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Abstract

The Ross model has been pivotal in studying malaria transmission dynamics, yet its limi-

tations in describing parasite dispersal and other crucial factors hinder comprehensive con-

trol strategies. In this thesis, we introduce a partial differential equations (PDE) modeling

framework that extends the Ross model with enhanced features, addressing aspects like

parasite dispersal and attractiveness to humans.

Our research investigates the influence of diffusion and chemotaxis within the PDE model

on spatial patterns in malaria transmission. Employing Turing analysis, we explore the

impact of chemotactic movement on the emergence of spatial structures. We hypothesize

that for stable eigenvalues in well-mixed conditions, there is a pattern formation for an

eigenvalue that has positive real part in the presence of diffusion and chemotaxis for sev-

eral allowable frequencies in a given domain.

This interdisciplinary study integrates mathematical modeling, biological insights, and

computational methods, offering a nuanced understanding of the interplay between chemo-

taxis and diffusion in malaria propagation. The findings contribute valuable insights for

designing targeted interventions and advancing our comprehension of malaria dynamics.
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Glossary

Chemotaxis Chemotaxis is the process through which cells or biological species navigate

within their environment by detecting and moving towards higher concentrations of

chemical attractants. vii

Epidemic Model Models are used to understand the way infectious diseases spread through

populations in epidemiology. vii

Malaria A parasistic disease caused by the bite of an Anopheles mosquito. vii

Pattern-Formation Distinct pattern resulting from the positive real part of eigenvalues

when there is diffusion and chemotaxis. vii

Reaction-diffusion Describe the behaviour of a large range of chemical systems where

diffusion of material competes with the production of that material by some form of

chemical reaction. . vii

Stability Refers to negative or stable eigenvalues in the absence of diffusion and chemo-

taxis. vii

Turing Birfucation The Turing bifurcation is the basic bifurcation generating spatial

pattern, was introduced by Alan Turing in a 1952 which elucidates the natural emer-

gence of patterns in nature, such as stripes and spirals, from an initially uniform

state. vii
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Chapter 1 Introduction

Malaria is a parasitic disease transmitted by the bite of Anopheles mosquitoes and caused

by Plasmodium falciparum, P. vivax, P. ovale wallikeri, P. ovale curtisi, P.malariae and P.

knowlesi. The most common and prevalent species is P. falciparum in the Sub-Saharan

Africa. Globally, there were an estimated 247 million malaria cases in 2021 in 84 malaria

endemic countries (including the territory of French Guiana), an increase from 245 million

in 2020, with most of this increase coming from countries in the World Health Organiza-

tion(WHO) African Region[23]. The WHO African Region, with an estimated 234 million

cases in 2021, accounted for about 95% of global cases with these four countries, Nige-

ria (27%), the Democratic Republic of the Congo (12%), Uganda (5%) and Mozambique

(4%), accounting for almost half of all cases globally.

The percentage of total malaria deaths in children aged under 5 years reduced from 87%

in 2000 to 76% in 2015. Since then there has been no change. About 96% of malaria deaths

globally were in 29 countries, four of which accounted for just over half of all malaria deaths

globally in 2021: Nigeria (31%), the Democratic Republic of the Congo (13%), the Niger

(4%) and the United Republic of Tanzania (4%). Malaria deaths in the WHO African Re-

gion decreased from 841,000 in 2000 to 541,000 in 2018, before increasing to 599,000 in

2020. Estimated deaths decreased again to 593,000 in 2021. Globally, an estimated 2 bil-

lion malaria cases and 11.7 million malaria deaths in the period 2000–2021. Most of the

cases (82%) and deaths (95%) averted were in the WHO African Region, followed by the

WHO South-East Asia Region (cases 10% and deaths 3%).

The absence of a cure for malaria has a detrimental impact on the well-being of families,

creating a cycle of persistent illness, hardship, and financial difficulties. Today, nearly half

of the world’s population, most of whom live in sub-Saharan Africa, is at risk of develop-

ing malaria and faces economic challenges[26]. Acquired immunity greatly influences how

malaria affects an individual and a community. After repeated attacks of malaria a person

may develop partially protective immunity.

The Ross model [25], which was the initial malaria model, offers an explanation for the

relationship between the prevalence of mosquito populations and the incidence of malaria

in human populations.
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The model is given by

dIh
dt

= abmIm(1− Ih)− rIh,

dIm
dt

= acIh(1− Im)− μ2Im,

(1)

where Ih, Im are the infected human and mosquito population, a is the human biting rate,

b is the proportion of bites that produce infection in human, c is the proportion of bites

by which one susceptible mosquito becomes infected, m is the ratio of number of female

mosquitoes to that of humans, r is the average recovery rate of humans and μ2 is the per

capita rate of mosquito mortality.

In this simple model, the total population of both humans and mosquitoes, Nh, Nm is as-

sumed to be unchanging so that Ih, Im are the proportion infected in each population.

The first equation delineates alterations in the ratio of human infections, with new in-

fections occurring based on factors such as the frequency of mosquito bites per person,

the probabilities of a biting mosquito being infected (Im), the bitten human being not in-

fected (1 − Ih), and likelihood of an uninfected person becoming infected (b). Infections

diminish as infected individuals return to the uninfected category at a characteristic re-

covery rate (rIh). Likewise, the second equation outlines changes for the proportion of

infected mosquitoes. The increase is contingent on factors like the number of mosquito

bites per unit time (a), the probabilities of the biting mosquito being uninfected (1 − Im),

and the bitten human being infected (Ih). The decrease stems from the death of infected

mosquitoes (Im).

Ross, through his model, showed that reduction of mosquito numbers below a certain fig-

ure (Transmission threshold, R0) was sufficient to counter malaria [25][18]. Several models

have been developed by researchers who extended Ross’s model by considering different

factors, such as latent period of infection [18], acquired immunity[2][6], spatial and genetic

heterogeneity of host and mosquito populations[12][10][9][24][30] .

Most infectious disease models assume homogeneous mixing among populations where in-

dividuals have the same contact rate [1][8]. Previous research suggests that heterogeneity

alters disease establishment conditions compared to homogeneous mixing [27][26][22]. Re-

search in the past[24] found that contact rates between subpopulations depend on individ-

ual mobility patterns, with higher mobility, leading to higher contact rates. In addition,

when visit time decreases with distance, the establishment of the disease is more difficult

2



when the spatial arrangement is considered [24]. In this research, we investigate models

wherein the spatial arrangement of hosts is divided into susceptible humans, susceptible

mosquitoes, infected humans, and infected mosquitoes. We assume that the overall num-

ber of individuals (both humans and mosquitoes) is evenly distributed, and spatial dis-

tance had no effect on the spread of malaria. Our focus is primarily on infected mosquito

movement to infected humans for feeding; we hypothesize that this preference contributes

to pattern formation over time.

