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Abstract
The field of metagenomics has shown great promise in the ability to recover microbial 

DNA from communities whose members resist traditional cultivation techniques, although in 
most instances the recovered material comprises short anonymous genomic fragments rather than 
complete genome sequences. In order to effectively assess the microbial diversity and ecology 
represented in such samples, accurate methods for DNA classification capable of assigning 
metagenomic fragments into their most likely taxonomic unit are required. Existing DNA 
classification methods have shown high levels of accuracy in attempting to classify sequences 
derived from low-complexity communities, however genome distinguishability generally 
deteriorates for complex communities or those containing closely related organisms. The goal of 
this thesis was to identify factors both intrinsic or external to the genome that may lead to the 
improvement of existing DNA classification methods and to probe the fundamental limitations of 
composition-based genome distinguishability.

To assess the suite of factors affecting the distinguishability of genomes, support vector 
machine classifiers were trained to discriminate between pairs of microbial genomes using the 
relative frequencies of oligonucleotide patterns calculated from orthologous genes or short 
genomic fragments, and the resulting classification accuracy scores used as the measure of 
genomic distinguishability. Models were generated in order to relate distinguishability to several 
measures of genomic and taxonomic similarity, and interesting outlier genome pairs were 
identified by large residuals to the fitted models. Examination of the outlier pairs identified 
numerous factors that influence genome distinguishability, including genome reduction, extreme 
G+C composition, lateral gene transfer, and habitat-induced genome convergence. Fragments 
containing multiple protein-coding and non-coding sequences showed an increased tendency for 
misclassification, except in cases where the genomes were very closely related. Analysis of the 
biological function annotations associated with each fragment demonstrated that certain 
functional role categories showed increased or decreased tendency for misclassification. The use 
of pre-processing steps including DNA recoding, unsupervised clustering, 'symmetrization' of 
oligonucleotide frequencies, and correction for G+C content did not improve distinguishability.

Existing composition-based DNA classifiers will benefit from the results reported in this 
thesis. Sequence-segmentation approaches will improve genome distinguishability by decreasing 
fragment heterogeneity, while factors such as habitat, lifestyle, extreme G+C composition, 
genome reduction, and biological role annotations may be used to express confidence in the 
classification of individual fragments. Although genome distinguishability tends to be 
proportional to genomic and taxonomic relatedness, these trends can be violated for closely 
related genome pairs that have undergone rapid compositional divergence, or unrelated genome 
pairs that have converged in composition due to similar habitats or unusual selective pressures. 
Additionally, there are fundamental limits to the resolution of composition-based classifiers when 
applied to genomic fragments typical of current metagenomic studies. 
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Chapter 1 – Introduction

Definition: DNA Classification
In the context of this thesis, DNA classification refers to the attribution of an 

anonymous DNA sequence to its originating genome or a specific taxonomic unit. 

Classification may be based upon compositional characteristics of the query sequence, 

including such features as G+C content or differences in the relative frequencies of short 

oligonucleotides. Alternatively, in cases where the query sequences contain genes or gene 

fragments, classification of such fragments may be guided using homology-based 

approaches that compare each of the anonymous sequences against databases containing 

genes of known origin.

Motivation for Accurate DNA Classification Methods
In recent years, the need for accurate methods for DNA classification has become 

increasingly evident, driven largely by the appearance of high throughput DNA 

sequencing platforms such as the Illumina Genome Analyzer, (http://www.illumina.com) 

Roche 454 Genome Sequencer (http://www.454.com), and ABI SOLiD sequencer 

(http://www.appliedbiosystems.com). From a typical DNA sample, these systems 

generate millions of short (36-600 bp) reads that must subsequently be reassembled in 

order to reconstruct the source genome or genomes.  Traditionally, microbial studies have 

focused on organismal genomics, involving the isolation of a prokaryotic organism of 

interest followed by clonal cultivation and Sanger sequencing. Although this traditional 

approach has proven to be successful for a variety of organisms such as Haemophilus  

influenzae [1], Escherichia coli K-12 [2], Mycoplasma genitalium [3], and Bacillus  

subtilis [4], in reality very few microbes prove amenable to lab cultivation. This 

phenomenon was originally described by Staley et al. as the 'great plate count anomaly', 

when it was observed that plate counts of bacterial cells in culture were often orders of 

magnitude smaller than the corresponding cell counts for the original samples [5]. More 

recently, several estimates of microbial susceptibility to lab cultivation suggest that only a 

minute fraction (0.001% - 3%) of the total microorganisms in existence may be cultured 

http://www.illumina.com/
http://www.appliedbiosystems.com/
http://www.45.com/
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using existing cultivation methods [6-8]. Advances in lab cultivation techniques and 

growth media will likely increase the range of organisms for which clonal cultivation is 

an effective option; however, the complex metabolic and organismal interdependencies 

that exist within microbial communities may forever limit the applicability of these 

techniques to the 'unculturable majority'. Even with an increasing arsenal of improved 

cultivation practices, the study of an organism in isolation greatly reduces our ability to 

understand the organism's unique role within its microbial community, and sheds little 

light on the complex biochemical pathways that may in fact span multiple organisms in a 

given environment [9-11].

With such a large proportion of the microbial diversity and ecology out of reach of 

traditional cultivation and sequencing methods, there has been a shift toward attempting 

to study entire communities of microbes in their natural environments, thus removing the 

requirements for isolation and cultivation of a particular organism of interest. While DNA 

sequencing was once a time consuming and often cost-prohibitive process, recent 

advances such as automated Sanger sequencing and massively parallel sequencing by 

synthesis techniques (Roche 454, Illumina Genome Analyzer) have served to 

simultaneously increase sequencing throughput and greatly decrease cost. Additionally, 

the improved sequencing methods require far less input DNA, with 3rd generation 

sequencing technologies promising to bring about the ability to sequence single DNA 

molecules while forgoing the current reliance on PCR-based amplification 

(http://www.pacificbiosciences.com, [12]). The net effect is that DNA sequencing has 

become more accessible and more widely applicable, and it is now possible to perform 

shotgun sequencing on DNA extracted from communities of microbes in environmental 

or clinical samples. This application of shotgun sequencing to entire communities of 

microbes has led to a new field known as metagenomics, or community genomics. 

Metagenomics
Metagenomics, although still a relatively new field, has already proven to be a 

successful method for studying unculturable organisms from a variety of environments. 

Two high-profile studies, the Sargasso Sea [13] and Global Ocean Sampling (GOS) 

http://www.pacificbiosciences.com/
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expeditions [14-16], have successfully applied high-throughput metagenomics in order to 

interrogate the microbial and viral populations from seawater sampled at regular intervals 

around the globe. In the latter GOS study, analysis of the metagenomic data sets revealed 

the presence of ~1800 bacterial species spread across 41 open-ocean and coastal sample 

sites. Also retrieved from the GOS samples were ~6 million new genes that had never 

before been identified. Another large metagenomics initiative, the Human Microbiome 

Project [17], involves the application of metagenomics to microenvironments within the 

human body, and has great implications for helping to identify the role of microbes in 

both maintaining and degrading human health. Metagenomics has also shown promise in 

the elucidation of the biochemical pathways involved in important industrial processes. 

Enhanced biological phosphorus removal (EBPR), a common wastewater treatment 

method used worldwide in order to decrease the impact of eutrophication, was for many 

years known only as a 'black box' [18]. The microbes present in the EBPR medium 

resisted cultivation using traditional techniques, and although specific reaction conditions 

for the EBPR process were widely understood, very little was actually known about the 

organism(s) responsible for the process of phosphorus accumulation [19]. Through the 

use of metagenomics, the genomic complement of the predominant EBPR 

microorganisms was almost entirely reconstructed, and analysis of the genes found in the 

various microbes confirmed earlier studies which suggested that Candidatus 

Accumulibacter phosphatis is responsible for phosphorus removal [20-22]. Ongoing 

metagenomic analyses aim to characterize the relationship between the various strains of 

A. phosphatis and the specific ecologies of the environments from which the genomes 

were reconstructed. (Slater et al, submitted 2010)

Several variables that are important in determining the success of the 

metagenomics approach to the interrogation a given microbial community are directly 

related to the complexity of the community, namely: the total number of species present, 

the relative abundance of each species, and the phylogenetic and/or compositional 

relatedness of each of the members. For simple communities containing a small number 

of well-represented organisms, metagenomics has already shown great promise in 

reconstructing the component genomes. For instance, in a study of a modest microbial 
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community found in an acid mine drainage biofilm, near-complete genomes were 

retrieved for the two dominant members, Leptospirillum group II and Ferroplasma type 

II, by simply binning the sequence reads based on similarities in G+C content and 

sequencing coverage [23]. Additionally, partial genomes were also reconstructed for three 

less abundant members of the biofilm using the same straightforward approach. For more 

complex communities, however, much more powerful and as-of-yet unavailable methods 

of DNA classification will be required if the individual genomes are to be discerned using 

metagenomics. In the analysis of a large soil metagenome, for example, less than 1% of 

all of the sequencing reads could accurately be attributed to genomic contigs, limiting 

downstream analyses to those based solely on the set of genes recovered from the 

samples rather than complete or nearly complete genomes [24]. A further complication 

arises from the fact that existing methods for DNA assembly and binning were designed 

to reconstruct single genomes sequenced from clonal samples, and are insufficiently 

robust to handle the presence of mixtures of sequences derived from closely related 

species or those that are highly similar in composition. As such, DNA fragments from 

these organisms may inadvertently be assembled into chimeric contigs, greatly reducing 

the utility of the metagenomics approach in examining the interaction and cooperation of 

the individual members of the given microbial community [25]. Additionally, less- 

abundant members of a community may fail to achieve adequate representation in the 

resulting sequencing data, leading only to partial recovery of the associated genomes. 

[26] In these cases, the attribution of incomplete genomes to the most likely genus or 

family may still provide insight into the structure of the underlying microbial community, 

even if the recovery of complete genomes is not achievable using current sequencing 

techniques [27].

Although the acid mine drainage community has served to validate the use of 

metagenomics for the study of very simple communities composed of organisms with 

significant differences in G+C content, complex communities and those containing 

poorly represented species still remain largely out of reach. Clearly, the development of 

methods for the accurate attribution of DNA fragments from microbial communities to 

their true originating genomes or the most likely taxonomic clade should be a key area of 
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focus if metagenomics is to open the door to the vast genetic diversity present in 

unculturable microoganisms.

The gold standard for studying the phylogenetic relatedness of a set of organisms 

has long been based upon the analysis of similarities in 16S rDNA or, less frequently, 

other highly conserved marker genes such as recA [28-31]. Although this marker gene 

approach might be useful in attempting to classify nearly complete genomic contigs 

retrieved from low-complexity metagenomes, in practice few marker genes tend to be 

recovered from complex environmental samples. For example, only 4,125 complete or 

partial 16S rDNA sequences were recovered from the 7.7 million sequence reads in the 

Global Ocean Sampling expedition [16]. In some instances, the phylogenetic composition 

of a microbial community may be interrogated through targeted sequencing of specific 

marker genes, however these studies generally offer little information as to the 

distribution of functional roles within the community [32]. Additionally, viruses provide 

yet another relatively unharnessed avenue for the discovery of novel genetic diversity, 

however, viral genomes tend to be extremely compact and do not contain the equivalent 

of bacterial 16S rRNA genes, thus limiting the utility of the marker gene approach. 

Alternatives to the gold standard include classification methods that rely upon the 

homology of environmental DNA fragments to sequences present in databases of known 

genomes [33-35], as well as techniques that attempt to classify DNA fragments based on 

compositional characteristics that may be specific to a particular genome or taxonomic 

clade [36-38].

Genome Signature
It has been well established that between-genome compositional variation for a 

pair of microbes tends to be significantly higher than within-genome compositional 

variation, especially for pairs of genomes that are separated by a large phylogenetic 

distance [39-42]. G+C composition is perhaps the simplest measure of such 

compositional variation, and as indicated in the preceding section, can be sufficient to 

discriminate between genomic fragments from multiple organisms in at least some low-

complexity microbial communities [23]. This pattern of within-genome composition has 
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often been referred to as the genome signature. Factors implicated in the establishment of 

an organism's specific genome signature include biases induced by DNA replication and 

repair mechanisms [39; 43], codon usage [44], avoidance of restriction endonuclease 

cleavage sites [43; 45], growth environment [46], and DNA base stacking conformation 

[43].  Collectively, these forces serve to shape the composition of an organism's genome, 

providing a signal which may be harnessed in order to assign metagenomic or otherwise 

anonymous DNA fragments to the correct source genome or taxonomic group.

Early studies into genome signature dealt largely with G+C composition as well 

as various measures of codon usage bias such as the codon adaptation index [47]. 

Although these measures of genome signature are sufficient to discriminate between pairs 

of genomes in some instances, both measures are susceptible to crowding of the feature 

space, and have been shown to carry little phylogenetic signal [40; 48; 49].  Karlin et al. 

first reported an improved measure of genome signature based on the over and 

underrepresentation of dinucleotides present in a genome's DNA sequence, and showed 

that this dinucleotide relative abundance was a more effective means of discriminating 

between microbial genomes [39; 43; 50]. Building upon this work, several other authors 

demonstrated that the relative frequencies of longer oligonucleotides also captured 

species-specific compositional features as well as phylogenetic signal [51]. In particular, 

the frequencies of tetranucleotides observed in genomic DNA have successfully been 

applied to the unsupervised clustering of DNA fragments into compositional bins [40; 45] 

as well as the attribution of DNA fragments into taxonomic clades of varying levels [36-

38; 52]. In situations where marker gene approaches are not an option, techniques based 

upon genome signature may provide an effective means for determining the origin of 

anonymous DNA fragments.  

It is now widely understood that genes may also be passed laterally between 

organisms belonging to different species, sometimes over great phylogenetic distances. 

This phenomenon, known as lateral genetic transfer (LGT) or horizontal gene transfer, 

allows for the rapid acquisition of genes that might encode features such as antibacterial 

resistance or other important biosynthetic pathways. Lateral genetic transfer between 
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compositionally divergent microbes is likely to increase the within-genome 

compositional variation of the acceptor organism, and therefore has the potential to 

obscure the genome signature in the vicinity of the introgressed sequence. Although most 

prevalent in bacteria and archaea, evidence also suggests that eukaryotes may also be 

susceptible to lateral gene transfer, albeit at a much slower rate than observed in the 

prokaryotic world [53; 54].

As a species evolves over many generations, any sequence acquired via LGT will 

gradually change in composition and converge toward the genome signature of the host 

through the process of amelioration [55].  Given sufficient evolutionary time, the 

compositional characteristics of laterally transferred genes will eventually become 

indistinguishable from those inherited vertically, as DNA replication biases and other 

factors that influence an organism's genome signature slowly bring the composition of the 

foreign genes in line with the acceptor organism's genome. This poses an immense 

challenge for both composition and homology-based DNA classification methods, as 

genes recently acquired via LGT may easily be mis-attributed to the donor organism. In 

fact, numerous surrogate methods have been employed in order to attempt to identify 

genes implicated in LGT by searching for regions of a given genome with compositional 

signatures that differ from the predominant genome signature [52; 56-58].

Review of Existing Methods for DNA Classification
Existing methods for DNA classification can be grouped into one of three 

classification paradigms: supervised methods that necessitate some form of labelled 

reference data in order to train a machine-learning algorithm or to act as a comparator 

data set, unsupervised methods that perform classification based entirely on 

characteristics intrinsic to the test data, and semi-supervised methods that share aspects of 

both the supervised and unsupervised paradigms. Depending on the manner in which a 

classifier represents and compares DNA fragments, the various DNA classification 

methods can be further grouped into two additional categories. Sequence-composition 

methods rely on the innate compositional characteristics of a given DNA sequence such 

as G+C content, codon usage biases in the case of coding regions, and oligonucleotide 
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frequency profiles (essentially DNA word frequencies) in order to facilitate classification. 

Such methods may include supervised classifiers that depend upon a reference corpus of 

known genomes in order to build models capable of recognizing genome signatures 

specific to certain phylogenetic clades. Alternatively, in the absence of a database of 

reference genomes, several unsupervised sequence-composition classifiers are able to 

cluster anonymous DNA fragments into compositional bins in a phylogenetically naive 

fashion based solely on the properties of the DNA fragments themselves. In contrast, 

sequence-similarity or sequence-homology based classifiers must compare query 

sequences against databases of known genes and/or genomes and subsequently utilize the 

various similarity measures in order to classify sequences into specific clades. The 

dependence of homology-based methods on reference sequences necessitates that such 

methods fall into the supervised category of classifiers.

A classification method's reliance on databases of known sequences may have 

both positive and negative implications. Classifiers that rely entirely on comparisons 

against public reference databases may succeed in classifying only those anonymous 

fragments that have close relatives in the training data set, which at present contains but a 

small fraction of the microbial diversity present in nature [36; 59]. In contrast, classifiers 

that bin sequences without the aid of external databases are oblivious to existing 

phylogenetic clades, and as a consequence require post-classification manual intervention 

in order to assign the resulting clusters of fragments into the existing phylogenetic 

hierarchy [40; 59]. Clearly, the choice as to which type of classifier is most appropriate 

will depend largely on the nature of a given experimental data set, and the overall 

relatedness of the query sequences to the sequences present in the various reference 

databases.

Several model examples of existing techniques for DNA classification and 

binning will be examined in the following sections. The complete list of methods is 

summarized in Table 1.1.
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Supervised Training of Classifiers

Chi-squared Approach

The Chi-squared classification method (referred to as the k-mer method by the 

authors) is a relatively simple sequence-composition classifier developed by the US 

Department of Energy's Joint Genome Institute (DOE-JGI) and described in the Fidelity 

of Analysis of Metagenomic Samples (FAMeS) paper by Mavromatis et al. [25]. The 

FAMeS manuscript presents three simulated metagenomic datasets, each designed to 

represent a different level of community complexity in terms of the number and relative 

abundance of unique microbial populations present in the sample. A low complexity 

metagenome consists of one well-represented organism surrounded by a small number of 

low-abundance organisms, such as the enhanced biological phosphorus removal (EBPR) 

bioreactor metagenome [20]. In contrast, a high complexity metagenome lacks any single 

dominant population, and instead consists of numerous organisms that are poorly 

represented in the sample, such as metagenomic samples obtained from soil [60]. The 

goal of the FAMeS manuscript is to compare the classification performance of the Chi-

squared method versus two additional classifiers (PhyloPythia [38] and BLAST 

distribution [25]) when applied to three simulated metagenomic datasets of increasing 

community complexity (simLC: low complexity, simMC: medium complexity, and 

simHC: high complexity).  Both PhyloPythia and BLAST distr will be discussed at length 

in subsequent sections.

In order to evaluate the Chi-squared classifier, all of the reference genomes 

included within version 1.3 of the Integrated Microbial Genomes system [61], minus the 

dominant members of the simLC, simMC, and simHC metagenomes, were used to 

construct the training set. Each reference genome was first partitioned into fragments 

8000bp in length, and each 8000bp subsequence was represented by the relative 

frequencies of all possible overlapping 7-mers and 8-mers present on either strand in the 

fragment. Similarly, the test set consisted of all fragments >= 8000bp in length from three 

distinct assemblies of the simLC, simMC, and simHC simulated metagenomic datasets. 

All test fragments were likewise represented using their corresponding 7-mer and 8-mer 
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frequency profiles.

Classification was facilitated by comparing the oligonucleotide frequency profiles 

of each of the test fragments against the entire set of reference frequency profiles using 

either of the following two patterns: “NNNNNNN”  or “NNxNNxNN” where N 

represents any nucleotide and x is ignored during the pattern-matching step. Comparisons 

between fragments were performed using the oligonucleotide frequency profiles 

associated with both strands of DNA. Each fragment was then assigned to the taxonomic 

family of the best matching reference genome, according to a Chi-squared comparison.

Overall, the performance of the Chi-squared method was quite poor in relation to 

the other methods examined in the FAMeS study, with average specificity <= 11% and 

average sensitivity <= 24% across the three assemblies and three simulated data sets. 

Although this method failed to classify fragments into the correct taxonomic family in the 

vast majority of cases, the authors noted that the method was consistently capable of 

binning fragments into the correct taxonomic order, despite the poor performance at the 

family level. Refinement of the method, perhaps using shorter length oligonucleotides in 

calculating the k-mer frequency profiles, may lead to improved performance at more 

specific taxonomic ranks. 



Table 1.1: Summary of Existing Methods for DNA Classification and Binning

Coloured shading is used to highlight the machine learning and classification strategy used by each method. blue: supervised 
composition-based classifiers, yellow: unsupervised composition-based classifiers, orange: semi-supervised composition-based 
classifiers, purple: supervised homology-based classifiers.

Classifier
Category of 

machine 
learning

Classification 
strategy

Methodology
Appropriate 

fragment length
References

PhyloPythia Supervised Composition
Hierarchy of multiclass SVMs trained using tetranucleotide frequency 
profiles at various taxonomic ranks

1kbp - 50kbp [38]

Naïve Bayesian Supervised Composition
Probabilistic classification of n-mer frequency profiles using a Bayesian 
classifier

400bp – 1kbp,
25bp - 500bp

[52; 62]

TACOA Supervised Composition
Oligonucleotide frequencies clustered using k-nearest neighbor algorithm 
combined with a Gaussian kernel

800bp - 50kbp [37]

Chi-squared 
(FAMeS)

Supervised Composition
Comparison of 7-mer or degenerate 8-mer oligonucleotide frequency 
profiles to those of known genomes using Chi-squared measure

8kbp+ [25]

TETRA Unsupervised Composition
Fragments binned based on pairwise Z-score correlations of tetranucleotide 
frequencies

40kbp+ [40; 63]

SOM Unsupervised Composition
Clustering of tetranucleotide frequencies into anonymous phylotypes using 
a SOM

5kbp+ [64]

S-GSOM
Semi-

supervised
Composition

GSOM with post processing to cluster sequences based on seeds (16S 
flanking sequences)

8kbp - 13kbp [36]

CompostBin
Semi-

supervised
Composition

Weighted-PCA of hexanucleotide frequencies combined with a recursive 
normalized-cut clustering algorithm. Clustering is augmented using 
phylogenetic markers.

~1kbp+ [65]

BLAST distr 
(FAMeS)

Supervised Homology
Genes predicted using fgenesb and normalized-BLASTP best hits are 
subsequently used to assign fragments into the most likely taxonomic class

8kbp+ [66]

CARMA Supervised Homology
Conserved PFAM domains and families found in query sequences are used 
to classify sequences into specific taxonomic ranks

80bp - 400bp [33]

11
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Naïve Bayes Classifier

The naïve Bayes classifier (NBC) is an application of Bayesian statistics to 

classification, under the 'naïve' assumption that the specific set of features that define any 

given class in a multi-class problem are completely independent of one another. Although 

the assumption of feature independence is often violated in practice, the naïve Bayes 

classifier has proven to be robust to such violations for a number of applications, 

including text classification [67], the prediction of protein function [68], and spam 

filtering [69]. 

Two separate studies have used oligonucleotide frequency profiles in conjunction 

with the probabilistic naïve Bayes classifier in order to classify DNA fragments from sets 

of bacterial and archaeal genomes [52; 62]. In both studies, genomes were first 

partitioned into sets of fragments of assorted lengths, and k-mer frequency profiles were 

subsequently calculated for each fragment length using various values of k. The k-mer 

frequency profiles were then classified by the naïve Bayes classifier in a cross-validated 

fashion, and the performance of the classifier was measured in terms of its global 

classification accuracy for each of the possible fragment length and k-mer length 

combinations.

Sandberg et al [52] examined NBC performance using a set of 28 bacterial and 

archaeal genomes, with fragment lengths ranging from 35 nt – 1000 nt, and k-mer 

frequency profiles calculated over all possible oligonucleotide lengths up to a maximum 

of 9 nt. In each trial, the training set consisted of oligonucleotide frequency profiles 

generated from 100 randomly selected fragments from each genome. Classifier 

performance on the training set was evaluated for each combination of fragment length 

and k-mer pattern length using 10 fold leave-one-out cross-validation. The authors noted 

that classification accuracy increased with both increasing fragment length and increasing 

k-mer length, and the NBC achieved a maximum classification accuracy of nearly 90% 

using 9-mer frequency profiles calculated from 1000 nt genomic fragments. Interestingly, 

even very short fragments could often be classified by the NBC, with 35 nt fragments 

leading to a classification accuracy of 36% (compared with a baseline accuracy of 3.57% 
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for random predictions), and 60 nt fragments resulting in a classification accuracy of 

46%, both using 9-mer frequency profiles. For the second longest fragment length, 400 

nt, the NBC achieved a maximum classification accuracy of 85%, once again using 9-mer 

frequency profiles.

In a more comprehensive study, Rosen et al applied the NBC approach in order to 

classify fragments from 635 bacterial and archaeal genomes using fragment lengths of 25 

nt, 100 nt, and 500 nt, and k-mer lengths ranging from 3 nt – 15 nt [62]. For each 

fragment length and k-mer length combination, the training set was constructed by 

partitioning each genome into substrings of the appropriate fragment length, and 

calculating the corresponding k-mer frequencies for all fragments. As with the Sandberg 

study, the authors noted that classification accuracy tended to increase with increasing 

fragment and k-mer lengths. Interestingly, it was noted that for very short fragments, 

optimum k-mer length was inversely proportional to the fragment length. For instance, 

for 100 nt and 500 nt fragments, classification accuracy appeared to plateau using 12-mer 

frequency profiles, whereas the highest classification accuracy for 25 nt fragments was 

achieved using 15-mer frequency profiles. As k-mer length increases, the corresponding 

feature vectors become increasingly sparse, such that most features will have no 

representation, and those features with a frequency >1 will likely be specific to a given 

species or genus. For this reason, the observation that longer k-mers resulted in increased 

classification accuracy for shorter fragments may simply be artefacts whereby the 

classifier is recognizing the primary nucleotide sequence of each fragment rather than the 

compositional characteristics of the fragment.

The authors reported maximum species-level classification accuracies of 97.3% 

for 500 nt fragments, 95.3% for 100 nt fragments, and 90.2% for 25 nt fragments using 5-

fold cross-validation on a reduced subset of genomes. It should be noted, however, that 

these results must be interpreted in the context of the cross-validation methodology 

employed in the study. In order to calculate the cross-validated classification accuracies, 

the authors first selected a subset of 77 strains of bacteria/archaea, representing 9 unique 

species. Five-fold leave-one-out cross-validation was performed by randomly partitioning 
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the 77 strains (rather than partitioning the k-mer frequency profiles from the fragments 

associated with each strain) into 5 cross validation groups. Furthermore, the classification 

accuracies for the cross-validation trials were reported at the species level rather than the 

strain level upon which the cross-validation procedure was based, thus relaxing the 

complexity of the classification problem from 77 classes to 9.

Performance of the NBC at the strain level was calculated by training the 

classifier using the complete set of k-mer frequency profiles from all 635 genomes, and 

then testing the classifier using the n-mer frequency profiles associated with 100 

randomly selected fragments from each genome. Using this methodology, the classifier 

achieved strain-level classification accuracies of 88.8% for 500 nt fragments, 82.5% for 

100 nt fragments, and 75.8% for 25 nt fragments. Since the test fragments were present in 

both the testing and training sets (no cross-validation was employed in this case), the 

strain-level performance values may have been inflated due to overfitting of the model.

PhyloPythia

PhyloPythia is a metagenomic classification system designed to bin short DNA 

fragments into relevant phylogenetic clades based upon pentanucleotide and 

hexanucleotide frequency profiles using a multi-class support vector machine (SVM). 

[38] The training set used to measure the performance of PhyloPythia represented 340 

completely sequenced bacterial and archaeal genomes. The method was used to classify 

fragments of various lengths {1kbp, 3kbp, 5kbp, 10kbp, 15kbp, 50kbp} at each of the 

taxonomic ranks of domain, phylum, class, order, and genus. As with the classifiers 

previously discussed, PhyloPythia generated models and performed classifications based 

on the G+C- and length-corrected oligonucleotide frequency profile representations of 

short genomic fragments. Several preliminary analyses by McHardy et al [38] heavily 

influenced the overall design of PhyloPythia. Notably, it was shown that different 

oligonucleotide pattern lengths were most appropriate for different taxonomic ranks, with 

pentanucleotide patterns performing optimally for the more specific ranks of class, order, 

and genus, while hexanucleotide patterns resulted in the best classification at the more 

general ranks of domain and phylum (although there was only marginal improvement in 
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classification accuracy for k-mers > 4 nucleotides in length). Additionally, it was shown 

that the classification accuracy of a given query fragment is largely influenced by the 

difference between the length of the query fragment and the length of the fragments used 

in the construction of the SVM model. More specifically, it was observed that the 

classifier performed optimally when the training and query fragments were of 

comparable length, whereas classifiers trained using fragments longer than the query 

fragment showed decreased performance in proportion to the training fragment length. 

Classification accuracy deteriorated rapidly for the cases where the query fragments were 

longer than the training fragments, although in practice this effect might be mitigated by 

attempting to classify shorter subsequences of the query fragments.

With the aforementioned parameters in mind, PhyloPythia was designed as a large 

array of hierarchical SVMs, where a distinct SVM was trained for each fragment length 

and taxonomic rank combination. Within each SVM, phylogenetic clades containing >= 3 

genomes were represented as individual classes, while all clades with fewer than 3 

genomes were pooled to generate an 'other unknown' class. For each SVM, the training 

data were represented by the appropriate pentanucleotide or hexanucleotide frequency 

profiles, as discussed above. Additionally, for each well-represented phylogenetic clade 

present in the training set, a one-against-the-rest SVM was trained for each fragment 

length and taxonomic rank combination, with the genomes from a single phylogenetic 

clade representing one class, and all genomes from all other phylogenetic clades 

representing a second class. This latter set of SVMs was used in a post-processing step in 

order to validate the initial SVM predictions in an attempt to reduce the incidence of false 

positives.

At each taxonomic rank, classification of a query fragment is achieved by 

sequentially passing the query fragment through the hierarchy of SVMs in order of 

decreasing length of the training fragments, until the query fragment is successfully 

classified into a specific clade or the length of the query fragment is longer than the 

fragments used to train the next available set of SVMs. When a fragment has been 

classified into a specific clade, the fragment is subsequently passed through the 
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appropriate post-processing SVM in order to support or invalidate its assignment to the 

given clade.

The performance of PhyloPythia in classifying fragments from the training set 

was first evaluated using a leave-one-out cross-validation strategy, where each genome in 

turn served as the query genome, while all remaining genomes were used to construct the 

various models in the SVM hierarchy. This approach was designed to mimic the situation 

where a metagenome contains a genome that has not yet been observed, and as such is 

not present in the classifier's training set. Overall, PhyloPythia achieved high accuracy in 

this evaluation, exhibiting specificities between 79%-96% across all fragment length and 

taxonomic rank combinations. Sensitivity scores showed a pronounced dependence on 

query fragment length across all taxonomic ranks, particularly for fragments less than 

~5kbp in length. For example, 1kbp fragments achieved the minimum sensitivity of 

4.42% at rank genus, while the maximum observed sensitivity was 92.23% for 50kbp 

fragments, also at rank genus. For fragments >= 5kbp in length, sensitivity never fell 

below 79.53% across all taxonomic ranks.

In a second evaluation, the classification procedure was repeated for all genomic 

fragments while omitting the cross-validation procedure, in order to evaluate the 

performance of PhyloPythia when faced with fragments derived from organisms with 

genomes that are present in the training set. In this evaluation, it is important to note that 

despite the inclusion of all genomes in the training set, a proper cross-validation strategy 

was employed such that there was no overlap between the training and testing sets at the 

fragment level, i.e, a portion of the fragments from each genome were used as test 

fragments, while the remaining fragments were used to train the SVM models. As with 

the previous evaluation, PhyloPythia showed relatively consistent specificities, ranging 

from 83.66% (10kbp fragments at rank genus) to 99.95% (50kbp fragments at rank 

domain) across all fragment lengths and taxonomic ranks. Sensitivities once again varied 

in proportion to query fragment length, ranging from 7.11% (1kbp fragments at rank 

genus) to 99.8% (50kbp fragments at rank domain). For fragments >= 5kbp in length, 

sensitivities were comparable across all taxonomic ranks, with no observed sensitivity 
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below 95.43%. At the rank of genus, there was a dramatic increase in sensitivity between 

1kbp fragments (7.11%) and 3kbp fragments (69.16%), indicating that even for the 

existing set of known genomes it is desirable to have fragments >1kbp in length if 

reasonable classification accuracy is desired.

The authors compared the performance of PhyloPythia against two other 

classifiers: 1) a TETRA-like method [40; 63], and 2) a classifier based on the self-

organizing map (SOM) [36; 45; 64; 70]. Both TETRA and several derivatives of the 

SOM method will be examined individually in subsequent sections. Each method was 

evaluated in terms of its ability to correctly classify fragments associated with the 

dominant populations present in the Sargasso Sea metagenome [13]. In the classifier 

comparison, the data set consisted of DNA fragments from metagenomic contigs that 

contained annotated 16S rRNA genes, such that the various classifier predictions could be 

directly compared against the presumed phylogenetic identities of fragments associated 

with each contig. For the purpose of this study, the PhyloPythia models were extended to 

include 100kb – 162kb of sequence from the four most prevalent bacterial populations 

present in the Sargasso sample, namely Prochlorococcus, unknown 

Gammaproteobacteria, Shewanella, and Burkholderia. Although the three methods 

exhibited comparably high specificities, ranging from 94% to 100%, they largely 

disagreed in terms of the percentage of correctly assigned fragments. At the species level, 

PhyloPythia successfully assigned 72% of fragments into the correct genomic bin, 

whereas the TETRA-like method achieved only 39% accuracy. Likewise, in a class-level 

comparison (the most specific taxonomic rank at which the SOM method was applicable) 

PhyloPythia correctly assigned 74% of fragments, while the SOM method classified only 

20% of fragments correctly in this case. It was noted that PhyloPythia was better suited at 

classifying shorter fragments, correctly classifying fragments as short as 1.5kbp, whereas 

the minimum fragment length correctly assigned by TETRA was 12kbp (data not 

provided for SOM). 

TACOA

The Taxonomic Composition Analysis classifier, known as TACOA, demonstrates 
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that accurate classification of short genomic fragments is possible using even the most 

simplistic of machine learning algorithms [37]. This classifier leverages the k nearest 

neighbour (k-NN) algorithm in order to classify DNA fragments based on their 

underlying oligonucleotide frequency profiles. It is understood that the performance of 

the traditional k-NN algorithm degrades as the dimension of the feature space increases, 

an effect known as the 'curse of dimensionality' or Hughes effect. In order to reduce the 

impact of the curse of dimensionality, Diaz et al chose to augment the k-NN algorithm 

with a Gaussian kernel density function. This algorithmic modification lessens the impact 

of the curse of dimensionality by decreasing the weight of the reference oligonucleotide 

vectors in proportion to their Euclidean distances from the query vector. An added 

advantage of the Gaussian kernel is that the entire reference set of frequency vectors can 

be examined during the testing phase, rather than considering only those features that fall 

within the immediate neighbourhood of the given query vector.

A reference set comprised of 373 completely sequenced bacterial and archaeal 

genomes was used in the evaluation of TACOA. Each genome was represented by a set 

of vectors of oligonucleotide frequencies, corrected for both genome length and G+C 

content, where the oligonucleotide patterns ranged in length from 1-6bp. Performance of 

the classifier was evaluated using a leave-one-out cross validation strategy, whereby 

each genome in turn served as the query/test genome, while the oligonucleotide 

frequency vectors for the remaining 372 genomes formed the training set. For each of the 

373 cross validation trials, 3000 non-overlapping genomic fragments were selected at 

random from the query genome for each of the examined fragment lengths {800bp, 

1000bp, 3000bp, 10kbp, 15kbp, 50kbp}, and distinct sets of oligonucleotide frequency 

vectors were determined using patterns of lengths 1 - 6bp. Classification accuracy was 

subsequently determined for each fragment using all possible fragment length and 

oligonucleotide pattern length combinations, across each of the taxonomic ranks 

superkingdom, phylum, class, order, and genus.

Classification accuracy of the TACOA classifier appeared to be directly 

influenced by the length of the query fragments, with performance increasing in 
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proportion to fragment length. For instance, for 800bp fragments, average sensitivity 

ranged from 5% at taxonomic rank genus to 67% for the rank of superkingdom, and 

average specificity ranged from ~59% at rank genus to ~75% at rank superkingdom. 

Comparatively, these values are significantly lower than those of 50kb fragments, which 

had average sensitivities ranging from 46% to 82%, and average specificities ranging 

from 77% to 93%, for the same set of taxonomic ranks. Overall, the classifier showed a 

low rate of misclassification, with a false negative rate of 10% or lower across all 

fragment lengths and taxonomic ranks considered. The authors also noted that 

tetranucleotide frequency vectors were most appropriate for the classification of 

fragments <= 3000bp in length, whereas 10kbp, 15kbp, and 50kbp fragments were best 

classified using pentanucleotide frequency vectors. Interestingly, it was also 

demonstrated that the use of oligonucleotide patterns greater than 5bp in length resulted 

in a decrease in both the average specificity and sensitivity, and an increase in the false 

negative rate across all fragment lengths and taxonomic ranks.

In a separate analysis, the performance of TACOA was compared directly to that 

of PhyloPythia [38] using a test set consisting of 63 newly sequenced microbial genomes 

absent from both the TACOA and PhyloPythia reference sets. In this comparison, 

sensitivity, specificity, and false negative rates were calculated for the results of trials 

using 3 separate fragment lengths (800bp, 1kbp, 10kbp) and the same five taxonomic 

ranks previously considered: superkingdom, phylum, class, order, and genus. For the 3 

least specific taxonomic ranks (superkingdom, phylum, class), performance of the two 

classifiers was comparable. In terms of sensitivity, TACOA marginally outperformed 

PhyloPythia for fragments of length 800bp and 1kbp (except for 800bp fragments at rank 

class), with both classifiers achieving sensitivities between 66% - 76% for superkingdom, 

15% - 28% for phylum, and 3% - 11% for class.  PhyloPythia consistently showed higher 

sensitivities for 10kbp fragments, and significantly outperformed TACOA for 10kbp 

fragments at ranks phylum (61% vs. 41%) and class (47% vs. 30%). Both classifiers 

demonstrated decreasing sensitivity for the more specific taxonomic ranks, with longer 

fragments resulting in the highest sensitivities. Specificities were comparable for both 

classifiers across all fragment lengths for the ranks of superkingdom, phylum, and class, 
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ranging from 65% (PhyloPythia: 800bp fragments, rank superkingdom) to 97% 

(TACOA: 10kbp fragments, rank superkingdom). False negative rates were likewise 

comparable for 800bp and 1kbp fragments, although PhyloPythia showed much higher 

false negative rates for 10kbp fragments at ranks phylum (15% vs. 5.33%) and class 

(27% vs. 7.4%).

