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Abstract

We conduct an experimental study on the range mode problem. In the exact version

of the problem, we preprocess an array A, such that given a query range [a, b], the

most frequent element in A[a, b] can be found efficiently. For this problem, our most

important finding is that the strategy of using succinct data structures to encode

more precomputed information not only helped Chan et al. (Linear-space data struc-

tures for range mode query in arrays, Theory of Computing Systems, 2013) improve

previous results in theory but also helps us achieve the best time/space tradeoff in

practice; we even go a step further to replace more components in the solution of

Chan et al. with succinct data structures. In the approximate version of this prob-

lem, a (1+ ϵ)-approximate range mode query looks for an element whose occurrences

in A[a, b] is at least Fa,b/(1 + ϵ), where Fa,b is the frequency of the mode in A[a, b].

We implement all previous solutions to this problems and find that, even when ϵ = 1
2
,

the average approximation ratio of these solutions is close to 1 in practice, while pro-

viding much faster query time than the best exact solution. Among these solutions,

El-Zein et al. (On Approximate Range Mode and Range Selection, 30th International

Symposium on Algorithms and Computation, 2019) provide us with one solution that

takes only 35.6% ∼ 93.8% space cost of the input array of 32-bit integers (in most

cases, the space cost is closer to the lower end). Its non-succinct version also stands

out with query support at least several times faster than other O(n
ε
)-word structures

while using only slightly more space in practice.
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Chapter 1

Introduction

The mode, or the most frequent element, in a dataset is a widely used descriptive

statistic. In the range mode query problem, we preprocess an array A of length n,

such that, given a query range [a, b], the mode in A[a..b] can be computed efficiently.

This problem has many applications in data analytics and retrieval. For example,

an online shopping platform may be interested in finding out the most popular item

purchased by customers over a certain period, which can be modeled as a range mode

query over the sales records in its database.

The range mode problem is also connected to the matrix multiplication problem.

It has been shown that the problem of multiplying two
√
n ×

√
n Boolean matrices

can be reduced to the problem of answering n range mode queries in an array of

length O(n) [5]. This reduction provides a conditional lower bound showing that,

with current knowledge, the time required to preprocess an array and answer n range

mode queries over it must be at least O(nω/2), save for polylogarithmic speedups,

where ω < 2.3727 is the best exponent in the matrix multiplication [27]. To further

speed up queries, researchers further define the (1+ε)-approximate range mode query

problem, where ϵ ∈ (0, 1). Given a query range [a, b], let Fa,b denote the frequency

of the mode in A[a, b]. A (1 + ε)-approximate range mode query then asks for an

element whose occurrences in A[a, b] is at least Fa,b/(1 + ϵ).

Due to the importance in both theory and practice, exact and approximate range

mode problems have been studied extensively [19, 24, 5, 4, 15, 10, 11, 28, 26, 16],

and many efficient solutions have been designed. Despite these efforts, there have

not been any published experimental studies on them. Hence, to connect theory to

practice, we conduct an empirical study of both exact and approximate range mode

structures using large practical datasets.

1
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1.1 Related Work

Krizanc et al. [19] first considered the exact range mode problem and introduced an

O(n+ s2)-word solution with O((n/s) lg n) query time for any s ∈ [1, n], and setting

s =
√
n yields a linear space solution withO(

√
n lg n) query time. They also presented

another solution with constant query time and O(n2 lg lg n/ lg n) words of space cost.

Later Petersen et al. [24] proposed an O(n2 lg lg n/ lg2 n)-word structure with constant

query time. Chan et al. [5] further improved the time-space tradeoff of Krizanc et al.

by designing an O(n+s2/w)-word data structure with O(n/s) query time, where w is

the number of bits in a word. This result implies a linear space solution in words with

O(
√
n/w) query time. They also proved a conditional lower bound by showing that

the multiplication of two
√
n×

√
n Boolean matrices can be performed by answering n

range mode queries in an array of length O(n). Therefore, any range mode structure

requires either O(nω/2) preprocessing time or O(nω/2−1) query time in the worst

case, where ω is the matrix multiplication exponent. Since the current best matrix

multiplication algorithm requires O(n2.3727) time [27], this implies that, with current

knowledge, any data structure for range mode uses either Ω(n1.18635) preprocessing

time or Ω(n0.18635) query time. Furthermore, since the running time of the best

combinatorial algorithm for Boolean matrix multiplication is only a polylogarithmic

factor best than cubic [2], we cannot use pure combinatorial approaches to design

range mode structures that have preprocessing time lower than Ω(n3/2) and query

time less than Ω(
√
n) simultaneously, save for polylogarithmic speedups.

Regarding the (1 + ε)-approximate range mode problem, Bose et al. [4] first used

persistent search trees to design a solution with O(lg lg n+lg 1
ε
) query time and O(n

ε
)

words of space. Greve et al. [15] provided another structure with O(lg 1
ε
) query time

and O(n
ε
) words of space, and they used succinct data structures in their solution.

More recently, El-Zein et al. [10] designed an encoding data structure occupying only

O(n
ε
) bits of space, and without requiring access to the original array, it can also

report the position of a (1+ ε)-approximate range mode in the array in O(lg 1
ε
) time.

Chan et al. [5] also considered the dynamic range mode query problem, in which

updates to the arrays are supported. They designed a linear-word structure that an-

swers queries in O(n3/4 lg n/ lg lg n) time and supports updates in O(n3/4 lg lg n) time.

When more space is allowed, they have another tradeoff that has O(n2/3 lg n/ lg lg n)
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query time, O(n2/3 lg n/ lg lg n) update time and O(n4/3) words of space cost. Later,

El-Zein et al. [11] improved these results by designing an O(n)-word structure with

O(n2/3) query and update times. More recently, researchers considered the problem of

answering a batch of range mode queries given offline, and used algebraic approaches

such as min-plus product of matrices to speed up query processing [28, 16]. With

global rebuilding, this idea has been further developed to improve dynamic range

mode [26, 16], achieving O(n0.6524) query and update times, albeit at a space cost of

O(n1.3262). There has also been research on the dynamic approximate range mode

query problem [10], as well as range mode in higher dimensions [5, 10].

1.2 Our Work

We first study the performance of those exact range mode structures that use linear

space; the solutions that are left out use near quadratic space which are often not

affordable in practice. Much of our study on exact range mode focuses on the follow-

ing two data structures of Chan et al. [5]: a simple linear word structure with O(
√
n)

query time, and a linear word structure with O(
√

n/w) query Time, where w is the

number of bits in a word. They both outperform other solutions, and the latter, which

is their final structure, essentially combines the former with succinct data structures

to encode more procomputed information. However, in practice, constant-time op-

erations over succinct data structures are usually slower than those operations over

their non-succinct counterparts, so we compare the performance of different tradeoffs

of both structures (they both take parameters to achieve time/space tradeoffs) to see

whether the use of succinct data structures improves performance in practice. Our

experimental results show that, when the same amount of space is used, the latter ap-

proach indeed provides much faster query support than the former. This is because,

in the query algorithm, only a constant number of succinct data structure operations

are performed, and their execution time is dominated by other steps of the algorithm

which require about O(
√
n) time.

Encouraged by this observation, we further use succinct data structures to swap

out more structures in the final solution of Chan et al. Experimental studies show

that our variant of their structure achieves even better time/space tradeoffs, and

the improvement is significant when the space cost needs to be reasonable for large
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datasets, e.g., limited to under ten times the storage cost of the input array.

Regarding (1+ ϵ)-approximate range mode, we mainly focus on solutions by Bose

et al. [4], Greve et al. [15] and El-Zein et al. [11], as well as a non-succinct version

of the O(n
ε
)-bit encoding structure of El-Zein et al. [11] which stores the sequences

they encode succinctly in plain arrays instead. When setting ϵ = 1/2, all these data

structures provide much faster query time than the best exact solution (which already

answers a query in microseconds), and the average approximation ratio of the answers

is between 1.00001 and 1.02630. They also typically use less than 5n words of space,

and thus they are excellent solutions to applications for which high average qualify

of answers is sufficient. When encoded using compressed bit vectors, the space cost

of the succinct encoding structure of El-Zein et al. [11] is only 35.6% ∼ 93.8% of

the input array of 32-bit integers (in most cases, the space cost is closer to the lower

end, and the average space cost is 20.2 bits per symbol among all datasets). Its non-

succinct version also stands out with query support at least several times faster than

other O(n
ε
)-word structures while using only slightly more space in practice. When

decreasing the value of ϵ, we find the query times of these solutions increase at a

logarithmic rate, but the space costs tend to be proportional to 1/ϵ. Hence, when a

very small value of ϵ is desired, the best exact solution may be more viable instead.

1.3 Organization

The rest of the thesis is organised as follows. In Chapter 2, we introduce notation and

machine model, as well as some key structures used in the design of the data structures

for range mode. Chapter 3 describes the exact range mode data structures and

approximate range mode data structures that we study in this thesis. An experimental

study of these data structures is presented in Chapter 4. Chapter 5 presents our

conclusion and possible future work.



Chapter 2

Preliminaries

This chapter includes the notation, the machine model and the succinct representa-

tions of bit vectors which is used as building blocks of some range mode structures.

2.1 Notation

Input array. We assume that the input is an array A[1..n] of integers from {1, 2, . . .,
∆}, where ∆ ≤ n.

Zeroth-order empirical entropy. We use the zeroth-order empirical entropy to

evaluate the compactness of data structures. Assume we have one string or sequence

S[1..n], and we use fx to represent the frequency of each symbol x ∈ {1, 2, . . . ,∆} in

S. The zeroth-order empirical entropy of S is then defined as H0(S) =
∑∆

x=1
fx
n
log n

fx
.

2.2 Machine Model

The model used in this thesis is the word RAM model. The key character of this

model is that it allows random access to one single word and can perform operations

(such as bitwise operations) on it. Under the word RAM model, if the input array

is stored in one continuous memory block, we could access any element in this array

by its index in constant time. If each element in the array uses w bits, then we can

perform read, write, arithmetic and bitwise operations on each element in O(1) time.

The solution that we implement use these operations.

2.3 Bit Vectors

A bit vector supporting rank and select operations is used in the design of many suc-

cinct data structures. The following operations are defined over a bit vector B[1..n]:

5
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� access(i): return the bit stored in B[i].

� rankb(i): return the frequency of bit b ∈ {0, 1} in the range B[1..i].

� selectb(i): return the index of the i-th occurrence b ∈ {0, 1} in B.

Pǎtraşcu [23] proposed the following solution:

Lemma 1 A bit vector of length n in which t bits are 1s can be represented in lg
(
n
t

)
+

O( n
lgc n

) ≤ n + O( n
lgc n

) bits for any positive constant c to support access, rank, and

select in O(1) time.



Chapter 3

Data Structure for Range Mode Queries

We review the range mode structures that we will implement. For the solutions

to approximate range mode, the original authors did not present the algorithms for

preprocessing, so we also discuss how to build these data structures efficiently.

3.1 Exact Range Mode in Linear Space and O(
√
n lg n) Time

Krizanc et al. [19] introduced an O(n + s2) word solution to support exact range

mode in O((n/s) lg n) time for any s ∈ [1, n]. This data structure can be constructed

in O(ns) time. If we set s =
√
⌊n⌋, then the query time is O(

√
n lg n), the space is

O(n) words and the preprocessing time is O(n3/2).