The Turing bifurcation is the basic bifurcation for generating spatial patterns. It was in-

troduced by Alan Turing in a 1952 paper [32] which elucidates the natural emergence of

patterns in nature, such as stripes and spirals, from an initially uniform state. The core

concept of the Turing mechanism lies in the notion that a homogeneous equilibrium can

be stable to homogeneous perturbations, but unstable to certain spatially varying pertur-

bations, leading to a spatially varying steady state, that is, a spatially heterogeneous pat-

tern. In the study of Turing bifurcation, different coefficients are examined to understand

their role in pattern formation. They determine the stability and dynamics of the system,

and different values can result in different pattern formations. Turing’s theory has since

been adapted by many mathematical researchers who have shown that a wide variety of

patterns can be generated in computer simulations by varying diffusion coefficients, decay

rates and other parameters in reaction-diffusion models [20][21][3].

In the process of diffusion, particles exhibit a net motion from areas of higher concentra-

tions to those of lower concentrations. This concentration disparity establishes a gradient

that prompts the particles to move, seeking to balance the differential concentrations. This

phenomenon is closely linked to chemotaxis, a phenomenon describing the coordinated

movement of cells or biological species directed from regions with lower chemoattractant

concentration to those with a higher concentration of chemoattractant. In the context of

anopheles mosquitoes, which exhibit a preference for feeding on infected humans, as re-

ported by Warren [4] this results in a chemotactic response. Consequently, the mosquitoes

actively move to locate humans for feeding, contributing to chemotaxis and giving rise to

pattern formation as consequences of mosquito mobility.

In this study, we assume that the population of both mosquitoes (Nm) and humans (Nh) is

constant, with susceptible mosquitoes and humans exhibiting logistic growth.
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This is because the population growth of both humans and mosquitoes cannot continue to

grow exponentially indefinitely, and the growth rate of both human and mosquito pop-

ulations depends on the population size, which initially increases and eventually slows

down and levels off when it reaches the maximum sustainable population size [31], which

is called the carrying capacity. This leads to a more sustainable and self-regulating growth

pattern for both mosquitoes and humans. Previous studies used to describe the population

dynamics of mosquitoes and humans in the context of malaria transmission [17] showed

that mosquito and human populations are assumed to have logistic growth.

In this study, we aim to investigate malaria transmission by utilizing a Turing analysis to

analyze the pattern formation caused by the movement of infected mosquitoes as they feed

on humans. The mathematical model used in this study is designed to incorporate an epi-

demic malaria model with diffusion, chemotaxis, and variability in population, specifically

following the logistic growth law for both human and anopheles mosquito populations, and

the death rates of both mosquito and human populations in a given domain. We want to

show that there is a pattern formation for an eigenvalue that has a positive real part in

the presence of diffusion and chemotaxis at several allowable frequencies in a given do-

main.

The remainder of this thesis is organized as follows. In the next section, we provide litera-

ture reviews for malaria, turing birfucation, and chemotaxis. In Section 2 a mathematical

model of malaria with diffusion and chemotaxis is formulated. In Section 3, we provide re-

sults and analysis of our model, and the numerical simulations are also given. In Section 4,

we provide a brief discussion. The final section concludes this thesis.
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Chapter 2 Background

In this section, we review the background of malaria, the model formulation for Chemo-

taxis and reaction-diffusion of a system of two general equation using Turing analysis.
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1 Malaria

Malaria spreads through the transfer of Plasmodium parasites between infected humans

and susceptible mosquitoes, and vice versa. The duration of the life of a malaria-infected

mosquito significantly influences transmission, with factors such as infection intensity,

mosquito species, and environmental conditions playing a role[11]. In tropical locations,

the average lifespan of Anopheles mosquitoes, including those carrying malaria, is 14–19

days [5], during which they can transmit the disease. On average, the parasite matures

within the mosquito within approximately 10-14 days, making it infectious[15]. Only in-

fected mosquitoes that survive beyond the incubation period of the malarial parasite will

transmit the disease. Furthermore, millions of people die each year due to malaria, with

more than half of them being children less than 5 years old. Infected humans generally re-

cover faster than they succumb, whereas infected mosquitoes exhibit a significantly higher

mortality rate than uninfected mosquitoes.

The malaria parasite manipulates both the mosquito and human hosts. Plasmodium in-

fection boosts food intake in mosquitoes, significantly altering host metabolism to aid

parasite development and potentially facilitating malaria transmission [33]. A previous

study [4] found that infection with Plasmodium parasites, which cause malaria, can influ-

ence animal smell and people’s attractiveness to mosquitoes. This causes dispersal of the

mosquito population, which influences the spatial distribution of malaria, consequently

leading to pattern formation over time.

The recovery period from malaria post-treatment is subject to variations based on factors

such as infection severity, treatment type, and the individual’s overall health. Research on

antimalarial drugs has revealed that early diagnosis and treatment typically leads to suc-

cessful complete recovery in humans [29]. However, people who live in areas where malaria

is common can experience repeated infections and never fully recover between episodes of

illness; the same applies to diagnoses that are not made early enough. Owing to the short

lifespan of mosquitoes, we assume that they do not recover from malaria.

6



2 Chemotaxis

Chemotaxis is the process through which cells and biological species navigate within their

environment by detecting and moving towards higher concentrations of chemical attractants[7].

Plasmodium parasites, the causative agents of malaria, have been found to influence the

smell of animals and their attractiveness to mosquitoes[4]. From microscopic bacteria to

large mammals, many motile organisms rely on chemotaxis for survival, leading them to-

wards suitable hosts or nutrient sources; for example, mosquitoes locate humans by a smell,

and pathogenic bacteria are attracted to substances released by their hosts. Chemotaxis

also plays a crucial role in various fields such as embryogenesis, immunology, cancer growth,

and invasion [28]. In our study, we present a derivation of the chemotactic response that

transfers the focus from the detailed behavior of a given cell or organism to its average be-

havior in the positive direction, that is, positive chemotaxis, an idea based on a previous

study[16].