For the more specific taxonomic ranks of order and genus, PhyloPythia failed to 

correctly classify any fragments across any of the considered fragment lengths. In 

contrast, TACOA achieved low sensitivities ranging from 3% (800bp fragments at rank 

genus) to 17%  (10kbp fragments at rank order) and specificities ranging from 67% (1kbp 

fragments at rank genus) to 96% (10kbp fragments at rank order). TACOA had low false 

negative rates at these two ranks, ranging from 1% to 2.43% across the 3 fragment 

lengths considered in the study.

BLAST Distribution

The BLAST distribution classifier (BLAST distr) is a simple BLASTP [71; 72] 

based approach to metagenomic binning, originally presented in the Fidelity of Analysis 

of Metagenomic Samples (FAMeS) paper by Mavromatis et al [25].  As previously 

described for the Chi-Squared method, BLAST distr was used as a comparator in the 

FAMeS study in order to evaluate the performance of various metagenomic binning 

methods when applied to three simulated metagenomic datasets of increasing complexity: 

simLC (low complexity), simMC (medium complexity), and simHC (high complexity).

The overall premise of the BLAST distr method is to perform BLASTP searches 

for all proteins identified in a metagenomic sample, and then attempt to assign each 

metagenomic fragment to a specific phylogenetic clade based on the distribution of its 

genes' highest-scoring BLASTP hits. In the FAMeS study, the three metagenomic 

datasets were first analyzed using fgenesb (http://softberry.com) in order to detect genes 

located on any of the associated fragments >= 8kbp in length. For each of the predicted 

genes, the relevant protein products were then used as query sequences in BLASTP 

searches against 253 completely sequenced bacterial and archaeal genomes, with the 

http://softberry.com/


21

exclusion of the dominant members of the simulated metagenomes. Normalized BLASTP 

scores were determined for any BLASTP hits with expectation values less than the 

threshold of 1e-05. Each query fragment was then assigned to the taxonomic class with 

the highest overall normalized BLASTP score, so long as at least 50% of the genes 

present on the given fragment had BLASTP hits to the relevant class, and the average 

normalized BLASTP score per gene was > 0.2.

 Although the BLAST distr method was only required to predict each fragment's 

identity at the general level of the most relevant taxonomic class, the method still 

performed quite poorly for the simMC data set. For this medium complexity 

metagenome, BLAST distr achieved a maximum sensitivity of 58% and maximum 

specificity of 59%, whereas PhyloPythia was able to achieve nearly 100% sensitivity and 

specificity in some instances. BLAST distr showed improved performance on the low 

complexity data set, however, achieving 100% specificity and 80% sensitivity in this 

case. As the BLAST distr is directly influenced by the presence (or lack thereof) of 

closely related sequences in the BLAST databases, it may be expected that the 

performance of this method will increase as new organisms are sequenced and the 

reference databases become more comprehensive.

CARMA

Krause et al devised a novel DNA classification system, CARMA, for classifying 

very short metagenomic fragments into relevant phylogenetic clades through a combined 

sequence-homology and phylogenetic approach [33; 73]. This method depends heavily on 

the identification of known protein domains within metagenomic query sequences in 

order to facilitate classification, a criterion that often limits the applicability of the 

method to a small fraction of the total reads in a given dataset. Despite this limitation, the 

authors demonstrated that CARMA is capable of accurately classifying very short reads 

in which identifiable PFAM domains are present, providing for the potential 

characterization of the taxonomic diversity of metagenomic datasets that largely consist 

of unassembled reads.
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CARMA performs classification on a read-by-read basis using a multi-step 

pipeline that includes homology searches, sequence alignments, and the construction of 

phylogenetic trees. During an initial data-filtering step, a BLASTX [71; 72] search is 

performed between the metagenomic reads and the entire PFAM  [74; 75] database in 

order to identify the set of reads that are likely to contain complete or partial protein 

domains curated within PFAM. The BLASTX search is performed using moderately 

relaxed settings with the intention of detecting all likely PFAM hits, while filtering out 

those reads that are unlikely to contain conserved protein domains. This step is necessary 

in order to reduce the number of reads that are included in the subsequent and much more 

computationally intensive steps of the pipeline.  The reads identified as being likely to 

contain conserved protein domains are next passed through a validation step, whereby 

each read is searched using a sensitive hidden Markov model (HMM) specific to the 

PFAM domain family for which the read was matched during the initial BLASTX search. 

As opposed to the relaxed BLASTX search, the HMM search is performed using a strict 

E-value cutoff of 0.01 in order to limit the incidence of false positives in the resulting 

data set. Next, for each of the PFAM families that match one or more reads during the 

HMM search, a multiple sequence alignment is generated using all PFAM protein 

sequences from the family along with the protein sequences coded for by each of the 

reads that matched the given family. Pairwise distance matrices are then calculated from 

these multiple sequence alignments, and the distance matrices are then used to construct 

unrooted phylogenetic trees via the neighbor-joining method from the PHYLIP [76] 

package. Classification of reads is ultimately based upon the specific clustering of the 

nodes within the resulting phylogenetic trees. If the node representing a given read is 

contained within a subtree in which the sister PFAM nodes all belong to the same taxon 

from the NCBI taxonomy database, the read is assigned to that taxon. In the event that the 

PFAM nodes in the subtree represent multiple taxa, the read is assigned to an 'unknown 

taxon' class.

 In order to evaluate the performance of CARMA, a synthetic metagenome was 

first created by simulating short 80-120bp reads from 77 bacterial/archaeal genomes at 

2X coverage using the ReadSim package [77].  This simulated metagenome was intended 
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to represent a moderately complex metagenomic community consisting of 62 genera 

spread across 10 bacterial/archaeal phlya. CARMA was used to classify the reads from 

this simulated metagenome, while ensuring that all of the 77 test genomes were excluded 

from the PFAM database during these trials. Upon being presented with the synthetic 

metagenome, CARMA identified conserved PFAM domains in approximately 15% of the 

metagenomic reads. Of this 15% of reads, CARMA exhibited reasonable average 

sensitivities ranging from 61% at the rank of order to 84% at superkingdom, with 

corresponding specificities ranging from 90% - 97%. Across all taxonomic ranks, 

CARMA exhibited a relatively consistent false negative rate of approximately 7%, while 

the false positive rate for each taxonomic group tended to vary in proportion to the 

number of sequences representing the given taxon in the PFAM database. 

CARMA was also used to estimate the taxonomic composition of a relatively low-

complexity metagenome from an agricultural biogas reactor [78]. Although this 

metagenomic dataset actually consists of approximately 600,000 short reads with an 

average read length of 230bp, the authors decided to simulate ultra-short reads by 

considering non-overlapping substrings of the original reads. As such, the 600,000 

original reads were used to generate 9 separate sets of ultra-short reads, with lengths of 

35bp, 40bp, 50bp, 60bp, 70bp, 100bp, 150bp, 200bp, and 250bp. After processing each of 

the sets of reads through CARMA, it was very apparent that read length had a large 

influence on the sensitivity of the underlying homology searches. For example, the 

number of PFAM domains detected in each set of reads was highly influenced by read 

length, and ranged from 886 for the set of 35bp reads to 89,979 for the set of 250bp 

reads. While the sensitivity of the CARMA method tended to decrease for the more 

specific taxonomic ranks, remarkably the proportion of PFAM-containing reads that 

could not be classified into a specific taxon did not vary to a considerable degree across 

all fragment lengths considered. For instance, between 9-11% of PFAM-containing reads 

could not be classified at the level of superkingdom, 43-52% at the level of order, and 57-

73% at the level of species. The method was also remarkably consistent in predicting the 

relative abundance of taxa for each set of reads across all taxonomic ranks. Even at the 

species level, the relative abundance of each species as predicted by CARMA was shown 
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to be relatively consistent between the 35bp and 250bp reads. 

Unsupervised Training of Classifiers

TETRA

TETRA was one of the earliest methods developed for comparing anonymous 

DNA fragments based upon tetranucleotide frequency profiles [40; 63]. Although 

TETRA lacks the ability to classify fragments into existing phylogenetic clades, the 

method is capable of determining the pairwise compositional relatedness of a given set of 

fragments, and as such can be applied to metagenomic data sets in order to bin fragments 

based on similarities in their compositional characteristics. The goals of the TETRA study 

were to demonstrate that a tetranucleotide-based binning approach is capable of 

outperforming methods based on fragment G+C content, and to show that TETRA may 

be useful in helping to bin large, fosmid-sized (40 kbp) fragments from low complexity 

metagenomes.

For a given set of DNA fragments of size n, TETRA produces n2 pairwise z-

score correlations that may be used to help interpret the relatedness of each of the 

fragments. The z-scores are calculated by first determining the observed tetranucleotide 

frequencies along both strands of each DNA fragment, and subsequently calculating the 

expected tetranucleotide frequencies based on a maximal order Markov model. The sets 

of observed/expected frequencies for each possible tetranucleotide are then converted to 

z-scores using an approximation method described by Schbath [79]. Finally, for each 

fragment pair, Pearson's correlation coefficient is calculated from the associated 

tetranucleotide z-scores. In the ideal case, intragenomic z-score correlations will be 

significantly higher than intergenomic z-scores, thus allowing compositionally similar 

fragments to be binned together despite the fact that the phylogenetic identities of the 

individual bins are unknown. Similarly, fragments may also be binned based upon 

significant differences in intragenomic and intergenomic G+C, where intragenomic 

fragments are expected to show less variation in G+C than their intergenomic 

counterparts.
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In order to evaluate the binning performance of TETRA on an artificial fosmid-

based data set and compare the results with a common binning method based on G+C 

composition, 118 completely sequenced bacterial genomes were first partitioned into a 

set of 40kbp fosmid-sized fragments, representing 9054 fragments in total. For each pair 

of fragments in the reference corpus, the tetranucleotide z-score correlation (see above) 

and the difference in G+C composition were calculated. The results were subsequently 

summarized at the taxonomic ranks of domain, phylum, class, order, and species.  

In nearly all cases, TETRA outperformed the G+C binning method in terms of its 

ability to bin fragments to the correct genome. For instance, 92.7% of all genome pairs 

had at most 35% nonassignable fragments using the TETRA method, whereas only 

74.3% of genome pairs had an equivalent percentage of nonassignable fragments when 

the G+C binning method used. For a small number of genome pairs, both methods were 

completely unable to successfully assign fragments, with TETRA failing to discriminate 

between fragments for 1.4% of genome pairs, while the G+C method failed for 6.7% of 

all genome pairs. Overall, the results suggest that crowding of the G+C feature space 

greatly limits its potential as the basis for compositional binning [80]. For example, for 

the TETRA method, a high z-score correlation (0.94) between two fragments indicates a 

probability of 79.5% that the two fragments originated from the same genome. 

Conversely, fragments that show absolutely no difference in G+C content only have a 

10.4% chance of belonging to the same genome. Interestingly, it was noted that 

tetranucleotide frequency profiles are better able to distinguish between fragments at the 

species level than at the more general taxonomic ranks. For example, 99.5% of within-

species fragment comparisons and 19.8% of between-species comparisons showed z-

score correlations greater than the assignment threshold of 0.5, whereas only 22.3% of 

within domain (between-domain: 6.8%) comparisons exceeded a z-score correlation of 

0.5.

Both TETRA and the G+C based method were also compared in their ability to 

successfully bin 6 fosmid-sized inserts from two low-complexity metagenomes shown to 

be involved in the anaerobic oxidation of methane [81]. The majority of the inserts 
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contained 16S rRNA genes, allowing the binning accuracy to be determined in the 

context of the accepted phylogenetic identities of the sequences. The G+C method 

succeeded in distinguishing between fragments from two genomes that had a moderately 

large difference in G+C of 10%, while it failed to distinguish between two genomes 

whose G+C contents differed by only 3.1%. Conversely, TETRA was able to bin all 

fragments correctly, exhibiting high within-genome z-score correlations of 0.82-0.91, and 

lower between-genome z-score correlations of <=0.60 in all cases.

Self-organizing Map (SOM)

Abe et al presented the application of a modified version of Kohonen's self 

organizing map [70] to the binning of metagenomic fragments, and demonstrated that 

such a method is capable of accurately binning short fragments into specific phylotypes 

based on similarities in tetranucleotide frequency profiles [45; 64]. Whereas many of the 

sequence-based classifiers previously discussed have ultimately relied upon a set of 

labelled training fragments in order to facilitate binning, the SOM approach is able to 

cluster DNA fragments into anonymous phylotypes based on similarities in 

tetranucleotide composition in a completely unsupervised fashion. In some instances, the 

resulting compositional bins have been shown to represent individual species or specific 

phylotypes, despite the fact that absolutely no taxonomic information or phylogenetic 

markers have been made available the classifier. Furthermore, after identifying a set of 

anonymous phylotypes using the SOM approach, these phylotypes may later be 

associated with known phylogenetic clades through a supervised SOM approach if a set 

of reference genomes is available.

In brief, the SOM is a form of artificial neural network, a machine learning 

method capable of mapping high dimensional data into a lower and often more 

comprehensible dimensional space while causing similar features to tend to be clustered 

within close proximity to one another in the resulting map. In terms of its algorithmic 

implementation, the SOM consists of a set of nodes referred to as neurons, each 

containing a weight vector of the same dimension as the feature space. Before features 

can be mapped to the SOM, the weight vectors of all neurons must first be initialized, 
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either by setting each of the weights to a small random value, or by assigning weights 

based upon a principal component analysis of the feature set. During the training phase of 

the SOM, features are sequentially projected onto cells within a 2D lattice or hexagonal 

grid of predetermined size, where each cell represents a specific SOM neuron. With each 

iteration, a single training feature is mapped to the SOM node with the most similar 

weight vector, and the set of neighboring nodes are updated in order to pull their 

respective weight vectors in the direction of the newly mapped feature. In this way, the 

SOM gradually assumes a topology in which similar features are clustered within local 

neighbourhoods in the resulting map. Once the SOM topology has been determined via 

the training process, and the weights of each of the SOM nodes have been defined, it is 

also possible to map additional features to the existing SOM without altering its topology. 

This optional mapping process can facilitate binning, by allowing for the association of 

each new training feature with a preexisting SOM neighborhood that was defined during 

the training phase. If a map is first constructed using a training set containing sequences 

of known taxonomic origin, then the subsequent mapping of anonymous sequences to the 

given SOM may facilitate binning to the associated phylogenetic clades, albeit in a 

supervised rather than unsupervised fashion.  For the purpose of DNA classification, a 

given neighborhood of related features in a SOM may represent genomic fragments from 

a particular species or a more general phylotype.

Since SOMs are formed by projecting features onto nodes using a greedy 

assignment algorithm that continuously reorganizes the topology of the map, they are 

typically sensitive to the order of the input data. With this limitation in mind, Abe et al 

modified the standard SOM such that the topology of the resulting map remains 

consistent for any given set of training features, regardless of the order by which they are 

presented to the classifier. Additionally, an earlier study by Abe et al that relied upon non-

symmetrized tetranucleotide frequency profiles indicated that species or phylotype 

clusters within a SOM were often subdivided into two smaller clusters based on the 

transcriptional polarity of the underlying DNA fragments. As it is difficult to determine 

the polarity of short DNA fragments from a metagenome, Abe et al extended their earlier 

study so that tetranucleotide frequency profiles were calculated across both strands of 
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each DNA fragment. The use of the resulting symmetrized tetranucleotide frequency 

profiles was shown to prevent the unnecessary sub-partitioning of phylotypes within the 

SOM, while maintaining clustering accuracy and reducing total computation time by 

close to 50%.

The performance of the SOM method was initially evaluated using 1kbp and 5kbp 

fragments from 81 completely sequenced prokaryotic genomes, representing 226Mbp of 

sequence in total. For each fragment length, a SOM was trained using all available 

fragments, and the resulting SOM topology was compared to the accepted taxonomic 

assignment of each of the fragments (based on their known genome of origin) in order to 

examine the SOM's binning accuracy. Overall, the 5kbp-trained SOM showed much 

higher binning potential than its 1kbp-based counterpart. For example, 74.6% of the 5kbp 

fragments were assigned to the correct species cluster, whereas only 40.6% of fragments 

were assigned correctly for the 1kbp-trained SOM. Interestingly, the percentage of 

correctly assigned 1kbp fragments nearly doubled when these fragments were mapped 

onto a SOM trained using 5kbp fragments, suggesting that even if the query fragments in 

a metagenome are relatively short, binning accuracy can be improved if the SOM is first 

trained using fragments that are longer than the query sequences. These results conflict 

with those of PhyloPythia, for which classification accuracy decreased in proportion to 

the difference in length between fragments (regardless of direction) in the training and 

testing sets [38].

In order to evaluate the binning accuracy of the SOM for real metagenomic 

sequences, Abe et al. next applied the SOM in order to classify sequences from the 

Sargasso sea metagenome [13]. A SOM was first constructed using 210,000 5kbp 

fragments from the 1502 known prokaryotes for which at least 10kbp of sequence was 

available. Next, 34,000 1kbp fragments were extracted from the nearly 4300 Sargasso 

metagenome contigs of at least 5kbp in length, and these fragments were subsequently 

mapped to the existing SOM in order to associate the fragments with known phylogenetic 

clades. The results of the mapping showed that the Sargasso fragments formed well-

defined clusters in the SOM, and all of the known dominant members of the metagenome 
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were associated with these clusters. When the SOM mapping was repeated using 218,400 

shorter 1kbp fragments extracted from the 134,600 metagenomic sequences >= 1kbp in 

length (and subsequently all 811,000 metagenomic sequences regardless of fragment 

length) the resulting clusters lacked the definition observed for the fragments derived 

from the longer contigs. This serves to highlight the influence of community structure on 

the expected resolution of phylogenetic classification. The fragments derived from the 

5kbp or longer assembled contigs are expected to belong to the most abundant members 

of the Sargasso metagenome, and as such it is also expected that the fragments should 

form well defined clusters in the SOM. The shorter fragments, however, represent those 

sequences for which little to no read assembly was possible, and likely represent a 

multitude of flanking genomes that have much lower relative abundance in the 

metagenomic community, leading to the poorly defined clusters in the resulting SOM 

mapping. 

In order to characterize complex metagenomic samples containing mixtures of 

prokaryotic as well as eukaryotic organisms, an essential aspect of any DNA 

classification system will be the ability to distinguish between the underlying prokaryotic 

and eukaryotic genomes present in the community. Abe et al evaluated the performance 

of the SOM method in this regard by constructing a SOM using the 210,000 5kbp 

fragments from the 1502 known prokaryotes for which adequate sequence exists, as well 

as 5kbp fragments from 6 fungi, 5 protozoa, and the zebrafish. The SOM showed 

remarkable accuracy in separating the fragments into eukaryotic and prokaryotic bins, 

assigning a mere 0.1% of the prokaryotic fragments into the eukaryotic clusters. When 

the Sargasso metagenome fragments >= 1kbp in length were subsequently mapped to the 

same SOM, the majority of fragments were assigned to the appropriate prokaryotic 

clusters, while 9.9% were assigned to various eukaryotic groups within the SOM. When 

these cross-domain mis-assignments were examined in detail, it was observed that the 

majority of the assignments fell within the clusters associated with unicellular eukaryotes, 

with few fragments assigned to the zebrafish cluster.
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Semi-supervised Training of Classifiers

Seeded Growing Self-organizing Map (S-GSOM)

Chan et al created a novel semi-supervised metagenomic classifier based on an 

augmented version of the self-organizing map [36]. This method is particularly 

interesting because it is able to assign fragments into well-defined phylogenetic bins by 

automatically identifying sparse phylogenetic markers in a given metagenomic data set, 

and clustering the SOM nodes based on their affiliation with these markers. In essence, 

the S-GSOM method is quite similar to the previously discussed SOM method [64] in 

that both methods are capable of binning metagenomic fragments into anonymous 

phylogenetic bins based on their tetranucleotide profiles in the absence of a database of 

reference genomes. The S-GSOM classifier improves upon the basic SOM approach by 

implementing a more efficient SOM, the growing self-organizing map [82], and adding a 

semi-supervised post-processing step that utilizes sparse markers within the metagenome 

in order to improve the accuracy of the clustering of nodes within the SOM topology. 

Unlike the basic SOM binning approach, which may lead to clusters with ambiguous 

boundaries [45], the S-GSOM method aims to generate well-defined clusters while 

minimizing the assignment of ambiguous nodes for which no single best cluster 

assignment exists.

The key to the success of the S-GSOM approach is the post-processing step in 

which clusters are refined through the use of sparse phylogenetic seed sequences, in this 

case 16S rDNA flanking sequences. Chan et al opted to use 16S rDNA flanking 

sequences as the phylogenetic seeds in the cluster refinement algorithm because these 

sequences have already been shown to facilitate the binning of genomic contigs found in 

low-complexity metagenomes [83].  Additionally, 16S rDNA flanking sequences can 

easily be identified by their proximity to conserved rDNA sequences. Unlike 16S rDNA 

genes which are highly conserved between species and thus offer little signal for genome 

signature-based comparisons, the composition of 16S flanking sequences is much more 

variable in nature [84]. This increased variability in composition means that for a given 

genome, the flanking sequences are likely to exhibit similarities in compositional 
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characteristics with genomic fragments from the same genome. Conversely, because 

genome signature tends to vary more between genomes than within a genome [39; 43], 

the 16S flanking sequence from a given genome is likely to differ in composition from 

genomic fragments from an unrelated genome. In the case of the S-GSOM, the seed 

sequences are initially combined with the set of 8kbp genomic fragments to be classified 

by the SOM, and compositional similarities between the test fragments and these labelled 

seed sequences are used to determine the cluster assignments in the post-processing step.

The binning accuracy of the S-GSOM method was compared against three other 

binning methods, namely PhyloPythia [38], Chi-Squared [25], and Blast distribution [25], 

in their respective abilities to bin both the Phrap- and Arachne-generated assemblies of 

the low complexity (simLC) and medium complexity (simMC) simulated metagenomic 

datasets from the FAMeS study [25]. To quantify the binning accuracy in each case, Chan 

et al calculated the total percentage of binned contigs, the sensitivity, and the specificity 

of each method at the taxonomic ranks of class, order, and family. The accuracy scores 

were evaluated using two subsets of contigs from each of the simulated datasets: 1) the 

subset of contigs of at least 8kbp in length, and 2) the subset of contigs consisting of 10 

or more reads.

Overall, the S-GSOM method exhibited reasonable accuracy scores for both 

metagenomic datasets using each of the two subsets of contigs, outperforming the Chi-

Squared and BLAST distr methods in all cases. At the taxonomic rank of family, the most 

specific rank examined, the S-GSOM outperformed PhyloPythia for all cases except the 

subset of simLC contigs >= 8kbp in length. For this exceptional case, the S-GSOM 

achieved both lower sensitivity (PhyloPythia: 95% vs. S-GSOM: 89.1%, Arachne 

assembly) and specificity (PhyloPythia: 95% vs. S-GSOM: 89.1%, Arachne assembly), 

although PhyloPythia was able to bin approximately 6% more contigs than the S-GSOM 

for this dataset. Interestingly, for the subset of >8bkp fragments from the Arachne 

assembly of the more complex simMC metagenome, the S-GSOM greatly outperformed 

PhyloPythia, binning nearly twice as many contigs (92.69% vs. 47.51%), and achieving 

both a higher sensitivity (89% vs. 40.1%) and specificity (92.7% vs. 47.5%). At the less 



32

specific taxonomic ranks of class and order, the S-GSOM and PhyloPythia generally 

demonstrated comparable sensitivities and specificities, although PhyloPythia was 

typically able to bin a higher total percentage of contigs. PhyloPythia's increased 

performance at more general ranks may be due to the fact that it bases its classification on 

both pentanucleotide and hexanucleotide frequency profiles of the query fragments, 

whereas the S-GSOM relies solely on tetranucleotide frequencies. As reported in the 

PhyloPythia manuscript, longer oligonucleotides are better able to model the 

compositional signatures of the more general taxonomic ranks, which may give 

PhyloPythia an advantage when its performance is compared to that of other classifiers at 

any of the less specific taxonomic ranks.

CompostBin

CompostBin is a semi-supervised metagenomic binning system, allowing for the 

accurate binning of single ~1000bp reads from simulated low to medium complexity 

metagenomes [65]. As opposed to several of the other sequence-based methods that rely 

on machine learning methods in order to classify DNA fragments, CompostBin instead 

combines a novel principal component analysis (PCA) technique with a semi-supervised 

clustering algorithm in order to facilitate classification of fragments based on their 

hexanucleotide frequency profiles. For DNA fragments in a metagenome, the 

hexanucleotide frequency profiles from each fragment are first projected into a lower 

dimensional space using a weighted PCA technique, and features within this lower 

dimensional space are subsequently partitioned into taxonomic bins using a normalized 

cut clustering algorithm. Although the PCA component of CompostBin is unsupervised in 

nature, the normalized cut algorithm is largely dependent on outside information in order 

to facilitate taxonomic binning. Notably, the normalized cut algorithm requires input 

relating to both the number of taxonomic bins present in the dataset, as well as the 

presence of known phylogenetic markers on specific reads in the metagenome.

PCA [85] is a multivariate data analysis technique that is often used to reduce the 

dimensionality of datasets by identifying the set of features (principal components) that 

contribute the greatest influence toward the variance of the data. When applied to the 
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binning of metagenomic fragments based on their oligonucleotide frequency profiles, the 

goal of a PCA is to identify the oligonucleotide patterns that best describe the 

compositional variation between the taxonomic classes present within the metagenome. 

The authors of CompostBin noted that in the likely case that the relative proportions of 

the individual members of a metagenomic community are unbalanced, then traditional 

PCA might simply identify the principal components that describe the within-genome 

variation in the predominant genome(s), rather than the components that capture the 

between-genome compositional variation that would ultimately facilitate taxonomic 

binning. As such, the authors devised a weighted PCA algorithm, whereby each fragment 

in a metagenome receives a weight inversely proportional to the relative abundance of 

that read in the dataset. The weighted PCA algorithm then takes these weights into 

account when identifying the principal components, by decreasing the influence of each 

fragment in relation to its abundance within the dataset. By applying this weighted PCA 

technique using the complete set of hexanucleotide frequency profiles associated with a 

metagenome, CompostBin is thus able to reduce the feature space from the 4096 possible 

hexanucleotides to the 3 most influential principal components specific to the given 

dataset.

Once the hexanucleotide frequency profiles have been transformed via weighted 

PCA, CompostBin next applies the normalized cut clustering (NCC) algorithm to 

partition the features into the relevant taxonomic bins. In order to successfully partition 

the feature space, the algorithm requires that a portion of the features contain labels that 

associate these features with known phylogenetic clades. Additionally, the algorithm must 

be informed of the number of taxonomic bins that are present in the metagenome. The 

NCC utilizes a weighted graph representation of the 3-dimensional feature space, where 

features are represented as nodes in the graph, and the vertices connecting each node are 

weighted in relation to each feature's association with one or more of the labelled 

phylogenetic markers. For each iteration of the NCC algorithm, the set of vertices in the 

graph are bisected into two subsets such that the weights connecting the vertices within 

each cluster are maximized, while the weights connecting the vertices between subsets 

are minimized. NCC is applied recursively to the resulting subsets of vertices in order to 
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achieve the desired number of taxonomic bins.

In order to evaluate the binning accuracy of CompostBin, the authors created 12 

simulated metagenomes of varying complexity. Each simulated metagenome contained 2-

6 genomes in relative proportions ranging from 1:1 to 1:14. Care was taken to ensure that 

the 12 metagenomes contained a variety of community structures as well as a range of 

phylogenetic and compositional diversity. For each metagenome, sequencing reads with 

an average length of 1000bp were simulated from the component genomes using the 

ReadSim package and compiled using the appropriate proportions [77].  In addition to the 

simulated metagenomes, CompostBin was also evaluated in its ability to correctly bin 

sequencing reads from the glassy-winged sharpshooter metagenome [86] into the two 

predominant bacterial species previously identified using a phylogenetic marker 

approach.

The performance of CompostBin for each metagenome was reported in terms of 

the class-normalized error rate (i.e., corrected for the number of instances from each 

taxonomic group), where the individual class-level error rates were determined for each 

genome in the given dataset, and the class-normalized error rate was then calculated as 

the average of all class-level error rates.

CompostBin exhibited low class-normalized error rates across all simulated 

metagenomic samples, ranging from 0.28% to 10%. The lowest observed error rate of 

0.28% was achieved for a low-complexity metagenome consisting of Thermofilum 

pendens and Pyrobaculum aerophilum in a 1:1 ratio. Interestingly, a low-complexity 

metagenome containing two organisms that differ at the taxonomic level of genus, 

Escherichia coli and Yesinia pestis, showed the highest error rate at 10%. For the 

metagenomes containing reads from 3-6 individual genomes, the error rates varied from 

1.96% - 7.7%. The sole metagenome comparing two species of the same genus, Bacillus  

halodurans vs. Bacillus subtilus in a 1:1 ratio, showed an error rate of 6.48%. 

CompostBin also performed with comparable accuracy when faced with the glassy-

winged sharpshooter metagenome, classifying the metagenomic fragments with an error 

rate of 9.04%.
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Limitations of the Existing Methods
Although a variety of methods have shown great promise in their ability to 

classify metagenomic DNA fragments, the performance of such methods is often heavily 

dependent on several factors that are not easily controlled, such as the length of the DNA 

fragments in the sample, the complexity of the given metagenomic community, 

compositional similarities between members of the community, and the existence of 

closely related sequences within the various reference databases. For example, sequence-

composition-based approaches (PhyloPythia, TACOA) and homology-based approaches 

(BLAST distr, CARMA) perform best when applied to moderate-length fragments from 

low-complexity metagenomes (i.e, communities comprising a small number of well-

represented organisms) for which the predominant members have close relatives in the 

respective sequence databases or training sets. All of these methods suffer a drastic 

decrease in performance when attempting to classify shorter sequences, fragments from 

complex metagenomic communities, or sequences for which a close relative is not 

available for comparison. Unsupervised methods such as the various SOM clustering 

approaches do not explicitly depend upon reference databases of known sequences, 

however they tend to succeed only in binning longer fragments while the resulting 

taxonomic clusters are often poorly defined and the assignment of fragments into the 

existing phylogenetic hierarchy is not possible without performing a comparison against 

a reference database. Even the semi-supervised methods such as CompostBin and S-

GSOM break down when attempting to classify complex communities or in cases where 

identifiable markers are absent from the metagenomic dataset. Although it is expected 

that the performance of existing methods will gradually improve as sequencing 

technologies allow for longer read lengths and reference databases become more 

representative of true microbial diversity, it is likely that the performance of such 

methods will still suffer when faced with complex metagenomic communities or even 

simple communities that contain a number of compositionally similar organisms. If the 

phylogenetic composition of these communities is ever to be understood, it is of the 

utmost importance to identify controllable factors that may influence classification, and 

attempt to leverage these factors in order to improve the classification accuracies of the 
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existing methods. Additionally, if there are fundamental limitations to the sequence-

composition and sequence-homology approaches to DNA classification, the 

characterization of these limitations may help us to understand the 'best case' 

classification accuracies that we may expect for a given community.

To date, most classification methods report global accuracy scores at the various 

taxonomic ranks without paying particular attention to the individual comparisons that 

may potentially skew the overall performance of the classifiers. By performing pairwise 

classification as opposed to multiclass classification, we may be able to bring attention to 

specific pairs of genomes that are easier or more difficult to classify than might be 

expected. Closer examination of such pairs of genomes may even suggest mechanisms by 

which existing classifiers may be improved. Pairwise genome classification will be a 

fundamental aspect of the experiments outlined in both Chapters 3 and 4.

All of the existing methods for DNA classification show a trend of decreasing 

classification accuracy in proportion to an increasing level of specificity of the taxonomic 

rank at which sequences are being compared. This is to be expected, as in general, two 

organisms that have a close phylogenetic relationship are likely to have similar genome 

signatures, which will in turn reduce distinguishability. None of the existing methods, 

however, provide a clear understanding of exactly how classification accuracy varies in 

relation to factors such as the level of conservation of orthologous sequences for a pair of 

genomes, differences in G+C composition, genomic similarity based on shared loci or 

conserved marker genes, and tetranucleotide composition. An in-depth analysis may help 

us to understand the bounds of classification imposed by such measures of genome 

similarity, and perhaps allow us to identify outlier genome comparisons that provide 

additional insight into the classification problem. These features and more will be 

examined in Chapters 3 and 4.

In cases where 100% classification accuracy is not achieved for a given pair of 

genomes, it is important to understand the factors that contribute to the decrease in 

distinguishability. Obvious confounding factors may include recent LGT events and the 

presence of phage DNA or pathogencity islands in the pair of genomes. In many 
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instances, such sequences may essentially be indistinguishable because nearly identical 

sequences exist in both genomes. Other factors may provide more fruitful avenues for the 

improvement of existing classifiers. For example, Chan et al reported that sequence 

chimerism had an immense impact on classification accuracy for their classifier, and even 

avoided attempting to classify sequences <= 8kbp in order to reduce its impact on the S-

GSOM method [36]. Although this type of sequence heterogeneity referred specifically to 

chimeric contigs containing sequence from multiple genomes, it may suggest that a more 

generalized concept of coding vs. non-coding sequence heterogeneity within individual 

sequence reads may also influence classification. Similarly, recombination might result in 

the presence of multiple phylogenetic signals within a single read. Differences in the 

relative conservation of certain classes of proteins may impact the classification of DNA 

fragments containing sequence derived from these different protein classes [38]. For 

instance, fragments of genes encoding highly conserved ribosomal proteins may be much 

harder to distinguish on the basis of genome signature than genes encoding less 

conserved metabolic pathways. Additionally, in some cases factors such as habitat or 

lifestyle may lead to the convergence of genome signature for specific pairs of organisms 

[87; 88], causing an otherwise unexpected decrease in distinguishability for a pair of 

genomes. Conversely, closely related organisms that have undergone rapid evolution may 

in fact exhibit increased distinguishability in comparison to what might be expected 

based upon a phylogenetic marker gene approach. All of these potential confounding 

factors will be examined in depth in Chapter 4.

It is widely accepted that the the relative frequencies of specific oligonucleotide 

patterns can be utilized to capture genome signature and distinguish between genomes 

that exhibit sufficient differences in composition. In reviewing the various sequence-

composition based classifiers, it is evident that there is no single best set of parameters 

for capturing genome signature using this oligonucleotide frequency approach. Some 

methods, such as the Naïve Bayes classifiers, report the highest classification accuracies 

while using frequencies of long 9-15 nt oligonucleotides (although the results reported for 

the longest k-mers might be artifacts as discussed in the section outlining the NBC 

method), while others report the best performance while using tetramer [40], 
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pentanucleotide [38], or hexanucleotide frequencies [38; 65]. To further complicate the 

issue, Bohlin et al even suggested that little signal is gained by using oligonucleotide 

patterns longer than 6 nt, in stark contrast to the results presented in the Naïve Bayes 

studies [52; 62; 89]. Furthermore, certain classifiers such as PhyloPythia and the Chi-

Squared classifier make use of degenerate oligonucleotide patterns (i.e., the classifier 

may use hexanucleotide patterns that contain one or more IUPAC 'N' characters, allowing 

for relaxed matching of each hexanucleotide and thus decreasing the sparsity of the 

resulting feature vector), claiming increased performance over strict oligonucleotide 

patterns. The inconsistency of optimal parameters within the literature justifies an 

examination of the impacts of oligonucleotide pattern length and the degeneracy of 

patterns on classification accuracy. Such a study will be presented in Chapter 2.
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Chapter 2 – Investigating the Influences of DNA 
Recoding, K-mer Size, and DNA Fragment Length 
on Classification Accuracy

Motivation
Existing DNA classification systems such as PhyloPythia [38], CompostBin [65], 

and TETRA [63] have typically utilized the relative frequencies of short oligonucleotides 

(k-mers) as a means of quantifying genome signature.  Although these methods have 

demonstrated that it is possible to distinguish between genomes on the basis of their k-

mer frequency profiles, the feature space sizes associated with k-mer frequency data sets 

impose restrictions on their application to classification. Given the 4-letter nucleotide 

alphabet, a k-mer will result in a feature space of 4k elements, leading to very large 

feature spaces for even relatively small values of k (ex: 48 = 65536 features). Large 

feature spaces can lead to prohibitive computational and memory requirements, and can 

also reduce the performance of machine learning and statistical methods that are 

susceptible to the “curse of dimensionality”. 

Various DNA recoding schemes have been used in order to overcome 

compositional biases in genome sequences or to transform such sequences so that they 

may be analyzed using advanced signal processing techniques. One common DNA 

recoding scheme transforms a given genome sequence into 4 binary sequences in which 

1s are used to denote the presence (0's the absence) of one of the four possible 

nucleotides {A, C, G, T} present in the source genome. This binary recoding scheme has 

been used in order to apply wavelet transform techniques to genome sequences [90; 91] 

and to investigate the fractal nature of DNA [92]. Similarly, binary recoding was used by 

Hill et al. [93] in order to apply Chaos Game Theory to the visualization of genome 

sequences. Binary DNA recoding schemes were also used in an attempt to identify 

questionably aligned genome sequences [94].

A second DNA recoding scheme, RY-recoding, removes G+C compositional 

biases in DNA by generalizing such sequences so that they contain only the symbols for 
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purine (R) and pyrimidine (Y) bases. Phillips et al. demonstrated that RY-recoding 

mitochondrial DNA sequences prior to phylogenetic analyses served to both reduce 

compositional biases and enhance the phylogenetic signal [95].

The current study employs several DNA recoding schemes in an attempt to reduce 

the number of features associated with a particular k-mer length. For each recoding 

scheme, DNA sequences are first mapped to binary sequences based on criteria such as 

nucleotide identity and purine/pyrimidine content (Table 2.1). The resulting binary 

sequences are subsequently analyzed in order to determine the frequencies of specific 

binary patterns of various lengths, and these frequency profiles are used to train 

multiclass support vector machine (SVM) based classifiers. Aside from the reduced 

memory requirements, it is anticipated that binary-recoded DNA sequences will perform 

at least as well as non-recoded DNA for the purpose of sequence classification using 

SVMs.

