
ANOMALY DETECTION FOR IOT DEVICES USING
HIERARCHICAL SELF-ORGANIZING MAPS

by

Muhammadjon Toshpulatov

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

December 2021

© Copyright by Muhammadjon Toshpulatov, 2021



I dedicate my thesis to my grandfather who is not with us right now.

ii



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Supervised learning approaches . . . . . . . . . . . . . . . . . . . . . 4

2.2 Unsupervised learning approaches . . . . . . . . . . . . . . . . . . . . 5

2.3 Other studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.1 New York dataset . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.2 Austin dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.3 Irish dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.4 Power System Attack Dataset . . . . . . . . . . . . . . . . . . 12

3.2 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1 Pre-processing: New York and Austin datasets . . . . . . . . . 14
3.2.2 Pre-processing: Irish Dataset . . . . . . . . . . . . . . . . . . 15
3.2.3 Pre-processing: Power System Attack dataset . . . . . . . . . 16
3.2.4 Sliding window . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.5 Dataset splitting & Feature scaling . . . . . . . . . . . . . . . 17

3.3 Attack Behavior Simulation and Injection . . . . . . . . . . . . . . . 18

3.4 Self-Organizing Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.1 SOM sequential learning algorithm . . . . . . . . . . . . . . . 21
3.4.2 SOM batch learning algorithm . . . . . . . . . . . . . . . . . . 22
3.4.3 Visualization using SOM . . . . . . . . . . . . . . . . . . . . . 23
3.4.4 Hierarchical Self-Organizing Maps . . . . . . . . . . . . . . . . 26

iii



3.5 Proposed Model Architecture . . . . . . . . . . . . . . . . . . . . . . 28

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Chapter 4 Evaluation and Results . . . . . . . . . . . . . . . . . . . . 31

4.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Training phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Analyzing sliding windows with window overlaps . . . . . . . . . . . . 40

4.6 Analyzing new behaviors . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.7 Data clustering using SOM . . . . . . . . . . . . . . . . . . . . . . . . 44

4.8 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Chapter 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Appendix A Type of scenarios in Power Systems Attacks dataset . 61

Appendix B Clustering visualizations . . . . . . . . . . . . . . . . . . . 64

Appendix C Comparison research . . . . . . . . . . . . . . . . . . . . . 73

iv



List of Tables

3.1 An overview of the datasets used . . . . . . . . . . . . . . . . . 9

4.1 Parameters used for training the SOM . . . . . . . . . . . . . . 32

4.2 Parameters used for smart meter datasets . . . . . . . . . . . . 33

4.3 The results of the proposed model on the New York dataset . . 38

4.4 The results of the proposed model on the Austin dataset . . . . 38

4.5 The results of the proposed model on the Irish dataset . . . . . 39

4.6 The results of the proposed model on the Power System dataset 40

4.7 Evaluations of the SOM using a Sliding window: l = 5, k = 0 . 41

4.8 Evaluations of the SOM using a Sliding window: l = 5, k = 1 . 41

4.9 Evaluations of the SOM using a Sliding window: l = 5, k = 2 . 41

4.10 Evaluations of the SOM using a Sliding window on Power System
Attacks datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.11 3rd layer neuron hits for new behavior analysis . . . . . . . . . 44

4.12 The number of clusters found on the 1st layer SOM map . . . . 46

4.13 Inferring attack types . . . . . . . . . . . . . . . . . . . . . . . 49

4.14 Discrete rating levels . . . . . . . . . . . . . . . . . . . . . . . . 50

4.15 The results of Bhattacharjee et al’s research work replication on
New York dataset . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.16 The results of Bhattacharjee et al’s research work replication on
Austin dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.17 The results of Bhattacharjee et al’s research work replication on
Irish (25) dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A.1 Natural event scenarios . . . . . . . . . . . . . . . . . . . . . . 61

A.2 Attack event scenario . . . . . . . . . . . . . . . . . . . . . . . 62

A.3 No event scenario . . . . . . . . . . . . . . . . . . . . . . . . . 63

v



A.4 Classification of events . . . . . . . . . . . . . . . . . . . . . . . 63

A.5 Power System Attacks dataset features . . . . . . . . . . . . . . 63

C.1 Isolation Forest on Smart meters with trust values . . . . . . . 73

C.2 Lightweight On-line Detector of Anomalies on Smart meters with
trust values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

vi



List of Figures

1.1 The number of Machine-to-Machine connections projected by
Cisco over a 5-year period . . . . . . . . . . . . . . . . . . . . 2

3.1 New York dataset power consumption frequency . . . . . . . . 10

3.2 Austin dataset power consumption frequency . . . . . . . . . . 11

3.3 Irish dataset power consumption frequency . . . . . . . . . . . 12

3.4 Power System Framework . . . . . . . . . . . . . . . . . . . . 13

3.5 Examples of SOM grids with sizes 10× 15 . . . . . . . . . . . 20

3.6 SOM 2D map before and after training . . . . . . . . . . . . . 24

3.7 SOM 3D map before and after training . . . . . . . . . . . . . 24

3.8 SOM - Distance matrix (U-matrix) . . . . . . . . . . . . . . . 25

3.9 SOM - Data distribution . . . . . . . . . . . . . . . . . . . . . 25

3.10 SOM layer 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.11 SOM - 2nd and 3rd layer maps . . . . . . . . . . . . . . . . . 27

3.12 The overall architecture of the proposed approach . . . . . . . 29

4.1 Data distribution on the trained SOM – New York additive
attack dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 2D distance matrix – New York dataset with additive attack . 34

4.3 3D distance matrix – New York dataset with additive attack . 35

4.4 Data distribution on the trained SOM – Power System Attacks 36

4.5 2D distance matrix – Power System Attacks . . . . . . . . . . 36

4.6 3D distance matrix – Power System Attacks dataset . . . . . . 37

4.7 New behavior of input data on trained SOM . . . . . . . . . . 43

4.8 Distance matrix - Power System Attack . . . . . . . . . . . . . 45

4.9 Clusters formed on the trained SOM . . . . . . . . . . . . . . 45

4.10 Clustering of smart meters based on trust values . . . . . . . . 51

vii



B.1 Clusters formed on the trained SOM: New York Additive . . . 64

B.2 Clusters formed on the trained SOM: New York Deductive . . 64

B.3 Clusters formed on the trained SOM: New York Camouflage . 65

B.4 Clusters formed on the trained SOM: Austin Additive . . . . . 65

B.5 Clusters formed on the trained SOM: Austin Deductive . . . . 66

B.6 Clusters formed on the trained SOM: Austin Camouflage . . . 66

B.7 Clusters formed on the trained SOM: Irish 25 Additive . . . . 67

B.8 Clusters formed on the trained SOM: Irish 25 Deductive . . . 67

B.9 Clusters formed on the trained SOM: Irish 25 Camouflage . . 68

B.10 Clusters formed on the trained SOM: Irish 100 Additive . . . . 68

B.11 Clusters formed on the trained SOM: Irish 100 Deductive . . . 69

B.12 Clusters formed on the trained SOM: Irish 100 Camouflage . . 69

B.13 Clusters formed on the trained SOM: Irish 200 Additive . . . . 70

B.14 Clusters formed on the trained SOM: Irish 200 Deductive . . . 70

B.15 Clusters formed on the trained SOM: Irish 200 Camouflage . . 71

B.16 Clusters formed on the trained SOM: PSA Full . . . . . . . . 71

B.17 Clusters formed on the trained SOM: PSA One PMU with Ex-
tra features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

B.18 Clusters formed on the trained SOM: PSA One PMU only . . 72

viii



Abstract

With the growing use of the Internet of Things (IoT), the IoT platforms, and the so-

lutions and services related to them, cybersecurity stays of utmost importance. The

cyber and interconnected nature of IoT devices makes them vulnerable to various

types of cyber-attacks as well as data falsifications. In this thesis, I design and im-

plement a data-driven unsupervised learning approach for anomaly detection for IoT

devices such as smart meters, and intelligent electronic devices in power generators.

To this end, I employ and evaluate Hierarchical Self-Organizing Maps on real-world

smart meter and power system data collected in the USA and Europe. Results show

that different types of anomalies could be detected with an F1-score between 0.857

and 0.980 based on the dataset and the type of attack observed.

ix



Acknowledgements

I would like to express my deepest appreciation to my supervisor, Dr. Nur Zincir-

Heywood whose expertise, guidance, and continued support made this thesis possible.

I am deeply indebted to you for all your help and patience during my studies at

Dalhousie University.

I would also like to extend my deepest gratitude to my parents who are the reasons

I have come this far.

I am also extremely grateful to Yulduz Khodjaeva who always provided encour-

agement and unwavering support from my first days in Canada.

Moreover, I wish to thank my friends Akmaljon Jalilov, Akhrorjon Aliev, Be-

hzodbek Malikov, Bekzod Abdullaev, Shakhboz Abdulazizov, Khurshidbek Saidme-

tov whose help cannot be underestimated.

x



Chapter 1

Introduction

The Internet of Things (IoT), is a system of interconnected devices with sensors,

software, and other technologies that exchange data over communication networks

without human-to-human or human-to-computer interaction. The number of IoT

devices is increasing so rapidly, it is predicted that the share of Machine-To-Machine

(M2M) connections will make up 50 percent of globally connected devices or 14.7

billion in 2023 compared to 33 percent in 2018 (Figure 1.1) [7].

The poor security and interconnected nature of IoT devices make them vulnerable

to different types of attacks. Devices without strong secure defense system or software

can be used as potential entry points for cyberattacks and data falsification or can

cause data exposure [34]. Therefore, as IoT devices become a common part of people’s

daily lives, cybersecurity stays the biggest concern.

One of the common uses of IoT devices is as smart meters in Advanced Metering

Infrastructures (AMIs) [29]. AMI is responsible for collecting consumers’ energy

consumption data using smart meters, enabling a two-way flow of information between

consumers and utility providers. On the one hand, AMI allows commands to be sent

to houses for multiple purposes such as real-time pricing, demand-response actions,

and disconnecting remotely. On the other hand, smart meter data can be falsified

by users/hackers for different reasons from lowering the electricity bills to electricity

theft and others [15]. Additionally, organized adversaries can target not only one but

multiple smart meters for even bigger data falsification attacks [41, 3]. For example,

additive data falsification attacks result in high electricity bills and victimize the

users. Deductive1 data falsification attacks result in electricity thefts and victimize the

electricity provider. Moreover, adversaries can perform both additive and deductive

attacks which makes detection challenging for systems that use average aggregates.

This is called camouflage mode of data falsification [3].

1The naming convention is taken from [3]. The authors used it for ”subtraction/deducting”
attacks.

1



2

Figure 1.1: The number of Machine-to-Machine connections projected by Cisco over
a 5-year period

Another use of IoT devices is power systems. Power systems can contain power

generators, breakers, and intelligent electronic devices (IED) that switch breakers on

or off. The IEDs relay information back to the supervisory control room. If the

framework does not have a well-secured defense system, an attacker can gain access

to the network, i.e. the power grid, and perform attacks by sending commands to

IED which could cause breakers to open. Besides, the attacker might be able to falsify

the energy meter reading or parameters such as current, voltage, sequence, referred

to as Data Injection Attacks [4]

In this thesis, I explore an unsupervised learning-based approach to detect different

types of attacks in the aforementioned IoT systems. To achieve this, I propose a

Hierarchical Self Organizing Map (SOM) based approach [16], where I study the

effects of temporal information by using explicit time information in the form of

timestamps as well as a sliding window with window overlaps. I evaluate the proposed

approach with:

1. A small number of features in real-world datasets recorded from houses in New

York (New York, US), Austin (Texas, US), Dublin (Ireland) as a part of Pecan

Street Project. These datasets consist of real-world electricity consumption data

from 2018 and 2019. Since they do not contain any attacks, the attack injection



3

process is simulated before the implementation of the proposed approach. In-

jected attack types are divided into three categories for these datasets: Additive,

deductive, and camouflage.

2. A large number of features in power system attack datasets from the Missis-

sippi State University in collaboration with Oak Ridge National Laboratory. In

this case, the dataset contains data from a power system framework. Attack

scenarios are built and simulated with the assumption that an attacker has al-

ready gained access to the substation network and can issue commands from

substation switches.

Results show that the proposed three-layer Hierarchical SOM model achieves F1-

scores between 0.857 and 0.980 based on the type of attacks.

The rest of the thesis is organized as follows: Chapter 2 reviews the literature in

this field. Chapter 3 introduces the proposed approach and discusses the datasets,

data pre-processing, and the Self-Organizing Map model used as an anomaly detec-

tor. Chapter 4 presents conducted evaluations and the results achieved. Finally,

conclusions and future work are discussed in Chapter 5.



Chapter 2

Literature Review

The IoT devices have been used in many fields including, but not limited to smart

homes, energy, retail, transportation, manufacturing, health, agriculture, and so on

[10]. The huge scale of IoT devices requires extensive research to provide reliable

security for users. Before coming up with a model for the thesis, it was necessary

to analyze existing relevant research in the area. The methodology and results from

other works not only give information about existing defense mechanisms but also

make it clear why using unsupervised learning techniques, including Self-Organizing

Maps can be more useful in terms of IoT security against rapidly evolving data fal-

sification attacks. This chapter summarizes the related IoT cybersecurity literature

from the perspective of machine learning approaches used. Thus, supervised learning

approaches used for IoT attack detection are summarized in Section 2.1, while un-

supervised learning approaches used are discussed in Section 2.2. Lastly, the use of

other approaches in the security of IoT is given in Section 2.3.

