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Abstract

The random Fibonacci sequence is defined by t1 = t2 = 1 and

tn = ±tn−1 + tn−2,

for n ≥ 3, where each ± sign is chosen at random with P (+) = P (−) = 1
2
. We

can think of all possible such sequences as forming a binary tree T . Viswanath has

shown that almost all random Fibonacci sequences grow exponentially at the rate

1.13198824 . . . . He was only able to find 8 decimal places of this constant through the

use of random matrix theory and a fractal measure, although Bai has extended the

constant by 5 decimal places. Numerical experimentation is inefficient because the

convergence is so slow. We will discuss a new computation of Viswanath’s constant

which is based on a formula due to Kalmár-Nagy, and uses an interesting reduction

R of the tree T developed by Rittaud.

Also, we will focus on the growth rate of the expected value of a random Fibonacci

sequence, which was studied by Rittaud. This differs from the almost sure growth

rate in that we first find an expression for the average of the nth term in a sequence,

and then calculate its growth. We will derive this growth rate using a slightly different

and more simplified method than Rittaud, using the tree R and a Pascal-like array

of numbers, for which we can further give an explicit formula.

We will also consider what happens to random Fibonacci sequences when we re-

move the randomness. Specifically, we will choose coefficients which belong to the set

{1,−1} and form periodic cycles. By rewriting our recurrences using matrix products,

we will analyze sequence growth and develop criteria based on eigenvalue, trace and

order for determining whether a given sequence is bounded, grows linearly or grows

exponentially. Further, we will introduce an equivalence relation on the coefficient

cycles such that each equivalence class has a common growth rate, and consider the

number of such classes for a given cycle length. Lastly we will look at two ways to

completely characterize the trace, given the coefficient cycle, by breaking the matrix

product up into blocks.
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μ(d) ....... Möbius function

T (a,b) ....... tree T with initial nodes (a, b)

T (p, α) ....... tree T with P (+) = p and weight α

τn ....... nth row of entries of T

ρn ....... nth row of entries of R

τ
(a,b)
n ....... nth row of entries of T (a,b)

cR(ρn) ....... children of ρn in the tree R

cT (ρn) ....... children of ρn in the tree T

M ....... multiset

� ....... multiset sum

xiv



ρ−n , ρ
+
n ....... left and right elements of ρn respectively

c−R(ρn), c
+
R(ρn) ....... left and right children, respectively, of ρn

mi(ρn) ....... elements of τn which are descendants of ρn−i

t(n, k) ....... number of copies of ρn−3k in τn

t(k) ....... corner numbers in Table 5.2

S(τn), S(ρn) ....... sums of nodes τn and ρn respectively

P (τn), P (ρn) ....... products of (non-zero) nodes τn and ρn respectively

α ....... growth rate of S(ρn)

A(m) ....... coefficients in recurrence for t(k)

A(i,m) ....... coefficients in recurrence for t(n, k)

s(i,m) ....... number of dots in the mth shape of the sequence with i dots in the

1-d column

Bk,n ....... exponential partial Bell polynomial

ρ ....... a.s. growth rate of a random Fibonacci sequence in R

Bq ....... product matrix with q type I Fibonacci blocks

B̂q ....... product matrix with q type II Fibonacci blocks

xv



Acknowledgements

I would like to express my sincere gratitude to my supervisor Dr. Karl Dilcher for

his exceptional guidance, encouragement and advice over the years. (And for never

letting me forget an umlaut!) His enthusiasm and care have been truly inspiring, and

have shaped not only my thesis, but my experience as a graduate student. I would

also like to thank my readers Dr. Jason Brown and Dr. Keith Johnson, as well as my

external examiner Dr. Jeffrey Shallit, for taking the time to read my thesis and for

providing excellent feedback and insight. Thanks also to Dr. Shallit for traveling from

Waterloo for this task. Funding from both NSERC and the Dalhousie Department

of Mathematics and Statistics has been gratefully acknowledged. Finally, to Jason,

my family and my friends — thank you for your constant support, and belief that I

would someday finish, as much as I may have disagreed at the time! It’s been a real

journey!

xvi



Chapter 1

Introduction

The starting point for this thesis is a 1999 paper by Divakar Viswanath entitled

Random Fibonacci Sequences and the Number 1.13198824. . . [72], which was in fact

a chapter of his Ph.D. thesis [71].

1.1 The Fibonacci Sequence

Before defining a random Fibonacci sequence, we will start by reviewing the well-

known regular Fibonacci sequence.

Definition 1.1. The Fibonacci sequence {Fn} has initial terms F1 = F2 = 1 and is

given by the recurrence

Fn = Fn−1 + Fn−2,

for n ≥ 3. It is conventional to define F0 = 0.

We can also represent this recurrence using matrices as follows:(
Fn−1

Fn

)
=

(
0 1

1 1

)(
Fn−2

Fn−1

)
, (1.1)

so that multiplying gives us the equations Fn−1 = Fn−1 and Fn = Fn−1 + Fn−2.

Iterating Equation (1.1) for n ≥ 3 gives(
Fn−1

Fn

)
=

(
0 1

1 1

)n−2 (
1

1

)
. (1.2)

Using elementary linear algebra or the theory of linear recurrences (Vajda [69,

p. 18]), it is easy to find the general solution to the Fibonacci recurrence, which is

given by Binet’s formula,

Fn =
1√
5
(φn − (φ′)n) , (1.3)

1



2

where φ = 1+
√
5

2
= 1.618033989 . . . and is called the golden ratio, and φ′ = 1−√5

2
is the

conjugate of φ. Using this exact form for the Fibonacci numbers, it is straightforward

to prove that

lim
n→∞

Fn+1

Fn

= lim
n→∞

Fn

1
n = φ,

i.e., the Fibonacci numbers grow exponentially at the rate φ. (We will consider this

definition of growth rate in Chapter 2.)

Furthermore, we can generalize the Fibonacci numbers so that the initial values

are G1 = a, G2 = b, and for n ≥ 3 we have

Gn = Gn−1 +Gn−2.

It can be shown that

Gn = bFn−1 + aFn−2, (1.4)

and that for a and b not both zero, the growth rate of this generalized sequence Gn

is also φ. For a wonderful collection of information on everything to do with the

Fibonacci numbers and the golden ratio, visit Ron Knott’s award winning website

[45].

1.2 The Random Fibonacci Sequence

Viswanath proceeds to define the following.

Definition 1.2. The random Fibonacci sequence {tn} has initial terms t1 = t2 = 1

and is given by the recurrence

tn = ±tn−1 ± tn−2, (1.5)

for n ≥ 3, where each ± sign is chosen independently with probabilities P (+) =

P (−) = 1
2
.

This type of discrete distribution is called the signed Bernoulli distribution. A

random variable has signed Bernoulli distribution if it takes values in the set {+1,−1}
with equal probability, as is the case with our coefficients. Similarly an unsigned

Bernoulli distribution uses values in the same set with probabilities which are not
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necessarily equal, i.e., P (+) = p and P (−) = 1− p (Tao [68]). We will consider this

type of distribution later. For simplicity we choose to let our random variable be the

sign ±, rather than the coefficient ±1.

The terms of the random Fibonacci sequence seem to bounce around between

positive and negative values, but as Hayes [37] nicely states, “the steady growth of

the Fibonacci numbers is replaced by fluctuations of increasing amplitude.” In fact,

Hayes suggested coining the term “Vibonacci numbers” because of the way the sign

vibrates back and forth. (Also fitting for their creator!) Viswanath was interested in

the growth of the sequence {|tn|} of positive values, and so he redefined the recurrence

as

tn = ±tn−1 + tn−2, (1.6)

where we only have one choice of sign to make. We can do this because when consid-

ering {|tn|}, Equation (1.5) gives two instances of |tn−1+tn−2| and two of |tn−1−tn−2|,
where Equation (1.6) gives one instance of each. Since in both cases the probability

of each outcome occurring is 1
2
, the definitions (in absolute value) are equivalent.

Alternatively, Viswanath could have defined

tn = tn−1 ± tn−2.

Note that when generating the sequence {|tn|}, we first generate {tn}, then we take

the absolute value of all terms.

We can think of the random Fibonacci sequence as being generated by flipping a

coin; if it comes up heads, we add the previous two terms to get the next one, and

if it comes up tails, we subtract them. Devlin [23] makes an interesting analogy to

the weather – today’s weather is dependent on the weather of the previous two days,

although there is a still a large element of chance. Tables 1.1 and 1.2 give two example

random Fibonacci sequences, calculated to one hundred terms using Equation (1.6).

Notice that the first sequence reaches much higher values.

The main result of Viswanath’s paper deals with the growth rate of sequences

{|tn|}. For a nice introduction to the problem and its history, see the articles by

Devlin [23], Peterson [61] and Hayes [37].
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1 −8 19 −131 112 −407 −519 −2860 12071 −19165
2 3 −11 −30 407 −295 −926 3603 19165 −7094
3 −11 30 −101 519 −112 407 743 −7094 −26259
5 −8 −41 71 −112 −407 −519 2860 26259 −33353

−2 −19 71 −30 407 −519 −112 −2117 19165 7094
3 11 30 41 −519 −926 −631 4977 45424 −40447

−5 −8 101 −71 −112 −1445 −743 2860 −26259 −33353
8 19 131 112 −407 −2371 −1374 2117 19165 −73800

−13 11 −30 −183 −519 926 −2117 4977 −45424 40447
−5 8 101 295 112 −1445 743 7094 −26259 −33353

Table 1.1: Sample random Fibonacci sequence 1: Values of t(n) for 2 ≤ n ≤ 101.

1 −2 −5 245 226 −19 31 112 −343 555
0 −1 7 402 −157 −69 −50 −81 −555 212
1 −3 −12 −157 69 50 81 31 −898 767

−1 −4 19 245 −88 −19 31 −112 343 −555
0 1 −31 88 −19 31 112 −81 −555 212

−1 −3 50 157 −107 −50 −81 −31 898 −343
−1 −2 19 245 −126 −19 31 −50 343 −131
0 −5 69 −88 19 −31 −112 −81 555 −212

−1 −7 88 157 −107 −50 143 −131 898 −343
1 2 157 69 −88 −81 31 −212 −343 131

Table 1.2: Sample random Fibonacci sequence 2: Values of t(n) for 2 ≤ n ≤ 101.

Theorem 1.1. For almost all random Fibonacci sequences,

lim
n→∞

|tn| 1n = 1.13198824 . . . .

This tells us that with probability one (or we may say almost surely or simply a.s.),

any Fibonacci sequence chosen at random grows exponentially and does so with a fixed

growth rate, namely 1.13198824 . . . . Viswanath’s result is counterintuitive because we

might expect that with an equal number of additions and subtractions (on average),

the terms would eventually balance out to zero. Or, it could be possible that they

jump around so chaotically that no limit in the growth rate is reached.

This mysterious number is known as “Viswanath’s constant” ([67, A078416]), a

term coined by Embree and Trefethen [24]. Viswanath was only able to calculate
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eight decimal places of it through extensive computation of upper and lower bounds.

In 2007, Bai [2] extended the constant by five decimal places to 1.1319882487943 . . . .

There is no known closed form or analytical expression for Viswanath’s constant and

nothing else is known about its nature, although it is reasonable to conjecture that

it is irrational and also transcendental.

It should be noted, though, that there are plenty of Fibonacci-type sequences with

±1 coefficients that do not grow at the rate 1.13198824 . . . . For example, if all + signs

are chosen, we end up with the regular Fibonacci sequence, which has growth rate

1.618033989 . . . . It’s also possible to construct sequences that do not grow at all. If

we choose signs according to the pattern ++−++− · · · , which repeats with period

three, the resulting sequence is

1, 1, 2, 3,−1, 2, 1, 1, 2, 3,−1, 2, . . . .

This sequence begins to repeat after six terms because we land back at our initial

values after a multiple of the cycle defining the pattern. We will consider this idea

in more detail in Chapter 2. The important thing is that these exceptional sequences

have zero probability of occurring at random, or in other words, they belong to a

set of measure zero. We can refer to them as random Fibonacci sequences, but this

requires us to specify the almost sure condition when talking about the growth of

random Fibonacci sequences in general.

The starting point of this thesis was to study the behaviour of these “non-random”

random Fibonacci sequences in order to potentially shed some light on Viswanath’s

elusive constant. We will remove the aspect of randomness by selecting sequences

according to patterns of ± signs, rather than choosing these signs at random. In

essence, we will look at sequences which have probability zero of occurring randomly.

These sequences, however, can be used to approximate the set of all possible random

Fibonacci sequences.

Numerical experiments can be done to enumerate all possible length-n random

Fibonacci sequences, and take the arithmetic average of their growth rates. For

n = 20 there are over half a million branches and the average growth rate calculated

is 1.18 (Hayes [37]). Later we will do similar calculations with geometric means over

all possible sequences and obtain a similarly poor approximation of 1.12 for n = 20
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and 1.19 for n = 21 (see column 1 of Table 6.3). This method is very impractical

when n gets large. Random sampling proves to be more efficient. One example of a

random Fibonacci sequence of length one million calculated by Viswanath was shown

to have growth rate 1.132 and reached values of over 1050,000. This still only gives

two decimal places of accuracy! Table 1.3 gives the growth rates of five random

Fibonacci sequences up to length one million, and approximately the same accuracy

as Viswanath’s computation is reached. Further, we can increase the accuracy in our

n Sequence 1 Sequence 2 Sequence 3 Sequence 4 Sequence 5
101 1.245730940 1.174618943 1.174618943 1.116123174 1.116123174
102 1.162488171 1.140380133 1.099325710 1.165414115 1.093747433
103 1.155237866 1.112871284 1.126232310 1.139393990 1.127914018
104 1.131234546 1.131036327 1.125746602 1.132062832 1.139082373
105 1.132959794 1.131119861 1.131994075 1.132940636 1.134283491
106 1.131816247 1.132325605 1.132482700 1.132311681 1.131873039

Table 1.3: The growth rate |t(n)|1/n for five random Fibonacci sequences, n ≤ 106.

approximations by taking averages of growth rates. The Maple program in Figure

A.3 calculates the growth rates of j random Fibonacci sequences of length n + 2,

then takes the average. For j = 20 and n = 40000, we obtain the values given in

Table 1.4. These actually appear to be slightly closer to Viswanath’s constant than

those in Table 1.3, despite the smaller sequence length. It is thus quite remarkable

that Viswanath and Bai were able to find 8 and 13 correct decimals respectively. The

random Fibonacci sequence is an interesting example of how a random process can

lead to something deterministic over time.

1.131885031 1.131973850 1.131740524
1.132081608 1.132389153 1.1323296404

Table 1.4: Averages of 20 growth rates of random Fibonacci sequences with length
40002.

In [40], Janvresse et al. expanded the definition of the random Fibonacci sequence

by introducing linear and non-linear cases. In the linear case, the sequence is defined
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by initial values f1 = f2 = 1 and the recurrence

fn = fn−1 ± fn−2. (1.7)

This is exactly the alternate way we could have defined {tn}. The non-linear case on

the other hand is defined by initial values f̃1 = f̃2 = 1 and the recurrence

f̃n = |f̃n−1 ± f̃n−2|. (1.8)

The distinguishing feature of the latter definition is that we take the absolute value at

every stage when generating the sequence. This is in contrast to {|fn|}, for example,

where we take absolute values only after the sequence has been generated. Note that

Equation 1.8 does not define a linear recurrence. Janvresse et al. were interested in

the growth of the positive sequences {f̃n} and {|fn|}.

1.3 Distributions and Binary Trees

A note of caution – the recurrences in (1.6), (1.7) and (1.8) do not necessarily generate

identical sequences {|tn|}, {|fn|} and {f̃n}. Consider the following example.

Example 1.1. Suppose we choose alternating signs + − + − · · · We obtain the

following sequences:

{tn} = 1, 1, 2,−1, 1,−2,−1,−1,−2, 1,−1, 2, 1, 1, . . . ,

{|tn|} = 1, 1, 2, 1, 1, 2, . . . ,

{fn} = 1, 1, 2, 1, 3, 2, 5, 3, 8, 5, 13, . . . = |fn|,
{f̃n} = 1, 1, 2, 1, 3, 2, 5, 3, 8, 5, 13, . . . .

Note that it is not necessarily the case that the sequence {fn} remains positive. Not

only are two of the sequences distinct in absolute value, but one remains bounded

while the other appears to grow exponentially. We can explain this discrepancy by

showing that the distribution of sequences generated under these three methods is

the same.

An excellent tool for visualizing these distributions is the binary tree. We give

the root a label of 1 and call this row 1. The root has an only child, also labeled
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1, occurring in row 2. Every vertex except the root has two children, the values

of which depend on the parent and grandparent, and correspond to the random

Fibonacci sequence definition we are considering. The right child is generated by

choosing +, i.e., we add the parent and grandparent; the left child by choosing −,

i.e., we subtract the parent and grandparent, taking absolute values if required. Each

row n for n ≥ 2 has 2n−2 nodes. Each branch of the tree represents a possible random

Fibonacci sequence, where the pattern of lefts/rights corresponds to the pattern of ±
signs used in generating the sequence.

The trees corresponding to the definitions in (1.6), (1.7) and (1.8), which we will

denote by T1, T2 and T̃ respectively, are given in Figure 1.1. The first two trees

correspond to the linear cases, whereas the third tree corresponds to the non-linear

case. If we compare the trees |T1|, |T2| and T̃ (where the absolute value of a tree

means we take the absolute value of all terms in the tree), the same set of positive

sequences occurs in each, although the sequences may be permuted. This remains true

regardless of the number of rows we calculate, as is shown in the following theorem.

Theorem 1.2. The random sequences {|tn|}, {|fn|} and {f̃n} all have the same

distribution, i.e., the probability of a particular n-termed sequence occurring is the

same in all three cases.

Proof: We can prove this result using induction. By observing all three trees we

see that for n = 3 we have the same set of positive sequences, {(1, 1, 0), (1, 1, 2)}, in
each case. Notice that for trees T1 and T2 nodes can be positive or negative, while in

T̃ nodes are in absolute value. Now suppose that we have the same set of n-termed

sequences for all three sequence definitions: {|tn|}, {|fn|} and {f̃n}. Consider any

node |b|, in row n of each tree |T1|, |T2| and T̃ , with parent |a| occurring in row n−1.

Left and right children of b (|b| in the case of T̃ ) in row n+ 1 of the trees T1, T2 and

T̃ are seen in the tree segments in Figure 1.2.

Now consider b’s children in absolute value, i.e., b’s children in trees |T1|, |T2| and
T̃ . If a and b have the same sign,

|a+ b| = |a|+ |b|, |a− b| = ||a| − |b||.
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(c) The tree T̃ .

Figure 1.1: Trees for different cases of random Fibonacci sequences.
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Figure 1.2: Left and right children in each tree type.

If a and b differ in sign,

|a+ b| = ||a| − |b||, |a− b| = |a|+ |b|.

Therefore, the pairs of children are all the same in absolute value, although possibly

in different orders. Since a node b with parent a (|b|, |a| in the case of T̃ ) in any of

the trees T1, T2 or T̃ generates the same pair of children in absolute value, the trees

|T1|, |T2| and T̃ contain the same set of sequences of a given length n. �

Corollary 1.1. The set of elements in a given row is the same for each of the trees

|T1|, |T2| and T̃ , i.e., the set of nth terms is the same for the sequences {|tn|}, {|fn|}
and {f̃n}.

Proof: The proof is immediate from Theorem 1.2 because each tree |T1|, |T2| and T̃

contains the same set of sequences. �

Aside from the almost sure growth rate of a random Fibonacci sequence, we

will also be interested in the growth rate of the expected value of terms in a given

row. Here we simply take the arithmetic mean value of the nth terms in each of the

2n−2 possible random Fibonacci sequences, because each sequence occurs with equal

probability, and then calculate the growth rate of this mean sequence {E(|tn|)}.

Theorem 1.3. The sequences {|tn|}, {|fn|} and {f̃n} have the same almost sure

growth rate and the same growth rate of the expected value of terms.

Proof: This follows directly from the fact that these sequences have the same dis-

tribution. In particular, by Corollary 1.1 we know that the sets of nth terms of the
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sequences {|tn|}, {|fn|} and {f̃n} are all the same. Therefore, the expected value of

the nth term is the same for each sequence and consequently so is its growth rate. �

The difference between the almost sure growth rate of a sequence and the growth

rate of the expected value of the terms will be discussed later in further detail.

1.4 Determining Viswanath’s Constant

We will now take a closer look at the method Viswanath used to calculate his con-

stant. As with the regular Fibonacci sequence, we can represent a random Fibonacci

sequence using matrices. We can rewrite the recurrence given in (1.6) as

(
tn−1

tn

)
=

(
0 1

1 ±1

)(
tn−2

tn−1

)
, (1.9)

where the choice of + or − sign is represented by the matrices

A =

(
0 1

1 1

)
, B =

(
0 1

1 −1

)
,

respectively, and each is chosen with equal probability. We will denote the ith matrix

chosen by Mi, the product of n such matrices by Pn and the distribution by μf .

Iterating Equation (1.9) and including the initial values we can then write(
tn−1

tn

)
= Mn−2Mn−3 · · ·M1

(
1

1

)
= Pn−2

(
1

1

)
,

for n ≥ 3. We will consider the details of these matrix products more closely in

Chapter 2. Note that the sequence obtained from Equation (1.7) (linear) can similarly

be modeled by a product of two independently and identically distributed (i.i.d.)

random matrices although the sequence obtained from Equation (1.8) (non-linear)

cannot. It can be modeled by a product of three random matrices; however, their

distribution is not i.i.d.

Definition 1.3. There are several possible interpretations of a random matrix:

a) A random matrix is a matrix whose entries are random variables chosen from some
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set with a given distribution.

b) It is also possible to have a matrix whose entries are random variables chosen from

possibly distinct sets with distinct distributions. This is used to study properties of

distinct distributions relative to one another.

c) Alternately, a random matrix is a random variable that takes the form of a matrix.

In this case, we are choosing a matrix at random from a given set of matrices according

to some distribution.

It is possible to obtain Definition 1.3 c) from Definition 1.3 a) if one simply counts

all possible matrices obtained from choosing different matrix entries. In our case,

since only one matrix entry is chosen randomly (the bottom right entry is ±1), both

Definitions 1.3 a) and 1.3 c) suit our random matrices equally well, although it is

more convenient to think in terms of the latter definition. Further, we will refer

to the products Pn as “products of random matrices” rather than “random matrix

products” to avoid ambiguity.

The theorem of Furstenberg and Kesten [29] (also proven in Bougerol and Lacroix

[11, p. 11]) tells us that for our sequence of i.i.d. random matrices {Mn} with distri-

bution μf , the upper Lyapunov exponent can be defined as

γf = lim
n→∞

1

n
log ‖Mn · · ·M1‖ (1.10)

almost surely, where we are using 2-norms for vectors and matrices. Furthermore,

according to Bougerol [11], the Lyapunov exponent (which we may shorten simply to

Lyapunov exponent) can be written as

lim
n→∞

|tn| 1n = eγf (1.11)

almost surely, which is the growth rate of the sequence {|tn|}. This is equivalent to

saying

lim
n→∞

1

n
log |tn| = γf .

(We will use log to denote the natural logarithm throughout this thesis.) We may

also define the exponential growth rate of {|tn|} as the ratio

lim
n→∞

|tn|
|tn−1| = eγf .
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We will further discuss exponential growth, and these equivalent definitions of it, in

Chapter 2. We can generalize Theorem 1.1 to the case of t1, t2 	= 1.

Proposition 1.1. For almost all random Fibonacci sequences,

lim
n→∞

|tn| 1n = 1.13198824 . . . ,

where t1, t2 ∈ R and are not both zero.

Proof: Equation (1.10) for the upper Lyapunov constant depends only on the product

of matrices and not on the initial values of the sequence. Therefore Viswanath’s

constant is independent of the initial values, as was the case for the regular Fibonacci

sequence, with the exception of t1 = t2 = 0, which produces an all-zero sequence. �

Viswanath wanted to find an exact value for γf , although very little was known

about such a constant. In 1960, Furstenberg and Kesten [29] showed that the upper

Lyapunov exponent γ exists under general conditions and in 1963 Furstenberg [30]

showed that provided | det(Mi) = 1|, we usually have γ > 0. Since this determinant

condition is true for μf , Viswanath concluded that γf > 0 and so almost surely a ran-

dom Fibonacci sequence grows exponentially. Furthermore, we know that if we choose

only plus signs when generating our random Fibonacci sequence, we end up with the

regular Fibonacci sequence, which has growth rate φ = 1+
√
5

2
= 1.618033989 . . . . This

tells us that 1 < eγf < φ almost surely.

Multiplying Pn by an initial value vector gives us a vector x (containing sequence

terms) in R2. Viswanath parameterized these vectors using slopes m where m ∈
[−∞,∞) to give x = (1,m)T We can now think of our random Fibonacci sequence

as a random walk in R2, where each new matrix added to the product corresponds

to a change in direction. In this new setting, we can use Furstenberg’s formula [30]

(the proof can also be found in Bougerol and Lacroix [11, p. 27–29]), to obtain the

following expression for γf :

γf =

∫
amp(x) dνf (x),

where amp(x) is a smooth function of x which gives the average amplification of x

in the direction x when it is multiplied by A or B and νf (x) is the unique invariant
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probability measure over the directions x for the random walk. The measure of an

interval [a, b] on the real line with −1 /∈ (a, b) can be given as

νf ([a, b]) =
1

2
νf

([
1

−1 + b
,

1

−1 + a

])
+

1

2
νf

([
1

1 + b
,

1

1 + a

])
, (1.12)

and the amp function, in terms of slope m, is

amp(m) =
1

4
log

(
1 + 4m2

(1 +m2)2

)
.

Next, Viswanath makes clever use of the Stern-Brocot tree (which he discovered

independently) to find the invariant measure νf . For an excellent introduction to the

Stern-Brocot tree, see Graham et al. [33, p. 116]. Viswanath used a variation of the

tree, where the nodes are intervals that partition the real line, which represents the set

of all slopes m. The root at depth d = 1 is given by the interval [−∞,∞] =
[−1

0
, 1
0

]
,

with left and right children
[−1

0
, 0
1

]
and

[
0
1
, 1
0

]
respectively. Further, given any node[

a
b
, c
d

]
at depth d ≥ 3, its left and right children are

[
a
b
, a+c
b+d

]
and

[
a+c
b+d

, c
d

]
respectively.

Any interval in the Stern-Brocot tree can be represented by the sequence of L’s and

R’s (lefts and rights in the tree) required to reach it.

Viswanath found simple rules in terms of the Stern-Brocot intervals (sets of direc-

tions) for mapping a direction m to 1
m
, (1 +m) or (−1 +m) (these mappings can be

thought of as Möbius transformations) and used these to write the invariance condi-

tion given in Equation (1.12) as an infinite system of linear equations for νf (I), where

I is a Stern-Brocot interval written in terms of L’s and R’s. He was able to guess the

solution to this system, which gives recursive relations for νf (I) (for different types

of I); this can then be explicitly solved, to give functions of φ. When the invariant

measure is graphed for increasingly small subintervals of R, a self-similar pattern,

repeated at multiple scales, emerges. This is good evidence that the measure νf is a

fractal, and explains the difficulty in computing it.

Viswanath then used Furstenberg’s formula to give upper and lower bounds for

γf as follows:

2
2d∑
j=1

min
m∈Idj

amp(m)νf (I
d
j ) < γf < 2

2d∑
j=1

max
m∈Idj

amp(m)νf (I
d
j ), (1.13)



15

where Idj is the jth Stern-Brocot interval at depth d + 1 of the tree and 1 ≤ j ≤
2d. The upper Lyapunov exponent γf can be computed to any desired accuracy by

finding the upper and lower bounds for large enough d. The problem here lies in

computing capability. Viswanath computed his bounds with d = 28 using floating

point arithmetic and then did a rounding error analysis to show that

0.1239755980 < γf < 0.1239755995.

This implies that the growth rate of a random Fibonacci sequence is almost surely

eγf = 1.13198824 . . .

by Equation (1.11). Furthermore, it is known that the next digit must be an 8 or a

9. Complete details, as well as Viswanath’s program, can be found in [72]. Computer

assisted proofs are not uncommon and Viswanath repeated his computation on two

completely different systems, assuring its validity.

Work has been done to improve Viswanath’s constant as well as the computations

required to obtain it. In 2001, Oliveira and De Figueiredo [59] repeated Viswanath’s

computation using a different and simplified method. They wanted a program that

would be accessible to anyone wishing to reproduce Viswanath’s result on a desktop

machine, as the original computation requires a huge amount of memory. Viswanath

used the inequality in (1.13) with careful floating-point calculations to find upper and

lower bounds, and then confirmed his result using a rounding-error analysis. Oliveira

and De Figueiredo instead used interval arithmetic (also mentioned by Viswanath),

which automatically keeps track of rounding errors, to find upper and lower bounds

of γf as follows:

γf ∈ 2
2d∑
j=1

AMP(Idj ) νf (I
d
j ),

where AMP(Idj ) is an interval containing amp(Idj ). They obtained the following ap-

proximation for eγf :

1.1319882478 ≤ γf ≤ 1.1319882496,

which has the same level of accuracy as Viswanath’s calculation.
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In 2007 Bai [2] extended Viswanath’s constant to 1.1319882487943 . . ., where the

next term is 7, 8 or 9. He used a cycle expansion method for the Lyapunov exponent

γf . In order to use this method he had to map the matrices A and B that Viswanath

used to non-negative matrices, and correspondingly change the probability from 1
2
to

p =
√
5−1
2

= 0.618033989 . . . . The new Lyapunov exponent γ can be used to calculate

the old one from the relation γf = p
2
γ. Bai’s results are numerical. He used the

spectrum of an evolution operator which describes the distribution of vector directions

under the action of random matrices to compute the convergent components. He then

generated an algorithm for cyclic expansion of the spectral determinant that increases

efficiency by removing exponentially converging elements. He also noted that Monte

Carlo experiments (repeated random sampling, as mentioned earlier) are not very

useful, as the convergence is quite slow.

1.5 Lyapunov Exponents and Previous Concepts of Random Sequences

There are very few cases where an exact value for the upper Lyapunov exponent γ can

be determined. It is a very difficult problem and there is no general method known

for deriving these values.

Viswanath considers the case of the random Fibonacci matrices to be a very

natural example where γ can actually be computed. In fact, this is a specific case

of the following example given by Furstenberg [30, p. 1]. “Consider the problem of

determining the asymptotic behaviour of a random sequence {xn} satisfying

xn = αnxn−1 + βnxn−2, (1.14)

where (αn, βn) form a sequence of i.i.d. random vectors. In this case we can write(
xn+1

xn

)
= MnMn−1 · · ·M1

(
x1

x0

)
, Mj =

(
αj+1 βj+1

1 0

)
,

and so the rate of growth of the x is governed by the behaviour of the matrix product

MnMn−1 · · ·M1.” We will call the general sequence defined in Equation (1.14) a ran-

dom Fibonacci-type sequence. (Note that here the terms in the vectors are switched

compared to Equation (1.9), and so the orientation of the matrices is also slightly

different.)
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Chassaing, Letac and Mora [16] have derived the invariant measure νf for several

products of 2× 2 matrices with positive entries. Viswanath [72] gives an example of

such a product of random matrices by choosing ( 1 1
1 0 ) with probability p and ( 0 1

1 1 )

with probability 1− p. In these cases the infinite system which defines the invariance

requirement is triangular, which means that the value of the measure of an interval de-

pends only on intervals at a lesser depth in the Stern-Brocot tree, unlike Viswanath’s

case. Some examples of calculable upper Lyapunov exponents are found in Bougerol

and Lacroix [11, p. 33] and Chassaing, Letac and Mora [16], although Viswanath’s

work is much more closely related to the latter. In particular, Bougerol and Lacroix

consider the matrix product comprised of matrices An = ( 0 1
1 αn

) where αn > 0 with a

specified distribution. This corresponds to the random Fibonacci-type sequence

xn = αnxn−1 + xn−2.

Here the invariant measure can be found using Viswanath’s techniques when αn is

distributed on the positive integers. Viswanath’s random Fibonacci sequence differs

because αn takes on positive and negative values, and it is the only known case with

non-positive αn for which the invariant measure can be found using Stern-Brocot

intervals.

We have mentioned that the ideas behind Viswanath’s random Fibonacci sequence

have roots in the work of Furstenberg [30] and Furstenberg and Kesten [29] on random

matrix theory. This field was initiated by Bellman [7] in 1954, who used the example

of 2 × 2 matrices A and B chosen at random, each with probability 1
2
. Bougerol

and Lacroix give an excellent and detailed account of random matrix theory in [11].

In general, random recurrences have connections to many different areas of study

including dynamical systems, ergodic theory, spectral theory, continued fractions,

statistics and physics. Random recurrences can be thought of as a special case of

random iterated functions. As well as random recurrences, and their corresponding

random sequences, people have also studied random series. Schmuland [65] studied

the behaviour of the random harmonic series. He defined

X :=
∞∑
j=1

εj
j
,
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where εj ∈ {±1} and is chosen independently and randomly with P (+1) = P (−1) =

1
2
. Here E(X) = 0. Schmuland points out the interesting fact that the binary digits of

a number chosen randomly from [0, 1] are equivalent to a sequence of fair coin tosses,

and so can be used to model a random sequence {εj}.
Before Viswanath’s work in 1999 there were several different notions of “random

Fibonacci sequence” along with other similar ideas about trees and growth. In 1979

Cohn [18] considered a free semigroup whose elements are words comprised of symbols

A and B. He generated the group of elements using a binary tree, which he called the

“Markoff tree”, by concatenation as follows. A pair of words (w1, w2) has left child

(w1, w1w2) and right child (w2, w1w2). This bears resemblance to our binary tree T1,

for example, in that the children of each node are obtained by choosing signs + and

−, which can also be represented by matrices A and B. Each node can therefore be

thought of as a matrix product, or a word, made up of A’s and B’s. Cohn’s tree

can be translated to the positive half of the Stern-Brocot tree that was later used

by Viswanath by replacing each word w by (a, b), where a and b denote the number

of times the symbols A and B occur in w respectively. (Cohn makes no mention of

the Stern-Brocot tree.) He points out that the rightmost diagonal of the tree has

“Fibonaccian growth”. He further provides a characterization of all words in the

Markoff tree and also investigates the enumeration of Markoff triples by replacing A

and B by specific matrices and considering the traces of the resulting matrix products.

In 1983, Dawson, Gabor, Nowakowski and Wiens [22] defined three different “ran-

dom Fibonacci-type sequences” (in their words, not according to our definition). First

they consider the sequence of positive integers {xn} where the initial p terms are fixed,

and subsequent terms are generated by taking the sum of q randomly chosen terms,

with replacement, from the list of all existing terms, i.e.,

xn+1 =

q∑
i=1

xki ,

for n > p where the ki are chosen at random from {1, 2, . . . , n}. Next they consider

the case where the ki are chosen without replacement. Among other things, the

expected value of the term xn is studied. Lastly, they consider the sequence {xn}
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generated by

xn+1 = αnxn + βn−1xn−1, (1.15)

where pairs (αn, βn) are chosen independently at random and have finite first and

second moments. Recall that the kth moment of an random variable X is E(|X|k)
(see Tao [68, p. 15]). The moments of xn are considered. Note that this is the same

general form that Furstenberg defined in Equation (1.14), apart from the conditions

on the moments.

Fibonacci famously described his sequence as modeling a rabbit population, and

Hayes [37] jokingly describes the random Fibonacci sequence as modeling a population

of cannibalistic rabbits. Dawson et al. believe that introducing random variables to

the Fibonacci sequence may provide a better model of the growth of certain biological

and physical processes.

Interestingly, in 2002, Ben-Naim and Krapivsky [8] defined two new random

Fibonacci-type sequences quite similar to that described by Dawson et al. [22], al-

though there was no reference to it. Ben-Naim and Krapivsky’s sequences also gener-

ate new terms by addition only, in contrast to the random Fibonacci sequence studied

by Viswanath. The first sequence has x0 = 1 and

xn = xn−1 + xq,

for n ≥ 1, where q is randomly chosen from the set {0, 1, . . . , n − 1}. This forces

x1 = 2, although the rest of the terms are non-deterministic. In a slight variation,

their second sequence has the form

xn = xp + xq,

where both p and q are chosen randomly from the set. The number of possible

sequences increases as n! and n!2 for the two growth models respectively. Also, inter-

estingly, the first model gives monotonically increasing sequences whereas the second

increases only in the average. Ben-Naim and Krapivsky use simple recurrences to find

the asymptotic growth of {E(xn)} for their sequences, and note that the growth of the

sequence {xn} is slower than that of {E(xn)}. Higher order moments are considered

and further, they study the set of all possible sequence values xn for a given n and

find some interesting and complex patterns.
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In 2004, Krasikov, Rodgers and Tripp [46] extend the work of Ben-Naim and

Krapivsky [8] by considering the random sequence

xn = xn−1 + βxq, (1.16)

with β > 0 and q chosen randomly from {0, 1, . . . , n−1} with probability distribution

Pn(q). In particular they consider the case for β = 1, and the case where q has equal

probability of taking on any of the values in {0, 1, . . . , n− 1}, i.e., Pn(q) =
1
n
, where

they find an exact solution for E(xn) and the divergence of the second moment of xn,

i.e., E(x2
n), as functions of n and β. Further Krasikov et al. give conditions on certain

sequences for exponential, linear and an intermediate type of growth.

In 1993, Hope [38] used the same random Fibonacci construction as Dawson et

al. [22] to generate the sequence with x0 = 0, x1 = 1 and

xn = αnxn−1 + βnxn−2,

for n ≥ 2. Here, strictly positive pairs (αn, βn) are chosen randomly from a specified

probability distribution. Hope showed that subject to some conditions on the pairs

(αn, βn) for n ≥ 1, we have

lim
n→∞

1

n
log(xn) = Ψ

almost surely, i.e., the sequence {xn} converges almost surely to a fixed value. (Recall

that Furstenberg and Kesten have shown that the upper Lyapunov exponent almost

surely exists under general conditions.) Moreover, Ψ = E(log(w)), where

w := lim
n→∞

wn = lim
n→∞

α1 +
β1

α2 +
β2

α3 +
β3

...

αn−1 +
βn−1
αn

.

As an example, Hope assumes that βn = 1 for all n and αn ∈ {1, 2}, each chosen with

probability 1
2
. The growth constant Ψ = E(log(w)) is approximated by

1

2n

∑
αi∈{1,2}

log([α1, α2, . . . , αn]) = 0.673,
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where we have used shorthand notation for the continued fraction and we sum over

all possible length n continued fractions with entries 1 or 2, for a given value of n.

Therefore, almost all random Fibonacci-type sequences generated in this way have a

growth rate of e0.673... ≈ 1.960 . . ..

Hope furthermore points out the difference between the growth rate of individual

sequences {xn} and the growth rate of {E(xn)}. In the latter case we must first find

the expected value of the nth term in a random Fibonacci sequence. We can do this

by writing

E(xn) = E(αn)E(xn−1) + E(βn)E(xn−2), (1.17)

and so

lim
n→∞

1

n
log(E(xn)) = log Φ,

where Φ is the positive root of X2 − E(α1)X − E(β1) = 0, provided E(α1) and E(β1)

are finite. The problem with using these ideas on Viswanath’s random Fibonacci

sequence is that one of Hope’s conditions is that αn, βn > 0. In Viswanath’s case

αn, βn ∈ {±1}. If we calculate E(tn) for Viswanath’s sequence, we obtain E(tn) = 0,

since E(αn) = E(βn) = 0.

Prior to this, Chassaing et al. [16, p. 36] and Bougerol and Lacroix [11, p. 166] have

made similar connections between products of random matrices, which may represent

random Fibonacci-type sequences, and simple continued fractions. (Note that the

continued fractions given by Hope are not simple when βn 	= 1 for all n.) Given a

real matrix M = ( a b
c d ) with ad− bc 	= 0, we write its Möbius transformation as

M(m) :=
am+ b

cm+ d
,

where here, m ∈ R ∪∞ is the slope of the vector x mentioned in Viswanath’s work.

(It is easy to check that (M1M2)(m) = M1(M2(m))). Now let {αn, α̃n} be a sequence

of independent pairs of positive random variables with the same distribution and let

Mn :=

(
αn 1

1 0

)(
α̃n 1

1 0

)
=

(
αnα̃n + 1 αn

α̃n 1

)
.

In general it can be shown that the Möbius transformation from a matrix product

defines the continued fraction of the random variables:

(M1M2 · · ·Mn)(m) = [α1, α̃1, . . . , αn, α̃n,m].
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Similarly, if we consider the product matrix comprised of the matrices A and B

defined by Viswanath (oriented slightly differently), we have

(M1 · · ·Mn)(m) = [±1,±1,±1, . . . ,m], (1.18)

as found in Viswanath [72], despite the fact that we are not dealing with positive

matrices. So as n → ∞, the distribution of this random continued fraction is in fact

the distribution νf . Note that for matrices A and B we have

M(m) =
1

m± 1
,

which were the maps defined earlier by Viswanath.

1.6 Generalizations of the Random Fibonacci Sequence

We will now consider some of the many variations and generalizations of the random

Fibonacci sequence that have been studied after Viswanath’s result.

In 2007, Rittaud [64] finds that the growth rate of the expected value of the

non-linear sequence defined by (1.8) is

lim
n→∞

E(F̃n)

E(F̃n−1)
= α− 1 = 1.20556943 . . . ,

where α is the unique real root of α3 − 2α2 − 1 = 0. We could also write α − 1

as limn→∞ E(F̃n)
1
n , using the equivalent definition of exponential growth, although

this converges much more slowly. It is quite remarkable that this growth rate is an

algebraic number of degree 3, since we know nothing about the nature of Viswanath’s

constant, which we can write as limn→∞ E(tn
1
n ). Here we are taking the average

value of the growth rates of all 2n−2 random Fibonacci sequences, whereas Rittaud

took the average value of all 2n−2 terms in the nth position of the random Fibonacci

sequences and then found the growth rate of that average. Rittaud proved his result

by introducing the tree R, which is essentially a reduction of the tree T̃ . He found

the growth rate of the expected value of terms in R, then translated this back to

T̃ . Rittaud also makes note of some of the interesting properties of the tree R, a

tree which he believes no one has previously studied. We will discuss the tree R and

Rittaud’s methods in greater detail in Chapter 5.
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Recall that for p = 1
2
the trees |T1|, |T2| and T̃ in Figure 1.1 are all equivalent

under reorientation of the branches. Theorem 1.3 tells us that the growth rate of

the expected value of nth terms (Rittaud’s result) is the same for the absolute val-

ues of the random Fibonacci sequences defined by Equations (1.6), (1.7) and (1.8)

(corresponding to the three different trees).

Independently of Rittaud, Kalmár-Nagy [43] derived what he calls the “Fibonacci

graph”. It is very similar in structure to Rittaud’s [64] tree R and exhibits the same

interesting properties. He starts with the linear random Fibonacci sequence defined

by Equation (1.7) and considers the vectors (xn−1, xn)
T as points in an integer lattice

(like Viswanath’s [72] random walk description). Noticing symmetry in the lattice, he

reduces his maps to A : (i, j) �→ (j, i+j) and B : (i, j) �→ (j, |i−j|), which is equivalent

to the non-linear definition for the random Fibonacci sequence given in Equation

(1.8). Kalmár-Nagy unfolds the lattice paths to form a graph, with two colors for

directed edges, denoting the two maps. He makes two important observations about

this resulting structure. First, he notices that each pair of coordinates is relatively

prime, which is equivalent to being a visible point in the lattice (i.e., the straight line

connecting it to the origin contains no other lattice points). Further, all relatively

prime pairs (rational numbers) appear. Second he notices the graph is made up of

loops, resulting from the fact that the map A followed by two B’s brings us back to

our starting point. This is the key to Rittaud’s discovery and analysis of the tree R.

Kalmár-Nagy [44] finds an interesting result which is similar to the tree T2 de-

rived from the random Fibonacci sequence given by Equation (1.7). He describes a

“multiset-valued Fibonacci-type recurrence” where, starting with {1} and {1}, each
multiset (each element may occur multiple times) is derived by taking a union (in fact

a multiset sum because we have repetition) of the Minkowski sums and differences of

the previous two multisets. In other words, if we were given the multisets τn−1 and

τn, we would take the union of all possible pairwise sums and differences occurring

between two rows, not just between parent and grandparent. Kalmár-Nagy cleverly

derives a closed-form generating function that characterizes the multisets and uses

this to show that the growth rate of the geometric mean (in absolute value) of the

multisets is
√
φ = 1.272019649 . . ., where φ is the golden ratio.
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In 1999 Embree and Trefethen [24] generalized Viswanath’s random Fibonacci

sequence by incorporating the parameter β as follows:

xn = xn−1 ± βxn−2, (1.19)

where x0 = x1 = 1 and the ± sign is chosen with p = 1
2
. (They consider this a

generalization of the case where both signs are chosen independently with p = 1
2
.)

This idea was motivated by the fact that when β = 1
2
, the sequence {xn} almost

surely decays exponentially at the rate 0.929, as opposed to Viswanath’s exponential

growth rate of 1.1319 . . . when β = 1. They used random matrix products comprised

of A =
(
0 1
β 1

)
and B =

(
0 1
−β 1

)
.

Embree and Trefethen considered two different methods, the first of which was

Monte Carlo experimentation for large n. They refined their results by copying the

method Viswanath used, i.e., viewing the random recurrence as a Markov chain and

finding the associated invariant measure. (Note that for β = 1 Viswanath found

an exact expression for the invariant measure of an interval whereas Embree and

Trefethen approximated the measure numerically.) What they showed was that given

β∗ ≈ 0.70258, the sequence defined by Equation (1.19) grows exponentially almost

surely for β > β∗, and almost surely decays exponentially for β < β∗. This constant

has been referred to as the “Embree-Trefethen constant” (see the Online Encyclopedia

of Integer Sequences, [67, A118288]). They call the growth rate associated with β

the “Lyapunov constant”, denoted the function by σ(β). Furthermore, the value of

β resulting in the maximum rate of decay is estimated to be 0.36747, giving a decay

rate of 0.8951. Interestingly, a plot of β versus the growth rate appears to be fractal

in nature. They further considered the asymptotic behaviour of σ(β) as β → 0 and

β → ∞, and give the first couple of terms in the expansion. Embree and Trefethen

point out that the recurrence

xn = αxn−1 ± βxn−2,

can be reduced to Equation (1.19) via a simple substitution.

In their closing remarks, they suggest considering the sign changes in a random

Fibonacci sequence and define the sign-flip frequency, f(β), to be the proportion of

values xn with xnxn−1 < 0 as n → ∞. They also mention the possibilities of p 	= 1
2
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for sign choices, replacing the choice of coefficients {−β, β} by the points {eiθβ} on

a complex circle with uniform probability distribution (in which case no value of β

results in decay) and increasing the number of terms in the recurrence.

In 2005 Makover and McGowan [53] made two contributions to the theory of

random Fibonacci sequences, both of which were made using binary trees to represent

our set of possible sequences. Their first result is that {E(|tn|)} grows exponentially;

specifically

1.12095 ≤ (E(|tn|)) 1
n ≤ 1.23375, (1.20)

where tn is Viswanath’s random Fibonacci sequence. Recall that Rittaud [64] later

finds and exact value for this growth rate. Note that if they considered the sequence

{E(tn)}, they would have, by linearity of expectation,

E(tn) = E(±tn−1) + E(tn−2)

=
1

2
(tn−1) +

1

2
(−tn−1) + E(tn−2) = E(tn−2)

= E(tn−4) = · · · = E(t1) or E(t2) = 1.

Note the difference between this expected value and that given by Equation (1.17)

for Viswanath’s case of two ± signs. The latter gives E(tn) = 0, whereas in the case

of one ± sign we obtain E(tn) = 1.

The proof of their result is completely elementary. Makover and McGowan start

with a general term a having children b1 and b2, and consider the next levels of the

binary tree. Left and right children are given by the absolute value of the sum and

difference, respectively, of the parent and grandparent. By taking the absolute values

of terms while generating the tree, a reorientation of the leaves occurs (as opposed

to taking absolute values after the tree is generated as in |T1|) and the mean is not

affected. This idea was further explained in Section 1.3. Also recall that we could have

placed the ± sign in front of tn−2 or both tn−1 and tn−2 with equal results. Considering

absolute values, Makover and McGowan were able to find upper and lower bounds for

the sum of a’s great-grandchildren. Further, they found nice recurrence inequalities

in the sums of the rows, S(n), for these upper and lower bounds:

4S(n− 3) + S(n− 2) + S(n− 1) ≤ S(n) ≤ 4S(n− 3) + 2S(n− 2) + S(n− 1).
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The equations 4S(n− 3) + S(n− 2) + S(n− 1)− S(n) = 0 and 4S(n− 3) +

2S(n−2)+S(n−1)−S(n) = 0 have the corresponding irreducible cubic polynomials,

x3 − x2 − x− 4 = 0 and x3 − x2 − 2x− 4 = 0, which when solved determine bounds

on the growth rate of S(n). Dividing by 2 gives the bounds on the growth rate of the

expected value of (|tn|) given in (1.20).

A similar tree is constructed for the recurrence

xn = ±βxn−1 + xn−2, (1.21)

and again the sum of the great-grandchildren of a is considered. Notice that we can

instead use the recurrence in Equation (1.19), given by Embree and Trefethen [24],

which is equivalent when considering |xn| for p = 1
2
. Since this work of Makover

and McGowan is based on that of Embree and Trefethen, we will continue to use the

coefficient β, rather than use our convention of α for the first coefficient. Considering

the different configurations of absolute values, there are six possible sums for the

great-grandchildren of a, only one of which contains a subtraction, and so is the only

option where exponential decay is possible. The restriction imposed on β implies

that decay can only occur for β2 < 1
2
, i.e., β < 1√

2
≈ 0.7071 . . . . This is very close to

Embree and Trefethen’s critical value for which exponential decay can occur, namely,

0.70258 . . . .

The difficulty in computing Viswanath’s constant lies in the fractal nature of the

invariant measure required for Furstenberg’s formula. In 2000, Wright and Trefethen

[75] studied the random Fibonacci-type sequence

xn = xn−1 + βnxn−2, (1.22)

where the βn are independent, normally distributed coefficients. In this case the

corresponding invariant measure becomes piecewise smooth, and hence much easier to

deal with. Approximations to the Lyapunov exponent are calculated and Richardson

extrapolation is used to improve the accuracy. Wright and Trefethen showed that the

sequence defined by Equation (1.22) almost surely grows exponentially at the rate

1.0574735537 . . . . Using the same method, they showed that the sequences defined by

xn = αnxn−1 + xn−2,
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where the αn are also independent, normally distributed coefficients, and

xn = αnxn−1 + βnxn−2

have almost sure growth and decay rates of 1.1149200917. . . and 0.9949018837. . . res-

pectively.

Sire and Krapivsky [66], like Embree and Trefethen [24], study Equation (1.19).

They make the interesting note that for β < 0.70258, although we have exponential

decay for the sequence {|xn|}, we have that the expected value is constant, and

further, the expected values of the higher order moments grow exponentially. Sire

and Krapivsky used perturbation theory and the Riccati variable

Rn =
xn+1

xn

to extend Embree and Trefethen’s [24] asymptotic expansion of σ(β). (They do this in

terms of the Lyapunov exponent log(σ(β)) rather than the growth rate σ(β).) They

showed that when β < 1
4
the Lyapunov exponent is an analytic function of β and

obtain exact non-perturbative results for the β = 1 case. Sire and Krapivsky also

considered the random Fibonacci-type sequence generated by

xn+1 = xn + cβnxn−1,

where the βn are independent and normally distributed random variables (like that

studied by Wright and Trefethen [75]). They again used perturbation theory to give

asymptotic expansions of log(σ(β)).

In [3], Bai uses the transfer matrix approach, which comes from statistical physics,

to compute Lyapunov exponents. The leading eigenvalue of the transfer matrix (re-

lated to the Lyapunov exponent) is of particular interest, and this method gives a

more theoretical understanding of the convergence occurring as a result of the meth-

ods in Bai [2]. In particular Bai considers the random Fibonacci sequence studied

by Embree and Trefethen [24] and Sire and Krapivsky [66] (see Equation (1.19)). He

improves some results for β ≤ 1
4
, including extending the coefficients of the analytic

function for log(σ(β)) with β < 1
4
found in Sire and Krapivsky [66]. Bai introduces

and studies a generalized Lyapunov exponent, τ(q), which is defined as the growth
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rate of the log of the ensemble average (expected value) of the nth term |xn|q for all

sequences, i.e., he studies the moments. This quantity takes into account the whole

spectrum of sequence behaviour, not just the most probable.

1.7 Changing the Probability, and Further Generalizations

We have considered the general random Fibonacci-type sequence, where terms have

coefficients αn and βn which are chosen according to some probability distribution.

It is possible for αn to be chosen, for example, from a set of two integers which have

unequal probabilities of being selected.

Results analogous to Viswanath’s case exist when P (+), P (−) 	= 1
2
. Recall that

this is an unsigned Bernoulli distribution. We could think of flipping a biased coin for

instance, where P (+) = p and P (−) = q = 1 − p. There is a major difference here,

however. When p 	= 1
2
, the distributions of our three positive sequences, as described

in Theorem 1.2, no longer remain equal. The trees are generated the same way but

in this case each branch is not equally likely to occur as it was for p = 1
2
. As a result,

the expected value of a term in the nth row is no longer simply the mean value of all

terms. We must consider the edges of our trees to be weighted. Let T̃ (p, 1) denote

the tree T where P (+) = p. (The 1 denotes a generalization of coefficients which we

will soon see.)

Example 1.2. Consider the tree segments in Figure 1.3, which occur in the fourth

row of the full binary trees. Negative entries in trees T1(p, 1) and T2(p, 1) can cause
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Figure 1.3: Tree segments with weighted edges.

left and right children to be switched compared to T̃ (p, 1). This can be seen when we
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compare the positive tree |T1(p, 1)| in Figure 1.3(b) with the tree T̃ (p, 1) in Figure

1.3(c). This permutation of entries changes the distribution of paths in the tree; for

example in |T1(p, 1)| the branch (1, 1, 0) occurs with probability p, whereas in T̃ (p, 1)

it occurs with probability 1 − p. Also, the expected value of row 2 of |T1(p, 1)| is
E(R2) = 0p+ 2(1− p) = 2− 2p and for T̃ (p, 1) we have E(R2) = 2p+ 0(1− p) = 2p.

We have proved in Theorem 1.3 that Equations (1.6) and (1.7) give sequences (in

absolute value) with growth rates equal to Viswanath’s constant, when p = 1
2
and

that Equation (1.5) also defines a sequence with the same growth rate. When we

change the probability, it is not necessarily true that these variations of the random

Fibonacci sequence all behave the same way. Furthermore, the techniques used by

Viswanath to evaluate γf do not seem to carry over to this case. We can now think

of the Lyapunov exponent as being a function of p, which we will denote γf (p). A

result of Peres [60] implies that this function is real and analytic. This may be an

indication that there exists a short analytic description of γf , but because γf is related

to a fractal, this seems unlikely.

Consider the random Fibonacci sequence given by Equation (1.5), namely

tn = ±tn−1 ± tn−2,

where we choose + with probability p, and each sign is chosen independently. Viswan-

ath shows that γf (p) is increasing on [0, 1]. However, Hayes [37] states that numerical

results showed that adding a bias, whether toward + or −, did cause an increase in

growth rate. It appears that for equal probabilities, the growth rate is minimized

at 1.13198824. . . , i.e., min(γf (p)) occurs at p = 1
2
, and increasing the bias increases

the growth rate up to 1.618033898. . . , which corresponds to all-plus or all-minus se-

quences. This seems to contradict the fact that Viswanath claimed γf (p) is increasing.

The problem lies in which definition of the random Fibonacci sequence we are looking

at. Consider the following example.

Example 1.3. Let p = 0 so that we choose the − sign each time and our sequences

are deterministic. First consider the sequence obtained from Viswanath’s original

formulation in Equation (1.5):

tn = −tn−1 − tn−2.
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Letting t1 = t2 = 1, we can calculate the sequence as follows:

1, 1,−2, 1, 1,−2, . . . ,

where the sequence repeats after 3 terms and does not grow exponentially. Here

γf (0) = 0, which is the minimum value. This is in agreement with Viswanath’s

description of an increasing function γf (p).

Now if we consider the sequence obtained from Equation (1.6),

tn = −tn−1 + tn−2,

we get

1, 1, 0, 1,−1, 2,−3, 5,−8, . . . ,

which clearly has growth rate φ, and γf (0) = log(φ). This agrees with Hayes’ note

that we have max(γf (p)) for p = 0, 1. Furthermore, if we consider Equation (1.7) we

get

fn = fn−1 − fn−2,

which gives the sequence

1, 1, 0,−1,−1, 0, 1, 1, . . . ,

which again repeats and has γf (0) = 0. This is in fact the linear case considered by

Janvresse et al. [40]. Interestingly, they study properties of the functions γf (p) and

γ̃f (p) (corresponding to the recurrences in Equations (1.7) and (1.8) respectively) and

show that the former function of p is increasing, which agrees with the growth of the

previous sequence.

In [40], Janvresse et al. have shown that in the linear case, for 0 < p ≤ 1, the

sequence {fn} grows exponentially at an almost sure rate given by the increasing

function

γf (p) = lim
n→∞

1

n
log |fn| =

∫ ∞

0

log x dνα(x),

where α is an explicit function of p and να is an explicit probability distribution on

R+. In the non-linear case {f̃n} grows exponentially according to the same almost
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sure expression with a different function α for 1
3
≤ p ≤ 1. For 0 ≤ p ≤ 1

3
, the largest

Lyapunov exponent, γ̃f (p), is zero, i.e.,

γ̃f (p) = lim
n→∞

1

n
log f̃n = 0,

and so {f̃n} has growth rate 1. For (1
3
, 1], the function γ̃f (p) is increasing.

Janvresse et al. make use of the reduction of random Fibonacci sequences given in

Rittaud [64], rather than use Furstenberg’s formula, as was done by Viswanath [72].

(The difficult part here lies in the determination of Furstenberg’s invariant measure.)

We mentioned that Rittaud constructed a subtree R of T̃ in the non-linear case (or

T2 in the linear case) which removes repetition. This was done by observing the fact

that in T̃ , following a path RRL will bring you back to the same edge. In T2, a similar

repetition is uncovered, except here we must take negative values into account. In

terms of matrices we have

ABBB = −A,

ABBA = −B.

(Note that these matrices, A = ( 0 1
1 1 ) and B = ( 0 −1

1 1 ), are slightly different from

Viswanath’s because here Janvresse et al. are using Equation (1.7) rather than Equa-

tion (1.6), i.e., their ± sign belongs to the second term. Also Janvresse et al. use right

multiplication, while Viswanath uses left. This will be discussed further in Chapter

2.) This tree R will be extensively studied in Chapter 5.

After deleting sequences of R’s and L’s (or equivalently, A’s and B’s), Janvresse

et al. study the survival probability of a term R, and the probability distribution of

reduced sequences, i.e., branches in the tree R, which lead to two different functions

α(p) for the linear and non-linear cases. Branches of the tree R are divided into

right steps (R) and elbows (RL) and interestingly, this decomposition defines the

continued fraction given by the ratio of the final two nodes (for some finite branch

length). A similar and nice connection between the Stern-Brocot tree and continued

fractions is given in Graham et al. [33, p. 305]. Here, a sequence of L’s and R’s in

the Stern-Brocot tree determines the partial quotient of the continued fraction of the

rational number reached. The above decomposition also aids in the construction of
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the Stern-Brocot intervals, on which the probability distribution να, which is required

for computation of the Lyapunov exponents γf (p) and γ̃f (p), is defined.

In [42], Janvresse et al. generalize the results in their paper [40] by introducing a

coefficient α, to obtain the sequences

fn = αfn−1 ± fn−2, (1.23)

f̃n = |αf̃n−1 ± f̃n−2|,

for the linear and non-linear cases respectively. We still have that each ± sign is

chosen independently and + is chosen with probability p. Janvresse et al. call this

generalization a (p, α)-random Fibonacci sequence. This is a special case of the ran-

dom Fibonacci-type sequence, defined earlier. The previous discussion of [40] by

Janvresse et al. concerned (p, 1)-random Fibonacci sequences, and Viswanath’s case

deals with (1
2
, 1)-random sequences.

Using the methods from [40], Janvresse et al. have shown that for the special case

of α = λk = 2 cos(π/k) with integer k ≥ 3, the upper Lyapunov exponent for {|fn|}
(i.e, the log of the growth rate) for p ∈ (0, 1] is almost surely positive and given by

γf (p, λk) = lim
n→∞

1

n
log |fn| =

∫ ∞

0

log x dνk,ρ(x) > 0,

where ρ is an explicit function of p which is dependent on k, and νk,ρ is a probability

distribution defined on generalized Stern-Brocot intervals. Here we have extended

the upper Lyapunov exponent from γf (p) to γf (p, α) to denote the new coefficient.

(Note that γf (
1
2
, α) is a Lyapunov exponent like log(σ(β)), except the placement of

the coefficient differs.) In the non-linear case we have a similar result for the growth

of {f̃n}. For p ∈ ( 1
k
, 1], the Lyapunov exponent γ̃f (p, λk) is given by the same integral

expression, with a slightly different ρ. These results are valid for any positive initial

values f1, f2 and f̃1, f̃2. In fact, for p ≤ 1
k
, the behaviour of {f̃n} strongly depends on

these initial values.

For α ≥ 2, the linear and non-linear cases are essentially the same because for n

large enough we do not need to take absolute values, and it is much easier to determine

the exponential growth. We arrive at a similar expression for the Lyapunov exponent,

where a different type of probability measure μp,α is used.



33

The connection between random Fibonacci sequences and continued fractions (as

seen in Janvresse et al. [40]) still holds for λk, and a special type of continued frac-

tion — the Rosen continued fraction — is used. Here partial quotients (of α-Rosen

continued fractions) have the form anα for an ∈ Z\{0} and 1 ≤ α < 2. It is shown

that positive real numbers having a finite α-Rosen continued fraction give endpoints

on the generalized Stern-Brocot intervals.

Janvresse et al. note that in the non-linear case, for λk and 0 ≤ p ≤ 1
k
, there exists

almost surely a bounded subsequence {f̃nj
} of {f̃n} . Further, they state necessary

and sufficient conditions for the sequence {f̃n} to be ultimately periodic. (In Chapter

2, for the λk = 1 and p = 1
2
case, we will again run across bounded subsequences

and conditions for periodicity.) Also, if we choose p = 0 in the linear case for λk, we

obtain a period-k sequence {|fn|}. For p = 1, in either the linear or the non-linear

case, our sequence is again deterministic and grows exponentially with rate

γf (1, α) = γ̃f (1, α) = log

(
α +

√
α2 + 4

2

)
.

The p = 1 case means we are choosing + at every step, so for α = 1 it makes sense

that our Lyapunov exponent is log
(

1+
√
5

2

)
= log φ.

It is important to note that the even more generalized sequence given by

fn = αfn−1 ± βfn−2

can be reduced to Equation (1.23) by instead considering the sequence {gn} =
{

fn
βn/2

}
,

and similarly for the non-linear case. Embree and Trefethen [24] study a very similar

random Fibonacci sequence, given by Equation (1.19), for p = 1
2
. We can rescale their

sequence using α = 1√
β
to obtain that of Janvresse et al. in (1.23) , but the exponential

growth is not preserved. Embree and Trefethen showed that their sequence decays

exponentially for β < β∗ ≈ 0.70258. This corresponds to α > 1.19303. Janvresse et

al. also consider the sign-flip frequency introduced by Embree and Trefethen.

The third paper we consider by Janvresse et al. [41], extends ideas in Rittaud [64]

by considering the growth of the expected value of (p, α)-random Fibonacci sequences

for the non-linear case. Suppose we have pc = (2− λk)/4 where α = λk = 2 cos(π/k)

with k ≥ 3, andmn is the expected value of the nth term of a (p, λk)-random Fibonacci
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sequence, where p ∈ [0, 1]. (Note that if k = 3, we have λk = 1.) Then, if p > pc,

lim
n→∞

mn+1

mn

= αk(p)

(
1 +

pqk−1

αk(p)k

)
> 1,

where αk(p) is the only positive root of the order-2k polynomial

Pk(X) := X2k − λkX
2k−1 − (2p− 1)X2k−2 − λkpq

k−1Xk−1 − p2q2k−2.