Two types of binary SVM classifiers are presented here: a simple binary 

classifier, and a combined-binary classifier. The simple binary classification system 

recodes DNA by assigning matching nucleotides (or classes of nucleotides) the value of 1 

and all other nucleotides the value of 0 in a given DNA sequence, and then uses the 

observed frequencies of binary patterns as input for constructing SVM models. The 

combined-binary system recodes the given DNA sequence individually using the simple 

binary recoding scheme for each of the nucleotides {A, C, G, T} and then uses the 

combined set of frequencies of the binary patterns for each of the resulting 4 recoded 

sequences to construct SVM models. Although the combined-binary classifier requires 4 

times the feature space of the simple binary classifier, it nonetheless requires 

considerably fewer features than the plain k-mer-based classifier for pattern lengths 

greater than or equal to 3 nt (see Table 2.2).
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Table 2.1: Description of DNA Recoding Schemes

Recoding 
Scheme

Recoding criteria

A
Each A in the nucleotide sequence is recoded to a 1.
All other nucleotides are recoded as 0.

C
Each C in the nucleotide sequence is recoded to a 1.
All other nucleotides are recoded as 0.

G
Each G in the nucleotide sequence is recoded to a 1.
All other nucleotides are recoded as 0.

T
Each T in the nucleotide sequence is recoded to a 1.
All other nucleotides are recoded as 0.

AT
Each A or T in the nucleotide sequence is recoded to a 1.
All other nucleotides are recoded as 0.

CG
Each C or G in the nucleotide sequence is recoded to a 1.
All other nucleotides are recoded as 0.

AG
Each purine in the nucleotide sequence is recoded to a 1.
All other nucleotides are recoded as 0.

CT
Each pyrimidine in the nucleotide sequence is recoded to a 1.
All other nucleotides are recoded as 0.
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Table 2.2: Comparison of the Number of Features per SVM Training Instance for  
Each Classifier Type.

Values in bold indicate the largest SVM feature space examined in this set of experiments 
for each type of classifier.

Pattern 
Length

(n)

Simple binary classifier
(2n  features)

Combined-binary 
classifier

(4*2n  features)

K-mer classifier
(4n  features)

1 2 8 4

2 4 16 16

3 8 32 64

4 16 64 256

5 32 128 1024

6 64 256 4096

7 128 512 16384

8 256 1024 65536

9 512 2048 262144
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The primary goal of this study is to evaluate the performance of SVM-based DNA 

classification systems using several DNA recoding schemes, and to compare the results 

against SVM classifiers in which no DNA recoding is used. Additionally, the influences 

of k-mer size and DNA fragment length on classification accuracy will be investigated 

both with and without the use of DNA recoding.

Support Vector Machines
The support vector machine (SVM) is a state-of-the-art machine learning method 

that has been successfully applied to a range of classification problems, including speech 

recognition [96], image recognition [97], microarray expression profiling [98], and text 

classification [99]. When presented with a set of training data consisting of labelled 

features spread across multiple classes, the support vector machine constructs a model by 

identifying an appropriate set of hyperplanes that partition the feature space into training 

classes based on the class labels. Hyperplanes are selected such that the margins between 

the boundary features (referred to as support vectors) within each class are maximized, 

and thus the SVM is referred to as a maximum margin classifier. In cases where the 

feature sets belonging to two or more classes overlap in the feature space, implying that 

perfect class distinction is not possible, the SVM chooses appropriate hyperplanes by 

minimizing an error function related to the number of features that are incorrectly 

partitioned. This error function depends upon a cost parameter C that determines the error 

penalty associated with each misclassified feature. Since larger cost parameters are 

associated with larger error penalties, choosing too large a cost parameter may result in 

overfitting of the model. Conversely, choosing too small a cost parameter will result in a 

model that is overly permissive to misclassifications. This cost parameter is dataset 

specific, and heuristic grid searches are often used in order to identify appropriate values 

of C. 

As with the modified k-NN algorithm (see TACOA classifier in Chapter 1), the 

SVM incorporates the use of kernel functions in order to alleviate the effects of the curse 

of dimensionality. Common kernel functions implemented in SVMs include linear, 

Gaussian, polynomial, and sigmoidal functions [100], and the relative performance of the 
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kernel functions has been shown to vary depending on the underlying classification 

problem at hand. For example, the linear kernel has been shown to outperform the other 

kernels when applied to text classification (http://www.csie.ntu.edu.tw/~cjlin/liblinear/), 

whereas the gaussian kernel has been shown to be most appropriate when applied to the 

classification of DNA oligonucleotide frequency profiles [38]. In order to use the 

Gaussian kernel function in conjunction with the SVM, the kernel width parameter γ 

must be passed to the SVM algorithm during the training phase. Like the cost parameter 

C discussed above,  γ is dataset-dependent, and grid searches are frequently used to 

choose reasonable values of γ.

Although the support vector machine may be applied to multiclass problems, the 

core SVM algorithm is a binary classifier. In order to perform multiclass classification, 

available SVM implementations transparently reduce an n-class problem into a set of

n2 one-against-one [100] or one-against-the-rest (http://pyml.sourceforge.net/) binary 

classifiers, and ultimately use a voting procedure in order to aggregate the results from 

the individual binary classifiers into a multiclass prediction. In the case of libSVM [100], 

each feature in an n-class problem is evaluated using n2 one-against-one SVMs, and the 

given feature is predicted to belong to the class with the highest number of votes 

produced by the complete set of pairwise classifiers. In the event of a tie, the feature is 

predicted to belong to the class with the lowest numerical ID.

Experimental Design

DNA Recoding Schemes

Although PhyloPythia's use of k-mer frequency profiles has been shown to 

provide very accurate classification of DNA fragments [38], this approach produces 

high-dimensional SVM training and test sets. The use of k-mers of the 4 nucleotides {A, 

C, T, G } quickly results in an enormous feature space of size 4k, which increases the size 

of the SVM training files, the associated memory requirements, and the computational 

effort required in order to construct and utilize the resulting SVM models. Rather than 

http://pyml.sourceforge.net/
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focusing on the frequencies of k-mers, the experiments in this chapter aim to evaluate the 

ability of binary patterns of recoded nucleotides to capture the genome signature 

exhibited by DNA fragments.

Table 2.2 lists the various DNA recoding schemes that are used in this set of 

experiments. Each of the recoding schemes is used individually in order to create 8 

simple binary classifiers (Figure 2.1a,b). Additionally, a single combined-binary classifier 

is built using the combined set of frequencies from the A, C, T, and G recoding schemes.

Data Acquisition

The procedures in this set of experiments make use of a set of 10 completely 

sequenced Bacterial and Archaeal genomes (see Table 2.3). Genomes were selected to 

ensure that both closely related and distantly related organisms were represented. The 

complete DNA sequences and all associated information for the organisms in Table 2.3 

was obtained from the Joint Genome Institute IMG/M online service [61] on October 

12th, 2007. 
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Figure 2.1. Binary Recoding and Parameterization of a DNA Sequence.

a) Recoding of the given DNA sequence using the simple binary recoding scheme for  
adenine “A”. b) Purine recoding of the source DNA sequence. c) Parameterization of a  
purine recoded DNA sequence for a pattern length of 3 nt. The total counts of all  
overlapping 3-mers are first tallied and subsequently divided by the fragment length in  
order to determine the 3-mer frequency vector.



Table 2.3: List of Genomes Selected for use in the Experimental Procedures.

Organism Name NCBI Accession # Domain Phylum Class
Genome Size 

(bp)

Acidobacteria bacterium Ellin345 NC_008009 Bacteria Acidobacteria Acidobacteria 5650368

Bacillus anthracis str. Ames NC_003997 Bacteria Firmicutes Bacilli 5227293

Bacillus cereus E33L NC_006274 Bacteria Firmicutes Bacilli 5843235

Dechloromonas aromatica RCB NC_007298 Bacteria Proteobacteria Betaproteobacteria 4501104

Escherichia coli O157:H7 str. Sakai NC_002695 Bacteria Proteobacteria Gammaproteobacteria 5594477

Halobacterium sp. NRC-1 AE004437 Archaea Euryarchaeota Halobacteria 2571010

Legionella pneumophila str. Lens NC_006369 Bacteria Proteobacteria Gammaproteobacteria 3405519

Methanococcus maripaludis strain S2 BX950229 Archaea Euryarchaeota Methanococci 1661137

Staphylococcus aureus subsp. aureus USA300 NC_007793 Bacteria Firmicutes Bacilli 2917469

Synechococcus sp. JA-3-3Ab NC_007775 Bacteria Cyanobacteria - 2932766

47
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All DNA sequences were downloaded as flat text files in the FASTA format. Each text 

file contained the full genome sequence of each organism, including multiple 

chromosomes and/or plasmids, where applicable.

Genome Parameterization

The nucleotide sequence of each genome was completely partitioned into non-

overlapping fragments of size 500 nt, 1000 nt, and 5000 nt, resulting in three sets of 

fragments for each genome. For genomes that contained more than one DNA molecule 

(plasmids or multiple chromosomes), all associated DNA sequences were concatenated to 

produce one large sequence prior to partitioning the genome into fragments.

For each genome, 3000 DNA fragments from the previous partitioning step were 

randomly selected and recoded using the 8 DNA recoding schemes listed in Table 2.2. 

Each of the 3000 fragments was scanned along the coding strand from beginning to end 

using a sliding window approach (window size = k, window step = 1) in order to 

determine the total counts of all possible 2k binary patterns present in the fragment, for k 

ɛ {3, 4, 5, 6, 7, 8, 9} (Figure 2.1c). Additionally, the total counts of all possible 4k  k-mer 

patterns of nucleotides were also tabulated for each of the 3000 fragments using the same 

approach, with k ɛ {3, 4, 5, 6}. In all cases, pattern counts were converted to frequencies 

by dividing each count by the fragment length. The resulting frequency vectors were 

subsequently scaled between -1 and 1 using the scale.py script from the libSVM package 

[100]. Frequency files were then split evenly to produce SVM training and testing files 

each 1500 instances in length, for each combination of fragment length, pattern length, 

and classifier. libSVM's subset.py script was used to split the frequency files in a 

stratified fashion, such that the frequency of each class was identical in both the training 

and test files.

Building and Evaluating SVM Models

Training the SVMs

For each SVM training file, a grid search was performed in order to determine 
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reasonable values for C and γ. In each case, 300 training instances were used to perform 

a grid search using libSVM's grid.py script with 5-fold cross validation. An SVM model 

was then built by running the program 'svm-train' on the 1500 instance training file using 

the C and γ values previously determined in the grid search. The Radial Basis Function 

(RBF) kernel was used in both the grid searches and the training of the SVMs, as this has 

previously been shown to outperform other kernel functions in a similar implementation 

of DNA sequence classification [38]. The perl module Time::HiRes v1.20 

(http://search.cpan.org/~deweg/Time-HiRes-01.20/) was used to record high-resolution 

timestamps immediately before and immediately following the execution of svm-train. 

These timestamps were used to determine the total training time required for each SVM.

An additional set of frequency files was prepared for both the combined-binary 

classifier and the k-mer classifier. In this second set of frequency files, the amount of 

training sequence was fixed at 600,000 nt for each of the models, by varying the numbers 

of fragments in each training set depending on the fragment length being examined. For 

fragments of length 500 nt, 1200 fragments were evaluated. For fragments of length 1000 

nt, 600 fragments were evaluated. And lastly, for fragments of length 5000 nt, 120 

fragments were evaluated. The purpose of varying the number of fragments in relation to 

fragment length was to test whether or not the observed increased performance of the 

SVM classifiers for large fragment sizes was due to increased training sequence relative 

to the shorter fragments (i.e., in the original trials, the training sets always consisted of 

3000 fragments regardless of fragment size). For each test case, 300 instances were used 

to perform grid searches (see above), and SVM models were built using half of the 

available frequency profile data. 

Testing the SVMs

For each encoding strategy, each corresponding SVM model was used by the 

'svm-predict' program to classify fragments from the test files that had the same pattern 

length as the training file used to build the model. Although pattern length remained 

consistent between the training and testing file involved in each comparison, separate 

SVM runs were used to evaluate all possible training fragment length and test fragment 

http://search.cpan.org/~deweg/Time-HiRes-01.20/
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length combinations. Time::HiRes was used to calculate the running time of svm-predict 

in the same manner as it was applied to svm-train above. Average sensitivity and 

specificity values were calculated from the output of svm-predict, and averaged over the 

three trials.

Evaluating SVM Performance

For each test run of a given SVM, the input test file and the resulting prediction 

file were compared in order to calculate the average sensitivity and average specificity of 

the given SVM. For each genome in the test/prediction files, sensitivity was calculated 

as:

Sn=
TP

TPFN
where TP represents true positives, and FN represents false negatives.

The average classification sensitivity was then calculated as the average of all of 

the class-level sensitivities. Likewise, specificity was calculated as:

Sp=
TN

FPTN
where TN represents true negatives and FP represents false positives.

As above, the average classification specificity was calculated as the average of 

all class-level specificities.

Results

Comparison of Classification Sensitivities of all Classifiers

For each of the classifiers, the classification sensitivity was examined over 

fragments of length 500, 1000, and 5000 nt. In the case of the binary classifiers, patterns 

of length 3-9 nt were examined, whereas patterns of length 3-6 nt were chosen for the k-

mer classifier in order to maintain reasonable training and testing times for the SVMs. 

Sensitivity was calculated for each combination of classifier, fragment length, and pattern 

length as the average over 3 replicate trials.

As can be seen in Figure 2.2, the k-mer classifier (max Sn = 88.5%) generally 
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outperforms the combined-binary classifier (max Sn = 86.5%), which always 

outperforms the simple-binary classifiers for all patterns tested (max Sn = 81.4%). All 

classifiers exhibited a general trend of increasing sensitivity in proportion to fragment 

length. The range of pattern lengths examined appears to convey comparable sensitivity 

for each combination of classifier and fragment length.

The highest sensitivity (88.5%) was achieved by the k-mer classifier using a 

fragment length of 5000 nt and pattern lengths of both 3 and 5 nt. The lowest sensitivity 

observed was 32.7%, by the simple binary classifier using the 'T' simple binary recoding 

scheme. 

Of all of the binary classifiers, the combined-binary classifier offered the 

sensitivity (60.7% - 86.5%) most similar to that of the k-mer classifier. Although there is 

a large discrepancy between sensitivities of the various classifiers for small fragment 

sizes, the overall difference in classification sensitivity decreases as the fragment size 

increases, demonstrating that even the worst of the simple binary classifiers is able to 

capture the genome signature for longer fragments.

Among the various binary recoding schemes examined, specific recoding schemes 

and their reverse complements achieve very similar sensitivities. For example, the “A” 

and “T” lines track together, as do { C, G } and { AG, CT }. Although the self-

palindromes AT and CG are not reverse complements of one another, their sensitivities 

are also nearly identical across all pattern and fragment length combinations. 

The apparent decrease in sensitivity of the k-mer classifier for the 5000 nt 

fragments with pattern lengths of 4 nt and 6 nt is an artefact that can in each case be 

attributed to one replicate trial (of three) where the classifier performed inconsistently 

relative to the other two replicates. The standard deviations between the three replicates 

for these two pattern lengths are 0.181 for k=4 and 0.068 for k=6, compared to an 

average standard deviation of 0.010 (range 0.002 – 0.027) across all other k-mer pattern 

length and fragment length combinations. These artifacts can likely be attributed to a grid 

search performed on an unrepresentative subset of the training data, leading to the 

selection of C and γ values that perform poorly when applied to the entire training set. If 
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the inconsistent results are excluded, the average sensitivities are 89.1% for k=4, and 

87.4% for k=6, resulting in a much smoother line for the sensitivities of the 5000 nt 

fragments. Increasing the number of items used in the grid searches might have avoided 

these inconsistencies, with the trade-off of increased running time.

Comparison of Combined-binary Classifier vs. K-mer Classifier 
Using Fixed Genome Coverage

Classification sensitivity generally increases in proportion to length of the 

fragments used to build and test each SVM (Figure 2.2). It should be noted that this 

increase might be caused by the fact that for each of the fragment lengths tested (500 nt, 

1000 nt, 5000 nt), 1500 fragments of each size were used to build each associated SVM. 

In essence, the SVMs built with the larger fragment sizes had an advantage in that they 

had been exposed to a much larger portion of each of the genomes than the SVMs built 

from the smaller fragment sizes. In order to determine whether or not this difference in 

coverage was responsible for the apparent increase in sensitivity with fragment size, a 

second set of SVMs was built using different numbers of fragments depending on the 

fragment sizes. 'Fixed coverage' versions of both the combined-binary classifiers and the 

k-mer classifiers were created, using fragment sizes of 500 nt (1200 fragments), 1000 nt 

(600 fragments), and 5000 nt (120 fragments).

After correcting for potential bias due to differences in genome coverage, the 

general increase in classification sensitivity with fragment size is still apparent (Figure

2.3), indicating the higher accuracy associated with larger fragment sizes is not due to 

increased genome coverage. The k-mer classifier achieved the highest sensitivity in this 

experiment (89.1%) using a pattern length of 5 nt and a fragment length of 5000 nt. 



Figure 2.2: Comparison of Average Classification Sensitivity Over Varying Fragment and Pattern Length Combinations for all  
Classifiers.
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Figure 2.3: Average Sensitivity and Specificity Over Varying Fragment and Pattern  
Length Combinations for the Combined-binary and K-mer Classifiers.
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The highest sensitivity achieved by the combined-binary classifier was 85.4% for a 7 nt 

pattern length and 5000 nt fragment length. Specificities for the combined-binary 

classifier and k-mer classifiers ranged from 96.0%-98.4% and 97.6%-98.8% respectively.

Comparison of the Classification Sensitivities of the Combined-
binary and K-mer Classifiers for Test Fragments of Different Size 
Than Those Used to Build the Classifiers

For the combined-binary and k-mer classifiers, each SVM model trained for a 

given fragment length was used to classify all test sets across the full range of fragment 

lengths (500 nt, 1000 nt, and 5000 nt). This cross-testing of models and test sets was 

performed in order to judge the classifiers' ability to generalize and classify fragments 

that were not necessarily the same size as those used to train the classifier.

In examining Figures 2.4, 2.5, and 2.6 a few things are readily observable. First 

and foremost, the k-mer classifier outperformed the combined-binary classifier in almost 

all cases (except for 2 points in the comparison of average sensitivity vs. pattern length 

for models trained using 1000 nt fragments). Although the combined-binary classifier 

offered comparable classification specificity in some cases, the k-mer classifier provided 

better sensitivity, particularly with models built from the smaller fragment sizes. For 

example, in Figure 2.6, the combined-binary classifier achieved a maximum sensitivity of 

86.5% when the 5000 nt trained model was tested against 5000 nt fragments using a 

pattern length of 4. This compares quite favourably to the k-mer classifier's performance 

using 5000 nt trained models (max sensitivity = 88.5%). For models trained using shorter 

fragment sizes, however, the difference in sensitivities between the two classifiers 

increases dramatically. For the 500 nt trained models, the combined-binary classifier 

achieved a maximum sensitivity of only 74.2% (for the 5000 nt fragments), whereas the 

k-mer classifier had a maximum sensitivity of 86.9%.



56

Figure 2.4: Average Sensitivity vs. Pattern Length for SVM Models Trained Using 500  
nt Fragments 
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Figure 2.5: Average Sensitivity vs. Pattern Length for SVM Models Trained Using  
1000 nt Fragments 
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Figure 2.6: Average Sensitivity vs. Pattern Length for SVM Models Trained Using  
5000 nt Fragments 
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Models trained with a small fragment size are generally able to accurately classify 

larger fragments, in some cases classifying the larger fragments with higher sensitivities 

than the fragment sizes used to build the models. For example, in Figure 2.4 the k-mer 

classifier achieved a maximum sensitivity of 86.9% using the 5000 nt test set, despite the 

fact that the SVM model was trained using fragments only 500 nt in length. In contrast, 

models trained with a larger fragment size do not offer very high sensitivities when 

attempting to classify smaller fragments. Figure 2.6 demonstrates this fact quite clearly, 

showing that the test sets containing 5000 nt fragments gave higher sensitivities than the 

500 nt and 1000 nt test sets for both the combined-binary and k-mer classifiers. In this 

figure, the k-mer classifier had a sensitivity of 88.5% using the 5000 nt training set, with 

the highest sensitivity from the other two training sets being 80.4% (1000 nt). Likewise, 

the combined-binary classifier showed a maximum sensitivity of 86.5% using the 5000 nt 

test set, but the 500 nt and 1000 nt test sets had maximum sensitivities of only 52.0% and 

66.1%, respectively.

The decrease in classification sensitivity for the k-mer classifier at pattern lengths 

of 4 nt and 6 nt in Figure 2.6 is likely the result of an unrepresentative subset of the 

training data being used in the grid search, as described above for Figure 2.2. 

Comparison of SVM Training and Prediction Times

Throughout all of the experiments, performance data were recorded whenever a 

SVM was trained or tested. Figure 2.7 illustrates the time required in order to build SVM 

models for the combined-binary and k-mer classifiers over a range of fragment lengths 

and pattern lengths. This particular set of data was obtained from the experimental trials 

where a fixed number of fragments (1500) were used to build the 500 nt, 1000 nt, and 

5000 nt models. The combined-binary classifier had an average training time of 7.53s 

across all fragment and pattern lengths, with training times ranging from 0.33s – 39.64s. 

The k-mer classifier had comparatively higher training times, with an average of 19.44s 

and a range of 0.57s – 69.88s.
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Figure 2.7: Comparison of SVM Training Times Over Varying Fragment and Pattern  
Lengths for the Combined-binary and K-mer Classifiers

3 4 5 6 7 8 9 3 4 5 6 7 8 9 3 4 5 6 7 8 9

0

10

20

30

40

50

60

70

80

Combined Binary K-mer

Pattern length (nt)

T
ra

in
in

g 
tim

e  
(s

)

5000 nt500 nt 1000 nt



61

As expected, there is a general trend of increasing training time with pattern 

length for both of the classifiers. Increasing the pattern length increases the number of 

features in the SVM training file (see Table 2.2), so it follows that libSVM would take 

longer to build a SVM model from a training file that contains more features. Also, 

Figure 2.7 shows that in all cases, more time was required to train the k-mer-based 

classifier for each combination of fragment length and pattern length. This may be 

explained by the fact that for a given pattern length, the k-mer classifier will have a much 

higher number of features than the alternative binary classifier, resulting in higher 

training times.

Perhaps somewhat counter-intuitive is the trend that the training time decreases as 

fragment size increases. For example, the k-mer classifier had a training time of 69.88s 

for the 500 nt model with a pattern length of 6, but the training time was 61.74s for the 

1000 nt model using the same pattern length. Increasing the fragment length to 5000 nt 

further reduced the training time to 19.44s. This same trend is also observable in the 

SVM prediction times summarized in Figure 2.8. In both cases, it may be that the larger 

fragment sizes provide the SVM with a more uniform representation of the genome 

signatures of the fragments being classified, thus resulting in a less challenging 

classification task for the SVM. Additionally, the reduced training/testing times may be 

the result of the fact that the same number of training fragments are being used in each 

case, the SVMs built with the 5000 nt fragments are actually being exposed to a higher 

overall percentage of the given genomes being classified than the models built with 

smaller fragments, resulting in more accurate SVM models.
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Figure 2.8: Comparison of SVM Prediction Times Over Varying Fragment and Pattern  
Lengths for the Combined-binary and K-mer Classifiers
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Conclusions
The results presented in this chapter have demonstrated that binary-recoded DNA 

classifiers are in fact able to utilize genome signature in order to provide DNA sequence 

classification sensitivities of up to 86.5%. Unfortunately, throughout all of the 

experiments the k-mer classifier consistently outperformed the binary classifiers 

presented here, providing sensitivities of up to 89.1%. Despite the fact that binary 

classifiers greatly reduce the feature space, the increase in available pattern lengths 

facilitated by the use of binary classifiers does not offer an increase in classification 

sensitivity over k-mer classifiers trained with shorter patterns.

Although the binary-recoded classifiers provided similar sensitivities to the k-mer 

classifier at fragment sizes of 5000 nt, the classification sensitivity decreased 

dramatically with decreasing fragment size. This is an immense drawback for the binary 

classifiers, as they were intended to be applied to metagenomic data sets which often 

contain fragments much smaller than 5000 nt.

The results clearly demonstrate that it is advantageous to train SVM models using 

a short fragment length in order to ensure that the resulting models will be able to classify 

query fragments of various lengths. Models trained using shorter fragments have the 

ability to classify longer fragments without greatly sacrificing classification accuracy. 

Conversely, models trained using longer fragments are ineffective in attempting to 

classify shorter fragments.

Although DNA recoding might serve as a viable preprocessing step for other 

analyses, the results from this study indicate that recoding greatly reduces the SVM's 

ability to distinguish between genomes on the basis of genome signature. By removing 

compositional bias using the various simple binary recoding schemes, there is a greater 

chance that genomes will converge in terms of their generalized compositions. This 

suggests that genome signature is tightly coupled to nucleotide composition rather than 

pyrimidine/purine composition. Additionally, the fact that the combined-binary classifier 

was unable to match the k-mer classifier in terms of sensitivity indicates that k-mers 
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rather than individual nucleotide patterns, contribute greatly to genome signature. This 

would seem to suggest that codon usage biases play a dominant role in shaping a 

genome's nucleotide composition.

The combined-binary classifier could potentially be useful in binning genomic 

fragments of 5000 nt or longer. For fragments of this size, the combined-binary classifier 

achieved classification sensitivities comparable to those of the k-mer classifier, while 

offering the advantages of reduced memory utilization and running time.
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Chapter 3 – SVM-mediated Pairwise Classification 
of 56 α-proteobacterial Genomes Based on the 
Tetranucleotide Profiles of Orthologous Genes

Motivation
In Chapter 2 it was shown that a simple multi-class SVM classifier is capable of 

distinguishing between short nucleotide sequences from 10 microbial genomes based 

upon their underlying k-mer frequency profiles for several values of k. Chapter 2 also 

demonstrated that tetranucleotide frequency profiles resulted in classification accuracies 

comparable to those of pentanucleotide and hexanucleotide frequency profiles. As such, 

tetranucleotide frequency profiles were selected for use in the current study. For multi-

class classifiers, performance is often reported in terms of the average sensitivity, 

specificity, or balanced accuracy of a given classifier across all classes (where classes 

represent genomes in the present case). While these global performance measures provide 

convenient metrics for comparing the relative performance of different classifiers, global 

scores are inherently limited in that they fail to provide details about the performance of 

the classifier for each of the individual classes. Depending on the phylogenetic breadth of 

the genomes involved, the global performance scores for a given DNA classifier may be 

unrepresentative of the individual class-level scores. Furthermore, by considering only 

the global performance of a given classifier, no knowledge is gained about the specific 

classes that prove to be the most difficult to classify – details that might contribute to the 

development of a more robust classifier. For example, it is expected that the 

distinguishability of Bacillus anthracis str. Ames and Bacillus cereus E33L should be 

much lower than the distinguishability of the other genome pairs considered in Chapter 2, 

however the use of global accuracy scores does not provide any information about this 

specific comparison.

In the current study, a multi-class SVM is no longer used as the basis of the DNA 

classifier. Substituted in its place are a number of 2-class SVMs; a unique SVM for each 

of the possible pairwise groupings of the genomes used in the study. The use of 2-class 

SVMs allows for a much finer level of granularity when evaluating the performance of 
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the classifier, and avoids the shortcomings of global performance scores discussed above. 

An additional advantage of decomposing the classifier into multiple 2-class SVMs is that 

the computational effort involved in training the SVMs can be distributed across multiple 

CPU cores in a multi-core computer or cluster environment, an option that is not 

presently available when training a multi-class model with libSVM.

Rather than training each 2-class SVM using the tetranucleotide frequency 

profiles of genomic fragments as in Chapter 2, here we further redefine our classifier by 

training each 2-class SVM using only the tetranucleotide frequency profiles obtained 

from the putative orthologs for each pair of genomes. We focus specifically on orthologs 

in order to ensure that for a given genome pair, each sequence used in training the SVM 

to recognize one particular genome has a corresponding orthologous sequence that will 

be used to train the SVM to recognize the comparator genome. This strategy also 

attempts to avoid the confounding influence of unameliorated DNA such as viral/phage 

sequences which are likely to contain genome signatures quite different from the host 

genome, potentially decreasing the SVM's ability to distinguish between a given pair of 

genomes.

Sets of putative orthologs are determined using the reciprocal best hit (RBH) 

method with BLASTP [71; 72] as the underlying search algorithm. By determining the 

putatively orthologous sets of genes using RBH and BLASTP, the resulting orthologous 

genes may vary considerably in their nucleotide sequences while remaining significantly 

similar in their protein sequences due to synonymous mutations. This variation in 

nucleotide sequences for orthologous genes is represented in each gene's tetranucleotide 

frequency profile, and sufficient variation allows a SVM to distinguish between genomes 

on the basis of genome signature.

The reciprocal best hit method has been widely employed in order to determine 

putative orthologs shared between two genomes [101-104]. For a given pair of genomes 

{A, B}, the RBH algorithm works as follows: First, each gene in genome A is used as a 

query sequence against genome B using a search algorithm such as BLASTP or BLASTN 

[71; 72]. Subsequently, each gene in genome B is used as a query sequence in the 
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reciprocal search against genome A. A pair of genes {iA from genome A, iB from genome 

B} are deemed orthologous if iA returns iB as its best match when used as the query 

sequence against genome B, and likewise, iB also returns iA as its best match during the 

reciprocal query. 

The goals of the present study are to model the pairwise distinguishability of 

genomes between 56 members of the α-proteobacteria and to identify factors that 

influence the level of distinguishability between a given pair of genomes. Two-class 

SVMs trained using the tetranucleotide frequency profiles of orthologous sequences are 

used to narrow the analysis to the potentially interesting and difficult-to-classify cases, 

and the resulting pairwise classification performances are interpreted in terms of various 

measures of sequence similarity.

Experimental Design

Genome Selection

A total of 56 completely sequenced α-proteobacterial genomes were selected for 

use in this study, representing all α-proteobacterial genomes available from NCBI as of 

February 27th, 2008. The class α-proteobacteria was chosen because it was known to 

encompass a very diverse set of species in terms of their lifestyles and environments. 

Many members of the class represent obligate intracellular pathogens, such as Ehrlichia 

ruminantium, Rickettsia felis, Wolbachia spp., and Brucella suis, which are of particular 

interest due to their potential for human disease or impact on agriculture. Other 

organisms, such as Silicibacter TM1040 or Rhizobium leguminosarum, form stable 

endosymbiotic relationships with eukaryotic hosts. α-proteobacteria are also involved in 

several important metabolic processes such as photosynthesis (Rhodobacter sphaeroides,  

Rhodopseudomonas palustris, Roseobacter denitrificans) and nitrogen fixation 

(Silicibacter pomeroyi, Rhodospirillum centenum).

In total, the set of 56 genomes represents 44 uniquely named species within 31 

distinct genera. Refer to Appendix 1 for a list of all genomes used in this study, along 

with relevant genomic properties. 
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Data Acquisition and Sequence Extraction

Protein and nucleotide sequences for all genes, as well as the taxonomic 

information for all genomes was acquired from NCBI as of March 1st, 2008. Genomic 

G+C composition for all genomes was retrieved from NCBI on March 1st, 2008. 16S 

rDNA sequence identity information was retrieved as a distance matrix in the DNADIST 

format using the MyRDP interface to the Ribosomal Database Project Release 10.1 on 

June 24th, 2008 [105]. In cases where a given genome contained multiple 16S rDNA 

genes, the first instance of a 16S rDNA sequence presented in MyRDP was selected in 

order to generate the 16S rDNA distance matrices.

Selection of Orthologous Genes and Calculation of Normalized 
BLASTP Scores

For each of the 56
2  = 1540 possible 2-genome combinations of the 56 α-

proteobacterial genomes, the reciprocal best hit method was used to compile sets of 

putatively orthologous genes. RBH queries were performed using precomputed all-vs.-all 

BLASTP results stored in the MOA database as of March 1st, 2008. For each pair of 

orthologs, the normalized-BLASTP (nBLASTP) score is defined as the average of the 2 

BLASTP bitscores that contribute to the reciprocal best hit. Similarly, the average 

nBLASTP score for a given pair of genomes is defined as the average of all nBLASTP 

scores for the orthologous genes shared by the particular pair of genomes.

The total number of orthologous pairs of genes retrieved for each genome pair 

ranged from 442 for Neorickettsia sennetsu str. miyayama vs. Zymomonas mobilis subsp. 

mobilis ZM4 to 4941 for the pair of Agrobacterium tumefaciens str. C58 genomes. The 

average number of orthologous pairs across all 2-genome groupings was approximately 

1129. The total amount of orthologous nucleotide sequence (counting orthologous genes 

from both genomes) for each of the genome pairs ranged from 892 kbp to 9.7 Mbp, with 

an average of 2.3 Mbp. Normalized BLASTP scores for orthologous pairs of genes 

ranged between 0.00695 and 1, with an average nBLASTP score of 0.459. 
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Ortholog Parameterization

The tetranucleotide frequency profiles (TFP) of all orthologs were calculated as 

follows: For a given gene G of length n, all n-3 overlapping windows of 4 nucleotides in 

width were examined in order to determine the total frequency of all 256 possible 

tetranucleotides {AAAA, AAAC, … TTTT} present in the gene. The overall frequencies 

were normalized by dividing the raw counts by the length of the given gene. The 256 

resulting normalized frequencies were grouped into a vector to produce the 

tetranucleotide frequency profile for the gene:

TFPG=[ freq AAAA

n
,

freqAAAC

n
,
freq AAAG

n
, ... ,

freqTTTT

n ]
Tetranucleotide frequency profiles for each gene were calculated independently 

for both the coding and template DNA strands, resulting in two tetranucleotide frequency 

profiles for each gene. The enumeration of tetranucleotide frequencies always occurred in 

the 5' → 3' direction, with the first position of each tetranucleotide window oriented 

toward the 5' end of the gene.

Calculation of Tetramer Euclidean Distance

For a given genome pair {A,B}, the tetramer Euclidean distance (TED) was 

calculated as follows:

TED= ATV a[1]−ATV b[1]
2
ATV a[2 ]−ATV b[2 ]

2
...ATV a[256 ]ATV b [256 ]2

where ATVa[n] and ATVb[n] represent the nth elements in the 256-element average 

tetranucleotide vectors (ATV) for genomes A and B, respectively. ATV for a given 

genome is calculated as the sum of all tetranucleotide frequency vectors for the set of 

orthologs in a given genome that are specific to the given genome pair, divided by the 

number of orthologs in the set:

ATV=
[TFPorth0TFPorth1...TFPorthn ]

n
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Training and Testing the SVM Models

In order to construct SVM training and testing files for a given pair of genomes, 

each orthologous pair of genes was first randomly assigned to one of 5 cross-validation 

groups. The assignment of a pair of orthologs to a given cross-validation group ensures 

that orthologous genes always appear together in the resulting SVM training and testing 

files. The tetranucleotide frequency profile for each ortholog was prepended with one of 

two possible class labels (0 or 1) based on the gene's source genome, in order to designate 

class information to the SVM during the training phase. Next, the tetranucleotide profiles 

for all genes assigned to a given cross-validation group were concatenated to create a set 

of SVM testing files, S = {t1, t2, t3, t4, t5}, where 1 through 5 identify the source cross-

validation group.

For each testing file t in S, the corresponding SVM training file is formed by the 

concatenation of the 4 remaining SVM testing files. For instance, the training file for t3 

would consist of the concatenation of t1, t2, t4, and t5. In this manner, 5-fold leave-one-

out cross-validation is easily performed by training SVM models using the 5 possible 4-

element groupings of S, and then subsequently testing each model using the testing file 

that was excluded from the given training file.

A single grid search was performed for each pair of genomes using 500 randomly 

selected instances from one of the SVM testing files. The values of C and γ as 

determined in the grid search were used in the training of all five SVMs for the given pair 

of genomes. As described in Chapter 2, all SVMs in this study were built using the Radial 

Basis Function (RBF) kernel, as it has been shown to outperform linear kernels for 

tetranucleotide frequency data [38].

Training and testing of the SVMs was performed on a dual-core 3.2 Ghz desktop 

PC with 1.0 GB of RAM, running Ubuntu Linux version 8.04. Version 2.85 of the 

libSVM [100] package was used to train and test all SVMs.

For each pair of genomes, the ability of a 2-class SVM to distinguish between the 

genomes is defined as classification accuracy (CA). CA is calculated as the percentage of 

correct classifications over the 5 cross validation trials:
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CA =
C1C2C3C4C5

T1T2T 3T 4T5

∗100

where Cn and Tn denote the number of correct classifications and total classifications, 

respectively.

Data Analysis and Selection of Outliers

Classification accuracy results for each genome pair were plotted with respect to 

several measures of genome similarity: 1) difference in genomic G+C content, 2) 16S 

rDNA sequence distance, 3) lowest common taxonomic rank, 4) average nBLASTP 

score, and 5) average tetramer Euclidean distance. Lowest common taxonomic rank is 

defined as the most specific taxonomic rank shared by both members of a given genome 

pair. For example, two species that share all taxonomic ranks except those of genus and 

species would have a corresponding LCTR of family. Several outlier genome pairs with 

high residuals for the CA vs. average nBLASTP model were selected for an in-depth 

analysis, with the ultimate goal of identifying factors that contribute to the observed 

increase or decrease in distinguishability relative to the model. 

Results
2-class SVM models were trained for all 1540 pairwise groupings of 56  α-

proteobacterial genomes. The data used to train each SVM consisted of the 

tetranucleotide frequency profiles of all orthologous genes shared by a given pair of 

genomes. Each training set was evaluated using 5-fold leave-one-out cross validation (see 

Experimental Design section for details) in order to determine a classification accuracy 

(CA) for each pair of genomes. The complete set of classification accuracies for all 

genome pairs was then interpreted in the context of several measures of genome 

similarity, and regression analysis was used to fit models, when possible. The majority of 

genome pairs are easily distinguished by the SVMs, providing a mean CA of 97.2% 

across all comparisons. The total range of CA values is 49.84% to 100%. 

