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Abstract 

Dark vessels are a major source of economic and environmental damage, estimated to 

cost the global economy tens of billions (USD) a year.  These vessels hide or obscure 

their presence on the ocean to conduct unlawful activity. Current satellite non-cooperative 

vessel detection methods rely on terrestrial processing of data from large synthetic 

aperture radar satellites, and small visible imaging satellites. Multispectral imaging could 

bridge gaps in the capabilities offered by these methods. Furthermore, the development of 

powerful onboard computers for small satellites has enabled applied onboard machine 

vision to automate and optimize the vessel detection process. 

The study investigates whether the additional spectral bands in satellite multispectral 

imagery, beyond traditional RGB ones, provide detection benefits for marine vessels in 

the seas or oceans. Additionally, it also examines the suitability of multispectral imagery 

to detect vessels with object detection convolutional neural network (CNN) models and 

evaluating onboard processing of the models on representative single board computers. 

The process included the data fusion of multispectral satellite imagery and automatic 

identification system (AIS) data, to create a dataset which was used to train machine 

vision object detection models. The models were trained upon 39 permutations of spectral 

bands and model size and evaluated within the context of four simulated orbits and 

imaging constraints based on terrain elevation and coordinates. 

For the trained CNN models, it was found that using multispectral imaging improved the 

ability to detect vessels present by up to 10% compared to using only RGB imaging. This 

improvement was not uniform with different spectral band permutations varying 

considerably. The inference time penalty for using multispectral imaging was found to be 

no more than 4 ms per image compared to RGB inferencing time. Despite this, the 

multispectral models were found to be suitable for near real-time processing when 

imaging constraints relevant to vessel detection were utilized. 
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Chapter 1 Introduction 

Remote sensing is defined by the Canada Centre for Remote Science as “… the science 

(and to some extent, art) of acquiring information about the Earth’s surface without being 

in contact with it. This is done by sensing and recording reflected or emitted energy and 

processing, analyzing, and applying that information.” [1] Remote sensing can be 

completed with both aerial and orbital platforms, but the decreasing cost, high endurance, 

and the combined long-term persistence of satellite constellations has seen a dramatic 

increase in the utilization of the latter for specific applications. The endurance and revisit 

rate of orbital platforms is particularly important for monitoring oceans, whether for 

natural phenomena such as algae blooms or detecting vessels at sea. The detection and 

monitoring of these situations is important when algae blooms can have dramatic effects 

on the affected waters [2], and vessels can engage in illegal or unlawful activities and 

inflict significant economic and environmental damage. 

 

Within the context of illegal or unlawful activities, vessel detection has become a 

particularly compelling application for satellite remote sensing considering vessels may 

disengage, tamper, or spoof existing transponders (e.g., Automatic Identification System) 

to hide or mask their presence. These vessels, commonly referred to as ‘dark vessels’, 

contribute to illegal activity estimated to cost the global economy tens of billions per year 

[3] and are a major contributor to unsustainable fishing [4]. Currently, dark vessel 

detection from satellites utilizes optical – such as panchromatic or visible light – 

modalities or synthetic aperture radar (SAR) [5]. Both these methods have their strengths 

and weaknesses, particularly susceptibility to atmospheric obscurants and the size and 

subsequent cost of satellites required. 

  

The progressive development of small satellite technologies has led to a widescale 

adoption and deployment of small inexpensive satellites as their capabilities have grown 

to match complex mission requirements [6]. More capable communications systems 

permit higher data transmission rates with less power. More capable attitude 

determination and control system components permit greater pointing and determination 

accuracy with more compact components. More precise cameras yield better imaging 
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swaths and ground sample distance (GSD) in smaller form factors. Currently, 

multispectral cameras with GSD of less than 20 m at a 500 km altitude can be integrated 

aboard satellites as small as a 2U CubeSat [7]: a satellite measuring 20 × 10 × 10 cm.  

 

Special attention is drawn to on-board processing power available to satellites which has 

seen significant improvements. Whether a result of specially designed and hardened on-

board computers (OBC) or commercial-off-the-shelf (OTS) components with radiation 

tolerant designs, the algorithms and programs satellites can operate have become 

progressively more capable and complex  [8]. These developments suggest possibilities 

to perform on-board machine learning. The first satellite with an onboard machine 

learning algorithm for imaging was launched in 2020 with a specialized Intel processor to 

detect clouds present in the images captured [9]. The satellite reduced the volume of data 

transmitted thereby lowering the data transmission requirements, while also reducing the 

delay in receiving processed information. If the same could be replicated for marine 

vessel detection, it could automate and optimize a large portion of the dark vessel 

detection process. 

  

Given these considerations, this thesis aims to develop a vessel detection machine 

learning (ML) model applied to multispectral satellite imagery on emulated satellite 

hardware. It aims to develop a multispectral imagery vessel dataset to develop and train a 

model to process images with more spectral bands. Different spectral band combinations 

will be trained and evaluated, to assess the impact of different spectral bands on detection 

performance as measured by F1-score, recall and precision. Finally, the model will be 

trialed aboard emulated satellite hardware suitable for a CubeSat to contextualize the 

model inferencing speed within different orbital and operation conditions. 

  

The outcome of the research is a contribution to the development and application of non-

cooperative vessel detection. Current studies of (MS) ML satellite vessel detection are 

few in number, and either focus on the application of visible light or select locations in 

favorable weather conditions and environments. The dataset produced will be a resource 

to conduct further research and development of MS ML models. The completed research 
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itself should help the process of quantifying the value of including additional spectral 

bands for sensing tasks, especially in computation limited circumstances of low Earth 

orbit. 

1.1 Thesis Structure 

This thesis is comprised of five chapters: Introduction, Background, Methodology, 

Results and Discussion, followed by Conclusions and Future Work. The remaining 

chapters are described as follows.   

The Background, chapter 2, covers much of the same topics covered in the introduction 

to greater depth. Additional attention is given to the economic and environmental impact 

of dark vessels, remote sensing modalities, small satellites, and a more thorough 

discussion of ML. The section ends with a recount of the research statement based on 

information discussed. 

Chapter 3 presents the methodology of the thesis work. This covers the steps to create a 

non-cooperative vessel detection method through application of ML. The process of 

creating a multispectral dataset is detailed here – with steps laid out in the interest of 

transparency and repeatability – including the processing of Sentinel-2 satellite imagery 

and AIS information. Then, the developed ML model is briefly discussed, along with the 

tested spectral band combinations and hardware configurations. Finally, a MATLAB 

satellite simulation is presented to offer context to the image processing rate. 

Chapter 4 presents the results of the thesis research. Covered here are the model 

performance, the model inferencing rate aboard approximate hardware, and the 

MATLAB satellite simulation for inferencing rate context. The results for model 

performance and model inferencing rate are broken down into groupings based on data 

relevance to one another, and in the interest of legibility. 

The conclusion, chapter 5, summarizes the main research outcomes. This includes 

obvious conclusions, as well as less substantiated positions that are noted for the inability 

to answer or draw conclusions from. The final portion of this thesis discusses both gaps 

in the research at a methodology level, as well as possible future research directions due 

to resource or scope limitations. 
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Chapter 2 Background 

2.1 Dark Vessel and Location Transponders 

The term “dark vessel” is a catch-all generally used to describe vessels which willfully 

disengage an equipped transponder system [10]. The term may also be used to describe 

vessels which manipulate their position signal via spoofing [11], do not have an equipped 

location transponder system, or their system is out of range of any terrestrial or orbital 

system. Given the range of conditions and circumstances for transponder outages, dark 

vessels are not inherently unlawful but instead are difficult to monitor for unlawful 

activity. The systems disengaged for dark vessels may be closed source systems like 

VMS which open only to specific bodies, but generally the term refers to the 

disengagement of automatic identification system (AIS).  

AIS is a transceiver-based system originally implemented by the International Maritime 

Organization for collision avoidance [12], and the closest thing to a universal marine 

location system. When the regulations first passed [13], ships falling under certain criteria 

– primarily displacement, cargo, whether a voyage was international or domestic, and 

passengers – were required to integrate AIS, but this later expanded to include a wider 

range of applications such as fishing. An example of a full AIS message can be observed 

in Table 1. Some countries also require more strict use of AIS for vessels operating inside 

of territorial waters than those in international waters. 

Table 1  AIS message example of the tugboat SEASPAN CORSAIR [14]. AIS 

messages include location, information about the vessel’s course, vessel type 

(cargo), and size. 

description value description value 

MMSI 316003663 CallSign CZ6447 

BaseDateTime 2021-12-

04T00:00:02 

VesselType 31 

LAT 48.87658 Status 0 

LON -123.635 Length 25 

SOG 2.3 Width 7 

COG 124.9 Draft 3.9 
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description value description value 

Heading 124 Cargo 52 

VesselName SEASPAN 

CORSAIR 

TransceiverClass A 

IMO IMO74347   

 

However, as a method to monitor unlawful or illegal behavior, AIS has its drawbacks. 

Critically, the system requires vessel participation and can be willfully disengaged [12]. 

Disengagements are permitted under conditions of security and safety, or simply because 

the vessel is out-of-range of any receiver. However, with the advent of satellite-based 

AIS-receivers lapses in monitored position have become rarer.  Another manner the 

system has been exploited is through the spoofing of AIS positions. In observed cases, a 

ship broadcasts its position to be tens, if not hundreds, of kilometers from its actual 

position [15]. Either obscured or obfuscated movement can hide malicious actions from 

authorities, which is discussed next in Section 2.2. 

2.2 Sustainability and Economic Impact of Dark Vessels 

The oceans, seas and waterways of Earth are host to an abundance of resources and serve 

as active trade routes. It is estimated by the United Nations Conference on Trade and 

Development that 80% of the global trade by volume, and 70% by value – constituting 

10.7 billion tons by mass – was conducted by trade at sea by a commercial fleet of 94,171 

vessels in 2017 [16]. With regards to fisheries, in 2020 78.8 million tonnes of live weight 

were caught on the ocean by 4.1 million fishing vessels [17]. However, complicating the 

use of the marine domain is illegal or unlawful activity. This activity may be conducted in 

plain view, but the activity may be hidden or obfuscated. Examples may include illegal, 

unreported, and unregulated (IUU) fishing, smuggling, forced labor [18], and piracy.  

 

Of these activities, IUU is among the most documented and has strong connections to 

dark vessels. Knowledge of the extent of IUU fishing is limited given its nature, but 

estimates believe it to account for a notable portion of the world’s catch. For instance, 

one paper estimated IUU fishing accounts for 20% of the world’s catch, reaching up to 
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50% in certain areas [19]. By comparison the Food and Agriculture Organization of the 

United Nations estimate that over 15% of the annual global catch is IUU [20]. Figure 1 

shows a map of the fraction of fishing activity obscured by suspected disabling of AIS, 

which is to say: vessels suspected of willfully disengaging their systems to fish illegally. 

As a more focussed regional IUU example attributable to dark vessels, it is estimated 

between 2017 and 2018, $440M USD worth of squid (more than 164,000 tonnes) was 

caught by dark vessels off the coast of North Korea [10]. Compounding the problem is 

that many areas of the world’s fisheries are exploited at an unsustainable level, placing 

pressure on legal and regulated fishing as well as the long-term economic future of these 

industries. 

 

 

 

Figure 1  Regions of fishing vessel activity obscured by suspected disabling of AIS 

[21] highlighting the widespread use of dark vessels in fishing. 

Complicating the discussion on IUU fishing is that tracking the source of catches is 

difficult due to transshipment: the unloading of goods from one vessel to another while at 

sea. This can obfuscate and make it difficult to trace the source of catches. A 2018 study 

examined 32 billion automatic identification system (AIS) messages for ocean vessels 

from 2012 to the end of 2017 and tracked 694 cargo vessels capable of transshipping fish. 
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According to their criteria, the research found 46,570 instances where these vessels 

exhibited signs of potential transshipment (Figure 2) [20]. Ships engaging in 

transshipment may use flags of convenience to skirt fishing laws, but also may 

rendezvous with dark vessels at sea. 

 

 

Figure 2  Global patterns illustrating encounters with other vessels(red) and loitering 

events where transhipment may occur (black) [20].  Loitering events may be 

non-dark vessels meeting with dark vessels to transship cargo. 

Unlawful operation and evasion of sanctions is another area of exploitation for dark 

vessels. Disengagement of tracking systems – commonly AIS – is a tactic to avoid 

sanctions while operating despite sanctions or other activity. While not strictly falling 

under the category of dark vessels, it is an increasingly common tactic to spoof AIS data 

– particularly location manipulation – to make a ship appear elsewhere from its actual 

position [15, 22]. Verifying this information can be challenging under time-sensitive 

conditions. Oil is a common commodity for this nature of subterfuge, but may also 

include dredging of sand, or smuggling of other commodities [11].  

 

With the limitations of land and air-based solutions, the continued development of 

satellite remote sensing methods are critical to monitoring and identifying dark vessels. 

● Loitering Event 
● Potential Transshipment 
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While some dark vessels may be benign, or a result of unintentional loss of signal, the 

inability to identify dark vessels precludes any monitoring. The detection methods 

available for satellite-based methods are discussed in section 2.3, broken up into 

cooperative (section 2.3.1) and non-cooperative (section 2.3.2) methods. The latter is 

further broken down and detailed by sensing modalities for SAR, optical, and 

multispectral detection (sections 2.3.3 to 2.3.5). 

 

2.3 Existing Detection Methods 

While methods to detect dark vessels vary, they can be broadly divided into two 

categories: cooperative, and non-cooperative. As the term suggests, cooperative sensing 

relies on the target vessel’s participation to monitor it – such as using an active AIS signal 

– while non-cooperative methods can detect the vessel regardless of its willingness to 

participate. Most countries deploy a combination of these methods to secure and enforce 

their sovereign waters. 

As a developed country with large coastal regions, Canada is an example of a country 

with both the reason and means to monitor their coastlines. The methods used by Canada 

to detect vessels include AIS tracking – either terrestrial or satellite based – vessel 

monitor systems (VMS), patrols, aerial surveillance, radar satellites and violation records. 

Of course, there are limitations with each of these methods. AIS signals can be masked, 

are not required for vessels of all displacements and the signal can (un)naturally drop out. 

VMS systems are expensive, with requirements that vary by region, and can also be 

masked. Aerial surveillance is limited by the operator and/or craft endurance and cloud 

cover.  Radar satellites are expensive to design and launch which limits the number that 

can be launched and thereby limits the revisit rate of a constellation [23].  

2.3.1 Cooperative Detection Methods 

Cooperative detection methods for dark vessels can seem like a contradiction at first. To a 

degree this contradiction holds as cooperative detection methods are unable to detect dark 

vessels at a specific instant. However, dark vessel operation is rarely so binary over the 

course of a voyage and patterns appear over their voyage [24]. For instance, a foreign 

fishing vessel that approaches protected waters, then disengages their AIS to operate 

within the restricted area, only to re-engage it several hours later travelling away from 



9 

 

territorial waters produces telling data patterns. Repeated patterns of this behaviour or 

comparing voyage patterns against voyages of other violating vessels can be used to 

identify high risk vessels and cue other detection methods such as patrols, or prompt 

investigations. It is also through this type of analysis that hot spots for dark vessel fishing 

can be determined [25, 21]. 

2.3.2 Non-Cooperative Detection Methods 

For the detection of dark vessels at a given instant, non-cooperative detection methods 

are the only measure. These methods can range from the most rudimentary (e.g. patrols 

for visible surface sightings) and to the complex (ML applied to satellite imagery). 

Within the context of satellite remote sensing, however, ship detection is generally 

achieved with either SAR or optical sensors – generally either panchromatic or RGB. 

Other sensing modalities like hyperspectral, thermal imaging, and reflectometry systems, 

such as reflected SAR or GNSS reflectometry, have seen limited use for dark ship 

detection with satellites due to the low GSD or spatial resolution – the minimum size of a 

feature that can be fully occupy a pixel [5, 26, 27]. The only other sensing modality worth 

drawing attention to is multispectral imaging, which generally utilizes RGB spectral 

bands in addition to several NIR or SWIR spectral bands. Multispectral observations 

have had attention in recent years for vessel detection given improved spatial resolution 

and subsequently greater spectral information density per pixel [5, 7].  

Figure 3 compares the average spatial resolution of multispectral and panchromatic 

satellites achieved over time. 
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Figure 3  Increase in spatial resolution for panchromatic (PAN) and multispectral 

(MSS) satellite imaging over time. Higher spatial resolution means more 

information is contained in an image [5]. 

2.3.3 Synthetic Aperture Radar Vessel Detection 

Among the different modalities for vessel detection within satellite remote sensing, SAR 

is the current leading technology [23] [5] [28] [29]. Unlike true aperture radars, such as 

side-looking airborne radar (SLAR) which requires a long physical antenna, SAR uses 

the motion of the platform (satellite) to synthesize its antenna. In remote detection, SAR 

surpasses other radar types in its resolution. Of the sensor modalities discussed in this 

section, it is also the only sensing modality unaffected by cloud cover and absence of 

external illumination, a factor which has seen their widespread use. Figure 4 is an 

example of SAR imagery taken by the Sentiel-1C Satellite. In the image, a variety of 

vessels can be observed as white objects against a black background. 
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Figure 4  An example of marine vessels imaged by SAR observed between Gibraltar 

and Algeciras in September 2017, Copernicus Sentinel Data [30].  Marine 

vessels in SAR images appear as bright objects against the dark background 

of the water assuming sufficient imaging capabilities. 

Traditionally, ships are identified from such SAR images with techniques such as 

constant false-alarm rate (CFAR) which searches for “bright” objects (vessels) against a 

“dark background”, or generalized likelihood ratio tests which measures the probability 

of two hypotheses (there is a target/change, and there is no target) from captured data 

against a minimum threshold, and uses artificially designed features for identification 

[31] [32]. The recent application of ML (convolutional neural networks, CNN’s) to SAR 

imagery, along with the improved spatial resolution of satellites, has increased the speed 

and accuracy of object identification and classification [31] [33] [34]. 

The primary challenge with SAR is its high-power draw demand of the platform. As an 

active sensor, SAR emits energy and observes the Earth through the energy’s returns, as 
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opposed to passive sensors which observe reflected energy the sensor did not generate. 

The first SAR satellite below 100 kg mass was launched by ICEYE Ltd. in 2018 with a 

peak radiated power of 3.2 kW [35] for non-continuous use. Another example is the 

development and design of a Japanese 100 kg mass X-Band SAR satellite [36]. This 

design was well below the three hundred to few thousand kilograms for traditional SAR 

satellite but was estimated to still have an active sensor power draw of 1.3 kW. The 

design and launch of these massive and power-hungry satellites consequently drive their 

costs far above passive sensor satellites. 

2.3.4 Optical Satellite Vessel Detection 

For the purposes of subsequent sections, optical sensors will refer to panchromatic and 

red-green-blue (RGB) visible light imaging sensors. Multispectral sensors – which are 

often included under the classification of optical sensors in plenty of situations – will be 

discussed separately in the following section (2.3.5). Optical sensors generally possess 

the highest spatial resolution of all passive sensing modalities in use on satellites today 

[5]. Their high spatial resolution cannot be understated, as very-high resolution optical 

images can not only detect vessels, but even identify the class of vessel with a reasonable 

level of accuracy [26]. As a passive sensor, optical sensors enjoy advantages of low-

power draw and easy integration aboard even CubeSat satellites, substantially decreasing 

deployment cost [7]. 

While optical images have been used to detect vessels, the application of ML applied 

terrestrially is still a relatively recent development. ML methods such as CNNs surpass 

classical computer vision algorithms in performance. The memory limitations of common 

neural networks, along with the absence of publicly available annotated datasets, have 

delayed development of these more advanced methods. A paper by Dr. Sergey Voinov 

demonstrates the capability of CNNs applied to vessel detection from optical images 

[26]. Figure 5 shows the results of his work for medium resolution imagery from 

Landsat-8, where 62% of 30 m (or larger) vessels were detected with 15 m GSD images 

while excluding coastal areas, considered suitable as a tool for sea traffic monitoring by 

the author. 
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Figure 5  Example of medium resolution (Landsat-8) optical image ML vessel 

detection results [26]. 62% of vessels 30m or longer were detected using 15 

m GSD imagery using the RGB trained model. This was considered suitable 

for suitable as a tool for sea traffic monitoring. 

 

The drawbacks of optical sensors stem from their interactions with atmospheric 

obscurants and them being passive sensors. Atmospheric obscurants range from minor to 

complete reductions in the necessary transparency to observe the ground/sea level. These 

primarily include clouds, but also fog, smoke, smog or simply absence of light [37]. As 

they are passive, optical sensors can only observe reflected or emitted target illumination, 

limiting application in very low light or nighttime applications. Most optical detections at 
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night are achieved with optical systems that integrate medium and long-wave infrared 

wavelengths [38, 5]. 

