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Abstract

This thesis presents an in-depth study of vision-aided obstacle avoidance for multi-

agent formation control, integrating formation control, path planning, and the use

of vision sensors. The paper thoroughly reviews the literature on coordination

strategies, obstacle avoidance methods, machine learning methods in navigation,

and sensor technologies in robotics. It explores the role of different sensors in

navigating unknown environments.

The main contributions of the thesis include the design and validation of for-

mation controllers and obstacle avoidance algorithms, supported by simulations

and experimental results with mobile robots equipped with an advanced vision

sensor. Hardware and software frameworks are firstly discussed, such as the use

of the TurtleBot3 mobile robots, Intel RealSense depth camera, and the inte-

gration in Robotic Operating Systems (ROS). The problem formulation includes

kinematics, a hand position model for mobile robots, and a multi-robot affine for-

mation control system. Algorithms are validated in both MATLAB and Gazebo

environments for their efficacy in the goal point navigation, narrow gap passing,

and leader-follower obstacle avoidance.

The thesis provides new insights into control laws that prove the effective for

maintaining desired formation configurations, demonstrating stability through l2

norm of formation errors. The research validates the robustness and adaptability

of the proposed control algorithms through experiments, showcasing the ability

to navigate towards designated goals while achieving precise formation config-

urations, even when encountering unforeseen challenges in real-world scenarios.

The work concludes with successful experimental applications and proposes future

investigations into enriched formation control methods and advanced image pro-

cessing for autonomous navigation. This study is instrumental in advancing the

field of autonomous robot formations, offering practical and theoretical insights

for the deployment of multi-agent systems in unknown environments.

xi
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communication capabilities required with centralized structures may rapidly in-

crease as the number of agents increases. Central structures are also susceptible

to unexpected network issues, and the entire system will fail when the central

agent fails. Recently, considerable work has been done on the development of

the MASs’ distributed coordination control strategy. In distributed structures,

each agent has a microprocessor, sensor, and actuator to collect data and perform

control functions.

For MASs, two basic coordination research problems are consensus and for-

mation control. A consensus control problem is one where the controllers are

designed for each agent solely using the information that is locally accessible,

allowing the group of agents to agree on specific quantities of interest. Creating

distributed controllers that motivate the entire group to accomplish and sustain

a specific geometric pattern of interest is the goal of formation control. A dis-

tributed formation control is to keeping the agents in a certain geometric shape

relative to each other, which could be a time-varying formation as well.

Another key problem of earlier research is how to let robots “see” their envi-

ronment. The most common distance sensor used on mobile robots working in

an indoor environment is the Light Detection of Laser Imaging and Ranging (Li-

DAR) sensor and Three-dimensional (3D) vision cameras [3]. LiDAR sensors are

frequently used to create high-resolution maps and point clouds, but depending

on the mounting location, they can only measure distances at a fixed elevation

or in a Two-dimensional (2D) plane. According to its operating principle, the

LiDAR sensor sends a laser pulse to the surface of an object and calculates the

elapsed time between the emission of the pulse and the received reflection [3]. A

robot equipped with a 2D LiDAR sensor cannot detect objects above or below the

sensor. One solution is to use more LiDAR sensors to scan at different altitudes,

which dramatically increases costs. Therefore, detecting complex environments

during navigation using an advanced sensor is essential. As a result, this thesis

focuses on the obstacle detection and navigation using a vision sensor for an MAS

with an affine formation control for the team overcoming the limitation of existing

obstacle avoidance methods.
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1.2 Literature Review

1.2.1 Formation Control

Formation control in MASs is a fundamental concept with applications across

various domains, including mobile robots, Unmanned Aerial Vehicles (UAV), and

autonomous vehicles [4]. The ability to coordinate a group of agents to achieve and

maintain a desired formation has been a subject of extensive research. Formation

strategies have been observed in nature, such as dolphins frequently swimming

in specific formations, which can vary from line formations to tight clusters, in

order to aid in communication, hunting, and protection from predators [5].

Many researchers in control and robotics have recently used these formation

tactics to apply to robotic systems for a variety of tasks, such as payload trans-

portation [2], object search [6], and forest fire surveillance [7]. A significant

amount of research has been done on the control of MASs due to their prac-

tical potential in different applications. The theoretical challenges mainly focus

on partial and relative information without the intervention of a central controller.

Formation control generally means driving multiple agents to achieve pre-

scribed constraints on their states [8]. Many complex formation control tasks

with complex agent dynamics and constraints have been successfully completed

by early formation control approaches, including behavior-based [9] and virtual-

structure [10]. The characterization of formation control schemes in terms of the

sensing capability and the interaction topology naturally leads to the question of

what variables are sensed and what variables are actively controlled, to achieve

their desired formation [8]. Specific requirements for each agent’s sensing capac-

ity are stated in the types of sensed variables. The types of controlled variables,

however, are fundamentally linked to the topology of interactions. More precisely,

if each agent’s position is actively controlled, the agents can move to the desired

locations apart from one another. A rigid body can be formed from the agents

if the distances between them are actively controlled. Subsequently, the agents

must engage in mutual interactions in order to preserve their configuration as a

stiff entity. In other words, the kinds of controlled variables dictate the optimal

configuration that agents can attain, which in turn dictates the specifications for
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the agents’ interaction topology.

Classifications of formation control could be confusing if the criteria is not

clear. According to Ren and Cao [11], the formation control can be classified by

whether or not desired formations are time-varying:

• Formation producing problems: The objective of agents is to achieve a

prescribed desired formation shape. These problems have been addressed

through matrix theory based approach, Lyapunov based approach, graph

rigidity approach, and receding horizon approach.

• Formation tracking problems: Reference trajectories for agents are pre-

scribed and the agents are controlled to track the trajectories. These prob-

lems have been studied through potential function based approach, matrix

theory based approach and other approaches.

The formation control problem could also be classified by the fundamental

ideas of control schemes [12] [13]:

• Leader-follower approach: At least one agent plays the leader role and the

rest of the agents are designated as followers. The followers track the posi-

tion of the leader with designed offsets while the leader tracks the desired

trajectory.

• Virtual structure approach: The formation of agents is considered as a single

object as a virtual structure. The desired motion for the virtual structure

is given and determines the motions for the agents.

• Behavioral approach: Desired behaviors are prescribed for agents including

cohesion, collision avoidance, and obstacle avoidance. This approach is often

related to an amorphous formation control scheme.

Depending on whether or not desired formation shapes are explicitly pre-

scribed, the formation control problem may also be classified as:

• Morphous formation control: Desired formations are explicitly specified by

desired positions of agents, desired inter-agent displacements, desired inter-

agent distances, etc.
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• Amorphous formation control: Without explicitly specified desired forma-

tions, desired behaviors such as cohesion, and collision avoidance are given

for agents. Amorphous formation control is often related to the behavioral

approach.

Based on the observed information, a formation control can be categorized

into position, displacement, and distance-based according to types of sensed and

controlled variables [8]:

• Position-based control: Agents sense their own positions with respect to

a global coordinate system. They actively control their own positions to

achieve the desired formation, which is prescribed by the desired positions

with respect to the global coordinate system.

• Displacement-based control: Agents actively control displacements of their

neighboring agents to achieve the desired formation, which is specified by

the desired displacement with respect to a global coordinate system un-

der the assumption that each agent is able to sense the relative position of

its neighboring agents with respect to the global coordinate system. This

implies that the agents need to know the orientation of the global coordi-

nate system. However, the agents require neither knowledge of the global

coordinate system itself nor their positions with respect to the coordinate

system.

• Distance-based control: Inter-agent distances are actively controlled to achieve

the desired formation, which is given by the desired inter-agent distances.

Individual agents are assumed to be able to sense the relative positions of

their neighboring agents with respect to their own local coordinate systems.

The orientations of local coordinate systems are not necessarily aligned with

each other.