Regression analysis was performed in order to fit a quadratic model to the 
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classification accuracy vs. average nBLASTP data set, and a logarithmic model to the 

classification accuracy vs. 16S rDNA distance data set. The average nBLASTP model 

gave an R2 value of 0.7761 and p-value < 2.2e-16, whereas the 16S rDNA distance model 

gave an R2 of 0.7132 and a p-value < 2.2e-16. Given that only orthologs were used in this 

study, one would expect that the average nBLASTP scores would provide the most 

accurate model, as suggested by the differences in R2 values. For this reason, residuals for 

the average nBLASTP model were used to select a set of outliers that were easier or more 

difficult to classify than suggested by the model. Characteristics of these outlier genomes 

were subsequently investigated in order to try to determine specific factors that contribute 

to the residual classification accuracy. Regression analyses were performed using the R 

statistical computing package [106] version 2.8.

The relationship between CA and the average nBLASTP scores for the set of 

orthologs shared by each pair of genomes is depicted in Figure 3.1. For genome pairs 

with an nBLASTP score less than 0.7, the SVMs are always able to distinguish between 

the genomes with greater than 80% accuracy, and for nBLASTP scores less than 0.45, 

classification accuracy always exceeds 87.8%. Conversely, the average CA for genome 

pairs with nBLASTP scores above 0.7 is 67.3%, with no pairs ever exceeding 90.4%. The 

best-fit quadratic model (R2 = 0.7761) is shown as a solid grey line in Figure 3.1. The 

model is useful in helping to identity outlier genome pairs that are easier or more difficult 

to classify than would be expected given their average nBLASTP scores. Several outlier 

pairs (denoted by red symbols) were selected in order to try to identify genomic 

characteristics that may influence genome distinguishability. Refer to Table 3.1 for a list 

of all outlier pairs and their associated residuals.

CA is directly proportional to 16S rDNA distance, with an increase in 16S rDNA 

distance leading to a corresponding increase in CA (Figure 3.2). Genomes with less than 

5% difference in their 16S rDNA genes are in general more difficult to classify, with an 

average CA of 66.1% for the 79 pairs in this category. Genomes with less than 1% 

difference in their 16S genes are essentially indistinguishable by the SVMs, with an 

average CA of only 54.77% for these 15 pairs. Above a 16S rDNA distance of about 5%, 
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all genome pairs are classified with high accuracy, giving a mean CA of 98.3% and no 

pairs falling below 85.57%. A best-fit logarithmic model gave an R2 of 0.7132, slightly 

less than the model provided by the average nBLASTP scores above. The difference in R2
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Figure 3.1: Classification Accuracy Versus Average nBLASTP for all Genome Pairs.

Regression analysis was used to fit a quadratic model (R2 = 0.7761, p-value < 2.2e-16), 
represented by the solid grey line. Red symbols are used to denote selected outliers, as 
follows: crosses: Anaplasma phagocytophilum vs. Neorickettsia sennetsu, triangle: 
Silicibacter pomeroyi vs. Silicibacter sp. TM1040, squares: Ehrlichia canis str. Jake vs. 
E. ruminantium str. Welgevonden v1, E. canis str. Jake vs. E. ruminantium str. 
Welgevonden v2, E. canis str. Jake vs. E. ruminantium str. Gardel, E. chaffeensis str. 
Arkansas vs. E. ruminantium str. Welgevonden v1,  E. chaffeensis str. Arkansas vs. E. 
ruminantium str. Welgevonden v2,  E. chaffeensis str. Arkansas vs. E. ruminantium str. 
Gardel, circles: Rickettsia prowazekii str. Madrid E vs. R. felis URRWXCal2, R. conorii 
str. Malish 7 vs. R. prowazekii str. Madrid E, R. conorii str. Malish 7 vs. R. typhi str. 
Wilmington, R. typhi str. Wilmington vs. R. felis URRWXCal2.
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Figure 3.2: Classification Accuracy Versus 16S rDNA Distance

Classification accuracy for each pair of genomes was plotted with respect to 16S rDNA 
sequence distance as determined from the uncorrected distance matrix retrieved from 
RDP. Red symbols are used to denote outliers selected from the CA versus NBLASTP 
model, as follows: crosses: Anaplasma phagocytophilum vs. Neorickettsia sennetsu, 
triangle: Silicibacter pomeroyi vs. Silicibacter sp. TM1040, squares: Ehrlichia canis str. 
Jake vs. E. ruminantium str. Welgevonden v1, E. canis str. Jake vs. E. ruminantium str. 
Welgevonden v2, E. canis str. Jake vs. E. ruminantium str. Gardel, E. chaffeensis str. 
Arkansas vs. E. ruminantium str. Welgevonden v1,  E. chaffeensis str. Arkansas vs. E. 
ruminantium str. Welgevonden v2,  E. chaffeensis str. Arkansas vs. E. ruminantium str. 
Gardel, circles: Rickettsia prowazekii str. Madrid E vs. R. felis URRWXCal2, R. conorii 
str. Malish 7 vs. R. prowazekii str. Madrid E, R. conorii str. Malish 7 vs. R. typhi str. 
Wilmington, R. typhi str. Wilmington vs. R. felis URRWXCal2.



Table 3.1: Outlier Pairs Selected for Further Investigation

Residual CA refers to the residual CA as determined by the CA vs. average nBLASTP model.

Genome Pair CA
Residual 

CA
#  Orthologs

Average 
nBLASTP

16S rDNA 
Distance

G+C 
Distance

Tetramer 
Distance

Anaplasma phagocytophilum vs. Neorickettsia sennetsu 0.878 -0.110 572 0.387 0.143 0.005 0.0140

Silicibacter pomeroyi vs. Silicibacter sp. TM1040 0.963 0.106 2667 0.687 0.040 0.040 0.0206

Ehrlichia canis str. Jake vs. E. ruminantium str. Welgevonden v1 0.654 -0.154 790 0.743 0.028 0.015 0.0044

E. canis str. Jake vs. E. ruminantium str. Welgevonden v2 0.655 -0.157 792 0.739 0.027 0.015 0.0046

E. canis str. Jake vs. E. ruminantium str. Gardel 0.658 -0.153 793 0.740 0.027 0.015 0.0046

E. chaffeensis str. Arkansas vs. E. ruminantium str. Welgevonden v1 0.631 -0.174 825 0.747 0.023 0.026 0.0041

E. chaffeensis str. Arkansas vs. E. ruminantium str. Welgevonden v2 0.636 -0.174 793 0.743 0.022 0.026 0.0042

E. chaffeensis str. Arkansas vs. E. ruminantium str. Gardel 0.643 -0.166 796 0.743 0.022 0.026 0.0042

Rickettsia prowazekii str. Madrid E vs. R. felis URRWXCal2 0.902 0.219 802 0.862 0.018 0.035 0.0107

R. conorii str. Malish 7 vs. R. prowazekii str. Madrid E 0.886 0.196 790 0.856 0.016 0.034 0.0100

R. conorii str. Malish 7 vs. R. typhi str. Wilmington 0.897 0.205 791 0.854 0.014 0.035 0.0103

R. typhi str. Wilmington vs. R. felis URRWXCal2 0.904 0.221 805 0.861 0.016 0.036 0.0110

Average across all genome pairs 0.972 1.29E-020 1129 0.424 0.138 0.156 0.0507
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values is likely due to the fact that the average nBLASTP scores are tightly coupled to the 

putative orthologs that are being classified by the SVM, because it is the underlying 

BLASTP scores that are initially used in the RBH queries to define the set of orthologs. 

16S rDNA distance, on the other hand, represents a measure of genome similarity based 

on a single highly conserved gene. Despite the relative simplicity of determining 16S 

rDNA distance in comparison to average nBLASTP scores, and the portions of each 

genome pair that have been excluded due to their non-orthologous nature, 16S rDNA 

distance is still a reasonable predictor of CA for this data set.

Genomic G+C distance appears to define a minumum bound on CA (Figure 3.3). 

Unlike Figures 3.1 and 3.2, where 95% or better CA is only achievable within a small 

range of nBLASTP scores or 16S rDNA distances, pairs of genomes with equivalently 

high CA values are found throughout the entire range of G+C distances. For example, the 

14 genome pairs with identical G+C content have a CA range of 49.84% - 97.75%, with a 

mean CA of 68.02%. Genome pairs with a G+C difference above 10% (774 pairs in total) 

range in CA from 98.2% - 100%, with a mean of 99.88%.

Classification accuracy is compared with the tetramer Euclidean distance for each 

genome pair in Figure 3.4. Across all genome pairs, the mean tetramer distance is 0.0507 

with a range of 0.0001 to 0.1107. Unlike genomic G+C content which appears to impose 

only a lower bound on CA, tetramer distance appears to impose both upper and lower 

bounds on CA. For genome pairs with negligible differences in average tetramer 

composition of their shared orthologs, CA is approximately 50%. As tetramer distance 

increases from 0 to 0.015, CA increases approximately linearly from 0% - 93.91%. 

Tetramer distance values in the range of 0.015 – 0.04 show moderate variability in CA, 

with CA values ranging from 87.71% - 100% (mean: 96.88%). Beyond a tetramer 

distance of 0.04, the mean CA is 99.9%, with CA never falling below 97.9%. 

CA can be interpreted in terms of the taxonomic relatedness of each pair of 

genomes (Figure 3.5). When the CA vs. nBLASTP results are partitioned by the lowest 

common taxonomic rank (LCTR) of each genome pair, there is a trend of decreasing CA 

as LCTR becomes more specific. For the 1141 genome pairs with a LCTR of 'Class', CA
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Figure 3.3: Classification Accuracy Versus Genomic G+C Distance

CA was plotted against genomic G+C distance for all pairs of genomes. Red symbols are 
used to denote outliers selected from the CA versus NBLASTP model, as follows: 
crosses: Anaplasma phagocytophilum vs. Neorickettsia sennetsu, triangle: Silicibacter  
pomeroyi vs. Silicibacter sp. TM1040, squares: Ehrlichia canis str. Jake vs. E. 
ruminantium str. Welgevonden v1, E. canis str. Jake vs. E. ruminantium str. Welgevonden 
v2, E. canis str. Jake vs. E. ruminantium str. Gardel, E. chaffeensis str. Arkansas vs. E. 
ruminantium str. Welgevonden v1,  E. chaffeensis str. Arkansas vs. E. ruminantium str. 
Welgevonden v2,  E. chaffeensis str. Arkansas vs. E. ruminantium str. Gardel, circles: 
Rickettsia prowazekii str. Madrid E vs. R. felis URRWXCal2, R. conorii str. Malish 7 vs. 
R. prowazekii str. Madrid E, R. conorii str. Malish 7 vs. R. typhi str. Wilmington, R. typhi 
str. Wilmington vs. R. felis URRWXCal2.
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Figure 3.4: Classification Accuracy Versus Average Tetramer Distance

Tetramer distance was calculated using the euclidean distance bewteen the average 
tetranucleotide profile for the set of orthologs for each genome in a given genome pair. 
Red symbols are used to denote outliers selected from the CA versus NBLASTP model, 
as follows: crosses: Anaplasma phagocytophilum vs. Neorickettsia sennetsu, triangle: 
Silicibacter pomeroyi vs. Silicibacter sp. TM1040, squares: Ehrlichia canis str. Jake vs. 
E. ruminantium str. Welgevonden v1, E. canis str. Jake vs. E. ruminantium str. 
Welgevonden v2, E. canis str. Jake vs. E. ruminantium str. Gardel, E. chaffeensis str. 
Arkansas vs. E. ruminantium str. Welgevonden v1,  E. chaffeensis str. Arkansas vs. E. 
ruminantium str. Welgevonden v2,  E. chaffeensis str. Arkansas vs. E. ruminantium str. 
Gardel, circles: Rickettsia prowazekii str. Madrid E vs. R. felis URRWXCal2, R. conorii 
str. Malish 7 vs. R. prowazekii str. Madrid E, R. conorii str. Malish 7 vs. R. typhi str. 
Wilmington, R. typhi str. Wilmington vs. R. felis URRWXCal2.



Figure 3.5: Classification Accuracy Versus Average nBLASTP, Partitioned by Lowest Common Taxonomic Rank

Classification accuracy versus average nBLASTP results were partitioned based upon the most specific taxonomic rank 
shared by both members of each genome pair. Red dots indicate the results that are specific to the given taxonomic rank. 

80
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ranges from 89.13% - 100% with a mean CA of 98.81%. At a LCTR of 'Order', the 275 

corresponding genome pairs have a mean CA of 96.24%, with values ranging from 

77.44% - 100%. Similarly, the pairs with a LCTR of 'Family' range in CA from 80.25% - 

99.66%, with a mean CA of 94%. CA drops considerably for genome pairs at the LCTR 

of 'Genus' and 'Species'. For 'Genus', the 35 corresponding pairs range in CA from 50.1% 

- 96.27%, with a mean CA of 70.10%. The 16 conspecific genome pairs range in CA 

from 49.84% - 81.26%, with a mean of 66.71%. Among the conspecific genome pairs, 

the least distinguishable are strains of Rhodobacter sphaeroides (CA = 49.85%), 

Ehrlichia ruminantium (CA = 49.84%), and Brucella abortus (CA = 50.03%). The most 

distinguishable genome pairs at the LCTR of 'Species' include 10 pairs of strains of 

Rhodopseudomonas palustris (CA range: 65.14% - 81.26%). The next most 

distinguishable conspecific genome pair contains two strains of Agrobacterium 

tumefaciens, which are distinguishable at a CA of 54.67%.

The distribution of nBLASTP scores for a given pair of genomes can shed light on 

the overall similarity between orthologous genes in a pair of genomes. Figure 3.6 

illustrates the population density distributions of the nBLASTP scores for the sets of 

orthologous genes shared by each of the outlier genome pairs listed in Table 3.1. For 

closely related genomes (panels b-l), the nBLASTP scores assume a negatively skewed 

unimodal distribution with a peak centered at a nBLASTP value of 0.8 – 0.9, indicating 

that such genome pairs have a higher proportion of orthologs that are similar in protein 

sequence. The lone pair of genomes involving two distinct genera, A. phagocytophilum 

vs. N. sennetsu (panel a) has a normal distribution centered at a nBLASTP score of 0.4, 

suggesting that the orthologs shared by these genomes differ considerably in terms of 

their protein sequences.



Figure 3.6: Distribution of RBH nBLASTP Scores for each Genome Pair

Panels a-m show the population density distribution of nBLASTP scores for the set of orthologs shared by each genome pair. a: 
Anaplasma phagocytophilum vs. Neorickettsia sennetsu, b: E. canis str. Jake vs. E. ruminantium str. Welgevonden v2, c: E. canis str. 
Jake vs. E. ruminantium str. Gardel, d: E. chaffeensis str. Arkansas vs. E. ruminantium str. Welgevonden v1, e: E. chaffeensis str. 
Arkansas vs. E. ruminantium str. Gardel, f:  Arkansas vs. E. ruminantium str. Welgevonden v1, g: E. canis str. Jake vs. E. ruminantium 
str. Welgevonden v1, h: R. typhi str. Wilmington vs. R. felis URRWXCal2, i: R. conorii str. Malish 7 vs. R. typhi str. Wilmington, j: R. 
conorii str. Malish 7 vs. R. prowazekii str. Madrid E, k: Rickettsia prowazekii str. Madrid E vs. R. felis URRWXCal2, l: Silicibacter 
pomeroyi vs. Silicibacter sp. TM1040. 
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Outlier Comparison
Based on the residual CA values from the CA vs. nBLASTP model, a set of 12 

outlier genome pairs was selected for further investigation (see Table 3.1). Outliers are of 

particular interest because they may draw attention to features that either improve 

(positive outliers) or confound (negative outliers) classification. A total of five positive 

outliers are included in the set, consisting of a single comparison between Silicibacter  

pomeroyi and Silicibacter sp. TM1040, and 4 comparisons between various species of 

rickettsia (R. prowazekii vs. R. felis, R. prowazekii vs. R. conorii, R. conorii vs. R. typhi, 

and R. typhi vs. R. felis). These 4 Rickettsia outliers form a coherent cluster that is visible 

in Figures 3.1-4. Negative outliers consist of a comparison between Anaplasma 

phagocytophilum and Neorickettsia senettsu, and 6 comparisons between Ehrlichia 

species (3 strains of E. ruminatium compared with E. canis and E. chaffeensis, 

respectively). Similar to the Rickettsia outliers, the Ehrlichia comparisons are also 

clustered in Figures 3.1-4.

Many of the genomes involved in the outlier comparisons share several broad-

level genomic characteristics. With the exception of the two Silicibacter species, all 

remaining genomes belong to the order Rickettsiales, and represent obligate intracellular 

pathogens of mammalian hosts. These pathogens are typically spread via arthropod 

vectors (ticks, fleas) and primarily infect macrophages, neutrophils, or endothelial cells, 

where they either live freely within the cytosol or take refuge within vacuoles. Inside an 

infected cell, these organisms rely on type IV secretion systems in order to exchange 

DNA and other substrates with the host cell. [66; 107-113]

In general, the genomes of intracellular pathogens are greatly reduced in size 

relative to the genomes of free-living bacteria, and tend to have relatively low G+C 

content [114]. The reduced nature of these genomes has also resulted in fewer tRNA 

genes than their free-living counterparts, and many of the genomes have lost genes for 

entire pathways relating to nucleotide and amino acid biosynthesis, resulting in an 

obligate reliance on the host cell to supply these materials [113; 115]. In many 

intracellular pathogens, genes that are normally found grouped within operons in free-
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living bacteria are found scattered throughout the genome, indicating that such genomes 

have an increased likelihood of undergoing rearrangement [109; 113]. Population 

bottlenecks experienced by obligate intracellular pathogens may lead to rapid gene loss 

and fixation of mutations that are uncharacteristic of populations of free-living bacteria 

[108; 114; 116]. It is also believed that limited exposure to other bacteria provides 

intracellular pathogens with less opportunity for the exchange of genetic material via 

LGT [115], although a small number of LGT events have been identified in Rickettsia 

massiliae. [117].

 All of these features could in one way or another contribute to the residual CA 

observed for each of the selected outlier pairs. The results for each of the groups of 

outliers are considered in terms of their specific genomic characteristics in the following 

section.

Anaplasma phagocytophilum   vs.   Neorickettsia sennetsu  

The comparison of A. phagocytophilum and N. sennetsu represents an interesting 

negative outlier. Figure 3.6a shows the distribution of nBLASTP scores for this pair of 

genomes, highlighting its relatively low nBLASTP scores compared to all of the other 

outliers. With a low average nBLASTP score of 0.387, the corresponding CA of 87.8% is 

significantly less than that of other genome pairs with comparable nBLASTP scores (see 

Figure 3.1). For instance, the 20 other genome pairs with nBLASTP scores between 

0.386 and 0.388 have a mean CA of 97.67%, with the next lowest CA being 91.02%. 

Likewise, the CA vs. 16S rDNA distance plot (Figure 3.2) also suggests that this outlier 

should be expected to have a higher CA; the 20 genome pairs with comparable rDNA 

distances in the range of 0.142 – 0.144 show a mean CA of 98.11%. When examined in 

terms of genomic G+C content, Figure 3.3 shows that A. phagocytophilum is very close 

in G+C composition to N. sennetsu (G+C distance = 0.005), suggesting that convergence 

of G+C composition may play some role in reducing the distinguishability of these 

genomes. It should be noted, however, that genome pairs with G+C distances < 0.005 

were able to achieve CA values as high as 98.72% in some cases, so the effect of G+C 

convergence on distinguishability may be minimal in this instance.
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In Figure 3.4, it is apparent that this outlier falls into the lower 25% of tetramer 

distances, despite its below-average nBLASTP scores. This suggests that although the 

orthologs shared by this genome pair have diverged in terms of their protein sequences 

since the most recent common ancestor, the tetranucleotide composition has not diverged 

substantially. Principal component analysis has previously been used to distinguish 

between genomes on the basis of oligonucleotide frequency data [65]. In Figure 3.7, the 

first 4 principal components of the tetranucleotide frequency data for this genome pair are 

compared using pairwise scatterplots. Although the data are somewhat separable on the 

basis of the principal components, Figure 3.7 reiterates the fact that there is substantial 

overlap in the tetranucleotide frequency profiles of these two genomes.

There are several possible explanations for the lack of tetramer divergence (or 

conversely, increase in tetramer convergence) observed for this outlier pair. Both of these 

genomes are from intracellular pathogens that reside in vacuoles within the host cell 

[108], and thus may have very limited opportunity to acquire new genome sequence via 

LGT. It is also possible that similarities in niche have influenced the convergence of the 

tetranucleotide profiles of these genomes. For example, Willenbrock et al demonstrated 

that codon usage bias provides sufficient signal to cluster 323 microbial genomes into 

groups based on the lifestyle of the organisms [44]. In a separate study, environment was 

shown to have a significant influence on G+C content and amino acid composition [48].

Additionally, both genomes have very few mobile elements (no intact prophage or 

transposable elements), a feature which may serve to reduce the variability in tetramer 

composition [108]. Similarly, a lack of several DNA repair enzymes in N. sennetsu may 

also contribute to reduced tetramer divergence, as a lack of DNA repair mechanisms has 

previously been shown to have a direct influence on genome composition [118].
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Figure 3.7: Scatterplots for the First Four Principal Components of the  
Tetranucleotide Frequency Profiles for A. phagocytophilum vs. N. Sennetsu

The 6 panels in this figure represent the pairwise scatterplots of the first four principal 
components of the tetranucleotide frequency profiles for the orthologs shared by A. 
phagocytophilum (blue dots) and N. sennetsu (red dots).
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Silicibacter pomeroyi   vs.   Silicibacter sp. TM1040  

The silicibacters are an interesting positive outlier, representing the sole 

comparison of free-living bacteria included among the set of outliers. Unlike the other 

outliers, the silicibacters have larger genomes (> 4 Mbp), share considerably more 

orthologous genes (approximately 3X the number of orthologs as the other outliers), and 

have a much higher G+C content (> 60%). Although they share a moderately high 

average nBLASTP score, this pair of genomes also has a remarkably high CA of 96.3%. 

Figure 3.1 shows that this outlier falls at the extreme upper range of CA among other 

points with comparable nBLASTP scores. Likewise, this pair also demonstrates higher-

than-expected CA (see Figure 3.2 when compared against genome pairs with similar 16S 

rDNA distances. The mean CA for genome pairs with comparable 16S rDNA distances 

(0.035 – 0.045) was 88.29%, with a range of 80.25% - 96.91%.

In terms of composition, the silicibacters exhibit both the highest G+C distance 

(G+C=0.040, Figure 3.3) and highest tetramer distance (tetramer distance=0.0206, Figure

3.4) of all the outliers. These compositional measures suggest that although the shared 

orthologs do not differ considerably in protein sequence as indicated by the high 

nBLASTP scores (Figure 3.1, Figure 3.6l), the tetranucleotide compositions of the 

underlying nucleotide sequences have diverged to a much greater extent. One possible 

explanation is that one or both of the genomes have accumulated an abundance of 

synonymous mutations, such that the nucleotide sequences have diverged while retaining 

the integrity of the protein sequences.  Different evolutionary strategies may also have 

influenced the divergence in tetranucleotide usage. Silicibacter sp. TM1040 is a free-

living organism, but is able to form an endosymbiotic relationship with dinoflagellates, 

resulting in a biofilm on the surface of the host cells [119]. In constrast, S. pomeroyi is 

not a facultative endosymbiont, but has instead adopted a lithoheterotrophic existence, 

acquiring genes for numerous metabolic pathways that provide several alternative energy 

sources depending on nutrient availability [120]. This sharp contrast in evolutionary 

strategies may have helped to pull the tetranucleotide compositions of these organisms in 

different directions, contributing to the positive residual CA. In support of this notion, a 
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previous comparison of the genomes of two strains of Prochlorococcus suggested that 

niche differentiation has greatly contributed to genome divergence in these organisms 

[121].

Ehrlichia spp.

In Figure 3.1, it is apparent that the 6 Ehrlichia outliers all have CA values well 

below what might be expected for their corresponding average nBLASTP scores. For 

instance, the outliers have CA values in the range of 63.1% - 65.8%, whereas the other 6 

comparisons with comparable nBLASTP scores (0.73 – 0.75) range in CA from 78% - 

82.2%. Despite having below average nBLASTP scores which suggest divergence in the 

protein sequences of the orthologous genes shared by each pair of outliers, the outliers all 

have below average 16S rDNA distances (Figure 3.2), G+C distances (Figure 3.3), and 

tetramer Euclidean distances (Figure 3.4) indicating that the nucleotide sequences of the 

orthologous genes have not diverged to a great extent.

Since each of the average nBLASTP scores used in Figure 3.1 is calculated from 

the individual nBLASTP scores for each set of orthologs, an unusual distribution of the 

individual nBLASTP scores might mean that the average value is unrepresentative for a 

given pair of genomes. In Figure 3.6, panels b-g show that the nBLASTP scores for all of 

the Ehrlichia outliers have skewed normal distributions with peaks centred around 0.7, 

thus removing the possibility that the average nBLASTP scores are grossly 

unrepresentative for these pairs of genomes.

As with A. phagocytophilum and N. sennetsu, all of the Ehrlichia species are 

confined to vacuoles within their host cells, and as suggested above, similarities in 

environment may have contributed to a decreased divergence in tetranucleotide 

frequencies.

An interesting feature of the E. ruminantium genome is that it contains large 

numbers of tandem repeats, a characteristic not found in E. canis or E. chaffeensis. These 

tandem repeats appear to be involved in a continuous process of genome expansion and 

contraction, resulting in an unusually large percentage of intergenic sequence as well as 
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the presence of truncated genes [107]. It has also been suggested that E. ruminantium is 

poised to undergo rapid genome rearrangements as an evolutionary strategy in the face of 

new environmental challenges [107; 109]. The tree of alphaproteobacteria proposed by 

Williams et al [122] suggests that E. chaffeensis and E. canis are sister taxa, with the 

strains of E. ruminantium being their closest relatives. The presence of truncated or 

chimeric genes in the E. ruminantium genome might help to explain the lower-than-

expected average nBLASTP scores in constrast to the small G+C distances, 16S rDNA 

distances, and tetramer composition. It is possible that E. ruminantium underwent a series 

of rapid genome rearrangments as it initially adapted to its ruminant host, leading to a 

number of truncated genes without signficantly altering the G+C content and underlying 

tetranucleotide composition. This would be sufficient to explain the decreased BLASTP 

scores observed between E. ruminantium and the other Ehrlichia species, and would also 

explain why G+C distance, 16S rDNA distance, and tetramer Euclidean distance suggest 

that the genomes are in fact closely related.

Rickettsia spp.

In constrast to the Ehrlichia outliers examined above, the 4 Rickettsia positive 

outliers have a much higher CA than would be expected given their average nBLASTP 

scores (Figure 3.1). The CA values for these outliers range from 88.6% - 90.4%, whereas 

other genome comparisons with similar nBLASTP scores (0.80 – 0.87) range in CA from 

57.46% - 77.09%. Interestingly, Figure 3.2 shows that the Rickettsia comparisons have 

the smallest 16S rDNA distances of all of the outliers considered, suggesting that the 

Rickettsia species are more closely related than the other outlier pairs, despite the higher-

than-expected CA values. Figure 3.4 shows that the Rickettsia outliers have moderate 

differences in tetranucleotide usage; the tetramer compositions are considerably more 

divergent than those of the Ehrlichia outliers, despite the lower average nBLASTP scores 

associated with the Ehrlichia comparisons. 

Although the Rickettsia species included in this study are obligate intracellular 

pathogens, they are not confined to vacuoles as are A. phagocytophilum, N. sennetsu, and 

the Ehrlichia spp. Instead, Rickettsia reside in the cytoplasm of an infected cell, and have 
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adapted to take advantage of nucleotides, amino acids, and other compounds present in 

the host cytosol [110]. Many Rickettsia lack the ability to synthesize nucleotides 

altogether, and have lost genes that encode or regulate a large number of biosynthetic 

pathways [113; 115]. The ability to depend on the host cell for amino acids might have 

played a role in helping to shape the tetranucleotide compositions of the various 

Rickettsia genomes, as selective pressure against metabolically expensive amino acids 

would be greatly reduced.

  Other factors that might influence tetranucleotide variation and contribute to the 

positive residual CA observed for the Rickettsia outliers are sequence repeats and mobile 

elements. The R. felis genome contains 782 small panlindromic repeats, 85 of which were 

found in open reading frames, and as many as 82 genes encoding transposases [112]. 

Such features could easily influence the underlying tetranucleotide composition of the 

genome, and thus improve classification.

LGT might also have contributed to the tetranucleotide divergence observed in the 

Rickettsia outliers. Blanc et al. previously provided evidence for LGT between R. 

massiliae and R. bellii [117]. Although no LGT events have yet been documented for the 

Rickettsia genomes used in the present study, there is evidence for a conjugative plasmid 

in the genome of R. felis [112].

Conclusions
The results presented in this chapter demonstrate that pairwise genome 

distinguishability is generally proportional to 16S rDNA distance, G+C distance, and 

tetramer Euclidean distance, and inversely proportional to both the lowest common 

taxonomic rank and average nBLASTP scores. Although the CA vs. nBLASTP model is 

able to provide a reasonable approximation of the relationship between distinguishability 

and genome similarity (R2=0.7761), it is clear from the examination of the outliers in 

Table 3.1 that a variety of factors may potentially influence the relative distinguishability 

of a given pair of genomes. Notably, similarities in both the lifestyle and environment of 

two organisms may affect their distinguishability. For example, all of the negative outliers 



91

examined in this study consist of intracellular pathogens that are confined to vacuoles 

within mammalian host cells. Conversely, the positive outliers are either free-living 

aquatic bacteria, or intracellular pathogens that live freely within the cytosol of the host 

cell. For certain genome pairs, it appears that distinguishability may be influenced by the 

presence of palindromic repeats, phage DNA, and transposases in one or more of the 

genomes, which may result in changes to the underlying compositional patterns present 

in the genome. Similarly, a lack of DNA repair mechanisms or a propensity for genome 

rearrangement may also alter the genome signature, and therefore influence the relative 

distinguishability of a pair of genomes.

Although the results presented in this chapter are specific to alphaproteobacteria, 

the tendencies for increased or decreased distinguishability observed for certain outlier 

pairs are likely to be generalizable to other classes of bacteria that have similar 

characteristics to those discussed above. Notably, intracellular pathogens that are 

confined to vacuoles or similar cellular compartments may show decreased 

distinguishability as a result of limited opportunity for LGT and the unusual selective 

pressures conveyed by these environments. Conversely, cytosol-bound intracellular 

pathogens may show a tendency for increased distinguishability due to greatly relaxed 

metabolic constraints: for example, organisms that are free to make use of metabolically 

expensive amino acids present in the cytosol will not be under the same selective pressure 

as free living bacteria, and mutations resulting in an increased demand for such substrates 

will be more likely to persist in these populations, thus altering genome composition.

When attempting to classify two genomes on the basis of genome signature, it is 

apparent that the relative level of distinguishability is most limited by the compositional 

similarities between the two genomes. The results of this chapter highlight the fact that 

such compositional similarities do not necessarily correlate with similarities in 

phylogenetic marker genes. As such, very closely related species may prove to be highly 

distinguishable if various factors have caused their genome signatures to diverge. 

Conversely, distantly related species may show drastically decreased distinguishability if 

their genome signatures have converged.
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Chapter 4 – Pairwise Classification of 774 
Bacterial and Archaeal Genomes Based on the 
Tetranucleotide Profiles of Short Genomic 
Fragments

Motivation
The results from the preceding chapter demonstrate that the pairwise 

distinguishability of two α-proteobacterial genomes can be modelled using the average 

normalized BLASTP (nBLASTP) score of their shared orthologs. Although the 

relationship between average nBLASTP and classification accuracy is useful in helping 

to bring attention to pairs of genomes that are easier or more difficult to classify than 

predicted by the model, the applicability of this method is limited by its underlying 

dependence on the identification of orthologs. As the model is built using only 

orthologous sequences shared by a given pair of genomes, it essentially excludes the 

impact of intergenic regions and non-orthologous genes on classification.

In the present experiment, the pairwise distinguishability of genomes is measured 

using SVM models based upon the tetranucleotide composition of short genomic 

fragments rather than shared orthologs. The use of genomic fragments ensures that all 

regions of the given genomes are equally represented in the SVM datasets, and unlike the 

experiment in Chapter 3, has no dependence on gene annotations or reciprocal best 

BLASTP scores. Since metagenomic projects involving high-throughput sequencing 

ultimately generate short fragments containing mixtures of both coding and noncoding 

sequence, it is important to understand the degree to which such fragments may be 

distinguished on the basis of genome signature.

Although it has been shown that DNA fragments from a given genome tend to 

vary less in composition than fragments from different genomes, within-genome 

compositional variation is in many cases sufficient to highlight regions of putative LGT 

[57; 123; 124], identify genomic islands [125], or to distinguish between genes based on 

translational efficiency [126]. In order to identify such regions within a genome, all of 
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these methods rely one of several forms of clustering of the genome sequence or a 

representation of codon usage patterns extracted from the coding sequence. Popular 

clustering techniques applied to the analysis of within-genome compositional variation 

include adaptations of Kohonen's self-organizing map (SOM), k-means clustering, and 

hierarchical clustering. Given that the overall compositional signature for a given genome 

is actually a mosaic signature comprising multiple compositional features, it may in fact 

be the case that genomic regions containing these features might differ in their relative 

distinguishability against a comparator genome. In order to evaluate the potential 

differences in distinguishability exhibited by these regions, this experiment introduces k-

means clustering of each genome's tetranucleotide profiles prior to SVM classification. 

The use of clustering will provide both the ability to compare classification accuracy on a 

per-cluster basis, as well as the opportunity to determine whether or not clustering of the 

tetranucleotide profiles enhances the SVM's ability to discriminate between genomes on 

the basis of their compositional signatures. 

Bacterial and Archaeal genomes are typically gene dense, consisting primarily of 

long coding genes separated by much shorter intergenic sequences. The E. coli O157:H7 

str. EC4115 genome, for example, contains 5,477 genes with an average length of 867 bp, 

representing 83.3% of the entire genome. If this genome was to be partitioned into 500 nt 

fragments at random, many of the fragments would contain 500 consecutive coding bases 

from a single gene, while other fragments would contain regions from multiple genes or a 

mixture of coding and non-coding sequence at varying proportions. For such hybrid 

fragments, the underlying compositional signatures could contribute to the degradation of 

performance of the SVM classifier if the result is an averaging of the tetranucleotide 

usage patterns for coding and noncoding sequences. The effect of hybrid fragments on 

SVM classification will be examined in this experiment using two measures of fragment 

heterogeneity: 1) the number of gene boundaries present in the fragment, and 2) the 

longest stretch of consecutive coding bases present in the fragment.  

The goal of the present experiment is to gauge the pairwise distinguishability of 

774 complete Bacterial and Archaeal genomes based on the tetranucleotide composition 
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of 500 nt-long fragments from each genome. As in the experiment described in Chapter 4, 

Support Vector Machines (SVMs) are used to build 2-class models trained on 

tetranucleotide frequency profiles, and the cross-validated classification accuracy is 

subsequently interpreted in the context of various measures of sequence similarity such as 

16S rRNA distance, G+C% distance, average tetranucleotide distance, and lowest 

common taxonomic rank. The influences of fragment heterogeneity, the annotated 

biological functions of any genes encoded on a fragment, and k-means clustering of the 

tetranucleotide profiles on classification accuracy are also investigated.    

Experimental Design

Data Acquisition and Sequence Extraction

The Genbank files for 774 complete microbial genomes were acquired from 

NCBI via rsync on November 28, 2008. These 774 genomes represented all of the 

Bacterial and Archaeal genomes available through NCBI at that time, a significant 

increase over the previous ortholog-based experiment in terms of both the number of 

genome sequences as well as the breadth of their taxonomic distribution. Whereas the 

previous experiment focused only on 56 genomes within the α-proteobacteria, the present 

experiment makes use of 721 Bacterial and 53 Archaeal genomes. In total, 472 uniquely 

named Bacterial species and 49 uniquely named Archaeal species are represented in the 

774-genome dataset, with an average genome size of 3.58 Mbp.

In preparation for genome parameterization, the DNA sequences for all genomes 

were extracted directly from their respective Genbank files using a custom Perl script. In 

many instances, a given genome was comprised of multiple Genbank files, each 

representing an individual chromosome or plasmid. In such cases, each component 

sequence was extracted and processed individually rather than concatenating the 

individual sequences into a single hybrid sequence. The retention of each genome's 

chromosome and plasmid sequences as distinct entities throughout the experiment allows 

us to examine differences in distinguishability between each of the individual genome 

components, which may help to identify regions containing compositional biases or 
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sequence acquired via LGT.

Genome Parameterization

For each of the 774 genomes, all associated chromosome and plasmid sequences 

were partitioned into 500 nt non-overlapping fragments beginning with the first annotated 

position in each sequence. A fragment size of 500 nt was chosen for this experiment 

because previous analyses (see Chapter 2) clearly demonstrated that 500 nt fragments 

provide sufficient compositional signal for training SVMs to distinguish between 

genomes on the basis of genome signature, and furthermore, the resulting SVM models 

could be applied to fragments that are greater than 500 nt in length. Although other 

projects such as PhyloPythia [38], TACOA [37], and tetra-ESOM [127] chose to use 

longer fragment sizes (800 nt, 1000 nt, 5000 nt respectively) in their analyses, there are 

several notable advantages to using a shorter fragment size: 1) both metagenomics and 

next-generation sequencing are generating datasets that contain short DNA sequences 

well below 800 nt in length, and accurate methods for binning such sequences do not 

presently exist; 2) many microbial genomes, especially those of obligate endosymbionts, 

are relatively small and will generate only a limited amount of SVM training data with 

larger fragment sizes; and 3) if the genome distinguishability results are to be applied to 

the identification of putative instances of LGT, shorter fragment sizes will provide greater 

resolution for identifying the specific regions suspected to be involved in a given LGT 

event. 

Within-genome variation of genome signature tends to decrease as fragment size 

increases (Chapter 2), and as a result, larger fragment sizes will usually produce higher 

classification accuracies than shorter fragment sizes using the same data set. Although 

this would appear to support the use of longer fragments whenever possible, the increase 

in classification accuracy is likely a side effect of oversimplifying the underlying 

classification problem. Additionally, it was demonstrated in Chapter 2 that SVM models 

trained using 500 nt genomic fragments are able to classify longer fragments with a high 

degree of accuracy, whereas models trained using longer fragments exhibited reduced 

classification accuracies when confronted with shorter fragments.
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For each DNA fragment defined in the previous step, the frequency of each of the 

256 possible tetranucleotides was calculated using a sliding-window approach (step = 1). 

