I22 I23

I30 I31 I32 I33

Input Array State Array Output Array

Fig. 2 Input, State and Output arrays

Each encryption round has 4 main steps, Shift Rows, Byte Substitution using the

Substitution Box (S-BOX), Mix Columns, and Add Round Key. The decryption process

consists of the inverse steps, where each decryption round consists of: Inverse Shift Rows,

Byte Substitution using Inverse S-BOX, Add Round Key and Inverse Mix Columns. The

round keys will be generated using a unit called the key expansion unit. This unit will be

generating 176,208 or 240 bytes of round keys depending on the size of the used key, more

details about the key expansion unit will be explained later in this chapter. Fig. 3 Shows

the AES encryption and decryption processes.

.

11

Byte Sub.

Mix Columns

Shift Rows

Byte Sub.

Shift Rows

Round key (1)

Round key (Last)

Inv. Byte Sub.

Inv. Shift Rows

Inv. Byte Sub.

Inv. Shift Rows

Round key (Last)

Round key (1)

9,11 or 13
iteration

Inv. Mix Columns

Round
key

Round
key

DecipherEncipher

9,11 or 13
iteration

Fig. 3 AES encryption and decryption processes

As can be seen from Fig. 3, the encryption and decryption processes start by adding the

round key to the data. This round key is called the initial round key and it consists of the

first 16 bytes of round keys in case of encryption and the last 16 bytes in case of decryption.

The encryption iteration starts with the Shift Rows step, then the Bytes Substitution is

applied, followed by the Mix Columns step, and finally the Round Key is added. In the

decryption iteration the Round Key is obtained before the Inverse Mix Columns step.

These iterations are repeated 9, 11 and 13 times for the key sizes 128,192 and 256 bits,

respectively. The last encryption and decryption iterations exclude the Mix column and

Inverse Mix column steps.

12

This chapter will explain the AES encryption and decryption steps. As most applications

and designs use the AES with 128 bits key size, the designs proposed in this thesis are

based on this key size. Also, all the used examples and algorithms in this chapter are based

on the 128 bits key size. The first sub-section will explain the Shift Rows / Inverse Shift

Rows step.

2.4.1 Shift Rows/ Inverse Shift Rows

In Shift Rows step the second, third and fourth row of the state array are shifted one, two

and three cyclic shifts to the left, respectively. Most references consider the shift rows step

as the first step in the encryption iteration; however it can be done after the Byte

Substitution step without affecting the algorithm. Fig. 4 shows how the Shift Rows step is

obtained.

S00 S01 S02 S03

S11 S12 S13 S10

S22 S23 S20 S21

S33 S30 S31 S32

Before Shift

S00 S01 S02 S03

S10 S11 S12 S13

S20 S21 S22 S23

S30 S31 S32 S33

After Shift

Fig. 4 Shift Rows step

The Inverse Shift Rows step is obtained during the decryption process by shifting, the

second, third and fourth rows, one, two and three cyclically shift to the right, respectively.

Fig. 5 shows how the Inverse Shift Rows step is obtained.

13

S00 S01 S02 S03

S11 S12 S13 S10

S22 S23 S20 S21

S33 S30 S31 S32

Before Shift

S00 S01 S02 S03

S10 S11 S12 S13

S20 S21 S22 S23

S30 S31 S32 S33

After Shift

Fig. 5 Inverse Shift Rows step

2.4.2 Byte Substitution and Inverse Byte

Substitution Using S-BOX and Inverse S-BOX

Byte substitution and Inverse Byte Substitution are the most complex steps in the

encryption and decryption processes. In these steps each byte of the state array will be

replaced with its equivalent byte in the S-BOX or the Inverse S-BOX.

S00 S01 S02 S03

S10 S11 S12 S13

S20 S21 S22 S23

S30 S31 S32 S33

S-BOX /
Inverse S-BOX

S’00 S’01 S’02 S’03

S’10 S’11 S’12 S’13

S’20 S’21 S’22 S’23

S’30 S’31 S’32 S’33

Fig. 6 Byte Substitution

As AES algorithm use elements within the GF(2
8
), each element in the state array

represents a byte with a value that varies between 00H-FFH. The S-BOX has a fixed size of

14

256 bytes represented as (16 * 16) bytes matrix. Fig. 7 shows the AES S-BOX. In this

figure the variable „b2‟ represents the most significant nibble while the variable „b1‟

represents the least significant nibble.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76

1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0

2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15

3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75

4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84

5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF

6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8

7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2

8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73

9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB

A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79

B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08

C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A

D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E

E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF

F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

b1

b2

Fig. 7 The S-BOX

The Inverse S-BOX which is used during the decryption processes will be retrieving the

original byte that was substituted using the S-BOX during the encryption process. For

example from the S-BOX in Fig. 7 we can see that the S-BOX will substitute the byte „00H‟

with the byte „63H‟. Also the byte „63H‟ in the Inverse S-BOX shown in Fig. 8 will be

substituted by „00H‟.

15

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB

1 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB

2 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E

3 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25

4 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92

5 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84

6 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06

7 D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B

8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73

9 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E

A 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B

B FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4

C 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F

D 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF

E A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61

F 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

b1

b2

Fig. 8 The Inverse S-BOX

The generation of S-BOX is done by two steps, first finding the multiplicative inverse for

the numbers 00H-FFH in the GF(2
8
), then applying the affine transformation on them. On

the other hand, the generation of the Inverse S-BOX starts by applying the inverse affine

transformation followed by finding the multiplicative inverse. The next sub-sections will

explain these sub-steps in more details.

16

Multiplicative
Inverse

Affine
Transformation

S-BOX

Inverse Affine
Transformation

Inverse S-BOX

Multiplicative
Inverse

Fig. 9 Generation of S-BOX and Inverse S-BOX

2.4.2.1 Multiplicative Inverse Calculation

The first step of S-BOX generation is finding the multiplicative inverse for the numbers

00H-FFH, This requires using the irreducible polynomial p(x) defined in the equation (2.7).

 (2.7)

Since AES is dealing with numbers within the GF(2
8
), it uses the 8

th
 degree irreducible

polynomial shown in (2.7) as defined by [1]. This polynomial is used as a reduction

polynomial by applying it as a modulus for the multiplication result of two polynomials so

that the final result can be within the finite field GF(2
8
).

Calculating the multiplicative inverse requires using the Extended Euclidean algorithm

[23], which state that for every polynomial a(x) there exists two polynomials b(x) and c(x)

such that:

 (2.8)

17

And since:

(2.9)

We can obtain a(x)
-1

 as:

 (2.10)

2.4.2.2 Affine Transformation

The affine transformation is applied after the multiplicative inverse calculation in the Byte

Substitution step, while it is applied first in the Inverse Byte Substitution step. The affine

transformation and its inverse have two parts, the multiplication part where a constant

matrix will be multiplied with the data, then the addition part, where a constant vector is

added to multiplication result. The matrix „A1‟ and the vector „C1‟ are used for the affine

transformation as can be seen in (2.11), while the matrix „A2‟ and the vector „C2‟ are using

for the inverse affine transformation as can be seen in (2.12).

 +

(2.11)

18

 +

(2.12)

2.4.3 Mix Columns / Inverse Mix Columns Steps

After performing the Byte Substitution step during the encryption process, Mix Columns

step is applied. In the decryption process the Inverse Mix Columns step is applied after

adding the Round Key. The Mix Columns step and its inverse are not applied in the last

encryption or decryption processes as described in [1]. In these steps each column of the

state array will be processed using 4 polynomials. Each polynomial consists of 4 operands

representing the old state array column elements and they will be used to obtain the new

state array element.

S00 S01 S02 S03

S10 S11 S12 S13

S20 S21 S22 S23

S30 S31 S32 S33

S’00 S’01 S’02 S’03

S’10 S’11 S’12 S’13

S’20 S’21 S’22 S’23

S’30 S’31 S’32 S’33

Mix Columns /
Inverse Mix Columns

Fig. 10 Mix Columns and Inverse Mix Columns steps

19

According to [18], the polynomial c(x) given in (2.13) is used to obtain the Mix Column

step:

 (2.13)

To obtain the Mix Column Step, each 4 bytes state array column is represented as

polynomials over GF(2
8
) as shown in (2.14). Each polynomial is multiplied by the fix

polynomial c(x) modulo the polynomial k(x) described in (2.15).

 (2.14)

 (2.15)

According to [18], multiplication between the polynomials c(x) and b(x) modulo k(x) will

result in the matrix (2.16).

(2.16)

Matrix (2.12) can be written in the polynomials (2.17):

 (2.17)

20

The Inverse Mix Column step is obtained by multiplying the 4 bytes state array column

polynomial b(x) (2.10) by the Inverse Mix Columns polynomial c(x)
-1

 (2.18) Modulo k(x)

(2.15).

 (2.18)

The latter multiplication can be represented using the matrix in (2.19):

(2.19)

Matrix (2.15) can be written using the polynomials (2.20):

 (2.20)

2.4.4 Key Expansion and Add Round Key Step

Add Round Key step is applied one extra time comparing to the other encryption and

decryption steps. The first Add Round Key step is applied before starting the encryption

and decryption iterations, where in the encryption process the first 128 bits of the input key

the whole key in case of using key size of 128 bits are added to the original data block. This

21

round key is called the initial round key. For the decryption process the initial round key is

the last 128 bits of the generated keys as will be explained later.

S00 S01 S02 S03

S10 S11 S12 S13

S20 S21 S22 S23

S30 S31 S32 S33

S’00 S’01 S’02 S’03

S’10 S’11 S’12 S’13

S’20 S’21 S’22 S’23

S’30 S’31 S’32 S’33

Ri00 Ri01 Ri02 Ri03

Ri10 Ri11 Ri12 Ri13

Ri20 Ri21 Ri22 Ri23

Ri30 Ri31 Ri32 Ri33

Fig. 11 Add Round Key

In addition to the initial 16 bytes round keys, another 16 bytes of round keys will be

required for each encryption or decryptions iterations, this makes the total as 176 bytes,

224 bytes and 240 bytes for the key sizes 128,192 and 256 bits, respectively. These round

keys are generated using an operation called the key expansion. In the key expansion all the

round keys will be generated from the original input key. The next sub-section explains the

round keys generation using the key expansion operation.

2.4.4.1 Key Expansion

The key expansion term is used to describe the operation of generating all Round Keys

from the original input key. The initial round key will be the original key in case of

encryption and the last group of the generated key expansion keys in case of decryption –

the first and last 16 bytes in case of key sizes of 192 and 256 bits. As mentioned previously

this initial round key will be added to the input initially before starting the encryption or

decryption iterations. Using the 128 bits key size, 10 groups of round keys will be

generated with 16 bytes size for each.

22

The first 4 bytes column in each group will be generated as follows:

1) Taking the S-BOX equivalent to the last column of the previous group (one

previous column).

2) Perform one cyclic permutation “rotate elements [R0r R1r R2r R3r] to [R1r R2r R3r

R0r].

3) Add the round constant.

4) Add the result to the first column of the previous group (four previous columns).

The remaining second, third and fourth column of each group will be created by adding the

direct previous column with the equivalent column in the previous group (four previous

columns). This will create a total of 176 bytes of round keys.