Furthermore, if p = pc, then the sequence grows at most linearly and if p < pc the

sequence is bounded. It is easily verified that for k = 3 and p = 1
2
we obtain the

result of Rittaud [64], namely, a growth rate of 1.20556943 . . . . As in Janvresse et al.

[42] the case for α ≥ 2 and 0 < p ≤ 1 can also be considered, giving

lim
n→∞

mn+1

mn

=
α +

√
α2 + 4(2p− 1)

2
.

To prove these results we need to make use of the generalized tree T̃ (a,b)(p, α),

which has positive initial nodes a and b, and is derived from a (p, α)-random Fibonacci

sequence. (Recall the tree T̃ (p, 1) discussed earlier and note that T̃ (1,1)(1
2
, 1) = T̃ .) A

similar tree was considered by Makover and McGowan [53] for p = 1
2
using Equation

(1.21). The probability p 	= 1
2
gives us (unequally) weighted edges. Given a node z

with parent y, its left and right children are |αz−y| and αz+y respectively. Absolute

values are taken at each step, as with Makover and McGowan’s tree.

The result for the α ≥ 2 case is much easier to prove. For example, if b ≥ a, we

have that z ≥ y, i.e., all children are greater than their parents. This removes the need

for absolute values in the tree and a linear second order recurrence for the sums of rows

(and hence, expected values) is straightforward to derive. For the λk case, Janvresse

et al. found that the results of Rittaud [64] concerning properties of R generalized in

a very natural way to the corresponding subtree R(a,b)(p, λk) of T̃ (a,b)(p, λk). As in

[64], the sums of rows of R(a,b)(p, λk) will be considered, rather than sums of rows of

T̃ (a,b)(p, λk). Sums in the latter tree can be approximated by partitioning T̃ (a,b)(p, λk)

into infinitely many copies of the tree R(ls+1,ls+2)(p, λk). Here the initial nodes ls+1

and ls+2 are consecutive nodes in the leftmost branch of T̃ (a,b)(p, λk), i.e., the entries

in the sequence obtained by taking differences only. We will look at this idea in much

more detail in Chapter 5).
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We have seen that in Janvresse et al. [42] the linear case was more difficult to deal

with than the non-linear case. The same holds true for our expected values. In fact,

no results exist for the linear case although it is suspected in Janvresse et al. [41] that

similar methods to those contained in this paper may work. Janvresse et al. point

out that numerical evidence for the growth rate of the expected value of a random

Fibonacci sequence is difficult to obtain!

In [4], Bai uses the transfer matrix approach to study the linear and non-linear

(p, 1)-random Fibonacci sequences given by Janvresse et al. in [41]. He shows that

there exists a critical value q∗, under which the ensemble average of |xn|q is almost

surely non-increasing or linearly increasing, and above which the average is almost

surely growing exponentially. This number q∗, as well as the generalized Lyapunov

exponent τ(q) (growth rate of the logarithm of a moment) can be calculated using the

transfer operator method. Furthermore, if q is a positive integer, τ(q) can be exactly

determined by a system of polynomial equations. Janvresse et al. determined τ(1)

analytically for the non-linear model, and left the linear model as an open question,

where Bai has found results for both models for q ≥ 1. He also generalizes these

ideas to the case of (p, α)-random Fibonacci sequences with coefficient λk considered

by Janvresse et al. [41]. Bai maps the standard matrices A and B to non-negative

matrices using the reduction method employed by Janvresse et al. [41] and Rittaud

[64].

Lan [48] and Cureg and Mukherjea [21] look at the growth rates of random

Fibonacci-type sequences with p 	= 1
2
, as well as the generalization with coefficient β

given by Embree and Trefethen in Equation (1.19), using numerical methods. Both

papers looked at the Lyapunov exponent and/or growth rate as a function of β or p.

Lan uses a generating function to represent the distribution of direction vectors at

each step and makes use of an operator on these functions. The Lyapunov exponent

is then represented as a linear functional of a generating function. A new numerical

scheme is then used to obtain results. He avoids the need to approximate the fractal

measure by using functional iterations which are made smooth. His technique can be

applied to random sequences with a one-step memory (in our case using the prod-

uct of random matrices), and improves the efficiency of previous methods. It may
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be possible to extend it to sequences with a two-step memory, but anything larger

would not be computationally feasible. Lan also considers a coefficient β which is

chosen at random from a continuous distribution. He generates figures depicting the

dependence of the Lyapunov exponent on the parameters, and also gives asymptotic

expansions of log(σ(β)), as was done by Embree and Trefethen [24] and Sire and

Krapivsky [66].

Cureg and Mukherjea follow the method of Embree and Trefethen, and use Fursten-

berg’s formula to study Lyapunov exponents. Since there is no known closed form for

the invariant measure when p 	= 1
2
, Cureg and Mukherjea discretize the measure and

use numerical methods to evaluate invariant measures and Lyapunov exponents as

functions of p and β, giving numerous figures as illustration of their results. Changes

in smoothness of the invariant measure can be noted in different cases. They also

look at the constant γf (p) for the Equations (1.6) and (1.7). (Recall that Viswanath

only considered this constant, which was shown to be a smooth function of p by Peres

[60], for Equation (1.5), which has two choices of ±.) They give evidence that when

β ≥ 1, the growth rate, γf (p, β), is always greater than 1, regardless of the value of p.

For β < 1, it seems there is a critical value of p at which the sequence neither grows

nor decays, similar to Embree and Trefethen’s constant β∗. The paper gives a very

excellent and well-written overview of Viswanath’s problem and some of the further

work done.

Chan [14] considers another random Fibonacci-type sequence, given by x−1 = 0,

x0 = 1, a0 = 0 and

xn = 2anxn−1 + 2an−1xn−2, (1.24)

where {an} is an infinite sequence with an ∈ N for n ≥ 1. He starts with a randomly

chosen γ ∈ [0, 1), and writes a continued fraction in the following form:

γ =
2−a1

1 +
2−a2

1 +
2−a3

1 +
. . .

.

The sequence {an} then gives the exponents of the coefficients in the recurrence given

in Equation (1.24). He uses continued fractions and ergodic theory to prove that the
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growth rate of {xn} is

lim
n→∞

xn

1
n = e1.30022988...

for almost all γ ∈ [0, 1),

Ergodic theory is a mathematical theory similar to chaos theory, which was devel-

oped by Birkhoff, von Neumann, Khinchin and others, and is based on 19th century

physics. Essentially, it says that given a dynamical system subject to certain condi-

tions, with some physical quality P , the time average of P and the space average of

P are the same (Chan [14]). Random sequences can be thought of as being generated

by certain dynamical systems, for example, Chan’s dynamics on continued fractions

([14]).

Chan’s result is actually a generalization of the following theorem due to Lévy

[52]. If we again consider a randomly chosen γ ∈ [0, 1), and associate with it the

infinite sequence {αn} of natural numbers obtained from the continued fraction

γ =
1

α1 +
1

α2 +
.. .

,

then the random Fibonacci-type sequence defined by x−1 = 0, x0 = 1 and

xn = αnxn−1 + xn−2

has “growth constant” (upper Lyapunov exponent)

lim
n→∞

1

n
log xn =

π2

12 log 2
= 1.186569110 . . . (1.25)

for almost all γ. Chan notes that this theorem of Lévy is hard to generalize and

requires an analytical closed form of the invariant measure of the random recurrence.

Chan [15] generalizes the results of his paper [14] by considering the random

Fibonacci-type sequence defined by x−1 = 0, x0 = 1, a0 = 0 and

xn = kanxn−1 + (k − 1)kan−1xn−2,
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where again {an} is an infinite sequence of natural numbers generated by the contin-

ued fraction

γ =
k−a1

1 +
(k − 1)k−a2

1 +
(k − 1)k−a3

1 +
. . .

,

for γ ∈ [0, 1) and a fixed k. Chan uses the same method as in [14] to prove that

lim
n→∞

1

n
log xn = ck

∫ 1

0

log(1/γ)

(1 + (k − 1)γ)(k + (k − 1)γ)
dγ,

where ck is a function of k. For k = 2 we obtain the case given in [14]. We can note

that in this case we obtain the integral

ck

∫ 1

0

log(1/γ)

(1 + γ)(2 + γ)
dγ,

where ck =
1

log(4/3)
. This integral can be evaluated using Maple, for example, as

ck

(
π2

12
+ Li2

(
3

2

))
,

where Li2 is the dilog function, defined by

Li2(z) :=
∞∑
k=1

zk

k2
=

∫ z

1

log t

1− t
dt.

Note that Li2(1) = ζ(2) = π2/6 and that this number also appears in Equation (1.25)

in Lévy’s result.

Another way to generalize the random Fibonacci sequence is to take sums of more

than two terms, as described in Hayes [37]. In the non-random case, the sequence

defined by F1 = 0, F2 = F3 = 1 and

Fn = Fn−1 + Fn−2 + Fn−3

for n ≥ 4 is known as the “tribonacci sequence”:

0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, . . . .
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It has growth rate 1.83929 . . ., which is the unique positive root of x3−x2−x−1 = 0.

The analogous fourth order Fibonacci recurrence gives us the “tetrabonacci” sequence

and has growth rate 1.92756 . . . . In general, the kth order Fibonacci recurrence, which

defines the “k-nacci” sequence, is given by

Fn = Fn−1 + Fn−2 + · · ·+ Fn−k, (1.26)

where initial values are F1 = F2 = · · · = Fk−2 = 0 for k ≥ 3, Fk−1 = Fk = 1. As k

goes to infinity (where n > k), we are summing all terms in the sequence to get the

next one as follows:

Fn = Fn−1 + Fn−2 + · · ·+ F1,

where we have an infinite number of 0’s followed by two 1’s as initial values. For all

of these extended Fibonacci cases, we can still think of the sequence as starting with

1, 1. This sequence, the “polynacci sequence” simply gives powers of 2, and hence 2 is

the growth rate. As in the regular Fibonacci case, these growth rates hold regardless

of the initial values.

If we randomize these sequences, each addition is replaced with±, with probability

1
2
of choosing either + or −. Numerical experiments show that for the random tri-

bonacci sequence, the growth rate is approximately 1.22 and the random tetrabonacci

sequence has growth rate 1.27. It appears that the growth rate increases slowly as we

add more terms. Finding the growth rate of the limiting case, the random polynacci

sequence defined by

tn = ±tn−1 ± tn−2 ± · · · ± t1, (1.27)

was in fact Viswanath’s original problem. He was dealing with random triangular

matrices with subdiagonal entries having value ±1 with probability 1
2
. Each time we

generate a new term, we must randomly choose a sign for all previous terms in the

recurrence. Numerical results show that the growth rate of this sequence (in absolute

value) is approximately 1.32. Due to the problem’s difficulty he turned to the two-

termed case instead. We can also think of this polynacci recurrence as the random

series

tn =
n−1∑
i=1

αiti,



40

where each αi is chosen from {1,−1} with equal probability for every tn term gener-

ated.

1.8 Applications and Open Questions

There are numerous applications of random matrix products and random Fibonacci-

type sequences in a wide range of fields. Problems in one-dimensional disordered

systems often reduce to determining the asymptotic properties of products of random

matrices, for example, one-dimensional random Ising models (deals with ferromag-

netism in statistical mechanics), randomly coupled harmonic oscillators, quantum

mechanics of an electron in a one-dimensional disorder potential. Products of ran-

dom matrices have also been widely used to model discrete stochastic processes such

as the evolution of population or investment strategy (Bai [3]). Further, the Lya-

punov exponent is a statistical quantity of great physical significance. For example,

the mean free energy of a random Ising chain is given by the Lyapunov exponent γ,

while the localization length of a wave in a random medium is equal to γ−1 (Bai [2]).

In general, the calculation of Lyapunov exponents presents a considerable numerical

challenge in practice.

Furstenberg and Kesten’s work on random matrices has led to new uses of glass,

new laser technology and even the development of copper spirals in birth control de-

vices. The theoretical research leading to these applications earned the Nobel Prize

for three physicists (Anderson, Mott and van Vleck) in 1977 for their work on “elec-

tronic structure of magnetic and disordered systems”. Disordered systems are found

in non-crystallic materials that have irregular atomic structures. Anderson’s contri-

bution to this work was Anderson localization — when a current is passing through

a semi-conductor containing impurities, the current will stay localized at certain en-

ergies, rather than dispersing. Similarly, with the irregular molecular structure of

glass we might expect that light rays will bounce around randomly causing a blurred

image, but this does not happen. The repeated random movements actually lead to

orderly behaviour of the light ray inside the glass (Devlin [23]). This is the same

behaviour we see in the random Fibonacci sequence.

Random Fibonacci sequences have connections to other areas of mathematics
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apart from random matrix theory. We have seen that our matrices A and B can be

seen as Möbius transformations of the complex plane. Also the random walk on slopes

m can be thought of as a random dynamical system. Random sequences aid modeling

in a variety of areas such as technology, sociology and economics, and examples

include modeling transport on a network and income distribution. In particular,

random Fibonacci-type sequences are similar to problems that arise when dealing

with one-dimensional disordered systems (Krasikov et al. [46]).

Random sequences and even random Fibonacci-type sequences are of growing

interest in physics and other applied sciences. As Colman and Rodgers [19] point out,

they may be used to “model disordered systems with non-deterministic behaviour,

such that after an initial amount of time there are a number of possibilities (with

attached probabilities) for the states of the system”. Statistical mechanics has used

random networks to model complex phenomena, and random sequences with similar

properties to the networks have become a useful area of study.

Colman and Rodgers use random sequences in their study of the example of an

electrical network taking the form of a binary tree. Each node has one child with

probability p and two children with probability 1 − p. He assumes each edge has

resistance 1Ω and at n levels all vertices can be connected. He considers the total

resistance Rn at level n as a function of p. Interestingly, it must be taken into account

that when edges with resistances a and b are connected in series, total resistance is

give by R = a+b, and total resistance across two parallel edges is given by R = 1
a
+ 1

b
.

Colman and Rodgers are interested in the expected value of the sequence Rn as well

as higher order moments.

The sequence given by Equation (1.16) is analogous to a localization problem

described by a discretized Schrödinger equation on a line with asymmetric hopping

rates of particles. The movement of electrons on the physical system is such that at

each time step, a particle can either hop to its left with rate β or to its right with rate

1. If it hops to its left, it will always hop to the same fixed location, chosen according

to a probability distribution. If it hops to its right, it will always be to the nearest

neighbour.

Devlin [23] points out about Viswanath’s work that “An easily understood, cute,
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counter-intuitive result about elementary integer arithmetic can motivate a great

many individuals to take a look at an area of advanced mathematics full of deep and

fascinating results.” An often overlooked application of a neat mathematical result

such as this one is that it attracts people to study the area.

In the papers discussed throughout this chapter, there remain some open questions

on the generalization of random Fibonacci sequences. Janvresse et al. note that for

Equation (1.5), Viswanath’s original random Fibonacci sequence with two choices

of sign, the problem is not equivalent to that discussed in Janvresse et al. [40] (one

choice of ± sign) when p 	= 1
2
, and no explicit formula for the Lyapunov exponent

is known. In Janvresse et al. [41] the question of two coins alternately tossed, one

with probability p the other with probability p′ is posed. They also consider applying

a deterministic rule, such as an irrational rotation around the circle. Further they

suggest the study of the variance or other higher order moments for a general p. They

even speculate that there is a connection between random Fibonacci sequences and

hyperbolic geometry.

Rittaud [64] suggests defining a random Fibonacci sequence by letting

β = (e2iπ/p)Z(w),

where Z is a random variable taking values in {0, . . . , p−1}, or some similar variation.

This would result in p-ary trees rather than binary trees. He also suggests generalizing

to a third order random Fibonacci-type sequence such as

gn = |αgn−1 ± βgn−2 ± γgn−2|.

He briefly explores a connection between continued fractions and random Fibonacci

sequences. Convergents to the continued fraction of an irrational number give finite

walks in the tree R, and the irrational number can be thought of as a limit walk in

R. The limit walks may be connected for quadratic irrationals with the same contin-

ued fraction period. (This continued fraction connection is similar to that found in

Graham et al. [33] as mentioned earlier, where irrational numbers are represented by

infinite walks in the Stern-Brocot tree and convergents represented by finite ones.)

Rittaud further talks about a continued fraction connection for the generalized ran-

dom Fibonacci sequence gn = |αgn−2 ± βgn−2|, studied by Janvresse et al.
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in [41].

The major component of this thesis deals with removing the randomness from

Viswanath’s work. Instead of tackling the growth of a random Fibonacci sequence

using random matrix theory or other stochastic methods, the aim is to use matrix

products which are not products of random matrices, but products obtained from

periodic sequences. This idea will be presented in detail in the following chapters and

was derived independently of the work of McGuire [55].

McGuire also had the idea of studying deterministic matrix products, and observ-

ing the behaviour of the corresponding sequences. He gave necessary conditions for

such a sequence to be periodic, as well as the possible periods of the sequences. In

[56], McGuire generalized his results from [55] by considering the random tribonacci,

tetranacci, and in general, the k-nacci sequences. McGuire defines the general random

k-nacci sequence slightly differently than Equation (1.26), as follows:

Fn = Fn−1 ± Fn−2 ± · · · ± Fn−k,

with initial values F1 = F2 = · · · = Fk−2 = 0 for k ≥ 3 and Fk−1 = Fk = 1. Here the

coefficient of Fn−1 is not chosen at random. In this case, products of (k− 1)× (k− 1)

matrices are studied. We will restrict our investigation to 2× 2 matrices only.



Chapter 2

Growth Types of Periodic Coefficient Sequences

2.1 Non-Random Sequences and Matrix Representations

As mentioned in the Introduction, our aim is to remove the randomness from

Viswanath’s random Fibonacci sequence by generating sequences according to a fixed

pattern. We begin this task by introducing a few definitions.

Definition 2.1. A coefficient cycle of length n is an n-tuple σn = (s1, . . . , sn), where

si ∈ {+,−} for 1 ≤ i ≤ n.

The “non-random Fibonacci sequence” is formulated as follows.

Definition 2.2. A periodic coefficient sequence is given by the recursion

ti = ±ti−1 + ti−2, (2.1)

for i ≥ 3, where t1 = t2 = 1 and each ± sign is chosen according to σn, i.e.,

ti = s1+(i−3)modn ti−1 + ti−2.

This allows our index to take on the values 1, . . . , n, and then cycle back through

as i increases. A few examples here may be helpful. For simplicity of notation, we

will remove the commas form the coefficient cycle σn when giving explicit examples.

Example 2.1. Let σ3 = (++−). Generating the periodic coefficient sequence gives

+ + − + + − + . . .

ti = 1 1 2 3 − 1 2 | 1 1 . . . ,

where the bar denotes repetition. Here we have

t3 = s1mod 3 t2 + t1 = s1(1) + (1) = 1 + 1 = 2,

t4 = s2mod 3 t3 + t2 = s2(2) + (1) = 2 + 1 = 3,

t5 = s3mod 3 t4 + t3 = s3(3) + (2) = −3 + 2 = −1,

44
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and so on. Notice that the terms ti begin to repeat after two repetitions of the

coefficient cycle. The period of repetition is 6, and our periodic coefficient sequence

has bounded growth. Note that the period is a multiple of n = 3. Growth type as

well as period size will be discussed later in further detail.

In 1966, Whitney [74] used a periodic coefficient in the recurrence relation gn =

(−1)Fn−2gn−1, where gn = LFn and Ln denotes the Lucas numbers. (Recall the Lucas

numbers are defined by L1 = 2, L2 = 1, and Ln = Ln−1+Ln−2 for n ≥ 3.) The parity

of the Fibonacci numbers implies that the coefficients of gn−1 follow the pattern

−1,−1, 1,−1,−1, 1, . . . for n ≥ 3, i.e., we have coefficient cycle σ3 = (−−+).

Example 2.2. Let σ4 = (+ +−−). The periodic coefficient sequence is

+ + − − + + − − + + − − + +

ti = 1 1 2 3 − 1 4 3 7 − 4 11 7 18 − 11 29

− − . . .

18 47 − 29 76 . . . .

Here it appears as if the sequence is unbounded in absolute value. The fact that the

growth is actually exponential will be proven shortly.

Example 2.3. Let σ6 = (+ + +−−−). The periodic coefficient sequence is

+ + + − − − + + + − − − +

ti = 1 1 2 3 5 − 2 7 − 9 − 2 − 11 − 13 2 − 15

+ + − − − . . .

17 2 19 21 − 2 23 − 25 . . . .

Considering |tn|, we see that 2 appears as every third term and the remaining values

appear to be growing linearly.

We will soon see that these three examples illustrate the three possible types of

growth for our periodic coefficient sequences. Upon inspection, there is no obvious

connection between the coefficient cycle σn and the growth type. Increasing the num-

ber of − signs does not seem to slow down growth, and retaining the same “balanced”
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pattern as seen in Examples 2.2 and 2.3 does not imply the sequences will have similar

behaviour. For further evidence, Table 2.1 gives some examples of coefficient cycles

for small n, along with the corresponding growth type, where we denote bounded,

exponential and linear growth by B, E and L respectively. These growth types can

be determined by generating terms of the periodic coefficient sequences, as in the

previous examples, although we will soon see a method to verify these calculations.

coefficient cycle n growth type
(+) 1 E

(+−) 2 B
(+ +−) 3 B
(+−+) 3 B

(+ + +−) 4 B
(+ +−−) 4 E
(−++−) 4 E

(+ + ++−) 5 E
(−−−−+) 5 E
(+ + +−−) 5 E
(+ +−+−) 5 E

(+ + +++−) 6 L
(+ + + +−−) 6 E
(+ + +−−−) 6 L
(−−++−+) 6 L

Table 2.1: Growth types of some coefficient cycles.

In order to understand the behaviour of our periodic coefficient sequences we need

a different way to represent them. This can be achieved using matrix products. From

Equation (1.9) we have that the linear recurrence given in Equation (2.1) can be

written as the matrix equation(
ti−1

ti

)
=

(
0 1

1 ±1

)(
ti−2

ti−1

)
, (2.2)

for i ≥ 3, where the vector (ti−2, ti−1)T is multiplied by a member of{
A =

(
0 1

1 1

)
, B =

(
0 1

1 −1

)}
,
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according to the value of the term si−2 in the coefficient cycle σn; A for + and B for

−. Note that in Viswanath’s random Fibonacci sequence case, the matrix equation

is the same, but we choose one of A or B with probability 1
2
. Also, for the regular

Fibonacci sequence, we choose A every time.

Iterating Equation (2.2) and incorporating our initial values gives(
ti−1

ti

)
= Mi−2Mi−3 · · ·M1

(
1

1

)
,

for i ≥ 3, where Mj ∈ {A,B} for 1 ≤ j ≤ i−2. From this expression we can evaluate

terms ti−1 and ti in our sequence. Now, if we rewrite the above using i = n+ 2, each

element in σn = (s1, . . . , sn) will be used exactly once to select a matrix from {A,B}
and we can write (

tn+1

tn+2

)
= MnMn−1 · · ·M1

(
1

1

)
, (2.3)

for n ≥ 1.

Definition 2.3. Given Mj for 1 ≤ j ≤ n in Equation (2.3), we define the product

matrix Pn associated with the coefficient cycle σn to be

Pn := M1 · · ·Mn.

We will later see that reversing the order of the matrices in Equation (2.3) to

define Pn is permissible when analyzing the growth of the associated sequence, so we

write our product matrix with increasing indices so that it better reflects the pattern

in the corresponding coefficient cycle. We will still need to use the form in Equation

(2.3) when finding sequence terms, however.

Example 2.4. Let σ3 = (++−). We have s1 and s2 corresponding to matrix A, and

s3 corresponding to matrix B so that

M3M2M1 =

(
0 1

1 −1

)(
0 1

1 1

)(
0 1

1 1

)
=

(
1 2

0 −1

)
.

If we multiply by our initial value vector we obtain(
t4

t5

)
=

(
1 2

0 −1

)(
1

1

)
=

(
3

−1

)
,



48

which tells us that the fourth and fifth terms of our periodic coefficient sequence are

3 and −1 respectively, as verified in Example 2.1. Now according to Definition 2.3,

we define

P3 =

(
0 1

1 1

)(
0 1

1 1

)(
0 1

1 −1

)
=

(
1 0

2 −1

)
.

Note that P 2
3 = I, which corresponds to the fact that in Example 2.1, repeating the

coefficient cycle σ3 = (+ + −) twice brought us back to the initial values 1, 1. Also

notice that reversing the matrices in the product gave us the transpose of the original

matrix; we will come back to this fact.

What can we say about matrices Pn? First note that taking determinants gives

det(A) = det

(
0 1

1 1

)
= −1,

det(B) = det

(
0 1

1 −1

)
= −1.

Therefore, by the multiplicative property of determinants, we must have det(Pn) =

±1, i.e., P (n) is unimodular. Further, we have that

G := 〈A,B〉 ≤ S∗L(2,Z),

where 〈A,B〉 is the group generated by the matrices A and B, which we denote by

G, and S∗L(2,Z) is the extension of the special linear group SL(2,Z) to unimodular

matrices. Note that when dealing with integer entries, the invertible matrices are

precisely those with determinant ±1, and so S∗L(2,Z) = GL(2,Z). The following

gives a specific value to the determinant of Pn.

Proposition 2.1. For a product matrix Pn,

det(Pn) = 1 ⇐⇒ n even,

det(Pn) = −1 ⇐⇒ n odd.

Proof: We have seen that matrices A and B both have determinant −1. Using the

fact that determinants are multiplicative, it is then simple to conclude that det(Pn) =

(−1)n = 1 if and only if n is even and det(Pn) = −1 if and only if n is odd. �
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Before continuing, we should show that G is in fact a group.

Proposition 2.2. The set of matrices G generated by all possible products of the

matrices A and B is a group.

Proof: We have seen in Example 2.4 that AABAAB = I. (We shall see that this is

just one product of A’s and B’s that produces the identity.) G is closed by definition,

since the product of any two elements is also comprised of A’s and B’s. We have

associativity from matrix multiplication. Lastly, we must show that our generators

A and B have inverses in G. This follows easily from the identity relation because

AABAAB = I implies that ABAAB = A−1 = ( −1 1
1 0 ) and AABAA = B−1 = ( 1 1

1 0 ).

�

Note that the relation in this proof tells us that G is not a free group. The prop-

erties of certain subgroups of matrices of GL(2,Z) and SL(2,Z) have been studied

extensively. For example, Boca [9] studies the free multiplicative monoid generated

by M1 = ( 1 0
1 1 ) and M2 = ( 1 1

0 1 ). In particular, he proves an asymptotic formula for

the number of elements in the monoid with trace at most n. He also uses contin-

ued fractions to show that the elements of the monoid can be uniquely written as

products of M1 and M2. More generally Kuzmanovich and Pavlichenkov [47] have

compiled results on finite groups of integral matrices, including the orders of ele-

ments of GL(n,Z), and finite subgroups of GL(2,Z) and GL(n,R). The elements in

G cannot be written uniquely as products of our A’s and B’s. For example we have

I = (AB)6 = (AAB)2, and another example that produces a non-identity matrix is

A2B2AB = A4BA2B3AB = A2B2A2BA2BAB.

In the following theorem we characterize the subgroup K of G with K ∈ SL(2,Z),

i.e., K = G ∩ SL(2,Z), the set of matrices in G with determinant 1. The set K is

closed under matrix multiplication and so is a proper subgroup.

Theorem 2.1. The group K < G is composed of exactly those elements Pn = ( a b
c d ) ∈

SL(2,Z) with Pn ≡ ( 1 0
0 1 ) , (

0 1
1 1 ), or ( 1 1

1 0 ) when we take a, b, c, d (mod 2).

Proof: We have that G = 〈A,B〉 where A,B = ( 0 1
1 ±1 ), and G ≤ S∗L(2,Z). Define

the map det, which takes any matrix in G to its determinant, as

det : G → Z/2Z = {1,−1}.
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This is a homomorphism because determinants are multiplicative. Let K = ker(det),

i.e., those elements Pn in G with det(Pn) = 1. K is a normal subgroup of index 2 in

G.

We know from Proposition 2.1 that det(Pn) = 1 if and only if n is even. Therefore

Pn ∈ K if and only if it is a product of the matrices A2, AB,BA,B2, A−1B,BA−1,

and their inverses. These six matrices are generators for K. It is a standard result

(see Lang [49, p. 4] for example) that SL(2,Z) is generated by

S =

(
0 −1

1 0

)
, T =

(
1 1

0 1

)
,

with the relations S4 = 1, (ST )6 = 1 and S2 = (ST )3. We can write each of the

generators of K in terms of S and T as follows:

A2 = TST 2 =

(
1 1

1 2

)
, B2 = S3T 2STS =

(
1 −1

−1 2

)
,

AB = TS =

(
1 −1

1 0

)
, BA = S3TST =

(
1 1

−1 0

)
,

A−1B = STST 2STS3 =

(
1 −2

0 1

)
, BA−1 = S3T 2S =

(
1 0

−2 1

)
.

These elements in SL(2,Z) generate K as a subgroup of SL(2,Z). We can write this

set of generators in terms of S and T in the simpler form {S2, T 2, ST, TS}, i.e., each
generator in the displayed list is composed of elements in the above set. We have that

S2 =

(
−1 0

0 1

)
, T 2 =

(
1 2

0 1

)
, ST =

(
0 −1

1 1

)
, TS =

(
1 −1

1 0

)
(2.4)

Note that this set of generators for K is composed of even-length products of S

and T , and further, the set {S2, T 2, ST, TS} generates all sequences of S and T of

even length. We also have that S−1 = S3 and T−1 = S3TSTS, and so sequences

of even length in S−1 and T−1 (generated by (S−1)2, (T−1)2, S−1T−1 and T−1S−1)

also belong to K. The subgroup of SL(2,Z) containing all even products of S and

T is therefore equal to K. Notice that the relations defining SL(2,Z) are all of even

length, and so equivalent representations of a product must have the same parity.
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Now consider the coset TK of SL(2,Z). Elements in this set must contain an odd

number of terms. Further, we can show that this coset contains exactly all terms of

odd length. Let W be a word of odd length. If it begins with T , then W ∈ TK. From

the relation S2 = (TS)3 we have S = TSTST , and so ifW = SW1, where |W1| is even,
we have that W = TSTSTW1 ∈ TK. Similarly, if W = S−1W1 or W = T−1W1, we

can write W = S3W1 = (TSTST )3W1 or W = S3TSTSW1 = (TSTST )3TSTSW1

respectively, and both of these words belong to TK because they are of odd length.

Therefore K and TK are the only cosets of SL(2,Z) and K is a subgroup of index 2.

Now, the principal congruence subgroup Γ(2) (also called the modular group Λ)

is the kernel of the homomorphism

mod2 : SL(2,Z) → SL(2,Z/2Z),

i.e., Γ(2) is the set of matrices in SL(2,Z) which equal I when its entries are taken

modulo 2. This mapping is a homomorphism because by properties of modular arith-

metic, taking the entries in a product matrix modulo 2 is equivalent to first taking the

entries in the matrices A,B modulo 2, and then forming the product. From Lehner

[51], for example, we have that Γ(2) is generated by

S2 = −I, T 2 =

(
1 2

0 1

)
, U2 =

(
1 0

2 1

)
,

where U2 = (T 2)T = ST · T 2 · TS. Since these generators are of even length in

S and T , we have that Γ(2) ≤ K. Applying the homomorphism mod2 to K, i.e.,

K → SL(2,Z)/Γ(2) = SL(2,Z/2Z), gives the image mod2(K) = {( 1 0
0 1 ) , (

0 1
1 1 ) , (

1 1
1 0 )},

because this is the image of the generators (which are preserved under homomor-

phism), and no other elements can be created. Further, because subgroups are also

preserved by homomorphisms, mod2(K) is a subgroup of index 2 in SL(2,Z/2Z).

Therefore, since K is a subgroup of index 2 in SL(2,Z), we can conclude that

K =

{
Pn ∈ SL(2,Z) : mod2(Pn) =

(
1 0

0 1

)
,

(
0 1

1 1

)
or

(
1 1

1 0

)}
.

�
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If we extend the homomorphism mod2 to

mod2 : S
∗L(2,Z) → SL(2,Z/2Z), (2.5)

any product matrix Pn ∈ G under this map is simply a power of A because mod2(A) =

mod2(B). Calculating the first few powers, we see that any Pn ∈ G must take one of

the following forms with entries modulo 2:(
0 1

1 1

)
,

(
1 1

1 0

)
,

(
1 0

0 1

)
.

We now have another property of our group G.

Recall from Chapter 1 that we could have used Equation (1.7) or (1.8), i.e., fn =

fn−1 ± fn−2 or f̃n = |f̃n−1 ± f̃n−2|, to define the random Fibonacci sequence. These

recurrences were designated as linear and non-linear respectively, by Janvresse et al.

[40]. We have seen in Theorem 1.3 that for p = 1
2
, both of these recurrences define

sequences with the same almost sure growth rate as the random Fibonacci sequence;

however, the corresponding matrix recurrences differ.

Instead of using matrices A,B = ( 0 1
1 ±1 ), the recurrence in Equation (1.7) can be

written as (
fn−1

fn

)
=

(
0 1

±1 1

)(
fn−2

fn−1

)
, (2.6)

where we will denote A,B′ = ( 0 1±1 1 ). We have already seen this in Section 1.6,

however, where Embree and Trefethen [24] use the matrix equation(
xn−1

xn

)
=

(
0 1

±β 1

)(
xn−2

xn−1

)
.

to represent the more general recurrence xn = xn−1±βxn−2, given in Equation (1.19).

Alternately, Janvresse et al. [40] use the matrix equation

(fn−1, fn) = (fn−2, fn−1)

(
0 ±1

1 1

)
(2.7)

to represent Equation (1.7), and we will denote A, B̂ = ( 0 ±1
1 1 ). Again we have

seen this, in Section 1.7, where the difference between right and left multiplication
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is pointed out. Note that if we use right multiplication to represent Viswanath’s

recurrence, tn = ±tn−1 + tn−2, we obtain

(tn−1, tn) = (tn−2, tn−1)

(
0 1

1 ±1

)
,

which uses the same matrices A,B as for left multiplication.

It was also mentioned in Chapter 1 that the recurrence in Equation (1.8) requires

three matrices in its matrix representation. We can use Equation (2.7) with a slight

adjustment. By definition, all terms in the sequence {f̃n} are positive and so we must

take this into account. We may use

(f̃n−1, f̃n) = (f̃n−2, f̃n−1)

(
0 −1

1 1

)
= (f̃n−1, f̃n−1 − f̃n−2)

when f̃n−1 ≥ f̃n−2, but if f̃n−2 > f̃n−1, we must use

(f̃n−1, f̃n) = (f̃n−2, f̃n−1)

(
0 1

1 −1

)
= (f̃n−1, f̃n−2 − f̃n−1),

where the third matrix B = ( 0 1
1 −1 ) is introduced. This process is equivalent to using

only the matrices A, B̂, but taking the absolute value of the product matrix after each

step. Note that this differs from the case in Equation (2.7) where a random Fibonacci

sequence is generated from a product of i.i.d. random matrices, each occurring with

probability 1
2
. In the three matrix case, the ± sign is still chosen with p = 1

2
, where +

corresponds to A = ( 0 1
1 1 ), but − corresponds to B̂ = ( 0 −1

1 1 ) or B = ( 0 1
1 −1 ), depending

on the value of the terms f̃n−1, f̃n−2. These matrices are neither independent nor

identically distributed.

In the linear case of Janvresse et al. [40] we have that

det

(
0 ±1

1 1

)
= 1,

and so the group formed from this matrix pair is a subgroup of SL(2,Z). (The matrix

pair A,B′ behaves similarly.) In the non-linear case, we also have the third matrix

B, which has determinant −1. Therefore the matrix group formed by these three is
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a subgroup of S∗L(2,Z). The matrix B̂ has the properties B̂3 = −I, B̂6 = I and so

the group formed by A and B̂ will be quite different from that formed by A and B.

Also, in the non-linear case, the matrix group has three generators, A, B̂ and B, and

so will likely differ radically.

2.2 Growth Types of Linear Recurrences

We have seen three different types of growth, namely, bounded, linear and exponen-

tial. Our aim is to deduce the type of growth of a periodic coefficient sequence by

analyzing the product matrix Pn. Before continuing, we need to take a closer look at

these types of growth. We start by looking at the growth of a general second order

linear recurrence relation with initial values a1, a2, and

an = uan−1 + van−2,

for n ≥ 3, where a1, a2, u, v ∈ Z. It is easy to extend these values to a larger ring.

The following theorem from Bajaj [5], with clever proof, will help us to define

exponential growth.

Theorem 2.2. For a positive sequence {an}, if the limits

lim
n→∞

an
1
n and lim

n→∞
an+1

an

both exist, then they are equal.

Proof: We can use a simple proof by contradiction here. Suppose that the former

limit in the statement of the theorem is L and the latter is M , where L < M . Now

choose a number k such that L < k < M , and define the series
∑∞

n=0 bn, where

bn = an
kn
. We then have that

lim
n→∞

bn
1
n = lim

n→∞

(an
kn

) 1
n
=

L

k
< 1.

By the root test, the series
∑∞

n=0 bn converges. We also have that

lim
n→∞

bn+1

bn
= lim

n→∞
an+1/k

n+1

an/kn
=

M

k
> 1.
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By the ratio test, the series
∑∞

n=0 bn diverges, which is a contradiction. We can argue

similarly if L > M . �

Definition 2.4. We say a sequence {an} defined by second order linear recurrence

has exponential growth if

lim
n→∞

|an| 1n = c,

with c > 1. We call c the growth rate of the sequence. We can similarly define the

growth rate as

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = c,

when this limit exists.

This is related to the exponential growth formula xn = x0e
kn, where k is called the

growth constant. For k > 0 we have exponential growth, k < 0 implies exponential

decay and k = 0 gives a constant sequence. Taking either of the above limits for xn

gives growth rate c = ek. Note that k is analogous to the upper Lyapunov exponent

defined in Chapter 1 for matrix products. For example, the Fibonacci sequence Fn

has growth rate

c = lim
n→∞

Fn

1
n = φ, (2.8)

where φ is the golden ratio, 1+
√
5

2
. This is consistent with Binet’s formula, given in

Equation (1.3).

Definition 2.5. We say a sequence {an} defined by second order linear recurrence

has linear growth if the terms can be written as

an = pn+ q,

for some p, q ∈ Z, p 	= 0.

Definition 2.6. We say a sequence {an} defined by second order linear recurrence

has bounded growth if for all n we have that |an| ≤ q for some q ∈ Z.

Now, how do we determine the growth type of a general second order linear

recurrence sequence without writing out the terms? We can start by writing our
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recurrence as a matrix equation, as we did for the random Fibonacci sequence. We

want expressions for an−1 and an in terms of an−2 and an−1, which can be done as

follows: (
an−1

an

)
=

(
0 1

v u

)(
an−2

an−1

)
,

so that we obtain an = uan−1 + van−2 and an−1 = an−1. The following definition can

be found in Vince [70].

Definition 2.7. We call the square matrix ( 0 1
v u ) the companion matrix for the second

order linear recurrence an = uan−1 + van−2.

Definition 2.8. The characteristic equation in x of a square matrix M is the monic

polynomial equation obtained by expanding the expression

det(M − Ix) = 0.

If M is a 2 × 2 matrix, the associated characteristic equation has degree 2. The

characteristic equation for the general companion matrix is given by

det

(
−x 1

v u− x

)
= x2 − ux− v = 0.

We could have obtained the characteristic equation directly from the recurrence,

by writing

an − uan−1 − van−2 = 0,

and replacing successive sequence terms by powers of x. We can therefore equivalently

define the companion matrix of a second order monic polynomial.

Given a second order linear recurrence, an = uan−1 + van−2, we denote by λ1, λ2

the eigenvalues of the companion matrix, or equivalently the roots of the characteristic

equation, called characteristic roots. We will assume that |λ1| ≥ |λ2|. The following

definition is taken from Larson, Edwards and Falvo [50, p. 550].

Definition 2.9. Let λ1, λ2, . . . , λn be the eigenvalues of an n× n square matrix. We

call λ1 the dominant eigenvalue if

|λ1| > |λi|,

for all 2 ≤ i ≤ n.
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It is a well known fact (for example, see Vajda [69, p. 18]) that the closed form

expression for the term an, with an ≥ 1 and λ1 	= λ2, is given as

an = αλn
1 + βλn

2 . (2.9)

We can easily find α and β by solving the pair of equations corresponding to a1 and

a2 to obtain

α =
a2 − a1λ2

λ1(λ1 − λ2)
, β =

a1λ1 − a2
λ2(λ1 − λ2)

.

Example 2.5. Consider the case of the Fibonacci numbers Fn, given by the recur-

rence Fn = Fn−1 + Fn−2, where F1 = F2 = 1. The characteristic equation is therefore

x2 − x − 1 = 0, which has roots φ, φ′ = 1±√5
2

respectively. Substituting the roots

and values of α, β into Equation (2.9) gives the well known Binet formula for the

Fibonacci numbers,

Fn =
1√
5
(φn − (φ′)n),

as given in Equation (1.3).

In the case of a second order linear recurrence equation with characteristic roots

λ1 = λ2, the closed form expression for an, with an ≥ 1, is given as

an = (α + βn)λn
1 , (2.10)

where

α =
2a1λ1 − a2

λ2
1

, β =
a2 − a1λ1

λ2
1

can again be easily derived (Vajda [69]). We can use these closed form expressions

to verify that there are no other types of growth than the three we have already

identified. For example, quadratic growth is not possible.

Theorem 2.3. A sequence {an} defined by a second order linear recurrence relation

has growth which is bounded, linear or exponential.

Proof: We can show this by looking at the closed forms for terms in the sequence

{an}, as given in Equations (2.9) and (2.10). For |λ1| > 1, the term |λ1|n is responsible

for exponentially growing sequences, and for |λ1| = 1, the term α+ βn is responsible

for linearly growing sequences. Certain combinations of eigenvalues and coefficients
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will produce bounded growth, but no other growth types are possible based on the

closed forms. In order for non-linear polynomial growth to occur, we must have a

term nk for a fixed k ≥ 2, which is not the case. �

Theorem 2.4 (Kronecker). Let α be an algebraic integer. If all of the conjugates of

α in C have absolute value 1, then α is a root of unity.

A proof of this theorem can be found in Greiter [34]. We are dealing with the

characteristic equation x2−ux− v = 0, and so the eigenvalues are algebraic integers.

From 2.4 we now know that if |λ1| = |λ2| = 1, we are dealing with roots of unity.

We can distinguish among the three growth types of a second order linear re-

currence relation by looking at the corresponding eigenvalues, as the following three

theorems demonstrate.

2.2.1 Linear Growth

Theorem 2.5. Given a companion matrix M , the growth rate of the corresponding

second order linear recurrence sequence {an} is linear if and only if the eigenvalues

λ1 and λ2 of M are equal roots of unity, i.e., they are both 1 or both −1, with the

following exceptions. If λ1 = 1 with a1 = a2, λ1 = −1 with a1 = −a2, or a1 = a2 = 0,

the growth is bounded. Furthermore, the growth rate of the absolute value of our

sequence {an} is given by

lim
n→∞

|an| 1n = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1.

Proof: Suppose we have a sequence an = uan−1 + van−2 with u, v ∈ Z which grows

linearly. By Definition 2.5 we must have an = pn + q, for p 	= 0. We can start by

showing that the eigenvalues of M must be equal. If our eigenvalues are not equal,

Equation (2.9) tells us that our terms must take the form

an = αλn
1 + βλn

2 ,

which cannot be equal to pn+ q. We can see this more clearly by noting that in the

above equation, an is the sum of two terms each of which is exponentially growing if
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λ > 1 and bounded if λ ≤ 1 (for non-zero coefficients). We must therefore have

an = (α + βn)λn
1 ,

where λ1 is a double root. Comparing this |an| to |pn + q| tells us that we must

have β 	= 0 and |λ1| = 1. By Kronecker’s Theorem (2.4), λ1 must then be a root of

unity, and because roots of unity come in conjugate pairs and the coefficients of our

recurrence are real, equal roots of unity imply λ1 = 1 or −1.

Conversely, suppose we have a double eigenvalue λ1 which is a root of unity. The

solution (in absolute value) to a recurrence of this type is given by

|an| = |α + βn||λn
1 | = |α + βn|,

which implies our sequence grows linearly in absolute value for β 	= 0. Note that if

β = 0, we obtain |an| = |α|, i.e., our sequence is constant in absolute value and hence

bounded. We know that β = (a2 − a1λ1)/a1. If λ1 = 1, we have β = 0 if and only if

a1 = a2 and if λ1 = −1 we have β = 0 if and only if a1 = −a2. These two cases are

the exceptions to linear growth, as well as the trivial case, generated by a1 = a2 = 0.

Consider the limit limn→∞ |an| 1n = |α + βn| 1n = L. Taking the logarithm of both

sides gives

logL = log lim
n→∞

|α + βn| 1n = lim
n→∞

1

n
log |α + βn| = 0,

which implies L = 1. The limit of the ratio of terms also gives

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣α + β(n+ 1)

α + βn

∣∣∣∣ = 1,

confirming what we know from Definition 2.4. Since we are using the exponential

definitions of growth rate here, the fact that the growth rate equals 1, tells us that

the growth is not exponential. �

2.2.2 Bounded Growth

Theorem 2.6. Given a companion matrix M , the growth rate of the corresponding

second order linear recurrence sequence {an} is bounded if and only if |λ1|, |λ2| ≤ 1,

where the eigenvalues λ1, λ2 cannot be equal roots of unity, or we have one of the
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following combinations of eigenvalues and initial values: a1 = a2 with λ1 or λ2 = 1,

a1 = −a2 with λ1 or λ2 = −1 in either the single or double root case, a2 = 0 with λ1

or λ2 = 0, or lastly, a1 = a2 = 0.

Proof: Let us first suppose our eigenvalues are equal. Our terms must be of the form

|an| = |(α + βn)λn
1 |.

The terms are bounded as n → ∞ if and only if one of two things happens. First

we can have |λ1| < 1, in which case |an| → 0. Second we can have |λ1| = 1 with

β = 0. This corresponds to the λ1 = ±1 exceptions listed in the theorem, as shown

in Theorem 2.5.

If we suppose the eigenvalues are not equal, our terms must be of the form

|an| = |αλn
1 + βλn

2 |,

The terms are bounded if and only if one of three things happens. First we can have

|λ1|, |λ2| ≤ 1, in which case

|an| = |αλn
1 + βλn

2 | ≤ |α||λ1|n + |β||λ2|n ≤ |α|+ |β|.

Therefore all terms in the sequence are bounded above by |α|+ |β|. The other options
are α = 0 and |λ2| = 1, or β = 0 and |λ1| = 1. We have that α = a2−a1λ2

λ1(λ1−λ2)
and

β = a1λ1−a2
λ2(λ1−λ2)

and therefore these two cases occur precisely for those initial values

stated in the theorem. If a1 = a2 and λ1 = 1, we obtain the constant sequence an = α

and similarly if λ2 = 1 we obtain an = β. If a1 = −a2 and λ1 = −1 or λ2 = −1,

we obtain one of the bounded alternating sequences an = α(−1)n or an = β(−1)n,

implying |an| = |α| or |an| = |β| in absolute value.

For either the equal or non-equal eigenvalue cases we have the trivial bounded

case which occurs when a1 = a2 = 0 and implies α = β = 0. Similarly, we obtain

the all-zero sequence if λ1 or λ2 = 0 and a2 = 0. This forces β or α = 0, and hence

an = 0 also. �

In the case of bounded growth we cannot calculate the growth rate with the

methods used for exponential and linear growth. For example, consider the bounded
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sequence an = 1, 1, 0, 1, 1, 0, . . . . The limit limn→∞ |an| 1n does not exist. Similarly,

limn→∞
∣∣∣an+1

an

∣∣∣ is not defined for this sequence because it requires dividing by zero an

infinite number of times. However, we just consider the growth rate of a bounded

sequence to be 1.

2.2.3 Exponential Growth

Finally, we will review, with proof, the following well-known fact about exponential

growth.

Theorem 2.7. The growth of a second order linear recurrence sequence is exponential

if and only if |λ1| > 1, where λ1 and λ2 are the eigenvalues of the corresponding

companion matrix, with the exceptions a1 = a2 with λ2 = 1, a1 = −a2 with λ2 = −1,

as well as a2 = 0 with λ2 = 0, and lastly a1 = a2 = 0. Furthermore, the growth rate

can be written as

lim
n→∞

|an| 1n = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = |λ1|,
except in the case of distinct eigenvalues with λ1 not dominant, where we have(

lim
n→∞

|a2n| 1n
) 1

2
=

(
lim
n→∞

∣∣∣∣an+2

an

∣∣∣∣) 1
2

= |λ1|,

or similarly for odd-indexed terms.

Proof: Suppose, w.l.o.g., that |λ1| > 1. We must show this implies exponential

growth. From Theorems 2.3, 2.5 and 2.6 we can conclude directly that growth isn’t

linear or bounded and therefore must be exponential. However, we are interested in

finding the growth rate of such exponentially growing sequences, and in doing so we

will prove that growth is in fact exponential.

We can break our exponential growth into several cases, depending on whether or

not the eigenvalues are equal, and whether or not one eigenvalue is dominant. First,

we consider the case of λ1 dominant, which implies unequal eigenvalues. Second, we

consider eigenvalues which are distinct, but equal in absolute value (hence there is no

dominant eigenvalue) and third, we consider the case of eigenvalues which are equal.

In the first case, since λ1 is dominant, we have

lim
n→∞

(
λ2

λ1

)n

= 0. (2.11)
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The first definition of growth rate gives us

lim
n→∞

|an| 1n = lim
n→∞

|αλn
1 + βλn

2 |
1
n = lim

n→∞

∣∣∣∣λn
1

(
α + β

(
λ2

λ1

)n)∣∣∣∣ 1
n

(2.12)

= |λ1| lim
n→∞

∣∣∣∣α + β

(
λ2

λ1

)n∣∣∣∣ 1
n

. (2.13)

By Equation (2.11) we have

lim
n→∞

|an| 1n = |λ1| lim
n→∞

|α| 1n = |λ1|,

provided α 	= 0. (If α = 0, our growth rate will be |λ2|, which will give exponential

growth if its value is greater than 1, otherwise it is an exceptional case.) By Definition

2.4, we can equivalently write

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = |λ1|,

which is easy to verify using Equation (2.9).

Now consider the case of distinct eigenvalues, where λ1 is not dominant. The first

limit definition similarly gives

lim
n→∞

|an| 1n = |λ1| lim
n→∞

∣∣∣∣α + β

(
λ2

λ1

)n∣∣∣∣ 1
n

.

Here, the ratio of eigenvalues has absolute value 1 and so the term in absolute values

is finite for all n. This means that the terms in the limit in the right-hand side will

approach 1, even if
(

λ2

λ1

)n

is alternating. We therefore have limn→∞ |an| 1n = |λ1|,
provided {an} does not contain infinitely many zeroes. In that case, the limit of

nth roots would not converge. Recall that our recurrence an = uan−1 + van−2 has

u, v, ai ∈ Z and characteristic equation x2−ux− v = 0. Our eigenvalues, which are a

conjugate pair, are equal in absolute value. We may therefore have λ1 = −λ2, which

implies λ1, λ2 = ±c or ±ic, where c ∈ R. This gives us

an = λn
1

(
α + β

(
λ2

λ1

)n)
= λn

1 (α + β(−1)n).

Similarly, it may be the case that the ratio of eigenvalues is ±i. (Recall this ratio

must be a root of unity.) In this case, our term an is written as

an = λn
1

(
α + β

(
λ2

λ1

)n)
= λn

1 (α + β(±i)n).
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If a1 = 0 or a2 = 0 it is easy to see that α and β, which must be real, have the same

absolute value, and so in the former case (ratio −1) either a2n−1 = 0 or a2n = 0,

respectively. In the case of ratio ±i, the term
(

λ2

λ1

)n

cycles through 4 values, one of

which is −1. In either case we have an all-zero subsequence, and so the growth rate

of a subsequence {a2n} not containing infinitely many zeroes can be found by

lim
n→∞

|a2n| 1n = |λ1|2,

so that the growth of {an} is (
lim
n→∞

|a2n| 1n
) 1

2
= |λ1|,

or similarly with a2n−1. Note that our characteristic equation can be written as

x2 − (λ1 + λ2)x− λ1λ2 = x2 − λ1λ2,

which gives us the recurrence an = λ1λ2an−2 when λ1 = −λ2. This is again proof for

two distinct subsequences, corresponding to initial values a1 and a2. Therefore the

second limit given in Definition 2.4, the limit of the ratio, will not converge. We can

again consider the growth rate of {a2n} and {a2n−1} instead, which gives

lim
n→∞

∣∣∣∣an+2

an

∣∣∣∣ = lim
n→∞

|λ2
1|

∣∣∣∣∣∣∣
α + β

(
λ2

λ1

)n+2

α + β
(

λ2

λ1

)n

∣∣∣∣∣∣∣ = |λ1|2,

because the numerator and denominator in the fraction are equal. Therefore, the

growth rate of {an} is (
lim
n→∞

∣∣∣∣an+2

an

∣∣∣∣) 1
2

= |λ1|,

The growth rate of {a2n−1} is the same since it is based on the same recurrence.

In the third case, that of equal eigenvalues, we have for the first definition

lim
n→∞

|an| 1n = lim
n→∞

|(α + βn)λn
1 |

1
n = lim

n→∞
|λ1||α + βn| 1n = |λ1|,

using the fact that |α+βn| 1n → 1. We can similarly use the second limit in Definition

2.4.
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We have seen that in all three cases, both definitions of exponential growth agree.

The exceptional cases are treated in Theorem 2.6 where it is shown that the growth

is bounded.

Conversely, suppose the growth of our recurrence sequence {an} is exponential,

which we know is possible from Theorem 2.3. It is therefore not linear or bounded.

By Theorems 2.5 and 2.6, we conclude that we must have either |λ1| > 1 or |λ2| > 1.

Since we are assuming |λ1| > |λ2|, we can conclude that |λ1| > 1.

�

As an example, consider the Fibonacci sequence. Theorem 2.7 tells us that the

growth rate of this sequence is given by the largest eigenvalue in absolute value, i.e.,

φ = 1+
√
5

2
.

Note that we can use the Skolem-Mahler-Lech Theorem (Everest et al. [25, p. 25,

31]) in certain cases to show that a sequence is unbounded. One form of the theo-

rem states that for any non-degenerate sequence {an} (i.e., for each pair of distinct

eigenvalues, the ratio is not a root of unity, [25, p. 5]) whose characteristic roots are

not all roots of unity,

lim
n→∞

|an| → ∞.

In the second case in Theorem 2.7, our eigenvalues are distinct but one is not domi-

nant. This leads to a degenerate sequence because the eigenvalues are equal in abso-

lute value. Also, we mentioned earlier the difference between exponential growth and

exponential decay. In our case, that of a second order linear recurrence with integral

coefficients and initial values, it is not possible for the resulting sequence to approach

zero (or any other number) asymptotically and so we cannot have exponential decay.

2.3 Subsequences and the Growth of Periodic Coefficient Sequences

Now that we have considered the details of the growth of a general second order lin-

ear recurrence relation, we can consider the case of our periodic coefficient sequence,

ti = si−2ti−1 + ti−2. This differs from the former case because the coefficients are not

fixed. The key is to look at subsequences of the periodic coefficient sequences. In

particular, for sequences generated by a coefficient cycle of length n, we will consider
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n subsequences. We will show that these subsequences are second order linear recur-

rence equations with fixed coefficients, so we can analyze their behaviour. Consider

the following motivating example.

Example 2.6. The sequence generated by the coefficient cycle σ4 = (+ +−−) is as

follows, where we have listed terms vertically to create four subsequences.

1, −1, −4, −11, −29, . . .
1, 4, 11, 29, 76, . . .
2, 3, 7, 18, 47, . . .
3, 7, 18, 47, 123, . . .

It appears as if each subsequence is growing exponentially. Upon inspection we can

see that each subsequence is growing according to the recurrence relation

tn = 3tn−1 − tn−2. (2.14)

The product matrix in this example is P4 = AABB = ( 0 1−1 3 ), and is in the form of

a companion matrix. (Note this is not always the case.) Reading off the characteristic

equation gives x2 − 3x + 1 = 0, which is also what we get from Equation (2.14).

Suppose we want to find sequence terms ti using the product matrix. Recall from

Equation (2.3) that we must calculate the reverse product matrix, M4M3M2M1 =

BBAA = ( 0 −1
1 3 ), in order to compute sequence terms. (Note again that reversing the

terms results in the transpose matrix.) Starting with t1 = t2 = 1, we obtain(
0 −1

1 3

)(
1

1

)
=

(
−1

4

)
=

(
t5

t6

)
,

(
0 −1

1 3

)(
−1

4

)
=

(
−4

11

)
=

(
t9

t10

)
.

Continuing to multiply each new vector by ( 0 −1
1 3 ), we see that the first two subse-

quences are generated. How then do we generate the next two subsequences?

If we want to skip ahead one term in the periodic coefficient sequence, we can use

t2 = 1, t3 = 2 as our initial vector and rotate our coefficient cycle one term to the left

to obtain σ4 = (+−−+). The corresponding matrix product is P4 = M2M3M4M1 =
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ABBA, which we must first reverse, in order to calculate sequence terms. Here we

have M1M4M3M2 = ABBA = ( 2 1
1 1 ), and the terms generated are(

2 1

1 1

)(
1

2

)
=

(
4

3

)
=

(
t6

t7

)
,

(
2 1

1 1

)(
4

3

)
=

(
11

7

)
=

(
t10

t11

)
.

We have generated the second and third subsequences. Similarly, using initial terms

t3 = 2, t4 = 3, and coefficient cycle σ4 = (−−++) with corresponding product matrix

P4 = M3M4M1M2 = BBAA and reversal M2M1M4M3 = ( 0 1−1 3 ) we obtain(
0 1

−1 3

)(
2

3

)
=

(
3

7

)
=

(
t7

t8

)
,

(
0 1

−1 3

)(
3

7

)
=

(
7

18

)
=

(
t11

t12

)
.

Here we have the terms in the third and fourth subsequences.

In this example, we have seen that rotating the coefficient cycle produces n subse-

quences, each of which grows according to the same linear recurrence. We will prove

this result in general, but first a few notes will be useful. If we let Pn = ( a b
c d ), then

Pn − Ix =

(
a− x b

c d− x

)
,

which has characteristic equation (a−x)(d−x)−bc = 0, i.e., x2−(a+d)x+(ad−bc) = 0.

Comparing with the form of the characteristic equation x2 − ux− v = 0, we see that

u = a+ d = tr(Pn), (2.15)

v = −(ad− bc) = −det(Pn), (2.16)

where u, v ∈ Z because we have seen the matrices Pn belong to S∗L(2,Z). Note also

that this tells us that v = ±1, which we have seen.

The following theorem considers what happens when we reverse the terms in a

coefficient cycle. This is what allows us to reverse the matrices in the product Pn.
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Theorem 2.8. Given a coefficient cycle σn = (s1, . . . , sn) with n ≥ 1 and correspond-

ing product matrix Pn, reversing the terms in the cycle gives σ′n = (sn, . . . , s1) with

corresponding product matrix P ′n, where P ′n is the transpose of Pn and has the same

characteristic equation as Pn.

Proof: We will first prove the fact that if the cycle is reversed, the associated

product matrix is transposed. Let Pn = M1 · · ·Mn, so that reversing the matrices

gives P ′n = Mn · · ·M1. Taking the transpose gives

P T
n = (M1 · · ·Mn)

T = MT
n · · ·MT

1

= Mn · · ·M1 = P ′n,

because Mi ∈ {A,B} for 1 ≤ i ≤ n and the matrices A and B are both self-transpose.

Now we must show that taking the transpose does not affect the characteristic

equation. The characteristic equation of Pn is dependent only on u = tr(Pn) and

v = − det(Pn). Since the trace is a + d and the determinant is ad − bc for both Pn

and P ′n, we have the same equation in both cases. �

It is easy to see that Theorem 2.8 is not true for matrix products in general.

Similarly, we can check the outcome of the rotation of terms in a product matrix.

Theorem 2.9. Given a coefficient cycle σn = (s1, . . . , sn), with n ≥ 1, rotating

the entries (to the right) by k, where 0 ≤ k ≤ n − 1, gives a new cycle σ′n =

(sn−k+1, . . . , sn, s1, . . . , sn−k) with corresponding product matrix having the same char-

acteristic equation as the original product matrix.

Proof: Suppose σn has associated product matrix Pn, which we can write as Pn =

M1 · · ·Mn. If we rotate the coefficient cycle by one we get σ′n = (sn, s1, . . . , sn−1), with

associated product matrix P ′n = Mn(M1 · · ·Mn−1). If we supposeM1 · · ·Mn−1 = ( a b
c d )

(which simply equals I for the n = 1 case), we have

Pn = (M1 · · ·Mn−1)Mn =

(
a b

c d

)(
0 1

1 ±1

)
=

(
b a± b

d c± d

)
,

P ′n = Mn(M1 · · ·Mn−1) =

(
0 1

1 ±1

)(
a b

c d

)
=

(
c d

a± c b± d

)
.
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The traces of Pn and P ′n are both equal to b + c ± d and the determinant in both

cases is bc − ad. We conclude that the characteristic equation is the same for both

matrices. We can continue rotating by any number k of places in our product Pn

in the same way without changing the characteristic equation. We also have the

trivial rotation, where we rotate by 0, or equivalently n terms, again leaving the

characteristic equation unchanged. �

Unlike Theorem 2.8 for reversal, this theorem for rotation is true for a general

2 × 2 matrix product. Notice that here we rotated terms in our coefficient cycle to

the right, whereas in Example 2.6 we rotated terms to the left. The set of all rotations

is equivalent in either case, so direction did not matter for purposes of the proof. The

following consequence of Theorem 2.9 will be useful.

Corollary 2.1. Given a coefficient cycle σn = (s1, . . . , sn), with n ≥ 1, the corre-

sponding periodic coefficient sequence can be broken down into n subsequences, each

of which grows according to the same second order linear recurrence relation.

Proof: By rotating a coefficient cycle by k terms, we obtain a product matrix that

allows us to compute the (k + 1)st and (k + 2)nd subsequences. We can generate

all subsequences by rotating by k for k = 1, . . . , n − 2. Theorem 2.9 tells us that

each product matrix under rotation has the same characteristic equation, hence each

subsequence grows according to the same recurrence relation. �

We might be tempted to conclude here that each subsequence corresponding to a

periodic coefficient sequence must have the same growth type; but this is not always

the case, as we have seen that the growth depends not only on the characteristic

equation but also on the initial conditions. A few more examples will be helpful in

understanding the growth of our subsequences.

Example 2.7. The sequence generated by the coefficient cycle σ6 = (+ + +−−−)

(see Example 2.3) can be broken down into the following six subsequences:

In absolute value, it appears that four of the six subsequences are growing linearly

with difference 8, with the exception of the first two terms of the first subsequence,

and the other two subsequences are bounded with absolute value a constant 2. This
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1, 7, −15, 23, . . .
1, −9, 17, −25, . . .
2, −2, 2, −2, . . .
3, −11, 19, 27, . . .
5, −13, 21, −29, . . .

−2, 2, −2, 2, . . .

exception comes from the fact that the initial term in the sequence is repeated, and

because no other consecutive terms (in absolute value) are repeated, it is not possible

for the differences of the first two terms in the first two subsequences to be equal.

We could try to deduce the governing recurrence, but we can easily find it from the

product matrix P6. We have P6 = A3B3 =
(
3 −4
4 −5

)
, which has characteristic equation

x2 + 2x + 1 = 0. This implies the recurrence tn = −2tn−1 − tn−2, which fits our

data, even the exception. (Note that if we rotate our coefficient cycle by k = 1, we

obtain the matrix P6 = BA3B2 =
( −1 4

0 −1
)
, which has the same recurrence as above,

as required by Theorem 2.9). Solving, we get a double eigenvalue λ1 = −1, which

by Theorem 2.5 implies linear growth, but we must also consider the exception. In

the third and sixth subsequences we have λ1 = −1 and a1 = −a2, which again by

Theorem 2.5 implies bounded growth.

Note that since linear growth requires a double eigenvalue of ±1, there are only

two options for the recurrence, namely

tn = ±2tn−1 − tn−2.

It is clear that if a1 = ±a2 (depending on the value of λ1), the sequence will remain

constant in absolute value.

The next example corresponds to Example 2.4 and illustrates subsequences which

are all bounded.