We consider an organism(or cell) taking steps of length Δα to the left or right. Let f(c)

denote the average frequency of steps in a given direction, where c is the chemoattrac-

tant which itself is a function of x. For an organism centered at x, the average frequency

of steps in the right and left directions is given by f [c(x + 1
2
αΔ)] and f [c(x − 1

2
αΔ)]. Let

b(x) be the density of the organism centered at x. We want to find J(x) the net flux of the

organism per unit time in the direction increasing c(x). Integrating the number of organ-

isms b(s)ds between s and s + ds by the frequency of steps to the right, integrating over

(x − Δ, x) and then subtracting the corresponding term describing the motion to the left

gives

J(x) =

∫ x

x−Δ
f [c(s+

1

2
αΔ)]b(s)ds−

∫ x+Δ

x

f [c(s− 1

2
αΔ)]b(s)ds. (2)

We keep only the lowest order terms in Δ, so that (2) becomes

J(x) ≈ Δ2{−f [c(x)]b′(x) + (α− 1)f ′[c(x)]b(x)c′(x)}. (3)

The first term

μ[c(x)] = f [c(x)]Δ2,

is the diffusion term which is the non-chemotactic random motion of the organism. It is

always positive. The second term

χ[c(x)] = (α− 1)f ′[c(x)]Δ2,

7



is the chemotactic response. It can either be positive or negative.

Therefore this can be reduced to

J = −μ db

dx
+ χ

dc

dx
, (4)

For α > 1 the net frequency of steps to the right is governed by the concentration to the

right of x. For α < 1, on the other hand, this frequency is governed by the concentration

to the left of x. The dependence of cell/ organism density b(x, t) on position and time is

described by the differential equation

∂b

∂t
= −�∇ · �J (5)

where the vector flux �J , which is the Keller-Segel(KS) model would be given by

�J = −μ�∇b+ χb�∇c. (6)

The review article by Horstmann [14] provides a detailed introduction into the mathemat-

ics of the KS model for chemotaxis. The minimal model for KS [13] is given by

ut = ∇(D∇u− χu∇v),

vt = ∇2v + u− v,
(7)

where u denotes the organism(cell) density in a given domain Ω ⊆ R
n, v denotes the con-

centration of the chemical signal, D is the diffusion coefficient (sometimes the called motil-

ity) of an organism(cell), and χ is the chemotactic sensitivity. A key property of the above

is the ability of χu∇v to give rise to spatial pattern formation, that is, when the chemi-

cal signal acts as an auto-attractant. In this study, our main focus is on the chemotactic

sensitivity of infected mosquitoes to infected humans and how it influences the pattern for-

mation in malaria transmission.

8



3 Turing Birfucation

The purpose of our study is to investigate the influence of chemotaxis on pattern forma-

tion in the context of malaria, specifically by analyzing the implications of the Turing bi-

furcation. Our objective is to gain a deeper understanding of how the movement of Anophe-

les mosquitoes towards humans impacts the resulting pattern formation. The general diffu-

sion form of a two compound reaction-diffusion-chemotaxis system is as follows

At = F (A, I) +DAΔA,

It = G(A, I) +DIΔI + C(IAx)x,
(8)

with boundary conditions on ∂Ω given by

∂xA = ∂xI = 0, (9)

where I is the organism(or cell) density, A is the chemical concentration, F (A, I) describes

the organism growth , G(A, I) describes the production of the chemical signal, C is chemo-

tactic sensitivity, DA describes the diffusivity of organisms, DI describes the diffusivity of

the chemical signal , Δ is the Laplacian operator in Ω in the one dimensional interval [0,1]

domain in R
n, ∂Ω a boundary of Ω.

We assume that there exists constants Ā and Ī such that

F (Ā, Ī) = 0,

G(Ā, Ī) = 0.
(10)

where Ā, Ī is a spatially homogeneous solution. We now consider the stability of the steady

state Ā and Ī to pertubations of various frequencies. We set

A = Ā+ a cos(kx)eλt,

I = Ī + i cos(kx)eλt,
(11)

where |a| � ¯|A|, |i| � ¯|I| and k = jπ/L, j = 1, ... to satisfy boundary conditions. Our

goal is to find a relationship between k and λ. We substitute this form into the reaction

equations and since a and i are small, we only take into account the first nonzero term in

the expansion. This results in the following problem

λa = FAa+ FIi−DAk
2a,

λi = GAa+GIi−DIk
2i− CaĀk2,

(12)

9



where FA = ∂F
∂A

(Ā, Ī), FI =
∂F
∂I
(Ā, Ī), GA = ∂G

∂A
(Ā, Ī), GI =

∂G
∂I
(Ā, Ī).

We rewrite the eigenvalue problem in matrix notation

λ

(
a

i

)
=

(
FA −DAk

2 FI

GA − CĪk2 GI −DIk
2

)(
a

i

)
. (13)

If we have the following 2× 2 matrix

M =

(
a b

c d

)
, (14)

then if
Tr(M) = a+ d,

Det(M) = ad− bc,
(15)

the two eigenvalues of M are then given by

λ1,2 =
Tr ±√Tr2 − 4Det

2
. (16)

3 ).1 Well Mixed Condition

For this condition, we will require that in the absence of chemotaxis and diffusion, the spa-

tially homogeneous solution, (Ā, Ī) is stable. The eigenvalue problem for the well mixed

problem is

λ

(
a

i

)
=

(
FA FI

GA GI

)(
a

i

)
. (17)

Thus we will require

FA +GI < 0,

FAGI − FIGA > 0.
(18)

For the eigenvalues we substitute the trace and determinant into (16). For the well mixed

condition, we require that the eigenvalues to be stable. This is because localized structures

are believed to grow from perturbations off of the spatially homogeneous solution. If the

homogeneous solution is unstable in a well mixed solution, it will not persist long enough

to experience pertubations.

10



3 ).2 Eigenvalue Problem With Diffusion And No Chemotaxis

The matrix of the eigenvalue problem with diffusion is given by

λ

(
a

i

)
=

(
FA −DAk

2 FI

GA GI −DIk
2

)(
a

i

)
. (19)

From (18) FA +GI < 0 hence the condition

FA +GI − k2(DA +DI) < 0. (20)

Thus the trace condition is satisfied. For the determinant we have

(FA −DAk
2)(GI −DIk

2)− FIGA. (21)

Expanding out the above equation we get

DADIk
4 − (DIFA +DAGI)k

2 + (FAGI − FIGA). (22)

From (18) the third term is positive hence to have Det > 0 we require

DIFA +DAGI < 0.

