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Abstract

We derive a PDE model of the infection spread, which takes population density into

account. This model is a continuum limit of agent-based model of human move-

ment. Numerical simulations of the model show that dense population areas en-

counter higher probability of outbreak, which shows consistency with reality. We also

investigate the effect of having large diffusion rate in the model. Our further studies

show propagation of disease in the domain, which its speed varies with population

density. We estimate this speed in the slow diffusion rate regime. Its propagation

between two dense areas that are connected with a very low population density area

is proven to be possible by our works. As a case example, we examine coronavirus

spread in the Canadian province of Nova Scotia which enable us to verify our un-

derstanding of ”tunneling” between two dense regions. Lastly, we propose several

generalizations of the model towards future studies.

v



Chapter 1

Introduction

It is difficult to believe that the SARS-CoV-2 virus, which cannot be seen with naked

eyes, in a quite short time could infect millions of people all over the world and

could affect our lives deeply. Infectious disease severely threatens human life [1],

and this pandemic may not be the last one. Due to the world population growth

and the increasing necessity for people to be connected with each other, (hence the

necessity for travelling, either local travels or long-distance ones) we may encounter

worse situations in the future.

Epidemiology is the cornerstone of public health [2] and mathematical analysis

and modelling has been central to infectious disease epidemiology [3]. Mathematical

models can be used to link the biological process of transmission and the emergent

dynamics of infection at the population level, which immediately leads to several use-

ful results: the expected size of an epidemic and the critical level that is needed for

an intervention to achieve effective disease control [3]. Therefore, it can be used to

address both scientific hypotheses and disease-control policy questions [3]. Funda-

mental to the growing importance of mathematical epidemiology is the integration

of mathematical models with statistical methods to estimate key parameters of these

models and test hypotheses using available data [3]. There are various observations

of spreading the infectious disease which give rise to important questions about the

dynamic of this spread and accuracy of these models comparing to real observations.

What is the role of people motion in the spread of disease? Can we state the condition

that the spread of the pathogen result in epidemic, and what is its threshold? How

fast the outbreak can hit different regions?

In the era of coronavirus, the ongoing public discussion frequently refers to the

reproduction number R0, as a (simple) single-number diagnostic that captures the

entire epidemic for a given country or region; for a summary of mathematical discus-

sions of this diagnostic, we refer the interested reader to [4, 5, 6]. In reality, R0 is

1
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a parameter which changes locally, a feature that has not only been realized during

the COVID-19 pandemic (see, e.g., [7]), but indeed one that has been well-known

for similar outbreaks of other diseases such as dengue [8]. For example, it is natu-

ral to expect that areas with high population density and/or limited public health

measures are hit much harder than more rural areas, or regions with strict health

controls (masking and distancing). This suggests the limited value of describing the

entire population by a single reproduction number R0. In light of such considerations,

herein we are interested in modelling of how the spread of disease depends on local

spatio-temporal circumstances. One of the key parameter affecting the disease spread

is population density. Our aim is thus to develop a simple, potentially generalizable

model which captures the effect of population density and local differences on overall

epidemic spread.

At the heart of many epidemiology models and in the frame of this study as

well, are the so-called compartmental models, consisting of various classes of indi-

viduals and their interactions. Compartmental models simplify the mathematical

modelling of infectious diseases by assigning the population to different compart-

ments or blocks. The first letter of these blocks’ labels and their order determines the

name of the model. People may progress between compartments and the order of the

labels usually shows the flow patterns between the compartments. For example SEIS

represents a model with compartments of susceptible (S), exposed (E), infectious (I),

then susceptible again. Corresponding equations show the flow of population between

different compartments of model. The more compartments would indicate more de-

tails of transition of people among them and definitely create more variables. Figure

1.1 shows an example of compartmental model with many different compartments,

including hospitalized cases [9].

Among the many possibilities that have arisen not only in the context of COVID-

19, but also earlier, we note the formulation of ODE models [10, 11, 12, 13], statistical

models [11, 14], stochastic models [15], agent-based models [16, 17], spatial network

models[14, 18] and partial differential equation (PDE) models [9, 19]; see also [16, 20]

for reviews. Some of these works turn out to have a very deep influence on public

thinking and policy [12, 17].

The focus of the present work will be on spatially-distributed models exploring
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Figure 1.1: Schematic diagram of the SEAIHR model (Taken from [9]).

the evolution of the infection not only temporally but also spatially. Indeed, such

models have a time-honored history, e.g., in the format of metapopulation models

[21] and have been extensively used in the context of COVID-19 [22]. Such models

have been used for a diverse host of countries including China [23, 24] and Spain

[25, 26], while a comparison of different models developed, e.g., for the US can be

found in the so-called COVID-19 Forecast Hub 1. On the other hand, there exist also

models that develop a PDE perspective such as [27, 28], in addition to earlier work

by the present authors such as [9, 19] (see also references within these works).

Our aim in the present work is to complement the above approaches by means of

a first-principles look into the development of the interaction between the different

agents as they move through the spatial domain (and interact with each other). In so

doing, we will develop a nonlinear dynamical lattice based approach, which can then

be taken to the continuum limit, to yield a systematic PDE model that can be more

suitable towards the modeling of COVID-19, as well as of other infectious diseases.