Many complex formation control tasks with complex agent dynamics and con-

straints have been successfully completed by early formation control approaches,

including behavior-based and virtual structures. Under the virtual structure ap-

proach, human-made control systems impose the geometric relationship between
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robots and treat the robots as particles in a rigid body. Group motion is made by

applying a virtual force field to the virtual structure, which causes each robot to

move in the force’s direction. However, this method requires a centralized formu-

lation, and is difficult to control the robots in a distributed way. In a behavioral

formation control approach, behaviors are prescribed for each agent and the final

control input can be determined as a weighted average of each behavior. This

approach is relatively easy to implement but no guarantee of system convergence

and stability analysis.

Table 1.1. Distinctions of position-, displacement-, and distance-based formation
control

Position-based Displacement-based Distance-based

Sensed
variables

Positions of
agents

Relative positions of
neighbors

Relative positions of
neighbors

Controlled
variables

Positions of
agents

Relative positions of
neighbors

Inter-agent
distances

Coordinate
systems

A global
coordinate
system

Orientation aligned
local coordinate

systems

Local coordinate
systems

Interaction
topology

Usually not
required

Connectedness or
existence of a
spanning tree

Rigidity or
persistence

In this thesis, the main categorization is considered in characterizing forma-

tion control schemes in terms of the requirement on the sensing capability and

the interaction topology. As shown in Table. 1.1, the group formation maneu-

verability is largely dependent on the constraints imposed on the system. For

example, displacement-based formation controllers can only be applied to track

formations with time-varying translations since the constant displacement con-

straint also imposes constant orientation and scale the constraints on the group

formation. As summarized in Table. 1.1, a position-based control is particularly

beneficial in terms of the interaction topology though it requires more advanced

sensors. A distance-based control is advantageous in terms of the sensing ca-

pability but it requires more interactions among agents. A displacement-based

control is moderate in terms of both sensing capability and interaction topology
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1.2.2 Obstacle Avoidance

An obstacle avoidance is a critical aspect of autonomous robotics, enabling robots

to navigate complex environment safely and efficiently. This literature review

provides an overview of key developments, methodologies, and challenges in the

field of obstacle avoidances in robotics.

The obstacle avoidance has been a fundamental challenge in robotics for

decades. Early approaches focused on simple reactive behaviors, where robots

responded directly to sensory input. While effective in some scenarios, these

methods lacked the ability to plan and adapt to changing environments.

Sensor-based obstacle avoidance is a prominent method in robotics. In this

approach, robots utilize a range of sensors, including ultrasonic, LiDAR, and

vision, to detect obstacles and adjust their trajectories. Studies by Borenstein

and Koren [19] on the Vector Field Histogram (VFH) method demonstrated the

efficacy of sensor-based approaches in mobile robot navigation.

Path planning algorithms have gained significant attention in recent years.

Dijkstra’s algorithm, A* search, and rapidly exploring random trees (RRT) have

been adapted for obstacle avoidance. Karaman and Frazzoli [20] introduced an ef-

ficient RRT-based approach, the RRT* algorithm, which has been widely adopted

in the robotics community.

Machine learning and deep learning techniques have revolutionized obstacle

avoidance. Researchers have explored Reinforcement Learning (RL) and Convolu-

tional Neural Networks (CNNs) for training robots to navigate complex, dynamic

environments. Notable contributions include Deep Q-Network (DQN) method in

[21] and Deep Deterministic Policy Gradients (DDPG) method in [22].

While the obstacle avoidance has made significant progress, challenges re-

main. Adapting to dynamic, real-world environments, handling sensor noise, and

addressing the issue of local minima in path planning are areas of ongoing re-

search. Combining traditional methods with machine learning for robust obstacle

avoidance is a promising direction.
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1.2.3 Path Planning

Path planning algorithms are applied by mobile robots, unmanned aerial vehicles,

and autonomous underwater vehicles in order to identify safe, efficient, collision-

free, and least-cost travel paths from the start to a destination [23]. The literature

review listed the classes of path planning algorithms used today and their poten-

tial within automated systems.

Autonomous mobile robots can reduce the contribution of human error and

negligence as the cause of collisions. The robots must move from point A to

point B safely and efficiently, and path planning is the key in determining and

evaluating trajectories [23]. During navigation, robots make use of capabilities

that involve modeling the environment and localizing the position, which lead to

the four general problems of navigation: perception, localization, motion control,

and path planning [24] [25] [26].

This literature review is mainly focused on path planning, which is the deter-

mination of a collision-free path in a given environment and often be cluttered in

a real-world situation. An appropriate path planning technique must be identi-

fied and implemented to accomplish the system’s design, and the best-performing

technique will vary with the system type and the environment [27]. The complex-

ity of the problem increases with an increase in degrees of freedom (DOF) of the

system, the optimal path will be decided based on constraints and conditions [23].

For example, considering the shortest path between points or the minimum time

to travel without collisions, minimizes energy consumption. A path planning can

be used in known and unknown environments where information is received from

internal and external sensors, updating maps to inform the desired motion of the

mobile robot [23].

The path planning can be either local or global. A global path planning looks

for an optimal path given largely complete environmental information, and it

is best performed when the environment is static and known to the robot. The

path planner algorithm produces a complete path from the start to the end before

the robot tracks the trajectory [28]. A global motion planning is the high-level

control for environment traversal [23]. A local path planning is mostly performed

in unknown or dynamic environments, while the robot is moving and taking data
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from local sensors [23]. The robot has to generate new paths in response to the

changes in the environment, as obstacles are static or dynamic [28].

Several path planning algorithms that are most frequently used are discussed.

The first algorithm is the Dijkstra algorithm which has many variants com-

monly used in applications, such as Google Maps [29] [30]. To overcome the

computational-intensity doing blind searches, A∗ and its variants are introduced

as the most popular algorithm for static environment [31]. However, A∗ is used

for the shortest path evaluation based on the obstacles present in the environ-

ment, which comprises a selection of node pairs [32]. This makes the algorithm

inefficient and impractical in dynamic environments [23]. To make path planning

work in dynamic environments, D∗ and its variants are introduced. Other path

planners such as the Rapidly-exploring Random Trees (RRTs), the Genetic al-

gorithms, the ant colony algorithm, and the Firefly algorithm are introduced to

represent some of the foundational algorithms. More path planning algorithms

can be found in [33].

According to [34] and [35], the motion planning problem and its algorithms can

be classified into search-based and sampling-based, where search-based planning

can be seen as two problems: how to turn the problem into a graph and how

to search the graph to find the best solution. Example of search-based planning

is the Dijkasra algorithm and A∗ algorithm. RRT and its variant, however, are

sampling-based [35].

The Dijkstra algorithm works by computing the shortest path from the source

to vertices among the closest vertices to the source [29]. The algorithm finds the

next closest vertex by keeping the new vertices in a priority-min queue and stores

only one node in order to find the shortest path [29].

The traditional Dijkstra algorithm finds the shortest path in an acyclic envi-

ronment which means the path traversed through a sequence of vertices without

having the same point as the start and the end vertices, and is able to find the

shortest path from the start to every point, relying upon greedy strategy search-

ing on a graph [23]. Many versions of improved Dijkstra have been developed

based on specific applications, yet concerns the path solution with formal atten-

tion to the pragmatism solution [23]. The modified Dijkstra algorithm aims to
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find alternate routes where the cost of generating plausible shortest paths is sig-

nificant. It introduces another component to the classical algorithm in the form

of probabilities that define the status of freedom along the graph edges [36]. This

variant overcomes the computational shortcomings in the Dijkstra algorithm and

becomes suitable in modern applications. Another improved Dijkstra algorithm

reserves all nodes with the same distance from the source node as intermediate

nodes, followed by a re-search within all the intermediate nodes until travers-

ing successfully find the goal point, all possible short paths can be found after

iterations [37].