In this data structure, we construct, for each integer a ∈ {1, 2, . . . ,∆}, a sorted

array Qa of the positions of the occurrences of a in the input array A. Furthermore,

array A is divided into s blocks each of size ⌈n
s
⌉, and we precompute an s× s tables

S. For any integers i, j ∈ [1, s], S[i, j] stores the mode of the subarray consisting of

blocks i, i + 1, . . . , j. Each row of S can be constructed by scanning A once. Thus,

all these data structures occupy O(n+ s2) words and can be built in O(ns) time.

Having these structures, we can compute the mode in A[a..b] by decomposing the

query range [a..b] into up to three subranges: the span of the range consists of all

the blocks that are entirely contained in [a..b], while the prefix and the suffix are the

two subranges of [a..b] before and after the span, respectively. Using S, we can find

the mode, c, of the span in O(1) time. The answer to the query is either c, or an

element in the prefix or the suffix. We call each of these elements a candidate, and

hence there are at most 2⌈n
s
⌉ − 1 candidates. For each candidate x, we use a binary

search in QA[x] to get the frequency of this candidate in the query range in O(lg n)

time. Since we have at most 2⌈n
s
⌉ − 1 possible candidates, the total query time is

O((n/s) lg n).

7
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3.2 Exact Range Mode in Linear Space and O(
√
n) Time

One major component of the solution of Chan et al. [5] to the exact range mode

problem is a data structure of O(n+ s2) words which answers range mode queries in

O(n/s) time, for any s ∈ [1, n], and this data structure can be constructed in O(ns)

time. Thus when s =
√

⌊n⌋, this data structure uses linear space to answer a range

mode query in O(
√
n) time, and the preprocessing time is O(n3/2). Even though this

result is subsumed by their final solution which essentially combines it with succinct

data structures to encode more procomputed information, it is simple. Thus, in our

experimental studies, we also tested its performance to see whether the use of succinct

data structures also improves the performance in practice.

In this solution, we construct an array Qa for each a ∈ {1, 2, . . . ,∆} as in Sec-

tion 3.1. Then, we define a rank array A′, in which A′[i] stores the index of i in QA[i].

These structures allow us to determine, in constant time, whether A[i] occurs at least

q times in A[i..j] for any given i, j and q, by checking if QA[i][A
′[i] + q − 1] ≤ j.

Furthermore, we partition A into s blocks and construct the s× s table S as in Sec-

tion 3.1. An additional s × s table S ′ is also precomputed, in which S ′[i, j] stores

the frequency of the mode in blocks i, i + 1, . . . , j. All these data structures occupy

O(n+ s2) words and can be built in O(ns) time.

To answer a query with these structures, we decompose the query range [a..b] into

up to three subranges: the span of the range consists of all the blocks that are entirely

contained in [a..b], while the prefix and the suffix are the two subranges of [a..b] before

and after the span, respectively. Using S and S ′, we can find the mode, c, of the span

and its frequency, fc, in the span in O(1) time. This is one possible candidate of

the mode in A[i..j]. We then look for the elements whose frequencies in A[i..j] are

greater than fc; these elements must occur in either the prefix or the suffix. We scan

the prefix, and for each element A[x] in it, we check whether we have seen it before

in the scan by checking whether QA[x](A
′[x] − 1) is at least i. If not, we determine

whether A[x] occurs more than fc times in A[x..j]; this can be done in O(1) time as

discussed before. If it does, then A[x] is a possible candidate, and we can compute

its frequency in A[i..j] by skipping the next fc − 1 occurrences in QA[x] and then

continuing the scan of QA[x] to find its remaining occurrences in A[i..j]. Since the

number of times that A[x] occurs in the span is at most fc, the number of entries



9

that we scan in QA[x] is thus upper bounded by the number of occurrences of A[x] in

the prefix and the suffix. Therefore, the time needed to compute the frequencies of

all these candidates is linear in the sum of the lengths of the prefix and the suffix,

which is O(n/s). We scan the suffix in a similar manner, and the candidate with the

highest frequency in A[i..j] is the answer.

3.3 Exact Range Mode in Linear Space and O(
√

n/w) Time

The final solution of Chan et al. [5] is a data structures of O(n + s2/w) words of

space which answers range mode queries in O(n/s) time, for any s ∈ [1, n], and

the construction time is O(ns + n lg(n/s)). Therefore, when s = ⌈
√
nw⌉, this data

structure occupies O(n) words and has O(
√
n/w) query time, and the preprocessing

time is O(n3/2
√
w).

In this data structure, the input array A is partitioned into two subsequences B1

and B2 as follows: We scan A. If the current element appears at most s times in A,

we append it to B1. Otherwise, it is appended to B2. Additionally, we define two

2× n tables Ia[i] and Ja[i], in which, for every a ∈ [1, 2] and each i ∈ [1, n], Ia[i] (or

Ja[i]) stores the index in Ba of the closest element in A to the left (or right) of A[i]

that lies in Ba. With these structures, a range mode query in A can be answered by

answering one range mode query in B1 and another in B2.

The frequencies of the elements in array B1 are upper bounded by s, and this

allows Chan et al. to design a compact version of the solution in Section 3.2 to

support range mode over B1. More precisely, we still construct Qa for each integer

a, but we encode the entries of the table S ′ using succinct data structures, and we

do not store S explicitly. To encode S ′, observe that, for each i ∈ {1, 2, . . . , s}, the
i-th row of S ′ essentially encodes the following sequence of at most s numbers: the

frequency of the mode in block i, the frequency of the mode in blocks i and i+1, the

frequency of the mode in blocks i, i + 1 and i + 2, etc. Hence, these numbers form

a monotonically increasing sequence, and the largest number is upper bounded by s.

Thus, to encode the ith row of S ′, we can start by encoding the first number in this

sequence in unary, i.e., if this number is v, we write down v 0-bits followed by a 1-bit.

Then we encode each subsequent number by expressing the difference between this

number and the previous number in unary. The i-th row of S ′ is then represented as
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a concatenation of these unary codes, forming a bit vector of at most s 1-bits and at

most s 0-bits. It can be represented in O(s) bits by Lemma 1 to support rank and

select operations in constant time, using which we can retrieve any entry of the i-th

row of S ′ in constant time given its column number. If we use this encoding scheme for

every row of S ′, then S ′ can be presented in O(s2) bits, or O(s2/w) words, and we can

retrieve any entry of S ′ in constant time. Furthermore, we can also use this structure

to infer any entry of S without storing S explicitly. Recall that S[i, j] is the actual

mode element of blocks i, i + 1, . . . j. To compute it, we first retrieve S ′[i, j], which

gives us the frequency, f , of S[i, j] in blocks i, i+1, . . . , j. Then, among these blocks,

we can find the last block containing at least one occurrence of S[i, j] by performing

rank and select operations over S ′. Finally, we use a process similar to the one

described in Section 3.2 to scan this block in O(n/s) time and find out which element

occurs f times in these blocks. Hence, the encoding scheme here decreases the space

cost to O(n + s2/w) words, while allowing us to use the algorithm in Section 3.2 to

answer a range mode query in O(n/s) time. The preprocessing time is still O(ns), as

each bit vector can be built in linear time.

As for those elements in array B2, observe that, since each element occurs more

than s times in A, the number of distinct elements, ∆′, is at most n/s. Hence, we

convert B2 into an array of at most n elements, each from universe {1, 2, . . . ,∆′}.
This rank reduction can be done in O(n lg ∆′) time. Then the array B2 is divided

into ⌊n/∆′⌋ blocks each of size ∆′. Moreover, we precompute a ⌊n/∆′⌋ × ∆′ table

C, in which, for each i ∈ {1, ..., ⌊n/∆′⌋} and every x ∈ {1, ...,∆′}, Ci[x] stores the

frequency of x in A[1, i∆′]. C can be built by scanning A once in O(n) time, and

it uses O(n) words of space. To answer a query, we divide the query range into the

prefix, the span and the suffix as in Section 3.2. We use the table C to find the

frequencies of all ∆′ distinct elements in the span, and scan the prefix and the suffix

to count the number of additional occurrences of each element in them. Thus, this

process can compute the frequency of each element in the query range in O(∆′) time,

and the element with the highest frequency is the answer.

By adding up the time and space costs of the structures for B1 and B2 and applying

the inequality that ∆′ ≤ n/s, the bounds claimed at the beginning of this section

thus follow.
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Remarks. We can further decrease the space overhead by replacing Ia and Ja,

where a ∈ {1, 2}, with a bit vector F , in which F [i] = 0 if A[i] is stored in B1 and

F [i] = 1 if A[i] is stored in B2. Then, given a query range [i, j], we have that the

elements in A[i..j] are stored in two subsequences B1[rank0(i− 1) + 1, rank0(j)] and

B2[rank1(i−1)+1, rank1(j)]. With it, we can use n+o(n)+O(s2/w) words of space

to answer a query in O(n/s) time. We will study both the original approach and this

variant experimentally.

3.4 (1 + ε)-Approximation in O(n
ε
) Words and O(lg lg n+ lg 1

ε
) Time

A simple solution. To design approximate solutions, Bose et al. [4] first presented

a simple approach: For each i ∈ {1, 2, . . . , n}, build a table Ti in which Ti[r] stores

the smallest index j ≥ i such that A[j] occurs ⌈(1 + ϵ)j⌉ times in A[i..j]. Thus Ti

has O(log1+ε n) entries, and by Taylor series expansion, 1/ lg(1 + ε) = O(1/ϵ), so

the length of Ti is O((lg n)/ε). Given a query range [a, b], they perform an binary

search in Ta to find the entry Ti[k] with Ti[k] ≤ b < Ti[k + 1], and A[Ti[k]] is a

(1 + ε)-approximate answer. The query algorithm hence uses O(lg lg n + lg 1
ε
) time,

and these tables occupy O(n lgn
ε

) words in total.

An improved solution. To improve space efficiency, Bose et al. [4] define these

tables differently so that they share many common entries and can thus be stored

in persistent data structures to save space. In their approach, they first define two

number series, flow and fhigh. The first entries of these series, flow1 and fhigh1 , are

both defined to be 1. Then, the (r+1)st entries, flowr+1 and fhighr+1 , can be computed

recursively using flowr+1 = fhighr + 1 and fhighr+1 = ⌊(1 + ε)flowr⌋ + 1. They then

construct a table Ti for each i = 1, 2, . . . , n as follows. In T1, an entry T1[r] stores the

smallest index j ≥ i such that A[j] occurs fhighr times in A[1..j]. To compute an entry

Ti[r] for any i ≥ 2, we first determine whether Ti−1[r] occurs at least flowr times in

A[i..Ti−1[r]]. If it does, then we set Ti[r] = Ti−1[r]. Otherwise, Ti[r] stores the smallest

index j ≥ i such that A[j] occurs fhighr times in A[i..j]. To answer a query, observe

that, the frequency of the mode of any query range [a, b] with Ta[r] ≤ b < Ta[r+1] is

at most fhighr+1 − 1. Since A[Ta[r]] occurs at least flowr times in A[a..Ta[r]] ⊆ A[a..b],

the ratio of its frequency in A[a..b] to Fa,b is at least flowr/(fhighr+1 − 1) = flowr/⌊(1+
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ε)flowr⌋ ≤ 1/(1 + ε). 1 Therefore, A[Ta[r]] is a (1 + ε)-approximate answer. With

this observation, it suffices to perform a binary search in a table to answer a query

approximately.