2.1 Supervised learning approaches

The techniques of supervised learning have been discussed in many studies in order

to build enhanced defense models for IoT systems. In [15] Jokar et al. proposed

a consumption pattern-based energy theft detector using one-class and multi-class

Support Vector Machines (SVM) by addressing the problem of imbalanced data. After

dimensionality reduction and normalization, they used the k-means algorithm on a

benign dataset to exclude the legitimate abnormal data that might have occurred due

to non-malicious actions or events such as seasonality, change of appliances, different

usage during weekdays compared to weekends, holidays, etc. Since their dataset

does not contain energy theft simulation of the malicious data sample is performed.

For training the classifier they used SVM claiming its superior performance in many

applications compared to other methods such as neural networks or a likelihood ratio

4



5

test. In the first experiment one-class SVM was employed for training using normal

samples only, while in the second experiment, multi-class SVM was utilized with

benign and malicious data samples. The detection rate reached 76% with a 29% of

false positive rate when using one-class SVM. In contrast, multi-class SVM yielded

significantly better results: 94% detection and 11% false positive rates.

Another study by Jindal et al. in [14] examined a combination of SVM classifier

with the result-oriented Decision Tree (DT) based approach. The model had two

steps: During the first step, the parameters (Number of appliances, number of per-

sons, temperature, season, time slot, etc.) of the input is fed into DT and expected

output (Expected electricity consumption) is generated. In the second step, previ-

ously defined parameters along with actual labels and the output of DT are fed into

SVM. As a result, the consumers are classified as normal and malicious. The scheme

was able to identify fraudulent consumers with an accuracy rate of 92.5% with a

5.12% false alarm rate.

A classification-based approach for IoT networks using another supervised learning

algorithm, the Random Forest, was discussed in [26] by Maniriho et al. For this

work, IoTID20 datasets generated in [42] was utilized. The dataset was collected

from IoTID20 Testbed that is a smart home system of IoT devices, namely EZVIZ

Wi-Fi Security camera and also other smart home devices like Wi-Fi routers, tablets,

laptops, smartphones. Wi-Fi Security camera and SKT NGU were victims, while the

rest of the devices were attacking devices. It is worth noting that Maniriho et al.

used binary classification datasets, subsets of the original IoTID20 primary dataset.

Each of the subsets contained Denial-of-Service (DOS), Man-in-the-Middle(MITM),

Scan type of attacks, respectively, and normal data. After data pre-processing and

feature selection steps, the Random Forest, which is a tree-based ensemble machine

learning algorithm, was applied for training. The results showed that the proposed

model achieved precision above 99% for all three types of attacks.

2.2 Unsupervised learning approaches

Unsupervised learning-based techniques have also been widely used in the field of

IoT security. In [1], Aligholian et al. evaluated the performance of four unsuper-

vised machine learning methods, namely regression, neural networks, clustering, and



6

projection-based methods, for abnormality detection on real-world smart meter data.

One thing to note is that this work identified different categories of features:

(A) Load Based Features. These features are collected directly based on the power

consumption of the households. Power consumption of the previous 24 hours,

or last week, or last month can be examples of this category.

(B) Contextual Features. Time of the day, day of the week, weekends, weekdays,

holidays, etc. fall into this category.

(C) Environmental Features. Temperature, humidity belong to this category.

Then four unsupervised online abnormality detection methods were implemented:

1. Load Prediction with Regression (LPBSVR). This method works by comparing

predicted power consumption with actual consumption. The prediction of power

consumption is done using Support Vector Regression (SVR), a regression model

that is based on outliers, which is suitable for abnormality detection.

2. Load Prediction with Neural Network (LPBNN). LPBNN is similar to LPBSVR

except the prediction is done using Neural Network.

3. Clustered Based Method. This method divides the dataset into two clusters,

namely abnormal and normal using cluster-based methods, such as Local Out-

lier Factor or K-Nearest Neighborhood. However, in this work Isolated forest

(IF) cluster base method was used with the aim of reducing computational time

and enhancing the detection rate.

4. Projection Based Method. In this method, the input space is projected to a

subspace using dimensionality reduction. For this, Lightweight Online Detector

of Anomalies (LODA) was employed due to its computational efficiency.

The dataset used in their research is smart meter data collected from houses in Austin,

Texas, US as a part of from Pecan Street Project [32], two of the datasets I used in

this thesis. As a performance metric to compare the proposed methods, Matthews

Correlation Coefficient (MCC) was used. The results show that IF had the highest

performance with MCC equal to 0.81 when utilizing all features. LODA, LPBSVR

and LPBNN had MCCs were equal to 0.54, 0.49, 0.47, respectively. However, based

on which features were used, the methods had different accuracy rates. For example,

in two cases LPBSVR had an MCC of 0.93, which was the highest compared to other



7

methods: when only historical data was used, and when historical data along with

contextual features were used.

Another anomaly detection model using unsupervised one-class learning methods

for home IoT devices was proposed by White et al. [45]. Due to the class imbalance in

security monitoring as well as class labeling challenges and also to address unknown

attacks, they used One-Class Support Vector Machine (OC-SVM). The OC-SVM is

a technique developed from SVM and used to find outliers in a dataset by mapping

the input space into a high dimensional space using a kernel function [45, 6]. For

the experiment, a regular home IoT network consisting of five different IoT devices,

namely Amazon Echo, Amazon Fire Tv, Brother Printer, Netgear Arlo Security Cam-

era, and Home Hive Hub was created. As attacks, two types of DoS traffic patterns

were used: TCP SYN Flood and UDP Flood. The results showed that the proposed

model achieved F-scores ranging between 91.58% and 99.67% based on the device.

Bhattacharjee et al. proposed a semi-supervised consensus-based trust scoring

model that could identify compromised smart meters [3]. A notable part of their

work was that they proposed the ratio of harmonic to the arithmetic mean showing

that those metrics were more stable and more robust for anomaly detection compared

to the mean or median. Their work presented an anomaly-based consensus correc-

tion technique that detected the presence and type of smart meter data falsification

(additive, deductive, camouflage). Moreover, they identified the smart meters that

were injecting the false data. The main contribution [3] was that they were able to

identify the anomalies using an unsupervised learning approach and then classify the

faulty meters based on a semi-supervised based approach.

2.3 Other studies

Fanlin et al. discussed the security problems and corresponding solutions of smart

grids in [9]. Specifically, they introduced the security risks of smart meters and

online monitoring technologies. Many works related to data falsification in smart

grid systems discussed electricity theft from individual customers [28, 27, 48].

On the other hand, in [13], Jiang et al. examined three types of the AMI energy-

theft detection schemes: classification, state estimation, and game theory. They



8

concluded that although each scheme had its own unique features, state-based detec-

tion technique could achieve higher detection and lower false positive rates with the

aid of specific monitoring devices. Xia et al. proposed a group testing based heuristic

inspection algorithm to detect malicious users in a neighborhood area network of a

smart grid [47]. They evaluated their algorithm on the data they generated based on

a UCI benchmarking dataset and showed that their algorithm had and advantage of

conducting fewer inspection steps.

In [27, 48, 2], researchers used average values (mean, median) of electricity mea-

surements to identify data falsification in smart meters. They argued that traditional

measures of central tendency might not be robust for legitimate changes in smart

meters, increasing false positive rates.

2.4 Summary

To summarize, previous works proposed a number of different supervised, and unsu-

pervised techniques to detect attacks in IoT networks and compromised smart meter

data. Many of the models, discussed in this chapter, analyzed network packages and

detected attacks only specific to a selected layer. For the works that discussed smart

grids along with smart meter datasets, some of the proposed approaches use average

aggregates such as median or mean which is sensitive for even abnormal but legit

alterations in the environment. Moreover, they do not propose a solution that can

be generalized for different types of IoT devices and systems. Thus, in this thesis,

my goal is to propose an approach that could be generalized for various types of IoT

data, in particular, power systems and devices with different dimensions using Self-

Organizing Maps. To the best of my knowledge, no work has investigated the use of

Self-Organizing Maps to identify data falsification in power grid-related IoT devices.



Chapter 3

Methodology

This chapter provides information about the data and the architecture of the proposed

model. The section 3.1 introduces the datasets employed from the smart meter data

to the power system data, while the data pre-processing and attack simulation steps

are discussed in sections 3.2 and 3.3, respectively. Then Section 3.4 introduces the un-

supervised learning approach, Self-Organizing Maps, whereas the overall architecture

for the proposed approach is presented in 3.5.

3.1 Datasets

Obtaining the right and high-quality data for the problem comes with challenges.

First of all, companies are responsible not to share users’ data because of privacy

concerns. Commercial companies can present data by removing personal information

or other sensitive information but they are usually costly. For these reasons, in this

thesis, two publicly available (Irish and Power System Attack) and two only-academic-

use datasets (New York and Austin) are used. Overall information about parameters

for all datasets are presented in Table 3.1.

Table 3.1: An overview of the datasets used

Parameters New York Austin Irish Power System
# instances 441599 873286 157992996 78377
# features 79 79 3 128
Date (mm-yy) 05.19-11.19 01.18-12.18 07.09-12.10 2014
Type Smart meter Smart meter Smart meter Pow. framework
Completeness 100% 99% 99% N/A
Contains attack No No No Yes
Real-world Yes Yes Yes No
Interval length 15-minute 15-minute 30-minute N/A

9



10

3.1.1 New York dataset

The first dataset is New York 15-minute static time-series dataset from Pecan Street

Dataport1 [32]. It is a subset of the primary New York datasets that contain 1-

second, 1-minute, 15-minute datasets. The dataset consists of power consumption

data as well as household information from 25 houses that participated in Pecan

Street Project. Every house has a smart meter installed recording power consumption

and also power generation in case there are power generator devices like solar panels.

The number of devices in the houses, the number of rooms, the existence of electric

vehicles and different kinds of appliances, such as microwave, stove, air conditioner,

aquarium, dishwasher, heater and so on make up household information. The dataset

was recorded during six months period, from 00:00 May 1, 2019, to 23:45 November

30, 2019, with 100% completeness across all 15-minute intervals. Completeness means

how complete a dataset is for every single 15-minute interval during a given period. If

some intervals are missing for even one smart meter, the dataset is not 100% complete.

The frequency of power consumption in New York is shown in Figure 3.1. It is

evident from the graph that the range of 100-1000 watts consists of the most frequently

recorded power consumption.

0 500 1000 1500 2000 2500 3000 3500 4000

Power (Watts)

0

0.5

1

1.5

2

2.5

3

F
re

q
u
e
n
c
y
 o

f 
p
o
w

e
r 

u
s
a
g
e

10
4

Figure 3.1: New York dataset power consumption frequency

1Source: Pecan Street Inc. Dataport



11

3.1.2 Austin dataset

The second dataset is Austin 15-minute static time-series dataset. Like the previous

dataset, it is also collected as a part of the Pecan Street Project [32]. The primary

Austin dataset contains 1-second, 1-minute, 15-minute datasets but for this thesis,

only the last one (15-minute dataset) is used. Original Austin dataset has information

about power consumption, generation, and household information like the number

of rooms, the existence of garage, devices (microwave, stove, air conditioner, fridge,

dishwasher, heater, etc.) of 25 houses. The dataset was collected during 1 year period,

from 00:00 January 1, 2018, to 23:45 December 31, 2018, with 99% completeness.

Figure 3.2 shows the frequency of energy consumption recorded in the dataset.

It can be observed that the distribution of power consumption follows an approx-

imate log-normal distribution. The Figure 3.2 can also support this.

0 500 1000 1500 2000 2500 3000 3500 4000

Power (Watts)

0

0.5

1

1.5

2

2.5

3

3.5

4

F
re

q
u
e
n
c
y
 o

f 
p
o
w

e
r 

u
s
a
g
e

10
4

Figure 3.2: Austin dataset power consumption frequency

3.1.3 Irish dataset

The third dataset is Irish 30-minute static time-series dataset2. The Commission for

Energy Regulation (CER), a regulator for the electricity and natural gas sectors in

Ireland, initiated the Smart Metering Project with other organizations in Ireland in

2Accessed via the Irish Social Science Data Archive - www.ucd.ie/issda



12

2007 to assess the performance of Smart Meters [11]. As a part of the project, The

Smart Metering Electricity Customer behavior Trials (CBTs) took place during 2009

and 2010 with more than 5000 homes and businesses participating in the project in

Ireland. The dataset, recorded from July 14, 2009, to Dec 31, 2010, in anonymized

format was made available for further research works. No personal or confidential

information is left in the dataset [11]. Like in New York and Austin datasets, the

range of 100-1000 watts is the most utilized energy range among the houses being

examined in Ireland (see Figure 3.3).

0 500 1000 1500 2000 2500 3000 3500 4000

Power (Watts)

0

0.5

1

1.5

2

2.5

3

3.5

4

F
re

q
u
e
n
c
y
 o

f 
p
o
w

e
r 

u
s
a
g
e

10
6

Figure 3.3: Irish dataset power consumption frequency

3.1.4 Power System Attack Dataset

Uttam Ahikari, Shengi Pan, and Tommy Morris from Mississippi State University

in collaboration with Raymond Borges and Justin Beaver from Oak Ridge National

Laboratories have created 3 datasets using a power system framework [40]. The

dataset includes measurements of different electric transmission system behaviors

such as normal, disturbance, cyber-attack [43]. Moreover, there are data logs from

Snort, a simulated control panel, and relays.

Figure 3.4 shows the power system framework used to create the dataset and

simulate the attacks and other abnormal behaviors in the network. The network

consists of several components:



13

Figure 3.4: Power System Framework

• Power generators. G1 and G2 in the diagram are power generators.

• Breakers. BR1, BR2, BR3, BR4 are breakers.