Indeed, rather than incorporating standard processes such as diffusion and advection

into an ODE SIR-type model, this perspective retrieves a nonlinear variant of diffusion

which seems to us to be more well-suited to such epidemic settings. Additionally, a

key advantage of the present model is that it enables a variety of generalizations to

1The relevant website is https://covid19forecasthub.org/doc/ensemble/.
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account for effects of longer range interactions (and, of course, additional effects such

as those, e.g., of age distribution of the pandemic impact). Such potential extensions

will be highlighted along the way. It is also relevant to mention that both for reasons of

concreteness, but also for practical ones related to the identifiability of the model [29]

(which does not escape us as a central issue and a consistent source of concern about

complex models), we opt within the present seed study to focus on the prototypical

SIR-type model. Generalizations to more detailed models with a higher number of

compartments will be evident, including also in connection to earlier work of some of

the authors [9, 30].

Our presentation will be structured as follows. In chapter 2, after a brief intro-

duction about SIR model, we will present the theoretical formulation of our model

(and its potential extensions). In chapter 3, we will investigate how our model might

change when diffusion is very large and we derive a set of new equations. In the next

chapter, we will use our model to explore invasion waves and their respective speed.

In the chapter 5, the onset of an infection outbreak will be examined. Finally, after

briefly touching upon the case example of Nova Scotia in chapter 6, we conclude and

present some future challenges in section 6. The contents of this thesis were submitted

for publication [31].



Chapter 2

Theoretical formulation of the model

Choosing the appropriate number of compartments is the essential starting point.

Deciding to consider more compartments results in more equations and more vari-

ables which increase the cost of simulations and analysis. Regarding our main goal,

the simplest compartment model, or SIR seems to be promising, by which without

struggling with many variables, we can study the role of population motion in the

spread of disease.

In this chapter, after a brief introduction about SIR model, we will try to obtain

continuum PDEs by starting from discretized model on a lattice problem.

2.1 SIR model

The SIR model is one of the simplest compartmental models, and many models are

derivatives of this basic form. As its name indicates, this model consists of three

main compartments. First compartment is Susceptible and the number of susceptible

individuals is shown by S. When a susceptible and an infectious individual come into

”infectious contact”, the susceptible individual contracts the disease and transitions

to the infectious compartment, which the number of infectious individuals is shown

with I. These are individuals who have been infected and are capable of infecting

susceptible individuals. The last compartment which is shown with R, indicates the

number of removed (and immune) or deceased individuals. These are individuals

who have been infected and have either recovered from the disease and entered the

removed compartment or died. This compartment may also be called ”recovered”

or ”resistant”. The immunization period for those individuals who recovered from

disease, comparing to time of our study, is long enough that they will not become

susceptible again.

This model is reasonably predictive for infectious diseases that are transmitted

from human to human, and where recovery confers lasting resistance, such as measles,

5
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mumps and Covid-19.

For simplicity, we will deploy several assumptions:

1. Constant (closed) population size, N

2. Constant rates (e.g., transmission, removal rates)

3. No demographic changes (i.e., births and deaths)

4. Well-mixed population. A well-mixed population is one where any infected

individual has a probability of contacting any susceptible individual that is reasonably

well approximated by the average [32]. This is often the most problematic assumption

but is easily relaxed in more complex models. [32]

Based on the definition we know that N = S + I + R. Hence, by the first

assumption we can write:

dN

dt
= 0 (2.1)

Considering all above-mentioned assumptions, the SIR equations can be written

as follows:

dS

dt
= − β

N
SI

dI

dt
=

β

N
SI − γI

dR

dt
= γI

(2.2)

where β is known as the effective contact rate, and γ is the removal rate.

Now, we can set up the main problem in order to derive the PDE equations that

governs the spread of the disease.

2.2 Deriving continuum equations

By studying the SIR model, we could find the equations that show the transition of

population between different compartments. Now we want to address this question

that how the motion and interaction of population of different regions may lead to

the spread of disease.

We start with an agent based model, with the aim of deriving a cellular automata

model from it, and then consider its continuum limit to obtain a PDE system. A

similar procedure was used in [33] to derive a spatio-temporal model of spreading of
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illegal activity. We assume that individuals can get infected by going out of their

home and traveling to new locations. However they don’t just simply walk at ran-

dom, or diffuse: after going out (e.g. say for shopping or work), they return to their

original (base) location. For this purpose, we consider the lattice problem, one di-

mension problem with grid points, which can represent different regions within one

city, different cities within one province, etc. People, either infected or susceptible,

can travel between neighbourhood grid points. To start with, we assume that only

susceptible individuals can travel, and with a constant rate α. Grid points are in

equal distance of ∆x from each other. The schematic of the problem can be shown

as figure 2.1.

j − 2 j − 1 j j + 1 j + 2

j − 2 j − 1 j j + 1 j + 2

j − 2 j − 1 j j + 1 j + 2

t1

t1 < t < t2

t2 = t1 + ∆t

α

α

Figure 2.1: The schematic of people moving between different grid points within ∆t.
The middle row shows the transient situation. α is assumed to be constant for all
grid points.