Example 2.8. The periodic sequence generated by the cycle σ3 = (++−) of length

3 is broken down into three subsequences as follows:

Each of these sequences is clearly bounded. The product matrix in this case is P3 =

A2B = ( 1 0
2 −1 ), which has characteristic equation x2 − 1 = 0. The corresponding

recurrence is tn = tn−2, which is satisfied by all three subsequences. The eigenvalues



70

1, 3, 1, 3, 1, 3, . . .
1, −1, 1, −1, 1, −1, . . .
2, 2, 2, 2, 2, 2, . . .

of the characteristic equation are λ1 = 1, λ2 = −1 and Theorem 2.6 tell us distinct

roots of unity imply bounded growth.

We can extend this example by considering what happens when we double the

coefficient cycle.

Example 2.9. Let σ6 = (+ + − + +−). We know it must behave the same way as

σ3 = (+ +−) because it generates the same periodic coefficient sequence. This time

we obtain six subsequences, each of which is constant, as shown below.

1, 1, 1, . . .
1, 1, 1, . . .
2, 2, 2, . . .
3, 3, 3, . . .

−1, −1, −1, . . .
2, 2, 2, . . .

The product matrix is

P6 =

(
1 0

2 −1

)2

= I,

with characteristic equation x2− 2x+1 = 0, recurrence tn = 2tn−1− tn−2 and double

eigenvalue λ1 = 1. The double eigenvalue would suggest linear growth, but again

this falls into the exceptional case because each of our subsequences has a1 = a2 = 1,

ensuring bounded growth. The recurrence was discussed earlier.

There are a couple of interesting things to note about this example. First, it

makes sense that the first two subsequences are constant. If we reverse the matrix

product Pn to calculate sequence terms, we obtain BA2BA2 = I, and so(
t7

t8

)
=

(
1 0

0 1

)(
1

1

)
=

(
1

1

)
,
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where the matrix I ensures subsequence values are constant. In order to calculate

the next four subsequences using matrices, we must take rotations of the cycle σ6 =

(++−++−). Doing this gives (+−++−+), (−++−++), which when reversed

have product matrices ABAABA = AABAAB = I. It is true in general that if we

rotate the matrices in Pn = I to obtain P−11 PnP1, then P−11 PnP1 = P−11 IP1 = I, i.e.,

this rotation is also equal to I.

Also note that in the previous example, doubling the coefficient cycle produced

a set of subsequences, all of which were constant. Given a set of subsequences with

bounded growth, it is possible to repeat the coefficient cycle k times, for some k,

creating a new coefficient cycle of length nk, which gives us a list of constant subse-

quences. (Here we have assumed that if a periodic coefficient sequence has bounded

growth then it is periodic with some finite period length l, and nowhere have we

actually proven this fact. Clearly the converse is true and the complete proof fol-

lows shortly.) This is the same as saying that for any product matrix Pn producing

bounded growth, we can write P k
n = I P k

n = I for some k. We will give a proof of the

fact that the growth of a periodic coefficient sequence is bounded if and only if Pn

has finite order, but first it will be useful to summarize the different types of growth

for subsequences corresponding to product matrices Pn.

Recall that matrices Pn belong to the group S∗L(2,Z), and so are unimodular. It is

a standard result in linear algebra that the product of eigenvalues is the determinant

of a matrix. Therefore for matrices Pn, we must have that λ1λ2 = ±1, implying

|λ1λ2| = 1. With this information, we can now update Theorems 2.5, 2.6 and 2.7

to the specific case of M = Pn. Previously we talked of a companion matrix M

corresponding to a second order linear recurrence, but here since Pn is not necessarily

a companion matrix, we will have to consider the second order linear recurrence

associated with the characteristic equation obtained from Pn. Corollary 2.1 tells us

that this recurrence governs the growth of all n subsequences. Note that it is now

possible to have Pn = ±I, whereas previously ±I was not included because it is not

in the form of a companion matrix.

Theorem 2.10. Given a product matrix Pn with eigenvalues λ1 and λ2, the growth

of a given subsequence is
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1. linear if and only if Pn 	= ±I and the eigenvalues λ1, λ2 are both 1 or both −1,

2. bounded if and only if Pn = ±I or λ1, λ2 are distinct roots of unity,

3. exponential if and only if |λ1| > 1,

with the following exceptions: if λ1 = 1 with a1 = a2, λ1 = −1 with a1 = −a2, or

a1 = a2 = 0, the growth is bounded.

Proof: Let us start by considering the case Pn = ±I. We have seen that if Pn = I,

then all of our subsequences are constant, and so we have a1 = a2 for each. Also in

this case we have λ1 = λ2 = 1. Similarly if Pn = −I, subsequences will alternate in

sign, but be constant in absolute value and we have λ1 = λ2 = −1, with a1 = −a2.

These two cases belong to the exceptions in Theorems 2.6 and 2.5. The difference

when Pn = ±I is that all subsequences have this bounded behaviour, instead of

just one bounded subsequence among linear subsequences. The exceptional case

from Theorem 2.5 remains, but the case from Theorem 2.7 does not occur because

it requires an eigenvalue to be ±1, which does not occur for exponential growth.

Similarly the exception a2 = 0 with λ1 or λ2 = 0 is not applicable for product

matrices Pn because we cannot have an eigenvalue of 0.

Theorem 2.5 told us that growth was linear if and only if the eigenvalues of Pn

were equal roots of unity, and this remains unchanged by the fact that |λ1λ2| = 1.

Theorem 2.6 told us that growth was bounded if and only if |λ1|, |λ2| ≤ 1 as long

as the eigenvalues aren’t equal roots of unity. Since the eigenvalues must be less

than or equal to 1 in absolute value, and their product must have absolute value 1,

we conclude that the eigenvalues must be roots of unity. Theorem 2.7 told us that

growth was exponential if and only if |λ1| > 1. This remains true, although we must

now have |λ2| < 1, so that the product is 1. Here λ1 is dominant, and so we cannot

have the cases with eigenvalues equal or equal in absolute value. �

Note that the Skolem-Mahler-Lech Theorem (mentioned after Theorem 2.7) is

only applicable to the exponential case, because this is the only growth type where

the eigenvalues are not both roots of unity.

Definition 2.10. We say that a periodic coefficient sequence {ti} with cycle length n

grows exponentially if all n subsequences grow exponentially, we say it grows linearly
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if at least one subsequence grows linearly and it is bounded if all n subsequences are

bounded.

We have seen that if some subsequences grow linearly, the rest are bounded (see

Example 2.7), and if at least one subsequence grows exponentially, they all do (see

Example 2.6). As was the case in Proposition 1.1 for the random Fibonacci sequence,

the growth of a periodic coefficient sequence is also independent of its initial values,

with the exceptions made in Theorem 2.10. This is because the product matrices,

eigenvalues, and hence growth rates do not depend on t1 and t2.

Theorem 2.11. A product matrix Pn has finite order if and only if the associated

periodic coefficient sequence has bounded growth.

Proof: By Definition 2.10, for a periodic coefficient sequence to be bounded, we

need all subsequences to be bounded. Theorem 2.10 then tells us that we either have

Pn = ±I or Pn with eigenvalues which are distinct roots of unity. In the former case

we clearly have finite order. The key to showing Pn has finite order is to consider our

product matrices in Jordan normal form (see Fletcher [28]). Over C, every matrix has

a Jordan normal form, and is similar to its Jordan normal form. Similar matrices share

trace, determinant, eigenvalues and more importantly order, where similar matrices

are conjugate group elements. (Recall matrices A and B are similar or conjugate if

there exists an invertible matrix M such that A = M−1BM .) For 2× 2 matrices M ,

there are three different cases.

The first is that we have distinct eigenvalues λ1 and λ2, with Jordan normal form(
λ1 0

0 λ2

)
.

The second case is equal eigenvalues λ1, with M = λ1I, which has Jordan normal

form (
λ1 0

0 λ1

)
.

In this case, since we have detPn = ±1 and integer matrix entries, we must have

λ1 = ±1. The third case is for equal eigenvalues λ1 with M 	= λ1I, and here the
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Jordan normal form is (
λ1 1

0 λ1

)
.

We are interested in the case of distinct roots of unity (bounded growth), so we can

assume our matrix Pn is similar to, and hence has the same order as that in the first

case. The order is therefore the smallest number k such that(
λ1 0

0 λ2

)k

=

(
λk
1 0

0 λk
2

)
= I.

In other words, the order is the smallest value k such that λk
1 = λk

2 = 1. This k exists

because we know the eigenvalues are roots of unity.

Conversely, suppose we have a product matrix Pn with finite order, i.e., P k
n = I.

If we consider the different cases of the Jordan normal form, Pn must then be similar

to
(
λ1 0
0 λ2

)
, where λ1 and λ2 are distinct, and must be roots of unity to ensure finite

order, or Pn could be ±I to begin with. In either case the corresponding periodic

coefficient sequence is bounded by Theorem 2.10. Note that if Pn is similar to
(
λ1 1
0 λ1

)
,

the equal roots of unity case, it cannot have finite order because(
λ1 1

0 λ1

)k

=

(
xk kxk−1

0 xk

)
	= I. (2.17)

This makes sense because we know the growth in this case is linear. �

Corollary 2.2. A periodic coefficient sequence has bounded growth if and only if it

is periodic with some finite period length l = nk.

Proof: Clearly, if a sequence is periodic, then it is bounded. By Theorem 2.11, a

product matrix Pn has finite order if and only if the associated periodic coefficient

sequence has bounded growth. We mentioned after Example 2.9 that raising a matrix

Pn to the power k to obtain I is the same as repeating a length n coefficient cycle

k times to obtain a list of nk constant subsequences. This tells us that the n subse-

quences must have been periodic with period k and that the entire periodic coefficient

sequence has period l = nk. �
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McGuire [55] gives a proof of this fact using the pigeonhole principle and also

notes that k|l. Since k is the order of Pn, where Pn is similar to
(
λ1 0
0 λ2

)
, with λ1, λ2

distinct roots of unity, we have seen that λk
1 = λk

2 = 1. Also, since the eigenvalues

are a conjugate pair, k must be the smallest power of each of the eigenvalues which

produces 1, and so our eigenvalues λ1 and λ2 are kth roots of unity, where k is the

smallest value for which this occurs.

In Example 2.8 we had l = 6, n = 3 and k = 2. In fact the product matrix

A2BA2B = I is the shortest product of matrices A and B producing the identity.

Also, our eigenvalues were ±1, which raised to the power k = 2 give 1. As a further

example, consider the following.

Example 2.10. Consider the coefficient cycle σ4 = (+ + +−), with product matrix

P4 =
(
2 −1
3 −1

)
. The characteristic equation is x2 − x + 1 = 0, which gives us eigen-

values λ1, λ2 = 1±√−3
2

. Note that |λ1| = |λ2| = 1, and so growth is indeed bounded

by Theorem 2.10 and Definition 2.10. Using σ4, the periodic coefficient sequence

is 1, 1, 2, 3, 5,−2, 3, 1, 4,−3, 1,−2,−1,−1, −2,−3,−5, 2,−3,−1,−4, 3,−1, 2, 1, 1, . . . .

This sequence starts to repeat after 24 terms, so we have l = 24. Also n = 4, and so

we should have k = 6. We can verify this by raising P4 to the sixth power obtaining

P 6
4 = I. Similarly

(
1±√−3

2

)6

= 1. We can therefore write our periodic coefficient

sequence as 24 constant subsequences rather than 4 subsequences which repeat after

6 terms.

In his paper Period of a Linear Recurrence [70], Vince investigates the period

of a general nth order linear recurrence. Unlike our repeating recurrences (which

correspond to bounded growth), Vince considers an algebraic number field K, with

ring of integers A and constructs a repeating sequence of size n-vectors, Xm, with

entries in A, by reducing modulo an ideal in A. The vectors Xm come from

Xm+1 = TXm,

where X0 is the initial value vector of the linear recurrence and T is the corresponding

companion matrix.

In his paper Periodic Recurrence Relations and Continued Fractions [13], Carson



76

considers a recurrence of the form

γnxn = αnxn−1 + βnxn−2, (2.18)

and studies the effect of allowing the coefficients {αn}, {βn} and {γn} to be bounded

sequences which repeat with period k. He proves the following relation for terms xn

appearing k terms apart in the sequence defined by Equation (2.18):

γx(r+2)k+2 = αx(r+1)k+s + βxrk+s,

where α, β and γ are constant for all integer values of r and s. Carson further

applies his results to the numerators and denominators of the convergents of a peri-

odic continued fraction. In [26], Ferguson considers the one-parameter class of linear

recurrences given by

xn(t) = αnxn−1 + tβn−1xn−2.

He gives results (solutions or generating functions) for the cases where {an} and {bn}
are arbitrary sequences, period-2 sequences, and in general, period-k sequences.

Proposition 2.3. The growth rate of an exponentially growing periodic coefficient

sequence {ti} with cycle length n is |λ1| 1n , where λ1 is the dominant eigenvalue of the

corresponding product matrix Pn.

Proof: Theorem 2.10 tells us that the dominant eigenvalue λ1 exists and gives us

the growth rate of any of the n subsequences which are formed by considering every

nth term in the periodic coefficient sequence. Taking the nth root of this growth rate

allows us to determine the growth rate of the periodic coefficient sequence term by

term. �

Example 2.11. Continuing Example 2.6 with product matrix P4 = ( 0 1−1 3 ) and char-

acteristic equation x2−3x+1 = 0, we get eigenvalues λ1, λ2 =
3±√5

2
. Here |λ1| > 1 and

so growth is exponential. By Proposition 2.3, the growth rate of the corresponding

periodic coefficient sequence is then
(

3+
√
5

2

) 1
4
.



Chapter 3

Trace, Order and Growth Type

3.1 Values of Trace and Determinant

Without explicitly calculating eigenvalues, the characteristic equation x2−ux−v = 0

can tell us a great deal about the behaviour of our periodic coefficient sequences. In

this section we will take a closer look at the values of u and v. Recall from Equations

(2.15) and (2.16) that u and v denote tr(Pn) and −det(Pn) respectively. Recall also

from Proposition 2.1 that det(Pn) = ±1 for n even and odd respectively. Since

Equation (2.16) tells us v = − det(Pn), we have that v = ±1 for n odd and even.

The following theorems relate the parity of the term u with the divisibility of n.

Theorem 3.1. For a product matrix Pn with trace u,

u even ⇐⇒ 3 | n,
u odd ⇐⇒ 3 � n.

Proof: We can consider the entries in our product matrices modulo 2, and look for

cyclic behaviour as we increase n. We have seen that the map mod2 in (2.5) is a

homomorphism, and so we can take the take the entries in A,B modulo 2 before we

form the product Pn. Start with n = 0. This product matrix is trivial and we have

P0 = ( 1 0
0 1 ), which has u = 2. For n = 1 we have the matrices P1 = ( 0 1

1 ±1 ), which

gives mod2(P1) = ( 0 1
1 1 ), and therefore u = 1. For n = 2 we are essentially squaring

this matrix, giving

mod2(P2) =

(
0 1

1 1

)2

=

(
1 1

1 2

)
≡

(
1 1

1 0

)
,

which has u = 1. For n = 3 we obtain

mod2(P3) =

(
1 1

1 0

)(
0 1

1 1

)
=

(
1 0

0 1

)
,

77
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which is the same matrix as the n = 0 case. As we increase n, our matrices mod2(Pn)

form a cycle. We can therefore conclude that u is even if and only if n ≡ 0 (mod 3)

and u is odd if and only if n ≡ 1, 2 (mod 3). �

Recall that in Theorem 2.1 we also looked at matrices with entries modulo 2, when

determining properties of matrices in K < G. In the case of n ≡ 0 (mod 3) we can

make a further distinction.

Theorem 3.2. For a product matrix Pn with trace u we have

u ≡ 0 (mod 4) ⇐⇒ n ≡ 3 (mod 6),

u ≡ 2 (mod 4) ⇐⇒ n ≡ 0 (mod 6).

Proof: The map mod4 : S∗L(2,Z) → SL(2,Z\4Z), like mod2 is a homomorphism,

and so we can follow the proof of Theorem 3.1 and look for cyclic behaviour as we

increase n. Start with n = 0. The trivial product matrix P0 = I has u = 2. For

n = 1, we have the following set of matrices modulo 4:

{mod4(P1)} =

{(
0 1

1 1

)
,

(
0 1

1 3

)}
.

We know from Theorem 3.1 that for n ≡ 1, 2 (mod 3), u is odd and hence u is

still odd modulo 4. We are only interested in n ≡ 0 (mod 3). For n = 3 we get the

following set of matrices modulo 4, namely, {mod4(P3)}:{(
1 2

2 3

)
,

(
1 0

2 3

)
,

(
3 0

0 1

)
,

(
1 2

0 3

)
,

(
3 2

2 1

)
,

(
3 0

2 1

)
,

(
1 0

0 3

)
,

(
3 2

0 1

)}
.

Here each u value is 0 (mod 4). Similarly, for n = 6, 9 we have the sets {mod4(P6)}
and {mod4(P9)} respectively:{(

1 0

0 1

)
,

(
1 2

0 1

)
,

(
3 2

2 3

)
,

(
3 0

2 3

)
,

(
1 0

2 1

)
,

(
1 2

2 1

)(
3 2

0 3

)
,

(
3 0

0 3

)}
,

{(
1 2

2 3

)
,

(
1 0

2 3

)
,

(
3 0

0 1

)
,

(
3 2

0 1

)
,

(
1 2

0 3

)
,

(
1 0

0 3

)
,

(
3 0

2 1

)
,

(
3 2

2 1

)}
.
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In the case of n = 6, notice that each matrix has a u value of 2 and for n = 9, each has

the u value 0. Also notice that the set of matrices for n = 9 matches the set for n = 3.

This tells us that as we continue to increase n, our sets of matrices {mod4(Pn)} will

start to cycle. We can therefore conclude that for all n ≡ 3 (mod 6), we have u ≡ 0

(mod 4), and for all n ≡ 0 (mod 6) we have u ≡ 2 (mod 4).

The converses of these statements are also true. When u ≡ 0 or 2 (mod 4) we

must have n ≡ 3 or 0 (mod 6) respectively, since for n ≡ 1, 2, 4, 5 (mod 6), u is odd

by Theorem 3.1. �

Example 3.1. We will continue with Examples 2.4, 2.6 and 2.7 for the coefficient

sequences σ3 = (+ + −), σ4 = (+ + −−) and σ6 = (+ + + − −−) respectively.

These examples have product matrices P3 = ( 1 0
2 −1 ), P4 = ( 0 1−1 3 ) and P6 =

(
3 −4
4 −5

)
respectively. For matrices P3 and P6, we have 3|n and |u| = 0 and 2. This satisfies

Theorem 3.1 which says that u is even if and only if 3|n. Similarly, for P4 we have

n = 4 and u = 3. Also, Theorem 3.2 is satisfied here because for P3 we have u ≡ 0

(mod 4) and for P6 we have u ≡ 2 (mod 4).

The following theorem, which is one of the main results of this thesis, gives the

connection between u-value and type of growth. We can use the standard linear

algebra fact that the trace of a matrix is equal to he sum of its eigenvalues, so that

in our case

u = λ1 + λ2.

Theorem 3.3. Given a product matrix Pn with n odd and Pn 	= ±I, the growth of

the corresponding periodic coefficient sequence is

exponential ⇐⇒ u 	= 0,

bounded ⇐⇒ u = 0,

and if n is even the sequence growth is

exponential ⇐⇒ |u| > 2,

linear ⇐⇒ |u| = 2,

bounded ⇐⇒ |u| = 1.
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If Pn = ±I, growth is bounded.

Proof: Recall that the characteristic equation of the corresponding product matrix

has form x2−ux± 1. We have seen in Theorem 2.10 that for Pn = ±I, growth is not

linear but bounded, despite the fact that u = ±2. If we first consider the general n

odd case, Proposition 2.1 tells us that v = 1, i.e., our characteristic equation has the

form x2 − ux− 1. Solving for the eigenvalues gives

λ1, λ2 =
u±√

u2 + 4

2
.

We know from Theorem 2.10 that the growth of a sequence is bounded if and only if

the eigenvalues are distinct roots of unity. Here our discriminant is always positive

so the eigenvalues cannot be complex. We can therefore conclude that the growth of

a sequence is bounded if and only if λ1 = 1, λ2 = −1. In this case, we have that

u = λ1 + λ2 = 0.

Conversely if u = 0,

λ1, λ2 =
u±√

u2 + 4

2
=

±√
4

2
= ±1,

completing the bounded case.

Since the radical is always positive, we can never have a double root, i.e., growth

is never linear. Therefore, since it is the only other option, we must have exponential

growth if and only if u 	= 0.

If we now consider the n even case, Proposition 2.1 tells us that v = −1 and so

our characteristic equation has form x2 − ux+ 1. Solving for the eigenvalues gives

λ1, λ2 =
u±√

u2 − 4

2
.

Our radical may be positive, negative or zero. We know from Theorem 2.5 that the

growth of our sequence is linear if and only if the eigenvalues are both equal to 1 or

−1. If we have such a double root, then

u = λ1 + λ2 = ±2.
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Conversely if u = ±2,

λ1 = λ2 =
u±√

u2 − 4

2
=

±2

2
= ±1,

completing the linear case.

By Theorem 2.6, growth is bounded if and only if we have distinct eigenvalues

that are roots of unity. We have that v = −1, implying det(Pn) = 1, and therefore

λ1λ2 = 1. If λ1, λ2 are distinct roots of unity, they must be complex. If the eigenvalues

are complex we need
√
u2 − 4 < 0 so the only possibilities for bounded growth are

for u = 0,±1. But we have seen in Theorem 3.2 that u can take on the value 0 only

when n ≡ 3 (mod 6), in which case n is odd. Therefore bounded growth must occur

only when u = ±1. Conversely, when u = 1,−1 we get eigenvalues 1±√−3
2

and −1±√−3
2

respectively. These eigenvalues are pairs of distinct roots of unity and therefore by

Theorem 2.6 growth is bounded.

The remaining u values, i.e., |u| > 2 therefore correspond to sequences with re-

maining growth type, exponential growth. �

Note that the matrices ±I are an exception because growth must be bounded,

but Theorem 3.3 would have us believe that because det(±I) = 1 and tr(±I) = ±2,

the growth is linear.

Example 3.2. We will continue Example 3.1 and consider the growth types of the

matrices we have been studying. For the n odd case, P3, we have u = 0 and bounded

growth by Theorem 3.3. This growth is verified in Example 2.1. For the n even cases,

P4 and P6, we have |u| = 3 and 2 respectively. These trace values correspond to

exponential and linear growth, respectively, as given in Theorem 3.3. These growth

types are verified in Examples 2.2 and 2.3.

A similar classification system has been used to sort Möbius transformations ac-

cording to trace. Given a matrix M = ( a b
c d ) in GL(2,C), we will denote its Möbius

transformation on z ∈ C ∪ {∞} by fM(z) := az+b
cz+d

. (This notation differs from the

definition in Chapter 1, and there our field was restricted to R.) We will also define

the trace of a Möbius transformation fM(z) to be tr(M), and say that two Möbius
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transformations are conjugate if and only if their corresponding matrices are conju-

gate. The following information can be found in Beardon [6, p. 66, 67]. We call a

Möbius transformation fM(z) 	= z (i.e., non-identity) parabolic, loxodromic or elliptic

if and only if it has exactly one, exactly two, or infinitely many fixed points, respec-

tively. This classification is invariant under conjugation and furthermore two Möbius

transformations f and g are conjugate if and only if tr2(f) = tr2(g). A similar def-

inition classifies our Möbius transformations based on their traces as follows, where

the loxodromic case has been broken down into hyperbolic and strictly loxodromic,

depending on whether or not values are real.

Proposition 3.1. A Möbius transformation f , where f 	= z, with a, b, c, d ∈ C is

1. parabolic ⇐⇒ tr2(f) = 4,

2. elliptic ⇐⇒ tr2(f) ∈ [0, 4),

3. hyperbolic ⇐⇒ tr2(f) ∈ (4,∞),

4. strictly loxodromic ⇐⇒ tr2(f) /∈ [0,∞).

Notice that the strictly loxodromic case only applies to tr(f) /∈ R. The matrices

we are concerned with, Pn, belong to S∗L(2,Z), and hence have real entries, so we

can rephrase the above result as follows.

Proposition 3.2. A Möbius transformation f , where f 	= z, with a, b, c, d ∈ R is

1. parabolic ⇐⇒ |tr(f)| = 2,

2. elliptic ⇐⇒ |tr(f)| < 2,

3. hyperbolic ⇐⇒ |tr(f)| > 2,

This classification of real Möbius transformations comes from the classification of

conic sections. Note that this is exactly the breakdown of the n even case in Theorem

3.3. Hyperbolic and parabolic transformations correspond to exponential and linear

growth respectively, and the elliptic transformation corresponds to bounded growth.

Note that for our specific case of product matrices Pn, it is not possible to have trace

zero when n is even, by Theorem 3.2. Every Möbius transformation fM(z) 	= z with

M ∈ SL(2,C) is conjugate to one of the following Möbius transformations where

we let a = λ1 be the dominant eigenvalue of M (see Mumford, Series and Wright
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[57, p. 83]): f(z) = z + a for the parabolic case (here a = ±1), f(z) = a2z with

|a| > 1 for the loxodromic case (hyperbolic case if a2 is real), and f(z) = a2z with

|a| = 1 and a 	= ±1 for the elliptic case. Recall that because det(M) = 1 we have

λ1λ2 = 1, where λ1 = a and λ2 =
1
a
. We can see by examining the eigenvalues (as was

done in Chapter 2) that this is equivalent to saying that every non-identity Möbius

transformation fM(z) has M ∈ SL(2,C) which is conjugate to one of the following

matrices in Jordan normal form (recall the proof of Theorem 2.11): ( a 1
0 a ) for the

parabolic case,
(
a 0
0 1/a

)
for the loxodromic case where |a| > 1 (hyperbolic for a2 ∈ R)

and for elliptic the case where and |a| = 1 with a 	= ±1. Note that if a = ±1 we

would obtain the matrix ±I, which has trace ±2. This case is an exception, however,

because we have already seen that the identity matrix does not correspond to linear

growth (parabolic).

Now, what if our matrix M has determinant −1, as is possible for matrices

Pn ∈ S∗L(2,Z)? The results in Beardon [6] were true for any non-identity Möbius

transformation and so also hold true if det(M) = −1. From Theorem 3.3 we know

that we cannot have linear growth when n is odd (i.e., det(M) = −1). If tr(M) = 0

or 1, growth is bounded or exponential respectively, and these cases both fall under

elliptic. If tr(M) > 2 we have exponential growth and a hyperbolic Möbius transfor-

mation. Growth type does not quite carry over to transformation type in this case.

Similar conjugacy maps and matrices can be constructed.

By combining results from Theorems 3.1 and 3.3 we can state some new relations

between the divisibility of n and growth type.

Corollary 3.1. Given a product matrix Pn 	= ±I we have the following results about

the growth of the corresponding periodic coefficient sequence:

linear ⇒ 6 | n,
n or u odd ⇒ bounded or exponential.

If Pn = ±I, we have 6 | n.

Proof: Suppose we have the product matrix Pn 	= ±I which has a linearly growing

periodic coefficient sequence. By Theorem 3.3 linear growth occurs only when n is

even and |u| = 2. Theorem 3.1 tells us that u is even if and only if 3 | n, hence 6 | n.
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By the contrapositive, if 6 � n then growth is not linear. In other words if n or u is

odd (i.e., 2 � n or 3 � n) then growth is bounded or exponential. In the Pn = ±I case,

the proof follows as above because det(±I) = 1, implying n is even by Proposition

2.1, and |u| = |tr(±I)| = 2. �

Corollary 3.2. Given a product matrix Pn with n odd and Pn 	= ±I, we have the

following results about the growth of the corresponding periodic coefficient sequence:

bounded ⇒ 3 | n,
3 � n ⇒ exponential.

Proof: For n odd, Theorem 3.3 tells us that bounded growth implies u = 0. The-

orem 3.1 then tells us that for u even, 3 | n. The second statement is simply the

contrapositive of the first, where we have used the fact from Theorem 3.3 that when

n is odd, if growth is not bounded, it must be exponential. �

The converse of this theorem does not hold. If n is odd and 3|n, it is not necessarily
the case that the periodic coefficient sequence is bounded.

Example 3.3. If σ9 = (++++++++−) we have P9 =
(
21 −8
34 −13

)
with λ1 = 4+

√
17,

and the corresponding sequence grows exponentially.

It would be interesting to consider some of the results in this section using the

alternate matrix pair discussed in Chapter 2, namely A, B̂ = ( 0 ±1
1 1 ). We could also

use A,B′ = ( 0 1±1 1 ), although the fact that AT = A and B̂T = B′ means that any

product matrix composed of A and B′ is simply the transpose of the reverse product

matrix made up of A and B̂. Using a proof similar to that of Theorem 2.8, we can

show that reversing a product matrix (in A, B̂) does not change its trace, and neither

does taking the transpose. Therefore results on growth and trace will be the same

for A,B′ as for A, B̂. The behaviour of product matrices in A, B̂ appears to differ, at

least slightly, from the behaviour of the product matrices in A,B. For example, the

product AAB̂ = ( 1 0
2 1 ) has n odd, trace 2 and linear growth. For our original product

matrices, linear growth could occur only for n = 0 (mod 6). Further, we could look

at traces of products of A, B̂ and B in the non-linear case.
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Lastly, we will look at another characterization of growth type, similar to that in

Theorem 3.3, based on continued fractions. For a coefficient cycle σn = (s1, s2, . . . , sn),

with si ∈ {+,−}, we will consider the periodic continued fraction γn = [ŝ1, ŝ2, . . . , ŝn],

where we consider ŝi ∈ {1,−1}. This is not a simple continued fraction (of the form

[a1, a2, . . .] with a1 ∈ Z, ai ∈ N for i ≥ 2) because entries may be negative. We have

that (see Olds [58, p. 89] for example) any (simple) periodic continued fraction rep-

resents a quadratic irrational and conversely any quadratic irrational can be written

as a continued fraction that is periodic from some point on. (Recall that a quadratic

irrational is the root of a quadratic equation with integer coefficients, where the dis-

criminant is positive and non-square.) We suspect that a similar result is true for

continued fractions containing negative entries (as long as division by zero is not en-

countered), in which discriminants may be negative, i.e., we may obtain a “complex

quadratic” instead of a quadratic irrational.

Conjecture 3.1. Given a coefficient cycle σn with n odd, the growth of the corre-

sponding periodic coefficient sequence is

exponential ⇐⇒ γ is a quadratic irrational,

bounded ⇐⇒ γ is rational or does not exist,

and if n is even, the sequence growth is

exponential ⇐⇒ γ is a quadratic irrational,

linear ⇐⇒ γ is rational or does not exist,

bounded ⇐⇒ γ is a complex quadratic.

Further, it appears that the radical in an irrational γ is the same as the radical in the

eigenvalue corresponding to the coefficient cycle, and hence it does not change under

rotation. Also it appears that rational values have γ ≤ 2.

The data was computed using Maple, and so where γ “does not exist” (DNE), a

division by zero was most likely encountered. To find γn we can take the limit of the

convergents of the continued fraction (or a subsequence of the convergents to avoid

division by zero) or substitute γn into itself and solve. These methods, and resulting
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values of γn need to be further investigated. (The author regrettably ran out of time

here!)

Example 3.4. Table 3.1 compiles some results on continued fractions and coefficient

cycles. Note that rotating the coefficient cycle σ6 = (+++++−) gives the following

coefficient cycle n growth γn dom. eigenvalue

(+) 1 E (1 +
√
5)/2 (1 +

√
5)/2

(+−) 2 B (1−√−3)/2 (1 +
√−3)/2

(+ +−) 3 B DNE 1
(+−−) 3 B 1 1
(−++) 3 B −1 1

(+ + +−) 4 B (3−√−3)/2 (1 +
√−3)/2

(+ +−−) 4 E (3 +
√
5)/2 (3 +

√
5)/2

(+ + + +−) 5 E (5 +
√
5)/2 (1 +

√
5)/2

(+ + + ++−) 6 L 2 1
(+ +−−+−) 6 L DNE 1

(+ + + +++−) 7 E (13 +
√
13)/6 (3 +

√
13)/2

(+ + +−++−) 7 E (1 +
√
5)/2 (1 +

√
5)/2

(+ + + +++−−) 8 E (21 +
√
221)/22 (15 +

√
221)/2

(+ + +−−−++−) 9 B 3/2 1

(+ +−−++−−+−) 10 E (1 +
√
21)/2 (5 +

√
21)/2

(+ + + +−−−+−−) 10 B (9−√−3)/6 (1 +
√−3)/2

(+ + +−−−+++−−) 11 E (9 +
√
53)/14 (−7−√

53)/2
(+ + + ++++−−++−) 12 L 5/3 1

Table 3.1: Coefficient cycles and continued fractions.

values of γ6: 2, 1, DNE, 0,−1,−1
2
, and rotating σ12 = (+++++++−−++−) gives

5
3
, 3
2
, 2, 1, DNE, 0,−1,−1

2
, 2, 1

3
,−3

2
,−2

5
. Rotating the coefficient cycle σ8 = (+ + +−

− + − + −) gives 2, DNE,DNE,−1, DNE, 1
2
,−2, DNE and the linear coefficient

cycle σ12 = (+ +−−+−−+−++−) gives DNE for every rotation.

Recall that Viswanath considered the random infinite continued fraction

[±1,±1,±1, . . .], and in Equation (1.18), we saw a connection between this type of

fraction and the Möbius transformation from a product matrix. We suspect that this

connection can aid in the explanation of the above results.
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3.2 The Order of a Product Matrix

We have seen that product matrices Pn belong to the group G = 〈A,B〉, which is a

subgroup of S∗L(2,Z). The following definition can be found in Weinstein [73, p. 84],

and will help us to study the connection between the order of a product matrix and

its growth type.

Definition 3.1. The projective special linear group, PSL(2, F ) for a field F is defined

as the quotient group

PSL(2, F ) := SL(2, F )/Z(SL(2, F )),

where SL(2, F ) is the special linear group and Z(SL(2, F )) is its center.

We can similarly define this group over a ring R. Recall that the center is the

set of elements of SL(2, F ) that commute with all other elements. For our particular

group G ≤ S∗L(2,Z) we will be interested in the projective group

PS∗L(2,Z) = S∗L(2,Z)/Z(S∗L(2,Z)).

Note that the group PSL(2,Z) is isomorphic to the modular group (the group of

linear fractional transformations z → az+b
cz+d

with a, b, c, d ∈ Z and ad− bc = 1). With

regard to the center, we have the following theorem which can be found in Weinstein

[73, p. 83]. We include the proof so that we can subsequently extend the theorem.

Theorem 3.4. Let R be a commutative ring with identity. Then Z(SL(2, R)) = {±I}.

Proof: To show equality of these two groups, we will show inclusion in both directions.

The first direction, {±I} ⊆ Z(SL(2, R)), is trivial because ±I commutes with every

matrix in SL(2, R).

Conversely, we must show that Z(SL(2, R)) ⊆ {±I}. First let Q ∈ Z(SL(2, R)).

We must then show Q = ±I. For any M ∈ SL(2, R) we have MQ = QM . Now

consider the particular matrix M = ( 1 1
0 1 ). We have 0, 1 ∈ R and det(S) = 1 so
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M ∈ SL(2, R). Therefore we must have

QM =

(
Q1 Q2

Q3 Q4

)(
1 1

0 1

)
=

(
Q1 Q1 +Q2

Q3 Q3 +Q4

)

= MQ =

(
1 1

0 1

)(
Q1 Q2

Q3 Q4

)
=

(
Q1 +Q3 Q2 +Q4

Q3 Q4

)
.

Equating matrix entries gives the relations

Q1 = Q1 +Q3 ⇒ Q3 = 0,

Q1 +Q2 = Q2 +Q4 ⇒ Q1 = Q4.

Similarly, consider MT = ( 1 0
1 1 ) ∈ SL(2, R). Again we can write

QMT =

(
Q1 Q2

Q3 Q4

)(
1 0

1 1

)
=

(
Q1 +Q2 Q2

Q3 +Q4 Q4

)

= MTQ =

(
1 0

1 1

)(
Q1 Q2

Q3 Q4

)
=

(
Q1 Q2

Q1 +Q3 Q2 +Q4

)
.

Equating entries gives

Q1 +Q2 = Q1 ⇒ Q2 = 0.

Combining all restrictions, we see that any matrix Q ∈ Z(SL(2, R)) must be of the

form

Q =

(
Q1 0

0 Q1

)
.

But because Q ∈ SL(2, R), we know det(Q) = Q2
1 = 1. Therefore Q1 = ±1 and so

Q ∈ {±I}. �

The projective special linear group can therefore be defined as

PSL(2, R) = SL(2, R)/{±I}.

In other words, the group PSL(2, R) consists of the equivalence classes [M ] = {±M}
where M ∈ SL(2, R). The identity is the element [I] = {±I}, which we will simply

denote by 1. But what about the determinant −1 case? Here, for simplicity, we

restrict our ring R to C.
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Theorem 3.5. The center of S∗L(2,C) is Z(S∗L(2,C)) ≤ {±I,±iI}.

Proof: The proof is identical to that of Theorem 3.4 up to showing that any matrix

Q ∈ S∗L(2, R)) must be of the form

Q =

(
Q1 0

0 Q1

)
.

We again have that det(Q) = Q2
1, but here this implies Q2

1 = ±1. Solving, we see

that Q1 can take on values ±1 or ±i, and so Q ∈ {±I,±iI}. �

Now, we are interested in the projective group PS∗L(2,Z). By Theorem 3.5 the

center is {±I,±iI}, and restricting to Z, we are back to the group {±I}. We can

write

PS∗L(2,Z) = S∗L(2,Z)/{±I}.
Since G is a subgroup of S∗L(2,Z), we can define the group PG which is a subgroup of

PS∗L(2,Z) and has elements [M ] = {±M}, where M ∈ G. The identity of both PG

and PS∗L(2,Z) is again [I] = 1. The next few theorems are important results relating

the order of [M ] to the trace of M . The following theorem is taken from Weinstein

[73, p. 89]. Again, we include the proof so that the theorem can be extended.

Theorem 3.6. Let [M ] ∈ PSL(2, F ) where F is a field with char(F ) 	= 2. Then

ord([M ]) = 2 if and only if tr(M) = 0.

Proof: We will prove the forward direction first. Suppose ord([M ]) = 2 for a matrix

M =
(
M1 M2
M3 M4

)
in SL(2, F ). This implies [M ]2 = 1 by the definition of order. We can

then write [M2] = 1, so that M2 = ±I, and expanding, we have

M2 =

(
M2

1 +M2M3 M2(M1 +M4)

M3(M1 +M4) M2M3 +M2
4

)
= ±I. (3.1)

Equating entries gives

M2(M1 +M4) = M3(M1 +M4) = 0.

We can break this down into two cases, keeping in mind that we are now dealing

with a field F rather than a ring R.
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Case 1 : We have M1 +M4 = 0, which implies tr(M) = 0 and we are done.

Case 2 : We have M2 = M3 = 0 and M1 +M4 	= 0. It follows that

M2 =

(
M2

1 0

0 M2
4

)
= ±I, (3.2)

which implies M1 = ±1 and M4 = ±1 or M1 = ±i and M4 = ±i, if i belongs to the

field F . In the former case we cannot have char(F ) = 2, or else M1 +M4 = 0. We

know that M ∈ SL(2, F ) and so det(M) = 1. This means we must have M1M4 = 1,

which implies M1 = M4 = ±1, or M1 = ±i,M4 = ∓i. In the latter case we have

tr(M) = i− i = 0, which contradicts the assumptions of Case 2. Therefore we must

have

M =

(
M1 0

0 M4

)
= ±I.

In other words we have ord([M ]) = 1, although we have assumed ord([M ]) = 2. This

is a contradiction and we are done.

To prove the converse we will assume tr(M) = 0 and first show [M ]2 = 1. Note

that we must have char(M) 	= 2, because otherwise, tr(I) = 0, and ord(I) = 1, which

contradicts the statement of the theorem. We can write

M1 +M4 = 0,

M2
1 +M1M4 = 0,

−M2
1 = M1M4.

Now consider the determinant using the above relation:

M1M4 −M2M3 = 1, (3.3)

−M2
1 −M2M3 = 1,

M2
1 +M2M3 = −1. (3.4)

Similarly, multiplying the trace equation by M4, we obtain −M2
4 = M1M4. Applying

this to the determinant equation we then get

−M2
4 −M2M3 = 1,

M2
4 +M2M3 = −1. (3.5)
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Substituting Equations (3.4) and (3.5) into the expression for M2 given in (3.1), and

using the fact that tr(M) = M1 +M4 = 0 gives

M2 =

(
M2

1 +M2M3 M2(M1 +M4)

M3(M1 +M4) M2M3 +M2
4

)
=

(
−1 0

0 −1

)
= −I. (3.6)

In terms of cosets we have [M2] = [−I] = [M ]2, and therefore [M ]2 = 1. It follows

that ord([M ]) = 2 because if M = ±I we would have M2 = I. �

Again we are interested in PS∗L(2,R). Ultimately, we are interested in integer

matrices only, and the general proof for the PS∗L(2, F ) case may involve much un-

necessary use of complex numbers.

Theorem 3.7. Let [M ] ∈ PS∗L(2,R). Then ord([M ]) = 2 if and only if tr(M) = 0.

Proof: The proof follows almost identically to that of the previous theorem. The

key is that for both PS∗L(2,R) and PSL(2, F ), the identity element is {±I}. If

det(M) = 1, the proof is that of Theorem 3.6, where we have F = R. If det(M) = −1,

we have to make a few considerations. The forward direction remains the same up

until Equation (3.2) where we have deduced that M1 = ±1 and M4 = ±1 or M1 = ±i

and M4 = ±i. If we now consider the fact that det(M) = −1, we have M1M4 = −1

and are reduced to M1 = ±1,M4 = ∓1 or M1 = M4 = ±i. The latter case cannot

occur, though, because we have restricted our matrix entries to R. In the former case,

we again have a contradiction because we have assumed in Case 2 that M1+M2 	= 0.

We have therefore shown Case 2 does not occur and so we must have Case 1, where

tr(M) = 0.

To prove the converse, we follow the steps in Theorem 3.6, except the fact that

det(M) = −1 is going to change the sign in Equations (3.4) and (3.5) to

M2
1 +M2M3 = 1,

M2
4 +M2M3 = 1.

Since we have assumed tr(M) = 0, Equation (3.6) becomes

M2 =

(
M2

1 +M2M3 M2(M1 +M4)

M3(M1 +M4) M2M3 +M2
4

)
=

(
1 0

0 1

)
= I, (3.7)
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so that [M2] = 1 = [M ]2. This tells us that ord([M ]) = 1 or 2. Suppose ord([M ]) = 1.

This is true only for M = ±I, in which case we have tr(M) = ±2. This is a contra-

diction because we have assumed tr(M) = 0. Therefore we must have ord([M ]) = 2,

completing the proof. �

Example 3.5. The matrix P3 = ( 1 0
2 −1 ) we considered in Example 2.4 has u =

tr(P3) = 0 and P 2
3 = I. Some other longer examples include σ9 = (++++−+++−)

and σ9 = (+ + + − − + − + −), which both have P9 =
(
3 −2
4 −3

)
and hence u = 0.

Squaring P9 gives I as required. From Theorem 3.2 we know that u ≡ 0 (mod 4)

if and only if n ≡ 3 (mod 6), and therefore u = 0 only if n ≡ 3 (mod 6). We can

conclude that n = 9 is the next instance after n = 3 where we may have ord([Pn]) = 2.

Note also that the eigenvalues of both P3 and P9 are ±1. These matrices have order

2, and likewise, squaring the eigenvalues gives us 1.

Recall that we are interested in matrices Pn ∈ G ≤ S∗L(2,Z), or in terms of

equivalence classes, [Pn] ∈ PG ≤ PS∗L(2,Z). The previous two theorems, which

tell us about the connection between the order and the trace of a matrix are true

for matrices with entries in R and therefore must also be true for matrices with

strictly integer entries. We can be a bit more specific about the order of a matrix

M ∈ S∗L(2,R), rather than the equivalence class [M ].

Corollary 3.3. Let M ∈ S∗L(2,R) with tr(M) = 0. Then

det(M) = 1 ⇐⇒ M2 = −I ⇐⇒ ord(M) = 4,

det(M) = −1 ⇐⇒ M2 = I ⇐⇒ ord(M) = 2.

Proof: We know that det(M) = ±1. Equation (3.6) in the proof of Theorem 3.6 tells

us that if det(M) = 1 then M2 = −I, in which case ord(M) = 4. If det(M) = −1,

Equation (3.7) tells us that M2 = I, in which case ord(M) = 2. We cannot have

ord(M) = 1, because it would follow that tr(M) = 2. Conversely, if we start with

M2 = ±I, we can work backwards to show that det(M) = ∓1. Further, if we know

ord(M) = 2, it follows by definition that M2 = I. Now suppose that ord(M) = 4.
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Since we have assumed tr(M) = 0, we have that

M2 =

(
a b

c −a

)2

=

(
a2 + bc 0

0 a2 + bc

)
= (a2 + bc)I.

We therefore have that M4 = (a2 + bc)2I = I, from which we can deduce that

(a2 + bc) = ±1. This term cannot take on the value 1 because in this case we would

have M2 = I, and hence ord(M) = 2. Therefore, we must have (a2 + bc) = −1,

implying M2 = −I. �

Again we can apply this result to the specific case of integer matrices. Note that

in Example 3.5, both matrices had determinant −1 and order 2.

In the following, we can take inverses of the elements in the field F , and elements

of PSL(2, F ) are also invertible because the matrices are invertible. The next theorem

is taken from Weinstein [73, p. 90].

Theorem 3.8. Let [M ] ∈ PSL(2, F ), where F is a field with char(F ) 	= 3. Then

ord([M ]) = 3 if and only if tr(M) = ±1.

Proof: We will prove the forward direction first. Assume ord([M ]) = 3, i.e., assume

[M3] = 1 and [M ] 	= 1. (If [M ] = 1 we would have ord([M ]) = 1, which is a

contradiction.) The matrix M must differ in at least one entry from ±I, and we

must have M3 = ±I, which can be written as M2 = ±M−1. Using the fact that

det(M) = 1, writing out these matrices gives(
M2

1 +M2M3 M2(M1 +M4)

M3(M1 +M4) M2M3 +M2
4

)
=

±1

det(M)

(
M4 −M2

−M3 M1

)
=

(
±M4 ∓M2

∓M3 ±M1

)
.

(3.8)

Depending on the values of M2 and M3, we have the following three subcases:

Case 1: M2 	= 0: Equating matrix entries (M2)2 and (±M−1)2 (here the subscript

denotes position in the matrix, as was the case with M) yields M2(M1+M4) = ∓M2,

which implies (M1 +M4) = tr(M) = ∓1, as required.

Case 2: M3 	= 0: Similarly, equating (M2)3 and (±M−1)3 yields M3(M1 + M4) =

∓M3, again implying tr(M) = ∓1.
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Case 3: M2 = M3 = 0: Equating (M2)1 and (±M−1)1 gives us

M2
1 +M2M3 = ±M4,

M2
1 = ±M4. (3.9)

Now, our determinant is det(M) = M1M4 = 1 and so Equation (3.9) can be written

as M3
1 = ±1. But we must have M1 	= ±1 because otherwise, the fact that M1M4 = 1

would imply M4 = ±1 also, and thus M = ±I which is a contradiction. (Note that

M1 must therefore be a complex cube root of unity.) We can write M3 ∓ 1 = 0 and

factor to give (M1 ∓ 1)(M2
1 ±M1 + 1) = 0. Since M1 	= ±1 we must therefore have

M2
1 ±M1 + 1 = 0. But by Equation (3.9) we can write this as ±M4 ±M1 + 1 = 0,

i.e., tr(M) = ∓1 and we are done.

To show the converse we will assume tr(M) = ±1 for M ∈ SL(2, F ) and show

ord([M ]) = 3. Since tr(±I) = ±2 we must have M 	= ±I. (Note that this is because

if 2 = 1 we have 1 = 0, which is false in any field, and if 2 = −1 we have 3 = 0,

which is false because char(F ) 	= 3.) Therefore [M ] is nontrivial, i.e., ord([M ]) 	= 1.

We now need to show that M3 = ±I.

By the assumption on the trace, we know M1 +M4 = ±1. Multiplying through

by M1 and using the fact that det(M) = M1M4 −M2M3 = 1 we have

M2
1 +M1M4 = ±M1,

M2
1 + 1 +M2M3 = ±M1,

M2
1 +M2M3 = ±M1 − 1 = ±M1 ∓ tr(M),

M2
1 +M2M3 = ±M1 ∓M1 ∓M4,

M2
1 +M2M3 = ∓M4. (3.10)

Similarly, if we multiply the trace equation by M4 we obtain

M1M4 +M2
4 = ±M4,

1 +M2M3 +M2
4 = ±M4,

M2
4 +M2M3 = ±M4 − 1 = ±M4 ∓ tr(M),

M2
4 +M2M3 = ±M4 ∓M1 ∓M4,

M2
4 +M2M3 = ∓M1. (3.11)
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Now we want an expression for M3. We have seen the following expansion for M2:

M2 =

(
M2

1 +M2M3 M2(M1 +M4)

M3(M1 +M4) M2M3 +M2
4

)
=

(
∓M4 ±M2

±M3 ∓M1

)
,

and have simplified it using Equations (3.10) and (3.11) as well as the trace equation.

We can now give an expression for M3:

M3 =

(
∓M4 ±M2

±M3 ∓M1

)(
M1 M2

M3 M4

)
=

(
∓M1M4 ±M2M3 0

0 ±M2M3 ∓M1M4

)
.

Using the fact that det(M) = 1 we have M3 = ∓I as required, completing the proof.

�

Note that this theorem is true for M ∈ SL(2, F ) and not necessarily for M ∈
S∗L(2, F ), i.e, we can apply this theorem only to those [Pn] ∈ PG with determinant

1. (Matrices in the same equivalence class will have the same determinant.) Also, in

the case of PSL(2,R), Case 3 cannot occur because it requires M1 to be complex.

Again we can state some further results for matrices M ∈ SL(2,R), without the use

of equivalence classes.

Corollary 3.4. For a matrix M ∈ SL(2, F ) we have

tr(M) = 1 ⇐⇒ M3 = −I ⇒ ord(M) = 6,

tr(M) = −1 ⇐⇒ M3 = I ⇐⇒ ord(M) = 3.

Proof: In the proof of Theorem 3.8 we state that M3 = ±I and following through we

see that this implies tr(M) = ∓1. Conversely, we assume tr(M) = ±1 and continue

to show that M3 = ∓I, in which case ord(M) is equal to 6 or 3 respectively. (Note

that we cannot have ord(M) = 1, because this would imply tr(M) = 2.) Also, by

definition, ord(M) = 3 implies M3 = I, but ord(M) = 6 does not necessarily imply

M3 = −I without any restriction on the trace. �

Again, this result only holds for those Pn ∈ G for which det(Pn) = 1.

Example 3.6. The matrices P2 = ( 1 −1
1 0 ) and P4 =

(
2 −1
3 −1

)
with coefficient cycles σ2 =

(+−) and σ4 = (+++−) (from Example 2.6), respectively, both have u = 1 and give
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−I when cubed, implying order 6. Also, the coefficient cycle σ8 = (++−−+−+−)

has product matrix P8 =
(
1 −1
3 −2

)
. Here we have u = −1 and P 3

8 = I as required by

Corollary 3.4. Note that for each of these examples the determinant is 1. Recall from

Example 2.10 that the eigenvalues of P4 had the property λ6
1, λ

6
2 = 1. P2 has the same

eigenvalues λ1, λ2 = 1+
√−3
2

. Similarly, the eigenvalues of P8 are cube roots of unity,

namely, λ1, λ2 =
−1+√−3

2
.

Now the question arises — what happens if M ∈ S∗L(2, F )? We first consider the

reverse direction of the previous theorem with det(M) = −1. Again we will consider

the case for F = R, since we are ultimately concerned with integer matrices, and the

center, {±I}, is easier to work with.

Theorem 3.9. Let [M ] ∈ PS∗L(2,R). If det(M) = −1 and tr(M) = ±1, then

ord([M ]) 	= 3.

Proof: First suppose tr(M) = ±1 for M ∈ S∗L(2, F ) with det(M) = −1. We

cannot have M = ±I because our trace must be ±1, and so ord([M ]) 	= 1. We

want to show M3 	= ±I. Following the steps in the proof of Theorem 3.8, we can

take the trace assumption M1 + M4 = ±1, multiply by M1 and use the fact that

det(M) = M1M4 −M2M3 = −1 as follows:

M2
1 +M1M4 = ±M1,

M2
1 +M2M3 − 1 = ±M1,

M2
1 +M2M3 = ±M1 + 1. (3.12)

(Note that the right-hand side of Equation (3.12) cannot be simplified using the

definition of trace as in the det(M) = 1 case. We could write ±M1 + 1 = ±M1 ±
tr(M) = ±2M1 ±M4.) Similarly, multiplying the trace equation by M4 gives:

M1M4 +M2
4 = ±M4,

M2M3 − 1 +M2
4 = ±M4,

M2
4 +M2M3 = ±M4 + 1. (3.13)

Using Equations (3.12) and (3.13) as well as the trace formula we have

M2 =

(
M2

1 +M2M3 M2(M1 +M4)

M3(M1 +M4) M2M3 +M2
4

)
=

(
±M1 + 1 ±M2

±M3 ±M4 + 1

)
.
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We then have the following expression for M3, which we can simplify, again using

Equations (3.12) and (3.13) and the trace equation:

M3 =

(
±M1 + 1 ±M2

±M3 ±M4 + 1

)(
M1 M2

M3 M4

)

=

(
±M2

1 +M1 ±M2M3 ±M1M2 +M2 ±M2M4

±M1M3 ±M3M4 +M3 ±M2M3 ±M2
4 +M4

)

=

(
±(M2

1 +M2M3) +M1 ±M2(M1 +M4 ± 1)

±M3(M1 +M4 ± 1) ±(M2
4 +M2M3) +M4

)
=

(
2M1 ± 1 2M2

2M3 2M4 ± 1

)
.

Now suppose M3 = ±I. In this case we must have M2 = M3 = 0. We must also

have 2M1±1 = 2M4±1 = 1 or −1. Note that if either M1 = 0 or M4 = 0, our matrix

M will have at least three zero entries and hence the determinant will be zero. This is

a contradiction to our assumption. The only other option is that M1 = M4 = ∓1, in

which case M = ∓I and again we have a contradiction, since we have shown M 	= ±I.

(Even if M could equal ±I this would prevent us from obtaining an order 3 matrix).

We have therefore shown that M3 	= ±I, i.e., ord([M ]) 	= 3. �

We cannot simply deduce that this theorem is true based on Theorems 2.11 and

3.3 because they deal with the specific matrices Pn.

Example 3.7. Consider the coefficient cycle σ5 = (+ + ++−), with corresponding

product matrix P5 =
(
3 −1
5 −2

)
. We have trace u = 1 and det(P5) = −1, but P 3

5 =(
7 −2
10 −3

)
.

Now what happens to the forward direction of Theorem 3.8 when det(M) = −1?

This is precisely the contrapositive of Theorem 3.9. Assuming that ord([M ]) = 3, we

then have that tr(M) 	= ±1.

So far, we have been looking at the orders of matrices belonging to the groups

SL(2,R) and S∗L(2,R). There is more to be said if we consider our specific group

G = 〈A,B〉. We can conclude the following results by combining the results of the

previous theorems and corollaries concerning order with earlier results on growth

type.



98

Corollary 3.5. For a product matrix Pn, we have that tr(Pn) = 0 if and only if

ord(Pn) = 2.

Proof: If ord(Pn) = 2 we have by Theorem 3.6 that tr(Pn) = 0. Conversely, suppose

that tr(Pn) = 0. We want to discount the possibility in Theorem 3.6 of ord(Pn) = 4,

so that we are left with ord(Pn) = 2. By Theorem 3.2, we have that if tr(Pn) = 0

(i.e., |u| = 0), then n ≡ 3 (mod 6). But by Corollary 3.3, since n is odd (i.e.,

det(Pn) = −1), we must have ord(Pn) = 2. �

Note that in Example 3.5, all matrices had order 2.

Corollary 3.6. For a product matrix Pn 	= ±I with det(Pn) = 1:

ord([Pn]) = 3 ⇐⇒ bounded,

For a product matrix Pn 	= ±I with det(Pn) = −1:

ord(Pn) = 2 ⇐⇒ bounded,

Proof: Suppose [Pn] has order 2 or 3. By Theorem 2.11 growth must be bounded.

Now suppose growth is bounded. Theorem 3.3, for the n even case, tells us that

|u| = |tr(Pn)| = 1. By Theorem 3.8, the order of [Pn] must be 3. If we have

det(Pn) = −1 (i.e., n odd), Theorem 3.3 tells us that growth is bounded if and only

if tr(M) = 0. But by Corollary 3.5, tr(Pn) = 0 if and only if ord(Pn) = 2. �

Note that Corollary 3.6 tells us that matrices with det(Pn) = −1 and finite order

(i.e., bounded, by Theorem 2.11) can only be of order 2, and so there are no matrices

Pn with det(Pn) = −1 and ord([Pn]) = 3. This case was discussed in general in

Theorem 3.9, which stated that det(M) = −1 and tr(M) = ±1 imply ord([M ]) 	= 3.

Also, as a follow up to Theorem 3.9, Theorem 3.3 tells us that for u = tr(Pn) = ±1

and det(Pn) = −1 odd, we have exponential growth.

We can now completely characterize bounded sequences for any value of n.

Corollary 3.7. For any product matrix Pn 	= ±I,

bounded ⇐⇒ ord(Pn) = 2, 3 or 6.
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Proof: This follows directly from Corollary 3.6, using the fact that ord([Pn]) = 3

implies ord(Pn) = 3 or 6. �

Note that it is known that any element M ∈ GL(2,Z) having finite order (i.e.,

having bounded growth for Pn) has order 1, 2, 3, 4 or 6. The order 1 case corresponds

to Pn = I. The proof can be found in Kuzmanovich and Pavlichenkov [47], for

example, where it is shown that for the prime decomposition m = pe11 pe22 · · · pett with

p1 < p2 < · · · < pt, an element in GL(n,Z) has order m if and only if one of the

following holds:

t∑
i=1

(pi − 1)pei−1i − 1 ≤ n for pe11 = 2,

t∑
i=1

(pi − 1)pei−1i ≤ n otherwise.

In the case of n = 2, we can deduce that M 	= ±I in GL(2,Z) has order 2, 3, 4 or

6. These are therefore the only possible orders for our product matrices Pn ∈ G ≤
GL(2,Z).

Also, Weinstein [73, p. 94] states that [M ] ∈ PSL(2, F ) has order 4 if and only if

tr(M) = ±√
2 and [M ] ∈ PSL(2, F ) has order 6 if and only if tr(M) = ±√

3. Since

our group G contains only integer matrices, [M ] ∈ PG cannot have orders 4 or 6.

This does not prevent M from having order 6, however, because we may still have

the case ord([M ]) = 3.

McGuire [55] gives a proof of Corollary 3.7 using eigenvalues in polar coordinates.

In his proof he uses the facts that if λ1, λ2 = ±1 then ord(Pn) = 2 (in which case

det(Pn) = −1 and tr(Pn) = 0), and if tr(Pn) = ±1 for Pn with finite order, then

ord(Pn) = 6, 3. He also gives the following necessary condition for sequences to be

periodic (i.e., bounded by Corollary 2.2). In our terminology, given a coefficient cycle

of length n determining a bounded periodic coefficient sequence, we must have

ord(Pn) · n ≡ 0 (mod 3).

He uses the fact that if the initial values of our sequence are x and y, the subsequent

terms will contain a Fibonacci number of x’s and y’s. The result follows from some
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parity arguments and the idea that for the sequence to be periodic, we must eventually

return to terms x and y.

McGuire’s result is implicit in our previous results on order and trace. In Corollary

3.2 we have shown that for n odd, a bounded periodic coefficient sequence implies

n ≡ 0 (mod 3). Further, for n even, i.e., det(Pn) = 1, Corollary 3.6 tells us that our

periodic coefficient sequence is bounded if and only if ord(Pn) = 3 or 6. Therefore,

combining these corollaries we can conclude that for a bounded sequence, either n

or ord(Pn) is divisible by 3. The converse of this statement is not true, however. If

n = 6 then ord(Pn)n ≡ 0 (mod 3), but Table 2.1 gives several examples of length 6

coefficient cycles which do not give bounded growth.

Interestingly, McGuire [56] generalized this result to random m-nacci (mth order)

sequences. Instead of generating periodic coefficient sequences using coefficient cycles

of ± signs, he uses size-n sets of (m− 1)-tuples of ± signs. Using products of m×m

matrices he shows that for a bounded periodic coefficient sequence, we must have

ord(Pn) · n ≡ 0 (mod m+ 1).

We have been working with powers of matrices above and we obtain the following

neat trace result when we consider the square of a matrix M .

Theorem 3.10. Let M ∈ S∗L(2,R) with det(M) = ±1. Then tr(M2) = (tr(M))2∓2.

Proof: Suppose we have M =
(
M1 M2
M3 M4

) ∈ S∗L(2,R). The trace is given by tr(M) =

M1 +M4 and so tr(M)2 = M2
1 +M2

4 + 2M1M4. Squaring M gives

M2 =

(
M2

1 +M2M3 M2(M1 +M4)

M3(M1 +M4) M2M3 +M2
4

)
,

with tr(M2) = M2
1+M2

4+2M2M3. Because we know det(M) = M1M4−M2M3 = ±1,

we can rewrite tr(M2) as

tr(M2) = M2
1 +M2

4 + 2M1M4 ∓ 2,

= tr(M)2 ∓ 2,

completing the proof. �
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It would also be interesting to consider some of the results in this section using

product matrices formed from A, B̂. We have already noted that B̂3 = −I, and so

ord([B̂]) = 3. Another interesting product is (AAB̂B̂)3 = I. Further, we could look

at orders of products of A, B̂ and B in the non-linear case. Those results which apply

to matrices in the general groups SL(2,Z) and S∗L(2,Z) will carry over.

3.3 Approximating the Almost Sure Growth Rate Using Averages

In approximating the almost sure growth rate we will only need the absolute value

of the traces of product matrices. Recall from Proposition 2.3 that given a product

matrix Pn, the growth rate of the associated sequence is given by |λ1| 1n , i.e., the nth

root of the absolute value of the dominant eigenvalue of Pn. Also recall that the

corresponding characteristic equation is given by x2 − ux− v, so that the eigenvalues

are λ1, λ2 = u±√u2+4v
2

. Using the facts that u = tr(Pn) and v = ±1 for n odd and

even respectively, the absolute value of the dominant eigenvalue is thus

|λ1| = ||tr(Pn)|+
√

tr(Pn)2 ± 4|
2

. (3.14)

We have in fact used this method of eigenvalues to find the growth rate of a

random Fibonacci sequence corresponding to a given product matrix, in Chapter

1. Recall that Table 1.4 gave the averages of 20 growth rates of random Fibonacci

sequences with length 40002, using the program in Figure A.3 to compute 20 product

matrices Pn at random, with n = 40000, and find the average of the nth roots of their

dominant eigenvalues. This is in contrast to computing a length-n random Fibonacci

sequence and approximating its growth rate using |tn| 1n . Note that this eigenvalue

approximation of Viswanath’s constant is independent of the initial values of the

sequence.

Removing the randomness, we now consider the set of all possible length-n coef-

ficient cycles σn. Note that this generates a corresponding set of periodic coefficient

sequences of infinite length which may approximate random Fibonacci sequences as n

gets large. By taking the average of the growth rates for all corresponding product ma-

trices of length n, and letting n get very large, we can effectively estimate Viswanath’s

constant. We know that with probability 1, any random Fibonacci sequence has
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growth rate eγf (recall this notation for Viswanath’s constant from Chapter 1), and

so the average of all possible growth rates must also be eγf , because we can combine

terms to rewrite this average (in the limit) as the expected value 1(eγf ) + 0(c) = eγf ,

where c is any other growth rate. We can write our approximation as

eγf ≈ 1

2n

∑
all Pn

(
||tr(Pn)|+

√
tr(Pn)2 ± 4|

2

) 1
n

, (3.15)

where we choose the +4 term if n is odd and −4 if n is even. Table 3.2 gives

approximate growth rates using averages, for n ≤ 19. The Maple program used here is

given in Figure A.4 of Appendix A, for n = 9. Notice that for n = 19 we are averaging

n average of g.r.
1 1.618033988
2 1.309016994
3 1.154508497
4 1.145259161
5 1.186117799
6 1.083345517
7 1.184039573
8 1.157659225
9 1.142422955
10 1.140061077
11 1.151816913
12 1.119038560
13 1.152772740
14 1.143234055
15 1.138393665
16 1.137198656
17 1.142272071
18 1.127914590
19 1.142873068

Table 3.2: Average values of growth rates.

the growth rates of 524288 sequences, and still we have only achieved accuracy to

one decimal place. This gives us an indication of how difficult the computation of

Viswanath’s constant really is.
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Figure 3.1: Average values of growth rates.