In the 192 bits key size, each group consists of six columns. The first column will be

created in the same way as in the case of 128 bits key size. The remaining second to sixth

column of each group will be also created by adding the direct previous column with the

equivalent column in the previous group (six previous columns). In the 192 bits key size,

192 bytes of round keys will be generated in addition to the original 24 bytes key. The

round keys will be retaken as groups of four columns each and are applied 13 times during

the encryption and decryption processes.

Finally, for the 256 key sizes, each group will consists of 8 columns; the first column in the

group will be created exactly the same way as in the 128 and 192 key sizes. The fourth

column of each group will be created by applying the byte substitution to the third column

values and then adding it to the equivalent column in the previous group (eight previous

columns). The remaining columns are created also by adding the direct previous column

23

with the equivalent column of the previous group. In the 256 bits key size, 208 bytes of

generated round keys in addition to the original 32 bytes key are applied 15 times as groups

of 16 bytes in the encryption and decryption processes.

R(i+1)00 R(i+1)01 R(i+1)02 R(i+1)03

R(i+1)10 R(i+1)11 R(i+1)12 R(i+1)13

R(i+1)20 R(i+1)21 R(i+1)22 R(i+1)23

R(i+1)30 R(i+1)31 R(i+1)32 R(i+1)33

R(i)00 R(i)01 R(i)02 R(i)03

R(i)10 R(i)11 R(i)12 R(i)13

R(i)20 R(i)21 R(i)22 R(i)23

R(i)30 R(i)31 R(i)32 R(i)33

S-BOX

RCON

Fig. 12 Key Expansion

The round constant matrix “known as RCON” is a constant matrix used during the key

expansion process. Each row of the round constant matrix will be added to the first row of

each group during the key generation as explained previously. The first column of this

matrix is generated according to (2.21) while the second, third and fourth row are zeros.

The standard AES reduction polynomial will be used to keep the elements in the GF(2
8
).

 (2.21)

24

Fig. 13 shows the round constant values for the AES with 128 bits key size.

0 1 2 3

0 1 0 0 0

1 2 0 0 0

2 4 0 0 0

3 8 0 0 0

4 10 0 0 0

5 20 0 0 0

6 40 0 0 0

7 80 0 0 0

8 1B 0 0 0

9 36 0 0 0

Fig. 13 Round Constant

2.5 Literature Review

Since the announcement of the Advanced Encryption Standard algorithm in 2001, various

hardware implementations were proposed for it. Most of these implementations have

targeted the AES with 128-bits key size. This key size is considered to be sufficient for

most of the commercial applications, where using higher key sizes is considered as waste

of resources as it requires higher area implementations with longer processing time. Key

sizes of 192-bit and 256 bits are used mainly in top secret military applications to ensure

the maximum level of security [24].

AES implementations can be divided into three main types depending on data-path width.

The first type comes with 8-bits data path as implemented in [17] aiming for low area

25

architectures. The second type is the 32-bits data path architectures which process each

state array row or column together as implemented in [14-16] and [18] targeting a medium

throughput applications. The last type of implementations is the 128-bits loop unrolled

architectures which targets very high speed applications as presented in [2-3] and [12].

Mainly, designs with 8 bits and 32 bits data paths use looping architectures. Looping

architectures use a one stage of AES encryptor/decryptor with a feedback at the end as

shown in Fig 14 (a). In this way the data will go through this stage until completing the

required number of iterations which is determined according to size of the used key. This

AES stage could be only an encryptor or an encryptor with decryptor and it includes the

hardware implementation for the four AES steps: Shift Rows Step, Byte Substitution using

the Substitution Box (S-BOX), Mix Columns and Add Round Key.

For very high speed applications which is implemented as full 128 bits data path, the

throughput can be doubled ideally N times by applying the loop unrolled architecture. In

this architecture, replicates of the AES stages are implemented in series, where N number

of stages is used. In AES 128 bits key size architecture, N is 10, as 10 AES iterations are

required to complete the encryption/decryption processes. Fig 14 (b) shows the loop

unrolled architectures with pipelining technique.

In order to get benefit from the loop unrolled architecture, a pipelining stage is

implemented at the end of each AES stage which allows entering new data at each clock

cycle, therefore, all AES stage will be working in parallel. The design in [25] presents a

loop unrolled AES implementation with pipelining techniques.

More advanced pipelining techniques were used in the designs in [2], [5] and [12], where

26

the idea of using sub-pipelining stages is presented. In sub-pipelining, instead of applying

pipelining stage at the end of each AES stage, the latter is divided into certain number of

pipelining stages. This method doubles the throughput couple of times compared to what is

achievable using normal pipelining. Fig 14 (c) shows the loop unrolled architectures with

sub- pipelining techniques.

AES
Stage OutputInput

A)

AES
Stage 1

AES
Stage 2

AES
Stage 3

AES
Stage NInput Output

Looping architectures

Loop-unrolled architecture with pipelining

B)

AES
Stage 1

AES
Stage 2

AES
Stage 3

AES
Stage NInput Output

Loop-unrolled architecture with sub-pipelining

C)

Fig. 14 AES looping and loop-unrolled architectures

These loop unrolled sub-pipelined AES designs which achieves tens of gigabytes of

throughput are used in many applications such as highly traffic servers as in e-commerce

servers [17].

S-BOX implementation is a main concern in the AES hardware design. Two main methods

where proposed for the implementation of the S-BOX. The first method is by pre-storing

the S-BOX elements in BRAMs, where BRAM is an FPGA block of RAM which can be

used to store data. The design in [3] has used the BRAMs to present high speed loop

27

unrolled architecture. The second method uses the composite field S-BOX as proposed in

[8], and implemented as high speed loop unrolled sub-pipelined AES design in [2].

Sh
if

t
R

o
w

s

B
yt

e
su

b
st

it
u

ti
o

n

M
ix

 C
o

lu
m

n
s

A
d

d
 R

o
u

n
d

 K
ey

AES Encryption
Stage

Fig. 15 AES encryption stage

As pipelining cannot be applied to BRAM as it is a one memory block, using it in the

implementation of S-BOX will limit the number of sub-pipelining stages in the design.

Also implementation using BRAMs usually requites larger area than the composite field

arithmetic designs as will be shown later in this thesis.

The next sections will present different proposed designs for the Advanced Encryption

Standard algorithm.

2.5.1 Composite Field Arithmetic S-BOX

The implementation of the composite field S-BOX is accomplished using combinational

logic circuits rather than using pre-stored S-BOX values. S-BOX substitution starts by

finding the multiplicative inverse of the number in GF(2
8
), and then applying the affine

28

transformation. Implementing a circuit to find the multiplicative inverse in the finite field

GF(2
8
) is very complex and costly, therefore, [4] has suggested using the finite field GF(2

4
)

to find the multiplicative inverse of elements in the finite field GF(2
8
). First detailed

implementation for the composite field S-BOX was published in [8].

Each element in a higher order field can be expressed using the polynomial , where

b and c are elements in the lower order field. For example any element in GF(2
8
) can be

expressed using the polynomial , where b and c ε GF(2
4
) and they represent the

most and the least significant nibbles of that element.

After expressing the GF(2
8
) element as a polynomial over GF(2

4
), the Multiplicative

Inverse can be found using the polynomial shown in (2.22) [4].

 λ

 λ

(2.22)

Fig. 16 shows the Composite field S-BOX which was proposed by [8]. This model applies

equation (2.22) in finding the multiplicative inverse for GF(2
8
) elements.

29

δ

x2 xλ

x-1 δ-18

4

4

4

4

4

8

AT

Multiplicative inverse in GF(28) Affine
Transformation

8

δ

δ-1

Isomorphic mapping

Inverse isomorphic mapping

x-1 Multiplicative inverse in GF(24)

Multiplier in GF(24)

AT Affine Transformation x2 Squarer in GF(24)

xλ Multiplication with constant “λ”XOR Gate

 Fig. 16 Composite field S-BOX implementation

As can be seen from the figure, isomorphic mapping must be applied on the GF(2
8
)

element before applying it as a polynomial over GF(2
4
). Also, inverse isomorphic mapping

is required after finding the multiplicative inverse for the number.

According to [8] and [26], higher order fields can be built from lower order field using the

irreducible polynomials shown in (2.23).

(2.23)

30

The polynomials and , are used in the implementation of the

composite field S-BOX. The constants and are chosen to ensure the polynomials

irreducibility. The used values for these constants according to the proposed in [8] are

 and . These polynomials are mainly used in the derivation of the

isomorphic mapping and its inverse in addition to the design of the composite field S-BOX

sub-blocks. Detailed explanations on how to use these polynomials in building the

composite field S-BOX can be found in [10] and [26].

Chapter 3 will present the internal architecture for each block in the composite field

S-BOX, in addition to the used isomorphic and inverse isomorphic matrices.

2.5.2 Loop Unrolled Pipelined Encryptor in [12]

The design in [12] is implemented using a loop unrolled sub-pipelined AES encryptor

similarly to the architecture shown in Fig. 14 (c). In this design the two main methods for

S-BOX implementation were used. The first one is by using the composite field S-BOX,

while the other one is by using pre-stored S-BOX values in BRAMs.

In this design each encryption stage was divided into 4 and 7 pipelining stages. By using

the composite field S-BOX design with 7 pipelining stages, a throughput of 21.64 Gbps

where achieved using 9446 Slices. This led to an efficiency of 2.3 Mpbs/Slice using Xilinx

XC2VP20-7 device. In the BRAM implementation using 4 pipelining stages a throughput

of 21.54 Gbits/s was achieved using 84 BRAMs and 5177 Slice. Fig. 17 shows the design

for each AES stage in [12].

31

In the composite field implementation of this design three separate blocks for isomorphic

mapping, inverse isomorphic mapping and affine transformation were used. These blocks

are merged into one block in the proposed design in chapter 3.

S-BOX

S-BOX

S-BOX

S-BOX

Mix
Columns

Mix
Columns

Mix
Columns

Mix
Columns

…
…

…
…

…
…

…
…

…
..

Add Round
Key

Key
Expansion

Unit

Shift Rows
Registers

Fig. 17 AES encryption stage in [12]

2.5.3 Very High Speed AES design in [2]

The design presented in [2] is a loop unrolled architecture based on the composite field

arithmetic S-BOX proposed in [8]. This design presented a new GF(2
4
) inversion block

which is used as a part of the GF(2
8
) Multiplicative inverse block, in addition to presenting

a joint encryptor/ decryptor architecture for loop unrolled designs. In the encryptor design

each stage was divided into 3 and 7 sub-pipelining stages. Using 7 sub-pipelining stages,

this design was able to achieve an efficiency of 1.956 Mbps/Slice using XCV 1000e-8,

where a throughput of 21556 Mpbs was achieved using 11022 Slices.

32

Fig. 18 shows the proposed encryption stage in [2].

δ

x2 xλ

x-1 δ-1 & AT
8

4

4

4

4

4

8

Multiplicative inverse

8

Sh
if

t R
o

w
s

M
ix

 C
o

lu
m

n
s

3 pipelining stages

7 pipelining stages

Fig. 18 AES encryption stage in [2]

2.5.4 32 Bits Encryptor/Decryptor Designs

Several 32 bits designs for the AES algorithm were proposed. These designs use the

looping architecture which can be seen in Fig. 14 (a). One example is the design in [16],

where a 32 bits encrytor/decyptor was proposed. In [16] a block that mixes between the

Byte Substitution and Mix Columns steps was implemented. This block pre-stores the

multiplication results of the S-BOX bytes and the mix columns coefficients in BRAMs.