Consider a grid point, for example j, within a step time ∆t. We assume that a

fraction of susceptible individuals of this grid point will travel to neighbourhood grid

points j − 1 and j + 1 (second row of figure 2.1), and they will return to their home

grid point at the end of this step time (bottom row of figure 2.1). Hence, if we show

the susceptible individuals of grid point j at time t with Stj, we can conclude that

only Stj(1 − 2α) might have interactions with infected individuals of this grid point;

αStj would be exposed to infected ones at grid point j − 1, and the same number

would be exposed to infected ones at point j + 1. Using SIR equations, we can write

the equation for ∆Ij, new infected cases of grid point j, as follows:
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∆Ij = ∆tβ(Stj − 2αStj)I
t
j

+ ∆tβ(αStj)I
t
j−1 (2.3)

+ ∆tβ(αStj)I
t
j+1

As discussed, the first term show the new infected cases due to the interaction between

those individuals who didn’t travel with infected ones at the same point. The next

two terms term show new infected who returned to their home point after interacting

with infected ones of neighbourhood points. For better understanding of equation

(2.3), it can be rewritten as below:

∆Ij = ∆tβStjI
t
j + ∆tβαStj(−2I tj + I tj−1 + I tj+1) (2.4)

We can estimate: I(x, t) ≈ I tj where x = j∆x, and hence we can write: (I tj−1 − 2I tj +

I tj+1) = ∆x2Ixx. In the limit when ∆x → 0, ∆t → 0 and by disregarding higher

orders of ∆x we can write the equation as follows:

∆I = β(SI + ∆x2αSIxx) (2.5)

By defining:

D = α(∆x)2 (2.6)

we can rewrite the continuum equation as follows:

∆I = β(SI +DSIxx) (2.7)

Now that we have the continuum equation for new infected cases, we can write

new SIR equations as follows:

St = −∆I = −β(SI +DSIxx)

It = ∆I − γI = β(SI +DSIxx)− γI

Rt = γI

(2.8)

Note that unlike many other PDE models [27, 28, 34, 35], the “diffusion” term

depends explicitly on the susceptible population density S(x, t). Moreover, the “dif-

fusion” enters into equation for S with a negative sign, whereas it has a positive sign

in the equation for I.
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Our assumption for the motion of people at the beginning of this section results

in showing up new terms in the equation (2.7). This is a realistic assumption and

consistent with our experience and observations during the pandemic of Covid-19.

People leave their home, home town or home country for different purposes and at

the end bring virus back to their origin. This is exactly what we try to show, the

interaction of people with population of other regions which spread the disease and

make an outbreak.

We can generalize our result by assuming that infected individuals can also travel.

As figure 2.1 shows, for example, some of the infected population at point j − 2 will

travel to point j − 1. This means that susceptible individuals of point j who will

travel to point j − 1, before returning to their main point might be exposed to those

infected ones from point j − 2, which increases the probability of getting infected.

The same scenario will happen at point j + 1, where those susceptible who travel

from point j will be exposed to infected ones of point j + 2 who will travel to point

j + 1. This ends up adding more positive term to the equation (2.3), as follows:

∆Ij = ∆tβ(Stj − 2αSS
t
j)(I

t
j + αI(I

t
j−1 + I tj+1 − 2I tj))

+ ∆tβ(αSS
t
j)(I

t
j−1 + αI(I

t
j−2 + I tj − 2I tj−1)) (2.9)

+ ∆tβ(αSS
t
j)(I

t
j+1 + αI(I

t
j+2 + I tj − 2I tj+1)).

Here αS and αI are travel rates for susceptible and infected individuals accordingly.

Following the same steps as before, in the limit when ∆x → 0, ∆t → 0 and by

disregarding higher orders of ∆x we can obtain:

∆I = β(SI + ∆x2αSSIxx + ∆x2αISIxx) (2.10)

By defining DS = α∆x2 and DI = α∆x2, we can rewrite the equation (2.10):

∆I = β(SI +DSSIxx +DISIxx) (2.11)

This is equivalent to the equation (2.8) by taking D = DS +DI .

In the next chapters, we will conduct some experiments to study the numerical

results and evaluate the accuracy of our approximations.



Chapter 3

Derivation of model when diffusion rate (D) is large

In this chapter we return to the equation (2.8), and we investigate how this equation

may change for large diffusion rate, when D � 1.

To embark on, we expand S and I as follows:

S ∼ S0 +
1

D
S1 + ... , I ∼ I0 +

1

D
I1 + ... (3.1)

By plugging (3.1) into (2.8), leading order equation in terms O(D) can be obtained

as S0I0xx = 0, or rather I0xx = 0. Considering Neumann boundary conditions, we can

conclude that I0 won’t change in space and it only depends on time. After doing some

simulations, as one see in the figure 3.1, we observe that S(x, t) decreases independent

of x as time evolves. Therefore we expect that S0 depends on time and we rewrite

S0 in this way:

S0(x, t) = S0(x) + f(t) (3.2)

Here S0 is the initial distribution of people. For the next order, one can write:

I0t = β((S0(x) + f(t))I0 + (S0(x) + f(t))I1xx + S1I0xx)− γI0 (3.3)

We know that I0xx = 0. Therefore we can rewrite the equation (3.3) as follows:

I1xx =
I0t

β(S0(x) + f(t))
− I0 +

γI0

β(S0(x) + f(t))
(3.4)

By integrating on the domain x ∈ (0, L) from both sides of (3.4), the left hand side

becomes zero, due to the boundary conditions. Recalling our previous result that I0

is only a function of time, we can conclude that:

0 =
1

β
I0t

∫ L

0

1

S0(x) + f(t)
dx− I0

∫ L

0

dx+
γ

β
I0
∫ L

0

1

S0(x) + f(t)
dx (3.5)

Hence we can rewrite the equation as follows:

I0t = β
I0

1/L
∫ L
0

1
S0(x)+f(t)

dx
− γI0 (3.6)