• Intelligent Electronic Devices (IEDs). The IEDs switch breakers on and off. R1

controls BR1, R2 controls BR2, and so on.

• Transmission lines. Line One spans from breaker BR1 to breaker BR2, line Two

spans from breaker BR3 to breaker BR4. In other words, line One connects bus

B1 to B2, while line Two connects B3 and B4

• Substation switch and Router. The IEDs send information through a substation

switch through a router to the control room and data acquisition systems.

The IEDs use a distance protection scheme in which turns the breaker on/off de-

tected faults. However, they cannot distinguish if the fault is valid or fake. Operators

can also manually send commands to all four IEDs to switch breakers while there is

maintenance on the system [4]. Attack and other disturbance scenarios are simulated

by manually injecting or issuing commands.

Overall, the dataset contains 128 features. There are 29 types of measurements



14

from each phasor measurement unit (PMU). A phase measurement unit or syn-

chrophasor is a device that measures the electrical waves on an electrical grid using a

common time source for synchronization. For this system, there are four synchropha-

sors, each giving 29 features. Total 116 features are coming from them. Another 12

features are control panel logs and Snort alerts. The type of all abnormal behavior

scenarios, attack events, and the feature list can be found in Appendix A.

3.2 Data pre-processing

Preparing a dataset to employ it with a machine learning model is a crucial part of

the process [36, 31, 35]. Even though the datasets used in this thesis have already

been prepared for general research purposes, there are still some features/parts that

need to be removed or refined to bring the dataset into the ready-to-use format as an

input for the proposed model. Since the datasets New York and Austin datasets are

much similar and in the same format pre-processing steps for them are almost the

same. However, the Irish dataset and Power System Attack dataset need different

refinement. The next following three subsections are about data pre-processing.

3.2.1 Pre-processing: New York and Austin datasets

As mentioned in Section 3.1, New York, and Austin datasets had many features

including household information about appliances, electric vehicles, rooms, and so

on. However, for this thesis only the following features are used:

Smart meter ID. The unique identifier for the smart meter or home is given as an

integer value. No conversion is required for this feature.

Timestamp. Time of the data recorded. Given in a string format of yyyy-mm-dd

HH:MM:SS. This feature is converted into a serial date number that represents

the whole and a fractional number of days from a fixed, preset data, in this

case, January 0, 0000, in the ISO calendar [39].

Solar1. Power generated by the first solar photo-voltaic system, given in kilowatt

(kW). This feature is converted into watts (W).



15

Solar2. Power generated by the second solar photo-voltaic system, given in kilowatt

(kW). This feature is converted into watts (W).

Grid. Electricity used in the given fifteen-minute interval, given in kilowatt. This

feature is converted into watts (W).

The rest of the features are removed the dataset. Moreover, since there are three

features (solar1, solar2, srid) that make up overall power usage in a given time, it

needs to get calculated. For example, Solar1 = 500W , Solar2 = 250W , grid =

1000W , assuming that solar panels have not generated any power, overall power

consumption at this time equals to 1000W +250W +500W = 1750W . In general, for

each data instance i, we calculate the overall grid meter by meter(i) = solar1(i) +

solar2(i) + grid(i). After the grid meter for each data instance is calculated, we no

longer use the solar1, solar2, grid features. As a result, the following three features

left: SmartMeterID, timestamp and meter.

3.2.2 Pre-processing: Irish Dataset

Irish dataset does not contain extra information that needs to be removed, yet given

features need processing thoroughly:

Smart meter ID. The unique identifier for the smart meter or home is given as an

integer value. No conversion is required for this feature.

Timestamp. Time of the data recorded. Given in a five digit code. Day code

is digits 1-3 (day 1 = January 1, 2009), time code digits 4-5 (1-48 for each

30 minutes with 01 = 00:00:00 - 00:29:50, 02 = 00:30:00 - 00:59:59, so on

accordingly). This feature is to be converted into serial date number as it

is done for timestamp feature in New York and Austin datasets.

Grid. Electricity consumed during a 30-minute interval, given in kilowatt. This

feature is converted into watts (W).

With these pre-processing steps, all smart grid datasets (New York, Austin, Irish) are

to be brought into the same format. It is worth mentioning that the Irish dataset,

unlike New York and Austin datasets, contains a much larger number of smart meters.



16

To be exact, it contains data of 6435 smart meters, while the New York and Austin

datasets have 25 smart meters each. Therefore, for the Irish dataset, different number

of smart meters will be analyzed: 25, 100, 200.

3.2.3 Pre-processing: Power System Attack dataset

Power System Attack dataset is in a totally different format. Unlike the remaining

dataset, this dataset does not contain smart meter data. This dataset has been

chosen intentionally to show the robustness and the generalization property of the

proposed model. That is, the proposed model can be used in a different types of IoT

environments by applying slight changes to datasets.

For this thesis, the ’triple’ dataset is used after implementing a few pre-processing

phases. This dataset contains all 128 features and labels whose value is one of attack,

normal, natural events. Following are the pre-processing steps:

1. The data instances whose label is natural are removed to be able to use in the

proposed approach.

2. Initially this dataset is ready to use. However, from this dataset, two more

datasets are extracted. The data and features that belong to only one of the

IEDs (see Section 3.1.4 for IEDs) are selected from the dataset prepared in step

1 in order to see how it affects the performance of the model.

3.2.4 Sliding window

Lastly, to study the effect of further temporal information, a sliding window approach

is employed given that a standard SOM has no capacity to recall the history of

patterns directly. To this end, l and k integer numbers are employed such that

0 < k < l. For i = 0, starting from the ith exemplar of a dataset D, we input the

data to the SOM using a sliding window approach based on a sliding window of size

l, and a window overlap of size k.

This approach is to be used to examine how temporal information affects detection

and false alarm rates. To this end, l = 5 and k = 0, 1, 2 values will be used. These

results will be compared to the results where no sliding window approach is used.



17

3.2.5 Dataset splitting & Feature scaling

Overall, out of four main datasets New York, Austin, Irish, Power System Attack,

the following datasets are generated to examine the proposed approach:

• New York additive, New York deductive, New York camouflage.

• Austin additive, Austin deductive, Austin camouflage.

• Additive, Deductive, Camouflage datasets for each of Irish with 25 smart meters,

Irish with 100 smart meters, Irish with 200 smart meters (nine Irish datasets,

overall).

• Power System Attacks dataset, Power System Attacks dataset with features of

one PMU and extra features, Power System Attacks dataset with features of

one PMU only.

As the last steps of pre-processing, the following are implemented:

• For a given dataset, 70% of it is used for training, while the remaining 30% is

used for testing. The selection is split into training and testing randomly to

keep underline data distribution valid for both sets.

• Any data instances that contained undefined numbers are either removed from

the dataset or that specific value is assigned to zero.

• Since the SOM learning algorithm is based on Euclidean distances, the range

of the variables is very important [37]. If the range of a variable is significantly

larger than others, this variable might dominate the map organization [12].

Therefore the values are normalized using Z-score (unit variance) normalization

is used [37, 17]. How the algorithm works is shown next.

Z-score normalization

The Z-score normalization method is widely used for normalization in many machine

learning algorithms such as Support Vector Machines, artificial neural networks, and

logistic regression. It is calculated as:

x′ =
x− x

σ
(3.1)



18

where x is an input vector, x = mean(x) is the mean of this feature vector, and σ is

its standard deviation.

3.3 Attack Behavior Simulation and Injection

As described in Section 3.1.4, it Power System Attack dataset was generated in a lab

environment with different types of attacks. Therefore, for this dataset, or for the

one that is extracted from it, no attack simulation is required. They can be used as

they are after pre-processing.

On the other hand, as mentioned earlier, the New York, Austin, and Irish datasets

are real-world datasets collected as a part of the nationwide projects. These datasets

do not contain any data falsification. Therefore, based on [3], we simulate additive,

deductive, and camouflage attacks and inject them into the New York dataset. Power

consumption data from smart meters can be altered by adversaries or users once they

break the defense walls and gain access to the network [28]. Therefore this attack

simulation section is entirely about smart meter datasets. Note from Chapter 1, the

type of attacks are following:

Additive: Reporting higher than actual power consumption.

Deductive: Reducing actual measured reading of power consumption.

Camouflage: Performing both additive and deductive attacks to evade the detection

methods that use mean aggregates [3].

Compromised smart meters

Let N be the number of available smart meters in a dataset, and M be the number

of smart meters that adversaries compromise. Then the fraction Smal =
M
N
ϵ(0 : 1)

yields the portion of the compromised smart meters. Smal = 0.30 means 30% of the

smart meters are compromised. In [3], researchers discussed different ranges of mal

from 10% to more than 75%. For this thesis, I use the average of this range which

is 40%. That is approximately 40% of all smart meters are randomly selected for

injecting data falsification attacks.



19

Data falsification range

Let Fh be an average value for false data that is used to inject attacks (in watts per

hour). Some works in the literature used as high as 1200-1500W [21], which could

make it easy to detect. In this thesis, Fh = 800W is used to challenge the learning

system and study whether the proposed SOM-based approach could work well for low

data falsification ranges. Since Fh is 800 watts per hour, the corresponding portion

of this amount is falsified based on the dataset. For instance, New York and Austin

datasets contain an interval of 15-minute, thus I use an average Favg = Fh/4 per data

instance when simulating the different types of attacks to the 40% of the smart meters

that are randomly selected as described above. For the Irish dataset, on the other

hand, around Favg = Fh/2 amount is falsified as the dataset consists of a 30-minute

dataset so that for all datasets average falsified data to be equal to approximately Fh

per hour.

Attack injection

The datasets during different periods of time. Given their recorded date in Table 3.1,

we randomly chose a period for each dataset to implement attack simulation. Then

only for that period, Favg is falsified for randomly chosen smart meters.

To simulate an additive attack, Favg is added. Instead of adding, if Favg is sub-

tracted, then it produces a deductive attack. Finally, simulating the camouflage mode

of data falsification is more complex compared to additive and deductive attacks. In

the camouflage attack mode, for each data exemplar in the dataset that belongs to

a compromised smart meter, the following steps are to be taken: Let grand be a ran-

domly generated real number, grandϵ[0; 1], if grand > 0.5 then Favg is added to this

data exemplar, otherwise, Favg is subtracted. When some values are subtracted from

actual power consumption to simulate deductive or camouflage attacks, if the new

value becomes negative, it has to be changed to zero as the smart meter should not

produce negative values.

To sum up, attack simulation has a number of parameters:

• Smal - the ratio of compromised smart meters to all smart meters available.

• Favg - average power consumption value (in watts) to be falsified.



20

• Period - the period in which attack simulation takes place.

3.4 Self-Organizing Maps

A Self-Organizing Map (SOM) or a Self-Organizing Feature Map is an artificial neural

network, introduced by the Finnish professor Teuvo Kohonen in the 1980s, that uses

unsupervised learning for training to produce a low dimensional representation of

the input space [20, 46]. This makes it easier to visualize high-dimensional data.

As opposed to error-correction learning such as gradient descent or backpropagation,

SOM utilizes competitive learning [18].

An SOM consists of fixed positioned components called neurons or nodes. These

components can be arranged as a hexagonal or rectangular grid with two dimensions

(Figure 3.5)

Hexagonal SOM grid
Rectangular SOM grid

Figure 3.5: Examples of SOM grids with sizes 10× 15

Each neuron has a weight vector, that is initialized randomly or linearly randomly.

When training data is fed to the SOM network, the Euclidean distance from the input

vector to all weight vectors is computed. The neuron that is closest to the input vector

is called the Best Matching Unit (BMU)3. During training, BMUs and their neighbors

are adjusted towards the input vector. With many iterations, the magnitude of the

change decreases and the SOM neural network converges to an approximation of the

input data distribution. The SOM training is based on two principles:

3If a neuron w is a BMU for input vector x, the notion of ’x input vector hits w neuron’ is also
used



21

Competitive learning : the weight vector of a neuron that is most similar to an

input vector is modified so that the weight vector becomes more similar to the

input vector. This is how the map learns the position of the input data over

many iterations.

Cooperative learning : not only the most similar weight vector but its neighbors

on the map are also moved towards the input vector. This is how the map

self-organizes.

Training of Self-Organizing Maps can be implemented in two ways: sequential and

batch training [30]. Both training algorithms are discussed in the next sub-sections.

3.4.1 SOM sequential learning algorithm

Let X be a list of all input vectors x = [x1, x2, ...xn]
T ∈ Rn and W be a list of all

weight vectors wi = [wi1, wi1, ...win]
T ∈ Rn of neurons. The SOM learning algorithm

for training has several steps as shown the following:

Step (1) Initialize M1×M2 two-dimensional lattice of neurons, and their weight vec-

tors wi = [wi1, wi1, ...win]
T ∈ Rn. Each wi has a position ri in the 2D plane.

The weight vectors can be initialized randomly or linearly.

Step (2) Randomly pick an input vector x from X.

Step (3) Traverse each neuron of the lattice and calculate the distance between each

neuron’s weight vector and input vector. For distance measurement, Eu-

clidean distance can be used. That is, d(x,wi) = ∥x − wi∥, where ∥a∥ =√︂∑︁n
j=1 aj

2. Then the neuron whose weight vector is closest to input vector

based on Euclidean distance is identified. This neuron is BMU, wc, where

c = argmin
i

d(x,wi) (3.2)

Step (4) Weight vectors of the BMU, wc and its neighbors are adjusted towards input

vector:

wi(t+ 1) = wi(t) + hci(t)x− wi(t) (3.3)

where t ∈ Z such as 0, 1, 2, ... is discrete-time coordinate. Here hci(t) has an

important role: it acts as neighborhood function, a smoothing kernel defined



22

over the lattice points. Neighborhood kernel, used in SOM can be written

in terms of the Gaussian function,

hci(t) = α(t) · exp(−∥rc − ri∥2

2σ2(t)
) (3.4)

where α(t) is scalar-valued learning-rate factor and the parameter σ(t) de-

fines the width of the kernel. Both α(t) and σ(t) are monotonically decreas-

ing functions of time. rc and ri are positions of neurons c and i, respectively

[44].