For a fragment of length B (where B >= 4) there are B-3 possible overlapping 

tetranucleotide positions. The tetranucleotide profile for each fragment was calculated by 

iterating over each of the B-3 windows along the coding strand, and incrementing a 

counter for each of the 256 possible tetranucleotides as they were encountered in the 

DNA sequence. The result is a 256-element vector containing the frequencies of each of 

the tetranucleotides in a fragment. Since not all fragments were 500 nt in length (i.e., the 

last fragment in a chromosome/plasmid is often less than 500 nt) it was necessary to 

normalize the frequencies by dividing each frequency vector by the length of the 

fragment.

Previous studies have adjusted for strand and G+C biases in oligonucleotide 

frequency data by 'symmetrizing' the oligonucleotide frequencies and correcting the 

frequencies based on local G+C content, respectively [80; 128]. In addition to the 

unsymmetrized frequencies calculated above, a set of symmetrized tetranucleotide 

frequency vectors were determined for all genomes. Symmetrized tetranucleotide 

frequencies were calculated in the following manner: tetranucleotide counts were first 

calculated for both the coding and template strands using the sliding-window approach 

described above. The resulting set of tetranucleotide counts was then reduced to the set of 

non-redundant tetranucleotide counts by combining the count for each tetranucleotide 

with the corresponding count of its reverse-complementary tetranucleotide and dividing 

by 2. The set of 136 non-redundant tetranucleotide counts were then converted to non-

redundant (symmetrized) tetranucleotide frequencies by dividing each count by the length 

of the associated fragment.

In order to correct for G+C content, the symmetrized tetranucleotide frequencies 

for each fragment were adjusted using the following formula:

G=log2
S t

1
2
 fn1 fn2 fn3 fn4 
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where St represents the symmetrized tetranucleotide frequency for a particular 

tetranucleotide t in the given fragment, and fn1 through fn4 represent the symmetrized 

mononucleotide frequencies of each of the component nucleotides in t as determined by 

the symmetrized G+C  for the fragment. An additional set of symmetrized and G+C- 

corrected tetranucleotide frequencies were calculated in an identical manner, with the 

exception that the frequencies of each of the component mononucleotides  fn1 through fn4  

were based upon the symmetrized G+C content for the entire source genome as opposed 

to the local symmetrized G+C for the 500 nt fragment. The initial set of 299,151 pairwise 

SVM trials in this study were performed separately using both the unsymmetrized and 

symmetrized tetranucleotide frequency profiles in order to examine the influence of 

symmetrization on classification accuracy. Additionally, 500 SVM-based comparisons 

between randomly selected pairs of genomes were performed for both sets of G+C- 

corrected tetranucleotide frequency profiles (fragment-based or genome-based) to 

likewise gauge the impact of G+C correction on distinguishability.

Measuring Pairwise Distinguishability Using Support Vector 
Machines

SVMs were used to quantify the distinguishability for each of the 299,151 

possible pairwise comparisons among the 774-genome dataset. For a given genome pair, 

all tetranucleotide frequency profiles associated with each of the two genomes were first 

compiled into a single SVM data file. This large SVM data file was subsequently split 

into 5 cross-validation (CV) groups using a random stratified assignment algorithm to 

maintain consistent class representation among the 5 CV groups. Grid searches were 

performed on random 500-item subsets of the CV groups in order to determine 

appropriate values for C and γ (explained in Ch.3). Lastly, SVM models were built and 

tested via libSVM v2.88 using a 5-fold leave-one-out cross-validation scheme, and the 

classification accuracy was recorded. As in the previous experiments, the Gaussian/RBF 

kernel function was selected as it was shown to outperform the linear kernel for 

oligonucleotide frequency datasets [38].

In addition to the overall classification accuracy for a given pair of genomes, the 
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individual classification (correct/incorrect) of each individual fragment involved in the 

comparison was also recorded for use in subsequent analyses.

Two post-processing steps were required in order to resolve inconsistencies in the 

SVM classification results. Of the 299,151 possible genome pairs, 406 (0.14%) reported 

classification accuracies less than 50%; a paradoxical result for a 2-class classification 

problem. Further investigation revealed that all affected pairs involved conspecific 

organisms, which were expected to give approximately 50% classification accuracy since 

the genomes involved in these pairs were nearly identical in all cases. Repeat runs of the 

affected pairs did not resolve the sub-50% CAs. It is possible that libSVM was unable to 

correctly handle these instances of essentially unclassifiable training sets, leading to 

unrealistic CAs in this small number of cases. As a solution to this issue, the CA for the 

406 affected pairs was set to exactly 50% prior to including the results in subsequent 

analyses.

The second inconsistency in the SVM results affected 17 (0.0057%) of the 

299,151 pairs. For these 17 pairs, the reported overall classification accuracy was 50% 

despite the fact that the grid search CA for these same pairs was always 97% or greater. It 

is likely that the heuristic grid search failed to choose reasonable values for C and γ in 

these cases, and as a result, the SVM incorrectly classified the total complement of 

fragments in the affected pairs as one genome or the other, leading to a CA of 50%. In 

order to correct for these inconsistencies, all SVM runs with an overall CA at least 3% 

less than the reported grid search CA (31 pairs in total) were repeated. Of the 31 re-runs, 

the 17 inconsistent pairs no longer reported inconsistent CAs, and the remaining 18 pairs 

showed little or no change in overall CA.

Outlier Comparison

Once the pairwise classification accuracies were determined for all 774 genomes, 

the classification results were interpreted in relation to a number of measures of sequence 

similarity: difference in genomic G+C, 16S rDNA distance, lowest common taxonomic 

rank, and the difference in average genomic tetranucleotide composition. Wherever 
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possible, models were constructed from the resulting plots and their statistical 

significance was evaluated. Additionally, a number of positive and negative outliers were 

identified and selected for inclusion in subsequent analysis pipelines.

Difference in Genomic G+C Content

For each genome, the total G+C content was calculated as the total number of G 

and C nucleotides in all chromosomes and plasmids divided by the total number of 

nucleotides in all of these sequences. Once the genomic G+C values were calculated, the 

classification accuracy of each pair of genomes was plotted against the difference in G+C 

for the given genomes. 

16S rDNA Distance

The Ribosomal Database Project (RDP) Release 10.10 was queried using the 

RefSeq accession numbers associated with all 774 genomes in order to compile a list of 

relevant 16S rDNA sequences. Although several of the genomes could not be mapped to 

RDP sequences using this method, a total of 706 bacterial and 43 archaeal 16S rDNA 

sequences were queried successfully. The myRDP interface of the RDP project was 

subsequently used to generate uncorrected distance matrices for the given 16S rDNA 

sequences, and for each pair of genomes, the 16S rDNA distance was extracted and/or 

calculated from these matrices.

A total of 646 genomes were associated with only a single 16S rDNA sequence in 

the RDP, and as such, the pairwise 16S rDNA distance for any two such genomes could 

easily be extracted directly from the myRDP-generated distance matrices. A small 

number of genomes, however, were associated with multiple 16S sequences in the RDP: 

35 genomes were linked to 2 16S sequences, while 12 genomes contained exactly 3 

entries in the RDP. For pairwise comparisons in which one or both of the genomes 

contained multiple 16S rDNA entries in the RDP, the average between-genome 16S 

rDNA distance was calculated using all 16S rDNA sequences associated with each 

genome. Classification accuracy was plotted against the set of 16S rDNA distances, and 

an exponential model was fit using the R Statistical Computing Package.
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One caveat to the use of RDP is that the myRDP interface is unable to provide a 

distance matrix comparing bacteria vs. archaeal 16S sequences and as a result, no 

Bacteria vs. Archaea comparisons are present in the classification accuracy vs. 16S rRNA 

distance plot or model.

Lowest Common Taxonomic Rank

For each pair of genomes, the most specific taxonomic rank shared by both 

genomes (lowest common taxonomic rank) was determined and the set of such values 

was utilized in order to partition the CA vs. genomic G+C plot in terms of taxonomy. 

This partitioning allows the boundaries of distinguishability to be qualitatively examined 

in terms of the taxonomic relatedness of the organisms in question.

Difference in Average Tetranucleotide Composition

For each genome, the average tetranucleotide profile was calculated by summing 

the individual tetranucleotide counts across all fragments in the genome, and then 

dividing the set of tetramer counts by the total number of fragments. Pairwise 

tetranucleotide distance was then calculated as the Euclidean distance between the 

average tetranucleotide compositions of each pair of genomes. Classification accuracy 

was plotted against average tetranucleotide composition, and R was used in order to fit an 

exponential model.

Evaluating the Impact of Composition-based Clustering, 
Fragment Heterogeneity, and Fragment Functional Annotations 
on Classification

A subset of 16 genome pairs from the CA vs. 16S rDNA distance plot were 

selected for analysis using 3 additional pipelines (Table 4.1). A variety of genome pairs 

were selected on the basis of their residual values from the fitted model or other 

interesting properties of the pairs, for example congeners that have higher than expected 

CA, or distantly related organisms that have less than expected CA. Other genome pairs 

were selected in order to include pairs that have CA values in each of the ranges 55% - 

60%, 60% - 70%, 70% - 80%, 80% - 90%, and 90% - 100%.



Table 4.1: Outliers Selected for Inclusion in K-means Clustering, Fragment Heterogeneity, and Functional Profiling Pipelines

Each of the following genome pairs was selected for inclusion in the outlier analysis pipeline. CA indicates the classification accuracy 
for each genome pair during the initial 299,151 SVM trials. LCTR denotes the lowest common taxonomic rank shared by each pair. 
Residuals are based on the CA vs. 16S rDNA distance model.
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Genome1 Genome2 CA LCTR Residual

89.59% None -0.10

88.89% None -0.11

91.93% Domain -0.07

83.92% Domain -0.15

84.65% Domain -0.14

85.70% Domain -0.13

86.44% Domain -0.12

80.95% Order -0.15

66.77% Genus -0.25

87.31% Family -0.09

97.40% Species 0.12

93.43% Domain -0.05

55.94% Genus 0.06

68.44% Genus -0.01

78.67% Genus -0.06

89.52% Family -0.03

Methanosarcina barkeri str. Fusaro Gramella forsetii

Ehrlichia ruminantium Methanosphaera stadtmanae

Pyrococcus abyssi GE5 Metallosphaera sedula DSM 5348

Buchnera aphidicola str. Cc (Cinara cedri) Candidatus Sulcia muelleri GWSS

Prochlorococcus marinus Borrelia afzelii

Chlamydophila abortus S26/3 Neorickettsia sennetsu str. Miyayama

Prochlorococcus marinus str. AS9601 Candidatus Pelagibacter ubique HTCC1062

Bradyrhizobium japonicum USDA 110 Mesorhizobium loti MAFF303099

Lactobacillus acidophilus NCFM Lactobacillus gasseri ATCC 33323

Haloarcula marismortui ATCC 43049 Halobacterium salinarum R1

Prochlorococcus marinus str. MIT 9303 Prochlorococcus marinus str. AS9601

Haemophilus somnus 2336 Pediococcus pentosaceus ATCC 25745

Borrelia duttonii Ly Borrelia recurrentis A1

Nitrobacter hamburgensis X14 Nitrobacter winogradskyi Nb-255

Shewanella baltica OS195 Shewanella denitrificans OS217

Nitrosospira multiformis ATCC 25196 Nitrosomonas eutropha C91
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K-means Clustering

The normalized tetranucleotide frequency vectors for each of the selected genome 

pairs were independently clustered using the kmeans method provided by R v2.8.1 for k ɛ 

{2, 3, 4, 5, 6}, where k represents the number of clusters. At each value of k, the 2k 

cluster assignments for each outlier pair were used to designate class labels in the 

corresponding SVM training file. In total, 6 SVM training files were generated for each 

outlier pair; one for each of the 5 values of k utilized in the k-means clustering step, plus 

a control case where no clustering was used (essentially, k = 1).

Grid searches were performed on 1000-element subsets of each of the SVM 

training files in order to determine reasonable values of C and γ, and SVM models were 

subsequently trained and evaluated using 5-fold, leave-one-out cross validation as 

previously described. 1000-element subsets were used in the present grid searches (as 

opposed to 500-element subsets used in the larger set of SVM trials) in order to help 

reduce the likelihood that inappropriate C and γ values might be selected. Two 

classification accuracies were recorded for each SVM model: a strict classification 

accuracy in which correct classification was defined as the SVM's ability to correctly 

predict a given fragment's cluster assignment, and a relaxed classification accuracy in 

which correct classification was defined as the SVM's ability to correctly predict a given 

fragment's source genome, regardless of whether the the fragment was assigned to the 

correct cluster.

In an attempt to understand the specific compositional features that determine the 

assignment of a genomic fragment to a given cluster, two additional analyses were 

performed following the k-means clustering step. In the first analysis, the total number of 

plus strand and minus strand coding nucleotides that fall within each fragment were 

determined using the gene coordinates in the respective Genbank files. Next, the 

proportions of coding nucleotides were aggregated by cluster ID in order to determine the 

overall distribution of plus strand and minus strand coding nucleotides for each cluster. In 

the second analysis, the average G+C content for each cluster was calculated by 

determining the total number of G and C nucleotides in all fragments assigned to each 
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cluster, and then dividing by the total number of nucleotides in all fragments assigned to 

the same cluster.

Fragment Heterogeneity

Each of the individual nucleotides within a Bacterial and Archaeal genome can 

belong to one of two general classes of sequence: 1) protein-coding sequences (CDS), 

which contain all nucleotides that fall within one or more open reading frames, and 2) 

intergenic sequences (IGS), which represent all of the non-protein-coding nucleotides that 

exists between open reading frames. In the present study, fragments from each genome 

were analyzed using two measures of fragment heterogeneity: 1) the total number of 

sequence boundaries present in the fragment, and 2) the longest contiguous block of 

coding nucleotides present in the fragment. Two basic types of sequence boundaries may 

exist in a given fragment: 1) CDS → CDS transitions occur between adjacent open 

reading frames that lack intervening intergenic sequence, and 2) CDS → IGS (and 

similarly, IGS → CDS) transitions occur between adjacent open reading frames and 

neighboring intergenic sequence. Mann-Whitney tests were performed using R in order to 

determine whether correctly classified fragments were more or less heterogeneous than 

incorrectly classified fragments for each of the outlier pairs in Table 4.1.

Fragment Functional Annotations

The functional annotations for each fragment were examined in order to test 

whether or not fragments from certain functional classes are easier or more difficult to 

classify. For each fragment, the distributions of specific TIGR main roles and sub roles 

for annotated genes that overlap the given fragment were determined. In some cases, 2 or 

more genes may overlap a given fragment, in which case the fragment may have several 

associated TIGR main roles or sub roles.

Examination of the TIGR main role aggregate data indicated unnecessary 

redundancy in a number of the main role categories. As such, post-processing of the 

TIGR data was performed in order to consolidate several of the 'unknown' and 

'hypothetical protein' categories, for example, by merging the 'hypothetical protein' and 
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'hypothetical proteins' categories into a single TIGR main role.

Chi-squared tests were performed using R in order to examine whether or not the 

difference in distribution of correctly classified and incorrectly classified fragments into 

the various TIGR functional categories are statistically significant.

Investigating Convergence of Genome Composition and 
Putative LGT

Three genome pairs (Methanosphaera stadtmanae vs. Ehrichia ruminantium str. 

Welgevonden, Prochlorococcus marinus AS9601 vs. Pelagibacter ubique, and 

Haloarcula marismortui vs. Halobacterium salinarum) were chosen in order to search for 

possible instances of LGT or convergence in genome composition. M. stadtmanae vs. E. 

ruminantium str. Welgevonden represents a comparison between parasitic Archaeal and 

Bacterial species that have lower than expected CA as predicted by the CA vs. 16S rDNA 

best fit model. One possible hypothesis is that these distantly related organisms have 

undergone recent LGT, resulting in portions of one or both genomes that have 

unameliorated genome signatures [55]. In such an instance, a significant portion of 

unameliorated sequence could reduce the resulting CA of the SVM classifier. Similarly, 

the decreased CA observed for the halophiles Haloarcula marismortui vs. Halobacterium 

salinarum may also be explained by the same hypothesis of a recent LGT event (or series 

of LGT events).

P. marinus AS9601 vs. P. ubique represents a comparison between two marine 

Bacterial species from the phyla Cyanobacteria and Proteobacteria, respectively. This 

genome pair exhibited a lower than expected CA of 86.44% according to the CA vs. 16S 

rDNA model. One hypothesis for this genome pair is that convergence in genome 

composition due to the reduced nature of the genomes and similarities in niche have 

resulted in decreased CA.

Correct and Incorrect Fragment Classification Versus Genome 
Position

In cases of recent unameliorated LGT, such sequences may exist as regions 



105

containing a high density of misclassified fragments along one or both of the genomes 

involved in the comparison. In order to identify such regions of misclassification, all 

chromosomes and plasmids from each genome were recoded as binary sequences 

representing correct/incorrect classifications for all 500 nt fragments contained within the 

genome. The resulting binary sequences were analyzed to find intervals containing at 

least 37.5% misclassified fragments. This minimum of 37.5% misclassified fragments 

was chosen because smaller cut-offs tended to result in the identification of regions of 

misclassification that included long stretches of correctly classified fragments. Circos 

[129] was subsequently used to plot both the binary classification sequences and the 

identified intervals of misclassification for the 3 genome pairs.

Distribution of nBLASTP Values for Orthologs Contained Within 
Misclassified Fragments

In the event that recent LGT might be contributing to reduced CA for a given 

genome pair, one might reasonably expect that lack of amelioration could result in LGT-

derived orthologous genes having higher normalized BLASTP (nBLASTP) scores as 

compared to orthologous genes acquired through ancient LGT or sequences inherited 

vertically from the most recent common ancestor. In order to compare the nBLASTP 

scores of correctly versus incorrectly classified fragments, the reciprocal best hit method 

was used to query all orthologous pairs of genes for each genome pair. The total set of 

orthologs for each pair of genomes was partitioned into 'correct' and 'incorrect' bins 

depending on the location of each ortholog relative to the previously identified regions of 

misclassification in one or both of the genomes. If 95% or more of the nucleotides in a 

given ortholog overlap with a region of misclassification in either genome, the given 

ortholog is considered to be incorrectly classified, while all remaining orthologs are 

considered to be correctly classified. For each genome pair, the average nBLASTP scores 

were determined for all correctly classified orthologs, incorrectly classified orthologs, as 

well as the complete set of orthologs. Histograms and population density distribution 

plots for the resulting nBLASTP scores were subsequently generated and the two-sided 

Mann-Whitney test was used to compare the nBLASTP distributions using R.
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Results
2-class SVMs were used to train models for all possible pairings of 774 bacterial 

and archael genomes, and pairwise distinguishability was calculated as the classification 

accuracy of each SVM model using a 5-fold cross validation approach. In general, the 

majority of genome pairs were highly distinguishable, with 93% of the 299,151 pairings 

leading to a classification accuracy of 95% or greater (mean: 98.1%). Few genome pairs 

showed classification at or slightly above baseline, with 0.0029% of comparisons leading 

to classification accuracies of 55% or less.

Influence of Tetranucleotide Symmetrization and G+C Correction 
on Classification

In the vast majority of cases, symmetrization of tetranucleotide frequencies and 

correction for G+C content had little impact on classification accuracy. Of the 298,589 

pairs of genomes that demonstrated CA >= 50%, over 99.5% showed a difference in CA 

of <1% between the unsymmetrized and symmetrized SVM runs, while the difference in 

means was only 0.06% (98.20% vs. 98.26%). Of the 0.5% of trials that gave a difference 

in CA of >1%, symmetrization resulted in an increase in CA for 901 genome pairs, while 

a decrease in CA was observed for the remaining 526 cases.

Of the 500 genome pairs examined using tetranucleotide frequency profiles that 

were both symmetrized and corrected for local fragment-based G+C content, the 435 

cases with CA >=50% demonstrated a close fit to the non- G+C corrected runs (y = 0.98x 

+ 0.497; R2 = 0.99). Additionally, a paired-sample t-test indicated a significant decrease 

in CA when using the local G+C correction, with p = 3.2x10-26.

A statistically significant increase in CA was observed for the subset of SVM runs 

performed using symmetrized tetranucleotide frequencies that were corrected for 

genome-level G+C content. A paired-sample t-test indicated a p-value of 1.7x10-8. 

Although this is an interesting result, correcting for genome-level G+C content is of little 

practical value to the classification of short anonymous DNA fragments, as it necessitates 

the availability of complete genome sequences for both genomes prior to classification as
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Figure 4.1: Classification Accuracy Versus Genomic G+C Distance

Classification accuracy was plotted in terms of genomic G+C distance for all pairs of 
genomes. The G+C content for each genome was calculated as the total number of G/C 
nucleotides in the genome (including all chromosomes and plasmids) divided by the total 
number of nucleotides. 
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well as a priori association of each fragment to its source genome.

G+C Distance

G+C distance imposes a lower bound on CA, with instances of CA >= 99.9% 

being observed for comparisons across the full spectrum of G+C distances (Figure 4.1). 

For the 62,610 genome pairs with up to a 5% G+C distance, CA ranges from 50% - 

99.97%, with a corresponding mean CA of 95.1%. Within this set of comparisons, the 

low G+C distances might contribute to the convergence of genome signatures for some 

genome pairs, although it is important to note that even small G+C distances allow 

sufficient variability in tetranucleotide composition for certain genome pairs to be 

distinguished with nearly 100% CA.  The 54,375 genome pairs with G+C distances in the 

range 5-10% have CA values between 78.75% - 99.98% (mean CA = 97.59%). Pairs with 

a G+C distance of at least 10% are highly distinguishable, as indicated by a minimum 

observed CA of 85.32% for the 182,166 comparisons that fall into this category.

Tetranucleotide Euclidean Distance

Both minimum and maximum bounds on CA are observed when CA is plotted in 

terms of tetramer Euclidean distance (Figure 4.2). For tetramer distances less than 0.5%, 

CA ranges from 50% - 72.95% with a mean CA of 53.43%. As tetramer distance 

increases from 0.5% - 2.5%, CA varies approximately linearly with a mean CA of 94.6% 

(minimum CA = 52.47%, maximum CA = 99.63%). The vast majority of genome pairs 

(251,676) have tetramer distances greater than 2.5% and are almost completely 

distinguishable. Within this set of comparisons, CA ranges from 84.64% - 100%, with a 

mean CA of 98.96%. The 14,820 genome pairs with at least a 10% tetramer distance have 

a mean CA of 99.87%, with pair no exhibiting a CA of less than 98.85%. The best-fit 

exponential model results in an R2 of 0.8422 (p-value: <2.2e-16).

16S rDNA Distance

CA is proportional to 16S rDNA distance as illustrated in Figure 4.3. For genome 

pairs with little to no 16S distance (0% - 0.5%), CA ranges from 50% - 79.42% (mean 
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Figure 4.2: Classification Accuracy Versus Average Tetramer Euclidean Distance

Classification accuracy was plotted with respect to the tetramer Euclidean distance for 
each genome pair (grey dots). The solid line represents the best-fit exponential model (R2 

= 0.8422, p-value < 2.2e-16).
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Figure 4.3: Classification Accuracy Versus 16S rDNA Distance

Classification accuracy plotted in terms of 16S rDNA distance for each genome pair 
(grey dots). The solid line represents the best-fit exponential model (R2 = 0.7406, p-value 
< 2.2e-16).
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CA = 52.33%). Small increases in 16S distance quickly lead to a large range of CA 

values. For example, CA of >95% is achievable with 16S distances as low as 1.14% 

(Mycoplasma genitalium G37 vs. Mycoplasma pneumoniae M129), although the mean 

CA for the 83 genome pairs with similar 16S distances (1.13% - 1.15%) is only 76.48%. 

Furthermore, the minimum CA observed within this set of 83 genome pairs is 55.48% 

(Thermoanaerobacter pseudethanolicus ATCC 33223 vs. Thermoanaerobacter sp. 

X514). Genome pairs with 16S distances from 5% - 15% exhibit significant variability in 

CA, with CA values ranging from 57.34% - 99.99% (mean CA = 96.17). Above a 16S 

distance of 30%, genome pairs show much less variability in CA, and CA converges 

toward 100% (mean CA = 99.72%, minimum CA = 98.02%, maximum CA = 100%). An 

R2 of 0.7406 (p-value: < 2.2e-16) is achieved using the best-fit exponential model.

CA in Terms of the Taxonomic Relatedness of Genome Pairs

The taxonomic relatedness of genome pairs is sufficient to predict upper and 

lower bounds on CA (Figure 4.4). For comparisons between an archaeal species versus a 

bacterial species, the minimum observed CA is 88.89% (Figure 4.4a) with the majority of 

such comparisons resulting in near-perfect classification (mean CA = 99.07%, maximum 

CA = 100%). As the taxonomic ranks of two genomes become more similar, CA tends to 

decrease. For example, genome pairs from the same class but different orders (Figure

4.4d) have CA in the range 74.99% - 100% (mean CA = 97%), while pairs from the same 

family but different genus (Figure 4.4f) range in CA from 50% - 99.89% (mean CA = 

88.18%). Genome pairs comprising different strains of the same species (Figure 4.4h) 

show the lowest overall CA (mean CA = 55.04%, minimum CA = 50%) although even at 

this level, 13 pairs of 9 unique strains of Prochlorococcus marinus show CA in excess of 

95%. The next highest within-species comparisons excluding those of P. marinus are 

strains of Buchnera aphidicola (CA = 90.82%), Pseudomonas fluorescens (CA = 

88.01%), and Pseudomonas aeruginosa (CA = 86.36%).



Figure 4.4: Classification Accuracy Versus Genomic G+C Distance Partitioned by Lowest Common Taxonomic Rank

Classification accuracy plotted in terms of genomic G+C distance for all genome pairs. The individual panels represent the pairwise 
comparisons with lowest common taxonomic rank at each level. Panel a) genome pairs consisting of an archaeal species vs. a bacterial 
species,  b) kingdom,  c) phylum,  d) class,  e) order,  f) family,  g) genus,  h) species.
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CA in Terms of the Functional Annotations Associated with Each 
Fragment

 Genomic fragments that overlap genes assigned to specific TIGR main role 

categories show statistically significant tendencies for correct or incorrect classifications 

(Table 4.2). Across all comparisons within the 16 genome pairs listed in Table 4.1, the 

overall distribution of correct and incorrect fragment classifications into the various 

TIGR main role categories results in an overall X2 of 42.87 (df = 17, p-value = 0.0005). 

Role categories that are associated with an over-representation of correct classifications 

include roles involved in biosynthetic pathways, such as “biosynthesis of cofactors, 

prosthetic groups, and carriers” and “amino acid biosynthesis”. Role categories that 

demonstrate a tendency toward misclassification include several roles associated with a 

subset of informational genes (“cellular processes”, “protein synthesis”, “signal 

transduction”) as well as roles associated with mobile elements (“mobile and 

extrachromosomal element functions”). When the analysis was repeated using the more 

specific TIGR subrole categories, the distribution of correct/incorrect classifications into 

the various sub role categories was not statistically significant (X2 = 97.0, df = 94, p-

value = 0.394).

Fragment Heterogeneity

Of the 16 genome pairs examined in the outlier analyses, 9 pairs demonstrated a 

significant difference in both measures of heterogeneity for correctly classified versus 

incorrectly classified fragments (dark grey shading, Table 4.3). For these 9 pairs, 

incorrectly classified fragments tended to have more gene-gene or gene-intergenic region 

boundaries as well as shorter coding sequences relative to their correctly classified 

counterparts. An additional genome pair, Buchnera aphidicola str. Cinara cedri vs. 

Candidatus Sulcia muelleri GWSS, exhibited an identical trend for both the number of 

boundaries and longest contiguous coding region, although only the difference in 

distribution of the boundaries showed statistical significance. Three genome pairs showed 

the opposite effect: Ehrlichia ruminantium str. Welgevonden v2 vs. Methanosphaera 

stadtmanae DSM 3091, Prochlorococcus marinus str. MIT 9303 vs. Prochlorococcus 



Table 4.2: Functional Profiling and TIGR Main Role X2 Results

Chi-square results are shown for each of the TIGR main role categories, as determined from the number of correctly/incorrectly 
classified fragments observed for each category. 'Correct' and 'Incorrect' denote the number of correctly or incorrectly classified 
fragments for each category. 'Expected' refers to the number of fragments that are expected to be correctly classified based upon the 
overall CA for the complete set of fragments. 'X^2' shows the corresponding Chi-square score for each TIGR main role category. 
'Trend' indicates whether the Chi-square test suggests an over-representation (+) or under-representation (-) of the correctly classified 
fragments for the associated role category.
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TIGR main role Correct Incorrect Expected X^2 Trend

4220 574 4015.81 10.38 +
Cellular processes 1977 538 2106.75 7.99 -

887 260 960.81 5.67 -
3517 527 3387.56 4.95 +

Protein synthesis 7292 1641 7482.95 4.87 -
Signal transduction 1194 297 1248.97 2.42 -
Hypothetical proteins 1614 245 1557.24 2.07 +
Transcription 1441 342 1493.57 1.85 -
Regulatory functions 1865 322 1831.99 0.59 +
Protein fate 3670 765 3715.09 0.55 -
Energy metabolism 6048 1104 5991.05 0.54 +
Cell envelope 2473 517 2504.65 0.4 -

2278 411 2252.51 0.29 +
Transport and binding proteins 4943 924 4914.64 0.16 +
Unknown function 12437 2375 12407.64 0.07 +
Central intermediary metabolism 1038 193 1031.18 0.05 +

835 158 831.81 0.01 +
DNA metabolism 4883 940 4877.78 0.01 +

Biosynthesis of cofactors, prosthetic groups, and carriers

Mobile and extrachromosomal element functions
Amino acid biosynthesis

Purines, pyrimidines, nucleosides, and nucleotides

Fatty acid and phospholipid metabolism



Table 4.3: Results of 2-sided Mann-Whitney Test of the Distributions of Fragment Heterogeneity for Correctly Classified Versus  
Incorrectly Classified Fragments.

'B' is used to signify values associated with the average number of gene-gene or gene-intergenic boundaries in correctly/incorrectly classified fragments. 
'N' denotes values associated with the average number of nucleotides in the longest contiguous coding region in correctly/incorrectly classified fragments. 
Dark grey shading is used to highlight comparisons that show significantly higher fragment homogeneity in correctly classified fragments as compared to 
incorrectly classified fragments. Light grey shading indicates comparisons that show significantly higher fragment heterogeneity in correctly classified 
fragments.

Genome Pair Bcorrect Bincorrect Bp-value Ncorrect Nincorrect Np-value

Methanosarcina barkeri str. Fusaro vs. Gramella forsetii KT0803 0.757 0.947 < 2.2e-16 427.02 402.98 < 2.2e-16

Ehrlichia ruminantium str. Welgevonden v2 vs. Methanosphaera stadtmanae DSM 3091 0.731 0.645 0.0207 429.02 437.19 0.02534

Buchnera aphidicola str. Cc (Cinara cedri) vs. Candidatus Sulcia muelleri GWSS 0.792 0.975 0.03071 428.81 418.34 0.1135

Prochlorococcus marinus str. MIT 9515 vs. Borrelia afzelii PKo 0.959 1.002 0.3602 419.65 413.54 0.1400

Chlamydophila abortus S26/3 vs. Neorickettsia sennetsu str. Miyayama 0.821 0.937 0.0071 427.26 414.29 0.003632

Prochlorococcus marinus str. AS9601 vs. Candidatus Pelagibacter ubique HTCC1062 0.929 1.101 5.955e-05 422.90 409.95 0.0004229

Bradyrhizobium japonicum USDA 110 vs. Mesorhizobium loti MAFF303099 0.840 0.870 0.008987 422.16 415.82 2.871e-06

Lactobacillus acidophilus NCFM vs. Lactobacillus gasseri ATCC 33323 0.828 0.895 0.003472 428.20 421.91 0.001834

Haloarcula marismortui ATCC 43049 vs. Halobacterium salinarum R1 0.907 0.963 0.0363 419.41 407.94 8.276e-06

Prochlorococcus marinus str. MIT 9303 vs. Prochlorococcus marinus str. AS9601 1.015 0.662 3.850e-06 412.94 431.11 0.002699

Haemophilus somnus 2336 vs. Pediococcus pentosaceus ATCC 25745 0.842 0.930 0.03006 426.50 414.62 0.002637

Borrelia duttonii Ly vs. Borrelia recurrentis A1 0.731 0.699 0.06359 431.52 436.70 0.01709

Nitrobacter hamburgensis X14 vs. Nitrobacter winogradskyi Nb-255 0.814 0.817 0.9958 418.62 418.94 0.8241

Shewanella baltica OS195 vs. Shewanella denitrificans OS217 0.772 0.818 0.001781 427.32 420.19 4.648e-06

Nitrosospira multiformis ATCC 25196 vs. Nitrosomonas eutropha C91 0.823 0.829 0.8466 424.09 419.47 0.09033

Pyrococcus abyssi GE5 vs. Metallosphaera sedula DSM 5348 0.835 0.959 0.004138 424.45 412.98 0.00539
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marinus str. AS9601, and Borrelia duttonii Ly vs. Borrelia recurrentis A1 all showed 

significantly fewer boundaries and shorter coding sequences in incorrectly classified 

fragments (except for the boundary measure for the Borrelia comparison, with p = 

0.06359). For the Borrelia pair, both genomes have numerous plasmids (B. duttonii: 16, 

B. recurrentis: 7) that contain many short genes relative to those found on the primary 

chromosomes. Similarly, in the closely related Prochlorococcus pair, approximately 50% 

of the genes in each genome are shorter than 250bp in length. Given this propensity for 

short genes, there is an increased likelihood that any randomly selected 500 nt fragment 

will contain a mixture of both coding and intergenic sequences. For these hybrid 

fragments, the faster-evolving intergenic sequences may provide a stronger genome 

signature on which the SVM can base its classifications, leading to the increase in 

classification accuracy observed for the heterogeneous fragments in both the Borrelia and 

Prochlorococcus pairs.

Impact of Unsupervised K-means Clustering on CA

Clustering of the tetranucleotide frequencies prior to classification degrades SVM 

performance (Table 4.4). In comparison to the baseline CA for each pair of genomes, 

clustering the tetranucleotide profiles using increasing values of k only serves to decrease 

classification accuracy. Even when the conditions are relaxed and correct classification is 

defined as the assignment of a fragment to the correct source genome without regard to 

cluster assignment within the genome, CA is lower (with marginal exceptions) across all 

values of k than for the baseline case where no clustering was used. It appears that the 

SVM is capable of accurately recognizing the complexities of within-genome 

compositional variations, and by clustering the data we are essentially reducing the 

relative number of training instances per class, thus negatively impacting SVM 

performance.



Table 4.4: Strict and Relaxed Classification Accuracies for Genome Pairs Processed Through the K-means Clustering Pipeline

For each genome pair, classification accuracies are presented for all k-means clustering SVM trials with k ranging from 2-6, as well as 
the baseline case for which no k-means clustering was performed (k=1). “Strict CA” indicates the classification accuracy given that 
the SVM was tasked to correctly classify each fragment to the correct cluster within the correct source genome. “Relaxed CA” shows 
the classification accuracy of the SVMs requiring only that each fragment be classified to the correct source genome regardless of 
cluster assignment.
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Strict CA Relaxed CA

Genome Pair k=2 k=3 k=4 k=5 k=6 k=2 k=3 k=4 k=5 k=6

0.901 0.895 0.877 0.866 0.858 0.847 0.905 0.894 0.895 0.896 0.885

0.923 0.908 0.891 0.879 0.868 0.863 0.914 0.909 0.902 0.901 0.897

0.847 0.828 0.798 0.805 0.761 0.778 0.842 0.820 0.820 0.810 0.826

0.890 0.826 0.809 0.848 0.836 0.832 0.841 0.826 0.871 0.866 0.879

0.865 0.841 0.809 0.801 0.791 0.796 0.860 0.838 0.855 0.845 0.846

0.859 0.843 0.819 0.795 0.798 0.778 0.854 0.840 0.837 0.835 0.816

0.806 0.793 0.793 0.777 0.770 0.759 0.801 0.808 0.799 0.798 0.790
0.666 0.673 0.660 0.660 0.631 0.638 0.679 0.673 0.683 0.653 0.673

0.873 0.863 0.848 0.837 0.827 0.824 0.873 0.869 0.868 0.868 0.865

0.975 0.958 0.947 0.938 0.931 0.912 0.972 0.972 0.974 0.973 0.971

0.931 0.916 0.899 0.887 0.874 0.855 0.927 0.928 0.929 0.925 0.920

0.559 0.520 0.500 0.544 0.523 0.523 0.533 0.505 0.559 0.529 0.547

0.688 0.688 0.658 0.646 0.623 0.617 0.678 0.675 0.665 0.643 0.645

0.784 0.773 0.763 0.742 0.736 0.735 0.782 0.784 0.769 0.770 0.776

0.893 0.870 0.870 0.843 0.853 0.844 0.886 0.889 0.886 0.901 0.898

0.917 0.912 0.899 0.886 0.869 0.863 0.927 0.924 0.922 0.916 0.914

Baseline 
CA (k=1)

Methanosarcina barkeri str. Fusaro vs. Gramella forsetii KT0803
Ehrlichia ruminantium str. Welgevonden v2 vs. Methanosphaera 
stadtmanae DSM 3091
Buchnera aphidicola str. Cc (Cinara cedri) vs. Candidatus Sulcia muelleri 
GWSS

Prochlorococcus marinus str. MIT 9515 vs. Borrelia afzelii PKo
Chlamydophila abortus S26/3 vs. Neorickettsia sennetsu str. Miyayama

Prochlorococcus marinus str. AS9601 vs. Candidatus Pelagibacter ubique 
HTCC1062
Bradyrhizobium japonicum USDA 110 vs. Mesorhizobium loti MAFF303099
Lactobacillus acidophilus NCFM vs. Lactobacillus gasseri ATCC 33323
Haloarcula marismortui ATCC 43049 vs. Halobacterium salinarum R1

Prochlorococcus marinus str. MIT 9303 vs. Prochlorococcus marinus str. AS9601

Haemophilus somnus 2336 vs. Pediococcus pentosaceus ATCC 25745

Borrelia duttonii Ly vs. Borrelia recurrentis A1

Nitrobacter hamburgensis X14 vs. Nitrobacter winogradskyi Nb-255

Shewanella baltica OS195 vs. Shewanella denitrificans OS217

Nitrosospira multiformis ATCC 25196 vs. Nitrosomonas eutropha C91

Pyrococcus abyssi GE5 vs. Metallosphaera sedula DSM 5348
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Despite the fact that clustering does not enhance the distinguishability of a given 

pair of genomes, confusion matrices from the clustered SVM trials show that fragments 

from certain clusters are preferentially misclassified into clusters in the respective 

comparator genomes (Figures 4.5-7). The misclassification of fragments from a given 

genome into clusters from the same genome (within-genome misclassification), tended to 

be much lower than the misclassification of fragments into clusters from the comparator 

genome (between-genome misclassification). For the three genome pairs examined in 

Figures 4.5-7, within-genome misclassification ranged from 2.67% - 4.70%, with P. 

ubique exhibiting the lowest rate of misclassification and P. marinus exhibiting the 

highest rate of within-genome misclassification, respectively. The relatively low rate of 

within-genome misclassification indicates that the clusters are well-formed in terms of 

the compositional features that define each cluster. Between-genome misclassification 

ranged from 7.7% (H. marimortuii fragments misclassified as H. salinarum) to 22.85% 

(H. salinarum fragments misclassified as H. marismortui).