Each table has at most 2⌈lg1+ε n⌉ entries. To reduce storage costs, Bose et al.

view T1, T2, . . . , Tn as n different versions of the same table T , and, to obtain Ti

(version i) from Ti−1 (version i − 1), an update is needed for each r with Ti[r] ̸=
Ti−1[r]. A crucial observation is that, if Ti[r] ̸= Ti−1[r], then Ti[r] = Ti+j[r] for any

j ∈ [0, fhighr−fhighr−1−1], because the frequency of A[Ti[r]] in A[i+j..Ti[r]] is at least

fhighr − j ≤ fhighr − (fhighr − fhighr−1 − 1) = fhighr−1 + 1 = flowr . They then used this

observation to prove that the total number of updates needed to obtain Ti+1 from Ti

over all i = 1, 2, . . . , n − 1 is O(n/ε). Hence they can use a persistent binary search

tree [9] to store all these tables in O(n/ε) words of space while supporting binary

search in any table in O(lg(2⌈lg1+ε n⌉)) = O(lg lg n + lg 1
ε
) time. This results in an

O(n
ε
)-word structure supporting (1 + ε)-approximate range mode in O(lg lg n+ lg 1

ε
)

time. The preprocessing time is dominated by the time needed to compute the content

of all n tables, and Bose et al. used the idea of maintaining frequency counters as

in [8] to compute them in O(n lgn
ε

) time.

3.5 (1 + ε)-Approximation in O(n
ε
) Words and O(lg 1

ε
) Time

Greve et al. [15] further improves query times to O(lg 1
ε
) while still using O(n

ε
) words

of space. In their solution, they define ε′ =
√
(1 + ε) − 1, and the data structure

consists of two parts. Given a query range [a, b], the first part determines whether

Fa,b ≤ ⌈ 1
ε′
⌉, and if so (the low frequency case), answer the query. Otherwise, the

algorithm further queries the second part (the high frequency case).

Low Frequency: For each i = 1, 2, . . . , n, we precompute a table Qi of length ⌈ 1
ε′
⌉,

in which Qi[r] stores the rightmost index j such that Fi,j = r. Given a query range

[a, b], we can perform a binary search in Qa to look for the successor of b. If b does

not have a successor, then Fa,b > ⌈ 1
ε′
⌉, and we use the structures for high frequencies

1Bose et al. [4] originally defined fhighr+1
= ⌈(1 + ε)flowr

⌉ + 1. However, with their definition,
the ratio of the frequency of A[Ta[r]] in A[a..b] to Fa,b is at least flowr/⌈(1 + ε)flowr⌉ which is not
guaranteed to be at least 1/(1 + ε). Our implementation also confirms that the original definition
does not guarantee the approximation ratio to be 1 + ϵ. Therefore, we fix this issue by defining
fhighr+1

= ⌊(1 + ε)flowr
⌋+ 1 instead.
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to compute an answer. Otherwise, let s be the index of the successor of b in Qa, and

we have Fi,j = s. In this case, as observed by El-Zein et al. [10], A[Qa[s − 1] + 1] is

the mode in A[a, b]. 2

High Frequency: For each i = 1, 2, . . . , n, we precompute a table Ti of length at

most ⌈lg1+ε′(ε
′n)⌉: For each r ∈ [1, ⌈lg1+ε′(ε

′n)⌉, if i > 1 and Fi,Ti−1[r] ≥ ⌈ 1
ε′
(1 +

ε′)k⌉ + 1, then we set Ti[r] = Ti−1[r]. Otherwise, Ti[r] stores the rightmost index

j with Fi,j ⩽ ⌈ 1
ε′
(1 + ε′)k+1⌉ − 1. We also build another table Li for each i. To

define Li[r], let j be the smallest positive integer such that Ti+j[r] ̸= Ti[r]. Then

Li[r] = A[i+ j − 1]. By these definitions, Li[r] occurs at least ⌈ 1
ε′
(1 + ε′)k⌉+ 1 times

in A[i..Ti[r]].

With these tables, the high frequency case can be handled as follows. Let [a, b]

be a query range with Fa,b > ⌈ 1
ε′
⌉. We find the successor, Ta[s], of b in Ta. Then,

based on the above definitions, we have that Fa,Ta[s] ⩽ ⌈ 1
ε′
(1 + ε′)s+1⌉ − 1 and that

the frequency of La[s − 1] in A[a..Ta[s − 1]] is at least ⌈ 1
ε′
(1 + ε′)s−1⌉ + 1. Since

[a, Ta[s − 1]] ⊆ [a, b] ⊆ [a, Ta[s]], we have that Fa,b ≤ Fa,Ta[s] ⩽ ⌈ 1
ε′
(1 + ε′)s+1⌉ − 1,

and that the frequency of La[s − 1] in A[a..b] is at least ⌈ 1
ε′
(1 + ε′)s−1⌉ + 1. Since

(⌈ 1
ε′
(1 + ε′)s−1⌉ + 1)/(⌈ 1

ε′
(1 + ε′)s+1⌉ − 1) ≥ 1/(1 + ε′)2 = 1/(1 + ε), La[s − 1] is a

(1 + ε)-approximate mode of A[a..b] and can be returned as the answer.

Hence, the total query time over both the low frequency and the high frequency

structures is O(lg 1
ε′
+ lg⌈lg1+ε′(ε

′n)⌉) = O(lg lg n + lg 1
ε′
) = O(lg lg n + lg 1

ε
); these

identities hold as 1/ lg(1 + ε′) = O(1/ϵ′) and ε′ =

√
(1+ε)+1

ε
. To further speed up the

query, Greve et al. designed a data structure that can compute a 3-approximation

of the answer in constant time. Then, in the high frequency case, the query algo-

rithm starts by computing this 3-approximation and finding its predecessor in Ta.

Afterwards, a binary search in the next O(log1+ε′ 3) = O(1
ε
) entries of Ta gives an

(1 + ε′)-approximation in O(lg 1
ε
) time.

This 3-approximate structure relies on constant-time support for lowest common

ancestor (LCA) queries over trees with exponential degrees whose heights are only

O(lg lg n). Unfortunately, an experimental study by Bender et al. [3] on LCA queries

2To return the mode, the original work of Greve et al. [15] augments the low frequency structure
by storing the mode in A[i..Qi[k]] with each Qi[k]. This approach is easy to understand and does
not break the asymptotic space bound. However, to implement this data structure, we avoid storing
these mode elements and use the observation by El-Zein et al. [10] to save storage costs in practice.
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suggests that, in practice, for trees with small heights, structures with constant query

time in theory are outperformed by naive approaches whose worst-case query time is

linear in the tree height. Indeed, the value of lg lg n is small for practical data, and

theoretical approaches that remove this additive term are often impractical. Hence,

we do not implement this 3-approximate structure and performs a binary search over

the high frequency structure instead.

To bound the space costs, first observing that the low frequency structure uses

O( n
ε′
) = O(n

ε
) words. In the high frequency structure, however, the total number of

entries of Ti’s and Li’s is O(n⌈lg1+ε′(ε
′n)⌉). To store them in a compact manner, we

again view these Ti tables as n version of the same table T as was done by Bose et al. [4]

for their data structures (see Section 3.4). Then, each time we update T [r] in some

version, we need not update it again in the next ⌈ 1
ε′
(1+ε′)k+1⌉−1−⌈ 1

ε′
(1+ε′)k⌉−1 ≥

⌊(1+ ε′)k − 3⌉ versions. This can be further used to bound the total number updates

to T by O(1
ε
). A similar argument apples to Li’s. It is possible to store Ti’s and Li’s in

a persistent search tree, but this scheme cannot be combined with the 3-approximate

structure to achieve O(lg 1
ε
) query time.

Instead, Greve et al. designed a scheme based on sampling to store these tables in

O(n/ε) words while supporting the retrieval of an arbitrary entry in constant time.

Here we only sketch the scheme of storing Ti’s; the entries of Li’s can be paired with

those of Ti’s and stored as additional fields in the same structures. In this scheme,

we explicitly store Tl in an array Sl if l mod t = 1, i.e., we sample and store one out

of every t versions of T . Let r be an arbitrary integer in [1, ⌈lg1+ε′(ε
′n)⌉. Between

two consecutive sampled versions, Tl[r] and Tl+t[r], of T [r], there may be updates to

T [r]. Observe that, if r ≥ 1 + ⌈log1+ε′ t⌉, then there can only be at most one update

to T [r] between versions l and l + t. In this case, we store with each sampled entry

Tl[r] the next update to T [r]. If r ≤ ⌈log1+ε′ t⌉, then, for each sampled entry Tl[r],

construct a bit vector of length t with constant-time support for rank which uses one

bit for each of the next t versions to encode whether an update to T [r] is performed.

We also store the (distinct) values used to update T [r] in an array.

Preprocessing: As Greve et al. did not provide information on preprocessing, we

discuss it here. The low frequency structure can be constructed in O(n/ε) time using

frequency counters [8] as was done by Bose et al. [4] to compute similar tables. For



15

the high frequency structure, if we have already computed the content of Ti’s and

Li’s, we can encode them in time linear in the total number of entries in Ti’s and Li’s,

and there are O(n⌈lg1+ε′(ε
′n)⌉) = O((n lg n)/ε) entries.

What remains is to compute the entries of Ti’s and Li’s, and for this we scan A

⌈lg1+ε′(ε
′n)⌉ times. In the r-th scan, we compute Ti[r] and Li[r] for all i ∈ [1, n] in

increasing order of i as follows. We maintain an array C[1..∆] of counters; initially all

entries of C are 0s. We use an integer m to keep track of the number of entries of C

that are greater than or equal to ⌈ 1
ε′
(1+ε′)k⌉+1; m can be updated each time an entry

of C is updated. During the scan, we maintain the following invariant: immediately

after computing Ti[r], each counter C[j], stores the number of occurrences of j in

A[i..Ti[r]]. To compute T1[r], we retrieve A[k] for k = 1, 2, ..., and for each k, we

increment C[A[k]]. We repeat until C[A[k]] is the first counter in C that reaches

⌈ 1
ε′
(1 + ε′)k+1⌉. This means A[1..k − 1] is the longest prefix of A whose mode has

frequency ⌈ 1
ε′
(1 + ε′)k+1⌉ − 1 in it. Therefore, we set T1[r] = k − 1. Then we put

the entry A[k] back to the portion of A that we have not scanned by decrementing

C[A[k]] and then k. To compute Ti[r] for any i > 1, we first decrement C[A[i − 1]]

and then check whether m is still greater than 0. If it is, then there is at least one

element whose frequency in A[i..Ti−1[r]] is ⌈ 1
ε′
(1+ε′)k⌉+1, and we set Ti[r] = Ti−1[r].

Otherwise, we resume the scanning of A to compute Ti[r] using the approach used

to compute T1[r]. We also store A[i − 1] in Lr[u], Lr[u + 1], . . . , Lr[r − 1], where u

is the smallest integer such that Tu[r] = Tr−1[r]. With this implementation, we need

to scan the input array A O(⌈lg1+ε′(ε
′n)⌉) times, and hence the total preprocessing

time is O(n⌈lg1+ε′(ε
′n)⌉) = O((n lg n)/ε).

3.6 (1 + ε)-Approximation in O(n
ε
) Bits and O(lg 1

ε
) Time

El-Zein et al. [10] designed an encoding data structure of O(n
ε
) bits which can compute

the index of a (1 + ε)-approximate mode of a query range in O(lg 1
ε
) time. It also

consists of two parts: The low frequency structure can check whether Fa,b ≤ ⌈1
ε
⌉ and

answer the query if so. Otherwise, the high frequency structure is used.

