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Abstract

Spike sorting is the process of identifying and classifying voltage recordings from the

brain or nervous system into discrete labelled waveform events. The core difficulty

lies in unsupervised classification - one does not have definitive labels for signals,

or how many unique labels there are per recording. Recent works within the field

have converged on a prevalent architecture for approaching classification: feature

extraction (FE) followed by a traditional clustering algorithm (CA). While there is

unanimity in architecture, there is ambiguity as to what techniques to use for a given

problem due to: inconsistency across datasets, arbitrary parameterization, abstract

representation, and no standard dataset for sorting n independent waveforms. Given

these issues, our goal was to challenge typical architecture with a deep learning based

approach. It is worth noting that there have already been attempts at adding deep

learning to spike sorting that act as extensions on prior methods. We propose to

remove FE entirely by extending Invariant Information Clustering (IIC) - a method

built for image classification - to spike sorting; thus creating Invariant Information

Spike Sorting (IISS). IISS uses a physics inspired transform Φ, such as background

noise addition, to create paired spike data [x,Φ(x)] where one is a plausible facsimile of

the other. A neural network learns to predict identical δ distributions for paired spikes

by maximizing mutual information between pair’s predicted classes. Clusters emerge

after learning core semantics, ensuring inter-cluster variance surpasses Φ induced

differences. To test our model against classical clustering approaches we developed 4

simulation waveform datasets that mimic real data taken from the peripheral nervous

system. To steel-man against IISS we compared 18 possible pairings of FE+CA

solutions given optimal parameterization - a highly improbable event - while using a

single parameter setting for IISS. We find IISS comparable or superior across datasets.

The parameter choices for IISS are intuitive and stable. The final design can be

seen as a first draft with substantial scope for enhancements. Consequently IISS

demonstrated capacity to supersede traditional methods and paves the way for more

intuitive, robust, physics-grounded spike sorting.
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Chapter 1

Introduction

1.1 Spike Sorting

Contemporary recording systems have gained capacity for continuous, high-frequency,

extracellular voltage recordings of the nervous system and brain. As a result, the field

of neuroscience is exploding with unprecedented amounts of data and potential exper-

iments. Experimental findings crucially rely on processing recording data into neural

behaviour for analysis. This pre-processing is known as Spike Sorting. Typically

this is done in two independent phases: extraction and classification. Extraction of

potential neural events aim to separate signal from noise, producing a set of neu-

ral activity timestamps from a voltage recording. Based on the timestamps, spiking

waveforms makeup a dataset on which sorting can be done. The goal of sorting is

to partition spikes into labelled groups where groups are homogeneous with respect

to their own members and heterogeneous with respect to others 1. An underlying

principle is that unique neurons possess a signature template each time they fire and

differences within a group are related to: noise, probe movements, or slight signature

deviations. Accurate spike sorting allows detailed insights of neural behaviour at the

single cell level, a key stepping stone in advancing the field.

In this work we will look into the later problem of sorting spikes. It is here we believe

the majority of research has yet to be done and furthermore there is open debate on

how it should be dealt with. From here on we assume we have an unclassified set of

spike waveforms x ∈ X, x = [v0, v1...vn] and sorting2 will refer to the creation of spike

waveform classes and the assignment of individual spikes to a class.

1An analogy might be partitioning photos of pets. Dogs should all share like characteristics, and
be sufficiently different than images of cats

2Through the remainder of this document spike sorting will be synonymous with spike: clustering,
classifying, or labelling. Thus groups of the same spikes will be referred to as: clusters, label i, class
i.

1
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The process of extraction and sorting a recording is visualized in Figure 1.1 where

the set of spike waveforms X (red trace) is sorted into 5 classes. At a glance this

process for 10 spikes appears trivial; however, sorting becomes difficult when we’re

dealing with 100,000 spikes. There is a stereotypical shape of a positive spike - a

pronounced peak and trough (inverted for negative) followed by recovery to baseline;

however aside from vast changes in height and width, there is no textbook margin

we may draw to define unique behaviour. Even the height and width don’t have

specifically defined requirements. This margin problem is exacerbated by also not

knowing how many unique events we are looking for. One may presume a low integer

number (given the physics of the probe and surrounding somata) but not knowing a

fixed number presents a considerable challenge since the margins change as a function

of the set size!

This work is motivated by the task of sorting data from a series of 2019 experiments

aimed at studying cardiopulmonary relationship with the peripheral nervous system.

In this study the stellate ganglia3 activity of pigs was put under inspection via in-

cision of recording probes [28]. The neurons are recorded over long time periods

of approximately 6 hours at 20kHz. Each experiment has an array-like probe that

records 16 channels. Through spike extraction we find that each channel records on

the order of 100,000 spike waveforms of length 6ms / 120-datapoints. The waveforms

are extracted down to a signal-to-noise-ratio of approximately 3. Each channel is

treated as its own dataset because the channels on the probes are spaced sufficiently

far apart that voltages recorded at separate channels can be deemed independent 4.

Thus, we are tasked with finding a sorting method that can sort a large amount of

independent waveform data into discovered classes. The findings of this thesis will be

used in future works for potential physiological discovery in the peripheral nervous

system. That said, the current goal is to find a contemporary and generic approach

to waveform sorting.

3The stellate is a collection of sympathetic nerves found on the back of the neck[19]. For the non-
physiologist reader - like myself - this is the extent of understanding you’ll need for the remainder
of this thesis.

4This is an uncommon property in modern spike sorting. Often probes are designed in a matrix-
like shape and record the same signal from multiple angles or distances.
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1.2 Overview of Current Spike Sorters

To gain insight of current approaches to spike sorting we will look at some of the

prominent works from within the last decade. By no means is this an exhaustive

literature review. The goal of this section is to get an idea of how the problem is

tackled by the community. More details can found in the respective references.

WaveClust

WaveClust is a spike-sorting technique that employs wavelet transformations to spikes

for analysis. This process is presumed to appropriate for non-stationary signals such

as neural data[3]. The wavelet transform includes a feature extraction step where

WaveClust is used to select the wavelet coefficients that are the least Gaussian. The

principle of this step is that neural spikes tend to exhibit non-Gaussian distributions

in the wavelet domain whereas noise tends to be Gaussian. After feature extrac-

tion, clustering is performed by Super Paramagnetic Clustering where the number

of clusters is adjusted to meet a threshold set by a temperature parameter 5. The

resulting clusters are used to generate template spikes that can be matched to new

or subsequent data.

Key Points Parameters
Wavelet Transform: Uses wavelet
transformation + non-Gaussian selec-
tion criterion as a feature extraction
step to remove noisy aspects of the
data and attack the essential features
of spikes

Number of wavelet coefficients kept
through the transform

Super Paramagnetic Clustering: Uti-
lizing SPC for the clustering of the fea-
ture space is straightforward, although
can be highly dependent on parame-
terization.

Temperature for SPC

5Temperature is a commonly used term for a parameter in Machine Learning. In this case it
actually derives from statistical mechanics where at low temperatures there is less diverse behaviour
amongst particles: In SPC this translates to ’temperature’ controlling the clustering granularity,
with low temperatures generally leading to fewer larger clusters. Unfortunately the algorithm lacks
the physical context of what temperature should be; thus, selection of this parameter is arbitrary.
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SpyKingCircus

SpyKingCircus [33] begins by applying Principal Component Analysis (PCA) to

reduce the dimensionality of the spike data. PCA is a linear operation aimed at

isolating the most significant features while retaining the essence of the original sig-

nals. Subsequently, a custom density-based algorithm inspired by popular algorithm

Density Peaks Clustering [23] ( DPClus) is applied to the PCA features to group

spikes. Spike templates are generated through the mean and variances of the clus-

tering results. The final step employs a cross-correlogram which checks for template

dependencies on spike firing times.