For eigenvalues we substitute the trace(T) and determinant(D) into (16).

The condition for spike formation DIFA + DAGI < 0 can not be met when DI = DA due

to the well mixed requirement. This means that patterns are not possible when the two

diffusivities are equal.

3 ).3 Eigenvalue Problem With Diffusion And Chemotaxis

The matrix for the eigenvalue problem with diffusion and chemotaxis is given by

λ

(
a

i

)
=

(
FA −DAk

2 FI

GA − CĪk2 GI −DIk
2

)(
a

i

)
. (23)

From (18) the Trace(T) is such that

T = FA +GI − k2(DA +DI) < 0. (24)

and the Determinant(D) is

(FA −DAk
2)(GI −DIk

2)− FI(GA − CĪk2). (25)

11



When the specified conditions are met, pattern formation becomes feasible, necessitating

adherence to these steps in the case of a 2 × 2 system. For systems comprising more than

2 equations, the potential for pattern formation exists when stable eigenvalues are present

under well-mixed conditions. Therefore, it is essential to exclusively assess eigenvalues for

systems with more than 2 equations in such instances.

In a finite domain of length L, the allowable values of ω are j π
L
for some integer j. For

larger domains the frequencies are closer together.This implies that the bigger the domain

the more likely it is that we will have an allowable frequency which will grow.

12



Chapter 3 Mathematical Model

In our general model, we distinguish the human population into susceptible and infected

classes, wherein we assume individuals transition from infected back to susceptible fol-

lowing treatment. Consequently, humans are represented by an SIS model. Conversely,

mosquitoes, characterized by a brief lifespan post-infection, are modeled using a simpli-

fied SI model with only susceptible and infected classes resulting to SI model. To delve

into the intricacies of the reaction-diffusion model, our initial focus is on exploring pattern

formation incorporating chemotaxis and diffusion in a comprehensive 4 × 4 model. The

general model is given by

dIh
dt

= Dh1
∂2Ih
∂x2

+ F (Ih, Sh, Im, Sm),

dSh

dt
= Dh2

∂2Sh

∂x2
+G(Ih, Sh, Im, Sm),

dIm
dt

= Dm
∂2Im
∂x2

+H(Ih, Sh, Im, Sm) + C1
d

dx
(Im

dIh
dx

) + C2
d

dx
(Im

dSh

dx
),

dSm

dt
= Dm

∂2Sm

∂x2
+ P (Ih, Sh, Im, Sm) + C1

d

dx
(Sm

dIh
dx

) + C2
d

dx
(Sm

dSh

dx
),

(26)

in the domain (−L,L) with boundary conditions

∂Ih
∂x

=
∂Sh

∂x
=

∂Im
∂x

=
∂Sm

∂x
= 0, (27)

where F,G are the infected and susceptible human interaction functions, H,P are the in-

fected and susceptible mosquitoes interaction functions Sh, Ih, Sm, Im represents susceptible

humans, infected humans, susceptible mosquitoes, and infected mosquitoes. Dh1 and Dh2

are diffusion coefficients for infected and susceptible humans, C1, C2 are the chemotaxis

coefficients, since mosquitoes are attracted to humans.

We assume that the exist constants Īh, S̄h, Īm, S̄m such that

F (Īh, S̄h, Īm, S̄m) = G(Īh, S̄h, Īm, S̄m) = H(Īh, S̄h, Īm, S̄m) = P (Īh, S̄h, Īm, S̄m) = 0. (28)

We now consider the stability of the steady state Īh, S̄h, Īm, S̄m to perturbations of various

frequencies.

13



We substitute

Ih = Īh + a cos{ωx}eλt,
Sh = S̄h + b cos{ωx}eλt,
Sm = S̄m + i cos{ωx}eλt,
Im = Īm + d cos{ωx}eλt.

(29)

where |a| � Īh, |i| � S̄m, |b| � S̄h, |d| � Īm and ω = jπ for j = 1, ... to satisfy boundary

conditions.

This leads to the following problem

λa = −Dh1aω
2 + FIha+ FShb+ FImd+ FShi,

λb = −Dh2bω
2 +GIha+GShb+GImd+GSmi,

λd = −Dmdω
2 +HIha+HShb+HImd+HSmi− C1aω

2Īm − C2bω
2Īm,

λi = −Dmiω
2 + PIha+ PShb+ PImd+ PSmi− C1aω

2S̄m − C2bω
2S̄m,

(30)

where we asssume the constants

FIh = ∂F
∂Ih

(Īh, S̄h, Īm, S̄m), FSh = ∂F
∂Sh

(Īh, S̄h, Īm, S̄m),

FIm = ∂F
∂Im

(Īh, S̄h, Īm, S̄m, FSm) =
∂F
∂Sm

(Īh, S̄h, Īm, S̄m),

GIh = ∂G
∂Ih

(Īh, S̄h, Īm, S̄m), GSh = ∂G
∂Sh

(Īh, S̄h, Īm, S̄m),

GIm = ∂G
∂Im

(Īh, S̄h, Īm, S̄m), GSm = ∂G
∂Sm

(Īh, S̄h, Īm, S̄m),

HIh = ∂H
∂Ih

(Īh, S̄h, Īm, S̄m), HSh = ∂H
∂Sh

(Īh, S̄h, Īm, S̄m),

HIm = ∂H
∂Im

(Īh, S̄h, Īm, S̄m), HSm = ∂H
∂Sm

(Īh, S̄h, Īm, S̄m),

PIh = ∂P
∂Ih

( ¯Ih, Sh, Im, Sm), PSh = ∂P
∂Sh

(Īh, S̄h, Īm, S̄m),

PIm = ∂P
∂Im

(Īh, S̄h, Īm, S̄m), PSm = ∂P
∂Sm

(Īh, S̄h, Īm, S̄m).