Applying this is done by pre-storing the multiplication of the S-BOX bytes with the

coefficients {2,3} to be used during encryption process and the multiplication results of the

Inverse S-BOX bytes with the coefficients {9,B,D,E} to be used during the decryption

process. This block required the usage of (512 * 32) bits BRAM. Fig. 19 demonstrates the

architecture that was proposed by [16].

33

DATA IN

S-BOX/ Mix and
Inv Mix Columns

KRAM for
Round Keys

a0 a1 a2

b0
0 1 2 3

b2
8 9 10 11

b3
12 13 14 15

b1
4 5 6 7

Shift Rows/ Inv Shift Rows

CONTROL

32

8

Fig. 19 32-Bits AES design in [16]

As can be seen from the figure, three 32-bits shift registers (a2,a1,a0), and four 32-bits

rotate registers (b3,b2,b1,b0), in addition to two 8-bits 2x1 multiplexers are needed to

apply the shift columns and inverse shift columns steps. The Byte Substitution and the Mix

Columns steps are obtained using the new block that mixes between these steps. All the

Round Keys in this design are pre-calculated using a key expansion unit. This unit

calculates all round keys prior to the encryption/decryption processes and stores them in

the KRAM. This KRAM is a (44 x 32 bits) BRAM.

The method of pre-calculation and storage of all round keys before starting the

encryption/decryption processes is used in several 32-bits AES architectures as presented

in [14-16]. One example on a key expansion implementation that uses this method is the

design presented in [14], where Fig. 20 shows the key expansion unit used in this design.

34

MUX 1
32

rcon

input

3- deep
shift

register
Sub byte

rot

outputRegister
MUX 2

Fig. 20 Key Expansion unit in [14]

As can be seen from Fig. 20, this key expansion unit uses a 3 deep shift registers to store the

columns of the previous group, while the first multiplexer will choose the previous

columns either directly from the register or after S-BOX substitution and round constant

addition. The resulting round keys are stored in BRAM to be used in the

encryption/decryption processes later on.

2.6 Conclusion

After reviewing different hardware implementations for the Advanced Encryption

Standard algorithm, different techniques and improvements can be applied to improve the

efficiency of these designs.

Improvements on high speed loop unrolled designs can be done by applying new methods

to decrease the critical path of the AES stage and to allow a lower area implementation. For

35

Example in the designs [2] and [12] repeated blocks of isomorphic mapping, inverse

isomorphic mapping and affine transformation where used at each AES stage. Chapter 3

introduces a new loop unrolled design which merges these 3 blocks into one new block

which allows the implementation with shorter critical path and lower area, therefore

presenting a system with higher efficiency.

Improvements on 32-bits AES design can be done by applying new methods which reduces

the hardware cost and prevents pre-processing delays. The designs in [15] and [16] have

used a block that mixes between the Byte Substitution/Inv Byte Substitution and the Mix

Column/Inverse Mix Columns Steps. Using this block requires a large memory which

reduces the system efficiency. Also, the designs in [14-16] used the method of

pre-calculation and storage of all round keys prior to starting the encryption/decryption

processes. Using this method requires a pre-processing delay which will be required at the

system start and at each key change. Chapter 4 introduces a new design that uses on the fly

calculation for the round keys, which means they are calculated in parallel to the

encryption/decryption processes. Also, this design uses a shared S-BOX between the key

expansion and the round unit. This S-BOX has internal pipelining stages which prevent

any extra delays resulting from the S-BOX sharing.

36

CHAPTER 3 HIGH SPEED AES

ENCRYPTOR

In this chapter a new architecture for a high speed AES encryptor using 128-bits key size is

presented [13]. This architecture is implemented using loop unrolled technique with

sub-pipelining. To apply the sub-pipelining, composite field S-BOX is used which is

implemented using combinational logic circuits. In this proposed implementation

re-arrangements for the AES encryption sub-steps is applied to allow an efficient merging

between them leading to lower area implementation with shorter path length. This new

architecture has shown higher efficiency in terms of FPGA (Throughput/Area) comparing

to previous loop unrolled pipelined AES encryptors.

3.1 Introduction

The literature review in chapter 2 presented some loop unrolled AES encryptor designs that

used the composite field S-BOX in the implementation as in [2] and [12]. This Chapter

proposes an encryptor that simplifies the implementation of the composite field S-BOX by

relocating the Mix Column step and merge between the inverse isomorphic mapping, the

affine transformation multiplication, and the isomorphic mapping of the next encryption

stage. This merging combines these three operational blocks into one block. Moreover, the

affine transformation vector “C” shown in (2.11) is implemented in the key expansion unit

instead of the main round unit. These improvements enabled the implementation to have

higher efficiency by reducing the area and shortening the total path length, where a less

37

number of sub-pipelining stages will be required for achieving certain throughput.

3.2 Implementation of Composite Field Arithmetic

S-BOX

Chapter 2 presented the implementation of the composite field S-BOX as it was proposed

in [8]. Using the composite field S-BOX requires applying isomorphic mapping and its

inverse at the start and the end of the Multiplicative Inverse block. Matrices (3.1) and (3.2)

represent the isomorphic mapping and its inverse based on the values

and . Derivation for the isomorphic mapping matrix can be obtained using the

algorithms presented in [7] and [26].

 (3.1)

 (3.2)

Fig. 21 represents the pre-calculated multiplicative inverse results for the numbers in

GF(2
8
) starting from 00H till FFH, b2 and b1 represent the most significant and least

significant nibbles , respectively.

38

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 01 8D F6 CB 52 7B D1 E8 4F 29 C0 B0 E1 E5 C7

1 74 B4 AA 4B 99 2B 60 5F 58 3F FD CC FF 40 EE B2

2 3A 6E 5A F1 55 4D A8 C9 C1 0A 98 15 30 44 A2 C2

3 2C 45 92 6C F3 39 66 42 F2 35 20 6F 77 BB 59 19

4 1D FE 37 67 2D 31 F5 69 A7 64 AB 13 54 25 E9 09

5 ED 5C 05 CA 4C 24 87 BF 18 3E 22 F0 51 EC 61 17

6 16 5E AF D3 49 A6 36 43 F4 47 91 DF 33 93 21 3B

7 79 B7 97 85 10 B5 BA 3C B6 70 D0 06 A1 FA 81 82

8 83 7E 7F 80 96 73 BE 56 9B 9E 95 D9 F7 02 B9 A4

9 DE 6A 32 6D D8 8A 84 72 2A 14 9F 88 F9 DC 89 9A

A FB 7C 2E C3 8F B8 65 48 26 C8 12 4A CE E7 D2 62

B 0C E0 1F EF 11 75 78 71 A5 8E 76 3D BD BC 86 57

C 0B 28 2F A3 DA D4 E4 0F A9 27 53 04 1B FC AC E6

D 7A 07 AE 63 C5 DB E2 EA 94 8B C4 D5 9D F8 90 6B

E B1 0D D6 EB C6 0E CF AD 08 4E D7 E3 5D 50 1E B3

F 5B 23 38 34 68 46 03 8C DD 9C 7D A0 CD 1A 41 1C

b1

b2

Fig. 21 Multiplicative Inverse results for the numbers in GF(2
8
)

The next sub-sections demonstrate the implementation of each sub-block in the composite

field S-BOX.

3.2.1 Square Block

According to (2.22) and as can be seen from Fig. 16, square operation is required over

GF(2
4
) as a part of the multiplicative inverse calculation. This square operation will be

applied for the higher nibble of the input byte.

39

Equation (3.3) shows the implementation of this square block. Derivation of (3.3) can be

found in [10].

(3.3)

Fig. 22 shows the square results for all the values in GF(2
4
), starting from 0H to FH.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

x2 0 1 3 2 6 7 5 4 D C E F B A 8 9

Fig. 22 Square block input/output

3.2.2 Multiplication with the constant λ

Following the square operation, the higher nibble of the data will be multiplied by the

constant λ. This constant is chosen to be equal {1100} to guarantee reduction polynomial

irreducibility. Equation (3.4) shows the implementation for the λ multiplication block. Full

derivation of this block can also be found in [10].

(3.4)

40

Fig. 23 shows the multiplication with λ results for all the values in GF(2
4
), starting from 0H

to FH.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

xλ 0 C 4 8 D 1 9 5 6 A 2 E B 7 F 3

Fig. 23 Multiplication with λ block input/output

3.2.3 Multiplicative Inverse in GF(24)

Several architectures were suggested for the implementation of GF (2
4
) Multiplicative

Inverse block. In [2] a comparison between these different implementations is presented.

The first design was build using two square blocks with three GF(2
2
) multipliers, while the

second one used similar block to what is proposed in Fig. 16, but using GF(2
2
) in finding

the multiplicative inverse for GF(2
4
). The third design which is considered the best in

terms of gates number and critical path is designed by direct mapping between the input

and output bits. Equation (3.5) shows the implementation GF(2
4
) Multiplicative Inverse

block.

(3.5)

41

Fig. 24 shows the inversion results for all the values in GF(2
4
), starting from 0H to FH.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

x-1 0 1 3 2 F C 9 B A 6 8 7 5 E D 4

Fig. 24 GF(2
4
) Multiplicative inverse block input/output

3.2.4 Multiplication in GF(24) and GF(22)

As can be seen from Fig. 16 and according to (2.22), three multipliers in GF(2
4
) are

required as a part of finding the multiplicative inverse in GF(2
8
). Fig. 25 shows the GF(2

4
)

multiplier circuit. As can be seen from the figure the GF(2
4
) multipliers consist of 3 GF(2

2
)

multipliers with 4 XOR Gates and with constant multiplier θ. This constant multiplier

which has 2 bits input extracts the lower bit output as the higher bit input, while the higher

output bit will be the result of XOR operation between the 2 input bits. Full derivation of

this multiplier circuit can be found in [2] and [10].

4

4

2

2

2

2

4

A

B
C

A

B

C

xθ

Multiplier in GF(22)

4
4

4

Fig. 25 GF(2
4
) Multiplier

42

The next figure shows the multiplication results in GF(2
4
) for the nibble inputs „a‟ and „b‟.

These inputs vary between 0H to FH.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9 A B C D E F

2 0 2 3 1 8 A B 9 C E F D 4 6 7 5

3 0 3 1 2 C F D E 4 7 5 6 8 B 9 A

4 0 4 8 C 6 2 E A B F 3 7 D 9 5 1

5 0 5 A F 2 7 8 D 3 6 9 C 1 4 B E

6 0 6 B D E 8 5 3 7 1 C A 9 F 2 4

7 0 7 9 E A D 3 4 F 8 6 1 5 2 C B

8 0 8 C 4 B 3 7 F D 5 1 9 6 E A 2

9 0 9 E 7 F 6 1 8 5 C B 2 A 3 4 D

A 0 A F 5 3 9 C 6 1 B E 4 2 8 D 7

B 0 B D 6 7 C A 1 9 2 4 F E 5 3 8

C 0 C 4 8 D 1 9 5 6 A 2 E B 7 F 3

D 0 D 6 B 9 4 F 2 E 3 8 5 7 A 1 C

E 0 E 7 9 5 B 2 C A 4 D 3 F 1 8 6

F 0 F 5 A 1 E 4 B 2 D 7 8 3 C 6 9

a

b

Fig. 26 GF(2
4
) Multiplication results

Fig. 27 shows the implementation of the GF(2
2
) Multiplier.