Plotting the values in Table 3.2 to obtain Figure 3.1 gives us some new insights.

It is easily recognizable from Figure 3.1 that the growth rate follows a pattern for

values of n (mod 6). We can partially explain this pattern by considering some of the

previously gathered results on growth type. First consider the points marked with an

x. These occur when n ≡ 0 (mod 6). Corollary 3.1 tells us that if growth is linear

then 6|n. Also, for linear growth we have |tr(Pn)| = 2 (by Theorem 3.3) and growth

rate (
2 +

√
4− 4

2

) 1
n

= 1
1
n = 1,

and so we might expect that when we take the average, the growth rate for n ≡ 0

(mod 6) will be lower than the average growth rate for all n. Similarly, for n odd,

Corollary 3.2 tells us that if 3 � n, growth is exponential. Therefore, for n ≡ 1, 5

(mod 6), the growth rates must be strictly greater than 1 and we might expect the

average of growth rates for such n to be higher than the average growth rate for all

n, as evidenced by the circles in Figure 3.1. If n ≡ 2, 3, 4 (mod 6) we have a mixture
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of bounded and exponential growth and so we may expect the average of the growth

rates to be lower than the exponential only case but higher than the linear case, as

evidenced by the squares in Figure 3.1.

We can simplify our average growth rate calculation by noticing that in certain

cases, for large values of n, we have the approximation |tr(Pn)| = |u| ≈ |λ1| as

follows. For large n, if |u| is also large, the ±4 term becomes negligible and we can

write Equation (3.14) as

|λ1| = ||u|+√
u2 ± 4|
2

≈ ||u|+√
u2|

2
= |u|. (3.16)

If n is even and |u| = 1 then growth is bounded (by Theorem 3.3) and we have

|λ1| =
∣∣∣1+√−32

∣∣∣ = 1. Here |u| = |λ1| and our simplification is exact, and it is is the

only case where we can obtain a complex eigenvalue. Also, notice that in general,

when we calculate the average growth rate, we must take the nth root of each λ1, so

that for any non-zero |u| and n large enough,

|u| 1n ≈ |λ1|
1
n ,

making the approximation even closer. Assuming we can always make the simplifi-

cation to |u|, Equation (3.15) for the average growth rate can now be approximated

as

eγf ≈ 1

2n

∑
all Pn

|u| 1n . (3.17)

Table 3.3 shows the average values of such simplified growth rates for n ≤ 20. The

Maple program used here is similar to that given in Figure A.4 of Appendix A. If it

were possible to characterize the occurrence of trace values |u| for a given n, Equation

3.17 would become deterministic (instead of relying on calculation) and we may be

able to find an exact expression for eγf .

In Figure 3.2 we plot the values in Table 3.3 (circles) along with those in Figure

3.1 (asterisks). We can see that for each n, the points alternate between being greater

than and less than the other, and both sets seem to tend to Viswanath’s constant. The

errors are plotted in Figure 3.3. We can attribute this discrepancy to the occurrence

of small values of |u| in the average. We have seen that in the linear case |u| = 2

and λ1 = 1 and so the growth rate is raised slightly. Also when n is odd, u = 0
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n average of simplified g.r.
1 1
2 1.366025404
3 0.396850262
4 1.157340573
5 1.115253060
6 1.180264329
7 1.152601279
8 1.164282290
9 0.7066641139
10 1.143815487
11 1.134226076
12 1.148636161
13 1.14323635
14 1.145579314
15 0.8681194271
16 1.138800815
17 1.135386984
18 1.140510038
19 1.138864119
20 1.139510204

Table 3.3: Average values of simplified growth rates.

implies bounded growth by Theorem 3.3. Here, the approximation of |λ1|
1
n = 1

is off by 1 from |u| 1n , resulting in a much lower approximate average growth rate.

We know from Theorem 3.2 that when u = 0 we must have n ≡ 3 (mod 6). This

explains the low growth rates for n = 3, 9 and 15 in Figure 3.2. We could remove

some of the poorer approximations by considering only n ≡ 1, 5 (mod 6) (the circles

in Figure 3.1), which correspond to exponential growth, and still appear converge to

Viswanath’s constant. Also for n even we are ignoring the −4 term resulting in a

slightly higher approximate average growth rate, and for n odd we are ignoring the

+4 term, which slightly lowers the growth rate, which may explain the alternating

larger value of circles and asterisks in Figure 3.2.

It may be a good idea to consider balanced coefficient cycles, i.e., cycles with an

equal number of + and − signs. This may be a better approximation to a random

Fibonacci sequence, because we know + and − occur with equal probability. Table 3.4
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gives the average growth rate of balanced coefficient cycles, along with the previous

values for all coefficient cycles given in Table 3.2. When n is odd we considered the

almost balanced coefficient cycles, namely those where the number of + and − signs

differs by one. The balanced growth rates appear to be a bit smaller, but do not seem

to give a better estimate of Viswanath’s constant.

Figure 3.2: Comparing average values of growth rates and simplified growth rates.
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Figure 3.3: Error between average values of growth rates and simplified growth rates.

n average growth rate average for balanced cases
1 1.618033988 1.618033988
2 1.309016994 1
3 1.154508497 1
4 1.145259161 1.181346427
5 1.186117799 1.185472140
6 1.083345517 1
7 1.184039573 1.155972089
8 1.157659225 1.148606476
9 1.142422955 1.142604829
10 1.140061077 1.111498520
11 1.151816913 1.158370490
12 1.119038560 1.103502154

Table 3.4: Approximate average growth rate for all, and balanced coefficient cycles.



Chapter 4

Equivalence Classes

4.1 Continuant Polynomials

A useful tool in the study of periodic coefficient sequences is the continuant polynomial

or simply continuant. It is closely connected to the continued fraction, hence the

name. The information in this section can be found in Graham et al. [33, p. 301–

305, p. 318]. Proofs of results are included to give a deeper understanding of this

polynomial.

Definition 4.1. The continuant, denotedKn(x1, . . . , xn), in the n variables x1, . . . , xn

is defined recursively as

Kn(x1, . . . , xn) = Kn−1(x1, . . . , xn−1)xn +Kn−2(x1, . . . , xn−2),

for n ≥ 2, where K0() = 1 and K1(x1) = x1.

The next few polynomials are given by

K2(x1, x2) = K1(x1)x2 +K0() = x1x2 + 1,

K3(x1, x2, x3) = K2(x1, x2)x3 +K1(x1) = (x1x2 + 1)x3 + x1 = x1x2x3 + x1 + x3,

K4(x1, x2, x3, x4) = K3(x1, x2, x3)x4 +K2(x1, x2) = (x1x2x3 + x1 + x3)x4 + x1x2 + 1

= x1x2x3x4 + x1x2 + x1x4 + x3x4 + 1.

We will soon see a method to evaluate continuants non-recursively. The follow-

ing theorem gives the connection between continuant polynomials and our periodic

coefficient sequences.

Theorem 4.1. For any product matrix Pn, with n ≥ 2, we have

Pn =

(
0 1

1 x1

)(
0 1

1 x2

)
· · ·

(
0 1

1 xn

)
=

(
Kn−2(x2, . . . , xn−1) Kn−1(x2, . . . , xn)

Kn−1(x1, . . . , xn−1) Kn(x1, . . . , xn)

)
,

108
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where xi ∈ {±1} and Ki is a continuant.

Proof: The initial case, for n = 2, gives the product matrix

P2 =

(
0 1

1 x1

)(
0 1

1 x2

)
=

(
1 x2

x1 x1x2 + 1

)
=

(
K0() K1(x2)

K1(x1) K2(x1, x2)

)
,

which is the required matrix of continuants. Now suppose the theorem holds for n.

For the case of n+ 1 we get the product matrix

Pn+1 =

(
0 1

1 x1

)
· · ·

(
0 1

1 xn

)(
0 1

1 xn+1

)

=

(
Kn−2(x2, . . . , xn−1) Kn−1(x2, . . . , xn)

Kn−1(x1, . . . , xn−1) Kn(x1, . . . , xn)

)(
0 1

1 xn+1

)

=

(
Kn−1(x2, . . . , xn) Kn−2(x2, . . . , xn−1) +Kn−1(x2, . . . , xn)xn+1

Kn(x1, . . . , xn) Kn−1(x1, . . . , xn−1) +Kn(x1, . . . , xn)xn+1

)

=

(
Kn−1(x2, . . . , xn) Kn(x2, . . . , xn+1)

Kn(x1, . . . , xn) Kn+1(x1, . . . , xn+1)

)
,

by Definition 4.1, as required. �

Note that this theorem is true for general values of xi and not just xi ∈ {1,−1}.
Euler, who studied these polynomials deeply, found a way to write down any continu-

ant without using the recursive definition. He noticed that given any product x1 · · · xn,

one can “strike out” all disjoint adjacent pairs xixi+1 in all possible ways to obtain

Kn(x1, . . . , xn). So, given x1 · · · xn we can strike out zero pairs, leaving x1 · · · xn, we

can strike out one adjacent pair xixi+1, for 1 ≤ i ≤ n−1, leaving x1 · · · xi−1xi+2 · · · xn,

We can strike out two adjacent pairs xixi+1 and xjxj+1 for 1 ≤ i ≤ n−1, 1 ≤ j ≤ n−1,

xj 	= xi−1, xi, xi+1, leaving x1 · · · xi−1xi+2 · · · xj−1xj+2 · · · xn, and so on. We then sum

these products of remaining terms to obtain a polynomial.

Example 4.1. Given x1x2x3x4, we could strike out zero pairs leaving the product

unchanged, we could strike out one pair among x1x2, x2x3 and x3x4 leaving behind

x3x4, x1x4 or x1x2 or we could strike out the two pairs x1x2 and x3x4 leaving behind
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a 1. Summing the possibilities gives us

K4(x1, x2, x3, x4) = x1x2x3x4 + x1x2 + x1x4 + x3x4 + 1,

matching our previous definition of K4.

We now need a proof of the general result.

Theorem 4.2. The polynomial produced by striking out disjoint adjacent pairs in the

product x1 · · · xn is the continuant Kn(x1, . . . , xn), for n ≥ 0.

Proof: Given the product x1 · · · xn we can strike out any combination of adjacent

pairs, leaving us with a new product which either contains xn or does not contain xn.

In the latter case we know that xn−1xn has been struck out. The possible remaining

combinations are then by induction given by Kn−2(x1, . . . , xn−2). In the former case,

xn remains in the product and the possible remaining combinations excluding xn are

given by Kn−1(x1, . . . , xn−1). Therefore the remaining combinations including xn are

given by Kn−1(x1, . . . , xn−1)xn. Altogether we get that striking out adjacent pairs in

all possible combinations gives Kn−1(x1, . . . , xn−1)xn +Kn−2(x1, . . . , xn−2), for n ≥ 2

as required. For n = 0 or n = 1, we have either the empty product 1, or the single

term x1. In either case there are no pairs to strike out and we are left with 1 = K0()

or x1 = K1(x1) respectively. �

One further thing we can note about continuants is their size.

Theorem 4.3. The number of terms in the continuant Kn(x1, . . . , xn) is the Fibonacci

number Fn+1, for n ≥ 0. In other words, Kn(1, . . . , 1) = Fn+1.

Proof: This is a simple proof by strong induction. We know that K0() = 1, which

contains 1 term and K1(1) = 1 = F2. Suppose that Kn−2(1, . . . , 1) = Fn−1 and

Kn−1(1, . . . , 1) = Fn. For n we have

Kn(1, . . . , 1) = Kn−1(1, . . . , 1)× 1 +Kn−2(1, . . . , 1)

= Fn + Fn−1 = Fn+1,

completing the proof. �
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4.2 Equivalence Classes

We know how to classify the growth of a given periodic coefficient sequence by looking

at the trace and determinant (i.e., u and v values) of its associated product matrix,

and we can determine the exact growth rate using the dominant eigenvalue. There

are several things we can do to reduce the number of sequences we have to test in

this way. According to certain properties of the sequences, we can group them into

equivalence classes, where the elements in a class all have the same growth rate.

We have seen in Theorems 2.8 and 2.9 that reversing or rotating entries in a

coefficient cycle does not change the characteristic equation. We alternately (and

more simply) can prove these results using continuants.

Theorem 4.4. Given a coefficient cycle σn = (s1, . . . , sn), with n ≥ 1, reversing the

terms gives a new cycle σ′n = (sn, . . . , s1) with corresponding product matrix having

the same characteristic equation as the original product matrix.

Proof: From Theorem 4.1 we know that

u = Kn(x1, . . . , xn) +Kn−2(x2, . . . , xn−1),

for n ≥ 2. If we reverse the terms in the product matrix, the u value becomes

u = Kn(xn, . . . , x1) +Kn−2(xn−1, . . . , x2).

But these expressions for u are equivalent because striking out adjacent pairs from the

product x1 · · · xn leaves us with the same polynomial as striking pairs from xn · · · x1,

and similarly for x2 · · · xn−1. Therefore the value of u remains the same, and because

the cycle length n is unchanged, v also remains the same. In the n = 1 case, re-

versing the terms in the cycle σ1 = (s1) leaves the cycle and hence the characteristic

polynomial unchanged. �

Similarly we can prove the rotation theorem using continuants.

Theorem 4.5. Given a coefficient cycle σn = (s1, . . . , sn), with n ≥ 1, rotating

the entries (to the right) by k, where 0 ≤ k ≤ n − 1, gives a new cycle σ′n =

(sn−k+1, . . . , sn, s1, . . . , sn−k) with corresponding product matrix having the same char-

acteristic equation as the original product matrix.



112

Proof: We know that Kn(x1, . . . , xn) gives all possible products that remain when

we strike out adjacent pairs. Now consider Kn−2(x2, . . . , xn−1), the other term in the

expression for u, where n ≥ 2. We can think of this as containing the sum of all

possible products remaining after the non-adjacent pair x1xn has been removed from

x1 · · · xn. Therefore, if we think of the product x1 · · · xn as a loop (i.e., xn is adjacent

to x1), u gives us the sum of all possible products remaining when we strike adjacent

pairs from the loop. If we then rotate the entries by k terms, u remains unchanged.

Again since the cycle length n is fixed, the characteristic equation is unchanged. In

the case of n = 1, rotating the cycle σ1 = (s1) has no effect, as in the previous

theorem. Also, a rotation of 0 terms, which is equivalent to a rotation of n terms

leaves the cycle unchanged. �

In Theorems 4.4 and 4.5, we have shown that altering the coefficient cycle in a

particular way does not change the characteristic equation. By Theorem 3.3, the

values of u and v uniquely determine the growth type, and so it remains unchanged

by altering the coefficient cycle. Also, Definition 2.3 tells us that the growth rate is

dependent on the eigenvalues (which in turn depend on u and v), and the cycle length

n. This tells us that the specific growth rate is also unchanged when we reverse or

rotate the terms in our coefficient cycle.

There is another operation we can perform on our cycles without changing the

growth rate. We will prove this using continuants, although it can be done (somewhat

tediously) using induction on product matrices.

Theorem 4.6. Given a coefficient cycle σn = (s1, . . . , sn), with n ≥ 1, switching each

term sn from + to − or vice versa gives us a new cycle σ′n with corresponding product

matrix having the same growth rate as the original product matrix.

Proof: Notice that in the expression u = Kn(x1, . . . , xn) + Kn−2(x2, . . . , xn−1), for

n ≥ 2, the indices of the continuants are of the same parity. Also notice that because

we are striking out pairs, the number of xi terms in the remaining products will have

the same parity as n. If n is even, u will contain products of even numbers of xi

terms as well as two 1’s, which are the result of striking out all pairs in each product.

Switching the sign of each xi therefore does not affect the value of u. If n is odd, u will
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contain products of odd numbers of xi terms. This holds also for n = 1. Switching

the sign of each xi therefore switches the sign of u.

We know from Proposition 2.1 that for n odd or even, v = 1 or −1, respectively,

and so switching signs does not change the value of v because the period length

remains the same. Therefore when n is odd our eigenvalues, λ1, λ2 = u ±
√
u2+4v
2

,

switch sign, whereas for n even they are unchanged. In any case, the absolute value

of the dominant eigenvalue, hence the growth rate, stays the same when we switch

the ± signs. �

There is one further thing we can do to group coefficient cycles with the same

growth rate. We can simply look for repeating patterns of si terms and reduce our

cycles to their primitive cycles, which are defined as follows.

Definition 4.2. Given a coefficient cycle σn = (s1, . . . , sn), where (s1, . . . , sn) =

(s1, . . . , sp, s1, . . . , sp, . . . , s1, . . . , sp), with p the smallest possible such number, we

say that σn has a primitive coefficient cycle or simply primitive cycle of length p,

denoted by σp = (s1, . . . , sp).

The cycle σ6 = (+−+−+−) has primitive cycle σ2 = (+−) and both define the

sequence +−+−+−+− . . . . It is clear that σn and σp must give the same growth

rate because they define the same sequence.

Example 4.2. Consider Example 2.6, in which we looked at the coefficient cycle

σ4 = (+ + −−) with product matrix Pn = ( 0 1−1 3 ). We have characteristic equation

x2 − 3x+ 1 = 0 and eigenvalues 3±√5
2

. The growth rate here is(
3 +

√
5

2

) 1
4

= 1.272019 . . . .

If we consider the cycle σ8 = (+ +−− + +−−), we have P8 = P 2
4 =

( −1 3
−3 8

)
, which

has characteristic equation x2−7x+1 and eigenvalues 7±√45
2

. In both cases the value

of |u| tells us we have exponential growth for n even. The growth rate here, which

should be the same as that for P4, is(
7 +

√
45

2

) 1
8

= 1.272019 . . . .
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There is no contradiction of growth rates!

We can now define a proper equivalence relation using the operations on cycles

described in Theorems 4.4, 4.5 and 4.6, and Definition 4.2.

Definition 4.3. We write σn ∼ τd if the cycle σn = (s1, . . . , sn), where n ≥ 1, can be

transformed into the cycle τd = (t1, . . . , td) by applying any finite combination of the

following operations:

1. reversal : (s1, . . . , sn) → (sn, . . . , s1);

2. rotation: (s1, . . . , sn) → (sk+1, . . . , sn, s1, . . . , sk);

3. negation: (s1, . . . , sn) → (−s1, . . . ,−sn);

4. period reduction or extension: (s1, . . . , sn) → (s1, . . . , sd), where p|d, i.e., σn is

reduced or extended by a multiple of its primitive cycle σp.

Note that only one of these operations involves changing the length of the coeffi-

cient cycle.

Theorem 4.7. The relation defined in Definition 4.3 is in fact an equivalence rela-

tion.

Proof: We must show that this relation is reflexive, symmetric and transitive for all

cycles σn = (s1, . . . , sn), where n ≥ 1. There are several ways we can show that our

relation is reflexive, i.e., σn ∼ σn. One is simply the trivial rotation, where we rotate

σn by zero terms, or equivalently by n terms. In order for our relation to be symmetric

we must show that if σn ∼ τd, then τd ∼ σn. If we list all of the operations required to

transform σn to τd, we can transform τd back to σn by applying the inverses of these

operations (finitely many) in reverse order. Reversal and negation are self-inverses

and the inverse of rotation by k terms is a rotation of n−k terms. Lastly, the inverse

of reduction by a multiple of σp is extension by a multiple of σp and vice versa. Note

that the inverses of the four operations again belong to the list of operations and so it

is valid to use them. To show our relation is transitive, we first assume that σn ∼ τd

and τd ∼ ρm. It easily follows that σn ∼ ρm because starting with σn we can apply all

operations, i.e., those used to take σn to τd and to take τd to ρm, in series to obtain

ρm. �
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Note that in Theorems 2.9 and 4.5, rotation of a coefficient cycle σn took on the

form σ′n = (sn−k+1, . . . , sn, s1, . . . , sn−k), where we have rotated k terms to the right,

whereas in Definition 4.3, we rotated k terms to the left (or equivalently n−k terms to

the right), to give σ′n = (s1, . . . , sn) → (sk+1, . . . , sn, s1, . . . , sk). The set of rotations is

equivalent in either case, although the former suited the proof of Theorem 2.9 better

and the latter has simpler notation. When calculating subsequences as in Example

2.6, however, we must rotate the coefficient cycle to the left, implying the product

matrix (of the form Mn · · ·M1) is rotated to the right.

The following useful fact about equivalence classes is one of our main results.

Corollary 4.1. All elements in an equivalence class have the same growth rate.

Proof: We have already seen that each of our four operations does not affect the

growth rate, hence all elements in a particular equivalence class must have the same

rate of growth. �

4.3 Necklaces

There is an alternate way in which we can view our coefficient cycles σn. Instead of

using a repeated coefficient cycle to generate a periodic coefficient sequence, we can

picture it as a loop which is continually traversed. The following definition can be

found in Graham et al. [33, p. 139].

Definition 4.4. A necklace is a string of n characters of q different types which is

unchanged by rotation, i.e., two necklaces are equivalent if one can be transformed

into the other by a rotation of k characters.

It is most common to speak of the characters as beads and the different types as

colors. In our case, the ± signs in the coefficient cycles σn are represented by two

colors. We can now generalize our cycles σn so that they contain elements si which

can take on q different colors. We can view our new combinatorial object in light of

the equivalence classes introduced in Definition 4.3. One natural question is — how

many elements belong to each equivalence class for a given n? We will break this
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down in steps, starting with necklaces, which are equivalent under rotation, and then

consider the other three operations given in Definition 4.3.

The key tool in enumerating our necklaces is the following combinatorial theorem

due to Pólya [62].

Theorem 4.8 (Pólya Enumeration Theorem). Suppose H is a finite group of order

h, of transformations t which act on a finite set of objects. Further, suppose that two

objects are equivalent if one can be transformed into the other by some t ∈ H. Then

the number of inequivalent objects in the set is given by

T :=
1

h

∑
t

I(t),

where I(t) is the number of objects which are left invariant by transformation t ∈ H

and the sum is taken over all t.

The following theorem due to MacMahon (1892) enumerates our necklaces and

can be found in Graham et al. [33, p. 140], for example. Recall that Euler’s totient

function, φ(n), denotes the number of positive integers k ≤ n such that gcd(k, n) = 1.

The proof of this theorem, as well as those of the remaining theorems in this chapter,

are given for completion.

Theorem 4.9. The number of distinct necklaces with n beads and q colours is given

by

N(n, q) :=
1

q

∑
d|n

q
n
d φ(d),

where φ(d) is Euler’s totient function.

Proof: The set of rotations (s1, . . . , sn) → (sn−k+1, . . . , sn, s1, . . . , sn−k) for 0 ≤
k ≤ n − 1 (where a rotation of 0 terms is the same as a rotation of n terms) can

be represented as the cyclic group Cn. We will denote an element of this group

by Rk ∈ Cn, where R stands for rotation to the right. In order to apply Pólya’s

Enumeration Theorem, we must find I(Rk), i.e., the number of cycles which are left

invariant by a general element Rk ∈ Cn. Let us instead consider a general element

Rn−k. Suppose the cycle σn = (s1, . . . , sn) is left invariant by this element, i.e.,

(s1, . . . , sn) = (sk+1, . . . , sn, s1, . . . , sk),
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This requires the following equalities:

s1 = sk+1, s2 = sk+2, . . . , sk = s2k, sk+1 = s2k+1, . . . , sn = sk.

Notice that we have s1 = sk+1 = s2k+1 = · · · = s(lk+1)mod n for l ∈ N, and in general

sj = s(lk+j)mod n for j = 1, . . . , n. We are using the convention that n (mod n) ≡ n.

It is known that given any k ∈ N, {lk (mod n) | l ∈ N} ≡ {0, d, 2d, . . . , n − d |
d = gcd(k, n)} (not using the mentioned convention). Therefore we must have

sj = sj+ld, ld ∈ {0, d, 2d, . . . , n− d}, (4.1)

for j = 1, . . . , d. In other words, if we think about the group Cn as a subgroup of the

symmetric group of permutations, Sn, every dth term in σn belongs to the same cycle

in the permutation, so that we have d cycles of length n
d
.

What we can now infer is that the colours of s1, s2, . . . , sd are each chosen indepen-

dently from a set of size q, and the colors of sd+1, . . . , sn are determined by Equation

(4.1). In other words, since we want our coefficient cycle σn to be invariant under

rotation, each element in a given cycle of the rotation permutation must have the

same color. Therefore we have qd ways to choose d colors, i.e., qd coefficient cycles

which are equal to themselves when rotated by k and thus I(Rn−k) = qd. Note also

that we must have d as the length of our primitive cycle. Applying Pólya’s Theorem,

and using the fact that |Cn| = n, we conclude that

N(n, q) =
1

n

∑
Rn−k

qd =
1

n

∑
Rk

qd. (4.2)

Now because d = gcd(k, n), we have that d|n. We can split the above sum

according to the value of d for each 0 ≤ k < n to give

N(n, q) =
1

n

∑
d|n

qd
∑

0≤k<n
gcd(k,n)=d

1.

The first sum corresponds to each possible value of d, while the second corresponds

to the number of times each d-value arises. By noting that d = gcd(k, n) if and only

if gcd(k
d
, n
d
) = 1, we can rewrite the previous sum as

N(n, q) =
1

n

∑
d|n

qd
∑

0≤k<n
gcd( k

d
,n
d
)=1

1.
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Now writing k = jd (we know d|k), our expression becomes

N(n, q) =
1

n

∑
d|n

qd
∑

0≤j<n
d

gcd(j,n
d
)=1

1.

The second sum is by definition φ
(
n
d

)
, so we obtain

N(n, q) =
1

n

∑
d|n

qdφ
(n
d

)
=

1

n

∑
d|n

q
n
d φ(d), (4.3)

since d and n
d
give the same list of divisors of n, completing the proof. �

When q = 2, the following sequence (see [67, A000031]) gives the number of

necklaces of two colors, for increasing n ≥ 0:

1, 2, 3, 4, 6, 8, 14, 20, 36, 60, 108, 188, 352, . . . .

Example 4.3. Figure 4.1 lists all necklaces with 4 beads and 2 colors. From the

above sequence we see that N(4, 2) = 6. Notice that the first two pairs of necklaces

Figure 4.1: Necklaces with n = 4, q = 2.

have opposite colors. If we reversed the colors on either of the last two necklaces,

they would remain unchanged under rotation. For example, Figure 4.2 gives two

equivalent necklaces.

Figure 4.2: Equivalent necklaces.
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Next we will apply the operation of negation, which is color swapping in this

case, to our necklaces. This means that swapping colors will produce a new necklace

which is equivalent to the old one. We will denote the number of such necklaces by

Ns(n, q). Also, we will need to make use of the symmetric group on q elements, Sq.

The following theorem is found in Gilbert and Riordan [32].

Theorem 4.10. The number of distinct necklaces with n beads and q colors, where

color swapping is allowed, is given by

Ns(n, q) :=
1

q!n

∑
d,P

φ(d)N(c1, . . . , cq)(m(d))
n
d ,

where the sum is taken over all divisors d of n and all partitions P of q. Here

m(d) :=
∑

j|d jcj, and N(c1, . . . , cq) is the number of permutations of π ∈ Sq which

have cj cycles of length j, where j = 1, . . . , q.

Proof: As we have seen in the proof of Theorem 4.9, the set of rotations can be

represented as the cyclic group Cn. Given q colors, the set of permutations (possible

swappings of colors) can be represented by the symmetric group Sq. As given in

Gilbert and Riordan [32], the set of transformations of cycles which may arise from

rotation, color swapping or both may be represented by the direct product Cn × Sq.

We will denote an element of this group by Rkπ, where Rk ∈ Cn and π ∈ Sq. We have

defined a group action, where an element Rkπ acts on a cycle σn = (s1, . . . , sn) by

permuting the colors, π, and rotating the terms, Rk. The former is a permutation of

the set of q colors, where the latter is a permutation of the n elements of the cycle σn.

These operations are independent of order because they are applied on two different

sets.

In order to apply Pólya’s Theorem, we must find I(Rkπ), i.e., the number of cycles

which are left invariant by a general element Rkπ ∈ Cn × Sq. As in Theorem 4.9,

suppose the cycle σn = (s1, . . . , sn) is left invariant by Rn−kπ. Then for all i,

si = πsi+k = π2si+2k = π3si+3k = · · · (4.4)

Again the colors of terms si are independently chosen for i = 1, . . . , d, where d =

gcd(n, k) and are determined by Equation (4.4) for i > d, and where {lk (mod n)|l ∈
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Z} ≡ {0, d, 2d, . . . , n−d}. However, in the case of Cn×Sq we have a further restriction

imposed by Sq, which we will now explain.

We can write the above set as { ld | 0 ≤ l ≤ n
d
− 1} and use it to replace the lk

terms in Equation (4.4). Continuing the terms we get

si = πsi+d = π2si+2d = · · · = π
n
d
−1si+(n

d
−1)d = π

n
d si+nd

d
,

where we have included the next l-value, n
d
. (We did not include n in the set {ld}

because it is equivalent to zero modulo n.) We then have

si = π
n
d si+nd

d
= π

n
d si (mod n).

Therefore π
n
d preserves si for i = 1, . . . , n. Recall that the permutation Rn−k has d

cycles of length n
d
, so repeating the rotation n

d
times is equivalent to applying the

identity element in our group Cn. We can deduce that since π
n
d = 1, the value of

si, i.e., its color, has order dividing n
d
for i = 1, . . . , n. In other words, the value

of si belongs to a cycle of π which has length dividing n
d
, because the order of an

element is equal to the length of its cycle in the decomposition of π ∈ Sq. If π

decomposes into cj cycles of length j for j = 1, . . . , q, each si ∈ σn is restricted to the

colors (values 1, . . . , q) which belong to cycles having lengths j, dividing n
d
, so that

πjsi = si. Therefore si can take on

m
(n
d

)
=

∑
j|n

d

jcj (4.5)

different colors, since these colors are unchanged by the permutation π. We have

seen that we have choice of color for the first d terms (s1, . . . , sd) in σn, i.e., each

of the d cycles in Rn−k contains elements of only one color. Therefore, combining

our information, we see that I(Rn−kπ), i.e., the number of coefficient cycles σn that

remain invariant under the permutation Rn−kπ, is given by

I(Rn−kπ) = (m(n
d
))d.

Note that I(Rn−kπ) = I(Rkπ) because gcd(n, k) = gcd(n, n− k) = d.

We can now apply Pólya’s Theorem, which tells us that the number of equivalence

classes of sequences under rotation and color swapping is given by
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Ns(n, q) =
1

q!n

∑
Rkπ

I(Rkπ) =
1

q!n

∑
Rkπ

(
m

(n
d

))d

. (4.6)

Here q!n is the order of the direct product Cn × Sq and the sums are taken over all

elements in the group. Summing over Cn × Sq means our terms are dependent on

k and π. We can simplify this formula by combining terms which have the same

d-value. We can see from Equation (4.2) and Equation (4.3) in the proof of Theorem

4.9 that ∑
0≤k≤n

qd =
∑
d|n

qdφ
(n
d

)
. (4.7)

We can apply the same argument to Equation (4.6), summing over d instead of k and

multiplying our sum by a factor of φ
(
n
d

)
.

Now, of the q! elements π ∈ Sq, we can split them into sets according to partitions

P of q given by c1+2c2+ · · ·+ qcq = q, where each partition corresponds to elements

π with cj cycles of length j. It is a well known fact in group theory that two elements

in the symmetric group Sq are conjugate (i.e., for a, b ∈ Sq there exists x ∈ Sq such

that xax−1 = b) if and only if they consist of the same number of disjoint cycles

of the same length, i.e., they are distinct permutations of the same partition of q.

Recall that conjugacy classes (here, partitions) are equivalence classes induced by

conjugacy of elements. We will denote the size of the conjugacy class associated

with a given partition by N(c1, . . . , cq). To obtain an expression for this number (as

shown in Bóna [10, p. 80]), start by considering all q! possible permutations of q

elements. Now choose a partition, where the cycles are arranged in some fixed order

(for example, length 2, length 3, length 3) and think about placing this on top of each

of the q! permutations. Each cycle of length j can be rotated j different ways to give

j equivalent cycles. Since there are cj cycles of length j, we can divide q! by jcj for

each value of j, j = 1, . . . , q, to remove these repetitions. Also, the cj cycles of length

j can be arranged in cj! different ways, without changing the fixed structure of the

cycle. Therefore we can also divide q! by cj! for each value of j giving the number of

distinct permutations of a partition (by distinct we mean different elements in Sq),

or in other words, the size of the conjugacy class, as

N(c1, . . . , cq) =
q!

c1! · 2c2c2! · · · qcqcq! . (4.8)
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Now instead of summing over permutations π, we will sum over partitions P and

multiply by a factor of N(c1, . . . , cq). Equation (4.6) can now be written as

Ns(n, q) =
1

q!n

∑
d,P

φ
(n
d

)
N(c1, . . . , cq)

(
m
(n
d

))d

.

Finally, because {d} and {n
d
} give the same set of divisors of n, we can rewrite the

above as

Ns(n, q) =
1

q!n

∑
d,P

φ(d)N(c1, . . . , cq)(m(d))
n
d ,

completing the proof. �

We can now consider the special case of q = 2, which is the case we are interested

in. This can be found in Fine [27].

Corollary 4.2. The number of distinct necklaces with n beads and two colors, which

may be swapped, is given by

Ns(n, 2) =
∑
d|n

φ(2d)2
n
d

2n
.

Proof: Theorem 4.10 tells us that

Ns(n, 2) =
1

2n

∑
d,P

φ(d)N(c1, c2)(m(d))
n
d .

Now, how many partitions c1 + 2c2 = 2 are there in S2 with cj cycles of length j?

We can have one cycle of length 2 so that c1 = 0 and c2 = 1, e.g., π1 = (12), or two

cycles of length 1 so that c1 = 2 and c2 = 0, e.g., π2 = (1)(2). Now we need to find

N(c1, c2), i.e., the number of permutations of a given partition. For π1 we have

N(0, 1) =
2!

0!1!21
= 1,

and for π2 we have

N(2, 0) =
2!

2!0!20
= 1.

It is clear from the above example that there is only one permutation of each partition.

We can now split up Ns(n, 2) according to our two partitions as

Ns(n, 2) =
1

2n

(∑
d, π1

φ(d)(m(d))
n
d +

∑
d, π2

φ(d)(m(d))
n
d

)
, (4.9)
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where the first and second sums correspond to π1 and π2 respectively, and each sum

is over all divisors d of n. Now consider the term m(d) =
∑

j|d jcj. This places the

restriction that the color of each si ∈ σn belongs to a cycle of π which has length

dividing d, for a given permutation π. Therefore in the case of π1 we must have

2|d and in π2 we must have 1|d. This tells us that the first sum in Equation (4.9)

must have d even and the second can have d even or odd. For π1 we must have

m(d) = 1(0) + 2(1) = 2 because j can take on the value 1 or 2. For π2, if d is even,

j can again take on the value 1 or 2 and m(d) = 1(2) + 2(0) = 2. If d is odd, j can

only take on the value 1 and so m(d) = 1(2) = 2.

Rewriting the sums in Equation (4.9) according to the parity of d gives

Ns(n, 2) =
1

2n

( ∑
d even

2φ(d)2
n
d +

∑
d odd

φ(d)2
n
d

)
.

We can now use the facts that for d even we have φ(2d) = 2φ(d) and for d odd,

φ(2d) = φ(d), to give

Ns(n, 2) =
1

2n

( ∑
d even

φ(2d)2
n
d +

∑
d odd

φ(2d)2
n
d

)
.

Combining these terms gives

Ns(n, 2) =
1

2n

∑
d|n

φ(2d)2
n
d ,

which completes the proof. �

The sequence Ns(n, 2), and corresponding formula, can be found in [67, A000013].

The first few terms for n ≥ 0 are

1, 1, 2, 2, 4, 4, 8, 10, 20, 30, 56, 94, 180, . . . . (4.10)

Example 4.4. If we introduce equivalence under the operation of color swapping to

the necklaces given in Example 4.3, our set of necklaces is reduced to that in Figure

4.3. From the above sequence we see that Ns(4, 2) = 4.
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Figure 4.3: Necklaces with color swapping for n = 4, q = 2.

4.4 Bracelets

We can extend the definition of the necklace to form another combinatorial object,

the bracelet.

Definition 4.5. A bracelet is a string of n characters of q different types which is

unchanged by rotation and reversal, i.e., two bracelets are equivalent if one can be

transformed into the other by a combination of rotation of k characters and reversal

of character order.

This term is more recent, and the papers referenced earlier, namely Gilbert

and Riordan [32] and Fine [27], do not use it. Gilbert and Riordan refer to a

“mirror image necklace”. Note that a bracelet is simply a necklace with the ad-

ditional property that we can pick it up and flip it over in the plane, which is

equivalent to reversing the order of the characters. The combined set of rotations

(s1, . . . , sn) → (sn−k+1, . . . , sn, s1, . . . , sn−k) and reversals (s1, . . . , sn) → (sn, . . . , s1)

for k = 0, . . . , n− 1 can be represented by the dihedral group D2n. If we rotate by k

terms and then reverse the cycle, our operation is

(s1, . . . , sn) → (sn−k, . . . , s1, sn, . . . , sn−k+1). (4.11)

For each of the n rotations, we can either reverse the cycle or leave it unchanged;

this gives us a total of 2n different permutations. Let F tRk be a typical element of

D2n where t ∈ {0, 1} (we reduce its value modulo 2). The rightmost operation, the

rotation, is applied first and our group operation is concatenation of elements. Note

that the permutations F t (F for flip) and Rk are not commutative. If we reverse the

cycle (s1, . . . , sn) and then rotate by k terms we obtain

(s1, . . . , sn) → (sk, . . . , s1, sn, . . . , sk+1),
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which is not the same cycle as that given in the expression in (4.11). We do have

that F sF t = F s+t and RjRk = Rj+k. We will use the convention that F 0 = 1, so

that F 0Rk = Rk.

It will be useful to describe the conjugacy classes of elements in the group D2n.

Before we do this, a few notes on conjugacy class and cycle type will be useful. Note

that D2n ≤ Sn for n ≥ 3. Every element of D2n can be viewed as a permutation of n

elements, and these permutations can be represented as cycles, in Sn, as we will see.

We mentioned in Theorem 4.10 that two elements in Sn are conjugate if and only if

they consist of the same number of disjoint cycles of the same length, i.e., they have

the same cycle type. If elements a, b have the property that a ∼ b in D2n, then a ∼ b

in Sn as well. Therefore a and b have the same cycle type. But the converse is not

necessarily true, i.e., if a and b have the same cycle type, then it is not necessarily

true that a ∼ b in D2n. The following Lemma can be found in Riordan [63, p. 149].

Lemma 4.1. The conjugacy classes of D2n for n even are given by

{1}, {Rn
2 }, {R,Rn−1}, {R2, Rn−2}, . . . , {Rn−2

2 , R
n+2
2 },{

FR2k+1 | k = 0, . . . ,
n− 2

2

}
,

{
FR2k | k = 0, . . . ,

n− 2

2

}
.

For n odd, the conjugacy classes are

{1}, {R,Rn−1}, {R2, Rn−2}, . . . , {Rn−1
2 , R

n+1
2 }, {FRk | k = 0, . . . , n− 1}.

Proof: First suppose we have a cycle σn = (s1, . . . , sn) to which we apply the

permutation FRF , i.e., we flip, rotate, then flip again. This gives

(s1, . . . , sn) → (sn, . . . , s1) → (s1, sn, . . . , s2) → (s2, . . . , sn, s1). (4.12)

The permutation (as an element of Sn) can be represented as (1 n n − 1 . . . 2)

because s1 moves from position 1 to position n, sn moves from position n to position

n − 1 and so on. This permutation is in fact Rn−1. We have therefore proven the

relation FRF = Rn−1. Because F 2 = 1, we know that F = F−1, and thus R and

Rn−1 are conjugate elements in D2n. By iterating, it is easy to see that FRkF = Rn−k

for any rotation of size k. This tells us that Rk and Rn−k are also conjugate in D2n,
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and in fact they are inverses of each other, since if we apply one after the other we

obtain Rn = 1. We can use this result to prove another conjugacy relation.

Consider the permutation Rn−k(FRs)Rk for some integer s, and use the just-

mentioned conjugacy in the form Rn−kF = FRk to give

Rn−k(FRs)Rk = (Rn−kF )Rs+k = (FRk)Rs+k = FRs+2k.

This tells us that FRs and FRs+2k are conjugates for any integral values of s and k.

Using this we will be able to deduce the conjugacy classes for elements of the form

FRk ∈ D2n.

Consider the case of n even. For s = 0 we have that F is conjugate to FR2k for

all k = 0, . . . , n−2
2

(note that FRn = F ). We have that the permutation F can be

represented by

F = (1 n)(2 n− 1) · · ·
(n
2

n

2
+ 1

)
. (4.13)

We can therefore deduce that all elements of the form FR2k for n even have n
2
cycles

of length 2. For s = 1 we have that FR is conjugate to FR2k+1 for all k = 0, . . . , n−2
2
.

Applying the permutation FR to the cycle σn(s1, . . . , sn) (starting with the rightmost

operation) gives

(s1, . . . , sn) → (sn, s1, . . . , sn−1) → (sn−1, . . . , s1, sn). (4.14)

This permutation can be represented as

FR = (n)
(n
2

)
(1 n− 1)(2 n− 2) · · ·

(n
2
− 1

n

2
+ 1

)
. (4.15)

Here we have, for example, that s1 moves from position 1 to position n− 1, and sn−1

moves from position n − 1 to position 1. We can therefore deduce that all elements

of the form FR2k+1 for n even have n−2
2

cycles of length 2 and two cycles of length 1.

Note that because these two conjugacy classes have different cycle types, they remain

distinct. (By the contrapositive of the fact that conjugacy implies same cycle type.)

Now consider the case for n odd. For s = 0 we again have that F is conjugate to

FR2k, except that now this holds for all k = 0, . . . , n−1
2
. We have that

F =

(
n+ 1

2

)
(1 n)(2 n− 1) · · ·

(
n− 1

2

n+ 3

2

)
. (4.16)
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For s = 1 we have that FR is conjugate to FR2k+1 for all k = 0, . . . , n−3
2
. Applying

the permutation FR to the cycle (s1, . . . , sn) again gives the expression in (4.14),

which can be represented as

FR = (n)(1 n− 1)(2 n− 2) · · ·
(
n− 1

2

n+ 1

2

)
. (4.17)

Note that regardless of the parity of s, when n is odd we have n−1
2

cycles of length 2,

and one cycle of length 1. We can show that these two sets of elements {FR2k} and

{FR2k+1} in fact belong to the same conjugacy class, but cannot assume this based

on the fact that they have the same cycle type. Consider the element F ∈ D2n and

multiply Rk and its inverse on either side as follows:

(RkF )Rn−k = (FRn−k)Rn−k = FR2n−2k = FRn−2k,

which tells us that F ∼ FRn−2k. For n odd, n− 2k is also odd and so F ∼ FR2k+1.

We know that F ∼ FR2k, and by transitivity of conjugation we can conclude that all

elements of the form FRk are conjugate for k = 0, . . . , n− 1.

This takes care of the conjugacy classes of elements of D2n which are of the form

RkF t where t = 1. What about the case of t = 0? Here we want the conjugacy classes

of the group Cn. We have seen above that Rk ∼ Rn−k. From this we can deduce that

for n odd we have the sets of conjugate elements

{1}, {R,Rn−1}, {R2, Rn−2}, . . . , {Rn−1
2 , R

n+1
2 },

and for n even the sets are

{1}, {Rn
2 }, {R,Rn−1}, {R2, Rn−2}, . . . , {Rn−2

2 , R
n+2
2 }.

We cannot conclude that these sets represent conjugacy classes in D2n until we show

that no other conjugacies exist among the sets. Consider the element Rk, and suppose

we take a general element F tRj ∈ D2n to test for further elements conjugate to Rk.

Using the fact that (F tRj)−1 = Rn−jF t we get

(F tRj)Rk(Rn−jF t) = F tRn+kF t = F tRkF t.

If t = 0 we get no conjugacy, and if t = 1, a previous relation tells us that FRkF =

Rn−k. This tells us that Rk ∼ Rn−k. We can now conclude that there are no other
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elements conjugate to Rk and therefore the sets listed above do in fact represent

conjugacy classes in D2n. �

We can now generalize Theorem 4.10 to count bracelets rather than necklaces. A

general form of the following theorem can be found in Gilbert and Riordan [32].

Theorem 4.11. The number of distinct bracelets with n beads and q colors, where

color swapping is allowed is given by

Bs(n, q) :=
1

2nq!

∑
P,P ′

M(e1, . . . , en)N(c1, . . . , cq)
n∏

l=1

(m(l))el ,

where the sum is taken over all partitions P and P ′ which are given as c1+2c2+ · · ·+
qcq = q and e1+2e2+ · · ·+nen = n, respectively. Here m(l) =

∑
j|l jcj, N(c1, . . . , cq)

is the number of permutations π ∈ Sq having cj cycles of length j, and M(e1, . . . , en)

is the number of permutations F tRk ∈ D2n having el cycles of length l.

Proof: Recall that D2n represents the set of permutations of cycles arising from

rotation and reversal. The set of permutations of q colors is represented by Sq. The

set of transformations of cycles which may arise from any combination of rotation,

reversal or color swapping may be represented by the direct product D2n × Sq. Let

F tRkπ be a typical element of D2n × Sq, where t ∈ {0, 1}, k ∈ {0, . . . , n − 1} and

π ∈ Sq. Keep in mind that the flips F t and rotations Rk do not commute, but the

color swaps π do commute with elements F tRk.

To apply Pólya’s Theorem we must first find I(F tRkπ), i.e., the number of cycles

σn (where we are thinking of cycles as loops) which are left invariant by a general

element F tRkπ ∈ D2n×Sq. Suppose the permutation F tRk, considered as an element

of Sn, decomposes into el cycles of length l. As before, in order for a cycle σn to be

invariant under such a permutation, we will need each cycle in the decomposition to

contain only one color. Now, as in Theorem 4.10 we will investigate the additional

restraint imposed by color swapping.

Consider an element si ∈ σn in a length-l cycle of some permutation F tRk. For

example, when n is even, the permutation F is represented by Equation (4.13). The

element s1 ∈ σn is in position 1 and so belongs to the cycle (1 n), which is a length-2
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cycle of the permutation F . Applying the permutation F tRk to the element si, l

times, gives (F tRk)l(si) = si, because l is the order of the cycle to which si belongs.

This tells us that si is invariant under (F tRk)l. If we attach color swapping to our

permutation, we also want to have πl(si) = si. (Note that (F tRkπ)l = (F tRk)lπl

because color swapping commutes with the other operations.) As in the proof of

Theorem 4.10, this tells us that the color of si belongs to one of the cj cycles of

length j, of π ∈ Sq such that j|l. Therefore, the number of possible colors the

element si can take on is given by Equation (4.5):

m(l) =
∑
j|l

jcj.

Since there are el cycles (containing elements of the same color) of length l in

D2n we must choose one of m(l) colors el times and so taking the product over all

l = 1, . . . , n gives

I(F tRkπ) = (m(1))e1(m(2))e2 · · · (m(n))en =
∏
l

(m(l))el .

Here we make the convention that if el = 0 then m(l)el = 1 for all values of m(l), in-

cluding zero. By Pólya’s Theorem, we have that the number of inequivalent bracelets

where swapping color is allowed is given by

Bs(n, q) =
1

2nq!

∑
F tRkπ

∏
l

(m(l))el , (4.18)

where we have used the fact that |Dn × Sq| = 2nq!.

Now, instead of summing over elements F tRkπ, i.e., permutations π ∈ Sq and

F tRk ∈ D2n, we can sum over partitions of these permutations. This means we can

split up our sum according to the partitions of q and n. A partition P of q given by

c1 + 2c2 + · · · + qcq = q corresponds to elements π with cj cycles of length j, and

the number of permutations it has (i.e., the size of its conjugacy class) is given in

Equation (4.8) as

N(c1, . . . , cq) =
q!

c1! · 2c2c2! · · · qcqcq! . (4.19)

Similarly, a partition P ′ of n given by e1 + 2e2 + · · · + nen = n corresponds to the

elements F tRk with el cycles of length l, and the number of permutations it has in D2n
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is denoted by M(e1, . . . , en). We can again make the connection to sizes of conjugacy

classes.

We have already noted that if elements a, b have the property that a ∼ b in D2n,

then a and b have the same cycle structure but the converse is not necessarily true.

This means that it is not necessary for the conjugacy classes in D2n to include all

elements with a given cycle structure. It is possible that two elements have the same

cycle structure and are conjugate in Sn but not in D2n. Therefore we must check if

any of the conjugacy classes in D2n can be combined to give a larger group of elements

all having the same cycle structure.

We have seen in Lemma 4.1 that elements of the form RkF ∈ D2n belong in one

or two conjugacy classes depending on the parity of n. We have already determined

the cycle types, which are given by Equations (4.13), (4.15) and (4.16). Therefore

we cannot group these any further. What about the cycle structures of elements

of the type Rk ∈ D2n? Suppose we apply a rotation Rk to a cycle σn. If we let

d = gcd(n, k), we have that the permutation Rk can be represented as d cycles of

length n
d
. We can now group elements Rk according to their associated value of d.

The number of permutations Rk for which gcd(n, k) = d is precisely φ
(
n
d

)
. (This

was shown in Equations (4.2) and (4.3) and the explanation in between.) We can

conclude that for each d|n, each element in the set

{Rk | d = gcd(n, k)},

has the same cycle structure, and this structure differs for each set. The size of each

set is φ
(
n
d

)
. We know from Lemma 4.1 that Rk and Rn−k are conjugate. This fits

with what we have just proven because gcd(n, k) = gcd(n, n− k).

We can write the sum in Equation (4.18) as

Bs(n, q) =
1

2nq!

∑
P,P ′

M(e1, . . . , en)N(c1, . . . , cq)
∏
l

(m(l))el ,

where, combining what we have just proven with Lemma 4.1, we have

M(e1, . . . , en) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φ
(
n
d

)
, for elements Rk;

n
2
, for elements FRk, n even;

n, for elements FRk, n odd,



131

and N(c1, . . . , cq) is given by Equation (4.19). �

Corollary 4.3. The number of distinct bracelets with n beads and 2 colors, where

color swapping is allowed, is given by

Bs(n, 2) =
2	

n
2

 +Ns(n, 2)

2
.

Proof: We want to write Bs(n, 2) in terms of Ns(n, 2), so it becomes easier to use

Equation (4.18) rather than the equation in the statement of Theorem 4.11. The

reason is that we want to first separate elements F tRk based on the value of t instead

of looking at the partitions P, P ′. From Equation (4.18) we have that for q = 2,

Bs(n, 2) =
1

4n

∑
F tRkπ

∏
l

(m(l))el , (4.20)

where F tRkπ ∈ D2n × S2, m(l) is given by Equation (4.5), and el is the number of

cycles of length l in a permutation F tRk ∈ D2n. In order to rewrite this sum, we will

need to split it up in a number of steps.

First, notice that we can divide D2n × S2 into two sets of elements F tRkπ, de-

pending on the value of t. If t = 0, our bracelet is unflipped and we are left with the

elements Rkπ, i.e., the group Cn × S2. If t = 1, our bracelet is flipped and we have

the elements FRkπ. The sum in Equation (4.20) can be rewritten as

Bs(n, 2) =
1

4n

(∑
Rkπ

∏
l

(m(l))el +
∑
FRkπ

∏
l

(m(l))el

)
. (4.21)

Recall from the proof of Theorem 4.11 that
∏

l(m(l))el counts the number of elements

of D2n×S2 that are invariant under some F tRkπ. Now, because we are summing over

Rkπ, we are instead counting the number of elements of Cn × S2 that are invariant

under some Rkπ, and el still represents the number of cycles of length l in an element

of D2n although we are only concerned with elements in the subgroup Cn × S2. If we

sum and divide by 2n (the order of Cn × S2), we are, by Pólya’s Theorem, counting

the number of distinct necklaces with n beads and 2 colors where color swapping is

allowed, i.e., we have

Ns(n, 2) =
1

2n

∑
Rkπ

∏
l

(m(l))el .
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Equation (4.21) can now be written as

Bs(n, 2) =
1

2
Ns(n, 2) +

1

4n

∑
FRkπ

∏
l

(m(l))el . (4.22)

It will soon be useful to consider separate cases for n even and odd. We saw in the

proof of Lemma 4.1 that for elements FRk ∈ D2n, there is one conjugacy class for n

odd and two for n even. In the proof of Theorem 4.11 we verified that for n odd, all

elements in {FRk} have cycle structure consisting of one cycle of length 1 and n−1
2

cycles of length 2, i.e., we have the partition n = 1+ 2e2 where e1 = 1 and e2 =
n−1
2
.

For n even, elements in {FR2k} have cycle structure consisting of n
2
cycles of length

2, i.e., the partition n = 2e2 with e1 = 0 and e2 = n
2
. Elements in {FR2k+1} have

cycle structure consisting of n−2
2

cycles of length 2 and two cycles of length 1, i.e., the

partition n = 2 + 2e2, where e1 = 2 and e2 = n−2
2
. To incorporate this information

we must split the sum in Equation (4.22) even further, according to the parities of n

and k, and the fact that el = 0 for l ≥ 3. This gives

Bs(n, 2) =
1

2
Ns(n, 2) +

1

4n

∑
FRkπ

m(1)(m(2))
n−1
2 (n odd),

Bs(n, 2) =
1

2
Ns(n, 2) +

1

4n

∑
FRkπ
k odd

(m(1))2(m(2))
n−2
2

+
1

4n

∑
FRkπ
k even

(m(1))0(m(2))
n
2 (n even).

Now, in order to evaluate the m(1) and m(2) terms we must have values for c1

and c2. These are dependent on the partition of q = 2. For π1 = (12) we have

m(1) = c1 = 0 and m(2) = c1 + 2c2 = 0 + 2(1) = 2. For π2 = (1)(2) we have

m(1) = c1 = 2 and m(2) = c1 + 2c2 = 2 + 2(0) = 2. To incorporate these values into

the above equations we must again split each sum into two, this time depending on

the partition of S2. In the case of π1, our general element can be written as F tRkπ1,

whereas for π2, our general element is F tRk since this is the identity permutation in

S2. We can now write

Bs(n, 2) =
1

2
Ns(n, 2) +

1

4n

∑
FRk

m(1)(m(2))
n−1
2 +

1

4n

∑
FRkπ1

m(1)(m(2))
n−1
2 (n odd),
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Bs(n, 2) =
1

2
Ns(n, 2) +

1

4n

∑
FRk

k odd

(m(1))2(m(2))
n−2
2 +

1

4n

∑
FRkπ1
k odd

(m(1))2(m(2))
n−2
2

+
1

4n

∑
FRk

k even

(m(2))
n
2 +

1

4n

∑
FRkπ1
k even

(m(2))
n
2 (n even).

We can explain the fact that m(1) = 0 for permutations with π1 = (12) in the

following way. The term m(1) counts the number of colors an element si in a length

one cycle can take on, whilst maintaining invariance under some permutation. Since

the permutation π1 switches the color of the element in a length-one cycle, it cannot

possibly remain invariant and m(1) = 0. Therefore the entire cycle σn cannot remain

invariant under this permutation, and the entire term drops out of the sum. Note

that we are using the convention 00 = 1 in the final term of the n even case, since we

have m(1)e1 = 00.

Now, substituting the values of m(1) and m(2) gives

Bs(n, 2) =
1

2
Ns(n, 2) +

1

4n

∑
FRk

2 · 2n−1
2 (n odd),

Bs(n, 2) =
1

2
Ns(n, 2) +

1

4n

∑
FRk

k odd

222
n−2
2

+
1

4n

∑
FRk

k even

2
n
2 +

1

4n

∑
FRkπ1
k even

2
n
2 (n even).

We can take each sum over the number of elements in the given set, noting that for

n odd, |{FRk}| = n, and for n even, |{FRk|k odd}| = n
2
, |{FRk|k even}| = n

2
and

|{FRkπ|k even}| = n
2
. This gives

Bs(n, 2) =
1

2
Ns(n, 2) +

1

4n
(n)2 · 2n−1

2 (n odd),

Bs(n, 2) =
1

2
Ns(n, 2) +

1

4n

(n
2

)
222

n−2
2

+
1

4n

(n
2

)
2

n
2 +

1

4n

(n
2

)
2

n
2 (n even).
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Simplifying gives

Bs(n, 2) =
1

2
Ns(n, 2) +

1

2
2

n−1
2 (n odd),

Bs(n, 2) =
1

2
Ns(n, 2) +

1

2
2

n−2
2 +

1

8
2

n
2 +

1

8
2

n
2

=
1

2
N2(n, 2) +

1

2
2

n
2 (n even).

We can now combine these into one equation as

Bs(n, 2) =
Ns(n, 2) + 2	

n
2



2
,

completing the proof. �

The sequence Bs(n, 2), and corresponding formula, can be found in [67, A000011].

The first few terms, for n ≥ 0, are

1, 1, 2, 2, 4, 4, 8, 9, 18, 23, 44, 63, 122, . . . .

Example 4.5. Notice that the above sequence for bracelets with color swapping

matches the sequence given in (4.10) for necklaces with color swapping, up to n = 6.

For n = 7 we have Ns(7, 2) = 10 and Bs(7, 2) = 9. This difference can be seen in

Figure 4.4. Both objects belong to the set of necklaces with color swapping, but are

Figure 4.4: Equivalent bracelets.

equivalent in the set of bracelets with color swapping, because they are mirror images

of each other. This is the first instance where taking the mirror image of a necklace

does not simply give the same necklace back under rotation.

4.5 Enumerating the Equivalence Classes

Next we want to count the number of primitive bracelets (primitive cycles with ro-

tation and reversal) where color swapping is allowed. This means that we are now
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allowed to reduce a cycle σn to its primitive cycle σk, where k|n. We have now in-

corporated all four operations in our equivalence relation and so we are counting the

number of equivalence classes.

Fine [27] explains how we can obtain the number of primitive classes from the

number of classes which are not necessarily primitive using Möbius inversion. Recall

that the Möbius function, μ(n), is defined as follows:

μ(n) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if n has at least one repeated prime factor;

1, if n = 1;

(−1)k, if n is a product of k distinct primes.

Theorem 4.12. The number of distinct primitive bracelets with n beads and q colors,

where color swapping is allowed, i.e., the number of equivalence classes of cycles σn,

is given by

Bsp(n, q) :=
∑
d|n

μ(d)Bs

(n
d
, q
)
,

where μ(d) is the Möbius function.

Proof: First denote the number of primitive bracelets with n beads and q colors,

where color swapping is allowed, by Bsp(n, q). Now consider Bs (n, q), which by

Theorem 4.11 is the total number of bracelets with n beads and q colors, where color

swapping is allowed, whether or not the bracelets are primitive. If we break this

number down according to primitive cycle, we need to count the number of primitive

cycles of length d where d|n. Summing over all d we obtain

Bs (n, q) =
∑
d|n

Bsp(d, q).

To find an expression for Bsp(n, q) we simply use Möbius inversion. This tells us

that given the expression g(n) =
∑

d|n f(d), we can write the function f as f(n) =∑
d|n μ(d)g

(
n
d

)
, where μ(d) is the Möbius function. In our case, applying Möbius

inversion gives

Bsp(n, q) =
∑
d|n

μ(d)Bs

(n
d
, q
)
.

�
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For the case we are concerned with, q = 2, the following corollary is immediately

obtained:

Corollary 4.4. The number of distinct primitive bracelets with n beads and 2 colors,

where color swapping is allowed, i.e., the number of equivalence classes of coefficient

cycles σn, is given by

Bsp(n, 2) =
∑
d|n

μ(d)Bs

(n
d
, 2
)
.

The sequence Bsp(n, 2), and corresponding formula, can be found in [67, A000046].

The first few terms, for n ≥ 0, are

1, 1, 1, 1, 2, 3, 5, 8, 14, 21, 39, 62, 112, . . . .

Notice that prime-indexed terms in this sequence are one less than those in Bs(n, 2)

([67, A000011]). This is due to the fact that when n is prime, we only have one

non-primitive coefficient cycle, namely ((+)n).

Example 4.6. In Figures 4.5 and 4.6 we have listed the set of equivalence classes for

n ≤ 7.

Figure 4.5: Equivalence classes for n ≤ 6.
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Figure 4.6: Equivalence classes for n = 7.

Here we have equivalence among bracelets with the same primitive cycle. For

example, the bracelets in Figure 4.7 are now equivalent.

Figure 4.7: Members of the same equivalence class.

The following result relates the value of n to the growth of the set of equivalence

classes of coefficient cycles (or equivalently, periodic coefficient sequences).

Corollary 4.5. If at least one equivalence class of periodic coefficient sequences is

bounded then n is divisible by 2 or 3. Also if n is not divisible by 2 or 3 then all

equivalence classes of sequences grow exponentially.

Proof: Suppose at least one equivalence class of periodic coefficient sequences is

bounded and consider the cases where n is odd. Corollary 3.2 tells us that for the

bounded equivalence classes of sequences, we have 3 | n. If n is even, we have 2 | n.
Note that for n = 0, we have the single equivalence class containing the corresponding

product matrix ±I. In this case growth is bounded and 2, 3 | n. The second, more

powerful statement follows from the fact that if 2 � n then n is odd, and by Corollary

3.2 again, if 3 � n then growth is exponential. �
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We can now consider the number of equivalence classes of each growth type.

Table 4.1 gives these numbers as well as the number of coefficient cycles that fall into

these categories. Recall that there are 2n different length-n coefficient cycles that are

separated into equivalence classes. Corollary 4.5, which said that for n not divisible

n coefficient cycles E B L equivalence classes E B L
1 2 2 0 0 1 1 0 0
2 4 2 2 0 1 0 1 0
3 8 2 6 0 1 0 1 0
4 16 6 10 0 2 1 1 0
5 32 32 0 0 3 3 0 0
6 64 14 8 42 5 1 0 4
7 128 128 0 0 8 8 0 0
8 256 182 74 0 14 11 3 0
9 512 290 222 0 21 14 7 0
10 1024 672 352 0 39 27 12 0
11 2048 2048 0 0 62 62 0 0
12 4096 2082 16 1998 112 57 0 55

Table 4.1: Number of coefficient cycles and equivalence classes of each growth type.

by 2 and 3, all equivalence classes have exponential growth, is apparent here. We can

also consider equivalence classes of balanced coefficient cycles, and their breakdown

into growth types. The number of equivalence classes which are balanced, for even

n ≥ 0, is given by the sequence

1, 1, 1, 2, 5, 12, 31, 84, 250, 762, 2504, 8358, 28928, . . . ,

which can be can found in [67, AA045633].

Example 4.7. For n = 8 we have 14 equivalence classes of coefficient cycles, and 5

of these are balanced. The balanced cases are (++++−−−−), (+++−+−−−),

(+++−−+−−), (++−+−+−−) and (++−+−−+−), and they have growth

types E, E, E, B and E, respectively.

Our original intent was to try to shed some light on Viswanath’s constant by

determining the number of equivalence classes, the size of each equivalence class, and



139

the growth type/rate of each equivalence class. It may then have been possible to

combine this information into a formula for the average of the growth rates of periodic

coefficient sequences with period length n. By letting n → ∞, we would be in theory

be computing Viswanath’s constant. This approach turned out to be quite difficult.

We have found the number of equivalence classes for period length n, and a way to

determine the growth rate of each, but finding the size of each class and constructing

a formula are complex problems.