We rewrite the eigenvalue problem in matrix notation. This is similar to taking the Jaco-

bian for each equation. Thus

λ

⎛
⎜⎜⎜⎜⎝
a

b

d

i

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
−Dh1ω

2 + FIh FSh FIm FSm

GIh GSh −Dh2ω
2 GIm GSm

−C1Īmω
2 +HIh HSh − C2ω

2Īm HIm −Dmω
2 HSm

PIh − C1S̄mω
2 PSh − C2S̄mω

2 PIm PSm −Dmω
2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
a

b

d

i

⎞
⎟⎟⎟⎟⎠ . (31)

What we will do now is to find under what conditions will individual frequencies grow, Or

what values of k may result in with positive real part.
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3 a) Well-Mixed Condition

If we repeat the process, this time without any diffusion and chemotaxis, (26) reduces to

λ

⎛
⎜⎜⎜⎜⎝
a

b

d

i

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
FIh FSh FIm FSm

GIh GSh GIm GSm

HIh HSh HIm HSm

PIh PSh PIm PSm

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
a

b

d

i

⎞
⎟⎟⎟⎟⎠ . (32)

It is required that the fixed point of the above non-spatial system be stable, and we must

have all eigenvalues with negative real part at the fixed point. If the real part of the lead-

ing eigenvalue becomes positive when diffusion is turned on (Dh1, Dh2, Dm > 0), that is, if

the fixed points become unstable in the diffusive system, then we speak of a Turing insta-

bility.

3 b) The Eigenvalue Problem With Diffusion And No Chemotaxis

The addition of diffusion leads to the following system

λ

⎛
⎜⎜⎜⎜⎝
a

b

d

i

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
−Dh1ω

2 + FIh FSh FIm FSm

GIh GSh −Dh2ω
2 GIm GSm

HIh HSh HIm −Dmω
2 HSm

PIh PSh PIm PSm −Dmω
2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
a

b

d

i

⎞
⎟⎟⎟⎟⎠ . (33)

3 c) Eigenvalue Problem With Diffusion And Chemotaxis

The addition of both diffusion and chemotaxis leads to the folloowing

λ

⎛
⎜⎜⎜⎜⎝
a

b

d

i

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
−Dh1ω

2 + FIh FSh FIm FSm

GIh GSh −Dh2ω
2 GIm GSm

−C1Īmω
2 +HIh HSh − C2ω

2Īm HIm −Dmω
2 HSm

PIh − C1S̄mω
2 PSh − C2S̄mω

2 PIm PSm −Dmω
2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
a

b

d

i

⎞
⎟⎟⎟⎟⎠ . (34)

The fixed points become unstable resulting to Turing instability with eigenvalues having

positive real part leading to pattern formation.
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4 Partial Differential Equation Model With Diffusion And

Chemotaxis

We investigate the effects of spatial variations in the diffusion and chemotaxis coefficients

of four interacting individuals, with concentrations Ih(x, t), Sh(x, t), Im(x, t), Sm(x, t). We

consider, in particular, spatially heterogeneous steady state solutions of the non-dimensionalised

reaction-diffusion-chemotaxis system in the domain (−L,L). The model below illustrates

the relationship between the four components

Sh Ih

Sm Im

r2

ν

C2

r1

μ

C 1

β

C 2

z1

z2

C1

Figure 1: Malaria model with diffusion and chemotaxis. The various parameters are de-
scribed below.
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The graph above leads to the equations below

d

dt
(Ih) = Dh1

∂2

∂x2
(Ih) + βShIm − νIh − z1Ih,

d

dt
(Sh) = Dh2

∂2

∂x2
(Sh)− βShIm + νIh + r2Sh(Nh − Sh),

d

dt
(Im) = Dm

∂2

∂x2
(Im) + μIhSm − z2Im + C1

d

dx
(Im

d

dx
(Ih)) + C2

d

dx
(Im

d

dx
(Sh)),

d

dt
(Sm) = Dm

∂2

∂x2
(Sm) + r1(Sm + Im)(Nm − Sm − Im)− μIhSm + C1

d

dx
(Sm

d

dx
(Ih))

+ C2
d

dx
(Sm

d

dx
(Sh)),

(35)

in the domain (−L,L) with boundary conditions

∂Ih
∂x

=
∂Sh

∂x
=

∂Im
∂x

=
∂Sm

∂x
= 0, (36)

where Sh, Ih, Sm, Im represents the number of susceptible humans, infected humans, sus-

ceptible mosquitoes, and infected mosquitoes, Dh1 and Dh2 are diffusion coefficients for

infected and susceptible humans, β is the infectious mosquito to susceptible human trans-

mission rate in humans, ν is the infected human partial recovery rate, z1 is the death rate

for infected humans due to malaria, z2 is the death rate for infected mosquitoes due to

malaria, r2 human growth rate, Dm the mosquito diffusivity, μ is the infectious human to

susceptible mosquito transmission rate in mosquitoes, r1 the mosquito growth rate and

C1, C2 are chemotaxis coefficients.

The first equation shows the fraction of humans infected with malaria. A susceptible hu-

man (Sh) becomes infected through a mosquito bite from an infected mosquito (Im), with

a transmission rate denoted by β. This transmission can lead to the death of some in-

fected individuals, represented by z1Ih due to malaria. Additionally, we assume that in-

dividuals partially recover after getting treatment and thus transition from infected νIh

individuals to susceptible humansSh. The spread of infected humansIh is governed by the

first term, characterized by a diffusion coefficient denoted as Dh1.

The second equation illustrates the proportion of susceptible humans. When a susceptible

individual (Sh) is bitten by an infected mosquito with a transmission rate β, it becomes

infected and transitions from the susceptible class to infected humans. We assume that in-

dividuals partially recover leave the infected category (νIh) to become susceptible humans.

The third term, r2Sh(Nh−Sh), denotes the logistic growth of susceptible humans. Here, we
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assume human population size (Nh) is the carrying capacity. The growth rate is denoted

by r2, and (Nh − Sh) indicates the additional individuals that can be accommodated in the

susceptible population before reaching the carrying capacity (Nh). The spread of infected

humans is governed by the first term, characterized by a diffusion coefficient denoted as

Dh2.

The third term represents the fraction of mosquitoes infected with malaria. Malaria trans-

mission occurs when a susceptible mosquito (Sm) bites an infected human (Ih) at a rate

denoted by μ, resulting in the death of infected mosquitoes (Im) due to their limited lifes-

pan, with a death rate specified by z2. As mosquitoes actively seek blood meals, Plasmod-

ium parasite infection, causing malaria, can influence how animals smell and human at-

tractiveness to mosquitoes. This phenomenon leads to chemotaxis interactions among in-

fected mosquitoes, infected humans, and susceptible humans, characterized by chemotactic

coefficients C1 and C2, where C1 > C2 reflecting the mosquito preference for infected hu-

mans. The spread of infected mosquitoes is governed by the first term, characterized by a

diffusion coefficient denoted as Dm.

