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Abstract

We develop a computer vision system to help biologists detect endangered whales.

Given access to a limited dataset of aerial imagery (1544 images of mainly water),

we implemented object detection and semantic segmentation models. For segmenta-

tion, we leverage the extreme data imbalance by introducing an elliptic annotation

mechanism mitigating the need for tight annotations while still constrained by expert

annotators’ available time. Data scarcity made zero-false-negative rate infeasible, so

we minimized false negatives while having few enough false positives that it could still

help an expert annotator accelerate the annotation process itself. This would allow

a bootstrapping dataset creation approach: collecting increasingly larger datasets in

parallel with training increasingly accurate models.

We evaluated performance for the downstream bootstrapping task with an AI-

in-the-Loop experiment. Motivated by the expert user’s workflow, this required de-

veloping a feature-based clustering visualization of the images. Our segmentation

system admitted few false negatives and was more e�cient than manually data col-

lection alone. While the proposed approach cannot entirely solve the challenge of the

extremely small dataset, it suggests that a slightly larger dataset (e.g. adding 100

whale images would double the relevant training set) may be su�cient to bootstrap

the training and collection with e↵ectively no false negatives.
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Chapter 1

Introduction

This work aims to help biology researchers locate, classify, and annotate whales in

aerial imagery.

1.1 Motivation

North Atlantic Right Whale, Eubalaena glacialis, is one of the heavily endangered

whales species that is filed as ”critically endangered (cr)” species in the International

Union for Conservation of Nature (IUCN), with the number of 200-250 mature in-

dividuals in their Jan 2020 assessment [10]. In 2017, twelve North Atlantic Right

Whales were killed by ship accidents and fishing gear entanglements [11]. Since 2017,

they have been facing an ongoing unusual mortality event (UME). Figure 1.1 is taken

from NOAA1 and shows a North Atlantic Right Whale that is damaged by vessel

strikes that the propeller scars are visible. These damages can fatally harm the an-

imals by breaking their spine and a↵ecting their internal organs. This species often

visits the coast of Nova Scotia. Because of the decreasing trend in its population, it

is crucial to prevent future unfortunate deaths.

To take e↵ective management measures to help the North Atlantic Right Whales

restore their population, researchers systematically analyze their behavior, population

estimate, and changes, which is called surveying. Surveying whales is crucial for

assessing whales, their population, density, and health. For surveying, researchers

use acoustic and imagery data acquired using vessels, airplanes, and satellites. Then

they manually check them for the presence of whales. The data source that we used

in this research is aerial imagery. An airplane with cameras mounted on it flies

over the target region for studying and captures images over the water to acquire

aerial imagery data. Then researchers go through images to find whales in them for

surveying. Manually identifying animals in aerial ocean imagery requires considerable

1https://www.fisheries.noaa.gov/species/north-atlantic-right-whale#overview

1
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Figure 1.1: A Damaged North Atlantic Right Whale. Credit: NOAA

expertise and is very time-consuming. An automated system could facilitate this

process, and that has been our aim in this work.

1.2 Problem Definition

Whales are rare, and because of the various depths that animals can swim, it is

not common to capture them in aerial imagery. Therefore, the aerial survey im-

agery is mainly covered with water. This is the primary reason that makes finding

whales, studying them, and collecting whale examples in aerial imagery highly time-

consuming: the animals we are searching for account for only roughly 0.01% of the

pixels in the available imagery.

Considering the need for an automatic census system to ease the manual checking

e↵orts and the limited aerial imagery data we had for this project, we defined the

objective of this research on two related goals. One of the goals is to develop a

computer vision model to detect whales from aerial imagery. The other goal is to

develop a whale detection system that is e↵ective for downstream tasks. This system

should be proficient to assist the bootstrap in the data collection process. These

two goals are interconnected to each other; therefore, any progress in one of them is

beneficial for the other.

As we will summarize shortly in the Overview (Section 1.4), we tried both object

detection and semantic segmentation towards these objectives, and evaluated them
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both individually and with a AI-in-the-loop experiment. Before giving this overview,

we will first outline some of the challenges intrinsic to the problem we faced.

1.3 Challenges

The primary challenge faced when developing a computer vision model is data defi-

ciency. Table 1.1 has some of the well-known benchmark datasets, with their number

of examples, released for competitions or academic research to train and develop ob-

ject detection models on them. The dataset we used in this research contains 1544

images, which is not adequate for training a deep architecture from scratch since the

amount of needed data is immense for training deep architectures.