10
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Figure 3.1: The graph of S and I as time evolves, in the case where diffusion is
very large (D � 1), β = 0.5.The initial population is assumed to be S0(x) = 1 +
0.4sin(4πx) and initial infected function to be I0(x) = 0.01exp(−100x2)

The quantity
(

1
L

∫ L
0

(S0(x) + f(t))−1
)−1

is called the harmonic average of (S0(x) +

f(t)). Now we can follow the same steps for the equation of S0
t , and by considering

the equation (3.2), the equation for the O(1) can be written as follows:

ft = −β
(
(S0(x) + f(t))I0 + (S0(x) + f(t)

)
I1xx + S1I0xx) (3.7)

By plugging the equation (3.4) into (3.7):

ft = −β ((S0(x) + f(t)) I0t + 1/βI0t − (S0(x) + f(t)) I0 + γ/βI0) (3.8)

and finally by substituting the (3.6), we can obtain a new equation:

ft = −β 1

1/L
∫ L
0

1
S0(x)+f(t)

dx
I0 (3.9)

which is independent of x.

As shown, the original PDE equations (2.8) has reduced to ODE equations (3.6)

and (3.9). We obtained f(t) from both the numerical discretization of the main

equation (2.8) (with D=1) and asymptotics (3.6) and (3.9). The result of a sim-

ulation for initial population of S0(x) = 1 + 0.4sin(4πx), initial infected cases of

I0(x) = 0.01exp(−100x2) and β = 0.5 is depicted in the figure 3.2. The small differ-

ence between asymptotic and full numerical solution guarantees our assumption and

observations.
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Figure 3.2: The graph of f(t) against time.

Although we could derive the asymptotic equations and do analysis, the earlier

assumption of D � 1 doesn’t have a physical interpretation. If we review the equation

(2.6), where we defined D, it can be understood that there is certain restrictions by

the constants in the equation. α represents the ratio of people who travel, and hence

its maximum is 1. The other term in the definition of D is the distance of grid points,

∆x, which cannot exceeds from a certain value, otherwise the descritized model may

fail to reflect the reality. Therefore the minimum value of D is zero and its max is

bounded by the maximum of (∆x)2 or maximum distance of grid points that doesn’t

hurt the validity of numerical solution.



Chapter 4

Examination of an invasion wave

One of the main effects of introducing a spatial dimension, is that the infection

typically propagates from its origin. When the movement is sufficiently slow, this

propagation happens in a wave-like fashion. The first experiment we can investigate

is studying in front of the wave of outbreak, when we have very small infected cases

and negligible recovered cases. In the following, after deriving the equations, we will

try to find some asymptotic solutions. At the end, we compare asymptotic solution

and real results.

4.1 Set up the problem

We expect to have negligible recovered cases in font of the wave. Therefore we can

approximate S(x, t) as follows:

S(x, t) ≈ S0(x)− I(x, t) (4.1)

In which, S0 indicates the initial population. By plugging equation (4.1) into the

equation (2.8), one can get:

It = β(S0 − I)(I +DIxx)− γI (4.2)

which is quite similar to KPP equation. If we consider that we have few infected

cases at the front of the wave, we can disregard higher order terms of I, which means

we can rewrite (4.2):

It ≈ βDS0Ixx + (βS0 − γ)I (4.3)

In the following sections, after a brief introduction about KPP-Fisher equation, we

will try to find an asymptotic solution for the speed of propagation of the disease.

13



14

4.2 KPP-Fisher equation

One-dimensional reaction-diffusion equations of the form:

ut = uxx + f(u), t > 0, x ∈ (−∞,+∞) (4.4)

where f(u) is a sufficiently smooth function of u, are used to model phenomena that

occur in many areas of science and engineering [36]. One of the, arguably, simplest

settings exhibiting wave propagation is the context of KPP-Fisher equation, modelling

propagation of invasive species inside a favorable medium (see, e.g., [37] for a review):

ut = duxx + ru− su2 (4.5)

The travelling-wave solution has the form u(x, t) = U(x − ct) where U satisfies the

corresponding co-traveling ordinary differential equation (ODE):

−cU ′ = dU ′′ + rU − sU2 (4.6)

We seek a wave propagating from left to right, so that U(z) → 0 as z → +∞, and

U → r/s as z → −∞. Following the relevant standard theory and linearizing at the

front of the wave (z → +∞), we can seek a solution of the form:

U(z) ∼ e−λz , as z → +∞ (4.7)

which yields a dispersion relationship between the speed c and the decay rate λ of

the form:

c = dλ+
r

λ
(4.8)

The minimum speed of propagation is obtained by minimizing equation (4.8) over all

admissable decay rates λ > 0, which yields:

cmin = 2
√
dr (4.9)

Numerical experiments confirm that the speed of propagation approaches cmin for a

wide range of initial conditions, so long as u(x, 0) decays “sufficiently fast” as x→∞.

This is a well-known feature of the KPP-Fisher equations [37, 38]. Note that this

speed only depends on linear terms in the equation (4.8) (i.e, it is independent of

the value of s). Now suppose that the parameters d, r are functions of space x. If

they vary sufficiently slowly, we expect that the speed of propagation will still be well

approximated by the equation (4.9). This is the so-called adiabatic approximation.
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4.3 The asymptotic speed of propagation

The spread of an infectious disease looks like a wave propagating through the space.