2

2

1

1

1

1

2

A

B
C

A

B

C

2

2

2

Fig. 27 GF(2
2
) Multiplier

43

Fig. 28 shows all the possible multiplication results in GF(2
2
) by varying the inputs a and b

between 0H to 3H.

0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 3 1

3 0 3 1 2

a

b

Fig. 28 GF(2
2
) Multiplier outputs

3.3 I-BOX

Applying the current composite field design in a loop unrolled system resulted in repeated

isomorphic mapping , inverse isomorphic mapping and affine transformation operations in

each encryption stage as happened in [2] and [12].

This section presents the new proposed composite field loop unrolled design for the AES

encryptor. In this design the mix column step is relocated and performed before the inverse

isomorphic mapping and the affine transformation operations which are required in the

byte substitution step, while the round keys are mapped with the isomorphic mapping. This

relocation for the mix column and the mapping for the round keys allowed an efficient

merging between the inverse isomorphic mapping, the affine transformation multiplication

and the required isomorphic mapping in the next encryption stage. By this merging these 3

operations where substituted by a new operational block called the “ζ” transformation.

44

Moreover, the affine transformation addition where placed in the key expansion unit

instead of the encryption stages. This allowed the reduction of these addition blocks from

160 blocks in all encryption stages to only 16 blocks implemented in the key expansion

unit.

With these merging techniques, a new block which is called the I-BOX “Integrated-BOX”

is introduced. This block will be responsible for obtaining one encryption iteration for each

state matrix column. To derive the I-BOX equations and to explain the mathematical theory

behind this proposed merging and rearrangements, we start by (3.6) which represent the

state array element after applying the inverse isomorphic mapping and the affine

transformation to the multiplicative inverse result in (2.22). Parameters “r” and “c”

represents the row and column locations for the state matrix element, where it is assumed

to be at the i‟th encryption stage.

 (3.6)

After byte substitution is performed using (3.6), the mix column step is applied on the state

array elements using the matrix in (3.7):

 (3.7)

45

Where the state array element after the mix columns step can be written as:

(3.8)

By rewriting (3.10) and adding the Round Key, the state array element will be written as:

(3.9)

By letting and we obtain:

(3.10)

S r,‟c‟(i+1) in (3.10) represents the isomorphic mapped value of state element after shifting

and before applying it to the byte substitution in (i+1) stage, where the affine

transformation vector “C” in each operand is cancelled by XOR addition with the vector

“C” in the next operand. By rearranging the location of the mix columns coefficient {02}

matrix, and replacing it with a new matrix {02}‟, and by taking the affine transformation

and the inverse isomorphic mapping as common factors (3.10) can be rewritten as:

46

(3.11)

From (3.11) we can define the new transformation ζ as:

 (3.12)

(3.13)

47

Fig. 29 shows transformation for the values 00H-FFH, where „b1‟ represents the least

significant nibble, while „b2‟ represents the most significant nibble.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 10 33 23 45 55 76 66 80 90 B3 A3 C5 D5 F6 E6

1 71 61 42 52 34 24 07 17 F1 E1 C2 D2 B4 A4 87 97

2 37 27 04 14 72 62 41 51 B7 A7 84 94 F2 E2 C1 D1

3 46 56 75 65 03 13 30 20 C6 D6 F5 E5 83 93 B0 A0

4 36 26 05 15 73 63 40 50 B6 A6 85 95 F3 E3 C0 D0

5 47 57 74 64 02 12 31 21 C7 D7 F4 E4 82 92 B1 A1

6 01 11 32 22 44 54 77 67 81 91 B2 A2 C4 D4 F7 E7

7 70 60 43 53 35 25 06 16 F0 E0 C3 D3 B5 A5 86 96

8 1F 0F 2C 3C 5A 4A 69 79 9F 8F AC BC DA CA E9 F9

9 6E 7E 5D 4D 2B 3B 18 08 EE FE DD CD AB BB 98 88

A 28 38 1B 0B 6D 7D 5E 4E A8 B8 9B 8B ED FD DE CE

B 59 49 6A 7A 1C 0C 2F 3F D9 C9 EA FA 9C 8C AF BF

C 29 39 1A 0A 6C 7C 5F 4F A9 B9 9A 8A EC FC DF CF

D 58 48 6B 7B 1D 0D 2E 3E D8 C8 EB FB 9D 8D AE BE

E 1E 0E 2D 3D 5B 4B 68 78 9E 8E AD BD DB CB E8 F8

F 6F 7F 5C 4C 2A 3A 19 09 EF FF DC CC AA BA 99 89

b1

b2

ζ-Transform

Fig. 29 ζ-Transformation

Due to changing Mix Columns Step location, the new {02}‟ multiplication matrix is

required because the multiplication is obtained before the inverse isomorphic mapping and

the affine transformation. This matrix is derived by implementing a relation between the

inputs 00H-FFH and the values which will yield to the {02} multiplication after applying

the inverse isomorphic mapping and the affine transformation .Equation (3.14) represents

the multiplication of input byte „q‟ by the new matrix {02}‟.

48

(3.14)

Using (3.12) we can rewrite (3.11) as:

(3.15)

Equation (3.15) represents one encryption stage calculation for state array element in the

I-BOX, where each I-BOX will be calculating 4 state array elements. Fig. 30 shows the

state array element calculation inside the I-BOX based on (3.15). As can be seen from the

figure each state element calculator in I-BOX consists of the multiplicative inverse block

GF(2
8
), followed by the mix column step which uses the new {02}‟ multiplier. After the

mix columns part the new “ζ” transformation block is used, this block as explained

previously resulted from the merging between the inverse isomorphic mapping, the affine

transformation multiplication and the isomorphic mapping for the next stage. Finally the

Add Round Key XOR gate can be found.

49

x2 λ

4

4
4

4

4

8

x-1 x2 ζ

8

Sr,c

S mod(r+1,4),c + S mod(r+2,4),c

+ S mod(r+3,4),c

S mod(r+3,4),c

S mod(r+1,4),c RK r,c (i)

p= 5

p= 9

8

Fig. 30 I-BOX state array element calculation

By placing the mix column step before the inverse isomorphic mapping and the affine

transformation and obtaining the Round Keys in the isomorphic mapping the three

transformation blocks were placed to be in sequence, therefore, the merging is among them.

Fig. 31 depicts the implementation of this merging and rearrangement. Also the affine

transformation vector δ(C), has been added to each round key prior to adding it to the state

array element, where the vector δ(C) is implemented in the key expansion unit. In this case

it will be implemented 16 times “one block for each byte” instead of 160 times in the main

round units.

δ δ-1 AT

Stage (i)

M
u

lt
ip

lic
at

iv
e

in
ve

rs
e

M
ix

 C
o

lu
m

n
s

R
o

u
n

d
 K

ey

δ

M
u

lt
ip

lic
at

iv
e

in
ve

rs
e

Stage (i+1)

δ-1 A

Stage (i)

M
u

lt
ip

lic
at

iv
e

in
ve

rs
e

δ
(R

o
u

n
d

 K
ey

 +
 C

)

δ

M
u

lt
ip

lic
at

iv
e

in
ve

rs
e

Stage (i+1)

ζ

M
ix

 C
o

lu
m

n
s

Sh
if

t R
o

w
s

Sh
if

t R
o

w
s

Old design

New design
I-BOX

Fig. 31 Rearrangements and merging steps

50

Table 1 demonstrates the number of gates and the critical path for the isomorphic mapping,

inverse isomorphic mapping and the affine transformation compared to the new

transformation.

Table 1: Number of gates and critical path for the mappings and the transformations

Operation ζ

Total Number of Gates 12 14 20 15

Critical Path 4 3 4 3

Another simplification is presented in the I-BOX by merging between the λ Multiplier and

the Square block. Equation (3.16) presents the merged squaring block with λ

Multiplication.

(3.16)

Fig. 32 shows the outputs for the merged Squaring block with λ multiplication input/output

for the values 0H-FH.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

x2λ 0 C 8 4 9 5 1 D 7 B F 3 E 2 6 A

Fig. 32 Merged squaring block with λ multiplication input/output

51

3.4 Key Expansion Unit

The key expansion unit is responsible of generating the 176 bytes of round keys required

during the encryption process. Fig. 33 shows the proposed key expansion unit. This unit

will be using 4 S-BOXES in processing the first column of each group of the round keys,

while the XOR gates will be used in processing all the columns by adding the direct

previous column with the equivalent column from the previous group. The 4 registers

following the multiplexers will be used to store the direct previous group of Round Keys to

be used in generation for the ongoing group, while the registers (R1-R11) will be storing

the all the 176 bytes of round keys.

To work in compatible with the I-BOX state array element calculation described in (3.15).

The original input key will be transformed to the isomorphic mapping so that all generated

round keys will also be in the isomorphic transformation as required in (3.15). The S-BOX

in the key expansion unit is implemented using multiplicative inverse block with the “ζ”

transformation block. The affine transformation constant δ(C) are implemented in the key

expansion unit, where it is added to the Round Keys before being stored in the registers.

52

S-BOX

δ

RCON

R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

δ
128

128

32323232

32

32323232

32

Key

R1

δ(C)

Register

δ(C) δ(C) δ(C)

Fig. 33 Key Expansion unit for the 128 bits AES

3.5 AES Encryptor

This AES encryptor consists of 10 encryption stages. The first 9 stages is implemented

using 4 I-BOXES in each stage, while the last encryption stage is implemented using

normal S-BOXES as the Mix Columns step is not required in the last encryption iteration.

Each S-BOX in the last stage is similar to the S-BOX in the key expansion unit, where it

will consist of the multiplicative inverse block with “ζ” transformation. As I-BOX uses

the “ζ” transformation, isomorphic mapping and inverse isomorphic mapping will be

required at the start and the end of the encryptor only. Shift Rows step is obtained directly

during the input/output operation between the I-BOX and S-BOX stages. Fig 34 shows the

AES encryptor using the I-BOX technique.

53

32

32

32

32

I-BOX

I-BOX

I-BOX

I-BOX

I-BOX

I-BOX

I-BOX

I-BOX

I-BOX

I-BOX

I-BOX

I-BOX

32

Shift operation

O
u

tp
u

t
D

at
a

In
p

u
t

D
at

a

Continue till the 9th stage of I-BOXES

RK(1)

RK(1)

RK(1)

RK(1)

RK(11)

32
RK(11)

RK(11)

32

RK(11)

32

δ

δ

δ

δ

δ-1

δ-1

δ-1

δ-1S-BOX

S-BOX

S-BOX

S-BOX

Fig. 34 AES encryptor using I-BOX technique

Appendix A shows a step by step example of AES Encryption using the I-BOX techniques.

3.6 Results and Comparison

The next two sub-sections present the sub-pipelining simulation results and the simulation

results in comparison with previous proposed designs.

3.6.1 Sub-pipelining Simulation Results

The I-BOX has a total critical path of 26 gates, where each of its sub-blocks has a different

critical path that plays a main role in determining the best number of used pipelining stages.

Table 2 shows the number of gates and the critical path for each block for the composite

field S-BOX [2].