Low Frequency: For each integer k ∈ [1, ⌈1
ε
⌉], we build a table Qk of length n, in

which Qk[i] stores the rightmost index j such that Fi,j = k. Thus these tables store

essentially the same data as the low frequency structure of Greve et al. [15] does,
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but the data are organized differently. A key observation is that each Qk is an array

of n increasing numbers, and the largest number is n. This allows us to store Qk

succinctly: Encode Qk[1] and Qk[i] − Qk[i − 1] for each i in unary, i.e., as Qk[1] or

Qk[i]−Qk[i− 1] 0-bits followed by a 1. The concatenation is a 2n-bit bit vector, and

to compute the Qk[i], we can locate the i-th 0 and count how many 1-bits are before

it. Thus, by constructing o(n)-bit structures supporting rank and select operations

in constant time [6] with o(n) extra bits, each entry of Qk can be computed in O(1)

time. Hence, we can store all these tables in O(n
ε
) bits. Then, for a given range [a, b],

we perform a binary search in Q1[a], Q2[a], . . . , Q⌈ 1
ε
⌉[a] to handle the low frequency

case.

High Frequency: The high frequency structure is based on the following trichotomy:

Lemma 2 ([10]) Let k be an arbitrary integer in [1, ⌊log1+ε(εn)⌋]. There is a data

structure of O(kεn/(1 + ε)k + n/ lg2 n) bits that can find in constant time one of the

following inequalities that holds for any query range [a, b]: 1) Fa,b < (1 + ε)k/ε, 2)

Fa,b > (1 + ε)k/ε, or 3) (1 + ε)k−1/2/ε < Fa,b < (1 + ε)k+1/2/ε.

In case 2, the structure finds an element that occurs more than (1 + ε)k/ε times

in A[a, b]. In case 3, an element that occurs more than (1+ ε)k−1/2/ε times in A[a, b]

is found.

To prove this lemma, let ε′ =
√
1 + ε−1 and fj = (ε′/ε)×(1+ε′)j. We then define

four integer sequences s, s′, r and r′ as follows. For each integer i ∈ [0, n/⌈f2k−1⌉],
define si, the i-the element in s, as i⌈f2k−1⌉+1, and ri is then defined as the smallest

index such that Fsi,ri ⩾ (1+ ε′)2k/ε. similarly, for each integer i ∈ [0, n/⌈f2k⌉], define
s′j = i⌈f2k⌉+ 1, and r′j is the smallest index such that Fs′j ,r

′
j
⩾ (1 + ε′)2k+1/ε.

Given a query range [a, b], we compute the largest elements, si and s′j, of s and

s′ that are less than or equal to a. Then, El-Zein et al. proved that, if b < ri, then

case 1 of the lemma applies. If b ≥ r′j, then case 2 applies, and r′j occurs more than

(1 + ε)k/ε times in A[a, b]. Finally, if ri ≤ b < r′j, case 3 applies, and ri occurs more

than (1 + ε)k−1/2/ε times in A[a, b]. Therefore, if we precompute sequences r and r′,

all these can be determined in constant time. To store r and r′, observe that they are

increasing sequences containing respectively ⌈n/f2k−1⌉ and ⌈n/f2k⌉ elements upper

bounded by n. Hence we can again encode them using Lemma 1 to achieve the space

bound in Lemma 2.
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To use this trichotomy to answer queries, for each integer k ∈ [1, ⌊log1+ε(εn)⌋],
build the data structures for Lemma 2; El-Zein et al. showed that they occupy O(n

ε
)

bits in total. Then, in the high frequency case, perform a binary search to compute

a k such that either (1 + ε)k−1/2/ε < Fi,j < (1 + ε)k+1/2/ε (i.e., case 3 applies for this

k) holds, or (1 + ε)k/ε < Fi,j < (1 + ε)k+1/ε (i.e., case 2 applies for k and case 1

applies for k + 1). The element found by either case 3 or case 2 of the encoding is a

(1 + ε)-approximate mode. This requires O(lg⌊log1+ε(εn)⌋) = O(lg lg n + lg 1
ε
) time.

Finally, to speed up the query time to O(lg 1
ε
), El-Zein et al. designed an O(n)-bit

structure that answers 4-approximate range mode queries in constant time, and used

it to narrow down the initial range of binary search.

Remarks: TheO(n)-bit 4-approximate structure of El-Zein et al. contains a network

of fusion trees [13]. It is not practical, and hence our implementation does not include

this speedup. El-Zein et al. did not discuss preprocessing, but we can build their

data structures by maintaining frequency counters [8] in O(n lg n/ε) time. Finally, if

we do not implement the low frequency or high frequency structures as succinct bit

vectors but store them in integer arrays instead, we would achieve a simple O(n)-word

solution. Thus, we conduct experimental studies on both this plain version and the

original succinct version.



Chapter 4

Experimental Results

This chapter presents our experimental studies on data structures on range mode

queries.

4.1 Implementation

We implemented the data structures discussed in Chapter 3, and Table 4.1 gives an

outline. Among them, the first naive approach, nv1, sorts the elements in the given

range to answer a query, while the second one, nv2, scans the elements in the query

range and uses an array of length ∆ to keep track of the number of times each element

seen so far. Four data structures, subsr1, subsr2, sample and succ, use succinct

bit vectors, for which we use the implementation in the succinct data structures

library, sdsl-lite, of Gog et al. [14]. Two types of bit vectors from sdsl-lite

are used: a plain bit vector, sdsl::bit vector and a compressed bit vector [25],

sdsl::rrr vector. To distinguish them, we combine subsr1, subsr2, sample or

succ with superscripts p or c, e.g., succp and succc, to respectively indicate whether

plain bit vectors or compressed bit vectors are used. Note that, even though subsrc2

uses compressed bit vectors to encode the table S ′, a plain bit vector is still used

to represent F . This is because, in preliminary studies, we found that, due to the

small space cost of F (n bits), compressing it would achieve negligible space savings

at the cost of increasing query times by 4.5% ∼ 25%. Finally, for a fair comparison,

we modified the implementation of persistent search trees by Jansens [18] slightly to

decrease the space overhead for generic programming, and used it to implement pst.

4.2 Experimental Setup

Five publicly available datasets are used in our experiments; see Table 4.2. This

table also shows the zeroth-order empirical entropy, H0, of each dataset. To convert

18
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Table 4.1: The data structures we implemented, with their abbreviations. The
first half of the table present exact solutions, while the second half are for (1 + ε)-
approximate range mode, for which, as discussed in Chapter 3, we implement practical
solutions with O(lg lg n+ lg 1

ε
) query time.

abbr. description

nv1,nv2 two naive solutions in Section 4.1
supsr O(n)-word, O(

√
n lg n) query time structure for exact

range mode in Section 3.1
sqrt O(n)-word, O(

√
n) query time structure for exact range

mode in Section 3.2

subsr1 O(n)-word, O(
√

n/w) query time structure for exact
range mode in Section 3.3

subsr2 modifying subsr1 with more succinct data structures; see
the remarks in Section 3.3

simple simple O(n lgn
ε

)-word approximate solution in Section 3.4
pst O(n

ε
)-word approximate solution with persistent search

trees in Section 3.4
sample O(n

ε
)-word approximate solution with sampling in Sec-

tion 3.5
tri O(n

ε
)-word approximate solution with the trichotomy in

Section 3.6
succ O(n

ε
)-bit approximate solution with the trichotomy in

Section 3.6
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Table 4.2: The data sets used in our experiments, each stored as an array of n integers
in [1,∆].

data n ∆ lg∆ H0 description

reviews 10,000,000 1,367,909 20.38 18.46 the books of the first 108

book reviews by Amazon cus-
tomers in 2018 [21]

IPs 8,571,089 135,542 17.04 7.96 the source IP addresses of the
DDoS attacks recorded in [12]

words 6,715,122 127,886 16.96 12.74 the words in a text string
containing the 100 most fre-
quently downloaded Project
Gutenberg [1] e-books in July
2021, with stop words re-
moved

library 10,000,000 314,358 18.26 15.75 the first 108 call numbers
in the Seattle Public Library
checkout records of 2016 and
2017 [20]

tickets 10,000,000 79,027 16.27 11.10 the street names of the first
108 parking tickets issued in
New York in 2017 [22]

raw data into an integer array over which we perform queries, we extract elements

from their respective records (e.g., extract call numbers from the checkout records

in library) and compute the number, ∆, of distinct elements in the dataset. Then

we encode each element as an integer in [1,∆] and store the dataset as an array of

these integers. In our experiment, we adopt the query generation method in [7, 17].

To generate a query range [a, b], we pick an integer from [1, n] uniformly at random

(u.a.r.) and assign it to a, and b is chosen u.a.r. in the interval of [a, a+ ⌈n−a
K

⌉] for a
parameter K. We generate three categories of queries, large, medium and small, by

setting K = 1, 10 and 100, respectively.

Our platform is a sever with an Intel(R) Xeon(R) Gold 6234 CPU at 3.30GHz

and 128GB of RAM, running 4.15.0-54-generic 58-Ubuntu SMP x86 64 kernel. We

complied the programs using g++ 7.4.0 with -O2 flags.
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4.3 An Initial Performance Study for Exact Range Mode

We first perform experimental studies on exact range mode queries. Initially, we set

s =
√
n for supsr and sqrt, then set s =

√
nw for subsr1 and subsr2 to achieve linear

space as in the original work [19, 5]. Tables 4.3 and 4.4 present the query time, space

usage and construction time of the exact query structures. We measure space costs

by bits per symbol, which is the total space usage in bits divided by the length, n, of

the input array. When calculating space, the cost of the input array A (32 bits per

symbol) is included in the space usage of supsr and sqrt but excluded for subsr1 and

subsr2. This is because supsr and sqrt scan A when answering a query but subsr1

and subsr2 do not. Nevertheless, the space cost of A is not significant enough to affect

our conclusions. These tables show that most data structure solutions implemented

have much faster query time than naive approaches, and supsr is the only exception:

it has better query performance than naive approaches over the reviews dataset,

while nv2 performs better in small and medium queries over other four datasets than

supsr. Between two naive approaches, nv2 is faster because the number of distinct

elements is relatively small compared to input array length.

Before comparing the performance of data structure solutions, we discuss how

the distributions of the datasets affect subsr1 and subsr2. In these two solutions,

the array entries are distributed into two subsequences B1 and B2: the entries of

the input array A storing elements with frequency higher than s are stored in B2,

while the rest are stored in B1. Different structures are then constructed to answer

queries over B1 and B2. Since B2 stores elements of higher frequency, the lower the

entropy of a dataset is, the ratio of the length of B2 to n tends to be larger. Indeed,

we found that, for reviews, words and library, the ratios are 0, 0.037 and 0.010,

respectively, while for IPs and tickets, the ratios are 0.58 and 0.14, respectively,

which are higher. These ratios are consistent with the values of H0 shown in Table 4.2.

This immediately explains why, for the dataset reviews, there is no difference in

time/space costs between subsr1 and subsr2: These two solutions differ in the data

structure components used to map the query range to ranges in B1 and B2. Since the

length of B2 is 0 for reviews, no mapping is needed. Our implementation detects

this special case without constructing these components and uses the data structures

for B1 to answer queries.
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Table 4.3: Average time to answer an exact range mode query, measured in micro
seconds. Queries are categorized into small, medium and large, and each category
has 106 queries.