Due to the nature of the Dijkstra algorithm, nodes that have been previ-

ously searched cannot be stored. A storage scheme is introduced to overcome

this disadvantage with a multi-layer dictionary implemented, which contains two

dictionaries and a list of data structures organized in hierarchical order [38]. One

dictionary maps each node and its neighboring nodes, the other dictionary stores

the path information of each neighboring pathway [38]. This multi-layer dic-

tionary method allows data structure for the Dijkstra algorithm in an indoor

environment application where the Global Navigation Satellite System (GNSS)

coordinates and the compass orientation are not reliable, producing the shortest

path and the most navigable path at the same time, which is infeasible to compute

within the traditional Dijkstra algorithm [38].

Another popular graph searching method for finding the shortest path in a

positive and negative weighted graph [39]. Inspired by the Dijkstra which works

best for finding the single-source path in a positive weighted graph [39].

In general, the Dijkstra is a reliable algorithm for path planning, but also

memory-heavy as it has to compute all the possible outcomes in order to find

the shortest path. Due to its limitation, improved variants with a new memory

scheme arose to map with a huge cost factor [23]. The Dijkstra algorithm is best

suited for a static environment and global path planning as most of the data

required are pre-defined.

The A∗ algorithm is the most popular graph traversal path planning algorithm,

which operates similarly to the Dijkstra algorithm except it prioritizes its search

towards the most promising nodes, saving a significant amount of computation



12

time [40].

The A∗ algorithm is similar to the Dijkstra but works on the lowest cost path

tree from the initial point to the final goal. The base algorithm uses the least

expensive path and expands using the cost function defined below

F = G+H, (1.2.1)

where G is the actual cost from the current node to the start, and H is the

heuristic cost of the optimal path from the current node to the goal [31].

The A∗ algorithm is widely used in the static environment, gaming industry

[41], graph theory, and automatic control [23]. The A∗ algorithm is a heuristic

algorithm that uses heuristic information to find the optimal path. The A∗ al-

gorithm searches for nodes in a map and assigns appropriate heuristic functions

for the guidance, such as Euclidean distance, Manhattan distance, and Diagonal

distance [42] [43].

Euclidean distance :
√

(x1 − x2)2 + (y1 − y2)2, (1.2.2)

Manhattan distance : |x1 − x2|+ |y1 − y2|, (1.2.3)

Octile distance : max|x1 − x2|+ |y1 − y2|. (1.2.4)

While using the A∗ algorithm, there is a trade-off between calculation speed

and path accuracy. Decrease the time complexity in exchange for greater memory,

or consume less memory in exchange for slower executions [23]. One example of

balancing the trade-off is the application for using the A∗ algorithm to find the

shortest path in a crowded parking lot [44].

As the A∗ algorithm uses a different cost function on top of the Dijkstra al-

gorithm, many improvements and variants of the A∗ apply new cost functions,

with respect to step sampling or steering costs [45] [46]. Other variants were de-

veloped based on the specific applications and there are: Hierarchical A∗, Hybrid

A∗, Diagonal A∗ and Lifelong Planning A∗ [47]. In general, the A∗ algorithm is

computationally efficient and it is suitable for applications in a static environ-

ment, the computational speed and efficiency of the A∗ and its variants family

depends mainly on the definition of the heuristic cost function [23].
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The D∗ algorithm stands for Dynamic A∗ and it is used to generate a collision-

free path with moving obstacles [23]. The D∗ Algorithm processes a state until

it is removed from the open list, and computes the state sequence along with

back pointers to either direct the robot to the goal or update the cost due to the

obstacles detected, then place the affected states on the open list [48]. The states

in the list are processed until the path cost from the current state to the goal is

less than a minimum threshold, changing the cost where the robot continues to

follow the new sequence [49].

According to [49], the D∗ Algorithm is over 200 times faster than an optimal

re-planner, and the main defect of the D∗ Algorithm is its high memory consump-

tion when compared with other D∗ variants [50]. Those D∗ variants improve the

computational time and overcome problems such that the robot encounters com-

plicated obstacles [51]. Those common variants are: D∗ Lite, Enhanced D∗ Lite

and Field D∗ [52] [53].

Apart from the search-based path planning, there are other dynamic and on-

line algorithms. The RRT algorithm does not require a path to be specified

upfront and it expands in all regions, assigns weight to each node then creates

a path from start to goal [23]. Its variants are able to cope with non-holonomic

constraints and almost any wheeled system, depending on the actual applica-

tions [54] [55]. Genetic algorithms help to overcome the limitations that discrete

path planning, such as grid-based and potential fields require substantial Central

Processing Unit (CPU) performance and significant memory [23] [56]. The ant

colony optimization algorithm is inspired by nature, and is based on a heuristic

approach by the collective behavior of ants to find the shortest and collision-free

path [23] [57]. The Firefly algorithm is an algorithm based on firefly mating be-

havior, which is a promising swarm-intelligence-based algorithm in order to solve

complex continuous and discrete optimization problems inspired by insects [23].

1.2.4 Sensors and Vision for Robotics

This section briefly covers the various sensors available in robotics applications.

An odometry is used in calculating position using the motion of an object

such as a wheel encoder and is integrated over time and compared to the initial
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position to determine the final position of the robot [58]. The problem with this

method of determining the position of the robot is that errors can build up over

time, leading to a large error between the actual and measured position. Thus,

odometries are commonly used combined with other sensors [58].

Gyroscopic systems are inertial sensors that can be used to calculate orienta-

tion. Gyroscopes maintain their orientation based on the angular momentum. As

the robot moves, the orientation of the gyroscope can be compared to its original

orientation to determine the final orientation [58].

Accelerometers are another form of inertial sensors that detect acceleration

and can be used to calculate forces acting on a robot. Mechanical accelerometers

contain a spring-mass-damper system that measures the position of the mass in

the system to calculate the experienced acceleration. Other accelerometers such

as piezoelectric accelerometers generate a voltage while being applied a force on

a crystal [58].

The system that combines both sensors is called Inertial Measurement Units

(IMUs), which provide position and orientation data [58].

There are also other sensors that are commonly applied to robots to provide

position data. The Global Positioning System (GPS) uses radio signals from a

constellation of orbiting satellites to determine the position of an object. The time

delay of radio communication among satellites can be used to calculate position.

GPS requires an unobstructed line of sight (LOS) of the orbiting satellites and

the accuracy depends on atmospheric conditions and overhead materials. GPS

signals can pass through plastic and glass but have trouble passing water and

many other materials. GPS is accurate within 1-2m which normally dissatisfy

many applications [58].

In order to increase the sensing capability of the robots, advanced sensors

are applied. One of the fundamental tasks for robotics navigation control is

range finding and identification [58]. Range sensors can be differentiated based

on whether they are passive or active. In general, an active sensor emits energy

into the environment and measures the environment based on the response [58]

[59].

Ultrasonic sensors or sonar sensors emit pulses of sound waves and measure
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Monocular cameras perceive and judge the surrounding environment through

flat images taken by one camera, can only obtain 2D information and cannot

determine the depth. It relies on complex or computational-heavy algorithms for

ranging, requires a large amount of data and highly influenced by the environment

and is less accurate [61]. The advantages of monocular cameras are low cost,

simple system structure and easy calibration and identification. Fig. 1.3 shows a

picture of a monocular camera.

The binocular camera mimics the human eye to achieve the perception of

obstacles’ distance and size, which can directly obtain the depth information of

the scene without distinguishing the obstacle type by performing parallax and

stereo matching calculations on two images [62]. The corresponding pixel can be

found based on the known camera parameters to calculate the depth of the cor-

responding point. However, the configuration and calibration are more complex

and computationally intensive. Fig. 1.4 shows a picture of a binocular camera.