Step(5) Repeat steps 2-4 by a specific number of iterations or until convergence

condition is satisfied.

3.4.2 SOM batch learning algorithm

Practically, the SOM batch learning algorithm converges faster and takes less compu-

tational cost than sequential learning [22]. For this algorithm, unlike SOM sequential

learning algorithm, each input vector in the input dataset is traversed in Step (2).

The whole SOM batch learning algorithm is as follows:

Step (1) This step is the same as Step (1) described in SOM sequential learning

algorithm

Step (2) For each SOM neuron i, find all input vectors x whose BMU is wi.

Step (3) The weight vectors of SOM neurons are updated as follows:

wi(t+ 1) =

∑︁N
j=1 hci(t)xj∑︁N
j=1 hci(t)

(3.5)

where N is training set size.

Step(4) Repeat steps 2-3 in two phases: (a) coarse training phase with large neigh-

borhood radius σcoarse(t) and small number of iterations lcoarse. (b) fine

training phase with small and constant neighborhood radius σfine(t). This

phase can have many iterations lfine or is continued until convergence.



23

3.4.3 Visualization using SOM

Being able to see the relationships and the patterns in a dataset can help understand

the behavior of the input data. However, we usually visualize things in two or three

dimensions. Many existing datasets or the ones to be collected in the future can have

high dimensions which make it challenging to analyze the data. Self-Organizing Maps,

on the other hand, can be used for exploratory data analysis and visualization of high

dimensional datasets. Visualization is one of the most common uses of SOMs [33].

In the next two sections, simple data is used to show the visualization capabilities of

SOM.

Two-dimensional data visualization

Let data be two-dimensional with three clusters (Figure 3.6). SOM lattice of size

15 × 15 is initialized linearly. Figure 3.6a shows the input data and SOM lattice

before training. Figure 3.6b displays the same SOM lattice after training. It is

clear that lattice now represents input data. The graph also shows that the distances

between neighboring units in SOM neurons were almost the same since it was linearly

initialized before the training process. However, after the training, distances between

neighboring units change. That is, the neurons that are close to clusters are close to

each other, while the neurons that do not lay on input data are far from each other.

This information can be confirmed in the Figure 3.8

Three-dimensional data visualization

Here, I use three-dimensional data with three clusters (Figure 3.7). Again, the size of

the SOM lattice is 15×15. Figure 3.7a demonstrates the SOM lattice with input data

before training. After the batch training method, the neurons on the SOM lattice get

closer to the input vectors.

Distance matrix

Distances between neighboring units are shown in a distance matrix, or U-matrix4.

Therefore, the distance matrix visualizes the cluster structure of the map. Figure

4U-matrix is a graphical visualization to illustrate the degree of clustering tendency on the SOM
via distances between SOM neurons [19, 23].



24

-5 0 5 10 15

-5

0

5

10

15

20

Cluster1

Cluster2

Cluster3

(a) Before training

-5 0 5 10 15

-5

0

5

10

15

20

Cluster1

Cluster2

Cluster3

(b) After training

Figure 3.6: SOM 2D map before and after training

0

-2

0

0

2

5

4

5

6

8

10 10

10

12

15

14

(a) Before training

0

-2

0

2

0 5

4

6

5

8

10

1010

12

14

15

(b) After training

Figure 3.7: SOM 3D map before and after training



25

0.589

3.46 

6.33 

(a) 2D distance matrix

12

10

1

10

8

6
5

4

2

2

00

3

(b) 3D distance matrix

Figure 3.8: SOM - Distance matrix (U-matrix)

(a) Data distribution on trained SOM

0.604

3.55 

6.49 

(b) U-matrix with data distribution

Figure 3.9: SOM - Data distribution

3.8 shows distance matrix. High values on the distance matrix mean large distances

between neighboring units on the map, thus presenting cluster borders. Clusters are

usually uniform areas of low values (Figure 3.8b). It is evident from Figure 3.8a that

there are three clusters.

Data distribution can also be visualized on SOM nodes, as shown in Figure 3.9a.

The bigger the coloring is inside a node, the more training data instances hit this node.

In other words, the more input data the node is BMU for, the coloring also gets bigger

accordingly. Figure 3.9b demonstrates distance matrix with data distribution on it.

As is shown, higher values of the distance matrix act as ’walls’ between clusters.



26

3.4.4 Hierarchical Self-Organizing Maps

In earlier sections, detailed information about SOM and the algorithms it uses is given.

The input data and examples are shown in the previous section have been created

as ’perfectly clustered’ for visualizations to be easily understandable. However, when

using real-world datasets, in many cases, a neuron might get hit by input data that

belong to different clusters. For cases where one neuron is a BMU for input vectors

from different clusters, Hierarchical Self-Organizing Maps can be utilized. In this

section, Hierarchical SOM is explained.

Figure 3.10: SOM layer 1

The basic idea of Hierarchical SOM is to create upper layer maps for some neurons

so that a better separation of data is achieved. For training upper layer maps, only the

corresponding current neuron’s data is used, i.e. a subset of the original dataset. This

decreases not only the training time of upper layer SOMs but also enables parallel

computing.

Here I use a simple dataset as an example. For a given training dataset, an SOM

map of size M1 ×M2 is created. Let training dataset have 10000 instances, and let

M1 = 10,M2 = 10. In this case, there are 100 neurons (nodes). After training the

map, each training instance will have BMU from a list of neurons. Some neurons



27

(a) SOM layer 2 (b) SOM layer 3

Figure 3.11: SOM - 2nd and 3rd layer maps

will be BMU for input vectors from one cluster class only. However, some neurons

will be BMU for differently labeled training instances. For a neuron that is hit by

multiple labels, an upper layer SOM with a smaller size is created. To train an upper

layer SOM, only the training instances that hit this neuron are used. The purpose of

doing so is to keep creating upper layer SOM maps so that differently labeled data

are separated from one another.

Figure 3.10 shows that most of the neurons have been hit by clusters shown in

blue but neuron-43 has been hit by two different labels, red and blue. Let’s assume

that training out of the whole training dataset 70 instances (30 red, 40 blue) hit this

neuron. These 70 instances are then extracted and used to train upper layer SOM of

size 6× 6. That is for the second-layer SOM map, the input vector will be 70 input

vectors.

Figure 3.11a shows data distribution of 70 input vectors aforementioned on trained

second layer SOM. In this case, along with some other neurons, neuron-3 is also hit

by both red and blue data. Let’s assume 15 input vectors out of 70, have hit neuron-

3. Another upper layer SOM of size 4× 4 is created for neuron-3 and corresponding

input vectors. Then 15 input vectors are extracted from the dataset and used to train

third layer SOM.

Creating upper layer SOM maps is continued until a specific condition is met.

The conditions can be following:



28

1. The training instances of different classes being used is totally separated

from one another. In this case, the main purpose of creating upper layers is

achieved.

2. The maximum number of layers is reached. Creating upper layers can be

computationally costly. Based on available resources, a fixed number of

layers might be set. For this thesis, I set three for the number of layers.

This number is selected empirically.

3.5 Proposed Model Architecture

Datasets to be used in this thesis along with data pre-processing steps, attack sim-

ulation, Hierarchical Self-Organizing Maps have been discussed in previous sections.

In this section, I will give detailed information about the proposed approach of the

thesis. The overall architecture of the proposed approach is presented in Fig. 3.12.

Step (1) Data acquisition.

Step (2) Data pre-processing and feature selection. Since publicly available smart

meter datasets do not have attack data in them, the attack simulation pro-

cess has to be applied to introduce real-world attack scenarios as performed

in the literature. Data features are selected as they were provided, no addi-

tional data engineering or selection is performed.

Step (3) Learning algorithm training. Hierarchical SOMs are employed and trained

as shown in 3.4.4.

Step (4) BMU Labelling post-training. Once the training phase is over, neurons of

the SOM are labeled. To this end, after training, each data exemplar from

the training set is assigned a post-training BMU based on the closest SOM

neuron. Given that the number of neurons in the SOM is less than the

training dataset size, each 1st layer training neuron could be a BMU for

multiple input vectors. Post-training BMU neurons are labeled based on

what class of input vectors hit them:



29

Figure 3.12: The overall architecture of the proposed approach

(a) If a neuron is a BMU for only attack data then that neuron is labeled

as an attack-neuron.

(b) If a neuron is a BMU for only normal data then that neuron is labeled

as a normal-neuron.

(c) If a neuron is not a BMU for any input vectors, then it is labeled as

a neutral-neuron. Such neurons can be used to alert unseen behaviors

during the production (test) phase.

(d) Finally, if the neuron is a BMU for both attack and normal data in-

stances, then this neuron is not labeled instead an upper layer SOM is



30

trained to separate the data points hitting only to this neuron. There-

fore an upper layer SOM map will be trained for each such neuron.

Step (4) is applied for upper layer SOMs.

For the last upper layer SOM and its neurons, the labeling is slightly differ-

ent. In this case, for each neuron, if the number of normal data is more than

the number of attack data attracted to that BMU, then we label the neu-

ron as a normal-neuron, otherwise, it is labeled as an attack-neuron. This

approach allows setting a threshold in the number of upper layers created

for a given neuron. In this thesis, the threshold I used as a proof-of-concept

is set to 3.

Step(5) During the testing phase, a test dataset will be input into the trained SOMs.

Then, the performance is determined using the labels of the reported BMUs

at the end of the test phase. The confusion matrix is calculated based on

the correctly detected data instances.

3.6 Summary

To sum up, chapter 3 has provided detailed information about datasets. Then pre-

processing steps have been discussed. After that, data falsification, different types

of attacks, and attack simulation processes have been explained. After that SOMs

and Hierarchical SOMs are introduced. Lastly, the proposed model architecture has

been presented. In short, this chapter has been about the methodology steps taken

in this thesis. The next chapter is about the evaluation and results of the proposed

approach.



Chapter 4

Evaluation and Results

This chapter details implementation parameters, performance metrics, and the results

obtained. It should be noted here that to build the Hierarchical SOM architecture,

SOM-Toolbox from Aalto University, Finland is employed [12, 19].

4.1 Parameters

There are a number of parameters that directly and indirectly affect the performance

of the model. Some of the parameters are chosen based on known practices, while the

others are chosen empirically based on experiments performed as part of the research.

SOM parameters are chosen as follows:

Map lattice. For map lattice, the hexagonal lattice is chosen over rectangular lattice

because it does not favor horizontal and vertical directions as much as a

rectangular grid [18].

Map lattice initialization. Linear initialization is chosen over random initialization.

If random initialization is used, it would take a few hundred initial steps

even before the unordered vectors get ordered. On the other hand, when

linear initialization is used, the first two eigenvectors of the autocorrelation

matrix of input x with the largest eigenvalues are determined, then these

eigenvectors span a two-dimensional linear subspace. As a result, the array

of the lattice is defined along this subspace and the main dimensions of the

lattice are the same as the top two largest eigenvalues. Therefore, it can

be seen in Figure 3.7a that initialized lattice has a centroid coinciding with

that of the mean of x.

Training algorithm. For training, the batch algorithm is chosen. As explained in

Section 3.4 SOM batch algorithm generally has a faster convergence rate

and less computational cost.

31



32

Neighborhood function. For the neighborhood kernel, the Gaussian function 3.4 is

chosen because of its wide use and smoothness.

Layer 1 map size. Choosing the right map size is important as it has a direct

impact on computational cost and performance trade-off. If the map size

is too small, then the weight vectors of the neurons might not be able to

approximate the input vectors. However, if it is too big, then it will increase

the training time. For these reasons, choosing a map size that is proportional

to the input data is preferred. So, if the size of layer 1 map is M1 × M2,

then M1 = M2 = 2 6
√
N . These SOM sizes are identified empirically by using

different map sizes to select the best-performing ones.

Layer 2 map size. Layer 2 map should be smaller than layer 1 as the number of

input data instances for layer 2 is much smaller than the size of the original

input data. So, it’s M2
1 ×M2

2 where M2
1 = M2

2 = M1/2

Layer 3 map size. Layer 3 map size is M3
1 ×M3

2 where M3
1 = M3

2 = M1/4

All parameters of SOM used in this thesis can be found in Table 4.1.

Table 4.1: Parameters used for training the SOM

Parameter Value
Map lattice Hexagonal

Map lattice initialization Linear
Training algorithm Batch

Neighborhood function Gaussian

Layer 1 map size M1 ×M2 M1 = M2 = 2 6
√
N

Layer 2 map size M2
1 ×M2

2 M2
1 = M2

2 = M1/2
Layer 3 map size M3

1 ×M3
2 M3

1 = M3
2 = M1/4

As discussed earlier, attack injection is simulated for New York, Austin and Irish

datasets. The parameters used for attack simulation is given in Table 4.2, Smal = 40%,

that is, 40% of all smart meters are compromised. The average data falsification used

is 800 watts per hour.