Key Points Parameters
PCA: Applies PCA to distill spike
data into its most significant features.

Number of PCA components kept

Custom Density-Based Clustering:
Employs a unique clustering algorithm
that adapted from Density Peaks

Number of neighbours for local density
estimates (Inherited from DPClus)

Template Generation and Matching:
Generates templates from clusters
then with a cross-correlogram step to
ensure the accuracy and reliability of
spike attribution.

Maximum number of clusters = 10

Density threshold to be considered a
cluster

IronClust

IronClust is a spike sorting algorithm which creates a self-supervised process for

clustering [11]. The method is initializes using PCA for feature extraction followed

by the DPClus clustering algorithm to generate a first set of labels. Once this step is

completed IronClust introduces Linear Discriminant Analysis (LDA) - a supervised

algorithm which given a feature space and labelled classes finds a new projection of

the data that maximizes intra-class distance while simultaneously minimizing inter-

class distance. LDA is applied to spikes given the initial labelling from the first pass

of the PCA-DPClus and DPClus is run again to merge clusters. The LDA-DPClus-

merging pairing is iteratively applied until a convergence criterion of the labelling is
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met which ensures a stable labelling. 6

Key Points Parameters
PCA-DPClus: Applies PCA and Den-
sity Peaks Clustering as an initializa-
tion

Number of PCA components kept

LDA: Uses a supervised algorithm
based on initialisation (making it self
supervised) to find a feature space
which is optimal for clustering the
data.

Number of neighbours for local density
estimates

Iterative clustering approach: Using
the LDA-DPClus-merging iteratively,
IronClust converges on a stable clus-
tering.

Density threshold to be considered a
cluster

JRClust

JRClust is a spike sorting pipeline aimed at optimizing the sorting process for high-

density probes[4]. The main features are advances in preprocessing giving sufficient

noise identification and removal using a custom channel-covariance strategy. Further-

more JRClust incorporates auto-detection of probe drift where signals are measured

at multiple channels requiring waveform adjustments. The primary clustering mech-

anism is a PCA-DPClus pairing.

MountainSort

MountainSort is a nonparametric density-based spike sorting algorithm [5]. Feature

extraction is first performed via PCA. The features are passed through the novel

ISO-SPLIT algorithm. There are two main heuristics within ISO-SPLIT: firstly,

spike templates form unimodal density distributions in the feature-space, add sec-

ondly these distributions are separated areas of relatively low density. By employing

nonparametric tests for uni-modality ISO-SPLIT aims to be robust to cluster shape

variation in a non-parametric way.

6This algorithm could be described as iterative Contrastive Learning, which although is out of
scope for this thesis, there is more modern deep learning frameworks which are doing contrastive
learning for spike sorting [31]
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Key Points Parameters
Preprocessing: The innovations in JR-
Clus revolve around advances in noise
detection across channels, along with
capacity to detect movements in the
probe.

Number of PCA components kept

Multi-Channel Dependence: The
aforementioned preprocessing requires
the space and time dependent chan-
nels.

Number of neighbours for local density
estimates

PCA-DPClus: The clustering is per-
formed by PCA-DPClus with no adap-
tations.

Density threshold to be considered a
cluster

Key Points Parameters
PCA: The paper suggests any feature
extraction, but the authors used PCA.

Number of PCA components kept

ISO-SPLIT: A non-parametric ap-
proach to density-based clustering
with suggested robustness.

HerdingSpikes2

HerdingSpikes approaches spike sorting with a custom feature extraction method

suited to matrix-probes [9]. Bary-center location estimates are obtained through

spatio-temporal event maps of the waveform recorded from multiple angles across the

matrix-probe . Location estimates are then used as a feature in tandem with PCA

features for feature extraction method that combines spatial dependence of waveform

morphology. These features are clustered by the Mean-Shift[7] Clustering algorithm.

Key Points Parameters
PCA+Barycenter: The use of PCA
and location estimation for feature ex-
traction.

Number of components kept from
PCA

MeanShift Clustering: Kilo-Sort em-
ploys a graph-based clustering which
generates clusters through nearest
neighbors.

MeanShift algorithm bandwidth pa-
rameter is used to control the density
estimates.
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KiloSort

Kilosort has been continually developed for the last ten years [20]. Kilosort splits spike

extraction and clustering into 3 sections: pre-processing, template de-convolution and

clustering. Pre-processing includes filtering and probe drift correction. The contem-

porary version of Kilosort uses a pre-trained feature extraction where clusters are

discovered using a custom graph-based algorithm. The template de-convolution step

is unique to Kilosort in that feature extraction evolves sequentially in time along with

spike extraction. As spikes are found they’re processed through the feature extrac-

tion clustering pipeline and create or add to clusters. The averages of clusters are

used to form templates. These templates are then used for template de-convolution:

overlapping templates are found within the signal. On conclusion of the signal the

clustering is repeated on the final dataset of waveforms. The graph-based clustering

approach connects nearest neighbours in the feature space and performs splits/merg-

ers. The method concludes with learned templates that are aligned temporally and

similar templates are merged through a cross-correlation inspection.

Key Points Parameters
Pre-trained PCA feature extraction Variable amounts depending on ver-

sion of Kilosort used. See reference for
details

Graph-Based Clustering
Sequential Extraction and Clustering
Cross Correlation Inspection on con-
clusion

Summary

In conclusion, a consistent architectural theme is evident across all the spike sorting

methods outlined: each of them employ a form of feature extraction followed by

a clustering algorithm. Aside from the first mention of wavelets PCA is present

in all methods. Each method is tailored to enhance unique signal characteristics

with respect to noise. The subsequent clustering algorithms whether density-based,

graph-based, or iterative in nature, are designed to group the unique features into

meaningful clusters representing activity associated with individual neurons. Despite

the apparent diversity in spike-sorting approaches their underlying architecture is the
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1.3 Problem Set

During our attempts to apply existing spike-sorting methods to our measured data,

we were led to a pivotal realization: the selection of the spike-sorter we should use is

not possible since there is no ground truth. Hence, there is no independent assessment

of sorter effectiveness as a function of input data difficulties - they are all proposed

as the general solution to spike-sorting. We believe that the spike sorting problem is

a subset of unsupervised learning: ’What is an approach to cluster high dimensional

data?’. Ignoring this aspect has led to the construction of data-specific methods

sharing a common framework whose dependencies and limitations, with respect to

the data being analyzed, are not considered. Consequently, how to sort neural data

remains an open question, that continues to be considered piecemeal with no guiding

framework. With this realization we set out to define a core set of challenges that

must be overcomes if we are to build a more generic spike-sorting framework.

Ill-Posed

In a recent review paper [2] Buccino et al set out to test methods against each-other

and compile modern works into a python package SpikeInterface. The comparison re-

sults were decidedly lackluster. The primary result showed none of the methods agree

across datasets more than random chance would dictate. This led to the employment

of two experts to manually label spike data so as to investigate which methods most

resemble human clustering. Two results were from expert-labelled data: 1. No sorter

agreed with human experts to high levels (above 75%) and 2. The human experts

showed significant divergence among their data classification. This lack of human ex-

pert agreement demonstrates ambiguity in defining what constitutes a unique neural

signal. The paper concludes by suggesting agglomeration of many sorting techniques

may lead to the best approach as the spike-units agreed upon by many sorters often

were correct. It is our opinion that this is a null-result. The practical implication

is that clusters found by all sorters are obvious clusters which implies a failure to

classify less obvious spikes. Note that ’less obvious’ spikes are not less physiologically

relevant because they may occur less frequently and thus be missed by a spike sorter.

Lower activity in specific neurons can be associated with significant biological events
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due to circuit architecture.

The findings from the SpikeInterface paper reinforce a basic feature of this prob-

lem: spike sorting is ill-posed as defined by the mathematician Jacques Hadamard.