For the special case discussed in previous section, which can be observed in front of the

wave with very small infected individuals, we assume that the motion is sufficiently

slow (or rather D � O(1))). By these assumption we want to linearize the equation

at the front of the wave, like Fisher and KPP equation:

I(x, t) = eλ(x−ct) (4.10)

Hence the derivatives of I(x, t) can be determined:

It = −cλeλ(x−ct)

Ixx = λ2eλ(x−ct)
(4.11)

We need to find c to determine the speed of propagation. Therefore, by plugging

equations (4.10), (4.11) into the (4.2) and disregarding higher orders of I, one can

get:

−cλeλ(x−ct) = βS0e
λ(x−ct) + βS0De

λ(x−ct) − γeλ(x−ct) (4.12)

By further simplifications and rewriting the equation for c, we may get:

c = −βS0 − γ
λ

− βS0Dλ (4.13)

At this point, we want to determine the minimum of c as a function of λ. By taking

derivative of (4.13) with respect to λ, we may get the following equation:

βS0 − γ
λ2

− βS0D = 0 (4.14)

Which means that for λ = ±
√

βS0−γ
βS0D

we have the optimum points, and by considering

the direction of propagation, we can obtain the minimum speed as follows:

cmin = 2
√
βS0 − γ

√
βS0D (4.15)

In the following we will compare the approximate solution of (4.15) and full nu-

merical solution.
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4.4 Numerical Experiment

We run some experiment for different choices of initial population and compare the

results of full numerical simulation with the result of (4.15).

We consider a lattice problem on x − axis from x = 0 to x = 1, with N = 200

grid points. In this experiment, we investigate 2 different initial population, S0 =

1 + 0.4sin(4πx) and S0 = 1 + 0.7sin(4πx). We set the same constant values of

D = 0.0001, β = 0.5, γ = 0 and the time interval of ∆t = 0.01. for both initial

densities.

As it is shown in the figure 4.1, the minimum speed is a relatively good approx-

imation, especially when there is small changes in the population density. As the

density changes more, this approximation fails and errors become larger.



17

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.1: Simulation of an infection wave propagating through a heterogeneous
population, for two initial densities. The left column indicates the results for S0(x) =
1 + 0.4sin(4πx), and the right column indicates ones for S0(x) = 1 + 0.7sin(4πx)
. The graph of these two initial functions has been depicted in the first row. Next two
rows show the space time plot of susceptible and infected population density. The
Last row shows the speed c of the wave as a function of wave position x, comparing
numerical result to the asymptotic results.



Chapter 5

The onset of outbreak

In this chapter we want to investigate the conditions that lead to an outbreak. In the

following sections, after linearizing derived equations, we will try to find corresponding

eigenvalue problem that help us to find the threshold of outbreak. The equation (2.8)

admits a trivial solution with I(x, t) = 0 and S(x, t) = S0(x), in which S0(x) describes

the initial population distribution. In this case, outbreak won’t happen. At the onset

of the outbreak, we may assume that I(x, t) � 1. Linearizing (2.8) leads to an

equation for I only of the form equation (4.3). Looking for solutions of the form

I(x, t) = eλtφ(x), we obtain an eigenvalue problem:

λ+ γ

βS0(x)
φ = Dφxx + φ (5.1)

In the following sections we will consider different regimes and we will try to find the

corresponding threshold.

5.1 Threshold of outbreak when diffusion is very small

To embark on, we consider the limit D = 0. In this case, each point x in space

evolves separately, and the eigenvalues λ are given by λ ∼ βS0(x)− γ. The outbreak

is therefore prevented when βS0(x) < γ for all x, or γ > γc, where:

γc = βmax
x

S0(x) (5.2)

More generally, we define γc to be a threshold value of the decay parameter γ, corre-

sponding to the zero-eigenvalue of (5.1). Namely, γc satisfies:

γc
βS0(x)

φ = Dφxx + φ (5.3)

The outbreak occurs if and only if γ < γc. For general S0(x) and D; the equation

(5.3) does not have an explicit solution. However we expect γc to approach the value

(5.2) as D → 0. We now derive the corrections to (5.2) in the limit of small but

18
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non-zero D : 0 < D � 1, using asymptotic analysis. We expect the outbreak to first

occur near the maximum of S0. Let xm be the point at which S0 has its maximum.

As such, we expand:

x = xm + εy (5.4)

where ε is a small constant to be determined. Near xm, we can write:

S0(x) ∼ A(1−Bε2y2) +O(ε3) (5.5)

where A = S0(xm), AB = −S ′′0 (xm)/2; and we expand 1/S0(x) = (1 + Bε2y2)/A.

Hence, we can rewrite equation (5.3) as:

γc
Aβ

(1 +Bε2y2)φ ∼ Dε−2φyy + φ (5.6)

We now choose ε so that Bε2 = Dε−2. In other words, we set:

ε := D1/4B−1/4 (5.7)

Assuming ε is small, to the leading order we obtain an eigenvalue problem:

φyy − y2φ = µφ, y ∈ R (5.8)

with:

µ = (
γc
Aβ
− 1)D−1/2B−1/2 (5.9)

Equation (5.8) is a well-known quantum-harmonic oscillator whose eigenfunctions are

given in terms of Hermite polynomials. The corresponding eigenvalues are given by:

µ = 1, 3, 5, 7, ...

