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Abstract

Departure from HWE (HWD) in a sample may indicate genotyping error, pop-
ulation stratification, selection bias, or some combination thereof. Therefore, loci
exhibiting HWD are often excluded from association studies. However, it has been
shown that in case-control studies HWD can result from a genetic effect at the locus,
and HWD at a marker locus can be interpreted as evidence for association with a
disease.

In an unpublished study in Toronto it was observed that cases were in Hardy-
Weinberg equilibrium at a locus whereas their family members were in HWD. It has
been shown that the HWD coefficient for a multiplicative genetic model is zero. This
led to an investigation of relatives of affected individuals to see whether the multiplica-
tive model could be revealed by a nonzero HWD coefficient in relatives. Genotypic
frequencies and HWD coefficients were derived for affected individuals and their af-
fected and unaffected relatives. A substantial HWD was found in both individuals in
dominant and recessive genetic models but HWD is only slightly nonzero for additive
and multiplicative models. Methods were also developed to test for association us-
ing data from affected individuals and their relatives. Parameter estimates for these
models can be obtained using maximum likelihood methods, and estimates provide
valuable information regarding the mode of inheritance of the disease. The methods
were applied to 112 discordant sib pairs with Alzheimer’s disease typed for the ApoE
polymorphism and a significant association was observed between the ¢4, ApoE allele
and Alzheimer’s disease.

Case-control studies may indicate spurious association with a marker locus in a
stratified population. Methods were developed to determine if the HWD observed in
a data set from a stratified population can be explained by both genetic association
and stratification. Parameter estimates for these models can be obtained using max-
imum likelihood methods, and used to deduce the mode of inheritance of the disease.
Applying the model to the R990G SNP of the CASR gene, it was found that the
HWD was adequately explained by a recessive genetic association and a stratification
proportion of 10%, consistent with the population of Toronto.

XViil
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Chapter 1

Introduction

1.1 Introduction

Genetic association studies involve determining whether a genetic variant is as-
sociated with a disease. If the allele is associated with disease, it will occur more
often than expected by chance in a group of affected individuals. The most common
study design for genetic association with a disease is case-control, where allelic or
genotypic frequencies at a locus are compared between the case and control groups.
The goodness of fit statistic can be used, which has an approximate x? distribution
in large samples. The case-control design suffers from several shortcomings. If the
case and control groups are not well matched for age, ethnicity, sex, the test could
lead to false positive association.

To overcome these problems, Spielman et al. (1993) proposed a transmission dis-
equilibrium test (TDT) which is a family based test to detect genetic linkage only in
the presence of genetic association. The test uses the genetic information on a case-
parent trio, an affected child and their parents, and it measures the over-transmission
of an allele from heterozygous parents to an affected offspring. Some modifications

and extension of method like the sib-TDT (Ewens and Spielman, 1995; Spielman and



2

Ewens, 1998; Horvath and Laird, 1998), and the TDT1 (Fengzhu et al., 1999) among
others have been proposed to overcome the limitations of matching and population
stratification. However it can be difficult to obtain genotypic information on parents
or family members, especially for late onset disease. Association studies are more
powerful than linkage studies (Risch and Merikangas, 1996).

A genome-wide association (GWA) study involves examination of markers across
a complete set of DNA to identify genetic association with a particular disease. In
recent years the cost of genotyping has been reduced to the extent that it has become
possible to genotype hundreds of thousands of SNPs in cases and controls. GWAs
search the entire genome for association rather than focussing on a small number of
candidate genes. However, GWAs involve performing a large number of statistical
tests, which leads to the requirement of adjusting the level of significance at each
locus. One of the biggest limitations of GWAs is that the results of association are
often not replicated in other populations (Hirschhorn et al., 2002; Morgan et al.,
2007).

In this thesis a heterogeneous disease model for genetic association is explored that
can be used to model observed genotypic counts. The heterogeneous model involves
allele frequency and penetrances (probability of disease for a given genotype) and is
suitable for complex diseases because it allows phenocopies and non fully penetrant
diseases. Models are constructed and applied where both case and control groups
are sampled from a population made up of two strata. A model is also developed

for family based studies, for use with genotypic data on an affected individual and a



relative who is either affected or unaffected.

1.2 Hardy-Weinberg Equilibrium

Hardy-Weinberg equilibrium (HWE) states that in the absence of mutation, mi-
gration and selection in a random mating population, both allelic and genotypic
frequencies remain constant from one generation to the next and the genotypic fre-
quencies have the same distribution as the frequencies obtained by the random sam-
pling of alleles. For a biallelic locus, with wild and variant type alleles A and a, there
are three possible genotypes, AA, Aa and aa, labelled as 0, 1 and 2. Under HWE, the

genotypic frequencies, Py, P; and P, and allelic frequencies, p4 and p,, are related

as
Ry = pi,
Pr = 2papa,
Py = pZ-

HWE is based on the assumptions of large population, no migration, mutation or
selection and random mating. If any of the conditions fail to be satisfied, a deviation
from HWE, denoted by HWD, may occur. HWD is measured by the Hardy-Weinberg
disequilibrium coefficient, which is defined as the difference in the observed and ex-
pected genotypic frequency assuming HWE. For a biallelic locus, the disequilibrium
coefficient is (Weir, 1996)

D = P,, — P2,
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If there is a deficiency of homozygotes and an excess of heterozygotes D < 0, and
if there is an excess of homozygotes and a deficiency of heterozygotes D > 0. The

bounds on the coefficient are

max(—p%, —p2) < D < papa,

taking into account possible genotypic probabilities (Weir, 1996).

Loci exhibiting HWD are often excluded from association studies, because HWD
may be variously interpreted to indicate genotyping error, population stratification,
selection bias, or some combination thereof. For case-control studies, Wittke-Thompson
et al. (2005) investigated the Hardy-Weinberg coefficient at a biallelic locus A, under
a variety of genetic models. In a large number of data sets they found that HWD can
be explained by genetic association at the locus. Nielsen et al. (1998) and Lee (2003)
also showed that HWD at a marker locus in affected patients can be interpreted as

evidence for association with a disease.

1.3 A Heterogeneous Model For Case-Control Studies

Denote the disease status, d = D for patients and d = C' for control and denote
the sample sizes np for cases and ng controls. For a biallelic locus the data can be
summarized as in Table 1.1

In a general disease model, the penetrance, defined as the conditional probabil-
ity that an individual with genotype AA at the disease-susceptibility locus has the

disease, is ¢g = P(D|0). Similarly for the genotypes Aa and aa the penetrances are



Table 1.1: Data for a case-control study at a biallelic marker

Genotype 0 1 2 | Total

Cases nop | Mip | mep | np

Controls || ngc | nic | nec | nc

Total o nq o n

¢1 = P(D|1) and ¢o = P(D|2) respectively. The baseline penetrance of disease in
homozygotes without a risk allele at the locus is a = ¢g, the heterozygote relative
risk is 8 = ¢1/¢o and the homozygote relative risk is 7 = ¢2/¢o. The prevalence of
disease, Kp is

KPZP0¢0+P1¢1+P2¢%

where P; is the genotypic probability of genotype i, ¢ = 0,1,2. Assuming random
mating and HWE in the population, the genotypic frequencies are Py, = (1 — ¢)?,

P, = 2pq and P, = ¢*. The disease prevalence, Kp, can be written as

Kp=(1-9q)¢0+2q(1 — q)¢1 + ¢°¢o.

The genotypic probabilities conditional on the affection status d can be written
in terms of penetrance for genotype, genotypic probabilities and the prevalence of

disease (Wittke-Thompson et al., 2005) as

P(d|i) Py

Pa— 5,
© P

and those probabilities are summarized in Table 1.2, assuming HWE.



Table 1.2: Genotypic probabilities for a general disease model in case-control studies

Genotype 0 1 2
bo(1—q)? 2419(1—q) $14°
Cases e B P T
Controls (l—fE)I(gp—q)Q 2(1—{111};1&1—4) (11—:1}232

The parameters of the model are the overall prevalence of the disease in the popu-
lation, Kp, the genotypic penetrances, ¢g, ¢1, and ¢, and the minor allele frequency;,
g. The overall prevalence Kp is assumed to be known, so one of the penetrances can
be eliminated from the set of parameters requiring estimation. For example, ¢y can

be expressed as

KP_2Q( )¢1 - q ¢2
(I—q)°

Po = (1.1)

As a result, the model is a function of only three parameters, two penetrances, ¢1, ¢o,
and the minor allele frequency, q.

A general lack of fit test was proposed to assess whether the observed genotypic
counts were in agreement with the model. Equivalently this test determines whether
the HWD at the susceptibility locus can be explained by association with the disease.

The test statistic is

c 2
Z Z nzd - nszd
)

d=D 1= ndpld

where the ]5id are the maximum likelihood estimates of P;; under HWE.
There are four degrees of freedom and three parameters to be estimated, so X2 is

asymptotically distributed as x? with one degree of freedom. A small p-value provides
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evidence that the disease model is a poor fit to the data and the observed HWD is
due to another source, such as genotyping error, chance, population stratification,
inbreeding or selection.
The genotypic counts for each of the random samples from the affected and unaf-
fected sub-populations have multinomial distributions and give the likelihood function
2
Le.®) = [ TI#e
d={D,C} i=0
where ® is a vector containing the penetrances, Py is the genotypic frequency for
genotype ¢ and disease status d = C' for control and d = D for cases, and n;4 is the
corresponding disease count.
The parameter estimates are obtained by maximizing the multinomial likelihood

function L or equivalently by maximizing the natural logarithm of the likelihood

In(L),

In(L)= > ) nuln(Py).

d={D,C} i=0

The likelihood function does not have an explicit analytic solution for the MLEs of the
penetrances and allele frequency so they are obtained numerically. Wittke-Thompson
et al. (2005) obtained estimates by minimizing the goodness of fit statistic x? , which
is asymptotically equivalent. The standard errors for the estimates can be obtained
by evaluating the inverse of information matrix at the maximum likelihood estimates.
The information matrix is the negative expectation of the Hessian matrix, the matrix
of second partial derivatives. Approximate standard errors of the parameter estimates

can also be obtained using the non-parametric bootstrap. In this approach, a large
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number of random samples are selected with replacement from the cases and controls.
The model parameters are estimated for each dataset and their standard deviations
are calculated.

A likelihood ratio test can be used to assess the difference in fit between two
models - a general model and one of the specific disease models (dominant, recessive
additive or multiplicative). Testing of the reduced models gives insight into the mode

of genetic inheritance of a particular disease. The likelihood ratio test statistic is

A= Q(ZTLLl — l?’LLQ),

where L, is the likelihood for a complex model and Lo corresponds to that of the
simplified or reduced model and the likelihoods are evaluated at the maximum like-
lihood estimates. The statistic A has an approximate x? distribution with degrees of
freedom equal to the difference between the number of parameters in the two models.
A small p-value of the test gives evidence that the more complex model explains the

data better than the reduced model.

1.4 Outline Of Thesis

This chapter introduced some of the topics that are central to the thesis. The
genotypic frequencies and HWD coefficients for an affected individual and its affected
or unaffected relative (sib, parent or grandparent) are derived in Chapter 2. The HWD
coefficients under specific genetic models are also discussed. Testing for association

between the disease and locus for genotypic data from relative pairs is discussed in
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Chapter 3. The model is extended to a stratified population in Chapter 4, where the
genotypic frequencies and HWD coefficients are derived. The last chapter, Chapter 5
gives an overall summary of the findings and some future research avenues including

the modelling of penetrance as a function of a continuous variable such as age.



Chapter 2

Hardy-Weinberg Disequilibrium Due To Association In

Affected Individuals And Their Relatives

2.1 Introduction

In an unpublished study in Toronto it was observed that cases were in Hardy-
Weinberg equilibrium (HWE) at a locus whereas their family members were in Hardy-
Weinberg disequilibrium (HWD). For case-control studies, HWD can result from a
genetic effect at the locus (Wittke-Thompson et al., 2005). Nielsen et al. (1998) and
Lee (2003) also showed that HWD at a marker locus can be interpreted as evidence
for association with a disease. Wittke-Thompson et al. (2005) also showed that the

HWD coefficient in cases is zero for a multiplicative genetic model.

The aim of this chapter is to investigate the HWD coefficient in family members
(siblings, parents and grand-parents) of an affected individual under a general genetic
model to determine whether HWD in relatives can provide extra information about
disease association. The family member could be affected or not affected with the
disease under study. For the multiplicative genetic model, the HWD coefficient is
found to be non-zero for both the affected individual and its parent and grandparent,

10
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and for both siblings in a discordant sibling pair. Any observed departure from HWE
in relative pairs could indicate association, once other reasons like genotyping error

or stratification has been ruled out.

In Section 2.2 the genotypic frequencies of a relative pair, in general, are derived
where the relative of the affected person could be affected or unaffected. In Section
2.3 the genotypic frequencies as well as the HWD coefficient for a pair of siblings
are derived and examined for specific genetic models. The genotypic frequencies and
HWD coefficient for child-parent and grandchild-grandparent pairs are discussed in
Appendix A and Appendix B, respectively. Testing for HWD is discussed in Section
2.4 followed by a comparison of the HWD coefficient and the power of the test for
departure from HWD among different relative pairs in Section 2.5. Finally Section
2.6 examines the results obtained by Li and Leal (2008) for discordant sibling pairs

and Section 2.7 discusses the results.

2.2 Genotypic Frequencies For A Relative Pair

Consider an affected person with the disease of interest and their relative (sibling,
parent or grandparent). Suppose that the genotype of the affected person (j = 1)
and their relative (j = 2) are denoted by g;, j = 1,2, where g; =0 (AA), 1 (Aa) or 2
(aa), and that the disease status is denoted by d;, where d; = A, for affected and flj
for unaffected, 5 = 1,2. For the affected person, d; = A; but the relative could have

dy = A or Ay depending on its disease status. The joint probability of the genotypes
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of the two relatives, conditional on the disease status of both relatives is

P(g1 N gaN A Ndy)
P(A; N dy)
P(A1 N dalgi N ga)P(g1 N go)
P(ds| A1) P(Ay)

P(g1 N go| A1 N do)

The term P(A;) is the probability that a person 1 is affected, and is same as the

prevalence of the disease, Kp, given by

Kp=(1—q)%¢0 + 2¢(1 — q)p1 + ¢*¢o (2.1)

where ¢; = P(Ali) is the penetrance of the disease for genotype i, i = 0,1,2 and ¢ is
the minor allele frequency.
The disease status of an individual is assumed to depend only on their genotype,

therefore,

P(A1|91)P(d2|92)P(91092)_

P(glmg2|~’41md2) - P(dQ'Al)Kp

(2.2)

The joint probability of the genotypes, P(g1Ngs), depends on the relationship between

the two relatives and the allele frequencies.

2.3 Sibling Pairs

Consider an affected person and its sibling. The genotypic frequencies for a pair

of siblings are derived below as are the Hardy-Weinberg coefficients.

2.3.1 Genotypic Frequencies

The joint probability of the genotypes of two siblings, P(g1 N g2), can be obtained

by conditioning on the parental mating type, h;, which is the pair of genotypes of the
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parents,

m

P(g1Ngo) = Zp(gl N g2|hi) P(hy),

i=1

where m is the total number of mating types. Given the parental mating type, the

genotypes of the two siblings are independent of each other, so

P(g1 Ngo) = Zp(gl|hi)P(g2|hi)P(hi)' (2.3)

Table 2.1 gives the possible parental mating types, their frequencies in the population

under HWE and the probabilities of the offspring of different genotypes.

Table 2.1: Possible parental mating types, their probabilities with probabilities of
possible offspring genotypes

Mating type Probability of Conditional Probability
mating type of offspring genotype

hi P(h;) P(g;|hs)
AA  Aa aa
AA x AA p? 1 0 0
AA x Aa 4pdq 0.5 0.5 0
AA x aa 2p* ¢ 0 1 0
Aa x Aa 4 p* ¢ 0.25 0.5 0.25
Aa x aa 4pq? 0 05 0.5

aa X aa ¢* 0 0 1
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Using Table 2.1 the joint probability of g; = go = AA is
P(AA,AA) = P(AA|AA x AA)P(AA|AA x AA)P(AA x AA)
+P(AA|AA x Aa)P(AA|AA x Aa)P(AA X Aa)

+P(AA|Aa x Aa)P(AA|Aa x Aa)P(Aa x Aa)

11 11
= 1.1.p°p> + =.=2p%2 — PP
DD +22p pq+44 Dq2pq
p2
= Z(4p2+4pq+q2)
2
P 2
= (2
4(P+Q)
2
b 2
= = 1
4(p+)

Similarly, the other joint probabilities can be obtained (Table 2.2).

Table 2.2: Joint probability of genotypes of a pair of siblings

Sibling
Affected AA Aa aa Total
AA *(1+p)° 30%¢(1+p) i P’

Aa sPPq(1+p) pa(l+pg)  $p*(14+4q) | 2pg

aa Ve sp*(1+4q) 3°(1+q)? | ¢

Total p? 2pq q 1

Substituting the joint probability from equation (2.3) in equation (2.2), gives the

genotypic frequency conditional on the disease status of both siblings
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Pgi N gal A1 N dy) = P (ﬁ&z&f )(?Lg?) Z P(g1|hi) P(go| i) P(Ry). (2.4)

Affected Sibling Pair

When both the siblings are affected, do = As and the quantity P(As|.A;) in
equation (2.4) is the sibling recurrence risk denoted by Kg. The joint genotypic
probability of an affected sibling pair can be computed using equation (2.4), (Table

2.3). For example, the joint probability of the genotypes AA and AA is

P(AAN AAA N As) = %P(AAQAAMQ

b0 G0 o 2
= e ]_
KqaKpt (p+1)
¢%p2 2
ki Pt

Table 2.3: Joint genotypic probabilities of a pair of affected siblings

Sibling
Affected AA Aa aa Total
AA | (1 R0ty Gl | oo,
Aa %(Hp) %’;ﬁs(lwq) %(1+q) ﬂﬁ%}q{sSAa
aa dpm’  Gow (1 yq) B (14q)? | 228,
Total S aa AP S, 2% Sua 1

For simplicity of presentation, the expressions have been abbreviated using

Saa = ¢o(p+1)* +261(1 + p)g + ¢o¢’,
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Saa = Gop(p + 1) + 201 (1 + pq) + d2q(1 + q),
and

Saa = Gop” + 2¢1p(1 + q) + ¢2(1 + ).

Using the fact that the probabilities in Table 2.3 sum up to one, the recurrence risk,

K can be obtained as

Ks = [P?(1 4 p)2g3 + 4(1 + p)p*adodr + 20°¢*Pod2 + 4pq(1 + pq)P?

4Kp

+4pg* (1 + q) 12 + ¢*(1 + q)?¢3]. (2.5)

In this case, both siblings are affected so Table 2.3 is symmetric.
Discordant Sibling Pair

The joint genotypic probabilities can be also obtained for the case of discor-
dant sibling pair (Table 2.4) using Table 2.1 and equation (2.4) with P(ds|A;) =
P(A3|A;) = 1 — Kg. For example, the joint probability of the genotypes AA and AA

of the two discordant siblings is

P(AAN AAA N Ay) — %P(AAHAAVQ)
2 1

do(1 = ¢o)p” 9
= Ikp(i—Kg P T
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Table 2.4: Joint probability of genotypes of the discordant sibling pair

Sibling
Affected AA Aa aa Total
AA ¢O(i1;i(8p—21(<l$p)2 ¢0(2112f8p—21q((;)+p) (iofglpzfi);z(l)2 4KP¢Z()1P—2KS)S Naa
Ao | SRS MRS e | e SV
w | e shepdse st | edon,
Total 41%?(@225)*?% 21%?(@?15)8%‘@ 41((1})_(?2,)}1;)5% 1

For simplicity of presentation, the expressions have been abbreviated using S,

Saq and S,, described above, and

SNaa=(1=¢0)(1+p)*+2(1—1)g(1+p)+ (1 — ¢2)q°,

SNaqg = (1 = ¢0)p(1 +p) +2(1 = ¢1)(1+pg) + (1 — ¢2)q(1 +q),
and

SNaa = (1= ¢o)p” +2(1 — ¢1)p(1 + q) + (1 — ¢2) (1 + ¢)*.

2.3.2 Hardy-Weinberg Coefficient

The Hardy-Weinberg coefficient, D, measures the excess homozygosity and is given
by

D:Paa_q27



18

where the minor allele frequency can be obtained from the genotypic frequencies using

the relationship
= P+ 1P
q = Faa 9 Aa-
Affected Sibling Pair

For an affected sibling pair (Table 2.3), the minor allele frequency is the same for

both siblings and is

a?Bpq
4K p

B a?yq?
qiA = 4KPKS

[P* +20p(1+q) +v(1+¢)°] + [p(1+p) +28(1+pq) +vq(1+q)],

where a, § and 7 are the baseline, heterozygote and homozygote relative risks. It

simplifies to

a’q

AKpKs

G1A = Goa = {a(1+q)*¥ +p*qy+ 3pq(1 +q) By + p° (1 +p) B+ 2p(1 + pq) °}.

The HWD for both siblings is also the same, and is given by

a4p2q2

Dig=——21_
A 16K2K2

(—4(1+pg)*B* + {4(1 + pg)[a(1 + @)y + p(2 — ¢)]B
+ (149 +p*(2—q)* v — 5%

+2pq(2 — q)(1+ q)v8° + (4 + 2¢* — 4¢° — 2¢° + 49)7°)

Discordant Sibling Pair

For the discordant sibling pair (Table 2.4), minor allele frequencies of the affected

person and unaffected sibling are denoted by ¢, 1 and ¢, 5. For the affected sibling,
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the minor allele frequency is

avg?

A Zm[(l —a)p* +2(1 = aB)p(1 +¢) + (1 — av)(1 + ¢)?]

+ %[(1 —a)p(l+p) +2(1 — aB)(1 +pg) + (1 — ay)q(1 + q)]

which can also be written as

2

GA= ﬁ&p(l +pq) 5 + Bpa(1 + @)y + p*(2 = )18 + vap® + ¢(1 + ¢)*y°
- %(vq +Bp)},

and the minor allele frequency for its unaffected sibling is

A2

tha = —Kp(la_q[(s) {2p(1 + pa)6° + [3pa(1 + @)y + P*(2 = )18 + Pay + q(1 + ¢)**

_ %[q(l +q)y —p(2g+1)8 — p°]}.

The HWD coefficients for the two siblings are

_a4p2q2
D= (_ 2 1 2.3 2 1 2 2_4 1 1
W= g R 0T [P a8 —Ag(L+ )1+ pa)f

+2¢%(pg + g +1) = 4L+ @)} + [4g(1 + g) (1 + pq) 3°
—2qp(2 — q)(1+ ¢)8* — 4p(2 — q)(1 + pq)B
—p*(2 = )y + 4(1 + pg)*8* +4p(2 — q) (1 + pg) 5°
+p*(2— )8 + g{@(f +142¢)7° + [-2¢(1 + q) 3
+2(2pg +1)8 + (2¢* — 69 + 5)]y — 2p(2 — ¢)5°

(1 +pg) 8%} + (5~ 7))
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and

Doy = —a'p'e ( — 1+ +[4¢° + (2pg® — 4)(1 +q)
16K2(1 — Kg)2

+q*(1+¢)°8% — 49(1 + ¢)(1 + pqg) B]y*

+4p(2 — q)(1+ pq)3° + [4¢(1 + q)(1 + pq) 3°

—2pq(2 — q)(1 +q)8* —¢" — 4p(2 — ¢)(1 + pg) 8

+ (3¢ = 2)(1+p = 2pg)]y +4(1 + pg)*8* + p*(2 — ¢)*F”
+ é{‘l +[4+2pg(3¢+2)(1+¢)5

+q(L+9)(3¢° = 5¢ + )] + ¢*(1 + ¢)*y°

+[—4¢*(1 + q)(5 — 3¢)3* — 10¢°

+ (—8q + 24¢® — 4¢* — 12¢* + 8)3 + 11¢* + 3¢* + 8p]y
+2pqg(5—3q)(2 — q)8 — 8(1 + pg)*5°

—q(3=a)(¢* =3¢ +4) —4p*(3¢ + 2)(2 - ¢)5°}

b ).

Unrelated Affected Individuals

The HWD coefficient for an unrelated, affected individual is given in by the ex-

pressions for cases in

a2p2q2
Dp = - B7).

Unrelated Unaffected Individuals

The HWD coefficient for an unrelated, unaffected individual is given in by the
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expressions for controls in

ap’q?

Dp=—24
C T (1—Kp)?

(28 —1—7—af +ay).

In order to understand the magnitude and direction of the HWD coefficient D,
it was studied and graphed under some specific genetic models discussed in the next

section.

2.3.3 Specific Genetic Models

The HWD coefficients for a pair of siblings were studied in specific genetic models
for both cases regarding the disease status of sibling of the affected person. For each
model, the HWD coefficient is plotted for two different values of the homozygote

relative risk, v, 1.5 and 3.

Dominant Model

In the dominant model, the homozygote and heterozygote relative risks are equal
implying the penetrances for the genotype Aa and aa to be the same i.e., ¢ = ¢1 or
B=rv7>1
Affected Sibling Pair

When both siblings are affected, the HWD coefficient is the same for both siblings

a4p2q2,y ,.Y_l 2
Dy, =Dy, =— 4K£@ ){—W—1M%ﬁ—@+d®7—BM+4%7+U]
P S

+ (Y +3y+ 1)}

4
(v=1)
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Discordant Sibling Pair

For a pair of discordant siblings the HWD coefficients are

Dua= To I 0= %6~ )+ (0 — Doy — 13)g + 1200+ 1)

A 16
+Mf+37+w—aph—1M®—®+47+ﬂ+aﬁa

and

a2

Rz - Kop O~ B0 - Ml + )G+ -1

DM =

+(y = 1)°¢" +129(y + 1) (y = 1)%¢ = 67(y — 1)°¢° — 8

o=l = 1" — (57— 13)(3 — D — (1203 + 1) (7 — 1)%g

— (A(y = 1))y + D) (v + 1) + (—189* + 18y + 67° — 6)¢°]
4
+ @7(7 -1}

Unrelated Affected Individuals

The HWD coefficient for unrelated affected individuals is, Wittke-Thompson et al.

(2005)

_ Mw_ 1)

D
P K}QD

which is negative.
Unrelated Unaffected Individuals

The HWD coefficient for unrelated unaffected individuals is, Wittke-Thompson

et al. (2005)

which is positive.
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Figure 2.1 illustrates the direction and magnitude of the HWD coefficient in the
dominant model for the affected person and its sibling. Also shown are the coefficients

for unrelated affected and unaffected individuals.
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Figure 2.1: HWD coefficients for the dominant genetic model as a function of the
susceptibility-allele frequency for an affected person (a) and their sibling or unrelated

unaffected person (b).
Kp = 0.1, disease status of sibling (affected, unaffected) = (o, A), unrelated af-

fected /unaffected ¢, open/filled symbol for v = 1.5/3.