According to Hadamard’s criteria for a well-posed problem, three conditions must

be met: first, a solution must exist; second, there must be a unique solution; and

third, the solution’s behavior must remain stable with respect to parameterization.

In the context of spike sorting, we can confidently assert that the first condition holds,

as the physical problem has a discrete number of neurons that occupy unique loca-

tions. However, the other two criteria pose significant challenges. The absence of a

reliable verification method has led to a lack of consensus among experts regarding

what constitutes a definitive solution (condition two). Moreover, the performance

of a single model across different datasets is highly variable due to the influence of

numerous unpredictable parameters based on assumptions that may be inappropriate

for a dataset - this renders the third condition unmet. This variability is evident in

the wide-ranging outcomes observed across datasets, as detailed by [2, 15]. Conse-

quently, the ill-posed nature of spike sorting underscores the complexity and ongoing

challenges inherent in this field.

Generalized Methods

A problem tackled by SpikeInterface is that sorting algorithms are commonly pack-

aged as a start-to-finish pipeline to neural data analysis that includes spike extrac-

tion, feature extraction, and clustering. While this is a step in the right direction

there remains no capacity to swap pipeline components. For instance, what happens

when using one pipeline’s feature extractor with another piperline’s clustering pro-

cess? Inspection of components will lead to more thoughtful design and improved

understanding of limitations.

Furthermore, the available narrow pipeline packaging of methods does not lend itself

to extension to tangential problems - which includes our neural pig recordings. Our

simple problem of sorting neural individual waveforms does not fit into any of the

aforementioned packaged pipelines. This is because 1. we have significantly lower
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signal-to-noise ratio and 2. there are no correlated channels to aid in signal filter-

ing. Because our data does not fit into the structure of pipelines based on matrix-

array/low-noise methods we must build a suitable pipeline based on components that

have never been individually tested. This inability to swap and test pipeline com-

ponents on differing datasets limits the scope of the available methods for research

purposes.

Deep Learning Frameworks

At present research into deep-learning is dominated by the development of very

large language and vision models. However the use of large neural networks is still

relatively novel in the field of spike sorting with most works appearing in the past

few years. The adoption of modern AI methods has led to enhancements of existing

methods: in [22] it is found that embeddings and online spike classification can be

improved through the use of Auto-Encoding neural networks. Contrastive learning

[31] has been shown to increase performance of feature extractions by using labels

produced by Kilosort to train a contrastive network. Convolutional neural networks

(CNNs) [34] are useful to improve identification of overlapping signals. While these

works are significant they are still using large neural networks to augment existing

methods with a dependence on labelled data and/or classical FE+CA methodology.

In other words, a layer of deep learning has been used to provide some improvement

of existing classical methods.

Large neural networks are able to reduce the clustering pipeline to one step. That

to say the neural networks should be used to provide the labels in an unsupervised

fashion without relying on a historical clustering algorithm to produce an initial

set of labels to turn it into a supervised problem. Revolutionary advancements in

unsupervised vision recognition have solved datasets that were traditionally labelled

and then used in supervised learning [10, 30, 32] . While image recognition has certain

unique aspects there are parallels with the spike sorting problem: a large data corpus,

a relatively low number of classes, and correlated data (time series vs RGB colouring).

It is our belief that vision methods have not made the jump outside of vision due

to rapid development and a lack of generalizability: the methods are quite specific

to vision. Those working in vision are building vision networks and we are building
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spike sorters. At heart though both are part of the broader class of problem where

large amount of data are clustered. It is not possible to publish research based on

PCA and a density algorithm to cluster images due to the overwhelming success of

CNNs. Yet, the former remains state of the art in spike sorting which drives much

of brain research. Development of truly novel and generic spike-sorting methods are

lagging progress made in machine learning specifically related to vision.

Summary

The current state of spike-sorting, particularly in the context of noisy univariate

recordings, presents several intertwined challenges. Spike-sorting is ill-posed,as evi-

denced by the lack of consensus among experts and algorithms on defining unique

neural signals. Additionally, the specific challenges of single-channel, high-noise data

highlight a gap in the capacity of existing methodologies to cluster independent wave-

forms. The process of spike-sorting, often treated as a monolithic solution through

the construction of single pipelines, needs to be deconstructed into its component

parts. The components for spike detection, feature extraction, and clustering should

be interchangeable to enable independent optimization and a better understanding of

the effectiveness of deep-learning / classical methods. Lastly, the limited application

deep learning to spike-sorting represents untapped potential. Given the successes of

machine learning in vision it makes sense to explore neural network-based approaches

that reduce spike-sorting to a one-step unsupervised algorithm.

Over the next 4 chapters we execute a plan to tackle the three legs of our problem.

The plan is as follows

Chapter 2 Create a standardized sorting problem that can be tested

Chapter 3 Solve the problem with the best classical methods

Chapter 4 Create a deep-learning solution to solve the problem

Chapter 5 Compare classical vs deep-learning solutions.
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causing injury which leads to an injury response [25]. In our simulation we will not

be inspecting a temporal aspect - that is to say each simulated spike does not have

an associated timestamp. Therefore, we can use sampled noises from the real channel

as one large set of noises we refer to as σ. Since the spike is a voltage recording

the background noise be added with no loss of realism. For generating spikes via

the templates we use two steps to generate simulated data. In the first step we take

the template T and ’stretch’ it by performing a convolution with a scaled3 random

walk. This process is performed using a weighted rolling average where the weights

are taken from a Brownian motion process. Boundary effects are removed from the

convolution by extending the template past the edges of the template 120 points af-

ter which the output waveform W is down-sampled to the original 120 samples. The

second step sums n samples of background noise and adds it to W then applies a

Gaussian filter 4 . This process is illustrated in Figure 2.9 where using UMAP em-

beddings. Pseudo-code implementation is outlined by the algorithm on the following

page. Finally, all spikes where the peak has moved due to noise are removed for

simplicity and to ensure uniformity across classes.

3When performing a convolution the two arrays are multiplied and summed leading to possibly
very large changes in the order of magnitude between the input and output. The random walk is
scaled such that the expected sum is 1 with all positive values.

4The slight filtering removes redundant white noise from summing multiple signals
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1 #given a list ’templates ’ size [K,120]

2 #given an extracted list of noises sigma [j,120] , j = 100 ,000 noises

3 X = []

4 Y = []

5 num_spikes = 5000 #number of spikes per template

6 cn_scale = 0.1 #correlated noise temperature factor

7 bn_len = 8 #brown noise length

8 bn_scale = 0.1 #brown noise temperature factor

9 num_noises_added = 3

10

11 for i,template in enumerate(templates):

12 #set of waveforms with label i

13 x_i = []

14 for _ in range(num_spikes):

15 b_noise = np.cumsum(np.random.normal(0,1,bn_len)*bn_scale)

16 #exponentiate and normalize

17 exp_bn = np.exp(b_noise)/bn_length

18

19 #add some noise prior to convolution step

20 W = template.copy() + np.random.choice(sigma)*cn_scale

21

22 #convolutional step

23

24 #W goes from length 120 to 120+2* bn_len -1=135 here

25 W = np.convolve(W,exp_bn ,mode=full)

26 peak_idx = np.argmax(W)

27 W = W[peak -20: peak +100]

28 if len(W) <120:

29 #discard sample

30 continue

31 else:

32 #add on noises and add W to x_i

33 background = np.random.choice(sigma ,num_noises_added)

34 W += background.sum(axis =0)

35 x_i.append(W)

36

37 #add x_i and labels to X,Y

38 X.append(x_i)

39 Y.append(np.ones(len(x_i)*i))

Figure 2.10: Python Numpy Simulation Code for Generating Waveforms





Chapter 3

Classical Models

As previously mentioned many spike sorters are not currently packaged to solve our

problem of sorting individual spikes. We have seen that this problem is approached

as a FE+CA pairing - these pairings numerous heuristics and associated parameter

settings. Since the time required to reconfigure all known spike sorting methods would

prove extensively long we will tested the general FE+CA pairings on our simulated

data.