The smallest eigenvalue is µ = 1. By plugging that into equation (5.9), we obtain the

following formula for the threshold value of γc:

γc = S0(xm)−D1/2(−S ′′(xm)/2)1/2 +O(D). (5.10)

For example, take S0(x) = a+ sin(πx), β = 1, x ∈ (0, 1). Then the maximum occurs

at xm = 0.5, and we obtain:

γc ∼ 1 + a−D1/2π(1 + a)1/22−1/2 (5.11)
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D 0.01 0.005 0.0025 0.00125
γc for numerics (5.3) 0.7778 0.8389 0.8871 0.9206
γc for asymptotics (5.11) 0.7686 0.8429 0.8889 0.9214
Relative error 1.18% 0.47% 0.20% 0.093%

Table 5.1: Comparison of numeric and asymptotic results of γc for different values of
D. Initial population is assumed to be S0(x) = sin(πx), x ∈ (0, 1) and β = 1.

Table 5.1 compares the formula (5.11) with the fully numerical solution of the eigen-

value problem (5.3), in the case of a = 0, for a couple of values of D.

After considering the case when we have a maximum of S0(x) within the boundary,

now we want to investigate the case when we have a max on the boundary. Using

the same expansion as (5.4), near xm we can write:

S0(x) ∼ A(1−Bεy) +O(ε2) (5.12)

where A = S0(xm), AB = −S ′0(xm); and hence we can write 1/S0(x) = (1 +Bεy)/A.

We expect the leading order of γc to be the same as equation (5.2), and we can expand

it as follows:

γc = βA(1− εγ1) (5.13)

By plugging equations (5.12) and (5.13) into the equation (5.3), we can write:

(1− εγ1)(1 +Bεy)φ ∼ Dε−2φyy + φ (5.14)

We now choose ε so that Bε = Dε−2. In other words, we set:

ε := D1/3B−1/3 (5.15)

Now the eigenvalue problem in the order of ε can be obtained as:

φyy − (y − γ1
B

)φ = 0, y ∈ R (5.16)

Now we define a new variable ŷ = y− γ1
B

. We can rewrite the equation (5.16) in terms

of new variable:

φŷŷ − ŷφ = 0, ŷ ∈ R (5.17)

Equation (5.17) is a well-known Airy equation and its general solution can be written

in terms of airy functions φ(ŷ) = aAi(ŷ) + bBi(ŷ). Now we need to define new
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D 0.01 0.005 0.0025 0.00125
γc for numerics (5.3) 0.7767 0.8389 0.8604 0.8895
γc for asymptotics (5.19) 0.7805 0.8258 0.8617 0.8903
Relative error 0.490% 0.268% 0.152% 0.088%

Table 5.2: Comparison of numeric and asymptotic results of γc for different values of
D. Initial population is assumed to be S0(x) = 1− x, x ∈ (0, 1) and β = 1.

boundary conditions as well. Boundary conditions in terms of x are φ′(xm) = φ′(L) =

0. By changing variable to ŷ, new boundary conditions become φ′(−γ1
B

) = 0, and

φ′(∞) = 0. Considering the latter condition and the fact that φ is bounded, Bi(ŷ)

cannot be part of the solution. Therefore the solution will be φ(ŷ) = aAi(ŷ). We

know that φ′(−γ1
B

) = 0. Considering the smallest eigenvalue, which corresponds to

first root of derivative of Ai(ŷ), and solving for γc, we will obtain:

−γ1
B
≈ −1.0188 (5.18)

By substituting γ1 in the equation (5.13), the threshold can be obtained as follows:

γc ∼ βS0(xm)(1− 1.0188D1/3(−S ′0(xm)/S0(xm))2/3) (5.19)

For example, take S0(x) = 1− x, β = 1, x ∈ (0, 1). Then the maximum occurs at

xm = 0, and we obtain:

γc ∼ 1− 1.0188D1/3 (5.20)

Table 5.2 compares the formula (5.20) with the fully numerical solution of the eigen-

value problem (5.3) for different values of D.

5.2 Threshold of outbreak when diffusion is very large

Let us also study the asymptotics in the limit of large D, on the domain x ∈ [0, L]

with Neumann boundary conditions φ′(0) = φ′(L) = 0, which yields φ0(x) = const.

By scaling, we may then take φ0 = 1. The next-order equation for φ1 then becomes:

γc
βS0(x)

φ = Dφ1xx + 1 (5.21)

We then integrate both sides on the domain to obtain:

γc ∼ β

(
1/L

∫ L

0

1

S0(x)
dx

)−1
, D � O(1) (5.22)
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(a) (b)

Figure 5.1: (a):Threshold for outbreak γc in the limit of ”large” D. Here, D=1 and
S0(x) = a + sin(πx), x ∈ (0, 1), β = 1. The numerical solution of equation (5.3)
and asymptotic given by equation (5.21) are both shown. They are indistinguishable,
with relative error less than 0.1%.(b): Threshold as a function of D with S0(x) =
1 + sin(πx): Small and large- D asymptotic are also shown.

in which the quantity
(

1
L

∫ L
0

(S0(x))−1
)−1

is called the harmonic average of S0(x). For

example, take S0(x) = a + sin(πx) with x ∈ (0, 1). Then equation (5.21) integrates

to:

γc ∼


π
√
1−a2

log(1+
√
1−a2−log(1−

√
1−a2) , 0 < a < 1

π/2, a = 1

π
√
1−a2

π−arctan((a2−1)−1/2)
, a > 1

(5.23)

Figure 5.1 (a) compares the asymptotic (5.21) with full numerical simulations of

(5.3) for a wide range of a, and with D = 1. Despite a relatively small value of D,

the agreement is excellent over the entire range of a (within 0.1%). In 5.1 (b), we fix

a = 1 and vary D; as can be seen, both large- and small- D asymptotics agree very

well with full numerics.