Inspection of G+C content as well as the relative percentages of plus-strand and 

minus-strand coding bases (gene orientation bias) for each of the clusters indicates that 

fragments tend to be misclassified into clusters that have similar gene orientation biases 

and G+C content as the source cluster (Table 4.5). For example, the ribbons in Figure 4.5 

show that fragments from cluster a3 (H. marismortui) are preferentially misclassified into 

cluster b1 (H. salinarum), and vice versa. Fragments from these two clusters are very 

similar in both the relative percentages of plus-strand and minus-strand coding bases 

(52% plus-strand, 48% minus strand for H. marismortui; 53.4% plus-strand, 46.6% 

minus-strand for H. salinarum). Additionally, the G+C content for fragments in these two 

clusters is quite similar (50.7% vs. 55.2%), and in both genomes these are the lowest 

observed G+C contents across all 6 clusters. Similar trends can be observed for 

misclassification between clusters a4 and b6, as well as a5 and b2. In both instances, 

fragments from the corresponding clusters exhibit extreme biases in gene orientation 

along with comparable G+C. Preferential cluster misclassification is also observed for the 

other two genome pairs: a1/b2, a1/b6, a2/b4, a4/b5, a5/b3, a6/b4 for P. marinus vs. P. 

ubique (Figure 4.6, Table 4.5), and a4/b3, a5/b6, a6/b2 for E. ruminantium vs. M. 
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Figure 4.5: Visualization of Cluster Misclassification for Haloarcula marismortui  
ATCC 43049 vs. Halobacterium salinarum R1.

This figure presents a visual representation of the confusion matrix for H. marismortui 
(clusters a1-a6) vs. H. salinarum (cluster b1-b6) for the k=6 trial. Clusters are arranged as 
arcs around the circumference of the figure. The length of a cluster represents the 
proportion of all genomic fragments assigned to that cluster during the k-means 
clustering step. Each colored ribbon represents the misclassification of fragments from 
one cluster to another, where the color of the ribbon denotes the true identity of the 
associated fragments, and the opposite end of each ribbon denotes the cluster assignment 
as predicted by the SVM. The width of a ribbon extending outward from a cluster with 
the same color indicates the overall proportion of fragments from the given cluster that 
were misclassified.
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Figure 4.6: Visualization of Cluster Misclassification for Prochlorococcus marinus str.  
AS9601 vs. Candidatus Pelagibacter ubique HTCC1062.

This figure presents a visual representation of the confusion matrix for P. marinus (clusters a1-a6) 
vs. P. ubique (cluster b1-b6) for the k=6 trial. Clusters are arranged as arcs around the 
circumference of the figure. The length of a cluster represents the proportion of all genomic 
fragments assigned to that cluster during the k-means clustering step. Each colored ribbon 
represents the misclassification of fragments from one cluster to another, where the color of the 
ribbon denotes the true identity of the associated fragments, and the opposite end of each ribbon 
denotes the cluster assignment as predicted by the SVM. The width of a ribbon extending 
outward from a cluster with the same color indicates the overall proportion of fragments from the 
given cluster that were misclassified.
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Figure 4.7: Visualization of Cluster Misclassification for Ehrlichia ruminantium str.  
Welgevonden v2 vs. Methanosphaera stadtmanae DSM 3091.

This figure presents a visual representation of the confusion matrix for E. ruminantium (clusters 
a1-a6) vs. M. stadtmanae (cluster b1-b6) for the k=6 trial. Clusters are arranged as arcs around 
the circumference of the figure. The length of a cluster represents the proportion of all genomic 
fragments assigned to that cluster during the k-means clustering step. Each colored ribbon 
represents the misclassification of fragments from one cluster to another, where the color of the 
ribbon denotes the true identity of the associated fragments, and the opposite end of each ribbon 
denotes the cluster assignment as predicted by the SVM. The width of a ribbon extending 
outward from a cluster with the same color indicates the overall proportion of fragments from the 
given cluster that were misclassified.
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Table 4.5: Breakdown of Total Plus and Minus Strand Coding Nucleotides and %G+C 
Content by Cluster for H. marismortui vs. H. salinarum, P. marinus vs. P. ubique, and  
E. ruminantium vs. M. stadatmanae.

The number of coding nucleotides on the forward and minus strands are shown across all 
fragments belonging to each of the clusters from the k-means clustering analysis with 
k=6.  For each cluster, 'nt' indicates the total number of coding nucleotides on each 
strand, while '%' denotes the percentage of the total coding nucleotides that exist on each 
strand. % G+C shows the average G+C content of all fragments assigned to a given 
cluster.  

Cluster
+ Strand - Strand

% G+C
+ Strand - Strand

% G+C
% % % %

1 563330 68.9 254574 31.1 60.5 236701 53.4 206165 46.6 55.2
2 164830 26.0 468563 74.0 58.7 90938 17.4 430705 82.6 64.8
3 178620 52.0 164850 48.0 50.7 79138 21.3 291878 78.7 70.9
4 704869 88.5 91870 11.5 65.1 268159 74.3 92881 25.7 70.8
5 33037 5.2 602104 94.8 63.4 176374 45.7 209944 54.3 71.2
6 225505 41.2 322063 58.8 65.8 366430 87.7 51184 12.3 65.6

Cluster
+ Strand - Strand

% G+C
+ Strand - Strand

% G+C
% % % %

1 199295 82.7 41789 17.3 27.4 91616 42.8 122307 57.2 27.8
2 37726 11.8 282772 88.2 31.6 280861 88.7 35931 11.3 30.4
3 196543 63.6 112636 36.4 29.3 127705 80.0 31848 20.0 35.3
4 35971 20.3 140890 79.7 25.6 6327 2.2 277366 97.8 32.4
5 306286 92.0 26722 8.0 35.1 15900 11.0 128890 89.0 25.2
6 35687 13.6 225904 86.4 36.3 148147 86.4 23262 13.6 24.8

Cluster
+ Strand - Strand

% G+C
+ Strand - Strand

% G+C
% % % %

1 32502 52.2 29754 47.8 22.5 192605 94.5 11238 5.5 26.6
2 134940 69.5 59136 30.5 28.6 85254 29.5 204154 70.5 27.3
3 18450 31.5 40120 68.5 22.7 369056 96.3 14125 3.7 30.9
4 240174 95.0 12693 5.0 31.6 19856 11.3 156521 88.7 23.5
5 11302 4.6 233486 95.4 31.4 102257 71.5 40852 28.5 21.7
6 49006 26.9 133330 73.1 28.8 6164 1.7 349382 98.3 31.7

H. marismortui ATCC 43049 H. salinarum R1

nt nt nt nt

P. marinus AS9601 P. ubique HTCC1062

nt nt nt nt

E. ruminantium Welgevonden v2 M. stadtmanae DSM 9091

nt nt nt nt
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stadtmanae (Figure 4.7, Table 4.5).

In certain cases, clusters involved in preferential misclassification showed 

similarities in G+C biases while differing greatly in the terms of the gene-orientation 

biases, such as in the case of b1 fragments being misclassified into clusters a1 and a2 in 

Figure 4.5. Although these clusters differ substantially in terms of their relative 

percentage of plus/minus strand coding bases (Table 4.5), the clusters contain relatively 

low G+C in relation to the other clusters. Similarly, in Figure 4.7, fragments from 

preferentially misclassified clusters a3 and b5 have very different gene orientation biases 

(31.5% plus-strand, 68.5%% minus-strand;  71.5% plus-strand, 28.5% minus-strand) 

although in this case both clusters show extremely low G+C contents (22.7%; 21.7%).

Distribution of Correctly Versus Incorrectly Classified Fragments 
Within a Genome 

In the comparison between H. salinarum and H. marismortui, regions of 

misclassification are distributed non-uniformly across both genomes (Figure 4.8). The 

majority of the regions appear within the H. salinarum genome, particularly on all four 

plasmids as well as the region between nucleotides 15,000-70,000 on the primary 

chromosome. The density of misclassified fragments on the H. salinarum plasmids 

suggests that the plasmids are closer in composition to H. marismortui than to the actual 

source genome. This may reflect a recent transfer of genetic material from H. 

marismortui to H. salinarum. Additionally, the presence of a large region of 

misclassification near the start of the main chromosome in H. salinarum may in fact 

represent the integration of part of one of the plasmids. Given sufficient time, DNA 

acquired from another microbe will eventually ameliorate and become indistinguishable 

from the rest of the genome [55]. The fact that the highlighted regions within H. 

salinarum are so predominantly localized supports the idea that a recent transfer may be 

responsible for the misclassified fragments. Similar plots for Ehrlichia ruminantium str. 

Welgevonden v2 vs. Methanosphaera stadtmanae DSM 3091 (Figure 4.9) and 

Prochlorococcus marinus AS9601 (13548) vs. Pelagibacter ubique (Figure 4.10) 

demonstrate much more uniform distributions of misclassified fragments across each 
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Figure 4.8: Correct and Incorrect Classifications Versus Genome Position for 500 nt  
Fragments From Haloarcula marismortui and Halobacterium salinarum.

In this figure, arcs are used to represent the genomes involved in the underlying SVM 
pairwise comparison. Arcs with a light grey border on the exterior face represent 
sequences from H. salinarum, whereas a dark grey border indicates sequences from H. 
marismortui. Along the length of each genome, green segments indicate correct 
classifications while red segments indicate misclassified fragments. “Regions of 
misclassification” are indicated by blue bars within the interior of the figure, and 
represent spans of each genome that contain > 37.5% misclassified fragments.
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Figure 4.9: Correct and Incorrect Classifications Versus Genome Position for 500 nt  
Fragments From M. stadtmanae (15579) and E. ruminantium str. Welgevonden  
(13355)

In this figure, arcs are used to represent the genomes involved in the underlying SVM 
pairwise comparison. Along the length of each genome, green segments indicate correct 
classifications while red segments indicate misclassified fragments. “Regions of 
misclassification” are indicated by blue bars within the interior of the figure, and 
represent spans of each genome that contain > 37.5% misclassified fragments.
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Figure 4.10: Correct and Incorrect Classifications Versus Genome Position for 500 nt  
Fragments From P. marinus AS9601 (13548) and P. ubique (13989)

In this figure, arcs are used to represent the genomes involved in the underlying SVM 
pairwise comparison. Along the length of each genome, green segments indicate correct 
classifications while red segments indicate misclassified fragments. “Regions of 
misclassification” are indicated by blue bars within the interior of the figure, and 
represent spans of each genome that contain > 37.5% misclassified fragments.
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genome, and do not support the notion of recent clustered LGT events for these pairs of 

genomes.

nBLASTP Score Distributions for Orthologs That Fall Within 
Regions of Misclassification

For  H. salinarum vs. H. marismortui, the distribution of nBLASTP scores for 

orthologs overlapping regions of misclassification differs from that of the nBLASTP 

scores for orthologs that do not overlap such regions (Figure 4.11a). For correctly 

classified fragments, the histogram and density distribution both show a single peak at 

0.65. Incorrect fragments, on the other hand, show peaks at both 0.4 and 0.75, suggesting 

that the incorrectly classified orthologs belong to two groups: a set of more distantly 

related orthologs with lower nBLASTP scores, and a more closely related set of orthologs 

with higher nBLASTP scores. This group of closely related orthologs may represent 

genes involved in a recent LGT event which have not yet undergone sufficient 

amerlioration to bring their compositions in line with the acceptor genome. Neither of the 

other genome pairs (Figure 4.11b,c) shows this two-peak distribution for incorrectly 

classified fragments. Mann-Whitney tests comparing the nBLASTP distributions between 

correctly and incorrectly classified fragments (Table 4.6) indicate that only the 

distributions for H. salinarum and H. marismortui are statistically different (p = 

5.348x10-9).
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Figure 4.11: Distributions of Reciprocal Best Hit nBLASTP Scores for Putative  
Orthologs

For each pair of genomes, histograms and population density plots were generated for the nBLASTP scores 
of all orthologs, orthologs that were correctly classified, and orthologs that were incorrectly classified. 
Orthologs that have at least 95% nucleotide overlap with a region of misclassification were deemed 
'incorrect' whereas all remaining orthologs were deemed 'correct'. a)  Halarcula marismortui ATCC 43049 
vs. Halobacterium salinarum R1,  b)  Ehrlichia ruminantium str. Welgevonden v2 vs. Methanosphaera 
stadtmanae DSM 3091,  c) Prochlorococcus marinus str. AS9601 vs. Candidatus Pelagibacter ubique 
HTCC1062

a

b

c
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Table 4.6: Results of 2-sided Mann-Whitney Tests Comparing the Distributions of  
nBLASTP Scores for Correctly Versus Incorrectly Classified Fragments

Genome Pair
# correctly classified 

orthologs
# incorrectly 

classified orthologs
p-value

H. marismortui vs. H. salinarum 1643 182 5.348e-09

M. stadtmanae vs. E. ruminantium 155 20 0.2735

P. marinus vs. P. ubique 413 108 0.8816
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Conclusions
Despite the fact that the pairwise comparisons in this set of experiments were 

based upon tetranucleotide frequency profiles from relatively short 500-nt genomic 

fragments, most genome pairs achieved excellent distinguishability, with 93.2% of the 

299,151 SVM runs resulting in a classification accuracy of 95% or greater.  This is not 

surprising, as the majority of comparisons were performed between pairs of distantly 

related organisms that have had ample opportunity to diverge in terms of their 

composition. Likewise, the mean CA of 98.1% observed across all comparisons is 

encouraging, but it mainly reflects this overwhelming majority of comparisons between 

distantly related genomes, which are generally the most trivial cases for the SVM 

classifier. Comparisons between congeners, on the other hand, typically lead to very poor 

distinguishability, except for genome pairs that have undergone rapid divergence, such as 

strains of Prochlorococcus marinus or Clostridium botulinum. These trends are consistent 

with previous studies that showed significant correlation between the similarity of 

phylogenetically relevant marker genes (such as 16S) and various measures of 

compositional similarity [130; 131]. Under certain circumstances, distantly related 

organisms may converge in their genome composition, due to factors such as extreme 

G+C or A+T content, crowding of the oligonucleotide space [80], and habitat 

convergence [132], however this convergence does not appear to interfere with 

classification in the majority of cases.

In agreement with previous studies [36; 38; 62], the results in this chapter 

demonstrate a trend of decreasing classification accuracy with increasing convergence of 

genome signature. When CA is examined in terms of the various measures of genomic 

similarity considered in this study (G+C content, 16S distance, tetramer distance, and 

lowest common taxonomic rank), all support this general trend. Although the CA vs. 

tetramer Euclidean distance model had a slightly higher R2 value than that of the CA vs. 

16S distance model, the 16S model was ultimately used in order to select interesting 

outliers, due to the high level of phylogenetic signal carried within 16S rDNA sequences 

[28]. Tetramer frequencies, although powerful in their ability to distinguish between 
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fragments based on composition alone, have been shown to carry very little phylogenetic 

signal [40]. The difference in R2 values is likely a result of differences in the scope of 

genome signature captured by these two methods. 16S distance is calculated using a 

small number (normally 2) of highly-conserved marker genes which makes it useful for 

resolving taxonomic relatedness, but is unlikely to reflect the true compositional variation 

observed throughout the entire genome. Tetramer Euclidean distance, on the other hand, 

is calculated from the average tetramer distances observed across each genome in a given 

comparison, and is more likely to represent the global compositional patterns of each 

genome than l6S distance, while sacrificing the taxonomic specificity offered by the 

marker gene approach.

When the set of correctly classified fragments was interpreted in terms of the 

functional categories of their encoded proteins, fragments encoding genes involved in 

biosynthetic pathways (e.g., amino acid biosynthesis, synthesis of cofactors) tended to be 

overrepresented in this group. The composition of genes in this category is much less 

constrained in comparison to that of informational genes, and this relative lack of 

compositional constraint facilitates an organism's ability to adapt its biochemical 

pathways in order to adjust to new energy sources or to develop antibiotic resistance, for 

example. Misclassified fragments showed an overrepresentation of functional categories 

that are likely to differ from the core genome signature for each organism, such as 

informational genes involved in core cellular processes or signal transduction, and 

proteins associated with mobile and extrachromosomal elements. In the case of 

informational genes, proteins within this class are known to evolve very slowly [133], 

and are highly constrained by interactions with other core proteins within the cell. 

Although synonymous mutations may provide some baseline level of compositional 

divergence, informational genes are still unlikely to exhibit the core genome signature, 

which in turn is likely to reduce the classification accuracy of such fragments. Similarly, 

mobile elements and other introgressed sequence are likely to have compositions that 

differ greatly from the host genome. If such sequences are found in both genomes from a 

given genome pair, the foreign sequences are likely to be classified into one genome or 

another in an arbitrary fashion, thus reducing the overall classification accuracy of 
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fragments encoding genes within these classes. Fragments that contain mixtures of 

coding and noncoding sequence tend to be more difficult to classify than fragments 

comprising coding sequence from a single open reading frame. Correctly classified 

fragments from very closely related organisms showed an increased tendency for 

fragment heterogeneity in some instances, suggesting that noncoding sequences might 

have an important influence on classification for these exceptional cases.

This study clearly demonstrated that the unsupervised compositional clustering of 

genomic fragments prior to SVM classification offers no increase in classification 

accuracy, indicating that the SVM is sufficiently powerful to model the complete set of 

compositional classes that are produced by the unsupervised clustering step. Although 

clustering does not improve classification accuracy, the examination of the cluster 

confusion matrices brings light to a number of interesting characteristics of the 

tetranucleotide frequency data. In most cases, when a fragment is classified into the 

wrong genome, the fragment is preferentially assigned into a compositional cluster that is 

similar in terms of both the gene strand orientation bias and G+C content of the true 

source cluster. Additionally, the low rate of within-genome misclassification during the 

clustering experiment indicates that the compositional clusters identified during the k-

means clustering step are in fact well defined in terms of their compositional 

characteristics, and do not simply represent random associations of fragments into one of 

the 6 possible clusters. In cases where misclassified fragments belong to clusters with 

extremely high or low G+C, these fragments tend to be misclassified into similarly biased 

clusters in the comparator genome without regard for gene orientation.

'Symmetrization' of tetranucleotide frequencies and correction for fragment level 

G+C content offered little or no increase in classification accuracy in the present study, 

despite the fact that such techniques have been implemented by several pre-existing 

methods [37; 38; 63]. The SVM appears to be sufficiently robust to capture the 

underlying genome signature without regard to strand biases or local G+C content, a 

characteristic that may not be shared with less complex classifiers such as TETRA [40]. 

Classification accuracy improved in the case where tetranucleotide frequencies were 
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adjusted using the genomic G+C content, however this observation is unlikely to be 

useful in developing an improved classifier, as the genomic G+C content will not usually 

be known when attempting to classify anonymous DNA fragments.

The results from this chapter suggest that in specific cases, the ability to 

distinguish between fragments from distinct genomes may be fundamentally limited due 

to a lack of compositional divergence, or the effect of various constraints imposed on 

genome signature. Examples of such fragments that are likely to be misclassified include 

the fragments that overlap highly conserved informational genes, fragments from 

genomes with extremely high or low G+C, or fragments containing sequence that has not 

yet undergone sufficient amelioration. Although it is unlikely that the classification of 

such fragments will improve substantially using improved classifiers, knowledge of such 

difficult cases may be useful in attempting to improve the classification accuracy of 

boundary cases represented by fragments that contain mixtures of one or more 

compositional classes of genome sequence. The results from the fragment heterogeneity 

experiment suggest that classification accuracy might be improved if the underlying 

fragments were partitioned in order to contain sequence belonging to a single 

compositional class rather than mixtures of one or more classes. Sequence segmentation 

has been implemented previously for other applications [134] and will likely prove useful 

in the classification of DNA fragments. An improved classifier might use various 

preprocessing steps in order to improve the homogeneity of DNA fragments prior to 

classification. In the case of coding vs. non-coding sequence, methods such as Orphelia 

[135] are able to identify microbial open reading frames with a high level of accuracy, 

and would be useful in partitioning DNA fragments into coding and non-coding bins. 

Fragments that overlap multiple open reading frames that differ in orientation may also 

show reduced classification accuracy due to corruption of the underlying genome 

signature. Given the well-defined clusters observed in the k-means clustering study, a 

novel algorithm might examine the sequence of each fragment in order to partition the 

fragment into subsequences that represent plus-strand and minus-strand encoded ORFs, 

thus further reducing the heterogeneity of the tetranucleotide signature and improving 

distinguishability. As indicated by the functional annotation analysis, certain functional 
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classes of genes are inherently difficult to classify, such that the classification accuracy of 

fragments containing mixtures of easily classified and difficult to classify fragments may 

be impeded by the presence of the more compositionally constrained functional classes. 

Homology searches using the BLASTP [71; 72] or PFAM  [74] databases might help to 

identify these classes within metagenomic fragments, allowing the homogeneity of these 

fragments to be improved by partitioning the fragments into the subsequences 

representing the component classes. Furthermore, if one of the subsequences is 

determined to belong to an easily classified functional category, the assignment of such a 

sequence might reasonably be projected onto a less easily classified subsequence derived 

from the same genomic fragment, thus improving classification accuracy.
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Chapter 5 – Discussion

Summary of Experiments
This thesis presents three experiments designed to identify factors that influence 

the relative distinguishability of microbial genomes based on patterns of genomic 

composition. All experiments made use of the support vector machine, a supervised, 

state-of-the-art machine learning method that has successfully been applied to a wide 

variety of classification problems [96-99]. The SVM is particularly well-suited to 

composition-based classification due to its ability to generate robust models for relatively 

large and complex feature sets, such as the k-mer frequency profiles used in Chapters 2-4. 

Notably, the SVM also serves as the underlying classification strategy for PhyloPythia 

[38], the most accurate metagenomic DNA classification system to date.

Multi-class classifiers are useful in situations where we would like to measure the 

overall performance of a classifier in response to various parameter changes, without 

focusing specifically on the underlying pairwise comparisons. Such is the case for the 

experiment outlined in Chapter 2, where a multi-class SVM was used to evaluate the 

impact of DNA recoding schemes, fragment length, and k-mer length on the global 

classification accuracy for a set of 10 microbial genomes. In contrast, the aim of Chapters 

3 and 4 was to identify specific pairs of genomes that demonstrate higher or lower 

classification accuracy than might be predicted by models that relate classification 

accuracy with various measures of genomic similarity. In these cases, pairwise SVMs 

were required in order to examine classification accuracy for each possible pairing of 

genomes, details that are not readily available when using a multi-class SVM. For a given 

multi-class data set, pairwise classifiers will result in higher classification accuracies than 

that of a single a multi-class classifier, and will also provide an indication as to which 

specific pairs of classes are easier or more difficult to distinguish relative to the complete 

set of comparisons.

For any given pair of genomes, the DNA sequence of each genome can be divided 

into one of two general classes: 1) orthologous sequences that have been inherited from 



136

the most-recent common ancestor and thus are represented in both genomes; and 2) non-

orthologous sequences that are unique to a single genome in the pair, which may be the 

result of such factors as phage integration, LGT, genomic rearrangement, or deletion. 

When comparing the relative distinguishability of a pair of genomes, it is useful to 

consider classification accuracy based on the set of core orthologous sequences, 

removing the influence of non-orthologous sequences on the given classifier. Such is the 

case for the experiment described in Chapter 3, where classification was based on the 

tetranucleotide frequency profiles for the orthologous sequences shared by each pair of 

genomes. The experiment in Chapter 4 used an alternative approach, and examined the 

classification accuracy as determined from the tetranucleotide profiles for genomic 

fragments, considering the combined influence of orthologous and non-orthologous 

sequences on pairwise classification. Such raw genomic fragments are comparable in 

length to the sequencing reads generated by high-throughput metagenomic sequencing 

projects.

Pre-processing of feature sets prior to classification is a common practice whereby 

the data sets to be classified can be modified in order to remove certain biases in the data 

or to otherwise increase the suitability of the data for classification. Common approaches 

to pre-processing include scaling, clustering, recoding, and normalization. The 

experiment in Chapter 2 used various recoding strategies in order to determine whether 

the use of degenerate k-mer patterns and increased k-mer length improves the 

classification accuracy of the multi-class SVM. In Chapter 4, unsupervised clustering of 

the tetranucleotide frequency profiles, 'symmetrization' of the k-mer frequencies, and 

correction for both fragment-level and genome-level G+C content were employed in 

order to determine their influence on the pairwise distinguishability of microbial 

genomes. In all cases except the correction for genome-level G+C content, any 

information required for the various pre-processing steps could be extracted directly from 

the data sets, without requiring properties derived from the complete genome sequences 

that gave rise to the DNA fragments. The lack of dependence of the pre-processing 

methods on the availability of complete genome sequences makes such methods 

appropriate for applications involving anonymous metagenomic DNA fragments.
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Summary of Results

Chapter 2

The DNA recoding experiment in Chapter 2 demonstrated that multi-class SVM 

classifiers trained using various binary recoding schemes were able to distinguish 

between 10 bacterial genomes with high classification accuracy for long (5000 nt) 

fragments, however, performance was poor for short fragment lengths typical of 

metagenomic sequencing projects. Furthermore, the reduction in feature space and 

increase in usable pattern lengths provided by the DNA recoding techniques offered no 

increase in performance relative to the k-mer classifier, which outperformed the binary 

recoding based classifiers across the full range of fragment and pattern lengths considered 

in this experiment (with few exceptions). Consistent with previously reported findings 

[38], the results from this experiment indicated that composition-based SVM classifiers 

trained using oligonucleotide frequency profiles from short fragments were able to 

classify longer fragments with little decrease in accuracy, whereas classifiers trained 

using longer fragments performed poorly when faced with shorter fragments. 

Chapter 3

The results from the pairwise comparisons in Chapter 3 demonstrated that in 

general, the distinguishability of a pair of microbial genomes based on the tetranucleotide 

profiles of orthologous sequences was proportional to 16S rDNA distance, G+C distance, 

and tetramer Euclidean distance, and inversely proportional to both the lowest common 

taxonomic rank and average nBLASTP scores. Analysis of outliers from the CA vs. 

average nBLASTP model identified a number of factors that may lead to an increase or 

decrease in distinguishability for a given genome pair, including similarities in habitat 

and lifestyle, tendency for genome rearrangement, lack of DNA repair enzymes, the 

reduced nature of obligate intracellular pathogens, unusual selective pressures or 

evolutionary strategies, extreme G+C content, and the presence of numerous repeats, 

truncated genes, or phage DNA in one or both of the genomes. Of the 4 pairs of outliers 

considered in the study, the two genome pairs that demonstrated less-than-expected 
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distinguishability comprised obligate intracellular pathogens that reside in vacuoles 

within a mammalian host cell. The remaining two outlier pairs showed higher than 

expected classification accuracies, and represented a pair of closely related, free-living 

aquatic bacteria which have adopted distinct evolutionary strategies, and a pair of 

intracellular pathogens that live freely within the cytosol of the host cell. The results from 

this chapter also indicate that distinguishability does not always correlate with marker 

gene-based measures of genomic similarity, such that compositional convergence or 

divergence caused by factors both intrinsic or external to the genome can have a 

significant impact on distinguishability.

Chapter 4

The experiment described in Chapter 4 demonstrated that a composition-based 

SVM classifier was capable of distinguishing between the vast majority of genome pairs 

with high accuracy, despite the fact that SVM models were trained using tetranucleotide 

frequency profiles for very short (500 nt) fragments. Conspecific comparisons generally 

resulted in poor classification accuracy, except in cases where the genomes had 

undergone rapid compositional divergence, as in the case of strains of Prochlorococcus 

marinus (P. marinus str. MIT 9303 vs. P. marinus AS9601; CA = 97.4%). As reported in 

Chapter 3, distinguishability was generally proportional to G+C distance, 16S rDNA 

distance, tetramer Euclidean distance, and inversely proportional to lowest common 

taxonomic rank. Although unsupervised clustering of tetranucleotide frequency profiles 

did not improve distinguishability, analysis of the resulting confusion matrices indicated 

that both the G+C content and the polarity of protein-coding sequences within a fragment 

can contribute to misclassification. The results from this chapter confirmed that 

fragments containing protein-coding sequence from certain functional role categories 

showed significant trends for correct or incorrect classification. Examination of fragment 

heterogeneity in relation to classification indicated that fragments containing multiple 

compositional signatures showed an increased tendency for misclassification. Exceptions 

to this trend were observed for pairs of very similar genomes, for which an increased 

proportion of faster-evolving non-coding sequence in the associated fragments may have 
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led to increased distinguishability and fragment heterogeneity. For a pair of genomes that 

demonstrated less-than-expected classification accuracy, an unusual distribution of 

average nBLASTP scores for misclassified sequences as well as a local clustering of 

misclassified fragments within one of the genomes supported the notion that a recent 

LGT event may have contributed to the observed decrease in distinguishability relative to 

the model. Symmetrization of oligonucleotide frequency profiles, a common practice 

used by several existing DNA classifiers, was shown to have little effect on classification 

accuracy. Correction of oligonucleotide frequency profiles based on fragment G+C 

content showed no change in performance, whereas an increase in distinguishability was 

noted for several genome pairs when the frequencies were corrected using genomic G+C.

Applications of Key Findings and Future Work
Existing composition-based DNA classification methods are likely to benefit from 

the results presented in this thesis. For the typical classifier, the first step in the 

classification process typically involves the construction of the training set and the 

parameterization of the corresponding DNA fragments into a form that is applicable to 

the underlying machine learning method. Many of the results reported here can be 

applied to this preliminary stage of classification in order to maximize distinguishability. 

For instance, results from Chapter 2 indicated that the use of recoding and degenerate k-

mer patterns should be avoided, as both have been shown to decrease classification 

accuracy. Similarly, the unsupervised clustering of oligonucleotide frequency profiles 

prior to classification by advanced methods such as the SVM is likely to degrade 

performance when compared to the use of unclustered data. Clustering may be 

advantageous for less advanced classifiers such as TETRA [40] or the modified k-NN 

approach [37], as the performance of these methods may be impeded by the presence of 

distinct compositional bins within each genome. Despite the frequent use of techniques 

such as the symmetrization of oligonucleotide frequencies and correction for G+C 

content in the literature [38; 80; 128], the results presented in Chapter 4 showed that 

neither of these pre-processing steps offers an increase in classification accuracy over the 

unsymmetrized and uncorrected oligonucleotide frequency profiles when the SVM is 
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used as the underlying classifier.

For data sets consisting of fragments of various lengths, the results from Chapter 

2 confirmed previously reported findings that it is advantageous to train models using the 

frequency profiles for shorter fragments, as the resulting models will be more 

generalizable to the classification of fragments of longer lengths [38]. Conversely, the use 

of longer fragments when training a classifier should be avoided, as the resulting models 

will show greatly reduced ability to accurately classify fragments shorter than those used 

to train the model. At present, composition-based classifiers calculate k-mer frequency 

profiles for DNA fragments without considering that the fragments may contain mixtures 

of non-coding sequence as well as coding sequence from one or more genes [36-38; 40; 

52; 65]. As demonstrated in Chapter 4, fragment heterogeneity is associated with an 

increased tendency for misclassification, and as such, the use of a sequence-segmentation 

approach prior to the parameterization of DNA fragments into k-mer frequency profiles is 

likely to increase distinguishability by decreasing the heterogeneity of fragments 

containing more than one class of sequence. Additionally, the classification of fragments 

that contain protein-coding sequences from multiple genes in opposite orientations or 

genes that are associated with functional role categories that have a tendency for 

misclassification may also be improved using this sequence-segmentation approach. 

Once a composition-based classifier has produced a set of predictions for a given 

data set, multiple characteristics identified in this thesis may be used to express an overall 

confidence in each of the predictions. For example, Chapter 4 demonstrated that 

fragments containing protein-coding sequence associated with certain biological 

functions showed a tendency for increased or decreased classification. Existing classifiers 

might be extended to use BLASTP [71] or PFAM-based [75] searches in order to identify 

DNA fragments that are associated with these biological roles, and assign an increase or 

decrease in confidence to the associated fragments. Likewise, Chapter 4 also showed that 

fragments exhibiting extreme G+C biases were more likely to be misclassified, and 

existing classifiers could be modified to report decreased confidence in such instances.

An important result reported in both Chapters 3 and 4 indicated that although 
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genome distinguishability could be modelled in relation to various measures of 

compositional similarity and taxonomic relatedness, the models were imperfect, and 

outliers were identified that had either increased or decreased compositional similarity 

than that suggested by their taxonomic relatedness. An improved classifier might 

combine both the semi-supervised approaches of CompostBin [65] and S-GSOM [36] 

with the supervised approach presented in PhyloPythia [38] to take both taxonomic and 

compositional similarities into account when classifying metagenomic fragments. For 

example, if multiple forms of a conserved marker gene are found within a set of 

fragments that show very high similarity in patterns of genomic composition, the 

assignment of such fragments could be augmented with information regarding the 

number of likely genomes (and their taxonomic relatedness) that gave rise to such 

fragments, even if the assignment of these fragments into bins representing the individual 

species is not possible. Additionally, if specific characteristics of the community are 

known in advance, such as the likely presence of increased compositional constraints 

related to restricted environments (i.e., vacuoles within a host cell), the resulting fragment 

assignments might receive reduced confidence in comparison to the assignments for 

fragments that arose from environments that lack such constraints.

Conclusions
Collectively, the results presented in this thesis characterize the influence of 

several factors that influence the distinguishability of microbial genomes. While specific 

factors, such as fragment heterogeneity or the tendency for a given functional role 

category to be misclassified may be used to augment existing classifiers as described 

above, other factors, for instance compositional convergence due to similarities in 

lifestyle, habitat, or extreme G+C highlight fundamental limitations to the classification 

of DNA fragments based on compositional characteristics. Despite the fact that the 

majority of genome pairs considered in this thesis could be distinguished with near-

perfect accuracy, many closely related genomes and pairs of genomes that have 

converged in terms of composition remain nearly (if not completely) indistinguishable. 

For these difficult cases where the genomes share very similar patterns of genomic 
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composition, accurate distinguishability on the basis of such patterns is likely to be 

impossible for short DNA fragments typical of current metagenomic studies. Although 

distantly related genomes are difficult to distinguish in some instances due to 

convergence in genome composition, the majority of difficult-to-distinguish genome 

pairs comprise congeners. In the context of a metagenomic study, the impact of the 

inability to distinguish between congeners or conspecifics will ultimately depend on the 

underlying community structure. Many communities may contain congeners that share 

similar ecological roles, such that studying the ecology of a metagenome relative to 

higher-level taxonomic groups will still provide valuable insight even if the ecological 

roles cannot be assigned to specific strains or species within the community. For other 

communities, however, ecologically distinct strains of the same species may be present 

[136; 137], and the inability to distinguish between these strains will greatly limit our 

understanding of such metagenomic communities.

As DNA sequencing technologies inevitably improve, the length of fragments 

recovered from metagenomic samples is bound to increase, along with the likelihood that 

such fragments will contain one or more conserved marker genes. When sequencing 

technologies achieve sufficient read length, it is anticipated that DNA assembly 

algorithms will allow such reads to be assembled into contigs much longer than is 

currently possible, even in instances where multiple organisms with similar compositions 

exist within a community. Furthermore, the association of conserved marker genes with 

these longer contigs will facilitate binning at more specific taxonomic levels, despite a 

high degree of similarity in patterns of genome composition. Likewise, an increase in 

fragment length will also help to mitigate the confounding influence of LGT-derived 

sequence that has not yet undergone significant amelioration, if such fragments are first 

examined to identify regions of atypical composition (i.e., using a sequence-segmentation 

approach as suggested above). In many instances, contigs containing such 

compositionally atypical sequences will likely be associated with genomic sequence that 

either contains conserved marker genes or is much more representative of the patterns of 

genomic composition inherent to the source genome, thus allowing for better 

discrimination among members of microbial communities.
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Appendix 1: List of Genomes Utilized in the 
Experiments Described in Chapters 3 and 4
All genomes in the following table were utilized in Chapter 4. Genomes labelled with an 

asterisk were used in Chapter 3.