Query nv1 nv2 supsr sqrt subsr
p
1 subsrc1 subsr

p
2 subsrc2

r
e
v
i
e
w
s small 1134 442 338.93 51.70 10.74 11.56 10.74 11.56

medium 13262 870 366.90 51.00 9.94 10.82 9.94 10.82
large 144642 5686 363.42 50.85 9.39 10.20 9.39 10.20

I
P
s

small 532 51 218.75 15.58 3.93 4.40 3.94 4.48
medium 5938 186 240.03 15.19 3.86 4.37 3.91 4.46
large 66121 1531 239.35 14.48 3.53 4.01 3.60 4.07

w
o
r
d
s small 678 45 298.83 31.49 8.01 8.75 8.14 9.06

medium 7094 149 334.53 31.27 7.60 8.41 7.82 8.63
large 73401 1235 349.22 28.28 6.53 7.24 6.67 7.38

l
i
b
r
a
r
y small 1160 125 384.07 49.54 11.90 13.14 12.13 13.37

medium 12960 408 422.32 47.11 10.66 11.87 10.71 11.98
large 132605 3407 444.30 43.68 9.32 10.42 9.40 10.53

t
i
c
k
e
t
s small 990 37 362.47 43.16 9.99 10.67 10.19 10.99

medium 9931 187 414.76 42.39 9.92 10.65 10.15 10.97
large 101281 1756 436.93 37.44 8.56 9.35 8.80 9.60

Table 4.4: Space (bits per symbol) and construction time (minutes) of exact range
mode structures.

Dataset supsr sqrt subsr
p
1 subsrc1 subsr

p
2 subsrc2

sp
ac
e

reviews 109.1 173.2 174.3 144.1 174.3 144.1
IPs 97.5 161.5 332.6 255.9 205.8 129.0

words 97.8 161.9 329.1 284.1 202.2 157.2
library 99.0 163.0 315.2 294.5 188.3 167.6
tickets 96.7 160.8 311.0 289.9 184.1 163.0

co
n
st
ru
ct

ti
m
e reviews 0.911 0.911 7.205 7.460 7.205 7.460

IPs 0.695 0.695 1.865 1.867 1.890 1.892
words 0.438 0.438 2.755 2.760 2.762 2.765

library 0.806 0.806 5.923 5.933 5.971 5.974
tickets 0.720 0.720 4.251 4.275 4.756 4.809
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With this in mind, we now compare the data structure solutions. We first find that

the query time of supsr is 6.6 ∼ 16.5 times as much as that of sqrt. This is because

that the query time of supsr is O(
√
n lg n) whereas the query time of sqrt is O(

√
n).

The space used by the supsr is less since we do not use A′ and S ′ structures in supsr.

Then we observe that, by using a succinct bit vector to replace multiple arrays, subsr2

saves much space compared to subsr1 over all datasets except reviews (which does

not require these components as discussed before). At the same time, there is almost

no sacrifice in query performance. This is because we only use rank operations over

this bit vector to map the query ranges to ranges in two subsequences of the input

array, and as the support for rank is efficient, this time is dominated by subsequent

operations which use O(
√

n/w) time. The use of compressed bit vectors in subsrc1

and subsrc2 also achieves some space savings, albeit at the cost of a small increase in

query time. The theoretical analysis indicates that, when we double s, the query time

halves but the space cost of tables S and S ′ will become four times as large. Hence,

based on this initial study, we predict that, subsrp2 and subsrc2 achieve the best query-

space tradeoffs among these data structure solutions, and more experiments will be

run in Section 4.4 to confirm this.

The sizes of query ranges affect query times greatly for the naive approaches since

they either sort or scan the elements in the range. On the other hand, these sizes only

affect the query times of supsr, sqrt, subsr1 and subsr2 slightly. For sqrt, subsr1

and subsr2, larger queries even tend to take less time to answer. This is because

the query algorithm of sqrt (which is also performed over B2 in subsr1 and subsr2)

keeps updating a candidate by a new candidate with higher frequency in the query

range, until the mode of the range is found. The initial candidate is the mode of the

span of the query. When the query range is larger, the span is also longer, and hence

its mode tends to a better candidate, thus decreasing the query time.

Regarding construction times, observer that, for supsr and sqrt, their processing

times are about same. For reviews, words, library and tickets, the preprocessing

time of subsr1 and subsr2 is 5.9 ∼ 8.2 times as much as that of supsr and sqrt. This

is because, with the choices of parameters, it takes O(n3/2
√
w) time to build subsr1

and subsr2, but the preprocessing time of supsr and sqrt is O(n3/2). However, the

difference is much smaller for IPs. This is because, when constructing subsr1 and
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subsr2 for this dataset, 58% of array entries are in B2, whose query structure can be

built in linear time.

4.4 Different Parameter Values for Exact Range Mode Queries

Previously, we set s =
√
n for supsr and sqrt, and then set s =

√
nw for subsr1 and

subsr2 to achieve linear space. Since different values of s yield different time-space

tradeoffs, we conduct a series of experiments to compare these data structures more

thoroughly. First, we compare the time-space tradeoffs between supsr and sqrt.

The experimental result is showed in Figure 4.1, in which a subfigure is used for each

dataset. To draw each subfigure, we construct supsr (and similarly sqrt) over each

dataset for different values of s. The initial value of s is 0.5
√
n, and each time we

increase s by 0.5
√
n until the space usage of the data structure exceeds 640 bits per

symbol. Each point in the figure represents a tradeoff achieved between the space

cost and the average query time of a category of queries. We then connect the points

for the same category (small, medium or large) of queries into a polyline. Hence,

over each dataset, we show how the average query time changes when more space

is used for either data structure using three plotted polylines, one for each category

of queries. In Figure 4.1, our experimental study shows that sqrt use less query

time than supsr when these data structures use the same space among all datasets.

Therefore, sqrt outperforms supsr over all datasets.

We then compare the time-space tradeoffs that can be achieved by subsr
p
2 and

subsrc2 with different parameters. Figure 4.2 shows our experimental results between

subsr
p
2 and subsrc2. To draw each subfigure in Figure 4.2, we construct subsrp2 (and

similarly subsrc2) over the corresponding dataset for different values of s. The initial

value of s is 0.5
√
nw, and each time we increase s by 0.5

√
nw until the space usage

of the data structure exceeds 640 bits per symbol. In Figure 4.2 (a), for the same

category of queries, the polyline plotted for subsrp2 is always above that for subsrc2.

This suggests that, with the same space cost, subsrc2 uses less time to answer a query

on average. Hence, subsrc2 outperforms subsr
p
2 over reviews. It is however the

opposite for IPs, and there is no discernible differences between the performance of

these two data structures over the three other datasets.
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Figure 4.1: Different time-space tradeoffs achieved by supsr and sqrt.
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To discuss why subsr
p
2 and subsrc2 compare differently for different datasets, ob-

serve that whether to use plain or compressed bit vectors to encode S ′ in subsr2

affects the structures built over B1 only. Furthermore, when s increases, the block

size decreases, and more adjacent entries of S ′ tend to store the same values, making

S ′ more compressible. The dataset reviews has the largest entropy, which means the

table S ′ constructed over it is less compressible than that over any other dataset for

small s, so the increase of s makes it more compressible rapidly. All arrays entries of

reviews are also stored in B1 for all the values of s that we have used, making the

compression more sensitive to the choice of the value of s. Hence, for reviews, the

increase of s improves the compression ratio of subsrc2 at a faster rate than what it

does for any other dataset. When the same storage cost is allowed, the parameter s

for subsrc2 can be much larger than that for subsrp2, as shown in Figure 4.2 (a). This

means S ′ stores much more precomputed information for subsrc2, speeding up the

queries despite the increased operation time for rank or select over compressed bit

vectors. The other datasets perform differently when s changes, due to their smaller

entropy which also affects the number of array entries distributed into B2.

In the extreme case of IPs, subsrp2 performs better, while for the rest, the choice

of whether to use compression does not make a significant or consistent difference

to justify using one approach over the other. Since it takes less time to construct

plain bit vectors, we say that subsrp2 is also a better solution for words, library and

tickets.

We further conducted similar experiments to compare subsrp1 and subsrc1 and ar-

rive at the same conclusion: subsrc1 achieves better time/space tradeoffs for reviews,

while subsrp1 works better for other datasets. See Figure 4.3 for details. Hence, in the

rest of this thesis, when the context is clear, subsr1 and subsr2 respectively represent

subsrc1 and subsrc2 for reviews, while they represent subsrp1 and subsr
p
2 for all other

datasets.

After deciding on the bit vector implementations, we conduct experiments to

compare sqrt, subsr1 and subsr2. We use the same parameters for subsr1 and

subsr2, while for sqrt, the initial value of s is 0.5
√
n, and each time we increase s

by 0.5
√
n until the space usage exceeds 640 bits per symbol. Figure 4.4 shows the

results, in which, when s increases, all data structures have faster query times but use
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Figure 4.4: Different time-space tradeoffs achieved by sqrt, subsr1 and subsr2.
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more space. Note that for the reviews dataset, subsr1 and subsr2 have the same

performance because no structures are used to map query ranges to subranges in B1

and B2. Hence Figure 4.4 (a) only compares sqrt and subsr (which represents either

subsr1 or subsr2). Our results show that subsr1 and subsr2 have much better query

performance than sqrt when the data structures have the same storage costs. This

is because the succinct data structures used in subsr1 and subsr2 allow us to store

more precomputed information to speed up query; at the same time, since only a few

operations are performed over these succinct structures, the time spent on operating

over them is still dominated by the other steps in the algorithm. Hence the slower

operation time over succinct data structures in practice matters little in this case.

Between subsr1 and subsr2, for IPs, words, library and tickets, our results show

that subsr2 achieves better time-space tradeoffs than subsr1 does. The difference

is significant for smaller values of s, but as the value of s grows much larger, the

plotted lines start to converge. This is because the space savings by replacing four

integer arrays of length n by a bit vector of length n becomes insignificant when it

is dominated by the space cost of S ′ for large s. Nevertheless, when we require a

reasonable space costs for data structures in practice (e.g., when the space of the

data structures must be at most several times more than that of the input; recall

that the input array is encoded using 32 bits per symbol), subsr2 still improves

subsr1 significantly. Therefore, we conclude that subsr2 preforms best among all

data structure solutions.

4.5 Performance of Data Structures for Approximate Range Mode

We now perform experimental studies on approximate range mode by choosing ϵ =

1/2. Tables 4.5 and 4.6 present the query time, space usage and construction time of

approximate range mode data structures, while Tables 4.7 and 4.8 show the average

and maximum approximation ratios of the answers; these ratios are computed as

the frequency of the reported approximate mode in the query range divided by the

frequency of the actual mode in the range. When calculating space usage, we do not

include the cost of the input array A, since all these data structures can compute the

indexes of approximate range modes without accessing A.

From Table 4.7, we can see that the average approximation ratios range between
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Table 4.5: Average time to answer an approximate query for ϵ = 1/2, measured
in microseconds. Queries are categorized into small, medium and large, and each
category has 108 queries.

Query simple pst samplep samplec tri succp succc

r
e
v
i
e
w
s small 0.098 0.861 0.869 1.016 0.191 1.122 2.970

medium 0.095 0.714 0.598 0.610 0.135 1.009 3.178
large 0.089 0.556 0.440 0.453 0.116 0.864 3.703

I
P
s

small 0.110 1.561 0.545 0.796 0.138 1.003 4.003
medium 0.113 1.343 0.358 0.430 0.105 0.696 3.198
large 0.120 1.120 0.285 0.304 0.091 0.581 3.030

w
o
r
d
s small 0.102 0.986 0.809 1.166 0.168 1.126 3.642

medium 0.098 0.780 0.486 0.585 0.127 0.967 3.754
large 0.105 0.546 0.281 0.309 0.095 0.595 2.547

l
i
b
r
a
r
y small 0.099 0.760 1.017 1.164 0.200 1.230 3.508

medium 0.099 0.581 0.603 0.629 0.144 1.152 3.809
large 0.106 0.434 0.360 0.370 0.112 0.766 3.023

t
i
c
k
e
t
s small 0.112 1.072 0.773 1.108 0.172 1.281 3.861

medium 0.109 0.817 0.460 0.585 0.129 0.997 3.371
large 0.119 0.580 0.300 0.327 0.105 0.634 2.669

Table 4.6: Space (bits per symbol) and construction time (minutes) when ϵ = 1/2.