To determine the number of the used sub-pipelining stages the AES encryptor was

54

simulated with 1-9 sub-pipelining stages and the best efficiency was achieved using 9

sub-pipelining stages, while the second best efficiency was achieved with 5 sub-pipelining

stages. Table 3 shows the simulation results for architectures with 1-9 sub-pipelining stages

using Xilinx XC2V6000-6.

Table 2: Gates and the critical path for the GF(2
8
) Multiplicative Inverse sub-blocks

Block Critical Path Total Number of Gates

GF(2
4
) Multiplier 5 30

GF(2
2
) Multiplier 3 7

(x
-1

) Inverse Block 5 25

Merged (x
2
) and (xλ) Block 2 4

ζ-Transformation 3 15

Table 3: Simulation result based on the number of sub-pipelining stages

Sub-Pipelining

Stages

Frequency

(Mhz)

Throughput

(Mpbs)

Slices Critical

Path

Efficiency

(Mbps/Area)

1 87.4 11187 6462 26 1.731

2 122.1 15629 6767 13 2.310

3 169.9 21747 7092 9 3.066

4 188.4 24115 7501 7 3.215

5 218.3 27942 7884 6 3.544

6 236.0 30208 8743 5 3.455

7 258.8 33126 9461 4 3.501

8 261.9 33523 9981 4 3.359

9 305.1 39053 10662 3 3.663

55

Fig. 35 plots the relation between the number of used sub-pipelining stages and the

efficiency for the proposed loop unrolled AES Encryptor.

Fig. 35 Pipelining stages and Efficiency relationship for the proposed AES encryptor

As can be seen from Table 3 and Fig 35, applying one pipelining stage achieves the lowest

efficiency. This kind of pipelining is shown in Fig 14 (b), where a pipelining stage is

applied between the AES stages without the usage of any sub-pipelining stages. In the case

of 2-5 pipelining stages the efficiency will increase as more pipelining stages are added.

Applying 6 pipelining stages leads to less efficiency comparing to what can be achieved

using 5 pipelining stages. In the case of 6 pipelining stages an internal pipelining must be

applied in some of the sub-blocks of the composite field arithmetic S-BOX. This requires

applying registers in each branch inside these sub-blocks, which result in higher usage of

56

registers comparing to case of 5 pipelining stages where the pipelining registers are needed

only at the main buses in the composite field S-BOX.

Using 8 pipelining stages also achieved less efficiency than using 7 pipelining stages. The

main reason for this is that in both cases the critical path of the system is 4 logic gates

which prevent a significant increase in the system throughput. Using 9 pipelining stages

achieves the best possible efficiency while applying more than 9 pipelining stages will

cause a reduction in the efficiency as the critical path cannot be reduced to less than 3 gates

until reaching a system with 13 pipelining stages. The key expansion unit has to be divided

into the same number of sub-pipelining stages to maintain the synchronization between the

main round units and the key expansion unit. Fig 30 shows the implementation of 5 and 9

sub-pipelining stages for the I-BOX where, “p” in this figure represents the number of

sub-pipelining stages in each case.

3.6.2 Comparison with Previous Designs

Many designs rely on BRAMs in the implementation of AES encryptors, therefore, [6]

suggested using the metric Mbps/Area for a better performance-area relationship instead of

the metric Mbps/Slice to take into account the use of BRAMs in the efficiency calculation.

The total area is obtained by adding the total slices and by considering each dual port

256*8 bit BRAM as equivalent to 128 slices [6].

Owing to the proposed merging techniques, this design was able to achieve higher

efficiencies than the previous loop unrolled designs. By using 5 sub-pipelining stages this

design achieves almost the same throughput obtained by 7 sub-pipelining stages in [2]. By

57

comparing this design with [12], a 37% improvement in efficiency was achieved based on

the simulation results of the same FPGA device. The encryptor in [3] used BRAMs to

implement the S-BOX. According to [3] these BRAMs are equivalent of 10240 extra

slices. Simulated on the same device, the proposed design was able to achieve higher

efficiency and throughput. Also, the proposed design was able to achieve higher efficiency

than the designs in [11] and [5]. Table 4 summarizes the obtained results and the

comparison with previous different implementations.

Table 4: Results and comparison of AES 128-bits encryptors

Design Device Freq.

(Mhz)

TP

(Mbps)

Slices B-

RAMs

Efficiency

(Mbps/Area)

Jarvinen et al.[5] XCV-1000e-8 129.2 16500 11719 0 1.408

Zhang et al.[2] XCV-1000e-8 168.4 21556 11022 0 1.956

This work (p=5) XCV1000e-8 168.3 21542 9104 0 2.366

Hodjat et al. [12] XC2VP20-7 169.1 21645 9446 0 2.291

This work (p=5) XC2VP20-7 220.7 28250 9028 0 3.129

Zambreno al. [11] XC2V4000 184.2 23572 16938 0 1.392

This work (p=5) XC2V4000-6 211.6 27087 8503 0 3.186

Granado. et al [3] XC2V6000-6 194.7 24920 3576 80 1.804

This work (p=5) XC2V6000-6 218.3 27942 7884 0 3.544

This work (p=9) XC2V6000-6 305.1 39053 10662 0 3.663

58

CHAPTER 4 EFFICIENT 32-BITS AES

IMPLEMENATION

This chapter presents a new hardware implementation for the Advanced Encryption

Standard (AES) algorithm using 32 bits data path [19]. This architecture is presented using

composite field arithmetic approach, with on-the-fly calculation for the round keys. To

achieve higher efficiency the main round unit is implemented with internal pipelining and

the S-BOX is shared between the main round unit and the key expansion unit. This design

is implemented using FPGA technology, where higher efficiency in terms of

(Throughput/Area) is achieved compared to previously proposed 32 bits AES designs.

4.1 Introduction

As mentioned in Chapter 2, AES Design can be categorized according to their data path

width. Some design targeted very high speeds using 128 bits loop unrolled pipelined

architectures as in [2] and [13]. Other architectures have targeted very low area

implementations as in [17], where 8-bits data path architecture was implemented.

Moreover, several other designs have suggested the implementation with 32-bits data path

architectures targeting a medium throughput range as in [14-16].

This medium throughput ranges are needed in many applications such as cell-phones and

portable devices, which cannot afford the excessive area needed in the 128 bits loop

unrolled systems and do not require their tens of gigabits throughputs.

Most of the previous 32-bits AES designs such as in [14-16], used the technique of

pre-calculation and storage of all round keys before starting the encryption/decryption

59

process. This method requires a large area to store all the round keys; also it is inefficient in

case of frequent key changing. In these architectures, each time the key changes a

pre-calculation for all round keys must be obtained before starting the

encryption/decryption process, which leads to a considerable reduction in the system

throughput.

This chapter presents a new efficient 32 bits AES design for the 128 bits key size. In this

design the main round unit is implemented with internal pipelining stages to increase the

throughput and the efficiency by parallel processing for the data and to allow efficient

sharing for the S-BOX between the round and the key expansion units.

Instead of pre-calculation and storage of all round keys as in [14-16], the round keys are fed

by the key expansion unit on-the-fly and that permits this unit to work in parallel with the

main round unit. This key expansion unit will store only the round keys for the ongoing

iteration and the last encryption/decryption iterations, where all the other keys will be

calculated in forward and reserve orders during the encryption and decryption processes.

Owing to the internal pipelining for the main round unit, the on-the-fly calculation for the

round keys, and the S-BOX sharing between the main round unit and the key expansion

unit. This proposed AES architecture achieves higher FPGA efficiency compared to

previous reported 32 bits designs in addition to cancelling the delay resulted by

pre-calculation of all round keys at each key change.

4.2 Main Round Unit Implementation.

As described in [1], each AES data block consists of 128 bits (16 bytes) of data. During the

encryption and decryption processes these 16 bytes will create a changeable (4*4) array

called the state array. The proposed main round unit shown in Fig. 36 processes the state

array column by column. This round unit is designed mainly with four “4*8 bits”

60

distributed RAMs, shared S-BOX/ Inverse S-BOX, shared Mix Columns/ Inverse Mix

Columns, and finally the Add Round Key XOR gates. In this unit, 3 stages of internal

pipelining are inserted inside the S-BOX/ Inverse S-BOX which allows parallel processing

of the state array columns. Also with this internal pipelining, the S-BOXES can be shared

with the key expansion unit with no extra delay where these S-BOXES will be accessed

during the storage of the new state array in the RAMs.

S/S-1

Mix Column / Inv Mix Column

S/S-1 S/S-1 S/S-1

From KE

New
Input

Round
Key

d4 d3 d2 d1 e4 e3 e2 e1

8

MUXMUXMUXMUX

MUXMUXMUXMUX

MUXMUXMUXMUX

MUXMUXMUXMUX

4 Bytes
RAM

Fig. 36 Round unit for the AES with 32 bits data path

In the next sub-sections the different steps of the proposed AES system are presented.

61

4.2.1 Shift Rows/Inverse Shift Rows

As mentioned previously, the Shift Rows step is obtained by shifting the second, third, and

fourth rows one, two and three cyclic shifts to the left, respectively, as shown in Fig. 37(a).

The Inverse Shift Rows is obtained by shifting the second, third and fourth rows three, two

and one cyclic shifts to the left, respectively, as shown in Fig. 37(b). In the main round unit,

the four “4*8 bits” dual port distributed RAMs are used to store the state array bytes, and

hence each distributed RAM will be storing one column of the state array. The Shift Rows

and Inverse Shift Rows steps are obtained directly by the read/write operation in these

distributed RAMs. While no shift is required in the RAM used to store the first row of the

state array, the second, third and fourth RAMs need to perform one, two, and three shifts

respectively. The second and fourth column of RAMs will be processing the second and

fourth state array rows for the encryption and decryption processes interchangeably.

S00 S01 S02 S03

S10 S11 S12 S13

S20 S21 S22 S23

S30 S31 S32 S33

S00 S01 S02 S03

S11 S12 S13 S10

S22 S23 S20 S21

S33 S30 S31 S32

S00 S01 S02 S03

S10 S11 S12 S13

S20 S21 S22 S23

S30 S31 S32 S33

S00 S01 S02 S03

S13 S10 S11 S12

S22 S23 S20 S21

S31 S32 S33 S30

Shift
Rows

Inverse
Shift
Rows

(a)

(b)

Fig. 37 Shift Rows and Inverse Shift Rows

4.2.2 Byte Substitution / Inverse Byte Substitution

As mentioned before, the main methods for implementing S-BOX are, either by

62

pre-storing the S-BOX elements, where the S-BOX elements are stored in a BRAM, or by

using composite field arithmetic, where the S-BOX elements are calculated using

combinational logic circuit.

Using BRAMs in the implementation requires storing the S-BOX and the Inverse S-BOX

separately in different BRAMs. This method cannot get benefit from the shared operations

between the S-BOX and its inverse and also it is not possible to apply pipelining using the

BRAMs. Hence the S-BOX used in this proposed design is implemented using the

composite field arithmetic method.

Applying the I-BOX, which was proposed in chapter 3 in looping architectures is not

beneficial. The I-BOX applies merging between the inverse isomorphic mapping, the

affine transformation and the isomorphic mapping for the next encryption stage in the loop

unrolled system. Looping architecture has one looping encryption/decryption stage in

comparison with series of stages in loop unrolled system where the merging is beneficial.