The HWD coefficient is always negative except for unrelated unaffected individuals
for whom the coefficient is positive. The coefficient increases with v and is largest

in magnitude at ¢ between .3 and .5 for both siblings in an affected sibling pair (o).
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Panel (a) shows that the HWD coefficient for the affected person with an unaffected
sibling (A) is very similar to the unrelated affected individuals (¢). When the sibling
is unaffected (panel (b)), its HWD coefficient is smaller in magnitude than that of

the affected person (panel (a)).

Recessive Model

Under a recessive model, having two copies of the variant allele leads to an in-
creased risk of disease susceptibility and the heterozygote relative risk is one, i.e.,
Go =1, o2 > ¢gror f=1,7>1.

Affected Sibling Pair

The HWD coefficients for a pair of affected siblings are the same, and are

a'p?’¢*(y = 1)

DlA:DQA: 16K]23K§

{(v =12 +2)+ (v = Dql(v+ g+ 8] +4(v+4)}.

The HWD coefficient is always positive in this case.
Discordant Sibling Pair

For a pair of discordant siblings the HWD coefficients are

Dua= 1o oty = 1P+ 2+ (0= el + T+ 84467+

_ %{2(7 —1)g(1+q)+ (v +8)] + g}

and

p.._ Pl —a)(y 1)
24 16K2(1 — Kg)?
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Unrelated Affected Individuals

The HWD coefficient is (Wittke-Thompson et al., 2005)

which is positive.
Unrelated Unaffected Individuals

The HWD coefficient is (Wittke-Thompson et al., 2005)

which is negative.

Figure 2.2 illustrates the direction and magnitude of HWD in the recessive genetic
model for the affected person and its sibling. Also shown are the coefficients for the
unrelated affected and unaffected individuals. The HWD coefficient always increases
in magnitude with « and reaches a maximum when ¢ is between 0.3 and 0.5. The
HWD coefficients for the affected person is largest when the sibling is also affected (o).
Panel (a) shows that the HWD coefficients for the affected person with an unaffected
sibling (A) is very similar to that of unrelated affected individuals (¢). When the
sibling is unaffected (panel (b), A), its HWD coefficient is smaller in magnitude than
that of the affected person (panel (a), A) and is negative. Among all cases, the
affected sibling pair shows largest deviation from HWE. The HWD shown in Figure

2.2 is similar to that in Figure 2.1 for the dominant model but with the signs reversed.
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Figure 2.2: HWD coefficients for the recessive genetic model for an affected person

(a) and their sibling or unrelated unaffected person (b).
Kp = 0.2, disease status of sibling (affected, unaffected) = (o, A), unrelated af-

fected /unaffected ¢, open/filled symbol for v = 1.5/3.

Additive Model

In an additive genetic model, the difference between the homozygote and heterozy-
gote penetrance is the same as the difference between the baseline and homozygote
penetrance, i.e., oo — @1 = @1 — Py Or P = 2¢1 — Py so that homozygote relative risk,
v, is v = 26 —1, for § > 1. Wittke-Thompson et al. (2005) defined the additive model

as v = 20 which is different from this definition.
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Affected Sibling Pair
For a pair of affected siblings the HWD coefficients are both equal to

4,2 2

Dia = Doa == f;j;;lggmw — 1’ +4(r+3)(7 = Da+ (+9) (v + D}

which are always negative.
Discordant Sibling Pair

For a pair of discordant siblings the HWD coefficients are

Dua= B0 = 02+ 4+ 90— D+ (90 + 1)
Sy~ gty +8]+ ),
and
Dus= oo (4= 1%+ 4+ 30— e+ (1 49+ 1)
+$(1 —ay—a)}.

Unrelated Affected Individuals
The HWD coefficient for unrelated affected individuals is

—a?p?g?

Dp—— 1
YY)

(fy - 1)2a

which is always negative.
Unrelated Unaffected Individuals
The HWD coefficient for unrelated unaffected individuals is

—a?p??

m(”y —1)%

De =
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which is always negative.
Figure 2.3 illustrates the direction and magnitude of the HWD coefficient in the
additive model for the affected person and its sibling. Also shown are the coefficients

for the unrelated affected and unaffected individuals.
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Figure 2.3: HWD coefficients for the additive genetic model for an affected person

(a) and their sibling or unrelated unaffected person (b).
Kp = 0.01, disease status of sibling (affected, unaffected) = (o, A), unrelated af-

fected /unaffected ¢, open/filled symbol for v = 1.5/3.

The HWD coefficient is always negative indicating an excess of heterzygote geno-

types. The largest magnitude is obtained for both siblings for ¢ between .3 and .5
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when both are affected. When the sibling is unaffected (panel (b), A), its HWD co-
efficient is larger in magnitude than that of the affected person (panel (a), A). Note
that the overall magnitude of the HWD coefficient is smaller for the additive model

than for the dominant or recessive models.

Multiplicative Model

In a multiplicative model, the homozygote relative risk is the square of the het-
erozygote relative risk, i.e. ¢y = ¢2/dg or v = 32,3 > 1.
Affected Sibling Pair

When the disease status of the sibling is affected, the HWD coefficients are both
7%ero

DlA:DQ_A:O.

Discordant Sibling Pair

For a pair of discordant siblings, the HWD coefficients are

—a’p’e*y
D= —1)?

for the affected individual, which is always negative, and

_ —ap??
16K%(1 — Kg)?

Da4 {d*(1 + q)*7® + 2pq(3q + 2)(1 + q)7*/

+ (15¢* — 10¢® — 21¢° + 4q + 4)v* + 4pq(5pq — 6)73/2
+ (15¢" = 50¢° + 39¢° + 8¢ — 8)y + 2pq(5 — 39)(2 — 9)\/7

+p°(2—q)%}
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for the unaffected sibling.

Wittke-Thompson et al. (2005) showed that the HWD coefficient is zero for cases
and non-zero for controls under the multiplicative model (see below). The results
above show that when the sibling is unaffected, the HWD coefficient for the affected
person is non-zero and is always negative.

Unrelated Affected Individuals

The HWD coefficient for unrelated affected individuals is zero (Wittke-Thompson

et al., 2005)

Dp = 0.

Unrelated Unaffected Individuals
The HWD coefficient for unrelated unaffected individuals (Wittke-Thompson et al.,

2005)

which is always negative.

Figure 2.4 illustrates the direction and magnitude of the HWD coefficient in the
multiplicative model for affected individuals and their sibling. Also shown are the
coefficients for unrelated affected and unaffected individuals. The vertical scale is the

same as in the previous figures, and the values, when not zero, are small.
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Figure 2.4: HWD coefficients for the multiplicative genetic model for an affected
person (a) and their sibling or unrelated unaffected person (b).
Kp = 0.05, disease status of sibling (affected, unaffected) = (o, A), unrelated af-

fected /unaffected ¢, open/filled symbol for v = 1.5/3.
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2.4 Testing For Hardy-Weinberg Disequilibrium

The test of departure from Hardy-Weinberg equilibrium involves testing the hy-

potheses

HO: PAA:(I_Q)27PAa:2q<1_q)andPaa:q27

versus H,: Paa, Pag, Py, differ from above.

One test statistic for this test is

ND?

X2 =
(1 —q%)’

where N is the number of individuals, ¢ is the estimated minor allele frequency and
D is the HWD coefficient. Under Hy, the test statistic, X2 has a x? distribution in
large samples with one degree of freedom for a biallelic locus (Weir, 1996).

The power of the test is approximately

Pr(xi(v) > xii_a):

where the non-centrality parameter of the non-central x3 distribution is (Weir, 1996)

ND?

V= ————.
(1 —q)?

The ability to detect deviations from HWE depends on the magnitude of the

HWD coefficient, D, the sample sizes, N, the minor allele frequency, ¢ and the level

of significance, a.
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For example, suppose ¢ = 0.3, D =0.084 (which corresponds to the largest HWD

coefficient in Figure 2.2) and n = 100, then the noncentrality parameter is

L 100 x 0.0842
32(1 —.3)2
7056
0441
- 16

and the power to detect HWD is

Power = Pr(x3(16) > X%,1—.05)
= Pr(xi(16) > 3.8415)
= 1-—0.0207

= 0.9793.

If other possible sources of HWD can be eliminated, rejection of the hypothesis
of HWE can indicate genetic association.

For the multiplicative model in case-control studies Wittke-Thompson et al. (2005)
showed that the HWD coefficient is zero in cases, so a test for HWD cannot be used to
reveal association. The analysis of HWD in a pair of siblings shows that the coefficient
is non zero for both siblings of a discordant pair. Figure 2.4 shows, however, the
magnitude of the coefficient is small, so that the power to detect HWD and genetic
association is small. For example, the largest deviation from HWD is -0.0011 that
occurs for ¢ = 0.35 (Figure 2.4). For 100 sibling pairs, the noncentrality parameter

is, v = 0.0024 and the power to detect HWD is 0.0503. For 1000 sibling pairs, the
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noncentrality parameter is, v = 0.0234 and the power to detect HWD is 0.0527.

2.5 Comparison Among Different Relative Pairs

The genotypic probabilities and HWD coefficients have been obtained similarly
for an affected person and its parent (see Appendix A) or grand parent (see Appendix
B) when the relative (parent or grandparent) is affected or unaffected. The expres-
sions for the HWD coefficients are quite complicated even for specific genetic models.
Figures 2.5, 2.6, 2.7 and 2.8 give the HWD coefficients and power to detect HWD
for the affected individuals and their relatives for dominant, recessive, additive and
multiplicative genetic models respectively. They also illustrate the coefficients and
power to detect HWD for unrelated affected and unaffected individuals. The power

is calculated for the sample size of 1000 and level of significance, a = 0.05.

2.5.1 Dominant Model

In the dominant model, the homozygote and heterozygote relative risks are equal
implying the penetrances for the genotype Aa and aa are the same i.e., ¢ = ¢1 or
B=r,7>1.

Figure 2.5 illustrates the direction and magnitude of the HWD coefficients and
corresponding power for affected individual and their relatives when the disease sta-
tus of the relative is affected or unaffected. The HWD coefficient is negative for
all cases except for the unaffected parents and unrelated individuals. The affected

individual shows the largest deviation from HWE when its sibling is affected. The
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power to detect HWD increases with the minor allele frequency to ¢ = 0.5 and then
decreases. The power to detect HWD among the affected individuals is least when its
sibling is unaffected. Power to detect HWD is least for affected parents and unrelated

unaffected individuals.
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Figure 2.5: HWD coefficients (panels (a) and (c¢)) and power to detect HWD (panels
(b) and (d)) for the dominant model as a function of the susceptibility-allele frequency
for an affected individual and its relative.

Kp = 0.1, v = 1.5, n = 500, relative pairs (sibling, parent, grandparent) = (O, o,
A), unrelated = ¢. Open/filled symbols for disease status of relative or unrelated
individual, unaffected/affected.
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2.5.2 Recessive Model

Under a recessive model, having two copies of the variant allele leads to an in-
creased risk of disease susceptibility and the heterozygote relative risk is one, i.e.,
o= 1, P2 > pror f=1,v>1.

Figure 2.6 and illustrates the direction and magnitude of the HWD coefficients

for the affected individual and their relatives.
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Figure 2.6: HWD coefficients (panels (a) and (c)) and power to detect HWD (panels
(b) and (d)) for the recessive model.

Kp = 0.2, v = 1.5, n = 500, relative pairs (sibling, parent, grandparent) = (O, o,
A), case-control = . Open/filled symbols for disease status of relative or unrelated
individual, unaffected/affected.



37

The HWD coefficient is always positive for the affected individuals. The coefficient
is positive for the affected relatives but negative for the unaffected relatives and
unrelated unaffected individuals. The power to detect HWD increases with the minor
allele frequency to ¢ = 0.5 and then decreases. The power to detect HWD for affected
individuals is large for all cases except when its sibling is not affected. The power
to detect HWD for the unaffected grandparents is similar to that of the unrelated
unaffected individuals which is the smallest. The power is largest for the affected
individuals as compared to its relative except for the affected individuals when its

sibling is unaffected.

2.5.3 Additive Model

In an additive genetic model, the homozygote relative risk is v = 26 — 1,8 > 1,
so that ¢o — @1 = 1 — ¢@yp.

Figure 2.7 illustrates the direction and magnitude of the HWD coefficients for
affected individual and their relatives. The HWD coefficient is small for the additive
model for all relative pairs as compared to the recessive or dominant models. As a

result, the power to detect HWD is also small.



38

3 e
S a S o b
e - g o
3 2 8 o
LSRR LR R R S R R R © 3
s o)
29 =N
T » o o
(= O |sssenBaEEEe 00000
e o
'00 02 04 06 08 1.0 00 02 04 06 08 1.0
Susceptibility allele freqency Susceptibility allele freqency
™ o
O -
s © c o d
> - 2 O
© 2 8 o
9. S bl R B BB HHHHH B R AL Rl qt)“ <or
o< 2o
; <:|> o«
T . oo
g O |[sssssssssssEs s .
o
'00 02 04 06 08 1.0 00 02 04 06 08 1.0
Susceptibility allele fregency Susceptibility allele freqency

Figure 2.7: HWD coefficients (panels (a) and (c)) and power to detect HWD (panels
(b) and (d)) for the additive model.

Kp = 0.01, v = 1.5, n = 500, relative pairs (sibling, parent, grandparent) = ([J, o,
A), case-control = . Open/filled symbols for disease status of relative or unrelated
individual, unaffected/affected.

2.5.4 Multiplicative Model

In a multiplicative model, the homozygote relative risk is the square of the het-
erozygote relative risk, i.e. ¢y = ¢?/pg or v = 3%, 3 > 1.
Figure 2.8 illustrates the direction and magnitude of the HWD coefficients for

affected individual and their relatives.
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Figure 2.8: HWD coefficients (panels (a) and (c)) and power to detect HWD (panels
(b) and (d)) for the multiplicative model.

Kp = 0.05, v = 1.5, n = 500, relative pairs (sibling, parent, grandparent) = ([J, o,
A), case-control = . Open/filled symbols for disease status of relative or unrelated
individual, unaffected/affected.

Recall that Wittke-Thompson et al. (2005) showed that the HWD coefficient to
be zero for affected individuals for this model. In all cases depicted in Figure 2.8, the
HWD coefficient for the affected individual is zero or slightly negative. Its magnitude
is largest with an affected parent. For the relative, the largest coefficient occurs for

parents who are unaffected. The power to detect HWD is zero when the HWD is

zero, and small when the HWD is slightly negative.
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2.5.5 Summary Of Results On Relative Pairs

The figures above show that the greatest departure from HWD, and the greatest
power to detect departure from HWE is for the dominant and recessive models. These
results hold for both the affected individual and its relative, with largest HWD and
power occurring when the relative is also affected. Sib pairs gave the largest power,
while the affected-parent and affected grandparent pairs give similar but slightly less
power. Unaffected sibs give the highest power to detect HWD among the unaffected

relatives.

Table 2.5 gives some results regarding the sign of the HWD coefficients and rela-
tionships among them for the specific genetic models. For an affected relative pair,
the HWD coefficient for both relatives is the same. For the dominant and additive
models and the HWD coefficient is always negative for both individuals in an affected
child-parent pair. For the additive model, the coefficient is negative for both siblings
in an affected sibling pair. For the recessive model, the HWD coefficient is always
positive for both relatives in an affected relative pair and is negative for both parent
and grandparent when they are unaffected. For the multiplicative model, the coef-
ficient is negative for both siblings in a discordant sibling pair. Other relationships
between the HWD coefficients are shown for the additive and multiplicative mod-
els. For example, the HWD coefficient for the affected individual when its parent or
grandparent is affected is (Kg)?(1 — Kg)?* times its value when the parent or grand-

parent is unaffected. This multiplier is less than (greater than) one when Kg is less



than (greater than) half.

Table 2.5: Some results regarding the HWD coefficients

Affected individual (1) and its relative (2)

Sibling (S)

Parent (P)

Grandparent (GP)

Dominant, § =~v,v > 1

Diag= Doy

Dig= Doy <0

Diag= Doy

Recessive, 6 =1,v> 1

4

D1A2D2A>0 D1A2D2A>0 DlA—D2A>O
D2A<O D2A<O
Additive, y =28 - 1,3 > 1
Dig= Doy <0 Dig= Doy <0 Dig= Doy
K2
Dis (S) = Dy (P) —&
1A() 1A()(1_KR)2
Multiplicative, v = 5%,3 > 1
Dy = Doy Dy = Doy D1y = Doy
K2 K2
D 1, D7 <0 Dii=D4—& Dii=D R
14, +2A4 14 1A(1_KR>2 14 1A(1_KR)2
K32 1 \2
Dys= Doa—ir (14 —=)
24 1= Kg)? T 0%
Dyi=D (1 Ly
(1)
24 14 o7
1
D14 (GP) = ZD‘M (P)
1
DM (GP) = _DM (P)

41
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2.6 A Comparison With Li and Leal (2008)

Li and Leal (2008) derived expressions for genotypic probabilities and HWD co-
efficients at a functional SNP, and at a marker in LD, for parents and for unaffected
siblings of affected individuals. They also examined the power of the test for deviation
from HWE.

They obtained the genotypic proportions, P£ . 9; = 0,1,2, for the affected indi-

vidual (pg 105) as

pb_ ¢0p2
gj=0 — KP ’
D 2¢1pq
9121 - KP
and
D ¢2q2
gj=2 Kp'

These probabilities correspond to those of an affected person in the general popula-
tion. However, the appropriate population is not a pool of affected individuals but a
subset that consists of affected individuals considered jointly with an unaffected sib-
ling. From the right margin of Table 2.4 the probabilities for the affected individual

in discordant sibling pairs are

ﬁpjm)[(l = ¢0)(1+p)* +2(1 = d1)g(1 +p) + (1 = d2)”),
%[(1 — do)p(1 +p) +2(1 = ¢1)(1 + pg) + (1 — 62)q(1 + q)]

and

¢2q2

m[(l — ¢0)p® + 2(1 — ¢1)p(1 4+ q) + (1 — ¢2) (1 + q);
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where Kg is given by (2.5). For small values of the disease prevalence and the pene-
trances, there is not much difference between the expressions in Table 2.4 and those

in Li and Leal (2008).

For the unaffected sibling, Li and Leal (2008) obtained the genotypic probabilities

(1 — ¢o)p?

Fu(0) = AKp(1 — Kp)

[bo(p + 1)* + 261(1 + p)q + ¢2q7),

(1 - ¢1)Pq

Fo(1) = 2Kp(1 — Kp)

[Pop(p + 1) + 201 (1 + pg) + d2q(1 + q)]

and

(1 —¢0)g”

Fu(2) = AKp(1— Kp)

[bop® + 201p(1 + q) + ¢o2(1 + q)7).

Once again these probabilities differ from the results in the bottom margin of

Table 2.4 which are

_ 2
Prar = o 2 fon(p + 1+ 2611+l + ]
Proa= s O0PL 1o+ 1) + 2611 + pa) + dag(1 + )]
124 = 2Kp(l — Ks) op\P 1 pq 29 q
and
(1—¢2)g”

Paog = m[¢op2 +2¢1p(1+ ) + ¢2(1 + q)°].

They differ because Li and Leal (2008) do not properly restrict their calculations

to the subset of affected individuals with an unaffected sibling.

Note that
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for g; = 0,1, 2. For small values of the disease prevalence, K p, and the recurrence risk,
Kg, the ratio in the above expression is almost one. Therefore, not much difference is
noticed in the values of the HWD coefficients for the unaffected sibling (Figure 2.10).

Figures 2.9 and 2.10 depict the HWD coefficients (top panels) and the power
of rejecting HWE (bottom panels) using the formulae derived by Li and Leal (2008)
(left panels) and the expressions obtained earlier in this chapter (right panels). These
figures use parameters from Li and Leal (2008) and are for 5000 discordant sibling
pairs with relative risks, 8 = 1 and v = 1.5, and level of significance, o = 1077 for
the four specific genetic models. The figures show that there is not much difference
in the values of the HWD coefficients or power between the results of Li and Leal

(2008) and the correct results.
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Figure 2.9: Comparing the HWD coefficient and the power of detecting HWD for
the affected individual of a discordant sib pair using the result of I.i and Leal (2008)
(panels (a) and (c)) and the correct values (panels (b) and (d)).

a = 0.01, v = 1.5. Genetic models: (dominant, recessive, additive, multiplicative) =

(<>7 |:|7 O? A)
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Figure 2.10: Comparing the HWD coefficient and the power of detecting HWD for
the unaffected sibling of a discordant sib pair using the result of Li and Leal (2008)
(panels (a) and (c)) and the correct values (panels (b) and (d)).

a = 0.01, v = 1.5. Genetic models: (dominant, recessive, additive, multiplicative) =

(<>7 |:|7 O? A)

2.7 Discussion

In this chapter the genotypic frequencies and HWD coefficients for an affected
individual and its relative were derived. The dominant genetic model shows excessive
homozygosity and recessive genetic models shows excessive heterozygosity and these

models give the largest power to detect departure from HWE. For the multiplicative
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model, non-zero HWD coefficients were found in some cases but these values were very
small and the power to detect departure from HWE is small even with large samples.
The recessive model for the affected individual and its parent displays the greatest
deviation from HWE followed by the dominant model for sibling pairs. The power to
detect HWD is largest for the recessive and dominant models and is slightly nonzero
for multiplicative model. The unrelated affected and unaffected individuals have the
smallest deviation from HWE and hence give the least power to detect HWD.

The genotypic frequencies derived in this Chapter are used in Chapter 3 to fit
models to data from relative pairs, which can be used to test for association between

the locus and the disease.



Chapter 3

Testing Association Using The Heterogeneous Model
And Data From Affected Individuals And Their

Relatives

3.1 Introduction

In the previous chapter, genotypic probabilities and HWD coefficients of relative
pairs were derived under a general model of genetic association. The HWD coefficients
of both individuals in a pair were also examined under specific genetic models. In
this chapter, the general model is used in testing for association between the disease

and a disease susceptibility locus for genotypic data from relative pairs.

The case-control design used often in association studies suffers from several short-
comings. If the case and control groups are not well matched for age, ethnicity, or
sex, a case-control study could lead to false positive association. To overcome these
problems, Spielman et al. (1993) proposed a transmission disequilibrium test (TDT)
which is a family-based test to detect genetic linkage only in the presence of genetic
association. The test uses the genetic information on a case-parents trios, an af-
fected child and their parents and it measures the over-transmission of an allele from

438
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heterozygous parents to an affected offspring. In essence, TDT is an application of

McNemar’s test.

For late-onset complex diseases, parental data are not usually available. Some
modifications and extensions of the TDT have been proposed involving siblings in-
stead of parents, considering only affected or unaffected siblings or a combination
thereof. One of the modifications proposed to overcome this problem is the Sib-TDT
(Spielman and Ewens, 1998) that uses discordant sibships. Fengzhu et al. (1999) pro-
pose a test, TDT1, to detect linkage and association between a candidate marker locus
and a disease locus by using genotypes of case subjects and only one parent. They
also propose a method to combine the genotypic information from one or both par-
ents and/or affected or unaffected siblings. Methods have also been proposed to use
the genotypic information on case-parents trios and discordant siblings or unrelated
control-parents trios combined with case-parents trios (Deng et al., 2002). Another
modification is a paired Hotelling’s T2 test statistic that uses unaffected siblings as
controls for affected siblings (Fan and Knapp, 2005). The test takes into account
the correlation among the markers as well as the correlation within each sibling pair
and is based on haplotype/allele coding and genotype coding. A generalization of the
TDT, based on a score statistic (Schaid and Jacobsen, 1999) and an extension for

multi-allele marker loci (Sham and Curtis, 1995) are given.

More recently Yan et al. (2009) compared several tests for testing disease-candidate

gene association for discordant relative pairs based on genotype counts: McNemar’s
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test, the Cochran-Armitage trend test, the maximum efficient robust test, and Bhap-
kar’s test. They found that the power of the tests increase with the distance in
relatedness between the affected individual and its relative.

The heterogeneous model for relative pairs is described in Section 3.2 and used
for association testing. A partially conditional model for testing of association for
discordant relative pairs is discussed in Section 3.3 and a fully conditional model
for testing of association for discordant relative pairs is presented in Section 3.4.
The three tests of association based on the heterogeneous model are compared to
McNemar’s test in Section 3.5. An application to an Alzheimer’s data set is given in

Section 3.6. The results of the chapter are discussed in Section 3.7.

3.2 Testing Association Using The Heterogeneous Model

Suppose that there are n;; g4 sibling pairs with genotype 4 for the affected person
and genotype j for its sibling, 7,7 = 0,1, 2, and that their joint genotypic probability
is denoted by Pj; sq, where d = A for an affected sibling pair and A for a discordant
sibling pair. The genotypic frequencies, Pjjgq, given in the Chapter 2, with the
observed counts, n;; g4, for the sibling pairs form a multinomial likelihood function

2 2
Lig,®) = [ 1] Pjs
i=0 j=0
where ® = (¢g, 1, ¢2) is the vector containing the penetrances.
The model can be extended to the situation where there are n;;,q relative pairs

with joint genotypic probability denoted by P;;,4 where r = S for sibling pairs, P
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for child-parent pairs and G for grandchild-grandparent pairs. Then for a mixture
of relative pairs, the genotypic frequencies given in Chapter 2, Appendix A and
Appendix B with the observed counts form a multinomial likelihood function
2 2
Lg.®) = I 11 TIIIZ:@:
r={S,P,G} d={A,A} i=0 j=0
If, in addition, information is available on n;; 4 unrelated discordant pairs (cases
with matched controls) with genotype 4, j their data can be included in the likelihood
using their joint genotypic probabilities F;; 4, giving
2 2
te®) = T 1111 11 75w
d={A,A} i=0 j=0r={S,P,G,U}
The disease prevalence Kp is assumed to be known from other sources, and the

constraint (2.1),
Kp = p*¢ + 2pgo1 + ¢°¢»

allows one of the parameters to be evaluated from the others. For example, the

baseline prevalence, ¢y can be written as a function of Kp, ¢1, 9o and q as

Kp—2q(1 = q)¢1 — ¢*¢2
2 bl

%0 = (1-q)

(3.1)

The remaining parameters in the model are q, ¢1,¢>. Once the other parameters
have been estimated, ¢y can be obtained from equation (3.1). The parameters can
be estimated by maximizing the likelihood function numerically and approximate
standard errors can be obtained by evaluating the inverse of the information matrix or

by using the nonparametric bootstrap. A large number of random samples of relative
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pairs are selected without replacement, and the standard deviations are obtained from
the distribution of parameter estimates.

The model was coded in S-Plus software and the built-in function “nlmin” was
used to obtain the maximum likelihood estimates.