2.3.5 Multispectral Satellite Vessel Detection 

A multispectral sensor is an extension of an optical senor. MS sensors capture additional 

spectral bands during the imaging period, beyond the often-included RGB colour bands, 

generally ranging from ultraviolet light to short wave infrared light. Each additional 

spectral band contains more information about what is captured in the image [5]. For 

instance, a red-edge spectral band – often described as a vegetation band due to 

chlorophyl reflecting red-edge light – can be included to monitor plant health [39] or 

better detect algae blooms [40]. Other multispectral spectral bands can be applied to 

better characterize clouds through bands sensitive to aerosols, water vapour, and clouds 

to perform atmospheric corrections. Some multispectral bands may also achieve better 

transmission through very thin and translucent cloud layers than optical bands [41]. 

Applied to vessel detection, a combination of RGB and NIR measurements better 

suppresses clutter interference from clouds or large sea waves and improves the ability to 

correctly identify vessels [27]. 

Vessel detection using multispectral modalities is a relatively recent development, despite 

earlier attempts [5]. In the past, the main dissuading factor for their disuse in satellite 

vessel detection was their lower spatial resolution. However, multispectral cameras have 

improved and trade-offs between swath width and spatial resolution in satellite sensors 

have reduced. This means shorter revisit times as wider swaths overlap more frequently 

while retaining feature resolution, or improvements to feature resolution under same 

revisit times and swath widths [42]. Compared to RGB imaging, MS imaging better 

captures vessel features and distinguishes them from natural or artificial ones and 

removes the requirement to store coastline vector maps [43]. This means the system 

could operate in near real-time onboard a satellite system if adopted. 

2.4 Small Satellites 

The ideal satellite-based sensing modality for vessel detection, without considerations for 

size, cost, and power draw, would be SAR. Its ability to accurately image the Earth’s 

surface through dense cloud cover is unmatched by other modalities. But, as with any 
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engineering problem, other requirements must be considered, and mass is one of the 

largest cost-driving factors for satellites. Launching heavier-than-air masses into orbit 

takes a notable amount of fuel and design complexity, which results in increased cost. 

More power draw from power-hungry systems results in a more complex power 

management system, and again, increased cost. Increased cost itself can result in further 

cost increases as the definition of what is considered an acceptable risk narrows as the 

replacement cost increases. In this manner, to avoid loss of a more expensive satellite, 

more development time is required which further drives up the cost. A combination of 

these factors, and the development of small satellite technologies, have truly driven the 

widespread adoption of small satellites. What constitutes a small satellite is explained 

next (section 2.4.1), followed by a discussion on how small satellites have increasingly 

dominated operational satellites by quantity (section 2.4.2). 

2.4.1 Satellites Size Classification 

Due to the cost of launching a mass into orbit, satellite size is generally classified by their 

mass, as opposed to their dimensions, i.e., small satellites have lower mass than larger 

ones. Yet, despite decades of satellite launches, there is still no single classification metric 

which every organization abides by. For very large (e.g., 6000+ kg James Webb Satellite) 

or small (e.g., 1 kg 1U CubeSat) satellites there is general agreement. The disagreement 

exists for what lies in between. The first satellite classification scheme was proposed by 

Sweeting in 1991 [44] (summarized in Table 2). 

Table 2  Sweeting satellite size classification [44]. 

satellite class mass 

large  >1000 kg 

small  500 – 1000 kg 

mini 100 – 500 kg 

micro 10 – 100 kg 

nano <10 kg 

Two more classes were later added to Sweeting’s original classification, pico- and femto-, 

recognizing advancements in technology which facilitate smaller classes. Additionally, 
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the mass classifications were changed to keep to the logic of mass increases in 

magnitudes. 

Table 3  Revised Sweeting satellite size classification [44] to include two additional 

classes (pico and femto) and to define mass sizes by orders-of-magnitudes. 

satellite class mass 

large  >1000 kg 

mini 100 – 1000 kg 

micro 10 – 100 kg 

nano 1 – 10 kg 

pico 0.1 – 1 kg 

femto 1 – 100 g 

 

While the original or updated mass sizing schemes are the most common mechanism for 

discussing satellite size, there is no universal size classification. For instance the ESA, 

European Aeronautic Defence and Space Company (EADS), Centre National D’Etudes 

Spatiales (CNES) [45], and NASA Small Spacecraft Technology Program [46] all use 

different criteria for satellite size classification either based on previous criteria or launch 

and deployment mechanisms. Most of these organizations use a mass criteria of less than 

200 kg for the purpose of small satellite classification. For this thesis, and discussion of 

small satellites, the updated classification of Table 3 will be referenced for specific 

satellite size classification, with preference given to a source’s classification if one is 

offered.  

2.4.2  Small Satellite Development 

Small satellites have a long history in space programs, and by modern classification, even 

out-dating larger satellites. Sputnik, the first artificial satellite launched, weighed 83 kg 

and would be considered a microsatellite by modern standards. Similarly, most satellites 

through the early history of space exploration would be considered nano- or micro-

satellites. However, this was driven by necessity and not choice [44]. Early launch 

vehicles could not launch larger satellites, with the early micro-satellites generally being 

the primary and only satellite payload. Figure 6 shows all satellites launched from 1957, 
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to the end of 2023. This figure was built from the General Catalog of Artificial Space 

Objects [47].  

From this catalog, all standard payloads that were 0 kg mass, had humans aboard, were 

pressurized without crew, or were suborbital and removed. Starlink and OneWeb 

satellites were separated to account for their disproportionately large numbers which 

would bias the masses and numbers launched in recent years. The only object deliberately 

removed from the remaining satellites was the Buran OK-1K spacecraft which had a 

mass of 79,400 kg – four times that of the next highest mass and built with a crew 

module. From this figure, it is apparent that average satellite mass has plummeted since 

the high of 2005, only increasing with the inclusion of recent Starlink and OneWeb 

Satellites. 

 

Figure 6  Average satellite mass vs number of satellite launches from 1957 to 2023 

based on [47]. Average satellite mass has dropped since the peak in 2005 and 

has trended downwards since due to widespread use of small satellites.  

Applying the constraint of less than 600 kg for what is considered a small satellite – a 

2018 Federal Aviation Administration designation – from a period of 2012 to 2021 of the 
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8,053 spacecraft launched, 87% of launched satellites were small satellites, representing 

25% percent of launch mass [48]. A disclaimer to these numbers would be that during this 

period, 4,163 of the 5,730 commercially launched small satellites were Starlink and 

OneWeb communication satellites. Additionally, 88% of commercial small satellites 

launched 2012 - 2021 belonged to SpaceX, Planet, OneWeb, Swarm Technologies and 

Spire Global, in order of descending market share of total small satellites launched. 

The advantages of small satellites compared to their larger counterparts are varied. Small 

satellites can be launched faster and more economically into orbit than large satellites. As 

well, they can be in lower orbits (i.e., to achieve better resolution imagery) than larger 

satellites. They also serve to complement larger satellites constellations through their 

resiliency or repair of damaged constellations [49]. Small satellites address the satellite 

remote sensing challenge of coverage rate which is increased for small satellites [50]. 

They also offer a lower barrier-to-entry and are thus more accessible for scientific and 

commercial applications and end-user due to the industry’s standardized or OTS 

components and subsequent shorter development times [49] [44]. The following two 

sections will focus on the temporal resolution (2.4.3) and cost (2.4.4), as these are  

relevant to the vessel detection within the scope of multispectral imagers. 

2.4.3 Revisit Time 

Initially, the deployment of a single more capable satellite may be advantageous over a 

constellation of multiple lesser capable ones. The higher capability of a larger satellite is 

in its larger imaging swaths, more robust communication systems, higher spatial 

resolution, or simply the sensing modality that is possible (e.g., SAR).  However, it is not 

a clear decision unless the task demands the capabilities of the individually more capable 

satellite. To monitor an Earth area for certain features, the value of a constellation of 

multiple satellites may be significant due to the time it takes for a satellite to revisit an 

area [44]. 

For certain applications, such as oil spills or ship control, the revisit time (also known as 

temporal resolution) is a major challenge and barrier for satellite remote sensing [50]. 

Revisit time or temporal resolution refers to the time it takes for the satellites in LEO and 

MEO to revisit a particular position or small area.  Only geostationary orbits (GEO) can 
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achieve near-indefinite persistent observation over a position on Earth and therefore a 

revisit time of the camera’s capture rate. But just like decreasing the GSD of a satellite 

imaging modality only improves a satellite’s capabilities within a task to a point, the 

value of decreasing the revisit time varies for a task. Monitoring geographic features, 

such as coastal erosion is feasible with a satellite with low temporal resolution as these 

are slow processes relative to the revisit times of a satellite. However, monitoring of 

weather or active disasters such as forest fires, or tracking vessels demand much higher 

temporal resolution [51]. Figure 7 shows the variation in spatial and temporal observation 

requirements for different types of coastal studies.  

 

 

Figure 7  Spatial (GSD) and temporal (revisit time) requirements for coastal studies 

[51].  By comparison, tracking ship movement with satellite observations has 

a much shorter required revisit time, and smaller GSD than other areas of 

study, requiring either very capable imaging sensors with high swath and low 

GSD, or larger constellations of satellites. 

Ideally, a satellite’s revisit time is small compared to the characteristic temporal scales of 

the observed event, and its spatial resolution is high (i.e., low GSD) compared to the 

physical size of the observed feature. There are trade-offs to consider between the sensor 

and orbital characteristics [52]. Spatial resolution can compete with revisit time, whether 

it is the result of the selected satellite orbit or the sensor’s swath width (a measure of 
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resolution). One orbit type might revisit specific locations frequently, while another orbit 

type might rarely, if at all, revisit that same location [53]. For vessel detection, 

persistence is critical for timely detection, and long satellite revisit intervals are a limiting 

factor in maritime domain awareness [5]. Regardless of the satellite’s temporal resolution 

or its sensor’s swath width, there is a physical limit to the percentage of the planet a 

satellite system could cover. If the Earth was modelled as a sphere, the observable portion 

can be described as a spherical cap. Eq. (1) describes the percentage of a sphere or radius 

𝑟, visible from a point an altitude 𝐻 from its surface: 

 𝑅% = 0.5 × (1 −
𝑟

𝑟 + 𝐻
) × 100% (1) 

such that 𝑅% is the percentage of the sphere which is visible.  While the Earth is an oblate 

spheroid, and not a sphere, due to its rotation, Eq. (1) is still relevant. Solving Eq. (1) for 

the Earth radius of 6371 km, at altitudes of 400 - 1000 km (LEO), shows the percentage 

of Earth visible scales nearly linearly with satellite altitude through this region (Figure 8). 

 

Figure 8  Maximum percentage of Earth sphere observable from orbit. Between 400 

km - 1000 km satellite constellations are required to view Earth continuously 

with idealized imaging sensors. 

Between 400 km - 1000 km, the percentage of Earth visible varies from 2.95% to 6.78% 

for a “perfect” imaging system. No matter the GSD, imaging swath, or satellite sensing 

modality, a single satellite alone cannot provide simultaneous complete coverage of the 

Earth, since they operate on line-of-sight imaging and communications. However, 
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reduction of capabilities comes with a reduction in cost, and provided the capabilities of a 

smaller satellite are sufficient, deploying more satellites within a constellation improves 

the temporal resolution for the tracking or monitoring ship movement [52]. 

For marine vessel detection, the capabilities of optical and multispectral imaging systems 

compared to SAR satellites are quite different. While a direct comparison of the two 

obviously favours SAR, for a given budget, a single SAR satellite is not competitive 

against a single optical or MS satellite due to launch mass alone. Instead, the likely 

scenario is a single SAR satellite would be competitive against a constellation of optical 

or MS satellites. Temporal resolution is exchanged for the capability to operate through 

heavy atmospheric obscurants. To that end, the solution to ship detection lies not in a 

single modality but a fusion of modalities, or until the weaknesses of SAR sensors can be 

displaced by the strength of optical or multispectral sensors. 

2.4.4 Satellite Cost 

There are two defining cost considerations for a satellite. The first is the design and 

construction (assembly) of the satellite system, while the second is its launch. The design 

and assembly cost varies with satellite mission, though mass still is a driving factor due to 

its impact on the attitude determination and control system, along with the inclusion of 

reaction mass and thruster systems for altitude or orbital adjustments. However, this is 

harder to quantify given the vast array of satellite objectives, and the lack of publicly 

available component pricing and tools to estimate cost. 

The launch cost of a satellite, however, is a more readily known and constant factor. 

Additionally, launch costs are the greatest limiting factor restricting expansion of 

missions in both number and scope. Consequentially, the low launch costs of small 

satellites are one of their most attractive features [54]. As mentioned earlier, more than 

any physical dimension, the satellite mass is the main cost to launch a satellite. Idealized 

launch costs – where all cost increasing factors are disregarded and payload for a launch 

vehicle is maximized on an at-cost basis – are still in the tens of thousands of dollars 

(USD) per kilogram. Though the cost of launch has improved with time (Figure 9), it is 

still significant. In fact, with continued technological advancements in satellites systems, 

components, and manufacturing, such as the availability of relevant OTS components, the 
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launch costs are increasingly significant compared to the total mission budget for small 

satellites [55]. 

 

Figure 9  Launch cost (2018 USD) per kilogram to low Earth orbit by first launch date 

[54]. The launch cost has continually fallen since early launch vehicles and 

thus improves accessibility to space. 

As mentioned, the launch costs in Figure 9 are idealized. The launch costs assume the 

entire payload capacity is utilized and compared against the total cost of the flight which 

is often not the case. Limited dimensions for payload, mass and space occupied by items 

such as deployment systems, or simply the payload being smaller than the launch systems 

limits can significantly increase prices [54]. While there is only so much that can be done 

for the first two reasons, a payload that is “too small” is an opportunity to carry a 

secondary payload like a small satellite. To this end, there are three primary methods to 

launch small satellites: dedicated launches, rideshare and cluster launches, and piggyback 

launches selected based on the mission profile, all of which seek to minimize the cost by 

maximizing launch system payload within the scope of the mission profile [55]. 

The methods, combined with the lower launch cost per kilogram, results in a lower cost 

for deploying small satellites like a CubeSat into orbit. Launch providers and deployers 
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such as SpaceX, Rocket Lab, and NanoRacks offer a cost of deploying a small satellite 

into orbit from ranging from approximately $90,000 USD for a 1U up to $300,000 USD 

for a 50 kg satellite placed into low sun synchronous orbit (SSO) [56]. When combined 

with the hardware cost of a 3U satellite [57] (varying with mission objectives and 

components) a 3U satellite can be assembled and deployed into orbit for under $1M 

USD.  This is extremely low compared to the cost of a modern large satellite 

constellation which can cost $1B USD [58], such as Canada’s RADARSAT constellation 

that cost more than $1B CAD to develop and deploy 3 satellites [59]. As such, a very 

large 3U CubeSat constellation could be deployed to achieve significantly shorter revisit 

times [60] for less.  

2.5 Machine Learning 

Machine learning “refers to a broad range of algorithms that perform intelligent 

predictions based on a dataset” [61]. The algorithm produced for the application is 

referred to as a model, into which the captured data (images or otherwise) is input to 

return the desired prediction. The output for image-based models can vary from an image 

level classification (“does this image contain a vessel?”) to pixel level segmentation 

(“what pixels of an image are part of a vessel?”), or a more specific result as deemed by 

the model designer. 

The first machine learning subsection examines some of the roles demonstrated by 

onboard satellite machine learning, in additional to potential applications (2.5.1). Given 

the suitability of ML models to process multispectral imaging (2.5.2), the structure of 

convolutional neural networks (CNNs) – high performance ML models suited for MS 

imagery – are discussed (2.5.3). Finally, data interoperability between satellite imagers 

(2.5.4), and existing multispectral vessel datasets are discussed (2.5.5). 

2.5.1 Machine Learning in Satellites 

Machine learning is maturing in terrestrial applications, but it is only emerging for 

onboard satellite processing. The first satellite capable of onboard machine learning was 

the Φ-Sat-1 (Phi-Sat-1) in 2020 which utilized a simple segmentation network structure 

(Figure 10) to detect and identify clouds present in images to optimize downlink 

bandwidth [9]. The model was able to achieve over a 95% accuracy for cloud detection 
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during model testing. The practical implications of this for the satellite was a possible 

30% reduction of downlink bandwidth required due to filtering out unsuitable images 

[62].  

 

Figure 10  CloudScout segmentation network architecture for Φ-Sat-1, the first deep 

neural network onboard a satellite for Earth observation [9]. This was used to 

reduce downlink bandwidth requirements by detecting, and filtering out, 

clouds present in images. 

If only a fraction of captured images is useful, then there is limited value in transmitting 

all of them to Earth. Additionally, by relying on edge computing, it is possible to reduce 

steps in the data processing chain. Relying on terrestrial computing means that after the 

data is downlinked to an Earth-based station, it is transmitted to a data center to process 

the captured information before delivery to an end-user. If that end-user is another 

satellite, it is then uplinkeded instead of directly transmitted by inter-satellite hops. Other 

proposed applications for onboard satellite ML include disaster monitoring, managing 

satellite communication demands utilizing beam-hopping techniques, fault detection, 
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isolation, and recovery (FDIR), as well as real-time ML for collision and obstacle 

avoidance tasks [63]. Many of these proposed objectives would utilize deep neural 

networks, such as convolutional neural networks which are also useful tools for image 

analysis. 

To quantify the benefits of onboard processing the exact implementation of the machine 

learning model and satellite hardware must be examined. For instance, Φ-Sat-1 [9] was 

able to reduce downlinked image volume by 30%, meaning that the transmitter required 

30% less operation time to downlink the captured imagery. As such, power consumption 

which ranges from 5 to 15W [64] [65] for a CubeSat transmitter would also reduce by 

30%. If transmission speed was the constraint of Φ-Sat-1, 30% more imagery could be 

captured and downlinked. For vessel detection, the benefits would be only requiring 

transmission of the immediate image area around a detected vessel, or simply coordinates 

and size of the detected vessel. 

2.5.2 High Dimensional Spectral Imagery 

One of the difficulties in extending ML to higher-dimensional spectral imagery is that 

little attention has been paid to it compared to 3-channel spectral imagery. ML applied to 

MS satellite imagery may utilize models that accept only 3 of the available spectral 

channels (e.g., Φ-Sat-1 [9]) to simplify development and might be pre-trained with 

common RGB datasets like ImageNet to avoid overfitting data. Another issue with 

multispectral data is the increased computational resources to train a model [66], a 

consequence of higher spectral channel count compared to RGB imagery. However, there 

are early efforts towards this on multispectral ML applied to vessel detection [5, 43], 

however there are fewer resources available on the subject. 

2.5.3 Convolutional Neural network. 

Convolutional neural networks (CNNs) are mathematical models built of layers of 

“neurons” like most ML model and utilize convolution layers. ML neurons resemble 

neurons in animal nervous tissue, in both appearance and function. Figure 11 shows an 

example of an ML neuron structure. The inputs to a neuron may range from the colour 

values for a pixel within an image to the output of other neurons. 
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Figure 11  Illustration of neuron structure in a neural network [67] highlighting its 

operation, trainable parameter (weights), and other functions within the 

neuron.  

Utilized in different configurations, these neurons form the basis of how ML networks are 

structured and trained, with the weights, 𝑤𝑛𝑗, of each neuron adjusted over time. 

Convolutions, the integral layer from which CNNs received their name, are trained 

kernels applied to an input array or impact, to produce an activation map. Combined with 

activation and pooling layers, these form the basis of CNNs (Figure 12). An example of a 

simple CNN architecture is shown in Figure 13. 
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Figure 12  An example of a convolution layer of a CNN [26] 

 

Figure 13  An abstract example of a simple CNN architecture [26] 

Training a CNN can be achieved in different ways depending on the model structure. For 

the application of CNNs to images, however, the most popular method is to utilize 

supervised learning. In supervised learning a model is trained upon a dataset of input data 

(e.g., images) with labels ranging from those for classification of an image to coordinates 

of a feature within the image (such as vessel position). A portion of the dataset is reserved 

to validate and/or test the model. This ensures the model is generalized – i.e., suitable for 

cases beyond the dataset – and not overfitting to the dataset used.  

2.5.4 Data Interoperability 

One challenge to developing MS ML models for satellites is the availability of potential 

datasets to train the model. MS imagery generally features unique combinations of 
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spectral bands that are not duplicated from sensor to sensor. This can lead to difficulties 

when trying to implement ML models for satellite systems with new or uncommon 

sensors; a dataset must have appropriate imagery to train on, but there may not be 

imagery available without launching a satellite. There are two common methods to avoid 

this problem. The first is to launch a preliminary satellite or utilize an existing satellite 

with the selected or similar imaging payload to capture imagery for a dataset and 

subsequent model to be developed. The second is to utilize images from similar existing 

imaging sensors. 