33

Table 4.2: Parameters used for smart meter datasets

Parameters New York Austin Irish
Smal 0.4 0.4 0.4
Fh 800W 800W 800W
Favg 200W 200W 400W
Recorded date 05.2019-11.2019 01.2018-12.2018 07.2009-12.2010
Attack period 30 days 30 days 30 days
Number of smart meters 25 25 25, 100, 200

4.2 Performance Metrics

Since the datasets are unbalanced, the performance is measured using Precision (P),

Recall (R), and F1-score. Let TP, TN, FP, and FN be True Positive, True Negative,

False Positive, and False Negative, respectively. Then Precision, Recall, and F1-scores

are measured as follows:

P =
TP

TP + FP
(4.1)

R =
TP

TP + FN
(4.2)

F1 =
2PR

P +R
(4.3)

These metrics give a better evaluation of the performance of the proposed system

for imbalanced data over accuracy rate which is calculated as shown in Equation 4.4.

ACC =
TP + TN

TP + TN + FP + FN
(4.4)

4.3 Training phase

Based on the parameters selected in Section 4.1, the training takes place using SOM

on the data. In this section, I will show how data distribution looks on the first layer

SOM with the examples of the New York additive attack dataset and Power System

Attacks dataset. New York additive attack dataset contains normal data and attack

data that have been injected as additive attacks during the pre-processing step.



34

Figure 4.1: Data distribution on the trained SOM – New York additive attack dataset

Figure 4.1 shows New York data distribution on trained SOM. One can see that

majority of the neurons are hit by only normal data while others are hit by both

attack and normal data instances. For this particular example, the advantage of the

Hierarchical SOM becomes clear. If there were no upper layer maps, false positive and

false-negative rates would have increased for these ’red-blue’ neurons. However, in

the Hierarchical SOM model proposed in the thesis, for each of these neurons, upper

layer maps will be built and normal and attack inputs can potentially be separated

from each other.

0.0901

0.871 

1.65  

Figure 4.2: 2D distance matrix – New York dataset with additive attack



35

15

100.2

12
510

0.4

8
6

0.6

4
2 0

0.8

0

1

1.2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Figure 4.3: 3D distance matrix – New York dataset with additive attack

Distance matrix (average distances between neighboring vectors of the map) is

shown in Figure 4.2 and 4.3. Large distances between neighboring vectors represent

cluster borders and thus ”cluster landscape” is formed over the SOM. On a 2D graph,

the coloring code can help to see cluster borders. The darker blue the color is the

shorter the distances. Vice versa, as the color changes toward yellow, the distances

get larger. Based on the visualization in Figure 4.2, there seem to be four clusters

in the data. When a 3D model of the distance matrix is used, it is easier to see the

borders.

In order to analyze the SOM for high dimensional data, the Power System Attacks

dataset is studied. Figure 4.4 shows the input data distribution on SOM nodes after

training the first layer map. It is evident from the graph that attacks have not been

split from normal data which creates the need for the second layer SOMs, Figure 4.5.

It can also be confirmed in Figure 4.6 where a post-training 3D distance matrix is

provided.



36

Figure 4.4: Data distribution on the trained SOM – Power System Attacks

0.19

8.27

16.4

Figure 4.5: 2D distance matrix – Power System Attacks



37

10

8

6

8

2

4
6

4 2

4

2
0

0

6

8

10

1

2

3

4

5

6

7

8

9

10

11

Figure 4.6: 3D distance matrix – Power System Attacks dataset



38

4.4 Results

In this section, evaluations and results are discussed. Recall from Section 3.2, for

each of New York, Austin and Irish datasets three types of attacks, namely additive,

deductive, camouflage are injected into the data. Table 4.3 shows the performance

(Precision, Recall, F1-score) of the proposed Hierarchical SOM model on the New

York dataset. For the additive attack dataset, the precision, recall, and F1-scores

are around 0.965. Performance is even better for deductive attacks with 0.980. F1-

score is 0.946 for camouflage data falsification. Even though camouflage attacks are

challenging to detect, the proposed model achieves over 0.945.

Table 4.3: The results of the proposed model on the New York dataset

Attack type Precision Recall F1-score
Additive 0.965 0.964 0.965
Deductive 0.984 0.976 0.980
Camouflage 0.955 0.936 0.946

Table 4.4 indicates the detection performance on the Austin dataset. Like the New

York dataset, the best detection rate is achieved when the deductive attack dataset

with 0.946 For additive and camouflage attack datasets the F1-scores were almost

equal (0.932). Another common behavior of the proposed model on both New York

and Austin datasets is that the precision was the lowest for camouflage attacks.

Table 4.4: The results of the proposed model on the Austin dataset

Attack type Precision Recall F1-score
Additive 0.940 0.925 0.932
Deductive 0.956 0.935 0.946
Camouflage 0.932 0.932 0.932

Since there are three subsets of the original Irish dataset, where 25, 100, and 200

smart meters’ data are randomly selected, the results are put into one table for better

analysis. In the first case, the Irish dataset with 25 smart meters is used. F1-score for

additive attack detection is 0.962. For the deductive attack dataset, one can see that

recall was slightly less than 0.9 which means for this dataset, the false-negative rate

was higher than 0.1. For the camouflage dataset, the performance is better (0.929)

than the one for the deductive dataset. In the second case, the Irish dataset with 100



39

smart meters is examined. F1-scores for additive, deductive and camouflage datasets

were 0.933, 0.907, 0.857, respectively. Lastly, a bigger dataset, the Irish dataset with

200 smart meters is utilized. For all datasets, different attacks have been injected as

done previously. The performances are almost the same: around 0.870. In a bigger

picture, it can be seen that the performance of the proposed model works well in

different scales, as well.

Table 4.5: The results of the proposed model on the Irish dataset

Dataset Attack type Precision Recall F1-score

Irish (25 smart meters)
Additive 0.967 0.957 0.962
Deductive 0.940 0.885 0.912
Camouflage 0.946 0.912 0.929

Irish (100 smart meters
Additive 0.938 0.927 0.933
Deductive 0.930 0.885 0.907
Camouflage 0.887 0.829 0.857

Irish (200 smart meters)
Additive 0.892 0.863 0.877
Deductive 0.909 0.848 0.877
Camouflage 0.891 0.850 0.870

Power System Attacks (PSA) dataset is a different IoT system related to a power

grid. As shown in Section 3.2 the dataset has 128 features. To test the performance

of the proposed model three forms of this dataset have been used (Table 4.6):

PSA Full dataset. The dataset has all 128 features and all given instances. Precision,

Recall and F1-score are 0.974, 0.981, 0.977, respectively.

PSA One PMU with additional features dataset. As explained in Section 3.1.4, in this

dataset the power system framework has four intelligent electronic devices

that control breakers and relay information back to the control room. Four

phase measurement units (PMUs) measures 116 measurements or features

in the dataset. Apart from the feature from phase measurement units, there

are 12 extra features as well. PSA One PMU with additional features dataset

contains 29 features from one PMU including the extra features. For this

dataset, the performance has reduced by only 0.001 compared to the previous

evaluations. However, the precision stays the same.

PSA One PMU dataset. In this dataset, only one PMU is considered and therefore



40

extra features have been removed. The proposed model still has been able

to achieve high performance with F1-score of 0.977.

Table 4.6: The results of the proposed model on the Power System dataset

Dataset Precision Recall F1-score
PSA Full 0.974 0.981 0.977
PSA One PMU with additional features 0.974 0.979 0.976
PSA One PMU 0.972 0.982 0.977

Even though the IoT system used to collect the Power System Attacks dataset

is totally different from the smart grid system of the New York, Austin, and Irish

datasets, the proposed model has had high detection rates of attacks. This confirms

that the model can be generalized and expanded to a different IoT environment.

4.5 Analyzing sliding windows with window overlaps

As a part of the experiments conducted for this thesis, a sliding window approach is

utilized using window overlaps for exploring the effects of implicit temporal informa-

tion in data representation. The aim is to explore how this approach can affect per-

formance compared to explicit timestamps to represent temporal information. Table

4.7 shows the performance on all smart meters dataset with a sliding window, where

l equals 5, and k equals 0. For any dataset, the performance has decreased. For New

York additive, deductive, and camouflage attack datasets, the performance is better

than others with 0.801, 0.832, 0.808 F1-scores. All Austin datasets have F1-scores

around 0.71-0.73. The sliding window approach affected the Irish dataset with 25

smart meters. For the Irish (25) deductive attack dataset, overall performance is

0.500. However, for the other two Irish datasets where 100 and 200 smart meters are

used, the model performed at least as good as approximately 0.670.

The results on the sliding window with l = 5, k = 1 are shown in Table 4.8. In

general, the overall performance is slightly improved in this case with only three ex-

ceptions (New York additive, New York deductive, and Irish (100) camouflage). The

sliding window with l = 5, k = 2 (Table 4.9) has not shown a significant improvement

over the previous one.



41

Table 4.7: Evaluations of the SOM using a Sliding window: l = 5, k = 0

Additive Deductive Camouflage
Dataset Prec Rec F1 Prec Rec F1 Prec Rec F1
New York 0.829 0.776 0.801 0.853 0.812 0.832 0.825 0.792 0.808
Austin 0.747 0.725 0.736 0.759 0.712 0.735 0.744 0.695 0.719
Irish (25) 0.592 0.480 0.530 0.583 0.439 0.500 0.627 0.521 0.569
Irish (100) 0.804 0.753 0.778 0.776 0.683 0.725 0.730 0.670 0.698
Irish (200) 0.739 0.685 0.711 0.778 0.730 0.753 0.746 0.670 0.706

Table 4.8: Evaluations of the SOM using a Sliding window: l = 5, k = 1

Additive Deductive Camouflage
Dataset Prec Rec F1 Prec Rec F1 Prec Rec F1
New York 0.815 0.776 0.795 0.834 0.805 0.819 0.825 0.821 0.823
Austin 0.751 0.723 0.736 0.765 0.731 0.747 0.759 0.711 0.734
Irish (25) 0.582 0.507 0.542 0.611 0.506 0.554 0.591 0.486 0.534
Irish (100) 0.802 0.766 0.783 0.765 0.670 0.731 0.720 0.669 0.694
Irish (200) 0.751 0.695 0.722 0.786 0.740 0.762 0.751 0.688 0.718

Table 4.9: Evaluations of the SOM using a Sliding window: l = 5, k = 2

Additive Deductive Camouflage
Dataset Prec Rec F1 Prec Rec F1 Prec Rec F1
New York 0.853 0.805 0.828 0.846 0.816 0.831 0.831 0.823 0.827
Austin 0.757 0.733 0.745 0.773 0.727 0.749 0.755 0.701 0.727
Irish (25) 0.606 0.541 0.572 0.612 0.500 0.551 0.609 0.553 0.580
Irish (100) 0.756 0.715 0.735 0.750 0.682 0.715 0.732 0.663 0.696
Irish (200) 0.755 0.704 0.729 0.786 0.749 0.767 0.748 0.683 0.714

The impact of the sliding window approach on the Power System Attacks dataset

can be seen in Figure 4.10, where l = 5, k = 0, 1, 2. It is clear that there has been

an improvement in two datasets (PSA Full dataset and PSA with one PMU only

dataset) when window overlap size equals 2 compared to other window overlap sizes.

Power System Attacks dataset of type One PMU with extra features had the best

performance when l = 5, k = 1.

Overall, based on the results shown in the aforementioned tables, and the results

given in Section 4.4, the proposed Hierarchical SOM model performs better when no

sliding window is used in the presence of explicit time information. However, when

no explicit timestamps are available in the data then sliding window approach seems



42

to work well to represent temporal information. However, further study on this is

necessary, since the Power System Attacks dataset was the only which had these

characteristics in this thesis.

Table 4.10: Evaluations of the SOM using a Sliding window on Power System Attacks
datasets

Dataset Precision Recall F1

Sli. win. l = 5, k = 0
Full 0.924 0.930 0.927
One PMU extra features 0.921 0.918 0.920
One PMU only 0.923 0.930 0.927

Sli. win. l = 5, k = 1
Full 0.924 0.925 0.925
One PMU extra features 0.928 0.940 0.934
One PMU only 0.925 0.925 0.925

Sli. win. l = 5, k = 2
Full 0.931 0.944 0.937
One PMU extra features 0.927 0.931 0.928
One PMU only 0.929 0.934 0.931

4.6 Analyzing new behaviors

As the system we use evolves, the data they produce also evolve. As a result new

behaviors both on the normal usage side as well as on the attack side continuously

grows. To be able to recognize new behaviors, I leverage the ”neutral-neurons” of

the proposed Hierarchical SOM approach. Neutral-neurons are the neurons that were

not hit by any data during the training phase. In other words, they do not become

BMUs for any of the known behaviors (training data). However, it is possible that

as the behaviors evolve in the real world, these neurons could be the BMUs for those

new (unknown) behaviors. I explored this phenomenon during testing (unknown/new

test data). Figure 4.7 shows an example of such a case. This example is taken from

a real New York attack dataset. Training data distribution on trained SOM in the

third layer is shown in Figure 4.7a. Note that, the attack data hits are shown in red

color, normal data hits are shown in blue color, and no data hits are shown with no

color. It can be seen that out of 16 neurons, only 1 of them is hit by attack data,

while 8 other neurons are hit by normal ones, and the remaining 7 are not hit by any

data instances (neutral-neurons).

Figure 4.7b shows how the trained neurons approximate corresponding test data



43

(a) Training data distribution on
SOM neurons on 3rd layer

normal

normal

normal

normal

normal

attack

attack

normal

(b) Actual labels of test dataset on
3rd layer The n

Figure 4.7: New behavior of input data on trained SOM

on the third layer. It can be seen that some test data hits the neurons that are labeled

as an attack or normal after training. The attack-neurons (red-colored) are BMU for

some of the attack test data, while four of the normal-neurons (blue-colored) are

BMUs for normal test data. However, three neutral-neurons also are BMUs for some

data instances. It means that the test input data have new behaviors which are not

seen during the training phase.