Figure 1.4. IMX219-83 stereo camera [63]

The RGB-D camera is different from the binocular camera that calculates

depth by using the parallax method, which measures the depth information of each

pixel directly according to the structure light or time of fly. Using this approach

can solve the problems of sensitivity to ambient light and dependence on image
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texture and improve matching robustness. RGB-D cameras can directly perform

physical ranging but with a high power consumption. Because it is sensitive to

light, translucent objects and reflecting interference, RGB-D cameras are mainly

used in indoor applications [64].

1.3 Thesis Objectives and Contributions

This thesis applies a vision sensor on the multi-agent formation control to achieve

the navigation in an unknown environment with obstacle avoidance. The pro-

posed approach is novel with few results available in the literature. Although

the formation control problem has been studied in [65] and [66], the vision-aided

formation control problem has not been addressed extensively in the literature.

The objectives of this thesis are mainly focused on achieving unknown envi-

ronment obstacle avoidance with a vision sensor on a MAS formed by wheeled

mobile robots, using affine formation control navigation. This is an extension of

previous work on using a monocular camera combined with CNNs to control a

MAS with a low cost [61]. In addition, this thesis also conducts some potential

applications on vision sensors.

The main contributions of this thesis are summarized as follows

1. The thesis designed formation controllers based on a MAS with mobile

robots and tested the controller using simulations and experiments to verify

the effectiveness of the formation.

2. The thesis applied the affine formation controller with obstacle avoidance

using an advanced vision sensor to overcome the limitations of regular Li-

DAR sensor, which provides a practical solution for the MAS navigation

and formation control.

3. Experimental results are demonstrated on a team of mobile robots in the

lab environment.



18

1.4 Thesis Outline

This thesis outline is as follows. This chapter provided a general research back-

ground and literature review of the research topics in this thesis, as well as the

thesis objectives. Chapter 2 introduces the hardware and software used for simula-

tions and experiments in this thesis. Chapter 3 presents the fundamental theories

required for this thesis and problem formulation. Chapter 4 studies affine for-

mation controllers designed for MASs under different cases via simulations and

results. Chapter 5 extended the simulations to real-world experiments with the

vision sensor applied to conducting various tasks. Chapter 6 summarizes the main

results of this thesis and suggests areas for future research.



Chapter 2

Experimental Hardware and Software

This chapter introduces the general integration of a MAS, hardware, and software

used for conducting the simulations and experiments in this thesis. To verify

the feasibility of the proposed algorithm, a vision-based affine formation control

method is applied to four TurtleBot mobile robots to complete navigation and

obstacle avoidance tasks.

2.1 TurtleBot3 Mobile Robots

Three TurtleBot3 Burger robots and one TurtleBot3 Waffle robot from the Ad-

vanced Control and Mechatronics Lab at Dalhousie University are used in exper-

iments described in Chapters 4 and 5.

(a) Burger (b) Waffle

Figure 2.1. TurtleBot3 mobile robots [67]

The Burger robot shown in Fig. 2.1(a), is a two-wheel differential drive robot
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Figure 2.5. Jetson Nano developer kit [70]

In order to mount the Intel RealSense depth camera and the Jetson Nano

board to the leader robot, the TurtleBot Waffle shown in Fig. 2.1(b) is modified

from a 2-layer to a 3-layer structure. The original LiDAR sensor is kept on the top

although it is not being used for the experiments conducted in Chapter 5. The

depth camera is firmly mounted via a 3D printed connector on the second level

pointing forward, and the Jetson Nano unit is mounted in-between the second

level and the top level on the back of the robot, as shown in Fig. 2.6. A new

power supply adaptor, an extra battery, and a solid-state drive are integrated to

improve the performance of the Jetson Nano.

Figure 2.6. Modified TurtleBot Waffle with Jetson Nano and Intel RealSense
depth camera













28

where xr and yr represent the position in X and Y directions, θ denotes the robot

orientation, v and ω are the linear and angular velocities of the robot in the

global frame respectively. The positive direction of v is pointing to the front of

the robot and the positive direction of ω is in counterclockwise based on the right

hand rule of yaw control. Assume the mobile robot only moves in the 2D plane

and the wheels do not slip, the dynamic constraints can be ignored. However,

the kinematic model in (3.1.1) is an under-actuated non-holonomic system, the

kinematic constraints are not integrable over the center point and there exist no

smooth static stabilizing controllers [75]. Thus, a low-level control method is

needed to linearize (3.1.1).

3.2 Hand Position Model

Since the differential-drive robot is a non-holonomic system, the formation control

on the mobile robots over the center point cannot be stabilized with continuous

static state feedback as suggested in [76]. To simplify the controller design, Eq.

(3.1.1) has been linearized around a hand position h = [xh, yh] that lies at a

distance L away from the robot center point r = [xr, yr] as shown in Fig. 3.1.

The experiment considers the problem of coordinating the hand positions of the

robots instead of their center positions, as this simplifies the control problem

when the kinematics of the hand position are holonomic for L ̸= 0. For non-

holonomic vehicles: all poses can be achieved in the configuration space, but the

paths to reach them can be complex. Let xri, yri, θi and vi, wi denote the position,

orientation, linear and angular speeds of the ith robot respectively.

The hand position model can be expressed as

[

xhi

yhi

]

=

[

xri

yri

]

+ Li

[

cosθi

sinθi

]

, (3.2.1)

differentiating (3.2.1) with time,

[

ẋhi

ẏhi

]

=

[

cosθi −Lisinθi

sinθi Licosθi

][

vi

wi

]

. (3.2.2)
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Define the global control input velocity vector as

[

ẋhi

ẏhi

]

=

[

uxi

uyi

]

, (3.2.3)

then the relation of actual velocity and the control input becomes

[

vi

wi

]

=

[

cosθi sinθi

− 1
Li
sinθi

1
Li
cosθi

][

uxi

uyi

]

, (3.2.4)

which can be generalized in the frame of a linear state-space equation ẋ = Ax+Bu

with

x =

[

xhi

yhi

]

,u =

[

ux

uy

]

, A =

[

0 0

0 0

]

, B =

[

1 0

0 1

]

.

The kinematic model of the hand position is holonomic, means constraint

limits the motion of the system to a manifold of the configuration space, depending

on the initial conditions. The formation controller in Chapter 4 will be developed

based on the hand position model.

3.3 Obstacle Avoidance

While a mobile robot performs navigation, the path is designed to be efficient.

However, path planners need to know or detect the obstacles in the environment

so the generated path does not lead the robot to collide with the obstacle. Many

methods and algorithms have been developed in past years including the Artificial

Potential Field (APF) algorithm which is applied in this thesis.
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Also suppose the detected obstacle is at (xobs, yobs), the repulsive forces can be

found as:

Frep =















Fx = −β(
xobs

xobs − xr

)2,

Fy = −β(
yobs

yobs − yr
)2.

(3.3.4)

The repulsive force increases inversely proportional to the distance between

the robot and the obstacle. Thus, the closer the robot is to the obstacle, the

greater the repulsive force generated by the obstacle.

The addition of the repulsive and attractive forces allows obtaining an angle

noted θF = atan(Fx, Fy). By a simple comparison of θF with the actual orienta-

tion θ of the robot, the angular velocity ω is as

ω = kw(θM − θ), −π < (θM − θ) < π. (3.3.5)

The values of α, β, and kω are chosen following various tests and simulations [79].

3.4 Control Objective

The control objective is to autonomously navigate a group of mobile robots

through an unknown environment based on the vision sensor of the leaders while

avoiding collisions with different sizes of obstacles maintaining a desired forma-

tion, adapting its formation according to the environment, and finally reaching a

designated goal point efficiently.