A lack of fit (LOF) test can be used to assess whether the model is appropriate

for the data using the goodness of fit statistic. For sibling pairs this statistic is

2 2 A 2
ZZ (nij.sa — MsalPij.sd)
)
j=

P nSdPij,Sd

where ngy are the total number of sibling pairs in the dataset. In general, for a mix

of affected and unaffected relative pairs, the test statistic is

T:{Svva} d:{A:A} i=0 j=0

where n,4 are the total number of relative pairs in the dataset. The genotypic frequen-
cies here are evaluated at the maximum likelihood estimates from the fitted model. In
large samples the X2 statistic is distributed as a y? with degree of freedom depending
on the number of parameters estimated. For example, for the general heterogeneous
model, the parameters to be estimated are 3, v and gq. The degree of freedom in
this case is five. When the sample size and minor allele frequencies are small, the x?
approximation to the distribution of X? may not be valid. In this case, the paramet-
ric bootstrap can be used, where X? is compared to the distribution of the values
obtained from samples generated from the fitted model.

The test of association between the disease and the disease susceptibility locus for

the genotypic data uses the hypotheses
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Hy: p=~v=1
H,: [3,v both not 1.

The alternative hypothesis requires estimation of three parameters, the two rela-
tive risks, 3, v and the minor allele frequency ¢, and null hypothesis requires estima-
tion of only ¢q. Therefore, the likelihood ratio (LRT) test statistic, Ay, is asymptoti-
cally distributed as x? with two degrees of freedom. The subscript U indicates that

this is an unconditional test in contrast with two tests described later in the chapter.

Insight into the form of genetic effects: recessive, dominant, additive, or multi-
plicative, can be obtained by imposing constraints on the pentrances and comparing
the fit to the general model. In these cases the likelihood ratio test has a x? distri-

bution with one degree of freedom in large samples.

Level and power of the proposed hypothesis tests were investigated by simulation
based on an assumed disease prevalence of Kp = 0.02. For the simulations, 1,000
replicated data sets were used. To assess the level of the test, three values of the
minor allele frequencies ¢ (0.05, 0.1, 0.3) and two different samples sizes n (300,
1000) were used. To assess the power of the test, the samples of size, n = 300 and
1000 were generated for two different values of the minor allele frequencies, ¢ (0.1,
0.3), for a recessive model with heterozygote relative risk, 5 = 1 and four different
values of the homozygous relative risk, v (1.5, 2, 2.5, 3). The level and power of
the test is approximated using the proportion of hypotheses rejected when the data

is generated under the null and alternative hypotheses, respectively. The data were
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generated for different affected and discordant relative pairs. In some cases mixtures
involving different relatives and/or different disease status were used. Unrelated cases
and controls were also generated for comparison.

To assess the level of the unconditional test for association, data were generated
under the hypothesis of no genetic effect (Hy) for various choices of ¢ and sample
size and the likelihood ratio test (Hy vs. H,) was carried out at the 0.05 level of
significance. Table 3.1 shows that the proportion of times Hj is correctly rejected is
close to the nominal level. With 1000 simulations, the standard error of the estimated
level is 0.0069 when a = 0.05. All but two of the estimated levels are within two

standard errors.
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Table 3.1: Type I errors obtained by simulation for the unconditional test of associ-
ation for different relative pairs and disease status using a = 0.05

Affection qg=0.05 qg=0.1 q=0.3

Status of | =300 n=1000 | n=300 n=1000 | n=300 n = 1000
Relative Sibling pair
A 0.050 0.056 0.058 0.045 0.036 0.042
A 0.046 0.054 0.055 0.048 0.055 0.051
Child-Parent pair
A 0.040 0.057 0.050 0.045 0.044 0.054
A 0.058 0.051 0.063 0.059 0.061 0.046
Grandchild-Grandparent pair
A 0.034 0.054 0.049 0.040 0.056 0.054
A 0.050 0.058 0.063 0.050 0.041 0.041
50:50 mix of sibling pair
A A 0.044 0.068 0.062 0.052 0.056 0.051
50:50 mix of child-parent pair
A A 0.043 0.045 0.059 0.047 0.053 0.054
50:50 mix of sibling pair and child-parent pair
A, A 0.045 0.062 0.059 0.047 0.051 0.046
A A 0.047 0.061 0.058 0.051 0.050 0.049
A A 0.042 0.055 0.058 0.054 0.053 0.050
A A 0.041 0.055 0.059 0.043 0.051 0.057
Unrelated discordant pair

0.039 0.060 0.055 0.044 0.056 0.041

To assess the power of the unconditional test for genetic association under different

relative pairs and disease status, data were generated under the alternative hypothesis

(H,) and LRTs were carried out. The simulated power of the tests are summarized in

Figure 3.1 for 300 and 1000 relative pairs. Also shown is the power for the unrelated

discordant pair of the same size.
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Figure 3.1: Power of the unconditional test for genetic association.
(a) affected relative pairs (b) discordant relative pairs (¢) 50:50 mix of affected and
discordant relative pairs (d) unrelated discordant pair for Kp = 0.02, 5 = 1. Rel-
ative pairs (sib, parent, grandparent) = ([J, o, A), unrelated discordant pair = .
Open/filled symbols for ¢ = 0.1/0.3. Solid/dashed lines for n = 300, 1000.

The power of the unconditional test of association increases with the sample size,
n, the minor allele frequency, ¢ and the homozygote relative risk, v (Figure 3.1).
Among the affected relative pairs (Panel (a)), the power of the test for sibling pairs
is the largest followed by child-parent pairs and grandchild-grandparent pairs. For

the larger allele frequency, the power of the test for all three relative pairs is almost
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the same. The power of the test is very similar for all three discordant relative
pairs (Panel (b)) and for the unrelated discordant pair design (Panel (d)). There
is not much difference in the power of the test for the 50:50 mix of affected and
discordant sibling pairs and child-parent pairs (Panel (c¢)). The power for a 50:50 mix
of affected and discordant relative pairs lies between that of the affected relative pairs
and discordant relative pairs. Among the four panels, the power of the test for the
unrelated discordant pair (Panel (d)) is the smallest but is very similar to that for

the discordant relative pairs (Panel (b)).

Figure 3.2 illustrates the power for a mix of sibling pairs and child-parent pairs
for different combinations of the affection status. Power increases with the sample
size, n, the allele frequency, ¢ and the homozygote relative risk, y. Power of the mix
of affected sibling pairs and affected child-parent pairs is the largest and the power
of the discordant sibling pair and the discordant child-parent pairs is the smallest.
The power of the unconditional test for a 50:50 mix of discordant child-parent pairs
and discordant sibling pairs is larger than that of the discordant child-parent pairs
and discordant sibling pairs only. The power of the test for a 50:50 mix of affected or
discordant child-parent pairs and affected sibling pair lies between the power of the
test for affected or discordant child-parent pairs and affected sibling pairs only. For
large values of the minor allele frequency, ¢, the power of the test for a 50:50 mix of
affected child-parent pairs and discordant sibling pairs is larger than that of affected
child-parent pairs and discordant sibling pairs. However, for small values of ¢, the

power of the test for a 50:50 mix of affected child-parent pairs and discordant sibling
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pairs lies between the power of the test for affected child-parent pairs and discordant

sibling pairs only.
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Figure 3.2: Power of the unconditional test for a 50:50 mix of different relative pairs
and affection status.

(a) affected sibling pairs and affected child-parent pairs (b) affected sibling pair and
discordant child-parent pair (¢) discordant sibling pairs and affected child-parent pair
(d) discordant sibling pairs and discordant child-parent pairs. For Kp = 0.02, 8 = 1.
Open/filled symbols for ¢ = 0.1/0.3. Solid/dashed lines for n = 300, 1000.
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3.3 Testing Association Using A Partially Conditional Model For Discor-

dant Pairs

Some of the tests of association for discordant pairs, like the McNemar’s test,
consider only the off-diagonal entries in the 3 x 3 data matrix for the relative pairs

(Table 3.2).

Table 3.2: Data for a relative pair

Affected | Unaffected Relative
Individual | 0 1 2
0 100 no1 N2
1 nio ni1 Nni2
2 N0 Na1 N22

McNemar’s test (discussed later in Section 3.5) considers the difference in the sum
of the frequencies in the upper triangle (ng1, 792 and ny2) and the sum of frequencies
in the lower triangle (n1g, 129 and ngy). If there is no association between the disease
and the allele, switching the affected individual and unaffected relative, i.e, switching
the rows and columns in the Table 3.2 should not make a difference. Therefore,
one can test for association by considering the differences ng; — n1g, ng2 — ngy and
nis — no1. The entries on the diagonal do not contribute any useful information for

assessing association between the disease and the locus because both relatives have
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the same genotype. The tests of association described above in Section 3.2 involve
fitting the unconditional model to the complete table. It is also possible to use this
model conditional on the two relatives having different genotypes. Therefore, the
joint probabilities for the affected person and its unaffected relative (sibling, parent
and grand parent) are derived conditional on their having different genotypes (Tables
3.3, 3.4 and 3.5, respectively). This approach is called partially conditional (PC) to

contrast with another approach described later in Section 3.4.

Table 3.3: Joint probability of genotypes for a partially conditional model for a
discordant sibling pair

Affected Unaffected Sibling
Sibling AA Aa aa
¢o(1—¢1)p(1+p) ¢o(1—¢2)
AA B : Plcg - : PCS% =
¢1(1=g0)p(1+p) ¢1(1=¢2)q(1+q)
Aa s - S pos
$2(1—¢o) $2(1—¢1)q(1+q)

aa o B o -

where

PCS = 2[¢op + d1(1 — pq) + ¢2q — pod1p(1 + p) — dodapq — d102q(1 + q)].
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Table 3.4: Joint probability of genotypes for a partially conditional model for a
discordant child-parent pair

Affected Unaffected Parent
Child AA Aa aa
do(1—¢1)
a4 | mlew
$1(1—¢o) $1(1—¢2)
Aa “pop - Do
$2(1—¢1)
aa 0 e e -

where

PCP = 2[¢op + (1 — ¢1)q].

Table 3.5: Joint probability of genotypes for a partially conditional model for a
discordant grandchild-grandparent pair

where

Affected Unaffected Grandparent
Grandchild AA Aa aa
AA ¢o(17ﬁ16117G(1+2p) ¢>0(}1;6j2)pq
Aa (1—¢03;ﬁé1(7;(1+2p) ¢1(1—?2<1G(1+2q)
aa (l_zfoc)gwq (1=91)¢2q(1+2q) )

PCG = p(2+p)¢o+ (3—4pq) o1+ q(2+ q) b2 — 2p(1 + 2p) — 2pqooda — 2q(1 + 2q) $1 9.
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Table 3.6: Joint probability of genotypes for a partially conditional model for unre-
lated discordant pairs

Affected Unaffected Individual
Individual AA Aa aa
AA _ 2¢o(;521 )p? ¢0(;;¢;i)ﬁq
RS
w | Loggpm tger

where

PCU = ¢op[2(1—¢1)p+(1—d2)q]+2¢1[(1— o) p*+ (1—¢2) ¢+ d2q[(1— 0 )p+2(1—1)q).

Note that under the null hypothesis of no association, ¢y = ¢; = ¢2 and the off-
diagonal entries, ijth and jith probabilities are equal, for ¢ # 7. The conditional
probabilities do not depend explicitly on the disease prevalence, Kp. However, esti-
mation of q, ¢g, ¢1 and ¢ would imply estimation of Kp which is not possible with
a random sample of discordant relative pairs. As before, a value for Kp is assumed
known and one parameter is eliminated from estimation.

The LRT is carried out by comparing the maximized likelihoods under the null
and alternative hypotheses (Hy : 6 = v = 1, H, : 3,7 both not 1). The test
statistic, Apc, is asymptotically distributed as x? with two degrees of freedom in large
samples (Appendix C). Simulations were carried out for discordant pairs (sibling,

parent, grandparent and unrelated) to investigate the level and power of the partially
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conditional model.

To assess the level of the partially conditional model for testing association, 1000
data sets were generated under the hypothesis of no genetic effect (Hy) for various
choices of g, and sample size, n and the likelihood ratio test was carried out at the
0.05 level of significance. Table 3.7 shows that the proportion of times Hj is correctly
rejected is close to the nominal level. The data were generated using the probabilities
from the unconditional model and only off-diagonal cases with differing genotypes

were used in estimation of parameters and testing.

Table 3.7: Type I errors obtained by simulation to test association under different
discordant pairs for a partially conditional test at a = 0.05

q = 0.05 qg=0.1 qg=0.3
n=300 n=1000 | n=300 n=1000 | n=300 n = 1000
sibling .0320 .0560 .0490 .0550 .0420 .0545
Parent .0440 .0522 .0515 .0583 .0443 .0460
Grandparent, .0370 .0460 .0650 .0530 .0460 .0510
Unrelated 0.046 0.060 0.073 0.057 0.058 0.057

Note that the test is slightly conservative for small n and ¢ when some of the
expected counts are small. This could be because the effective sample size, the number
of pairs with different genotypes, used in the partially conditional model is small
(Table 3.8).

To assess the power of the partially conditional test for genetic effects for dis-
cordant pairs, data were generated under the alternative hypothesis (H,) and LRTs

were carried out. The simulated power of the tests are summarized in Figures 3.3 for
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sample sizes of 300 and 1000 relative pairs. Also shown is the power for unrelated

discordant pair studies of the same size.

1.0

0.6

Power

0.4
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1.5 2.0 25 3.0
Homozygote relative risk

Figure 3.3: Power of the partially conditional test for association using discordant
pairs.
For Kp = 0.02, § = 1. Relative pairs (sibling, parent, grandparent) = (O, o, A),
unrelated discordant pair = ¢. Open/filled symbols for ¢ = 0.1/0.3. Solid/dashed
lines for n = 300, 1000.

Figure 3.3 shows that the power increases with the minor allele frequency, ¢,
homozygote relative risk, v and the sample size, n. For the larger sample size and

minor allele frequency, the power for all discordant relative pairs is similar as is that

of unrelated discordant pair. The power of the test increases with the distance in
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relatedness, i.e., the power is the largest for the unrelated discordant pair followed by
the discordant grandchild-grandparent pair. The power is the smallest for discordant

sibling pairs. These results agree with those obtained by Yan et al. (2009).
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Figure 3.4: Comparison of the power of the unconditional (U) and partially condi-
tional (PC) tests for genetic association for discordant pairs.

For Kp = 0.02, 8 = 1. Relative pairs (sibling, parent, grandparent) = (O, o, A),
unrelated discordant pair = ¢, ¢ = 0.1, n = 300 (a), n = 1000 (¢); ¢ = 0.3, n. = 300
(b), n = 1000 (d).

The results of the unconditional and partially conditional test of association for
discordant pairs are similar (Figure 3.4), but the power of the unconditional test

is slightly larger than that of the partially conditional test. This may be because
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the effective sample size for the partially conditional test is smaller than that of the

unconditional test (Table 3.8).

Table 3.8: Effective sample size for the partially conditional test for association

q=0.1

q=0.3

0 n =300 n = 1000

n =300 n = 1000

sibling pair

1 49 165 105 351
1.5 51 170 109 364
2 52 172 111 372
2.5 53 176 114 380
3 54 178 117 388
Child-parent pair
1 51 172 115 384
1.5 5%) 183 130 432
2 56 187 133 443
2.5 57 190 136 452
3 29 193 139 463
Grandchild-grandparent pair
1 72 241 139 464
1.5 75 249 153 510
2 76 252 157 522
2.5 7 256 160 534
3 78 259 164 544
Unrelated discordant pair
1 92 308 163 546
1.5 93 312 163 546
2 94 314 164 548
2.5 95 317 164 547
3 95 320 165 550

The effective sample size increases with the overall sample size, n, the minor allele
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frequency, ¢ and the distance in relatedness. The power of the test in both cases

increases with the distance in relatedness.

3.4 Testing Association Using A Fully Conditional Model For Discordant

Pairs

If there is no association between the disease and the locus, then the genotypes
of each member of a relative pair are irrelevant and could be switched. This suggests
conditioning not only on the relatives having different genotypes, but also on the
number of such pairs of each type. That is, condition on ng; + n1g, N2 + nog, and
nia + Moy, the number of pairs with genotypes (AA, Aa), (AA, aa) and (Aa, aa)
respectively. The conditional distribution of the counts are binomial for each type,

with probabilities as shown in Tables 3.9, 3.10, 3.11 and 3.12.

Table 3.9: Joint probability of genotypes for a fully conditional model for a discordant
sibling pair

Affected Unaffected Sibling
Sibling AA Aa aa
$o(1—¢1) $o(1—¢2)

AA ) do(1—¢1)+é1(1—¢0)  po(1—h2)+¢p2(1—d0)

Aa $1(1—¢o) _ $1(1—¢2)
$0(1—¢1)+¢1(1—¢0) $1(1—¢2)+d2(1—¢1)

aa $2(1—¢0) $2(1—¢1) _
do(1—¢2)+d2(1—¢0)  ¢1(1—d2)+d2(1—¢1)
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Table 3.10: Joint probability of genotypes for a fully conditional model for a discor-
dant child-parent pair

Affected Unaffected Parent
Child AA Aa aa
AA . Goll01) 0
¢o(1—¢1)+¢1(1—¢o)
Aa $1(1—¢o) _ $1(1—¢2)
¢0(1—¢1)+¢1(1—¢0) d1(1—¢2)+d2(1—¢1)
aa 0 ¢2(1—¢1)

d1(1—¢2)+¢2(1—¢1) -

Table 3.11: Joint probability of genotypes for a fully conditional model for a discor-

dant grandchild-grandparent pair

Affected Unaffected Grandparent
Grandchild AA Aa aa
do(1—¢1) $o(1—¢2)
AA ) do(1—1)+¢1(1—do)  do(1—¢2)+d2(1—¢o)
Aa $1(1—¢o) _ $1(1—¢2)
¢0(1—¢1)+¢1(1—¢0) &1 (1—¢2)+¢2(1—¢1)
¢2(1—¢o) p2(1—¢1)
aa ¢o(1—2)+d2(1—¢o)

¢1(1—¢2)+¢a(1—¢1) -
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Table 3.12: Joint probability of genotypes for a fully conditional model for an unre-
lated discordant pair

Affected Unaffected Individual
Individual AA Aa aa
po(1—¢1) do(1—¢2)
A4 i do(1—p1)+o1(1—do)  po(1—¢2)+d2(1—do)
Aa $1(1—¢o) ~ $1(1—¢2)
¢0(1—¢1)+é1(1—¢0) d1(1—¢2)+d2(1—¢1)
aa $2(1—¢o) $2(1—¢1) _

do(1—p2)+p2(1—¢a)  d1(1—2)+d2(1—¢1)

Note that these probabilities depend only on the three penetrances and not on the
disease prevalence or allele frequency. In addition, the entries in the four tables are
the same except for the (AA, aa) genotype for child-parent pairs, which is impossible.

Under the null hypothesis of no association, the genotypic probabilities given in
Chapter 2 depend on the allele frequency, q. The sufficient statistics for ¢ under Hy
are Nog, N11, N22, N1 + N1, Noz + Nog and ni9 +no; and conditioning on these statistics
gives the tables above, which depend only on the penetrances. This approach to
estimating the nuisance parameter ¢ is analogous to Fisher’s exact test in 2 x 2
contingency tables.

Although the conditional probabilities depend on the three penetrances, it is not
possible to estimate them uniquely. A sample of discordant pairs is not a random
sample from a population and so does not allow estimation of the three probabilities
of disease given the genotypes. It is possible to write the probabilities in terms of two

odds ratios and these can be estimated using a sample of discordant pairs. Denote
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by Pjo the conditional probability that the genotype of the affected individual is Aa

given that the two genotypes of the discordant individuals are AA and Aa. Then

¢1(1 — ¢o)

Fio = Po(1 — 1) + d1(1 — o)

and dividing the numerator and denominator by ¢o(1 — ¢1) gives

th _ P1
O+60 1+p

Py =

= 7@ is the odds and p; = % is the odds ratio. Similarly,

— W 0

where 6,

0o _ P2
01 + 05 p1+ p2

P21:

and for sibling pairs and grandchild-grandparent pairs,

6 _ P2
Op+0> 14 po

PQOZ

In these expressions the subscripts on the conditional probability, P, refer to the
number of variant alleles in the genotype of the affected individual and their relative.

The odds ratios can be estimated using the likelihood

L(p1, p2) HHPM,

1=0 j=0

where P;; = 1 — Pj;. To enforce the constraints that p; > 0, it is convenient to
reparametrize the likelihood in terms of the log odds ratios, §; = log(p;). Under the
null hypothesis of no association, the odds ratios are 1, §; = 0, and the conditional
probabilities are P;; = % The fully conditional LRT statistic for association, Ap¢, is
twice the difference in log likelihood under the null and alternative hypotheses, and

is asymptotically distributed as x? with two degrees of freedom (Appendix D).
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For the child-parent pairs the genotype pair (AA, aa) is impossible and the log

likelihood function is

U= 1log(L(p1, p2)) =(n1o + naz)log(p1) + nailog(pz) — (n10 + no1)log(1 + p1)

— (12 + na1)log(pr + p2),

and the maximum likelihood estimates are

np1n12 — N1gn21

P1L =
nipni12 — No1M21

and

L N
P2 = —pP1-
Ni2

Insight into the form of genetic effects: dominant, recessive, additive or multiplicative
can be obtained by imposing constraints on the pentrances and comparing the fit to
the general model. In these cases the likelihood ratio test has a x? distribution with
one degree of freedom.

Simulations were carried out for discordant pairs to investigate the level and power
of the fully conditional test. To assess the level, 1000 replicated data sets were
generated under the hypothesis of no genetic effect (H,) for various choices of allele
frequency q, and sample size n, and the likelihood ratio test was carried out at the
0.05 level of significance. Table 3.13 shows that the proportion of times H is correctly
rejected is close to the nominal level. The data were generated using the probabilities
from the unconditional model and only off-diagonal cases with differing genotypes

were used in estimation of parameters.
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Table 3.13: Type I errors obtained by simulation for the fully conditional test and
different discordant pairs at a = 0.05

q=0.05 qg=0.1 q=0.3
n=300 n=1000 | n=300 n=1000 | n=300 n = 1000
Sibling 0.0288 0.0583 0.0585 0.0402 0.0522 0.0541
Parent 0.0420 0.0590 0.0660 0.0550 0.0510 0.0610
Grandparent, 0.0418 0.0626 0.0734 0.0660 0.0522 0.0500
Unrelated 0.036 0.066 0.057 0.050 0.053 0.048

To assess the power of the fully conditional test, data were generated under the
alternative hypothesis (H,) and the LRT was carried out. The simulated power of the
tests are summarized in Figures 3.5 for sample sizes of 300 and 1000 relative pairs.
Also shown is the power for a study of the same size involving unrelated discordant
pairs.

Figure 3.5 shows that the power increases with the minor allele frequency, ¢,

homozygote relative risk, v, and the sample size, n.
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Figure 3.5: Power of the fully conditional test for discordant relative pairs.
For Kp = 0.02, § = 1. Relative pairs (sibling, parent, grandparent) = (O, o, A),
unrelated discordant pairs = (. Open/filled symbols for ¢ = 0.1/0.3. Solid/dashed
lines for n = 300, 1000.

For the larger sample size and minor allele frequency, the power for all discordant
relative pairs is similar as is that of the unrelated discordant pairs. The power of the
test increases with the distance in relatedness, i.e., the power is the largest for the
unrelated discordant pairs followed by the discordant grandchild-grandparent pairs.
The power is the smallest for discordant sibling pairs. These results agree with those

obtained by Yan et al. (2009).
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Figure 3.6: Comparison of the power of the unconditional (U) and fully conditional
(FC) LR tests for genetic association for discordant pairs.
For Kp = 0.02, § = 1. Relative pairs (sibling, parent, grandparent) = (O, o, A),
unrelated discordant pairs = ¢, ¢ = 0.1, n = 300 (a), n = 1000 (c); ¢ = 0.3, n = 300
(b), n = 1000 (d).

The results of the unconditional and fully conditional test for testing of association

for discordant pairs are similar (Figure 3.6), but the power of the unconditional test

is slightly larger than that of the fully conditional test. This may be due to the larger

effective sample size, and the extra assumption that the prevalence of disease, Kp, is

known. The power of the partially and fully conditional tests are the same (Figure

3.7).
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Figure 3.7: Comparison of the power of the partially (PC) and fully conditional (FC)
tests for genetic association for discordant pairs.
For Kp = 0.02, § = 1. Relative pairs (sibling, parent, grandparent) = (O, o, A),
unrelated discordant pairs = ¢, ¢ = 0.1, n = 300 (a), n = 1000 (c); ¢ = 0.3, n = 300
(b), n = 1000 (d).

The effective sample sizes for the fully conditional test are shown in Table 3.14,

and are similar to those for the partially conditional test (Table 3.8).



Table 3.14: Effective sample sizes for the fully conditional test of association

q=0.1 q=0.3
y n =300 n=1000 | n=300 n = 1000
sibling pair
1 50 167 105 353
1.5 51 170 108 363
2 51 173 111 372
2.5 52 175 114 379
3 53 178 116 388
Child-parent pair
1 53 180 125 419
1.5 55 183 129 431
2 55 187 132 443
2.5 57 190 136 453
3 58 194 138 462
Grandchild-grandparent pair
1 74 245 149 497
1.5 74 248 153 510
2 75 252 156 522
2.5 76 255 159 533
3 7 258 162 544
Unrelated discordant pair
1 93 311 172 575
1.5 94 314 176 589
2 95 318 180 602
2.5 96 321 184 614
3 96 324 187 625




77

3.5 Comparison Of Results With Those Of Yan et al. (2009)

Yan et al. (2009) discussed different tests of association using data on discordant
relative pairs for full-sib, half-sib and first-cousin pairs: McNemar’s test, the matched
Cochran-Armitage trend tests, the matched maximum efficient robust test and Bhap-
kar’s test. They obtained the joint genotypic frequencies for relative pairs and the
expressions for the full sibling pair are identical to those given in Table 2.2.

The genotypic data for relatives can be summarized in a 3 x 3 table as in Table

3.2. McNemar’s test statistic is

2
(ny —nr)
Ty = ———
Ny -+ nr
where
ny = N1z + Ng2 + No1
and

nr = No1 + Nag + Nap-

In order to compare the tests proposed in this chapter with McNemar’s test, sim-
ulations were carried out assuming two different values of the minor allele frequency;,
g = 0.2,0.4, sample size, n = 200, the prevalence of disease Kp = 0.1 under the null
model (§ = 1,7 = 1) for the level and under the dominant model (8 = 2,7y = 2),
recessive model (8 = 1,7 = 2), and additive model (8 = 1.5, = 2) for the power.
These were the values used in Yan et al. (2009). For the simulations, 1,000 replicated

data sets were used. Data were generated for different relative pairs and for unrelated
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discordant pairs. The results are summarized in Table 3.15. The table shows that

the level of all the tests are comparable and close to the nominal value of 0.05.