Φ-Sat-1 utilized HyperScout 2, a hyperspectral imager developed by Cosine to capture its 

imagery. However, the dataset the model was trained upon was constructed from 

Sentinel-2 imagery, with the model launched on the satellite trained on the B01, B02 and 

B8A spectral bands of Sentinel-2 with principal component analysis [9]. These spectral 

bands, respectively, had central wavelengths of 450 nm, 494 nm and 862 nm, and 

represented bands similar to those available on the HyperScout 2. 

Utilizing data from multiple sources to produce a dataset for a different sensor is not a 

new concept – referred to as data interoperability [68]. For instance, Sentinel-2 is a 

constellation of two satellites (Sentinel 2A and 2B) with very similar imaging sensors. 

While not identical, imagery from both satellites are regularly used interchangeably. Data 

interoperability may be extended to satellites with more significantly different imagers 

and orbits. For instance, the data interoperability of Landsat 8’s Operational Land Imager 

(OLI) and Sentinel 2’s Multi-Spectral Instrument (MSI) could be optimized [68]. A 

spectral response comparison of 4 similar bands from Sentinel-2 MSI and Landsat 8 OLI 

is shown in Figure 14. Each imaging sensor monitors different spectral bands of light, 

and generally have different capabilities, even though all three are multispectral sensors. 

The paper also outlines improvements which could be made to improve satellite data 

interoperability in general. 
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Figure 14  Comparison of the spectral response functions for 4 of Landsat-8 OLI and 

Sentinel-2 MSI spectral bands [68]. Due to similarities between spectral 

bands of the satellites (demonstrated in these cases), data can be used within 

certain applications interchangeably, such as using a dataset created from one 

satellite imager with another different imager.  

2.5.5 Existing Multispectral Vessel Datasets 

One of the main problems identified with developing a trained model for vessel detection 

was the near absence of any existing vessel detection datasets. Only two publicly 

available datasets for vessel detection were identified, though both had deficiencies 

limiting use for this thesis. The first, entitled “Contrastive Self-supervised Learning for 

Ship Detection in Sentinel 2 Images” [43], comprised of 16 large multispectral images 

with pixel level vessel annotation, and 12 of the 13 spectral bands of Sentinel 2. 

However, the images were relatively clear of clouds, did not have associated vessel AIS 

data contained, and were built from only 16 images of harbors containing 1053 ship 
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annotations. The other dataset, entitled “Sentinel-2 dataset for ship detection” [69] was 

just over 1200 multispectral images of vessels around Denmark, and additional non-

vessel images to assist with training. The images measured only 64 by 64 pixels (i.e., too 

small for better classification), used per-image classification, and only utilized 5 of the 13 

possible MS bands. The absence of a suitable training dataset requires the creation of a 

new one which will be shared with others. 

2.6 Thesis Objective 

As stated in chapter 1 (Introduction), the goal of this research is to train and demonstrate 

an ML model that can detect marine vessels within multispectral images, and the benefit 

of including spectral bands beyond the RGB ones. The model must be suitable to 

implement on processors representative of CubeSat OBC to run CNN models. 

Permutations of different spectral band combinations will be trained to examine the effect 

of spectral content and wavelength on detection performance. Finally, the inferencing rate 

over several orbital paths relevant to time-over-water and other imaging period 

constraints are examined to ensure performance of the Nvidia SBCs is suitable for 

onboard processing. To ensure the steps in creating the dataset, models, and tests are 

transparent and repeatable, the details of each process are laid out in the methodology 

(Chapter 3). 

 

  



31 

 

Chapter 3 Methodology 

In this chapter, the steps and procedure to create and test components and methods 

needed for the thesis will be detailed. The components can be divided into three 

subsections: dataset creation (3.1), machine learning model (3.2) and satellite orbital 

simulation and hardware processing (3.3). The dataset creation section will address the 

multispectral imagery, AIS message geo-referencing, and methods to create the dataset. 

The machine learning model section will explain both the CNN model used and the 

metrics which will be used to analyze the performance of the models. For the final 

section the satellite orbital simulation portion will detail the orbital simulation under 

different imaging conditions to understand valid imaging windows. The hardware 

configuration used to test the inferencing speed of the model, and to produce data to 

compare the orbit simulation against, is also discussed.  

3.1 Dataset Creation 

Due to the lack of adequate multispectral vessel datasets with all spectral bands, 

sufficient annotation, and sufficient class (vessel) support for this thesis, it was necessary 

to create a new dataset. To create the dataset, AIS data was used to geo-reference vessel 

locations within Sentinel-2 MS imagery. The intent was to create a dataset featuring any 

identified ship within the limitations of the satellite imagery (primarily GSD) and 

available AIS messages. The following sections will detail the process of collecting and 

handling the satellite imagery (3.1.1) and AIS data (3.1.2). 

3.1.1 Satellite Imagery 

The multispectral satellite imagery used in the dataset was collected from the two 

European Space Agency’s (ESA) Sentinel-2 Satellites through the Copernicus 

Programme. Sentinel-2 imagery has the highest spectral band count and spatial resolution 

multispectral imagery that could be acquired with the resources available. Each 

multispectral image tile from a region is measured at 110 km by 110 km with a mixed 

GSD of 10 m to 60 m depending on the specific band. The bandwidths covered range 

from 424.7nm to 2289.4nm for the Sentinel 2A satellite, covering visible light to short-

wave infrared. The bandwidths covered, GSD, and central band frequencies are 

summarized in Table 4. The Sentinel 2B satellite monitors offer marginally different 
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wavelengths, but generally ranges within 1-10nm wavelengths when compared to 

Sentinel 2A and are thus used interchangeably. 

Table 4  Sentinel 2A spectral resolution and ground sample distance [41] 

band centre 

wavelength (nm) 

bandwidth 

(nm) 

gsd (m) description 

1 492.7 65 60 Aerosol 

2 559.8 35 10 Blue 

3 664.6 30 10 Green 

4 664.6 30 10 Red 

5 704.1 14 20 Red Edge 

6 740.5 14 20 Red Edge 

7 782.8 19 20 Red Edge 

8 832.8 105 10 NIR 

8a 864.7 21 20 Narrow NIR 

9 945.1 19 60 NIR 

10 1373.5 29 60 SWIR 

11 1613.7 90 20 SWIR 

12 2202.4 174 20 SWIR 

 

The ESA also offers the spectral response functions for the visible and near infrared 

(VNIR), and SWIR imaging sensors used in Sentinel-2A and 2B. These spectral response 

functions are also represented as plots in available documentation, shown in Figure 15 

and Figure 16. 
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Figure 15  S2A & S2B MSI spectral response average – VNIR [41]. This figure shows 

spectral bandwidth and location of Sentinel-2 VNIR, as well as the overlap 

that occurs between B07, B08, and B08A.  

 

Figure 16  S2A & S2B MSI spectral response average – SWIR [41]. This figure shows 

spectral bandwidth and location of Sentinel-2 SWIR bands. 

Satellite imagery is traditionally processed through multiple levels prior to delivery. For 

satellite imagery, the processing is represented as a Level between 0 and 4. Level-0 

imagery is the raw captured sensor data before it is processed, time-stamped, or geo-
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referenced. At the other end, Level-4 data has the greatest amount of processing applied 

and may include modelled measurements compiled from several satellites.  

 

Sentinel-2 tiles could be collected as Level-1C and Level-2A images. Level-1B imagery 

is only available to users through special request, and the imagery is not ortho-rectified or 

spatially registered. A summary of the differences between the Sentinel-2 imagery Levels 

can be found in Table 5. With the necessity of geographically correct imagery for geo-

localizing AIS messages within imagery, Level-1B was removed from consideration. 

Given the goal of replicating the environment of onboard processing, Level-1C was 

selected as it represents the most limited level of processed imagery suitable for the task. 

Further processing, in the context of onboard processing, would require further utilization 

of onboard resources. It is possible to replicate the data processing as ESA offers the 

algorithms and code to convert Sentinel 2 Level-1C imagery to Level-2A for instance.  

However, this is outside the scope of the thesis. 

 

Table 5  Sentinel-2 product processing level description [41] 

product level incremental improvements from previous level 

Level 1B ▪ radiometric corrections 

▪ geometric viewing model refinement 

Level 1C ▪ resampling (geometric interpolation grid computation) 

▪ conversion to reflectances 

▪ preview images and mask generations 

Level 2A ▪ scene classification 

▪ atmospheric corrections (S2AC) 

 

Based on the availability of AIS data (discussed further in the following section), imagery 

collection for vessel imagery was based around the high-traffic marine areas of Denmark 

and the USA. Altogether, 17 110 km by 110 km image tiles were collected over Denmark, 

along with 84 from the USA. Beyond the creation of vessel imagery for the dataset, it 

was also good practice to train the dataset on non-vessel imagery so it can better 

recognize non-vessel features within the image. To that end, in addition to utilizing non-
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vessel areas of the Denmark and USA imagery, the imagery collected was supplemented 

by an additional 35 images from randomly selected areas around the world for non-ship 

marine imagery to prevent the ML model from over-fitting to the selected datasets.  

 

Given the mixed GSD of Sentinel-2 imagery, images from each spectral band were 

interpolated to the same number of pixels as the 10 m GSD channel (10980). The number 

of pixels in channels with 20 m or 60 m GSD was increased using the Scikit-image 

rescale function (Python library) to match the 10 m GSD channel. This Scikit-image 

function increased the number of pixels for each channel and interpolates the values 

using nearest-neighbor interpolation. Each of the 136 Sentinel-2 tiles were collected, 

converted, and saved as an unsigned 8-bit integer NumPy array of size  13 × 10980 ×

10980 from the original 12-bit radiometric resolution. During the conversion process, the 

1% lows and the 99% highs were mapped to 0 and 255, respectively, within the image. 

While the imagery could have been saved as a 16-bit float array to preserve the 

radiometric-resolution, it was infeasible to store the imagery without removing data from 

intermediate steps given its volume and hardware limitations of computer memory and 

storage for processing.  

 

To geo-reference each vessel within their respective image, each image required an 

associated geographic grid to map each pixel to each AIS message. Using the metadata 

accompanying the Sentinel-2 imagery and processing it with the rasterio geographic 

image python library [70], a 2 × 10980 × 10980 NumPy array was created containing 

the latitude and longitude of each point. 

 

3.1.2 AIS Data Collection 

The ships within the MS imagery are identified using date-matched historic AIS data. 

Both Denmark and USA offer such AIS data, originally collected through respective 

government organizations, at no cost to the thesis. Other countries offer limited historic 

AIS data but had deficiencies for the purpose of geo-referencing ships within 

multispectral images. Third-party historic AIS providers were considered and contacted 

but were infeasible for inclusion into the dataset due to cost or lack of response. As a 
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result, only images from Denmark and USA were used to construct the dataset. Danish 

AIS data was collected from the Danish Maritime Authority [71], and USA AIS data was 

collected from the MarineCadastre.gov [14], a collaborative effort between the Bureau of 

Ocean Energy Management and the National Oceanic and Atmospheric Administration 

 

The AIS data that was collected corresponded to the date each Sentinel-2 tile was 

captured. Each AIS data file was supplied in the form of a comma separated (.csv) file 

and included all AIS messages in the country’s immediate area over a 24-period. Due to 

the volume of data present in each file – e.g., over 100 million AIS messages in one such 

file – the volume had to be significantly reduced to feasibly work with. The category 

names in both Denmark and USA data were adjusted to match, and incomplete or 

irrelevant data unique to either countries’ data format were removed. AIS messages of 

AIS transceiver class B were discarded, as these vessel classes are not mandated to carry 

AIS transponders or to populate all fields in their messages. AIS messages were initially 

eliminated to within ± 6 minutes of the time the multispectral image was captured, ± 

twice the mandated minimum broadcast interval for when class A AIS transponder ships 

are anchored. Finally, the message occurring nearest to time of capture of the 

multispectral image was used to generate geo-referenced ship positions. Speed-over-

ground and heading were used to calculate any vessel displacement if the MS image 

capture time differed from AIS message time. An example of these positions generated 

can be seen in Figure 17. 
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Figure 17  (a) RGB composite image from Sentinel 2 with geo-referenced ship positions 

(yellow dots) and b) immediate area (64 × 64 pixels) around 25 of the 

georeferenced points within the image. Comparison of imagery with geo-

referenced positions.  

The dataset image size was selected as 128 × 128 pixel (10 m GSD) regions, or 

1.28 × 1.28 km when GSD is considered. This size was selected to restrain the end 

model size to just what was needed and to reduce occurrences of multiple ships being 

present in the same image, as each image only has a single AIS reading associated with it. 

However, despite the process of georeferencing and cropping images from the larger tiles 

producing many suitable images, a systematic problem emerged. Whether a result of an 

inaccurate time stamp on the image tile, AIS message inaccuracies, or an undetermined 

problem with the data or process, vessels with a SOG much greater than 0 would be 

inconsistently out of place. The issue was not uniform as only some vessels were affected 

and to varying degrees. This problem was resistant to straightforward attempts to fix it. 

While this could have been investigated further, it was determined beyond the scope of 

the thesis.  

Therefore, to compensate for this, each image with a vessel was instead first cropped into 

a larger 768 × 768 pixel image, and the ship in each position manually identified. The 

image is then cropped again into a smaller 128 × 128 pixel image. Figure 18 shows an 

example of this cropping process. Vessels of less than 15 m length overall and 6 m beam 

were removed from consideration due to difficulties labelling the data manually. While 
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this does offer a level of uncertainty from human error between AIS message and the ship 

within the image, all efforts were made to minimize this. The one critical issue, however, 

was vessels that were partially obfuscated behind thin to light cloud layers were 

identified according to only their RGB composite image instead of their full multispectral 

combinations during the cropping and labelling steps. While stationary vessels were 

unaffected during the cropping step, moving vessels were affected due to the mismatch 

between their AIS message and MS imagery. Image labelling did not utilize additional 

spectral bands due to limited room for supporting information – primarily the displaying 

the parent image for scene context, the AIS message, and heading. This likely lowered the 

quantity of lightly and heavily obscured ships within the final dataset, but there is no way 

to verify this claim. 

 

Figure 18  Representation of the Sentinel-2 imagery processing steps with a) RGB 

composite image of a Level-1C Denmark Tile; b) automatic crop to vessels 

reported position, and c) manual crop to ship's actual position. The images 

display the difference between reported and actual position within the image, 

and the steps to correct them. 

When an image was cropped, the resultant image was matched with the accompanying 

AIS data. An example of a paired image and AIS message for a vessel can be seen in 

Figure 19 (image) and Table 6 (AIS message). 
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Figure 19  RGB composite of cropped vessel image in the dataset that is correlated with 

the AIS message in Table 6. 

Table 6  AIS message of vessel in Figure 19. 

description value description value 

image name Image_398.npy vessel type 70 (Cargo) 

vessel name MSC VEGA length 366m 

MMSI 636015506 width 48m 

latitude 37.76904° transceiver 

class 

A 

longitude -122.35794° date 2022-03-20 

speed-over-ground 0 time 18:51:06 

heading 347°   

 

The final step of creating the dataset was to collect a range of additional marine but non-

ship images from around the world. These include inland, coastline, and mid-ocean areas. 

Each image was manually checked to ensure no visible vessel was present. Each image 

was then labelled for level of cloud coverage, whether it was a coastal region, and if a 

ship was visible within the image. These labels were primarily intended to help determine 

suitability of the image during test inferencing and to eliminate unsuitable ship images. 

To complete the assessment of the dataset’s suitability for vessel object detection, the 

objects within the images to be detected – marine vessels – must be labelled. The options 

considered were semantic segmentation (label each pixel with a vessel belonging to the 

desired vessel class) and bounding box labelling (draw a box around the vessels within an 
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image). With over a thousand images to label, semantic segmentation was ruled out due 

to time limitations. During the labelling, some images were removed due to redundancy. 

This generally occurred when a vessel was docked near other vessels within an image 

where every vessel was broadcasting a valid AIS message. An example of this is in 

Figure 20 where two ships are docked alongside beside each other. The concern is that as 

multiple images are derived from the original images, the model’s performance could be 

measured by images which contained a majority of the same pixels. In effect, this would 

increase the likelihood of overfitting and, critically, risk testing performance on what is 

virtually training data if the “same” image was present in both the training and testing 

split. 

 

Figure 20 Visually similar repeated images caused by two docked vessels highlighted 

by yellow squares each with a unique AIS message. The two produced 

images are cropped from the same parent image. One image is retained, the 

other is removed from the dataset to reduce chance of overfitting and testing 

on (effectively) training data. 

To summarize the results of each step of the process, 1736 vessel images and 1260 non-

vessel images were created from the USA MS imagery. Another 520 vessel images and 

510 non-vessel images were created from the Denmark MS imagery. Supplementary 

additional MS imagery yielded another 1050 non-vessel imagery, all of which was 

manually checked and labelled. After filtering out unsuitable imagery, such as absent 

vessels in composite RGB imagery due to heavy clouds or near-repeated imagery, 635 

vessel images from the USA MS imagery were labelled utilizing bounding boxes, along 

with another 458 vessel images from Denmark. A multispectral vessel image used in the 
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final dataset is shown in Figure 21, with each channel normalized independently to 

highlight the differences for each pixel within the image. Due to consistent values in 

channel B10, the image for B10 appears black and white as the maximum and minimum 

values were 244 and 243, which were normalized to 255 and 0. The reason for these 

consistent values is the presence of water vapor for which B10 is heavily reflected by 

(see Figure 22). Due to this interaction, B10 only observes high altitude features such as 

cirrus clouds or ground higher than 2000 m. 

 

Figure 21  Breakdown of multispectral image by channel. Normalized values per band 

were plotted to highlight pixel difference along with non-normalized RGB 



42 

 

composite image for Denmark vessel image #250. Additional spectral bands 

increase available information. 

 

Figure 22 Spectral response functions and transmission due to vertical column water 

vapour absorption [41]. B10 was selected for Sentinel-2 for its water vapour 

interaction and is incapable of detecting features at sea level. 

3.2 Machine Learning Model 

For the purposes of coding, constructing, and training the ML model, the scripting 

language, Python, was selected. The reason was that Python has a wide range of ML 

libraries, including PyTorch which was used for this thesis. PyTorch [72] is a ML library 

which is an end-to-end machine learning model framework used to construct and train the 

models considered. There were several CNN model structures considered for vessel 

detection and the two that were initially selected: Faster R-CNN with a ResNet-50 feature 

pyramid network (FPN), and Ultralyics’ YOLOv8 model. The model for Faster R-CNN 

model [73] is the “fasterrccn_resnet50_fpn_v2” model in PyTorch [72], with the only 

changes being modifications to the input layer to accept high channel count imagery and 

operating without initialized weights. Pre-processing, image augmentation, data loading, 
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and other training codes had to be created. All coding was completed using the JetBrains 

PyCharm Integrated Development Environment (IDE).  

 

Compared to the faster R-CNN, YOLOv8 [74] is a complete training pipeline designed to 

be fully functional with only a set of input data (RGB or monochrome) and associated 

bounding box labels required to train a model. The underlying model itself supports 

multispectral imagery, but supporting framework and functions– from augmentation, 

memory checks, and simply data input – rely on the Pillow [75] and OpenCV Python 

library [76]. Many functions within these code libraries support 4 or fewer channels and 

must be removed and/or have their functionality replicated to support up to the required 

13 spectral channels for this thesis. As a result, YOLOv8 was modified so it would accept 

multi-channel NumPy arrays or multi-channel TIFF images. The structure for YOLOv8 is 

shown in Figure 23 for a 3-channel input (such as RGB). 
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Figure 23  YOLOv8 model structure for 3-channel imagery [77], unmodified and 

suitable for RGB images. YOLOv8 was modified to accept a variable 

quantity of spectral channels compared to the original 3. 

Due to the difficulties obtaining a performant trained model, the Resnet-50-FPN object 

detection model was abandoned. This will be discussed further in the future work (section 

5.1), but the model experienced significant problems with the quality of the solution. 

Therefore, performance of the models will only be discussed for the YOLOv8 models. 

3.2.1 Model Training Configuration 

The modified YOLOv8 model training – and the failed Faster R-CNN training – was 

implemented on a desktop computer with an NVIDIA RTX 3090 GPU, 64GB of memory, 
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and an Intel i9-10900 10-core processor. The dataset was split into train, test, and 

validation datasets with a 75%, 12.5%, 12.5% split, respectively. The same split of 

images was used when resampling the dataset for different band count imagery. Each 

model was trained for 4000 epochs, with the model weights from best performing and 

final epoch saved. The band combination permutations are outlined in green in Figure 7. 
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Table 7  Trained spectral band combinations. Green cells in a row indicate the bands 

(column) used with the specific band combination (row). 