4.6 Some Applications of Necklaces and Bracelets

Interestingly, the concept of necklaces and bracelets appears in a paper by Grünbaum

and Shephard [35] on the geometry of fabrics, in particular, those which arise from

weaving. The mathematical treatment of this subject has a short history, despite

mankind’s long history of weaving. We can think of the weaved fabric as an infinite

grid where horizontal strips covering vertical strips are represented by black squares,

and vertical strips covering horizontal strips are represented by white squares, to

form repeating patterns. A simple class of fabrics known as twills is formed from a

periodic length n pattern, occurring in consecutive rows, but shifted by one square

to the right as we move down. Therefore the entire pattern can be represented by a

portion of a single row. How many distinct twill patterns are there? We can think of

each row as being generated by a size n necklace made up of two colors. Furthermore

we will consider the twill equivalent to itself if we swap colors (which is equivalent to

interchanging the horizontal and vertical sides of the fabric, i.e., flipping the fabric

over the line x + y = 0) or if we flip the fabric over in the plane (which in this case

is equivalent to a 90◦ rotation). Therefore we are enumerating bracelets of two colors

which are equivalent under color swapping, the number of which we have seen in

Corollary 4.3 to be

Bs(n, 2) =
2	

n
2

 +Ns(n, 2)

2
.

Grünbaum and Shephard give a sketch of this proof and enumerate the possible

patterns for n ≤ 8.

In [39], Hoskins and Penfold Street carry on the work of Grünbaum and Shephard

[35] on twills. They devise an algorithm for computing the list of twills with period
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n, and also derive a formula for evaluating the number of period n twills with a given

number of breaks (i.e., changes in color, and similar to the sign-flips mentioned in

Chapter 1). Interestingly, they also define an equivalence relation on period n bi-

nary sequences such that sequences S and T are equivalent if and only if one can be

transformed into the other by a shift, reversal, complementation or a finite number

of these operations. In other words, equivalence classes are determined by the ac-

tion of the group D2n × S2. The equivalence classes defined in Definition 4.3 have

the additional condition that two sequences (not necessarily of the same length) are

equivalent if one can be transformed into the other by reducing or extending it by

a multiple of the primitive cycle. The idea of a “balanced twill” is also introduced,

where the number of black squares is equal to the number of white squares. Recall

that balanced coefficient cycles were discussed in Section 3.3.

There has also been some interesting work (e.g., Chen [17]) relating the combi-

natorics of binary necklaces with DNA sequences. A DNA molecule can be seen as

a sequence over four bases: A,C,G and T , whose double helix form is composed

of two complementary strands. Furthermore, the repetition of patterns within the

sequence can be viewed cyclically. Classification of length n DNA patterns can be

viewed in terms of equivalence classes of length n words on four letters under rotation

and complementation. Furthermore, there exists a bijection between length n words

on four letters and length 2n words on 2 letters (our binary necklaces), which allows

for enumeration of the equivalence classes of length n DNA sequences.



Chapter 5

The Tree R and the Growth Rate of the Expected Value of a

Random Fibonacci Sequence

5.1 The Reduced Tree R

Recall the tree T̃ given in Figure 1.1(c), and further generated in Figure 5.1. From

here on we will refer to T̃ simply as T , as it is the complete binary tree we will focus

on. In [64], Rittaud develops a variation of the tree T called R, which will prove very

Figure 5.1: The tree T (Rittaud [64]).

useful in determining results about random Fibonacci sequences. Before considering

it, we will look at the following interesting properties of T , as found in [64]. The

properties of T and R in this section are given with proof in order to help illuminate

the structure and connection between the trees.

Proposition 5.1. If a is a node in the tree T with child b, then a and b are relatively

prime.

141
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Proof: Let d = gcd(a, b), and let z be a’s parent. The node b must then be of

the form b = z + a or b = |z − a|. We must also have that gcd(z, a) = d. Tracing

backwards we see that z and its parent must also have greatest common divisor d,

and by induction this pattern continues until we reach the initial nodes 1, 1. Clearly

gcd(1, 1) = 1 and so d = 1. �

The converse, which states that any relatively prime pair a, b can be found as an

edge in the tree T , is also true.

Recall from Chapter 1 that T (a,b) is the tree formed from all possible random

Fibonacci sequences with t1 = a and t2 = b. We then have that T = T (1,1). We can

assume that a and b are relatively prime; otherwise if gcd(a, b) = d, every node in

T (a,b) is a multiple of d.

Proposition 5.2. Given a relatively prime pair (a, b), the tree T (a,b) appears infinitely

many times in the tree T .

Proof: The proof uses the converse of Proposition 5.1, which says that T (a,b) appears

in T . Therefore, if we can show that T in turn appears in T (a,b), then the proposi-

tion is proved. This requires the pair (1, 1) to appear in T (a,b). This must happen

because given a parent-child pair (a, b), the left child is |b−a|, and we must have that

max(b, |b− a|) ≤ max(a, b). Continuing to take left children, we obtain a sequence of

positive numbers which must eventually reach (1, 1) because because by Proposition

5.1 we cannot have two successive equal nodes t in a branch, where t > 1, and so the

above property of maxima cannot give equality for two successive pairs. �

The following is a “characterization of shortest walks” in the tree T .

Proposition 5.3. If (a, b) is a pair of successive nodes in T , the shortest path to

reach it from the root is made up of successive nodes (c, d) where the parent of c is

|c− d|.

Rittaud [64] goes on to generate the reduced tree R, which will play a vital role

in results related to Viswanath’s constant. The tree R, as seen in Figure 5.2, is

generated from T by pruning any edge (and subsequent branch) which already occurs
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at an earlier level in the tree, i.e., it is composed of the shortest walks in T . There

is an exception, however. Node 0 in row 3 of T belongs to the edge (1, 0) as well

as both edges (0, 1), which do not appear at an earlier level of the tree, but are not

included in R. Therefore, the entire left half of the tree T does not appear in R.

This pruning process removes infinitely many subtrees of R from T . The tree T is

Figure 5.2: The reduced tree R (Rittaud [64]).

therefore composed of R and pieces of R. The growth of T must then follow from the

growth pattern in R.

Let ρn and τn denote the nth rows of entries in the trees R and T respectively.

Note that here we use ρn to list nodes, whereas Rittaud uses it to list edges. The

labels in Figure 5.2 therefore refer to the nodes above the dashed line. We will also

use the notation cR(ρn) to denote children in the tree R, so that cR(ρn) = ρn+1.

Example 5.1. Let us look at the shortest walk characterization given in Proposition

5.3. We know that any pair of successive nodes (a, b) in a branch of R can be traced

back through the parents |a − b| to reach the root. Consider the pair (9, 2) with

nodes in ρ8 and ρ9. If we take the sequence of absolute values of the differences in

consecutive pairs, we get 2, 9, 7, 2, 5, 3, 2, 1, 1. This is exactly the path which takes us
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back to the root of R.

The following propositions from Rittaud [64] contains some vital facts about R.

Proposition 5.4. Any edge (a, b) in the tree R occurs only once.

Proof: We know from the definition of R that a given edge can only appear at one

level of the tree R. It remains to show that an edge cannot appear more than once

at a level of R. By Proposition 5.3, any node a with child b has parent |a − b|, and
so if two such nodes appeared in a given row, we would be able to trace both back

to the root through the same set of nodes. But we can see that the initial levels of

R contain no repeated edges. Therefore any edge (a, b) appears only once in the tree

R. �

Proposition 5.5. The following are important properties about the trees R.

1. Right children in R are greater than their parents and left children are smaller,

with the exception of the initial nodes 1, 1.

2. Right children in R have two children and left children only have a right child.

3. The left child of a left or right child in R is equal to its great grandparent.

Proof: Suppose a is a left child in row n − 1 of tree R. Also suppose a’s parent is

b, and b is the right child of c as seen in Figure 5.3. The left child of b is a = |b− c|
and so may be either b− c or c− b. By Proposition 5.3, if the child of b is b− c, the

parent of b must be |b − (b − c)| = c, which is true, and so b − c is in R. Therefore

b > c, and a = b− c < b, i.e., the left child of a right child is smaller than its parent.

The fact that b > c also tells us that right children are greater than their parents,

although this is clear because we are dealing with positive integers.

We have that a = b− c, and so c = b−a. In this case the left child of a is equal to

its great grandparent. In fact, the left child of any (left or right) node a with parent

b is equal to its great grandparent because by definition, the left child of a is |b− a|,
and by Proposition 5.3 the parent of b is |b− a|, proving Statement 3. Using this, we

have that a’s grandparent must have parent a. Putting this information together we

see that the edge (a, c = b−a) is repeated and so a’s left child in row n does not exist
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c = b− a
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� b+ c

b− a a+ b

Figure 5.3: Left children of left children equal great grandparents.

in the tree R. This argument tells us that the left child of a left child of a right node

cannot exist in R. Further, we have already shown that left children of right nodes

are less than their parents, and this is now equivalent to stating that all left nodes in

R are less than their parents. Statement 1 has now been proven.

Next we can show that all nodes have right children. The right child of a with

parent b is a + b, but how do we know the edge (a, a + b) has not already occurred

in the tree? By Proposition 5.3, the shortest walk to a must have |a − (a + b)| = b

as a parent, which we know is true. We can conclude that left children have a right

child only. Lastly we must show that right nodes have left children. Consider the

right node b with parent c in Figure 5.3. We have seen above that the left child of b

is b− c, which exists in R, and so we can conclude that right nodes have two children

and left nodes only have a right child, proving Statement 2. �

Note that this shortest walk argument does not hold for the case of a left child of

a left child. For example, in Figure 5.3 we have that the left child of left node a is

b− a. By Proposition 5.3, the parent of a in the shortest walk is then |a− (b− a)| =
|2a− b| 	= b, since a 	= 0. This tells us that b− a does not belong in R.

5.2 Variations of the Tree R

Let us first consider what happens when we generalize the initial values of our tree.

If we start with the tree T (a,b), the corresponding tree R(a,b) may be quite different

from R, and the subsequent material in this chapter may not carry over. If a < b,
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b 3b− 2a 2a+ b b 2a+ 3b

Figure 5.4: The tree R(a,b) for a < b.

Proposition 5.5 holds. We have b as the only child of a, which we can then think of

as a right child which is bigger than its parent. Further, left children of left children

cause repeated edges and are therefore removed from R(a,b), as can be seen in Figure

5.4. If b = a, we have that b − a = 0 in row 3, which leads to the left side of the

tree being repetitive and hence removed, as is the case for R(1,1). Note that when

a < b, we have non-repetitive nodes in the left half of the tree, although the overall

structure of R(a,b) is the same as that of R(1,1) if we think of the initial values as

shifted to ρ2 = a, ρ3 = b.

If a > b, Proposition 5.5 does not hold. The orientation of nodes in T (a,b) differs

from that in the a < b case and as a result the repetition in the tree does not always

occur at the left child of a left node.

We can now consider another variation of the tree R. Recall that Rittaud [64] used

Equation (1.8), f̃n = |f̃n−1± f̃n−2|, to generate the tree T from which R was obtained.

What happens if we instead use Equation (1.6), tn = ±tn−1 + tn−2, or Equation (1.7)

fn = fn−1 ± fn−2? We looked at the corresponding matrix representations of each of

these recurrences in Section 2.1. Also, in Section 1.3 we analyzed the trees T̃ = T , T1

and T2 resulting from the three recurrences and saw in Theorem 1.2 that the trees T ,

|T1| and |T2| are all comprised of the same set of sequences. Figure 5.5 demonstrates

the behaviour of sequences in each of the three trees. We will denote the reduced tree
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Figure 5.5: Example of sequence behaviour in R and its variations.

of T1 by R1 and the reduced tree of T2 by R2.

Figure 5.5(a) contains a branch from the tree R originating in ρ4, with the excep-

tion of the bolded terms, which belong to T only. As was seen in Proposition 5.5,

the left child of a left child is removed when creating the tree R, and the left child (3

in this case) is equal to its great grandparent. Because (1, 3) is a repeated edge, the

children of 3 are also repeated earlier in the tree. Now consider the branch of R2 given

in Figure 5.5(b). This branch, along with the bolded terms from T2, was generated

using the recurrence fn = fn−1 ± fn−1, and so contains negative terms. The removal

of repeated edges applies to the absolute value of the tree, since we are ultimately

interested in the absolute value of our sequences. The branch has the same shape as

that in Figure 5.5(a), and we can see that −3, which is the left child of the left child

of 4, is removed. This −3 has the negative value of its great grandparent, and its

children are negated and switched, compared to the children of the great grandparent.

The branch in Figure 5.5(c) was generated using the recurrence tn = ±tn−1+tn−2 and

so also contains negative terms. When we remove repeated edges (in absolute value)

we see that the tree takes on a different shape than the previous two. The node 3

is removed; however, it is a right child. It is equal in value to its great grandparent,

and again its children are negated and switched compared to the children of the great
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grandparent. The node 5, which is a left child of a left child, is not removed from

the tree. In contrast to the restriction on two consecutive left nodes, it seems in the

tree R2 we cannot have the pattern right, left, right. Note that the exact branch in

Figure 5.5(c) is not found in tree R1. The shape of R1 differs from R and so the shape

previous to this branch differs also, creating a permutation of nodes. In the fourth

row of R1, we have node −1 with left child 3. The branch in Figure 5.5(c) is found,

however, in the tree R
(2,1)
1 , where an initial value differs.

We can prove that the above observations are true in general using the analogous

branches in Figure 5.6, which start with values a and b, where b is a right child of

a and b > a by Proposition 5.5. The following are useful Propositions on R and its

variations.
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(c) Branch of R1.

Figure 5.6: Comparing sequence behaviour in the general case of R and its variations.

Proposition 5.6. The trees R, R1 and R2 all contain the same set of sequences in

absolute value.

Proof: From Theorem 1.2 we know that the trees T , |T1| and |T2| all contain the

same set of sequences, except they are permuted. To create R, we removed edges

from the tree T that were repeated at an earlier level. We know that |T1| and |T2|
are simply rearrangements of T , and so those same repeated edges will be removed
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in creating R1 and R2. We are then left with trees R, |R1| and |R2|, which still all

contain the same set of sequences. �

Proposition 5.7. The trees R and R2 are equal and positive and the tree R1 contains

negative nodes.

Proof: By definition, the tree R is positive. We can use induction to show that

the tree R2 is positive and equal to R. The first right child occurs in row 3 and has

value 2, which is greater than the value of its parent. Calculating the next few rows,

we see that right children of both left and right nodes are positive and greater than

their parents, and equal to the corresponding rows in R. Now suppose that any right

node b in row n is greater than its parent a, where a and b are positive, as shown in

Figure 5.6(b). By Equation (1.7), the left child of b is b − a > 0. This is equal to

the corresponding left child in R. The right child is simply a + b, which is positive

and also equal to the corresponding right child in R. If we now consider the left child

b− a in Figure 5.6(b), we see that its right child is 2b− a, which is positive and again

equal to the right child in R. We conclude that all nodes in R2 must be positive, and

since R and R2 have the same left and right children, they are equal.

In R1, however, Equation (1.8) tells us that the left child of b with parent a is

a − b, which is negative if a and b are positive with b > a, as seen in Figure 5.6(c).

By calculating the first few rows we see that row 4 contains −1, and so this case does

indeed occur. �

Rittaud [64] develops what he calls the SL(2,N) tree. The matrix tree has root I,

with child A. Right children of any node M after the root are given by AM , whereas

left children are given by B′M . The matrix tree is based on the tree R(a,b) and so

follows the rule of no consecutive left children. These product matrices, formed from

A,B′ = ( 0 1±1 1 ), model the sequence fn = fn−1± fn−2, as given in Equation (2.6), and

are all positive like the nodes of R2. This tree will be further discussed in Chapter 6.

In [40], Janvresse et al. use the random Fibonacci sequence generated by fn =

fn−1 ± fn−2. We have seen in Equation (2.7) that this recurrence can be modeled

using matrices ( 0 ±1
1 1 ), which we have denoted by A and B̂. (Recall that moving
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left or right down the tree corresponds to multiplying a product matrix by B̂ or A

respectively.) Their characterization of the tree R2 involves a reduction process, where

AB̂B̂A is replaced by −B̂ and AB̂B̂B̂ is replaced by −A. This matrix representation

implies the fact that in Figure 5.6(b), traveling right, left, left, from the first node b,

is equivalent to switching and negating the following children. This is shown below,

where the second terms in the vectors are the children in question. The top (bottom)

pair of equations represents right (left) children of −b and b respectively.

(a, b)AB̂B̂A = (a, b)

(
0 1

−1 −1

)
= (−b, a− b), (a, b)A = (b, a+ b),

(a, b)AB̂B̂B̂ = (a, b)

(
0 −1

−1 −1

)
= (−b,−a− b), (a, b)B̂ = (b, b− a).

This process is even simpler in the positive case R, given in Figure 5.6(a) and

generated by the non-linear recurrence f̃n = |f̃n−1 ± f̃n−2|. Here, traveling right, left,

left, is equivalent to not moving at all. In both the linear and non-linear cases we

may remove the last left which gets us to this point of repetition, i.e., left children do

not have left children, as we have seen in Proposition 5.5.

What happens in the case of Figure 5.6(c) in terms of matrices A,B = ( 0 1
1 ±1 )?

We have that AABA 	= −B and BABA 	= −A, contrary to what might be expected,

because we are again switching and negating children. (Remember we must take the

reverse product matrix because we are using left multiplication, and our matrices

represent moving right, left, right in the tree, which is the combination that leads to

cancelation in R1.) Taking a closer look at what is happening, we have

AABA

(
a

b

)
=

(
0 1

−1 1

)(
a

b

)
=

(
b

b− a

)
, A

(
a

b

)
=

(
b

a+ b

)
,

BABA

(
a

b

)
=

(
0 1

−1 −1

)(
a

b

)
=

(
b

−a− b

)
, B

(
a

b

)
=

(
b

a− b

)
.

We see that the children are switched and negated as required, but that the first

entry in the vectors is not negated. This is the reason for our matrix equations not

holding in this case. Further, it can be shown that traveling left, right, left in the

tree R1 produces repetition as well, and in this case the children are switched but
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not negated. So in contrast to the trees R and R2, in which we cannot have left, left,

the tree R1 gives a new characterization, where we cannot have right, left, right or

left, right left. In terms of coefficient cycles, this means that we can not have the

patterns (+−+) or (−+−). Recall, from Proposition 5.6 that in absolute value, all

three trees are comprised of the same set of sequences and so there are no differences

in growth rates. In [1], Alperin uses a similar construction of words on two letters

using the group PSL(2,Z). He views it as a free product of the cyclic group of order 2

generated by the image of S, and the cyclic group of order 3 generated by the image

of ST = R. Recall that S and T are the generators of SL(2,Z) defined in Theorem

2.1, and they satisfy the given relations S2 = (ST )3 = I in PSL(2,Z). Non-identity

elements can then be described as unique strings of S’s and R’s, which cannot contain

S2 or R3.

5.3 The Decomposition of Tree T

Before proceeding, the following definition will be useful (see McCliment [54]).

Definition 5.1. Amultiset M is a generalization of a set, where elements may appear

more than once. The multiset sum of two multisets M and N , denoted M�N , is

defined as the multiset which contains all elements of M and all elements of N . We

therefore have that |M �N| = |M|+ |N |.

We have seen that τn and ρn are multisets because a given row in T or R may

contain an element multiple times. Keep in mind that the elements in a multiset are

unordered, unlike the elements in a string. For convenience we will write the elements

in the order they appear in the tree. This becomes useful when taking multiset sums,

as we are not required to simply concatenate the sets as with strings. We can also

take a multiset sum of a multiset with itself. We define 2M = M � M to be the

multiset containing two copies of every element in M, including the repetitions. In

general we can write nM = M � M � · · · � M, where we have taken the multiset

sum of n copies of M.

In T , we have that the children of row ρn are given by ρn+1 as well as the elements

in τn+1 which are left children of the left children in ρn, as these are the elements that
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are removed when forming ρn+1. Denote by cT (ρn), the multiset of children in T of

row ρn in R. Also, the following notation from Rittaud will be needed. Denote by ρ−n
and ρ+n the multisubsets consisting of left and right nodes, respectively, of the multiset

ρn. Let c
+
R(ρn) and c−R(ρn) be the multisets of left and right children, respectively, of

ρn in R.

Our aim is to write each row τn in the tree T as a multiset sum of rows ρj in

tree R, where j ≤ n. We will then be able to write the growth rate of the expected

value of nodes in τn in terms of the growth rate of the expected value of nodes in

ρn, the latter of which is easy to deduce. We will give a different proof of this than

Rittaud [64] does, and consider both methods later in the chapter. Given row ρn,

we want to deduce what elements would need to be added in order to form τn. In

particular we look for missing descendants of parents, grandparents and so on. Some

new notation will be useful here. Let m(ρn) denote the multiset of elements of τn

which are descendants of ρn−1 (the parents) and are missing from ρn. Similarly let

m2(ρn) denote the multiset of elements of τn which are descendants of ρn−2 (the

grandparents) and are missing from ρn. In general, let mi(ρn) denote the multiset of

elements of τn which are descendants of ρn−i, i.e., the (great)i−2 grandparents, missing

from ρn. We can also write m0(ρn) = ρn. Using this new notation, we can write the

children of ρn in T , for n ≥ 1, as

cT (ρn) = ρn+1 �m(ρn+1). (5.1)

Example 5.2. Consider the portion of the tree T given in Figure 5.7. For n = 6, we
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Figure 5.7: Illustration of m(ρ7) and m2(ρ8).

have that by Equation (5.1), cT (ρ6) = ρ7 �m(ρ7). The children of ρ6 are comprised



153

of ρ7 as well as the elements missing from τ7 which are left children of left children in

ρ6. This multiset of missing elements, m(ρ7) = {1, 3}, is bolded in Figure 5.7. Also,

m2(ρ8) is the multiset of elements missing from τ8 which are the missing grandchildren

of left children in ρ6. This is the multiset of bolded elements {1, 3, 1, 5}.

For n = 3, . . . , 10 explicit calculation of trees gives us Table 5.1. Note that for

n = 1 and 2, the trees T and R both have the same entries. Each row τn in T

is the multiset sum of ρn and all multisets of missing elements, i.e., we take the

multiset sum of all the multisets corresponding to n in Table 5.1. Also, we have

bolded those multisets ρj in mi(ρn) which come from the term mi−1(ρn−3). We will

see in Equation (5.4) why this term is of importance. The table contains some easily

observable patterns, which we will prove for the general case. The following important

characterization of repetition in T is found in Rittaud [64].

Corollary 5.1. The elements missing from ρn, which come from the parents, form

precisely the multiset ρn−3, i.e., m(ρn) = ρn−3, for n ≥ 5. Further, we can write

cT (ρn) = ρn+1 � ρn−2, (5.2)

for n ≥ 4.

Proof: We know from Proposition 5.5 that the left child of a left node a is missing

in R, and this child is precisely the grandparent of a. Therefore the missing children

in ρn which come from left node parents belong to the multiset ρn−3. Now, any node

c in ρn−3 has eight great grandchildren in T but only one of those has form m(ρn).

The reason is that two of these great grandchildren are left children of left nodes, but

one of them is also the grandchild of a left node, so has been previously removed.

Therefore the missing left children in row ρn of the elements in row ρn−1 are precisely

the elements in ρn−3. Note that for n = 4 there are no missing elements from the

parent row. Finally, Equation (5.2) is a direct consequence of Equation (5.1). �
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Table 5.1: Breakdown of rows τn into ρn and missing elements, 3 ≤ n ≤ 10.

n mi(ρn) ρn and missing elements

3 ρ3 2

m(ρ3) 0

4 ρ4 1,3

m(ρ4) -

m2(ρ4) 1,1

5 ρ5 3,1,5

m(ρ5) 1

m2(ρ5) -

m3(ρ5) 1,1,1,1

6 ρ6 2,4,4,2,8

m(ρ6) 2

m2(ρ6) 0,2

m3(ρ6) -

m4(ρ6) {0,2} (×4)

7 ρ7 5,1,7,3,5,7,3,13

m(ρ7) 1,3

m2(ρ7) 1,3

m3(ρ7) 1,1,1,3

m4(ρ7) -

m5(ρ7) {1,1,1,3} (×4)

8 ρ8 3,7,5,3,11,7,1,9,5,9,11,5,21

m(ρ8) 3,1,5

m2(ρ8) 1,3,1,5

m3(ρ8) 1,3,1,5

m4(ρ8) 1,1,1,1,1,3,1,5

m5(ρ8) -

m6(ρ8) {1,1,1,1,1,3,1,5} (×4)

Continued on next page–
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Table 5.1 – Continued from previous page

n mi(ρn) ρn and missing elements

9 ρ9 8,2,12,4,6,10,4,18,4,10,6,4,14,12,2,16,8,14,18,8,34

m(ρ9) 2,4,4,2,8

m2(ρ9) 2,4,2,4,2,8

m3(ρ9) 0,2,2,4,2,4,2,8

m4(ρ9) 0,2,2,4,2,4,2,8

m5(ρ9) {0,2} (×4) 0,2,2,4,2,4,2,8

m6(ρ9) -

m7(ρ9) {{0,2} (×4) 0,2,2,4,2,4,2,8} (×4)

10 ρ10 5,11,9,5,19,9,1,11,7,13,15,7,29,11,3,17,5,7,13,5,23,

7,17,11,7,25,19,3,25,13,23,29,13,55

m(ρ10) 5,1,7,3,5,7,3,13

m2(ρ10) 1,5,1,7,3,5,3,7,3,13

m3(ρ10) 1,5,1,7,1,3,3,5,3,7,3,13

m4(ρ10) 1,1,1,3,1,5,1,7,1,3,3,5,3,7,3,13

m5(ρ10) 1,1,1,3,1,5,1,7,1,3,3,5,3,7,3,13

m6(ρ10) {1,1,1,3} (×4)1,1,1,3,1,5,1,7,1,3,3,5,3,7,3,13

m7(ρ10) -

m8(ρ10) {{1,1,1,3} (×4) 1,1,1,3,1,5,1,7,1,3,3,5,3,7,3,13} (×4)

Example 5.3. We can see from tree R that ρ6 = {2, 4, 4, 2, 8}. Using Equation (5.2)

we have that

cT (ρ6) = ρ7 � ρ4

= {5, 1, 7, 3, 5, 7, 3, 13} � {1, 3}.

Proposition 5.8. Any row τn in T , for n ≥ 1, is made up of a multiset sum of rows

ρj in R, where j ≤ n.

Proof: The first few rows in the tree R are {1}, {1}, {2}, {1, 3}, {1, 3, 1, 5} and the

first few in T are {1}, {1}, {0, 2}, {1, 1, 1, 3}, {1, 1, 1, 1, 1, 3, 1, 5}. We will consider the

rows {2} and {0, 2} to be equivalent because ultimately we will be taking the average
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value of the row entries, which is unaffected by extra zero terms. We can prove

this result using induction, the initial cases being clear from the rows listed above.

Suppose row τn is comprised of rows ρj where j ≤ n. We have that for each ρj in τn,

cT (ρj) = ρj+1 � ρj−2,

by Equation (5.2). Therefore, row τn+1 of T is also comprised of rows of R, completing

the proof. �

Example 5.4. We can see from Table 5.1 that τ7 is composed of ρ7 together with 7

copies of ρ4 = {1, 3} and 10 copies of ρ1 = {1}.

Note that the multiset of children in T of elements missing from ρn from ancestors

i generations back is also the multiset of missing elements in ρn+1 from ancestors i+1

generations back, i.e.,

cT (m
i(ρn)) = mi+1(ρn+1), (5.3)

for 1 ≤ i ≤ n− 2 and n ≥ 3.

Example 5.5. For n = 7 and i = 3, Equation (5.3) says that

cT (m
3(ρ7)) = m4(ρ8).

From Table 5.1 we see that this gives us

cT ({1, 1, 1, 3}) = {1, 1, 1, 1, 1, 3, 1, 5},

as can be verified from the tree T .

We know from Corollary 5.1 that m(ρn) = ρn−3. It follows that the children of

each of these multisets are also equal.

Corollary 5.2. For any row ρn in tree R with n ≥ 5, we have that

cT (m(ρn)) = cT (ρn−3).
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Proof: A node a in m(ρn) is missing from the tree T because the edge (b, a) was

repeated three rows back. Specifically a appeared in ρn−3, for n ≥ 5 by Corollary 5.1.

Since the parent of a is b in both cases, the children of a (in T ) must be the same in

both cases, and so cT (m(ρn)) = cT (ρn−3). �

Proposition 5.9. Let n ≥ 6. The set of elements missing from ρn which are descen-

dants in T of elements in row ρn−i, i.e., which come from the (great)i−2 grandparents,

can be written as the multiset sum

mi(ρn) = mi−1(ρn) �mi−1(ρn−3), (5.4)

for 2 ≤ i ≤ n− 4.

Proof: We will prove this result using induction on i. The initial case, for i = 2, can

be written as

m2(ρn) = m(ρn) �m(ρn−3).

In other words, the elements missing from ρn from grandparents are precisely the

elements missing from ρn from the parents along with the elements missing from ρn−3

from the parents. By Equation (5.3), the elements missing from ρn from grandparents

can be thought of as the multiset of children of elements missing from ρn−1 from

parents, i.e., the multiset of children of ρn−4, namely

m2(ρn) = cTm(ρn−1)) = cT (ρn−4),

for n ≥ 6 by Corollary 5.2. The children in T of ρn−4 are given by the next row in

R, i.e., ρn−3 (which by Corollary 5.1 is m(ρn)), as well as what is missing from ρn−3

from the parents. This can be written as m(ρn) �m(ρn−3), completing the proof for

the initial case for n ≥ 6.

Now suppose the statement holds for i− 1. By Equation (5.3) we have

mi(ρn) = cT (m
i−1(ρn−1)),

for 2 ≤ i ≤ n− 2 and n ≥ 4, and by our assumption,

mi(ρn) = cT (m
i−2(ρn−1) �mi−2(ρn−4))

= cT (m
i−2(ρn−1)) � cT (m

i−2(ρn−4)). (5.5)



158

Now using Equation (5.3) again we can write

mi(ρn) = mi−1(ρn) �mi−1(ρn−3),

where conditions for the first term on the right-hand side are 3 ≤ i ≤ n − 1, n ≥ 4,

and conditions for the second term are 3 ≤ i ≤ n − 4, n ≥ 7. This completes

the induction for 3 ≤ i ≤ n − 4, with the following consideration. Note that when

applying Equation (5.3) to the second term in the right-hand side of Equation (5.5),

we must have n ≥ 7, because the equation is true starting with row 3 in tree T , as

this is when missing elements first appear. When n = 6, we must have i = 2, and

this was already proven as the initial case. �

Example 5.6. For n = 9 and i = 3 we get

m3(ρ9) = m2(ρ9) �m2(ρ6),

{0, 2, 2, 4, 2, 4, 2, 8} = {2, 4, 2, 4, 2, 8} � {0, 2}.

Note that the bolded entries in m3(ρ9) in Table 5.1 are those coming from the second

term, m2(ρ6).

We now consider what happens to values of i outside the range 2 ≤ i ≤ n − 4.

We know from Corollary 5.1 that m(ρn) = ρn−3 for i = 1. We also have the following

result.

Proposition 5.10. For i = n− 3 and n ≥ 4 we have mi(ρn) = {}, and for i = n− 2

and n ≥ 5 we have mi(ρn) = 4τn−3. Also, for i = n − 4 and n ≥ 5 we have

mi(ρn) = τn−3. Furthermore, for i = n−2 and n ≥ 5 we also have mi(ρn) = 4mi−2(ρn)

for i = n− 2.

Proof: In the case of i = n − 3, we are looking for elements missing from row n

which come from row 3. In the tree R we have that ρ3 = {2}, which has left and right

children 1 and 3 respectively, and hence no missing children. Therefore there are no

children missing from ρn which are a result of ρ3. We can observe this for rows past

row 3, i.e., n ≥ 4.
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For i = n − 2, we are looking for elements missing from ρn which come from

ρ2 = {1}. In R, this node 1 has right child 2, but no left child. In T we see that this

deleted left child was 0. The descendants of this 0 node form the entire left half of

the tree T . It is easy to see that the left half of row τn is in fact 4τn−3 because the

tree T is contained four times in the left-hand side of T itself, starting in row 4 with

{1, 1}. It is only in row 5 where we have nodes {1, 1, 1, 1}, i.e., τ2 is contained four

times. Therefore, mi(ρn) = 4τn−3 for i = n− 2 for n ≥ 5.

For i = n − 4, we are looking for elements missing from ρn which come from

ρ4 = {1, 3}. The node 1 is a left node, with children 1 and 3. The child 1 (τ2) in row

5 is removed, and with it, so is a (almost complete) copy of T as can be seen from

tree T . We therefore have mi(ρn) = τn−3 for n ≥ 5. We have this relation in addition

to the one given in Proposition 5.9 for i = n− 4. Note that combining statements of

the theorem gives mi(ρn) = 4mi−2(ρn) for i = n − 2 and n ≥ 5, which explains the

repetition in the last three rows for each value of n ≥ 5 in Table 5.1. �

We have now proven the patterns needed to extend Table 5.1 to any value of n.

Example 5.7. Consider τ7. Proposition 5.10 tells us that m4(ρ7) = {}, which can be

seen from Table 5.1. According to Proposition 5.9, m4(ρ7) reappears in the equation

m5(ρ10) = m4(ρ10) �m4(ρ7).

Because m4(ρ7) is the empty set, we have that

m5(ρ10) = m4(ρ10) = {1, 1, 1, 3, 1, 5, 1, 7, 1, 3, 3, 5, 3, 7, 3, 13}.

Corollary 5.3. For n ≥ 7 we have

mn−5(ρn) = mn−6(ρn)

which is evident as a repeated row in Table 5.1.

Proof: Let i = n− 5. From Proposition 5.9 we have that

mi(ρn) = mi−1(ρn) �mi−1(ρn−3),
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for n ≥ 7. Also, from Proposition 5.10 we have that mn−3(ρn) = {} for n ≥ 4, which

means that mi−1(ρn−3) = mn−6(ρn−3) = {} for n ≥ 7 . Therefore, we can rewrite the

above Equation as

mi(ρn) = mi−1(ρn),

mn−5(ρn) = mn−6(ρn),

completing the proof. �

We can make a couple of remarks about the above results. Proposition 5.8 tells

us that a row τn is made up of rows ρj where j ≤ n. Furthermore, we can add that

we must have j ≡ n (mod 3) because Proposition 5.9 and Corollary 5.1 tell us that

elements missing from row ρn depend on elements missing from rows ρn and ρn−3 for

1 ≤ i ≤ n− 4. In turn, elements missing from row ρn−3 depend on elements missing

from rows ρn−3 and ρn−6 and so on. We can conclude that τn is a multiset union of

some combination of rows ρn, ρn−3, ρn−6, . . . . This also holds for i = n−2 with n ≥ 5,

as we have seen in Proposition 5.10 that mi(ρn) = 4mi−2(ρn). Recall that Example

5.4 showed that τ7 is composed of copies of ρ7, ρ4 and ρ1.

Secondly, we can remark that since m(ρn) = ρn−3 by Corollary 5.1, and each

multiset mi(ρn) contains the multiset mi−1(ρn) by Proposition 5.9, every multiset

mi(ρn) for 1 ≤ i ≤ n − 4 and n ≥ 5 must contain ρn−3. This is clearly observed in

Table 5.1. Again this holds also for the case i = n − 2, but not for the empty row

i = n− 3. Also, by induction, it is easy to see that not only every row τn, but every

multiset mi(ρn) inside τn (except the empty row), is made up of multisets ρj where

j ≤ n. For example, in τ10,

m4(ρ10) = ρ7 � 3ρ4 � 2ρ1.

The following theorem gives us the critical relation in our determination of the

growth rate of the expected value of the nth term in a random Fibonacci sequence.

Theorem 5.1. Let t(n, k) denote the number of copies of ρn−3k in row τn of T , where

n ≥ 1 and 0 ≤ k ≤ �n−1
3
�. Then we have the relation

t(n, k) = t(n− 1, k) + t(n− 1, k − 1), (5.6)
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where n ≥ 5, k ≥ 1, with the exception of t(3k + 1, k) and t(3k + 2, k) (in which

case k = n−1
3

and k = n−2
3

respectively). If k = 0 we have t(n, 0) = 1 for n ≥ 1,

and if k = 1 we have t(n, 1) = n, for n ≥ 5. In the exceptional cases we have

t(3k + 1, k) = 2t(3k − 1, k − 1) and t(3k + 2, k) = 2t(3k + 1, k) + t(3k + 1, k − 1) for

k ≥ 1.

Proof: Suppose we want to count the number of copies of ρj = ρn−3k in τn, i.e.,

t(n, k). The fact that j ≥ 1 implies that k ≤ ⌊
n−1
3

⌋
. By Equation (5.2), there are two

ways a multiset ρj can arise in τn. We can write

cT (ρj−1) = ρj � ρj−3,

for j ≥ 5, which tells us that each ρj−1 in τn−1 gives rise to a ρj in τn. More generally,

by Equation (5.1) we have that for j ≥ 2 the children of ρj−1 in τn−1 are contained

in τn. We also have

cT (ρj+2) = ρj+3 � ρj, (5.7)

for j ≥ 2, which tells us that each ρj+2 in τn−1 gives rise to a ρj in τn. Comparing

indices, the number of copies of ρj−1 in τn−1 and the number of copies of ρj+2 in τn−1

are the terms t(n−1, k) and t(n−1, k−1) respectively. Note that for j = n−3k ≥ 2

and k ≥ 1 we must have n ≥ 5. When k = 0, t(n, 0) is counting the number of

copies of ρn in τn. We know that τn is made up of exactly one copy of ρn plus missing

elements, so t(n, 0) = 1 for all values of n.

The exceptions can be explained in terms of the tree T . The expression t(3k +

1, k) = 2t(3k− 1, k− 1) can be restated as: the number of multisets ρ1 in τn is equal

to twice the number of multisets ρ2 in τn−2. (Note that for n = 3k + 1, we have

3k − 1 = n − 2.) Recall that ρ1 = ρ2 = {1}. Any time a ρ2 appears in the tree it

must have ρ3 = {2} as a child and therefore have parent 1. (See Figure 5.8.) The

node 0, which is also a child of ρ2 in T , then has {1, 1} as children. Each of these 1’s

has children {1, 1} and is therefore itself equal to a copy of ρ1. We can conclude that

any ρ2 appearing in the tree has two multisets ρ1 as grandchildren. Similarly any ρ1

appearing in τn for n ≥ 4 must belong to a pair with grandparent ρ2. This gives us

the desired relation for n ≥ 4, i.e., k ≥ 1. This is an exception to Equation (5.6)
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Figure 5.8: Occurrence of ρ1 and ρ2 in T .

because when j = 1 we cannot count the number of multisets ρj in τn by counting

multisets ρj−1 in τn−1.

The second exception is given by t(3k + 2, k) = 2t(3k + 1, k) + t(3k + 1, k − 1),

and can be restated as: the number of multisets ρ2 in τn is equal to twice the number

of multisets ρ1 in τn−1 plus the number of multisets ρ4 = {1, 3} in τn−1. According

to Equation (5.6) there are two ways ρj can occur; for ρ2, the first is that it follows

ρ1. Secondly, by Equation (5.7) with j = 2, we could have ρ2 appear as a child of

ρ4. The number of times the latter occurs, i.e., the number of times ρ4 occurs in

τn−1, is t(3k + 1, k − 1), which we could write as t(n − 1, k − 1) for n = 3k + 2.

We can see from the tree T that we have n ≥ 5, implying k ≥ 1. The number

of multisets ρ2 appearing as a consequence of ρ1, however, is not simply the term

t(n − 1, k) = t(3k + 1, k) given in Equation (5.6). We have seen above that each ρ1

appearing in τ4 or higher has children {1, 1}, which are each multisets ρ2. Therefore,

the number of sets ρ2 is doubled to give 2t(3k + 1, k), and altogether we obtain

t(3k + 2, k) = 2t(3k + 1, k) + t(3k + 1, k − 1) for n ≥ 5, i.e., k ≥ 1. This case is an

exception because if we tried to follow our tree backwards to the initial nodes, we

would see that before the first node 1, we should have a 0, implying that the children

of 1 should be {1, 1}. This is not the case because we have fixed the second row, ρ2,

to be a single 1.

Lastly, we must show that t(n, 1) = n for n ≥ 5. Letting k = 1 in t(3k + 1, k) =

2t(3k−1, k−1) gives t(4, 1) = 2t(2, 0) = 2, using the fact that t(n, 0) = 1. Now letting
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k = 1 in t(3k+2, k) = 2t(3k+1, k)+ t(3k+1, k−1) gives t(5, 1) = 2t(4, 1)+ t(4, 0) =

2(2) + 1 = 5. We can now induct on t(n, k) = t(n− 1, k) + t(n− 1, k − 1) for k = 1.

Suppose t(n, 1) = n holds. We then have t(n + 1, 1) = t(n, 1) + t(n, 0) = n + 1, as

required. �

Example 5.8. As an example of the general case, consider t(7, 1), i.e., the number

of multisets ρ4 = {1, 3} appearing in τ7. The above corollary tells us that t(7, 1) =

t(6, 1) + t(6, 0). In other words t(7, 1) equals the number of multisets ρ3 = {2} in τ6

plus the number of multisets ρ6 = {2, 4, 4, 2, 8} in τ6. Counting in Table 5.1 we get

7 = 6 + 1.

Example 5.9. As an example of the second exception, consider t(8, 2), i.e., the

number of multisets ρ2 = {1} appearing in τ8. We have the relation t(8, 2) = 2t(7, 2)+

t(7, 1) from Theorem 5.1. In other words, t(8, 2) equals twice the number of multisets

ρ1 = {1} in τ7 plus the number of multisets ρ4 = {1, 3} in τ7. Counting again in

Table 5.1 gives 27 = 2(10) + 7.

Note that when counting multisets ρ3 = {2} in T , we ignore the 0 term that is

often paired with the 2. We do not need to take the 0 terms into consideration when

writing τn as multiset union of the ρj because as mentioned earlier, our focus will be

on finding sums of rows.

The relations in Theorem 5.1 allow us to generate Table 5.2, of t(n, k) values.

In Table 5.2 we see that k increases by 1 for every third increase in n. Corner

numbers occur when n ≡ 1 (mod 3), in which case k = n−1
3
. We will use the notation

t(k) = t
(
n, n−1

3

)
= t(3k+1, k) because of their special nature. The two entries below

the corners, t
(
n+ 1, n−2

3

)
and t

(
n+ 2, n−3

3

)
are the final entries in their respective

rows. We have that t(0) = 1 according to the table (i.e., one copy of ρn appears in τn),

but the patterns suggest that this value should in fact be 1
2
. If we had a column of 0’s

previous to the column of 1’s, the expression t(3k+2, k) = 2t(3k+1, k)+t(3k+1, k−1)

in Theorem 5.1 would require t(0) = 1
2
. For future calculations, we will need this new

value of t(0).

Note that Table 5.2 bears some resemblance to Pascal’s triangle, particularly the

relation among entries, which in our case is given by Equation (5.6). There are many
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������n
k

0 1 2 3 4 5 6 7

1 1
2 1
3 1
4 1 2
5 1 5
6 1 6
7 1 7 10
8 1 8 27
9 1 9 35
10 1 10 44 54
11 1 11 54 152
12 1 12 65 206
13 1 13 77 271 304
14 1 14 90 348 879
15 1 15 104 438 1227
16 1 16 119 542 1665 1758
17 1 17 135 661 2207 5181
18 1 18 152 796 2868 7388
19 1 19 170 948 3664 10256 10362
20 1 20 189 1118 4612 13920 30980
21 1 21 209 1307 5730 18532 44900
22 1 22 230 1516 7037 24262 63432 61960
23 1 23 252 1746 8553 31299 87694 187352
24 1 24 275 1998 10299 39852 118993 275046

Table 5.2: Values of t(n, k) for n ≤ 24, k ≤ 7.

triangles with similar properties, for example Catalan’s triangle [67, A009766], the

entries of which are given by the expression

c(n, k) :=
(n+ k)!(n− k + 1)

k!(n+ 1)!
.

We will soon see that an expression for t(n, k) is far more complicated.

5.4 Sums of Rows of R

We will denote the sums of the elements of the multisets ρn and τn by S(ρn) and

S(τn) respectively. The results in this section are due to Rittaud [64]. As with the



165

properties of the tree R, we have included proofs of these results to give a deeper

understanding of the tree and the important role the it plays in this thesis. The

following important property counts the number of nodes per row of R.

Proposition 5.11. The number of nodes in row n of the tree R is given by |ρn| = Fn−1

for n ≥ 2, and the numbers of left and right nodes are given by |ρ−n | = Fn−3 and

|ρ+n | = Fn−2 respectively, for n ≥ 3, where Fn is the nth Fibonacci number.

Proof: We can see by looking at Figure 5.2 that |ρ1| = |ρ2| = |ρ3| = 1 and |ρ4| = 2.

Now suppose that |ρ−n | = Fn−3 and and |ρ+n | = Fn−2 (implying |ρn| = Fn−1). We want

to show that this property holds for n+1. We know from Proposition 5.5 that every

element of ρn has a right child, so the number of right children in row n+ 1 is

|c+R(ρn)| = |ρ+n+1| = |ρn| = Fn−1.

Also, we know that only right children (and all right children) have left children and

so the number of left children in row n+ 1 is

|c−R(ρn)| = |ρ−n+1| = |ρ+n | = Fn−2.

Therefore the total number of nodes in row n+ 1 is

|ρ+n+1|+ |ρ−n+1| = Fn−1 + Fn−2 = Fn,

completing the induction �

The following relation among sums of rows is the key to their growth rate. The

proof differs from that given by Rittaud.

Lemma 5.1. The sum of the nodes in row n of tree R is given by S(ρ1) = S(ρ2) = 1,

S(ρ3) = 2, S(ρ4) = 4, and for n ≥ 5:

S(ρn) = 2S(ρn−1) + S(ρn−3).

Proof: The first few values of S(ρn) are easily verifiable from Figure 5.2. We can

write ρn as the multiset of children of elements in ρn−1, and summing gives

S(ρn) = S(cR(ρn−1)).
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Now splitting cR(ρn−1) into children of left nodes and children of right nodes gives

S(ρn) = S(cR(ρ
+
n−1)) + S(cR(ρ

−
n−1)).

Notice that S(cR(ρ
+
n )) = 2S(ρ+n ), i.e., the sum of the children of a multiset of right

nodes is equal to two times the sum of the right nodes themselves. This is clear from

Figure 5.3, where the children of right child b are b + c and b − c. Summing we get

2b. We can therefore write the above equation as

S(ρn) = 2S(ρ+n−1) + S(cR(ρ
−
n−1)). (5.8)

We must now deal with the term S(cR(ρ
−
n−1)), i.e., the sum of the children of left

nodes in ρn−1. In Figure 5.3, a is a general left node with right child a+ b. Note that

a’s grandparent is b−a and so a+b can be written as a+b = 2(a)+(b−a), i.e., twice

its parent plus its great grandparent. This is due to the fact that a+ b is a right child

and so can be written as the sum of its parent a and grandparent b. The node b must

be a right node, because its child a is a left node, and we know from Proposition 5.5

that left nodes cannot have left children. Therefore the grandparent is the sum of

its two predecessors, namely b− a and its parent a (recall from Proposition 5.3 that

a must be the absolute value of the difference between b − a and and b). Therefore

a+ b = (a) + (b) = (a) + ((b− a) + a). We can write the fact that the child of a left

node is written as twice its parent plus its great grandparent, as

S(cR(ρ
−
n )) = 2S(ρ−n ) + S(ρn−2). (5.9)

The multiset of grandparents of ρ−n is ρn−2, since each element in ρn−2 has one left

grandchild, the parent of which is the element’s right child.

We can substitute Equation (5.9) into Equation (5.8) to give

S(ρn) = 2S(ρ+n−1) + 2S(ρ−n−1) + S(ρn−3)

= 2S(ρn−1) + S(ρn−3),

completing the proof. �

The sequence {S(ρn)} for n ≥ 2 can be found in [67, A008998] and its first few

terms are

1, 1, 2, 4, 9, 20, 44, 97, 214, . . . .
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We will now consider its growth rate.

Theorem 5.2. The rate of growth of the sum of elements in the nth row of the tree

R is given by

lim
n→∞

S(ρn)

S(ρn−1)
= α,

where α is the real root of α3 − 2α2 − 1 = 0.

Proof: We have seen in Lemma 5.1 that the sum of elements in row n of the tree R

can be written as

S(ρn) = 2S(ρn−1) + S(ρn−3),

for n ≥ 5. By the theory of linear recurrences, we deduce that the growth rate of

terms S(ρn) is given by the dominant root of the equation

x3 − 2x2 − 1 = 0.

Solving, we see that these roots are approximately 2.205569431 and

−0.1027847152 ± 0.6654569515i. The complex roots have moduli .6733480912, and

so the dominant root, α = 2.2055 . . ., is our growth rate. �

Corollary 5.4. The growth rate of the expected value of an element in the nth row

of R is given by α/φ, where φ is the golden ratio, 1.618033 . . . .

Proof: Instead of looking at the sum of entries in row n of R, we want to look at the

average value. The sum is denoted by S(ρn), and by Proposition 5.11 we know that

there are Fn−1 terms in this row. Therefore the average value of an entry in row n is

S(ρn)/Fn−1. To find the growth rate of this average value, we can take the limit of

the ratio:

lim
n→∞

S(ρn)/Fn−1
S(ρn−1)/Fn−2

= lim
n→∞

S(ρn)

S(ρn−1)
· lim
n→∞

1

Fn−1/Fn−2
= α · 1

φ
= 1.363116873 . . . ,

which by Theorem 5.2 gives us the value required. �
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5.5 Sums of Rows of T

We will now consider the sums of the rows τn in the tree T and use the fact that we

can write this expression as a linear combination of sums of rows ρj in R for j ≤ n

to find the growth rate of the expected value of S(τn). The first few values of S(τn),

for n ≥ 1, are

1, 1, 2, 6, 14, 32, 82, 196, 464, 1142, . . . ,

as can be found in [67, A083404]. No formula or recurrence for this sequence is given.

Before continuing, we will need some information about a useful type of mean

called a Cesàro mean. The following definition and proposition are found in Hardy

[36, p. 96–102], in greater generality.

Definition 5.2. Given a sequence {an}, its Cesàro means are given by the sequence

{cn}, where
cn :=

1

n

n∑
i=1

ai.

Proposition 5.12. Given a sequence {an}, and its Cesàro means {cn}, if

lim
n→∞

an = A

then

lim
n→∞

cn = A.

Theorem 5.3. The limit of the ratios of the sums S(τn) can be written as

lim
n→∞

S(τn)

S(τn−1)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

limn→∞
∑n−3

3
k=0 t(n,k) 1

α3k−1∑n−3
3

k=0 t(n−1,k) 1

α3k

, if n ≡ 0 (mod 3);

limn→∞
∑n−4

3
k=0 t(n,k) 1

α3k−1+t(n−1
3 ) 1

αn−2

∑n−4
3

k=0 t(n−1,k) 1

α3k

, if n ≡ 1 (mod 3);

limn→∞
∑n−2

3
k=0 t(n,k) 1

α3k−1∑n−5
3

k=0 t(n−1,k) 1

α3k +t(n−2
3 ) 1

αn−2

, if n ≡ 2 (mod 3),

where t(n, k) is the entry in the nth row and kth column of Table 5.2 and t(k) is the

kth corner entry, where t(k) = t
(
n, n−1

3

)
.
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Proof: We want an expression for S(τn), the sum of all elements in row n of the tree

T . We have seen in Proposition 5.8 and Theorem 5.1 that S(τn) can be written as

a linear combination of terms S(ρj), the sums of rows of tree R with j ≤ n, where

coefficients are given by t(n, k). Here j = n − 3k, n ≥ 1 and 0 ≤ k ≤ ⌊
n−1
3

⌋
. We

are interested in writing S(τn) in terms of S(ρj) because we have seen in Theorem

5.2 that the sums S(ρj) grow at the rate α, where α is the positive root of the third

degree polynomial α3 − 2α2 − 1 = 0.

We can write the linear combination for a given row τn as

S(τn) =t(n, 0)S(ρn) + t(n, 1)S(ρn−3) + t(n, 2)S(ρn−6) + · · ·+ t(n, k)S(ρn−3k)+

· · ·+ t
(
n,

⌊
n−1
3

⌋)
S
(
ρn−3�n−1

3 �
)
.

For specific values of n (mod 3) we have

S(τn) =

⎧⎪⎪⎨⎪⎪⎩
t(n, 0)S(ρn) + · · ·+ t(n, k)S(ρn−3k) + · · ·+ t

(
n, n−3

3

)
S(ρ3), if n ≡ 0;

t(n, 0)S(ρn) + · · ·+ t(n, k)S(ρn−3k) + · · ·+ t
(
n, n−1

3

)
S(ρ1), if n ≡ 1;

t(n, 0)S(ρn) + · · ·+ t(n, k)S(ρn−3k) + · · ·+ t
(
n, n−2

3

)
S(ρ2), if n ≡ 2.

(5.10)

We are interested in the ratio of sums. For instance, for n = 12 we have

S(τ12)

S(τ11)
=

t(12, 0)S(ρ12) + t(12, 1)S(ρ9) + t(12, 2)S(ρ6) + t(12, 3)S(ρ3)

t(11, 0)S(ρ11) + t(11, 1)S(ρ8) + t(11, 2)S(ρ5) + t(11, 3)S(ρ2)
.

In general we have the ratio S(τn)/S(τn−1), for values of n (mod 3). For n ≡ 0

(mod 3) we have the same number of terms in each sum and no corner terms, giving

S(τn) = t(n, 0)S(ρn) + · · ·+ t(n, k)S(ρn−3k) + · · ·+ t
(
n, n−3

3

)
S(ρ3),

S(τn−1) = t(n− 1, 0)S(ρn−1) + · · ·+ t(n− 1, k)S(ρn−3k−1)+

· · ·+ t
(
n− 1, n−3

3

)
S(ρ2).

For n ≡ 1 (mod 3), the last term in the first sum is a corner term, and the first sum

has one more term than the second sum because the corner number starts a new

column in Table 5.2. We have

S(τn) = t(n, 0)S(ρn) + · · ·+ t(n, k)S(ρn−3k) + · · ·+ t
(
n, n−4

3

)
S(ρ4) + t

(
n−1
3

)
S(τn−1) = t(n− 1, 0)S(ρn−1) + · · ·+ t(n− 1, k)S(ρn−3k−1)+

· · ·+ t
(
n− 1, n−4

3

)
S(ρ3).
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Lastly, for n ≡ 2 (mod 3), the last term in the second sum is a corner number and

each sum has the same number of terms. We have

S(τn) = t(n, 0)S(ρn) + · · ·+ t(n, k)S(ρn−3k) + · · ·+ t
(
n, n−2

3

)
S(ρ2),

S(τn−1) = t(n− 1, 0)S(ρn−1) + · · ·+ t(n− 1, k)S(ρn−3k−1)+

· · ·+ t
(
n− 1, n−5

3

)
S(ρ4) + t

(
n−2
3

)
S(ρ1).

Our goal is to write the growth rate of S(τn) in terms of the growth rate of S(ρn).

We can start by dividing both S(τn) and S(τn−1) by S(ρn−1), for each value of n

(mod 3). For n ≡ 0 (mod 3) this gives

S(τn) = t(n, 0)
S(ρn)

S(ρn−1)
+ t(n, 1)

S(ρn−3)
S(ρn−1)

+ · · ·+ t(n, k)
S(ρn−3k)
S(ρn−1)

+

· · ·+ t
(
n, n−3

3

) S(ρ3)

S(ρn−1)
,

S(τn−1) = t(n− 1, 0) + t(n− 1, 1)
S(ρn−4)
S(ρn−1)

+ · · ·+ t(n− 1, k)
S(ρn−3k−1)
S(ρn−1)

+

· · ·+ t
(
n− 1, n−3

3

) S(ρ2)

S(ρn−1)
. (5.11)

Now taking the limit of S(τn)/S(τn−1) as n → ∞ and using the fact from Theorem

5.2 that

lim
n→∞

S(ρn)

S(ρn−1)
= α,

we will be able to rewrite the above expressions.

Now consider the limit of S(ρn−3)/S(ρn−1) as n → ∞. We can write this as

lim
n→∞

S(ρn−3)
S(ρn−1)

= lim
n→∞

1
S(ρn−1)
S(ρn−3)

· S(ρn−2)
S(ρn−2)

=
1

limn→∞
S(ρn−1)
S(ρn−2)

· limn→∞
S(ρn−2)
S(ρn−3)

=
1

α2
.

(5.12)

In general we can show that for k ≥ 0

lim
n→∞

S(ρn−3k)
S(ρn−1)

=
1

α3k−1 . (5.13)

For k = 0, the above limit is equal to α. Following Equation (5.12) we can write

lim
n→∞

S(ρn−3k)
S(ρn−1)

= lim
n→∞

1
S(ρn−1)
S(ρn−3k)

= lim
n→∞

1
S(ρn−1)
S(ρn−2)

· S(ρn−2)
S(ρn−3)

· · · S(ρn−3k+1)

S(ρn−3k)

. (5.14)
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Note that for large values of k, the ratios in the denominator do not approximate α

well. We need to use a different method to prove our result. Now, we can write the

logarithm of the denominator as

log

(
S(ρn−1)
S(ρn−3k)

)
= log

(
S(ρn−1)
S(ρn−2)

)
+ log

(
S(ρn−2)
S(ρn−3)

)
+ · · ·+ log

(
S(ρn−3k+1)

S(ρn−3k)

)
.

Notice that when k ≥ 1, the subscripts of the ρ terms in the numerators increase

from n− 3k + 1 to n− 1. There are 3k − 1 terms in the sum so we will divide both

sides of the equation by this number to give

1

3k − 1
log

(
S(ρn−1)
S(ρn−3k)

)
=

1

3k − 1

(
log

(
S(ρn−1)
S(ρn−2)

)
+ · · ·+ log

(
S(ρn−3k+1)

S(ρn−3k)

))
.

(5.15)

Since we know that limn→∞ log
(

S(ρn−1)
S(ρn−2)

)
= log(α), we have by Proposition 5.12 for

Cesàro means that the limit of the right-hand side of Equation (5.15) is also equal to

log(α), and so

lim
n→∞

1

3k − 1
log

(
S(ρn−1)
S(ρn−3k)

)
= log(α).

Rewriting gives

lim
n→∞

(
S(ρn−1)
S(ρn−3k)

)
= α3k−1,

and substituting into Equation (5.14) gives Equation (5.13) as required. Similarly,

for terms in Equation (5.11) we have

lim
n→∞

S(ρn−3k−1)
S(ρn−1)

=
1

α3k
.

We want to show that the limit of the ratio of sums of rows in T can be written

as

lim
n→∞

S(τn)

S(τn−1)
= lim

n→∞
S̃(τn)

S̃(τn−1)
, (5.16)

where

S̃(τn) = t(n, 0)α + t(n, 1)
1

α2
+ t(n, 2)

1

α5
+

· · ·+ t(n, k)
1

α3k−1 + · · ·+ t

(
n,

n− 3

3

)
1

αn−4 ,

S̃(τn−1) = t(n− 1, 0) + t(n− 1, 1)
1

α3
+ t(n− 1, 2)

1

α6
+ · · ·+ t(n− 1, k)

1

α3k
+

· · ·+ t

(
n− 1,

n− 3

3

)
1

αn−3 .
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We will first need to “normalize” the t(n, k) terms in S̃(τn) and S̃(τn−1) so that they

are all less than 1. We can do this by dividing by (n + 1, n−4
2
), which is the term

directly under t
(
n, n−3

3

)
in Table 5.2, and is greater than all t(n, k) terms in the

expressions, by Equation (5.6). We will denote the normalized terms by tN(n, k)

and sums containing these normalized terms by SN(τn). Equation (5.16) can now be

rewritten as

lim
n→∞

SN(τn)

SN(τn−1)
= lim

n→∞
S̃N(τn)

S̃N(τn−1)
. (5.17)

If we consider the right-hand side of the above equation, we can split the limit into

numerator and denominator for the following reason. We can write the numerator as

tN(n, 0)α+ tN(n, 1)
1

α2
+ tN(n, 2)

1

α5
+ · · ·+ tN(n, k)

1

α3k−1 + · · ·+ tN

(
n,

n− 3

3

)
1

αn−4 ,

which converges as n → ∞ by the comparison test because the sum
∑∞

n=0
1

α3k−1

converges by the ratio test, and each tN(n, k) is less than 1. The same can be said

for the denominator. We now want to show that the respective numerators and

denominators in Equation (5.17) are equal in the limit. We can do this by showing

lim
n→∞

|SN(τn)− S̃N(τn)| = 0. (5.18)

Recall that SN(τn) contains ratios of sums of the form S(ρn−3k)/S(ρn−1). For

n ≥ 2, using the theory of linear recurrences, we can show that the sequence {S(ρn)}
satisfies the Binet-type formula

S(ρn) = aαn + bβn + bβ
n
,

where α ≈ 2.20556943, β ≈ 0.10278471 + 0.66545695i, a ≈ 0.3821595,

b ≈ −0.19107976 + 0.0885410i. (These numbers are algebraic and we could also give

them in terms of radicals, but this is not necessary.) Using some straightforward

calculations involving geometric series, we can show that there exists a constant C,

which is independent of k, such that for all n the following inequalities hold:∣∣∣∣ S(ρn)

S(ρn−1)
− α

∣∣∣∣ ≤ C

( |β|
α

)n

,



173∣∣∣∣S(ρn−3k)S(ρn−1)
− 1

α3k−1

∣∣∣∣ ≤ C

( |β|
α

)n

,∣∣∣∣S(ρn−3k−1)S(ρn−1)
− 1

α3k

∣∣∣∣ ≤ C

( |β|
α

)n

.

Note that |β|/α ≈ 0.30529444 < 1/3. Using the above inequalities as well as the

triangle inequality we can now write

|SN(τn)− S̃N(τn)| ≤ tN(n, 0)

∣∣∣∣ S(ρn)

S(ρn−1)
− α

∣∣∣∣+ tN(n, 1)

∣∣∣∣S(ρn−3)S(ρn−1)
− 1

α2

∣∣∣∣+
· · ·+ tN

(
n,

n− 3

3

) ∣∣∣∣ S(ρ3)

S(ρn−1)
− 1

αn−4

∣∣∣∣
≤ tN(n, 0) · C

( |β|
α

)n

+ tN(n, 1) · C
( |β|

α

)n

+ · · ·+ tN

(
n,

n− 3

3

)
· C

( |β|
α

)n

≤ C

(
1

3

)n (
tN(n, 0) + tN(n, 1) + · · ·+ tN

(
n,

n− 3

3

))
≤ C

(
1

3

)n

n.

The last step is true because there are n/3 terms in the sum, each of which is less than

1. Now, taking the limit gives Equation (5.18). The same can be said for the difference

of denominators in Equation (5.17). We have therefore proven that Equation (5.17)

holds. Multiplying back through by (n + 1, n−4
2
), i.e., “unnormalizing”, gives us

Equation (5.16), as required.

Similarly, for n ≡ 1, 2 (mod 3), taking the limit of S(τn)/S(τn−1) gives

lim
n→∞

S(τn)

S(τn−1)
= lim

n→∞
S̃(τn)

S̃(τn−1)
,

where for n ≡ 1 (mod 3) we have

S̃(τn) = t(n, 0)α + t(n, 1)
1

α2
+ t(n, 2)

1

α5
+ · · ·+ t(n, k)

1

α3k−1+

· · ·+ t

(
n,

n− 4

3

)
1

αn−5 + t

(
n− 1

3

)
1

αn−2 ,

S̃(τn−1) = t(n− 1, 0) + t(n− 1, 1)
1

α3
+ t(n− 1, 2))

1

α6
+ · · ·+ t(n− 1, k)

1

α3k
+

· · ·+ t

(
n− 1,

n− 4

3

)
1

αn−4 ,
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and for n ≡ 2 (mod 3),

S̃(τn) = t(n, 0)α + t(n, 1)
1

α2
+ t(n, 2)

1

α5
+

· · ·+ t(n, k)
1

α3k−1 + · · ·+ t

(
n,

n− 2

3

)
1

αn−3 ,

S̃(τn−1) = t(n− 1, 0) + t(n− 1, 1)
1

α3
+ t(n− 1, 2)

1

α6
+ · · ·+ t(n− 1, k)

1

α3k
+

· · ·+ t

(
n− 1,

n− 5

3

)
1

αn−5 + t

(
n− 2

3

)
1

αn−2 .

This completes the proof. �

The following result is due to Rittaud [64]. His proof, which will be discussed in

the next section, differs from the one presented below. We feel this, in conjunction

with Theorem 5.3, is one of our main contributions.

Theorem 5.4. The growth rate of the sum of entries in row τn of the tree T is given

by

lim
n→∞

S(τn)

S(τn−1)
= 2(α− 1),

where α is the real root of x3 − 2x2 − 1 = 0.