In this control objective, the MAS’s primary goal is to navigate through an

unknown environment while maintaining a consensus formation shape. If there

are obstacles in the unknown environment, the MAS should be able to detect

them by using a vision sensor and avoid collision for all the agents. The control

algorithm should be designed to make real-time decisions, adjusting the robots’

formation shape or performing local avoidance to safely and efficiently navigate to

the goal. The detailed formation control algorithm will be presented in Chapter

4.
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of pixels. For example, from Figs. 3.3-3.5, the bottom pixels and the margin

pixels on the side are not showing accurate readings and are noisy. The noise

shows the distance information on the specific pixel is missing so that it appears

to be blacked out on the depth image. Thus, ignoring those data points will

not influence the performance of the camera. Each line of pixels is analyzed

separately in order to measure obstacles at the same height. Thresholds are set

to avoid over-detecting the same obstacle.

In order to transfer the detected obstacle’s coordinates to the MAS’ frame of

reference, the pixel angle of the image was matched with the camera’s Field of

View (FOV) angle to calculate the obstacle’s pose. Consider n as the number of

pixels on the width of the image, and m as the number of pixels on the height

of the image. FOVH corresponds to the value of the angle of the horizontal FOV

of the camera and FOVV corresponds to the vertical FOV. The horizontal angle

corresponding to each pixel of value i can be obtained:

γ =

( n
2
− i
n
2

)

FOVH

2
, (3.5.1)

where the vertical angle can be obtained:

µ = (
j

m
)FOVV . (3.5.2)

The obtained angle γ is the detected obstacle in the local frame of the camera.

With the information on the direct read pixel distance d as shown in Fig. 3.6,

the 2D distance D can be calculated as

D = dcosµ, (3.5.3)

then with the position of the leader, and the orientation θ, the obstacle position

in the global frame can be estimated by the following formula:







xobs = xr +Dcos(γ + θ),

yobs = yr +Dsin(γ + θ).
(3.5.4)
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3.6 Summary

In this chapter, key aspects that are critical to the algorithm have been compre-

hensively addressed. The discussion began with an exploration of the kinematics

of mobile robots, providing a foundational understanding of the robot’s motion

dynamics. In addition, the hand position model outlines its significance in ma-

nipulating the mobile robot effectively.

The section on the obstacle avoidance clarified the challenges and strategies

associated with navigating the MAS in an unknown environment, as the desired

results from the control objectives and evaluating the proposed control algorithm

at the same time.

Finally, the chapter concluded with an exploration of vision-aided obstacle

detection, showing the visual data in enhancing the robot’s perception capabil-

ities. This overview not only formulates the problem but also establishes the

groundwork for the proposed solution and conducts experiments to address these

challenges.



Chapter 4

Multi-Robot Affine Formation Control

In this Chapter, theories of the applied affine formation control and simulation

studies are introduced. In [66], the proposed affine formation controllers are

model-based with limited simulations and tests conducted. In [17], the affine for-

mation control has been studied on multiple quadcopters and some work has been

studied on multiple unicycle-modeled mobile robots as in [80]. In order to verify

the robustness of the affine formation controllers proposed in [66], simulations

are essential to conduct before applying to experiments with modified controllers,

further modifications are made to adapt specific tasks.

4.1 Preliminaries

4.1.1 Graph Theory and Affine Span

Consider a team of n robots in R
d, where d ≥ 2 and n ≥ d + 1. Let pi ∈ R

d

be the ith agent’s position and p = [p1, p2, p3...pn] ∈ R
dn be the corresponding

configuration, d can be considered as the dimension or the degree of freedom. In

this thesis, the MAS control problem is focused on mobile robots that can only

move in the x− y plane, therefore d = 2. If the MAS control problem is applied

to aerial vehicles, then d = 3 [17].

A fixed graph G=(V , E) describes the information flow inside the MAS, where

V=1, 2, 3...n means the vertex set and E ⊂ V×V means the edge set. If the

ith agent accesses the jth agent’s information, then it can be regarded as Edge

(i, j) ∈ E . In the graph G, the neighbors of the ith vertex are denoted by Ni={j ∈

V : (i, j) ∈ E}. In this thesis, the underlying graphs are assumed as undirected,

which means the edges are bidirectional, i.e. (i, j) ∈ E implies (j, i) ∈ E . Thus

the undirected graph can be treated as a graph with a sequence of ordered edges

from Node i1 to ik. A graph has a directed spanning tree if it contains at least
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The orientated incidence matrix is given as

H =

Node 1 Node 2 Node 3












E1 −1 1 0

E2 −1 0 1

E3 0 −1 1

, (4.1.2)

and the Laplacian matrix can be obtained as

L =
1

2
HTH =









2 −1 −1

−1 2 −1

−1 −1 2









. (4.1.3)

4.1.3 Kronecker Product

For two matrices, A ∈ R
m×n, B ∈ R

p×q, the kronecker product of A and B is

denoted by A⊗ B with a result of a mp× nq matrix, defined as

A⊗ B =















a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
. . .

...

am1B am2B · · · amnB















. (4.1.4)

The Kronecker product satisfies the following calculation rules [82]:

(A⊗ B)−1 = A−1 ⊗ B−1

(A⊗ B)T = AT ⊗ BT

(kA)⊗ B = A⊗ (kB) = k(A⊗ B)

(A+B)⊗ C = A⊗ C +B ⊗ C

A⊗ (B ⊗ C) = (A× B)⊗ C

(A⊗ B)(C ⊗D) = (AC)⊗ (BD),

where k is a constant. The first rule holds if and only if both matrices A and B

are invertible. The above properties will be frequently used in this thesis.
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4.1.4 Stress Matrix

Consider a defined formation as (G, p), where G(V , E) is the associated graph and

the vertex i has the position pi. Define a constant vector r=[r1, r2, r3...rn]∈ R
2n

as the nominal configuration. Then, the associated (G, r) can be defined as the

nominal formation. In the formation (G, p), all the edges of G are assigned to a

set of scalars {wij ∈ R : wij = wji}(i,j)∈E , can be positive, negative, or zero in a

stress matrix. A stress matrix satisfies an equilibrium:

∑

j∈Ni

wij(pj − pi) = 0, i ∈ V , (4.1.5)

where the vector wij(pj − pi) represents the force applied on Agent i by Agent j

through Edge (i, j). An attracting force is wij > 0 along Edge (i, j), otherwise

a repelling force when wij < 0. Thus, Eq. (4.1.5) means that the forces applied

on Agent i by neighboring agents j ∈ Ni are balanced. Note the equilibrium

stresses can only be determined up to a scalar factor. The above equation can be

expressed in a matrix form as:

(Ω⊗ Id)p = 0, (4.1.6)

where Ω ∈ R
n×n is the stress matrix, which satisfying

[Ω]ij =



























0, i ̸= j, (i, j) /∈ E ,

− ωij, i ̸= j, (i, j) ∈ E ,
∑

k∈Ni

wik, i = j.

(4.1.7)

The stress matrix and graph Laplacian matrices have similar structures. The

difference is that the stress matrix edge weights can be positive, negative, or zero,

while the graph Laplacian matrix edge weights are usually positive [66]. The

stress matrix needs to be found ahead using the Linear Matrix Inequalities (LMI)

toolbox solver in MATLAB.

According to Eq. (4.1.6), denote Ω̄ = Ω ⊗ Id for simplicity. Then the stress

matrix could be partitioned according to the partition of leaders and followers as

Ω̄ =

[

Ω̄ll Ω̄lf

Ω̄fl Ω̄ff

]

. (4.1.8)



40

Lemma 1: (Generic universal rigidity): Given an undirected graph G and a

generic configuration p, formation G, p is universally rigid if and only if there exists

a stress matrix Ω such that Ω is positive semi-definite and rank(Ω)=n− d− 1.