Table 3.15: Level and power of tests for association for discordant pairs using the
unconditional (U), partially (PC) and fully (FC) conditional LRTs and McNemar’s
test (M), Kp = 0.1, n = 200

Level Power

Dominant model | Recessive model | Additive model

q 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4
Sibling pair
U [ 0.056 0.041 | 0.806 0.813 | 0.386 0.764 | 0.336 0.416
PC | 0.055 0.060 | 0.685 0.638 | 0.246 0.597 | 0.371 0.400
FC | 0.060 0.058 | 0.236 0.597 | 0.364 0.396 | 0.697 0.645
M | 0.050 0.050 | 0.702 0.501 | 0.110 0.409 | 0.411 0.463
Child-Parent pair
U |[0.048 0.055 | 0.829 0.812 | 0.426 0.813 | 0.366 0.444
PC | 0.074 0.046 | 0.749 0.682 | 0.306 0.665 | 0.344 0.367
FC | 0.068 0.055 | 0.303 0.677 | 0.360 0.404 | 0.716 0.660
M | 0.050 0.050 | 0.684 0.500 | 0.132 0.456 | 0.402 0.483
Grandchild-Grandparent pair
U | 0.055 0.045 | 0.898 0.894 | 0.434 0.841 | 0.501 0.584
PC | 0.051 0.058 | 0.861 0.824 | 0.336 0.801 | 0.495 0.554
FC | 0.050 0.043 | 0.334 0.756 | 0.489 0.543 | 0.869 0.804
M | 0.050 0.050 | 0.871 0.676 | 0.130 0.544 | 0.563 0.623
Unrelated discordant pair

U [ 0.052 0.054 | 0.956 0.920 | 0.494 0.896 | 0.630 0.673
PC | 0.055 0.056 | 0.382 0.846 | 0.608 0.720 | 0.940 0.884
FC | 0.050 0.043 | 0.333 0.822 | 0.604 0.692 | 0.942 0.904
M | 0.050 0.050 | 0.956 0.810 | 0.129 0.623 | 0.683 0.739

In general the power is higher for ¢ = 0.4 than for ¢ = 0.2. Power is largest
for the dominant model, and smaller for the recessive and additive models, for the
unconditional, partially conditional and McNemar’s tests. The fully conditional test,

however, has highest power for the additive model. For each test, power increases
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with the distance in relatedness as noted by Yan et al. (2009). McNemar’s test has
low power for the recessive model, in particular when ¢ = 0.2. The fully conditional
test has low power for the dominant model when ¢ = 0.2.

In making these comparisons, one should keep in mind that the unconditional and
partially conditional tests require the assumption that the prevalence of disease and
minor allele frequency are known and that the effective sample size for the partially
conditional, fully conditional and McNemar’s test is substantially smaller than the

overall sample size.

3.6 Application To A Data Set

The proposed methods of testing for association based on the heterogeneous mod-
els were applied to a data set involving 112 discordant sibling pairs from 100 unrelated
families ascertained for the presence of one or more individuals with Alzheimer’s dis-
ease and typed for the ApoE polymorphism (Boehnke and Langefeld, 1998). Table
5 in Boehnke and Langefeld (1998) gives the joint genotypic counts for the affected
and unaffected sibling at three alleles, €9, €3, and &4, at the ApoE gene. The allele ¢4
is the high risk allele and &5 is the low risk allele for Alzheimer’s disease. The data

for the alleles 5 and €3 were combined to give the joint genotypic data in Table 3.16.
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Table 3.16: ApoE genotypes for Alzheimer’s disease

Unaffected Sibling

Affected Sibling | 4¢4 €44 €4E4 Total

E4€4 23 4 0 27
€4€4 25 36 2 63
€4E4 8 8 6 22
Total 56 48 8 112

The unconditional, partially and fully conditional tests and the McNemar’s test
were applied to the data set. The prevalence of Alzheimer’s disease, Kp is assumed to
be 0.06 (Wittke-Thompson et al., 2005) for the unconditional and partially conditional
tests. The results are summarized in Table 3.17. Exact p-values for the McNemar’s
and fully conditional test were obtained by enumerating all the possible tables with
the totals ng1 +n19 = 29, nga + 199 = 8 and n15 +ng; = 10, resulting in 2970 different
possibilities. Approximate p-values for the unconditional and partially conditional
tests were obtained from the y3 distribution. Confidence intervals were obtained
using the parametric bootstrap. The estimate of the recurrence risk for a siblings is
Kg = 0.11, the heterozygote relative risk is B = 6 and homozygote relative risk is 4

= 24, using either the unconditional or partially conditional model.
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Table 3.17: Parameter estimates and tests for the Alzheimer’s data set using the

unconditional (U), partially (PC) and fully (FC) conditional LRTs and McNemar’s
test (M) for the ApoE data, Kp = 0.06

Estimates, (95% quantile interval) Test

U G = 0.1720 (0.1288,0.2348), | Ay = 36.6129,
by = 0.1179 (0.0863,0.1589), | p=1.12 x 108
b = 0.4407 (0.2018,0.7774).
o = 0.0195 (0.013,0.0274),

3 = 6.0319 (3.4252,10.6457),

4 = 22.5535 (8.2075,47.6059)

PC| g

0.1572 (0.0871, 0.2435), | Ape = 34.3583,
b = 0.1239 (0.0882, 0.1839), | p = 3.46 x 108
dy = 0.5066 (0.2170, 1).
b0 = 0.0206 (0.0049, 0.0382),

B = 6.0046 (2.7600, 27.3502)

4 = 24.5541 (9.1893, 135.4449)

FC &y = 1.9057 (1.0475, 3.4444), Ape = 31.3219
by = 3.4531 (2.1030, 26.2612). p=223x 107"
p1 = 6.7239 (2.8507, 31.3240),

po = 31.5979 (8.1910, 2.54 x10'!)

M - Ty = 26.0638

p=L177x 1077
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The results suggest that the individuals with two ¢, variant alleles have about
a 24-fold increased risk and those with only one copy of the variant allele have a
six-old increased risk of getting Alzheimer’s disease compared to those with no copies
of the variant allele. Recall that for a relatively uncommon disease, the odds ratios
are nearly the same as relative risks, so the three tests based on the heterogeneous
model give very similar results. While these tests give the same small p-value as
the McNemar’s test, they give added insight into the mode of inheritance. The
estimated penetrances indicate that dominant and recessive models can be ruled
out, but additive and multiplicative models are possible. The conclusion of a strong
association of the allele ¢4, with Alzheimer’s disease coincides with those of Boehnke
and Langefeld (1998) and Yan et al. (2009).

For the exact test of the Alzheimer’s data, out of the 2970 possible tables, there
are 360 cases considered considered more extreme than the observed table using the
FC test statistic, Apc, whereas for the McNemar’s test statistic, 1), there are only
167 cases considered more extreme than the observed table. Of these, 108 tables
were found to be extreme by both tests whereas there were 59 tables that were more
extreme than the observed by Ty, but not by Apc and 252 were found to be more
extreme by Apc and not by Tyy;.

Figure 3.8 shows the relationship between the McNemar’s and FC test statistics
for each of the 2970 possible tables. The horizontal and vertical dotted lines on the
graph correspond to the 0.95 quantiles of x3 (5.9915) and x% (3.8415) respectively,

indicating the asymptotic rejection regions for the tests. The points O, B, M, C and
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N in Figure 3.8 are examples of tables that are found to be more extreme than the
observed table (O) by both the FC and McNemar’s tests (B), only by McNemar’s
test (M), only by the FC test (C), and a table that was not extreme by either test

(N). These tables are presented in Table 3.18.
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Figure 3.8: Comparison of the fully conditional and McNemar’s test statistics.
Tables more extreme or as extreme than the observed table (O) by both FC and
McNemar’s tests (x), by FC only (e), by McNemar’s only (#); tables less extreme
than the observed table (.).

The vertical lines in Figure 3.8 shows that McNemar’s test is more discrete than

the LR test. There are only seven values for T}, as extreme or more extreme than



the observed. The 0.05 exact critical value of Ty, is 3.5957 and of Apc is 6.2479.
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Table 3.18: Five tables with their McNemar’s (7)) and fully conditional (Apc) test

statistics

Point Table TA/[ AFC

) -4 0 26.0638 | 31.3219
25 - 2
8 & -

B -0 0 ]43.0851 | 58.6542
29 - 1
8 9 -

M -0 4323617 | 27.1013
29 - 0
4 10 -

C -0 1 ]13.2979 | 59.1275
29 - 10
7 0 -

N - 14 41 0.0213 | 0.0299
5 - 5
4 5 -

The tables, like N, that have fairly symmetric counts below and above the diagonal

do not lead to the rejection of the null hypothesis of no association by either test.

The tables that do lead to rejection by both tests, like B, have nearly all counts

either below or above the diagonal. Table C shows strong association in two of the

three genotypic categories, but the opposite in the third. McNemar’s test statistic

is relatively small for this table but the maximum likelihood estimates for the odds

ratio are large as is the test statistic Apc. There are some tables where Ap¢ is larger

than the observed table but McNemar’s test is not significant. All the tables, like M,

which give more extreme values for T, but not for Ape give fairly large values for
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Arc which lead to rejection of the hypothesis of no association.

Profile log likelihood and contour plots for d; and d, in the fully conditional model
for the Alzheimer’s data are shown in Figure 3.9 and Figure 3.10. The profile likeli-
hoods are fairly symmetric in the log odds ratios. The approximate 95% confidence
interval for 0, is (0.960, 3.140) and ds is (1.89, 5.529). The interval for d; is similar to
the 95% parametric bootstrap interval obtained in Table 3.17, however the interval

for d5 is much narrower than the bootstrap interval.

Log likelihood
Log likelihood

Delta 1 Delta 2

Figure 3.9: Profile log likelihood functions for §; and 9,.



Delta 2

Delta 1

Figure 3.10: Contour plot of the log likelihood as a function of d; and 9s.

The joint likelihood contours are quite elliptical and show a positive association

between the two log odds ratio estimates.
3.7 Discussion

Tests of association between a locus and a disease using the data from an affected

individual and a relative using likelihood ratio tests based on the heterogeneous dis-

ease model are described in this chapter. For affected relative pairs, the power of

86
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the test increases with the nearness in the relatedness, however, for the discordant

relative pairs, the power of the test increases with the distance in the relatedness.

The results of the unconditional, partially and fully conditional tests for discordant
relative pairs are similar, but the power of the unconditional test is slightly larger
than that of the partially and fully conditional tests. This may be because the
effective sample size for the conditional tests is smaller than for the unconditional
model (Table 3.14) because the data from pairs with the same genotypes are ignored.
However, there is a very slight difference between the power of the test under the
fully conditional model (Figure 3.5) and under the partially conditional model (Figure
3.3). The effective sample size under the fully conditional model (Table 3.14) and
the partially conditional model (Table 3.8) are very similar. The effective sample
size increases with the overall sample size, n, the minor allele frequency, ¢ and the
distance in relatedness. The power of the test in all three cases increases with the

distance in relatedness.

One of the advantages of the fully conditional test is that it does not require
any assumptions regarding the prevalence of disease, Kp, or allele frequency, ¢q. The
power of the fully conditional model is larger than that of McNemar’s test in most
cases considered and it also gives information regarding the mode of inheritance of the
disease in addition to the degree of association. In the example, the fully conditional
test considers a broader range of tables to be as extreme or more extreme than the

observed table because of an extra degree of freedom than the McNemar’s test.
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Another advantage of using family data is that it is robust to population stratifi-
cation, which can lead to spurious association. The next chapter, Chapter 4 discusses

testing for association accounting for possible stratification in the population.



Chapter 4

Accounting For Stratification And Genetic Association In

Case-Control Studies

4.1 Introduction

A stratified population is one that contains sub-populations with different allele
frequencies at the locus of interest. One of the reasons for stratification is migration
of individuals from one population into another; for example, migration of Asians
or Africans to Europe and North America. If a certain disease is more prevalent in
one sub-population than the other, taking a random sample of cases without regard
to the sub-populations, is likely to contain more subjects from that sub-population.
Thus a case-control design will show association with any locus with different allele

frequencies in the two sub-populations leading to spurious association.

There are several reasons for observing Hardy-Weinberg Disequilibrium (HWD),
including stratification, genotyping error and selection bias. This chapter gives an
extension of the heterogeneous disease model for case-control studies introduced in
Chapter 1 to include both association and population stratification. The extended
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model can be used to determine if the observed HWD can be explained by stratifica-

tion and/or association with the disease.

The following section, Section 4.2, summarizes the heterogeneous disease model
described in Chapter 1. In Section 4.3 genotypic frequencies for stratified population
are derived. Section 4.4 discusses the model fitting and assessment followed by the
inferences for the extended model in Section 4.5. Simulations were carried out to
assess the level and power of the test of stratification and association. Section 4.6
discusses the details and results of the simulations. The Hardy-Weinberg disequi-
librium coefficients for cases and controls in a stratified population are obtained in
Section 4.7. Also discussed are the direction and magnitude of the HWD coefficient
in specific genetic models. The method was applied to an augmented heterogeneous
stone former cohort and a control sample (Cole et al., 1998) to demonstrate how
this method can be used to apportion HWD to genetic association in the presence
of stratification in Section 4.8. The results are discussed in Section 4.9. This chap-
ter contains material from the paper “Attributing Hardy-Weinberg disequilibrium to
population stratification and genetic association in case-control studies”, published

in Annals of Human Genetics, 2010, 74(1), 77-87.

4.2 Heterogeneous Disease Model

In Chapter 1 a heterogeneous disease model was described for case-control studies

for a biallelic locus, with wild type and variant alleles A and a, with frequencies
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1 — ¢q and ¢, assuming Hardy-Weinberg equilibrium (HWE) in the population. For
the genotypes, 0(AA), 1(Aa) and 2(aa), with frequencies Py = (1—q)?, P = 2q(1—q)
and P, = ¢? in the population, Wittke-Thompson et al. (2005) obtained case (d = D)

and control (d = C') frequencies

P(d|i) P;

Pyg=—5——
T P(d)

(4.1)

where P(D|i) = ¢; is the penetrance for genotype 4, i= 0,1 or 2 and P(D) = Kp is

the prevalence of disease
Kp = Fygo + P1o1 + Patpo.

Writing the penetrances in terms of the baseline risk, a = ¢g, the heterozygote
relative risk, 5 = ¢1/¢o and homozygote relative risk v = ¢o/pg, Wittke-Thompson
et al. (2005) also obtained expressions for the Hardy-Weinberg coefficients (Weir
(1996))

D = Pyy— Pi=Py—(1—q) (4.2)
for cases and controls as

¢*(1 = g)*a®(y = 5%
K3

and

_ q2(1 — q)2a(2ﬂ —1—y—af?+ ay)
Pe= (1 —Kp)? : (4.4)

respectively. After fitting the model to the data, a lack of fit (LOF) test is used to

indicate whether any observed HWD is consistent with the genetic association.
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4.3 Genotypic Frequencies For A Stratified Population

Consider a population that has two strata, labelled as 1 and 2, with proportions
€, 1 — ¢ in the population. The penetrances, ¢q, ¢1, @2, are assumed to be constant
over both strata.

The genotypic frequency in the stratified population is a weighted sum of the

respective stratum genotypic frequencies

P =¢ePy + (1 —¢)Pa,

where P;; is the frequency of the genotype i, where ¢ = 0, 1,2 is the number of variant
alleles in strata j, 7 = 1,2. Assuming HWE in each sub-population the genotypic

frequencies are given by

Po=c(1—q)*+ (1 —&)(1 — q)? (4.5)
P =22¢(1 —q1) + (1 —€)2¢2(1 — go) (4.6)

and
Py=eql + (1-e)g; (4.7)

where ¢; is the minor allele frequency in strata j, j = 1,2. The prevalence of the

disease in stratum 7,5 = 1,2 is

Kp, =Pyjp0 + P11 + Pajo

=(1 = q;)*¢o + 2(1 — q;)q;¢1 + qj2¢2
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and the prevalence of disease in the population is

P(D) = Kp = Pyoo + P1p1 + Paco
= [ePo1 + (1 — &) Poalpo + [ePi1 + (1 — €) Pr2)p1 + (€Po1 + (1 — &) Pao) 2
= [e(1—a@)* + (1 —e)(1 — g2)"]¢o
+[e201(1 = q1) + (1 = €)2¢2(1 — g2) )1 + [eqi + (1 — €)ga] e
=e[(1—a1)*¢o +2(1 — a) @161 + 1]

+ (1= &)[(1 — g2)°do + 2(1 — ¢2) @201 + G5 ¢2]

or
KP:€KP1 +(1—E>Kp2, (48)

and is a convex combination of the disease prevalences Kp, in each stratum, j = 1, 2.
The probability of a genotype i, i = 0, 1,2 conditional on disease status d, d =
D,C'is

Applying Bayes’ Rule allows the numerator to be expressed in terms of penetrances

and population genotypic frequencies

P(d|i) Py

= "R

(4.9)

Using (4.5), (4.6), (4.7) and (4.9), the genotypic frequencies for cases and controls

can be summarized as in Table 4.1.
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Table 4.1: The genotypic frequencies for cases and controls.

Genotype Frequency
Cases (D)
AA (0) fele—q) + (1) (1~ g2)’]

Aa (1) %[25(1 —q)q1 +2(1 —e)(1 — q2) o]

aa (2) ledt + (1 - 2)g3]

Controls (C)

AA (0) Tt = a) + (1= e)(1 - )]

Aa (1) | {525 2e(1— q)gr +2(1 — £)(1 — g2) g2

aa (2) 2 [eqi + (1—&)q3)

When the stratification proportion, ¢ is either zero or one or when the minor allele
frequencies are the same in the two strata, i.e. g1 = @9, there is only one population

and the results reduce to the heterogeneous model (4.1) as described in Chapter 1.

4.4 Model Fitting And Assessment

In case-control association studies the data consists of genotypic counts for cases
and controls denoted by n;p and n;c respectively, ¢+ = 0, 1, 2; as shown in Table 1.1,
Chapter 1. The genotypic frequencies (Table 4.1) with the observed counts for cases

and controls form a multinomial likelihood function



95

2
Lp.®) = [[ [IPa

d={D,C} i=0

where p and ® are vectors containing the genotypic probabilities and penetrances
respectively. The disease prevalence Kp is assumed to be known from other sources
because case-control studies give no information about the prevalence of disease. The
constraint (4.8) allows one of the parameters to be evaluated from the others. For

example, the baseline prevalence, ¢y can be written as a function of Kp, ¢1, ¢, ¢; and

g2 as
¢ - KP—P1¢1—P2¢2
0 — PO ’
or
o= K= olea(l=q) 20—l = @)+ ol + L=,

e(l—q1)* +e(l—q)?
The remaining parameters in the model are €, ¢1, g2, ¢1, ¢2. There are only four degrees
of freedom in the data so at most four parameters can be estimated. To allow for
LOF testing, at least two or more of ¢,¢; and ¢ are assumed to be known in the
analyses. Once the other parameters have been estimated, ¢y can be obtained from
equation (4.10).

The parameters can be estimated by maximizing the likelihood function numeri-
cally, and approximate standard errors can be obtained by evaluating the inverse of
information matrix or by using the nonparametric bootstrap.

A LOF test can be used to assess whether the model is appropriate for the data

and whether any observed HWD can be explained by the genetic association with
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or without stratification in the population. A significant lack of fit would imply
presence of other causes or violation of assumptions. Lack of fit can be tested using
the goodness of fit statistic

x?= 3 i (nia = naPi)®

d={D,C} i=0 nali ’

where np and n¢ are the total number of cases and controls in the dataset. The
genotypic frequencies here are evaluated at the the maximum likelihood estimates
from the fitted model.

In large samples the X? statistic is distributed as a x? with degrees of freedom
depending on the number of parameters estimated. If ¢; and ¢o are assumed fixed
and e, ¢; and ¢y are estimated, then there is one degree of freedom. If ¢, g2 and ¢
are assumed to be fixed and ¢; and ¢, are estimated, then there are two degrees of
freedom.

When the sample size and minor allele frequencies are small, the y? approximation
to the distribution of X2 may not be valid. In this case, the parametric bootstrap
can be used, where X? is compared to the distribution of the values obtained from

samples generated from the fitted model.

4.5 Inferences For The Model With Stratification

It is possible to make inferences about the size and type of the genetic effect and
the extent of stratification by comparing the fit of the general model with that of

a reduced model with fewer effects, using a likelihood ratio test (LRT) described in
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Chapter 1. The hypotheses of interest are

Hy:  Neither genetic nor stratification effects, ¢ =0,8=v7=1
Hy: Stratification effects only, B=v=1
Hy:  Genetic effects only, e=10

H,: Both genetic and stratification effects, 0<e< 1,8,y

It is of most interest to test for genetic effects in the presence of stratification,
which can be done by comparing the hypotheses H; and H,. The alternative hypoth-
esis has three parameters and the null hypothesis has one so the test statistic, A, is
asymptotically distributed as y? with two degrees of freedom.

To test for stratification in the presence of genetic effects, the hypotheses H, and
H, are compared. Under H, the stratification proportion, ¢, lies on the boundary of
the parameter space so the usual x? approximation does not apply. In this case the
test statistic A has a distribution which is a 50:50 mixture of a mass of probability
at zero and the x7 distribution (Self and Liang, 1987).

Insight into the form of genetic effects: dominant, recessive, additive and mul-
tiplicative, or can be obtained by imposing constraints on the pentrances and com-
paring the fit to the general model. In these cases the likelihood ratio test has a x?

distribution with one degree of freedom.



98

4.6 Simulations To Assess Level And Power

Level and power of the proposed hypothesis tests were determined by simulation
based on an assumed disease prevalence of Kp = 0.02. For the simulations, 1,000
replicated data sets were used for each combination of three different values of the
stratification proportion £ (0.05, 0.10, 0.20), six different combinations of the minor
allele frequencies ¢; and ¢o ((0.05, 0.1), (0.05, 0.3), (0.05, 0.5), (0.1, 0.3), (0.1, 0.5),
(0.3,0.5)), three values of the relative risks 5 and ~, (1, 2, 3), two different samples
sizes for cases (300, 1000) and two ratios of cases to controls r (1,4). The level and
power of the tests described above are approximated using the proportion of hypothe-
ses rejected when the data is generated under the appropriate null and alternative

hypotheses, respectively.

4.6.1 Significance Level Of The Tests

To assess the level of the test for genetic effects in the presence of stratification,
data were generated under the hypothesis of no genetic effect (H;) for various choices
of e, ¢; and ¢y and the likelihood ratio test (H; vs. H,) was carried out at the 0.05
level of significance. Table 4.2 shows that the proportion of times H; is correctly

rejected is close to the nominal level.
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Table 4.2: Type I errors obtained by simulation for tests for genetic effects in the
presence of stratification at a = 0.05

Parameters Type 1 Errors
9 q1 q2 Np = 300 Np = 300 Np = 1000
r=1 r=4 r=1
0.2 10.05]0.1 0.067 0.047 0.052
0.2 10.05]0.3 0.051 0.050 0.041
0.2 10.05] 0.5 0.052 0.055 0.056
02 0.1]0.3 0.050 0.057 0.050
0.2 0.1]0.5 0.062 0.044 0.062
0.2 0.3]0.5 0.055 0.051 0.061
0.1 10.0510.1 0.063 0.073 0.046
0.110.05]0.3 0.044 0.053 0.046
0.1 10.05]0.5 0.047 0.046 0.051
0.1 0.1]0.3 0.049 0.048 0.054
0.1 0.1]0.5 0.058 0.052 0.054
0.1 0.3]0.5 0.047 0.056 0.049
0.05 ] 0.05 | 0.1 0.060 0.060 0.039
0.05 | 0.05 | 0.3 0.052 0.048 0.057
0.05 ] 0.05 | 0.5 0.052 0.042 0.046
0.05| 0.1]0.3 0.042 0.044 0.043
0.05| 0.1]0.5 0.050 0.054 0.054
0.05| 0.3 0.5 0.042 0.048 0.042

To assess the distribution of the likelihood ratio test statistic, the x5 Q-Q plot of

the test statistic were plotted ( Figure E.1, Figure E.2, Figure E.3 in Appendix E).

The figures indicate that the LRT statistic follows a y? distribution with two degrees

of freedom.

In this simulation, the standard error of the estimate of ¢ was seen to depend on

the actual value of ¢, the difference in the values of the minor allele frequencies of the

two strata, and the inverse of the square root of the sample size. Linear regression of

log(SE(£)) on these factors for the 18 cases in Table 4.2 gives
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log(SE(02)) = —3.09 + 0.83¢ — 3.67|qo — qu| + 16.89(1/v/n)

with R? = 0.93 and all terms are significant at the o = 0.05 level. This shows that the
standard error increases with € but decreases with the sample size and the difference
in the allele frequencies.

To assess the level of the test for stratification in the presence of genetic effects,
data were generated under the hypothesis of no stratification (Hy) and the LRT (Ha
vs. H,) was carried out at the 0.05 level of significance. The simulated levels in Table
4.3 are close to the nominal level.

Table 4.3: Type I errors obtained by simulation for the test for stratification in the
presence of genetic effects at a = 0.05

Parameters Type 1 Errors
q| B v | np=2300|np=2300|np= 1000
r=1 r=4 r=1
0.05 |1 3 0.062 0.043 0.053
0.05| 3 1 0.054 0.054 0.047
00561 3] 3 0.042 0.050 0.061
0.0513] 6 0.062 0.042 0.053
0.05613] 9 0.058 0.049 0.049
0111 3 0.044 0.043 0.061
0.1 3 1 0.056 0.047 0.055
0.1 13| 3 0.044 0.052 0.034
011 3] 6 0.041 0.059 0.054
0113 9 0.054 0.046 0.045
03] 1 3 0.056 0.047 0.045
03] 3 1 0.043 0.050 0.046
033 3 0.055 0.062 0.051
033 6 0.043 0.044 0.051
033 9 0.050 0.061 0.041
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The distribution of this likelihood ratio test statistic should be distributed as a
50:50 mixture of a x3 (point mass at 0) and a x3 (Self and Liang, 1987). To verify
this, the proportion of times the population proportion estimate, £, under H, is zero
was calculated (Table F.1 in Appendix F) and the Q-Q plots of the non-zero values
of the test statistic were plotted for the x3 distribution (Figure F.1, Figure F.2 and
Figure F.3 in Appendix F). Table F.1 illustrates that ¢ is zero approximately 50% of
the time and Figures F.1, F.2 and F.3, confirm that the distribution of the non-zero

values of the LRT statistic follow a x? distribution with one degree of freedom.

4.6.2 Power Of The Tests

To assess the power of the tests for genetic effects in the presence of stratifica-
tion and stratification in presence of genetic effects, data were generated under the
alternative hypothesis (H,) and LRTs (Hy and Hy vs. H,) were carried out. The
simulated power of the tests are summarized in Figures 4.1 and 4.2.