We will use feature extractors PCA and UMAP in 2-6 dimensions. UMAP has several

parameters where the parameterization deals with the need to establish a balance

between a local and global representation. In the unsupervised regime without context

setting the these parameters is arbitrary but their typical values are known and these

do not drastically effect results. Therefore for simplicity we will use the default UMAP

parameters. For models, we inspect 3 levels: non-parametric, density, and centroid

models. We expect performance to increase in the same order. The first models

given their name, require no human input. The second category will be density /

hierarchy based where the number of clusters has an unknown dependence on the

parameterization1. Finally the last batch of models used will centroid models such as

K-Means where the number of clusters is known beforehand. The number of clusters

is an unknown piece of information and we expect this information will allow these

methods to perform on par with the best parameterization of density models.

We provide a brief description of each clustering algorithm to understand the assump-

tions used in the construction of taken in the design of clustering techniques. Feature

extraction and clustering models were deployed through the scikit-learn python li-

brary [26].

1It is due to this emergence that density models are commonly used in spike sorting

24
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3.1 Normalized Mutual Information

NMI(U, V ) =
2I(U ;V )

H(U) +H(V )
(3.1)

I(U ;V ) =
∑

u∈U

∑

v∈V

PU,V (u, v) log

(

PU,V (u, v)

PU(u)PV (v)

)

(3.2)

H(X) = −

n
∑

i=1

P (xi) logP (xi) (3.3)

where U and V are clusterings of the same data. I(U ;V ) is the mutual information

between U and V , and H is the Shannon entropy. U and V are the respective

prediction and true sets. Mutual information can be written as the entropy of one

variable minus the conditional entropy with respect to the other variable. I(U ;V ) =

H(U) − H(U |V ). It is helpful to think of NMI in terms of the conditional entropy

H(U |V ) term. If knowledge of one set increases the chance of randomly guessing the

other H(U |V ) < H(U) then there is mutual information. Consider the prediction

of rain and whether you get your shoes wet on a given day. If someone predicts

rain tomorrow you have gained information regarding the probability of getting your

shoes wet tomorrow; thus, the two distributions for rain and wet shoes carry mutual

information. The reverse may be said about the rain conditions and your birth date.

When we use NMI for evaluation we are seeing how much information we gain about

the truth from our answers.2

NMI values are bounded between 0 to 1 with 0 being random association, 1 being

a perfect correlation. The purpose of using NMI as a metric is that it is robust to

predicting the incorrect number of clusters whereas in most metrics there is a heavy

penalty paid for incorrect number of clusters. Regular metrics such as recall or ac-

curacy require a defined mapping criterion between the prediction set and test set.

Since labels do not exist in our unsupervised problem there is no way to preform this

mapping especially in the case when number of clusters predicted is different. NMI

2Alternatively, we can think of mutual information as a measurement of the dependence between
variables. In our case we want our prediction to be very dependant on the answer.
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Gaussian Mixture Model + Bayesian Information Criterion

A GMM fits K multivariate Gaussian distributions to the data through likelihood

maximization. Likelihood is defined as L(Θ;X) =
∏n

i=1

∑K

k=1 πkP (xi|µk, σk) where

n is the number of data points, K is the number of Gaussian’s, πk is the respective

mixing coefficient, and P (xi|µk, σk) is the probability density of the ith point under

the kth distribution. The BIC is defined as BIC = k lnn − 2 ln(L), where k is the

number of parameters in the model. To remove the need to specify the number of

clusters K we fit a GMM for all reasonable possibilities Kϵ[1..N ] and select the model

which maximizes the BIC. The process is computationally inexpensive, therefore, N

can be selected to be large making the method essentially non-parametric.

ISOSPLIT

IsoSplit proposes to be a non-parametric method which searches for density peaks;

furthermore it assumes that the peaks in density distributions are unimodal such that

there can be a margin drawn between neighbouring peaks. By performing tests for

uni-modality Isosplit removes need for distributional requirements - such as specifi-

cally a Gaussian - however also cannot account for non-convex distributions - such as

the banana shaped distributions in UMAP we previously mentioned. Through find-

ing uni-modal peaks, margins are drawn forming a clustered space. To implement we

used the Python conversion found here [12].

Results

We paired these models with UMAP and PCA done in 2-5 dimensions. Results

reported in the tables are the best found across all runs. All models fared better

with UMAP than PCA - confirming our prior belief that PCA feature extraction

is relatively less effective than UMAP. Across all datasets the BIC+GMM model

outperforms ISOSPLIT.

Table 3.1: Non Parametric Model Performances Across Datsets

Dataset1 Dataset2 Dataset3 Dataset4
GMM+BIC 0.585 0.548 0.595 0.585
ISOSPLIT 0.503 0.520 0.497 0.479
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3.2.2 Density Models

In the previous test, the best average results came from using UMAP in 4 dimensions

therefore that is what we use as feature extraction for the following clustering models.

Density Based Spatial Clustering of Applications with Noise (DBSCAN)

DBSCAN operates by linking all points that are within a certain radius together and

if sufficient points are connected they form a cluster [6, 26]. For a dataset of length

n consider a complete weighted graph G3 where all edges have weights equal to the

distance between the two vertices. DBSCAN performs an edge cut to G by removing

all edges which have weights less than ϵ. G now has 1 ≤ m ≤ n components. Of these

components, those larger than the minimum required cluster size are kept and define

a cluster. Any remaining points are labelled as noise. As ϵ decreases components

either split or diminish in size. The minimum cluster size is rather straightforward

thus we set ours to min cluster = 100. The main parameter to select is ϵ. An optimal

ϵ assumes all clusters will have a minimum local density: ϵ too large and all points

will be connected, too small and all points will be rejected to noise. The order of

magnitude of ϵ can be inferred through average nearest neighbour distances. Varying

ϵ across a reasonable range we find performance is unimodal. The sharp step-function-

like changes are due to clusters being split or rejected. NMI treats the noise category

as a randomized class. Results can slightly be improved by associating all points to

their nearest cluster; however this gets away from the main theme of DBSCAN, and

for our datasets won’t change reported results much as less than 3% of data is labelled

as noise in the optimal models.

Table 3.2: DBSCAN Performances

Dataset1 Dataset2 Dataset3 Dataset4
Top 10 Mean 0.690 0.499 0.543 0.582

Best 0.704 0.543 0.582 0.563

3Complete Graph: All points are connected to all other points.
Weighted Graph: All connections between points have an associated weigth value.
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Hierarchical DBSCAN

HDBSCAN is a modern update of DBSCAN [17]. In similar fashion HDBSCAN

constructs a complete weighted graph G. DBSCAN allows for long chains of points to

be connected to clusters even when their local density is very low. To ameliorate this

HDBSCAN changes the weights of the graph G from distance to mutual reachability

distance. For two points x1, x2 this is defined as max{d(x1, x2), c(x1, k), c(x2, k)}

where d is distance and c is core distance defined as the minimum distance to the k’th

nearest point. What this does is max very close points but non-dense points appear

far away on the graph. The k parameter is referred to as min samples. Now rather

than performing an edge cut to G based on a parameter, HDBSCAN constructs a

dendrogram4 and finds the optimal weight to perform an edge cut through a criterion

of which branches have the highest persistence. Finally like DBSCAN, the remaining

components of G which meet a minimum cluster size form unique clusters and all

other points are labelled as noise.