4.1.5 Target Formation

The time-varying configuration of the target formation has the form of

p∗(t) = [In ⊗ A(t)]r + 1n ⊗ b(t), (4.1.9)

where r is the constant configuration, and A(t) ∈ R
d×d and b(t) ∈ R

d are con-

tinuous of t [66]. The desired position of Agent i ∈ V in the target formation is

p∗i (t) = A(t)ri + b(t). With the notion of the target formation, the control prob-

lem to be solved in this thesis becomes controlling the group of agents to track

the time-varying target configuration so that p(t) → p∗(t) as t → ∞. A trivial

control strategy to solve this problem is to let each agent know A(t), b(t), and ri

so that each agent can track its individual reference trajectory. The disadvantage

of the strategy is that it requires A(t), b(t) for all t to be specified in advance and

stored on each agent, which is impractical because the information is not able to

dynamically respond to unexpected situations such as unexpected obstacles [66].

In order to achieve the target formation in a distributed manner, the leader-

follower strategy is adopted. The desired formation maneuvers are merely known

by a limited number of agents as leaders, and other agents as followers which only

need to follow the motion of the leaders. The affine transformation of the entire

formation is achieved by controlling the positions of the leaders. Because the num-

ber of leaders is small while testing the formation control law, no specific design

coordination for the leaders and simply assume that leaders are being controlled

properly. In experiments, the leaders will be controlled by high-level navigation

and obstacle detection algorithms and other intelligent decision-making programs.

Suppose the position of each leader is equal to the desired value in the target for-

mation, i.e. pl(t) = p∗l (t) for all t. Then, the control objective becomes steering

the followers such that pf (t) → p∗f (t) as t → ∞. The tracking error can be defined

as [66]:

δpf (t) = pf (t)− p∗f (t) = pf (t) + Ω̄−1
ff Ω̄flp

∗
f (t). (4.1.10)
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for Fig. 4.2 is designed as

r1 =

[

0

2(sin2π
5
+ sinπ

5
)

]

, r2 =

[

−1− 2cos2π
5

2sin2π
5

]

,

r3 =

[

1 + 2cos2π
5

2sin2π
5

]

, r4 =

[

−1

0

]

, r5 =

[

1

0

]

.

Thus, according to the oriented incidence matrix introduced in Section. 4.1.2, the

incidence matrix for this formation is

H =

Node 1 Node 2 Node 3 Node 4 Node 5




































































E1 −1 1 0 0 0

E2 −1 0 1 0 0

E3 −1 0 0 1 0

E4 −1 0 0 0 1

E5 0 −1 1 0 0

E6 0 −1 0 1 0

E7 0 0 −1 0 1

E8 0 0 0 −1 1

. (4.2.1)

The normalized equilibrium stress vector for edges ϵ1, ..., ϵ8 can be computed

in MATLAB as

ω = [0.5283 0.5283 − 0.2018 − 0.2018 − 0.3265 0.3265 0.3265 0.2018],

and the corresponding stress matrix is

Ω =





















0.6530 −0.5283 −0.5283 0.2018 0.2018

−0.5283 0.5283 0.3265 −0.3265 0

−0.5283 0.3265 0.5283 0 −0.3265

0.2018 −0.3265 0 0.3265 −0.2018

0.2018 0 −0.3265 −0.2018 0.3265





















, (4.2.2)

which is the same as the results from [80] that uses the same nominal configuration

design.
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4.2.1 CASE I: Stationary Leaders

The first case is the simplest case where the leaders are stationary which means

the target formation is also stationary, i.e., ṗi = 0 for i ∈ Vl. The affine formation

problem can be solved by the following control law[66]:

ṗi = −
∑

j∈Ni

wij(pi − pj), i ∈ Vf . (4.2.3)

The matrix-vector form of (4.2.3) for followers is:

ṗf = −Ω̄ffpf − Ω̄flp
∗
l = −Ω̄ffδpf . (4.2.4)

If leader velocities are constantly zero, ṗ∗l (t) = 0, the tracking error δpf (t) under

the control law in Eq. (4.2.3) converges to zero globally and exponentially fast.

Substituting Eq. (4.2.4) into δ̇pf from Eq. (4.1.10):

δ̇pf = ṗf (t) + Ω̄flṗ
∗
l = −Ω̄ffδpf + Ω̄flṗ

∗
l . (4.2.5)

Since ṗ∗l = 0, the tracking error δpf is globally and exponentially stable when

Ω̄ff is non-singular[66]. If the leaders’ velocities are not identically zero, the

velocities can be viewed as disturbances of the system and can cause non-zero

tracking errors. However, since the control law is linear, the tracking error would

also be small. Because Eq. (4.2.4) can be rewritten as ṗf = −Ω̄ffδpf , it can be

viewed as a gradient-decent control law for the Lyapunov function:

V =
1

2
δTpf Ω̄ffδpf . (4.2.6)

By conducting the time derivative of V and using Eq. (4.2.5),

V̇ = δTpf Ω̄δ̇pf

= δTpf Ω̄(−Ω̄ffδpf + Ω̄flṗ
∗
l )

= δTpf Ω̄(−Ω̄ffδpf ) ≤ 0. (4.2.7)

4.2.2 CASE I: Simulation Results

Two scenarios are conducted under Case I. First, assume all the leaders are in

the desired position and check whether the followers can achieve the consensus.
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Figure 4.3. Case 1-Scenario 1: Stationary leaders in target positions
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Figure 4.4. Case 1-Scenario 1: l2 norm of the formation error
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As shown in Fig. 4.3, three leaders stay stationary in the desired formation

as defined in the nominal configuration, and the two followers start outside of

the target formation. The simulation results demonstrate that followers can find

their consensus from the initial position to the final position and form the desired

target formation. To evaluate the performance of the controller, since there are

two follower robots in this simulation, the l2 norm of formation errors is defined

as

l2 =
√

e24 + e25, (4.2.8)

where e4 and e5 is the absolute distance error between the actual position to the

desired position of Robot 4 and Robot 5. The l2 norm will be used to evaluate

all other controllers in this chapter. The l2 norm error reduces to zero within 50s

as shown in Fig. 4.4. The control profile for both followers in this case is shown

in Fig. 4.5.
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Figure 4.5. Case 1-Scenario 1: Followers’ control profiles

For the second scenario, the leaders stay in an arbitrary position which forms

an imperfect pentagon shape from the nominal configuration,r1 = [4, 2], r2 =

[2, 2], r3 = [4, 0], as shown in Fig. 4.6. The simulation shows the followers are

able to join the leaders under the control law in Eq. (4.2.3) to form the real-time

formation.
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Figure 4.6. Case 1-Scenario 2: Stationary leaders in arbitrary positions
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Figure 4.7. Case 1-Scenario 2: l2 norm of the formation error
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Figure 4.8. Case 1-Scenario 2: Followers’ control profiles

Because the leaders’ position is not symmetrical compared with the first sce-

nario, the l2 norm starts at a larger value as both followers’ initial positions are

further from the desired position compared with Scenario 1. However, the control

law in Eq. (4.2.3) still be able to track the error to zero within 50s and result in

stable control efforts, as shown in Figs. 4.7-4.8.

4.2.3 CASE II: Leaders with Constant Velocity Motion

The second case allows leaders to move with constant nonzero velocities, the

control law in Eq. (4.2.3) is not able to guarantee zero tracking errors. Therefore,

an additional integral term is added, as proposed in the following proportional-

integral (PI) control law [66]:

u = ṗi = −α
∑

j∈Ni

wij(pi − pj)− β

∫ t

0

∑

j∈Ni

wij(pi(τ)− pj(τ))dτ, i ∈ Vf , (4.2.9)

where α and β are positive constant control gains. The control law in Eq. (4.2.9)

does not require additional measurements compared to Eq. (4.2.3). By defining
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a new state for the integral term, the control law Eq. (4.2.9) can be rewritten as:

ṗi = −α
∑

j∈Ni

wij(pi − pj)− βξi,

ξ̇i =
∑

j∈Ni

wij(pi − pj), i ∈ Vf .
(4.2.10)

The matrix-vector form of (4.2.10) is :

ṗf = −αΩ̄ffpf − αΩ̄flp
∗
l − βξ,

ξ̇ = Ω̄ffpf + Ω̄flp
∗
l .