Proof: We must consider three cases, depending on the value of n (mod 3), as

given in Theorem 5.3. First suppose that n ≡ 0 (mod 3), which corresponds to the

expression

lim
n→∞

S(τn)

S(τn−1)
= lim

n→∞

∑n−3
3

k=0 t(n, k)
1

α3k−1∑n−3
3

k=0 t(n− 1, k) 1
α3k

. (5.19)

We can now write this ratio as a single polynomial in α by setting it equal to

an(0)α + an(1) + an(2)
1

α
+ an(3)

1

α2
+ · · ·+ an(j)

1

αj−1 + · · · ,

and cross-multiplying to solve for the coefficients an(j). We obtain
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t(n, 0)α + t(n, 1)
1

α2
+ t(n, 2)

1

α5
+ · · ·+ t(n, i)

1

α3i−1 + · · ·

= an(0)t(n− 1, 0)α + an(0)t(n− 1, 1)
1

α2
+ · · ·+ an(0)t(n− 1, i)

1

α3i−1 + · · ·

+ an(1)t(n− 1, 0) + an(1)t(n− 1, 1)
1

α3
+ · · ·+ an(1)t(n− 1, i)

1

α3i
+ · · ·

+ an(2)t(n− 1, 0)
1

α
+ an(2)t(n− 1, 1)

1

α4
+ · · ·+ an(2)t(n− 1, i)

1

α3i+1
+ · · ·

+ an(3)t(n− 1, 0)
1

α2
+ an(3)t(n− 1, 1)

1

α5
+ · · ·+ an(3)t(n− 1, i)

1

α3i+2
+ · · ·

+ an(j)t(n− 1, 0)
1

αj−1 + an(j)t(n− 1, 1)
1

αj+2
+ · · ·+ an(j)t(n− 1, i)

1

α3i+j−1 + · · ·

+ · · ·

Rearranging terms gives

t(n, 0)α + t(n, 1)
1

α2
+ t(n, 2)

1

α5
+ · · ·+ t(n, i)

1

α3i−1 + · · ·

= an(0)t(n− 1, 0)α + an(1)t(n− 1, 0) + an(2)t(n− 1, 0)
1

α

+ [an(0)t(n− 1, 1) + an(3)t(n− 1, 0)]
1

α2
+ · · ·

+ [an(0)t(n− 1, i) + an(3)t(n− 1, i− 1) + · · ·+ an(3i)t(n− 1, 0)]
1

α3i−1

+ [an(1)t(n− 1, i) + an(4)t(n− 1, i− 1) + · · ·+ an(3i+ 1)t(n− 1, 0)]
1

α3i

+ [an(2)t(n− 1, i) + an(5)t(n− 1, i− 1) + · · ·+ an(3i+ 2)t(n− 1, 0)]
1

α3i+1

+ · · ·

Equating coefficients we see that t(n, 0) = an(0)t(n − 1, 0), which implies an(0) = 1

because we know from Theorem 5.1 that t(n, 0) = 1 for all n ≥ 1. Similarly we obtain

an(0)t(n− 1, 1) + an(3)t(n− 1, 0) = t(n, 1).

Here we can use the fact from Theorem 5.1 that t(n, 1) = n for n ≥ 5 to obtain

(n − 1) + an(3) = n, which implies an(3) = 1. Also we have an(1)t(n − 1, 0) = 0

and an(2)t(n − 1, 0) = 0 which imply that an(1) = an(2) = 0 because t(n − 1, 0) is

non-zero.

We can now show that an(j) = 0 for all j ≥ 4. The proof of this fact can be broken

into two cases, namely j ≡ 0 (mod 3) and j ≡ 1, 2 (mod 3). In the latter case, our
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result will follow from the fact that the numerator in Equation (5.19) contains only

terms with 1
α3i−1 . Continuing to equate coefficients gives, for coefficients of 1

α3i and

1
α3i+1 respectively,

an(1)t(n− 1, i) + an(4)t(n− 1, i− 1) + · · ·+ an(3i+ 1)t(n− 1, 0) = 0

an(2)t(n− 1, 1) + an(5)t(n− 1, i− 1) + · · ·+ an(3i+ 2)t(n− 1, 0) = 0.

We have already seen that an(1) = an(2) = 0 and strong induction will show that

an(j) = 0 for all j ≡ 1, 2 (mod 3).

Consider the case j ≡ 1 (mod 3) and suppose an(1) = an(4) = · · · = an(3i+1) =

0. The coefficient for 1
α3(i+1) is given by

an(1)t(n−1, i+1)+an(4)t(n−1, i)+· · ·+an(3i+1)t(n−1, 1)+an(3i+4)t(n−1, 0) = 0.

This reduces to an(3i+4)t(n−1, 0) = 0, implying an(3i+4) = 0 because t(n−1, 0) = 1.

The same argument holds for j ≡ 2 (mod 3), in which case we are dealing with

coefficients of 1
α3i+1 . Now we must show that an(j) = 0 for j ≥ 6, where j ≡ 0

(mod 3). Equating coefficients of 1
α3i−1 gives

t(n, i) = an(0)t(n−1, i)+an(3)t(n−1, i−1)+an(6)t(n−1, i−2)+· · ·+an(3i)t(n−1, 0),

where we have shown that an(0) = an(3) = 1. We again use strong induction. For

the initial case we must show that an(6) = 0. Equating coefficients gives

an(0)t(n− 1, 2) + an(3)t(n− 1, 1) + an(6)t(n− 1, 0) = t(n, 2).

We have seen that an(0) = an(3) = 1, and using the facts from Theorem 5.1 that

t(n− 1, 0) = 1 and t(n− 1, 2) + t(n− 1, 1) = t(n, 2), we can rewrite the above as

t(n, 2) + an(6) = t(n, 2),

implying an(6) = 0. Now suppose that an(9) = · · · = an(3i) = 0. Then we have that

t(n, i+ 1) = an(0)t(n− 1, i+ 1) + an(3)t(n− 1, i)+ (5.20)

· · ·+ an(3i)t(n− 1, 1) + an(3i+ 1)t(n− 1, 0)

= t(n− 1, i+ 1) + t(n− 1, i) + an(3i+ 3). (5.21)
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From Theorem 5.1, we know that our entries t(n, k) follow the equation

t(n, k + 1) = t(n− 1, k + 1) + t(n− 1, k), (5.22)

for n ≡ 0 (mod 3) (which give non-corner elements). Therefore Equation (5.21) can

be written as

t(n, i+ 1) = t(n, i+ 1) + an(3i+ 3),

implying an(3i+ 3) = 0, and completing the induction.

We may now conclude that

an(0)α + an(1) + an(2)
1

α
+ an(3)

1

α2
+ · · ·+ an(j)

1

αj−1 + · · · = α +
1

α2
.

We know that α is the real root of x3 − 2x2 − 1 = 0, which can be rearranged to give

x+ 1
x2 = 2x− 2. Therefore, α + 1

α2 = 2α− 2 and we have by Equation (5.19) that

lim
n→∞

S(τn)

S(τn−1)
= 2(α− 1), (5.23)

as required, for n ≡ 0 (mod 3).

We must now prove that this limiting value is the same when n ≡ 1, 2 (mod 3).

The expression for n ≡ 1 (mod 3) in Theorem 5.3 is given by

lim
n→∞

S(τn)

S(τn−1)
= lim

n→∞

∑n−4
3

k=0 t(n, k)
1

α3k−1 + t
(
n−1
3

)
1

αn−2∑n−4
3

k=0 t(n− 1, k) 1
α3k

= lim
n→∞

∑n−4
3

k=0 t(n, k)
1

α3k−1∑n−4
3

k=0 t(n− 1, k) 1
α3k

+ lim
n→∞

t
(
n−1
3

)
1

αn−2∑n−4
3

k=0 t(n− 1, k) 1
α3k

, (5.24)

where we will show that each of the limits in the sum is defined. We have already

seen that considering infinite sums, the first term in Equation (5.24) is 2(α − 1) for

n ≡ 0 (mod 3). We must now show that this result holds for n ≡ 1 (mod 3). We can

follow through the cross multiplication and inductions as in the n ≡ 0 (mod 3) case.

The only difference is that we must verify Equation (5.22) for n ≡ 1 (mod 3). We

have already removed the corner term (which is an exception to the relation) from

the sum, and so the remaining entries do indeed adhere to the relation. We must also

show that the second term in the right-hand side of Equation (5.24) is 0.
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We will begin by proving that

lim
n→∞

t

(
n− 1

3

)
1

αn−2 = 0,

which can be accomplished by showing that the series

∞∑
n=0

t

(
n− 1

3

)
1

αn−2

converges. To do this, we can use the ratio test to show that for n ≡ 0 (mod 3),

lim
n→∞

t
(
n+2
3

)
t
(
n−1
3

) 1

α3
= L < 1,

lim
n→∞

t
(
n+2
3

)
t
(
n−1
3

) = α3L < α3 = 10.729 . . . . (5.25)

In order to show this, we can use the relations among the t(n, k) terms in Table 5.2

(given in Theorem 5.1 in slightly different notation). We are looking at the ratios of

consecutive corner terms t(k). We can write

t
(
n+2
3

)
= 2t

(
n+ 1, n−1

3

)
= 2

(
t
(
n, n−4

3

)
+ 2t

(
n−1
3

))
,

so that our ratio becomes

2t
(
n, n−4

3

)
+ 4t

(
n−1
3

)
t
(
n−1
3

) = 4 +
2t(n, n−4

3
)

t
(
n−1
3

) .

Now we can write the denominator as

t
(
n−1
3

)
= 2t

(
n− 2, n−4

3

)
,

and the term in the numerator as

t
(
n, n−4

3

)
= t

(
n− 1, n−7

3

)
+ t

(
n− 1, n−4

3

)
= t

(
n− 2, n−10

3

)
+ 2t

(
n− 2, n−7

3

)
+ t

(
n− 2, n−4

3

)
≤ 4t

(
n− 2, n−4

3

)
,

because the entries in the Table 5.2 are increasing for each row with n − 2 ≡ 2

(mod 3). (Recall we have n ≡ 1 (mod 3).) The ratio in Equation (5.25) can now be

written as the inequality

lim
n→∞

t
(
n+2
3

)
t
(
n−1
3

) ≤ 4 +
2
(
4t

(
n− 2, n−4

3

))
2t

(
n− 2, n−4

3

) = 4 + 4 = 8 < α3.
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We now know that the numerator of the second term in the right-hand side of

Equation (5.24),

lim
n→∞

t
(
n−1
3

)
1

αn−2∑∞
k=0 t(n− 1, k) 1

α3k

, (5.26)

tends to zero. Consider the denominator. Each term in the sum is positive and the

first term is t(n − 1, 0) = 1. The sum is therefore greater than 1, and so the terms

in the above limit are bounded above by limn→∞ t
(
n−1
3

)
1

αn−2 , which goes to zero.

Therefore, the term in (5.26) goes to zero also. We can conclude that for n ≡ 1

(mod 3), Equation (5.23) holds.

Finally, in a similar fashion, we can prove this result for n ≡ 2 (mod 3). We have

from Theorem 5.3 that

lim
n→∞

S(τn)

S(τn−1)
(5.27)

= lim
n→∞

∑n−2
3

k=0 t(n, k)
1

α3k−1∑n−5
3

k=0 t(n− 1, k) 1
α3k + t

(
n−2
3

)
1

αn−2

= lim
n→∞

∑n−5
3

k=0 cn(k)
1

α3k−1 + t
(
n, n−2

3

)
1

αn−3∑n−5
3

k=0 t(n− 1, k) 1
α3k + t

(
n−2
3

)
1

αn−2

= lim
n→∞

∑n−5
3

k=0 t(n, k)
1

α3k−1∑n−5
3

k=0 t(n− 1, k) 1
α3k + t

(
n−2
3

)
1

αn−2

+ lim
n→∞

t
(
n, n−2

3

)
1

αn−3∑n−5
3

k=0 t(n− 1, k) 1
α3k + t

(
n−2
3

)
1

αn−2

,

(5.28)

where we will show that each of the limits in the sum is defined. The first term can

be rewritten as
1

limn→∞
∑n−5

3
k=0 t(n−1,k) 1

α3k +t(n−2
3 ) 1

αn−2

∑n−5
3

k=0 t(n,k) 1

α3k−1

,

and splitting up the denominator (where it will be shown that the limits in the sum

are defined) gives

=
1

limn→∞
∑n−5

3
k=0 t(n−1,k) 1

α3k∑n−5
3

k=0 t(n,k) 1

α3k−1

+ limn→∞
t(n−2

3 ) 1
αn−2∑n−5

3
k=0 t(n,k) 1

α3k−1

.

We have that

lim
n→∞

∑n−5
3

k=0 t(n, k)
1

α3k−1∑n−5
3

k=0 t(n− 1, k) 1
α3k

= 2(α− 1),



180

by our previous argument - the fact that this expression contains no corner terms -

and so its reciprocal tends to 1
2(α−1) . Now consider the term t

(
n−2
3

)
. We have already

seen that limn→∞ t
(
n−1
3

)
1

αn−2 = 0 when n ≡ 1 (mod 3) because corner numbers

t
(
n−1
3

)
grow at a rate less than α3. The same argument holds in the n ≡ 2 (mod 3)

because we are dealing with the same set of corner numbers. We can again conclude

that

lim
n→∞

t
(
n−2
3

)
1

αn−2∑n−5
3

k=0 t(n, k)
1

α3k−1

= 0,

because the denominator is always greater than 1. We then have that the first term

in Equation (5.28) is 1
1

2(α−1)

= 2(α− 1).

Now we must show that the second term goes to zero. The numerator contains

t
(
n, n−2

3

)
, which for n ≡ 2 (mod 3) is the sequence given by the numbers directly

below the corners in our Table 5.2. We can write these numbers as

t

(
n,

n− 2

3

)
=

1

2
t

(
n+ 1

3

)
.

The rate of growth of this sequence is therefore the same as that of the corner numbers,

t
(
n+1
3

)
, which we have shown is less than α3. We can then conclude that

lim
n→∞

t

(
n,

n− 2

3

)
1

αn−3 = 0.

The second term in Equation (5.28) must then go to zero because the denominator

is always greater than one and we obtain Equation (5.23), completing the proof for

the case n ≡ 2 (mod 3). �

The following corollary (Rittaud [64]) gives us the growth rate of the expected

value of the nth term in a given row of T . In other words, we are taking the growth

rate of an average. Rittaud calls this value the “average growth rate” but we choose

to reserve this term for the average value of a list of growth rates of random Fibonacci

sequences.

Corollary 5.5. The growth rate of the expected value of the nth term in a random

Fibonacci sequence is given by
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lim
n→∞

E(|tn|)
E(|tn−1|) = α− 1 = 1.205569431 . . . .

Proof: We know from Theorem 5.4 that

lim
n→∞

S(τn)

S(τn−1)
= 2(α− 1).

We are dealing with the sum of entries in τn of the tree T . Since this tree is a

representation of all possible random Fibonacci sequences, S(τn) also represents the

sum of all possible nth terms in a random Fibonacci sequence, taken in absolute value.

We wish to consider the expected value of such terms, which is simply the average

value. We must divide the sum by the total number of entries in row τn.

Tree T is a full binary tree with initial rows having sizes |τ1| = |τ2| = 1, |τ3| = 2,

|τ4| = 4, and the nth row having size |τn| = 2n−2 for n ≥ 2. Therefore the expected

value of the absolute value of the nth term in a random Fibonacci sequence is given

by

E(|tn|) = S(τn)

2n−2
.

The growth rate can then be written as

lim
n→∞

E(|tn|)
E(|tn−1|) = lim

n→∞
S(τn)/2

n−2

S(τn−1)/2n−3
= lim

n→∞
S(τn)

S(τn−1)
· 2

n−3

2n−2

= 2(α− 1) · 1
2
= α− 1,

completing the proof. �

This value is in agreement with the generalized mean inequality (Hardy et al. [36,

p. 26]). The following definition can be found in [36, p. 12].

Definition 5.3. We define the generalized mean of a list of positive real numbers ai

by

Mr(a) :=

(
1

n

n∑
i=1

ari

) 1
r

,

where r is a real non-zero number.

The Generalized Mean Inequality says that if r < s then Mr(a) ≤ Ms(a), with

equality if and only if all of the ai are equal. If we sum from i = 1 to 2n (the number
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of length-(n+ 2) random Fibonacci sequences), and let ai = ti, r = 1
n
and s = 1, we

have r < s for n > 1 and our inequality becomes(
1

2n

2n∑
i=1

(|ti|) 1
n

)n

<
1

2n

2n∑
i=1

|ti|, (5.29)

1

2n

2n∑
i=1

|ti| 1n <

(
1

2n

2n∑
i=1

|ti|
) 1

n

,

1.13198824 . . . < 1.205569431 . . . . (5.30)

The term on the right calculates the growth rate of the average value of the nth term

in a random Fibonacci sequence (in absolute value), which we have seen in Corollary

5.5 is 1.205569431 . . . as n → ∞. The term on the left calculates the average value

of the approximated growth rates of all length-n random Fibonacci sequences (in

absolute value), which in the limit gives Viswanath’s constant, 1.13198824 . . . .

Recall that Equation (3.17) gave us a way to approximate Viswanath’s constant

by taking the average of the nth roots of traces |u| for all length-n product matrices Pn

(corresponding to the full binary tree T ). We can perform a similar calculation by first

taking the average of the |u| values, and then finding the approximate growth rate (nth

root) of this average. This in fact seems to give another approximation to Rittaud’s

number α − 1 = 1.205569431 . . ., and again the Generalized Mean Inequality holds.

The trace values |u| approximate the dominant eigenvalues and so we are essentially

calculating the growth rate of the expected value of the dominant eigenvalue, as

opposed to the growth rate of the expected value of the nth term in a random Fibonacci

sequence, as in Corollary 5.5.

The sums of the traces |u| for product matrices Pn give us the sequence

2, 8, 8, 36, 72, 208, 464, 1204, 2528, 6768, . . .

for increasing values of n. Since the number of product matrices for a given n is 2n,

we can simply find the growth rate of the above sequence of sums, and divide by two

to find the growth rate of the average value, as in Corollary 5.5. This case seems to

lack a simple recurrence for the sums. Table 5.3 gives the growth rate of the average

trace for 6 ≤ n ≤ 16.
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n sum of traces approx. g.r. of average trace
6 208 1.217065337
7 464 1.201990802
8 1204 1.213523848
9 2528 1.194143022
10 6768 1.207858443
11 15688 1.203331371
12 39040 1.206690300
13 92744 1.205227170
14 226836 1.206482036
15 532128 1.204216052
16 1310484 1.205894980

Table 5.3: Approximate growth rates of average trace values.

Example 5.10. For n = 16, we have that the sum of traces is 1310484, giving

a growth rate approximation of 1310484
1
16 = 2.411789959, using the root form of

Definition 2.4. Therefore the growth rate of the average trace is approximated by

2.411789959
2

= 1.205894980, which is accurate to three decimal places to Rittaud’s

calculation.

Let un,i and λn,i be the trace and dominant eigenvalue respectively of the ith

product matrix Pn,i.

Conjecture 5.1. We have the following alternate formula for the growth rate of the

expected value of nth terms in a random Fibonacci sequence,

lim
n→∞

(|un,1|+ |un,2|+ · · ·+ |un,i|+ · · ·+ |un,2n |) 1
n

2
= α− 1 = 1.20556943 . . . , (5.31)

where un,i is the trace of the ith product matrix Pn,i.

Based on Equation (3.16), which says that for large n and |u| we have |u| ≈ |λ|,
we suspect that we may be able to make a similar calculation using the absolute value

of the dominant eigenvalue instead of the trace value. This would give

lim
n→∞

(|λn,1|+ |λn,2|+ · · ·+ |λn,i|+ · · ·+ |λn,2n |) 1
n

2
= α− 1 = 1.20556943 . . . . (5.32)
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5.6 Rittaud’s Proof

The main result of Rittaud’s paper [64] is Corollary 5.5, which gives the growth rate

of the expected value of the nth term in a random Fibonacci sequence. Further, he

claims that this result is true for any initial values a, b ≥ 0, with ab 	= 0. An error

in his proof is pointed out in Janvresse et al. [41], and corrected in a more general

setting. Rittaud breaks his proof into four steps. We will need to make use of the

notation ρ
(a,b)
n and τ

(a,b)
n to denote the nth rows in trees R(a,b) and T (a,b) respectively,

and so ρ
(1,1)
n = ρn .

The first step of the proof is to show that the growth rate of {S(ρ(a,b)n )} is in-

dependent of the initial values a, b, where ab 	= 0. By Theorem 5.2, we know that

this growth rate, for a = b = 1, is α = 2.20556943 . . ., where α is the real root of

α3 − 2α2 − 1 = 0. The corresponding recurrence is S(ρn) = 2S(ρn−1) + S(ρn−3).

Recall in the case of the Fibonacci numbers, Equation (1.4) gave Gn (the Fibonacci

sequence with initial values a, b) as Gn = aFn−1 + bFn−2, and the sequence {Gn}
also had growth rate φ. By the theory of linear recurrences, the same is true for

{S(ρ(a,b)n )}. We can write

S(ρ(a,b)n ) = aun + bvn, (5.33)

where un = 2un−1 + un−3 for u ≥ 5 with u1 = 1, u2 = 0, u3 = 1, u4 = 2 and

vn = 2vn−1 + vn−3 for u ≥ 4 with v1 = 0, v2 = 1, v3 = 1, v4 = 2. The first few terms

of S(ρ
(a,b)
n ) are therefore

a, b, (a+ b), (2a+ 2b), (4a+ 5b), (9a+ 11b), . . . ,

which adheres to our recurrence for n ≥ 5. The growth rate of {S(ρ(a,b)n )} is therefore

also α. Recall the tree R(a,b) for a < b given in Figure 5.4. The sums of rows are

given by

a, b, 2b, 4b+ a, 9b+ 2a, . . . ,

which also adhere to the recurrence, for n ≥ 4. The former sequence of sums corre-

sponds to the tree R(a,b) with ρ1 = a, ρ2 = b, ρ3 = a + b, which has the same shape

as R.

The second step in Rittaud’s proof focuses on finding an expression for τ
(a,b)
n in

terms of ρ
(|b−a|,a)
j with j ≤ n, for the specific cases (a, b) = (1, φ) and (a, b) = (1, φ−1).
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Recall from Proposition 5.3 that for any node a in R with child b, a’s parent is |b−a|.
We will denote z := |b− a|, so that z = φ−1 and z = φ−2 in our cases. Rittaud shows

that for the specific choice of initial values we have

τ
(a,b)
n+2 =

	n
3

⊎

m=0

((
n

m

)
− 2

(
n

m− 1

))
νn+2−3m,

where

νm :=

	m
2

⊎

i=0

ziρ
(z,1)
m−2i. (5.34)

(Recall that we are taking the multiset sum of nodes here.) These relations do not

necessarily hold for any a, b. The proof uses the fact that for

cn,m :=

((
n

m

)
− 2

(
n

m− 1

))
,

Pascal’s formula holds, i.e., cn+1,m+1 = cn,m+1 + cn,m.

The third step in Rittaud’s proof is to find the explicit growth rate of the sequence

{S(τ (a,b)n )} for the specific values of (a, b). He uses the fact that from the theory of

linear recurrences we can write the solution to the recurrence as

S(ρ(a,b)n ) = c1α
n + c2β

n + c2β
n
,

for any a, b with ab 	= 0, where constants c1 ∈ R, c2 ∈ C depend on the initial values

of {S(τ (a,b)n )}. Also, α is the real root of x3 = 2x2 + 1 and the complex roots are

β = −0.1027847 . . . + i0.6654569 . . . . By Equation (5.34), we can write S(νm) in

terms of S(ρ
(z,1)
j ), and therefore in terms of α, β and β. Rittaud shows that the latter

two terms are negligible and that the sequence {S(τ (a,b)n )} grows at the rate 2(α− 1).

This is the result we obtained in Theorem 5.4 for (a, b) = (1, 1).

The last step in Rittaud’s proof is to show that this growth rate applies to random

Fibonacci sequences with any initial values a, b ≥ 0 with ab 	= 0. (Since we are talking

about the positive tree T (a,b), we can assume the initial values are positive.) He starts

by noting that we can write any pair (a, b) as a linear combination of our special

initial values as

(a, b) = u(1, φ) + v(1, φ−1),
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for constants uv 	= 0. Rittaud then deduces that by linearity, we can write the row

τ
(a,b)
n as a linear combination as

τ (a,b)n = uτ (1,φ)n � vτ (1,φ
−1)

n , (5.35)

and taking sums over these multisets gives

S(τ (a,b)n ) = uS(τ (1,φ)n ) + vS(τ (1,φ
−1)

n ). (5.36)

Since we know that both sequences {S(τ (1,φ)n )} and {S(τ (1,φ−1)
n )} grow exponentially at

rate 2(α−1), we can deduce, using the same logic as in the first step, that {S(τ (a,b)n )}
does also, for any initial values a, b with ab 	= 0. By Corollary 5.5, the growth rate

of the expected value of the nth term in a random Fibonacci sequence is given by

α − 1. The proof of this is independent of initial values, so we can assume that this

growth rate holds also for random Fibonacci sequences with initial values a, b, and in

particular the sequence with a = b = 1.

There is a mistake in Rittaud’s proof, however, and it occurs in Equation (5.35).

The assumption that we can write the nth row of T (a,b) as a linear combination is

false. This is pointed out by Janvresse et al. in [41], and as an example they consider

writing (a, b) = (1, 1) as a linear combination of the specific initial values. Solving for

u and v gives

(1, 1) =
1

φ2
(1, φ) +

1

φ
(1, φ−1) = (φ−2, φ−1) + (φ−1, φ−2).

Figure 5.9 gives the three trees T (a,b) corresponding to the initial values above, in

approximated decimal form. Recall that multiplying initial values by a constant is

equivalent to multiplying all nodes in a tree by that constant.

The left grandchild of the root node in Figure 5.9(a) is 0, whereas the sum of the

corresponding left grandchildren in Figures 5.9(b) and 5.9(c) is approximately 0.48.

Therefore the tree in Figure 5.9(a) is not simply the sum of the trees in Figures 5.9(b)

and 5.9(c). Comparing further in the trees, we see that some nodes do sum correctly

and others do not. Rittaud’s error can be explained by the fact that his tree T (a,b) is

generated using Equation (1.8), namely,

f̃n = |f̃n−1 ± f̃n−2|.
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(c) The tree T(φ−1,φ−2)

Figure 5.9: T (a,b) for different initial values.

This equation is non-linear. The fact that we are taking the absolute value at each

step means that some nodes will be permuted and negated, compared to the linear

Equation (1.7), fn = fn−1 ± fn−2. Had we generated the trees in Figure 5.9 using

this equation, the summation of trees would hold and there would be no flaw in

Rittaud’s proof. We know from Corollary 1.1 that the set of nth terms is the same

for the sequences {|fn|} and {f̃n}, so we can repeat Rittaud’s argument in step four

by generating trees using Equation (1.7), and taking the absolute values afterwards.

The growth rate of the sum of nth terms of the sequence {|fn|} with initial values

a, b is unchanged and can be written as the linear combination in Equation (5.36).

Therefore the growth rate of the expected value of a random Fibonacci sequence with

initial values a, b is in fact α− 1.

Notice that the nodes in Figures 5.9(a) which belong to tree R, are the sum of

those in Figures 5.9(b) and 5.9(c). This is because Equations (1.7) and (1.8) generate

the same tree R(a,b), by Proposition 5.7. This also explains why the growth rate of

S(ρ
(a,b)
n ) in Equation (5.33) carries through the linear combination.

As pointed out earlier, Janvresse et al. [41] found Rittaud’s error, and also provide

a solution in the more general setting of (p, α)-random Fibonacci sequences for the

non-linear case. As mentioned in Chapter 1, sums of rows of T (a,b)(p, λk) are approx-

imated by splitting this tree into infinitely many copies of the tree R(ls+1,ls+2)(p, λk).

Here the initial nodes ls+1 and ls+2 are consecutive nodes in the leftmost branch of
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T (a,b)(p, λk). The expected value of a node in the nth row in the tree T (a,b)(p, λk) is

given by

E(τ (a,b)n ) =

	n
k

∑

m=0

n−km∑
s=0

cn,m(pq
k−1)mqsE(ρ(ls+1,ls+2)

n+2−s−km(p, λk)), (5.37)

where q = 1−p, ρ
(ls+1,ls+2)
n+2−s−km(p, λk) denotes row n+2−s−km of the tree R(ls+1,ls+2)(p, λk)

and

cn,m =

(
n

m

)
− (k − 1)

(
n

m− 1

)
. (5.38)

Recall from Chapter 1 that λk = 2 cos(π/k), so that λ3 = 1. If we also choose p = 1
2
,

we have the case discussed by Rittaud in [64]. We can rewrite Equation (5.37) using

these values to give

E(τ (a,b)n ) =

	n
3

∑

m=0

n−3m∑
s=0

cn,m

(
1

2

)3m+s

E(ρ
(ls+1,ls+2)
n+2−s−3m),

where

cn,m :=

(
n

m

)
− 2

(
n

m− 1

)
.

Pascal’s formula holds for the general coefficient cn,m given in Equation (5.38). Table

5.4 gives the coefficients for k = 3, and Pascal’s formula can easily be observed.

������n
m

0 1 2 3

1 1
2 1
3 1
4 1 1
5 1 2
6 1 3
7 1 4 3
8 1 5 7
9 1 6 12
10 1 7 18 12
11 1 8 25 30
12 1 9 33 55

Table 5.4: Values of cn,m for n ≤ 12.
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Notice that our proof of Theorem 5.4 (and consequently Corollary 5.5), as well

as the proof by Rittaud and the generalized proof by Janvresse et al. have all used

the same technique of partitioning the nodes in some form of the tree T into nodes

in its subtree R. Growth rates are easier to find for R and then can be translated

back to the tree T . Our method used Equation (5.10), which is a linear combination

of sums of nodes in R, namely S(ρn−3k). The coefficients are quite complicated, as

will be shown in the following sections. The methods of Rittaud and Janvresse et al.

contrast ours in that their coefficients are fairly straightforward, consisting primarily

of cn,m, while the partition into nodes in R is much more complicated.

The proof we have given of Theorem 5.4, for the growth rate of the sum S(τn),

for a random Fibonacci sequence with initial values 1, 1, does not easily generalize

to initial values a, b. The breakdown of rows τn into rows ρj for j ≤ n as given in

Table 5.1 no longer holds. Furthermore, given initial values a, b, the tree R(a,b) may

not be constructed in the same way as R(1,1) because different edge repetitions will

occur. This was discussed in Section 5.1. There we stated that for a < b, the overall

structure of R(a,b) is the same as that of R(1,1) if we think of the initial values as

shifted to a = ρ2 and b = ρ3. In this case we would then have ρ1 = b−a, and our tree

is in fact R(b−a,a), as was used by Rittaud to partition T (a,b). In this case, if we try

to partition rows τ
(a,b)
n into rows ρ

(b−a,a)
j , we still do not obtain the breakdown given

in Table 5.1.

5.7 An Explicit Formula for Corner Terms t(k)

Our goal is to find a recurrence for the corner terms t(k) for k ≥ 0, which form the

sequence

{t(k)} =
1

2
, 2, 10, 54, 304, 1758, . . . .

By observing Table 5.2, we can represent such a recurrence geometrically and derive

a combinatorial formula. If we try to write the first few values of {t(k)} in terms of
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t(j) for j ≤ k − 1, we obtain the following recurrences:

2 = 4t(0),

10 = 4t(0) + 4t(1),

54 = 12t(0) + 4t(1) + 4t(2),

304 = 48t(0) + 12t(1) + 4t(2) + 4t(3),

1758 = 220t(0) + 48t(1) + 12t(2) + 4t(3) + 4t(4).

The coefficients, which we will call A(m) appear to form a sequence given by

{A(m)} = 4, 4, 12, 48, 220, . . .

for m ≥ 0. The sequence {A(m)/4} is identified in [67, A001764] as having form

1
2m+1

(
3m
m

)
, and so

A(m) =
4

2m+ 1

(
3m

m

)
. (5.39)

Graham et al. [33, p. 361] identify this as a generalized Catalan number, called a

Fuss-Catalan number, given by

C(k)
m :=

(
km

m

)
1

(k − 1)m+ 1
.

For k = 2, we obtain the regular Catalan numbers Cm = C
(2)
m , and for k = 3 we

obtain A(m)/4. We must prove that the coefficients we obtain actually adhere to this

pattern.

Example 5.11. Let us derive the corner recurrence for t(4) = 304. We can write, by

Theorem 5.1,

304 = 2(152) = 2(44 + 2 · 54)
= 2(9 + 35) + 4 · 54
= 2(1 + 8 + 8 + 27) + 4 · 54
= 2(1 + 2(1 + 7) + 7 + 2 · 10) + 4 · 54
= 2(3(1) + 3(1 + 6)) + 4 · 10+ 4 · 54
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= 2(6(1) + 3(1 + 5)) + 4 · 10+ 4 · 54
= 2(9(1) + 3(1 + 2 · 2) + 4 · 10+ 4 · 54
= 2(12(1) + 6 · 2) + 4 · 10+ 4 · 54
= 48 · 1

2
+ 12 · 2+ 4 · 10+ 4 · 54,

where corner terms are bolded.

We can proceed to represent this process geometrically. Notice in Table 5.2 that

we can write any non-corner term t(n, k) not only according to Theorem 5.1, but as

twice the corner term t(k) plus entries in column k − 1. For example, t(14, 3) = 348

can be written as 2 ·54+44+54+65+77. This is a simple consequence of repeating

Equation (5.6) until we arrive at the corner entry. Visually we have Figure 5.10. The

structure of the dots in this and subsequent figures is taken from Table 5.2. Numbers

Figure 5.10: Breakdown of 348 into smaller terms.

occurring in parentheses represent nodes that are counted multiple times. We can

use this idea to write any term t(n, k) as a linear combination of corner terms.

Let us first consider how to write the corner terms themselves using this method.

We have that

t(k) = t(n, k) = 2t(n− 2, k − 1)

= 2(t(n− 3, k − 2) + 2t(k − 1))

= 4t(k − 1) + 2t(n− 3, k − 2). (5.40)

Example 5.12. Consider the breakdown t(4) = 304 = 4 · 54 + 2(44) from Example

5.11. Now we must write 44 in terms of t(2) = 10, and we can view this process

geometrically in Figure 5.11. We can write 44 = 2 · 10+ 7 + 8 + 9 and we are left to
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Figure 5.11: Breakdown of 304 into corner terms.

write 7, 8, 9 in terms of t(1) = 2. We have

7 = 2 · 2+ 1 + 1 + 1,

8 = 2 · 2+ 1 + 1 + 1 + 1,

9 = 2 · 2+ 1 + 1 + 1 + 1 + 1.

Each term 1 can then be written as 2t(0) = 2 · 1
2
.

Notice that in Equation (5.40) the corner term t(k − 1) (54 in Example 5.12) is

multiplied by 4 and the term t(n−3, k−2) (44 in Example 5.12) is doubled. Also, each

time we come upon a new corner number in the recurrence, it is doubled. Therefore,

the number of times a corner number will appear is a multiple of 4. For example,

each term 7, 8, 9 appears once in each term 44 and contains two copies of t(1) = 2.

So the number of t(1) terms appearing in 304 is 4(3) = 12. This term 3 is visualized

as the line in Figure 5.12. We can continue to count “dots” in our geometric diagram

to aid us in counting corners. Next, to count the number of times t(0) = 1
2
occurs, we

must count the number of 1 terms, each of which contributes 2 terms 1
2
. For example,

consider Figure 5.13. We have a 2-dimensional shape containing 12 dots, each of

which counts the term t(0) = 1
2
four times in 304; twice for each term 1, and again

doubled because 7, 8, 9 all occur once in each of the two terms 44. It is representative
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Figure 5.12: Line of size 3.

Figure 5.13: Counting terms t(0) in 7, 8, 9.

of the set of equations after Figure 5.11. Each dot in the shape on the right generates

a vertical line, the length of which is determined by the distance from the dot to the

top of the figure.

This same pattern holds for the general case, by the structure of Table 5.2. If

we are dealing with a corner larger than 304, the next stage in the progression of

geometric figures would look like Figure 5.14. By the previous logic, the number of

Figure 5.14: Counting the next level of corner terms.

corners would be four times the number of dots, which is 4(55) = 220. We can now
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redraw Figure 5.14 as the group of 2-dimensional shapes in Figure 5.15, and think of

it as a shape in 3 dimensions. We can continue creating a new line for each dot t(n, k)

Figure 5.15: Shape of dots in three dimensions.

in the same manner — by moving to the point t(n − 1, k − 1) and tracing upwards

until the next corner is reached (three rows above the top of the previous shape).

We now require a formula for counting dots. We can write the recurrence for the

corner term t(k) as

t(k) = 4s0t(k−1)+4s1t(k−2)+4s2t(k−3)+ · · ·+4smt(k−m−1)+ · · ·+4sk−1t(0),

(5.41)

where the coefficient sm, for 0 ≤ m ≤ k − 1, is therefore counting the dots in the

sequence of shapes given in Figure 5.16.

Figure 5.16: Sequence of coefficients sm for the corner terms.
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We will set s0 = s1 = 1. Here s2 counts the number of dots in the single line,

s3 counts the number of dots in the 2-dimensional shape, s4 counts the number of

dots in the group of 2-dimensional shapes (i.e., the 3-dimensional shape), and so on.

Notice how these shapes grow in groups of three. (See Figure 5.15 for s4.) More

generally, we will let s(i, 0) = s(i, 1) = 1 for all i ≥ 1 and define s(i,m), for i ≥ 1

and m ≥ 1, to be the total number of dots in the mth shape of the sequence, where

the sequence starts with m = 0. Here i is the number of dots in the 1-dimensional

column at m = 2, i.e., s(i, 2) = i. Note that the mth shape of the sequence, for i ≥ 2,

has dimension m − 1. The above sm terms then correspond to the case i = 3. We

can observe the following relations for i = 3:

s(3, 3) = s(3, 2) + s(4, 2) + s(5, 2)

= 3 + 4 + 5 = 12,

s(3, 4) = s(3, 3) + s(4, 3) + s(5, 3)

= 12 + 18 + 25 = 55.

These equations are summing the number of dots in columns and 2-dimensional shapes

respectively. We also have the trivial case

s(3, 2) = s(3, 1) + s(4, 1) + s(5, 1)

= 1 + 1 + 1 = 3.

The i = 3 case is important because it gives us the coefficients for our corner recur-

rence. Using the new s(i,m) notation, Equation (5.41) becomes

t(k) = 4s(3, 0)t(k − 1) + 4s(3, 1)t(k − 2) + 4s(3, 2)t(k − 3) + · · ·
+ 4s(3,m)t(k −m− 1) + · · ·+ 4s(3, k − 1)t(0). (5.42)

In order to prove an explicit formula for s(3,m) we need to consider the general

case s(i,m).

Lemma 5.2. A shape at level m (having s(i,m) dots) has m− 1 dimensions and is

mapped to a shape at level m + 1 (having s(i,m + 1) dots) with m dimensions, for

i ≥ 2. If i = 1, a shape at level m has m − 2 dimensions and is mapped to a shape

with m− 1 dimensions.
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Proof: Consider what happens when we move up a level in our sequence of geometric

shapes. We know that since each dot turns into a line with i dots where i ≥ 3, each line

turns into a 2-dimensional shape with i columns, as represented by s(i, 2) �→ s(i, 3).

Now consider s(i,m) for i ≥ 2, i.e., the number of dots in a shape of m−1 dimensions.

Each line in this shape turns into a 2-dimensional shape, and so by induction the

shape itself will turn into one with m dimensions, and containing i shapes of m − 1

dimensions. In the case of i = 1, we have a line at m = 2 containing one dot,

which turns into another line with 3 dots, and so on. These shapes still increase in

dimension, but instead we have an m− 2 dimensional shape at level m. �

Now we can prove our summation relation for the general case.

Theorem 5.5. For m ≥ 2 and i ≥ 1 we have that

s(i,m) = s(3,m− 1) + s(4,m− 1) + · · ·+ s(i+ 2,m− 1). (5.43)

Proof: For the initial case we have s(1, 2) = 1 because we have seen that s(i, 2) = i.

Also, we have defined s(i, 1) = 1 and so s(3, 1) = 1, implying

s(1, 2) = s(3, 1).

Now we must induct over the two variables i and m. First assume Equation (5.43)

holds for s(i, 2) and show it is true for s(i+1, 2). We are dealing with the trivial case

for m and so we can simply write that

s(i+ 1, 2) = i+ 1 = 1 + · · ·+ 1

= s(3, 1) + s(4, 1) + · · ·+ s(i+ 3, 1),

proving the relation without needing to induct.

Now inducting over m, we can assume Equation (5.43) for s(i,m), for all i. The

term s(i,m + 1) gives us the number of dots in the shape one dimension higher. As

shown in Lemma 5.2, each of the terms s(j,m − 1) for 3 ≤ j ≤ i + 2 is transformed

into s(j,m) so that we obtain

s(i,m+ 1) = s(3,m) + s(4,m) + · · ·+ s(i+ 2,m), (5.44)
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completing the induction. �

We are now ready to use this summation formula to find an explicit formula for

s(i,m). Let us first consider a couple of initial cases as examples.

Example 5.13. For m = 3, Theorem 5.5 gives

s(i, 3) = s(3, 2) + s(4, 2) + · · ·+ s(i+ 2, 2)

= 3 + 4 + · · ·+ (i+ 2)

=
(i+ 2)(i+ 3)

2
− 2− 1

=
i(i+ 5)

2
.

So when i = 3, we obtain s(3, 3) = 12 = 1
4
A(3). Similarly, when m = 4 we have

s(i, 4) = s(3, 3) + s(4, 3) + · · ·+ s(i+ 2, 3)

=
i+2∑
j=3

j(j + 5)

2
=

1

2

(
i+2∑
j=3

j2 + 5
i+2∑
j=3

j

)

=

(
(i+ 2)(i+ 3)(2i+ 5)

6
− 5 + 5

(
i(i+ 5)

2

))
=

i(i+ 7)(i+ 8)

6
.

Continuing in this fashion, we come up with the following explicit formula.

Theorem 5.6. Let s(i, 1) = 1. For i ≥ 1 and m ≥ 2 the term s(i,m) can be written

as follows:

s(i,m) =
i(i+ 2m− 1)(i+ 2m) · · · (i+ 3m− 4)

(m− 1)!
=

(
i+ 3m− 4

i+ 2m− 2

)
i

m− 1
. (5.45)

Proof: To start, we have that for the initial case, s(1, 2) =
(
3
3

)
1
1
= 1, as required. We

must now induct on both variables i and m. We can start by showing that if Equation

(5.45) holds for s(i, 2), then it holds for s(i+ 1, 2), and then show that if it holds for

s(i,m), it must also hold for s(i,m + 1). We can now assume s(i, 2) =
(
i+2
i+2

)
i
1
= i.

It is true then, that s(i+ 1, 2) =
(
i+3
i+3

)
i+1
1

= i+ 1 because we have already seen that

s(i, 2) = i for all i.
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Now we must assume Equation (5.45) holds for m and all values of i, and show it

also holds for m+ 1. We know that from Theorem 5.5 that

s(i,m+ 1) = s(3,m) + s(4,m) + · · ·+ s(i+ 2,m),

which by our assumption can be written as

s(i,m+ 1) =
i+2∑
j=3

(
j + 3m− 4

j + 2m− 2

)
j

m− 1
.

Using software such as Maple, we can see that this expression in fact evaluates as(
i+ 3m− 1

i+ 2m

)
i

m
=

(
i+ 3(m+ 1)− 4

i+ 2(m+ 1)− 2

)
i

(m+ 1)− 1
,

completing the induction. �

Corollary 5.6. In the recurrence of corner numbers t(k) given in Equation (5.42),

the term t(k −m− 1) has coefficient A(m), for k ≥ 1,m ≤ k − 1.

Proof: We know that the coefficient of t(k − m − 1) in our recurrence is given by

4s(3,m), which by Theorem 5.6 can be written as

4s(3,m) =
12

m− 1

(
3m− 1

2m+ 1

)
.

We can now rewrite this binomial term. We have that

12

m− 1

(
3m− 1

2m+ 1

)
=

12

m− 1

(
(3m− 1)(3m− 2) · · · (2m+ 2)

(m− 2)!

)
=

4m

m

(
3(3m− 1)(3m− 2) · · · (2m+ 2)

(m− 1)!

)
=

4

2m+ 1

(
(3m)(3m− 1) · · · (2m+ 2)(2m+ 1)

m!

)
=

4

2m+ 1

(
3m

m

)
= A(m),

by Equation (5.39) for A(m), completing the proof. �

Now we can rewrite Equation (5.42), for our corner terms, as

t(k) = A(0)t(k − 1) + A(1)t(k − 2) + A(2)t(k − 3) + · · ·+ A(k − 1)t(0)

=
k−1∑
j=0

A(k − j − 1)t(j). (5.46)
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We wish to use this corner recurrence to find a closed form expression for t(k). We

will need to make use of the generating functions with coefficients A(k) and t(k),

which are defined respectively as

GA(x) :=
∞∑
k=0

A(k)xk =
∞∑
k=0

4

2k + 1

(
3k

k

)
xk,

Gt(x) :=
∞∑
k=0

t(k)xk. (5.47)

Multiplying these two generating functions gives the following Cauchy product:

GA(x)Gt(x) =

( ∞∑
k=0

A(k)xk

)( ∞∑
k=0

t(k)xk

)

=
∞∑
k=0

(
k∑

j=0

A(k − j)t(j)

)
xk

=
∞∑
k=0

t(k + 1)xk, (5.48)

where we have used Equation (5.46) to obtain the last line.

This new generating function can be rewritten as

∞∑
k=0

t(k + 1)xk =
1

x

∞∑
k=0

t(k + 1)xk+1 =
1

x

∞∑
k=1

t(k)xk

=
1

x

( ∞∑
k=0

t(k)xk − t(0)

)
=

1

x

(
Gt(x)− 1

2

)
. (5.49)

By combining Equations (5.48) and (5.49) we are able to solve for Gt(x) in terms of

GA(x) as follows:

GA(x)Gt(x) =
1

x

(
Gt(x)− 1

2

)
,

Gt(x)

(
GA(x)− 1

x

)
= − 1

2x
,

Gt(x) =
1

2− 2xGA(x)
,

2Gt(x) =
1

1− xGA(x)
.

Notice that 2Gt(x) is in fact a generating function, which contains the generating

function GA(x). By rewriting 2Gt(x) as a power series within a power series, we can
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use Faà di Bruno’s formula to obtain a single power series for this expression. We

start by manipulating GA(x) in the denominator to obtain

xGA(x) = x
∞∑
k=0

A(k)xk =
∞∑
k=0

A(k)xk+1 =
∞∑
k=0

A(k + 1)xk+1 =
∞∑
k=0

A(k)xk,

where we have defined A(k + 1) = A(k) for k ≥ 0 and A(0) = 0. Now if we define

xGA(x) by GA(x), we can write

2Gt(x) =
1

1−GA(x)
=

∞∑
n=0

( ∞∑
k=0

A(k)xk

)n

, (5.50)

using a geometric series, where Stirling’s formula is used to show that GA(x) has a

positive radius of convergence. Before applying Faà di Bruno’s formula we will need

the following definition (Comtet [20, p. 134]).

Definition 5.4. The exponential partial Bell polynomial Bk,n is given by

Bk,n(x1, x2, . . . , xk−n+1) :=
∑

c1+2c2+···=k
c1+c2+···=n

n!

c1!c2! · · · (1!)c1(2!)c2 · · ·x
c1
1 x

c2
2 · · · ,

where ci, k, n ≥ 0 .

Here we are partitioning the integer k into the sum of n positive integers, where

ci counts the number of integers i in the partition. By the pigeonhole principle, none

of these integers can be larger than k − n+ 1, and so we need only consider terms ci

for 1 ≤ i ≤ k − n+ 1. Note that the coefficients of the polynomial are similar to the

terms N(c1, . . . , cq) given in Equation (4.8). The following theorem can be found in

Comtet ([20, p. 137]).

Theorem 5.7 (Faà di Bruno). Let f and g be two formal power series, given by

f :=
∞∑
n=0

fn
un

n!
, g :=

∞∑
m=0

gm
xm

m!
,

where g0 = 0, and let h be the formal power series which is the composition of f and

g,

h := f ◦ g =
∞∑
k=0

hk
xk

k!
. (5.51)
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Then the coefficients hk are given by

h0 = f0, hk =
k∑

n=1

fkBk,n(g1, g2, . . . , gk−n+1),

where the Bk,n are the exponential partial Bell polynomials.

We can now apply this theorem to rewrite 2Gt(x) as a single formal power series.

Theorem 5.8. The corner terms t(k) in Table 5.2 can be written explicitly as

t(k) =
1

2

∑
j1+2j2+···+kjk=k

(
n

j1, j2, . . . , jk

)
A(0)j1A(1)j2 · · ·A(k − 1)jk ,

for k ≥ 0 and for n = j1 + j2 + · · ·+ jk.

Proof: Applying Theorem 5.7 to Equation (5.50) gives

f =
∞∑
n=0

fn
un

n!
=

∞∑
n=0

un,

where fn = n! and u =
∑∞

k=0 A(k)x
k, and

g = u =
∞∑

m=0

gm
xm

m!
=

∞∑
m=0

A(m)xm,

where gm = m!A(m). Now we can conclude that h =
∑∞

k=0 hk
xk

k!
, where

hk =
k∑

n=1

fkBk,n(g1, g2, . . . , gk−n+1)

=
k∑

n=1

k!Bk,n(1!A(1), 2!A(2), . . . , (k − n+ 1)!A(k − n+ 1))

=
k∑

n=1

k!
∑

j1+2j2+···=k
j1+j2+···=n

n!

j1!j2! · · · (1!)j1(2!)j2 · · ·(1!A(1))
j1(2!A(2))j2 · · ·

· · · (A(k − n+ 1))jk−n+1

=
k∑

n=1

∑
j1+2j2+···=k
j1+j2+···=n

n!k!

j1!j2! · · ·A(1)
j1A(2)j2 · · ·A(k − n+ 1)jk−n+1 .
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Notice that by Equation (5.50), 2Gt(x) = h, and comparing Equations (5.51) and

(5.47), we see that

2t(k) =
hk

k!
.

Also, converting the function A back to A, we can write

t(k) =
1

2

k∑
n=1

∑
j1+2j2+···=k
j1+j2+···=n

n!

j1!j2! · · ·A(0)
j1A(1)j2 · · ·A(k − n)jk−n+1 .

We can now replace the factorial term with a multinomial coefficient, and simplify

by removing the summation over n and simply summing over all possible partitions

of k, regardless of the number of terms n in the partition. Since 1 ≤ n ≤ k we must

have 1 ≤ i ≤ k in the term ji. In other words, since n is not fixed, it does not restrict

i. This gives

t(k) =
1

2

∑
j1+2j2+···+kjk=k

(
n

j1, j2, · · ·
)
A(0)j1A(1)j2 · · ·A(k − 1)jk ,

where we know j1 + j2 + · · · = n, completing the proof. �

5.8 An Explicit Formula for Terms t(n, k)

We can now extend these ideas to derive a recursive formula for the non-corner terms,

t(n, k), in terms of the corner numbers. We will again use a geometric argument to

find the coefficients of the recursion.

Start by considering the numbers in Table 5.2 directly below the corner numbers.

This gives us the sequence

{t(3k + 2, k)} = 1, 5, 27, 152, 879, . . .

for k ≥ 0. Note by Theorem 5.1, we can write

t(3k + 2, k) =
1

2
t(3k + 4, k + 1) =

1

2
t(3(k + 1) + 1, k + 1) =

1

2
t(k + 1).

By Equation (5.46), we can write

t(3k + 2, k) =
1

2

k∑
j=0

A(k − j)t(j),
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and so the coefficients in the recursion which gives t(3k + 2, k) in terms of t(j) are

1
2
A(m). We can also think about this by counting dots.

Example 5.14. Consider the term t(14, 4) = 879. We can write this as 879 =

2 ·304+271. By observing Table 5.2 we can write 271 = 2 ·54+44+54+65. Further

we have

44 = 2 · 10+ 7 + 8 + 9,

54 = 2 · 10+ 7 + 8 + 9 + 10,

65 = 2 · 10+ 7 + 8 + 9 + 10 + 11.

Visually, we can represent this as Figure 5.17, which gives the sequence of dots in

Figure 5.18.

Figure 5.17: Breakdown of 879 into corner terms.

Figure 5.18: Sequence of coefficients s(3,m) for below-corner terms.
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This is the same sequence as given in Figure 5.16, and is represented by s(3,m).

Note that each corner number is multiplied by 2 and so we must also multiply the

number of dots by 2 to obtain the correct coefficient. This gives us 2s(3,m), as

opposed to A(m) = 4s(3,m). We will instead think about the sequence of dots

having its initial column at m = 1 and containing one dot, as opposed to the initial

size-three column at m = 2. Define ŝ(i,m) to be the number of dots in the mth shape

in the sequence, where i is the number of dots in the column at level m = 1. For our

example we have

ŝ(1, 1) = s(3, 1) = 1,

ŝ(1, 2) = s(3, 2) = 3,

ŝ(1, 3) = s(3, 3) = 12,

ŝ(1,m) = s(3,m) =
1

4
A(m).

This is an exceptional case because we can view the initial column as having either

size i = 1 or 3.

Now, let us continue down the columns of Table 5.2 to those entries which are two

below a corner number.

Example 5.15. For t(15, 4), we can write

t(15, 4) = 1227 = 2 · 304+ 271 + 348

= 2 · 304+ (2 · 54+ 44 + 54 + 65) + (2 · 54+ 44 + 54 + 65 + 77).

Visually, we can represent this as Figure 5.19, from which we obtain the sequence of

dots in Figure 5.20, for m ≥ 0.

This gives us the sequence

{ŝ(2,m)} = 1, 2, 7, 30, . . . .

The ŝ function simply shifts the initial column from m = 2 in the s function to

m = 1. We can therefore write

ŝ(i,m) = s(i,m+ 1).
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Figure 5.19: Breakdown of 1227 into corner terms.

Figure 5.20: Sequence of coefficients for two-below-corner terms, m ≥ 0.

Note that for numbers one row beneath the corner terms, the initial column for m = 1

has one dot, and for numbers two rows beneath the corner term it has two dots. This

pattern does in fact continue and it is easy to see by observing Table 5.2, that for

numbers i terms below the corner, the initial column has i dots, as in Figure 5.21.

We have defined terms A(m) to be coefficients in the recurrence for writing corner

numbers in terms of themselves, and shown them to be equal to 4s(3,m). More

generally we can define terms A(i,m) to be the coefficients in the recurrence for

writing non-corner numbers, lying i rows beneath the corner, in terms of corner

numbers, where m = 0, 1, 2, . . . number the corners in descending order. We have

explained above that in terms of counting dots we have

A(i,m) = 2ŝ(i,m),
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Figure 5.21: Initial column for the case of i terms below the corner.

because corners are multiplied by two. We can now give an expression for A(i,m).

Theorem 5.9. The coefficients in the recurrence for the non-corner numbers t(n, k)

are given by

A(i,m) =
2i

3m+ i

(
3m+ i

m

)
,

for m ≥ 0, i ≥ 1.

Proof: We have by Theorem 5.6 that

A(i,m) = 2ŝ(i,m) = 2s(i,m+ 1) =
2i

(m+ 1)− 1

(
i+ 3(m+ 1)− 4

i+ 2(m+ 1)− 2

)
,

for i,m ≥ 1. We can now rewrite this expression as

A(i,m) =
2i

m

(
3m+ i− 1

2m+ i

)
=

2i

m

(
3m+ i− 1

m− 1

)
=

2i

3m+ i

(
3m+ i

m

)
,

where we have used the fact that
(
n
k

)
= n

k

(
n−1
k−1

)
. When m = 0, we have A(i, 0) =

2s(i, 1) = 2 by definition, which agrees with 2i
i

(
i
0

)
as stated in the theorem. �

We can now compile our previous results into a theorem concerning non-corner

numbers.

Theorem 5.10. The non-corner numbers t(n, k) in Table 5.2 can be written in terms

of the corner numbers t(k) as

t(n, k) =
k∑

j=0

A(n− 3k − 1, k − j)t(j),
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for n ≥ 1, where t(k) is given explicitly in Theorem 5.8, and A(i,m) is given in

Theorem 5.9.

Proof: A term in column k of Table 5.2 will be dependent on corner terms t(j) for

j = 0, . . . , k. Each corner term has a coefficient A(n,m), where A(n, 0) corresponds

to the largest corner t(k), A(n, 1) corresponds to corner t(k − 1) and so on. Also,

since n is the row number in Table 5.2, n − 3k − 1 is the number of rows from n to

the corner term. �



Chapter 6

Using the Tree R to Derive Viswanath’s Constant

6.1 Further Properties of the Tree R

Rittaud [64] studied a variety of properties of the tree R. Although it would be ideal

to be able to explicitly derive the values of the nodes in a given row of tree R, this

has proved extremely difficult. Rittaud has a few interesting results here, including

the following lemma.

Lemma 6.1. The nodes in the tree R with value i, where i ≥ 1, are included in a

union of 2φ(i) different walks in R.

This relies on the fact that parent-child pairs (i, j) in R have i and j relatively

prime (recall Proposition 5.1) and the fact that the coefficient cycle σ3 = (+ − +)

produces the sequence

i, j, i+ j, i, 2i+ j, 3i+ j, i, 4i+ j, 5i+ j, i, 6i+ j, 7i+ j, i, . . . .

Rittaud goes even further to say that for any i ≥ 1 there exists an integer n(i) such

that for any n > n(i), there are 2φ(i) nodes with value i amongst rows n, n+ 1 and

n + 2 of R. Rittaud further studies the exact positions of the 0 nodes in the tree T .

He also uses the generalized tree R(a,b) to construct the SL(2,N) tree mentioned in

Section 5.2. Here, the matrix entries correspond to the coefficients of a and b in the

nodes of R(a,b). The following is an interesting property of the group 〈A, B̂〉. (Recall
from Section 5.1 that multiplying a matrix in the SL(2,N) tree by B̂ and A gives its

left and right children respectively.)

Proposition 6.1. The SL(2,N) tree contains all elements of SL(2,N) exactly once.

Recall from Theorem 2.1 that product matrices Pn ∈ K (where K = G∩SL(2,Z))

form a subgroup of index two of SL(2,Z). Rittaud further studies properties of the

determinant and trace trees obtained from the matrix tree SL(2,N). Lastly, he uses

208
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continued fractions to give an expression for the size of a walk in R, i.e., the value of

n such that the parent-child pair (i, j) appears with i in the nth row.

We can now compile a list of relations among products of entries in the tree R.

Recall that in Chapter 5 we used the notation S(τn) and S(ρn) to represent the sums

of the elements in the nth rows of T and R respectively. We can similarly use P (τn)

and P (ρn) to represent the products of the non-zero elements in the nth rows. We will

also consider the products of non-zero left and right children in the nth row, which we

can denote by P (ρ−n ) and P (ρ+n ) respectively. For simplicity, however, we will denote

P (ρn), P (ρ−n ) and P (ρ+n ) by An, Ln (not to be confused with the Lucas numbers) and

Rn, respectively. Table 6.1 lists these products for n ≤ 10.

n Ln Rn An

1 1 1 1
2 1 1 1
3 1 2 2
4 1 3 3
5 1 15 15
6 4 128 512
7 9 15925 143325
8 225 50426145 11345882625
9 65536 143269901107200 9389336238961459200
10 2282450625 33576172121209656047484375 76635955043162555201615

741396484375

Table 6.1: Products of rows in R for left, right and all nodes.

We can assume that the empty sets of children give product 1. This is the case

for Ln with n ≤ 3 and Rn with n ≤ 2. A breakdown of the products in Table 6.1 into

their prime factorizations did not reveal any patterns.

Theorem 6.1. The following properties are true for nodes in the tree R:

1. An = LnRn;

2. Ln+3 = LnR
2
n;

3. Ln+3 = AnRn;
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4. An =
√
LnLn+3;

5. Ln+3 = (RnRn−3Rn−6 · · · )2;

6. An = Rn(Rn−3)2(Rn−6)2 · · · ;

7. Ln+3 =
(

An

An−3
· fracAn−6An−9 · · · ·

)2

;

8. An+3

An
= RnRn+3.

Proof: Statement 1 is clearly true, as the product of left nodes with right nodes

equals the product of all nodes. Statement 2 can easily be derived from the above

propositions. We have from Proposition 5.5 that left nodes are equal to their great

grandparents and so the left nodes in ρn+3 are derived from nodes in ρn. But by

Proposition 5.5, all left nodes have one left great grandchild and all right nodes have

two. Therefore, each element in ρ−n produces one great grandchild (equal to itself)

in ρ−n+3 and each element in ρ+n produces two great grandchildren (equal to itself) in

ρ−n+3. Taking products, we have that Ln+3 = LnR
2
n. Statement 3 is simply a result

of substituting Statement 1 into Statement 2. (Rittaud [64] also points out that the

nth row of R is included in the (n+ 3)rd row of R.)

Rearranging Statement 2 and substituting it into Statement 1 gives,

An = LnRn = Ln

√
Ln+3

Ln

=
√
LnLn+3,

which is precisely Statement 4. Statement 5 can be proved by repeatedly substituting

Statement 2 into itself to get

Ln+3 = LnR
2
n = Ln−3(Rn−3)2R2

n = Ln−6(Rn−6)2(Rn−3)2R2
n = (RnRn−3Rn−6 · · · )2.

Here we have L1 = L2 = L3 = 1, so this term disappears from the product. Statement

6 follows directly from Statement 5 for Ln by using Statement 3 to rewrite Ln+3

as AnRn. We can obtain Statement 7 from Statement 5 by considering the term

RnRn−3Rn−6 · · · . Substituting Statements 1 and 3 in an alternating fashion we get

RnRn−3Rn−6 · · · = An

Ln

· Ln

An−3
· An−6
Ln−6

· Ln−6
An−9

· · · · = An

An−3
· An−6
An−9

· · · · ,
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and substituting this expression into Statement 5 gives Statement 7. Lastly, State-

ment 8 comes directly from Statement 6 by taking a ratio. �

Notice that Statements 1 and 2 are independent of each other and the rest are

derived from these two. It would be ideal if we could find a third independent relation

for the products of nodes in R. This would allow us to solve for an exact expression for

the product An, which we will soon see would lead us to an expression for Viswanath’s

constant! Using what we know about products of nodes in R we can attempt to

reconstruct An. Statement 2 of Theorem 6.1 says that Ln+3 = LnR
2
n, and so we

have a recursion for the product of left nodes in a given row. What can we say

about the right nodes? We know from Proposition 5.5 that left nodes have three

great grandchildren, one of which we know is equal to itself because it is a left child.

We can introduce a constant c and write the product of the great grandchildren of

left nodes as c(Ln−3)3. Similarly, right nodes have five great grandchildren, two of

which are equal to itself, so we can write the product of these great grandchildren as

d(Rn−3)5, using a constant d. Combining we have that

An = α(Ln−3)3(Rn−3)5,

where α = cd. Using values in the extension of Table 6.1 (for n ≤ 29), we are able to

determine that α ≈ 1.5836413 . . . . If this number could be identified, we would have

an additional relation among the products of nodes in R and could therefore find an

expression for An.

Another interesting pattern to note is the following.

Conjecture 6.1. The last Fn entries of ρn+1 plus the last Fn entries of ρn+2 respec-

tively, give the last Fn entries of ρn+3. This holds also for subsets of R with the same

shape as R.

Example 6.1. Consider the seventh row of R, which is ρ7 = {5, 1, 7, 3, 5, 7, 3, 13}.
We know from Proposition 5.11 that |ρ7| = F6 = 8. The multiset given by the

last 8 entries of ρ8 is {7, 1, 9, 5, 9, 11, 5, 21} and for the last 8 entries of ρ9 we have

{12, 2, 16, 8, 14, 18, 8, 34}. It is easy to see that adding respective members of the first

two multisets gives the third, as conjectured.
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In Section 4.5 we described the equivalence classes of length-n coefficient cycles

which generate periodic coefficient sequences. These sequences approximate the se-

quences in T when n gets large. We can similarly describe the equivalence classes of

coefficient cycles corresponding to sequences in R. We know that we cannot have two

consecutive lefts in R, and this is equivalent to prohibiting (−−) in our coefficient

cycles. The operation of color swapping does not come into play in this case because

with the exception of ((+−)k), switching + and − signs will result in the coefficient

cycle containing (−−), for n ≥ 2. Again, we will think of our coefficient cycles as

necklaces.