 

Name Size Abbrev. B01 B02 B03 B04 B05 B06 B07 B08 B8AB09 B10 B11 B12

All_Band Nano ABn

All_Band Small ABs

All_Band Med. ABm

All_Band Large ABl

RGB Nano RGBn

RGB Small RGBs

RGB Med. RGBm

RGB Large RGBl

RGB + B08 / 10m Med. R08

20m GSD Med. G2

60m GSD Med. G6

10m + 20m Nano G12n

10m + 20m Small G12s

10m + 20m Med. G12m

10m + 20m Large G12l

10m + 60m Med. G16

20m + 60m Med. G26

RGB + B01 Med. R01

RGB + B05 Med. R05

RGB + B06 Med. R06

RGB + B07 Med. R07

RGB + B8A Med. R8A

RGB + B09 Med. R09

RGB + B10 Med. R10

RGB + B11 Med. R11

RGB + B12 Med. R12

All Band - B01 Med. A01

All Band - B02 Med. A02

All Band - B03 Med. A03

All Band - B04 Med. A04

All Band - B05 Med. A05

All Band - B06 Med. A06

All Band - B07 Med. A07

All Band - B08 Med. A08

All Band - B8A Med. A8A

All Band - B09 Med. A09

All Band - B10 Med. A10

All Band - B11 Med. A11

All Band - B12 Med. A12

Sentinel-2 Spectral Bands
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In addition to the different permutations of spectral band combinations, the size of 

YOLOv8 can be altered. This is important because as the YOLOv8 model size is 

increased, the number of parameters in the model changes, more layers are added to the 

CNN, or the YOLOv8 size increased. YOLOv8 has 5 default model sizes to select from: 

nano, small, medium, large, and extra-large. Based on a simple preliminary analysis of 

the All Band and RGB models, the medium model size was selected as the default for all 

spectral band combinations. In addition to the medium models for the RGBm, G12, and 

ABm spectral combinations, each of these three had nano, small, and large YOLOv8 

models trained for them. These would be used to discuss model size impact on accuracy 

and inferencing speed.  

Table 8  Modified YOLOv8 model parameter accounts for 13 channel models of 

different default sizes. The total number of parameters, and total model size, 

increases by 2 to 4 times for each size increase. 

model size parameter count 

large 87,298,515 

medium 39,898,195 

small 13,810,643 

nano 3,693,011 

 

Inferencing the test dataset to evaluate performance metrics was completed on a different 

computer than that used for model training. This was due to the training computer being a 

shared research lab computer, in addition to lesser hardware being capable of testing (not 

training) the model. The testing computer was desktop computer a GTX 1050ti, 48GB of 

memory and an AMD R7 3700X 8-core processor.  

3.2.2 Analysis and Discussion 

The analysis of the ML model performance was achieved through calculating the 

standard precision, recall and F1-score against the model’s confidence in its predictions. 

Precision represents the percentage of vessel predictions which are correct out of the 

validation dataset, as in Eq. (2): 
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𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
. 

 

(2) 

Recall is the percentage of vessels present in the validation dataset which are correctly 

predicted as vessels as in Eq. (3): 

 
𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
. 

 

(3) 

Neither metric completely captures the performance. For instance, if every pixel within 

an image was predicted as a vessel, recall is unnaturally high as there are no vessels 

incorrectly predicted as part of the background (false negative). Yet, the precision, and 

critically the utility of the model, would be poor to detect vessels. On the other hand, a 

model which only predicts vessels that it has 100% confidence in, but predicts most 

actual vessels as part of the background, may have perfect precision but poor recall and 

again would be of limited use. The F1-score (Eq. (4)) is a commonly used accuracy 

metric.  It combines precision and recall as a harmonic mean, which can be written as: 

 
F1-s𝑐𝑜𝑟𝑒 =

2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
. 

 

(4) 

The combination of the two – and avoidance of problems native to each of them 

individually – is the main reason it will be used as the primary performance metric for the 

resultant models, though the others will be discussed in select cases. Precision, recall, and 

F1-score will be plotted against several YOLOv8 confidence minimums. Confidence in 

YOLOv8 is an internal measure of the model’s certainty in its prediction, a product of the 

class certainty and objectness, i.e., the model’s certainty a predicted box contains the 

object. In a trained model, increasing the minimum accepted confidence (MAC) increases 

precision overall but could also decrease recall. What is used for MAC depends on the 

application and what precision is required. For instance, sending a vessel to intercept a 

detected dark vessel far from shore demands a higher confidence (and consequently 

precision) than spotting a detected vessel that can be identified in a remote accessible 

land-based camera. To ensure that performance is considered at multiple MACs, recall, 

precision, and F1-score for each model will be compared at a MAC of 0.25 and at 0.4 to 
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0.8 with 0.1 step intervals (6 MAC values total). These values were selected based on 

default YOLOv8 minimum confidence threshold for prediction (0.25) and the 

examination of a continuous F1-score vs confidence curve for a trained model. 0.4 to 0.8 

at 0.1 step intervals were identified as suitable for representing the shape of the curve as 

the threshold increases. The area under curve (AUC) for the F1-score vs MAC curve was 

used to produce a single easily comparable performance value for each model. Fine 

tuning for this parameter was completed on the results of the first set of trained models. 

While there are other metrics, like comparing the overlap of the inferenced bounding box 

with the labelled bounding box (intersection of union), this relies on the quality of the 

label box size that were manually bound to 10m increments. Ultimately, the most 

important factor in performance is whether it detects all the vessels present, and 

accurately, in the image. Given the models will not be tuned with adjusted training 

parameters, meaningful changes will be coarser to account for possible. A change of 0.05 

at one point (MAC) for recall (5% more vessels identified), precision (5% fewer 

background patches mislabeled as vessels), and F1-score was considered significant and 

warrant closer inspection. Performance was also considered meaningfully better if one 

model outperforms another at all recorded MACs, which also resulted into a better AUC 

value for the model. 

3.3 Satellite Path and Hardware Processing 

While the accuracy of an ML model is important, so is its deployment. One of the reasons 

that the model was developed from small images was to ensure the developed models 

could be deployed to the emulated hardware to inference images. The satellite orbit, 

orbital velocity, GSD, and swath directly impact the feasibility of onboard processing. 

Real-time processing can only be achieved if the hardware can process and inference 

images as quickly as it can capture them. If the system is incapable of achieving real-time 

process, the next question is whether it is capable of near real-time processing suitable for 

the application and platform. Given the orbital speed of a satellite, along with the sensor 

GSD and swath size, the volume of data can rapidly become unmanageable so the 

possibility of both real-time and near real-time processing must be explored. 
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As a simplified illustrative example, the approximate orbital velocity, minimum GSD, 

and swath of the Sentinel 2 satellites are 7.46 km/s, 10 m, and 290 km, respectively. If the 

curvature of the Earth is ignored, this means that for each second, Sentinel-2 produces 

2163 km2 of imagery, or a 21.6-megapixel image with no overlapping sections. 

Therefore, for real-time onboard edge processing, the system must be capable of passing, 

handling, and inferencing a 21.6-megapixel image – approximately 280 MB for unsigned 

8-bit data with 13 color channels without compression – every second for real-time 

processing when all channels are resized to 10m GSD. With terrestrial computing 

resources, this is a manageable task, but with edge computing, it is not. 

For meaningful edge compute, processing capabilities must be relevant to the application. 

For vessel detection, if delivery of satellite onboard processing (edge compute) results 

takes half a day, the edge compute becomes a tool to detect where vessels were not where 

they are. With the modifications made to the YOLOv8 model to permit multispectral 

imagery, and the absence of benchmarks for the modified model, it becomes pertinent to 

test suitable hardware configurations for the task and relate them to orbital conditions. 

The following sections explain the hardware and methods used to reference inferencing 

performance for the model, with hardware configurations (section 3.3.1) and orbital 

simulations (section 3.3.2).  

3.3.1 Hardware Emulation Configuration 

To emulate different hardware configurations of a satellite OBC, two NVIDIA SBCs will 

be used. Current and older versions of these boards are utilized in space products offered 

by several companies – including Galaxia Mission Systems – and due to NVIDIA’s 

advanced work on CUDA cores, they represent a suitable platform for machine vision. 

The different hardware and power configurations are summarized in Table 9 from 

NVIDIA documentation [78] for information on maximum CPU or GPU frequencies. 

Both boards utilized Jetpack 5.1.2, the latest version of software available for both boards 

at the start of testing. Jetpack includes the Linux OS images, and hardware specific 

libraries, APIs, and developer tools for the Nvidia SBCs. To evaluate inference rate, the 

images will be loaded aboard a microSD card capable of up to 130 MB/s read and 30 

MB/s write. 
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Table 9  Target hardware and power configurations tested. 

NVIDIA SBC power configuration power mode ID 

Orin Nano 8 GB [78] 15W 0 

Orin Nano 8 GB 7.5W 1 

Xavier NX 8 GB [78] 20W – 6 Core 8 

Xavier NX 8 GB 10W – 4 Core 4 

 

3.3.2 Orbital Simulations 

To simulate the orbital characteristics and position of several satellite orbits relative to 

Earth, in the north-east-down (NED) reference frame, MathWorks MATLAB and its 

Aerospace Toolbox were used. For each orbit, the simulation plots the satellite latitude, 

longitude, and velocity at 1 second time steps for 30 days. Due to computational limits 

posed by system memory, the status of whether a satellite was in eclipse by the Earth or 

Moon at any point in its orbit was simulated at 4 second time steps and linearly 

interpolated to 1 second intervals. The eccentricity used was set as 0.001, to 

approximately match the non-zero eccentricity of the spacecraft. Alone, this information 

is of limited value to determine OBC processing limitations, as orbital velocity was 

nearly constant throughout. However, with the latitude and longitude of the satellite, and 

treating each as a nadir-pointing satellite, cross-referencing it with geological locations 

offer more meaningful information. For instance, as the trained model detects marine 

vessels, only ocean regions were considered. 

General Bathymetric Chart of the Oceans (GEBCO) offers global gridded bathymetric 

data [79], that has elevational data in meters on a 15 arc-second interval grind represented 

as an 86400 × 43200 array of latitude, longitude, and elevations. At the equator this 

represents a grid approximately 463 × 463 m while at 45° north or south this represents 

a grid of 327 × 463 m as the distance between lines of longitude decrease closer to the 

poles. Every point along the 30-day satellite orbit (2,592,000 points) was compared 

against the GEBCO data – extrapolating linearly from the nearest longitude and latitude 

of the GEBCO data – to produce an elevation of the point nadir beneath the satellite. 

With these elevation measurements, it is possible to determine when the satellite was 
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over areas that are below sea level. While there is land below sea level, there was no 

straightforward method to determine dry land below sea level from “wet” land below sea 

level. 

With the bathymetric data brought into the simulation, every second of a nadir-pointed 

satellite’s orbit has a longitude, latitude, ground elevation, velocity, and eclipse state 

associated with it. The bathymetric data provides context to situations that can be broken 

down by the elevation (or depth) of an area to the inferencing rate of the different Nvidia 

SBCs configurations. For instance, a satellite deployed to exclusively monitor vessels 

does not need to capture images over land, during which it can process images should the 

inferencing rate fall short of real-time processing. With the bathymetric data, periods of 

time over areas below sea level can be discounted. An example of this is shown for a 705 

km orbit with 98.2-degree inclination for a 1-day period in Figure 24 and for a 30-day 

period in Figure 25. It may be reasonable to remove portions of the capture area from 

consideration for data processor, such as when a satellite is in eclipse. Alternatively, a 

satellite may simply be deployed to monitor several discrete areas instead of the entire 

globe. The combinations of orbits and conditions are described in Table 10 and Table 11. 

 

Figure 24  1-day simulation of nadir-pointed satellite, with points split into above or 

below sea level based on bathymetric data. The orbit is simulated at an 
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altitude of 705 km with a 98.2-degree inclination. Distinguishing by ground 

elevation means the simulated satellite need not capture imagery over land.  

 

 

Figure 25  30-day simulation of nadir pointed satellite with points split into above or 

below sea level based on bathymetric data. This is an extended simulation 

from that of Figure 24. The orbit is simulated at an altitude of 705 km with a 

98.2-degree inclination. Distinguishing by ground elevation means the 

simulated satellite need not capture imagery over land.   

Table 10  Parameters for orbits simulated to determine valid imaging criteria when 

restrictions (Table 11) are applied. 

orbit  mean altitude (km) eccentricity  inclination (°) 

Sentinel-2  786  0.001 98.2  

ISS 420  0.001 51.6  

low SSO  550  0.001 97.6  

Sentinel-6A  1336  0.001 66.0  
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Table 11  Conditions applied to orbits to determine if satellite position meets valid 

imaging criteria. Conditions applied are cumulative from the top of table to 

the bottom. 

description constraints 

eclipse satellite obscured by Earth or Moon shadow 

below sea level less than 0 m 

surface to deep sea fishing depths 0 m to - 1500 m 

restricted latitude 70° N to 70° S 

continental shelf depths 0 m to -250 m 

region (Nova Scotia) 40° to 50° N, 53° to 73° W 

 

The conditions in Table 11 were selected due to their relevance to the objective of vessel 

detection. Eclipse was selected due to the Earth not being directly lit during that period 

and the satellite not charging its solar cells. Below sea level was selected as ocean-going 

dark vessels cannot operate in areas with elevation above sea level (within the tolerance 

of the bathymetric elevations), and the range of deep-sea fishing depths due to these 

being areas where dark fishing vessels may operate. Continental shelf depth of 250 m 

was selected due to a variety of locations citing the depth between 200 m and 300 m, and 

the seabed rights of countries over them. Finally, the region of Nova Scotia was selected 

as an example of a region for monitoring as it is a peninsula surrounding by the ocean. 

The swath and GSD of the nadir-pointing satellite will be considered constant for the 

purposes of providing context to the interference rate. Retaining the same GSD and swath 

between different satellite altitudes would require different camera focal lengths 

(increasing as altitude increases) but this will be ignored as it is secondary to the 

discussion objectives. Any considerations for atmospheric or illumination effects from 

capturing images at different altitudes are outside the scope of this research and not 

examined. 
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While real-time processing can be simply described as being capable of processing 

images as fast as they are captured, near-real time requires definition for the task. At 

some point of continually increasing the time to deliver actionable information, the 

information will begin to lose significance. For near-real time vessel detection, this would 

stem from a vessel moving too far to be intercepted from where an image was captured. A 

reasonable distance to consider would be distance to horizon, and the maximum viewable 

distance to an object over the horizon. As the height above the water from which 

observations are made on a vessel vary with a vessel’s mass (affecting draught), and from 

where the observation is made (e.g. mast vs wheelhouse) several values are shown in 

Table 12. Comparing these distances against the speed of a vessel, and the time a 

detection takes to make can determine how useful a near-real time measurement is. 

   Table 12  Maximum observation distances for horizon and vessels over the horizon at 

different observation heights and air drafts. A vessel that moves less than 8 

km from the time a detection is made, will be visible from the originally 

detected point. 

observation height 

above sea level 

(m) 

distance to 

horizon (km) 

maximum viewable distance for vessel of 

specified air draft over the horizon (km) 

10 m 20 m  30 m  

5 7.98  19.27  23.95  27.53 

10 11.29  22.58  27.25 30.84  

20 15.96  27.25  31.92  35.52  
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Chapter 4  Presentation of Results 

The results of the work described in the methodology (Chapter 3) will be presented in 

this chapter. This section will be broken up into two parts: model performance of 

YOLOv8 models trained using the constructed MS dataset (4.1), and the model 

inferencing speed and orbital performance (4.2). The model performance section presents 

the results of using different spectral bands, and model sizes, on model performance (F1-

score, precision, and recall). This is accomplished by analyzing the results of different 

spectral bands permutations and noting consistent patterns in the results. Model 

inferencing speed and orbital performance examines the inferencing speed of the 

produced models onboard the simulated OBC configurations and compares it to the 

results of a satellite simulation to gauge real-time or near real-time onboard processing 

feasibility. 

4.1 Model Performance 

Due to the number of spectral band combinations (39 models), the results will be 

presented in groups. For instance, showing a relationship exists between quantity of 

spectral bands and model performance, does not necessitate including model performance 

pertaining to specific spectral bands, incrementally beyond RGB, unless it was relevant. 

The intent of the model grouping evaluated in this chapter serves to highlight incremental 

performance improvements of multispectral over RGB wavelengths, effect of model size 

on performance, value of specific spectral bands when added to the RGB colour 

channels, removal of specific bands from the Sentinel-2’s 13 spectral bands on the model 

performance, and to compare bands based on different GSD combinations. An example 

of model output, with respect to inferencing images, is shown between Figure 26 (labels) 

and Figure 27 (predictions) for the large RGB model. 
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Figure 26  Example of 16 RGB composite images from the created dataset with labelled 

vessels locations shown. These images are the ground truth for the predictions 

shown in Figure 27. 
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Figure 27  Example of 16 RGB composite images from the created dataset with 

inferenced vessels locations and prediction confidence shown (rounded to 

nearest tenth). The predictions were made using a fully trained RGB 

YOLOv8 model. 

4.1.1 Multispectral vs RGB Impact on Vessel Detection 

The first, and arguably most important question regarding multispectral vessel detection 

is if multispectral, as a sensing modality, offers any advantage over visible light imaging 

modalities. If no advantage can be offered, then there is little reason to pursue 

multispectral over conventional optical sensors. Figure 28 shows the F1 score of the AB 

models (Table 7) and the RGB models, at 5 different minimum confidence levels. Figure 
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29 shows the AUC of the F1-score curve for all five possible intervals starting from MAC 

of 0.25 (i.e. 0.25 to 0.6). There are four different versions of the AB and RGB models 

corresponding to the model size used. These models are noted by their lower case “l”, 

“m”, “s”, and “n” at the end of their respective abbreviation and correspond to “large”, 

“medium, “small”, and “nano” YOLOv8 model sizes. 

 

Figure 28  Comparison of F1-score at minimum accepted confidences for RGB vs AB 

vessel detection models of different sizes. AB models consistently outperform 
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RGB models at every model size, indicating there is value from the additional 

spectral information for ML vessel detection.   

 

Figure 29 Comparison of AUC at MAC intervals for RGB and AB models of different 

sizes. Results match those in Figure 28, with the AB models consistently 

outperform RGB models at almost every model size.  

For each model size (nano, small, medium, large), the AB models generally outperforms 

the RGB models of the same model size, with similar or higher F1-scores through most 

of the MAC intervals. For 0.7 MAC, or lower, every AB model outperforms the RGB 

model which is one size larger (e.g., the ABm medium model outperforms the RGBl 

model). It is only moving from 0.7 to 0.8 MAC that RGBl model overtake the smaller AB 

models, but this also corresponds with significant F1-score drops. This will be further 

examined with the precision and recall performance metrics (Figure 30 and Figure 31) to 

determine the cause of the drop.  

▪ It is concluded that multispectral imaging offers greater detection capabilities to sea 

level vessel detection beyond RGB wavelengths as implemented in an ML model. 

To investigate this result further, the recall and precision model metrics can be similarly 

compared across the ML models. Figure 30 shows the results of the precision versus 
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MAC for the trained RGB vs AB models, while Figure 31 shows the results for recall 

versus MAC. 

 

Figure 30  Comparison of precision values at minimum accepted confidences for RGB 

vs All-band vessel detection models of different sizes. Model size increases 

correlate with a smaller performance difference (improvement) between RGB 

and AB models. Precision reduces with additional spectral information until a 

certain model size is reached. 

The precision metric, across models, (Figure 30) is less conclusive than the F1-score 

(Figure 28). Only the RGBn and RGBs models consistently outperform their respective 

counterparts (ABn and ABs). The RGBl and RGBm models perform slightly better than 

the ABl and ABm models in spots, (e.g. at 0.4 and 0.5 minimum confidence) otherwise 

they do not greatly exceed them. This suggests that for the YOLOv8 model, the 

additional spectral information may cause a drop in precision until a certain model size is 

reached. With no notable improvement to precision – if not the opposite – the benefits for 

a multispectral treatment must come from recall given the F1-score (Eq. (4)) is the 

geometric mean of precision and recall. The recall of the models at different MACs are 

shown in Figure 31.  

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
re

ci
si

o
n

Minimum accepted confidence

ABl

ABm

ABs

ABn

RGBl

RGBm

RGBs

RGBn



62 

 

 

Figure 31  Comparison of recall values at minimum accepted confidences for RGB vs 

All-band vessel detection models of different sizes. Recall for AB models 

consistently outperforms RGB models, indicating additional spectral 

information improves capability of detecting vessels which are present in 

images. 