(4.2.11)

In this case, the leaders’ velocities ṗ∗l (t) are constant, then the tracking er-

ror δpf (t) under the action of control law (4.2.9) converges to zero globally and

exponentially.

Substituting the control law (4.2.10) into the error dynamics (4.1.10) gives

δ̇pf = ṗf + Ω̄−1
ff Ω̄flṗ

∗
l

= −αΩ̄ffpf − αΩ̄flp
∗
l − βξ + Ω̄−1

ff Ω̄flṗ
∗
l

= −αΩ̄ffδpf − βξ + Ω̄−1
ff Ω̄flṗ

∗
l , (4.2.12)

which can be written as
[

δ̇pf

ξ̇

]

=

[

−αΩ̄ff −βIdnf

Ω̄ff 0

][

δpf

ξ

]

+

[

Ω̄−1
ff Ω̄fl

0

]

ṗ∗l . (4.2.13)

Suppose λ is the eigenvalue of the state matrix in (4.2.10), according to [83],

it can be obtained as

det(

[

λI + αΩ̄ff βI

−Ω̄ff λI

]

) = detλ2I + αλΩ̄ff + βΩ̄ff

= det((αλ+ β)(
λ2I

αλ+ β
+ Ω̄ff )) = 0. (4.2.14)

Suppose σ is the eigenvalue of Ω̄ff . Since Ω̄ff is symmetric positive definite,

σ > 0. According to Eq. (4.2.14), the results shows that

λ =
−β

α
< 0, or

λ2

αλ+ β
= −σ. (4.2.15)

As a result, the error dynamics is stable and the steady state satisfies [66],
[

−αΩ̄ff −βIdnf

Ω̄ff 0

][

δpf (∞)

ξ(∞)

]

+

[

Ω̄−1
ff Ω̄fl

0

]

ṗ∗l = 0, (4.2.16)

which follows that δpf (∞) = 0.
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4.2.4 CASE II: Simulation Results

When all agents start at the desired target formation, a constant leader velocity

is applied as






xvl = 0.1,

yvl = 0.1.
(4.2.17)
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Figure 4.9. Case 2-Scenario 1: Leader with constant velocity (followers in initial
desired formation, α = 10, β = 1.5)

As shown in Fig. 4.9, when all robots are in the desired formation, and the

leaders are moving with constant velocities, the followers can maintain target

formation under the control law in Eq. (4.2.9).
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Figure 4.10. Case 2-Scenario 1: l2 norm of the formation error

The l2 norm can be tracked to zero within 10s as shown in Fig. 4.10.
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Figure 4.11. Case 2-Scenario 1: Followers’ control profiles

Since the leaders’ velocities are defined as Eq. (4.2.17), the control law in Eq.

(4.2.9) is able to track followers’ velocities to 0.1m/s, as shown in Fig. 4.9. Two

followers track leaders’ velocities while maintaining the formation successfully.
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Figure 4.12. Case 2-Scenario 2: Leader with constant velocity (the followers are
not in their initial desired formation, α = 10, β = 1.5)

Another scenario to verify the control law would be to let followers starts

outside of the target formation, starting at r4 = [−1, 1], r5 = [−1,−1] shown in

Fig. 4.12.

Although, from the simulation results, the followers are able to join with the

moving leaders in an approaching style and stay in the target formation, the

path or the velocity control is not feasible. As shown in Fig. 4.12, the followers’

movement become wiggling while moving along with the team, shows that the

initial velocity input for followers while joining the formation makes the control

law in Eq. (4.2.9) not stable. As in Eq. (4.2.9), the two constants α = 10 and

β = 1.5 are applied to Scenario 1, which is not optimized for Scenario 2 to lower

the disturbances caused by the followers’ initial velocities when joined the target

formation. However, finding the best control gain or optimizing the PI controller

is not in the scope of the simulations. Thus, an extra control gain term or another

control gain could be applied to improve the performance. As this scenario would
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not be applicable in this thesis, further optimization is not discussed.

4.2.5 CASE III: Leaders with Time-varying Velocity Motion

As in real-life applications, the leader velocities cannot be constant all the time.

When the leader velocities are time-varying, the PI control law in Eq. (4.2.9) is

not able to ensure zero tracking errors. In order to solve this time-varying case,

the following control law that requires the velocity feedback is proposed based on

[66] with a gain term Q introduced as the formation control novelty to improve

the performance as the previous case did poorly on the velocity control:

ṗi = −
Q

γi

∑

j∈Ni

wij[(pi − pj)− ṗj], i ∈ Vf , (4.2.18)

where γi =
∑

j∈Ni
wij. The non-singularity of γi is guaranteed by the affine

localizability. Based on the previous definition on the formation stress matrices,

γi = [Ω]ii, and all Ωff is positive definite because all the diagonal entries are

positive, γi > 0 for all i ∈ Vf .

Thus, if the leader velocity ṗl(t) is time-varying and continuous, then the

tracking error δpf (t) under the action of control law in Eq. (4.2.18) converges to

zero globally and exponentially fast. Multiplying γi on both sides of Eq. (4.2.18)

and omit the constant term Q:

∑

j∈Ni

wij(ṗi − ṗj) = −
∑

j∈Ni

wij(pi − pj), i ∈ Vf . (4.2.19)

Now denote ϵi =
∑

j∈Ni
wij(pi − pj), Eq. (4.2.19) can be written as ϵ̇i = −ϵi,

which shows that ϵi converges to zero globally and exponentially fast. If ϵi = 0

for all i ∈ Vf , then −Ω̄ffpf − Ω̄flp
∗
l = 0, which means Ω̄ffδpf = 0 ⇒ δpf = 0.
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4.2.6 CASE III: Simulation Results

This case is conducted in two scenarios to test the controller in Eq. (4.2.18). The

first scenario is a simple case for time-varying leader velocities that is defined by







xvl = 0.1cos(t/200),

yvl = 0.1sin(t/200),
(4.2.20)

which allows the leaders to steer in a curvature path within a short period of

time (100s). The followers start in the same position as in Case 2-Scenario 2 with

an offset from the nominal configuration. The simulation result is shown in Fig.

4.13.

0 2 4 6

-2

-1

0

1

2

3

4

5

6

7

Initial

Final

Leader R1

Leader R2

Leader R3

Follower R4

Follower R5

Figure 4.13. Case 3-Scenario 1: Simulation result of time-varying leader velocities

The two followers under the control law in Eq. (4.2.18) can track leaders’

velocities while joining and maintaining the desired pentagon formation.
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Figure 4.14. Case 3-Scenario 1: l2 norm of the formation error

Although the follower robots do not initially stay in the target formation, they

can track their position error to zero using about 12s, as shown in Fig. 4.14.
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Figure 4.15. Case 3-Scenario 1: Simulation result of Robot 4 control error

Since the leaders’ velocities are defined as in Eq. (4.2.20), the control law

in Eq. (4.2.18) is able to track the control effort and results in zero velocity
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difference in both x and y directions.

In addition, changing the target formation in order to overcome different en-

vironments, another scenario of scaling is conducted. As shown in Fig. 4.16.
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Figure 4.16. Case 3-Scenario 2: Simulation result of the formation change

4.3 Summary

In conclusion, the proposed and designed controllers through simulations have

confirmed the effectiveness of control strategies in achieving the desired forma-

tion control of MAS. The simulation results have provided compelling evidence

that the controllers not only meet the specified performance but also adapted

to different navigation scenarios with reliability and robustness. As the affine

formation controller in Eq. (4.2.18) is feasible to apply on a real-world MAS, ex-

periments of combining obstacle detection and avoidance with formation control

are ready to be performed.
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not true for real-world applications. Thus, virtual leaders are designed to achieve

the formation decisions and Robot 2 and Robot 3 become followers as they are

tracking the positions of virtual Leader 2 and virtual Leader 3 with obstacle

avoidance. Table. 5.1 shows the nominal configuration {ri}
5
i=1.