Finally, note that for constant population density S0, the theshold γc defined by

(5.3) is independent of D, and both equation (5.10) and (5.22) yield γc = βS0. One

might naively expect that in the large-D limit, S0 would be replaced by the arithmetic

average of S0(x). However our analysis shows that the more appropriate formula is

to take a harmonic average of S0(x) as in (5.22).



Chapter 6

Indicative observation from Covid-19 in Nova Scotia and

”tunneling”

As a case study, consider the Canadian province of Nova Scotia where some of the

authors of this paper reside. It has a population of about 1 million, with slightly less

than half of those living in Halifax Regional Minicipality (HRM: the city of Halifax and

surrounding area). The second-biggest town is Sydney (see map) with a population

of 30,000. Much of the rest of the province has relatively low population density.

Nova Scotia managed to completely suppress the initial outbreak in the spring of

2020 using very strict stay-at-home orders and border controls. Any visitor required

a strict self-isolation quarantine of 2 weeks upon entry. As a result, there were very

few locally-transmitted cases up until April 2021; stringent health measures managed

to extinguish the few localized outbreaks that did occur before they spread.

Figure 6.1 shows the daily COVID case numbers for Nova Scotia. In total, as

of July 2021, Nova Scotia had about 5800 cases, which is about 0.6% of the total

population of 1 million. About 70% of these cases occurred during the “third wave”

in April-June, 2021. Very few cases occurred in-between the three waves – and most

of those were travel-related in quarantine (i.e., not involving community spread).

Although less than half of NS population lives in HRM, it was responsible for 79%

of the cases overall, and 81% of the cases in the third wave. Another 10.5% of

cases occurred in Sydney, about 400km (4.5 hours drive) from Halifax, having a

population of 30,000. Together, HRM and Sydney were responsible for over 90% of

all infections, despite having about half of the overall population of the province.

Despite its relatively smaller size, the infection rate in Sydney was about 2.5 times

that of Halifax during the third wave.

The main takeaway lesson from this brief data summary, in connection to the qual-

itative model features discussed herein, is that the rate of infection is much higher

in denser urban regions than the rest of Nova Scotia, which is mainly rural with low
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Figure 6.1: Daily COVID-19 cases for the Province of Nova Scotia. Around 80% of
the cases occurred in the Halifax Regional Minicipality, which contains about 50% of
the population of Nova Scotia.

population density. This is indeed consistent with our model and its corresponding

observations. In addition, due to stringent health measures, it is likely that the epi-

demic in most of the regions of Nova Scotia did not spread – even during the third

peak – as almost all infections came from HRM and Sydney – the two biggest popu-

lation centers in Nova Scotia. Despite strict travel restrictions (even inter-provincial

travel was banned during the third wave in May 2021), the infection was able to

“tunnel through” the rural areas from HRM to Sydney.1

Motivated by the above observations, we now show that our model can reproduce,

at least qualitatively, a “tunneling-through” effect, where the infection can spread

between two regions of locally positive growth, even when separated by a “buffer

zone” of negative growth (i.e., infection suppression). Consider a sample simulation

as shown in Figure 6.2, with S0 = S0(x) = 1.3 + cos(2πx) with x ∈ (0, 1.5) and

β = γ = 1. Locally (in the limit of D = 0), the infection is suppressed in the middle

region x ∈ (0.298, 0.701) as well as for x > 1.298 where S0(x)β < γ, and grows to the

left and to the right of that region. We initially introduce the infection near the left

boundary of x = 0. The outbreak then takes over the entire left region 0 ≤ x ≤ 0.298

by the time t = 20. Then for a relatively long time 20 < t < 100, nothing appears to

1It is also interesting to note that there are other significant population centers closer to HRM
that did not see anything near the size of outbreak in Sydney. This includes the towns of Truro (pop.
23000, one hour drive from Halifax) and New Glasgow (pop. 19000, 2 hours drive from Halifax)
that did not see any significant outbreaks during the third wave. The outbreak in Sydney started
with a hockey game, when kids and families from Halifax visited Syndey for a hockey tournament
at the onset of the third wave, a potential superspreader event. At the end of the day, our simple
model is insufficient to make predictions at such localized detail; much of the outbreaks are driven
by random events and the luck of the draw, which our deterministic model is not designed in this
first installment thereof to deal with. This is naturally an intriguing challenge for further work.
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(a)

(b)

Figure 6.2: Infection “tunneling” through a barrier. Initial conditions was taken to
be S0 = S0(x) = 1.3 + cos(2πx) with β = γ = 1 and x ∈ (0, 1.5). Without spatial
interactions (D = 0), the disease is suppressed in the middle region x ∈ [0.298, 0.701]
as well for x > 1.298. Here, we take D = 0.00005. The disease is introduced at t = 0
at the left end x = 0; corresponding to initial conditions I(x, 0) = 0.001e−1000x. An
infection wave propagating to the right is initially observed, but appears to die out
around t ≈ 30 as it hits the buffer region at x ≈ 0.3. However it is able to “tunnel
through” the buffer region, re-appearing at x = 1 (where S0 has its maximum) when
t ≈ 90, then propagating from there to the rest of the infectious region x ∈ [0.7, 1.3].
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happen. But eventually at around t ≈ 100, the infection manages to “jump” over to

the right region and re-appears at x = 1 (where S0(x) has its maximum), then spreads

from there both to the left and to the right until the entire region 0.701 ≤ x ≤ 1.298

is infected. It is interesting to note that when the infection re-appears at t ≈ 100,

it does so at x = 1 rather than x ≈ 0.7. The reason merits further investigation,

but roughly speaking, this happens because the local growth rate of infection is given

roughly by S0(x)β = γ, and is the highest at the maximum of S0(x).