However, and as suggested by [8], the inverse isomorphic mapping block is merged with

the affine transformation for the S-BOX, while the isomorphic transformation is merged

with inverse affine transformation for the Inverse S-BOX. Fig. 39 shows the used shared

S-BOX/Inverse S-BOX. As it can be seen from this figure, the Multiplicative inverse block

is shared between the S-BOX and the Inverse S-BOX, also; the affine transformation and

its inverse are merged with the isomorphic mapping and its inverse before and after the

Multiplicative inverse block.

The S-BOX/Inverse S-BOX occupies the major part in the round unit‟s critical path,

therefore, and in order to allow parallel processing for the state array columns, 3 pipelining

stages were applied to this block. These pipelining stages allow also the key expansion unit

to access the S-BOXES with no extra delay at the time of storing the new state array back

into the RAMs.

63

x-1

δ

AT-1 & δ δ-1

δ-1& AT
8

x2 xλ

x-1 8

4

4

4

4

4

8

S-BOX

Inv. S-BOX

Pipelining Stage

Fig. 38 Merged and pipelined S-BOX/Inverse S-BOX

With this pipelining each encryption/decryption iteration requires 7 clock cycles to be

completed. This system has 32 bits data path architecture and it is not taking a new data at

each clock cycle as in 128 bits loop unrolled systems, however pipelining this system will

increase the throughput, especially, when the S-BOX is shared between the round and the

key expansion units. Assume that the latency required to process each state array column is

“n” so, ideally 3 pipelining stages will increase the clock frequency by 3 times while the

latency is reduced to “n/3”. A non-pipelined system with shared S-BOX will have a latency

of “5n” for one encryption/decryption iteration as “4n” latency is required to process the 4

columns of the state array while an additional “n” for the access of the S-BOX by the key

expansion unit. This system with 3 pipelined stages will have ideally a latency of “7*n/3”

to complete one encryption/decryption iteration, which is a substantial reduction compared

to the non-pipelined system. Fig. 39 shows the 7 clock cycles iteration for this system, in

this figure the first RAM which stores the first state array row and requires no shift is used

as an example. The symbols (C),(C‟) followed by a number, refers to the old and new state

array element at the first row and at that specified column, while the (R) symbols refers to

64

the round key byte which is accessing the S-BOX. The 7 clock cycles starts with the new

state array columns stored in the RAM, while the round key byte is under processing

waiting to be stored at the second pipelining stage. In the next clock cycles, the state array

bytes will go through these 3 pipelining stages to complete the encryption/decryption

iteration. In the last clock cycle the element which was at the forth column is under

processing and waiting to be stored back in the RAM at the next clock cycle, while the

other 3 elements processing is completed. The shift rows step for other RAMs will be done

by directly storing the new state array element in the proper location in the RAM.

C4 C3 C2 C1 R X X

RAM Pipelining Stages

C4 C3 C2 X C1 R X

C4 C3 X X C2 C1 R

C4 X X X C3 C2 C1

X X X C1’ C4 C3 C2

X X C2’ C1’ X C4 C3

X C3’ C2’ C1’ X X C4

C4 C3 C2 C1 R X X

1)

2)

3)

4)

5)

6)

7)

Next iteration 1)

Fig. 39 7 Clock cycles iteration

4.2.3 Mix Columns / Inverse Mix Columns

For compact implementation, resource sharing is applied between the Mix Column and the

Inverse Mix Column as will be explained in this section. Equation (4.1) represents the

formula of the Mix Column polynomials, while (4.2) represents the Inverse Mix Column

polynomials formula. The parameters “r” and “c” in (4.1) and (4.2) represent the state

array row and column, respectively.

65

 (4.1)

 (4.2)

To achieve resource-sharing, first the Mix column polynomial in (4.1) is written as (4.3)

where the constant {02} is taken as a common factor for the state array elements and

 and another single term for the state array element is added to

the equation. Inverse Mix Column polynomial in (4.2) is rewritten as in (4.4), where the

multiplication with the constants {0E}, {0B}, {0D} and {09} are obtained by the

multiplication with the constants {02}, {04} and {08}, and re-arranging the equation

according to (4.4).

e(c) =

(4.3)

 +

 {08}

(4.4)

Finally (4.4) is written in (4.5) using (4.3) to achieve resource sharing:

 +

 {08}

(4.5)

Equation (4.5) reveals that the Inverse Mix Column polynomial uses the Mix column

polynomial in part of its calculation to simplify the needed resources.

66

4.2.4 Add Round Key

In the main round unit each round key XOR gate is preceded by 3-to-1 MUX as shown in

Fig 31 The first input is used during the decryption process and the last encryption

iteration to select the output of the S-BOX/Inverse S-BOX block. The second input is used

to select the Mix Columns step output during the first 9 encryption iterations, while the

third input is used for to enter a new data. Before storing the data back to the RAMs 2-to-1

MUXs are used to either choose the output of the Round Key XOR gates in case of

encryption or the Inverse Mix Columns Step bytes in case of decryption.

4.3 Key Expansion Unit

The proposed key expansion unit is designed to work using on-the-fly technique, which

means generation of all Round Keys during the encryption/decryption processes. This unit

will store only the round keys for the present iteration and the last group of round keys.

This will make it capable of generating the round keys in forward and reverse orders to be

used in the encryption and decryption processes. Generation of Round Keys in forward

order will be used during the encryption process starting from the original key, while the

reverse order generation will be used during the decryption process starting from the last

group of round keys. Fig. 40 shows the proposed design for this unit.

67

New

Shared with
Round Unit

32

Storing last round keys

S-BOX

RCON

M
U

X

M
U

X

M
U

XM
U

X

To Round
Unit

4*32 bits
RAM

Fig. 40 Key Expansion unit for the 32 bits AES Design

As can be seen from Fig. 40, the key expansion unit has dual port RAM of size (4*32 bits).

This RAM will be used to store the Round keys for the ongoing iteration. As mentioned

previously, the S-BOXES are shared between the key expansion unit and the round unit.

These S-BOXES will be accessed by the key expansion unit before the main round unit, at

the time of storing the new state array bytes back in the RAMs. Another (4*32 bits) dual

port RAM will be responsible of storing the last 16 bytes of round keys is added to the

system. This RAM is beneficial in case of the occurrence of two sequential decryption

processes working on the same key or the occurrence of encryption process followed by a

decryption one. Decryption process use the reverse order generation of round keys starting

from the last group, where by storing them there will be no need to re-calculate all round

keys to get the last group back. As shown in Fig. 40, the RAM for the ongoing iteration of

round keys have 3 input sources: new key, the last group of the round keys, and the

previous round keys which will be used to generate next round keys.

68

4.4 Results and Comparison

The next two sub-sections present the internal pipelining simulation results and the

simulation results in comparison with previous proposed designs.

4.4.1 Internal Pipelining Simulation Results

This design was implemented using 3 internal pipelining stages as it achieves the optimum

(Mbps/Area) efficiency comparing to designs with other number of internal pipelining

stages. Designs with 1 or 2 pipelining stages allows an efficient S-BOX sharing between

the main round unit and the key expansion unit, however, designing with 3 pipelining

stages achieves the highest efficiency. Adding more than 3 internal pipelining stages is

considered as a waste of resources. In this 32 bits looping design, the system is not

receiving a new data at each clock cycle as in 128 bits loop unrolled systems. Since the

AES has 128 bits data block and the used bus width is 32 bits, adding more than 3

pipelining stages will result in creating clock cycles with no data under processing,

therefore, the systems latency increases without achieving higher throughputs.

Design without pipelining stages requires the same latency of a design with one pipelining

stage. Parallel processing between the main round unit and the key expansion unit will not

be applicable in case of not applying pipelining stages. Table 5 shows the simulation results

for system with 0 to 3 internal pipelining stages using Xilinx XC2VP2. Fig. 41 shows

the relation between the number of used internal pipelining stages and the efficiency for the

proposed loop 32-bits AES design.

69

Table 5: Simulation results based on number of internal pipelining stages

Pipelining

Stages

Frequency

(Mhz)

Throughput

(Mpbs)

Slices Latency

(Clock Cycles)

Efficiency

(Mbps/Area)

0 59.7 142 372 54 0.382

1 96.8 230 389 54 0.590

2 136.2 272 407 64 0.668

3 172.6 299 426 74 0.702

Fig. 41 Pipelining stages and Efficiency relationship for the proposed 32- bits design

70

4.4.2 Comparison with Previous Designs

The proposed AES design using on-the-fly key expansion unit, the S-BOXES sharing

between the key expansion and the main round units and also the internal pipelining, is able

to achieve higher FPGA efficiency comparing to the previous 32-bits data path AES

design.

Another important factor to be taken into the consideration is the delay required at every

key changing. This delay is needed for all the designs that use the pre-calculation and

storage for round keys prior to the encryption/ decryption processes. Table 6 shows the

simulation results of this design based on different FPGA Xilinx devices, while Table 7

shows a comparison with previous proposed designs.

Table 6: Simulation results of the proposed AES 32-bits design using different devices

Device XC2VP2 XC2V40-6 XC2S30

Frequency(Mhz) 172.6 150.6 69.1

Throughput(Mpbs) 299 260 120

Slices 426 427 413

Efficiency (Mbps/Area) 0.702 0.609 0.291

BRAMs 0 0 0

Key Expansion Delay Required No No No

71

Table 7: Comparison with other AES 32-bits designs

Design Gaj [14] Rouvroy [15] Chang [16] This Work

Device XC2S30 XC2V40-6 XC2VP2 XC2VP2

Frequency (Mhz) 60 71.5 306 172.6

Throughput(Mpbs) 166 358 876 299

Slices 222 146 156 426

BRAMs used 3 3 3 0

Bytes in BRAMs 1200 4676 3248 0

Equiv. BRAM Slices (est.) 600 2338 1624 0

Total Area in Slices (est.) 822 2484 1780 426

Efficiency (Mpbs/Area) 0.202 0.144 0.492 0.702

KE Delay Required Yes Yes Yes No

As can be seen from Table 6 and Table 7, the proposed architecture shows higher efficiency

than the designs in [14], [15] and [16]. Table 6 shows that this design achieved an

efficiency of 0.291 (Mbps/Area) using Xilinx Spartan II - XC2S30 , while design [14] as

can be seen from Table 5 achieved an efficiency of 0.202 (Mbps/Area) based on the same

device. This design also achieved an improvement of 433% in terms of (Mpbs/Area)

efficiency comparing to the design in [15], where both designs used Xilinx Vertix-2P

XC2V40-6 in the simulation. Moreover, higher efficiency is achieved comparing to design

[16] as can be seen from Table 7.

The area required to store all round keys in [14-16] in addition to the area needed for

storing the S-BOXES in [14] and the combination of S-BOX/Mix Column in [15] and [16],

has a main role in increasing the total area and reducing the efficiency. Moreover, our

72

proposed design avoids the need for any delay to pre-calculate the Round Keys since it is

done on-the-fly. The designs [14-16] require delay of 44 clock cycles at the system start-up

and at every key change. We have used distributed selected RAMs instead of BRAMs in

our design as we are using very small size RAMs. The area of these RAMs was already

counted for in the total number of slices needed for the proposed AES.

73

CHAPTER 5 CONCULSION AND

FUTURE WORK

This chapter presents the conclusion of this thesis and the proposed future work.