Recall offers a clearer picture of the benefit of MS imaging for ML vessel detection. Each 

AB model outperforms the same-sized RGB, detecting anywhere from 5% to 10% more 

vessels present in the image depending on the targeted minimum accepted confidence. 

Combined with the results of recall-confidence curve Figure 30, the drop between this 

means that for YOLOv8 models, the strength of multispectral imaging for vessel 

detection appears to stem from the ability of multispectral models to more accurately 

detect vessels present within the image and not the reduction of false positives (i.e. when 

the background is predicted as vessels) within the inferenced images. More succinctly, 

▪ Using additional spectral information during improves the capability of ML models 

to detect vessels present within an image. 

The advantage of multispectral over RGB imaging is the additional spectral information 

captured for each pixel, resulting in the models more accurately recognizing patterns 

between spectral channels and physical features. For instance, red-edge bands are 

frequently used to detection vegetation due to chlorophyll reflected in these bands. 
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Inclusion of these spectral bands facilitates the model to better train on relationships 

between red-edge or NIR light and vegetation. Vegetation would only be co-incident with 

vessels not at port if there were heavy algae blooms present. An example of this can be 

observed in Figure 32. Similarly, other relations between different spectral bands and 

viewed objects may help the model characterize other features unique to vessels and the 

surrounding non-vessel backgrounds. 

 

Figure 32 RGB composite image compared against non-normalized RGB bands and 

B08: a NIR band. Due to vegetation reflecting NIR light, vegetation on the 

shore has a high response. Additionally, due to water’s high absorption of 

NIR light, the vessels appear in higher contrast in B08 compared to the RGB 

channels. 

The results in Figure 30 and Figure 31 indicate that the cause of the performance drop 

when moving from 0.7 to 0.8 MAC stems from a low number of high confidence 

predictions (at or above 0.8 confidence). Given that precision also increases during this 

period, this is expected behavior for the YOLOv8 model. Evaluating the performance at 

different MACs better characterizes the nature of the predictions made. For instance, a 

spectral band combination that only results in improved performance at high confidence 

likely means that existing predictions are made with improved confidence, whereas only 

performance improvements at low confidence likely means that more predictions in total 



64 

 

are being made. However, unless precision is the only metric to be considered, the drop 

in F1-score from 0.7 to 0.8 MAC also indicates that the models’ performance for general 

use begins to rapidly fall off. The difference in F1-score between true positive vessel 

detections at 0.7 and 0.8 MAC is similar from 0.25 to 0.7 MAC for RGB and AB models. 

To simplify analysis, and produce a singular value for each curve, results from 0.25 to 0.7 

MAC are used to produce the AUC, not all combinations of MAC intervals such as in 

Figure 29. 

4.1.2 Model Size Impact on Performance 

Model size, which increases with model complexity and number of model parameters 

(feature vector), impacts the model performance and inferencing speed. As shown in 

section 4.1.1 both the RGB and AB model have large, medium, small and nano models, 

but there was an additional model trained with four sizes: G12 which are models which 

utilize all Sentinel-2 bands with GSDs of 10 m and 20 m but exclude the three bands with 

60 m GSD. The F1-score of the D12m model is shown in Figure 33 and the AUC in 

Figure 34, which – along with Figure 28 – show a correlation between F1-score and 

model size. As a point of comparison, the AB model results are included in the image. 

The RGB models were not included due to them affecting the clarity of Figure 33, but 

can be observed in Figure 28.  
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Figure 33  Comparison of F1-scores at minimum accepted confidences for AB and G12 

models of different sizes. Differences between same size models are less 

pronounced than those in Figure 28, but still indicate a general positive 

correlation between number of bands.  

 

Figure 34 Comparison of AUC at MAC intervals for AB and G12 models of different 
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Figure 29 for AB and RGB, indicating a general positive correlation between 

the number of bands. 

Since the information offered by comparing model performance in both Figure 28 and 

Figure 33, along with the AUC in Figure 29 and Figure 34, only reaffirms the initial 

conclusion, it is worth analyzing model size performance in a different way. Figure 35 

displays the difference in F1-score between different model sizes as a stacked group bar 

chart. From this, it is apparent that as the MAC increases so does the impact of the model 

size. Additionally, the largest improvement occurs in the progression from the nano to the 

small models. The improvements from small to medium, and medium to large model 

sizes are each less pronounced.  

From Figure 35, the decision was made to use the medium-sized models to analyze the 

remainder of the spectral band combinations. Medium model sizes offer a notable 

improvement over smaller model through their lower MAC thresholds, while large 

models through this region only offer minor improvements. It was only at high MACs of 

0.7 or higher that the large model offered notable improvements over the medium model, 

but at those points the models’ F1-scores drops off. 
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Figure 35  F1-Score difference between different model sizes for RGB, AB, and G12. 

Models experience diminishing returns as model size increased, and model 

size has a larger impact on F1-score at higher minimum accepted confidence. 

The F1-score improvements from increasing model size are around 0.05 - 0.3 when 

model size is increased from nano to large at different MAC. Similarly, the effect of 

selecting a model has a larger impact on model performance with larger improvements.  

The difference between AUC for RGB, AB, and G12 models also helps indicate what a 

significant change of AUC is. Given the parameter difference between model sizes (Table 

8), a same size model’s performance difference can be considered significant if the AUC 

difference matches those of a model size increase or decrease. From the values shown in 

Figure 36, changing model size resulted in an AUC change of 0.008 to 0.014. An increase 

of AUC within or beyond this range can be considered equivalent to the performance 

improvement gained by increasing model size for vessel detection. 
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Figure 36 Comparison of AUC at MAC intervals for AB, G12, and RGB models of 

different sizes. Changes in model sized, averaged across each of the three 

band combinations, results in a 0.008 to 0.014 change in AUC, which can be 

taken as a metric for significant improvement in a model. 

4.1.3 Value of Additional Spectral Band to RGB Model 

A natural question is whether there were spectral bands that when incrementally added to 

an RGB optical system would significantly improve vessel detection performance. This is 

relevant to size and for insight into available imaging systems for small satellites. There 

are MS imaging systems that feature RGB plus a single NIR spectral band. Of the 13 

Sentinel-2 bands, 3 are RGB. The addition of a single additional spectral band yields 9 

possible combinations to trial. For legibility, the resulting model results are divided into 

two plots: the first (Figure 37) features RGB plus a 20 m GSD spectral band or the single 

remaining 10 m GSD spectral band (Figure 39) which features RGB plus a single 60 m 

GSD spectral band. 
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Figure 37  Comparison of F1-scores at minimum accepted confidences for models 

trained on RGB spectral bands and one additional 10 m or 20 m spectral 

band. The addition improves the ML model performance. 

 

Figure 38 Comparison of AUC at MAC intervals for models trained on RGB spectral 

bands and one additional 10 m or 20 m spectral band. All models with added 

spectral bands outperform RGB. 
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Of the band combinations presented in Figure 37, at most points adding a 10 m or 20 m 

GSD spectral band improves model performance. The exception for this occurs at 0.8 

minimum confidence, where most combinations fall below the RGB value, except for the 

models R07, and R12. The improvement to F1-score ranges from 0 to 0.08 from 0.25 to 

0.7 minimum confidence, and -0.14 to 0.10 at 0.8 minimum confidence. Considering 

Figure 38, all new models outperformed RGBm. Only R06 and R05 failed to exceed an 

AUC improvement of 0.008 over RGBm.  

▪ The inclusion of any 10 or 20 m GSD spectral band with RGB bands has a positive 

impact on the ML model performance. 

Of the models trained, R07, R08, and R12 are notable for having the largest performance 

improvements or regressions over the RGBm model at specific MACs. R08, which is 

RGB plus B08 – broad NIR – is likely performant due to R08 being a 10 m GSD band 

instead of 20 m. Smaller and finer features are capable of being captured, but B08 has the 

widest spectral width of all non-SWIR spectral bands on Sentinel-2 at 105 nm. By AUC it 

has the best performance but at 0.8 MAC specifically, it has the worst F1-score. While 

the lower GSD of 10 m ensures that more detail is captured, it is possible that it inserts 

uncertainty into predictions due to additional features that are not visible in other bands 

due to its bandwidth and GSD. Theoretically the model should account for this, but it is 

possible that it is identifying patterns and features that do not correlate and is having 

difficulty rejecting them confidently from the training process. This is not improbable 

since at lower minimum confidences, R08 is the highest performance model, while the 

reverse is true at 0.8 MAC. 

There are less obvious indications of why R07 and R12 performs as they do; both are two 

of six 20 m spectral bands, that observe different bandwidths at 20 nm and 180 nm 

bandwidths respectively. The spectral function document for the Sentinel-2 MSI imager 

notes the purpose of these bands. B07 is noted as being used for leaf area index, a 

dimensionless estimating leaf area over land, and B12 the assessment of mediterranean 

vegetation conditions, distinction of clay soils for the monitoring of soil erosion and burn 

scar mapping. It is possible these relationships, along with others uncovered through 
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research, trained the model to better discern vessels from its background with positive 

and negative correlations. 

 

Figure 39  F1-score vs minimum accepted confidence for RGB spectral bands and one 

additional 60m spectral band. The inclusion of 60 m spectral bands made no 
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improvement on the F1-score of the trained ML models and the R10 model 

experiences the worst performance with B10.  

 

Figure 40 Comparison of AUC at MAC intervals for models trained on RGB spectral 

bands and one additional 60 m spectral band. The resultant models see minor 

to significant performance loss compared to RGBm. 

Unlike adding a 10 m or 20 m spectral bands to the RGB spectral model for training, 

utilizing the 60 m spectral bands has at best a negligible to negative effect on the results. 

In Figure 39 and Figure 40, models R01 and R09 have slightly worse performance than 

RGBm, but model R10 has dismal performance: the worst of all models tested in this 

thesis. R10 was also trained an additional two times to ensure there was not an error in 

this process. R10 was trained on RGB and B10, the later of which is a SWIR band that 

was selected for Sentinel-2 due to its near complete reflectance with water vapour – 

particularly that of cirrus clouds – within the atmosphere (see Figure 22). B10 cannot 

meaningfully image features below 2000m, limiting its use to detecting high altitude 

features such as clouds. A result of this can be observed in Figure 21, where B10 is 

dramatically different than any other band. This means the poor performance of model 

R10 was due to it being unable to find significant value in identifying high altitude 

features or being able to meaningfully reject B10 during training. 

▪ The additional of any Sentinel-2 60 m spectral band to RGB bands has minimal (and 

sometimes detrimental) impact on trained ML model performance. 

From Figure 37 and Figure 39 it is apparent that while additional spectral information of 

similar GSD improves the vessel detection performance, certain bands – particularly low 
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spatial resolution bands – offer negligible or negative changes to the model’s 

performance trained using YOLOv8 default training parameters. Theoretically, a perfect 

model should perform no worse than utilizing RGB if the additional spectral band truly 

added nothing. However, there are reasons why this may not occur. Tuning training 

parameters (e.g., learning rate, momentum, and weight decay) that help a model progress 

towards its trained state may improve final model performance but introduces too many 

model variations to evaluate and falls outside the thesis scope. Secondly, there may be an 

inconsistent relationship between certain spectral bands and features present in the 

images within the dataset. This would be a deeper problem with the dataset that is 

discussed further in Future Work (section 5.1) 

4.1.4 Spectral Band Subtraction 

Another group of models that warranted investigation was the performance of utilizing all 

Sentinel-2 spectral bands but with 1 spectral band excluded. The goal with these 

combinations were to try and discern if there were any specific spectral bands that have a 

positive, negligible, or negative impact on the model when absent while using the default 

training process. When evaluating the models for performance improvements, no change 

in model performance with spectral band removal was considered a slight improvement, 

as resultant models have faster inferencing speeds. For evaluating performance 

improvements, no change in model performance with spectral band removal created a 

slight improvement, as resultant models have faster inferencing speeds. The results from 

the 13 band combinations can be seen in the following figures, and were split into groups 

based upon their GSD of 10 m, 20 m, or 60 m.  
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Figure 41 Comparison of F1 scores at minimum accepted confidences for models 

trained with combinations of 10 m GSD spectral band subtraction. Model 

A02 – removal of B02 – suffers distinct performance loss, while remainder of 

subtraction models experience slight negative or negligible performance 

changes. 

 

 

Figure 42 Comparison of AUC at MAC intervals for models trained with combinations 

of 10m GSD spectral band subtraction. Removing B02 sees significant 
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performance loss, while B08 removal is slightly beneath the threshold for 

performance improvement. 

Figure 41 and Figure 42 shows the results of dropping different 10 m GSD spectral bands 

from the 13 spectral bands of Sentinel-2 prior to training. From the results, removing B02 

(blue), has a distinct negative effect on performance. This is both a 10 m band, and at first 

thought the primary visible colour of water, so the result is not surprising. The ESA 

makes use of B02 in the construction of scene classification maps using algorithms 

included with level 2A Sentinel-2 imagery, particularly pertaining to snow, water, bare 

dirt, and clouds [41].  At the peak there is a 0.05 drop in F1-score compared to the ABm 

model, and a notable 0.0083 drop in AUC score. This is the most significant changes of 

any of the combinations. A08 experiences an improvement at low MACs but falls just 

short of the AUC threshold at 0.0071, but virtually matches the AUC of the ABl model. 

B08 overlaps spectral bands B07 and B8A, which may introduce over representation of 

the specific spectral bandwidths, in addition to B08’s very large bandwidth. This may be 

the cause in the slight performance improvement when B8A is removed in A08A (Figure 

46).  
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Figure 43  Comparison of recall at minimum accepted confidences, for models trained 

with combinations of 10 m GSD spectral band subtraction. This resultant 

curve and performance order closely resembles those shown in Figure 41, 

indicating recall is a driving factor for F1-score differences between band 

combinations. 

Recall at different MACs (Figure 43), resembles the plot created from F1-score at 

different MACs (Figure 41). In fact, there are no particularly new observations that can 

be made. Recall performs worse with the removal of B02 (blue) and best with the 

removal of B08. 
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Figure 44  Comparison of precisions at minimum accepted confidences, for models 

trained with combinations of 10 m GSD spectral band subtraction. Precision 

for spectral band subtraction is not notably affected by exclusion of any 

single spectral band. 

As shown in Figure 44, precision does not measurably favor one spectral band 

combination over the other. While a larger difference occurs with the subtraction of B08 

and B02 at low confidence, these differences do not propagate as the MAC is increased. 

In fact, except for ABm which only narrowly misses out, each of the other 5 

combinations shown have the best performance for at least one of the 6 MAC values.  
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Figure 45  Comparison of F1 scores at minimum accepted confidences for models 

trained with combinations of 20 m GSD spectral band subtraction. The results 

indicate not all bands have the same or even positive value in the model 

performance.  
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Figure 46 Comparison of AUC at MAC intervals for models trained with combinations 

of 20m GSD spectral band subtraction. The removal of B06 and B8A results 

in models with minor performance increases over ABm 

The F1-score curve for removing 20 m GSD spectral bands (Figure 45) yield a mixture of 

positive or neutral results, with A8A and A06 being notable standouts. Both fall short of 

the AUC threshold for significant improvement (0.0067 and 0.006 respectively) but are 

still minor improvements (Figure 46). One notable result for specific MAC score is the 

improvement of the model’s performance for 0.25 to 0.5 minimum confidence when B06 

(red edge) is dropped, where the largest difference in F1- score is approximately 0.05. 

Another one is with the elimination of B8A, the model sees a slight performance 

improvement through an F1-score increase of 0.03. However, arguably the most 

interesting performance result in a model is the result of removing B12. At 0.8 minimum 

confidence, this model has over 0.55 F1-score, a feat that not even ABl or RGBl models 

could match, while performing similarly for the remainder of the MAC points. 

The removal of B8A (model A8A) is interesting in concert with the results from 10 m 

GSD spectral band subtraction (Figure 41) because it supports the hypothesis that the 

degree of data redundancy may be a problem in models where B07, B08, and B8A are 

present. Compared to one another other the removal of B08 (model A08) offers better 

performance at 0.6 minimum confidence or lower, while the removal of B8A (model 

A8A) increases performance at or above 0.6 minimum confidence. However, both offer 

equal or better performance to the ABm model and are the highest AUC models for 10 

and 20 m spectral band subtraction respectively. 
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Figure 47  Comparison of F1 scores at minimum accepted confidences for models 

trained with combinations of 60 m GSD band subtraction. 60 m GSD spectral 

band removal does not show any consistent patterns of performance 

improvement or loss. 
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Figure 48 Comparison of AUC at MAC intervals for models trained with combinations 

of 60m GSD spectral band subtraction. The resultant model performance 

varies, but do not meet the criteria to be considered significant changes. 

Removal of the 60 m GSD spectral bands (Figure 47) shows a performance loss with the 

elimination of B01 (aerosol), a performance improvement with the removal of B09 

(SWIR) from the model at low MACs from 0.25 to 0.5. This is reflected in the AUC, 

though neither meet or near the 0.008 threshold to be considered significant. However, 

except for A01 at a MAC of 0.7 to 0.8, the changes at specific MACs are relatively minor 

at less than 0.02 F1-score difference. It is possible that the impact of removal of 60 m 

bands is relatively minor if the weights associated are minimized, resulting in a minimum 

performance impact whether included or removed. 

▪ The performance of a trained vessel model does not change uniformly with the 

addition or removal of specific spectral bands. 

4.1.5 Impact of Spatial Resolution 

A difficulty with Sentinel-2 data is the presence of spectral bands with different GSDs, 

while trying to determine the value of the specific bands to the ML models. Sentinel-2 

spectral bands used for this problem were provided at spatial resolutions of 10 m, 20 m, 

and 60 m, and resampled to 10 m if they were not already (section 3.1). This means that 

any conclusion is balancing two variables – GSD and spectral band interactions – instead 

of just spectral band interactions. It is possible to resample the 10 m and/or 20 m GSD 
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imagery to match the spatial resolution of the 20 m and/or 60 m spectral bands, but this 

would call on simulating and evaluating the results on many different models (discussed 

further in section 5.1.1). As such, Figure 49 shows the results of utilizing different 

Sentinel-2 GSD spectral band groupings, and the impact on the trained model 

performance. 

 

Figure 49  Comparison of F1 score at minimum accepted confidences for Sentinel-2 

GSD spectral band groupings. Lower GSD and more spectral information 

generally improves model performance.  
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Figure 50 Comparison of AUC at MAC intervals for models of Sentinel-2 GSD spectral 

band groupings. While the lowest GSD bands offered the best performance 

(R08) and vice verse, it is difficult to draw further conclusions due to varying 

quantity of spectral information and value. 

From Figure 49, there is a positive but rough correlation between model performance and 

lower GSD spectral bands along with volume of spectral information. The best model 

according to AUC (Figure 50) was A08 (all 10m GSD bands), while the worst by a 

significant margin is G60 (all 60m GSD bands). The remainder are clustered within a 

0.0032 AUC range of each other. While GSD is considered, the additional variable of 

spectral band quantity (three 60 m, six 20 m, four 10 m GSD bands), and specific value 

of individual spectral bands are not accounted for. This means that any conclusion is 

tenuous at best, though a broad but unsurprising conclusion can be made. 

▪ The performance of trained vessel detection ML models improves with higher spatial 

resolution images.  

4.2 Model Inferencing Speed and Orbital Performance 

While the performance metrics indicate the model capability, onboard computational 

resources for a CubeSat OBC are limited, and any solution must observe this. The 
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onboard ML, the inferencing capabilities and the imaging capture rates must be 
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considered. This section will discuss the results from inferencing images with the 

selected processors (4.2.1), along with contextualizing the inferencing time with respect 

to processing demands placed by imaging periods in orbit (4.2.2). 

4.2.1 Model Inferencing Speed on Emulated OBC  

Each model described in Table 7 has a slightly different process, whether in the number 

of parameters or the information to load into the model, consequently, the inference time 

per image varies. As discussed in Satellite Path and Hardware Processing (section 3.3) 

each model was loaded aboard the NVIDIA Jeston SBCs and the test portion of the 

dataset inferenced to obtain and measure an inferencing time. Two warm up runs were 

completed to place a thermal load on the model, followed by fitting the model to the test 

dataset and taking the median result of three additional runs for inferencing speed. Figure 

51 shows F1-score as a function of inferencing time for all OBC configurations tested. 

 

Figure 51  Inferencing speed vs F1-score at 0.6 minimum confidence for all tested 

hardware configurations. Inferencing occurs between 20 and 110 ms for all 
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models tested on all hardware configurations. This shows the relative 

performance of each hardware configuration. 

From the inferencing speed test, the order of best OBC performance to least is the Orin 

Nano at 15W, Xavier at 20W, Xavier at 10W, and the Orin Nano at 7.5W. These appear as 

four clusters of points with minor overlap. It is important to note that the wattage 

represented in the name of each OBC configuration is not the actual power consumed by 

the SBCs, but the maximum they could consume. Characterizing the power draw of the 

hardware in detail through monitoring power draw from the wall or using onboard 

software was not completed during these steps. In the interest of legibility, Figure 51’s 

F1-score axis is scaled so the results from R10 – the abnormal model – are not displayed. 