The fourth equation illustrates the proportion of susceptible mosquitoes. When a suscep-

tible mosquito (Sm) bites an infected human, malaria is transmitted at a rate denoted by

β, causing the susceptible mosquito to transition to the infected mosquito class. We as-

sume a constant mosquito population size (Nm). The growth rate is designated as r2, and

(Nm − Sm − Im) indicates the additional individuals that can be accommodated in the

susceptible population before reaching the carrying capacity (Nm). In this scenario, sus-

ceptible mosquitoes are born from other susceptible mosquitoes, and we also posit that

infected mosquitoes give birth to susceptible mosquitoes. As mentioned earlier, mosquitoes

exhibit a preference for infected humans, influencing the interaction between susceptible

mosquitoes and infected humans with a chemotactic coefficient C1. Additionally, the inter-

action between susceptible humans and mosquitoes involves a chemotactic coefficient C2,

where, once again, C1 > C2. The spread of infected mosquitoes is governed by the first

term, characterized by a diffusion coefficient denoted as Dm.
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We consider the stability of the steady state Īh, S̄h, S̄m, Īm to perturbations of various fre-

quencies

Ih = Īh + a cos(kx)eλt, (37)

Im = Īm + b cos(kx)eλt, (38)

Sh = S̄h + d cos(kx)eλt, (39)

Sm = S̄m + i cos(kx)eλt. (40)

4 a) Well-Mixed Condition

The eigenvalue problem of our model (35) without diffusion and chemotaxis is given by

λ

⎛
⎜⎜⎜⎜⎝
a

b

d

i

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝
−z1−ν βIm βSh 0

ν −βIm+r2(Nh−Sh)− r2Sh −βSh 0

μSm 0 −z2 μIh

−μSm 0 0 r1(Nh−Sm)−r1Sm−μIh

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
a

b

d

i

⎞
⎟⎟⎟⎟⎠ .

(41)

4 b) Eigenvalue Problem With Diffusion And No Chemotaxis

The eigenvalue problem of our model (35) with diffusion is given by

λ

⎛
⎜⎜⎜⎜⎝
a

b

d

i

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−z1−ν−Dh1ω
2 βIm βSh 0

ν
−βIm + r2(Nh−Sh)

−r2Sh−Dh2ω
2

−βSh 0

μSm 0 −z2−Dmω
2 μIh

−μSm 0 0
r1(Nh−Sm)−r1Sm

−μIh−Dmω
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
a

b

d

i

⎞
⎟⎟⎟⎟⎠ .

(42)
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4 c) Eigenvalue Problem With Diffusion And Chemotaxis

The eigenvalue problem of our model (35) with diffusion and chemotaxis is given by

λ

⎛
⎜⎜⎜⎜⎝
a

b

d

i

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−z1−ν−Dh1ω2 βIm βSh 0

ν
−βIm+r2(Nh−Sh)

−r2Sh−Dh2ω
2

−βSh 0

μSm−C1Imω
2 −C2Imω

2 −z2−Dmω
2 μIh

−μSm−C1Smω
2 −C2Smω

2 0
r1(Nh−Sm)−r1Sm

−μIh−Dmω
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
a

b

d

i

⎞
⎟⎟⎟⎟⎠ .

(43)
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Chapter 4 Results And Analysis

We now consider specific set of parameter values and we will show that Turing birfurcation

occurs and pattern formations are robust. The values used for numerical simulation for

(35) are as follows

Dh1 = 1, (44)

Dh2 = 1, (45)

Dm = 0.25, (46)

C1 = 150, (47)

C2 = 15, (48)

z1 = 0.00002, (49)

z2 = 1, (50)

β = 10, (51)

μ = 0.00025, (52)

ν = 0.002, (53)

r1 = 20, (54)

r2 = 2, (55)

Nh = 100, (56)

Nm = 13000, (57)

L = 50. (58)
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By solving the linear terms in (35) using Maple, this results in spatially homogeneous

equilibrium solutions which are as follows

Number Īh S̄h Īm S̄m

1 0 0 0 0
2 0 0 0 100
3 0 0 100 100
4 4802.421830 119.9884731 0.009605766368 99.93996973
5 7.996157540×106 96.01536656 19.98719453 0.04803075281

Table 1: Equilibrium Solutions for the malaria model (35)

Solution number 4 together with (44) was then used in Maple[19] to solve the eigenvalue

problem as a function of ω in the domain (−L,L). The results are given below.

22



5 Partial Differential Equation Model With Diffusion And

Chemotaxis

5 ).1 Well-Mixed Condition

The real part of the eigenvalues of (41) are given by

Re[λ1(ω)] = −0.000479933036173108,
Re[λ2(ω)] = −0.999517231910559,
Re[λ3(ω)] = −1998.79939400159,
Re[λ4(ω)] = −999.925556933465.

(59)

All the eigenvalues have negative real part thus the system is stable in well-mixed condi-

tion.

5 ).2 Eigenvalue Problem With Diffusion And No Chemotaxis

Graphical solutions were employed to depict the real part of the eigenvalues using Maple

in (42). Each eigenvalue was graphed against the frequency, and the outcomes are pre-

sented in figure 6;

Figure 2:
Re(λ1)vs(ω)

Figure 3:
Re(λ2)vs(ω)

Figure 4:
Re(λ3)vs(ω)

Figure 5:
Re(λ4)vs(ω)

Figure 6: The graph of real eigenvalues vs frequency(ω) with diffusion and no chemotaxis
in Maple

The above graphs show that all the real parts of each eigenvalue are negative at all times

in the domain (−L,L) hence, no pattern formation is possible.
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5 ).3 Eigenvalue Problem With Diffusion And Chemotaxis

We proceeded to graph the real part of the eigenvalues (43), yielding the outcomes

Figure 7: Re(λ1)vs(ω) Figure 8: Re(λ2, λ3)vs(ω) Figure 9: Re(λ4)vs(ω)

Figure 10: The graphs for real eigenvalues vs frequency (ω) with diffusion and chemotaxis
plotted in Maple

In light of this, we have grouped them together based on their real part, with λ1 corre-

sponding to several allowable frequencies within the range of 0 < ω < 14 in the domain

of (−L,L) with positive real part. It is worth noting that eigenvalues 2, 3, and 4 possess

negative values for all times.