This information can also be illustrated as in Table 4.11. Neurons are numbered

sequentially column-wise starting from the top left. The table gives a more detailed

comparison of neuron hits since it provides exactly how much input data hit each

neuron. Neuron #1 is hit by 3 training data instances of normal class. So this

neuron is to be labeled as ’normal-neuron’. Likewise, neuron #13 is hit by 5 attack

training data so this neuron is labeled as ’attack-neuron’ and neuron #3 is labeled as

’neutral-neuron’. How these neurons are hit during testing is shown in the last two

columns. Neuron #13, an attack-neuron, is hit by one attack instance of test input,

while another attack data hits neuron #14, a neutral-neuron.

This analysis shows how SOM maps and their neurons are behaving in each layer

and how they can be leveraged to recognize new behaviors. This feature of SOM can

further be improved by labeling neutral-neurons based on their closest labeled neuron.

This is an example of just one map in the third layer. However, a similar approach

could be automated for the analysis of all neutral-neurons (based on training) during

testing.



44

Table 4.11: 3rd layer neuron hits for new behavior analysis

Training Testing
Neuron # Attack Normal Attack Normal

1 0 3 0 1
2 0 0 0 0
3 0 0 0 1
4 0 4 0 1
5 0 0 0 1
6 0 0 0 0
7 0 1 0 0
8 0 0 0 0
9 0 4 0 0
10 0 0 0 0
11 0 1 0 1
12 0 1 0 0
13 5 0 1 0
14 0 0 1 0
15 0 2 0 0
16 0 5 0 4

4.7 Data clustering using SOM

In Section 3.4, it was discussed that SOM maps can be used to show the clusters in

the data. Visual inspection is helpful when there is a clear separation between clusters

as in Figure 3.8a. However, when data is in a higher dimension, the separation might

not be clear in the visualizations (Figure 4.8). For such cases, the SOM map needs

to be partitioned.

In order to achieve partitioning, the K-means clustering method [24, 38, 25] is used

with k = 20. To this end, Davies-Boulding clustering index (DBI) [8] is employed.

DBI index becomes minimum with the best clustering. To illustrate this, the first

layer map of Power System Attack full dataset given in Figure 4.9. As shown in

Figure 4.9a, DBI index becomes minimum, when the number of clusters is 12 (DBI =

0.671 for this case). Figure 4.9b shows these 12 clusters on first layer SOM neurons.

Likewise, the number of clusters on the first layer map can be found for each

dataset. The table of datasets is summarized in Table 4.12. A full list of visualizations

are given in Appendix



45

0.19

8.27

16.4

Figure 4.8: Distance matrix - Power System Attack

2 4 6 8 10 12 14 16 18 20

Number of clusters

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

D
a
v
ie

s
-B

o
u
ld

in
g
 i
n
d
e
x
 (

D
B

I)

(a) Davies-Boulding clustering index (b) Map partitioning

Figure 4.9: Clusters formed on the trained SOM



46

Table 4.12: The number of clusters found on the 1st layer SOM map

Dataset Dataset type Clusters found - 1st layer

New York
Additive 16
Deductive 16
Camouflage 17

Austin
Additive 16
Deductive 6
Camouflage 6

Irish (25)
Additive 14
Deductive 19
Camouflage 14

Irish (100)
Additive 18
Deductive 17
Camouflage 16

Irish (200)
Additive 18
Deductive 17
Camouflage 16

PSA
Full 10
PMU extra feature 11
PMU only 11



47

4.8 Discussions

In order to be able to compare the results of this thesis with the results of existing

researches, I replicated the works of [3] since they also used an unsupervised learning-

based technique with Austin and Irish datasets. The basic idea of this research is to

find historical, and usual pattern of the power consumption and based on this each

smart meter is assigned a trust score. Trust scores are used for classification and

clustering. Here I will give brief information about these steps.

In order to ease mathematical tractability and use certain properties of Gaussian

distribution, we convert lognormal distributions to an approximate Gaussian distri-

bution. For this, researchers used the following equation for conversion:

pit = ln(P i
t + 2) (4.5)

After learning National Institute of Standards and Technology (NIST) recom-

mended power transformation [5]. Where P i
t is (t is slotted hourly) reported real

power consumption with.

The proposed framework of [3] mainly consists of two parts:

• Consensus correction model.

• Trust scoring model for classification.

Consensus correction model

The main purpose of consensus correction is to avoid the consensus measure to change

significantly as the result of orchestrated attacks. As a consensus measure the re-

searchers suggested to use Ratio of Harmonic mean to Arithmetic mean instead of

using Arithmetic mean or its some form of variants because arithmetic mean is not

stable for legitimate changes. Let pmix
t = p1t , ...p

N
t be power consumption data series

on a power transformed scale (using logarithm as shown before) gathered from N

smart meters at time slot t (t is slotted hourly). The Harmonic Mean (HM) and

Arithmetic Mean (AM) are defined as:

HMt =
N∑︁N
i=1

1
pit

(4.6)



48

AMt =

∑︁N
i=1 p

i
t

N
(4.7)

And the daily averages of these means are calculated as:

HMavg(T ) =

∑︁24
t=1HMt

24
(4.8)

AMavg(T ) =

∑︁24
t=1AMt

24
(4.9)

where T is the time window that is equal to 24 hours. Due to high fluctuations of

arithmetic mean power consumption, the researchers proposed to use the ratio of

HMavg(T ) and AMavg(T ) as the detection metric given as:

Qratio
avg (T ) =

HMavg(T )

AMavg(T )
(4.10)

which is much more stable than arithmetic or harmonic mean. Because ofHM ≤ AM

property, Qratio
avg (T ) cannot exceed 1 [14].

Mean and standard deviation of Qratio
avg (T ) are denoted as µration and σratio, respec-

tively. Based on observations, the researchers, found out that the main properties of

Qratio
avg (T ) ratio are:

• HM grows slower and decays faster than corresponding AM.

• Growth and decay rates of HM under the same δ are not the same. Decay

rate is larger than growth rate for the same δ. These properties make it

possible to find the type of the falsification.

Asymmetric growth and decay rates of HMavg(T ) AMavg(T ) cause an increase or

decrease in Qratio
avg (T ). Using this, unsupervised and semi-supervised detection criteria,

that show the presence of data falsification, are implemented. Therefore, there is a

need to invoke a suitable consensus correction.

Let’s define Qratio
avg (F ) as a sliding frame that contains cumulative average of

Qratio
avg (T ) in the last F days. This average value differs from Qratio

avg (F − 1) by some

threshold ϵ. Based on the properties of Qratio
avg (T ) growth/decay rates, formally, the

unsupervised detection criterion is:

Qratio
avg (F ) :



49

∈ Qratio
avg (F − 1)± σ No Anomaly;

< Qratio
avg (F − 1)− σ Camouflage attack;

> Qratio
avg (F − 1) + σ Low additive attack;

where ϵ ∈ (0, 3σratio). The choice of ϵ controls whether the consensus correction step

will be invoked or not [3]. With a number of experiments, the researchers concluded

that ϵ = 2σ is the optimal choice. However, this did not work for my case. I used

ϵ = 0.3σ as a threshold.

Once falsification is detected, observing the direction of HMavg(T ) and AMavg(T )

(going up or down) indicates type of falsification: additive, deductive, camouflage

(Table 4.13).

Table 4.13: Inferring attack types

Ratio HM,AM Inference µMR

Down Up,Up Additive HM-(AM-HM)
Down Down,Down Deductive AM+(AM-HM)
Down Down,Similar Camouflage HM
Similar Up,Up Legit up AM
Similar Down,Down Legit down AM

The semi-supervised version of the detection criterion is also given in [3]. The

authors of the paper gave in-detail information about how the consensus correction

method works.

For simplicity from here HMavg(T ), AMavg(T ) are referred as HM and AM , re-

spectively. The resilient mean (µMR(T )) and standard deviation (σMR(T )) for window

T are referred as µMR and σMR. The usage of ln(450) for resilient standard deviation

correction is concluded empirically by the authors.

Consensus aware trust scoring model

The trust scoring model has three parts: discrete rating criterion, Folded Gaussian

distribution-based weights, inverse power law kernel-based trust metric.

Discrete rating criterion. Here a discrete rating level is assigned to reported pit

based on its proximity to µMR. σMR is the corrected standard deviation of all pit from

calculated µMR in the window T. ∆abs is defined as being equal to σMR. The absolute



50

difference between pii for meter i and the µMR is denoted by Θi
diff = |pit − µMR|.

Based on this and Gaussian distribution, pit has one of four possible rating levels.

Table 4.14: Discrete rating levels

Scenario Discrete Rating Level(l)
Θi

diff ≤ ∆abs 4

∆abs < Θi
diff ≤ 2∆abs 3

2∆abs < Θi
diff ≤ 3∆abs 2

Otherwise 1

Over a time window of T hours, the ratings of each time slot t is collected and

sorted as risort = r0 ≤ r1 ≤ ... ≤ rT−1 for each meter i.

Folded Gaussian based Weights. The normalized weights of each rating in the risort

are denoted by W i = w0, w1, ..., wT−1. Meters with more lower rating should have

lesser weights. The authors denoted µBR = 4 as the highest possible rating level, and

σi
dr as the standard deviation of discrete ratings of each meter with µBR = 4 in a

window length T.

Then a weight parameter xt, distributed between 1 and 4, is determined as:

xt = 1 +
(K − 1)t

(T − 1)
∀ t = 0, ..., T − 1 (4.11)

where K = 4, T is window size.

And corresponding raw weight cwt of the rating at time index t is calculated as:

cwi
t =

1

σi
dr

√
2π

e
− (xt−µBR)2

2(σi
dr

)2 (4.12)

These weights are normalized by:.

wi
t =

cwi
t∑︁T−1

t=0 cwi
t

(4.13)

I(l, t) is denoted as a function that indicates whether a particular rating level l

occurs in a time slot t. Then all weights corresponding to each unique rating level

l = 1, 2, 3, 4 within T are added and WD(l) =
∑︁T−1

t=0 wtI(l, t). Note that I(l, t) = 0 if

l does not occur in time slot t and I(l, t) = 1 if it occurs.

The aggregate weight rating Ri of i-th meter is a continuous value in the range

between 1 and 4. It is calculated as:

Ri =
K∑︂
l=1

l ×WD(l), Ri ∈ {1, 4} (4.14)



51

Inverse Power Law based Trust Value. The researchers proposed the ’inverse power

law inspired kernel trick’ to transform the Ri into a trust value, TRi, as follows:

TRi =
1

(K)η
(Ri)η, TRi ∈ {0, 1}. (4.15)

where η is a scaling factor that controls the rate of discounting. Finally, this trust

value is used for clustering.

The clustering results for Austin and Irish additive attacks are shown in Figure

4.10. For clustering, K-means algorithm is used. Results of my replication show that

trust scoring based anomaly detection model did not perform as high as the authors

achieved.

(a) Irish dataset (b) Austin dataset

Figure 4.10: Clustering of smart meters based on trust values

Based on the algorithms, I utilized the model proposed in [3] for smart meter

datasets. The results for New York dataset are given in Table 4.15. It is clear that

the highest F1-score achieved was 0.630. For additive attack type F1-score was 0.533

with precision of 0.400.

Table 4.15: The results of Bhattacharjee et al’s research work replication on New
York dataset

Precision Recall F1-score
Additive 0.800 0.400 0.533
Deductive 0.833 0.507 0.630
Camouflage 0.833 0.507 0.630

Low performance can also bee seen in Tables 4.16, 4.17 where Austin and Irish

datasets have been examined. Based on the main results of this thesis, given in 4.4,



52

the proposed model of the thesis without sliding window outperforms the replicated

trust scoring model given in [3] on the smart meters datasets.

However, this might be the result of the lack of information or parameters given in

the paper because some parameters and values were chosen based on the experiments

they conducted and they were not defined fully. The performance they actually

achieved were False-positive rate of 13%, Missed detection rate of 9%.

Table 4.16: The results of Bhattacharjee et al’s research work replication on Austin
dataset

Precision Recall F1-score
Additive 0.300 0.750 0.429
Deductive 0.300 0.750 0.429
Camouflage 0.500 0.714 0.588

Table 4.17: The results of Bhattacharjee et al’s research work replication on Irish
(25) dataset

Precision Recall F1-score
Additive 0.60 0.666 0.632
Deductive 0.50 0.833 0.625
Camouflage 0.50 0.550 0.526

Given trust scoring models, I also used two unsupervised learning algorithms,

namely, Isolation Forest (IF) and Lightweight On-line Detector of Anomalies (LODA)

on additive attack type of New York, Austin, Irish datasets to detect compromised

smart meters. The purpose of this experiment was to compare IF and LODA with

K-means algorithm I used above. These comparison results can be found in C.

4.9 Summary

This chapter has covered parameters that are used for Hierarchical Self-Organizing

Maps and for datasets along with attack injection. Then performance metrics that

are used for measuring the detection rate and performance of the proposed model

have been given. How SOM maps and neurons approximate the input data on the

first layer lattice has also been demonstrated. The distance matrices have made it

clear that upper layer maps are needed because the data instances of different classes

have not been separated in the first layer SOM.