We perform tests on HDBSCAN by varying the min samples parameter which in

effect controls spherical nature of the cluster forming. Similarly we set minimum

cluster size to 100. We find large instability in performance across the first and

fourth dataset - sharp changes in performance with single integer changes to min

samples as can be seen in Figure 3.4. For datasets two and three there are individual

clusters significantly far from the rest of the data that cause the selection criteria in

HDBSCAN to miss all other clusters. Hopefully this could be amended by parsing the

dataset, however even when we use offline cluster separation5 HDBSCAN the results

were still lackluster. The selection criterion for HDBSCAN makes it an infeasible

choice for our problem and highlights a critical issue with hierarchical clustering: the

variance across datasets and embeddings likely makes the criterion unstable.

4Dendrogram: A tree-like diagram displaying the hierarchy of the graph G with respect to density.
At low density is the trunk and as density requirements are increase the branches split/shrink.

5Offline refers to a human looking at the dendrogram and splitting the dataset to remove obvious
clusters.
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Mean Shift

Mean Shift [7, 26] locates maxima of a density function to identify cluster centers

without requiring a predefined number of clusters, distributions or distances. Initially

a spherical window is drawn around all n datapoints creating n centriods. The

centriods are shifted towards the mean of their window upon every iterate. If the

mean is at the centre of the centriod it has converged. The algorithm executes

until all centroids have followed their respective density gradients to convergence,

upon which most centroids have overlapped. The remaining centroids define cluster

centres. All data is labelled by proximity to cluster centriods. The crucial parameter

required is the radius of the window, labelled bandwidth. Bandwidth influences cluster

granularity. A smaller bandwidth leads to many small clusters, while a larger one

may merge distinct clusters into larger ones. The choice of bandwidth is critical for

balancing between over- and under-clustering but performance generally smooth as

there’s no rejection criterion.

We find this to be the most consistent density-based method for our datasets in

low dimensions. There’s a large range for bandwidth that performs consistently well

across all datasets as can be seen in Figure 3.2. Once a certain bandwidth is reached,

the model behaves consistently across datasets - a desirable quality in unsupervised

problems. The Density Peaks (DP) clustering algorithm [23] discovers clusters

Table 3.3: Mean Shift Performances

Dataset1 Dataset2 Dataset3 Dataset4
Top 10 Mean 0.709 0.579 0.604 0.577

Best 0.716 0.589 0.610 0.589

through local density maxima and their separation from other maximums. DP begins

by allocating an estimate of the local density ρ to each data point - an estimate

drawn by counting the number of neighbouring data point within a radius dc. Then

all datapoints are given a distance measurement δ that is the distance to the closest

point of greater ρ. For the point of greatest ρ, δ is set to the greatest distance between

this point and any other; furthermore these two values are used to scale all others so

that they all lie between [0, 1]. When plotting a graph of δ vs ρ the majority of data

will sit along the ρ axis as there is very little distance to the next point of higher
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density. Outliers will have higher δ and represent ”peaks” in the density function.

Given a threshold of ρmin and δmin we select these outliers as cluster centres. For

our adaptation we’ll assign remaining points to the nearest cluster centre. In our

inspection we set ρmin = 0.5, δmin = 0.2 and vary the dc parameter for our inspection.

The two choices for bounds we set through manual inspection of the δ vs ρ graph.

We find that while peak performance is fairly good; however, the performance is not

smooth with respect to dc. Given our UMAP projections reasonable values for dc

lie within [0.1, 0.5] and we see even a change of 0.01 in dc can change NMI results

by up to 0.08. Although best performance of Density Peaks is higher than that of

Mean Shift the notable gaps in performance are concerning given there isn’t a self

supervised method to detect the drop off in performance.

Table 3.4: Density Peak Performances

Dataset1 Dataset2 Dataset3 Dataset4
Top 10 Mean 0.709 0.536 0.579 0.556

Best 0.719 0.562 0.599 0.577
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selected the best results. We test 3 popular models: K-Means, GMM, Agglomora-

tive Clustering (AggC). The first two construct clusters through the placement of

centriods. K-means fits through an iterative movements of centriods by minimizing

within-cluster sum of squares and the GMM as previously explained by fitting Gaus-

sian centriods. AggC is a hierarchical approach. AggC constructs a graph through

distances and forms clusters based on a linkage criterion; thereafter, a linkage crite-

rion starts every point as cluster and constructs a dendrogram through merges. Once

the dendrogram results in K remaining clusters the clustering is complete. GMM

and AggC both contain four heuristic settings. For a GMM the covariance matrix

used can be computed as: full, tied, diagonal, spherical. Full allows for elliptical clus-

ters in any orientation by having a unique convariance matrix per component. Tied

forces all clusters to share a common covariance matrix ensuring all clusters share

a common shape. Diagonal creates clusters with dimension independent variances.

Spherical enforces simplification to a single variance in all directions. For AggC the

linkage criterion are: average, single, complete, Ward. Average linkage links clusters

through the average intra-cluster distances and sits in the middle of single and com-

plete which respectively use minimum and maximum intra-cluster distances. Ward’s

method minimizes variance within clusters by merging clusters which lead to the min-

imum increase in total intra-cluster variance. All 8 of theses models will be tested

using all FE methods.

As expected we find that given K model perform about as well as properly param-

eterized density models. Performance is roughly consistent independent of model

selection.
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Table 3.5: Centroid Model Performances with best FE Across Datasets

Clustering Algorithm Feature Extraction Heuristic Choice NMI Score

DataSet 1 K = 7

K-Means UMAP3 0.671

GMM UMAP4 CovType = ’full’ 0.691

AggC UMAP4 Linkage=’average’ 0.693

DataSet 2 K = 9

K-Means UMAP3 0.562

GMM UMAP5 CovType = ’full’ 0.597

AggC UMAP6 Linkage=’average’ 0.577

DataSet 3 K = 11

K-Means UMAP3 0.611

GMM UMAP5 CovType = ’tied’ 0.623

AggC UMAP6 Linkage = ’single’ 0.610

DataSet 4 K = 13

K-Means UMAP2 0.570

GMM UMAP6 CovType = ’tied’ 0.598

AggC UMAP6 Linkage= ’average’ 0.574

3.3 Summary

In this section we benchmarked clustering models across our datasets using NMI.

We aimed to provide brief insight on how classical clustering is approached. One

could affirm certain approaches are superior to others in our datasets, but that is a

byproduct of these tests. The purpose of these tests was to find the best classical

unsupervised model by exhausting methodologies and parameter spaces. Although

the probability of selecting the optimal model and parameterization for each dataset

is theoretically low we will use the best results as a goal-post for our deep-learning

approach proposed in the next chapter.

Table 3.6: Benchmark Performance across Datasets and Clustering Types

Dataset1 Dataset2 Dataset3 Dataset4
Non-Parametric 0.585 0.548 0.595 0.585

Density 0.719 0.589 0.610 0.589
Centriod 0.691 0.597 0.623 0.598



Chapter 4

Invariant Information Spike Sorting

In order to develop a deep learning clustering approach we must look at methods built

for comparable problems outside of spike sorting due to the lack of development within

our field. We assert that the popular MNIST dataset [14] of handwritten digits is a

comparable problem to ours. The dataset contains 70,000 grey scale 28x28 images

with 10 classes. The dimensions of this problem mimic ours for single waveform

sorting. The current state of the art (SOTA) architecture for solving MNIST is

Invariant Information Clustering IIC [10] thus, it became our adopted base solution.

Before diving in to methodology it is worth noting that IIC is not considered a SOTA

on more complex image datasets which include multiple colour channels and higher

pixel count such as CIFAR10 [13]. Methods that outperform IIC on unsupervised

CIFAR10 [30, 21] tackle learning representation separate from clustering whereas IIC

performs the two jointly. [30] Specifically critiques IIC’s stability w.r.t to colouring

of images caused by not treating learning representation separate from clustering.