The most direct way to prove the existence of Turing’s principle is to apply perturbations

to the spatial pattern of the model given by (35) and observe their dynamics, which leads

to the initial conditions

Sh = 1000, (60)

Ih = 1, (61)

Im = 100 + 0.2 cos{0.2x}, (62)

Sm = 100 + 0.2 cos{0.2x}. (63)

The graphs below depict the modeling of each population’s initial conditions simulated

using FlexPDE6. They illustrate the global maximum equilibrium that each population

can attain, and these graphs remain in equilibrium for the entire duration after a certain

period.
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Figure 11: infected humans vs t

Figure 12: Numerical simulation of global maximum from FlexPDE6 of the model (35)
showing the of each population in time.
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Figure 13: susceptible humans vs t

Figure 14: infected mosquitoes vs t

Figure 15: Numerical simulation of global maximum from FlexPDE6 of the model (35)
showing the of each population in time.
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Figure 16: susceptible mosquitoes vs t

Figure 17: Numerical simulation of global maximum from FlexPDE6 of the model (35)
showing the of each population in time.

The infected human population initially started at around 451.4435 and reached a global

maximum equilibrium of 451.431. The infected mosquito population began at approxi-

mately 10.051× 103 and reached a global maximum equilibrium of about 9.851× 103. The

susceptible human population started at approximately 1.51 × 10−4 and reached a global

maximum of around 1.21× 10−4. The susceptible mosquito population had an initial value

of about 1.315× 104 and reached a global maximum of 1.3× 104

Using the above parameter values (44) and these initial conditions, we plotted the solution

of model (35) in the domain (−L,L) in FlexPDE6, which resulted in the following;
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Figure 18: infected humans vs x

Figure 19: susceptible humans vs x

Figure 20: Numerical simulation in 1D from FlexPDE6 of the model (35) showing the pat-
tern formation of each population in the domain (−L,L).

28



Figure 21: infected mosquitoes vs x

Figure 22: susceptible mosquitoes vs x

Figure 23: Numerical simulation in 1D from FlexPDE6 of the model (35) showing the pat-
tern formation of each population in the domain (−L,L).

29



The graph presented demonstrates significant spatial changes in the pattern formation of

the infected mosquito population (Im) which results from mosquitoes actively seeking hu-

mans and responding to chemoattractants. The graphs for the infected humans population

(Ih) and (Sh), show little spatial variation and are nearly constant. The graph for suscep-

tible mosquito population (Sm) shows that they have a lesser impact on human pattern

formation compared to infected mosquitoes. Our analysis suggests, that spatially hetero-

geneous diffusion coefficients and chemotaxis enabled pattern formation on the domain

(−L,L) with infected mosquitoes being a major influence just as we predicted.
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Chapter 5 Discussion

The primary objective of this research was to investigate the impact of diffusion and chemo-

taxis on the spatial patterns of malaria transmission in an epidemic model that employs

partial differential equations (PDE) and Turing analysis. Undertaken were numerous sim-

ulations on Maple, incorporating theoretical concepts derived from alternative models such

as the Ross model pertaining to transmission rate parameters, the Keller-Segel model for

chemotaxis coefficients, and the renowned Alan Turing’s model for diffusion coefficients.

For our four-component system, we conducted an eigenvalue analysis, which revealed sta-

ble eigenvalues under well-mixed conditions to certain parameter values specified in (44).

Our research results suggest that the spatially homogeneous solution (Īh, S̄h, Īm, S̄m) is sta-

ble in the well-mixed scenario.

We next proceeded to examine our model (35) with only diffusion and no chemotaxis. To

determine the allowable frequencies with real positive eigenvalues in the domain (−L,L),
we simulated the results of the four eigenvalues and plotted them against frequency (ω).

We observed that pattern formation is not possible as none of the eigenvalues exhibit any

positive real part. The results leave no room for doubt, indicating the absence of potential

pattern formation.

Finally, we analyzed our model (35) using both diffusion and chemotaxis to determine the

allowable frequencies with real positive eigenvalues in the interval (−L,L). The graphi-

cal representation of these eigenvalues revealed that one eigenvalue has a positive real part

within the domain, indicating the potential for pattern formation at specific allowable fre-

quencies between 0 < ω < 14. This finding is particularly significant as it suggests that

chemotaxis, a key factor in the spread of malaria due to mosquito attraction to humans,

plays a crucial role in determining the dynamics of the system.

Following the determination of the parameter values and initial conditions, the model was

subsequently numerically simulated using the software FlexPDE6 in the domain extending

from (−L,L) in the spatial variable x. The findings of the initial conditions investigation

revealed that each population attained the highest level of equilibrium possible and sus-

tained it throughout the simulation. Subsequently, the model given by (35) was graphed

in the software package FlexPDE6. The representation depicted the spatial distribution of

various populations, specifically those of susceptible humans, infected humans, suscepti-

ble mosquitoes, and infected mosquitoes, across the domain spanning from −L to L in the

x-domain.
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The effect of inclusion of chemotaxis on malaria transmission is that we have highly el-

evated localized infected mosquito populations which results in more infections in the hu-

man population thus leading to a high global human infections. This suggests that chemoat-

tractants in infected humans attracts a greater number of infected mosquitoes, resulting in

the formation of patterns. The graph illustrating the infected mosquito population indi-

cates the presence of localized areas in space, which suggests a high concentration of in-

fected humans in those regions. Moreover, the localization of susceptible mosquitoes in the

same area as the infected mosquito population suggests that susceptible mosquitoes also

have a preference for infected humans over susceptible humans.
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Chapter 6 Conclusion

Our study examined the consequences of diffusion and chemotaxis on the spatial distribu-

tion of malaria transmission in an epidemic model that utilizes partial differential equa-

tions (PDE) to account for both susceptible and infected human and mosquito popula-

tions. We employed a Turing analysis to demonstrate that when real eigenvalues are posi-

tive and the eigenvalues are stable in well-mixed conditions, a pattern formation can occur

in the presence of diffusion and chemotaxis for specific frequencies within a given domain.

Furthermore, we presented numerical results that showed distinct patterns for each popu-

lation and highlighted the impact of diffusion and chemotaxis on maximum initial condi-

tions, which reached equilibrium over time. In conclusion, chemotaxis in infected humans

plays a major role in attracting infected mosquitoes and pattern formation.

Our research is constrained in several respects. Firstly, we have no knowledge of the num-

ber of individuals who completely recover from malaria, those who receive early treat-

ment, or the duration of susceptibility among partially recovered individuals. We have as-

sumed that partially recovered individuals exhibit lower parasitic levels and therefore lower

chemotaxis levels than infected individuals. Future research can be expanded to include

factors such as birth rates, latency periods, distance between humans and mosquitoes for

both human and mosquito populations, and larger domains. The incorporation of larger

domains would result in frequencies converging, and the types of pattern formation and

parameter values would also change. Additionally, altering the diffusion coefficients could

lead to distinct pattern formations.