For both hypotheses the power increases with the sample size. The power for the
test of genetic effects increases with the size of the genetic effect and with the increase
in the difference between the minor allele frequencies of the two strata. The power
of the test for stratification is not affected by the size of the genetic effect. For all
tests the power increases with the increase in the difference between the minor allele

frequency of the two strata and with the increase in the stratification proportion.
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Figure 4.1: Power of the test for genetic association in the presence of stratification
for Kp = 0.02, ¢ = 0.05, 8 =1, ¢o = (0.1,0.3,0.5) = (0, A\, {). Open/filled symbols
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4.7 The Hardy-Weinberg Disequilibrium Coefficient For The Stratified

Population

The Hardy-Weinberg coefficient, D, measures the excess homozygosity and is given

by

D:Paa_q27
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where the minor allele frequency can be obtained from the genotypic frequencies using
the relationship
1
q= Poa + §PAa-

Substituting for P,, and Py, from (4.6) and (4.7), respectively gives

1
q=[ePu + (1 —¢)Pxn] + 5[5P11 + (1 — ) Pro]

1 1
=¢(Po + §P11) + (1 —¢)(Pyn+ §P12)
or
qg=cq + (1 —¢)go, (4.11)

which is a convex combination of the minor allele frequencies in the two strata.
The Hardy-Weinberg coefficient in the stratified population assuming each stra-

tum is in HWE is
Ds =P, — ¢
=leqi + (1 — €)@3] — [eqr + (1 — )]
=eqi + (1 —e)gs — %q7 — (1 — €)°g3 — 2¢(1 — £)quge
=e(1 —€)(af — 20102 + 43)
which simplifies to
Ds=¢(l —¢)(ga — @) (4.12)

in both cases and controls (Deng et al., 2001). This expression reduces to zero if there

is only one stratum, ¢.e. e =0 or 1, or q; = @o.
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The minor allelic frequency among patients, using the genotypic frequencies from

Table 4.1 is
) 1o
4p = K—i[éqf +(1—e)g) + EK—;[Qﬁ(l —q)q +2(1 —e)(1 — g2) o]
€ o 1—e
= —[q1d2+ @1 (1 — q1)p1] + (302 + q2(1 — g2) 1]
Kp Kp
or

qp =eqip + (1 — €)qap, (4.13)

which is a convex combination of the minor allele frequencies.
The Hardy-Weinberg coefficient for cases, using (4.13) and the genotypic frequen-

cies in Table 4.1 is given by

Dp =Pop — qp
g—i[wf +(1-¢e)g) - {Kip[qf% +a(l—q)éd + 1K—_;[q§¢2 + (1 — )]}
:;—%{(7 — )l = g)q + (1 —&)(1 = o) +7e(1 =€) (g2 — ¢1)*}

which simplifies to

Dp =2 [yDs + (v — BV (4.14)

where

V=equ(l—q)+ (1—¢)g(l—q).
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Similarly, the minor allelic probability among controls, using the genotypic fre-

quencies from Table 4.1 is

3

=15 a1 (1 = ¢2) + 1 (1 = q1)(1 — ¢1)]

— &

e [@3(1 — ¢2) + go(1 — g2) (1 — 1))

or

gc =eqic + (1 —€)gac (4.15)

which is a convex combination of the minor allele frequencies. The HWD coefficient

for controls is

Do =Poc — &

- ;?P [egi + (1 - £)g3] - ﬁ{g[qm — 62) + a1(1— q1)(1 = 6)

+ (1 —o)[g3(1 — ¢2) + ¢2(1 — g2) (1 — )]}

i@ — a1 - e — )

+a28-1—v—aF+ay)ea(l—q)+ (1 —¢)e(1 — @)}
which reduces to

1

Do~ g (1~ 01— a)Ds+aRd~1 -1 -af +an)V?. (410

The HWD coefficients for both cases and controls are combinations of Dg, the
expression for a stratified population, and the coefficients for an unstratified popula-

tion (Wittke-Thompson et al., 2005). If there is only one stratum, i.e. € = 0 or 1,
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or g1 = ¢, then Dg =0 and V = ¢(1 — ¢q) and the above expressions simplify to the
results of Wittke-Thompson et al. (2005) in equations (4.3) and (4.4), for cases and
controls, respectively. When there is no association, i.e. 3 =~ = 1, both expressions
simplify to the value for stratified populations, Dg, in equation (4.12).

The HWD coefficients also simplify for specific genetic models.

4.7.1 Specific Genetic Models

The dependence of the HWD coefficients for specific genetic models on the model
parameters is illustrated for the specific genetic models by plotting them as a function
of ¢ for ¢ =0.25, 0.5, 0.75, ¢ =0, 0.1, 0.2 and v = 1.5, 5.

Dominant Model v = 3,8 > 1

The HWD coefficient for cases is

2

(0%
Dp = K—Z[DS —(y=1)V?
P

and the HWD coefficient for controls is

De = L9 (1~ a) D + aly - )12

(1—-Kp)

Figure 4.3 illustrates the direction and magnitude of HWD in the dominant genetic
model for cases and controls as a function of go. The HWD coefficient for controls
is always positive whereas in cases it is mostly negative for the large values of ~.
In controls, the coefficient increases with the stratification proportion, e, and the

absolute difference in allele frequencies. There is little effect of the relative risk, v. In
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cases, there is little effect of the stratification proportion except when the absolute

difference in the allele frequencies is large.
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Figure 4.3: HWD as a function of the susceptibility-allele frequency for cases (left)
and controls (right), dominant genetic model.
Kp=0.1,e =(0.0,0.1,0.2) = (0, A, {). Open/filled symbols for v = 1.5/5.
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Recessive Model 3 = 1,7 > 1

The HWE coefficient for cases is

2

Dy =

[YDs + (v = 1)V7]

and the HWE coefficient for controls is

De = sl = an)Ds = aly = DV

Figure 4.4 illustrates the direction and magnitude of HWD in the recessive genetic
model for cases and controls. The HWD coefficient is always positive for cases. In
both cases and controls, the effect of the stratification proportion increases with
the absolute difference between the two minor allele frequencies. When the allele
frequencies are similar in the two strata, the HWD coefficient increases with v for

cases, but decreases with « for controls.
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and controls (right), recessive genetic model.
Kp=10.2,e=1(0.0,0.1,0.2) = (0, A, {). Open/filled symbols for v = 1.5/5.

Additive Model v =28 —1,8>1

The HWD coefficient for cases is

Oé2

Dn —
PTUKe

and the HWD coefficient for controls is

1

Dp=——
“ 41— Kp)

—[4yDg — (v — 1)*V?]

s[4(1 = a)(1 — ay)Ds — o*(y — 1)*V7].
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When there is no stratification, i.e., ¢ = 0 or 1 or ¢ = ¢ = g then the HWD

coefficients for cases and controls simplify to

a?(v —1)?
Dp = _YTI%)(JQO - Q)2

and

a?(y = 1)

Dp=——rl— 2
CT U1 - Kp)?

¢*(1—q)

which are always negative. These expressions for the coefficients are different from

those obtained by Wittke-Thompson et al. (2005) because they define the additive

model to have v = 23 rather than v = 28— 1, which corresponds to ¢ — ¢y = @1 — ¢y,

an additive effect on the penetrances.

Figure 4.5 illustrates the direction and magnitude of HWD in the additive genetic

model. For controls the coefficient increases with the stratification proportion, ¢, and

the absolute difference in the allele frequencies of the two strata. There is a very little

effect of the homozygote relative risk, 7. When ¢ = 0, the HWD coefficient is very

slightly negative. For cases, the effect of stratification is largest when the absolute

difference in the allele frequencies is large, and when this difference is small the HWD

coefficient decreases with 7.
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Figure 4.5: HWD as a function of the susceptibility-allele frequency for cases (left)
and controls (right), additive genetic model.
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Figure 4.6 illustrates the direction and magnitude of HWD in the multiplicative ge-
netic model for cases and controls as a function of the minor allele frequency g for

different parameter values.
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Figure 4.6: HWD as a function of the susceptibility-allele frequency for cases (left)
and controls (right), multiplicative genetic model.
Kp =0.05,¢=1(0.0,0.1,0.2) = (0, A, 0). Open/filled symbols for v = 1.5/5.

The HWD coefficient is always positive for cases unless there is no stratification
when it is zero. The coefficient is slightly negative in controls for some parameter

values. For both cases and controls the coefficient increases with the absolute dif-

ference between the minor allele frequencies in the two strata and with the amount
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of stratification for both cases and controls. The homozygote relative risk, ~, has
little effect on HWD for controls, but a greater effect for cases, especially when the
absolute difference between the allele frequencies is large.

It is possible to obtain the conditions under which the HWD coefficient is positive
or negative for the general and the specific disease models (Table 4.4) under the
extended model. A positive (negative) value of the HWD represents an excess (deficit)
of homozygotes. For most, the HWD coefficient can be positive or negative in both
cases and controls, depending on the relative risks, allele frequencies and stratification
proportion. Exceptions are the controls for the dominant model and the cases for the
recessive model, which have positive HWD coefficients. For the multiplicative model
note that the HWD coefficient for cases is positive when there is stratification, rather

than zero when there is not, as shown by Wittke-Thompson et al. (2005).



Table 4.4: Sign of the HWD coefficient
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LE = Dg/V?

4.8 Application To A Data Set

The data consist of genotypic counts at the R990G SNP of the calcium-sensing
receptor (CASR) gene on 223 calcium stone forming patients (159 men and 64 women,
mean age 52.5 £ 12.6 (SD) years) and 718 healthy young adults. The cases were
recruited from the Lithotripsy Clinic at The Wellesley-Central Hospital (Toronto ON,
Canada) after obtaining written informed consent. The controls were from the same
urban population and are mixture of self-reporting Caucasian (n = 673) and Asian
Canadians (n = 45) (Rubin et al., 1999; Patel et al., 2000). The cases with uric acid or
cysteine stones, co-morbid conditions including hyperparathyroidism, hypercalcemia,
and with drug-induced stones were excluded (Cole et al., 1998). The minor allele

frequency is known to be higher in the Asian population.

4.8.1 Preliminary Statistical Analysis For Heterogeneous Model

HWD coefficients were calculated for cases and controls (by strata and pooled)
and significance was assessed using an exact test (Weir, 1996). Confidence intervals
(CI) were obtained using non-parametric bootstrap. Genetic association was assessed
by a contingency table analysis of the genotypic counts. The heterogeneous disease
model of Wittke-Thompson et al. (2005) was fitted to the data and lack of fit was

evaluated.
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The observed frequencies and HWD coefficients for cases and controls are summa-
rized in Table 4.5. There is significant HWD in both cases and pooled controls even
though neither stratum in the controls has significant HWD. The genotypic test of

association shows a strong genetic effect at the locus (X2 = 39.85, df = 2, p < 0.0001).

Table 4.5: Observed frequencies and HWD coefficient for cases and controls.

| | »|RR|RG|GG| D(CI) | D |
Cases 223 | 171 38| 14| 0.04 (0.003, 0.041) | < 0.0001
Controls
Pooled 718 | 576 | 122 | 20 0.02 (0.006, 0.026) 0.0002
Caucasian | 676 | 568 | 102 6 | 0.002 (-0.007, 0.006) 0.46
Asian 42 8| 20| 14| 0.007 (-0.020, 0.030) 0.99

Applying the model of Wittke-Thompson et al. (2005) yielded estimates (95%
CI) of the minor allele frequency ¢ = 0.12 (0.085,0.116), and penetrances by = 0.02
(0.018,0.021), ¢, = 0.02 (0.014,0.026), o = 0.08 (0.029,0.140). This gives relative
risks 3 = ¢y /o = 0.81 (0.654,1.423) and 4 = ¢/ = 3.88 (1.453,7.444). The LOF
is significant (X2 = 17.65, df = 1, p < 0.0001,) indicating that this model with only

genetic effects does not adequately explain the HWD.

One of the possible reasons for HWD is genotyping error (Xu et al., 2002), another

possibility is that of population stratification that is explored in next section.

The heterogeneous disease model as well as the model that accounts for stratifi-
cation were coded in S-Plus software and the built-in function “nlmin” was used to

obtain the maximum likelihood estimates.
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4.8.2 Model Fitting That Includes Stratification

The extended model was fitted to the kidney stones data at the R990G locus
assuming the population to be a mix of Caucasians and Asians. The minor allele
frequencies (MAFs) for the two strata were assumed to be ¢ = 0.429 (Asian), g =
0.084 (Caucasian) (Yun et al., 2007) for all analyses. The MAF for Caucasians and
Asians obtained from Yun et al. (2007) are not significantly different from those
obtained by the HAPMAP project (www.hapmap.org).

First, the penetrances, ¢g, 1 and ¢ were estimated for different fixed values of

the stratification proportion ¢ and the LOF test was carried out in each case (Table

4.6).

Table 4.6: Estimates of ¢y, @1 and ¢o, X? statistic and p-value for a range of fixed «.

Estimates LOF

2 ®o ‘ ¢1 ‘ oo | X2, 2df ‘ D
0.00 | 0.0187 | 0.0224 | 0.1209 | 57.2662 | < 0.0001
0.01 | 0.0187 | 0.0219 | 0.1092 37.934 | < 0.0001
0.05 | 0.0189 0.02 | 0.0735 8.05 0.02
0.06 0.019 | 0.0197 | 0.0674 5.3532 0.0688
0.07 ] 0.0191 | 0.0193 | 0.0622 3.5581 0.1688
0.08 | 0.0192 | 0.019 | 0.0576 2.463 0.2919
0.09 | 0.0193 | 0.0186 | 0.0537 1.9282 0.3813
0.10 | 0.0195 | 0.0183 | 0.0502 1.8543 0.3957
0.11 ] 0.0196 | 0.018 | 0.0471 2.1691 0.3381
0.12 | 0.0197 | 0.0177 | 0.0444 2.8183 0.2444
0.13 | 0.0198 | 0.0174 | 0.0419 3.7605 0.1526
0.14 ] 0.0199 | 0.0171 | 0.0397 4.9635 0.0836
0.15 ] 0.0201 | 0.0169 | 0.0377 6.4019 0.0407
0.16 | 0.0202 | 0.0166 | 0.0359 8.0553 0.0178
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There is no LOF for the stratification proportion between 6 and 14% which sug-
gests that the extended model with both stratification and genetic effects explains the
data adequately. The minimum X2 occurs at 10% Asians and 90% Caucasians and
the penetrance estimates and relative risks, with confidence intervals in parenthesis
obtained using nonparametric bootstrap, are shown in Table 4.7. Note that the LOF
results for no stratification € = 0 in Table 4.6 differ from the basic model described
above because in this case the allele frequencies are assumed to be known for each
strata, whereas in the basic case the minor allele frequency was estimated and there
was only one allele frequency. There was also one lesser degree of freedom for testing

lack of fit in the basic model.

Table 4.7: Penetrances estimates under general and recessive disease model

Assumed Estimated
e =0.10 €
General model
€ - 0.10 (0.045,0.140)
oo 0.02 (0.018,0.021) 0.02 (0.018,0.021) )
01 0.02 (0.014,0.025) 0.02 (0.014,0.025)
o)) 0.05 (0.033,0.085) 0.05 (0.030,0.100)
I} 0.94 (0.667,1.369) 0.95 (0.694,1.420)
0 2.58 (1.684,4.677) 2.64 (1.474,5.554)

LOF | X% =1.854, p =0.396 | X% = 1.833, p = 0.176
Recessive disease model

g - 0.10 (0.050,0.137)
o 0.02 (0.018,0.020) 0.02 (0.018,0.020)
b : :
b 0.05 (0.033,0.085) 0.05 (0.029,0.099)
ﬂ - -
3 2.58 (1.663,4.705) 2.67 (1.440,5.425)

LOF | X2 =1.931,p = 0.587 | X? = 1.896, p = 0.388
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The estimates are essentially unchanged when the stratification proportion is esti-
mated in addition to the penetrances (Table 4.7). This model indicates a relative risk
of 2.6 for those with two copies of the variant allele. The fact that B is approximately
one indicates the genetic effect could be recessive.

Table 4.7 also shows the results when the recessive model was also fitted to the
data with stratification proportion fixed or estimated. Likelihood ratio tests indicate
no significant difference between the recessive and general models (e fixed, p = 0.22;

¢ estimated, p = 0.19).

4.8.3 Sensitivity To Kp

To investigate the sensitivity of the fit of the model to the assumption that the
overall prevalence of kidney stones is Kp = 0.02, this value was allowed to vary (Table
4.8). The penetrance estimates increase appropriately with Kp but the estimate of
the stratification proportion, ¢, is unaffected. There is no significant LOF for any of

the choices of the prevalence.
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Table 4.8: The effect of changing Kp on the estimates obtained from the R990G data.

Estimates (SD) LOF

Kp £ ‘ Po ‘ ¢1 ‘ P2 X P

0.005 0.0945 0.0049 0.0046 0.0132 1.6411 | 0.2002
(0.0300) | (0.0002) | (0.0008) | (0.0029)

0.01 0.0953 0.0097 0.0092 0.0261 1.7036 | 0.1918
(0.0299) | (0.0005) | (0.0016) | (0.0057)

0.02 0.0967 0.0194 0.0184 0.0513 1.8326 | 0.1758
(0.0295) | (0.0009) | (0.0032) | (0.0113)

0.05 0.101 0.0487 0.0462 0.1215 2.2493 | 0.1337
(0.0284) | (0.0024) | (0.0078) | (0.0272)

0.1 0.1076 0.0975 0.0937 0.2215 3.024 | 0.082
(0.0272) | (0.0045) | (0.015) | (0.0499)

4.9 Discussion

Departure from Hardy-Weinberg equilibrium may indicate genotyping error, pop-

ulation stratification, selection bias, or some combination thereof. HWD could also
indicate association with a disease in affected patients (Nielsen et al., 1998; Lee, 2003)
or genetic association (Wittke-Thompson et al., 2005). It is therefore, important to
investigate the reason for departure before excluding the loci exhibiting HWD from
association studies.

This chapter extends the heterogeneous model described by Wittke-Thompson
et al. (2005) to determine if the HWD observed in a data set from a stratified pop-
ulation can be explained by genetic association and stratification. Applying the ex-
tended stratification model in Section 4.8 to the R990G SNP of the CASR gene, in a

cohort of ethnically and clinically heterogeneous kidney stone formers and a cohort
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of self-reporting Caucasian and Asian Canadians, it was found that the HWD in the
data was adequately explained by a recessive genetic association and a stratification
proportion of 10%, consistent with the population of Toronto.

The HWD coefficients for cases and controls under the extended model are in
general combinations of Dg, the expression for a stratified population, and the coef-
ficients for an unstratified population (Wittke-Thompson et al., 2005). In all cases,
the magnitude of the coefficient increases with the stratification proportion as well as
the difference between the minor allele frequencies and the genetic association. For
most models, the HWD coefficient can be either positive or negative in both cases
and controls, but is always non-negative for the recessive and multiplicative models
in cases and for the dominant model in controls.

For the extended model, it is necessary to know the ethnicity and the minor allele
frequency of at least one of the two strata. The allele frequencies can be estimated
from previous studies or from the HapMap. If one has an idea about one stratum
minor allele frequency, the frequency for the other stratum could be estimated from
our method but then there would be no degrees of freedom left for the LOF test.

The proposed method can be extended easily to more than two strata or to more
than two alleles. However, one would need to make some additional assumptions

because the degrees of freedom in the data do not change from four.



Chapter 5

Conclusions

5.1 Summary

Genetic association studies involve determining whether a genetic variant is as-
sociated with a disease. If an allele is associated with disease, it will occur more
often than expected by chance in affected individuals. Hardy-Weinberg equilibrium
(HWE) holds in a population if the allele frequency remains constant from one gener-
ation to the next. HWE in a sample requires a large population, random sampling, no
migration, mutation or selection and random mating. The Hardy-Weinberg disequi-
librium coefficient, is defined as the difference in the observed and expected genotypic
frequency for the genotype AA assuming HWE, or D = Py — p3.

Departure from HWE (HWD) in a sample may indicate genotyping error, pop-
ulation stratification, selection bias, or some combination thereof. Therefore, loci
exhibiting HWD are often excluded from association studies. However, it has also
been shown that in case-control studies HWD can result from a genetic effect at the
locus (Wittke-Thompson et al., 2005) and HWD at a marker locus can be interpreted
as evidence for association with a disease (Nielsen et al., 1998; Lee, 2003). In an un-
published study in Toronto it was observed that cases were in HWE at a locus whereas

123
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their family members were in HWD. Wittke-Thompson et al. (2005) observed that
the HWD coefficient for the multiplicative model is zero. It was therefore considered
important to investigate HWD in relatives of affected individuals, and in particular
to see whether the multiplicative model could be revealed.

In this thesis HWD coefficients were derived for affected individuals and their
affected and unaffected relatives. A substantial HWD was found in dominant and
recessive genetic models but HWD is only slightly nonzero for additive and multi-
plicative model. Methods (based on unconditional, partially conditional and fully
conditional models) were also developed to test for association using data from af-
fected individuals and their affected or unaffected relatives. Parameter estimates for
these models can be obtained using maximum likelihood estimation methods, and
estimates provide valuable information regarding the mode of inheritance of the dis-
ease. The methods were applied to 112 discordant sib pairs with Alzheimer’s disease
typed for the ApoE polymorphism (Boehnke and Langefeld, 1998). A significant as-
sociation was observed between the ¢4 ApoE allele and Alzheimer’s disease, which is
consistent with the results obtained by Boehnke and Langefeld (1998) and Yan et al.
(2009). The power of the fully conditional test was larger than the McNemar test and
it also gives information regarding the mode of inheritance of the disease in addition
to the degree of association.

Case-control studies may indicate spurious association with a marker locus in a
stratified population. Methods were developed in Chapter 4 to determine if the HWD

observed in a data set from a stratified population can be explained by both genetic
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association and stratification. Parameter estimates for these models can be obtained
using maximum likelihood estimation methods, and provide valuable information
regarding the mode of inheritance of the disease. Applying the model to the R990G
SNP of the CASR gene, it was found that the HWD was adequately explained by a
recessive genetic association and a stratification proportion of 10%, consistent with

the population of Toronto.

5.2 Future Work

The methods developed in this thesis to deal with relative pairs and stratification
are for a single biallelic disease susceptibility locus (DSL). In some complex diseases
there might be a combined effect of two or more loci. It would, therefore, be of interest
to extend the single locus model to two or more loci to model the joint effects. One
of the ways to model multiple loci as a single locus with multiple alleles. Therefore
extending the models to multi-allelic loci is also of interest.

Often association studies involve testing at a marker loci that is in linkage disequi-
librium with the disease locus rather than at the locus itself. The models described
in this thesis are for candidate genes, which are suspected of being associated with
the disease. It would be useful to investigate model for genotypic counts at a marker
locus, which would depend on the penetrances at the true DSL and the recombination
fraction between the DSL and marker.

The tests for association and stratification described in the thesis are for two

strata, and it would be of interest to extend the model to more than two strata. An
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alternative method, rather than an extension of heterogeneous disease model, may be
required since the number of parameters increases with an increase in the number of
strata. However, the degrees of freedom in the data do not change making it difficult

or impossible to estimate all the parameters.

5.2.1 Modelling Penetrance As A Function Of A Continuous Variable

Another avenue for further research is to allow the penetrance, in the heteroge-
neous model to depend on a continuous covariate. Initial investigation of the topic is
described below.

In association studies, genetic information is used to find association between genes
and disease. Many diseases like obesity, coronary heart disease, diabetes, are related
to age. The formation of kidney stones is related to a measure of kidney function
like serum creatinine. Age dependent penetrance is also of interest for diseases like
Alzheimer’s, diabetes, cancer, Huntington’s disease (Cupples et al., 1989), manic-
depressive illness (Crowe and Smouse, 1977), motor neuron disease (Aggarwal and
Nicholson, 2005), leprosy (Abel et al., 1989), facioscapulohumeral muscular dystrophy
(Lunt et al., 1989).

Several methods have been proposed for the estimation of age-of-onset of disease
from population data. Risch (1983) used a maximum likelihood method (MLE) that
gives unbiased and efficient estimates of the morbidity risk when the prior age-of-onset
distribution is known. Some other methods estimate probabilities of a cumulative age-

of-onset distribution from the data (Heimbuch et al., 1980) or estimate penetrances
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within each age group (Debniak et al., 2005). Life-table and Cox proportional hazards
regression or survival analysis are often used to find a relationship between various
mutations and age-at-diagnosis methods have also been proposed (Chase et al., 1983;
Chidambaram et al., 1988; Meyer and Eaves, 1988; Al-Mulla et al., 2009; Aggarwal
and Nicholson, 2005; F-de Misa et al., 2008; Sturt, 1986; Crowe and Smouse, 1977;
Strahan et al., 1983; Risch, 1983). Different survivorship functions, the Weibull,
exponential, gamma, and log-normal distributions have been used to describe age-of-

onset.

The survival methods usually assume that age-of-onset is independent of the geno-
type of the affected individual and uncorrelated between relatives. However, diseases
like Huntington’s disease, schizophrenia, and depression show a significant age-of-
onset correlation between family members and early age-of-onset of breast cancer,
alcoholism, affective disorders, and Alzheimer’s dementia has been associated with
an increased risk in relatives. The age-of-onset may not only be correlated among
relatives, but it may also be correlated with an individual’s inherited liability to an
illness. Some modifications like using survival time models with nonproportional haz-
ard functions, allowed for the effect of a proband’s age-of-onset or the age-of-onset of
a first degree relative (Wickramaratne et al., 1986) and pedigree analysis to include
genotype-dependent ages of onset (Elston, 1973; Crowe and Smouse, 1977) have also
been proposed. Meyer and Eaves (1988) developed a model to explain both age-of-

onset correlations and distributions within the survival analysis framework. They
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specify genetic heterogeneity in one of the parameters of the gamma survival distri-
bution by allowing it to be a function of liability and estimate the parameters using

MLE.

Some of the methods for case-control studies, where both disease history and co-
variate status are available on relatives, were based on likelihood (Whittemore, 1995)
and estimating equations (Zhao et al., 1998) methodology and involve estimation of
disease covariate association and magnitude of familial aggregation. Different like-
lihood and pseudo-likelihood methodologies in survival analysis were also developed
to account for censoring and age-at-onset information of disease (Li et al., 1998; Hsu
et al., 1999; Shih and Chatterjee, 2002). These methods are often referred to as

case-control family data designs.

Wacholder et al. (1998) proposed a kin-cohort design in which randomly sampled
case and control groups are genotyped and penetrances are estimated based on the
history of disease of their first degree relatives. The method uses survival analysis
where the disease status and age-at-onset of the relatives are treated as outcome vari-
ables. They used the fact that the survival distribution for first-degree relatives of
probands who carried (or did not carry) a mutation was a mixture of survival distri-
butions for carriers and non-carriers, with mixing proportions about 50:50 (or 0:100)
for rare mutations to estimate the disease survival distribution. The mixing propor-
tions are functions of the allele frequency ¢. One of the limitations of the method is

that for small samples the estimates of ¢ are not necessarily monotone. Chatterjee



129

and Wacholder (2001) developed a marginal-likelihood approach for analysing kin-
cohort data, that allows for the possibility of obtaining non-monotone estimates of

age-specific cumulative risk function.