While noted, IIC performs the best on single colour channel which is analogous to

our single recording channel problem. Similar stability issues might arise if we extend

our method to multi-probe recordings but that is out of the domain of this thesis;

therefore, we select IIC to build from.

4.1 Invariant Information Clustering

IIC is a technique that was developed to perform unsupervised clustering using neural

networks. The method requires a neural network F designed to produce a probability

mass function P = F (x) across K classes. IIC trains a neural network to maximize

the mutual information between cluster assignments of pairs of data. That is to say,

given a pair of like-data [x, x′] which belongs to the same class, the network outputs

F (x), F (x′) will have maximal mutual information. Any differences between samples
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are considered redundant information; thus, by maximizing mutual information be-

tween the pair’s distributions the clustering becomes robust to redundancies. The

training of F uses negative mutual information as the loss function by the following

steps:

(x1, x2) = Paired data sample

P1 = F (x1)

P2 = F (x2)

P1,2 = Joint distribution ofP1, P2

Loss =
k

∑

i=1

k
∑

j=1

P1,2(i, j) log

(

P1,2(i, j)

P1(i)P2(j)

)

Backpropagation adjusting the weights in F

We can expand the Loss to show it in forms of Shannon Entropy.

Loss =
k

∑

i=1

k
∑

j=1

P1,2(i, j) log

(

P1,2(i, j)

P1(i)P2(j)

)

Expand Logarithms

=
k

∑

i=1

k
∑

j=1

P1,2(i, j) log(P1,2(i, j))−
k

∑

i=1

k
∑

j=1

P1,2(i, j) log(P1(i))−
k

∑

i=1

k
∑

j=1

P1,2(i, j) log(P2(j))

Remove redundant sums

=
k

∑

i=1

k
∑

j=1

P1,2(i, j) log(P1,2(i, j))−
k

∑

i=1

P1(i) log(P1(i))−
k

∑

j=1

P2(j) log(P2(j))

Rearrange

= −

k
∑

i=1

P1(i) log(P1(i)) +

[

k
∑

i=1

k
∑

j=1

P1,2(i, j) log(P1,2(i, j))−
k

∑

j=1

P2(j) log(P2(j))

]

= −
k

∑

i=1

P1(i) log(P1(i)) +
k

∑

i=1

k
∑

j=1

P1,2(i, j) log

(

P1,2(i, j)

P2(j)

)

Display as Entropies

= H(P1|P2)−H(P1)

Thus when we minimize the loss, conditional entropy drives to zero while entropy is

maximized. Two properties that arise are:
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1 : The distribution of predicted classes is encouraged to be uniform. That is to

say the average of all P is driven toward uniformity across the classes.

2 : Individual distributions such as P1, P2 move toward one-hot vectors.

These two properties interplay to cluster data. The first property says single predic-

tions have relatively high randomness, and the latter suggests that if one distribution

of the pair is known, the other is relatively less random. Without the first property

a degenerate solution arises where the second property gets met immediately - by

labelling every piece of data identically. Without the second property, the network

learns nothing and knowing an item of the pair gains no predictive power. For a

network defined to predict K classes, the first property will drive to find K groups

and the second will try to ensure homogeneity across similar samples.

As the problem is operating in an unsupervised regime, the process of obtaining a like-

pair must be constructed. Tackling the task of like-pairs has often be done in vision

by generating augmentations of a single sample [27]. To get a pair from a single

data sample x1 we simply pass through a transform aimed at creating a facsimile

x2 = Φ(x1). The transform is intentionally designed to preserve the semantics of the

original data. Operations on images such as: cropping, mirroring, rotating, blurring

and color-filtering all can preserve semantics of images. For example, a cat upside-

down is still a cat. These operations introduce redundant noise that the network

should learn to ignore. The authors of IIC used these transforms paired with mutual

information loss to get a neural network to learn semantics of hand writing and report

a 99% accuracy in labelling MNIST.

While IIC has been shown to work on MNIST, the paper mentions that the method

should generalize to any problem where paired data is available. However, what is

not investigated in the original work is that there is general accord as to what trans-

formations images may undergo without class change: background context, rotation,

slight blurring/cropping etc. This requisite heuristic allows for materialization of

paired data absent of labels. Moreover, definable transforms convey what the model

attempts to deem acceptable intra-class variance. Extending the IIC method past

the domain of vision therefore reduces to capacity to discover justifiable transforms.
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It is a premise of this thesis that spike transforms may be defined through data &

physics-based knowledge to obtained paired data. Through the ability to define what

should be the same margins should be able to be drawn between spike clusters.

4.2 Spike Transformations Φ

The spike sorting problem conceptually relies on there being a core template spike

that is representative of its class. It assumed that in an experiment this template

is a repeatable, undeviating voltage signature. It reality this assumes all intra-class

variations are acceptable transformations of the core template and of each other. If

transformations are definable, they can be used to perform IIC on the dataset. In the

simulation a process was defined to use core templates to generate noisy data. Here

we plan to apply a transform which perturbs the already noisy data to obtain a paired

data sample. The proposition is that what is shared amongst the two samples is the

template. For example, say our functions in the simulation define operator S and we

have now defined transform operator Φ. For a simulation template xk the paired data

sample would be [S(xk),Φ(S(xk))] which are both transforms of xk. The difficulty

is to have transforms which introduce enough redundancy that our network F can

’unlearn’ them. We must unlearn redundancy while preserving enough information

that the fundamental template waveform is still present. We aim to find F which

given S(xk),Φ(S(xk)) acts as an inverse to S.

As the experiments measure a physical process the deviations themselves must be aris-

ing from physical / physiological considerations. Two concepts arise to cause transfor-

mations: the background electromagnetic noise and probe drifts altering magnitude

and shapes of the signal. These mirror the two steps used to generate the datasets;

however its important to note that they will not be a copy of the simulation. We

propose that if one can approximately describe the causes of noise in the dataset

IIC should work to label. For example, handwriting was accurately identified using

transforms that included cropping and mirroring - two transforms that are largely ex-

tremes compared to usual variance in writing. If our proposition is correct, it would

mean if Φ even roughly approximates the simulation S we can label our datasets. In

doing so the problem is reversed from ”What makes two spikes acceptably different”
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to ”What makes two spikes the same”. The former is an open question, whereas it is

our ansatz that the latter is based in physics.

Probe Drift, Morphology Change

A location issue that plagues repeatable identification is signal drift. Across the

lifetime of the experiment, the location of the probe in space may move relative to

the desired neurons for measurement. This movement can cause a non-trivial change

in the waveform appearance. Certain portions of the waveform may be amplified

or diminished depending on the angle & distance changes. To combat this change,

a transform editing magnitudes and frequencies is appropriate. This transform will

take the approach of applying perturbations to the low-frequency power spectrum

of the waveforms. The low frequency end of the power spectrum is responsible for

the majority of characteristics as we may attribute the high frequency components of

the waveform to be caused by the sum of background noises. Such perturbations to

the low-frequency spectrum will cause stretching - as was seen in the simulation. We

propose to randomly amplify/diminish the j first Fourier coefficients by α. We do so

by random, scaled, exponentiation of α by a uniform random distribution between

[−1, 1]. Note that the expected power spectrum of this process is identical to the

input, however there will be large variations between samples. This process should

introduce robustness to low frequency changes.