Chapter 7

Conclusion

The content of this thesis were submitted for publication [31].

We have presented a model of spatio-temporal infection spread. We have started

from a lattice variant of the problem and considered a first-principles inclusion of

mobility according to which people move to new, adjacent locations (for work, shop-

ping or other purposes), get infected and return to their base in that new infected

state. The model allows for extensions whereby the mobility is to different locations

(rather than to adjacent bins) with a presumably decaying over distance kernel. The

latter constitutes an interesting variant of the current model relevant to examine in

future work. Considering the continuum limit of the considered cellular automaton,

we obtained a PDE (2.8) with state-dependent diffusion terms. Essentially, the scope

of our work is to advocate the relevance of consideration of such terms, in addition

to local ones and, arguably, instead of regular diffusion processes in this setting. The

key assumption in our modelling is that while individuals move around, they don’t

diffuse, while infection does. While numerous PDE models exist in epidemiology

(see, e.g., [9, 19, 27, 28, 34] for a sample), most assume either constant diffusion,

or diffusion that is prescribed to be spatially-dependent. By contrast, we present

a first-principles derivation of equation (2.8) from the underlying cellular automata

representation of the basic infection mechanisms. Our model naturally leads to a

diffusion that scales with the current number of susceptibles. We also investigated

the special case when diffusion rate is very large. Our experiments showed that the

PDE model can be written as a system of ODEs and our further work proved that.

However, as discussed, the parameter D is restricted by other constants in the model

and there is no physical interpretation for this case.

Introducing a spatial component to a basic SIR model spread also naturally ex-

plains why areas of high population density experience higher infection rates than

more rural areas (for related approaches see e.g. [10, 39]. We also generalized the

27
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concept of the reproduction number in this spatially variable setting, by deriving

an eigenvalue problem (5.1), whose solution describes overall decay or spread of the

disease. Importantly, the relevant eigenvalue problem near the maximum of the sus-

ceptible population can be approximated by a quantum harmonic oscillator which

allows an approximate analytical expression for the critical clearance rate that would

avoid the spreading of infection. We have tested the relevant predictions numerically,

finding very good agreement with our theoretical results, where appropriate.

Aside from spatially-dependent infection rates, our model demonstrates the dif-

ficulty of suppressing the outbreaks. As illustrated in Figure 6.2, the disease can

“tunnel” between “islands” of positive growth separated by areas of negative growth

(i.e., decay) of the epidemic. A better understanding and more systematic quantifi-

cation of such phenomena is planned for future work.

There are also numerous additional dimensions in which the present consideration

can be extended (both literally and figuratively). Indeed, here we restricted consid-

erations to one-dimensional settings, i.e., “geographic corridors”. In line with other

works such as [9, 27][15, 24], it is naturally more relevant to explore two-dimensional

domains. Another assumption was that individuals could only travel to adjacent

points, which restricts the value of parameter D. The idea can be generalized if we

assume that individuals can travel to all points, and depending on how we will define

the travel pattern of individuals, different models can be obtained. For example, a

reasonable assumption is that the ratio of population in the destination or the dis-

tance between destination and original point determines the rate of travel. We expect

that these kind of models enable us to study the situation when diffusion rate D is

very large. The goal of travels can be sorted in more generalized model. Although

the assumption of returning individuals to their main point seems to be reasonable

within appropriate time scale, it can not reflect all daily lives activities. Consid-

ering mobility reports of people during Covid-19 pandemic (like reports announced

by Google 1), there are multiple types of travels, and in order to match the theory

with reality, different scenarios are needed to be discussed, and considering a sce-

nario that people will not return to their origin seems to be essential. Defining the

constants of the equations (e.g. β, γ) as a function of time can be helpful to study

1https://www.google.com/covid19/mobility/
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the model in smaller time scale. In addition, it is of substantial interest to consider

infections across different age groups. Our considerations herein have assumed that

the infectiousness and especially recovery properties of the entire population are the

same, however it is well-understood that COVID-19 has a far more severe impact

on more senior individuals with weakened immune system; indeed, this has been

the basis for designing relevant non-pharmaceutical intervention strategies [40]. It

is then of interest to introduce kernels of interaction across a “synthetic dimension”

representing age (in addition to spatial dimensions). There, interactions are pre-

dominant along the “diagonal” i.e., for people of the same age group, but there are

nontrivial interactions between age groups at some “distance” between them (e.g.,

parents/grand-parents and children/grand-children); see, e.g., [41]. There, a more

complicated non-monotonic kernel of interaction across ages may be relevant to in-

clude. As discussed we started with the basic compartments or SIR model. Adding

more compartments which takes the incubation period of the disease, asymptomati-

cally infected individuals, deaths due to the disease separately, vaccinated population

and etc, into consideration would help us to develop more reliable model that reflects

the reality. This model will lead us to adopt effective policies during the outbreak

to save more lives while minimize the effects of restrictions on daily lives. We ex-

pect that our results and understanding of infectious disease and epidemiology, can

be extended to other applications of compartmental models. For example cancer

epidemiology [42], and many other applications that similar models can be applied.

These are all interesting possibilities, currently under consideration for future work

and will be reported accordingly in future publications.
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