Table 5.1. Diamond shape formation configuration

Agent x y
Robot 1 0 0.5
Robot 2 -0.5 0
Robot 3 0.5 0
Robot 4 0 -0.5

As in the configuration shown in Fig. 5.1, Edges E1, .., E6 define the nodes being

neighbors with each other. The incidence matrix H ∈ R
6×4 for this formation is

H =

robot 1 robot 2 robot 3 robot 4
















































E1 −1 1 0 0

E2 −1 0 1 0

E3 0 −1 1 0

E4 −1 0 0 1

E5 0 −1 0 1

E6 0 0 −1 1

, (5.0.1)

where “−1” means the robot is sending information on the edge, “1” denotes the

robot is receiving information on the edge and “0” means the robot is not on this

edge. Using the LMI solvers toolbox in MATLAB [84], the normalized equilibrium

stress vector for edges can be computed based on the nominal configuration and

the corresponding stress matrix is

Ω =















0 −0.4083 −0.4083 0.4083

−0.4083 0 0.4083 −0.4083

−0.4083 0.4083 0 −0.4083

0.4083 −0.4083 −0.4083 0















. (5.0.2)

During the experiments, the virtual leaders are commanded to stay behind

the leader robot based on the configuration in Table. 5.1, to maintain a rigid
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Figure 5.7. Experimental task 2: Narrow gap passing experimental results

In Fig. 5.7, follower Robot 4 adapted both configurations well without running

out of formation. In Fig. 5.6, the robots are not perfectly staying in the formation

because of the error between the actual encoder with the ROS messages. The

reasons could be the motor performance and/or wheels’ friction difference. Since

the controller was running on the ROS data, Fig. 5.7 demonstrates the proposed

algorithm functions as expected. The video of Task I and Task II are shown as

in the video of the experiment: https://youtu.be/it1l3p-nODU.

5.3 TASK III: Leader Obstacle Avoidance

The third task mainly focused on the obstacle avoidance part of the algorithm.

In this task, three scenarios are set up for the leader robot to perform obstacle

avoidance. The first scenario is to set two regular boxes in the environment to

test the feasibility of the proposed algorithm. The snapshots of the experiment

result are shown in Fig. 5.8.
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Figure 5.9. Experimental task 3-scenario 1: Two obstacles detection and avoid-
ance

Robot 1 with the depth camera is able to detect multiple obstacles in the

unknown environment and apply the algorithm proposed in Fig. 5.2 to avoid

both obstacles with the APF, resulting in a smooth path from the start point to

the goal point.

However, it is worth mentioning that no external position feedback of state

during all the experiments. The leaders’ pose deviates from the calculated state

due to hardware error and human error from the beginning, which accumulates

through the experiments. As the robots’ actual position is not aligned with the

shared states, the detected obstacles’ position could be shifted from its actual

position, causing collisions for other robots. For this thesis experiment, thresholds

are assigned to estimated obstacles’ positions to compensate. The deviation could

be seen in both task 1 and 2 experimental results.

The second scenario is to set a low-profile box that is significantly shorter than

the robot in the environment. The snapshots of the experiment result are shown

in Fig. 5.10. From Fig. 5.11, the robot is able to detect the low-profile box as an

obstacle and avoid it using the proposed algorithm.
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The third scenario is to set an overhead obstacle such as a desk on the path

of the robot. The snapshots of the experiment result are shown in Fig. 5.12.
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Figure 5.13. Experimental task 3-scenario 3: Overhead obstacle detection and
avoidance

From Fig. 5.13, the robot is able to detect the desk overhead as an obstacle

and avoid it using the proposed algorithm. Note the robot took a different path

than Scenario 1 and Scenario 2, which shows the proposed obstacle avoidance

algorithm is able to navigate through most environments.

5.4 TASK IV: Affine Formation Obstacle Avoidance

After both affine formation control and the depth camera obstacle detection ex-

periments are successful, the last task is to deliver both functions for the MAS.

In this task, Robots 1, 2, and 3 are applying the APF avoidance algorithm be-

cause they are playing the leader role although Robot 2 and Robot 3 only chasing

the virtual leaders’ position. Robot 4 is only under the affine formation control

because of the lack of information and ability to sense the environment.
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Figure 5.15. Experimental task 4: Obstacle avoidance with affine formation con-
trol

From Fig. 5.15, Robot 4 maintains the formation while other robots know how

to avoid the obstacle detected by the depth camera. The formation is distorted at

the end of the navigation because the leader detects the curtain on the edge of the

testing area, applying a repulsive force from the APF algorithms and providing a

pushing signal against the moving directions of Robot 2 and Robot 3.

5.5 Summary

In this chapter, the core experimental tasks focused on goal point navigation,

maneuvering through confined paths, obstacle sensing and evasion, as well as

maintaining precise formation using affine formation control techniques. The

proposed algorithm proved its capability to accurately guide the robots to prede-

termined targets. In the challenging task of navigating through narrow gaps, the

algorithm demonstrated adaptability by successfully adjusting the formation to

pass through without collisions. This aspect of the experimentation highlighted

the flexibility and spatial awareness integrated into the robot team.
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When confronted with unexpected obstacles, the algorithm efficiently pro-

cessed environmental data to dynamically steer the robots away from potential

impacts, ensuring safe traversal and consistent formation integrity. This feature

was particularly indicative of the robustness of the obstacle detection and avoid-

ance mechanism programmed within the algorithm.

Additionally, the robots’ performance in maintaining the diamond shape showed

a high level of precision in position control, which is critical for operations that

demand strict adherence to formation shapes.

In summary, the extensive experimental results not only validate the efficacy

of the proposed algorithm in achieving the required tasks but also demonstrate

its potential for practical usage in various real-world applications that necessitate

autonomous coordinated robot teams.



Chapter 6

Conclusions and Future Research

This chapter provides a summary of the work presented in this thesis and proposes

potential research areas that expand upon the concept of vision-aided for MASs

formation control.

6.1 Conclusions

The first part of this thesis introduces the idea of the MAS formation problem

and introduces the design and development of an advanced intelligent formation

controller employing an affine formation controller. The improved formation con-

troller is verified through a simulation environment and real-world experiments.

The second area of the study concentrates on the establishment of an innova-

tive obstacle avoidance strategy using a depth camera. The strategy is centered

on the application of affine formation shift and the APF algorithm. This enables

the MAS to not just detect the obstacles in an unknown environment, but also

make decisions based on the types of obstacles. The use of a depth camera over-

comes the disadvantage of traditional range sensors, which provide more accurate

data while maintaining a lower cost.

In conclusion, this thesis presented a practical and effective application for

MAS navigation and formation control based on a depth camera. The proposed

avoidance controller successfully guides robots to reach their goal point while

navigating in an unknown environment. The vision-aided navigation with affine

formation control can be extended to any type and number of mobile robots with

one leader equipped with the depth camera, it is an advanced system showcasing

its potential for enhancing the capabilities of MASs in various applications.
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6.2 Future Work

In the future, different formation control methods are required for MASs to per-

form even more changeling tasks, such as scaling formation or rotating formation.

More followers could be included showcasing the advantage of affine formation

controller being centralized controlled. Motion capture systems could also be ap-

plied to perform an external calibration for the robots’ states. Further parameters

could be detailed and tuned to improve performances. Since the system applied

a depth camera, other advanced image processes could be embedded in order to

gain extra information, for example, using the You Only Look Once (YOLO)

algorithm to detect certain objects and allow the leader to make mature forma-

tion strategies. Machine learning could also be used to help the decision-making

progress whether online or offline obstacle detection. The objective of future re-

search is to propose a novel method for MAS to complete challenging tasks in a

dynamic environment with other moving mobile robots or moving humans.
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