Fourier transform the waveform

C = F(x)

scale low frequency components

C2[1 : j] = C[1 : j] ∗
αU(−1,1)

E[αU(−1,1)]

Inverse Fourier Transform

Φ1(x, j, α) = F−1(C2) (4.1)

1

1The division of the expectation of the process defined in the second step is so that the expected
frequencies return are centered around the original. Take the example α = 2 so the product term
is 2U(−1,1) . This has a median of 2 but a mean above 1. This can be seen by using the equilikely
bounds of the uniform distribution 1/2+2 = 1.25.
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Summary

To apply IIC to spike-sorting problems theses transforms applied to the dataset will

generate paired data. An outline of the training loop now looks like:

x1 = Waveform

Φ(j, α, n) = Φ1(j, α) + Φ2(n)

x2 = Φ(x1)

F = Neural Network

P1 = F (x1)

P2 = F (x2)

P1,2 = Joint distribution ofP1, P2

Loss = −

k
∑

i=1

k
∑

j=1

P (i, j) log

(

P1,2(i, j)

P1(i)P2(j)

)

4.3 Label Reconciliation

The length of softmax layer concluding clustering neural networks is a cardinal con-

straint of not only IIC but other contemporary deep clustering techniques as well

[30, 24]. In these methods an optimal solution is achieved when all classes are real-

ized. In the use of IIC, when a network introduces a new class - that is, using of a

previously unoccupied index in the final layer - generally leads to a net negative step in

the loss function. The reason being that introducing a new class greatly increases the

total entropy of outputs while only marginally increasing conditional entropy. This

can cause new classes to be introduced during training until each index is occupied.

The length of the softmax becomes strong suggestion of number clusters possibly

predicted. As this is an architectural choice made prior to any training, one can cat-

egorize IIC as belonging to the K-means style centroid clustering algorithms: where

data is partitioned into K clusters. There have been works to amend deep clustering

without known number of clusters [24, 32], however these novel techniques require

further study, and have not shown stability or robustness w.r.t hyper-parameter se-

lections.
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A serious problem presents itself when applying IIC methodology to spike sorting:

unknownK. Discovering how many unique spikes there are is as fundamental as prop-

erly labelling them. That said, there can be a known bound for what K cannot be.

Depending on the probe and noise threshold, one can obtain an upper bound based on

how many unique neurons could be within the area. For the our data application it’s

found that the upper limit can be reasonably set around 15 clusters [28]. Therefore in

order to use IIC an extension must be made to find an approximation to K that is un-

derneath some threshold Kmax. IIC proposes an over-clustering head Figure 4.2, an

alternative latter part of the neural network which concludes with a greater number

of classes. In vision applications the network design consists of a CNN referred to as

the backbone and two multi-layer perceptron (MLP) neural networks which conclude

in softmax functions referred to as heads2. The main head had correct K = 10 for

the MNIST digit problem whereas the secondary head had a much larger Koc = 50

possible cluster assignments. During training the head used is periodically swapped

per epoch. Both heads use the same backbone, thus the output of the backbone can

be viewed as a high-dimensional feature space which MLPs attempt to cluster. The

over-clustering head searches for more nuanced differences between data which get

propagated through the backbone, adjusting the feature space to account for these

differences. The lower dimensional main head learns within the same feature space

tuning for the correct number of classes.

The over-clustering head was designed for the intent of semi-supervised learning:

where data is partially labelled but there are swaths of data with unknown/noisy

labels. With this in mind one can use the regular head for the portion of data that

is labelled with logistic loss, while using the over clustering head uses IIC loss on the

unlabelled data. The over-clustering head has capacity to parse many sub-categories

within classes as it has access far greater than the true number of classes Koc >

K, potentially discovering separable intra-class categories. The over cluster thus

allows the user to heavily influence the backbone through many discovered classes in

unlabelled data while steering inter-network definitively in the right direction through

the labelled data. When using the over clustering output for evaluation each true

2The term head will be used repeatedly from here on out. It is therefore useful to reinforce that
this refers to a predictor. A head produces a prediction, multiple heads produce multiple predictions.
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1 #for each head get all predictions of the data.

2 #take the maximum of the softmax to be the label

3 Y = [F(X,head=i).argmax(dim=1) for i in range(m)]

4 Y = np.stack(Y).T # n x m matrix

5 mcs = 100 #minimum core size

6 Y_remain = Y.copy() #define a mutable copy of Y

7

8 while(len(Y_remain)!=0):

9 #find all the unique labels and how many occurances of them

10

11 unique_labels ,counts = np.unique(Y_remain ,return_counts=True):

12

13 #find the most common one

14 core = unique_labels(counts.argmax)

15

16 #break the loop if it doesnt occur sufficiently

17 if counts.max() < mcs:

18 break

19 else:

20 cores.append(core)

21 #remove all data that shares > s labels with this core

22 Y_remain = Y_remain[np.sum(Y_remain ==core ,axis =1) ==0]

23 cores = np.stack(cores)

F = Neural Net, X = The dataset

Y = {F (x) ∀ x ϵ X}

C = Reconcile(Y )

Z = { {

∑i=Kmax

i=1 [yi = ci]

||C||
∀c ϵ C} ∀ y ϵ Y }

Extend an extra category in Z to account for noise such that

∀ z ϵZ,
∑

z = 1
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4.4 Model Architecture & Training

Architecture

In the IIC work the authors used a modified ResNET, VGGnet, or custom CNN

architecture. In all adaptations the backbone consists of numerous convolutional

layers outputting a high-dimensional feature space which the MLP head(s) learn

from. For an adaptation from vision to time-series the backbone convolutional layers

must be exchanged from 2-D to 1-D. We suggest that the number of convolutional

layers going from 2-D to 1-D also be greatly reduced. This reduction was found to

greatly accelerate training with an increase in performance stability. This is likely

due to there being less rejected information in the short time-series than there is in

an image and that all our spikes are focused - the peak repeatedly being in the same

index. The MLP heads will be two fully connected layers which include dropout.

The dropout inclusion allows for adaptable training and smooth transitions when

discovering new labels. For testing, we’ll use a single convolutional layer followed by

a MaxPool operation and a flattening as a backbone. The pass through this section

creates the backbone representation which all m heads will learn from. The heads

will be a 2 layer fully connected MLP that compresses the backbone representation

to an output prediction distribution. Dimensions at each step can be seen in Figure

4.5.

Loss Calculation

The next deviation from the original method is to train the network using all heads

at once. In the original method the clustering head was randomly selected per epoch

to train. We propose that data should be passed through all heads of the network

simultaneously for all batches. This is to say for paired batch data x1, x2 the network

will produce m pairs of probability distributions P i
1, P

i
2. The loss is then calculated

as an ensemble average of losses from all the heads L =
∑i=m

i I(P i
1, P

i
2)/m. We find

that in training the ensemble we are able to train stably at faster learning rates versus

when stochastically choosing individual heads to train per epoch or batch.





Chapter 5

Results

To test IISS are looking for minimal variance with respect to the transform definition.

In other words, we want robustness with respect to the choice of Φ. We define four

transform settings for testing using superscripts for clarity with respect to previous

notation. Recall that simulations for each dataset have varying noise choices, scaling,

and number of clusters. The first two parameter settings are a mix of low-frequency

scaling and noise addition. The third only performs low-frequency scaling and the

fourth only adds noise. There was no prior knowledge which of these Φ would perform

best for any dataset. All transforms maintain the average power spectrum of the

dataset.

Table 5.1: Transform Φ parameters for testing

j α n
Φ1(j, α, n) 10 2 1
Φ2(j, α, n) 15 1.5 2
Φ3(j, α, n) 10 2 0
Φ4(j, α, n) 1 1 3

In testing we executed the same hyper-parameter settings 10 times for each dataset,

for each Φ, for a total of 40 runs per dataset. The convolutional backbone as well

as the MLP head(s) both consisted of a single layer making the forward pass a total

of 2 layers leading to efficient training. Batch size of 1028 and learning rate of 0.001

were used with the ADAM optimizer. All models were complete after 100 epochs of

training. For the tests which include reconciliation we set output length Kmax = 15

across all with 5 MLP heads. For reconciliation minimum cluster size was set to 100

points. Including reconciliation calculation, each model took 1-5 minutes to train &

compute labels with a Macbook Pro 64GB, M2Max 38-Core GPU. Different hyper

parameter settings could be tuned for better performance - a larger network, learning
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rate optimizers etc - however due to the unsupervised nature we wanted to test the

same system across multiple conditions.