5.1 Conclusion

In this thesis, two new hardware architectures for the Advanced Encryption Standard (AES)

algorithm were presented. FPGA Xilinx technology was used to synthesis the designs and

provide post placement results using Xilinx ISE 10.1.

In the first architecture a new design for high speed loop unrolled sub-pipelined AES

encryptor was presented. This design took advantage from the repeated operations in each

stage of the encryptor to achieve resources merging and sharing. In this encryptor the mix

columns step is relocated and all the round keys are obtained in the isomorphic mapping.

By applying these modifications an efficient merging between the inverse isomorphic

mapping, the affine transformation multiplication, and the isomorphic mapping for the

next encryption stage is achieved. This merging allowed the implementation to have lower

area with shorter path length, which allowed higher FPGA (Throughput/Area) efficiency

comparing to previous loop unrolled designs.

In the second architecture a new design for 32-bits data path AES encryptor/decryptor was

presented. In this design internal pipelining for the composite field S-BOX was applied.

This pipelining allowed parallel processing for the state array columns in addition to

S-BOX sharing between the main round unit and the key expansion unit. Moreover, this

design used on the fly generation for all round keys which prevents using large area to store

74

all the keys in addition to cancelling the extra delay resulting in pre-calculation and storage

for all round keys. This architecture has achieved higher FPGA(Throughput/Area)

efficiency compared to previous 32-bit AES designs.

5.2 Future Work

The research works achieved in this thesis are behind our motivation to present the

following recommendations for future research investigations in the hardware design for

the AES algorithm and other possible cryptography algorithms.

1. The I-BOX technique which was presented could be adopted in design of the AES

with 192 and 256 bits key sizes.

2. Very high speed universal AES Processor that works on all key sizes could be

implemented by getting benefit from the I-BOX technique using a loop unrolled

system.

3. Future AES designs with 8-bits data path could be designed based on the S-BOX

sharing and the pipelining techniques presented in Chapter 4.

4. Other cryptography algorithms might benefit from the ideas of merging and

relocating techniques, especially in loop unrolled systems.

75

BIBLIOGRAPHY

[1] Advanced Encryption Standard (AES), FIPS PUB 197, Nov. 26, 2001, Federal

Information Processing Standards publication 197. Federal Information Processing

Standards Publication 197.

[2] X. Zhang and K. K Parhi, “High-speed VLSI Architecture for the AES Algorithm”,

IEEE Transactions on Very Large Scale Integration (VLSI) System., vol.12, no. 9, pp.

957–967, Sep. 2004.

[3] Jose M. Granado-Criado , Miguel A.Vega-Rodrıguez, Juan M. Sanchez-Perez and Juan

A. G´omez-Pulido, “A new methodology to implement the AES algorithm using partial

and dynamic reconfiguration”, Integration, the VLSI Journal 43 (2010) 72-80.

[4] Vincent Rijmen, “Efficient Implementation of the Rijndael S-box”. Katholieke

Universiteit Leuven, Dept. ESAT. Belgium”.

[5] Jarvinen, K., Tommiska, M., and Skytta, “A Fully Pipelined Memoryless 17.8 Gbps

AES-128 Encryptor”. Proc. ACM/SIGDA 11th ACM Int. Symposium on

Field-Programmable Gate Arrays, FPGA 2003, Monterey, CA, USA, February 2003, pp.

207–215.

[6] Kimmo Järvinen, Matti Tommiska and Jorma Skyttä, “Comparative Survey of High

Performance Cryptographic Algorithm Implementations on FPGAs”, IEE Proceedings -

Information Security, vol. 152, no. 1, Oct. 2005, pp. 3-12.

76

[7] C. Paar, “Efficient VLSI architecture for bit-parallel computations in Galois field,”

Ph.D. dissertation, Institute for Experimental Mathematics, University of Essen, Essen,

Germany, 1994.

[8] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “A compact Rijndael hardware

architecture with S-Box optimization,” in Proc. ASIACRYPT 2001, Gold Coast, Australia,

Dec. 2000, pp. 239–254.

[9] A. Rudra, P.K. Dubey, C.S. Jutla, V. Kumar, J.R. Rao, and P. Rohatgi. “Efficient

Rijndael Encryption Implementation with Composite Field Arithmetic”, Workshop on

Cryptographic Hardware and Embedded Systems (CHES2001), pages 175–188, May

2001.

[10] Edwin NC Mui, “Practical Implementation of Rijndael S-Box Using Combinational

Logic”, Texco Enterprise Ptd. Ltd, [Online]. Available: http://www.xess.com/projects/

Rijndael_SBox.pdf.

[11] Joseph Zambreno, David Nguyen, and Alok Choudhary, “Exploring Area/Delay

Tradeoffs in an AES FPGA Implementation”, Department of Electrical and Computer

Engineering, Northwestern University.

[12] Hodjat A. and Verbauwhede. I, “A 21.54 Gbits/s fully pipelined AES processor on

FPGA”. Proc.12
th

 Annual IEEE Symposium. Field Programmable Custom Computing

Machines, FCCM‟04, Napa, CA, USA, April 2004, pp.308–309.

[13] I. Hammad, K. El-Sankary, and E. El-Masry, “High Speed AES Encryptor with

Efficient Merging Techniques,” IEEE Embedded Systems letters, vol. 2, no. 3, pp. 67-71,

Sept. 2010.

77

[14] K. Gaj and P. Chodowiec. Very Compact FPGA Implementation of the AES

Algorithm. In the proceedings of CHES 2003, Lecture Notes in Computer Science, vol

2779, pp. 319-333, Springer-Verlag.

[15] G. Rouvroy, F.-X. Standaert, J.-J. Quisquater and J.-D. Legat, “Compact and efficient

encryption/decryption module for FPGA implementation of the AES Rijndael very well

suited for small embedded applications”, Information Technology Coding and Computing

2004.

[16] Chi-Jeng Chang , Chi-Wu Huang , Kuo-Huang Chang , Yi-Cheng Chen and

Chung-Cheng Hsieh, “High Throughput 32-bit AES Implemenation in FPGA” , Circuits

and Systems, 2008. APCCAS 2008. IEEE Asia Pacific Conference.

[17] Tim Good and Mohammed Benaissa, “Very Small FPGA Application-Specific

Instruction Processor for AES”, IEEE Transactions on Circuit and Systems-I, Vol. 53, No.

7, July 2006.

[18] Daemen, Joan and Rijmen Vincent, “The Design of Rijndael” – The Advanced

Encryption Standard”, 2002, Springer.

[19] Hammad, K. El-Sankary, and E. El-Masry, “ 32-Bits AES Implementation with

Internal Pipelining and S-BOX Sharing”, EURASIP Journal on Embedded Systems.

Submitted.

[20] Data Encryption Standard (DES), FIPS PUB (46-3), Oct. 25, 1999, Federal

Information Processing Standard 46-3.

78

[21] Dirk Rijmenants, Hand Ciphers, Cipher Machines and Cryptography, [Online].

Available: http://users.telenet.be/d.rijmenants/en/handciphers.htm.

[22] Biham, Eli and Adi Shamir, Differential Cryptanalysis of the Data Encryption

Standard, Springer Verlag, 1993.

[23] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein. Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001.

Pages 859–861 of section 31.2: Greatest common divisor.

[24] Seagate – Technology Paper, “128 Bit Versus 256 Bit AES Encryption”, Practical

business reasons why 128 bit solution provide comprehensive security for every need.

www.seagate.com/staticfiles/docs/pdf/whitepaper/tp596_128_bit_versus_256_bit.pdf

[25] Saggese, G.P., Mazzeo, A., Mazzocca, N., and Strollo, A.G.M: „An FPGA-based

performance analysis of the unrolling, tiling, and pipelining of the AES algorithm‟. Proc.

13th Int. Conf. Field Programmable Logic and Applications, FPL 2003, Lisbon, Portugal,

September 2003, pp. 292–302.

[26] X. Zhang and K. K. Parhi, "On the Optimum Constructions of Composite Field for the

AES Algorithm," TCAS-II, vol. 53(10), pp. 1153-1157, Oct. 2006.

http://en.wikipedia.org/wiki/Thomas_H._Cormen
http://en.wikipedia.org/wiki/Charles_E._Leiserson
http://en.wikipedia.org/wiki/Ronald_L._Rivest
http://en.wikipedia.org/wiki/Clifford_Stein
http://en.wikipedia.org/wiki/Clifford_Stein
http://en.wikipedia.org/wiki/Introduction_to_Algorithms

79

APPENDIX A: FINITE FIELD

ARITHMETIC EXAMPLES

Example 1: Addition in Finite Field

Adding the polynomials (x
5
+x

3
+x

2
+x) + (x

6
+x

5
+x+1)

(x
5
+x

3
+x

2
+x) = {101110}

(x
6
+x

5
+x+1) = {1100011}

(x
5
+x

3
+x

2
+x) + (x

6
+x

5
+x+1) = x

6
+2x

5
+x

3
+x

2
+2x+1.

And since we use XOR operation instead of addition any operands

with even coefficients will be eliminated.

Final Answer: x
6
+x

3
+x

2
+1 = {1001101}.

As can be seen from example 1, the addition operation in finite field is considered as XOR

operation, where any operand with even coefficient will be eliminated.

The next example shows the multiplication operation in the GF(2
8
) and using the reduction

polynomial defined in (2.7).

Example 2: Multiplication in Finite Field

Multiplication of the Polynomials (x
3
+x

2
+1).(x

5
+x

2
+x)

Modulus (x
8
+ x

4
+ x

3
+ x+1)

(x
3
+x

2
+1) = {1101}

80

(x
5
+x

2
+x) = {100110}

(x
8
+x

4
+x

3
+x+1) = {100011011}

(x
3
+x

2
+1).(x

5
+x

2
+x) = x

8
+x

5
+x

4

 + x

7
+x

4
+x

3

 + x
5
+x

2
+x

1

 = x
8
+x

7
+x

3
+x

2
+x

1
 = {110001110}

And by using the modulus (x
8
+x

4
+x

3
+x+1)

(x
8
+x

7
+x

3
+x

2
+x

1
)

Mod (x

8
+x

4
+x

3
+x+1)

=(x
8
+x

7
+ x

3
 +x

2
+ x

1
) + (x

8
+x

4
+x

3
+x+1) = x

7
+x

4
+x

2
+1 ={10010101}

As can be seen from example 2, after the multiplication is obtained. The reduction

polynomial will be applied to get a value that exists in the GF(2
8
).

The next example shows how modulo operation is obtained on polynomials with high

degrees.

Example 3: Using Modulo with Large Numbers.

Finding (x
14
+x

13
+x) Mod (x

8
+x

4
+x

3
+x+1)

(x
14
+x

13
+x) = {110000000000010}

(x
8
+x

4
+x

3
+x+1) = {100011011}

First: Shifting the modulus to the same degree of the input

(x
8
+x

4
+x

3
+x+1) Shifting (x

14
+x

10
+x

9
+x

7
+x

6
)= {100011011000000}

Second: Obtain XOR Operation between both numbers.

81

{110000000000010} XOR {100011011000000} = {10011011000010} =

x
13
+ x

10
+x

9
+x

7
+x

6
+x

Repeat the operation until the output is in 7
th
 degree at max.