The number of necklaces of two colors with no (−−) is given by the following

sequence (see [67, A000358]) for n ≥ 1:

1, 2, 2, 3, 3, 5, 5, 8, 10, 15, 19, 31, 41, 64, . . . ,

and if we restrict these necklaces to be primitive we get the sequence (see [67,

A006206])

1, 1, 1, 1, 2, 2, 4, 5, 8, 11, 18, 25, 40, 58, . . . .

Notice that prime-indexed terms in A006206 are one less than those in A000358. This

is due to the fact that when n is prime, we only have one non-primitive coefficient

cycle, namely ((+)n), as was the case for sequences Bs(n, 2) and Bsp(n, 2) in Chapter

4. The former sequence has formula

an =
1

n

∑
d|n

φ
(n
d

)
(Fd−1 + Fd+1),

as given in [67, A000358].

Example 6.2. For n = 8, the eight necklaces with no (−−) (in A000358) are (+ +

++++++), (+++++++−), (+++++−+−), (+++−+−+−), (++++−++−),

(++−++−+−), (+++−+++−) and (+−+−+−+−). If we restrict this list

to primitive necklaces (in A006206), the first and the last two necklaces are removed,

and we are left with five.

We can further restrict the number of coefficient cycles by considering them as

bracelets rather than necklaces. The number of bracelets of two colors with no (−−)
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is given by the following sequence (see [67, A129526]) for n ≥ 1:

1, 2, 2, 3, 3, 5, 5, 8, 9, 14, 16, 26, 31, 49, . . . .

If we restrict these bracelets to be primitive, we obtain the number of equivalence

classes of coefficient sequences corresponding to sequences in R. The first few terms

are

1, 1, 1, 1, 2, 2, 4, 5, 7, . . . .

Notice that the this sequence is identical to A006206 until n = 9, and similarly

A129526 is identical to A000358 until this point. This is the first instance where

reversing a coefficient cycle (equivalently, flipping a bracelet over in the plane) pro-

duces a different coefficient cycle under rotation. Specifically, for n = 9 we have the

equivalent bracelets (+++−++−+−) and (+++−+−++−). This distinction

occurs whenever we have three different sized groups of + signs in our coefficient

cycle. Recall the case in Example 4.5, where for n = 7 we had equivalent bracelets

(+++−+−−) and (+++−−+−), which were distinct necklaces. This does not

occur at n = 7 for coefficient cycles in R because (−−) is prohibited.

The growth types and rates of our equivalence classes can be found by considering

the trace or order of the corresponding product matrices, as was done in Chapter

3. Recall that length n coefficient cycles are used only to approximate sequences in

R. The tree R does not contain repeated edges, and so it cannot possibly contain

a bounded (periodic) sequence. It again proves difficult, however, to determine the

sizes of the equivalence classes and construct a formula for the average of growth

rates.

We can also look at the equivalence classes of coefficient cycles of R1, the variation

of R discussed in Section 5.1. We saw that coefficient cycles which approximate

sequences in R1 cannot contain (+ − +) or (− + −). Also recall that in R and R1,

the first direction we travel is right, and so coefficient cycles must begin with +.

Notice that we cannot talk about necklaces in this case because we must take into

account the fact that some or all rotations of a given coefficient cycle may be restricted

because they contain (+− +) or (− +−). By definition, a necklace is equivalent to

itself under rotation. We may still speak of equivalence classes of allowable coefficient
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cycles, where equivalence under rotation applies only to cycles with no (+ − +) or

(−+−).

Let us first consider the number of coefficient cycles with equivalence under ro-

tation, where (+ − +) and (− + −) are not allowed. We can split our cycles into

two types - those of the form ((+)i(−)j), and those which do not have this form.

Coefficient cycles of this simple form are easy to count. If the cycle is of length n, it

may begin with i + signs, where 1 ≤ i ≤ n. Therefore we have n distinct coefficient

cycles of this type. The number of coefficient cycles not of this type is 0 for n ≤ 5

due to the restrictions in place. For 6 ≤ n ≤ 9 we have 1, 4, 10, 18. The first instance

of a non-simple coefficient cycle is (+−−++−). Note that none of its rotations are

allowable. Combining both types we have that the number of coefficient cycles with

equivalence under rotation for n ≥ 1 is given by the sequence

1, 2, 3, 4, 5, 7, 11, 18, 27, . . . .

Let us now remove equivalence under rotation and simply count the number of

coefficient cycles appearing in R1. We know that there are Fn−1 terms in row ρn

of R, but to reach ρn, it requires n − 2 choices of + or − (i.e., left or right in the

tree). Therefore, if we have n terms in our coefficient cycle, there are Fn+1 different

coefficient cycles of length n. This also holds for R1 because it contains the same set

of sequences as R by Proposition 5.6. Now let us count the total number of coefficient

cycles of each type. For cycles with form ((+)i(−)j), we need to count the number

of allowable rotations. If we have i ≤ n − 2 + signs for n ≥ 3, all rotations which

start with + are allowable (recall they must start with +), so there are i coefficient

sequences of this form. If i = n − 1, our cycle is of the form (+ · · · + −) and any

rotation starting with + would contain (+ − +). Also, if i = n, all rotations give

us the same cycle back. The total number of coefficient cycles of this simple type is

therefore given by

2 +
n−2∑
i=1

i,

for n ≥ 3. For n = 1 we have the coefficient cycle (+) and for n = 2 we have (++)

and (+−). Therefore for n ≥ 1, the total number of coefficient cycles of this type, is
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given by the sequence

1, 2, 3, 5, 8, 12, 17, 23, 30, . . . .

Since we know that there are Fn+1 coefficient cycles of length n, the number of

coefficient cycles not of the form ((+)i(−)j) is

Fn+1 −
(
2 +

n−2∑
i=1

i

)
, (6.1)

for n ≥ 3. For n = 1, 2, this value is 0, and in fact it is 0 for n ≤ 5. Interestingly, the

sequence defined by Equation (6.1), namely

0, 0, 0, 0, 0, 1, 4, 11, 25, 51, 97, 176, 309, . . . ,

can be found in [67, A014162] for n ≥ 6, and its formula is given as

Fn+1 − 1

2
(n2 − 3n+ 6).

It describes the partial sum operator applied three times to Fibonacci numbers, and

also “the number of 132-avoiding two-stack sortable permutations which contain ex-

actly one subsequence of type 51234, with offset 4.” This connection to permutations

with forbidden subsequences is something which could be further examined.

Example 6.3. For n = 7, one of our coefficient cycles is (+ − − − + + −), and we

also have the cycle obtained by switching signs and reversing, (+−−+++−). The

coefficient cycles obtained by switching signs in the former cycle or reversing it do not

meet our criteria because those cycles and all possible rotations either begin with −,

or contain (+−+) or (−+−). For n = 8, the coefficient cycle (+++−−++−), its

sign-switched counterpart (+−−−++−−), as well as the reversals of both of these,

(+ + − − + + +−) and (+ − − + + − −−) all occur. This example highlights the

importance of the initial term in a coefficient cycle. Previously, when dealing with

necklaces, we could always rotate our cycle so that it began with +.

If we now restrict ourselves to the number of equivalence classes (primitive coef-

ficient cycles with equivalence under rotation, reversal and color swapping), we have

the following sequence for n ≥ 1:

1, 1, 1, 2, 2, 4, 5, 8, 12, . . . .
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Curiously, this sequence matches that of the number of primitive necklaces with no

(−−) ([67, A006206]) term up to n = 8.

Example 6.4. For n = 8, the 8 equivalences classes of coefficient cycles with (+−+)

and (−+−) prohibited are (+++++++−), (++++++−−), (+++++−−−),

(+ + + + − − −−), (+ + + − − + +−), (+ − − + + + +−), (+ − − + + + −−),

(+−−−+++−). The equivalence class of (+++−−++−) contains the rotation

(− + + + − − ++), but none of the other six. The equivalence class of (+ − − +

+ + +−) does not contain any of its rotations. For n = 9, the equivalence class of

(+++−−+++−−) contains all of its rotations that begin with + because neither

(+−+) nor (−+−) occur.

6.2 A New Computation of Viswanath’s Constant

Recall from Equation (3.15) that we can approximate Viswanath’s constant by cal-

culating the growth rate of every periodic coefficient sequence of length n, taking the

average, and then letting n go to infinity. Each growth rate was given by |λ1| 1n , where
λ1 was the dominant eigenvalue of the product matrix Pn. Recall from Chapter 5

that we have also used λn,i to denote the dominant eigenvalue of Pn,i, the i
th product

matrix in row n. Viswanath’s constant, which it will soon be convenient to denote as

τ rather than eγf , can be rewritten as

τ = lim
n→∞

|λn,1| 1n + |λn,2| 1n + · · ·+ |λn,i| 1n + · · ·+ |λn,2n| 1n
2n

,

There are 2n periodic coefficient sequences of length n, and so 2n product matrices.

Further, we also approximated Viswanath’s constant using |λ1| ≈ |tr(Pn)|, as in

Equation (3.17). Both approximations to τ converged very slowly.

We can now give a formulation for Viswanath’s constant that does not take ma-

trices into consideration. In [44], Kalmár-Nagy notes that we can do this using the

geometric mean of the nth terms in our periodic coefficient sequences, but does not

provide a proof.

Theorem 6.2. Viswanath’s constant can be written as the limit

τ = lim
n→∞

( ∏
all tn �=0

|tn|
) 1

n2n−2

, (6.2)
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where tn is the nth term in a random Fibonacci sequence, and the product is taken

over all possible non-zero nth terms in absolute value.

Proof: Let 0 < ε < 1
2
. From Theorem 1.1 we have that

τ = lim
n→∞

|tn| 1n ,

almost surely. This means that there is a positive integer N such that, with the

exception of a proportion ε of the 2N−2 terms at level N , we have

τ − ε ≤ |tN,i|
1
N ≤ τ + ε, (6.3)

where tn,i denotes the n
th term in the ith random Fibonacci sequence. If there were no

such N , then a positive proportion of terms would always lie outside of that interval,

which would be a contradiction to Theorem 1.1.

Now, relabel the terms tN,i at level N , where i = 1, 2, · · · , 2N−2, such that those

in the exceptional set occur first. We then have that the tN,i with

i = 1, 2, . . . , �ε2N−2�,

are in the exceptional set. Note that for any term |tn,i| 1n we have

1 ≤ |tn,i|
1
n ≤ φ, (6.4)

because any term |tn| lies between 1 and Fn in τn. Set i0 := �ε2N−2�, and consider

the geometric mean

P (N) :=

⎛⎝2N−2∏
i=1

|tN,i|
1
N

⎞⎠
1

2N−2

, (6.5)

where zero-terms have been removed from the product. Now, split this product into

two parts; those terms which belong in the exceptional set, and those which do not.

This gives

P (N) =

⎛⎝ i0∏
i=1

|tN,i|
1
N

2N−2∏
i=i0+1

|tN,i|
1
N

⎞⎠
1

2N−2

=

(
i0∏
i=1

|tN,i| 1
N

τ

) 1

2N−2

⎛⎝τ i0
2N−2∏
i=i0+1

|tN,i|
1
N

⎞⎠
1

2N−2

(6.6)

= P1(N)P2(N). (6.7)



218

Here we have added i0 terms τ to the product on the right-hand side so that we have

a geometric mean, P2(N), of 2N−2 terms. Since a geometric mean lies between the

smallest and the largest elements, we have by the inequality in (6.3) (which includes

the term τ),

τ − ε ≤ P2(N) ≤ τ + ε. (6.8)

Next, in order to estimate P1(N), we note that

i0
2N−2

≤ ε2N−2

2N−2
= ε. (6.9)

Also, we will use the following lemma from Brown, Dilcher and Manna [12]: For

0 < x < 1
3
we have ex < 1 + 6

5
x. This, together with the form for P1(N) given in

Equation (6.6) and the inequalities in (6.4) and (6.9), we have

P1(N) ≤
(
φ

τ

)i0/2N−2

≤
(
φ

τ

)ε

= eε log(φ/τ) < 1 +
6

5
log

(
φ

τ

)
ε < 1 +

ε

2
. (6.10)

(Note that 0 < ε log(φ/τ) < 0.178618 . . . and 6
5
log(φ/τ) = 0.428683 . . . .) On the

other hand, by the inequalities in (6.4) and (6.9) again,

P1(N) ≥
(
1

τ

)i0/2N−2

≥
(
1

τ

)ε

= e−ε log(τ) > 1− log(τ)ε > 1− ε

8
. (6.11)

(Note that we have used the facts that ex > 1 + x for all real x, and log(τ) =

0.123975 . . . .)

Combining Equation (6.7) with the inequalities in (6.8), (6.10) and (6.11), we get(
1− ε

8

)
(τ − ε) ≤ P (N) ≤

(
1 +

ε

2

)
(τ + ε). (6.12)

To simplify these inequalities, we note that(
1− ε

8

)
(τ − ε) = τ −

(
1 +

τ

8

)
ε+

1

8
ε2 > τ − 1.15ε

and, since ε < 1
2
, (

1 +
ε

2

)
(τ + ε) = τ +

(τ
2
+ 1 +

ε

2

)
ε < τ + 2ε.

(Note here that τ
8
= 0.1414985 . . . and τ

2
+ 1

4
+ 1 = 1.8159941 . . . .) Combining this

with the inequality in (6.12), we have that

|P (N)− τ | < 2ε,
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which proves the theorem since ε was arbitrary. �

We can also give a rough sketch of the proof of the above theorem by multiplying

the growth rate formulas for each random Fibonacci sequence tn,i as follows:

lim
n→∞

|tn,1| 1n lim
n→∞

|tn,2| 1n · · · lim
n→∞

|tn,i| 1n · · · lim
n→∞

|tn,2n−2 | 1n = τ 2
n−2

.

We can rewrite this as the limit of a product to give

lim
n→∞

|tn,1tn,2 · · · tn,i · · · tn,2n−2 | 1n = τ 2
n−2

,

where any zero term is removed without consequence. Now, taking the root of order

2n−2 gives

lim
n→∞

|tn,1tn,2 · · · tn,i · · · tn,2n−2 | 1
n2n−2 = τ,

as required.

By Corollary 1.1, the multiset of all possible nth terms |tn| is the nth row, τn, of

T . Therefore, we may think of the tree T as being comprised of the set of random

Fibonacci sequences {|tn|} in absolute value, or equivalently, the set of sequences

{f̃n}, as originally defined. Using our product notation, Equation (6.2) can now be

written as

τ = lim
n→∞

P (τn)
1

n2n−2 ,

where again the product is taken over non-zero terms. It is interesting to note that

the result of Corollary 5.5, namely

lim
n→∞

E|tn|
E|tn−1| = α− 1 = 1.20556943 . . . ,

gives us the growth rate of the arithmetic mean of terms in row τn (using the ratio

form of Definition 2.4). This is in contrast to τ , which gives us the growth rate of

the geometric mean of terms in τn. The theorem of arithmetic and geometric means

(see Hardy et al. [36, p. 17]), which states that the arithmetic mean of a list of non-

negative real numbers is always greater than or equal to the geometric mean of those

numbers, is satisfied here. Note that we have already verified the inequality between

these two numbers using the generalized mean inequality in Chapter 5.
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It is also interesting that Theorem 6.2 for the growth rate does not depend on

individual sequences, only products of terms at each level. We could therefore rear-

range the nodes at each level in T , retaining the same multisets τn but creating a new

set of sequences with the same a.s. growth rate, τ . So do the individual sequences

really matter, or can we concern ourselves with the multisets τn only? Suppose we

generate a sequence by selecting one element at random from τn for each n ≥ 1.

What is its growth rate? The value of the randomly selected element is the expected

value (arithmetic mean) of elements in τn, and so the sequence will have growth rate

1.20556943 . . . . This is in contrast to τ , which would occur if the expected value used

the geometric mean instead. Perhaps thinking about this problem in a different way

could instead lead us to the geometric mean.

We can apply the above ideas about the geometric mean to the reduced tree

R defined in Section 5.1. We must first assume that the following limit exists for

sequences {rn} in R:

lim
n→∞

rn
1
n = ρ,

where the constant ρ is the a.s. growth rate of sequences in R and is analogous to

τ in T . Since terms rn are nodes in R, they are positive. In [64], Rittaud gives a

heuristic argument for the following result; as an important contribution, we have

made it rigorous.

Theorem 6.3. The following link exists between growth rates τ = 1.13198824 . . . and

ρ = 1.33683692 . . .:

τ = ρ
1− 3

2φ2 = ρ
3
√

5−5
4 . (6.13)

Proof: By definition, we have that τ = limn→∞ |tn| 1n and ρ = limn→∞ rn
1
n , almost

surely. We want to project sequences {|tn|} in T into R. This is possible because

we know that R is a reduction of the tree T and so contains all edges which appear

in T . We also know that R contains only the first appearance of every edge in T .

Let θ(n) be the row number in R where we find |tn| in the edge (|tn−1|, |tn|), so that

rθ(n) = |tn|. Note that θ(n) ≤ n. We have that for sequences in T which also occur

in R, θ(n) = n, i.e., there are no reductions. In the projection of sequences in T into

R, we have

ρ = lim
n→∞

rθ(n)
1

θ(n) , (6.14)
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almost surely. This is because projecting a sequence in T into R should give the same

growth rate as that sequence in R. Recalling that sequences |tn| are positive in T , we

can write, almost surely,

τ = lim
n→∞

|tn| 1n = lim
n→∞

rθ(n)
1
n = lim

n→∞
rθ(n)

1
n
· θ(n)
θ(n) = lim

n→∞
rθ(n)

1
nθ(n)

·θ(n). (6.15)

We now want to find an expression for θ(n), i.e., the row number in which we find

|tn| in R. We will use an expected value to find an expression for θ(n + 1), i.e., the

row number in which we find |tn+1| in R, based on the fact that given θ(n), there

are two different values θ(n+ 1) can take on. Recall that if |tn+1| is a child of |tn| in
T , it is not necessarily a child in R because in this tree we have removed branches.

Corollary 5.1 says that

cT (ρn) = ρn+1 � ρn−2,

i.e., children in T of nodes belonging to ρn may appear in row n+ 1 or n− 2. Let pn

be the probability of finding the edge (|tn|, |tn+1|) at a previous level of R, i.e., the

probability that |tn+1| is the left child of a left node |tn|, where |tn| occurs at level

θ(n) in R (which means it is in the set ρθ(n)). The expected value can be written as

E(θ(n+ 1)) = (1− pn)(θ(n) + 1) + pn(θ(n)− 2).

We can also think of this expression as a random recurrence by writing

θ(n+ 1) = θ(n) + 1− 3μn,

where μn = 1 with probability pn and μn = 0 with probability 1− pn. Solving gives

θ(n) =
n−1∑
i=0

(1− 3μi) = n− 3
n−1∑
i=0

μi,

where we have assumed θ(0) = 0. The second sum tells us the number of times

μi = 1. In order to evaluate this sum we must use an expected value as follows:

E(θ(n)) = n− 3
n−1∑
i=0

E(μi) = n− 3
n−1∑
i=0

pi = n

(
1− 1

n

n−1∑
i=0

pi

)
(6.16)

We can write pn as the ratio of the number of missing children of ρθ(n) in ρθ(n)+1

over the total number of children of ρθ(n) in T and so

pn =
|ρθ(n)−2|

|ρθ(n)+1 � ρθ(n)−2| .
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We have |ρn| ≥ 1 for n ≥ 1 and so we will assume |ρn| = 0 for n ≤ 0, in which case

pn = 0 and hence μn = 0 with probability 1 also. We know from Proposition 5.11 the

sizes of rows in R, and so

pn =
Fθ(n)−3

Fθ(n) + Fθ(n)−3
=

Fθ(n)−3
2Fθ(n)−1

.

We can now write Equation (6.16) as

E(θ(n)) = n

(
1− 1

n

n−1∑
i=0

Fθ(i)−3
2Fθ(i)−1

)
(6.17)

We will be interested in taking the limit of the above sum. Note that if we

randomly choose a sequence in T , we know with probability 1 that it must grow

exponentially. If we then project this sequence into R, it still grows exponentially

because it is the same sequence. The difference is that in R we may be removing

some instances of repetition from the sequence, implying θ(n) ≤ n, but θ(n) must

still grow infinitely large. Otherwise, the sequence must stay within a finite number

of rows in R implying it is bounded, which is a contradiction. Therefore, as n → ∞
we must also have θ(n) → ∞, implying

lim
n→∞

Fθ(n)−3
2Fθ(n)−1

= lim
n→∞

Fn−3
2Fn−1

=
1

2φ2
.

By Proposition 5.12 for Cesàro means, we have

lim
n→∞

1

n

n−1∑
i=0

Fθ(i)−3
2Fθ(i)−1

= lim
n→∞

Fθ(n−1)−3
2Fθ(n−1)−1

=
1

2φ2
. (6.18)

Since we have an expression for the expected value of θ(n), we can rewrite Equation

(6.15) as

τ = lim
n→∞

(rθ(n))
1

nE(θ(n))
·E(θ(n)), (6.19)

keeping in mind that limit expressions for τ and ρ hold almost surely. Substituting

Equation (6.17) into this expression for τ gives

τ = lim
n→∞

(rθ(n))
1

nE(θ(n))

(
1− 1

n

∑n−1
i=0

Fθ(i)−3
2Fθ(i)−1

)
n

= lim
n→∞

(rθ(n))
1

E(θ(n))

(
1− 1

n

∑n−1
i=0

Fθ(i)−3
2Fθ(i)−1

)
.
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Also, because E(θ(n)) almost surely goes to infinity at the same rate as θ(n) does (re-

call we have seen that the latter goes infinity almost surely), we can modify Equation

(6.14) to give

ρ = lim
n→∞

(rθ(n))
1

E(θ(n)) . (6.20)

We can now use the fact that if limn→∞ f(n) and limn→∞ g(n) both exist, we have

lim
n→∞

f(n)g(n) = lim
n→∞

f(n)limn→∞ g(n).

This is straightforward to see if we take the logarithm and use limit laws. Using

Equation (6.18), we can now write

τ = lim
n→∞

(rθ(n))
1

E(θ(n))
limn→∞

(
1− 1

n

∑n−1
i=0

Fθ(i)−3
2Fθ(i)−1

)
, (6.21)

almost surely. Substituting Equations (6.20) and (6.18) into the above gives

τ = ρ
1− 3

2φ2 ,

completing the proof. �

We can now calculate ρ to be approximately 1.33683692. Similarly, finding a good

approximation of ρ will yield a good approximation of τ . The following theorem from

Gelfond [31, p. 106] could shed light on the nature of Viswanath’s constant, if more

was known about the constant ρ.

Theorem 6.4 (Gelfond-Schneider). Given numbers α and β, where α 	= 0, 1 is alge-

braic and β is algebraic and irrational, the number αβ is transcendental.

Let α = ρ and β = 1− 3
2φ2 = 3

√
5−5
4

. We know that β is an algebraic irrational, and

so if it could be shown that ρ is algebraic, Viswanath’s constant τ would necessarily

be transcendental.

We can now write the constant ρ using a geometric mean, as in Theorem 6.2. This

formula will soon lead us to the most important result of the thesis.

Theorem 6.5. The almost sure growth rate of a random Fibonacci sequence {rn} in

the tree R is given by

lim
n→∞

P (ρn)
1

nFn−1 = ρ, (6.22)

where ρn is the nth row in R.
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Proof: We will use the argument given in Theorem 6.2, with a few minor changes.

Replacing τ with ρ, |tn| with rn and 2n−1 with Fn−1 (recall Proposition 5.11, which

states that there are Fn−1 entries in ρn), we can follow the proof up to Equation

(6.10), where the inequalities remain true. Here we can write

P1(N) ≤
(
φ

ρ

)i0/2N−2

≤
(
φ

ρ

)ε

= eε log(φ/ρ) < 1 +
6

5
log

(
φ

ρ

)
ε < 1 +

ε

2
,

where 0 ≤ ε log (φ/ρ) ≤ 0.095452754, and so we are permitted to use the result of

Brown et al. [12]. Also, 6
5
log

(
φ
ρ

)
= 0.22908661, so the final inequality holds. The

bounds in Equation (6.11) can be adjusted slightly to give

P1(N) ≥
(
1

ρ

)i0/2N−2

≥
(
1

ρ

)ε

= e−ε log(ρ) > 1− log(ρ)ε > 1− ε

3
.

Here, log ρ = 0.29030631 so we moved the lower bound from 1− ε
8
to 1− ε

3
. Equation

(6.12) can now be written as(
1− ε

3

)
(ρ− ε) ≤ P (N) ≤

(
1 +

ε

2

)
(ρ+ ε).

The upper bound is again bounded by ρ+2ε, and the lower bound can be written as(
1− ε

3

)
(ρ− ε) = ρ−

(
1 +

ρ

3

)
ε+

1

3
ε2 > ρ− 1.5ε

because ρ
3
= 0.4456123067. Again we can conclude that

|P (N)− ρ| < 2ε,

completing the proof. �

We need not take absolute values of the product because all terms in the tree R

are positive. Note that the growth rate of the arithmetic mean of terms in ρk was

given in Corollary 5.4 as 2.20556943/φ = 1.363116873.

Table 6.2 gives approximations of τ and ρ using the root form of Definition 2.4

as well as an approximation of τ obtained from ρ using Rittaud’s formula. The

approximation of τ given in column 1 is achieved using the nth root of the geometric

mean of nodes in τn, and the Maple program for this geometric mean is given in

Figure A.2 of Appendix A. Here we are calculating and storing all nodes f(k, n) in
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the kth position of the nth row of the tree T based on the value of n (mod 4). The

approximation is poor, however, so it was not worth the long computing time to

continue for higher values of n.

The fact that random Fibonacci sequences in R do not grow at the rate τ =

1.13198824 . . . is not contradictory. At level n, we have Fn−1 sequences in R and 2n−2

sequences in T . Since

lim
n→∞

Fn−1
2n−2

= 0, (6.23)

a random Fibonacci sequence chosen at random from T will almost surely have growth

rate τ .

We have seen in Definition 2.4 that we can equally well define the growth rate of

a sequence in terms of a ratio, rather than an nth root. For sequences P (τn)
1

2n−2 and

P (ρn)
1

Fn−1 , the growth rates can also be determined by the respective limits

τ = lim
n→∞

|P (τn)|
1

2n−2

|P (τn−1)|
1

2n−3

, ρ = lim
n→∞

P (ρn)
1

Fn−1

P (ρn−1)
1

Fn−2

. (6.24)

As can be seen in Table 6.3, this limit actually gives us a much better approximation

to the growth rate ρ than Equation (6.22). We have that ρ = 1.33683692 . . . and

again we use Rittaud’s formula to approximate τ = 1.13198824 . . . given ρ. This

approximation for n = 39 is correct to eight decimal places, and we feel this is the

most important result of the thesis. As in Table 6.2, the approximation to τ in

column 1 using the ratio of geometric means is far worse than that in Column 3, so

this method was not pursued. It is important to note that this good approximation

of Viswanath’s constant is a result of using the reduced tree R. Because there are

far fewer sequences at level n in tree R than in tree T , there were less computations

needed in the calculation.

A portion of the Maple program used to calculate P (ρn)
1

Fn−1 (from which we

can calculate the root or ratio definition of ρ) for n = 24 is given in Figure A.1 in

Appendix A. To speed up the process, we divided the tree R into 13 subtrees and

calculated the product of nodes for each. This required finding the product matrices

for the 13 length-6 coefficient cycles at ρ8 in R. Multiplying the product matrix by

the vector [1, 1]T gives us the initial values for each of the 13 subtrees. By taking

further product matrices, we can then calculate all possible descendants at a given
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n |P (τn)|
1

n2n−2 P (ρn)
1

nFn−1 τ approximation
12 1.114731452 1.27818405041443 1.11050575538334
13 1.107641902 1.28245477393190 1.11208880100941
14 1.108178454 1.28627159706030 1.11350104361417
15 1.116093473 1.28960968771617 1.11473418605353
16 1.111784082 1.29248979778539 1.11579667451891
17 1.112282714 1.29505783713997 1.11674289496682
18 1.117453610 1.29734878466390 1.11758611120501
19 1.114747778 1.29939403349511 1.11833817400352
20 1.115191136 1.30124111524162 1.11901678573824
21 1.118703154 1.30291522613447 1.11963137191158
22 1.30443763984302 1.12018987554398
23 1.30582984991015 1.12070028661417
24 1.30710747270355 1.12116841350243
25 1.30828374124988 1.12159917199075
26 1.30937058135497 1.12199698391308
27 1.31037774307515 1.12236546260294
28 1.31131361211891 1.12270771284350
29 1.31218556072738 1.12302646126611
30 1.31299990697781 1.12332404306748
31 1.31376216345969 1.12360249420665
32 1.31447718492731 1.12386360633979
33 1.31514922711472 1.12410894908595
34 1.31578204955417 1.12433990820437
35 1.31637899041374 1.12455771341596
36 1.31694301673026 1.12476345714241
37 1.31747677722124 1.12495811410692
38 1.31798264476916 1.12514255710183
39 1.31846274997541 1.12531756944812

Table 6.2: nth root approximations to τ and ρ.
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n |P (τn)|
1

2n−2

|P (τn−1)|
1

2n−3

P (ρn)
1

Fn−1

P (ρn−1)
1

Fn−2

τ approximation

12 1.265325659 1.33924654727029 1.13285914893344
13 1.026003498 1.33483022958181 1.13126229129270
14 1.115177325 1.33693642638980 1.13202422951668
15 1.233027320 1.33726287123704 1.13214226270383
16 1.049104383 1.33647141663268 1.13185606667525
17 1.120291308 1.33684733797345 1.13199201480700
18 1.209129616 1.33692083992409 1.13201859348026
19 1.067147962 1.33676482459047 1.13196217655715
20 1.123648513 1.33683881628769 1.13198893326862
21 1.191313146 1.33685345437077 1.13199422655883
22 1.33682247027204 1.13198302233215
23 1.33683722479937 1.13198835776711
24 1.33684029202542 1.13198946691295
25 1.33683394604571 1.13198717212873
26 1.33683697902493 1.13198826889205
27 1.33683762000829 1.13198850067949
28 1.33683630073850 1.13198802361530
29 1.33683693377726 1.13198825252994
30 1.33683706976437 1.13198830170455
31 1.33683679142042 1.13198820105195
32 1.33683692544958 1.13198824951855
33 1.33683695453562 1.13198826003642
34 1.33683689516267 1.13198823856643
35 1.33683692384246 1.13198824893739
36 1.33683693011759 1.13198825120656
37 1.33683691733460 1.13198824658407
38 1.33683692352642 1.13198824882311
39 1.33683692488976 1.13198824931611

Table 6.3: Ratio approximations to τ and ρ.
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level for each subtree and find their products. When calculating product matrices,

the absolute value was taken at each step, which means we are actually using the

recurrence tn = |±tn−1+tn−2|. This is equivalent to Equation (1.8), f̃n = |f̃n−1±f̃n−2|,
which produces the positive tree R as required. We take the root of order Fn−1 for all

13 products of nodes in ρn, and then take the ratio of this quantity for consecutive

values of n. It is interesting that taking ratios for n = 39 we obtain one of two values,

namely α = 1.01630979 . . . and β = 1.02652252 . . . . If the initial values form a left

edge (this occurs 5 times), we obtain the former value and if they form a right edge

(this occurs 8 times) we obtain the latter. We can combine this information to write

P (ρ39)
1

F38

P (ρ38)
1

F37

= (1.01630979 . . .)5(1.02652252 . . .)8, (6.25)

and this value tends to ρ. But can these new constants tell us anything about the

value of ρ? We can observe that β = αφ. We can therefore rewrite Equation (6.25)

(in the limit) as

ρ = α5α8φ = α5+8φ = αφ6

, (6.26)

and so

α = ρ
1
φ6 , β = ρ

1
φ5 .

This investigation gives us no new insight about ρ, but does verify Proposition 1.1,

which says that initial values are unimportant when calculating the a.s. growth rate

of a random Fibonacci sequence, this time for sequences in R. Each of our 13 subtrees

has different initial values, and each showed the same growth behaviour. Right-edge

initial values (in the limit) have φ times as many descendants than left-edge initial

values, which is demonstrated in the relation β = αφ. Also, had we taken the root of

order Fn−7 instead of Fn−1, we would have obtained ρ instead of α as a growth rate.

Table 6.4 summarizes the different growth rates we have seen so far.

Tree g.r. of sums of rows g.r. of expected value a.s. growth rate
R α = 2.205569431 . . . α/φ = 1.363116873 . . . ρ = 1.33683692 . . .
T 2(α− 1) = 2.411138862 . . . α− 1 = 1.205569431 . . . τ = 1.13198824 . . .

Table 6.4: Various growth rates in R and T .
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In the previous section we considered the products Ln and Rn, of left and right

nodes of ρn, respectively. Using the ratio formula, like that given in Equations (6.24),

computation reveals that the growth rates of the geometric means of Ln and Rn are

given by

lim
n→∞

(Ln)
1

Fn−3

(Ln−1)
1

Fn−4

= lim
n→∞

(Rn)
1

Fn−2

(Rn−1)
1

Fn−3

= ρ. (6.27)

Recall from Proposition 5.11 that |ρ−n | = Fn−3 and |ρ+n | = Fn−2. Further it is inter-

esting to note that if we split up the product An, using the equivalent ratio form of

the growth rate given in Definition 2.4, we have

lim
n→∞

(An)
1

nFn−1 = lim
n→∞

(
(Ln)

1
nFn−1 · (Rn)

1
nFn−1

)
= lim

n→∞
(Ln)

1
nFn−3

·Fn−3
Fn−1 · lim

n→∞
(Rn)

1
nFn−2

·Fn−2
Fn−1 .

We have seen that limn→∞ f(n)g(n) = limn→∞ f(n)limn→∞ g(n), where both limits exist.

Using the growth rate from Equation (6.27) we can write

lim
n→∞

(An)
1

nFn−1 = lim
n→∞

(Ln)
1

nFn−3
·limn→∞

Fn−3
Fn−1 · lim

n→∞
(Rn)

1
nFn−2

·limn→∞
Fn−2
Fn−1

= ρ
1
φ2 · ρ 1

φ = ρ
1+φ

φ2 = ρ,

as expected.

We can consider a few other types of growth rates concerning the tree R, and also

its variation R1. We can approximate the a.s. growth rate of sequences in R by taking

an average over all possible growth rates (i.e., nth roots of dominant eigenvalues |λ|)
of sequences as was done in Equation (3.15), or approximate the growth rate by the

nth root of the trace, like Equation (3.17). In R we will take the limit of the average

of Fn+1 growth rates or nth roots of traces derived from product matrices of length

n. We suspect that the a.s. growth rate would converge slowly to ρ, as was the case

for sequences in T and their a.s. growth rate τ . First, let us consider the arithmetic

mean of nth roots of traces in R, i.e.,

(|un,1|
1
n + |un,2|

1
n + · · ·+ |un,i|

1
n + · · ·+ |un,Fn+1|

1
n )

Fn+1

, (6.28)
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where un,i is the trace of the ith product matrix Pn,i. For n = 7 and 8, the above av-

erage is approximately equal to 1.118428 and 1.151009 respectively. We can similarly

take the average of growth rates giving

(|λn,1|
1
n + |λn,2|

1
n + · · ·+ |λn,i|

1
n + · · ·+ |λn,Fn+1 |

1
n )

Fn+1

.

For 7 ≤ n ≤ 13 we obtain the values 1.157415, 1.142256, 1.123831, 1.114312, 1.124051,

1.080061, 1.119459. Strangely, these values appear to be hovering around Viswanath’s

constant, although we do not have enough data to draw any conclusions. We can

repeat the calculation in Equation (6.28) for sequences in the tree R1, i.e., those

which do not contain (+ − +) or (− + −). For 5 ≤ n ≤ 9 we obtain the values

1.230506, 1.264744, 1.27086, 1.276508, 1.106244.

Similarly, we can modify Equation (5.31) for the growth rate of the expected value

of the trace |u|, for both R and R1. If we first consider the sums of trace values (in

absolute value), we have the following sequences for R and R1 respectively, for n ≥ 1:

1, 4, 4, 11, 18, 42, 71, 154, 274, 533, 956, 1906, 3541, 6936, . . . ,

1, 4, 4, 15, 28, 66, 141, 316, 660, . . . .

Taking the nth root of these terms gives an approximation to the growth rate of the

sum, and because we have Fn+1 product matrices for a given n, dividing by φ (as

would be done in the limit using the ratio definition) gives us an approximation to

the growth rate of the expected value of the trace as follows:

(|un,1|+ |un,2|+ · · ·+ |un,i|+ · · ·+ |un,Fn+1 |)
1
n

φ
. (6.29)

For the case of R, this expression gives us the following values for 6 ≤ n ≤ 13:

1.152269, 1.136203, 1.159985, 1.153117, 1.157937, 1.153355, 1.159727, 1.158836. Sim-

ilarly for R1, the expression gives the following values for 6 ≤ n ≤ 9: 1.242423,

1.253267, 1.269033, 1.271437. We could also repeat this calculation for eigenvalues

λn,i as was done in Equation (5.32). When comparing the average value of the growth

rate of |u| to the growth rate of the average value, (see Equations (6.28) and (6.29))

we obtain roughly 1.15 for R in both cases and 1.26 for R1. This differs from the
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case of T , where we obtained differing values, namely τ = 1.13198824 . . . (see Equa-

tion (3.17)) and α − 1 = 1.20556943 . . . (see Equation (5.31)), in accordance with

the generalized mean inequality given in Equation (5.30). Further, we might expect

that the calculations of growth rates in R and R1 would give the same values because

by Proposition 5.6 these trees are comprised of the same set of sequences in abso-

lute value. Our calculations here are for small values of n, and need to be further

investigated before drawing any conclusions.

As mentioned in Section 6.1, Rittaud [64] constructs a matrix tree and subse-

quently a trace tree using the matrices A,B′ = ( 0 1±1 1 ). Using these traces, Equa-

tion (6.28) gives the values 1.354443, 1.35444 for n = 6, 7. This value is close to

ρ = 1.33683692 . . ., and would nicely parallel the approximation of τ given in Equa-

tion (3.17) (see Table 6.4), but again further investigation is required. The sequence

of the sums of trace values (in absolute value) for n ≥ 1 is given by

1, 4, 8, 19, 40, 90, 197, 436, 960, 2119, 4672, . . . .

Rittaud gives the recurrence

Hn = 2Hn−1 +Hn−3 + 2(−1)n

for n ≥ 3, where H0 = 2, H1 = 1, H2 = 4. Note the similarity to the recurrence

given in Lemma 5.1. For n = 6, 12, 18, Equation (6.29) for the growth rate of the

expected value of the trace gives 1.308336, 1.334862, 1.344085. This value is close to

α/φ = 1.363116873 . . ., and would nicely parallel the approximation of α− 1 given in

Equation (5.31) (again see Table 6.4). Finding a recurrence for the sums of traces or

a characterization of the occurrence of trace values in R (as in the above examples)

or T , could lead to a deterministic growth rate formula. This would be useful in those

cases where the values are not tending to algebraic numbers, i.e., it could lead to an

exact expression of τ or ρ.

6.3 A Second Argument for the Link Between τ and ρ.

Theorem 6.3 gives Rittaud’s link between τ and ρ, i.e., the almost sure growth rates

of random Fibonacci sequences in the trees T and R respectively. We can explain
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this relationship between τ and ρ using a different method. We will use our new

derivation of τ from geometric means found in Kalmár-Nagy [44], as well as the

results in Chapter 5 on writing rows of the tree T in terms of rows of the tree R.

We know from Equation (5.10) that the sum of terms in row n of T can be written

as

S(τn) =

n−3
3∑

k=0

t(n, k)S(ρn−3k), (6.30)

where we have n ≡ 0 (mod 3) and

t(n, k) =
k∑

j=0

A(n− 3k − 1, k − j)t(j),

A(i,m) =
2i

3m+ i

(
3m+ i

m

)
,

t(k) =
1

2

∑
j1+2j2+···+kjk=k

(
n

j1, j2, . . . , jk

)
A(0)j1A(1)j2 · · ·A(k − 1)jk ,

A(m) =
4

2m+ 1

(
3m

m

)
.

If we write the entries in row n of the tree T as a product rather than a sum, Equation

(6.30) can be rewritten as

P (τn) =

n−3
3∏

k=0

P (ρn−3k)t(n,k).

Our goal is to introduce the constants τ and ρ into this equation.

We can start by taking the root of order 2n−2 of both sides to get

P (τn)
1

2n−2 =

n−3
3∏

k=0

P (ρn−3k)
t(n,k)

2n−2 .

This gives us the geometric mean of the entries in τn on the left. We similarly want

the geometric mean of the entries in ρn−3k on the right-hand side and so must take

the (Fn−3k−1)th root to get

P (τn)
1

2n−2 =

n−3
3∏

k=0

P (ρn−3k)
1

Fn−3k−1

t(n,k)Fn−3k−1

2n−2 .
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Now, in order for the left-hand side to approach the growth rate τ in the limit, we

must take the nth root of both sides, which gives

P (τn)
1

n·2n−2 =

n−3
3∏

k=0

P (ρn−3k)
1

Fn−3k−1

t(n,k)Fn−3k−1

n·2n−2 .

Similarly, we need to take the (n− 3k)th root of the right-hand side, which gives

P (τn)
1

n·2n−2 =

n−3
3∏

k=0

P (ρn−3k)
1

Fn−3k−1(n−3k)

t(n,k)Fn−3k−1(n−3k)

n·2n−2 (6.31)

Now we can take the limit as n goes to infinity of both sides. The left-hand side

goes to τ , and P (ρn−3k)
1

Fn−3k−1(n−3k) goes to ρ for k small enough. It will soon be

conjectured that
∑n−3

3
k=0

t(n,k)Fn−3k−1(n−3k)
n·2n−2 approaches a constant, implying these limits

exist. Roughly speaking we have that

τ =

n−3
3∏

k=0

ρlimn→∞
t(n,k)Fn−3k−1(n−3k)

n·2n−2

= ρlimn→∞
∑n−3

3
k=0

t(n,k)Fn−3k−1(n−3k)

n·2n−2 . (6.32)

To prove this, we may be able to use Proposition 5.12 for Cesàro means on logarithms

of terms in Equation (6.31). It is true that

lim
n→∞

⎛⎝n−3
3∏

k=0

P (ρn−3k)
1

Fn−3k−1(n−3k)

⎞⎠
1

n/3

= lim
n→∞

P (ρn)
1

Fn−1·n = ρ,

where we have chosen k = 0. The problem is that the term t(n,k)Fn−3k−1(n−3k)
n·2n−2 is

increasing as k increases, whereas the term in the above equation is decreasing.

We have the following conjecture, which if true, could give Rittaud’s link, τ =

ρ
1− 3

2φ2 , using Equation (6.32).

Conjecture 6.2. For 3|n we have

lim
n→∞

n−3
3∑

k=0

t(n, k)Fn−3k−1(n− 3k)

n · 2n−2 = 1− 3

2φ2
,

where t(n, k) is given by Equation 5.10 and Table 5.2.
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We can obtain similar expressions by repeating the above for Equation (5.10) with

n = 1 or 2 (mod 3). Let us denote the sum in our conjecture by

μn :=

n−3
3∑

k=0

t(n, k)Fn−3k−1(n− 3k)

n · 2n−2 .

Table 6.5 gives some values for μn for n ≥ 15 with 3|n.

n μn

15 0.47324218
18 0.46752929
21 0.46295275
24 0.45922851
27 0.45615220
30 0.45357654

Table 6.5: Approximating μn for Conjecture 6.2.

We want these values to tend to

1− 3

2φ2
= 0.4270509834 . . . ,

and they appear to be converging as desired.



Chapter 7

Trace Reduction

7.1 A Trace Recursion

To better understand how the growth of a random Fibonacci sequence changes as

we increase n, we can study the change in the trace of its product matrix. For this

purpose we have the following recursive system for the trace. As before, A and B are

the matrices first defined in Section 1.4.

Theorem 7.1. Let Pn be a product matrix of length n. The following expressions

therefore correspond to product matrices of length n+ 2:

tr(PnAA) = tr(PnA) + tr(Pn),

tr(PnBB) = −tr(PnB) + tr(Pn).

}
(7.1)

The following expressions correspond to product matrices of length n+ 3:

tr(PnAAA) = tr(PnAA) + tr(PnA),

tr(PnAAB) = tr(PnAB) + tr(PnB),

tr(PnABA) = tr(PnAA)− tr(PnB)− 2tr(Pn),

tr(PnABB) = −tr(PnAB) + tr(PnA),

tr(PnBAA) = tr(PnBA) + tr(PnB),

tr(PnBAB) = −tr(PnBB)− tr(PnA) + 2tr(Pn),

tr(PnBBA) = −tr(PnBA) + tr(PnA),

tr(PnBBB) = −tr(PnBB) + tr(PnB).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.2)

Proof: Start by letting Pn = ( a b
c d ) be a product matrix of length n. We simply need

to compute all product matrices of length n+1, n+2 and n+3, and verify the trace

235
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relations. For length n+ 1 we have:(
a b

c d

)(
0 1

1 ±1

)
=

(
b a± b

d c± d

)
,

and so

tr(PnA) = b+ c+ d,

tr(PnB) = b+ c− d.

Note that tr(Pn) = a+ d.

For length n+ 2 we have the following cases for (PnAA) and (PnAB):(
b a+ b

d c+ d

)(
0 1

1 ±1

)
=

(
a+ b b± (a+ b)

c+ d d± (c+ d)

)
,

and so

tr(PnAA) = a+ b+ d+ (c+ d) = a+ b+ c+ 2d,

tr(PnAB) = a+ b+ d− (c+ d) = a+ b− c.

Similarly for (PnBA) and (PnBB) we have(
b a− b

d c− d

)(
0 1

1 ±1

)
=

(
a− b b± (a− b)

c− d d± (c− d)

)
,

and so the traces are

tr(PnBA) = a− b+ d+ (c− d) = a− b+ c,

tr(PnBB) = a− b+ d− (c− d) = a− b− c+ 2d.

In terms of previous traces we have the relations

tr(PnAA) = (b+ c+ d) + (a+ d) = tr(Pn+) + tr(Pn),

tr(PnBB) = −(b+ c− d) + (a+ d) = −tr(Pn−) + tr(Pn).

For length n+ 3 we have the following cases:

PnAAA, PnAAB =

(
a+ b b+ (a+ b)

c+ d d+ (c+ d)

)(
0 1

1 ±1

)
=

(
a+ 2b a+ b± (a+ 2b)

c+ 2d c+ d± (c+ 2d)

)
,
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PnABA, PnABB =

(
a+ b b− (a+ b)

c+ d d− (c+ d)

)(
0 1

1 ±1

)
=

(
−a a+ b± (−a)

−c c+ d± (−c)

)
,

PnBAA, PnBAB =

(
a− b b+ (a− b)

c− d d+ (c− d)

)(
0 1

1 ±1

)
=

(
a a− b± a

c c− d± c

)
,

PnBBA, PnBBB =

(
a− b b− (a− b)

c− d d− (c− d)

)(
0 1

1 ±1

)

=

(
−a+ 2b a− b± (−a+ 2b)

−c+ 2d c− d± (−c+ 2d)

)
.

It follows that the possible traces are

tr(PnAAA) = a+ 2b+ c+ d+ (c+ 2d) = a+ 2b+ 2c+ 3d,

tr(PnAAB) = a+ 2b+ c+ d− (c+ 2d) = a+ 2b− d,

tr(PnABA) = −a+ c+ d+ (−c) = −a+ d,

tr(PnABB) = −a+ c+ d− (−c) = −a+ 2c+ d,

tr(PnBAA) = a+ c− d+ c = a+ 2c− d,

tr(PnBAB) = a+ c− d− c = a− d,

tr(PnBBA) = −a+ 2b+ c− d+ (−c+ 2d) = −a+ 2b+ d,

tr(PnBBB) = −a+ 2b+ c− d− (−c+ 2d) = −a+ 2b+ 2c− 3d.

Writing these traces in terms of the previous traces gives:

tr(PnAAA) = (a+ b+ c+ 2d) + (b+ c+ d) = tr(PnAA) + tr(PnA),

tr(PnAAB) = (a+ b− c) + (b+ c− d) = tr(PnAB) + tr(PnB),

tr(PnABA) = (a+ b+ c+ 2d)− (b+ c− d)− 2(a+ d)

= tr(PnAA)− tr(PnB)− 2tr(Pn),

tr(PnABB) = −(a+ b− c) + (b+ c+ d) = −tr(PnAB) + tr(PnA),

tr(PnBAA) = (a− b+ c) + (b+ c− d) = tr(PnBA) + tr(PnB),
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tr(PnBAB) = −(a− b− c+ 2d)− (b+ c+ d) + 2(a+ d)

= −tr(PnBB)− tr(PnA) + 2tr(Pn),

tr(PnBBA) = −(a− b+ c) + (b+ c+ d) = −tr(PnBA) + tr(PnA),

tr(PnBBB) = −(a− b− c+ 2d) + (b+ c− d) = −tr(PnBB) + tr(PnB),

completing the proof. �

We can go one step further and write the above eight relations so that each

trace is in terms of tr(PnAB), tr(PnBA), tr(PnA), tr(PnB) or tr(Pn). We do this by

substituting the equations in System (7.1), giving the alternate relations:

tr(PnAAA) = 2tr(PnA) + tr(Pn),

tr(PnABA) = tr(PnA)− tr(PnB)− tr(Pn),

tr(PnBAB) = tr(PnB)− tr(PnA) + tr(Pn),

tr(PnBBB) = 2tr(PnB)− tr(Pn).

In fact, the complete recursive system can be represented by the following six equa-

tions, rather than the eight given in System (7.2):

tr(PnAA) = tr(PnA) + tr(Pn),

tr(PnBB) = −tr(PnB) + tr(Pn),

tr(PnAAB) = tr(PnAB) + tr(PnB),

tr(PnABA) = tr(PnA)− tr(PnB)− tr(Pn),

tr(PnBAB) = tr(PnB)− tr(PnA) + tr(Pn),

tr(PnBBA) = −tr(PnBA) + tr(PnA).

Notice that the relations for tr(PnAAA), tr(PnBAA), tr(PnABB) and tr(PnBBB)

belong to the tr(PnAA) and tr(PnBB) cases.

Example 7.1. Let us calculate the trace of the matrix given by the cycle (++−+−)
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using our recursive relations. Letting P2 = AA, we have

tr(AABAB) = tr(P2BAB) = tr(P2B)− tr(P2A) + tr(P2)

= tr(AAB)− tr(AAA) + tr(AA)

= tr(AB) + tr(B)− (2tr(A) + tr(I)) + tr(A) + tr(I)

= tr(AB)− tr(A) + tr(B).

Using the facts that tr(AB) = tr(A) = 1 and tr(B) = −1, we have that

tr(AABAB) = 1− 1 + (−1) = −1.

Notice that for any product matrix, the trace can be written as a linear combina-

tion of tr(AB), tr(BA), tr(A), tr(B) and tr(I). Furthermore, we have that tr(AB) =

tr(BA) and tr(B) = −tr(A), so that any trace can in fact be written as a linear

combination of tr(AB), tr(A) and tr(I), which have values 1, 1 and 2 respectively. We

can think of these as the initial values for our recursive system.

We are ultimately concerned with the growth rate of our sequences, which can be

derived from the trace of the product matrix. One thing the recursive system allows

us to do is examine the average trace value, for length-n product matrices.

Corollary 7.1. The average trace value over all product matrices of length n, for

n ≥ 0, is given by ⎧⎨⎩0, if n is odd;

2, if n is even.

Proof: We can easily prove this result using induction. Consider the initial case. For

n = 0, we have by default P0 = I, and so tr(P0) = 2. For n = 1, we have P1 = ( 0 1
1 ±1 ),

which have traces ±1, averaging to 0. Now consider a length n product matrix, Pn.

The eight relations in System (7.2) tell us that the average trace of product matrices

of the form PnM1M2M3, where Mi ∈ {A,B} is

1

8
(2tr(Pn) + tr(Pn) + tr(PnAB) + tr(PnB) + tr(PnA)− tr(PnB)

− tr(Pn) + tr(PnBA) + tr(PnB)− tr(PnAB) + tr(PnA) + tr(PnB)

− tr(PnA) + tr(Pn)− tr(PnBA) + tr(PnA) + 2tr(PnB)− tr(Pn))

=
1

2
(tr(PnA) + tr(PnB)).
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This tells us that the average trace for matrices of the form PnM1M2M3 is the

same as the average trace of matrices of the form PnM1, for a given Pn. Averaging

over all 2n product matrices Pn of length n, we can conclude that the average trace

of product matrices of length n+ 3 is equal to the average trace of product matrices

of length n+ 1.

Now by induction, suppose n is even, and that the average trace of product ma-

trices of odd length n+ 1 is 0. Then, the average trace of product matrices of length

n + 3 is also 0, by the above-mentioned result. Similarly, if n is odd and product

matrices of even length n + 1 have an average trace of 2, then so do products of

length n+ 3. This completes the induction. �

This result is easy to see for the n odd case. Recall that the proof of Theorem 4.6

says that when we negate the signs in an odd-length coefficient cycle, we also negate

the trace. The set of all coefficient cycles must occur in pairs (all cycles and their

negations) and so the sum of all traces, and hence the average, must be zero. Our

result is not useful in approximating Viswanath’s constant, or proving Conjecture 5.1

because the conjecture and Equation (3.17) require us to use the absolute value of the

traces, and we cannot determine which terms in the average are positive and which

are negative.

7.2 Some Trace Patterns

By looking at some patterns of ± signs in our coefficient cycles, we can find patterns

in the traces of the corresponding product matrices. Many of these patterns will

involve Fibonacci numbers. Recall that we have defined the initial values of the

Fibonacci numbers to be F0 = 0, F1 = 1, F2 = 1 and F3 = 2. We can take the

sequence backwards and define Fibonacci numbers Fn for negative values of n. This

gives F−1 = 1, F−2 = −1, F−3 = 2, F−4 = −3, F−5 = 5, F−6 = −8 and so on. We see

that

F−n = (−1)n+1Fn.

Lemma 7.1. For A = ( 0 1
1 1 ), B = ( 0 1

1 −1 ) and C = AB = ( 1 −1
1 0 ), we have the
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following product matrices for n ≥ 0:

An =

(
Fn−1 Fn

Fn Fn+1

)
, Bn =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎝Fn−1 −Fn

−Fn Fn+1

⎞⎠ , n even;

⎛⎝−Fn−1 Fn

Fn −Fn+1

⎞⎠ , n odd,

Cn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎝1 −1

1 0

⎞⎠ , n ≡ 1 (mod 6);

⎛⎝0 −1

1 −1

⎞⎠ , n ≡ 2 (mod 6);

⎛⎝−1 0

0 −1

⎞⎠ , n ≡ 3 (mod 6);

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎝−1 1

−1 0

⎞⎠ , n ≡ 4 (mod 6);

⎛⎝ 0 1

−1 1

⎞⎠ , n ≡ 5 (mod 6);

⎛⎝1 0

0 1

⎞⎠ , n ≡ 0 (mod 6).

Proof: We can prove the form of An for n ≥ 1 using a simple induction. For n = 1,

we have A = ( 0 1
1 1 ) =

(
F0 F1
F1 F2

)
. Now assume that An =

(
Fn−1 Fn

Fn Fn+1

)
. We can write

An+1 =

(
Fn−1 Fn

Fn Fn+1

)(
0 1

1 1

)
=

(
Fn Fn−1 + Fn

Fn+1 Fn + Fn+1

)
=

(
Fn Fn+1

Fn+1 Fn+2

)
,

completing the induction.

Similarly we have B = ( 0 1
1 −1 ) =

( −F0 F1
F1 −F2

)
and B2 =

(
1 −1
−1 2

)
=

(
F1 −F2
−F2 F3

)
. Now

assume that Bn =
(
−Fn−1 Fn

Fn −Fn+1

)
for n odd. We can write

Bn+1 =

(
−Fn−1 Fn

Fn −Fn+1

)(
0 1

1 −1

)

=

(
Fn −Fn−1 − Fn

−Fn+1 Fn + Fn+1

)
=

(
Fn −Fn+1

−Fn+1 Fn+2

)
,

which is the required form for n even. Further, multiplying by B again gives

Bn+2 =

(
Fn −Fn+1

−Fn+1 Fn+2

)(
0 1

1 −1

)

=

(
−Fn+1 Fn + Fn+1

Fn+2 −Fn+1 − Fn+2

)
=

(
−Fn+1 Fn+2

Fn+2 −Fn+3

)
,
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which is the required form for n odd, completing the induction.

Lastly we consider the matrix C. Taking successive powers gives the matrices

stated in the Lemma. We reach C6 = I and so the matrices will continue to rotate

through this set. For each of the three product matrices, letting n = 0 gives us the

identity matrix. Therefore our lemma is satisfied for n ≥ 0, using the convention that

M0 = I for any matrix M . �

Let us now consider product matrices of coefficient cycles having the form

(+ + · · ·+−− · · · −), where there are n + signs and i − signs, i.e., ((+)n(−)i).

Theorem 7.2. The following product matrices have the given traces, for n, i ≥ 0:

1. tr(AnB) = Fn−2,

2. tr(AnB2) = 3Fn−1,

3. tr(AnB3) = Fn − 4Fn−1,

4. tr(AnBn) = −F 2
n + 2(−1)n,

5. tr(AnBi) = (2FnFi − Fn−1Fi−1 − Fn+1Fi+1)(−1)i+1.

Proof: From Lemma 7.1 we can write

AnB =

(
Fn−1 Fn

Fn Fn+1

)(
0 1

1 −1

)
=

(
Fn Fn−1 − Fn

Fn+1 Fn − Fn+1

)
=

(
Fn −Fn−2

Fn+1 −Fn−1

)
.

We have tr(AnB) = Fn−Fn−1 = Fn−2, proving Statement 1. Let us now jump to the

general case given in Statement 5, which we could have used to prove Statement 1.

Combining the even and odd cases for i in Lemma 7.1, we can write

AnBi =

(
Fn−1 Fn

Fn Fn+1

)(
−Fi−1 Fi

Fi −Fi+1

)
(−1)i+1

=

(
−Fn−1Fi−1 + FnFi Fn−1Fi − FnFi+1

−FnFi−1 + Fn+1Fi FnFi − Fn+1Fi+1

)
(−1)i+1, (7.3)

which has

tr(AnBi) = (2FnFi − Fn−1Fi−1 − Fn+1Fi+1)(−1)i+1. (7.4)

We can now use this general trace to prove Statements 2-4. We have that for i = 2,

tr(AnB2) = (2FnF2 − Fn−1F1 − Fn+1F3)(−1) = −2Fn + Fn−1 + 2Fn+1 = 3Fn−1,
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which proves Statement 2. Similarly, for i = 3, Equation (7.4) gives

tr(AnB3) = 2FnF3 − Fn−1F2 − Fn+1F4 = 4Fn − Fn−1 − 3Fn+1 = Fn − 4Fn−1,

which proves Statement 3. Lastly, for i = n, Equation (7.4) gives

tr(AnBn) = (2F 2
n − F 2

n−1 − F 2
n+1)(−1)n+1 = −F 2

n + 2(−1)n.

The last step is straightforward to prove using properties of Fibonacci numbers. �

We know from Equation (3.14) that we can use the trace of a product matrix

to find the growth rate of the corresponding periodic coefficient sequence. It can be

shown that as n → ∞ in each of the cases in Theorem 7.2, the growth rate approaches

φ. This makes sense, as we can think of the coefficient cycle approaching (+++ · · · ),
which corresponds to the regular Fibonacci sequence.

Now we will consider product matrices of coefficient cycles that contain ((+−)n).

Theorem 7.3. The following product matrices have the given traces and growth types,

for n ≥ 0:

1. |tr(Cn)| =
⎧⎨⎩1 for n ≡ 1, 2 (mod 3);

2 for n ≡ 0 (mod 3),
growth =

⎧⎨⎩E ⇐⇒ n odd;

B ⇐⇒ n even,

2. |tr(ACn)| =
⎧⎨⎩0 for n ≡ 1 (mod 3);

1 for n ≡ 0, 2 (mod 3),
growth =

⎧⎨⎩E ⇐⇒ n ≡ 3, 5 (mod 6);

B ⇔ n ≡ 0, 1, 2 (mod 6),

3. |tr(ACnB)| =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
3 for n ≡ 1 (mod 3);

2 for n ≡ 2 (mod 3);

1 for n ≡ 0 (mod 3),

growth =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
E ⇔ n ≡ 1, 3, 4, 5 (mod 6);

L ⇐⇒ n ≡ 2 (mod 6);

B ⇐⇒ n ≡ 0 (mod 6),

4. |tr(AnCn)| =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Fn−1 for n ≡ 1 (mod 3);

Fn+1 for n ≡ 2 (mod 3);

Ln+1 for n ≡ 0 (mod 3),

growth =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
E ⇐⇒ n = 3, n ≥ 5;

L ⇐⇒ n = 2, 4;

B ⇐⇒ n = 0, 1.
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Proof: We will start by proving the trace results. The proof of Statement 1 follows

directly from Lemma 7.1. For n ≡ 1, 2, 3, 4, 5, 0 (mod 6), we have the respective

traces 1,−1,−2,−1, 1, 2. For Statement 2, we pre-multiply each matrix in Lemma

7.1 by A, to obtain the following six matrices:(
1 0

2 −1

)
,

(
1 −1

1 −2

)
,

(
0 −1

−1 −1

)
,

(
−1 0

−2 1

)
,

(
−1 1

−1 2

)
,

(
0 1

1 1

)
,

which have respective traces 0,−1,−1, 0, 1, 1. Similarly for ACnB we obtain the

matrices(
0 1

−1 3

)
,

(
−1 2

−2 3

)
,

(
−1 1

−1 0

)
,

(
0 −1

1 −3

)
,

(
1 −2

2 −3

)
,

(
1 −1

1 0

)
,

which have traces 3, 2,−1,−3,−2, 1. Lastly, for AnCn, we obtain the matrices(
Fn+1 −Fn−1

Fn+2 −Fn

)
,

(
Fn −Fn+1

Fn+1 −Fn+2

)
,

(
−Fn−1 −Fn

−Fn −Fn+1

)
,

(
−Fn+1 Fn−1

−Fn+2 Fn

)
,

(
−Fn Fn+1

−Fn+1 Fn+2

)
,

(
Fn−1 Fn

Fn Fn+1

)
,

which have traces Fn−1, −Fn+1, −Fn−1 − Fn+1 = −Ln+1, −Fn−1, Fn+1, Fn−1 +

Fn+1 = Ln+1, respectively. Recall that Ln denotes the Lucas numbers, namely,

2, 1, 3, 4, 7, 11, 18, . . . for n ≥ 1.

Now we can use the above information along with the connection between trace

and growth type found in Theorem 3.3 to prove the remainder of the theorem. For

matrices of the form Cn, we need only classify the traces 1 and 2. From Theorem 3.3

we have that for n odd, traces 1 and 2 imply exponential growth. For n even, trace

1, which occurs for n ≡ 1, 2 (mod 3), implies bounded growth, and so this occurs

for n ≡ 2, 4 (mod 6). Similarly for n even, trace 2, which occurs for n ≡ 0 (mod 3),

implies linear growth for product matrices Pn 	= I. We have seen above that Cn = I

for n = 0 (mod 6) and so for these values of n, growth is actually bounded.

For matrices of the form ACn, we need to classify traces 0 and 1. For n odd, traces

0 and 1 imply bounded and exponential growth respectively, and for n even trace 1

implies bounded growth, where trace 0 does not occur. Combining this information
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with the fact that trace 0 occurs for n ≡ 1 (mod 3) and trace 1 occurs otherwise we

can deduce that exponential growth occurs for traces 3 and 5, and bounded growth

occurs for traces 0, 1, and 2.

For matrices of the form ACnB, we have traces 1, 2 and 3. When n is odd, we

have by Theorem 3.3 that all of these traces imply exponential growth. When n is

even, traces 1, 2 and 3 occur for bounded, linear and exponential growth, respectively.

These traces occur for values of n ≡ 0, 2, 1 (mod 3) respectively, which correspond to

values n ≡ 0, 2, 4 (mod 6).