Dataset simple pst samplep samplec tri succp succc

sp
ac
e

reviews 680.0 100.6 225.4 204.7 291.2 56.9 11.4
IPs 1038.6 1051.5 327.9 311.3 291.5 82.9 30.0

words 787.8 146.3 240.7 220.5 291.4 67.1 21.5
library 769.6 37.6 231.6 210.8 291.3 65.6 13.9
tickets 896.6 115.8 248.2 228.1 291.5 74.2 24.2

co
n
st
ru
ct

ti
m
e reviews 0.084 0.142 0.655 0.668 0.050 0.082 0.085

IPs 0.075 0.172 0.564 0.568 0.031 0.063 0.067
words 0.050 0.082 0.412 0.418 0.018 0.038 0.040

library 0.084 0.136 0.663 0.673 0.042 0.065 0.067
tickets 0.081 0.122 0.648 0.649 0.027 0.068 0.070
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Table 4.7: Average approximation ratio when answering queries for ϵ = 1/2.

Query simple pst sample tri/succ

r
e
v
i
e
w
s small 1.01644 1.01320 1.01263 1.00493

medium 1.01026 1.00772 1.00913 1.00324
large 1.01378 1.00792 1.02630 1.00389

I
P
s

small 1.00773 1.00453 1.00639 1.00248
medium 1.00155 1.00096 1.00121 1.00047
large 1.00070 1.00029 1.00047 1.00016

w
o
r
d
s small 1.01437 1.01025 1.01088 1.00394

medium 1.01250 1.00680 1.00984 1.00335
large 1.00453 1.00333 1.00818 1.00190

l
i
b
r
a
r
y small 1.00916 1.00922 1.00679 1.00255

medium 1.00337 1.00274 1.00279 1.00113
large 1.00079 1.00066 1.00078 1.00029

t
i
c
k
e
t
s small 1.00123 1.00179 1.00106 1.00038

medium 1.00020 1.00026 1.00017 1.00006
large 1.00003 1.00003 1.00003 1.00001

Table 4.8: Maximum approximation ratio when answering queries for ϵ = 1/2.

Query simple pst sample tri/succ

r
e
v
i
e
w
s small 1.49231 1.5 1.47183 1.47826

medium 1.49231 1.5 1.47183 1.47826
large 1.49231 1.5 1.47518 1.42105

I
P
s

small 1.49831 1.5 1.48454 1.41667
medium 1.49977 1.5 1.47468 1.36749
large 1.49494 1.5 1.47589 1.37500

w
o
r
d
s small 1.49658 1.5 1.48227 1.36364

medium 1.49924 1.5 1.48837 1.36364
large 1.49790 1.5 1.48879 1.33333

l
i
b
r
a
r
y small 1.48276 1.5 1.43396 1.36364

medium 1.48276 1.5 1.43396 1.33333
large 1.46154 1.5 1.42857 1.33333

t
i
c
k
e
t
s small 1.46154 1.5 1.37931 1.36364

medium 1.46154 1.5 1.37931 1.33333
large 1.41667 1.5 1.37500 1.33333
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1.00001 and 1.02630 across all data structures, datasets and query categories, and in

most cases, the ratio is below 1.01. This means the average quality of the answers

to the queries is excellent. The maximum approximation ratios are closer to 1.5.

Since these structures have slower query support and higher space usage for smaller

ϵ, this means setting ϵ = 1/2 is attractive to applications for which a high average

approximation ratio is sufficient. Another phenomenon is that larger queries tend to

be faster. This is because all query algorithms are essentially based on binary searches

in lists of possible candidates, and in each list, the farther it is away from the list

head, the larger the gaps between the indexes (in A) of two consecutive candidates

are, benefiting larger query ranges.

We also observe that the space cost of pst can vary greatly between different

datasets, with the space cost of IPs being about 28 times of that of library. Recall

that in this solution, we view n different tables as versions of the same table T to

store them in a persistent search tree, and each tree node corresponds to an update

to the table (the initial version of the table is not stored explicitly since T [i] = i for

all i ∈ [1, n]). Thus, we recorded the number of updates to T for each dataset, and

it is 1, 380, 391 for reviews, 10, 773, 911 for IPs, 1, 232, 046 for words, 485, 498 for

library and 1, 386, 886 for tickets. The difference in the numbers of updates is

consistent with the difference in space costs. To see why there is such a difference

in updates, recall that an update to T happens when the frequency of a candidate

within a certain range A[i, j] drops below a threshold when we increment i. This

happens more often when the entropy of the dataset is lower or when the locality of

reference of the dataset is higher, since a lower entropy or higher locality of references

means we are more likely to decrease the frequency of this candidate by one each

time we increment i. Indeed, IPs has the lowest entropy by Table 4.2, and since the

same subset of IPs occur frequently in a DDoS attack event, it has high locality of

reference. This explains the high space cost of pst over IPs. On the other hand,

library has the second highest entropy, and compared to reviews which has even

higher entropy, due to the limited number of copies that a library has for each different

book, the borrowing records tend to be less affected by trends such as “best sellers

of the month” than the Amazon reviews are. This explains the low space usage for

library. Note that the space cost of sample also fluctuates among different datasets



34

for similar reasons, but due to the sampling technique used, the difference in space

costs between datasets is small.

With these discussed, we are now ready to compare the performance of different

approximate range mode structures. Among them, simple has the fastest query time

due to its simplicity, but its space cost is high. Among more sophisticated solutions

which use O(n/ϵ) words but are not succinct, tri stands out as its query time is

comparable to that of simple (it even beats simple in some cases), but its space

cost is only 28.1% ∼ 42.8% of that of simple. Compared to pst and sample, it has

the smallest worst-case space cost. This is because it is not based on persistence and

is thus not sensitive to entropy or locality of reference. The average approximation

ratio of the answers computed by tri/succ are also much smaller than that of other

solutions, due to the finer-grained approximation based on the trichotomy it uses. On

the other hand, for most datasets, pst and sample also provide useful tradeoffs with

lower space usage but slower query time, with pst especially attractive for datasets

of high entropy but low locality of reference. For example, the space cost of library

with pst is only slightly more than the cost of encoding the input array as 32-bit

integers. Finally, both succp and succc provide compact solutions. Between them,

succp uses 0.89n ∼ 1.30n words, with query time only slightly slower than pst and

sample in most cases, while succc is highly compact, with space costs 35.6% ∼ 93.8%

of the array of 32-bit integers (in most cases, the space cost is closer to the lower end),

while the query time is 2.6 ∼ 5.2 times of the query time of succp.

4.6 Different Values of ϵ Among All Approximate Range Mode Data

Structures

We further conduct experiments with more values of ϵ by setting ϵ to 1/4, 1/8 and

1/16. For each different ϵ and each solution, we compute the average and maximum

approximation ratios achieved across all datasets, and they are recorded in Table 4.9.

From it we can tell that the average ratios decrease when ϵ decreases, though it is

already close to 1 for ϵ = 1/2. The maximum ratios are close to 1 + ϵ; pst is the

solution whose maximum approximation ratios are always 1 + ϵ. This is due to the

integer sequences that they defined as lower and upper bounds on the frequency of

possible candidates.
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Table 4.9: Average and Maximum approximation ratios for different values of ϵ.

ε simple pst sample tri/succ

A
v e
ra
ge

1/2 1.00644 1.00464 1.00644 1.00192
1/4 1.00218 1.00164 1.00188 1.00085
1/8 1.00075 1.00068 1.00055 1.00019
1/16 1.00020 1.00017 1.00016 1.00006

M
ax

im
u
m 1/2 1.49977 1.5 1.48879 1.47826

1/4 1.24952 1.25 1.24701 1.25
1/8 1.12474 1.125 1.12148 1.11765
1/16 1.06240 1.0625 1.06107 1.05882

For each dataset, we also measure the query time, space cost, and construction

time of each solution for different values of ϵ, and these results are recorded in Ta-

ble 4.10 - Table 4.24. These tables show that the query times of these data structures

increase slowly as ϵ decreases, and this indeed fits the growth of the function of

lg 1
ϵ
+lg lg n. The space costs, however, grows at a much faster rate, as they are more

or less proportional to 1/ϵ.

For different values of ϵ, how the performance of different solutions compares to

each other is similar to the case where ϵ = 1/2 which we discussed before. The main

notable difference is that, due to persistence or compression, the ratio at which the

space costs of pst, sample, and succc grow is slower than other data structures.

Therefore, when other data structures become less attractive due to high space usage

caused by smaller value of ϵ, these solutions may still remain attractive, but this may

depend on the dataset (especially for pst).
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Table 4.10: Average time to answer an approximate query over the reviews datasets
for ϵ = 1

2
, 1
4
, 1
8
and 1

16
, measured in microseconds. Queries are categorized into small,

medium and large, and each category has 108 queries.

ε Query simple pst samplep samplec tri succp succc

1/2
small 0.098 0.861 0.869 1.016 0.191 1.122 2.970
medium 0.095 0.714 0.598 0.610 0.135 1.009 3.178
large 0.089 0.556 0.440 0.453 0.116 0.864 3.703

1/4
small 0.125 0.986 1.054 1.217 0.279 1.582 3.646
medium 0.119 0.785 0.918 0.927 0.199 1.403 3.748
large 0.119 0.614 0.537 0.543 0.163 1.173 4.158

1/8
small 0.150 1.290 1.204 1.334 0.385 2.221 4.483
medium 0.142 1.068 1.056 1.086 0.298 2.091 4.563
large 0.137 0.755 0.717 0.747 0.222 1.635 4.691

1/16
small 0.181 1.343 1.343 1.361 0.476 2.850 5.070
medium 0.177 1.042 1.308 1.332 0.420 2.721 5.263
large 0.161 0.716 1.002 1.052 0.308 2.234 5.399

Table 4.11: Space (bits per symbol) and construction time (minutes) when answering
approximate queries over the reviews datasets for ϵ = 1

2
, 1
4
, 1
8
and 1

16
.

ε simple pst samplep samplec tri succp succc

sp
ac
e

1/2 680.0 100.6 225.4 204.7 291.2 56.9 11.4
1/4 1220.3 163.0 373.9 332.5 547.3 98.0 16.2
1/8 2307.3 302.7 679.0 592.4 1062.5 175.9 25.8
1/16 4469.6 345.7 1276.2 1121.8 2068.9 319.8 43.1

co
n
st
ru
c

-t
io
n

1/2 0.084 0.142 0.655 0.668 0.050 0.082 0.085
1/4 0.148 0.277 1.265 1.282 0.088 0.148 0.150
1/8 0.276 0.503 2.456 2.516 0.160 0.240 0.243
1/16 0.542 0.968 4.953 5.000 0.300 0.481 0.488
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Table 4.12: Average approximate ratio and maximum approximate ratio when an-
swering approximate queries over the reviews datasets for ϵ = 1

2
, 1
4
, 1
8
and 1

16
.