These removed points occurred at an F1-score of 0.1232 at 0.6 minimum confidence 

between 29.5 ms to 54.0 ms. 

Figure 51, primarily shows a general trend of model performance compared to 

inferencing time, and relative hardware performance, but reveals nothing about model 

specifics. Plotting the model performance against inference time for a smaller sample of 

one OBC configuration will be more legible for model performance instead of a grid of 

over a hundred data points. Due to the number of similarly inferenced RGB plus a 

spectral band (Rxx models), and all spectral bands minus a single spectral band (Axx 

models), only a portion of these will be plotted for legibility purposes. Figure 52 is the 

F1-score vs inferencing speed at 0.6 minimum confidence for the ML models using the 

Orin Nano in the 15W configuration. 
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Figure 52   F1 score vs inferencing speed for ML models tested using Orin Nano in 15W 

configuration. Image inferencing for the ML models takes between 23 − 49 

ms, equating to an inferencing rate of approximately 20 − 40 images per 

second. The rates suggest the models may be suitable for near real-time or 

real-time inferencing on the OBC. 

For the Orin Nano in the 15W configuration, it was found to inference images at a rate 

between approximately 23 − 49 depending on the model size and spectral band 

combinations. Broadly, there appears to be a positive trend between inferencing time and 

F1-score, but two varying factors are implicitly captured in Figure 52: specific spectral 

band combinations and model size. To better examine the model inferencing time, the 

analysis is split between model size (Figure 53) and number of spectral bands (Figure 54 

and Figure 55). 
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Figure 53  F1 score vs inferencing speed for different size ML models tested using Orin 

Nano in the 15 W configuration at 0.6 minimum accepted confidence. 

Inferencing time improvements decrease significantly for each model size 

reduction. This was expected behavior for the model. 

As the model size shrinks, the model inferencing speed improves, but only to a point. 

Nano models showed very small inferencing speed improvement (<1 ms) at the cost of 

significant reduction in F1-Score. For the tested models, between 23 − 28 ms is the floor 

for inferencing the images of any model size, with diminishing returns on performance vs 

inferencing time as model size increases. The performance for other OBC configurations 

will not be broken down like those for the Orin Nano in the 15 W configuration in Figure 

52 and Figure 53, as they are similar for each OBC configuration, but with higher (worse) 

inferencing times. 

To evaluate the effect of number of spectral bands upon inferencing speed, the models 

were examined using addition YOLOv8 inferencing speed results. YOLOv8 reports three 
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measures of time during inferencing: pre-processing, processing, and post-processing, 

reporting the sum as the inference speed. Loading and preparing the image for insertion 

into the model, model processing, and handling of the results and output are pre-

processing, processing, and post-processing, respectively. Up to this point, all presented 

inferencing times have been the sum of all three measures. The only changes to these 

different processing steps were the modification of the input layer of the model for the 

processing step and handling additional spectral channels images in the pre-processing 

step. The post-processing time remained constant during testing due to no changes having 

been made, and therefore it is not shown in this thesis. Figure 54 shows how the quantity 

of spectral bands influences processing time, while Figure 55 shows how the same 

influences pre-processing time. 

 

Figure 54  Number of spectral bands vs processing step time for medium sized YOLOv8 

models tested on the Orin Nano 15W, fitted with power trend line. Additional 

spectral bands have minimal but non-uniform increase on inferencing speed, 

but do not represent a significant increase. 

The effect of additional spectral bands on model processing time is minimal, with the 

largest between any two models to be just over 1 ms. This is not particularly significant, 

especially given the variance between models of the same size. The points clustered at 4 
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and 12 spectral bands are the Rxx models and Axx models, respectively. Additionally, the 

13-band model – ABm – managed to process faster than a 6-band model. Completing 

more runs and averaging a wider range of results may have shown less variability 

between runs of the same size (instead of using the median of 3 runs for each model) but 

overall, the difference was unlikely to be significant. 

 

 

Figure 55  Number of spectral bands vs pre-processing step time for every YOLOv8 

models tested on Orin Nano 15W with linear trend line. Additional spectral 

bands have a linear relation upon model inferencing time and have a larger 

impact than the effect of spectral bands during the processing step. 

Unlike processing, the pre-processing inference time vs the number spectral bands 

(Figure 55) shows a more distinct relationship and experiences a larger difference of 

approximately 3 ms between the RGB (3 band) and 13 spectral band models. Since the 

model size has no impact on the pre-processing step, all trained YOLOv8 models in this 

thesis were included. The near-constant differences in inferencing times are not 

unexpected since the images loaded from file on a system running an OS and background 

functions. In a more accurate OBC emulation, the interface of the hardware and 

multispectral imaging system could be captured (section 5.1.2). 

R² = 0.9879

0

2

4

6

8

10

12

14

16

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

# 
o

f 
sp

ec
tr

al
 b

an
d

s 

Time (ms)

Models Linear (Models)



90 

 

▪ Additional spectral information increases the inferencing time of the model, primarily 

during the pre-processing step of the model.  

4.2.2 Impact of satellite orbit 

Capturing images of the Earth from space with a nadir-pointing satellite can be simplified 

to a satellite travelling at a constant altitude over an infinite flat plan (i.e., with no 

curvature). Therefore, using the inferencing rate of the models aboard the tested OBCs 

(Figure 51) the limit of onboard processing in tandem with a simulated velocity could be 

determined. The MATLAB simulations (detailed in 3.3.2) calculates the velocity of each 

satellite in the north-east-down (NED) coordinate frame for their respective orbits. 

For each of the four orbits, the largest differences between the minimum or maximum 

orbital velocities were less than 0.5% of the average velocity for each respective orbit. 

The difference of velocity over the course of an orbit was a result of the Earth rotating 

below the satellite, and the very small eccentricity of 0.001. As the velocities varied little 

over the course of the orbits, the mean velocity was taken to be constant at all points in 

the orbits (Table 13). 

Table 13  Mean velocity of simulated orbits used to calculate inferencing rate. 

orbit mean orbital velocity (NED coordinate 

frame) 

Sentinel-2  7542.6 m/s 

ISS  7354.5 m/s 

low SSO  7660.2 m/s 

Sentinel-6  6969.0 m/2 

Utilizing the inferencing rate from the tested OBC configurations, it is possible to 

determine the area the model can inference per second while operating with a 10 m GSD. 

This assumes the images were input as 128 × 128 multi-channel imagery from a line-

scan camera feed. The results for the ABm model are presented in Table 14. Given the 

variations in ML models, it would be intensive to analyze results for all variations while 

contributing little to the end conclusion. As a result, the ABm model will be 

representatively used for further analysis. 
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Table 14 Area inferencing rate for each NVIDIA SBC evaluated with the ABm (all 

band, medium size) model inferencing results.  

model Orin Nano 

(15W) 

Orin Nano 

(7W) 

Xavier  

(20W) 

Xavier  

(10W) 

picture area 

(km2) 

1.6384 1.6384 1.6384 1.6384 

inferencing time 

(ms) 

32.5540 58.0722 43.3144 50.4489 

picture rate 

(images/s) 

30.7182 17.2200 23.0870 19.8220 

inferenced area 

rate (km2/s) 

50.3287 28.2132 37.8258 32.4764 

 

From this information, it is feasible to estimate what swath a corresponding OBC would 

be capable of inferencing. This is important as it does not matter how precise the model is 

if it is only able to inference a small area over the period of an orbit. Table 15 compares 

the inferenced area rate with respect to the imaging swath and orbit. At rates less than 

100%, the OBC can pause between inferencing images. At rates of 100%, the OBC is 

fully saturated with respect to inferencing images, i.e., images are inferenced as fast as 

they are fed into the model. At rates greater than 100%, the OBC can not inference 

images as fast as they are captured. Note that additional OBC overhead, inefficiencies or 

improvements to code were not factored into the inference speed tests; it is a general 

emulation to coarsely determine the OBC’s suitability.  

In Table 15 to Table 18 the processing rate of 0-100% are marked with green, 100-200% 

with yellow, and higher than 200% red to improve visual clarity. 

Table 15  Processor calculated saturation percent at different swaths and orbits for Orin 

Nano in the 15 W configuration. 

camera swath 

(km) 

calculated processor saturation percentage (orbit) 

Sentinel-2  ISS low SSO Sentinel-6 

1.28 19.18% 18.70% 19.48% 17.72% 

2.56 38.37% 37.41% 38.96% 35.45% 

3.84 57.55% 56.11% 58.45% 53.17% 

5.12 76.73% 74.82% 77.93% 70.90% 
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camera swath 

(km) 

calculated processor saturation percentage (orbit) 

Sentinel-2  ISS low SSO Sentinel-6 

6.4 95.91% 93.52% 97.41% 88.62% 

7.68 115.10% 112.23% 116.89% 106.34% 

8.96 134.28% 130.93% 136.37% 124.07% 

10.24 153.46% 149.64% 155.86% 141.79% 

20.48 306.93% 299.27% 311.71% 283.59% 

40.96 613.85% 598.55% 623.43% 567.17% 

61.44 920.78% 897.82% 935.14% 850.76% 

81.92 1227.71% 1197.09% 1246.85% 1134.34% 

102.4 1534.64% 1496.36% 1558.56% 1417.93% 

 

Table 16  Processor calculated saturation percent at different swaths and orbits for Orin 

Nano in the 7.5 W configuration 

camera swath 

(km) 

calculated processor saturation percentage (orbit) 

Sentinel-2  ISS low SSO Sentinel-6  

1.28 34.22% 33.37% 34.75% 31.62% 

2.56 68.44% 66.73% 69.51% 63.24% 

3.84 102.66% 100.10% 104.26% 94.85% 

5.12 136.88% 133.47% 139.01% 126.47% 

6.4 171.10% 166.83% 173.77% 158.09% 

7.68 205.32% 200.20% 208.52% 189.71% 

8.96 239.54% 233.57% 243.27% 221.32% 

10.24 273.76% 266.93% 278.03% 252.94% 

20.48 547.52% 533.86% 556.06% 505.88% 

40.96 1095.04% 1067.73% 1112.11% 1011.76% 

61.44 1642.56% 1601.59% 1668.17% 1517.64% 

81.92 2190.08% 2135.46% 2224.22% 2023.53% 

102.4 2737.60% 2669.32% 2780.28% 2529.41% 
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Table 17  Processor calculated saturation percent at different swaths and orbits for 

Xavier NX 8GB in the 20 W configuration 

camera swath 

(km) 

calculated processor saturation percentage (orbit) 

Sentinel-2  ISS low SSO Sentinel-6 

1.28 25.52% 24.89% 25.92% 23.58% 

2.56 51.05% 49.77% 51.84% 47.17% 

3.84 76.57% 74.66% 77.76% 70.75% 

5.12 102.09% 99.55% 103.69% 94.33% 

6.4 127.62% 124.44% 129.61% 117.91% 

7.68 153.14% 149.32% 155.53% 141.50% 

8.96 178.67% 174.21% 181.45% 165.08% 

10.24 204.19% 199.10% 207.37% 188.66% 

20.48 408.38% 398.19% 414.75% 377.32% 

40.96 816.76% 796.39% 829.49% 754.65% 

61.44 1225.14% 1194.58% 1244.24% 1131.97% 

81.92 1633.52% 1592.78% 1658.98% 1509.29% 

102.4 2041.89% 1990.97% 2073.73% 1886.61% 

 

Table 18  Processor calculated saturation percent at different swaths and orbits for 

Xavier NX 8GB in the 10 W configuration. 

camera swath 

(km) 

calculated processor saturation percentage (orbit) 

Sentinel-2  ISS low SSO Sentinel-6 

1.28 29.73% 28.99% 30.19% 27.47% 

2.56 59.46% 57.97% 60.38% 54.93% 

3.84 89.18% 86.96% 90.57% 82.40% 

5.12 118.91% 115.95% 120.77% 109.87% 

6.4 148.64% 144.93% 150.96% 137.34% 

7.68 178.37% 173.92% 181.15% 164.80% 

8.96 208.09% 202.91% 211.34% 192.27% 
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camera swath 

(km) 

calculated processor saturation percentage (orbit) 

Sentinel-2  ISS low SSO Sentinel-6 

10.24 237.82% 231.89% 241.53% 219.74% 

20.48 475.65% 463.78% 483.06% 439.47% 

40.96 951.29% 927.57% 966.12% 878.95% 

61.44 1426.94% 1391.35% 1449.18% 1318.42% 

81.92 1902.58% 1855.13% 1932.24% 1757.89% 

102.4 2378.23% 2318.92% 2415.31% 2197.37% 

 

Table 15 to Table 17 show OBC configurations are incapable of real-time processing 

beyond relatively low swath widths. For the 15W Orin Nano, for all orbits, real-time 

processing is only possible when the processed swath is 6.4 km or less for a 10 m GSD, 

and smaller for other SBC. This is a very small processing width that questions the 

suitability of such a system for onboard imaging process. In addition, this test ignores any 

additional OBC overhead from integration of a MS imaging system, and handling of data 

for transmission. 

▪ Real time MS vessel detection using developed ML models is not feasible with tested 

hardware. 

However, as discussed in the Orbital Simulation section (3.3.2) there are opportunities to 

reduce the load placed on the processor, and near real-time processing may be sufficient 

for the task of vessel detection. For instance, a vessel moving 15 knots moves less than 1 

km in a minute, which would be well within the distance to horizon described in Table 

12. 

The orbital simulation of each orbit completed was run from 1st August 2023, 00:00 to 

30th August 2023, 23:59, simulating 2,592,000 points in orbit at 1 second time steps, and 

correlated to GEBCO bathymetric data. Applying the various constraints (described in 

Table 11) to valid imaging points directly below a simulated nadir-pointed satellite, 

reduces the volume of imagery each satellite captures over time. The percentage of orbit 
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that is valid for imaging under these constraints is shown in Table 19. Note that all 

constraints are cumulative when moving left to right.  

Table 19  Percentage of 30-day simulated suitable for imaging under cumulative 

constraints (top to bottom) 

 
orbit description and suitable imaging percentage 

imaging restriction Sentinel-2 ISS low SSO Sentinel-6  

no restrictions 100.00% 100.00% 100.00% 100.00% 

satellite not in eclipse 68.78% 61.61% 65.83% 70.99% 

below sea level (0 m) 41.61% 40.68% 40.66% 46.17% 

deep-sea fishing 10.66% 5.26% 9.82% 7.93% 

70° N − 70° S 5.40% 5.26% 4.78% 7.93% 

continental shelf 3.26% 3.05% 2.89% 4.53% 

Nova Scotia region 0.13% 0.30% 0.13% 0.16% 

 

For a satellite tasked to monitor an area such as deep-sea fishing waters between sea level 

(0 m) and the end of common deep sea fishing depths (-1500m), while limited to be 

within 70°N − 70°S, around only 5% of the orbit will be spent directly over valid imaging 

points. For the remainder of the time the satellite imaging would idle if no other task 

were assigned – this permits processing during these time periods. Returning to Table 15 

to Table 17 for the OBC configurations, if the result from multiplying the processor 

saturation percentage with the percentage of valid imaging periods for cumulative 

restraints (Table 19) remains below 100% (or the corresponding eclipse valid imaging 

percentage if considering power management) it would be feasible to process all valid 

images onboard. Processing may be delayed from point-of-capture but processing the 

images over the course of the orbital period would be possible in near real-time 

processing. 

A visual representation of valid positions for an orbit similar to Sentinel-2, with the 

restrictions of not being in eclipse and below sea level is offered in Figure 56. Another 

visual representation for the same orbit, but with the added constraints of between 0 m to 

-1500 m below sea level, and between 70°N – 70°S is presented in Figure 57. 
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Figure 56  NADIR pointed satellite in Sentinel-2 orbit simulation for valid imaging 

points below sea level, and not during satellite eclipse, for a 30-day period. 

 

Figure 57  Nadir pointed satellite in Sentinel-2 orbit simulation for valid imaging points 

between 0 to 1500m below sea level, between 70°N to 70°S, and not during 

satellite eclipse, for a 30-day period. Significantly less area of Earth is 
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considered a valid imaging location, lowering captured imagery volume and 

what needs to be processed. 

The risk with near real-time processing is the information being delivered too late to be 

acted upon. Just as different objectives for coastal earth monitoring for coast studies have 

different revisit rate requirements (Figure 7), processing and timely delivery of the 

information is important. For dark vessels, detecting a vessel minutes after image capture 

is better than an hour after image capture, as the vessel may transit elsewhere during the 

orbital period. Another way to understand the impact of constraints upon the captured 

data is to consider the length of the periods where the satellite could capture valid 

imagery (influencing the volume of imaging captured in one capture period), and the 

length of the periods where it cannot (influencing the available time to process 

information without additional captured imagery). Statistics about the length of valid 

imaging periods are shown in Table 20. Statistics about the length of invalid imaging 

periods are shown in Table 21 

Table 20  Statistics of valid imaging periods (s) for simulated orbits and constraints. 

Imaging restrictions are cumulative from top to bottom.  

imaging restrictions 

  

orbit description 

Sentinel-2  ISS  low SSO  Sentinel-6  

eclipse         

mean period (s) 4145.9 3434.3 3766.8 4779.6 

median period (s) 4137 3433 3765 4777 

longest period (s) 4357 3457 3941 4909 

below sea level         

mean period (s) 124.52 210.62 120.91 190.10 

median period (s) 7 18 7 10 

longest period (s) 2552 2522 2223 3393 

between 0 - 1500m         

mean period (s) 20.52 15.20 18.51 20.16 

median period (s) 5 5 5 5 

longest period (s) 354 307 278 299 

70°N to 70°S         

mean period (s) 16.18 15.20 14.08 20.16 

median period (s) 5 5 5 5 

longest period (s) 254 307 208 299 

between 0-250m         

mean period (s) 11.52 10.84 10.02 12.55 
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imaging restrictions 

  

orbit description 

Sentinel-2  ISS  low SSO  Sentinel-6  

median period (s) 4 4 3 4 

longest period (s) 213 272 204 258 

region         

mean period (s) 12.15 12.07 9.73 15.75 

median period (s) 5 5 4 7 

longest period (s) 78 111 53 77 

 

Table 21  Statistics of invalid imaging periods for simulated orbits and constraints. 

Imaging restrictions are cumulative from top to bottom. 

imaging restrictions 

  

orbit description 

Sentinel-2  ISS low SSO Sentinel-6 

eclipse         

mean period (s) 1882.1 2139.9 1959.4 1979 

median period (s) 1899 2143 1971 1965 

longest period (s) 2035 2163 2075 2051 

below sea level         

mean period (s) 174.72 307.10 176.44 221.60 

median period (s) 7 11 7 8 

longest period (s) 3134 3272 2948 3491 

between 0 - 1500m         

mean period (s) 172.08 273.93 169.93 234.06 

median period (s) 12 17 12 14 

longest period (s) 4469 4939 2948 4474 

70°N to 70°S         

mean period (s) 283.51 273.93 280.1 234.06 

median period (s) 17 17 17 14 

longest period (s) 6722 4939 5518 4774 

between 0-250m         

mean period (s) 341.71 345.11 336.82 264.35 

median period (s) 15 18 15 12 

longest period (s) 6725 5163 5539 5994 

region         

mean period (s) 11664 5080.3 10235 11766 

median period (s) 11 9 7 13.5 

longest period (s) 84433 66099 349917 87634 
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As the constraints for valid imaging areas increase, the mean, median and longest periods 

for valid imagery to be captured decrease, while invalid periods generally rise. The 

restriction of below sea level (0 m) still leaves upwards of 40 minutes of valid imaging 

time as a possibility, and the ratio of mean valid periods compared to the invalid periods 

is approximately 2:3. However, imposing the constraint of 0 to 1500m depth brings the 

longest valid period to within 6 minutes. The ratio of valid to invalid periods also sharply 

falls as restrictions are applied. The mean valid/invalid ratios are 1:8 to 1:15 depending 

on the orbit, while the median is approximately 1:3 for the constraints of between 0 to -

1500m depths. This ensures there remains time for processing, power permitting. 

Of course, the frequency of these periods also plays a role, which the median helps 

distinguish. As soon as any imaging constraint is applied beyond that of eclipse, the 

median valid times all plummet to less than or equal to 10 seconds, while the invalid 

period rises to 7 − 18 seconds. In practice, this means there are frequent bursts of imaging 

along with intermittent periods of invalid image processing. Therefore, any queue of 

images that forms is more quickly addressed and processed relative to the time the image 

was captured, instead of accumulating in large batches before processing. 