(x
8
+x

4
+x

3
+x+1) Shifting (x

13
+x

9
+x

8
+x

6
+x

5
) = {10001101100000}

{10011011000010} XOR {10001101100000} = {10110100010} =

x
10
+x

8
+x

7
+x

5
+x

Repeat again.

(x
8
+x

4
+x

3
+x+1) Shifting (x

10
+x

6
+x

5
+x

3
+x

2
) = {10001101100}

{10110100010} XOR{10001101100} = 111001110 = x
8
+x

7
+x

6
+x

3
+x

2
+x

And Finally,

{111001110} XOR {100011011} = {11010101} = x
7
+x

6
+x

4
+x

2
+1

And since the value x
7
+x

6
+x

4
+x

2
+1 exists in GF(2

8
), it is the final

answer.

Example 3, showed how the reduction polynomial is used repeatedly until the answer

exists in the GF(2
8
).

82

APPENDIX B: ENCRYPTION

EXAMPLE USING I-BOX

This Appendix shows an encryption example using the I-BOX technique with128 bits key

size. According to [1] the test vector shown in (A.1) with the key in (A.2) will result in the

enciphered output shown in (A.3).

 (A.1)

 (A.2)

 (A.3)

The new I-BOX technique will result in the same output (A.3) using the data (A.1)

and the key (A.2). By using the I-BOX technique all Round keys will be mapped to

the isomorphic mapping with the constant δ(C) which equals A5H added to them as

described in (A.4):

The input key shown in (A.2) will be entered column by column as shown below:

Original 128-bits key

2B 28 AB 09

7E AE F7 CF

15 D2 15 4F

16 A6 88 3C

(A.4)

83

By applying the key expansion operation explained in Chapter 2, and according to

(A.4), the 176 bytes of round keys, which will be generated as 11 group with 16

bytes each is shown below:

Initial Round Keys

9A C4 66 75

EA 1B 63 E1

3B AE 3B 1D

65 6F 88 FE

2
nd

 Group of Round Keys

E9 2D 4B 3E

CF D4 B7 56

B3 1D 26 3B

C1 AE 26 D8

3
rd

 Group of Round Keys

BB 33 DD 46

4D 3C 2E DD

62 DA 59 C7

BB B0 33 4E

4
th

 Group of Round Keys

5A CC B4 57

59 C0 4B 33

CC B3 4F 2D

11 04 92 79

5
th

 Group of Round Keys

F4 9D 8C 7E

92 F7 19 8F

94 82 68 E0

EF 4E 79 A5

6
th

 Group of Round Keys

28 10 39 E2

55 07 BB 91

31 16 DB 9E

90 7B A7 A7

7
th

 Group of Round Keys

57 E2 7E 39

2D 8F 91 A5

B7 04 7A 41

33 ED EF ED

8
th

 Group of Round Keys

B9 FE 25 B9

D4 FE CA CA

C6 67 B0 5C

F2 BA F0 BB

9
th

 Group of Round Keys

89 D2 52 4E

0B 50 3F 50

46 84 99 60

14 0B 5E 43

84

10
th

 Group of Round Keys

E1 96 61 8A

3A CF 55 A0

7D 5C 60 A5

BA 14 EF 09

11
th

 Group of Round Keys

54 67 A3 8C

9F F5 05 00

91 68 AD AD

9D 2C 66 CA

The AES encryptor using the I-BOXES as shown in Fig. 30 starts by mapping the input

data using the isomorphic, then adding the initial Round Key. After adding the initial

Round Key the I-BOXES are used for 9 stages. Each I-BOX will process a column of the

state matrix, therefore each stage will consist of 4 I-BOXES. Finally, at the last encryption

stage the bytes are substituted using the S-BOX and then they are added to the last group of

round keys. Shift Rows step is obtained during the input/output operations between the

stages.

It is important to notice that the multiplicative inverse calculations shown in the example

below are obtained without the isomorphic mapping and its inverse as done in Fig. 21. Also,

the S-BOX substitution used in the example exclude the isomorphic mapping from the

calculation as the ζ-Transform is applied. This substitution differs from the S-BOX

Substitution values shown in Fig. 7 which uses the isomorphic mapping in the calculation.

Original Data Input

32 88 31 E0

43 5A 31 37

F6 30 98 07

A8 8D A2 34

85

At Encryption starting:

After isomorphic mapping

A9 88 F7 07

15 26 F7 D4

62 F6 CE 22

38 F5 13 8A

After adding initial Round Key

33 4C 91 72

FF 3D 94 35

59 58 F5 3F

5D 9A 9B 74

First I-BOXES Stage:

First I-BOXES Input

33 4C 91 72

3D 94 35 FF

F5 3F 59 58

74 5D 9A 9B

After Multiplicative Inverse

A0 6B EC 1C

8F 7B F8 20

5F 6E 2D D2

73 DF 3B CE

After Mix Columns

B8 6B CA 11

A5 A1 09 7E

D0 7F C3 40

CE 14 02 0F

After ζ- Transform

D9 A2 9A 61

7D 38 90 86

58 96 0A 36

DF 34 33 E6

After Add Round Key

30 8F D1 5F

B2 EC 27 D0

EB 8B 2C 0D

1E 9A 15 3E

86

Second I-BOXES Stage:

Second I-BOXES Input

30 8F D1 5F

EC 27 D0 B2

2C 0D EB 8B

3E 1E 9A 15

After Multiplicative Inverse

AA 3D A7 F5

91 41 BB 34

D3 0E A3 83

87 82 3B D9

After Mix Columns

FA B9 91 B9

6F 6C 08 52

C1 3C C1 BE

3B 19 DC CE

After ζ- Transform

DC C9 7E C9

E7 C4 80 74

39 83 39 AF

E5 E1 9D DF

After Add Round Key

67 FA A3 8F

AA F8 AE A9

5B 59 60 68

5E 51 AE 91

Third I-BOXES Stage:

Third I-BOXES Inputs

67 FA A3 8F

F8 AE A9 AA

60 68 5B 59

91 5E 51 AE

After Multiplicative Inverse

19 5A EB 3D

35 1B E5 30

66 3C 64 2D

EC 62 54 1B

After Mix Columns

33 43 0E 4A

FC 89 55 E6

4F 00 64 65

26 D5 01 F2

After ζ- Transform

65 15 F6 85

AA 8F 12 68

D0 00 44 54

41 0D 10 5C

After Add Round Key

3F D9 42 D2

F3 4F 59 5B

1C B3 0B 79

50 09 82 25

87

Fourth I-BOXES Stage:

Fourth I-BOXES Inputs

3F D9 42 D2

4F 59 5B F3

0B 79 1C B3

25 50 09 82

After Multiplicative Inverse

6E 15 CD 58

4B 2D 64 A8

07 32 72 F9

45 11 06 1E

After Mix Columns

4C A6 97 F9

66 13 55 18

F1 21 4D EB

BC 8F 52 1D

After ζ- Transform

F3 5E 08 FF

77 52 12 F1

7F 27 E3 BD

9C F9 74 A4

After Add Round Key

07 C3 84 81

E5 A5 0B 7E

EB A5 8B 5D

73 B7 0D 01

Fifth I-BOXES Stage:

Fifth I-BOXES Input

07 C3 84 81

A5 0B 7E E5

8B 5D EB A5

01 73 B7 0D

After Multiplicative Inverse

0B 39 D6 E3

AF 07 31 A9

83 DF A3 AF

01 74 2A 0E

After Mix Columns

E6 49 BD 0F

05 2D E7 0F

BC 05 D5 55

79 F4 E1 BE

After ζ- Transform

68 A6 8C E6

55 E2 78 E6

9C 55 0D 12

E0 2A 0E AF

After Add Round Key

40 B6 B5 04

00 E5 C3 77

AD 43 D6 8C

70 51 A9 08

88

Sixth I-BOXES Stage:

Sixth I-BOXES Input

40 B6 B5 04

E5 C3 77 00

D6 8C AD 43

08 70 51 A9

After Multiplicative Inverse

EE C4 4D 0F

A9 39 C0 00

84 DB DC 71

0A CC 54 E5

After Mix Columns

6C D4 D5 10

B3 0C 77 A3

47 82 9E 1F

51 B0 39 37

After ζ- Transform

C4 1D 0D 71

7A C5 16 0B

50 2C 98 97

57 59 D6 20

After Add Round Key

93 FF 73 48

57 4A 87 AE

E7 28 E2 D6

64 B4 39 CD

Seventh I-BOXES Stage:

Seventh I-BOXES Inputs

93 FF 73 48

4A 87 AE 57

E2 D6 E7 28

CD 64 B4 39

After Multiplicative Inverse

38 20 74 6D

16 3E 1B 7A

98 84 13 BC

42 5B 6A C3

After Mix Columns

88 9B 20 B6

E8 4E 9B D7

1B E8 AB 37

8F FC 06 3E

After ζ- Transform

9F CD 37 2F

9E C0 CD 3E

D2 9E 8B 20

F9 AA 76 B0

After Add Round Key

26 33 12 96

4A 3E 07 F4

14 F9 33 7C

0B 10 86 08

89

Eighth I-BOXES Stage:

Eighth I-BOXES Inputs

26 33 12 96

3E 07 F4 4A

33 7C 14 F9

08 0B 10 86

After Multiplicative Inverse

EF A0 E9 F1

87 0B 63 16

A0 9D D4 B3

0A 07 55 6F

After Mix Columns

7D DE 6D CF

C8 07 95 B9

72 82 51 B2

05 6A A2 FF

After ζ- Transform

A5 AE D4 CF

A9 66 3B C9

43 2C 57 6A

55 B2 1B 89

After Add Round Key

2C 7C 86 81

A2 36 04 99

05 A8 CE 0A

41 B9 45 CA

Ninth I-BOXES Stage:

Ninth I-BOXES Inputs

2C 7C 86 81

36 04 99 A2

CE 0A 05 A8

CA 41 B9 45

After Multiplicative Inverse

D3 9D 6F E3

F7 0F 80 FC

9B 08 0C F3

8D 27 37 25

After Mix Columns

FB 98 28 0F

10 A0 96 B1

45 AE E7 5E

9C 2B 8D 29

After ζ- Transform

CC EE B7 E6

71 28 18 49

63 DE 78 B1

AB 94 CA A7

After Add Round Key

2D 78 D6 6C

4B E7 4D E9

1E 82 18 14

11 80 25 AE

90

Last S-BOXES Stage:

Last S-BOXES inputs

2D 78 D6 6C

E7 4D E9 4B

18 14 1E 82

AE 11 80 25

After Multiplicative Inverse

59 A1 84 BF

13 B5 12 4F

61 D4 82 1E

1B 50 99 45

After ζ- Transform

D7 38 5A BF

52 0C 42 D0

11 1D 2C 87

D2 47 FE 63

Last Encryption Steps:

After Adding Last Round Keys

83 5F F9 33

CD F9 47 D0

80 75 81 2A

4F 6B 98 A9

After inverse isomorphic mapping

39 02 DC 19

25 DC 11 6A

84 09 85 0B

1D FB 97 32

The last block of data after the inverse isomorphic mapping represents the output

enciphered data. As can be seen below this data same to enciphered output (A.3) according

to [1].

Enciphered Output Data

39 02 DC 19

25 DC 11 6A

84 09 85 0B

1D FB 97 32