The IIC Method was designed for known K. At minimum we would hope it’ll work

given a case where the number of clusters is known. For this test we ignore reconcil-

iation and use one backbone and one head with the correct softmax length given the

dataset. This fundamental architecture should shine light on the methods upper-limit.

Table 5.2: IIC Performance using the Correct Number of Clusters

Mean Max Min

DataSet 1 K = 7 Benchmark: 0.697

Φ1 0.720 0.750 0.702

Φ2 0.738 0.764 0.723

Φ3 0.665 0.68 0.626

Φ4 0.712 0.722 0.706

DataSet 2 K = 9 Benchmark: 0.597

Φ1 0.791 0.886 0.740

Φ2 0.817 0.851 0.751

Φ3 0.765 0.810 0.721

Φ4 0.798 0.831 0.775

DataSet 3 K = 11 Benchmark: 0.623

Φ1 0.636 0.66 0.615

Φ2 0.683 0.694 0.673

Φ3 0.476 0.488 0.460

Φ4 0.738 0.767 0.722

DataSet 4 K = 13 Benchmark: 0.598

Φ1 0.592 0.613 0.572

Φ2 0.621 0.643 0.59

Φ3 0.458 0.498 0.431

Φ4 0.653 0.657 0.648

The success and failure of Φ4,Φ3 respectively suggests that the low-frequency scaling

is much less important than the background noises across all datasets. All models that

included some factor of the background noises outperformed benchmarks the save for

some using Φ1,Φ2 on the fourth dataset - we assume this would be an insufficient

amount of background noises added (1 and 2 respectively). Overall the ordinary IIC
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method shows great capacity for improvement over typical FE+CA architectures.

This said, this method is presented more knowledge than FE+CA pairs - it’s given

the number of clusters and information on the noise. We next look to remove the

knowledge of number of clusters and implement multiple heads and the reconciliation

algorithm as the true test.

Once again we test four transforms across the datasets supplementing Φ3 for another

blend of scaling and background noise. This time we use the IISS method that

includes the multiple heads, overclustering and label reconciliation.

Table 5.3: Updated Transform Φ parameters for testing

j α n
Φ1(j, α, n) 10 2 1
Φ2(j, α, n) 15 1.5 2
Φ3(j, α, n) 5 1.25 3
Φ4(j, α, n) 1 1 3

We find that IISS clustering strongly outperforms the best FE+CA pairings for 3/4

datasets and consistently improves over density-based & non-parametric models which

are used in spike sorting. This confirms our hypothesis given an idea of what causes

intra-class variance, it can be removed for superior clustering. We also find that

the reconciliation algorithm struggles to directly find K. This said, the GMM+BIC

selected 11 clusters for each dataset suggesting that the overlaps in clusters is rather

difficult.

Next we test for sensitivity w.r.t the upper bound of Kmax. We use dataset 1 with

transform 1 and test for Kmax = [8..17] with the same architecture as before. We find

as Kmax increases away from the true value there is a reduction in performance.

The final test is for sensitivity w.r.t the number of heads m = [2...21]. using

Kmax = 15. As expected increasing m causes a reduction in clusters produced from

reconciliation. This increases performance if over-clustered and reduces in under-

clustering. The jumps in solutions can be attributed to our relatively small networks

and short training times - averaging over many runs we’d expect smooth curves. The

error prone runs where performance dips are product of low-agreement across heads







Chapter 6

Conclusion

6.1 Discussion

In our investigation of spike sorting we outlined three areas lacking developments:

standardized datasets, clustering model inspections, and deep learning. Our simula-

tion built tunable waveform datasets that can act as benchmark problems for sorting.

While the simulation proposed is not hyper-realistic - no temporal effects or spatial

modelling - the resulting clustering problems were difficult for published models to

solve and give insight to how we can approach real data. We inspected popular clus-

tering models and found that: 1. It’s likely that PCA should be abandoned for UMAP

in basic feature extraction and 2. The Mean Shift algorithm is the most likely the

most consistent classical approach in low dimensions (2-5). Finally, the main novelty

in this work is proposing IISS to address deep learning in spike sorting.

We introduced a method on this first inspection that surpasses the capacity to cluster

spikes done across classical architectures. IISS shows that having knowledge of what

causes intra-class variance is as powerful as knowing the number of clusters or knowing

correct densities using classical methods. Given there is underpinning physics for

every experiment, we propose that the approximation we make when assuming a

transform is a more reasonable heuristic than presuming the number of clusters. When

considering FE + density-based approaches the probability of selecting the optimal

parameter setting is low and will likely be outperformed by any parameterization of

IISS. This leads us to conclude that the classical architecture for spike sorting can

and will be superseded by deep learning approaches.
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6.2 Future Works

Extensions to Multivariate & Real Data

We have designed the IISS clustering method as an extension of IIC for unknown

clusters and adapted the backbone for univariate time-series data. This method

works to solve our problem of individual spike waveforms. The natural follow-up is

multivariate time-series such as recordings from matrix array data where probes are

spatially correlated. The method can be extended by using the same transforms and

using the same convolutional backbones but with multiple channels. This extension

is akin to using a 2-D convolutional neural net working on grey scale images then

extending single channel to three channels for RGB images.

In our simulation and testing we referred to real noise as a set of noises σ sampled

from a real recording. If this set of noises was inspected through a rolling window

in time, we would find that the mean and variance go through large swings. This

non-stationary distribution of background noise and neural activity relates to the

probe drift problem and various other psychological responses. Thus, we incorrectly

treated the entirety of σ as a stationary set however in application we could select for

noises locally around the time of the spike. For example only using background noise

within a minute of the action potential. In this case the background noise distribution

should approximately be stationary. This gives our transform temporal context and

we would expect a set of improved results.

Generative Φ

The notion of designing Φ to represent intra-class variance is a hurdle to overcome

in order to use our method. Φ aims to model redundancy inherent in individual

samples. The fact we’re aiming for inherent redundancies suggests that the data

itself has information of these. A complete method may propose generating Φ as a

function of the dataset itself. We believe Φ might be able to be modeled as as a

generative adversarial neural network (GANN) [8]. In this case a GANN Φ would

attempt to generate paired data indiscriminate from reality. This idea requires further

inspection however the end goal would be to produce transforms as a function of the

real signal.
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Improving Reconciliation

The reconciliation of heads needs further development. The method is a democratic

process for finding areas of complete agreement amongst m voters which each bin

data into Kmax classes. A self-supervised metric which could point to the number of

clusters would prove helpful as Kmax could be edited during training to aim towards

the correct number of clusters. Additionally, we consider the heads as training to

find K classes; thus, varying K across heads may improve robustness. Given that the

reconciliation sets an upper bound, heads may not use output lengths below a bound

we deem acceptable. It may be helpful to use significantly lower K for auxiliary heads

which aren’t used for final labelling. This inverses the original over clustering idea

proposed in IIC, a lower number of classes may direct the backbone to extract only

core features.

Using IISS Architecture for Representation Learning

The output of the IISS backbone is a high dimensional (for our architecture approx

14000 dimensions) feature space which each MLP head attempts to learn a labelling.

As a byproduct of clustering we’ve built a feature extraction method which sits half-

way through the network. To explore the use-case as an encoding network we could

add a secondary layer between the backbone and the heads which compresses to low

dimensional space. Furthermore heads could vary output length [2....n] which would

compete for global vs local separation structures. In essence this would create an

embedding space trained to separate data based on Φ.

Codes for this project will be posted on github @alexkaravos by April 2024.
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