Efforts to prevent malaria have been undertaken since the 1950s, but over the years, mosquitoes

and parasites have developed resistance to numerous pesticides and drugs. Additionally,

the effectiveness of insecticides has diminished as malaria has become resistant to these

measures. Among the prevention methods, mosquito nets appear to be the most efficient

and durable, without causing disease mutations. However, while these strategies are ef-

fective, they do not contribute to our understanding of the transmission of malaria from

mosquitoes to humans or among mosquitoes themselves.

One approach to eradicating malaria involves the reintroduction of mosquitoes into af-

fected regions. These mosquitoes are first subjected to genetic modification in laboratory

settings and then released into areas where malaria is prevalent. The modified mosquitoes

are descendants of those that have developed natural resistance to the disease, which ren-

ders them incapable of carrying or transmitting it. As these mosquitoes reproduce in their
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natural habitats, their offspring inherit and display similar disease-resistant traits.
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[24] Diego J Rodŕıguez and Lourdes Torres-Sorando. Models of infectious diseases in spa-

tially heterogeneous environments. Bulletin of Mathematical Biology, 63(3):547–571,

2001.

[25] Ronald Ross. Some a priori pathometric equations. British medical journal,

1(2830):546, 1915.

[26] Lisa Sattenspiel and Klaus Dietz. A structured epidemic model incorporating geo-

graphic mobility among regions. Mathematical biosciences, 128(1-2):71–91, 1995.

[27] Lisa Sattenspiel and Carl P Simon. The spread and persistence of infectious diseases

in structured populations. Mathematical Biosciences, 90(1-2):341–366, 1988.

[28] Maria Vladimirovna Shubina. Exact traveling wave solutions of one-dimensional

parabolic–parabolic models of chemotaxis. Russian Journal of Mathematical Physics,

25:383–395, 2018.

[29] OT Soniran, OA Idowu, OL Ajayi, and IC Olubi. Comparative study on the effects

of chloroquine and artesunate on histopathological damages caused by plasmodium

berghei in four vital organs of infected albino mice. Malaria Research and Treatment,

2012, 2012.

[30] Lourdes Torres-Sorando and Diego J Rodrıguez. Models of spatio-temporal dynamics

in malaria. Ecological modelling, 104(2-3):231–240, 1997.

[31] Imelda Trejo, Martha Barnard, Julie A Spencer, Jeffrey Keithley, Kaitlyn M Mar-

tinez, Isabel Crooker, Nicolas Hengartner, Ethan O Romero-Severson, and Carrie

Manore. Changing temperature profiles and the risk of dengue outbreaks. PLOS

Climate, 2(2):e0000115, 2023.

[32] Alan Mathison Turing. The chemical basis of morphogenesis. Bulletin of mathematical

biology, 52:153–197, 1990.

[33] Yang O Zhao, Sebastian Kurscheid, Yue Zhang, Lei Liu, Lili Zhang, Kelsey Loeliger,

and Erol Fikrig. Enhanced survival of plasmodium-infected mosquitoes during starva-

tion. PLoS One, 7(7):e40556, 2012.

37



Appedices

A FlexPDE6 Code

TITLE ’Maleria’

COORDINATES cartesian1

VARIABLES

ih

sh

im

sm

SELECT { method controls }

errlim=1.5e-3

DEFINITIONS

Dh1=1 {Infected diffusivity}

Dh2=1 {Susceptible diffusivity}

Dm=.25

C=150

{C=0}

mu=.00025{Mosquito infection}

nu=.002 {Recovery Rate}

beta=10

r=20 {mosquito reproduction rate}

N=13000 {Mosquito Population}

Nh=100

r2=2

imdr=1

ihdr=.00004
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L=20

transfer(’mal.ic’,ih0,sh0,im0,sm0)

INITIAL VALUES

sh=1000+.2*cos(.2*x)*0

ih=1+.01*cos(.2*x)*0

im=100+.2*cos(.2*x)

sm=100+.2*cos(.2*x)

sh=sh0

ih=ih0

im=im0

sm=sm0

EQUATIONS

ih: dt(ih)=Dh1*dxx(ih)+beta*sh*im-nu*ih-ihdr*ih

sh: dt(sh)=Dh2*dxx(sh)-beta*sh*im+nu*ih+r2*sh*(Nh-sh)

im: dt(im)=Dm*dxx(im)+mu*ih*sm-imdr*im+C*dx(im*dx(ih))+C/10*dx(im*dx(sh))

sm: dt(sm)=Dm*dxx(sm)+r*(sm)*(N-(sm))-mu*ih*sm+C*dx(sm*dx(ih))+C/10*dx(sm*dx(sh))

BOUNDARIES

REGION 1 { For each material region }

START(-L)

point natural(ih)=0 point natural(sh)=0 point natural(im)=0 line to (L) point natu

TIME 0 TO 1500000

MONITORS

!for t=0 by 1 to 200

for cycle = 5

elevation(ih) from (-L) to (L)
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elevation(sh) from (-L) to (L)

elevation(im) from (-L) to (L)

elevation(sm) from (-L) to (L)

plots

for cycle=5

transfer(ih,sh,im,sm) file "y.dat"

history(globalmax(ih))

history(globalmax(sh))

history(globalmax(im))

history(globalmax(sm))

end

B FlexPDE6 Code 2D

TITLE ’Maleria’

COORDINATES cartesian2

VARIABLES

ih

sh

im

SELECT { method controls }

errlim=5e-1

DEFINITIONS

Dh1=1

Dh2=1

CT=.1

Dm=.01

beta=2

mu=.01

nu=.5
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N=1000

delta=1

L=50

INITIAL VALUES

sh=100+20*cos(5*x*y)

ih=1+.1+cos(5*x*y)

im=10+.2*cos(5*x*y)

EQUATIONS

ih: dt(ih)=Dh1*div(grad(ih))+beta*sh*im-nu*ih

sh: dt(sh)=Dh2*div(grad(sh))-beta*sh*im+nu*ih

im: dt(im)=Dm*div(grad(im))+mu*ih*(N-im)+div(CT*(im*grad(ih+sh)))

BOUNDARIES

REGION 1

START(L,0)

ARC(CENTER=0,0) ANGLE=360
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