Organism Name
NCBI 

Project 
ID

Domain Phylum
Genom
e Size 
(Mb)

G+C 
Content

Aeropyrum pernix K1 211 Archaea Crenarchaeota 1.7 56.3

Caldivirga maquilingensis IC-167 17421 Archaea Crenarchaeota 2.1 43.1

Hyperthermus butylicus DSM 5456 208 Archaea Crenarchaeota 1.7 53.7

Ignicoccus hospitalis KIN4/I 13914 Archaea Crenarchaeota 1.3 56.5

Metallosphaera sedula DSM 5348 17447 Archaea Crenarchaeota 2.2 46.2

Nitrosopumilus maritimus SCM1 19265 Archaea Crenarchaeota 1.6 34.2

Pyrobaculum aerophilum str. IM2 172 Archaea Crenarchaeota 2.2 51.4

Pyrobaculum arsenaticum DSM 13514 15582 Archaea Crenarchaeota 2.1 55.1

Pyrobaculum calidifontis JCM 11548 18111 Archaea Crenarchaeota 2 57.2

Pyrobaculum islandicum DSM 4184 16743 Archaea Crenarchaeota 1.8 49.6

Staphylothermus marinus F1 17449 Archaea Crenarchaeota 1.6 35.7

Sulfolobus acidocaldarius DSM 639 13935 Archaea Crenarchaeota 2.23 36.7

Sulfolobus solfataricus P2 108 Archaea Crenarchaeota 3 35.8

Sulfolobus tokodaii str. 7 246 Archaea Crenarchaeota 2.7 32.8

Thermofilum pendens Hrk 5 16331 Archaea Crenarchaeota 1.83 57.6

Thermoproteus neutrophilus V24Sta 15645 Archaea Crenarchaeota 1.8 59.9

Archaeoglobus fulgidus DSM 4304 104 Archaea Euryarchaeota 2.18 48.6

Candidatus Methanoregula boonei 6A8 18505 Archaea Euryarchaeota 2.5 54.5

Haloarcula marismortui ATCC 43049 105 Archaea Euryarchaeota 4.28 61.1

Halobacterium salinarum R1 106 Archaea Euryarchaeota 2.66 65.7

Halobacterium sp. NRC-1 217 Archaea Euryarchaeota 2.57 65.9

Haloquadratum walsbyi DSM 16790 17185 Archaea Euryarchaeota 3.15 47.9

Methanobrevibacter smithii ATCC 35061 18653 Archaea Euryarchaeota 1.9 31

Methanocaldococcus jannaschii DSM 2661 102 Archaea Euryarchaeota 1.76 31.3

Methanococcoides burtonii DSM 6242 9634 Archaea Euryarchaeota 2.58 40.8

Methanococcus aeolicus Nankai-3 18641 Archaea Euryarchaeota 1.6 30

Methanococcus maripaludis C5 17641 Archaea Euryarchaeota 1.81 33

Methanococcus maripaludis C6 19639 Archaea Euryarchaeota 1.7 33.4

Methanococcus maripaludis C7 18819 Archaea Euryarchaeota 1.8 33.3

Methanococcus maripaludis S2 10632 Archaea Euryarchaeota 1.66 33.1

Methanococcus vannielii SB 17889 Archaea Euryarchaeota 1.7 31.3

Methanocorpusculum labreanum Z 18109 Archaea Euryarchaeota 1.8 50

Methanoculleus marisnigri JR1 16330 Archaea Euryarchaeota 2.5 62.1
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Organism Name
NCBI 

Project 
ID

Domain Phylum
Genom
e Size 
(Mb)

G+C 
Content

Methanopyrus kandleri AV19 294 Archaea Euryarchaeota 1.69 61.2

Methanosaeta thermophila PT 15765 Archaea Euryarchaeota 1.9 53.5

Methanosarcina acetivorans C2A 290 Archaea Euryarchaeota 5.75 42.7

Methanosarcina barkeri str. Fusaro 103 Archaea Euryarchaeota 4.84 39.2

Methanosarcina mazei Go1 300 Archaea Euryarchaeota 4.1 41.5

Methanosphaera stadtmanae DSM 3091 15579 Archaea Euryarchaeota 1.77 27.6

Methanospirillum hungatei JF-1 13015 Archaea Euryarchaeota 3.54 45.1

Methanothermobacter thermautotrophicus 
str. Delta H

289 Archaea Euryarchaeota 1.8 49.5

Natronomonas pharaonis DSM 2160 15742 Archaea Euryarchaeota 2.75 63.1

Picrophilus torridus DSM 9790 10641 Archaea Euryarchaeota 1.5 36

Pyrococcus abyssi GE5 179 Archaea Euryarchaeota 1.8 44.7

Pyrococcus furiosus DSM 3638 287 Archaea Euryarchaeota 1.9 40.8

Pyrococcus horikoshii OT3 207 Archaea Euryarchaeota 1.7 41.9

Thermococcus kodakarensis KOD1 13213 Archaea Euryarchaeota 2.09 52

Thermococcus onnurineus NA1 20773 Archaea Euryarchaeota 1.8 51.3

Thermoplasma acidophilum DSM 1728 110 Archaea Euryarchaeota 1.6 46

Thermoplasma volcanium GSS1 206 Archaea Euryarchaeota 1.58 39.9

uncultured methanogenic archaeon RC-I 19641 Archaea Euryarchaeota 3.2 54.6

Candidatus Korarchaeum cryptofilum OPF8 16525 Archaea Korarchaeota 1.6 49

Nanoarchaeum equitans Kin4-M 9599 Archaea Nanoarchaeota 0.49 31.6

Acidobacteria bacterium Ellin345 15771 Bacteria Acidobacteria 5.7 58.4

Solibacter usitatus Ellin6076 12638 Bacteria Acidobacteria 10 61.9

Acidothermus cellulolyticus 11B 16097 Bacteria Actinobacteria 2.4 66.9

Arthrobacter aurescens TC1 12512 Bacteria Actinobacteria 5.23 62.4

Arthrobacter sp. FB24 12640 Bacteria Actinobacteria 5.08 65.4

Bifidobacterium adolescentis ATCC 15703 16321 Bacteria Actinobacteria 2.1 59.2

Bifidobacterium longum DJO10A 18773 Bacteria Actinobacteria 2.41 60.2

Bifidobacterium longum NCC2705 328 Bacteria Actinobacteria 2.26 60.1

Bifidobacterium longum subsp. infantis 
ATCC 15697

17189 Bacteria Actinobacteria 2.8 59.9

Clavibacter michiganensis subsp. 
michiganensis NCPPB 382

19643 Bacteria Actinobacteria 3.4 72.5

Clavibacter michiganensis subsp. 
sepedonicus

184 Bacteria Actinobacteria 3.44 72.4

Corynebacterium diphtheriae NCTC 13129 87 Bacteria Actinobacteria 2.49 53.5

Corynebacterium efficiens YS-314 305 Bacteria Actinobacteria 3.1 63.1

Corynebacterium glutamicum ATCC 13032 307 Bacteria Actinobacteria 3.3 53.8

Corynebacterium glutamicum ATCC 13032 
DSM 20300

13760 Bacteria Actinobacteria 3.3 53.8

Corynebacterium glutamicum R 19193 Bacteria Actinobacteria 3.35 54.1

Corynebacterium jeikeium K411 13967 Bacteria Actinobacteria 2.51 61.4
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Organism Name
NCBI 

Project 
ID

Domain Phylum
Genom
e Size 
(Mb)

G+C 
Content

Corynebacterium urealyticum DSM 7109 29211 Bacteria Actinobacteria 2.4 64.2

Frankia alni ACN14a 17403 Bacteria Actinobacteria 7.5 72.8

Frankia sp. CcI3 13963 Bacteria Actinobacteria 5.4 70.1

Frankia sp. EAN1pec 13915 Bacteria Actinobacteria 9 71.2

Kineococcus radiotolerans SRS30216 10689 Bacteria Actinobacteria 4.99 74.2

Kocuria rhizophila DC2201 27833 Bacteria Actinobacteria 2.7 71.2

Leifsonia xyli subsp. xyli str. CTCB07 212 Bacteria Actinobacteria 2.58 67.7

Mycobacterium abscessus 15691 Bacteria Actinobacteria 5.12 64.1

Mycobacterium avium 104 88 Bacteria Actinobacteria 5.5 69

Mycobacterium avium subsp. 
paratuberculosis K-10

91 Bacteria Actinobacteria 4.8 69.3

Mycobacterium bovis AF2122/97 89 Bacteria Actinobacteria 4.35 65.6

Mycobacterium bovis BCG str. Pasteur 
1173P2

18059 Bacteria Actinobacteria 4.4 65.6

Mycobacterium gilvum PYR-GCK 15760 Bacteria Actinobacteria 5.96 67.7

Mycobacterium leprae TN 90 Bacteria Actinobacteria 3.27 57.8

Mycobacterium marinum M 16725 Bacteria Actinobacteria 6.62 65.7

Mycobacterium smegmatis str. MC2 155 92 Bacteria Actinobacteria 7 67.4

Mycobacterium sp. JLS 16079 Bacteria Actinobacteria 6 68.4

Mycobacterium sp. KMS 16081 Bacteria Actinobacteria 6.22 68.2

Mycobacterium sp. MCS 15762 Bacteria Actinobacteria 5.92 68.4

Mycobacterium tuberculosis CDC1551 223 Bacteria Actinobacteria 4.4 65.6

Mycobacterium tuberculosis F11 15642 Bacteria Actinobacteria 4.4 65.6

Mycobacterium tuberculosis H37Ra 18883 Bacteria Actinobacteria 4.4 65.6

Mycobacterium tuberculosis H37Rv 224 Bacteria Actinobacteria 4.4 65.6

Mycobacterium ulcerans Agy99 16230 Bacteria Actinobacteria 5.77 65.4

Mycobacterium vanbaalenii PYR-1 15761 Bacteria Actinobacteria 6.5 67.8

Nocardia farcinica IFM 10152 13117 Bacteria Actinobacteria 6.29 70.7

Nocardioides sp. JS614 12738 Bacteria Actinobacteria 5.31 71.4

Propionibacterium acnes KPA171202 12460 Bacteria Actinobacteria 2.56 60

Renibacterium salmoninarum ATCC 33209 19227 Bacteria Actinobacteria 3.2 56.3

Rhodococcus jostii RHA1 13693 Bacteria Actinobacteria 9.67 67

Rubrobacter xylanophilus DSM 9941 10670 Bacteria Actinobacteria 3.23 70.5

Saccharopolyspora erythraea NRRL 2338 18489 Bacteria Actinobacteria 8.2 71.1

Salinispora arenicola CNS-205 17109 Bacteria Actinobacteria 5.8 69.5

Salinispora tropica CNB-440 16342 Bacteria Actinobacteria 5.2 69.5

Streptomyces avermitilis MA-4680 189 Bacteria Actinobacteria 9.09 70.7

Streptomyces coelicolor A3(2) 242 Bacteria Actinobacteria 9.09 72

Streptomyces griseus subsp. griseus NBRC 
13350

20085 Bacteria Actinobacteria 8.5 72.2

Thermobifida fusca YX 94 Bacteria Actinobacteria 3.6 67.5
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Tropheryma whipplei str. Twist 95 Bacteria Actinobacteria 0.93 46.3

Tropheryma whipplei TW08/27 354 Bacteria Actinobacteria 0.93 46.3

Aquifex aeolicus VF5 215 Bacteria Aquificae 1.59 43.3

Hydrogenobaculum sp. Y04AAS1 18891 Bacteria Aquificae 1.6 34.8

Sulfurihydrogenibium sp. YO3AOP1 18889 Bacteria Aquificae 1.8 32

Bacteroides fragilis NCTC 9343 46 Bacteria Bacteroidetes 5.24 43.1

Bacteroides fragilis YCH46 13067 Bacteria Bacteroidetes 5.31 43.2

Bacteroides thetaiotaomicron VPI-5482 399 Bacteria Bacteroidetes 6.33 42.9

Bacteroides vulgatus ATCC 8482 13378 Bacteria Bacteroidetes 5.2 42.2

Candidatus Amoebophilus asiaticus 5a2 19981 Bacteria Bacteroidetes 1.9 35

Candidatus Azobacteroides 
pseudotrichonymphae genomovar. CFP2

29025 Bacteria Bacteroidetes 1.21 32.9

Candidatus Sulcia muelleri GWSS 19617 Bacteria Bacteroidetes 0.25 22.4

Cytophaga hutchinsonii ATCC 33406 54 Bacteria Bacteroidetes 4.4 38.8

Flavobacterium johnsoniae UW101 16082 Bacteria Bacteroidetes 6.1 34.1

Flavobacterium psychrophilum JIP02/86 19979 Bacteria Bacteroidetes 2.9 32.5

Gramella forsetii KT0803 19061 Bacteria Bacteroidetes 3.8 36.6

Parabacteroides distasonis ATCC 8503 13485 Bacteria Bacteroidetes 4.8 45.1

Porphyromonas gingivalis ATCC 33277 19051 Bacteria Bacteroidetes 2.4 48.4

Porphyromonas gingivalis W83 48 Bacteria Bacteroidetes 2.34 48.3

Salinibacter ruber DSM 13855 16159 Bacteria Bacteroidetes 3.59 66.1

Elusimicrobium minutum Pei191 19701 Bacteria
candidate division 

TG1
1.6 40

Candidatus Protochlamydia amoebophila 
UWE25

10700 Bacteria Chlamydiae 2.41 34.7

Chlamydia muridarum Nigg 229 Bacteria Chlamydiae 1.08 40.3

Chlamydia trachomatis 434/Bu 28583 Bacteria Chlamydiae 1 41.3

Chlamydia trachomatis A/HAR-13 13885 Bacteria Chlamydiae 1.01 41.3

Chlamydia trachomatis D/UW-3/CX 45 Bacteria Chlamydiae 1.04 41.3

Chlamydia trachomatis L2b/UCH-1/proctitis 28585 Bacteria Chlamydiae 1 41.3

Chlamydophila abortus S26/3 355 Bacteria Chlamydiae 1.14 39.9

Chlamydophila caviae GPIC 228 Bacteria Chlamydiae 1.18 39.2

Chlamydophila felis Fe/C-56 370 Bacteria Chlamydiae 1.21 39.3

Chlamydophila pneumoniae AR39 247 Bacteria Chlamydiae 1.23 40.6

Chlamydophila pneumoniae CWL029 248 Bacteria Chlamydiae 1.2 40.6

Chlamydophila pneumoniae J138 257 Bacteria Chlamydiae 1.2 40.6

Chlamydophila pneumoniae TW-183 420 Bacteria Chlamydiae 1.23 40.6

Chlorobaculum parvum NCIB 8327 29213 Bacteria Chlorobi 2.3 55.8

Chlorobium chlorochromatii CaD3 13921 Bacteria Chlorobi 2.6 44.3

Chlorobium limicola DSM 245 12606 Bacteria Chlorobi 2.8 51.3

Chlorobium phaeobacteroides BS1 12608 Bacteria Chlorobi 2.7 48.9
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Chlorobium phaeobacteroides DSM 266 12609 Bacteria Chlorobi 3.1 48.4

Chlorobium phaeovibrioides DSM 265 12607 Bacteria Chlorobi 2 53

Chlorobium tepidum TLS 302 Bacteria Chlorobi 2.2 56.5

Chloroherpeton thalassium ATCC 35110 29215 Bacteria Chlorobi 3.3 45

Pelodictyon luteolum DSM 273 13012 Bacteria Chlorobi 2.36 57.3

Pelodictyon phaeoclathratiforme BU-1 13011 Bacteria Chlorobi 3 48.1

Prosthecochloris aestuarii DSM 271 12749 Bacteria Chlorobi 2.57 50.1

Chloroflexus aurantiacus J-10-fl 59 Bacteria Chloroflexi 5.3 56.7

Dehalococcoides ethenogenes 195 214 Bacteria Chloroflexi 1.47 48.9

Dehalococcoides sp. BAV1 15770 Bacteria Chloroflexi 1.3 47.2

Dehalococcoides sp. CBDB1 15604 Bacteria Chloroflexi 1.4 47

Herpetosiphon aurantiacus ATCC 23779 16523 Bacteria Chloroflexi 6.74 50.9

Roseiflexus castenholzii DSM 13941 13462 Bacteria Chloroflexi 5.7 60.7

Roseiflexus sp. RS-1 16190 Bacteria Chloroflexi 5.8 60.4

Acaryochloris marina MBIC11017 12997 Bacteria Cyanobacteria 8.36 47

Anabaena variabilis ATCC 29413 10642 Bacteria Cyanobacteria 7.07 41.4

Cyanothece sp. ATCC 51142 20319 Bacteria Cyanobacteria 5.43 37.9

Gloeobacter violaceus PCC 7421 9606 Bacteria Cyanobacteria 4.66 62

Microcystis aeruginosa NIES-843 27835 Bacteria Cyanobacteria 5.8 42.3

Nostoc punctiforme PCC 73102 216 Bacteria Cyanobacteria 9.01 41.4

Nostoc sp. PCC 7120 244 Bacteria Cyanobacteria 7.21 41.3

Prochlorococcus marinus str. AS9601 13548 Bacteria Cyanobacteria 1.7 31.3

Prochlorococcus marinus str. MIT 9211 13551 Bacteria Cyanobacteria 1.7 38

Prochlorococcus marinus str. MIT 9215 18633 Bacteria Cyanobacteria 1.7 31.1

Prochlorococcus marinus str. MIT 9301 15746 Bacteria Cyanobacteria 1.6 31.3

Prochlorococcus marinus str. MIT 9303 13496 Bacteria Cyanobacteria 2.7 50

Prochlorococcus marinus str. MIT 9312 13910 Bacteria Cyanobacteria 1.71 31.2

Prochlorococcus marinus str. MIT 9313 220 Bacteria Cyanobacteria 2.41 50.7

Prochlorococcus marinus str. MIT 9515 13617 Bacteria Cyanobacteria 1.7 30.8

Prochlorococcus marinus str. NATL1A 15660 Bacteria Cyanobacteria 1.9 35

Prochlorococcus marinus str. NATL2A 13911 Bacteria Cyanobacteria 1.8 35.1

Prochlorococcus marinus subsp. marinus str. 
CCMP1375

419 Bacteria Cyanobacteria 1.75 36.4

Prochlorococcus marinus subsp. pastoris str. 
CCMP1986

213 Bacteria Cyanobacteria 1.7 30.8

Synechococcus elongatus PCC 6301 13282 Bacteria Cyanobacteria 2.7 55.5

Synechococcus elongatus PCC 7942 10645 Bacteria Cyanobacteria 2.75 55.4

Synechococcus sp. CC9311 12530 Bacteria Cyanobacteria 2.61 52.4

Synechococcus sp. CC9605 13643 Bacteria Cyanobacteria 2.51 59.2

Synechococcus sp. CC9902 13655 Bacteria Cyanobacteria 2.2 54.2
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Synechococcus sp. JA-2-3Ba(2-13) 16252 Bacteria Cyanobacteria 3 58.5

Synechococcus sp. JA-3-3Ab 16251 Bacteria Cyanobacteria 2.9 60.2

Synechococcus sp. PCC 7002 28247 Bacteria Cyanobacteria 3.4 49.2

Synechococcus sp. RCC307 13654 Bacteria Cyanobacteria 2.2 60.8

Synechococcus sp. WH 7803 13642 Bacteria Cyanobacteria 2.4 60.2

Synechococcus sp. WH 8102 230 Bacteria Cyanobacteria 2.43 59.4

Synechocystis sp. PCC 6803 60 Bacteria Cyanobacteria 3.94 47.4

Thermosynechococcus elongatus BP-1 308 Bacteria Cyanobacteria 2.59 53.9

Trichodesmium erythraeum IMS101 318 Bacteria Cyanobacteria 7.8 34.1

Deinococcus geothermalis DSM 11300 13423 Bacteria
Deinococcus-

Thermus
3.28 66.5

Deinococcus radiodurans R1 65 Bacteria
Deinococcus-

Thermus
3.24 66.6

Thermus thermophilus HB27 10617 Bacteria
Deinococcus-

Thermus
2.13 69.4

Thermus thermophilus HB8 13202 Bacteria
Deinococcus-

Thermus
2.07 69.5

Dictyoglomus thermophilum H-6-12 30731 Bacteria Dictyoglomi 2 33.7

Alkaliphilus metalliredigens QYMF 13006 Bacteria Firmicutes 4.9 36.8

Alkaliphilus oremlandii OhILAs 16083 Bacteria Firmicutes 3.1 36.3

Anoxybacillus flavithermus WK1 28245 Bacteria Firmicutes 2.8 41.8

Bacillus amyloliquefaciens FZB42 13403 Bacteria Firmicutes 3.9 46.5

Bacillus anthracis str. Ames 309 Bacteria Firmicutes 5.23 35.4

Bacillus anthracis str. Ames Ancestor 10784 Bacteria Firmicutes 5.47 35.2

Bacillus anthracis str. Sterne 10878 Bacteria Firmicutes 5.23 35.4

Bacillus cereus ATCC 10987 74 Bacteria Firmicutes 5.43 35.5

Bacillus cereus ATCC 14579 384 Bacteria Firmicutes 5.42 35.3

Bacillus cereus E33L 12468 Bacteria Firmicutes 5.85 35.1

Bacillus cereus subsp. cytotoxis NVH 391-
98

13624 Bacteria Firmicutes 4.11 35.9

Bacillus clausii KSM-K16 13291 Bacteria Firmicutes 4.3 44.8

Bacillus halodurans C-125 235 Bacteria Firmicutes 4.2 43.7

Bacillus licheniformis ATCC 14580; DSM 
13

12388 Bacteria Firmicutes 4.2 46.2

Bacillus licheniformis DSM 13; ATCC 
14580

13082 Bacteria Firmicutes 4.2 46.2

Bacillus pumilus SAFR-032 20391 Bacteria Firmicutes 3.7 41.3

Bacillus subtilis subsp. subtilis str. 168 76 Bacteria Firmicutes 4.2 43.5

Bacillus thuringiensis serovar konkukian str. 
97-27

10877 Bacteria Firmicutes 5.28 35.4

Bacillus thuringiensis str. Al Hakam 18255 Bacteria Firmicutes 5.36 35.4

Bacillus weihenstephanensis KBAB4 13623 Bacteria Firmicutes 5.91 35.5

Caldicellulosiruptor saccharolyticus DSM 
8903

13466 Bacteria Firmicutes 3 35.3
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Candidatus Desulforudis audaxviator 
MP104C

21047 Bacteria Firmicutes 2.3 60.8

Carboxydothermus hydrogenoformans Z-
2901

253 Bacteria Firmicutes 2.4 42

Clostridium acetobutylicum ATCC 824 77 Bacteria Firmicutes 4.13 30.9

Clostridium beijerinckii NCIMB 8052 12637 Bacteria Firmicutes 6 29.9

Clostridium botulinum A str. ATCC 19397 19517 Bacteria Firmicutes 3.9 28.2

Clostridium botulinum A str. ATCC 3502 193 Bacteria Firmicutes 3.92 28.2

Clostridium botulinum A str. Hall 19521 Bacteria Firmicutes 3.8 28.2

Clostridium botulinum A3 str. Loch Maree 28507 Bacteria Firmicutes 4.27 28.1

Clostridium botulinum B str. Eklund 17B 28857 Bacteria Firmicutes 3.85 27.5

Clostridium botulinum B1 str. Okra 28505 Bacteria Firmicutes 4.15 28.2

Clostridium botulinum E3 str. Alaska E43 28855 Bacteria Firmicutes 3.7 27.4

Clostridium botulinum F str. Langeland 19519 Bacteria Firmicutes 4.02 28.3

Clostridium difficile 630 78 Bacteria Firmicutes 4.31 29.1

Clostridium kluyveri DSM 555 19065 Bacteria Firmicutes 4.06 32

Clostridium novyi NT 16820 Bacteria Firmicutes 2.5 28.9

Clostridium perfringens ATCC 13124 304 Bacteria Firmicutes 3.3 28.4

Clostridium perfringens SM101 12521 Bacteria Firmicutes 2.92 28.2

Clostridium perfringens str. 13 79 Bacteria Firmicutes 3.05 28.5

Clostridium phytofermentans ISDg 16184 Bacteria Firmicutes 4.8 35.3

Clostridium tetani E88 81 Bacteria Firmicutes 2.87 28.6

Clostridium thermocellum ATCC 27405 314 Bacteria Firmicutes 3.8 39

Coprothermobacter proteolyticus DSM 5265 30729 Bacteria Firmicutes 1.4 44.8

Desulfitobacterium hafniense Y51 16639 Bacteria Firmicutes 5.73 47.4

Desulfotomaculum reducens MI-1 13424 Bacteria Firmicutes 3.6 42.3

Enterococcus faecalis V583 70 Bacteria Firmicutes 3.36 37.4

Exiguobacterium sibiricum 255-15 10649 Bacteria Firmicutes 3.01 47.7

Finegoldia magna ATCC 29328 18981 Bacteria Firmicutes 1.99 32.1

Geobacillus kaustophilus HTA426 13233 Bacteria Firmicutes 3.59 52

Geobacillus thermodenitrificans NG80-2 18655 Bacteria Firmicutes 3.66 48.9

Heliobacterium modesticaldum Ice1 13427 Bacteria Firmicutes 3.1 57

Lactobacillus acidophilus NCFM 82 Bacteria Firmicutes 2 34.7

Lactobacillus brevis ATCC 367 404 Bacteria Firmicutes 2.35 46.1

Lactobacillus casei ATCC 334 402 Bacteria Firmicutes 2.93 46.6

Lactobacillus casei BL23 30359 Bacteria Firmicutes 3.1 46.3

Lactobacillus delbrueckii subsp. bulgaricus 
ATCC 11842

16871 Bacteria Firmicutes 1.9 49.7

Lactobacillus delbrueckii subsp. bulgaricus 
ATCC BAA-365

403 Bacteria Firmicutes 1.9 49.7

Lactobacillus fermentum IFO 3956 18979 Bacteria Firmicutes 2.1 51.5
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Lactobacillus gasseri ATCC 33323 84 Bacteria Firmicutes 1.9 35.3

Lactobacillus helveticus DPC 4571 17811 Bacteria Firmicutes 2.1 37.1

Lactobacillus johnsonii NCC 533 9638 Bacteria Firmicutes 2 34.6

Lactobacillus plantarum WCFS1 356 Bacteria Firmicutes 3.34 44.4

Lactobacillus reuteri DSM 20016 15766 Bacteria Firmicutes 2 38.9

Lactobacillus reuteri JCM 1112 19011 Bacteria Firmicutes 2 38.9

Lactobacillus sakei subsp. sakei 23K 13435 Bacteria Firmicutes 1.9 41.3

Lactobacillus salivarius UCC118 13280 Bacteria Firmicutes 2.1 33

Lactococcus lactis subsp. cremoris MG1363 18797 Bacteria Firmicutes 2.5 35.7

Lactococcus lactis subsp. cremoris SK11 401 Bacteria Firmicutes 2.56 35.8

Lactococcus lactis subsp. lactis Il1403 72 Bacteria Firmicutes 2.4 35.3

Leuconostoc citreum KM20 16062 Bacteria Firmicutes 1.9 38.9

Leuconostoc mesenteroides subsp. 
mesenteroides ATCC 8293

315 Bacteria Firmicutes 2.04 37.7

Listeria innocua Clip11262 86 Bacteria Firmicutes 3.09 37.4

Listeria monocytogenes EGD-e 276 Bacteria Firmicutes 2.94 38

Listeria monocytogenes str. 4b F2365 85 Bacteria Firmicutes 2.91 38

Listeria welshimeri serovar 6b str. 
SLCC5334

13443 Bacteria Firmicutes 2.8 36.4

Lysinibacillus sphaericus C3-41 19619 Bacteria Firmicutes 4.78 37.1

Moorella thermoacetica ATCC 39073 10648 Bacteria Firmicutes 2.6 55.8

Natranaerobius thermophilus JW/NM-WN-
LF

20207 Bacteria Firmicutes 3.23 36.3

Oceanobacillus iheyensis HTE831 284 Bacteria Firmicutes 3.63 35.7

Oenococcus oeni PSU-1 317 Bacteria Firmicutes 1.8 37.9

Pediococcus pentosaceus ATCC 25745 398 Bacteria Firmicutes 1.8 37.4

Pelotomaculum thermopropionicum SI 19023 Bacteria Firmicutes 3 53

Staphylococcus aureus RF122 63 Bacteria Firmicutes 2.7 32.8

Staphylococcus aureus subsp. aureus COL 238 Bacteria Firmicutes 2.8 32.8

Staphylococcus aureus subsp. aureus JH1 15758 Bacteria Firmicutes 2.93 32.9

Staphylococcus aureus subsp. aureus JH9 15757 Bacteria Firmicutes 2.93 32.9

Staphylococcus aureus subsp. aureus 
MRSA252

265 Bacteria Firmicutes 2.9 32.8

Staphylococcus aureus subsp. aureus 
MSSA476

266 Bacteria Firmicutes 2.82 32.8

Staphylococcus aureus subsp. aureus Mu3 18509 Bacteria Firmicutes 2.9 32.9

Staphylococcus aureus subsp. aureus Mu50 263 Bacteria Firmicutes 2.93 32.8

Staphylococcus aureus subsp. aureus MW2 306 Bacteria Firmicutes 2.8 32.8

Staphylococcus aureus subsp. aureus N315 264 Bacteria Firmicutes 2.82 32.8

Staphylococcus aureus subsp. aureus NCTC 
8325

237 Bacteria Firmicutes 2.8 32.9

Staphylococcus aureus subsp. aureus str. 
Newman

18801 Bacteria Firmicutes 2.9 32.9
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Staphylococcus aureus subsp. aureus 
USA300

16313 Bacteria Firmicutes 2.94 32.7

Staphylococcus aureus subsp. aureus 
USA300_TCH1516

19489 Bacteria Firmicutes 2.93 32.7

Staphylococcus epidermidis ATCC 12228 279 Bacteria Firmicutes 2.56 32

Staphylococcus epidermidis RP62A 64 Bacteria Firmicutes 2.64 32.1

Staphylococcus haemolyticus JCSC1435 12508 Bacteria Firmicutes * 2.7 32.8

Staphylococcus saprophyticus subsp. 
saprophyticus ATCC 15305

15596 Bacteria Firmicutes 2.56 33.2

Streptococcus agalactiae 2603V/R 330 Bacteria Firmicutes 2.2 35.6

Streptococcus agalactiae A909 326 Bacteria Firmicutes 2.13 35.6

Streptococcus agalactiae NEM316 334 Bacteria Firmicutes 2.2 35.6

Streptococcus equi subsp. zooepidemicus 
MGCS10565

30781 Bacteria Firmicutes 2 41.8

Streptococcus gordonii str. Challis substr. 
CH1

66 Bacteria Firmicutes 2.2 40.5

Streptococcus mutans UA159 333 Bacteria Firmicutes 2.03 36.8

Streptococcus pneumoniae CGSP14 29179 Bacteria Firmicutes 2.2 39.5

Streptococcus pneumoniae D39 16374 Bacteria Firmicutes 2 39.7

Streptococcus pneumoniae G54 29047 Bacteria Firmicutes 2.1 39.6

Streptococcus pneumoniae Hungary19A-6 28035 Bacteria Firmicutes 2.2 39.6

Streptococcus pneumoniae R6 278 Bacteria Firmicutes 2.04 39.7

Streptococcus pneumoniae TIGR4 277 Bacteria Firmicutes 2.2 39.7

Streptococcus pyogenes M1 GAS 269 Bacteria Firmicutes 1.9 38.5

Streptococcus pyogenes MGAS10270 16364 Bacteria Firmicutes 1.9 38.4

Streptococcus pyogenes MGAS10394 12469 Bacteria Firmicutes 1.9 38.7

Streptococcus pyogenes MGAS10750 16366 Bacteria Firmicutes 1.9 38.3

Streptococcus pyogenes MGAS2096 16365 Bacteria Firmicutes 1.9 38.7

Streptococcus pyogenes MGAS315 311 Bacteria Firmicutes 1.9 38.6

Streptococcus pyogenes MGAS5005 13888 Bacteria Firmicutes 1.8 38.5

Streptococcus pyogenes MGAS6180 13887 Bacteria Firmicutes 1.9 38.4

Streptococcus pyogenes MGAS8232 286 Bacteria Firmicutes 1.9 38.5

Streptococcus pyogenes MGAS9429 16363 Bacteria Firmicutes 1.8 38.5

Streptococcus pyogenes NZ131 20707 Bacteria Firmicutes 1.8 38.6

Streptococcus pyogenes SSI-1 301 Bacteria Firmicutes 1.9 38.6

Streptococcus pyogenes str. Manfredo 270 Bacteria Firmicutes 1.8 38.6

Streptococcus sanguinis SK36 13942 Bacteria Firmicutes 2.4 43.4

Streptococcus suis 05ZYH33 17153 Bacteria Firmicutes 2.1 41.1

Streptococcus suis 98HAH33 17155 Bacteria Firmicutes 2.1 41.1

Streptococcus thermophilus CNRZ1066 13163 Bacteria Firmicutes 1.8 39.1

Streptococcus thermophilus LMD-9 13773 Bacteria Firmicutes 1.91 39.1

Streptococcus thermophilus LMG 18311 13162 Bacteria Firmicutes 1.8 39.1



163

Organism Name
NCBI 

Project 
ID

Domain Phylum
Genom
e Size 
(Mb)

G+C 
Content

Symbiobacterium thermophilum IAM 14863 12994 Bacteria Firmicutes 3.6 68.7

Syntrophomonas wolfei subsp. wolfei str. 
Goettingen

13014 Bacteria Firmicutes 2.94 44.9

Thermoanaerobacter pseudethanolicus 
ATCC 33223

13901 Bacteria Firmicutes 2.4 34.5

Thermoanaerobacter sp. X514 16394 Bacteria Firmicutes 2.5 34.5

Thermoanaerobacter tengcongensis MB4 249 Bacteria Firmicutes 2.69 37.6

Fusobacterium nucleatum subsp. nucleatum 
ATCC 25586

295 Bacteria Fusobacteria 2.17 27.2

Thermodesulfovibrio yellowstonii DSM 
11347

30733 Bacteria Nitrospirae 2 34.1

Rhodopirellula baltica SH 1 413 Bacteria Planctomycetes 7.1 55.4

Acidiphilium cryptum JF-5 15753 Bacteria Proteobacteria 3.97 67.1

Acidithiobacillus ferrooxidans ATCC 53993 16689 Bacteria Proteobacteria 2.9 58.9

Acidovorax avenae subsp. citrulli AAC00-1 15708 Bacteria Proteobacteria 5.4 68.5

Acidovorax sp. JS42 15685 Bacteria Proteobacteria 4.54 66.1

Acinetobacter baumannii AB0057 21111 Bacteria Proteobacteria 4.11 39.2

Acinetobacter baumannii ACICU 17827 Bacteria Proteobacteria 3.99 38.9

Acinetobacter baumannii ATCC 17978 17477 Bacteria Proteobacteria 4.02 38.9

Acinetobacter baumannii AYE 28921 Bacteria Proteobacteria 4.01 39.3

Acinetobacter baumannii SDF 13001 Bacteria Proteobacteria 3.46 39.1

Acinetobacter sp. ADP1 12352 Bacteria Proteobacteria 3.6 40.4

Actinobacillus pleuropneumoniae L20 18221 Bacteria Proteobacteria 2.3 41.3

Actinobacillus pleuropneumoniae serovar 3 
str. JL03

19135 Bacteria Proteobacteria 2.2 41.2

Actinobacillus pleuropneumoniae serovar 7 
str. AP76

29909 Bacteria Proteobacteria 2.31 41.2

Actinobacillus succinogenes 130Z 13370 Bacteria Proteobacteria 2.3 44.9

Aeromonas hydrophila subsp. hydrophila 
ATCC 7966

16697 Bacteria Proteobacteria 4.7 61.5

Aeromonas salmonicida subsp. salmonicida 
A449

16723 Bacteria Proteobacteria 5.05 58.2

*Agrobacterium tumefaciens str. C58 283 Bacteria Proteobacteria 5.65 59

Alcanivorax borkumensis SK2 13005 Bacteria Proteobacteria 3.1 54.7

Aliivibrio salmonicida LFI1238 30703 Bacteria Proteobacteria 4.62 39

Alkalilimnicola ehrlichei MLHE-1 15763 Bacteria Proteobacteria 3.3 67.5

Alteromonas macleodii Deep ecotype 13374 Bacteria Proteobacteria 4.4 44.9

Anaeromyxobacter dehalogenans 2CP-C 12634 Bacteria Proteobacteria 5 74.9

Anaeromyxobacter sp. Fw109-5 17729 Bacteria Proteobacteria 5.3 73.5

Anaeromyxobacter sp. K 19743 Bacteria Proteobacteria 5.1 74.8

*Anaplasma marginale str. St. Maries 40 Bacteria Proteobacteria 1.2 49.8

*Anaplasma phagocytophilum HZ 336 Bacteria Proteobacteria 1.47 41.6

Arcobacter butzleri RM4018 16319 Bacteria Proteobacteria 2.3 27

Aromatoleum aromaticum EbN1 13242 Bacteria Proteobacteria 4.73 64.7
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Azoarcus sp. BH72 13217 Bacteria Proteobacteria 4.4 67.9

Azorhizobium caulinodans ORS 571 19267 Bacteria Proteobacteria 5.4 67.3

*Bartonella bacilliformis KC583 16249 Bacteria Proteobacteria 1.4 38.2

*Bartonella henselae str. Houston-1 196 Bacteria Proteobacteria 1.93 38.2

*Bartonella quintana str. Toulouse 44 Bacteria Proteobacteria 1.58 38.8

Bartonella tribocorum CIP 105476 28109 Bacteria Proteobacteria 2.62 38.8

Baumannia cicadellinicola str. Hc 
(Homalodisca coagulata)

12513 Bacteria Proteobacteria 0.69 33.2

Bdellovibrio bacteriovorus HD100 9637 Bacteria Proteobacteria 3.8 50.6

Beijerinckia indica subsp. indica ATCC 
9039

20841 Bacteria Proteobacteria 4.45 57

Bordetella avium 197N 27 Bacteria Proteobacteria 3.7 61.6

Bordetella bronchiseptica RB50 24 Bacteria Proteobacteria 5.3 68.1

Bordetella parapertussis 12822 25 Bacteria Proteobacteria 4.77 68.1

Bordetella pertussis Tohama I 26 Bacteria Proteobacteria 4.1 67.7

Bordetella petrii DSM 12804 28135 Bacteria Proteobacteria 5.3 65.5

*Bradyrhizobium japonicum USDA 110 17 Bacteria Proteobacteria 9.1 64.1

Bradyrhizobium sp. BTAi1 16137 Bacteria Proteobacteria 8.53 64.8

Bradyrhizobium sp. ORS278 19575 Bacteria Proteobacteria 7.5 65.5

*Brucella abortus bv. 1 str. 9-941 9619 Bacteria Proteobacteria 3.3 57.2

Brucella abortus S19 18999 Bacteria Proteobacteria 3.3 57.2

Brucella canis ATCC 23365 20243 Bacteria Proteobacteria 3.3 57.2

*Brucella melitensis 16M 180 Bacteria Proteobacteria 3.29 57.2

*Brucella melitensis biovar Abortus 2308 16203 Bacteria Proteobacteria 3.32 57.2

Brucella ovis ATCC 25840 12514 Bacteria Proteobacteria 3.3 57.2

*Brucella suis 1330 320 Bacteria Proteobacteria 3.31 57.3

Brucella suis ATCC 23445 20371 Bacteria Proteobacteria 3.3 57.2

Buchnera aphidicola str. APS 
(Acyrthosiphon pisum)

245 Bacteria Proteobacteria 0.66 26.4

Buchnera aphidicola str. Bp (Baizongia 
pistaciae)

256 Bacteria Proteobacteria 0.62 25.3

Buchnera aphidicola str. Cc (Cinara cedri) 16372 Bacteria Proteobacteria 0.42 20.2

Buchnera aphidicola str. Sg (Schizaphis 
graminum)