Gail et al. (1999) and Gail et al. (1999) refer to the kin-cohort design as the
genotyped-proband design. They assume that initial family member (cases or con-
trols) is genotyped and is selected at random, conditional on disease status. They
derived the likelihood of the genotypes and disease history data of the relatives condi-
tional on the disease status of the probands which assume that all familial outcomes
are conditionally independent given the individual’s genotypes. They showed that this
likelihood can be factored as the product of a case-control likelihood of the genotype
of probands given their disease status and a kin-cohort likelihood for the relative’s
disease outcome data given the genotype of the proband. Any violation of the as-
sumption of no residual familial aggregation can lead to biased parameter estimates.
Some extensions of these methods have been proposed to estimate the parameters for
survival models. Moore et al. (2001) proposed a pseudo-likelihood method since full
maximum likelihood estimation using the true likelihood of the data can be computa-
tionally challenging. However, the pseudo-likelihood approach is inefficient as it is not
possible to extract the relative risk information from case-control data. A parametric
method, Proband’s phenotype Exclusion Likelihood (PEL) (Alarcon et al., 2009) and
a nonparametric method, Index Discarding EuclideAn Likelihood (IDEAL) (Alarcon
et al., 2009) have also been proposed to estimate the penetrance functions based on

survival analysis. These methods also correct for the ascertainment bias.
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Langbehn et al. (2004), in the context of Huntington’s disease (HD), developed
a parametric survival model that incorporates information from those with onset
and those still at risk, predicting risk of onset for any person at risk of the disease
at any age. The method involves finding a distribution family that gives a close
fit to all of the observed (non-parametric) survival distributions from the individual
CAG trinucleotide repeats followed by finding classes of mathematical functions that
adequately described the relationship between CAG (the mutation associated with
clinical manifestations of HD) and both the mean and dispersion of the age-of-onset.
These functions combined with the parametric distribution from the final parametric
model to predict the age-specific probability of onset. They found that the logistic
distribution had the best average fit to the non-parametric survival curves across
CAG lengths and the exponential function provided excellent fits to both the mean

and variance of the age-of-onset.

All the above mentioned methods are based on survival analysis and yield biased
hazard function estimators due to the sampling bias, over-representation of cases, and
the residual dependency among relatives. In order to overcome these issues, Chat-
terjee et al. (2006) proposed an extension and combination of the above mentioned
methods, kin-cohort, genotype-proband and case-control family data. It models the
joint distribution of failure times of family members. The method extends the data
available in the kin-cohort design to include covariate information and genotypes of
the first-degree relatives of case and control subjects. The methodology combines

information on relative risk parameters from the kin-cohort data of relatives and
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case-control data of participants. It also estimates the baseline risk and familial

aggregation parameters using the kin-cohort data of the relatives.

More recently, a frailty-model-based approach has been proposed to estimate the
hazard function from two-phase case-control data with family history information
(Chen et al., 2009). It accounts for the shared risk among family members that is not
accounted for by observed risk factors. In the first phase, a random sample of cases
and controls (probands) is obtained from a population. The cases and controls are
stratified based on certain aspects of variables collected in the first phase. In the sec-
ond phase, a random subset of cases and controls from each stratum are selected for
genotyping. All strata have representative samples, to ensure a consistent estimation
of the odds ratios from two-phase data. The dependent failure outcomes of family
members was described by a shared gamma frailty with the conditional proportional
hazards model. The censoring times are assumed to be independent of the failure
time and noninformative of the frailty conditional on the frailty and the covariates.
Frailty was also assumed to be independent of the observed covariates. The model
is based on likelihood that conditions on the proband’s survival time and allows for
residual dependency via a frailty. The estimates of the regression coefficients, non-
parametric baseline hazard function, and dependence parameter are obtained using
the expectation conditional maximization (ECM) algorithm which is a variation of the
expectation-maximization algorithm. Some of the strengths of the model are that the

method is robust against ascertainment biases and the residual dependency estimates
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can shed light on whether one or more candidate genes or other shared environmen-
tal risk factors may contribute to diseases. Extension of the method accommodate
missing genotypes in family members and a two-phase case-control sampling design

were also described.

The heterogeneous model described in this thesis can be extended to include
dependence on a continuous variable. The probability of a genotype g,g = 0,1,2
given the disease status, d = D (case) or C' (control), and a continuous variable, X,
can be expressed in terms of the penetrance and minor allele frequency using Bayes

rule

Pp(X) = P(gld; X) = P%(S;C%Q - P(ﬁi;&{;&

where, g = 0,1, 2 is the number of variant alleles, Kp(X) is the overall prevalence of

the disease,
Kp(X) = ¢o(X)(1 = q)* +2¢1(X)q(1 — ) + ¢2(X)g?, (5.1)

and ¢ is the minor allele frequency. The penetrance for genotype g as a function of

X, ¢4(X) can be modelled using a logistic function

1

Gg(X) = 11 o= Gog 01 %) (5.2)

where g = 0, 1,2. The genotypic probabilities for cases and controls can be summa-

rized as in Table 5.1
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Table 5.1: The genotypic frequencies for cases and controls

Genotype
0 1 9
Cases | X0 —af 201(X)a(1 - q) s(X)g?
Kp(X) Kp(X) Kp(X)
Controls [1=d(X)](1 -9 21 —(X)]g(1—q) [1—¢a(X)]¢*
L= Kp(X) 1= Kp(X) = Kp(X)

where the penetrances are given in (5.2) and the disease prevelance by (5.1).

The genotypic frequencies (Table 5.1) for cases and controls form a likelihood

function
L= 1] Paaa( X0, (5.3)

where n is the total number of cases and controls and P,4;(X;) is the genotypic

probability for subject ¢, who has genotype g, disease status d and variable X;.

There are seven parameters in the model - the minor allele frequency, ¢, the three
intercepts, Goo, Bo1, Boz, and three slopes (19, 611 and (12. The minor allele frequency
could be considered known from previous studies or from the HapMap. The (s can
be estimated by maximizing the likelihood function numerically and approximate

standard errors can be obtained by using the nonparametric bootstrap.

The disease prevalence Kp is assumed to be known at some value of X such as

the mean X from other sources. This allows one of the parameters to be evaluated
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from the others using

Kp(X) = (1= q)*60(X) +2¢(1 — q)61(X) + ¢"¢a(X).

or

Kp(X) = — U= q)° 29(1—q) ¢
P 1+ e—(/300+/310)_() 1+ e—(ﬂoﬁ-/@nX) 1+ e—(ﬂoz-ﬁ-ﬂlzX) ’

For example, the intercept for the baseline prevalence, Byo can be written as a function

of KP(X)7 Bot, Bi1s Bozs Bi2 and q as

Boo = =X — log( -9 5 — 1), (5.4)

_ 2q(1 — q) q
KP(X) - 1+ e—(Bo1+B11X) o 1+ e—(Bo2+B12X)

The remaining parameters in the model are 319, Go1, (11, Bo2, B2 and g. Once the
other parameters have been estimated, Byy can be obtained from equation (5.4). The
parameters can be estimated by maximizing the likelihood function numerically and
approximate standard errors can be obtained by evaluating the inverse of information
matrix or by using the nonparametric bootstrap. As is discussed below, some choices
of the parameters cause the term in large parentheses in (5.4) to be negative, which
creates problems for the numerical maximization.

It is possible to make inferences about the size and type of genetic effect and the
extent of effect of the variable X on penetrance by comparing the fit of a general
model with that of a reduced model with fewer effects, using a likelihood ratio test
(LRT). To assess whether the penetrances depend on X, the hypotheses of interest

are

Hy: Bio=0n=p2=0
H, : at least one By; # 0 for i = 0,1, 2.
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The alternative hypothesis has six parameters and null has three so the likeli-
hood ratio test statistic, A, is asymptotically distributed as y? with three degrees of
freedom.

Specific genetic models give relationships between different penetrances and this
is also true when they are modelled using a continuous variable.

In the dominant model, the homozygote and heterozygote relative risks are equal,
implying the penetrances for the genotype Aa and aa to be the same i.e., ¢ = ¢;.

When the genotypic frequencies are modelled as a logistic function of the contin-

uous variable,

1 1
1 4+ e—(Bo2+B12X) - 1 + e—(Bor+B11X)

or

Boz + B12X = B + B X

Therefore, By1 = B2 and (11 = (g, i.e., the intercepts for one or two variant alleles
are equal and the slopes for one or two variant alleles are equal for the dominant
model.

Under a recessive model, having two copies of the variant allele leads to an in-
creased risk of disease susceptibility and the heterozygote relative risk is one, i.e.,
G0 = 1.

When the genotypic frequencies are modelled as a logistic function of the contin-

uous variable,

1 1
1+ e—(Boo+B10X) - 1+ e—(Bor1+B11X)
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or

Boo + B10X = B + B X

Therefore, Gyg = By1 and B9 = (i1, i.e., the intercepts for none or one variant alleles
are equal and the slopes for none or one variant alleles are equal for the recessive
model.

In an additive disease model, the difference between the homozygote and heterozy-

gote penetrance is the same as the difference between the baseline and homozygote

penetrance, i.e., ¢o — @1 = ¢ — Qg O P2 = 2¢1 — Py or

b = ¢0‘2F¢2'

When the genotypic frequencies are modelled as a logistic function of the contin-

uous variable, the additive model implies

1 1 1 1
1 4+ e—(Bor+B11X) - 9 (1 + e—(Boo+B10X) T 1+ e—(ﬁoz-l—ﬁmX))’

which does not give a simple relationship among the intercepts and slopes.

In a multiplicative model, the homozygote relative risk is the square of the het-
erozygote relative risk, i.e. ¢y = ¢? /g or ¢1 = \/PoPo.

When the genotypic frequencies are modelled as a logistic function of the contin-

uous variable, the multiplicative model implies

1 2 1 1
(1 + e—(/301+/311X)) - (1 + e—(/300+/310X)> (1 + e~ (Bo2+PB12X) )’

which does not simplify further.
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Some preliminary simulations have been attempted for this model using R software
and the built-in function “optim” to obtain the maximum likelihood estimates.

Level and power of the proposed hypothesis test for age-related penetrance was
approximated by simulation based on an assumed disease prevalence of Kp = (.02
at mean age 45 years. For the simulations, 1000 replicated data sets were used for
each combination of two different values of the minor allele frequency ¢ (0.1, 0.2),
two different sample sizes for cases and controls, n (300, 1000). The variable X
was considered as age, and assumed to be distributed as normal with mean 45 years
and SD of 20 years. The level and power are approximated using the proportion
of hypotheses rejected when the data are generated under the appropriate null and
alternative hypotheses, respectively. The data were simulated using ¢y = 0.018,
¢1 = 0.022 and ¢ = 0.166 (estimates of penetrances for kidney stones data at the
RI90G locus as described in Section 4.8).

In order to assess the level of the test, the data were generated assuming the
intercepts, By;s to be By; = logit(¢;), i = 0, 1,2, giving oo = —3.9768, Gy = —3.8045,
Bo2 = —1.6135, and the slopes, B1;’s as, f1g = f11 = (o = 0.

In order to assess the power of the test, the data were generated assuming the the
intercepts, Gu’s as Bo; = logit(¢;), i = 0,1,2, giving oy = —3.9768, Gy = —3.8045,
Boa = —1.6135, no effect of age on the AA genotype, i.e., B9 = 0 and small but
increasing effect of the number of variants, i.e., 811 = 0.01 and (15 = 0.02.

For some combinations of the values for allele frequencies, slope and intercept, the

term inside the parentheses in (5.4) becomes negative. However, when the slopes are
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constrained to be within + 0.25 for ¢ = 0.1 or ¢ = 0.2, the term stays positive and
the method converges.

Table 5.2 gives the type I error and power obtained by simulation for test of effect
of the variable X, age, on penetrances at a = 0.05. The level of the test decreases
with increase in minor allele frequency, q. The power increases with the sample size,
n and the minor allele frequency g. The level is close to 0.05 for ¢ = 0.1 when q is

assumed known, otherwise it is less than 0.05 and smaller for ¢ = 0.2 than ¢ = 0.1.

Table 5.2: Type I errors and power obtained by simulation for test of the variable X,
age on penetrances at a = 0.05

g estimated q fixed

g | »n=300 n=1000 | n=300 mn = 1000
Level of the test

0.1 0.044 0.039 0.051 0.047
0.2 0.030 0.030 0.030 0.031
Power of the test

0.1 0.240 0.813 0.289 0.800
0.2 0.276 0.872 0.270 0.883

When the data are generated under the null hypothesis, Table 5.3 gives the mean
and standard error of the parameter estimates, and the p-value for significance of the
bias when q is also estimated and Table 5.4 when ¢ is not estimated. An examination
of the distribution of the parameter estimates reveals that the distribution of the
estimates has a sharp peak and that they have larger variance when estimated under
the alternative hypothesis (Figures G.1, G.2, G.3, G.4 in Appendix G and Figures

G.5, G.6, G.7, G.8 in Appendix G). It also shows that there is a significant bias in the
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estimates when data are generated and fitted under the null hypothesis for estimation

of type I error.

Table 5.3: Mean + standard error of parameter estimates for the simulations when ¢
is also estimated under H,.

True n = 300 n = 1000
Value Mean + SE ‘ p Mean £+ SE ‘ p
H,
Boo | -3.9768 | -4.0021 £ 0.0026 | < 0.0001 | -4.0028 £ 0.0008 | < 0.0001
Bo1 | -3.8045 | -3.8315 £ 0.0091 0.0030 | -3.8240 4+ 0.0028 | < 0.0001
Boa | -1.6135 | -1.6237 £ 0.0220 0.6438 | -1.6307 £ 0.0063 0.0067
q 0.1 0.1000 £ 0.0007 1.0000 0.0996 £+ 0.0002 0.0447
Ha
Boo | -3.9768 | -3.8197 + 0.1308 0.2296 | -3.8774 £ 0.0379 0.0087
Bio 0 | -0.0043 + 0.0030 0.1521 | -0.0029 £ 0.0009 0.0007
BGo1 | -3.8045 | -3.6572 £ 0.1314 0.2622 | -3.7017 + 0.0379 0.0066
B 0 | -0.0043 = 0.0030 0.1544 | -0.0029 £ 0.0009 0.0007
Bo2 | -1.6135 | -1.2907 £ 0.1707 0.0586 | -1.4575 4 0.0477 0.0011
B2 0 | -0.0065 £+ 0.0039 0.0929 | -0.0035 £+ 0.0011 0.0011
q 0.1 0.1005 £ 0.0007 0.4814 0.0998 £ 0.0002 0.3230
Hy
Boo | -3.9768 | -4.2251 + 0.0043 | < 0.0001 | -4.2248 £+ 0.0013 | < 0.0001
Bo1 | -3.8045 | -4.0507 + 0.0068 | < 0.0001 | -4.0429 £ 0.0020 | < 0.0001
Boz | -1.6135 | -1.8681 £ 0.0124 | < 0.0001 | -1.8732 £ 0.0037 | < 0.0001
q 0.2 0.1989 £ 0.0009 0.2249 0.1986 £+ 0.0003 | < 0.0001
Ha
Boo | -3.9768 | -3.9386 £ 0.0761 0.6154 | -3.9416 + 0.0254 0.1655
Bio 0 | -0.0062 + 0.0016 0.0001 | -0.0063 £ 0.0006 | < 0.0001
BGo1 | -3.8045 | -3.7689 £ 0.0745 0.6328 | -3.7565 £ 0.0251 0.0555
Bi1 0 | -0.0062 + 0.0016 0.0001 | -0.0065 + 0.0006 | < 0.0001
Boz | -1.6135 | -1.5178 £ 0.0898 0.2865 | -1.5364 £+ 0.0297 0.0095
B2 0 | -0.0072 + 0.0019 0.0002 | -0.0074 4+ 0.0007 | < 0.0001
q 0.2 0.1995 £ 0.0009 0.5836 0.1989 £ 0.0003 0.0001
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Table 5.4: Mean =+ standard error of parameter estimates for the simulations when ¢
is not estimated under Hj.

True n = 300 n = 1000
Value Mean + SE ‘ p Mean + SE ‘ p
Hy, ¢ =0.1
Boo | -3.9768 | -4.0012 £ 0.0021 | < 0.0001 | -4.0006 £ 0.0006 | < 0.0001
Bo1 | -3.8045 | -3.8419 £ 0.0071 | < 0.0001 | -3.8347 £+ 0.0021 | < 0.0001
Boa | -1.6135 | -1.6524 £ 0.0134 0.0037 | -1.6471 4+ 0.0041 | < 0.0001
H, ¢q=0.1
Boo | -3.9768 | -3.7503 £ 0.1316 0.0853 | -3.9071 4+ 0.0437 0.1108
Bio 0 | -0.0057 £ 0.0029 0.0506 | -0.0021 % 0.0010 0.0295
BGo1 | -3.8045 | -3.5812 + 0.1320 0.0907 | -3.7272 £+ 0.0440 0.0792
Bi1 0 -0.006 + 0.0029 0.0404 | -0.0024 + 0.0010 0.0137
Boo | -1.6135 | -1.2657 £ 0.1710 0.0419 | -1.4798 £+ 0.0551 0.0152
B2 0 | -0.0071 + 0.0038 0.0589 | -0.0030 £+ 0.0012 0.0135
Hy, g=0.2
Boo | -3.9768 | -4.2202 £ 0.0035 | < 0.0001 | -4.2216 £+ 0.0011 | < 0.0001
Bo1 | -3.8045 | -4.0511 £ 0.0053 | < 0.0001 | -4.0484 + 0.0016 | < 0.0001
Loz | -1.6135 | -1.9012 + 0.0064 | < 0.0001 | -1.8928 £+ 0.0019 | < 0.0001
H,, ¢g=0.2
Boo | -3.9768 | -3.8514 £ 0.0757 0.0976 | -3.9732 + 0.0253 0.8857
Bio 0 | -0.0087 + 0.0017 | < 0.0001 | -0.0055 £ 0.0006 | < 0.0001
Bo1 | -3.8045 | -3.6835 + 0.0757 0.1098 | -3.7944 + 0.0250 0.6872
B 0 | -0.0087 + 0.0017 | < 0.0001 | -0.0056 + 0.0006 | < 0.0001
Boo | -1.6135 | -1.4232 £ 0.0912 0.0368 | -1.5965 + 0.0300 0.5694
G2 0 | -0.0106 + 0.0021 | < 0.0001 | -0.0063 £ 0.0007 | < 0.0001

When the data are generated under the alternative hypothesis to compute power,

Table 5.5 gives the mean and standard deviation of the estimates when ¢ is also

estimated and Table 5.6 describes the distribution of the estimates when ¢ is not

estimated. An examination of the distribution of the estimates shows them to have a

sharp peak and to have a larger variance when fitted under the alternative hypothesis.

There is significant bias in the estimates when the model is fitted under the alternative
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hypothesis for the estimation of power. (Figures H.1, H.2, H.3, H.4 in Appendix H

and Figures H.5, H.6, H.7, H.8 in Appendix H)

Table 5.5: Mean =+ standard error of parameter estimates for the simulations when ¢
is also estimated under H,.

True n = 300 n = 1000
Value Mean + SE ‘ p Mean + SE ‘ p
Hy
Boo | -3.9768 | -4.1834 + 0.0030 | < 0.0001 | -4.1776 + 0.0009 | < 0.0001
Bo1 | -3.8045 | -3.5329 + 0.0086 | < 0.0001 | -3.5421 £ 0.0026 | < 0.0001
Loz | -1.6135 | -0.9230 £ 0.0228 | < 0.0001 | -0.9535 £ 0.0066 | < 0.0001
q 0.1 0.0992 4+ 0.0007 0.2363 0.0991 4+ 0.0002 | < 0.0001
Ha
Boo | -3.9768 | -4.0579 + 0.0739 0.2725 | -4.0145 + 0.0225 0.0935
Bio 0.0 | -0.0028 + 0.0016 0.0746 | -0.0036 4+ 0.0005 | < 0.0001
Bor | -3.8045 | -3.8846 + 0.0744 0.2814 | -3.8418 + 0.0228 0.1022
Bi1 0.01 0.0073 4+ 0.0016 0.0879 0.0065 + 0.0005 | < 0.0001
Bo2 | -1.6135 | -1.6995 + 0.1143 0.4520 | -1.5974 + 0.0325 0.6189
B2 0.02 0.0176 4+ 0.0025 0.3382 0.0144 4+ 0.0007 | < 0.0001
q 0.1 0.0994 4+ 0.0007 0.3825 0.0991 4+ 0.0002 | < 0.0001
Hy
Boo | -3.9768 | -4.5706 £ 0.0051 | < 0.0001 | -4.5663 £ 0.0016 | < 0.0001
Bo1 | -3.8045 | -3.9250 £ 0.0062 | < 0.0001 | -3.9290 £ 0.0019 | < 0.0001
Loz | -1.6135 | -1.4149 + 0.0127 | < 0.0001 | -1.4299 £ 0.0037 | < 0.0001
g | 0.2000 | 0.1935 4+ 0.0009 | < 0.0001 0.1943 4+ 0.0003 | < 0.0001
Ha
Boo | -3.9768 | -4.1840 + 0.0752 0.0059 | -4.3376 4+ 0.0294 | < 0.0001
Bio 0.0 ] -0.0090 £ 0.0017 | < 0.0001 | -0.0054 4+ 0.0007 | < 0.0001
Bor | -3.8045 | -3.9785 + 0.0726 0.0166 | -4.1334 + 0.0293 | < 0.0001
Bt 0.01 0.0010 4+ 0.0016 | < 0.0001 0.0045 4+ 0.0007 | < 0.0001
Boz | -1.6135 | -1.6733 £ 0.0934 0.5222 | -1.8913 + 0.0366 | < 0.0001
Biz 0.02 0.0062 4+ 0.0021 | < 0.0001 0.0106 4+ 0.0008 | < 0.0001
q 0.2 0.1941 +£ 0.0009 | < 0.0001 0.1947 £ 0.0003 | < 0.0001
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Table 5.6: Mean and standard deviation of parameter estimates for the simulations
when ¢ is not estimated under H,.

True n = 300 n = 1000
Value Mean + SE ‘ p Mean + SE ‘ p
Hy, ¢ =0.1
Boo | -3.9768 -4.174 £ 0.0026 | < 0.0001 | -4.1721 £ 0.0008 | < 0.00011
Bo1 | -3.8045 | -3.5547 £ 0.0057 | < 0.0001 | -3.5569 4+ 0.0018 | < 0.0001
Boz | -1.6135 | -1.0115 £ 0.0116 | < 0.0001 | -0.9995 4+ 0.0035 | < 0.0001
H, ¢q=0.1
Boo | -3.9768 | -3.9473 £ 0.0835 0.7235 | -4.0753 £+ 0.0283 0.0005
B1o 0.0 | -0.0052 + 0.0019 0.0053 | -0.0022 £ 0.0006 0.0005
BGo1 | -3.8045 | -3.8075 £ 0.0840 0.9713 | -3.9011 4+ 0.0288 0.0008
B 0.01 0.0054 4+ 0.0019 0.0145 | 0.0076 4+ 0.0006 0.0002
Boz | -1.6135 | -1.6219 £ 0.1259 0.9471 | -1.6972 4+ 0.0400 0.0363
P12 0.02 0.015 £ 0.0028 0.0784 | 0.0162 + 0.0009 | < 0.0001
Hy, ¢q=0.2
Boo | -3.9768 | -4.5708 + 0.0047 | < 0.0001 | -4.5593 4+ 0.0014 | < 0.0001
Bo1 | -3.8045 | -3.9438 + 0.0051 | < 0.0001 -3.951 £+ 0.0016 | < 0.0001
Boz | -1.6135 -1.499 + 0.0052 | < 0.0001 | -1.4974 4+ 0.0015 | < 0.0001
H,, ¢g=0.2
Boo | -3.9768 -4.221 + 0.0863 0.0047 | -4.4306 + 0.0330 | < 0.00011
Bio 0.0 | -0.0081 + 0.0019 | < 0.0001 | -0.0032 4+ 0.0007 | < 0.0001
BGo1 | -3.8045 | -4.0414 + 0.0856 0.0057 -4.265 £+ 0.0330 | < 0.0001
B 0.01 0.0019 £+ 0.0019 | < 0.0001 0.0068 + 0.0007 | < 0.0001
Boo | -1.6135 | -1.8107 £ 0.1090 0.0706 | -2.0727 + 0.0413 | < 0.0001
P12 0.02 0.0075 4+ 0.0024 | < 0.0001 0.0131 4+ 0.0009 | < 0.0001

To assess the distribution of the test statistic, A, for assessing dependence on age,

the x* Q-Q plot of the test statistic was plotted (Figure 5.1). The figure indicates

that the LRT statistic approximately follows a x? distribution with three degrees of

freedom.
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Figure 5.1: The Q-Q plots using the 2 distribution for the LLR statistics when ¢ is
not estimated

For n = 300 (Panels (a) and (c¢)) n = 1000 (Panels (b) and (d)) and ¢ = 0.1 (Panels
(a) and (b)) ¢ = 0.2 (Panels (c¢) and (d)).
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Figure 5.2: The Q-Q plots using the 2 distribution for the LLR statistics when ¢ is
also estimated

For n = 300 (Panels (a) and (c¢)) n = 1000 (Panels (b) and (d)) and ¢ = 0.1 (Panels
(a) and (b)) ¢ = 0.2 (Panels (c¢) and (d)).
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The evaluation of the likelihood function (5.3) requires calculation of the pene-
trance, prevalence of disease, and probabilities of the appropriate genotype for each
person for some values of the intercepts Gy and slopes (1. These calculations are
repeated until the maximum of the likelihood function is reached. This is computer
intensive and it uses lot of computing resources, memory as well as time. When the
allele frequency is large the term inside the log in (5.4) becomes negative for many
choices of the parameter values.

In order to overcome the computation challenges, the possibility of modelling the
penetrances as a linear function of the variable X was explored. In this case, the

penetrances, ¢4 can be expressed as

¢g = ﬁOg + /Bnga (55)

where, g = 0,1,2 is the number of variant alleles. The prevalence of the disease,

Kp(X) is

Kp(X) = (1= q)*(Boo + B10X) + 2q(1 = q)(Bor + B11.X) + ¢*(Bo2 + B12X),

where q is the minor allele frequency. or

Kp(X) = [(1—9)*Boo+2q(1—q) Bo1+¢* Boz) +[(1—q)* Bio+2q(1— q) Bi1+¢° B12) X (5.6)

Once again assuming the disease prevalence Kp to be known at mean X, one of
the parameters can be evaluated from the others. For example, the intercept for the

baseline prevalence, Gy can be written as a function of Kp(X), Bo1, Bi1, Bo2, Bi2 and
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q as

1

WKP(X)_2q(1_Q)ﬁ01 _qQﬁOQ] —[(1—q)2510+2q(1—q)ﬁ11+q2ﬁ12]X, (57)

Boo =

which is much simpler expression than the one in (5.4). The remaining parameters
in the model are (9. Bo1, 511, Bo2, P12 and q. Once the other parameters have been
estimated, By can be obtained from equation (5.7). The parameters can be estimated
by maximizing the likelihood function numerically and approximate standard errors
can be obtained by evaluating the inverse of information matrix or by using the
nonparametric bootstrap.