The results of Table 20 can be used to express how long it would take an OBC to process 

the results valid image duration expressed in Table 20. Table 22 shows how long it would 

take the Orin Nano 8GB in a 15W configuration to process the imagery captured for the 

mean, median and longest valid imaging durations. Due to model running on the CUDA 

cores of the GPU, not the CPU, it is assumed that the OBC can process imagery at a 

reduced rate during this period. In the absence of hardware-in-the-loop testing of a 

camera system an arbitrary 900% penalty is added to ABm model inferencing speed for 

inferencing speed while imaging. 

Table 22 Time required for Orin Nano in 15W configuration to process 20.48km swath 

imagery captured during the mean, median, and longest valid imaging 

durations indicated in Table 20. The results compare favorably to the invalid 
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imaging durations that can be used for processing (Table 21) once additional 

imaging restrictions are applied. 

imaging restrictions 

  

orbit description 

Sentinel-2  ISS  low SSO  Sentinel-6  

eclipse         

mean period (s) 12310.29 9934.49 11364.90 14191.92 

median period (s) 12283.87 9930.73 11359.47 14184.20 

longest period (s) 12937.11 10000.16 11890.48 14576.14 

below sea level 
    

mean period (s) 369.73 609.27 364.80 564.46 

median period (s) 20.78 52.07 21.12 29.69 

longest period (s) 7577.58 7295.46 6707.07 10074.73 

between 0 - 1500m 
    

mean period (s) 60.93 43.97 55.85 59.86 

median period (s) 14.85 14.46 15.09 14.85 

longest period (s) 1051.12 888.07 838.76 887.81 

70°N to 70°S 
    

mean period (s) 48.04 43.97 42.48 59.86 

median period (s) 14.85 14.46 15.09 14.85 

longest period (s) 754.19 888.07 627.56 887.81 

between 0-250m 
    

mean period (s) 34.21 31.36 30.23 37.26 

median period (s) 11.88 11.57 9.05 11.88 

longest period (s) 632.45 786.82 615.49 766.07 

region     

mean period (s) 36.08 34.92 29.36 46.77 

median period (s) 14.85 14.46 12.07 20.78 

longest period (s) 231.60 321.09 159.91 228.63 

 

For imaging restrictions of 0 to -1500m or further, the numbers compare favorably to 

those in Table 21. The times required to process mean and longest durations for valid 

imaging periods for these restrictions are smaller than the mean and longest periods for 

invalid imaging periods. Medians vary, but they are only a couple seconds difference at 

most. The only issue with this analysis is it doesn’t account for a valid imaging period 

occurring shortly after a large valid imaging period is still being processed. Returning to 

the simulation of the 4 orbits, and factoring when each valid image occurs, the maximum 

time for an image to be processed can be obtained and is shown in Table 23  
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Table 23 Maximum time required for an image to be processed using an 15W Orin 

Nano. With restrictions of only eclipse and then below sea level, the buffered 

images continually grow, while additional restrictions limit the maximum 

time to less than 36 minutes. 

imaging 

restrictions and 

maximum time (s)  

orbit description 

Sentinel-2  ISS low SSO Sentinel-6 

Eclipse increasing increasing increasing increasing 

Below Sea Level increasing increasing increasing increasing 

Between 0 to -

1500m 

2131.0  1600.5 1593.5 1700.6 

70°N to 70°S 1047.2 1600.5 1042.1 1700.6 

Between 0 -250m 796.4 1219.3 635.5 964.29 

Region 234.2 546.3 232.0 357.8 

 

The volume of captured but not processed (buffered) images for the restrictions of eclipse 

and below sea levels continues to grow during the period, indicating the OBC cannot 

keep up with the incoming images. By implementing imaging restrictions of from 0 to 

1500 m below sea level, the OBC can keep up, with a longest (worst-case) buffered 

image time of 2131 seconds: under 36 minutes. In this time a vessel traveling at 15 knots 

(27.78 km/h) is only capable of travelling 16.44 km. Compared against Table 12, this 

distance is only further than distance to horizon for 5 and 10 m observation heights. For 

the 20 observation heights and vessels beyond the horizon for all observation heights, a 

vessel would still be visible. While the analysis does not address platform factors such as 

power draw, it indicates from an OBC perspective useful near-real time vessel detection 

is feasible. 

▪ Near real-time MS vessel detection using developed ML models is feasible for in-orbit 

operation with tested hardware when constraints are placed upon imaging periods. 
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Chapter 5 Conclusion and Discussion 

This thesis examined the suitability of utilizing multispectral imaging for vessel detection 

with machine learning algorithms and assessing the viability of onboard in situ satellite 

processing for this task. To revisit the conclusions from the results (Chapter 4):  

▪ Multispectral imaging offers greater detection capabilities for sea level marine vessel 

detection beyond RGB wavelengths as implemented in an ML model. 

▪ Additional spectral information improves the performance of ML models to detect 

vessels present within an image. 

▪ The inclusion of any singular Sentinel-2 10 m or 20 m spectral band to the RGB 

bands has a positive impact on trained ML model performance. 

▪ The additional of any Sentinel-2 60 m spectral band to RGB bands has minimal 

impact on trained ML model performance. 

▪ The performance of a trained vessel detection ML model does not change uniformly 

with the addition or removal of specific spectral bands.  

▪ Additional spectral information increases the inferencing time of the model, primarily 

during the pre-processing step of the model.  

▪ Real-time MS vessel detection using developed MS ML models is not feasible for in-

orbit operation with the tested hardware. 

▪ Near real-time MS vessel detection using developed ML models is feasible for in-

orbit operation with tested hardware when constraints are placed upon imaging 

periods. 

Based on ML models trained on MS spectral band combinations, it was shown that MS 

imaging outperformed RGB for the designed model architecture and that there is value to 

multispectral imagery. Thirty-nine models trained on images created from spectral band 

combinations – derived from Sentinel-2 imagery – also showed that different spectral 

band combinations had an impact on model performance for vessel detection. The effect 

of MS imaging, compared to RGB, was better performance for a constant model size, or 

similar performance using a smaller model size which permits faster inferencing. 

However, the effect of adding spectral bands is not uniform as the different spectral bands 

of the Sentinel-2 MSI have different impact on model performance. 
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From the results of this research, the feasibility of performing ML onboard a satellite’s 

OBC was determined using SBCs similar to those used by satellite companies. This 

portion of the work showed that – while it is not possible to perform vessel detection 

upon MS imaging fast enough to enable real-time processing of imagery – near-real time 

processing for MS ML vessel detection is feasible when imaging restrictions on image 

capture are in place. These restrictions were applied to four simulated orbits and included 

the effect of maximum ocean depth permissible for imaging, not imaging when the 

satellite is in eclipse, and imaging within a region, which lowered the volume of images 

the SBC must process and introduced frequent non-imaging periods to process the data. 

If the outcome of this research could be applied to ML-capable satellite platforms 

coupled with integrated AIS detections, this would enable onboard autonomy for dark 

vessel detection from small CubeSat platforms. The data transmission required for each 

satellite to transmit data to a ground station for processing (if further processing is 

required) would be significantly reduced. Additionally, the edge compute generated data, 

or derived instructions, could be sent to direct other satellites without a downlink. For 

instance, a satellite detecting a vessel could cue satellites with a higher spatial resolution 

imaging system to confirm the target and classify the vessel by type. Or, if running a very 

lightweight cloud detection algorithm atop and before a vessel detection algorithm, a 

system could direct SAR satellites to cloud-covered areas, optimizing their use for when 

the capabilities are required. However, given the breadth of the subject, the scope of the 

thesis could only cover a small portion of utilizing MS imaging for vessel detection, let 

alone the intricacies of a multi-modal satellite detection constellation. There is room for 

additional research to investigate these capabilities, which is discussed in section (5.1) 

5.1 Future Work 

Possible future work identified during the thesis to address these areas can be divided into 

two categories: work that can be undertaken immediately as a continuation of the work 

completed in this thesis, and work that requires more extensive retooling. The first 

section, immediate future work (5.1.1) explores options to further improve confidence in 

the obtained results without extensive modification of the produced dataset or training 
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process. Non-immediate future work (5.1.2) will discuss work that requires more 

fundamental changes to the process, dataset, or simulations. 

5.1.1 Immediate Future Work 

5.1.1.1 Vessel Size and Location on Performance 

As mentioned in Chapter 3 (Methodology) all images were created using geo-referenced 

ships within the multispectral satellite imagery. This means that at least one vessel within 

each image should have an associated AIS message relating vessel size and class. The 

next portion of work which could be completed immediately for the trained models is 

associating how the model performs with respect to vessel size. The shortest vessel length 

within the dataset is 20 m, while the longest is over 350 m. Based on the results of 

previously trained satellite imagery vessel detection models [43, 26], there is definite 

correlation between the size of the vessel and the ML model’s performance. With the 

specific training, testing and validation dataset split used, there were 198 vessels in the 

test portion of the dataset. This number is a reasonable amount to separate into a few 

discrete bins or attempt to create a more continuous analysis based around size. 

Another part the previously trained satellite ship detection models measured was model 

performance based on vessel location, specifically, whether the vessel was docked and 

alongside land or in open water. While the dataset created for this thesis does not label 

whether a vessel is docked or in open water, it would be a straightforward label to add to 

the dataset for further analysis. To minimize work, only the test portion of the split 

dataset needs to be labelled with the docked label at minimum. If trying to avoid further 

labelling, future work could instead use existing “land” labels and evaluate how the 

performance varies based on whether water is present in the image, a mix of land and 

water, or if it is entirely land. 

5.1.1.2 OBC Configuration Variations 

In this thesis two SBCs were used to test the model inferencing time for two power 

configurations. However, both the NVIDIA Orin Nano 8GB and the NVIDIA Xavier NX 

8GB were not the only low powered (20W or lower) SBCs available to test. Originally, 

the plan was to perform OBC testing on two additional SBCs: the NVIDIA Jetson TX2 

8GB, and the Nvidia Jetson Nano 4GB, the latter of which was slightly accountable for 



105 

 

the small dimensions of the image and corresponding model size. Unfortunately, the 

installation process for the required software and Python libraries required proved to be 

difficult and more convoluted on these platforms due to older versions of JetPack, 

corresponding software, and different compiling processes, and were subsequently 

dropped. 

 While the Orin Nano featured 2 built-in power modes, both of which were tested, the 

Xavier NX featured 9 built-in power modes of which only 2 were used. These modes had 

several distinct variations of 10W, 15W and 20W configurations that achieved the 

targeted power limits by using techniques such as turning off some CPU cores but 

running the remaining cores at higher clock speeds, to modifying the clock speed of the 

GPU and memory. As previously mentioned, the 15W configuration does not represent 

the power it consumes, but the peak power at which it can operate. To that end, running 

the code while monitoring power draw would allow better characterization of 

performance, and allow investigation of OBC power efficiency for the task.  

5.1.1.3 Spectral Band Combinations 

Though many band combinations were trialed during the research, they constituted only a 

fraction of the total number of possible band combinations. With 13 different spectral 

bands in Sentinel-2 imagery, there are thousands of permutations of band combinations 

possible. The bands combinations selected were often biased towards RGB colour bands 

as most common imaging systems utilize visible light in some capacity. Revisiting this 

problem with a wider range of spectral band combinations may yield more insight and a 

stronger correlation between model performance and specific bands. Additionally, model 

size was also only explored through three band combinations (RGB, AB, and G12), not 

all the variations trialed or that could be trialed. However, it is believed the models that 

were trailed represent a suitable sample to support the conclusions. 

5.1.1.4 Alternative ML Models 

In the Methodology Chapter it was mentioned that the Resnet-50-FPN failed to achieve 

meaningful performance and had to be abandoned for the thesis. The model did not 

produce results indicating where the ships accurately were, varying the bounding box in 

both dramatic size, shape, and general position. The training process did indicate the 
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model moving towards a solution, but never far enough to even reasonably be considered. 

For instance, the worst performing model tested, R10, would have outperformed some of 

the results obtained from resnet-50-FPN. It would be worthwhile revisiting this model to 

see if the problem could be amended to evaluate performance with a different model. It 

would also be worthwhile to implement other models, to gauge how the performance 

varied with respect to inferencing time. The model was originally dropped due to split 

focus between fixing Resnet-50-FPN and modifying YOLOv8 affecting the quality of 

either produced solution, when only one working model that met near real-time 

processing criteria would satisfy the results and conclusion. As YOLOv8 was indicated as 

the faster model, Resnet-50-FPN was dropped along with any intention of developing a 

purpose-built lightweight CNN MS ML model to better enable real-time processing. 

5.1.1.5 Training Parameters 

YOLOv8 trains with many adjustable trainable parameters. These include ones 

previously mentioned, such as learning rate, weight decay, and momentum, in addition 

such as warmup bias, augmentation of images, or optimizer utilized to name a few. 

Tuning these values is critical for obtaining the best possible performance for a model, 

but this was not completed for any models evaluated. For each of the 39 models tested, 

there are potentially hundreds of meaningful training parameter variations. However, 

except for R10, all models trained and tested produced meaningful results. Testing 

different combinations of parameters begins to venture more into the optimization of 

YOLOv8 over gauging broad value (if any) of multispectral bands and may only be 

relevant to the specific combination of spectral bands for the specific dataset. 

5.1.2 Non-Immediate Future Work 

5.1.2.1 Dataset 

The dataset lacks on several fronts, leaving room for refinement. An original goal was to 

evaluate how the presence of clouds affected vessel detection performance with different 

spectral band combinations. The disagreements between the vessel AIS locations and 

their locations within an image meant the vessels were located based on composite RGB 

images, reducing the number of partly obscured vessels present within the dataset. While 

it was possible to utilize the dataset to complete the work presented in this thesis, lack of 
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class support for clouds within the dataset limits application of resultant models to 

clouded imagery. Increasing the images with clouds present would require collecting 

significantly more data, requiring either the purchase of additional data storage or a 

completely modified data processing pipeline. 

The problem with the AIS may have been possible by implementing the process detailed 

in [26]. In this work the author identified that the time stamp from the medium resolution 

imager, Landsat 8, deviated from the AIS timestamp. The solution involved linear 

interpolation of multiple AIS reports for a vessel within an image, in concert with 

OpenStreetMap [80] water polygons and image pixel coordinates to interpolate a 

historical path and location of the vessel. However, this process still requires manual 

oversight for every ship position within an image. This would have been a more efficient 

for processing more imagery, but unlikely to affect the results of this thesis.  

Next, the creation of the image dataset should have been changed and could still be 

improved. The dataset features a single AIS message for each image regardless of how 

many ships occur within the image. This was an oversight and should have been rectified 

at the time. Instead, when multiple ships occurred within the same image, multiple 

images were created and gathered leading to near duplication and human bias in their 

reduction from the dataset. While this method could be argued as being preferable 

considering the difficulties with geolocating moving vessels, it would be possible to 

overcome with a different data processing workflow and review, and the solution 

previously mentioned. 

Manually cropping labelling the 128 × 128 MS images was performed using RGB 

composite imagery, instead of MS imagery. While this did not affect the cropping of 

stationary vessels – as AIS and MS imagery position matched – it affected cropping of 

moving vessels, and labelling images. It may have improved the dataset to incorporate 

using multiple spectral channels for these steps, but this would required reworking the 

cropping and per-image labelling program extensively to ensure no useful labelling 

information is lost or obscured during the process. For bounding box labelling, a program 

would need to be written or software capable of handling multispectral imaging while 

labelling identified. 
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5.1.2.2 Mixed Resolution Imagery 

One of the problems with Sentinel-2 imagery for the purpose of determining which bands 

are suitable for vessel detection is that not all bands are equal. While all bands were 

resized to 10 m GSD, the original bands themselves may be 10 m, 20 m, or 60 m. It is 

difficult to determine if B08 – a 10m GSD NIR band – is more suitable than B01 – a 60m 

GSD aerosol band – for vessel detection without a more equivalent analysis. This is 

especially true when the features being observed may be smaller than the GSD. One 

uncorrected error during the process was the rescale function used to resize 20m and 60m 

GSD imagery was thought to have resized the imagery without interpolating values. 

Instead, the rescale function did interpolate the values using nearest-neighbors 

interpolation and it was only noticed at the very end of the thesis. This likely resulted in 

better performance than would be achieved if not interpolating when utilizing 20m and 

60m bands. Ultimately, it is unlikely that this adversely affected the conclusions of this 

thesis. 

5.1.2.3 Onboard Computer 

Determining the inference rate of simulated hardware was not without fault. One critical 

problem was that inferencing rate was completed using images requiring a minimal level 

of processing already saved and processed onboard. The overhead of processing the raw 

camera data into a suitable size and format is not factored into the inferencing rate. The 

simulation assumes it is being “passed” data that is already correctly formatted, with 

nothing more than a conversion from a multi-channel TIFF image into the model as a 

NumPy array. Given more time and resources to integrate a physical camera system 

representative of a satellite camera system, the quasi hardware-in-the-loop could more 

closely begin to resemble actual inferencing time results. 

Another factor that is as much as it is attributable to the dataset as it is the hardware is the 

size of the images. Because there were no guidelines existing for what sort of OBC 

specifications the multispectral models would demand, the dataset was designed to be 

fairly limited in image size. 128 by 128-pixel images were not selected because they were 

necessarily the desired size, but rather the resultant model would increase in size and the 

models produced might have been unable to run on the hardware. Originally, there were 8 
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OBC configurations planned, but was reduced to 4 due to difficulties setting the older 

boards up. The NVIDIA TX2 and more notably the Nvidia Jetson Nano with 4GB of 

VRAM would have been more restrictive platforms. Returning to the original dataset 

creation, with an idea of what computational resources were required of the simulated 

SBC, the dataset might have been adjusted to feature larger imagery and model sizes and 

process faster as a result. 

5.1.2.4 Model Structure 

While not a criticism of Ultralytics’s work on the YOLOv8 model, it’s important to 

recognize the model was not designed for multispectral satellite-based vessel detection. 