312 Bacteria Proteobacteria 0.64 25.3

Burkholderia ambifaria AMMD 13490 Bacteria Proteobacteria 7.57 66.8

Burkholderia ambifaria MC40-6 17411 Bacteria Proteobacteria 7.6 66.4

Burkholderia cenocepacia AU 1054 13919 Bacteria Proteobacteria 7.28 66.9

Burkholderia cenocepacia HI2424 13918 Bacteria Proteobacteria 7.76 66.8

Burkholderia cenocepacia J2315 339 Bacteria Proteobacteria 8.07 66.9

Burkholderia cenocepacia MC0-3 17929 Bacteria Proteobacteria 7.9 66.6

Burkholderia mallei ATCC 23344 171 Bacteria Proteobacteria 5.83 68.5

Burkholderia mallei NCTC 10229 13943 Bacteria Proteobacteria 5.8 68.5
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Burkholderia mallei NCTC 10247 13946 Bacteria Proteobacteria 5.9 68.5

Burkholderia mallei SAVP1 13947 Bacteria Proteobacteria 5.2 68.4

Burkholderia multivorans ATCC 17616 JGI 17407 Bacteria Proteobacteria 6.99 66.7

Burkholderia multivorans ATCC 17616 
Tohoku

19401 Bacteria Proteobacteria 6.99 66.7

Burkholderia phymatum STM815 17409 Bacteria Proteobacteria 8.7 62.3

Burkholderia phytofirmans PsJN 17463 Bacteria Proteobacteria 8.22 62.3

Burkholderia pseudomallei 1106a 16182 Bacteria Proteobacteria 7.1 68.3

Burkholderia pseudomallei 1710b 13954 Bacteria Proteobacteria 7.31 68

Burkholderia pseudomallei 668 13953 Bacteria Proteobacteria 7 68.3

Burkholderia pseudomallei K96243 178 Bacteria Proteobacteria 7.3 68.1

Burkholderia sp. 383 10695 Bacteria Proteobacteria 8.69 66.3

Burkholderia thailandensis E264 10774 Bacteria Proteobacteria 6.72 67.6

Burkholderia vietnamiensis G4 10696 Bacteria Proteobacteria 8.4 65.7

Burkholderia xenovorans LB400 254 Bacteria Proteobacteria 9.8 62.6

Campylobacter concisus 13826 17159 Bacteria Proteobacteria 2.15 39.3

Campylobacter curvus 525.92 17161 Bacteria Proteobacteria 2 44.5

Campylobacter fetus subsp. fetus 82-40 16293 Bacteria Proteobacteria 1.8 33.3

Campylobacter hominis ATCC BAA-381 20083 Bacteria Proteobacteria 1.7 31.7

Campylobacter jejuni RM1221 303 Bacteria Proteobacteria 1.8 30.3

Campylobacter jejuni subsp. doylei 269.97 17163 Bacteria Proteobacteria 1.8 30.6

Campylobacter jejuni subsp. jejuni 81116 17953 Bacteria Proteobacteria 1.6 30.5

Campylobacter jejuni subsp. jejuni 81-176 16135 Bacteria Proteobacteria 1.68 30.5

Campylobacter jejuni subsp. jejuni NCTC 
11168

8 Bacteria Proteobacteria 1.6 30.5

Candidatus Blochmannia floridanus 443 Bacteria Proteobacteria 0.71 27.4

Candidatus Blochmannia pennsylvanicus str. 
BPEN

13875 Bacteria Proteobacteria 0.79 29.6

Candidatus Carsonella ruddii PV 17977 Bacteria Proteobacteria 0.16 16.6

*Candidatus Pelagibacter ubique 
HTCC1062

13989 Bacteria Proteobacteria 1.3 29.7

Candidatus Ruthia magnifica str. Cm 
(Calyptogena magnifica)

16841 Bacteria Proteobacteria 1.2 34

Candidatus Vesicomyosocius okutanii HA 18267 Bacteria Proteobacteria 1 31.6

*Caulobacter crescentus CB15 298 Bacteria Proteobacteria 4 67.2

Caulobacter sp. K31 16306 Bacteria Proteobacteria 5.91 67.3

Cellvibrio japonicus Ueda107 28329 Bacteria Proteobacteria 4.6 52

Chromobacterium violaceum ATCC 12472 444 Bacteria Proteobacteria 4.8 64.8

Chromohalobacter salexigens DSM 3043 12636 Bacteria Proteobacteria 3.7 63.9

Citrobacter koseri ATCC BAA-895 12716 Bacteria Proteobacteria 4.71 53.8

Colwellia psychrerythraea 34H 275 Bacteria Proteobacteria 5.37 38

Coxiella burnetii CbuG_Q212 19137 Bacteria Proteobacteria 2 42.6
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Coxiella burnetii CbuK_Q154 19139 Bacteria Proteobacteria 2.14 42.6

Coxiella burnetii Dugway 5J108-111 16721 Bacteria Proteobacteria 2.25 42.4

Coxiella burnetii RSA 331 16791 Bacteria Proteobacteria 2.04 42.7

Coxiella burnetii RSA 493 41 Bacteria Proteobacteria 2.04 42.6

Cupriavidus taiwanensis 15733 Bacteria Proteobacteria 6.46 67

Dechloromonas aromatica RCB 9635 Bacteria Proteobacteria 4.5 59.2

Delftia acidovorans SPH-1 17413 Bacteria Proteobacteria 6.8 66.5

Desulfococcus oleovorans Hxd3 18007 Bacteria Proteobacteria 3.9 56.2

Desulfotalea psychrophila LSv54 12751 Bacteria Proteobacteria 3.64 46.6

Desulfovibrio desulfuricans subsp. 
desulfuricans str. G20

329 Bacteria Proteobacteria 3.73 57.8

Desulfovibrio vulgaris DP4 17227 Bacteria Proteobacteria 3.7 63.2

Desulfovibrio vulgaris str. Hildenborough 51 Bacteria Proteobacteria 3.8 63.3

Dichelobacter nodosus VCS1703A 50 Bacteria Proteobacteria 1.4 44.4

Dinoroseobacter shibae DFL 12 17417 Bacteria Proteobacteria 4.43 65.5

*Ehrlichia canis str. Jake 10694 Bacteria Proteobacteria 1.3 29

*Ehrlichia chaffeensis str. Arkansas 325 Bacteria Proteobacteria 1.18 30.1

*Ehrlichia ruminantium str. Gardel 13356 Bacteria Proteobacteria 1.5 27.5

*Ehrlichia ruminantium str. Welgevonden 
v1

9614 Bacteria Proteobacteria 1.5 27.5

*Ehrlichia ruminantium str. Welgevonden 
v2

13355 Bacteria Proteobacteria 1.51 27.5

Enterobacter sakazakii ATCC BAA-894 12720 Bacteria Proteobacteria 4.56 56.7

Enterobacter sp. 638 17461 Bacteria Proteobacteria 4.66 52.9

Erwinia tasmaniensis Et1/99 20585 Bacteria Proteobacteria 4.08 53.4

*Erythrobacter litoralis HTCC2594 13480 Bacteria Proteobacteria 3.05 63.1

Escherichia coli 536 16235 Bacteria Proteobacteria 4.9 50.5

Escherichia coli APEC O1 16718 Bacteria Proteobacteria 5.51 50.3

Escherichia coli ATCC 8739 18083 Bacteria Proteobacteria 4.7 50.9

Escherichia coli CFT073 313 Bacteria Proteobacteria 5.2 50.5

Escherichia coli E24377A 13960 Bacteria Proteobacteria 5.27 50.6

Escherichia coli HS 13959 Bacteria Proteobacteria 4.6 50.8

Escherichia coli O157:H7 EDL933 259 Bacteria Proteobacteria 5.59 50.3

Escherichia coli O157:H7 str. EC4115 27739 Bacteria Proteobacteria 5.73 50.4

Escherichia coli O157:H7 str. Sakai 226 Bacteria Proteobacteria 5.6 50.5

Escherichia coli SE11 18057 Bacteria Proteobacteria 5.17 50.7

Escherichia coli SMS-3-5 19469 Bacteria Proteobacteria 5.25 50.5

Escherichia coli str. K-12 substr. DH10B 20079 Bacteria Proteobacteria 4.7 50.8

Escherichia coli str. K-12 substr. MG1655 225 Bacteria Proteobacteria 4.6 50.8

Escherichia coli str. K-12 substr. W3110 16351 Bacteria Proteobacteria * 4.6 50.8

Escherichia coli UTI89 16259 Bacteria Proteobacteria 5.21 50.6
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Francisella novicida U112 16088 Bacteria Proteobacteria 1.9 32.5

Francisella philomiragia subsp. philomiragia 
ATCC 25017

27853 Bacteria Proteobacteria 2 32.6

Francisella tularensis subsp. holarctica 16421 Bacteria Proteobacteria 1.9 32.2

Francisella tularensis subsp. holarctica 
FTNF002-00

20197 Bacteria Proteobacteria 1.9 32.2

Francisella tularensis subsp. holarctica 
OSU18

17265 Bacteria Proteobacteria 1.9 32.2

Francisella tularensis subsp. mediasiatica 
FSC147

19571 Bacteria Proteobacteria 1.9 32.3

Francisella tularensis subsp. tularensis 
FSC198

17375 Bacteria Proteobacteria 1.9 32.3

Francisella tularensis subsp. tularensis 
SCHU S4

9 Bacteria Proteobacteria 1.9 32.3

Francisella tularensis subsp. tularensis 
WY96-3418

18459 Bacteria Proteobacteria 1.9 32.3

Geobacter bemidjiensis Bem 17707 Bacteria Proteobacteria 4.6 60.3

Geobacter lovleyi SZ 17423 Bacteria Proteobacteria 3.98 54.7

Geobacter metallireducens GS-15 177 Bacteria Proteobacteria 4.01 59.5

Geobacter sulfurreducens PCA 192 Bacteria Proteobacteria 3.8 60.9

Geobacter uraniireducens Rf4 15768 Bacteria Proteobacteria 5.1 54.2

Gluconacetobacter diazotrophicus PAl 5 377 Bacteria Proteobacteria 3.96 66.3

*Gluconobacter oxydans 621H 13325 Bacteria Proteobacteria 2.92 60.8

*Granulibacter bethesdensis CGDNIH1 17111 Bacteria Proteobacteria 2.7 59.1

Haemophilus ducreyi 35000HP 38 Bacteria Proteobacteria 1.7 38.2

Haemophilus influenzae 86-028NP 11752 Bacteria Proteobacteria 1.9 38.2

Haemophilus influenzae PittEE 16400 Bacteria Proteobacteria 1.8 38

Haemophilus influenzae PittGG 16401 Bacteria Proteobacteria 1.9 38

Haemophilus influenzae Rd KW20 219 Bacteria Proteobacteria 1.8 38.1

Haemophilus somnus 129PT 322 Bacteria Proteobacteria 2.01 37.2

Haemophilus somnus 2336 388 Bacteria Proteobacteria 2.3 37.4

Hahella chejuensis KCTC 2396 16064 Bacteria Proteobacteria 7.22 53.9

Halorhodospira halophila SL1 15767 Bacteria Proteobacteria 2.7 68

Helicobacter acinonychis str. Sheeba 17251 Bacteria Proteobacteria 1.6 38.2

Helicobacter hepaticus ATCC 51449 185 Bacteria Proteobacteria 1.8 35.9

Helicobacter pylori 26695 233 Bacteria Proteobacteria 1.67 38.9

Helicobacter pylori G27 31341 Bacteria Proteobacteria 1.71 38.9

Helicobacter pylori HPAG1 16183 Bacteria Proteobacteria 1.61 39.1

Helicobacter pylori J99 234 Bacteria Proteobacteria 1.6 39.2

Helicobacter pylori P12 32291 Bacteria Proteobacteria 1.71 38.8

Helicobacter pylori Shi470 29045 Bacteria Proteobacteria 1.6 38.9

Herminiimonas arsenicoxydans 13467 Bacteria Proteobacteria 3.4 54.3

*Hyphomonas neptunium ATCC 15444 15721 Bacteria Proteobacteria 3.71 61.9
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Idiomarina loihiensis L2TR 10790 Bacteria Proteobacteria 2.84 47

*Jannaschia sp. CCS1 12733 Bacteria Proteobacteria 4.39 62.2

Janthinobacterium sp. Marseille 16549 Bacteria Proteobacteria 4.1 54.2

Klebsiella pneumoniae 342 28471 Bacteria Proteobacteria 5.88 56.9

Klebsiella pneumoniae subsp. pneumoniae 
MGH 78578

31 Bacteria Proteobacteria 5.69 57.1

Lawsonia intracellularis PHE/MN1-00 183 Bacteria Proteobacteria 1.76 33.1

Legionella pneumophila str. Corby 17491 Bacteria Proteobacteria 3.6 38.5

Legionella pneumophila str. Lens 13126 Bacteria Proteobacteria 3.41 38.4

Legionella pneumophila str. Paris 13127 Bacteria Proteobacteria 3.64 38.3

Legionella pneumophila subsp. 
pneumophila str. Philadelphia 1

22 Bacteria Proteobacteria 3.4 38.3

Leptothrix cholodnii SP-6 20039 Bacteria Proteobacteria 4.9 68.9

Magnetococcus sp. MC-1 262 Bacteria Proteobacteria 4.7 54.2

*Magnetospirillum magneticum AMB-1 16217 Bacteria Proteobacteria 5 65.1

Mannheimia succiniciproducens MBEL55E 13068 Bacteria Proteobacteria 2.3 42.5

*Maricaulis maris MCS10 17333 Bacteria Proteobacteria 3.37 62.7

Marinobacter aquaeolei VT8 13239 Bacteria Proteobacteria 4.75 56.9

Marinomonas sp. MWYL1 17445 Bacteria Proteobacteria 5.1 42.6

*Mesorhizobium loti MAFF303099 18 Bacteria Proteobacteria 7.6 62.5

*Mesorhizobium sp. BNC1 10690 Bacteria Proteobacteria 4.94 61.1

Methylibium petroleiphilum PM1 10789 Bacteria Proteobacteria 4.6 68.8

Methylobacillus flagellatus KT 10647 Bacteria Proteobacteria 3 55.7

Methylobacterium extorquens PA1 18637 Bacteria Proteobacteria 5.5 68.2

Methylobacterium populi BJ001 19559 Bacteria Proteobacteria 5.85 69.4

Methylobacterium radiotolerans JCM 2831 18817 Bacteria Proteobacteria 6.92 71

Methylobacterium sp. 4-46 18809 Bacteria Proteobacteria 7.78 71.5

Methylococcus capsulatus str. Bath 21 Bacteria Proteobacteria 3.3 63.6

Myxococcus xanthus DK 1622 1421 Bacteria Proteobacteria 9.1 68.9

Neisseria gonorrhoeae FA 1090 23 Bacteria Proteobacteria 2.15 52.7

Neisseria gonorrhoeae NCCP11945 29335 Bacteria Proteobacteria 2.2 52.4

Neisseria meningitidis 053442 16393 Bacteria Proteobacteria 2.2 51.7

Neisseria meningitidis FAM18 255 Bacteria Proteobacteria 2.2 51.6

Neisseria meningitidis MC58 251 Bacteria Proteobacteria 2.3 51.5

Neisseria meningitidis Z2491 252 Bacteria Proteobacteria 2.2 51.8

*Neorickettsia sennetsu str. Miyayama 357 Bacteria Proteobacteria 0.86 41.1

Nitratiruptor sp. SB155-2 18963 Bacteria Proteobacteria 1.9 39.7

*Nitrobacter hamburgensis X14 13473 Bacteria Proteobacteria 5.01 61.6

*Nitrobacter winogradskyi Nb-255 13474 Bacteria Proteobacteria 3.4 62

Nitrosococcus oceani ATCC 19707 13993 Bacteria Proteobacteria 3.54 50.3
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Nitrosomonas europaea ATCC 19718 52 Bacteria Proteobacteria 2.81 50.7

Nitrosomonas eutropha C91 13913 Bacteria Proteobacteria 2.82 48.5

Nitrosospira multiformis ATCC 25196 13912 Bacteria Proteobacteria 3.25 53.9

*Novosphingobium aromaticivorans DSM 
12444

204 Bacteria Proteobacteria 4.23 65.1

Ochrobactrum anthropi ATCC 49188 19485 Bacteria Proteobacteria 5.22 56.1

Oligotropha carboxidovorans OM5 28805 Bacteria Proteobacteria 3.7 62.4

Orientia tsutsugamushi str. Boryong 16180 Bacteria Proteobacteria 2.1 30.5

Orientia tsutsugamushi str. Ikeda 18983 Bacteria Proteobacteria 2 30.5

*Paracoccus denitrificans PD1222 13020 Bacteria Proteobacteria 5.25 66.8

Parvibaculum lavamentivorans DS-1 17639 Bacteria Proteobacteria 3.9 62.3

Pasteurella multocida subsp. multocida str. 
Pm70

39 Bacteria Proteobacteria 2.26 40.4

Pectobacterium atrosepticum SCRI1043 350 Bacteria Proteobacteria 5.06 51

Pelobacter carbinolicus DSM 2380 13337 Bacteria Proteobacteria 3.7 55.1

Pelobacter propionicus DSM 2379 13384 Bacteria Proteobacteria 4.23 58.5

Phenylobacterium zucineum HLK1 19931 Bacteria Proteobacteria 4.38 71.1

Photobacterium profundum SS9 13128 Bacteria Proteobacteria 6.38 41.7

Photorhabdus luminescens subsp. laumondii 
TTO1

9605 Bacteria Proteobacteria 5.69 42.8

Polaromonas naphthalenivorans CJ2 13418 Bacteria Proteobacteria 5.35 61.7

Polaromonas sp. JS666 13121 Bacteria Proteobacteria 5.9 62

Polynucleobacter necessarius subsp. 
asymbioticus QLW-P1DMWA-1

16679 Bacteria Proteobacteria 2.2 44.8

Polynucleobacter necessarius subsp. 
necessarius STIR1

19991 Bacteria Proteobacteria 1.6 45.6

Proteus mirabilis HI4320 12624 Bacteria Proteobacteria 4.14 38.9

Pseudoalteromonas atlantica T6c 13454 Bacteria Proteobacteria 5.19 44.6

Pseudoalteromonas haloplanktis TAC125 15713 Bacteria Proteobacteria 3.84 40.1

Pseudomonas aeruginosa PA7 16720 Bacteria Proteobacteria 6.6 66.4

Pseudomonas aeruginosa PAO1 331 Bacteria Proteobacteria 6.3 66.6

Pseudomonas aeruginosa UCBPP-PA14 386 Bacteria Proteobacteria 6.5 66.3

Pseudomonas entomophila L48 16800 Bacteria Proteobacteria 5.9 64.2

Pseudomonas fluorescens Pf0-1 12 Bacteria Proteobacteria 6.4 60.5

Pseudomonas fluorescens Pf-5 327 Bacteria Proteobacteria 7.1 63.3

Pseudomonas mendocina ymp 17457 Bacteria Proteobacteria 5.1 64.7

Pseudomonas putida F1 13909 Bacteria Proteobacteria 6 61.9

Pseudomonas putida GB-1 17629 Bacteria Proteobacteria 6.1 61.9

Pseudomonas putida KT2440 267 Bacteria Proteobacteria 6.18 61.5

Pseudomonas putida W619 17053 Bacteria Proteobacteria 5.8 61.4

Pseudomonas stutzeri A1501 16817 Bacteria Proteobacteria 4.6 63.9

Pseudomonas syringae pv. phaseolicola 
1448A

12416 Bacteria Proteobacteria 6.08 57.9
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Pseudomonas syringae pv. syringae B728a 323 Bacteria Proteobacteria 6.1 59.2

Pseudomonas syringae pv. tomato str. 
DC3000

359 Bacteria Proteobacteria 6.54 58.3

Psychrobacter arcticus 273-4 9633 Bacteria Proteobacteria 2.65 42.8

Psychrobacter cryohalolentis K5 13920 Bacteria Proteobacteria 3.1 42.2

Psychrobacter sp. PRwf-1 15759 Bacteria Proteobacteria 3.02 44.8

Psychromonas ingrahamii 37 16187 Bacteria Proteobacteria 4.6 40.1

Ralstonia eutropha H16 13603 Bacteria Proteobacteria 7.45 66.3

Ralstonia eutropha JMP134 10646 Bacteria Proteobacteria 7.26 64.4

Ralstonia metallidurans CH34 250 Bacteria Proteobacteria 6.91 63.5

Ralstonia pickettii 12J 17631 Bacteria Proteobacteria 5.28 63.6

Ralstonia solanacearum GMI1000 13 Bacteria Proteobacteria 5.8 67

*Rhizobium etli CFN 42 13932 Bacteria Proteobacteria 6.53 61

Rhizobium etli CIAT 652 28021 Bacteria Proteobacteria 6.44 61.3

Rhizobium leguminosarum bv. trifolii 
WSM2304

20179 Bacteria Proteobacteria 6.87 61.2

*Rhizobium leguminosarum bv. viciae 3841 344 Bacteria Proteobacteria 7.79 55

*Rhodobacter sphaeroides 2.4.1 56 Bacteria Proteobacteria 4.61 68.8

Rhodobacter sphaeroides ATCC 17025 15755 Bacteria Proteobacteria 4.54 68.2

*Rhodobacter sphaeroides ATCC 17029 15754 Bacteria Proteobacteria 4.42 69

Rhodoferax ferrireducens T118 13908 Bacteria Proteobacteria 4.97 59.6

*Rhodopseudomonas palustris BisA53 15751 Bacteria Proteobacteria 5.51 64.4

*Rhodopseudomonas palustris BisB18 15750 Bacteria Proteobacteria 5.51 65

*Rhodopseudomonas palustris BisB5 15749 Bacteria Proteobacteria 4.89 64.8

*Rhodopseudomonas palustris CGA009 57 Bacteria Proteobacteria 5.51 65

*Rhodopseudomonas palustris HaA2 15747 Bacteria Proteobacteria 5.33 66

Rhodopseudomonas palustris TIE-1 20167 Bacteria Proteobacteria 5.7 64.9

Rhodospirillum centenum SW 18307 Bacteria Proteobacteria 4.4 70.5

*Rhodospirillum rubrum ATCC 11170 58 Bacteria Proteobacteria 4.41 65.4

Rickettsia akari str. Hartford 12953 Bacteria Proteobacteria 1.2 32.3

Rickettsia bellii OSU 85-389 17237 Bacteria Proteobacteria 1.5 31.6

*Rickettsia bellii RML369-C 13996 Bacteria Proteobacteria 1.52 31.6

Rickettsia canadensis str. McKiel 12952 Bacteria Proteobacteria 1.2 31.1

*Rickettsia conorii str. Malish 7 42 Bacteria Proteobacteria 1.3 32.4

*Rickettsia felis URRWXCal2 13884 Bacteria Proteobacteria 1.59 32.5

Rickettsia massiliae MTU5 18271 Bacteria Proteobacteria 1.41 32.5

*Rickettsia prowazekii str. Madrid E 43 Bacteria Proteobacteria 1.11 29

Rickettsia rickettsii str. Iowa 19943 Bacteria Proteobacteria 1.3 32.4

Rickettsia rickettsii str. Sheila Smith 9636 Bacteria Proteobacteria 1.3 32.5

*Rickettsia typhi str. Wilmington 10679 Bacteria Proteobacteria 1.11 28.9
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*Roseobacter denitrificans OCh 114 16426 Bacteria Proteobacteria 4.3 58.9

Saccharophagus degradans 2-40 316 Bacteria Proteobacteria 5.1 45.8

Salmonella enterica subsp. arizonae serovar 
62:z4,z23:--

13030 Bacteria Proteobacteria 4.6 51.4

Salmonella enterica subsp. enterica serovar 
Agona str. SL483

20063 Bacteria Proteobacteria 4.84 52

Salmonella enterica subsp. enterica serovar 
Choleraesuis str. SC-B67

9618 Bacteria Proteobacteria 4.99 52.1

Salmonella enterica subsp. enterica serovar 
Dublin str. CT_02021853

19467 Bacteria Proteobacteria 4.88 52.1

Salmonella enterica subsp. enterica serovar 
Enteritidis str. P125109

30687 Bacteria Proteobacteria 4.7 52.2

Salmonella enterica subsp. enterica serovar 
Gallinarum str. 287/91

30689 Bacteria Proteobacteria 4.7 52.2

Salmonella enterica subsp. enterica serovar 
Heidelberg str. SL476

20045 Bacteria Proteobacteria 4.99 52.1

Salmonella enterica subsp. enterica serovar 
Newport str. SL254

18747 Bacteria Proteobacteria 4.98 52.2

Salmonella enterica subsp. enterica serovar 
Paratyphi A str. AKU_12601

30943 Bacteria Proteobacteria 4.6 52.2

Salmonella enterica subsp. enterica serovar 
Paratyphi A str. ATCC 9150

13086 Bacteria Proteobacteria 4.6 52.2

Salmonella enterica subsp. enterica serovar 
Paratyphi B str. SPB7

27803 Bacteria Proteobacteria 4.9 52.1

Salmonella enterica subsp. enterica serovar 
Schwarzengrund str. CVM19633

19459 Bacteria Proteobacteria 4.81 52.2

Salmonella enterica subsp. enterica serovar 
Typhi str. CT18

236 Bacteria Proteobacteria 5.13 51.9

Salmonella enterica subsp. enterica serovar 
Typhi str. Ty2

371 Bacteria Proteobacteria 4.8 52.1

Salmonella enterica subsp. enterica serovar 
Typhimurium str. LT2

241 Bacteria Proteobacteria 4.99 52.2

Serratia proteamaculans 568 17459 Bacteria Proteobacteria 5.45 55

Shewanella amazonensis SB2B 13385 Bacteria Proteobacteria 4.3 53.6

Shewanella baltica OS155 13386 Bacteria Proteobacteria 5.32 46.2

Shewanella baltica OS185 17643 Bacteria Proteobacteria 5.28 46.3

Shewanella baltica OS195 13389 Bacteria Proteobacteria 5.5 46.2

Shewanella denitrificans OS217 13390 Bacteria Proteobacteria 4.55 45.1

Shewanella frigidimarina NCIMB 400 13391 Bacteria Proteobacteria 4.85 41.6

Shewanella halifaxensis HAW-EB4 20241 Bacteria Proteobacteria 5.2 44.6

Shewanella loihica PV-4 13906 Bacteria Proteobacteria 4.6 53.7

Shewanella oneidensis MR-1 335 Bacteria Proteobacteria 5.16 45.9

Shewanella pealeana ATCC 700345 17415 Bacteria Proteobacteria 5.2 44.7

Shewanella piezotolerans WP3 17675 Bacteria Proteobacteria 5.4 43.3

Shewanella putrefaciens CN-32 13393 Bacteria Proteobacteria 4.7 44.5

Shewanella sediminis HAW-EB3 18789 Bacteria Proteobacteria 5.5 46.1

Shewanella sp. ANA-3 13905 Bacteria Proteobacteria 5.28 47.9

Shewanella sp. MR-4 13904 Bacteria Proteobacteria 4.71 47.9
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Shewanella sp. MR-7 13903 Bacteria Proteobacteria 4.8 47.9

Shewanella sp. W3-18-1 13902 Bacteria Proteobacteria 4.7 44.6

Shewanella woodyi ATCC 51908 17455 Bacteria Proteobacteria 5.9 43.7

Shigella boydii CDC 3083-94 15637 Bacteria Proteobacteria 4.86 51

Shigella boydii Sb227 13146 Bacteria Proteobacteria 4.63 51.1

Shigella dysenteriae Sd197 13145 Bacteria Proteobacteria 4.59 51

Shigella flexneri 2a str. 2457T 408 Bacteria Proteobacteria 4.6 50.9

Shigella flexneri 2a str. 301 310 Bacteria Proteobacteria 4.82 50.7

Shigella flexneri 5 str. 8401 16375 Bacteria Proteobacteria 4.6 50.9

Shigella sonnei Ss046 13151 Bacteria Proteobacteria 5.03 50.8

*Silicibacter pomeroyi DSS-3 281 Bacteria Proteobacteria 4.59 64.1

*Silicibacter sp. TM1040 13040 Bacteria Proteobacteria 4.15 60.1

Sinorhizobium medicae WSM419 16304 Bacteria Proteobacteria 6.82 61.1

*Sinorhizobium meliloti 1021 19 Bacteria Proteobacteria 6.8 62.2

Sodalis glossinidius str. morsitans 16309 Bacteria Proteobacteria 4.29 54.5

Sorangium cellulosum So ce 56 28111 Bacteria Proteobacteria 13 71.4

Sphingomonas wittichii RW1 17343 Bacteria Proteobacteria 5.93 67.9

*Sphingopyxis alaskensis RB2256 13907 Bacteria Proteobacteria 3.37 65.5

Stenotrophomonas maltophilia K279a 30351 Bacteria Proteobacteria 4.85 66.3

Stenotrophomonas maltophilia R551-3 17107 Bacteria Proteobacteria 4.6 66.3

Sulfurimonas denitrificans DSM 1251 13019 Bacteria Proteobacteria 2.2 34.5

Sulfurovum sp. NBC37-1 18965 Bacteria Proteobacteria 2.6 43.9

Syntrophobacter fumaroxidans MPOB 13013 Bacteria Proteobacteria 5 59.9

Syntrophus aciditrophicus SB 16258 Bacteria Proteobacteria 3.2 51.5

Thiobacillus denitrificans ATCC 25259 13025 Bacteria Proteobacteria 2.91 66.1

Thiomicrospira crunogena XCL-2 13018 Bacteria Proteobacteria 2.4 43.1

Verminephrobacter eiseniae EF01-2 17187 Bacteria Proteobacteria 5.63 65.2

Vibrio cholerae O1 biovar eltor str. N16961 36 Bacteria Proteobacteria 4.03 47.5

Vibrio cholerae O395 15667 Bacteria Proteobacteria 4.1 47.5

Vibrio fischeri ES114 12986 Bacteria Proteobacteria 4.25 38.3

Vibrio fischeri MJ11 19393 Bacteria Proteobacteria 4.48 38.2

Vibrio harveyi ATCC BAA-1116 19857 Bacteria Proteobacteria 6.09 45.4

Vibrio parahaemolyticus RIMD 2210633 360 Bacteria Proteobacteria 5.17 45.4

Vibrio vulnificus CMCP6 349 Bacteria Proteobacteria 5.1 46.7

Vibrio vulnificus YJ016 1430 Bacteria Proteobacteria 5.26 46.7

Wigglesworthia glossinidia endosymbiont of 
Glossina brevipalpis

274 Bacteria Proteobacteria 0.7 22.5

Wolbachia endosymbiont of Culex 
quinquefasciatus Pel

30313 Bacteria Proteobacteria 1.5 34.2

*Wolbachia endosymbiont of Drosophila 
melanogaster

272 Bacteria Proteobacteria 1.27 35.2
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*Wolbachia endosymbiont strain TRS of 
Brugia malayi

12475 Bacteria Proteobacteria 1.08 34.2

Wolinella succinogenes DSM 1740 445 Bacteria Proteobacteria 2.1 48.5

Xanthobacter autotrophicus Py2 15756 Bacteria Proteobacteria 5.62 67.3

Xanthomonas axonopodis pv. citri str. 306 297 Bacteria Proteobacteria 5.27 64.7

Xanthomonas campestris pv. campestris str. 
8004

15 Bacteria Proteobacteria 5.15 65

Xanthomonas campestris pv. campestris str. 
ATCC 33913

296 Bacteria Proteobacteria 5.08 65.1

Xanthomonas campestris pv. campestris str. 
B100

29801 Bacteria Proteobacteria 5.1 65

Xanthomonas campestris pv. vesicatoria str. 
85-10

13649 Bacteria Proteobacteria 5.44 64.6

Xanthomonas oryzae pv. oryzae 
KACC10331

12931 Bacteria Proteobacteria 4.9 63.7

Xanthomonas oryzae pv. oryzae MAFF 
311018

16297 Bacteria Proteobacteria 4.9 63.7

Xanthomonas oryzae pv. oryzae PXO99A 28127 Bacteria Proteobacteria 5.2 63.6

Xylella fastidiosa 9a5c 271 Bacteria Proteobacteria 2.73 52.6

Xylella fastidiosa M12 17823 Bacteria Proteobacteria 2.5 51.9

Xylella fastidiosa M23 18457 Bacteria Proteobacteria 2.54 51.7

Xylella fastidiosa Temecula1 285 Bacteria Proteobacteria 2.52 51.8

Yersinia enterocolitica subsp. enterocolitica 
8081

190 Bacteria Proteobacteria 4.67 47.2

Yersinia pestis Angola 16067 Bacteria Proteobacteria 4.68 47.6

Yersinia pestis Antiqua 16645 Bacteria Proteobacteria 4.88 47.7

Yersinia pestis biovar Microtus str. 91001 10638 Bacteria Proteobacteria 4.81 47.7

Yersinia pestis CO92 34 Bacteria Proteobacteria 4.88 47.6

Yersinia pestis KIM 288 Bacteria Proteobacteria 4.7 47.7

Yersinia pestis Nepal516 16646 Bacteria Proteobacteria 4.61 47.6

Yersinia pestis Pestoides F 16700 Bacteria Proteobacteria 4.71 47.7

Yersinia pseudotuberculosis IP 31758 16070 Bacteria Proteobacteria 4.91 47.2

Yersinia pseudotuberculosis IP 32953 12950 Bacteria Proteobacteria 4.8 47.6

Yersinia pseudotuberculosis PB1/+ 28745 Bacteria Proteobacteria 4.77 47.5

Yersinia pseudotuberculosis YPIII 28743 Bacteria Proteobacteria 4.7 47.5

*Zymomonas mobilis subsp. mobilis ZM4 12354 Bacteria Proteobacteria 2.06 46.3

Borrelia afzelii PKo 17057 Bacteria Spirochaetes * 1.24 27.8

Borrelia burgdorferi B31 3 Bacteria Spirochaetes 1.52 28.2

Borrelia duttonii Ly 18231 Bacteria Spirochaetes 1.57 28

Borrelia garinii PBi 12554 Bacteria Spirochaetes 1.22 28

Borrelia hermsii DAH 29637 Bacteria Spirochaetes 0.92 29.8

Borrelia recurrentis A1 18233 Bacteria Spirochaetes 1.24 27.5

Borrelia turicatae 91E135 13597 Bacteria Spirochaetes 0.92 29.1

Leptospira biflexa serovar Patoc strain Patoc 16153 Bacteria Spirochaetes 3.95 38.9
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1 (Ames)

Leptospira biflexa serovar Patoc strain Patoc 
1 (Paris)

20133 Bacteria Spirochaetes 3.95 38.9

Leptospira borgpetersenii serovar Hardjo-
bovis JB197

16148 Bacteria Spirochaetes 3.9 40.2

Leptospira borgpetersenii serovar Hardjo-
bovis L550

16146 Bacteria Spirochaetes 3.92 40.2

Leptospira interrogans serovar Copenhageni 
str. Fiocruz L1-130

10687 Bacteria Spirochaetes 4.63 35

Leptospira interrogans serovar Lai str. 
56601

293 Bacteria Spirochaetes 4.66 35

Treponema denticola ATCC 35405 4 Bacteria Spirochaetes 2.8 37.9

Treponema pallidum subsp. pallidum SS14 20067 Bacteria Spirochaetes 1.1 52.8

Treponema pallidum subsp. pallidum str. 
Nichols

5 Bacteria Spirochaetes 1.14 52.8

Acholeplasma laidlawii PG-8A 19259 Bacteria Tenericutes 1.5 31.9

Aster yellows witches-broom phytoplasma 
AYWB

13478 Bacteria Tenericutes 0.73 26.8

Candidatus Phytoplasma australiense 29469 Bacteria Tenericutes 0.88 27.4

Candidatus Phytoplasma mali 25335 Bacteria Tenericutes 0.6 21.4

Mesoplasma florum L1 10650 Bacteria Tenericutes 0.79 27

Mycoplasma agalactiae PG2 16095 Bacteria Tenericutes 0.88 29.7

Mycoplasma arthritidis 158L3-1 1422 Bacteria Tenericutes 0.82 30.7

Mycoplasma capricolum subsp. capricolum 
ATCC 27343

16208 Bacteria Tenericutes 1.01 23.8

Mycoplasma gallisepticum R 409 Bacteria Tenericutes 1 31.5

Mycoplasma genitalium G37 97 Bacteria Tenericutes 0.58 31.7

Mycoplasma hyopneumoniae 232 13120 Bacteria Tenericutes 0.89 28.6

Mycoplasma hyopneumoniae 7448 10639 Bacteria Tenericutes 0.92 28.5

Mycoplasma hyopneumoniae J 10675 Bacteria Tenericutes 0.9 28.5

Mycoplasma mobile 163K 10697 Bacteria Tenericutes 0.78 25

Mycoplasma mycoides subsp. mycoides SC 
str. PG1

10616 Bacteria Tenericutes 1.2 24

Mycoplasma penetrans HF-2 176 Bacteria Tenericutes 1.36 25.7

Mycoplasma pneumoniae M129 99 Bacteria Tenericutes 0.82 40

Mycoplasma pulmonis UAB CTIP 100 Bacteria Tenericutes 0.96 26.6

Mycoplasma synoviae 53 10676 Bacteria Tenericutes 0.8 28.5

Onion yellows phytoplasma OY-M 9615 Bacteria Tenericutes 0.86 27.7

Ureaplasma parvum serovar 3 str. ATCC 
27815

19087 Bacteria Tenericutes 0.75 25.5

Ureaplasma parvum serovar 3 str. ATCC 
700970

101 Bacteria Tenericutes 0.75 25.5

Ureaplasma urealyticum serovar 10 str. 
ATCC 33699

20247 Bacteria Tenericutes 0.87 25.8

Fervidobacterium nodosum Rt17-B1 16719 Bacteria Thermotogae 1.9 35

Petrotoga mobilis SJ95 17679 Bacteria Thermotogae 2.2 34.1
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Thermosipho melanesiensis BI429 17249 Bacteria Thermotogae 1.9 31.4

Thermotoga lettingae TMO 15644 Bacteria Thermotogae 2.1 38.7

Thermotoga maritima MSB8 111 Bacteria Thermotogae 1.86 46.2

Thermotoga petrophila RKU-1 17089 Bacteria Thermotogae 1.8 46.1

Thermotoga sp. RQ2 19543 Bacteria Thermotogae 1.9 46.2

Akkermansia muciniphila ATCC BAA-835 20089 Bacteria Verrucomicrobia 2.7 55.8

Methylacidiphilum infernorum V4 28995 Bacteria Verrucomicrobia 2.3 45.5

Opitutus terrae PB90-1 19989 Bacteria Verrucomicrobia 6 65.3
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