Lastly we consider the matrices of the form AnCn. For n ≥ 0 we have the traces

2, 0, 2, 4, 2, 8, 18, 8, 34, . . . . By Theorem 3.3 we have linear growth when n is even and

the trace is 2, which occurs here for n = 0, 2, and 4. But recall that this is only true for

Pn 	= I. In the case of n = 0 we have A0C0 = I and so growth is bounded. Bounded

growth also occurs for n = 1, and all other values of n correspond to exponential

growth. �

It is easy to find many more interesting and more complex examples of this nature.

The only case in Theorem 7.3 where the trace increases exponentially as n → ∞ is

that of the product matrix AnCn. The reason is that it is the only case containing

An. The other cases have bounded (in fact, periodic) trace values, hence bounded

eigenvalues and bounded growth rates. The growth rate |λ1| 1n for a given value of n

(mod 6) must actually be decreasing to 1 as n increases. The examples in Theorem

7.2 which contain An have increasing traces and corresponding growth rates that tend

to φ. For AnCn, computation shows that the growth rate tends to φ
1
3 as n → ∞.

This is explainable by noticing that in the product matrix An has length n and Cn

has length 2n. Therefore only a third of the product matrix is contributing to the

exponential growth towards φ.

We will consider another type of trace reduction, where we look at the effect on

the trace of multiplying a general matrix Pn = ( a b
c d ) by a particular product matrix.

The product matrices we will consider are periodic with period 1 or 2. We will also

introduce the matrix D = BA. Note that Dn = BCn−1A, and produces the following
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set of matrices for n ≥ 1:(
1 1

−1 0

)
,

(
0 1

−1 −1

)
,

(
−1 0

0 −1

)
,

(
−1 −1

1 0

)
,

(
0 −1

1 1

)
,

(
1 0

0 1

)
.

Table 7.1 is a simple consequence of multiplying a general product matrix Pn by Dn

or one of the powers given in Lemma 7.1. We could continue the table for product

matrices with periods greater than 2. Note that a table of this sort might be the best

we can do to track the changes of the trace of a product matrix. Given traces tr(M1)

and tr(M2) of matrices M1 and M2, there is no known way to compute the tr(M1M2).

Note that in Table 7.1, by n(6) we mean n (mod 6).

Example 7.2. We can use Table 7.1 to break down the trace of PnAAAABAB in

steps, where Pn = ( a b
c d ). First rewrite this matrix as P̂nABAB, where P̂n = PnAAA.

From the table we have that

P̂n =

(
aF2 + bF3 aF3 + bF4

cF2 + dF3 cF3 + dF4

)
=

(
a+ 2b 2a+ 3b

c+ 2d 2c+ 3d

)
.

Now we can use the fact that tr(P̂nC
2) = b̂− ĉ− d̂, where b̂, ĉ, d̂ are the entries in P̂n,

to give us

tr(PnA
3C2) = (2a+ 3b)− (c+ 2d)− (2c+ 3d) = 2a+ 3b− 3c− 5d.

7.3 Fibonacci Blocks Type I

The growth type and rate of a random Fibonacci sequence are dependent on the

trace of the associated product matrix. (Recall Theorem 3.3 gives the connection

between growth type and trace, Definition 2.3 gives us the growth rate in terms of

the eigenvalues, and Equation (3.14) gives the dependence of the dominant eigenvalue

on the trace.) It would therefore be ideal to have an equation for determining the

trace of a product matrix given its particular periodic coefficient sequence. In the

previous section we have considered the trace for some specific types of coefficient

cycles.

Our product matrices are comprised of the matrices A and B, but it is useful to

think of our product as being comprised of the blocks AiBj. We have from Equation
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n(6) form product matrix trace

any PnA
n

(
aFn−1 + bFn aFn + bFn+1

cFn−1 + dFn cFn + dFn+1

)
aFn−1 + bFn + cFn + dFn+1

0,2,4 PnB
n

(
aFn−1 − bFn −aFn + bFn+1

cFn−1 − dFn −cFn + dFn+1

)
aFn−1 − bFn − cFn + dFn+1

1,3,5 PnB
n

(−aFn−1 + bFn aFn − bFn+1

−cFn−1 + dFn cFn − dFn+1

)
−aFn−1 + bFn + cFn − dFn+1

0 PnC
n

(
a b
c d

)
a+ d

1 PnC
n

(
a+ b −a
c+ d −c

)
a+ b− c

2 PnC
n

(
b −a− b
d −c− d

)
b− c− d

3 PnC
n

(−a −b
−c −d

)
−a− d

4 PnC
n

(−a− b a
−c− d c

)
−a− b+ c

5 PnC
n

(−b a+ b
−d c+ d

)
−b+ c+ d

0 PnD
n

(
a b
c d

)
a+ d

1 PnD
n

(
a− b a
c− d c

)
a− b+ c

2 PnD
n

(−b a− b
−d c− d

)
−b+ c− d

3 PnD
n

(−a −b
−c −d

)
−a− d

4 PnD
n

(−a+ b −a
−c+ d −c

)
−a+ b− c

5 PnD
n

(
b −a+ b
d −c+ d

)
b− c+ d

Table 7.1: Change in trace upon matrix multiplication.
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(7.3) that

AiBj =

(
−Fi−1Fj−1 + FiFj Fi−1Fj − FiFj+1

−FiFj−1 + Fi+1Fj FiFj − Fi+1Fj+1

)
(−1)j+1.

This way, any product matrix Pn can be written as a product of blocks AiBj, AkBl, . . .,

and given in terms of the exponents i, j, k, l, . . . . We will use these exponents to

represent the trace. The number of blocks in a product matrix Pn is not fixed, so

when using block representation we will use the notation Bq to denote a product

matrix with q blocks.

Note that in the case of one block, as Statement 5 of Theorem 7.2, we have

tr(B1) = tr(AiBj) = −Fi−1Fj−1 + 2FiFj − Fi+1Fj+1, (7.5)

where we have assumed that j is odd. For even j, the trace is negated. As the number

of blocks increases, it will be convenient to represent each m-termed product in the

trace sum by an m-tuple comprised of the terms −1, 0, 1. We can do this using a

simple mapping. We let Fi−1 �→ −1, Fi �→ 0 and Fi+1 �→ 1 and a product of m = 2q

Fibonacci terms is mapped to an ordered 2q-tuple according to the alphabetical order

of the indices. For example, the sum in Equation (7.5) can be written as

tr(B1) �→ −(−1,−1) + 2(0, 0)− (1, 1).

We will call these 2q-tuples simplified Fibonacci products, and their original forms,

found in the trace equation (7.5), Fibonacci products. Let us look at another example

before considering the general case.

Example 7.3. For two blocks, Lemma 7.1 gives us

B2 = AiBjAkBl =(
Fi−1 Fi

Fi Fi+1

)(
−Fj−1 Fj

Fj −Fj+1

)
(−1)j+1

(
Fk−1 Fk

Fk Fk+1

)(
−Fl−1 Fl

Fl −Fl+1

)
(−1)l+1.

(7.6)

Rather than write out the product matrix, we will list its terms as simplified Fibonacci

products, in Table 7.2. Suppose we have B2 = ( a b
c d ). (We will also use the terms α,
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a b c d
(0, 0, 0, 0) (0, 0,−1, 0) (0, 0, 1, 0) (0, 0, 0, 0)

(0, 1, 0,−1) (−1, 0, 0, 0) (1, 0, 0, 0) (0,−1, 0, 1)
(−1, 0, 1, 0) (0, 1, 1, 1) (1, 1, 0,−1) (1, 0,−1, 0)

(−1,−1− 1,−1) (−1,−1, 0, 1) (0,−1,−1,−1) (1, 1, 1, 1)
−(0, 1, 1, 0) −(0, 0, 0, 1) −(0, 0, 0,−1) −(0, 0, 1, 1)

−(0, 0,−1,−1) −(0, 1, 0, 0) −(0,−1, 0, 0) −(1, 0, 0, 1)
−(−1, 0, 0,−1) −(−1, 0, 1, 1) −(1, 1, 1, 0) −(1, 1, 0, 0)
−(−1,−1, 0, 0) −(−1,−1,−1, 0) −(1, 0,−1,−1) −(0,−1,−1, 0)

Table 7.2: Simplified Fibonacci products for B2.

β, γ and δ as corresponding general position markers in our matrices.) Recall that

each term in Table 7.2 is mapped from a product of Fibonacci numbers, for example,

Fi−1FjFk+1Fl �→ (−1, 0, 1, 0), and the sum of each column gives us an entry of B2.

We have assumed that j and l are odd. If exactly one of them is even, all terms in

the table switch sign.

We cannot give an explicit formula for the trace of a product matrix Bq. We

are however, able to completely characterize the trace. We must first examine the

structure of the matrix entries of Bq.

Lemma 7.2. Given the block representation Bq of a product matrix, the simplified

Fibonacci products belonging to entries b and c do not contain 1 and −1 adjacent to

each other. For simplified Fibonacci products in entries a and d, this is true even if

we consider our simplified Fibonacci product as a loop.

Proof: We can prove this result using two simple inductions. First, suppose that

a block representation matrix Bq has entries a, b, c and d composed of simplified

Fibonacci products, where those in a do not begin or end with 1, those in d do not

begin or end with −1, those in b do not begin with 1 or end with −1 and those in

c do not begin with −1 or end with 1. For the initial case, B1, we can rewrite the

matrix in Equation (7.3) as

B1 �→
(
−(−1,−1) + (0, 0) (−1, 0)− (0, 1)

−(0,−1) + (1, 0) (0, 0)− (1, 1)

)
, (7.7)
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where we have extended the mapping of Fibonacci products to simplified Fibonacci

products, to matrices. It is clear that these simplified Fibonacci products satisfy the

required conditions. We must now show that this is true for Bq+1.

Assuming for now that j is odd, we have

Bq+1 = BqA
iBj =

(
a b

c d

)(
−Fi−1Fj−1 + FiFj Fi−1Fj − FiFj+1

−FiFj−1 + Fi+1Fj FiFj − Fi+1Fj+1

)
=

(
a′ b′

c′ d′

)
,

where

a′ = a(−Fi−1Fj−1 + FiFj) + b(−FiFj−1 + Fi+1Fj),

b′ = a(Fi−1Fj − FiFj+1) + b(FiFj − Fi+1Fj+1),

c′ = c(−Fi−1Fj−1 + FiFj) + d(−FiFj−1 + Fi+1Fj),

d′ = c(Fi−1Fj − FiFj+1) + d(FiFj − Fi+1Fj+1).

We can then write Bq+1 �→(
−a(−1,−1) + a(0, 0)− b(0,−1) + b(1, 0) a(−1, 0)− a(0, 1) + b(0, 0)− b(1, 1)

−c(−1,−1) + c(0, 0)− d(0,−1) + d(1, 0) c(−1, 0)− c(0, 1) + d(0, 0)− d(1, 1)

)
.

(7.8)

To complete the induction, we need to check that the simplified Fibonacci products

in this matrix meet the criteria. The products in position α are a(−1,−1), a(0, 0),

b(0,−1) and b(1, 0). None of these terms ends with 1, and we know terms a and b do

not begin with 1. Simplified Fibonacci products in position β are a(−1, 0), a(0, 1),

b(0, 0) and b(1, 1). As before, none of these terms begins with 1, and it is easy to

see none of them end in −1. The products in position γ are (c,−1,−1), (c, 0, 0),

(d, 0,−1) and (d, 1, 0). None of these terms end with 1, and as we know terms c and

d do not begin with −1. The products in position δ are c(−1, 0), c(0, 1), d(0, 0) and

d(1, 1). As before, none of these terms begin with −1 and it is clear that none end in

−1.

Now, we can prove the main result using another induction. Assume that for

simplified Fibonacci products in Bq, we never find 1 and −1 adjacent. The initial

case is easy to see, by again looking at the matrix B1 in Equation (7.7). Similarly we

can look at entries from B2 in Table 7.2. We must now show our result is true for
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Bq+1. Consider the term in position α of the matrix in Equation (7.8). Since in Bq,

terms in position α do not begin or end with 1 and terms in position β do not begin

with 1 or end with −1, the terms a(−1,−1), a(0, 0), b(0,−1) and b(1, 0) cannot have

1 and −1 adjacent, even in a loop. Similarly, since terms in position δ of Bq do not

begin or end with −1 and terms in position γ do not begin with −1 or end with 1, the

terms c(−1, 0), c(0, 1), d(0, 0), and d(1, 1) in position δ of Bq+1 cannot have 1 and −1

adjacent, even under a loop. The terms in positions β and γ are also prevented from

having 1 and −1 adjacent because of the restrictions. Notice that for these positions

we make no mention of a loop. It is therefore possible to have the term c(−1,−1)

where simplified Fibonacci products in c begin with 1. Also note that we were able

to ignore the ±1 coefficients of the simplified Fibonacci products here because they

do not come into play in our proof. �

Proposition 7.1. Given the block representation Bq of a product matrix, the simpli-

fied Fibonacci products contain an even number (including zero) of 0’s between equal

non-0 terms, and an odd number of 0’s between unequal non-0 terms. For terms in

positions a and d in Bq, the results extends to simplified Fibonacci products as loops.

Proof: We will need to use several simple inductions here, and again we will not

worry about coefficients of our matrices, i.e., we will assume powers of B are odd.

First, we want to show that if terms in positions a or c of Bq end in 0 (excluding the

all-0 term), we must have an even number of 0’s preceded by −1, or an odd number of

0’s preceded by 1. If terms in positions b or d end in 0 (excluding the all-0 term), we

must have an odd number of 0’s preceded by −1 or an even number of 0’s preceded

by 1.

As the initial case, for B1 in Equation (7.7), the terms which end in 0, but are

not all-0, are (−1, 0) in position β, which has an odd number of 0’s after the −1, and

(1, 0) in position γ, which has an odd number of 0’s after the 1, as required. It is

also easy to see that the assumptions are also true for B2, by observing Table 7.2.

Suppose now that they are true for Bq. We can again observe the matrix in Equation

(7.8) to show that the rules also hold for q+1 blocks. Consider the terms in positions
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α and γ of Bq+1:

a(−1,−1), a(0, 0), b(0,−1), b(1, 0),

a(−1,−1), c(0, 0), d(0,−1), d(1, 0).

The terms a(0, 0) and c(0, 0) add two 0’s to the end so that the parity of the number

of ending 0’s is unchanged. The terms b(1, 0) and d(1, 0) fit the rule of 1 followed by

an odd number of 0’s. Similarly, the terms in positions β and δ of Bq+1 have b(0, 0)

and d(0, 0), so that the parity of 0’s is unchanged, and a(−1, 0) and c(−1, 0), where

−1 is followed by an odd number of 0’s.

Furthermore, if we consider the beginnings of our simplified Fibonacci products,

we have quite similar results, except that the parity of the number of 0’s at the

beginning switches from what it was at the end of the product for terms in positions

β and γ in Bq and remains the same for terms in positions α and δ. This is easily

observed in Equation (7.7) for B1 and in Table 7.2 for B2. Suppose these conditions

are true for Bq, i.e., if terms in position a or b begins with a group of 0’s, its size must

be odd if it is followed by 1 and even if it is followed by −1. If terms in positions c

or d begins with a group of 0’s, its size must be odd if followed by −1 and even if

followed by 1.

We now want to show that this is true for q+ 1 blocks. Again we will look at the

terms in Equation (7.8). Consider the terms in positions α and β of Bq+1:

a(−1,−1), a(0, 0), b(0,−1), b(1, 0),

a(−1, 0), a(0, 1), b(0, 0), b(1, 1).

The only possible product that can affect the number of initial 0’s is the all-0 product

and this arises only in terms a and d of Bq. If a contains the all-0 product (which

must contain an even number of 0’s), adding (−1,−1) or (−1, 0) to the end retains

the even number of 0’s. Adding (0, 1) gives us an odd number in accordance with our

assumptions. Similarly, for terms in positions γ and δ of Bq+1, the affected products

are d(0,−1), d(1, 0), and d(1, 1). If d contains the all-0 product, the first term gives

us an odd number of initial 0’s and the second two products give us an even number,

again in accordance with our assumptions.
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We can now use another induction to prove our lemma. For the product matrix

B1 in Equation (7.7), the conditions of our lemma hold, but are only applicable to

the terms (1, 1) and (−1,−1), where we have zero 0’s between the 1’s and between

the −1’s. It is also easy to see that the rules hold for the product matrix B2, by

examining Table 7.2. For example, consider the terms (0, 1, 0,−1) and (0, 1, 1, 0),

both of which occur in position α of the matrix. The first term has an odd number of

0’s between the non-equal non-0 terms, even under rotation and the latter term has

an even number of 0’s, again under rotation, between the two 1 terms. The rotation

rule does not apply to the term (1, 0, 0, 0) in position β however. Under rotation, we

have three 0’s between 1 and itself, which is not an even number.

Now, suppose our rules hold for the product matrix Bq. We can again observe

the matrix in Equation (7.8) to show that the rules also hold for q + 1 blocks. The

number of 0’s in the products a(−1,−1), c(−1,−1), b(1, 1) and d(1, 1) is unchanged

by adding to the end. If a or c ends in zero, we have seen that we must have −1 or 1

followed by an even or odd number of 0’s respectively, which meets the requirement

of an even number of zeroes between −1 terms or an odd number of zeroes between

1 and −1. Further, the terms a(−1,−1) and d(1, 1) appear in the trace of Bq+1 so

we must consider them under rotation. If a starts with 0, we must have an even or

odd number of 0’s followed by −1 or 1 respectively, and if d starts with 0 we must

have an even or odd number of 0’s followed by 1 or −1 respectively. In both cases,

we have the correct pattern of zeroes under rotation.

Now let us consider the terms a(0, 0), b(0, 0), c(0, 0) and d(0, 0). We know that 1

and −1 cannot be adjacent by Lemma 7.2, so if terms a and d begin and end with

non-0 entries, these entries must be equal, and so contain two 0’s under rotation. If

term a or d begins or ends in 0, adding two 0’s to the group (under rotation) does not

change the parity, and so groups of 0’s must still have the desired property. We need

not prove anything about rotation for b(0, 0) and c(0, 0) because these terms appear

in positions β and γ of Bq+1 respectively. Note from B1 that the term (0, 0) occurs

only in terms a and d, and by Equation (7.8) the all-0 term must remain in these

positions. We are only concerned with rotations of terms in positions α and δ of Bq+1

and so if a or d is the all-zero term, we need only check its effects on a(−1,−1) and
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d(1, 1). Adding an even number of zeroes results in them being contained by equal

non-zero terms, as required.

Now consider the terms b(0,−1), d(0,−1), a(0, 1) and c(0, 1). We have shown in

our first induction that if a or c ends in 0, the ending must be 1 or −1 followed by

an odd or even number of 0’s respectively. This implies that we must have an even

group of 0’s between two 1’s or an odd group of 0’s between −1 and 1, as required.

If a or c does not end in 0, we have seen in the first induction of Lemma 7.2 that

it must end in −1, so that our new ending is −1, 0, 1, with an odd number of 0’s

as required. We can argue similarly for b(0,−1) and d(0,−1). Further, the terms

b(0,−1) and c(0, 1) belong to the trace of Bq+1 and so we must check them under

rotation. If b begins with 0, we must have an even or odd number of zeroes followed

by −1 or 1 respectively, and if c begins with 0, we must have an even or odd number

of 0’s followed by 1 or −1 respectively. In both cases, we have the correct pattern of

zeroes under rotation.

Finally, we must consider the terms a(−1, 0), c(−1, 0), b(1, 0) and d(1, 0). If a

or c ends in zero, we must have an even or odd number of 0’s preceded by −1 or 1

respectively, and if b or d ends in 0 we have an even or odd number of 0’s preceded

by 1 or −1 respectively. We have the correct parity of 0’s between non-0 terms in

both cases. Further, only the terms c(−1, 0) and b(1, 0) appear in the trace of Bq+1

and so are the only ones we must consider under rotation. If c starts with a non-

0 term, it must be 1 by the first induction of Lemma 7.2 and so we have an even

number of 0’s between −1 and 1 under rotation. If c starts with 0, we have seen in

the second induction that if the group of 0’s is odd or even, it is followed by −1 or

1 respectively. Adding (−1, 0) to the end produces, under rotation, an even or odd

number of 0’s between equal non-0 terms or unequal non-0 terms, respectively. We

can argue similarly for b(1, 0). Note also that from Lemma 7.2, 1 and −1 are never

found adjacent to each other. Therefore adjacent non-0 terms must be equal, which

adheres to this theorem, if we think of these terms as containing zero 0’s (an even

number) between them. �

Corollary 7.2. The total number of 0’s in a simplified Fibonacci product occurring
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in the trace of Bq is always even.

Proof: We know from Proposition 7.1 that there is an odd number of 0’s between

terms −1 and 1 and an even number of 0’s between 1 and 1 or between −1 and −1.

This extends to simplified Fibonacci products in positions α and δ forming loops.

Consider any simplified Fibonacci product and remove all even groups of 0’s. This

does not change the parity of the sum total of 0’s. Since even groups of 0’s occur

between equal non-0 terms, we are now left with groups of 1’s and groups of −1’s

separated by odd-numbered groups of 0’s. By Lemma 7.2, we cannot have 1 and −1

adjacent, and by removing even-numbered groups of 0’s, this still holds true. We must

be left with an even number of non-0 groups of terms separated by odd-numbered

groups of 0’s. If we had an odd number of non-0 groups of terms, our simplified

Fibonacci product would have its first and last non-0 terms equal, in which case we

could remove the group of 0’s between them, which is even for terms a and d occurring

in the trace. We are then left with an even number of odd-numbered groups of 0’s,

giving an even total. �

We will now consider the coefficients of our simplified Fibonacci products.

Proposition 7.2. If we assume that the power of each matrix B is odd, so by Lemma

7.1,

Bj =

(
−Fj−1 Fj

Fj −Fj+1

)
,

then a simplified Fibonacci product belonging to the trace of Bq has

coefficient 1 ⇐⇒ entries sum to 0 (mod 4),

coefficient − 1 ⇐⇒ entries sum to 2 (mod 4),

coefficient 2 ⇐⇒ all-0 product.

Furthermore, all coefficients are negated if our product matrix contains an odd number

of even powers of B.

Proof: We can use another induction here. It is easy to see that the above statements

are true for the examples we have already considered, namely, q = 1, 2. Now suppose
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that these statements are true for Bq. For the (q+1)-block case we can again consider

Equation (7.8). For this reason we must know the sum of the entries in a simplified

Fibonacci product belonging to each of the terms a, b, c and d of Bq and not simply for

the trace terms. Therefore we will include in our induction the facts that a simplified

Fibonacci product belonging to term b has

coefficient 1 ⇐⇒ entries sum to 3 (mod 4),

coefficient − 1 ⇐⇒ entries sum to 1 (mod 4),

and a simplified Fibonacci product belonging to term c has

coefficient 1 ⇐⇒ entries sum to 1 (mod 4),

coefficient − 1 ⇐⇒ entries sum to 3 (mod 4).

The term in position α of Bq+1 is given by

−a(−1,−1) + a(0, 0)− b(0,−1) + b(1, 0).

By simply summing the entries in the simplified Fibonacci products, supposing that

a and b have a coefficient of 1, we obtain 2, 0, 2, 0 (mod 4) for term in the above

sum, respectively, as required. If a and b have coefficient −1, we obtain as sums

0, 2, 0, 2 (mod 4). These sums also fit our pattern because the fact that each simplified

Fibonacci product is a product of Fibonacci numbers implies that the coefficient −1

of a and b can be moved outside the product, changing the sign of the coefficient in the

larger simplified Fibonacci product. Therefore the sums 0, 2, 0, 2 really correspond to

products which have as coefficients 1,−1, 1,−1. The term in position β is given by

a(−1, 0)− a(0, 1) + b(0, 0)− b(1, 1).

If we assume a and b have coefficient 1, our sums are 3, 1, 3, 1 (mod 4) as required,

and if a and b have coefficient −1, the coefficient of each of the above terms switches

and our sums are 1, 3, 1, 3 (mod 4). We can argue similarly for the terms in positions

γ and δ in Bq+1.

The only thing left to consider is the all-0 term, which has coefficient 2 in the

trace. The reason for this is that it occurs once in the term a and once in term d and
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in positions α and δ of Bq+1 we find a(0, 0) and d(0, 0) respectively. In the q = 1 case

we have the length-2 all-0 term (0, 0), and so by adding each new block, a and d will

both contain an all-0 term with coefficient 1.

Note that these results rely on the assumption that all powers of B in our product

matrix are odd. Recall that

Bj =

(
−Fj−1 Fj

Fj −Fj+1

)
(−1)j+1.

If we have an even value of j, our matrix is negated. Furthermore, if this happens for

an odd number blocks, the entire product matrix, and hence the trace, is negated.

The coefficients of all simplified Fibonacci products in our trace representation are

therefore negated. �

Combining our results, we can say the following.

Theorem 7.4. The trace of a product matrix Bq containing q blocks of the form AiBj

is comprised of a sum of Fibonacci products which we can write in simplified form

using 0, 1, and −1, and can consider as a loop. The set of such products contains all

2q-tuples comprised of 0, 1 and −1 which obey the following rules:

1. The terms 1 and −1 cannot be adjacent.

2. The simplified Fibonacci products contain an even number (including zero) of

0’s between equal non-0 terms, and an odd number of 0’s between unequal non-0

terms.

Furthermore, we have the following rules concerning the coefficients of simplified Fi-

bonacci products:

3. The coefficient of a simplified Fibonacci product is 2 for the all-0 term, 1 if and

only if the sum of terms in the product is 0 (mod 4) and −1 if and only if the

sum is 2 (mod 4).

4. All coefficients are negated if our product matrix contains an odd number of

even powers of B.
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This gives us a complete characterization of the trace of any product matrix Pn.

The following result gives us an easy way to group simplified Fibonacci products that

occur in the trace.

Theorem 7.5. The set of simplified Fibonacci products occurring in the trace of Bq

contains the (almost complete) equivalence class of any simplified Fibonacci product

contained in it. Furthermore, all simplified Fibonacci products occurring in the same

equivalence class have the same coefficient.

Proof: We are using the equivalence classes given in Definition 4.3 for periodic

coefficient sequences, i.e., the combined set of rotations, reversals and negations.

Here we do not consider reduction or extension of our products because we want to

keep them at a fixed length. If we think about the rules we have already established,

it is easy to see that if a particular simplified Fibonacci product behaves according

to Theorem 7.4, all elements of its equivalence class must also. Keep in mind that

since we are only interested in trace terms, the rules apply to the simplified Fibonacci

products considered as loops.

First, the set of simplified Fibonacci products in the trace must not have adjacent

unequal non-0 terms. If this is true of any particular product, it must also be true for

those products obtained by rotation, reversal and negation. Second, the parity of the

number of 0’s between non-0 terms also does not change under rotation, reversal or

negation. (And hence the total number of 0’s remains fixed also.) Finally, the sums

of the non-0 coefficients do not change under rotation or reversal. If we swap 1 and

−1, our sums modulo 4 are also unchanged. This is because the swap merely changes

the sign of our sum, which can be either 0 or 2 for terms in the trace. Negating these

numbers does not change them modulo 4. �

7.4 Fibonacci Blocks Type II

In the previous section we investigated the traces of product matrices which were

broken into blocks of the form AiBj. We gave expressions for the trace in terms

of sums of Fibonacci products, which contained Fi−1, Fi and Fi+1, for the various
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exponents involved. We can try to extend this idea by varying our blocks and the

Fibonacci terms involved. For instance we could write our Fibonacci products in

terms of Fi and Fi−1, so that our simplified Fibonacci products contain only 0 and

1. We could break our product matrices into blocks of the form AiB. Note that this

corresponds to the tree R, where we cannot have two consecutive lefts (i.e., B’s),

instead of the original tree T . We can also try writing our product matrices so that

they begin and end with powers of A. It turns out that this variation, applied to the

Fibonacci blocks in the previous section gives another patterned, but slightly more

complicated trace characterization. Of the combinations of the above variations, the

following proved to be quite interesting.

Consider Fibonacci blocks of the form AiB, so that we are dealing with product

matrices of the form AiBAjBAkBAlB · · · . We will devise a reduction scheme so that

we can write the trace of a particular product matrix in terms of traces of smaller

product matrices, as was done in Section 7.1.

Example 7.4. We start by considering product matrices of the form PnA
iBAiB,

where Pn = ( a b
c d ), and is followed by the repeated block AiB. Trace reductions for

i ≤ 7 are given in Table 7.3.

i trace reduction
1 tr(PnABAB) = tr(PnAB)− tr(Pn)
2 tr(PnA

2BA2B) = tr(Pn)
3 tr(PnA

3BA3B) = tr(PnA
3B)− tr(Pn)

4 tr(PnA
4BA4B) = tr(PnA

4B) + tr(Pn)
5 tr(PnA

5BA5B) = 2tr(PnA
5B)− tr(Pn)

6 tr(PnA
6BA6B) = 3tr(PnA

6B) + tr(Pn)
7 tr(PnA

7BA7B) = 5tr(PnA
7B)− tr(Pn)

Table 7.3: Trace reduction for repeated Fibonacci blocks, i ≤ 7.

It is easy to see that the first equation in Table 7.3 holds. We have from Table 7.1

tr(PnABAB) = tr

(
b −a− b

d −c− d

)
= b− c− d,
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tr(PnAB)− tr(Pn) = tr

(
a+ b −a

c+ d −c

)
− tr

(
a b

c d

)

= (a+ b− c)− (a+ d) = b− c− d.

The second equation is trivial because A2BA2B = I.

We will prove the general case of this form of product matrix in the following

propostion. Note that we are again tracking the change in trace of a product matrix

Pn upon multiplying by a repeated matrix pattern, as was done in Table 7.1.

Proposition 7.3. Given a general product matrix Pn = ( a b
c d ), we have the following

trace formula for product matrices ending in equal blocks:

tr(PnA
iBAiB) = Fi−2tr(PnA

iB) + (−1)itr(Pn).

Proof: We can prove this result quite simply using the fact that

AiB =

(
Fi −Fi−2

Fi+1 −Fi−1

)
.

Expanding the product matrices PnA
iBAiB and PnA

iB and taking the traces gives

tr(PnA
iBAiB) = aF 2

i + bFiFi+1 − aFi+1Fi−2 − bFi+1Fi−1

− cFi−2Fi − dFi−2Fi+1 + cFi−1Fi−2 + dF 2
i−1,

Fi−2tr(PnA
iB) + (−1)itr(Pn) = Fi−2(aFi + bFi+1 − cFi−2 − dFi−1) + (−1)i(a+ d).

Equating, and grouping terms according to their coefficients, we obtain the following

four equations:

a : F 2
i − Fi−2Fi+1 = Fi−2Fi + (−1)i, (7.9)

b : FiFi+1 − Fi−1Fi+1 = Fi−2Fi+1, (7.10)

c : Fi−2Fi−1 − Fi−2Fi = −F 2
i−2, (7.11)

d : F 2
i−1 − Fi−2Fi+1 = −Fi−2Fi−1 + (−1)i. (7.12)

It is easy to show these four equations hold using simple Fibonacci relations. Let

us begin with Equation (7.9). Using Cassini’s identity, Fn−1Fn+1 − F 2
n = (−1)n, we
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can rewrite this equation as

Fi−2Fi + Fi−1Fi+1 − F 2
i = F 2

i − Fi−2Fi+1,

Fi−2Fi − F 2
i + Fi+1(Fi−2 + Fi−1) = F 2

i ,

FiFi−2 + Fi(Fi+1 − Fi) = F 2
i ,

Fi(Fi−2 + Fi−1) = F 2
i ,

F 2
i = F 2

i .

Similarly, for Equation (7.12) we have

−Fi−2Fi−1 + Fi−1Fi+1 − F 2
i = F 2

i−1 − Fi−2Fi+1,

−Fi−2Fi−1 + Fi+1(Fi−2 + Fi−1)− F 2
i = F 2

i−1,

−Fi−2Fi−1 + Fi(Fi+1 − Fi) = F 2
i−1,

Fi−1(Fi − Fi−2) = F 2
i−1,

F 2
i−1 = F 2

i−1.

For Equations (7.10) and (7.11) we have the respective expressions

FiFi+1 − Fi−1Fi+1 = Fi+1(Fi − Fi−1) = Fi−2Fi+1,

Fi−2Fi−1 − Fi−2Fi = Fi−2(Fi−1 − Fi) = −F 2
i−2,

completing the proof. �

With this result we are now able to remove any repeated blocks AiBAiB from

our product matrix. We have seen in Theorem 2.9 that rotating terms in a product

matrix does not affect the characteristic polynomial, and therefore does not affect the

trace. If the repeated block occurs in the center of our product matrix, we can simply

rotate it to the end and use Proposition 7.3. Consider the following example.

Example 7.5. We can reduce the trace of the matrix A3BA5BA3B using Proposition

7.3 as follows:

tr(A3BA5BA3B) = tr(A5BA3BA3B) = tr(A5BA3B)− tr(A5B)

= tr(A2A3BA3B)− tr(A5B) = tr(A2A3B)− tr(A2)− tr(A5B)

= tr(A5B)− tr(A2)− tr(A5B) = −tr(A2).
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Here we have a cancelation in the last line. Also, notice that we have used Proposition

7.3 twice; the second time, we used it to calculate tr(A5BA3B). Note that here we

did not have two equal blocks. We can now extend our reduction to unequal blocks

occurring in our product matrix.

Corollary 7.3. Given a general product matrix Pn = ( a b
c d ), we have the following

trace formula for product matrices ending in blocks of length i and j with i ≤ j:

tr(PnA
iBAjB) = Fj−2tr(PnA

iB) + (−1)jtr(Ai−jPn). (7.13)

Proof: The key is to rewrite our product matrix as PnA
iBAjB = PnA

i−jAjBAjB,

so that it is now in the proper form to use Proposition 7.3. Letting Pn in the theorem

be PnA
i−j, we have

tr(PnA
i−jAjBAjB) = Fj−2tr(PnA

i−jAjB) + (−1)jtr(PnA
i−j)

= Fj−2tr(PnA
iB) + (−1)jtr(Ai−jPn),

where we have tr(PnA
i−j) = tr(Ai−jPn) by Theorem 2.9. This allows us to group

matrices A at the beginning of the product, and end with B. �

We now have a recursive formula for the trace of a product matrix comprised of

blocks of the form AiB. We want to know what we are left with if we apply this

recursive formula repeatedly. We have seen in Example 7.5 that our trace boils down

to a sum of terms of the form tr(AiB) and tr(Aj), i.e., traces of single blocks, which

may or may not contain a B term. As shown in Table 7.3, we may also have Fibonacci

coefficients.

A bit of new notation will be useful here. We will use B̂q to represent a product

matrix containing q blocks. We will again map the trace of B̂q to a simplified form,

this time using sums of q-tuples comprised of 0, 1 and −1. (Recall, traces of matrices

Bq were mapped to 2q-tuples comprised of 0, 1 and −1.) Now, however, the terms

0, 1 and −1 will carry a different meaning. The 0 will denote a Fibonacci term and

−1 and 1 will correspond to powers of A. The positions of these numbers inside the

q-tuple indicate which variables they refer to. The exponent of (−1) will come from

the −1 terms in our q-tuple, and initial terms in the q-tuple will determine whether

or not the matrix B appears. An example will be most useful here.
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Example 7.6. Consider the trace expression in Equation (7.13), but with Pn = I:

tr(AiBAjB) = Fj−2tr(AiB) + (−1)jtr(Ai−j). (7.14)

This gives us the trace of B̂2 and contains the variables i and j. Each term in the sum

is going to give us an ordered pair. In the first term, i appears as a positive power

of A, so we let the first entry in our ordered pair be 1. We also have j appearing

in the Fibonacci subscript, so we let the second entry in our order pair be 0. There

are no negative powers of A, so we have no −1 terms in the pair. Our ordered pair

is thus (1, 0). Similarly in the second term, i and j appear as positive and negative

coefficients of A, respectively, and so our ordered pair is (1,−1). There is no 0 term

here because we have no Fibonacci coefficients. The exponent of the (−1) term is the

sum of the negative exponents of A, which is simply j in this case. We therefore have

the mapping

tr(AiBAjB) �→ (1, 0) + (1,−1),

and we call each q-tuple a simplified Fibonacci-trace product, or just simplified product

if the context is known. We will also refer to the original form of the product, given in

the trace equation (7.14), as the Fibonacci-trace product. Notice that each exponent

appears in exactly one of the Fibonacci subscripts or the powers of A.

We can now use this simplified Fibonacci-trace product notation to completely

characterize the trace of B̂q in a non-recursive way.

Theorem 7.6. The trace of a product matrix B̂q containing q blocks of the form AiB

is comprised of a sum of Fibonacci-trace products which we can map to simplified

form using 0, 1, and −1. The set of such products is comprised of exactly all q-tuples

containing 0, 1 and −1 which obey the following two rules:

1. The simplified Fibonacci-trace products must begin with either 1 or (1,−1).

2. After the initial group we may add either 0 or (1,−1) to the simplified Fibonacci-

trace products.

Furthermore,
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3. A Fibonacci-trace product contains the matrix B if and only if its simplified

Fibonacci-trace product begins with (1, 0) or (1, 1), i.e., initial group 1 rather

than (1,−1).

Proof: For the 1-block case, we have tr(B̂1) = tr(AiB). In simplified Fibonacci-trace

form we can write tr(B̂1) �→ (1). For the 2-block case, we have tr(B̂2) = tr(AiBAjB),

which we have seen in Example 7.6 gives the simplified form tr(AiBAjB) �→ (1, 0) +

(1,−1). So we have either started with (1,−1) or started with 1 and added 0. Since

we can only add terms to the end of the simplified product, this proves the first rule.

We can now use a strong induction to prove the second rule, i.e., that adding 0

or (1,−1) to the initial group to form all possible q-tuples gives the complete trace

of B̂q. For B̂2, we have seen that the two simplified Fibonacci-trace products are the

only ones possible. Using Corollary 7.3, we have that for q = 3

tr(AiBAjBAkB) = Fk−2tr(AiBAjB) + (−1)ktr(Ai+j−kB)

= Fk−2(Fj−2tr(AiB) + (−1)jtr(Ai−j)) + (−1)ktr(Ai+j−kB)

= Fk−2Fj−2tr(AiB) + (−1)jFk−2tr(Ai−j) + (−1)ktr(Ai+j−kB).

In terms of simplified Fibonacci-trace products we have

tr(AiBAjBAkB) �→ (1, 0, 0) + (1,−1, 0) + (1, 1,−1).

Again, we can see that these are the only possible simplified products; if we start

with 1, we can add (1, 0) or (0, 0) and if we start with (1,−1) we can only add 0.

Now suppose our inductive hypothesis is true for product matrices containing q or

fewer blocks. We want to show it is also true for q + 1 blocks. We will use Corollary

7.3 and suppose that the product matrix Pn is of the form B̂q−1. If we also suppose

that the exponents of A in the last two blocks are r and s, we can write

tr(PnA
rBAsB) = Fs−2tr(PnA

rB) + (−1)str(Ar−sPn). (7.15)

First consider the term Fs−2tr(PnA
rB). The matrix PnA

rB contains q blocks and

so its trace contains all possible q-tuples as described. By multiplying the trace of

this matrix by Fs−2, we have taken all simplified products in the trace of PnA
rB and

added a 0 to the s position, i.e., the end. Now consider the term (−1)str(Ar−sPn).
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The matrix Pn contains q−1 blocks and so its trace contains all possible (q−1)-tuples

as described. By multiplying Pn by Ar−s, each term tr(AiB) or tr(Aj) in the trace

of Pn, becomes tr(Ai+r−sB) or tr(Aj+r−s) respectively. We are also multiplying each

term by (−1)s. In terms of simplified Fibonacci-trace products, this is the equivalent

of adding 1 and −1 to the r and s positions. We now have that the set of simplified

Fibonacci-trace products in the trace of B̂q+1 is comprised of the set of simplified

Fibonacci products in the trace of B̂q with 0 appended to the end, plus the set of

simplified Fibonacci products in the trace of B̂q−1 with (1,−1) appended to the end.

This tells us that adding 0 or (1,−1) to the initial groups 1 and (1,−1) to form all

possible q-tuples gives the complete trace of B̂q.

We can prove Rule 3, that matrix B occurs when our simplified Fibonacci-trace

product begins with (1, 0) or (1, 1), using induction. The first few cases are easy to

verify from Table 7.4, which breaks down the Fibonacci trace products for q ≤ 5,

and will be discussed in more detail in Example 7.7. Now suppose that our result

holds for matrices containing q or fewer blocks. We want to show that it is also true

for B̂q+1. In the first term of Equation (7.15) we have that the trace for q blocks,

tr(PnA
rB), contains B when the simplified product begins with (1, 0) or (1, 1). We

simply multiply by Fs−2, which does not affect B, and adds 0 to the end. Similarly

for the second term, our assumption is true for the q − 1 block case, tr(Pn). Here we

add to the exponent of A, and multiply by a power of (−1). This adds (1,−1) to

the end of the simplified Fibonacci-trace product and does not affect the presence of

matrix B or the initial terms of the simplified product. �

We have seen that our simplified Fibonacci-trace products are built up recursively,

where those in B̂q+1 depend on those in B̂q and B̂q−1. The following example makes

this particularly clear.

Example 7.7. For q ≤ 5, we have Table 7.4. For each value of q we have included

the set of simplified Fibonacci-trace products, the expanded forms (Fibonacci-trace

products) as well as the variables involved in the subscript of the Fibonacci numbers

and the exponents of A. The fourth column indicates whether or not the matrix B is

included in the Fibonacci-trace product. Recall that we may have tr(AiB) or tr(Aj)
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in the expansion of our simplified Fibonacci-trace product. The dotted lines in the

table show us how each level has been derived from the previous two by adding either

0 or (1,−1) to the end of the simplified product.

q F sub. A exponent B simp. prod. expansion
1 - i x (1) tr(AiB)
2 j i x (1, 0) Fj−2tr(AiB)

- i− j (1,−1) (−1)jtr(Ai−j)
3 k, j i x (1, 0, 0) Fk−2Fj−2tr(AiB)

k i− j (1,−1, 0) (−1)jFk−2tr(Ai−j)
- i+ j − k x (1, 1,−1) (−1)ktr(Ai+j−kB)

4 l, k, j i x (1, 0, 0, 0) Fl−2Fk−2Fj−2tr(AiB)
l, k i− j (1,−1, 0, 0) (−1)jFl−2Fk−2tr(Ai−j)
l i+ j − k x (1, 1,−1, 0) (−1)kFl−2tr(Ai+j−kB)
j i+ k − l x (1, 0, 1,−1) (−1)lFj−2tr(Ai+k−lB)
- i− j + k − l (1,−1, 1,−1) (−1)j+ltr(Ai−j+k−l)

5 m, l, k, j i x (1, 0, 0, 0, 0) Fm−2Fl−2Fk−2Fj−2tr(AiB)
m, l, k i− j (1,−1, 0, 0, 0) (−1)jFm−2Fl−2Fk−2tr(Ai−j)
m, l i+ j − k x (1, 1,−1, 0, 0) (−1)kFm−2Fl−2tr(Ai+j−kB)
m, j i+ k − l x (1, 0, 1,−1, 0) (−1)lFm−2Fj−2tr(Ai+k−lB)
m i− j + k − l (1,−1, 1,−1, 0) (−1)j+lFm−2tr(Ai−j+k−l)

k, j i+ l −m x (1, 0, 0, 1,−1) (−1)mFk−2Fj−2tr(Ai+l−mB)
k i− j + l −m (1,−1, 0, 1,−1) (−1)j+mFk−2tr(Ai−j+l−m)
- i+ j − k + l −m x (1, 1,−1, 1,−1) (−1)k+mtr(Ai+j−k+l−mB)

Table 7.4: Fibonacci trace products for q ≤ 5.

The following corollaries provide us with a bit more insight into this representation

of the trace of B̂q.

Corollary 7.4. Each Fibonacci-trace product in the trace of B̂q contains q different

variables, each occurring exactly once in either the Fibonacci subscript or the exponent

of A.

Proof: This is a simple consequence of the previous theorem, which states that

the set of Fibonacci-trace products in the trace of B̂q can be represented by the set

of all q-tuples which begin with 1 or 1,−1 and are formed by adding 0 or 1,−1 to

the end. We have assigned each entry in a q-tuple to a specific variable i, j, k, l, . . .,
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where the value of the entry tells us the location of the variable in the Fibonacci-trace

product. Therefore each variable appears exactly once in the Fibonacci subscript or

the exponent of A. Note that we are not including the exponent of the (−1) term in

the Fibonacci-trace product here. �

Corollary 7.5. The number of simplified Fibonacci-trace products in the trace of B̂q

is Fq+1.

Proof: This is easy to prove with strong induction. From Table 7.4 we can see that

for the first few values of q we have 1, 2, 3 and 5 simplified products. Now suppose

that the number of terms in tr(B̂q) is Fq+1, and likewise for all block sizes less than q.

By Theorem 7.6 the set of simplified Fibonacci-trace products in tr(B̂q+1) comes from

adding a 0 to the end of the simplified products in tr(B̂q), and (1,−1) to the end of

the products in tr(B̂q−1). Therefore the size of such a set is simply Fq+1 +Fq = Fq+2,

as required. �

It is interesting to note that the sequence of final matrices in the Fibonacci-trace

products, (either A or B) is the rabbit sequence (see [67, A036299]). This is due

to the recursive behaviour of our products and the fact that the final matrix does

not change as we extend our simplified Fibonacci-trace products. Recall, the Rabbit

Sequence is a string of 0’s and 1’s which is formed by concatenation. We start with

initial terms 1 and 10, then form the next term by concatenating the previous two

to obtain 101. Continuing we obtain 10110, 10110101, 1011010110110, . . . . This is

precisely the sequence of A’s and B’s read down Table 7.4.
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Conclusion

8.1 Summary

We will now summarize the contents of this thesis and review its contributions. In

Chapter 1 we introduced the random Fibonacci sequence along with the result of

Viswanath that motivated this thesis, namely, that almost all random Fibonacci

sequences grow exponentially at the fixed rate 1.13198824 . . . . We gave some experi-

mental evidence that the convergence to this number occurs very slowly. We looked

at some different ways to generate random Fibonacci sequences by changing the lo-

cation of the ± sign or using absolute values, and these ideas are considered again

in subsequent chapters of the thesis. We showed that for each of these variations on

the definition, the set of all possible (1
2
, 1)-random Fibonacci sequences is the same

in absolute value. We used a binary tree to represent the set of all sequences, an idea

which plays a major role later in the thesis.

The majority of the Introduction chapter gives an overview of different types of

random sequences, and generalizations of Viswanath’s random Fibonacci sequence.

In particular, we look at work on the cases where p 	= 1
2
or there is a non-unity

coefficient in the recurrence. We also gave an overview of Viswanath’s proof and

discussed the role of random matrix theory, as well as the importance of computer

calculations in studying random Fibonacci sequences and their variations. Further,

we made some connections to physics and other fields of study, and noted some open

questions in the literature.

The goal in Chapter 2, and the first major contribution of this thesis, was to

remove the randomness from the random Fibonacci sequence. This idea was explored

independently and at a lesser depth by McGuire [55]. We defined the coefficient

cycle σn of length n and used it to generate the periodic coefficient sequence, which

for large values of n approximates a random Fibonacci sequence. The set of all

268
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possible coefficient cycles of length n represents the set of all possible length-n random

coefficient sequences. The key tool for studying these new sequences is the matrix

representation of the recurrence, and we saw that for any coefficient cycle, we could

associate a product matrix Pn. We reviewed the different types of growth (bounded,

linear and exponential), as well as the growth rate, of a general second order linear

recurrence. The dominant eigenvalue of the companion matrix of such a recurrence

determines the growth rate as well as criteria to determine the growth type, and

this information was then translated back to our periodic coefficient sequence and

corresponding matrix Pn using a set of n subsequences, a new result. Two important

theorems — that rotating or reversing the coefficient cycle does not change the growth

rate or type — were also given.

In Chapter 3 we removed the need for eigenvalues to characterize the growth type

of our sequences, and focused on the trace and order of a product matrix Pn. Some

simple connections were made between trace and n, leading up to our main result of

the chapter, namely Theorem 3.3, which gives a characterization of growth type based

on the absolute value of the trace and the parity of n. A similar classification using

continued fractions is speculated upon. Second, we study the connection between

the order of a product matrix and the growth type. To do this we introduce the

quotient group PS∗L(2,Z), which equates matrices ±Pn = [Pn] in SL(2,Z). We give

a characterization of boundedness based on the order of [Pn] in the cases of trace

0 and trace ±1 matrices, and show that all bounded periodic coefficient sequences

must have product matrices with orders 1, 2, 3 or 6. The latter result was given by

McGuire [55] and the former extends results found in a slightly different form in [55].

Lastly, we approximated Viswanath’s constant by taking an average of all growth

rates obtained from the set of length-n coefficient cycles. The approximation did not

even yield two decimal places of accuracy, but an interesting pattern in n (mod 6)

is observed. Also, we approximate the growth rate instead by the nth root of the

absolute value of the trace, and again find an average.

In Chapter 4 we considered our coefficient cycles as loops, specifically, necklaces,

which are equivalent under rotation, and bracelets, which are equivalent under re-

versal. We have already seen that rotating and reversing the coefficient cycle had
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no effect on growth rate or type, and we considered two further operations on our

bracelets. First, we showed that negating terms in our coefficient cycle, i.e., swap-

ping colors in our bracelet, had no effect on the growth, and second, we showed that

reducing or extending by a multiple of the primitive cycle also did not affect growth.

We used these four operations to define an equivalence class of coefficient cycles and

derived (known) combinatorial formulas which count numbers of necklaces, bracelets

and equivalence classes. The point of forming such equivalence classes is that we can

reduce the number of coefficient cycles whose growth rate/type we need to find. We

made an interesting connection between continuant polynomials and product matri-

ces, and used it to construct some of our proofs.

In Chapter 5 we considered some properties of the binary tree T of all random

Fibonacci sequences (in absolute value), and introduced the reduced tree R made

from pruning all repeated edges from T . This idea and many related results are

found in Rittaud [64], which was the most influential paper for this thesis. Many

properties of R were considered, the most important of which tells us that left children

of left nodes do not occur in R. We also considered some variations of the tree R

based on different definitions of the random Fibonacci sequence and generalization

of initial values. Rittaud showed that the growth rate of the expected value of the

nth term in a random Fibonacci sequence (in absolute value) is the algebraic number

α = 1.205569431 . . . . He did this by first finding the analogous growth rate in R,

and then using the fact that the rows in T can be written as linear combinations

of the rows in R, where the initial values are functions of the golden ratio φ. (His

proof also contains an error which was pointed out and fixed in a more general setting

in a subsequent paper, and which we have corrected.) We gave a new and simpler

breakdown of rows in T in terms of those in R and gave an explicit formula for

the coefficients of the linear combination, which involved an interesting geometric

argument. The coefficients were much more complicated in our case, but formed a

neat Pascal-like triangle which is easily extended. We used this breakdown to give a

simpler proof of the growth rate α, and conjectured that this value may also be found

using sums of traces in T .
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In Chapter 6 we looked at products of the nth rows of terms in T and R. We

found some relations among the products of all nodes, left nodes only and right

nodes only of rows in R. We also counted equivalence classes of coefficient cycles

corresponding to the tree R and its variation R1. The main result of this chapter,

and probably the major result of the thesis, is a new computation of Viswanath’s

constant using a geometric mean of nodes in T given by Kalmár-Nagy [44]. This

computation alone does not give an accurate approximation of the constant, so we

computed the geometric mean in R instead, which converged much more quickly. A

heuristic result of Rittaud [64] links Viswanath’s constant to this new value using φ,

and we provided a rigorous proof. With this, we were able to calculate Viswanath’s

constant to 8 decimal places of accuracy, although we feel this could be improved

with a more efficient program. Viswanath’s calculation was extremely difficult and

required many different components, including random matrix theory, the Stern-

Brocot tree, a fractal measure and an intensive computer calculation, so we feel this

was a vast simplification of the problem. Further, we give another formulation of the

link between the two constants, using the composition of T in terms of R given in

Chapter 5.

Chapter 7 is a detailed study of patterns in the traces of product matrices Pn,

corresponding to coefficient cycles in both T and R. Everything in this section is

original. We start with a recursive system of equations that allows us to write the

trace of a product matrix Pn+3 in terms of Pn+2, Pn+1 and Pn. This also allows us

to consider the average trace values over all product matrices of a given length. We

consider the traces and corresponding growth types of kth powers of some particular

product matrices, as well as some products of such powers. We also look at the change

in trace upon multiplying Pn by particular powers of product matrices. Lastly we give

complete characterizations of the traces of products of Fibonacci blocks for both of

the forms AiBj and AiB, which correspond to products in trees T and R respectively.

We do this using mappings from products of Fibonacci terms to q-tuples containing

0, 1 and −1. Some interesting structure appears in the traces of such products.
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8.2 Further Work

The most important future work we feel that could be done is to write a better pro-

gram for computing the geometric mean of nodes in ρn. As seen, our computation

gave us 8 correct digits of Viswanath’s constant, but the simplicity of this method

leads us to believe that we can achieve a better outcome. It would also be interesting

to find the rate of convergence using our method as well as Viswanath’s. Another

important question that remains open is how our method of computing Viswanath’s

constant using the geometric mean carries over to sequences defined using a coefficient

(perhaps a general coefficient) in the recurrence, or with p 	= 1
2
. In the latter case we

would need to use a weighted geometric mean. We could also consider increasing the

number of terms in our recurrence, as well as some other of the numerous general-

izations mentioned in Section 1.8. It would be interesting to move beyond sequences

generated by coefficient cycles and look at the growth of sequences generated by non-

periodic patterns of ± signs. Another question is whether or not we can construct a

random Fibonacci sequence (of the non-random type) with a given growth rate.

In Chapter 2, we discussed some properties of our group G, and its subgroup with

positive determinant, K. We saw that with elements taken modulo 2, all matrices

in G are of the form ( 1 0
0 1 ) , (

0 1
1 1 ), or ( 1 1

1 0 ), and K is exactly equal to the set of

matrices in G with determinant 1 and this form modulo 2. It would be nice to have

some more information about the group G, and in particular, if possible, a complete

characterization of its elements. It would be quite interesting to further investigate

the properties of the groups formed by taking matrix products of A, B̂ = ( 0 ±1
1 1 ) or

A, B̂ and B, as discussed in Chapters 2 and 3. Further we could study the changes to

the trace, growth and order results found in these chapters. We could also extend the

criteria for growth based on the trace and order of a product matrix to the generalized

matrices
(
0 1
1 ±β

)
which are the result of adding a coefficient to the recurrence.

It may be of interest to further investigate our product matrices Pn as compo-

sitions of Möbius transformations. Multiplication by matrices A and B correspond

to the transformations f(z) = 1
z±1 . We could consider a sequence of A’s and B’s

geometrically, as a series of Möbius transformations which map points or sets in the

complex plane. Properties such as fixed points, sinks and sources, and limit sets
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could be studied. We can use a circle pairing map to study the effects of our Möbius

transformations f(z) = 1
z±1 . The transformation f(z) = 1

z
is an inversion, i.e., maps

the outside (inside) of one disc to the inside (outside) of another, and f(z) = z± 1 is

a translation. Limit points of a Möbius transformation represent infinite sequences

of nested disks, which shrink down to a point. Recall the maps given in Section 3.1.

For parabolic maps, nested disks shrink linearly, for loxodromic maps, they shrink

exponentially, and for elliptic maps, shrinking does not occur. (See Mumford et al.

[57, p. 97, 123, 169].)

In Chapter 3, we gave approximations to Viswanath’s constant by calculating the

average value of the nth roots of absolute values of dominant eigenvalues, and also

trace values. A further look at the proportion of dominant eigenvalues or trace values

that are small (or give bounded growth, for example), as n increases, might help us

to better understand the approximation given, or to give a better approximation. We

also saw in Figure 3.1 that a pattern exists in the average values of growth rates for

values of n (mod 6). All three groups of values appear to converge to Viswanath’s

constant, although focusing on one of these groups, for example n ≡ 1, 5 (mod 6),

which gives exponential growth only, may simplify the approximation or give us some

insight.

Conjecture 3.1, on the connection between the continued fraction obtained from

the coefficient cycle and the growth type deserves to be studied further. We feel

the explanation for these results is obtainable without too much difficulty. We could

further investigate the connection between product matrices and continuants given in

Theorem 4.1. We can write an expression for the growth rate in terms of continuant

polynomials by simply finding the dominant eigenvalue of the matrix given in the

theorem. We would then need to find a way to average all possible such growth rates,

to give an expression for Viswanath’s constant.

We mentioned that the original intent of using equivalence classes was to try to

shed some light on Viswanath’s constant by determining the number of equivalence

classes, the size of each equivalence class, the growth type/rate of each equivalence

class, and then constructing a formula for the constant with this information. The

problem of finding the size of the equivalence classes turned out to be difficult, and this
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approach could be further considered. We could also try grouping all coefficient cycles

of length n, not according to equivalence class, but according to growth rate. Since

coefficient cycles of the same length have the same determinant, equal growth rate

also means equal trace (in absolute value). Since we know that multiple equivalence

classes may share the same trace value, we would essentially be combining existing

equivalence classes into larger sets. This could be a useful grouping, in terms of

enumeration. We saw in the proof of Theorem 2.11 that similar matrices share trace,

determinant, eigenvalues and order, and so we could also look at sets of product

matrices Pn ∈ G which are similar, if they happen to differ from the above groupings.

Recall from Chapter 6 that the sequence defined by Equation (6.1), which gives

the number of coefficient cycles with (−−) forbidden (i.e., in R) and not of the form

((+)i(−)j), matched the sequence describing the partial sum operator applied three

times to Fibonacci numbers, and also the number of 132-avoiding two-stack sortable

permutations which contain exactly one subsequence of type 51234, with offset 4. It

would be interesting to examine these possible connections.

There were numerous calculations given in Sections 5.3 and 6.2 of different types

of growth rates which require further investigation. Conjecture 5.1 claims that the

growth rate of the expected value of the traces (in absolute value) for all product

matrices Pn corresponding to level n of the tree T gives us the constant 1.20556943 . . .,

which we have seen in Corollary 5.5 is the growth rate of the expected value of

the nth terms in a random Fibonacci sequence. This calculation could be repeated

using eigenvalues rather than trace values, and we expect a similar result. We can

approximate the a.s. growth rate of sequences in R or R1 by taking the arithmetic

mean of nth roots of traces as in Equation (6.28), or approximate the growth rate

of the expected value of the trace as in Equation (6.29). We expect these values

to approximate ρ = 1.33683692 . . . and α
φ
= 1.363116873 . . . respectively, as was the

case for corresponding growth rates in T (see Table 6.4), but some quick calculations

showed that in R, both of these values were around 1.15 and in R1 they were both

around 1.26. These calculations for values in Rittaud’s trace tree (see section 6.2) give

approximations closer to our anticipated values. Further, we can repeat the above

calculations using the dominant eigenvalue instead of the trace.
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We can also try taking geometric means of traces and dominant eigenvalues, in-

stead of just the arithmetic means used in the calculations above. We had luck with

the geometric mean of the nth terms in a random Fibonacci sequence, as given in

Theorem 6.2. This calculation led us to very good approximations of ρ and τ . We

can also experiment with both the ratio and nth root definitions of the growth rate

for exponential growth, as given in Definition 2.4. Sometimes one works much better

than the other, as was the case for the approximations to ρ and τ in Tables 6.2 and

6.3. These ideas about growth rates require further investigation.

In Chapters 5 and 6 we saw that the values 1.13198824 . . . and 1.205569431 . . .

fit the generalized mean inequality and the theorem of arithmetic and geometric

means (both of which follow from Jensen’s inequality on the expected value of convex

functions). These values represent the expected value of the growth rate of a random

Fibonacci sequence, and the growth rate of the expected value of a random Fibonacci

sequence (both in absolute value), respectively. It is interesting that nothing is known

about the nature of the former value (although it’s most likely irrational), but the

latter value is an algebraic number of degree 3. A deeper study of these ideas may lead

us to better understand the connection between these two numbers, or perhaps allow

us to find a lower bound for 1.205569431 . . . (giving information about 1.13198824 . . .).

Recall Theorem 6.1, which stated a number of (related) relations among products

of all nodes, left nodes and right nodes in rows of R. We mentioned that an additional

independent relation could lead us to an exact expression for P (ρn) and hence to

Viswanath’s constant itself. The constant 1.5836413 . . . could be used for this purpose

as discussed in Section 6.1. Although efforts were not successful, we could continue

looking for an additional expression or recurrence for one of the above mentioned

products. We could also try to further exploit the fractal nature of R (its subtrees

have the same shape and growth as the overall tree) to find an equation for P (ρn).

The subtrees have different initial values, but this does not affect the growth rate of

the product.

In Section 5.1, we discussed the general tree R(a,b) for a < b. Attempts to find

a pattern in the general nodes were unsuccessful; however, if this was possible, we

could write an expression for P (ρn), and hence the a.s. growth rate of sequences, in
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terms of a and b. We could then substitute a = 1 and b = 2 (recall we had shifted

down one row to match the general form of R) to find an expression for Viswanath’s

constant.

Recall from Chapter 1 that Kalmár-Nagy [44] derives a generating function that

characterizes the multisets derived by taking the multiset sum of the Minkowski

sums and differences of consecutive rows in T2. He does this by using properties of

the Minkowski sum/difference to construct a recurrence for the generating function,

which he then explicitly finds. Further, he states that a recurrence relation for the

generating function for the entries in row n of T2 can be constructed. We have not

figured out how to do this, but such a generating function would encode the frequency

of nodes occurring in any given row, from which we could deduce the geometric mean

and hence growth rate, i.e., Viswanath’s constant. We could also look for such a

generating function for nodes in R. Similarly, finding a pattern in, or characterization

of the occurrence of trace values in R or T , could lead to a deterministic growth rate

formula.

In Corollary 7.1, we considered the average trace value over all product matrices

Pn. This was not particularly useful, as the average is either 0 or 2 depending on

the parity of n. The reason is that we need to take the absolute values of the traces

in Theorem 7.1 before averaging. If we could somehow determine the signs of the

traces, we could derive a (possibly recursive) expression for the average trace, which

could prove Conjecture 5.1, or take products or nth roots of traces and possibly find

an expression for Viswanath’s constant, as given in Equation (3.17). Also, sequences

for these sums of absolute values of traces in T and R were given in Chapters 5 and

6, from which we could continue to look for a pattern or recurrence.

In [61], Trefethen is quoted as saying (about random Fibonacci sequences) “Look-

ing for patterns and trends among such sequences of numbers can be a fascinating

pastime.” I certainly agree. I’ve been at it for the last five years!



Appendix A

Maple Programs

Figure A.1: 1 of 13 programs used to compute the ratio approximation to ρ for n = 24.
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Figure A.2: Approximation of Viswanath’s constant using the geometric mean.
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Figure A.3: The average of j growth rates of random Fibonacci sequences of length
n.
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Figure A.4: Approximation of Viswanath’s constant using eigenvalues for n = 9.



Bibliography

[1] Roger C. Alperin. Rationals and the modular group. American Mathematical
Monthly, 106:771–773, Oct 1999.

[2] Zai-Qiao Bai. On the cycle expansion for the Lyapunov exponent of a prod-
uct of random matrices. Journal of Physics A: Mathematical and Theoretical,
40(29):8315–8328, Jul 2007.

[3] Zai-Qiao Bai. An infinite transfer matrix approach to the product of random
2 × 2 positive matrices. Journal of Physics A: Mathematical and Theoretical,
42(1):015003, Jan 2009.

[4] Zai-Qiao Bai. A transfer operator approach to random Fibonacci sequences.
Journal of Physics A: Mathematical and Theoretical, 44(11):115002, Mar 2011.

[5] Prem N. Bajaj. Equality of limits in ratio and root tests. Mathematics Magazine,
71(4):299, Oct 1998.

[6] Alan F. Beardon. The Geometry of Discrete Groups, volume 91 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 1983.

[7] Richard Bellman. Limit theorems for non-commutative operations I. Duke Math-
ematical Journal, 21(3):491–500, 1954.

[8] E. Ben-Naim and P. I. Krapivsky. Growth and structure of stochastic sequences.
Journal of Physics A: Mathematical and General, 35(41):L557–L563, Oct 2002.

[9] Florin P. Boca. Products of matrices [ 1 1
0 1 ] and [ 1 0

1 1 ] and the distribution of
reduced quadratic irrationals. Journal für die reine und angewandte Mathematik,
606:149–165, 2007.
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