Ratio ε Query simple pst sample tri/succ

A
v e
ra
ge

R
at
io

1/2
small 1.01644 1.01320 1.01263 1.00493
medium 1.01026 1.00772 1.00913 1.00324
large 1.01378 1.00792 1.02630 1.00389

1/4
small 1.00592 1.00481 1.00429 1.00218
medium 1.00324 1.00279 1.00359 1.00118
large 1.00416 1.00297 1.00412 1.00124

1/8
small 1.00170 1.00195 1.00120 1.00048
medium 1.00116 1.00124 1.00114 1.00041
large 1.00095 1.00110 1.00131 1.00035

1/16
small 1.00051 1.00053 1.00033 1.00015
medium 1.00043 1.00038 1.00040 1.00016
large 1.00038 1.00034 1.00035 1.00010

M
ax

im
u
m

R
at
io

1/2
small 1.49231 1.5 1.47183 1.47826
medium 1.49231 1.5 1.47183 1.47826
large 1.49231 1.5 1.47518 1.42105

1/4
small 1.24396 1.25 1.23102 1.25
medium 1.24710 1.25 1.24392 1.25
large 1.24471 1.25 1.23985 1.25

1/8
small 1.12205 1.125 1.12127 1.11538
medium 1.12461 1.125 1.11794 1.11550
large 1.12261 1.125 1.11840 1.11212

1/16
small 1.06175 1.0625 1.05667 1.05882
medium 1.06231 1.0625 1.05955 1.05763
large 1.06186 1.0625 1.06006 1.05708
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Table 4.13: Average time to answer an approximate query over the IPs datasets for
ϵ = 1

2
, 1
4
, 1
8
and 1

16
, measured in microseconds. Queries are categorized into small,

medium and large, and each category has 108 queries.

ε Query simple pst samplep samplec tri succp succc

1/2
small 0.110 1.561 0.545 0.796 0.138 1.003 4.003
medium 0.113 1.343 0.358 0.430 0.105 0.696 3.198
large 0.120 1.120 0.285 0.304 0.091 0.581 3.030

1/4
small 0.138 1.845 0.852 1.258 0.203 1.506 5.153
medium 0.134 1.550 0.450 0.546 0.154 1.073 4.347
large 0.135 1.246 0.319 0.333 0.137 0.834 3.927

1/8
small 0.160 2.355 1.473 2.032 0.286 2.305 6.677
medium 0.159 2.315 0.682 0.861 0.219 1.694 5.820
large 0.154 1.961 0.366 0.393 0.177 1.261 5.194

1/16
small 0.187 2.628 1.935 2.830 0.394 3.393 8.442
medium 0.190 2.461 1.200 1.537 0.285 2.578 7.550
large 0.185 1.850 0.490 0.558 0.225 1.891 6.550

Table 4.14: Space (bits per symbol) and construction time (minutes) when answering
approximate queries over the IPs datasets for ϵ = 1

2
, 1
4
, 1
8
and 1

16
.

ε simple pst samplep samplec tri succp succc

sp
ac
e

1/2 1038.6 1051.5 327.9 311.3 291.5 82.9 30.0
1/4 1873.1 2044.5 535.6 501.4 548.2 146.9 53.4
1/8 3535.7 6206.2 946.4 873.0 1065.4 268.9 97.6
1/16 6854.3 6915.0 1769.3 1605.9 2079.4 501.1 180.2

co
n
st
ru
c

-t
io
n

1/2 0.075 0.172 0.564 0.568 0.031 0.063 0.067
1/4 0.137 0.314 0.965 0.978 0.054 0.141 0.147
1/8 0.260 0.907 2.117 2.139 0.098 0.216 0.232
1/16 0.519 1.242 4.319 4.337 0.183 0.356 0.376
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Table 4.15: Average approximate ratio and maximum approximate ratio when an-
swering approximate queries over the IPs datasets for ϵ = 1

2
, 1
4
, 1
8
and 1

16
.

Ratio ε Query simple pst sample tri/succ

A
v e
ra
ge

R
at
io

1/2
small 1.00773 1.00453 1.00639 1.00248
medium 1.00155 1.00096 1.00121 1.00047
large 1.00070 1.00029 1.00047 1.00016

1/4
small 1.00290 1.00174 1.00236 1.00088
medium 1.00059 1.00034 1.00046 1.00018
large 1.00021 1.00011 1.00020 1.00006

1/8
small 1.00094 1.00070 1.00074 1.00027
medium 1.00019 1.00015 1.00014 1.00006
large 1.00005 1.00005 1.00007 1.00002

1/16
small 1.00027 1.00018 1.00021 1.00008
medium 1.00006 1.00004 1.00004 1.00002
large 1.00001 1.00001 1.00002 1.00001

M
ax

im
u
m

R
at
io

1/2
small 1.49831 1.5 1.48454 1.41667
medium 1.49977 1.5 1.47468 1.36749
large 1.49494 1.5 1.47589 1.37500

1/4
small 1.24952 1.25 1.24701 1.25
medium 1.24773 1.25 1.24402 1.25
large 1.24851 1.25 1.24203 1.25

1/8
small 1.12461 1.125 1.12148 1.11765
medium 1.12461 1.125 1.12108 1.11429
large 1.12423 1.125 1.12033 1.09524

1/16
small 1.06231 1.0625 1.06027 1.05882
medium 1.06231 1.0625 1.06034 1.05634
large 1.06231 1.0625 1.05699 1.04545
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Table 4.16: Average time to answer an approximate query over the words datasets
for ϵ = 1

2
, 1
4
, 1
8
and 1

16
, measured in microseconds. Queries are categorized into small,

medium and large, and each category has 108 queries.

ε Query simple pst samplep samplec tri succp succc

1/2
small 0.102 0.986 0.809 1.166 0.168 1.126 3.642
medium 0.098 0.780 0.486 0.585 0.127 0.967 3.754
large 0.105 0.546 0.281 0.309 0.095 0.595 2.547

1/4
small 0.122 1.178 1.069 1.486 0.248 1.568 4.537
medium 0.119 0.924 0.738 0.841 0.184 1.371 4.597
large 0.119 0.639 0.357 0.386 0.142 0.906 3.512

1/8
small 0.148 1.637 1.277 1.809 0.349 2.231 5.778
medium 0.138 1.586 1.253 1.280 0.269 2.128 5.940
large 0.133 1.090 0.543 0.563 0.194 1.402 4.598

1/16
small 0.178 1.704 1.439 2.061 0.468 2.993 6.849
medium 0.170 1.479 1.459 1.690 0.383 3.104 7.230
large 0.161 0.935 1.025 1.077 0.261 2.095 5.894

Table 4.17: Space (bits per symbol) and construction time (minutes) when answering
approximate queries over the words datasets for ϵ = 1

2
, 1
4
, 1
8
and 1

16
.

ε simple pst samplep samplec tri succp succc

sp
ac
e

1/2 787.8 146.3 240.7 220.5 291.4 67.1 21.5
1/4 1418.9 264.7 393.0 352.4 547.8 117.4 35.9
1/8 2677.9 657.9 704.3 619.5 1063.9 212.2 62.6
1/16 5185.2 753.6 1337.7 1157.9 2074.5 389.5 111.7

co
n
st
ru
c

-t
io
n

1/2 0.050 0.082 0.412 0.418 0.018 0.038 0.040
1/4 0.091 0.166 0.744 0.746 0.032 0.066 0.077
1/8 0.171 0.318 1.610 1.636 0.058 0.148 0.150
1/16 0.335 0.554 3.224 3.247 0.108 0.229 0.238
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Table 4.18: Average approximate ratio and maximum approximate ratio when an-
swering approximate queries over the words datasets for ϵ = 1

2
, 1
4
, 1
8
and 1

16
.

Ratio ε Query simple pst sample tri/succ

A
v e
ra
ge

R
at
io

1/2
small 1.01437 1.01025 1.01088 1.00394
medium 1.01250 1.00680 1.00984 1.00335
large 1.00453 1.00333 1.00818 1.00190

1/4
small 1.00474 1.00359 1.00351 1.00163
medium 1.00406 1.00217 1.00302 1.00120
large 1.00155 1.00090 1.00261 1.00163

1/8
small 1.00148 1.00138 1.00103 1.00039
medium 1.00137 1.00104 1.00088 1.00033
large 1.00171 1.00073 1.00061 1.00011

1/16
small 1.00041 1.00035 1.00026 1.00010
medium 1.00035 1.00021 1.00025 1.00009
large 1.00016 1.00009 1.00021 1.00003

M
ax

im
u
m

R
at
io

1/2
small 1.49658 1.5 1.48227 1.36364
medium 1.49924 1.5 1.48837 1.36364
large 1.49790 1.5 1.48879 1.33333

1/4
small 1.24773 1.25 1.24503 1.25
medium 1.24952 1.25 1.24559 1.25
large 1.24950 1.25 1.24637 1.25

1/8
small 1.12461 1.125 1.11848 1.09524
medium 1.12461 1.125 1.12148 1.09524
large 1.12474 1.125 1.11997 1.09524

1/16
small 1.06231 1.0625 1.05828 1.05
medium 1.06240 1.0625 1.06057 1.05128
large 1.06231 1.0625 1.06107 1.05
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Table 4.19: Average time to answer an approximate query over the library datasets
for ϵ = 1

2
, 1
4
, 1
8
and 1

16
, measured in microseconds. Queries are categorized into small,

medium and large, and each category has 108 queries.

ε Query simple pst samplep samplec tri succp succc

1/2
small 0.099 0.760 1.017 1.164 0.200 1.230 3.508
medium 0.099 0.581 0.603 0.629 0.144 1.152 3.809
large 0.106 0.434 0.360 0.370 0.112 0.766 3.023

1/4
small 0.121 0.937 1.110 1.409 0.303 1.746 4.305
medium 0.121 0.731 0.902 0.912 0.223 1.688 4.667
large 0.126 0.516 0.474 0.479 0.164 1.197 4.015

1/8
small 0.154 1.448 1.306 1.668 0.387 2.458 5.369
medium 0.146 1.376 1.330 1.357 0.320 2.546 5.936
large 0.145 0.967 0.752 0.791 0.229 1.842 5.195

1/16
small 0.178 1.440 1.651 1.799 0.462 3.114 6.198
medium 0.174 1.260 1.717 1.721 0.427 3.573 7.258
large 0.172 0.864 1.350 1.402 0.308 2.768 6.764

Table 4.20: Space (bits per symbol) and construction time (minutes) when answering
approximate queries over the library datasets for ϵ = 1

2
, 1
4
, 1
8
and 1

16
.

ε simple pst samplep samplec tri succp succc

sp
ac
e

1/2 769.6 37.6 231.6 210.8 291.3 65.6 13.9
1/4 1385.8 66.2 379.6 338.3 547.6 115.5 23.3
1/8 2610.7 181.6 684.4 598.1 1063.4 209.0 41.5
1/16 5057.1 194.4 1301.5 1123.8 2072.3 383.8 76.3

co
n
st
ru
c

-t
io
n

1/2 0.084 0.136 0.663 0.673 0.042 0.065 0.067
1/4 0.146 0.225 1.259 1.260 0.069 0.128 0.133
1/8 0.274 0.469 2.477 2.525 0.122 0.245 0.247
1/16 0.547 0.887 5.118 5.170 0.225 0.410 0.418
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Table 4.21: Average approximate ratio and maximum approximate ratio when an-
swering approximate queries over the library datasets for ϵ = 1

2
, 1
4
, 1
8
and 1

16
.