53

Main experimental results demonstrate that the proposed model could achieve

F1-score of as high as 0.980 with a precision of 0.984 (New York deductive dataset,

Table 4.3). Then the model is tested on another IoT dataset, the Power System

Attacks dataset where no less than 0.972 of precision, recall, F1 scores have been

achieved. As another set of experiments, a sliding window approach has been used

with and without window overlaps. The results seem to indicate that further temporal

information is not required when there is explicit time information in the form of a

timestamp for Smart Meter datasets. However, this observation might need to be

confirmed with further experiments in the future. Examination of unseen behaviors

of input data has provided deeper analysis on the upper layer SOM maps. With the

help of the map partitioning feature of SOM, clustering of data on a 2D map has

been explored. Besides, the number of clusters for all the datasets is studied. Also, I

have compared the results of the model of this thesis with the results of the approach

given by Bhattacharjee at al. [32] by replicating their work.



Chapter 5

Conclusion

The number of IoT devices has been increasing rapidly and is expected to grow even

further in the coming years. This expansion comes with the challenge of creating

reliable defense mechanisms against both existing attacks and new ones to be intro-

duced by adversaries. The defense systems need to have certain properties such as

robustness, scalability, and generalization. Considering this, the main objective of

this thesis was to analyze how effective a Hierarchical SOM model could be as an

anomaly detector for various IoT networks.

With the use of different datasets, it is shown that the model could achieve pre-

cision between 0.887 and 0.984, recall between 0.829 and 0.982, F1-scores between

0.857 and 0.980. Testing various attack types across all smart meter datasets has

shown how robust the model is for different data falsification attacks. For the Irish

dataset, different numbers of smart meters have also been tested and the scalability

property of the model has been confirmed.

Additionally, the use of a sliding window approach with different window overlaps

has been explored. The results showed that even with only three features, a Hier-

archical SOM model is able to achieve a high F1-score for additive, deductive, and

camouflage attacks without using a sliding window. This indicates that using explicit

timestamps might eliminate the need for further temporal information in the form of

sliding windows. The proposed model can also achieve high performance for a power

framework type of IoT systems without the use of a sliding window approach.

Moreover, the proposed model that is shown to be robust on smart meter datasets

is also employed on high dimensional Power System Attacks dataset with the same

properties (in terms of sliding window and window overlap selections). And the

performance has been at least 0.972, showing the generalization property of the model.

Therefore, the model can be used in IoT systems of different devices.

Furthermore, other advantages of Self-Organizing Maps such as visualization of

54



55

high-dimensional data on two or three-dimensional graphs and clustering have also

been analyzed. While the distance matrix gives information about clustering, data

distribution on neurons demonstrates how SOM nodes are approximating the input

data. The option of selecting a map size and other properties can present flexibility

so that based on the nature of IoT networks, a model can be adjusted easily. Upper

layer maps with smaller sizes make it possible to implement parallel computing and

therefore reduce the run-time in real-life applications.

5.1 Future work

Future work will investigate the performance of the proposed Hierarchical SOM model

on more datasets and attacks in order to further examine its performance. Given the

absence of the smart meter datasets containing attacks, attack injection needed to be

simulated. Thus, one goal is to obtain real datasets which are captured under attack

conditions and use them for the evaluations. Additionally, the proposed model can be

further generalized so that it can work with not only datasets with binary labels, but

the ones with multi-class labels. Finally, further analysis into camouflage attacks for

smart meters could improve the performance of the proposed model on these types

of behaviors. A deeper examination and a revised approach for camouflage attacks

might be able to improve the performance even further.



Bibliography

[1] Armin Aligholian, Mohammad Farajollahi, and Hamed Mohsenian-Rad. Unsu-
pervised learning for online abnormality detection in smart meter data. In 2019
IEEE Power Energy Society General Meeting (PESGM), pages 1–5, August 2019.

[2] Eduardo Werley S. Angelos, Osvaldo R. Saavedra, Omar A. Carmona Cortés,
and André Nunes de Souza. Detection and identification of abnormalities in
customer consumptions in power distribution systems. IEEE Transactions on
Power Delivery, 26(4):2436–2442, October 2011.

[3] Shameek Bhattacharjee, Aditya Thakur, and Sajal K. Das. Towards fast and
semi-supervised identification of smart meters launching data falsification at-
tacks. In Proceedings of the 2018 on Asia Conference on Computer and Com-
munications Security, ASIACCS ’18, page 173–185, New York, NY, USA, 2018.
Association for Computing Machinery.

[4] Raymond C. Borges Hink, Justin M. Beaver, Mark A. Buckner, Tommy Morris,
Uttam Adhikari, and Shengyi Pan. Machine learning for power system distur-
bance and cyber-attack discrimination. In 2014 7th International Symposium on
Resilient Control Systems (ISRCS), pages 1–8, August 2014.

[5] G. E. P. Box and D. R. Cox. An analysis of transformations. Journal of the
Royal Statistical Society. Series B (Methodological), 26(2):211–252, 1964.

[6] Efrem Heri Budiarto, Adhistya Erna Permanasari, and Silmi Fauziati. Unsuper-
vised anomaly detection using k-means, local outlier factor and one class svm. In
2019 5th International Conference on Science and Technology (ICST), volume 1,
pages 1–5, July 2019.

[7] Cisco Systems, Inc. Cisco Annual Internet report. https://www.cisco.com/
c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/
white-paper-c11-741490.html, March 2020. Accessed: 2021-12-14.

[8] David L. Davies and Donald W. Bouldin. A cluster separation measure. IEEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-1(2):224–227,
April 1979.

[9] Meng Fanlin and Ye Wei. Summary of research on security and privacy of smart
grid. In 2020 International Conference on Computer Communication and Net-
work Security (CCNS), pages 39–42, August 2020.

[10] Fatima Hussain, Rasheed Hussain, Syed Ali Hassan, and Ekram Hossain. Ma-
chine learning in iot security: Current solutions and future challenges. IEEE
Communications Surveys Tutorials, 22(3):1686–1721, April 2020.

56

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html


57

[11] Irish Social Science Data Archive (ISSDA). CER Smart Metering Project. https:
//www.ucd.ie/issda. Accessed: 2021-12-15.

[12] J. P. Esa Alhoniemi, Johan Himberg and J. Vesanto. SOM Toolbox. http:
//www.cis.hut.fi/somtoolbox/. Accessed: 2021-12-14.

[13] Rong Jiang, Rongxing Lu, Ye Wang, Jun Luo, Changxiang Shen, and Xuemin
Shen. Energy-theft detection issues for advanced metering infrastructure in smart
grid. Tsinghua Science and Technology, 19(2):105–120, April 2014.

[14] Anish Jindal, Amit Dua, Kuljeet Kaur, Mukesh Singh, Neeraj Kumar, and
S. Mishra. Decision tree and svm-based data analytics for theft detection in
smart grid. IEEE Transactions on Industrial Informatics, 12(3):1005–1016, June
2016.

[15] Paria Jokar, Nasim Arianpoo, and Victor C. M. Leung. Electricity theft detection
in ami using customers’ consumption patterns. IEEE Transactions on Smart
Grid, 7(1):216–226, 2016.

[16] H.G. Kayacik, A.N. Zincir-Heywood, and M.I. Heywood. On the capability of an
som based intrusion detection system. In Proceedings of the International Joint
Conference on Neural Networks, 2003., volume 3, pages 1808–1813 vol.3, July
2003.

[17] R. Kochendörffer. Kreyszig, e.: Advanced engineering mathematics. j. wiley &
sons, inc., new york, london 1962. ix + 856 s. 402 abb. preis s. 79.—. Biometrische
Zeitschrift, 7(2):129–130, 1965.

[18] T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480,
September 1990.

[19] Teuvo Kohonen. MATLAB Implementations and Applications of the Self-
Organizing Map. Unigrafia Oy, Helsinki, Finland, 2014.

[20] Teuvo Kohonen and Manfred Schroeder. Self-Organizing Maps. Springer, Berlin,
Heidelberg, January 2001.

[21] Varun Badrinath Krishna, Kiryung Lee, Gabriel A. Weaver, Ravishankar K. Iyer,
and William H. Sanders. F-deta: A framework for detecting electricity theft
attacks in smart grids. In Proceedings - 46th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN 2016, pages 407–418,
United States, September 2016. Institute of Electrical and Electronics Engineers
Inc.

[22] Duc C. Le. An unsupervised learning approach for network and system analysis.
Msc thesis, Dalhousie University, Halifax, Nova Scotia, Canada, 2017.

https://www.ucd.ie/issda
https://www.ucd.ie/issda
http://www.cis.hut.fi/somtoolbox/
http://www.cis.hut.fi/somtoolbox/


58

[23] Duc C. Le, A. Nur Zincir-Heywood, and Malcolm I. Heywood. Data analytics on
network traffic flows for botnet behaviour detection. In 2016 IEEE Symposium
Series on Computational Intelligence (SSCI), pages 1–7, December 2016.

[24] Stuart P. Lloyd. Least squares quantization in pcm. IEEE Transactions on
Information Theory, 28:129–137, 1982.

[25] J. MacQueen. Some methods for classification and analysis of multivariate ob-
servations. Proc. 5th Berkeley Symp. Math. Stat. Probab., Univ. Calif. 1965/66,
1, 281-297 (1967)., 1967.

[26] Pascal Maniriho, Ephrem Niyigaba, Zephanie Bizimana, Valens Twiringiyimana,
Leki Jovial Mahoro, and Tohari Ahmad. Anomaly-based intrusion detection ap-
proach for iot networks using machine learning. In 2020 International Conference
on Computer Engineering, Network, and Intelligent Multimedia (CENIM), pages
303–308, November 2020.

[27] Daisuke Mashima and Alvaro A. Cárdenas. Evaluating electricity theft detectors
in smart grid networks. In Davide Balzarotti, Salvatore J. Stolfo, and Marco
Cova, editors, Research in Attacks, Intrusions, and Defenses, pages 210–229,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[28] McLaughlin, Stephen and Podkuiko, Dmitry and McDaniel, Patrick. Energy
theft in the advanced metering infrastructure. In Erich Rome and Robin
Bloomfield, editors, Critical Information Infrastructures Security, pages 176–187,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[29] Andrew Meola. How the Internet of Things and smart meters are streamlining
gas, water, and electric data transmissions. https://www.internetsociety.org/
resources/doc/2015/iot-overview/, January 2020. Accessed: 2021-12-15.

[30] Dubravko Miljković. Brief review of self-organizing maps. In 2017 40th Interna-
tional Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO), pages 1061–1066, May 2017.

[31] Hadeel S. Obaid, Saad Ahmed Dheyab, and Sana Sabah Sabry. The impact of
data pre-processing techniques and dimensionality reduction on the accuracy of
machine learning. In 2019 9th Annual Information Technology, Electromechan-
ical Engineering and Microelectronics Conference (IEMECON), pages 279–283,
March 2019.

[32] Pecan Street Inc. Dataport. Pecan Street Dataport. Accessed: 2021-12-15.

[33] Ravi Ponmalai and Chandrika Kamath. Self-organizing maps and their appli-
cations to data analysis. U.S. Department of Energy Office of Scientific and
Technical Information, September 2019.

https://www.internetsociety.org/resources/doc/2015/iot-overview/
https://www.internetsociety.org/resources/doc/2015/iot-overview/


59

[34] Karen Rose, Scott D. Eldridge, and Lyman Chapin. THE INTERNET OF
THINGS : AN OVERVIEW Understanding the Issues and Challenges of a
More Connected World. https://www.internetsociety.org/resources/doc/2015/
iot-overview/, October 2015. Accessed: 2021-12-15.

[35] Asma Saleem, Khadim Hussain Asif, Ahmad Ali, Shahid Mahmood Awan, and
Mohammed A. Alghamdi. Pre-processing methods of data mining. In 2014
IEEE/ACM 7th International Conference on Utility and Cloud Computing, pages
451–456, December 2014.

[36] Iqbal H. Sarker. Machine learning: Algorithms, real-world applications and
research directions. SN Computer Science, 2(3):160, March 2021.

[37] J. Sola and J. Sevilla. Importance of input data normalization for the applica-
tion of neural networks to complex industrial problems. IEEE Transactions on
Nuclear Science, 44(3):1464–1468, June 1997.

[38] Hugo Steinhaus. Sur la division des corps matériels en parties. Bull. Acad. Pol.
Sci., Cl. III, 4:801–804, 1957.

[39] The MathWorks, Inc. datenum. https://www.mathworks.com/help/matlab/ref/
datenum.html. Accessed: 2021-12-15.

[40] Tommy Morris. Industrial Control System (ICS) Cyber Attack Datasets.
https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets. Accessed:
2021-12-15.

[41] Muhammadjon Toshpulatov and Nur Zincir-Heywood. Anomaly Detection on
Smart Meters using Hierarchical Self Organizing Maps. In 2021 IEEE Cana-
dian Conference on Electrical and Computer Engineering (CCECE), pages 1–6,
September 2021.

[42] Imtiaz Ullah and Qusay H. Mahmoud. A scheme for generating a dataset for
anomalous activity detection in iot networks. In Cyril Goutte and Xiaodan Zhu,
editors, Advances in Artificial Intelligence, pages 508–520, Cham, 2020. Springer
International Publishing.

[43] Uttam Adhikari, Shengyi Pan, Tommy Morris and Raymond Borges, Justin
Beaver. Power system. https://www.kaggle.com/bachirbarika/power-system.
Retrieved: 2021-01-14.

[44] J. Vesanto and E. Alhoniemi. Clustering of the self-organizing map. IEEE
Transactions on Neural Networks, 11(3):586–600, May 2000.