Even though (5.7) is a much simpler expression than (5.4), the method still re-
quires the evaluation of the likelihood function, (5.3), which in turn involves cal-
culating the penetrance, prevalence of disease and probabilities of the appropriate
genotype for each person for some values of the Gy’s and 3;’s. The method is still
computer intensive, using lot of computing resources, memory as well as time.

The results described above are preliminary and require further investigation. It
is possible that a new formulation of the model or a new computing algorithm will

produce better results.
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Appendix A

Hardy-Weinberg Disequilibrium Due To Association

In Affected Individuals And Their Parents

Consider an affected person and its parent. The genotypic frequencies for the

affected child and its parent are derived below as are the Hardy-Weinberg coefficients.

A.1 Genotypic Frequencies

The joint probability of an affected child and its parent’s genotypes is obtained
by summing over all probabilities for the other parent’s genotype, g3,

P(giNgs) = ZP(QI N g2|g3) P(g3)

g3

=3 P(gi]g2 N 5) P(g2) P(g5)- (A1)

g3

Table A.1 summarizes the possible genotypes of the parents, their probability as-
suming Hardy-Weinberg equilibrium in the population and the conditional probability

of a child’s genotype given their parents’ genotypes.
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Table A.1: Possible parental genotypes types, their probabilities with probabilities of
possible offspring genotypes

Parent 1 Parent 2  Probability of Conditional Probability

genotype genotype parent’s genotype  of offspring genotype

g2 93 P(g2)P(g3) P(gi]g2 M g3)
AA  Aa aa

AA AA p? 1 0 0

AA Aa 2p3q 0.5 0.5 0

AA aa p? ¢? 0 1 0

Aa AA 2p3q 0.5 0.5 0

Aa Aa 4 p? ¢* 0.25 0.5 0.25

Aa aa 2p ¢ 0 0.5 0.5

aa AA p? ¢? 0 1 0

aa Aa 2p ¢ 0 05 0.5

aa aa q* 0 0 1

For example, the joint probability of the affected child having genotype AA and

its parent having genotype AA is

P(AAN AA) = P(AA|AA N AA)P(AA)P(AA) + P(AA|AAN Aa) P(AA)P(Aa).

Substituting values from Table A.1 gives the joint probability

1
HMHM):WW+?%q

= p’p+q)

If the genotype of the parent is AA or aa, the genotype of the offspring cannot be aa

or AA, respectively. Therefore,

P(aanN AA) = P(AANaa) = 0.



154

Similarly, other probabilities can be computed (Table A.2).

Table A.2: Joint probability of genotypes of an affected child and its parent

Parent

Affected | AA Aa aa | Total

AA p* p*¢ 0 | p?
Aa p*¢ pg  pg* | 2pgq

aa 0 pi* ¢ | ¢

Total p* 2pq q 1

The conditional probability of the pair of genotypes given that the child is affected

and the parent has status ds, using equation (A.1) is

P(A1|g1)P(
P(dsy|A))Kp

d
P(g1 N go| A1 Ndp) = 2lg2) Z P(g1lg2 M gs)P(g2) P(gs)- (A.2)

Affected Child-Parent Pair
When the parent is also affected, i.e., do = Ay, then P(ds| A1) = P(Az|A;) in (A.2)
is the recurrence risk of the parent being affected given that their child is affected,

denoted by Kg, and equation (A.2) becomes

P(A1|91)P(Az|g2)

P(gi NgolAi N As) = Kok
rKRr

ZP(91|92 N g3)P(g2)P(g3)- (A.3)

For example, the joint probability of both the affected child and their affected parent

having genotype AA is

P(AAN AA|A; N Ay) = - K
PR

= AA[AAN g3) P(AA)P(g3).



From Table A.2,

P(AAN AAlA N Ay) = Ka?( ’
PIYR

a2p3
KpKgr

Similarly, other probabilities can be obtained (Table A.3).

Table A.3: Joint probability of genotypes of an affected child-parent pair

Parent
Affected AA Aa aa Total
2.3 2 2
AA &P GoP1p°q 0 ®op SPys
KpKpg KpKpg KpKpg
2 2 2
Aa GoP1p°q 1Pq G192pq $1pq SP..
KpKpg KpKpg KpKpg KpKg
2 2.3 2
aa 0 D102pq 5q ®2q SP,.
KpKp KpKp KpKp
Pop* P11q $2q*
Total SP SPy, —SP,, 1
OV KoK, M KpKp M KpKg

For simplicity of presentation, the expressions have been abbreviated using
SPaa = ¢op + 19,

SPyq = ¢op + ¢1 + ¢agq,

and

SPaa = (blp + ¢2q

Note that this table is symmetric and that the marginal probabilities are the same

Using the fact that the probabilities add up to one, the recurrence risk for a parent,
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K5 can be obtained from the above table as

2

Kp— 2

I (p* + 2p°Bq + B°pq + 2Bpa*y + V*¢°).

Discordant Child-Parent Pair

When the parent is not affected, i.e., do = Ay, then P(ds| A1) = P(As]A)) =

1 — Kpg, and P(ds|g2) = P(As|g2) and equation (A.2) becomes

P(A1|91)P(As|go

P(gl N 92|A1 N AQ) - KP<1 _ KR)

) > P(gilg2Ngs)P(g2)P(gs).  (A4)

For example, the joint probability of both the affected child and their affected parent

having genotype AA is

P(AL|AA)P(Ay|AA

P(AAN AA|A; N Ay) = Kol =)

)™ Plorlgn 01 90) Plas) Plgs).

Substituting from Table A.2,

P(AAN AA|A; N Ay) =

Similarly the other joint probabilities can also be calculated (Table A.4).
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Table A.4: Joint probability of genotypes of a discordant child-parent pair

Parent
Affected AA Aa aa Total
| e w0 | oS
de | WRSE BEE WS | mtEmsvR
ac 0 Fonkn ke | w9V P
Total %}i{{%ﬁ; SPaa 71,((}176@ }?2) SPaq 7;&?1(@?; SPaa 1

For simplicity of presentation, the expressions have been abbreviated using S P44,

SPy, and S,, described above and

SNPjys = (1 — ¢0)p+ (1 - le)q

SNPay = (1—o)p+ (1 — 1)+ (1 — ¢o)gq

and

SNP,, = (1 —¢1)p+ (1 —da)gq

A.2 Hardy-Weinberg Coefficient

The Hardy-Weinberg coefficient, D, measures the excess homozygosity and is given

by

D:Paa_q7
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where the minor allele frequency can be obtained from the genotypic frequencies using
the relationship

1
q:Paa+§PAa-

Affected Child-Parent Pair
When the parent is also affected, the allele frequencies of the affected child and

parent (Table A.3) are the same

2

a~q 2 2 2 2
f— = 2

1A = G2 QKPKRW p+ Bpgy +p°)B + 2v°¢°]

and the HWD coefficient is
. a'p*? 2 2 4 2
Din = ——5—5101a8(8 — 4) — 4p]y~ + 2B[qB(B8 — p) — 2p~]y + 8" + B°p(28 +p)},
4K K5

fori=1,2.

Discordant Child-Parent Pair
When the parent is unaffected, the allele frequency of the affected child can be

obtained from Table A.4

14 i ) [aBp(p+ gy + B) — 2(1 — avq) (pB + V)]

T 2Kp(l— Kp

and for the unaffected parent the allele frequency is

QoA 2 ) [p(1 —aB)(p+B) + q(1 — 2av)(pB + ¢7) + pgB(1 — ay) + ¢7].

T 2Kp(1— Kg
The HWD coefficients for the discordant child-parent pair in this case are

—atp?g?

D =
MTUR2(1 - Kg)

S{8%(B+p)* — 28v(2p* + paB — B°q) — ¢7’[4p + Bq(4 — 3)]

- %(ﬂQ NP+ 6+7q— é]}
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and

—alp?g?

Doy =
T UKZ(1 - Kp)

- (BQ(ﬁ +p)* —28v(2p° + pgB — 5°q)
—q7*[4p + Bq(4 - B)]

2 {2lpa+ (1= 3p0)3 — 25

— B(8* = p* +2p°8) + q7*(8q + 2p)}
+ é{[ﬁQ(l —2q) — 2B(p +7q) + 1]

—2pqy + (¥ + 1)})-

The HWD coefficient for the affected child is positive if v > 3% and is zero for the
multiplicative model.
In order to understand the magnitude and direction of D, it was studied under

some specific genetic models discussed in the next section.

A.3 Specific Genetic Models

The HWD coefficients for an affected child and its parent were studied in specific
genetic models for both cases regarding the disease status of the parent. For each
model, the HWD coefficient is plotted for two different values of the homozygote

relative risk, v, 1.5, 3.
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Dominant Model, §=~v,y > 1

Affected Child-Parent Pair
The HWD coefficient for the affected child and its parent is the same when the

parent is also affected and is

—a*y’(v = 1’p’¢? v+3
qlqg +2) +
iKeRg et

Dig= Doy =
The HWD coefficient is always negative.
Discordant Child-Parent Pair

When the disease status of the parent is unaffected, the HWD coefficients for the

child and its parent are different and are

—a'y(y = Dp¢’ 4 4
D, = 1 2,2 — 21 -
A= K20 = Kn)? {(L+a)*" +plg+3)y = —[(L+a)y+p]+ 5},
and
a’(1 = ay)(y = Dp*q® 2 2 P>
Doj = 1 Py
24 K0 - kg 0y a3y =" -1

Figure A.1 illustrates the direction and magnitude of HWD in the dominant ge-
netic model. Also shown are the coefficients for unrelated affected and unaffected
individuals. The HWD coefficient increases in magnitude with v for all cases and
reaches a maximum when ¢ is between 0.3 and 0.5. Panel (a) shows that the HWD
coefficient for the affected child is negative and is similar regardless of the disease
status of the parent. Panel (b) shows that the coefficient is largest when the parent is
affected and when the parent is unaffected, its coefficient is similar to that of an un-
related unaffected person. The HWD coefficient for the parent (panel (b)) is smaller

in magnitude than the affected child (panel (a)) when the parent is unaffected (A).
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Figure A.1: HWD coefficients for the dominant genetic model as a function of the
susceptibility-allele frequency for an affected child (a) and their parent or an unrelated

unaffected person (b).
Kp = 0.1, disease status of parent (affected, unaffected) = (o, A), unrelated af-

fected /unaffected ¢, open/filled symbol for v = 1.5/3.

Recessive Model, =1, v > 1

Affected Child-Parent Pair

When the parent is also affected, the HWD coefficient for both the affected child

and its parent is the same and is
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which is always positive.
Discordant Child-Parent Pair
When the parent is unaffected, the HWD coefficient is different for the affected

child and its parent,

Dia= S L -0+ @ -0 = 2 - D+ 2+ )
and
Dyg=— (i};%og YKR? Lol + = SZ —a) (p + ya)]-

The coefficient is always negative for the parent.

Figure A.2 illustrates the direction and magnitude of HWD in the recessive ge-
netic model. Also shown are the coefficients for unrelated affected and unaffected
individuals. The HWD coefficient increases in magnitude with ~ for all cases and
reaches a maximum when ¢ is between 0.3 and 0.5. The HWD coefficient for the
affected child is positive and is similar regardless of the disease status of the parent
(panel (a)). When the parent is unaffected (panel (b), A), its HWD coefficient is
smaller in magnitude than that of the affected child (panel a) and is negative. When
the parent is unaffected (panel (b), A), the coefficient is negative and is similar to

that of unrelated unaffected individuals ().
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Figure A.2: HWD coefficients for the recessive genetic model for an affected child (a)
and their parent or an unrelated unaffected person (b).
Kp = 0.2, disease status of parent (affected, unaffected) = (o, A), unrelated af-

fected /unaffected ¢, open/filled symbol for v = 1.5/3.

Additive Model, v =238 —1,3> 1

Affected Child-Parent Pair
The HWD coefficient of the affected child and its parent is the same when the

parent is also affected and is

Dua=Do= LI TP 4y 12 440y +8)7 — g+ ( +9)(r + )



164

which is always negative.
Discordant Child-Parent Pair

When the parent is unaffected, the HWD coefficient for the affected child is

—a4p2q2 v—1 2
DlA_ ( )

= 2 + 1)%~% +2v(4 —2q)?
64K§,(1—KR)2{< q+1)°y" +2y(4pg +5) + (3 — 2¢)

8 16
— 292~ —1 -
a[(v )Q+7+3}+a2}

and for the parent is

—a4p2q2 v—1 2
DM - ( )

Ly 1)+ ]
" GAK3(1— Kg)? 7 Q2"

(20 + 1)*9" + 29(4pg +5) + (3 - 20)° — —

Figure A.3 illustrates the direction and magnitude of the HWD coefficient in the
additive genetic model. Also shown are the coefficients for unrelated affected and
unaffected individuals. The HWD coefficient increases in magnitude with v for all
cases and reaches a maximum when ¢ is between 0.3 and 0.5. Panel (a) shows that
the HWD coefficient for the affected child is negative and is similar regardless of the
disease status of the parent. Comparing panels (a) and (b) shows that when the

parent is unaffected (panel (b), A), its HWD coefficient is smaller in magnitude than

that of affected child (panel (a)).
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Figure A.3: HWD coefficients for the additive genetic model for an affected child (a)
and their parent or an unrelated unaffected person (b).
Kp = 0.01, disease status of parent (affected, unaffected) = (o, A), unrelated af-

fected /unaffected ¢, open/filled symbol for v = 1.5/3.

Multiplicative Model, v = 5%,3 > 1

Affected Child-Parent Pair

When the parent is also affected, the HWD coefficient for both the affected child

and its parent is the same and is

—a'*yp*q®

—— 1" + 2 —p)(p— )y *+ (1 -6 .
ks 47 AP0y (1= Gy £ ]

Dig= Doy =
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Discordant Child-Parent Pair

When the parent is unaffected, the HWD coefficient for the affected child is

4,22
Dia= g3l + 200 — ) (0 — 107 + (1 6pg)y + 7]
1K3(1 — Kp)?

and for the parent is

—a2p?g?
D, s = 1 2r 2. 2 9 o o 1/2 1—6 2
1A= RIT = K L TV e+ 20— ) =9+ (1= 6pg)y + ]

Note that for the multiplicative model,

K

Dua=Puag—

so there is a simple relationship between the HWD coefficients for the affected child
when the parent is affected and unaffected. When the recurrence risk is less than 0.5,
the coefficient is larger when the parent is affected.

Similarly, there is a simple relationship between the HWD coefficients for the

parents

K2 12
DQA_D?A(l—KRV(Ha\ﬁ) ’

and between the affected child and its parent when the parent is unaffected

1 2
D,i—D —(1+—).
2A 1A Olﬁ

So that when Kgr < 0.5, the HWD coefficient for the affected child and its parent is

larger when the parent is unaffected than when the parent is affected. If Kz > 0.5,

the HWD coefficient for the affected child and its parent is smaller when the parent
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is unaffected than when the parent is affected. When the parent is unaffected, the
HWD coefficient for the affected child is smaller in magnitude than that of the parent.

Figure A.4 illustrates the direction and magnitude of HWD in the multiplicative
genetic model for an affected child and its parent. Also shown are the coefficients for

unrelated affected and unaffected individuals.
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Figure A.4: HWD coefficients for the multiplicative genetic model for an affected
child (a) and their parent or unrelated unaffected person (b).
Kp = 0.05, disease status of parent (affected, unaffected) = (o, A), unrelated af-

fected /unaffected ¢, open/filled symbol for v = 1.5/3.

The HWD coefficient increases in magnitude with v for all cases and reaches a
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maximum when ¢ is between 0.3 and 0.5. When the parent is unaffected (panel
(b), A), its HWD coefficient is negative and is larger in magnitude than that of the

affected child (panel (a), A). Panel (b) shows that the HWD coefficient for the parent

is negative when the parent is affected (o) or unaffected (A).



Appendix B

Hardy-Weinberg Disequilibrium Due To Association

In Affected Individuals And Their Grandparent

Consider an affected person and its grandparent. The genotypic frequencies for the
affected individual and its grandparent are derived below as are the Hardy-Weinberg

coefficients.

B.1 Genotypic Frequencies

The joint probability of genotypes for an affected grandchild and its grandparent

is obtained using the law of total probability,

P(giNgs) = ZP(gl N g2193)P(g3),

g3

where g3 is the common link (child of the grandparent and parent of the affected

grandchild)

Applying Bayes’ theorem gives

(91N go) = ZPgs (92193) P(g1]g2 N gs)-
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The genotype of a child depends only on its parent’s genotype, therefore

P(ging) = ZP 93)P(92193) P (91]93)

92 Ngs) P(g1 N gs)
2P pG) P

or

P(g1Ngo) = Z %P(% N g3)P(g1 N ga).

g3
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(B.1)

The joint probabilities P(go N g3) and P(g; N g3) are the joint genotypic probability

of an affected grandchild and its parent that can be obtained from Table A.2.

For example, the joint probability of the affected grandchild having genotype AA

and its grandparent having genotype AA is

P(AANAA) = P(AANAA)P(AAN AA)

P(AA)
P(AAN Aa)P(AAN Aa)

P(Aa)

Substituting values from Table A.2 gives the joint probability

1 1
P(AANAA) = p*p*— + pPap’as—
p 2pq

1
_ .4, 1.3
—p+2pq

p3

= 3@+

L

1+ p).
2+p)

Similarly, other probabilities can be computed (Table B.1)
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Table B.1: Joint probability of genotypes of an affected grandchild and its grandparent

Grandparent
Affected AA Aa aa Total
AA B(+p)  B1+2p) Be p?

Aa P9(142p) B(1+4pq) BL(1+2q) | 2pg

2 3
aa B B+ $(+q | &
Total p? 2pq q° 1
The equation (B.1) gives
(A1|91 d2|g2
P(g1 N g2l A1 N ds) = Pl A K Z P P(g2Mgs)P(g1Ngs).  (B.2)

Affected Grandchild-Grandparent Pair
When the grandparent is also affected, i.e., dy = As, then P(ds| A1) = P(As]A)
in (B.2) is the recurrence risk of the grandparent being affected given that their

grandchild is affected, denoted by K, and (B.2) becomes

P(Ai]g1)P(A2|g2)
KpKp

P(giNgal A1 N Ag) = P(g1 N ga). (B.3)

For example, the joint probability of the grandchild and grandparent having genotype

AA conditional on them both being affected is

P(Ai|AA)P(As|AA)

P(AAN AA|A, N A,) = P
PIMR

P(AAN AA).




From Table B.1,

P(AAN AAlA N Ay) =

¢0¢0P3
S KpKn (2p+q)
oop®

Similarly, other probabilities can be obtained (Table B.2).
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Table B.2: Joint probability of genotypes of an affected grandchild-grandparent pair

Grandparent
Affected AA Aa aa Total
AA QI?ipfiR (1+p) %ﬁz (1+2p) % 21??}2(3 SGaa
Aa %(1+2p) QﬁipﬁR(1+4pq) %(1+2q) Qﬁ;pﬁRSGAa
aa % %(1 +2q) 21?%:(1;(3 (1+4q) Ql‘ﬁiq;RSGaa
Total L SGas 528G ag 2% SGlag 1

For simplicity of presentation, the expressions have been abbreviated using

SGaa = ¢op(1 + p) + d19(1 + 2p) + ¢’

SGaa = dop(1 + 2p) + ¢1(1 + 4pg) + ¢2q(1 + 2q),

and

SGaa = ¢op® + ¢1p + d2q(1 + q).

Using the fact that the probabilities add up to one, the recurrence risk, K can be

obtained from the above table as

2
[0}
Ko —
B 9K,

{&*(¢+1)7*+2pq" (2¢+1) B+2p* ¢ |v—2pq(29—3) B+pq(1+4pq) B°+p° (2—q) }.
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Discordant Grandchild-Grandparent Pair
When the grandparent is not affected, i.e., dy = Ay, then P(da| A1) = P(Ay|A;) =

1 — Kg, and P(da|g2) = P(Asz|g2) and (B.4) becomes

P(Ai]g1) P(As|gs)

P(gi N g AN A) = Ko(l— Kn)

P(g1 N ga). (B.4)

For example, the joint probability of the grandchild and grandparent having genotype

AA conditional on the grandchild being affected and the grandparent unaffected is

P(AAN AA|A; N Ay) = P(A|AA)P(A;]AA)

P(AAN AA).

Kp(l — Kg)
Substituting from Table B.1,
- Po(1 — ¢o)p?
P(AAN AA == "= (2 )

Similarly the other joint probabilities can also be calculated (Table B.3).

Table B.3: Joint probability of genotypes of a discordant grandchild-grandparent pair

Grandparent
Affected AA Aa aa Total
a4 | hpmies spapgs gEad | cefosve
ho | GRS G e | oG,
w0 | Stk ettt sttt | s SN e
Total | b SG,, St SG,, e gG,, 1
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For simplicity of presentation, the expressions have been abbreviated using SG 44,

SG 4, and SG,, as described above and
SNGaa = (1= do)p(1+p) + (1= ¢1)q(1 +2p) + (1 — ¢2)¢°,

SNGaq = (1 — ¢o)p(1 +2p) + (1 — ¢1)(1 +4pq) + (1 — ¢2)q(1 + 29),

and

SNGao = (1= ¢o)p* + (1 — ¢1)p(1 + 2¢) + (1 — ¢2)q(1 + )]

B.2 Hardy-Weinberg Coefficient

The Hardy-Weinberg coefficient, D, measures the excess homozygosity and is given
by

D:Paa_q27

where the minor allele frequency can be obtained from the genotypic frequencies using

the relationship

1
q:Paa—i_éPAa-

Affected Grandchild-Grandparent Pair

When the grandparent is also affected, the allele frequencies of the affected grand-

child and its grandparent (Table B.2) are the same

q

(0}
Gin = {2¢°(1 + q)7* + [3(1 + 2¢) 8 + 2p]pgy + p(4pg + 1) 3% + (2p + 1)p° B},
AKpKn
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and the HWD coefficient is

—p?g2at

Dig=———
AT 16K2K3,

{(1 4 4pq)*B* + [6 + 2¢(1 + 2q) (1 + 4pq)y
—2¢(8¢° — 28¢° 4 30q — 7)]8° + [¢*(1 + 2¢)*y*
—2pq(1 +2¢)(1 4 2p)y + p*(1 + 2p)*|5°

+ [8¢°(2¢> — ¢ — 2)7* — 8(2pg + q + 1)p*y]3

—4p°(2 — q)y — 8pq(1 + pg)y* — 4¢*(1 + ¢)7*}.

Discordant Grandchild-Grandparent Pair

When the grandparent is unaffected, the allele frequency of the affected grandchild

can be obtained from Table B.3

M{Z}?(l + Q)’}/Q —I—pQ’YBﬁ(l + 2q) + 2p] _ (2(] B 3)p26

Q1A =

+ p(1 + 4pq) 5° — %(pﬁ +7q)}

Similarly for the unaffected grandparent

_a2q

Gon = m{%ﬂl + )7 + pay[3(1+ 29)8 + 2p] — (2¢ = 3)p*B

+p(1 +4pq)3° — é[(?)q +1)gy + (6g + 1)pfB + 3p°]}.
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The HWD coefficients for the discordant grandchild-grandparent pair in this case are

p2gtat

D4 =
MTI6K2(1 — Kp)?

{(1 4 4pq)B*[(1 + 4pq) B + 2q(1 + 2¢)y + 2p(3 — 2q)]

+ [q(1+29)y — p(3 — 29)]* 8% + 8B7(¢*(2¢° — ¢ — 2)v
+ (2¢° =3¢ — 1)p’] — N[*(1 + ¢)7* + (2 — q)p’]
— 8pg(pg + 1)7°

8 2

_ 5(52 = Mla(1+20)y + (1 + 4pg)B +p(3 — 20) — ~]},

and
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Doy = IGK_QZEiqia; 2 < (14 4pq)B°[(1 + 4pq) B + 2q(1 + 2q)y + 2p(3 — 2q)]
2 R

+ lg(1+2q)y —p(3 - 29))*6

+ 809[¢°(2¢° — g —2)v + (24" — 3¢ — 1)p7]

+ Ay [-4 (1 + gy — 8pa(pg + 1)y + (¢ — 2)p”]

+é{ —2(1 +4pq)*5° + 4[p(3 — 29)(64° — 3¢ — 1)

+q(1 +29)(6¢” — 9¢ + 2)7]6° — 2[¢*(12¢° — 7)»
+29(¢*(11 = 12¢(p + 1)) + g — 2) +p*(=12q(p + 1)
+5)]6 + 4v[p(2 — 3p%q) + a(2 — 3pg®)y

+@ 1+ Y] +4p°(p+ 1)}

+${ (2 —1)°8° = 2(q — p)(va — p)B + qv(—2p + 7q) +p2})-

In order to understand the magnitude and direction of D, it was studied under

some specific genetic models discussed in the next section.

B.3 Specific Genetic Models

The HWD coefficients for an affected grandchild and its grandparent were studied
in specific genetic models when the grandparent is affected or unaffected. For each
model, the HWD coefficient is plotted for two different values of the homozygote

relative risk, v, 1.5, 3.
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Dominant Model, §=~v,y > 1

Affected Grandchild-Grandparent Pair

When the grandparent is also affected, the HWD coefficient is the same for the

affected grandchild and its grandparent, and is given by

2. 3.4
—pqgay
Dia= Doy = m@ — {4y = 1)a*(g = 5) + 3(7y — 12)g + 2(57 + 14)

1

T 1)(7 + 7y +8)}.

_I_

Discordant Grandchild-Grandparent Pair

When the grandparent is unaffected, the HWD coefficient for the affected grand-

child is
D= Py (7 — 1){4(y — 1)g%(q — 5) + 3(7y — 12)q + 2(57 + 14)
1 ) 16
(VT
R T ey
8 3+
- [-2¢+5+ ——]},
ol (7—1)q]}
and for the grandparent is
DA Pga’ 121 Ay = 1)g%(qg — 5) + 3(Ty — 12
2 —16K]23(1_KR>2(7— )7(1—ay){4(y = 1)g*(g = 5) + 3(7y — 12)q
1
+2(57+14)+ —— (V¥ + Ty +8
( ) q(v—l)( )

2
p
-2
qo
Figure B.1 illustrates the direction and magnitude of HWD in the dominant ge-

netic model for the affected grandchild and its grandparent. Also shown are the

coefficients for unrelated affected and unaffected individuals.
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Figure B.1: HWD coefficients for the dominant genetic model as a function of the
susceptibility-allele frequency for an affected grandchild (a) and their grandparent or
unrelated unaffected person (b).
Kp = 0.1, disease status of grandparent (affected, unaffected) = (o, A), unrelated
affected /unaffected ¢, open/filled symbol for v = 1.5/3

The HWD coefficient increases in magnitude with v for all cases and reaches a
maximum when ¢ is between 0.3 and 0.5. Panel (a) shows that the HWD coefficient
of the affected grandchild is negative and similar regardless of the disease status of
the grandparent. Panel (b) shows that the HWD coefficient of the grandparent is

small when it is unaffected (A). It also shows that the shape and magnitude of

the HWD coefficient for unrelated unaffected individuals (¢) is similar to that of
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the grandparent when it is unaffected (A). The HWD coefficients for the affected
grandchild (panel (a)) is larger in magnitude than that of the grandparent (panel (b))

when the grandparent is unaffected (A).