Ratio ε Query simple pst sample tri/succ

A
v e
ra
ge

R
at
io

1/2
small 1.00916 1.00922 1.00679 1.00255
medium 1.00337 1.00274 1.00279 1.00113
large 1.00079 1.00066 1.00078 1.00029

1/4
small 1.00315 1.00316 1.00224 1.00161
medium 1.00131 1.00112 1.00106 1.00056
large 1.00034 1.00032 1.00033 1.00015

1/8
small 1.00092 1.00104 1.00060 1.00022
medium 1.00048 1.00045 1.00037 1.00015
large 1.00015 1.00016 1.00014 1.00006

1/16
small 1.00023 1.00027 1.00014 1.00005
medium 1.00016 1.00013 1.00012 1.00005
large 1.00006 1.00006 1.00006 1.00002

M
ax

im
u
m

R
at
io

1/2
small 1.48276 1.5 1.43396 1.36364
medium 1.48276 1.5 1.43396 1.33333
large 1.46154 1.5 1.42857 1.33333

1/4
small 1.24138 1.25 1.225 1.25
medium 1.24138 1.25 1.225 1.25
large 1.24138 1.25 1.225 1.25

1/8
small 1.12121 1.125 1.10909 1.11429
medium 1.12121 1.125 1.10870 1.09524
large 1.12121 1.125 1.10952 1.09524

1/16
small 1.05882 1.0625 1.05028 1.05634
medium 1.06186 1.0625 1.05694 1.05
large 1.06231 1.0625 1.05607 1.05
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Table 4.22: Average time to answer an approximate query over the tickets datasets
for ϵ = 1

2
, 1
4
, 1
8
and 1

16
, measured in microseconds. Queries are categorized into small,

medium and large, and each category has 108 queries.

ε Query simple pst samplep samplec tri succp succc

1/2
small 0.112 1.072 0.773 1.108 0.172 1.281 3.861
medium 0.109 0.817 0.460 0.585 0.129 0.997 3.371
large 0.119 0.580 0.300 0.327 0.105 0.634 2.669

1/4
small 0.137 1.311 1.233 1.611 0.258 1.864 4.828
medium 0.134 0.990 0.634 0.806 0.192 1.539 4.497
large 0.134 0.683 0.349 0.390 0.152 1.011 3.579

1/8
small 0.165 1.944 1.547 2.194 0.359 2.686 6.307
medium 0.157 1.894 1.068 1.316 0.276 2.278 5.778
large 0.155 1.407 0.475 0.530 0.200 1.602 4.673

1/16
small 0.196 2.031 1.857 2.643 0.471 3.600 8.061
medium 0.188 1.802 1.791 1.980 0.372 3.383 7.716
large 0.179 1.186 0.784 0.803 0.261 2.401 6.210

Table 4.23: Space (bits per symbol) and construction time (minutes) when answering
approximate queries over the tickets datasets for ϵ = 1

2
, 1
4
, 1
8
and 1

16
.

ε simple pst samplep samplec tri succp succc

sp
ac
e

1/2 896.6 115.8 248.2 228.1 291.5 74.2 24.2
1/4 1618.2 225.9 402.5 362.1 548.0 130.7 42.6
1/8 3051.1 766.1 719.8 634.3 1064.9 238.5 78.6
1/16 5912.5 815.6 1367.3 1184.3 2077.9 441.2 148.7

co
n
st
ru
c

-t
io
n

1/2 0.081 0.122 0.648 0.649 0.027 0.068 0.070
1/4 0.145 0.238 1.220 1.223 0.049 0.130 0.137
1/8 0.282 0.487 2.446 2.473 0.090 0.248 0.254
1/16 0.556 0.883 5.060 5.152 0.170 0.354 0.362



45

Table 4.24: Average approximate ratio and maximum approximate ratio when an-
swering approximate queries over the tickets datasets for ϵ = 1

2
, 1
4
, 1
8
and 1

16
.

Ratio ε Query simple pst sample tri/succ

A
v e
ra
ge

R
at
io

1/2
small 1.00123 1.00179 1.00106 1.00038
medium 1.00020 1.00026 1.00017 1.00006
large 1.00003 1.00003 1.00003 1.00001

1/4
small 1.00046 1.00053 1.00034 1.00030
medium 1.00007 1.00008 1.00006 1.00004
large 1.00007 1.00001 1.00001 1.00001

1/8
small 1.00014 1.00017 1.00010 1.00004
medium 1.00002 1.00003 1.00002 1.00001
large 1.00001 1.00001 1.00001 1.00001

1/16
small 1.00004 1.00005 1.00002 1.00001
medium 1.00001 1.00001 1.00001 1.00001
large 1.00001 1.00001 1.00001 1.00001

M
ax

im
u
m

R
at
io

1/2
small 1.46154 1.5 1.37931 1.36364
medium 1.46154 1.5 1.37931 1.33333
large 1.41667 1.5 1.37500 1.33333

1/4
small 1.22222 1.25 1.21154 1.25
medium 1.23214 1.25 1.2 1.25
large 1.22222 1.25 1.2 1.25

1/8
small 1.11765 1.125 1.10870 1.09524
medium 1.11765 1.125 1.09756 1.09524
large 1.11765 1.125 1.08696 1.08333

1/16
small 1.05882 1.0625 1.05369 1.05
medium 1.05882 1.0625 1.04959 1.05
large 1.05714 1.0625 1.04959 1.05

4.7 Comparisons between Approximate Queries Structures and Exact

Queries Structures

For ϵ = 1/2, we plotted figures to compare approximate structures to the different

tradeoffs achieved by the best exact range mode structure we implemented which is

subsr2. Due to its high space costs, the figures do not show simple, and for IPs, pst

is not shown for the same reason. In these figures, we also omit some tradeoffs with

low space cost that can be achieved using subsr2, because their query times are so
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large that, with them, it would not be possible to tell how other tradeoffs compare to

each other in the same figure. Furthermore, to better compare the tradeoffs achieved

by approximate solutions, for each dataset and each category of queries, we plot a

subfigure without subsr2, before plotting another one with subsr2. From Figure 4.5

to Figure 4.9, we can tell these approximate structures outperform exact structures

greatly (except for the high space cost of pst over IPs or that of simple), making

them suitable for applications that require high average approximations. They still

achieve better time/space tradeoffs over subsr2 for ϵ = 1/4, but may lose the appeals

when we keep decreasing ϵ due to the increase in space costs.



47

0 100 200 300
0

1

2

3

bits per symbol

av
er
ag
e
q
u
er
y
ti
m
e/
µ
s pst− medium

samplep − medium
samplec − medium
tri− medium
succp − medium
succc − medium

(a) reviews− small without subsr2

0 100 200 300

0

10

20

bits per symbol

subsr2 − small
pst− small

samplep − small
samplec − small
tri− small
succp − small
succc − small

(b) reviews− small with subsr2

0 100 200 300
0

1

2

3

bits per symbol

av
er
ag
e
q
u
er
y
ti
m
e/
µ
s pst− medium

samplep − medium
samplec − medium
tri− medium
succp − medium
succc − medium

(c) reviews− medium without subsr2

0 100 200 300

0

10

20

bits per symbol

subsr2 − medium
pst− medium

samplep − medium
samplec − medium
tri− medium
succp − medium
succc − medium

(d) reviews− medium with subsr2

0 100 200 300

0

1

2

3

4

bits per symbol

av
er
ag
e
q
u
er
y
ti
m
e/
µ
s pst− large

samplep − large
samplec − large
tri− large
succp − large
succc − large

(e) reviews− large without subsr2

0 100 200 300

0

5

10

15

20

bits per symbol

subsr2 − large
pst− large

samplep − large
samplec − large
tri− large
succp − large
succc − large

(f) reviews− large with subsr2

Figure 4.5: Different time-space tradeoffs achieved by subsr2, pst, sample
p, samplec,

tri, succp, and succc on reviews.
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Figure 4.6: Different time-space tradeoffs achieved by subsr2, sample
p, samplec, tri,

succp, and succc on IPs.
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Figure 4.7: Different time-space tradeoffs achieved by subsr2, pst, sample
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tri, succp, and succc on words.



50

0 100 200 300
0

1

2

3

bits per symbol

av
er
ag
e
q
u
er
y
ti
m
e/
µ
s pst− medium

samplep − medium
samplec − medium
tri− medium
succp − medium
succc − medium

(a) library− small without subsr2

0 100 200 300

0

10

20

bits per symbol

subsr2 − small
pst− small

samplep − small
samplec − small
tri− small
succp − small
succc − small

(b) library− small with subsr2

0 100 200 300
0

1

2

3

4

bits per symbol

av
er
ag
e
q
u
er
y
ti
m
e/
µ
s pst− medium

samplep − medium
samplec − medium
tri− medium
succp − medium
succc − medium

(c) library− medium without subsr2

0 100 200 300

0

10

20

bits per symbol

subsr2 − medium
pst− medium

samplep − medium
samplec − medium
tri− medium
succp − medium
succc − medium

(d) library− medium with subsr2

0 100 200 300
0

1

2

3

bits per symbol

av
er
ag
e
q
u
er
y
ti
m
e/
µ
s pst− large

samplep − large
samplec − large
tri− large
succp − large
succc − large

(e) library− large without subsr2

0 100 200 300

0

5

10

15

bits per symbol

subsr2 − large
pst− large

samplep − large
samplec − large
tri− large
succp − large
succc − large

(f) library− large with subsr2

Figure 4.8: Different time-space tradeoffs achieved by subsr2, pst, sample
p, samplec,

tri, succp, and succc on library.
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Figure 4.9: Different time-space tradeoffs achieved by subsr2, pst, sample
p, samplec,

tri, succp, and succc on tickets.



Chapter 5

Conclusions

In this thesis, we study various exact and approximate range mode query structures.

To examine the performance of different data structures, we utilize five publicly avail-

able datasets and measure the query time, construction time, space consumption and

approximate mode ratios of these solutions.

As for exact range mode query solutions, most of our experiments are on the

two data structures of Chan et al. [5]: sqrt and subsr. They outperform two naive

approaches nv1 and nv2, as well as an earlier data structure solution supsr [19].

Two variants of subsr are implemented: subsr1 is an implementation of the final

method of Chan et al. [5], and we use succinct data structure to further compress

some components in subsr1 to design subsr2 as described in section 3.3. There are

two different implementations of bit vectors in the sdsl-lite [14], a plain bit vector

which we refer to as p and a compressed bit vector which we refer to as c. Then we

compare subsrp1 and subsrc1 and find that subsrp1 achieves better time-space tradeoffs

on the IPs, words, library and tickets datasets while subsrc1 achieves better time-

space tradeoffs on the reviews dataset. We observe the same result when comparing

subsr
p
2 and subsrc2. By performing experimental study using different values of s, we

find that subsr2 outperforms other solutions when the same amount of space is used.

Regarding approximate range mode data structures, we study simple, pst, sample,

tri and succ. All these data structures outperform the best exact range mode so-

lutions in query time when we choose ϵ = 1
2
, and the average approximate ratio is

excellent. We also find that the space cost of succc is only 35.6% ∼ 93.8% of that

of the input array of 32-bit integers. Its non-succinct version, tri, uses slightly more

space than pst, but achieves better query performance. Furthermore, the query time

of these solutions increases at a logarithmic rate when we decrement the value of ϵ,

while the space costs is proportional to 1/ϵ.

One interesting open problem is how to design a practical (1+ϵ)-approximate range

52
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mode structure with O(n
ε
) space and O(lg 1

ε
) query time. We have not implemented

the 3-approximate structure of Greve et al. [15] or the 4-approximate structure of

El-Zein et al. [10], because they are not practical, but these solutions are needed to

achieve O(lg 1
ε
) query time in their solutions.
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