RGB object detection from terrestrial or near-terrestrial based images was the objective 

of YOLOv8. The adapatations to convert it to a multispectral model was the change of 

the input layer from 3 to a variable number. A purpose-built lightweight model for 

multispectral imaging might offer better performance and could feature optimizations 

designed to improve the speed. Similarly, balancing the model size and complexity with 

performance for context-sensitive optimization aboard limited satellite hardware needs to 

be explored further. Satellite OBC’s which make use of the trialed board may utilize 

different frequencies and configurations for their systems, better suited for their intended 

role.  
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Appendix A Model Performance Results 

      
Vessel Confusion Matrix 
198 Vessels           

    Confidence TP FP FN TN  FP+FN Precision Recall Accuracy 
F1 
Score 

AllBand  M 0 127 16 71 0 198 0.8881 0.6414 0.5935 0.7449 

  M 0.4 120 10 78 0 198 0.9231 0.6061 0.5769 0.7317 

  M 0.5 117 8 81 0 198 0.9360 0.5909 0.5680 0.7245 

  M 0.6 112 5 86 0 198 0.9573 0.5657 0.5517 0.7111 

  M 0.7 99 3 99 0 198 0.9706 0.5000 0.4925 0.6600 

  M 0.8 61 1 137 0 198 0.9839 0.3081 0.3065 0.4692 

AllBand  N 0 122 15 76 0 198 0.8905 0.6162 0.5728 0.7284 

  N 0.4 109 7 89 0 198 0.9397 0.5505 0.5317 0.6943 

  N 0.5 101 3 97 0 198 0.9712 0.5101 0.5025 0.6689 

  N 0.6 93 3 105 0 198 0.9688 0.4697 0.4627 0.6327 

  N 0.7 71 2 127 0 198 0.9726 0.3586 0.3550 0.5240 

  N 0.8 28 0 170 0 198 1.0000 0.1414 0.1414 0.2478 

AllBand  S 0 128 14 70 0 198 0.9014 0.6465 0.6038 0.7529 

  S 0.4 118 7 80 0 198 0.9440 0.5960 0.5756 0.7307 

  S 0.5 113 5 85 0 198 0.9576 0.5707 0.5567 0.7152 

  S 0.6 103 4 95 0 198 0.9626 0.5202 0.5099 0.6754 

  S 0.7 85 2 113 0 198 0.9770 0.4293 0.4250 0.5965 

  S 0.8 38 0 160 0 198 1.0000 0.1919 0.1919 0.3220 

AllBand  L 0 133 19 65 0 198 0.8750 0.6717 0.6129 0.7600 

  L 0.4 125 12 73 0 198 0.9124 0.6313 0.5952 0.7463 

  L 0.5 120 8 78 0 198 0.9375 0.6061 0.5825 0.7362 

  L 0.6 117 7 81 0 198 0.9435 0.5909 0.5707 0.7267 

  L 0.7 107 5 91 0 198 0.9554 0.5404 0.5271 0.6903 

  L 0.8 73 1 125 0 198 0.9865 0.3687 0.3668 0.5368 

RGB M 0 124 15 74 0 198 0.8921 0.6263 0.5822 0.7359 

  M 0.4 116 7 82 0 198 0.9431 0.5859 0.5659 0.7227 

  M 0.5 113 7 85 0 198 0.9417 0.5707 0.5512 0.7107 

  M 0.6 104 2 94 0 198 0.9811 0.5253 0.5200 0.6842 

  M 0.7 83 2 115 0 198 0.9765 0.4192 0.4150 0.5866 

  M 0.8 51 0 147 0 198 1.0000 0.2576 0.2576 0.4096 

RGB N 0 114 10 84 0 198 0.9194 0.5758 0.5481 0.7081 

  N 0.4 100 1 98 0 198 0.9901 0.5051 0.5025 0.6689 

  N 0.5 91 1 107 0 198 0.9891 0.4596 0.4573 0.6276 

  N 0.6 81 0 117 0 198 1.0000 0.4091 0.4091 0.5806 

  N 0.7 63 0 135 0 198 1.0000 0.3182 0.3182 0.4828 

  N 0.8 27 0 171 0 198 1.0000 0.1364 0.1364 0.2400 

RGB S 0 111 8 87 0 198 0.9328 0.5606 0.5388 0.7003 
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Vessel Confusion Matrix 
198 Vessels           

    Confidence TP FP FN TN  FP+FN Precision Recall Accuracy 
F1 
Score 

  S 0.4 102 5 96 0 198 0.9533 0.5152 0.5025 0.6689 

  S 0.5 95 1 103 0 198 0.9896 0.4798 0.4774 0.6463 

  S 0.6 91 1 107 0 198 0.9891 0.4596 0.4573 0.6276 

  S 0.7 81 1 117 0 198 0.9878 0.4091 0.4070 0.5786 

  S 0.8 53 1 145 0 198 0.9815 0.2677 0.2663 0.4206 

RGB L 0 126 12 72 0 198 0.9130 0.6364 0.6000 0.7500 

  L 0.4 118 10 80 0 198 0.9219 0.5960 0.5673 0.7239 

  L 0.5 113 8 85 0 198 0.9339 0.5707 0.5485 0.7085 

  L 0.6 108 7 90 0 198 0.9391 0.5455 0.5268 0.6901 

  L 0.7 99 4 99 0 198 0.9612 0.5000 0.4901 0.6578 

  L 0.8 76 1 122 0 198 0.9870 0.3838 0.3819 0.5527 

10+20m M 0 128 12 70 0 198 0.9143 0.6465 0.6095 0.7574 

  M 0.4 123 9 75 0 198 0.9318 0.6212 0.5942 0.7455 

  M 0.5 113 7 85 0 198 0.9417 0.5707 0.5512 0.7107 

  M 0.6 105 7 93 0 198 0.9375 0.5303 0.5122 0.6774 

  M 0.7 94 2 104 0 198 0.9792 0.4747 0.4700 0.6395 

  M 0.8 57 1 141 0 198 0.9828 0.2879 0.2864 0.4453 

10+20m N 0 111 6 87 0 198 0.9487 0.5606 0.5441 0.7048 

  N 0.4 105 3 93 0 198 0.9722 0.5303 0.5224 0.6863 

  N 0.5 99 2 99 0 198 0.9802 0.5000 0.4950 0.6622 

  N 0.6 91 1 107 0 198 0.9891 0.4596 0.4573 0.6276 

  N 0.7 78 0 120 0 198 1.0000 0.3939 0.3939 0.5652 

  N 0.8 29 0 169 0 198 1.0000 0.1465 0.1465 0.2555 

10+20m S 0 121 7 77 0 198 0.9453 0.6111 0.5902 0.7423 

  S 0.4 111 5 87 0 198 0.9569 0.5606 0.5468 0.7070 

  S 0.5 106 4 92 0 198 0.9636 0.5354 0.5248 0.6883 

  S 0.6 98 2 100 0 198 0.9800 0.4949 0.4900 0.6577 

  S 0.7 76 2 122 0 198 0.9744 0.3838 0.3800 0.5507 

  S 0.8 24 0 174 0 198 1.0000 0.1212 0.1212 0.2162 

10+20m L 0 135 22 63 0 198 0.8599 0.6818 0.6136 0.7606 

  L 0.4 130 12 68 0 198 0.9155 0.6566 0.6190 0.7647 

  L 0.5 123 9 75 0 198 0.9318 0.6212 0.5942 0.7455 

  L 0.6 116 6 82 0 198 0.9508 0.5859 0.5686 0.7250 

  L 0.7 103 5 95 0 198 0.9537 0.5202 0.5074 0.6732 

  L 0.8 74 1 124 0 198 0.9867 0.3737 0.3719 0.5421 

10+60m_Old M 0 126 16 72 0 198 0.8873 0.6364 0.5888 0.7412 

  M 0.4 120 13 78 0 198 0.9023 0.6061 0.5687 0.7251 

  M 0.5 115 7 83 0 198 0.9426 0.5808 0.5610 0.7188 

  M 0.6 111 5 87 0 198 0.9569 0.5606 0.5468 0.7070 
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Vessel Confusion Matrix 
198 Vessels           

    Confidence TP FP FN TN  FP+FN Precision Recall Accuracy 
F1 
Score 

  M 0.7 99 3 99 0 198 0.9706 0.5000 0.4925 0.6600 

  M 0.8 58 1 140 0 198 0.9831 0.2929 0.2915 0.4514 

20+60m M 0 129 22 69 0 198 0.8543 0.6515 0.5864 0.7393 

  M 0.4 124 16 74 0 198 0.8857 0.6263 0.5794 0.7337 

  M 0.5 119 13 79 0 198 0.9015 0.6010 0.5640 0.7212 

  M 0.6 115 8 83 0 198 0.9350 0.5808 0.5583 0.7165 

  M 0.7 97 4 101 0 198 0.9604 0.4899 0.4802 0.6488 

  M 0.8 53 1 145 0 198 0.9815 0.2677 0.2663 0.4206 

RGB+B01 M 0 118 10 80 0 198 0.9219 0.5960 0.5673 0.7239 

  M 0.4 113 8 85 0 198 0.9339 0.5707 0.5485 0.7085 

  M 0.5 104 6 94 0 198 0.9455 0.5253 0.5098 0.6753 

  M 0.6 100 3 96 0 196 0.9709 0.5102 0.5025 0.6689 

  M 0.7 79 2 119 0 198 0.9753 0.3990 0.3950 0.5663 

  M 0.8 36 0 162 0 198 1.0000 0.1818 0.1818 0.3077 

RGB+B05 M 0 128 18 70 0 198 0.8767 0.6465 0.5926 0.7442 

  M 0.4 120 11 78 0 198 0.9160 0.6061 0.5742 0.7295 

  M 0.5 115 7 83 0 198 0.9426 0.5808 0.5610 0.7188 

  M 0.6 110 4 88 0 198 0.9649 0.5556 0.5446 0.7051 

  M 0.7 87 3 111 0 198 0.9667 0.4394 0.4328 0.6042 

  M 0.8 35 0 163 0 198 1.0000 0.1768 0.1768 0.3004 

RGB+B06 M 0 129 20 69 0 198 0.8658 0.6515 0.5917 0.7435 

  M 0.4 119 13 79 0 198 0.9015 0.6010 0.5640 0.7212 

  M 0.5 114 6 84 0 198 0.9500 0.5758 0.5588 0.7170 

  M 0.6 111 3 87 0 198 0.9737 0.5606 0.5522 0.7115 

  M 0.7 94 2 104 0 198 0.9792 0.4747 0.4700 0.6395 

  M 0.8 49 0 149 0 198 1.0000 0.2475 0.2475 0.3968 

RGB+B07 M 0 130 19 68 0 198 0.8725 0.6566 0.5991 0.7493 

  M 0.4 121 9 77 0 198 0.9308 0.6111 0.5845 0.7378 

  M 0.5 116 7 82 0 198 0.9431 0.5859 0.5659 0.7227 

  M 0.6 112 3 86 0 198 0.9739 0.5657 0.5572 0.7157 

  M 0.7 96 3 102 0 198 0.9697 0.4848 0.4776 0.6465 

  M 0.8 68 0 130 0 198 1.0000 0.3434 0.3434 0.5113 

RGB+B08 M 0 130 23 68 0 198 0.8497 0.6566 0.5882 0.7407 

  M 0.4 124 13 74 0 198 0.9051 0.6263 0.5877 0.7403 

  M 0.5 121 9 77 0 198 0.9308 0.6111 0.5845 0.7378 

  M 0.6 115 4 83 0 198 0.9664 0.5808 0.5693 0.7256 

  M 0.7 97 3 101 0 198 0.9700 0.4899 0.4826 0.6510 

  M 0.8 31 0 167 0 198 1.0000 0.1566 0.1566 0.2707 

RGB+B09 M 0 125 13 73 0 198 0.9058 0.6313 0.5924 0.7440 
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Vessel Confusion Matrix 
198 Vessels           

    Confidence TP FP FN TN  FP+FN Precision Recall Accuracy 
F1 
Score 

  M 0.4 117 8 81 0 198 0.9360 0.5909 0.5680 0.7245 

  M 0.5 109 6 89 0 198 0.9478 0.5505 0.5343 0.6965 

  M 0.6 100 4 98 0 198 0.9615 0.5051 0.4950 0.6623 

  M 0.7 83 2 115 0 198 0.9765 0.4192 0.4150 0.5866 

  M 0.8 39 0 159 0 198 1.0000 0.1970 0.1970 0.3291 

RGB+B10 M 0 58 23 140 0 198 0.7160 0.2929 0.2624 0.4158 

  M 0.4 46 6 152 0 198 0.8846 0.2323 0.2255 0.3680 

  M 0.5 30 0 168 0 198 1.0000 0.1515 0.1515 0.2632 

  M 0.6 13 0 185 0 198 1.0000 0.0657 0.0657 0.1232 

  M 0.7 0 0 198 0 198 #DIV/0! 0.0000 0.0000 #DIV/0! 

  M 0.8 0 0 198 0 198 #DIV/0! 0.0000 0.0000 #DIV/0! 

RGB+B11 M 0 127 15 71 0 198 0.8944 0.6414 0.5962 0.7471 

  M 0.4 121 11 77 0 198 0.9167 0.6111 0.5789 0.7333 

  M 0.5 117 9 81 0 198 0.9286 0.5909 0.5652 0.7222 

  M 0.6 109 5 89 0 198 0.9561 0.5505 0.5369 0.6987 

  M 0.7 95 2 103 0 198 0.9794 0.4798 0.4750 0.6441 

  M 0.8 45 1 153 0 198 0.9783 0.2273 0.2261 0.3689 

RGB+B12 M 0 128 18 70 0 198 0.8767 0.6465 0.5926 0.7442 

  M 0.4 122 10 76 0 198 0.9242 0.6162 0.5865 0.7394 

  M 0.5 115 7 83 0 198 0.9426 0.5808 0.5610 0.7188 

  M 0.6 108 3 90 0 198 0.9730 0.5455 0.5373 0.6990 

  M 0.7 99 2 99 0 198 0.9802 0.5000 0.4950 0.6622 

  M 0.8 64 1 134 0 198 0.9846 0.3232 0.3216 0.4867 

RGB+08A M 0 131 18 67 0 198 0.8792 0.6616 0.6065 0.7550 

  M 0.4 121 9 77 0 198 0.9308 0.6111 0.5845 0.7378 

  M 0.5 118 7 80 0 198 0.9440 0.5960 0.5756 0.7307 

  M 0.6 111 4 87 0 198 0.9652 0.5606 0.5495 0.7093 

  M 0.7 97 2 101 0 198 0.9798 0.4899 0.4850 0.6532 

  M 0.8 45 1 153 0 198 0.9783 0.2273 0.2261 0.3689 

All Band - 
B01 M 0 126 13 72 0 198 0.9065 0.6364 0.5972 0.7478 

  M 0.4 119 7 79 0 198 0.9444 0.6010 0.5805 0.7346 

  M 0.5 115 6 83 0 198 0.9504 0.5808 0.5637 0.7210 

  M 0.6 108 4 90 0 198 0.9643 0.5455 0.5347 0.6968 

  M 0.7 93 2 105 0 198 0.9789 0.4697 0.4650 0.6348 

  M 0.8 51 0 147 0 198 1.0000 0.2576 0.2576 0.4096 

All Band - 
B02 M 0 127 19 71 0 198 0.8699 0.6414 0.5853 0.7384 

  M 0.4 117 10 81 0 198 0.9213 0.5909 0.5625 0.7200 

  M 0.5 112 7 86 0 198 0.9412 0.5657 0.5463 0.7066 

  M 0.6 105 4 93 0 198 0.9633 0.5303 0.5198 0.6840 
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Vessel Confusion Matrix 
198 Vessels           

    Confidence TP FP FN TN  FP+FN Precision Recall Accuracy 
F1 
Score 

  M 0.7 91 3 107 0 198 0.9681 0.4596 0.4527 0.6233 

  M 0.8 47 1 151 0 198 0.9792 0.2374 0.2362 0.3821 

All Band - 
B03 M 0 128 16 70 0 198 0.8889 0.6465 0.5981 0.7485 

  M 0.4 120 9 78 0 198 0.9302 0.6061 0.5797 0.7339 

  M 0.5 117 8 81 0 198 0.9360 0.5909 0.5680 0.7245 

  M 0.6 114 5 84 0 198 0.9580 0.5758 0.5616 0.7192 

  M 0.7 99 4 99 0 198 0.9612 0.5000 0.4901 0.6578 

  M 0.8 40 0 158 0 198 1.0000 0.2020 0.2020 0.3361 

All Band - 
B04 M 0 125 15 73 0 198 0.8929 0.6313 0.5869 0.7396 

  M 0.4 123 11 75 0 198 0.9179 0.6212 0.5885 0.7410 

  M 0.5 118 6 80 0 198 0.9516 0.5960 0.5784 0.7329 

  M 0.6 113 5 85 0 198 0.9576 0.5707 0.5567 0.7152 

  M 0.7 106 3 92 0 198 0.9725 0.5354 0.5274 0.6906 

  M 0.8 64 1 134 0 198 0.9846 0.3232 0.3216 0.4867 

All Band - 
B05 M 0 133 18 65 0 198 0.8808 0.6717 0.6157 0.7622 

  M 0.4 122 10 76 0 198 0.9242 0.6162 0.5865 0.7394 

  M 0.5 120 7 78 0 198 0.9449 0.6061 0.5854 0.7385 

  M 0.6 109 6 89 0 198 0.9478 0.5505 0.5343 0.6965 

  M 0.7 95 2 103 0 198 0.9794 0.4798 0.4750 0.6441 

  M 0.8 58 0 140 0 198 1.0000 0.2929 0.2929 0.4531 

All Band - 
B06 M 0 129 12 69 0 198 0.9149 0.6515 0.6143 0.7611 

  M 0.4 125 7 73 0 198 0.9470 0.6313 0.6098 0.7576 

  M 0.5 121 6 77 0 198 0.9528 0.6111 0.5931 0.7446 

  M 0.6 113 6 85 0 198 0.9496 0.5707 0.5539 0.7129 

  M 0.7 100 4 98 0 198 0.9615 0.5051 0.4950 0.6623 

  M 0.8 49 2 149 0 198 0.9608 0.2475 0.2450 0.3936 

All Band - 
B07 M 0 130 12 68 0 198 0.9155 0.6566 0.6190 0.7647 

  M 0.4 121 9 77 0 198 0.9308 0.6111 0.5845 0.7378 

  M 0.5 116 5 82 0 198 0.9587 0.5859 0.5714 0.7273 

  M 0.6 110 2 88 0 198 0.9821 0.5556 0.5500 0.7097 

  M 0.7 97 1 101 0 198 0.9898 0.4899 0.4874 0.6554 

  M 0.8 69 1 129 0 198 0.9857 0.3485 0.3467 0.5149 

All Band - 
B08 M 0 133 13 65 0 198 0.9110 0.6717 0.6303 0.7733 

  M 0.4 124 9 74 0 198 0.9323 0.6263 0.5990 0.7492 

  M 0.5 121 7 77 0 198 0.9453 0.6111 0.5902 0.7423 

  M 0.6 114 6 84 0 198 0.9500 0.5758 0.5588 0.7170 

  M 0.7 101 3 97 0 198 0.9712 0.5101 0.5025 0.6689 
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Vessel Confusion Matrix 
198 Vessels           

    Confidence TP FP FN TN  FP+FN Precision Recall Accuracy 
F1 
Score 

  M 0.8 47 1 151 0 198 0.9792 0.2374 0.2362 0.3821 

All Band - 
B09 M 0 130 15 68 0 198 0.8966 0.6566 0.6103 0.7580 

  M 0.4 122 8 76 0 198 0.9385 0.6162 0.5922 0.7439 

  M 0.5 119 7 79 0 198 0.9444 0.6010 0.5805 0.7346 

  M 0.6 111 5 87 0 198 0.9569 0.5606 0.5468 0.7070 

  M 0.7 100 2 98 0 198 0.9804 0.5051 0.5000 0.6667 

  M 0.8 66 1 132 0 198 0.9851 0.3333 0.3317 0.4981 

All Band - 
B10 M 0 124 14 74 0 198 0.8986 0.6263 0.5849 0.7381 

  M 0.4 120 8 78 0 198 0.9375 0.6061 0.5825 0.7362 

  M 0.5 116 6 82 0 198 0.9508 0.5859 0.5686 0.7250 

  M 0.6 109 4 89 0 198 0.9646 0.5505 0.5396 0.7010 

  M 0.7 101 2 97 0 198 0.9806 0.5101 0.5050 0.6711 

  M 0.8 63 1 135 0 198 0.9844 0.3182 0.3166 0.4809 

All Band - 
B11 M 0 125 14 73 0 198 0.8993 0.6313 0.5896 0.7418 

  M 0.4 119 8 79 0 198 0.9370 0.6010 0.5777 0.7323 

  M 0.5 114 5 84 0 198 0.9580 0.5758 0.5616 0.7192 

  M 0.6 110 2 88 0 198 0.9821 0.5556 0.5500 0.7097 

  M 0.7 100 1 98 0 198 0.9901 0.5051 0.5025 0.6689 

  M 0.8 37 0 161 0 198 1.0000 0.1869 0.1869 0.3149 

All Band - 
B12 M 0 126 17 72 0 198 0.8811 0.6364 0.5860 0.7390 

  M 0.4 118 11 80 0 198 0.9147 0.5960 0.5646 0.7217 

  M 0.5 116 7 82 0 198 0.9431 0.5859 0.5659 0.7227 

  M 0.6 112 6 86 0 198 0.9492 0.5657 0.5490 0.7089 

  M 0.7 106 3 92 0 198 0.9725 0.5354 0.5274 0.6906 

  M 0.8 83 1 115 0 198 0.9881 0.4192 0.4171 0.5887 

All Band - 
B8A M 0 127 16 71 0 198 0.8881 0.6414 0.5935 0.7449 

  M 0.4 123 11 75 0 198 0.9179 0.6212 0.5885 0.7410 

  M 0.5 120 8 78 0 198 0.9375 0.6061 0.5825 0.7362 

  M 0.6 117 6 81 0 198 0.9512 0.5909 0.5735 0.7290 

  M 0.7 107 2 91 0 198 0.9817 0.5404 0.5350 0.6971 

  M 0.8 69 1 129 0 198 0.9857 0.3485 0.3467 0.5149 

20m M 0 124 12 74 0 198 0.9118 0.6263 0.5905 0.7425 

 M 0.4 119 9 79 0 198 0.9297 0.6010 0.5749 0.7301 

 M 0.5 113 6 85 0 198 0.9496 0.5707 0.5539 0.7129 

 M 0.6 108 5 90 0 198 0.9558 0.5455 0.5320 0.6945 

 M 0.7 97 3 101 0 198 0.9700 0.4899 0.4826 0.6510 

  M 0.8 59 0 139 0 198 1.0000 0.2980 0.2980 0.4591 

60m M 0 126 23 72 0 198 0.8456 0.6364 0.5701 0.7262 



125 

 

      
Vessel Confusion Matrix 
198 Vessels           

    Confidence TP FP FN TN  FP+FN Precision Recall Accuracy 
F1 
Score 

 M 0.4 118 17 80 0 198 0.8741 0.5960 0.5488 0.7087 

 M 0.5 112 12 86 0 198 0.9032 0.5657 0.5333 0.6957 

 M 0.6 107 8 91 0 198 0.9304 0.5404 0.5194 0.6837 

 M 0.7 92 4 106 0 198 0.9583 0.4646 0.4554 0.6259 

  M 0.8 44 1 154 0 198 0.9778 0.2222 0.2211 0.3621 

 