[45] Jonathan White and Phil Legg. Unsupervised one-class learning for anomaly
detection on home iot network devices. In 2021 International Conference on
Cyber Situational Awareness, Data Analytics and Assessment (CyberSA), pages
1–8, June 2021.

https://www.internetsociety.org/resources/doc/2015/iot-overview/
https://www.internetsociety.org/resources/doc/2015/iot-overview/
https://www.mathworks.com/help/matlab/ref/datenum.html
https://www.mathworks.com/help/matlab/ref/datenum.html


60

[46] Wikipedia contributors. Self-organizing maps, 2011. [Online; Accessed: 2021-
12-15].

[47] Xiaofang Xia, Yang Xiao, Wei Liang, and Meng Zheng. Gthi: A heuristic algo-
rithm to detect malicious users in smart grids. IEEE Transactions on Network
Science and Engineering, 7(2):805–816, April 2020.

[48] Wei Yu, David Griffith, Linqiang Ge, Sulabh Bhattarai, and Nada Golmie. An
integrated detection system against false data injection attacks in the smart grid.
Sec. and Commun. Netw., 8(2):91–109, January 2015.



Appendix A

Type of scenarios in Power Systems Attacks dataset

Type of scenarios:

1. Short-circuit fault - this is a short in a power line and can occur in various

locations along the line, the location is indicated by the percentage range.

2. Line maintenance - one or more relays are disabled on a specific line to

do maintenance for that line

3. Remote tripping command injection (Attack) - this is an attack that

sends a command to a relay that causes a breaker to open. It can only be

done once an attacker has penetrated outside defenses.

4. Relay setting change (Attack) - relays are configured with a distance

protection scheme and the attacker changes the setting to disable the relay

function such that the relay will not trip for a valid fault or a valid command.

5. Data Injection (Attack) - here a valid fault is imitated by changing values

to parameters such as current, voltage, sequence components, etc. This

attack aims to blind the operator and causes a blackout.

Table A.1: Natural event scenarios

Scenario Natural events type
SLG Faults

1 Fault from 10-19% on L1
2 Fault from 20-79% on L1
3 Fault from 80-90% on L1
4 Fault from 10-19% on L2
5 Fault from 20-79% on L2
6 Fault from 80-90% on L2

Line maintenance
13 Line L1 maintenance
14 Line L2 maintenance

61



62

Table A.2: Attack event scenario

Scenario Attack type
Data injection

7 Fault from 10-19% on L1 with tripping command
8 Fault from 20-79% on L1 with tripping command
9 Fault from 80-90% on L1 with tripping command
10 Fault from 10-19% on L2 with tripping command
11 Fault from 20-79% on L2 with tripping command
12 Fault from 80-90% on L2 with tripping command

Remote Tripping Command Injection
Sub-type - Command injection against single relay

15 Command Injection to R1
16 Command Injection to R2
17 Command Injection to R3
18 Command Injection to R4

Sub-type - Command injection against two relays
19 Command Injection to R1 and R2
20 Command Injection to R3 and R4

Relay Setting Change
Disabling relay function - single relay disabled & fault

21 Fault from 10-19% on L1 with R1 disabled & fault
22 Fault from 20-90% on L1 with R1 disabled & fault
23 Fault from 10-49% on L1 with R2 disabled & fault
24 Fault from 50-79% on L1 with R2 disabled & fault
25 Fault from 80-90% on L1 with R2 disabled & fault
26 Fault from 10-19% on L2 with R3 disabled & fault
27 Fault from 20-49% on L2 with R3 disabled & fault
28 Fault from 50-90% on L2 with R3 disabled & fault
29 Fault from 10-79% on L2 with R4 disabled & fault
30 Fault from 80-90% on L2 with R4 disabled & fault

Disabling relay function - two relays disabled & fault
35 Fault from 10-49% on L1 with R1 and R2 disabled & fault
36 Fault from 50-90% on L1 with R1 and R2 disabled & fault
37 Fault from 10-49% on L1 with R3 and R4 disabled & fault
38 Fault from 50-90% on L1 with R3 and R4 disabled & fault

Disabling relay function - two relay disabled & line maintenance
39 L1 maintenance with R1 and R2 disabled
40 L1 maintenance with R1 and R2 disabled



63

Table A.3: No event scenario

Scenario No Events (Normal operation)
41 Normal Operation load changes

Table A.4: Classification of events

Natural events Attack events No events

Scenarios 1, 2, 3, 4, 5, 6, 13, 14

7, 8, 9, 10, 11, 12, 15,
16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27,
28, 29, 30, 35, 36, 37,
38, 39, 40

41

Type of events are given in Table A.1, A.2, A.3 and their classification is given in

Table A.4.

The 128 features are explained here. Phasor measurement units (PMU) provide

29 types of measurements. In the Power System framework, there are four PMUs

giving 116 measurements, or features, altogether. The index of each column is in the

form of ”R#-Signal reference” indicating PMU specified by ”R#”. Signal references

along with their description are given in the table Table A.5. For example, R3-

PAA:VH means Phase A voltage phase angle measured by PMU R3. Apart from

PMU measurements, there are 12 columns for control panel logs, Snort alerts, and

relay logs of 4 PMU/relay as relay and PMU are integrated together.

Table A.5: Power System Attacks dataset features

Feature Description
PA1:VH – PA3:VH Phase A - C Voltage Phase Angle
PM1: V – PM3: V Phase A - C Voltage Phase Magnitude
PA4:IH – PA6:IH Phase A - C Current Phase Angle
PM4: I – PM6: I Phase A - C Current Phase Magnitude
PA7:VH – PA9:VH Pos. – Neg. – Zero Voltage Phase Angle
PM7: V – PM9: V Pos. – Neg. – Zero Voltage Phase Magnitude
PA10:VH - PA12:VH Pos. – Neg. – Zero Current Phase Angle
PM10: V - PM12: V Pos. – Neg. – Zero Current Phase Magnitude
F Frequency for relays
DF Frequency Delta (dF/dt) for relays
PA:Z Appearance Impedance for relays
PA:ZH Appearance Impedance Angle for relays
S Status Flag for relays



Appendix B

Clustering visualizations

Following is a full list of clustering visualizations and the Davies-Boulding Index

associated with each clustering for all datasets.

2 4 6 8 10 12 14 16 18 20

Number of clusters

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

D
a
v
ie

s
-B

o
u
ld

in
g
 i
n
d
e
x
 (

D
B

I)

(a) Davies-Boulding clustering index (b) Map partitioning

Figure B.1: Clusters formed on the trained SOM: New York Additive

2 4 6 8 10 12 14 16 18 20

Number of clusters

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

D
a
v
ie

s
-B

o
u
ld

in
g
 i
n
d
e
x
 (

D
B

I)

(a) Davies-Boulding clustering index (b) Map partitioning

Figure B.2: Clusters formed on the trained SOM: New York Deductive

64



65

2 4 6 8 10 12 14 16 18 20

Number of clusters

0.7

0.8

0.9

1

1.1

1.2

1.3

D
a
v
ie

s
-B

o
u
ld

in
g
 i
n
d
e
x
 (

D
B

I)

(a) Davies-Boulding clustering index (b) Map partitioning

Figure B.3: Clusters formed on the trained SOM: New York Camouflage

2 4 6 8 10 12 14 16 18 20

Number of clusters

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

D
a
v
ie

s
-B

o
u
ld

in
g
 i
n
d
e
x
 (

D
B

I)

(a) Davies-Boulding clustering index (b) Map partitioning

Figure B.4: Clusters formed on the trained SOM: Austin Additive



66

2 4 6 8 10 12 14 16 18 20

Number of clusters

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

D
a
v
ie

s
-B

o
u
ld

in
g
 i
n
d
e
x
 (

D
B

I)

(a) Davies-Boulding clustering index (b) Map partitioning

Figure B.5: Clusters formed on the trained SOM: Austin Deductive

2 4 6 8 10 12 14 16 18 20

Number of clusters

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

D
a
v
ie

s
-B

o
u
ld

in
g
 i
n
d
e
x
 (

D
B

I)

(a) Davies-Boulding clustering index (b) Map partitioning

Figure B.6: Clusters formed on the trained SOM: Austin Camouflage



67

2 4 6 8 10 12 14 16 18 20

Number of clusters

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

D
a
v
ie

s
-B

o
u
ld

in
g
 i
n
d
e
x
 (

D
B

I)

(a) Davies-Boulding clustering index (b) Map partitioning

Figure B.7: Clusters formed on the trained SOM: Irish 25 Additive

2 4 6 8 10 12 14 16 18 20

Number of clusters

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

D
a
v
ie

s
-B

o
u
ld

in
g
 i
n
d
e
x
 (

D
B

I)

(a) Davies-Boulding clustering index (b) Map partitioning

Figure B.8: Clusters formed on the trained SOM: Irish 25 Deductive



68

2 4 6 8 10 12 14 16 18 20

Number of clusters

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

D
a
v
ie

s
-B

o
u
ld

in
g
 i
n
d
e
x
 (

D
B

I)

(a) Davies-Boulding clustering index (b) Map partitioning

Figure B.9: Clusters formed on the trained SOM: Irish 25 Camouflage

2 4 6 8 10 12 14 16 18 20

Number of clusters

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

D
a
v
ie

s
-B

o
u
ld

in
g
 i
n
d
e
x
 (

D
B

I)

(a) Davies-Boulding clustering index (b) Map partitioning

Figure B.10: Clusters formed on the trained SOM: Irish 100 Additive



69

2 4 6 8 10 12 14 16 18 20

Number of clusters

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

D
a
v
ie

s
-B

o
u
ld

in
g
 i
n
d
e
x
 (

D
B

I)

(a) Davies-Boulding clustering index (b) Map partitioning

Figure B.11: Clusters formed on the trained SOM: Irish 100 Deductive

2 4 6 8 10 12 14 16 18 20

Number of clusters

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

D
a
v
ie

s
-B

o
u
ld

in
g
 i
n
d
e
x
 (

D
B

I)

(a) Davies-Boulding clustering index (b) Map partitioning

Figure B.12: Clusters formed on the trained SOM: Irish 100 Camouflage



70

2 4 6 8 10 12 14 16 18 20

Number of clusters

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

D
a
v
ie

s
-B

o
u
ld

in
g
 i
n
d
e
x
 (

D
B

I)

(a) Davies-Boulding clustering index (b) Map partitioning

Figure B.13: Clusters formed on the trained SOM: Irish 200 Additive

2 4 6 8 10 12 14 16 18 20

Number of clusters

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

D
a
v
ie

s
-B

o
u
ld

in
g
 i
n
d
e
x
 (

D
B

I)

(a) Davies-Boulding clustering index (b) Map partitioning

Figure B.14: Clusters formed on the trained SOM: Irish 200 Deductive



71

2 4 6 8 10 12 14 16 18 20

Number of clusters

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

D
a
v
ie

s
-B

o
u
ld

in
g
 i
n
d
e
x
 (

D
B

I)

(a) Davies-Boulding clustering index (b) Map partitioning

Figure B.15: Clusters formed on the trained SOM: Irish 200 Camouflage

2 4 6 8 10 12 14 16 18 20

Number of clusters

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

D
a
v
ie

s
-B

o
u
ld

in
g
 i
n
d
e
x
 (

D
B

I)

(a) Davies-Boulding clustering index (b) Map partitioning

Figure B.16: Clusters formed on the trained SOM: PSA Full



72

2 4 6 8 10 12 14 16 18 20

Number of clusters

0.5

1

1.5

2

2.5

3

3.5

4

D
a
v
ie

s
-B

o
u
ld

in
g
 i
n
d
e
x
 (

D
B

I)

(a) Davies-Boulding clustering index (b) Map partitioning

Figure B.17: Clusters formed on the trained SOM: PSA One PMU with Extra features

2 4 6 8 10 12 14 16 18 20

Number of clusters

0.6

0.7

0.8

0.9

1

1.1

1.2

D
a
v
ie

s
-B

o
u
ld

in
g
 i
n
d
e
x
 (

D
B

I)

(a) Davies-Boulding clustering index (b) Map partitioning

Figure B.18: Clusters formed on the trained SOM: PSA One PMU only



Appendix C

Comparison research

The following tables are the results of two unsupervised learning approaches, namely

Isolation Forest, and Lightweight On-line Detector of Anomalies on New York, Austin,

Irish dataset with additive data falsification. Note that all smart meters have trust

values assigned based on [32].

Table C.1: Isolation Forest on Smart meters with trust values

Precision Recall F1-score
New York 0.500 0.556 0.526
Austin 0.300 0.273 0.286
Irish 0.374 0.667 0.480

Table C.2: Lightweight On-line Detector of Anomalies on Smart meters with trust
values

Precision Recall F1-score
New York 0.200 1.00 0.333
Austin 0.200 0.667 0.308
Irish 0.085 0.297 0.132

73


	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Acknowledgements
	Introduction
	Literature Review
	Supervised learning approaches
	Unsupervised learning approaches
	Other studies
	Summary

	Methodology
	Datasets
	New York dataset
	Austin dataset
	Irish dataset
	Power System Attack Dataset

	Data pre-processing
	Pre-processing: New York and Austin datasets
	Pre-processing: Irish Dataset
	Pre-processing: Power System Attack dataset
	Sliding window
	Dataset splitting & Feature scaling

	Attack Behavior Simulation and Injection
	Self-Organizing Maps
	SOM sequential learning algorithm
	SOM batch learning algorithm
	Visualization using SOM
	Hierarchical Self-Organizing Maps

	Proposed Model Architecture
	Summary

	Evaluation and Results
	Parameters
	Performance Metrics
	Training phase
	Results
	Analyzing sliding windows with window overlaps
	Analyzing new behaviors
	Data clustering using SOM
	Discussions
	Summary

	Conclusion
	Future work

	Bibliography
	Type of scenarios in Power Systems Attacks dataset
	Clustering visualizations
	Comparison research