Recessive Model, =1, 7> 1

Affected Grandchild-Grandparent Pair
When the grandparent is also affected, the HWD coefficient is the same for the

affected grandchild and its grandparent and is positive.

p2 q2 O[4

(v = D[40y — D’ (1 + q) + q(15¢ + 8) +

(y—=1)"
Discordant Grandchild-Grandparent Pair

When the grandparent is not affected, the HWD coefficients are different for af-

fected grandchild and its grandparent and are given by

2 9 4
14= ren —RpE (' VB0~ Ve g) +q(15e +8) + -
B 32 16 ]
a(y=1)  a*(y-1)"
and
2.2 3 9 2
—p?¢ai(l —a)(y—1) . 16 .

The HWD coefficient for the grandparent is negative.

Note that

2
¢ (y—1
DM = _%Dm:
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therefore, the HWD coefficient for the grandparent is smaller in magnitude than that
of the affected grandchild and opposite in sign.

Figure B.2 illustrates the direction and magnitude of HWD in the recessive genetic
model for an affected grandchild and the grandparent. Also shown are the coefficients

for unrelated affected and unaffected individuals.
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Figure B.2: HWD coefficients for the recessive genetic model for an affected grandchild
(a) and their grandparent or unrelated unaffected person (b).

Kp = 0.2, disease status of grandparent (affected, unaffected) = (o, A), unrelated
affected /unaffected ¢, open/filled symbol for v = 1.5/3

The HWD coefficient increases in magnitude with v for all cases and reaches a
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maximum when ¢ is between 0.3 and 0.5. The HWD coefficient for the affected
grandchild (panel (a)) is positive whereas that of the grandparent (panel (b)) when
they are unaffected (A), and that of an unrelated unaffected individual (¢) is negative.
The HWD coefficient is similar for unrelated unaffected individuals (panel (b), ) and
for the grandparent when they are unaffected (A). Panel (a) shows that the HWD
coefficients for the affected grandchild is similar regardless of the disease status of the

grandparent.

Additive Model, v =26 —-1,8>1

Affected Grandchild-Grandparent Pair
When the grandparent is also affected, the HWD coefficient for the affected grand-

child and its grandparent are the same

_p?gtat

Dig=——1°_
T 956K2KE

(v — 1)?[(6q + 1)*y* + 18(4pq + 1)y + (6q — 7)?]

Discordant Grandchild-Grandparent Pair
When the grandparent is not affected, the HWD coefficient for the affected grand-
child is

2.2 4
—pqga 2 2,2 2
Dz = —1 6qg + 1 18(4 1 6qg — 7

16 64
—1 _ il
(1 +6q)y +7—6q] + —}.

and for the grandparent is

~ _p?g%at

= —1)2 2.2 B
Pad = 256K2(1 — KR)2(7 1)2{(6g+1)*y*+18(4pg+1)y+(6¢—7)

~(r+D)+ g

2__
«



183

Figure B.3 illustrates the direction and magnitude of HWD in the additive genetic

model for the affected grandchild and the grandparent. Also shown are the coefficients

for unrelated affected and unaffected individuals.
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Figure B.3: HWD coefficients for the additive genetic model for an affected grandchild
(a) and their grandparent or unrelated unaffected person (b).
Kp = 0.01, disease status of grandparent (affected, unaffected) = (o, A), unrelated
affected/unaffected ¢, open/filled symbol for v = 1.5/3

The HWD coefficient increases in magnitude with v for all cases and reaches a

maximum when ¢ is between 0.3 and 0.5. Panel (a) shows that the HWD coefficient of

the affected grandchild is similar regardless of the disease status of the grandparent.



184

Panel (b) shows that the HWD coefficient of the grandparent is small when it is
unaffected (A). The HWD coefficient for the affected grandchild (panel (a)) is larger
in magnitude than that of the grandparent (panel (b)) when the disease status of the

grandparent is unaffected (A).

Multiplicative Model v = 32,3 > 1

Affected Grandchild-Grandparent Pair
When the grandparent is also affected, the HWD coefficient is the same for the

affected grandchild and its grandparent and is given by

—p’ o’y

[*7* + (1 = 6pg)y + 2(p — vq) (¢ — p)v/7 + P°)-

Discordant Grandchild-Grandparent Pair
When the grandparent is not affected, the HWD coefficient is different for the

affected grandchild and its grandparent

Dig= P00 o2 (1 gyt 20— 10)q - PP
and
D, ; AT 3 4 262(7 — 12¢2)7°2 + 4g]4 — 5q(1 + 3pq)1+>
24 1407 (1 + ¢)7° +2¢°( q" )y +4q[4 — 5q(1 + 3pq)]y

" 16K2(1 — Kg)
+[6 — 20pg(4pg + 1)]7** — 4p[5q(3¢* — 69 + 2) + 1]y

—2(12¢° — 24q + 5)p* /7 + 8 + 4q(¢* — 5¢° +9g — 7)

+ o7v+ 1[61272 + (1 = 6pg)y — 2(vq — p)(q — p)v/7 + P°]}-
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Note that
K3

D 1 = —
1A (1 _ KR)2

D4

so there is a relationship in the HWD coefficients for the affected grandchild when
the grandparent is affected or unaffected.

Figure B.4 illustrates the direction and magnitude of HWD in the multiplicative
genetic model for the affected grandchild and grandparent. Also shown are the co-
efficients for unrelated affected and unaffected individuals. The HWD coefficient is
small in all cases but increases in magnitude with ~ for all cases and reaches a max-
imum when ¢ is between 0.3 and 0.5. Panel (a) shows that the HWD coefficient for
the affected grandchild is slightly negative when the disease status of grandparent is
unaffected (A). The HWD coefficient of grandparent (panel (b)) is largest when it is

unaffected (A).
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Figure B.4: HWD coefficients for the multiplicative genetic model for an affected
grandchild (a) and their grandparent or unrelated unaffected person (b).

Kp = 0.05, disease status of grandparent (affected, unaffected) = (o, A), unrelated
affected /unaffected ¢, open/filled symbol for v = 1.5/3



Appendix C

Distribution Of LRT For The Partially Conditional

Test Of Association For Discordant Relative Pairs

To assess the distribution of the likelihood ratio test statistic for the conditional
test of association for discordant relatives under the null hypothesis, the Q-Q plots
of the test statistic were obtained for the x3 distribution (Figure C.1, Figure C.2 and
Figure C.3). The panels in each figure correspond to the corresponding row the Table
3.7. The figures confirm that LRT statistic follows a x? distribution with two degrees

of freedom under the null hypothesis.
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Figure C.1: Q-Q plots using the x3 distribution LLR for discordant sibling pair
For n = 300 (Panels (a), (c) (e)), n = 1000 (Panels (b), (d) (f)) and ¢ = 0.05 (Panels
(a), (b)), ¢ = 0.1 (Panels (c), (d)) and ¢ = 0.3 (Panels (e), (f))
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Figure C.2: Q-Q plots using the x3 distribution LLR for discordant child-parent pair
For n = 300 (Panels (a), (c) (e)), n = 1000 (Panels (b), (d) (f)) and ¢ = 0.05 (Panels
(a), (b)), ¢ = 0.1 (Panels (c), (d)) and ¢ = 0.3 (Panels (e), (f))
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Figure C.3: Q-Q plots using the x3 distribution LLR for discordant grandchild-

grandparent pair

For n = 300 (Panels (a), (c¢) (e)), n = 1000 (Panels (b), (d) (f)) and ¢ = 0.05 (Panels

(a), (b)), ¢ = 0.1 (Panels (c), (d

) and ¢ = 0.3 (Panels (e), (f))



Appendix D

Distribution Of LRT To Test For the Fully
Conditioned Test Of Association For Discordant

Relative Pairs

To assess the distribution of the likelihood ratio test statistic for the conditional
test of association for discordant relatives under the null hypothesis, the Q-Q plots
of the test statistic were obtained for the x3 distribution (Figure D.1, Figure D.2
and Figure D.3). The panels in each figure correspond to the corresponding row the
Table 3.13. The figures confirm that LRT statistic follows a x? distribution with two

degrees of freedom under the null hypothesis.
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Appendix E

Distribution Of LRT To Test For Genetic Effects In

The Presence Of Stratification

To assess the distribution of the likelihood ratio test statistic for the test of genetic
effects in the presence of stratification, i.e., Hy, stratification effects only, (3 =~v = 1)
vs. H,, both genetic and stratification effects, (0 < ¢ < 1,5,7), the Q-Q plots of
the test statistic were obtained for the x3 distribution (Figure E.1, Figure E.2 and
Figure E.3). The panels in each figure correspond to the 18 cases in the Table 4.2.
The figures confirm that LRT statistic follows a x? distribution with two degrees of

freedom.
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Appendix F

Distribution Of LRT To Test For Stratification In

The Presence Of Genetic Effects

The likelihood ratio test statistic for the test of stratification in the presence of
genetic effects, i.e., Hy, genetic effects only, (¢ = 0) vs. H,, both genetic and strat-
ification effects, (0 < & < 1,0,7), should be distributed as a 50:50 mixture of a x3
(point mass at 0) and a x? (Self and Liang, 1987). To verify this, the proportion of
times the population proportion estimate, ¢, under H, is zero was calculated (Table
F.1) and the Q-Q plots of the non-zero values of the test statistic for the x? distribu-
tion were obtained (Figure F.1, Figure F.2 and Figure F.3). Table F.1 illustrates that
¢ is zero approximately 50% of the time and Figures F.1, F.2 and F.3, confirm that
the distribution of the non-zero values of the LRT statistic follow a x? distribution
with one degree of freedom. The panels in each figure correspond to the 18 cases in

the Table 4.2.
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Table F.1: Proportion of times the estimate of stratification proportion under H, is

Zero.

Parameters Type 1 Errors
gl B| v | np=300|np=2300 | np=1000
r=1 r=4 r=1
0.05| 1 3 0.531 0.522 0.514
0.05| 3 1 0.512 0.541 0.529
0.0513] 3 0.527 0.544 0.527
0051 3] 6 0.53 0.541 0.528
00613] 9 0.539 0.536 0.516
0111 3 0.501 0.505 0.493
0.1 3 1 0.545 0.503 0.482
0.113] 3 0.527 0.500 0.483
0113 6 0.524 0.498 0.515
0113 9 0.522 0.503 0.522
031 3 0.516 0.514 0.506
0313 1 0.503 0.516 0.502
033 3 0.506 0.517 0.511
0313] 6 0.501 0.515 0.505
0313] 9 0.524 0.517 0.51
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Appendix G

Distribution Of Estimates Of Intercepts And Slopes

Of The Logistic Function For The Simulated Levels

To assess the distribution of the estimates of intercepts and slopes when the pen-
etrance functions are modelled as a logistic function of age and data generated under
null hypothesis, Q-Q plots using the N (0, 1) distribution were obtained. The panels in
each figure correspond to the estimates of the intercepts under null hypothesis and in-
tercepts and slopes under alternative hypothesis along with ¢ (Figures G.1, G.2, G.3,
G.4) when ¢ is also estimated and only slopes and intercepts when ¢ is not estimated
(Figures G.5, G.6, G.7, G.8) where data are generated under null hypothesis.

The graphs depict that the estimate of ¢ is normally distributed where as the
estimates of the slopes and intercepts under null and alternative hypothesis have a
sharp peak and fat tails. It also shows that the estimates have larger variance when

the data is estimated under the alternative hypothesis.
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n = 300.



b00 HO

-2

Sample Quantiles
-6 -4
1

Theoretical Quantiles

b00 H1

-2

Sample Quantiles
-6 -4
1

-8

Theoretical Quantiles

b10 H1

T
-3 -2 -1 0 1 2

Theoretical Quantiles

q HO

o
T
o
-
=]
o W
L <9 4
£ o
<
3 O
g <2 A
o O
oy
€
s 4
(2]
c>O
o 19
[
[
-
o
0w
o o
=z o
c
<]
3 O
g =
o ©
o
*
£ 8
n o
©
S o
o T

T
-3 -2 -1 0 1 2

Theoretical Quantiles

Sample Quantiles

Sample Quantiles

Sample Quantiles

Sample Quantiles

6 -4 -2

-8

8 6 -4 -2

0.00 0.05 0.10

-0.10

0.12

0.08 0.09 0.10 0.11

b01 HO
00
o
T T T T T T T
-3 -2 - 0 1 2 3
Theoretical Quantiles
b01 H1
00
o
T T T T T T T
3 -2 1 0 1 2 3

-3 -2 -1 0 1 2 3
Theoretical Quantiles
q H1
o
T T T T T T T
-3 -2 -1 0 1 2 3

Theoretical Quantiles

Sample Quantiles

Sample Quantiles

Sample Quantiles

4 2

-6

4 2

-6

0.00 0.10

-0.10

b02 HO

206

o

T
-3

T T T T T
-2 -1 0 1 2

Theoretical Quantiles

b02 H1

o

o]

T
-3

T T T T T
-2 -1 0 1 2

Theoretical Quantiles

b12 H1

Theoretical Quantiles

Figure G.2: Q-Q plots using the N(0,1) distribution for the estimates of intercepts
under the null and alternative hypothesis when ¢ is also estimated for ¢ = 0.1 and

n = 1000.



b00 HO
[
o 4
(%]
o
= o
= 1
S
S ¥ 4
o
e
©
2 —
o 00
| T T T T T T T
-3 -2 - 0 1 2 3
Theoretical Quantiles
b00 H1
o
o 4
w
<@
= o
j = 1
S
S ¥4
<@
g 9
@
2 —
o 00
| T T T T T T T
3 2 1 0 1 2 3
Theoretical Quantiles
b10 H1
o | 00
o
1%
kY -
€
©
3 o
e} o
o o
a
£ —
@
» o
S
T |o
T T T T T T T
-3 -2 -1 0 1 2 3
Theoretical Quantiles
q HO
2
<
o q
Q@ o
g i
5]
3 o
~ 4
2 s
£
5 -
(%]
©
s o
T T T T T T T
-3 -2 -1 0 1 2 3

Theoretical Quantiles

Sample Quantiles

Sample Quantiles

Sample Quantiles

Sample Quantiles

2

8 6 -4 2 0

2

8 6 -4 2 0

0.00 0.10

-0.10

0.20 0.24

0.16

b01 HO

00

o
—1o

00

Theoretical Quantiles

b11 H1

09

Theoretical Quantiles

q H1

Theoretical Quantiles

Sample Quantiles

Sample Quantiles

Sample Quantiles

0 2 4 6

-4

-8

0 2 46

-4

-8

-0.05 0.05 0.15

-0.15

207

b02 HO

Theoretical Quantiles

b02 H1

o]

Theoretical Quantiles

b12 H1

o

T T T T T T T
-3 -2 -1 0 1 2 3

Theoretical Quantiles

Figure G.3: Q-Q plots using the N(0,1) distribution for the estimates of intercepts
under the null and alternative hypothesis when ¢ is also estimated for ¢ = 0.2 and

n = 300.



b00 HO
-7 [
“ -
2
§ 7
3
el -
o
g 0 ]
£ I
©
] -
~ |
[ )
T T T T T T T
-3 -2 - 0 1 2 3
Theoretical Quantiles
b00 H1
- o
“ -
2
§ 7
3
3 -
<@
[o% o _
£ i
@
» -
~ |
I Tlo
T T T T T T T
-3 2 -1 0 1 2 3
Theoretical Quantiles
b10 H1
| 00
<
n o
oL o
E -
g 84
P o
2 -
£
5 -
O ©
<
o
! o
T T T T T T T
-3 -2 -1 0 1 2 3
Theoretical Quantiles
q HO
(2]
N
o
" -
KO-
= (\l —
§ o
3
3 -
o o
[P
£ o
@
3 -
~
5 160
T T T T T T T
-3 -2 -1 0 1 2 3

Theoretical Quantiles

Sample Quantiles

Sample Quantiles

Sample Quantiles

Sample Quantiles

_5 3 _

-7

_5 3 _

-7

-0.02 0.02 0.06

-0.08

0.19 0.21 0.23

0.17

b01 HO
— oo
o0
T T T T T T T
-3 -2 - 0 1 2 3
Theoretical Quantiles
b01 H1
— oo
o0
T T T T T T T
-3 -2 -1 0 1 2 3
Theoretical Quantiles
b11 H1
00
o
T T T T T T T
-3 -2 -1 0 1 2 3
Theoretical Quantiles
q H1
— Oo
T T T T T T T
-3 -2 -1 0 1 2 3

Theoretical Quantiles

Sample Quantiles

Sample Quantiles

Sample Quantiles

4

-2

4

0.05

-0.05 0.00

208

b02 HO
[
o
T T T T T T T
-3 -2 - 0 1 2 3
Theoretical Quantiles
b02 H1
o
o
T T T T T T T
3 -2 1 0 1 2 3
Theoretical Quantiles
b12 H1
00
o
T T T T T T T
3 -2 -1 0 1 2 3

Theoretical Quantiles

Figure G.4: Q-Q plots using the N(0,1) distribution for the estimates of intercepts
under the null and alternative hypothesis when ¢ is also estimated for ¢ = 0.2 and

n = 1000.
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under the null and alternative hypothesis when ¢ is not estimated for ¢ = 0.1 and
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Figure G.8: Q-Q plots using the N(0,1) distribution for the estimates of intercepts
under the null and alternative hypothesis when ¢ is not estimated for ¢ = 0.2 and
n = 1000.



Appendix H

Distribution Of Estimates Of Intercepts And Slopes

Of The Logistic Function For The Simulated Power

To assess the distribution of the estimates of intercepts and slopes when the pen-
etrance functions are modelled as a logistic function of age and data generated under
alternative hypothesis, Q-Q plots using the N (0, 1) distribution were obtained. The
panels in each figure correspond to the estimates of the intercepts under null hy-
pothesis and intercepts and slopes under alternative hypothesis along with ¢ (Figures
H.1, H.2, H.3, H.4) when ¢ is also estimated and only slopes and intercepts when ¢
is not estimated (Figures H.5, H.6, H.7, H.8) where data are generated under null
hypothesis.

The graphs depict that the estimate of ¢ is normally distributed where as the
estimates of the slopes and intercepts under null and alternative hypothesis have a
sharp peak and fat tails. It also shows that the estimates have larger variance when
the data is estimated under the alternative hypothesis. The figures also illustrate
that the estimates are closer to normal distribution for small values of the sample size

and minor allele frequency.
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Figure H.1: Q-Q plots using the N (0, 1) distribution for the estimates of intercepts
under the null and alternative hypothesis when ¢ is also estimated for ¢ = 0.1 and

n = 300.
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Figure H.2: Q-Q plots using the N (0, 1) distribution for the estimates of intercepts
under the null and alternative hypothesis when ¢ is also estimated for ¢ = 0.1 and

n = 1000.
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Figure H.3: Q-Q plots using the N (0, 1) distribution for the estimates of intercepts
under the null and alternative hypothesis when ¢ is also estimated for ¢ = 0.2 and
n = 300.



Sample Quantiles

Sample Quantiles

Sample Quantiles

Sample Quantiles

_5 -3 _

-7

_5 3 _

-7

-0.05  0.00 0.05

-0.10

0.19 0.21

0.17

b00 HO

-3 2 -1 0 1 2

Theoretical Quantiles

b00 H1

-3 -2 -1 0 1 2

Theoretical Quantiles

b10 H1

w

-3 -2 -1 0 1 2

Theoretical Quantiles

q HO

w

-3 -2 -1 0 1 2

Theoretical Quantiles

w

Sample Quantiles

Sample Quantiles

Sample Quantiles

Sample Quantiles

4 2

-6

4 2

-6

-0.05 0.00 0.05

-0.10

0.19 0.21 0.23

0.17

b01 HO

Theoretical Quantiles

b01 H1

Theoretical Quantiles

b11 H1

Theoretical Quantiles

q H1

Theoretical Quantiles

Sample Quantiles

Sample Quantiles

Sample Quantiles

-2

4

-2

4

0.00 0.05

-0.10

217

b02 HO

o)

T T T T T T T
-3 -2 - 0 1 2 3

Theoretical Quantiles

b02 H1
o
o
T T T T T T T
3 -2 1 0 1 2 3
Theoretical Quantiles
b12 H1
3
o
T T T T T T T
3 -2 -1 0 1 2 3

Theoretical Quantiles

Figure H.4: Q-Q plots using the N (0, 1) distribution for the estimates of intercepts
under the null and alternative hypothesis when ¢ is also estimated for ¢ = 0.2 and
n = 1000.
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Figure H.5: Q-Q plots using the N(0, 1) distribution for the estimates of intercepts
under the null and alternative hypothesis when ¢ is not estimated for ¢ = 0.1 and
n = 300.
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Figure H.6: Q-Q plots using the N (0, 1) distribution for the estimates of intercepts
under the null and alternative hypothesis when ¢ is not estimated for ¢ = 0.1 and

n = 1000.
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Figure H.7: Q-Q plots using the N (0, 1) distribution for the estimates of intercepts
under the null and alternative hypothesis when ¢ is not estimated for ¢ = 0.2 and

n = 300.
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Figure H.8: Q-Q plots using the N (0, 1) distribution for the estimates of intercepts
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copied, modified, adapted, translated, reproduced, transferred or distributed, In any form or
by any means, and no derivative works may be made based on the Materials without the prior
permission of the respective copyright owner. You may not alter, remove or suppress in any
manner any copyright, trademark or other notices displayed by the Materials. You may not
license, rent, sell, loan, lease, pledge, offer as security, transfer or assign the Materials, or
any of the rights granted to you hereunder to any other person.

4. The Materials and all of the intellectual property rights therein shall at all times remain the
exclusive property of John Wiley & Sons Inc or one of its related companies (WILEY) or their
respective licensors, and your interest therein is only that of having possession of and the
right to reproduce the Materials pursuant to Section 2 herein during the continuance of this
Agreement. You agree that you own no right, title or interest in or to the Materials or any of
the intellectual property rights therein. You shall have no rights hereunder other than the
license as provided for above in Section 2. No right, license or interest to any trademark, trade
name, service mark or other branding ("Marks") of WILEY or its licensors is granted
hereunder, and you agree that you shall not assert any such right, license or interest with
respect thereto.

5. WILEY DOES NOT MAKE ANY WARRANTY OR REPRESENTATION OF ANY KIND TO YOU OR ANY
THIRD PARTY, EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS OR THE
ACCURACY OF ANY INFORMATION CONTAINED IN THE MATERIALS, INCLUDING, WITHOUT
LIMITATION, ANY IMPLIED WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY
QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY, INTEGRATION OR NON-
INFRINGEMENT AND ALL SUCH WARRANTIES ARE HEREBY EXCLUDED BY WILEY AND WAIVED BY
YOU.

6. WILEY shall have the right to terminate this Agreement immediately upon breach of this
Agreement by you.

7. You shall indemnify, defend and hold harmless WILEY, its directors, officers, agents and
employees, from and against any actual or threatened claims, demands, causes of action or
proceedings arising from any breach of this Agreement by you.

8. IN NO EVENT SHALL WILEY BE LIABLE TO YOU OR ANY OTHER PARTY OR ANY OTHER PERSON
OR ENTITY FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR
PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN CONNECTION WITH THE
DOWNLOADING, PROVISIONING, VIEWING OR USE OF THE MATERIALS REGARDLESS OF THE
FORM OF ACTION, WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT,
NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT LIMITATION, DAMAGES
BASED ON LOSS OF PROFITS, DATA, FILES, USE, BUSINESS OPPORTUNITY OR CLAIMS OF THIRD
PARTIES), AND WHETHER OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY FAILURE OF ESSENTIAL
PURPOSE OF ANY LIMITED REMEDY PROVIDED HEREIN.

9. Should any provision of this Agreement be held by a court of competent jurisdiction to be
illegal, invalid, or unenforceable, that provision shall be deemed amended to achieve as nearly
as possible the same economic effect as the original provision, and the legality, validity and
enforceability of the remaining provisions of this Agreement shall not be affected or impaired
thereby.
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10. The failure of either party to enforce any term or condition of this Agreement shall not
constitute a walver of either party's right to enforce each and every term and condition of this
Agreement. No breach under this agreement shall be deemed waived or excused by either
party unless such waiver or consent is in writing signed by the party granting such waiver or
consent. The waiver by or consent of a party to a breach of any provision of this Agreement
shall not operate or be construed as a waliver of or consent to any other or subsequent
breach by such other party.

11, This Agreement may not be assigned (including by operation of law or otherwise) by you
without WILEY's prior written consent.

12, These terms and conditions together with CCC’s Billing and Payment terms and conditions
(which are incorporated herein) form the entire agreement between you and WILEY
concerning this licensing transaction and (in the absence of fraud) supersedes all prior
agreements and representations of the parties, oral or written. This Agreement may not be
amended except in a writing signed by both parties. This Agreement shall be binding upon
and Inure to the benefit of the parties' successors, legal representatives, and authorized
assigns.

13. In the event of any conflict between your obligations established by these terms and
conditions and those established by CCC's Billing and Payment terms and conditions, these
terms and conditions shall prevail.

14. WILEY expressly reserves all rights not specifically granted in the combination of (i) the
license details provided by you and accepted in the course of this licensing transaction, (ii)
these terms and conditions and (ili) CCC’s Billing and Payment terms and conditions.

15. This Agreement shall be governed by and construed in accardance with the laws of
England and you agree to submit to the exclusive jurisdiction of the English courts.

BY CLICKING ON THE "I ACCEPT" BUTTON, YOU ACKNOWLEDGE THAT YOU HAVE READ AND
FULLY UNDERSTAND EACH OF THE SECTIONS OF AND PROVISIONS SET FORTH IN THIS
AGREEMENT AND THAT YOU ARE IN AGREEMENT WITH AND ARE WILLING TO ACCEPT ALL OF
YOUR OBLIGATIONS AS SET FORTH IN THIS AGREEMENT,

V1.2

Gratis licenses (referencing $0 in the Total field) are free. Please retain this printable
license for your reference. No payment is required.

If you would like to pay for this license now, please remit this license along with your
payment made payable to "COPYRIGHT CLEARANCE CENTER" otherwise you will be
invoiced within 48 hours of the license date. Payment should be in the form of a check or
money order referencing your account number and this invoice number RLNK10764214.
Once you receive your invoice for this order, you may pay your invoice by credit card.
Please follow instructions provided at that time.

Make Payment To:
Copyright Clearance Center
Dept 001

P.O. Box 843006

Boston, MA 02284-3006

If you find copyrighted material related to this license will not be used and wish to cancel,
please contact us referencing this license number 2403740984610 and noting the reason
for cancellation.

Questions? customercare@copyright.com or +1-877-622-5543 (toll free in the US) or
+1-978-646-2777.
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