The data deficiency in this project has two interrelated causes. First, data collect-

ing for a specific domain and task is relatively more di�cult than collecting datasets

of common objects. The di�culty is partially inherited from the number of instances

of a particular object. For example, finding and collecting endangered whale images

in aerial imagery is challenging due to their low number of instances in the world.

Second, finding whales in the available imagery is laborious for human experts. The

imagery usually contains an image from a region without any whales. However, be-

cause of the high resolution of the imagery, it takes extensive zooming and panning

through a single large image to make sure there is indeed no animal, or to find the

animal that might be there. Sometimes because of occlusion or other adverse e↵ects,

correctly identifying animals from this imagery needs discussion between researchers.

There are 168 whales in our dataset, and according to the labeling team, the ratio of

finding whales in the source imagery is approximately 7 whales in every 2000 images

they manually checked, to create initial dataset.

Another challenge is the class imbalance in the dataset itself. In the dataset, not

all of the classes have the same amount of examples. Approximately 85 percent of

data hold three classes, and the remaining 15 percent belong to 16 other classes. Since

machine learning models do not perform well on data with imbalanced classes, this

challenge adds more value to the data collection downstream task.

The third challenge is the input image size. The dataset images’ pixel resolution

is high, which is 4912 ⇥ 7360 pixels in height and width, respectively, compared to

the common benchmark image datasets (Table 1.1), which state-of-the-art computer
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vision models usually are being developed using them. Subdividing these images into

smaller images further exacerbates the problem of class imbalance, as most of the

image is usually just water, and must be done so as not to accidentally lose a rare

animal by having it present only partially on the boundary of sub-images.

Table 1.1: Examples of the generally used datasets for the object detection task with
the number of their annotated images/objects in the training and validation set

Number of
Categories

Spatial
Resolution

Training Validation

Images Objects Images Objects

DOTA-v1.0 15
800x800 -

20,000x20,000
1,403 94,141 468 31,380

PASCAL VOC 20
469x387

(on average)
5,717 13,609 5,823 13,841

ILSVRC 2014 (2017) 200
482x415

(on average)
456,567 478,897 20,121 55,502

COCO 80 ⇠ 640x480 118,287 860,001 5,000 36,781

Stu↵ COCO 91 ⇠ 640x480 118,287 747,458 5,000 32,801

Open Images V6+ 600 ⇠ 1024x1024 1,743,042 14,610,229 37,306 303,980

1.4 Overview

As mentioned previously , the objective of this project was to develop a computer

vision model that can detect and classify marine animals in aerial imagery to help

biologists find whales.

We startedby building an object detection model. We chose the Faster R-CNN

architecture (discussed in Chapter 6) that has higher accuracy rather than one-stage

object detection architectures. It is slower than one-stage architectures, but since our

data is not video footage, inference speed was not our concern.

Our limited amount of data (discussed in Chapter 3) was insu�cient to train the

model, so we used transfer learning by fine-tuning a Faster R-CNN model trained on

the COCO 2017 dataset. We used data augmentations (discussed in Section 5.3) to

increase the number of samples as well.

We then needed to deal appropriately with the spatial resolution of the imagery

(7360⇥4912), as it was significantly higher than the common imagery resolution that

Faster R-CNN can handle (1200 ⇥ 800, keeping the original image’s aspect ratio).
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Downsampling was not feasible since most animals in the images are very small;

hence, we needed to carefully crop images into smaller sub-images making sure to

appropriately preserve animals in their entirety. (discussed in Sections 5.1, 5.2).

An ideal detection model would make no false negative predictions and few false

positive predictions so that it is directly usable for monitoring whales. However, if

that is not possible, another useful model would be one that makes no false negatives

(i.e. we do not want to miss a whale that is present), but that makes few enough

false positives that it is still helpful to an expert annotator in that it narrows down

the options and speeds up the annotation process so that a larger dataset could be

collected more e�ciently, to eventually create a fully functional model. That is, even

bootstrapping the data collection itself would be helpful. This would allow gradually

building a set of increasingly accurate models, each of which in turn helps build larger

data sets more e�ciently and so on.

The number of false positive predictions in our object detection approach was

high. Furthermore, high confidence values (> 0.5 and sometimes > 0.9) made it

impossible to use di↵erent threshold values to eliminate them without also creating

too many false negatives. The high false positive rate made it hard to label more

data as the human expert should verify all the images.

We therefore next decided to try semantic segmentation approach to mitigate this

problem. The idea is that since the labels are pixel-level for semantic segmentation,

the model could see an ample amount of “empty” water (background) pixels, during

the training, that could possibly lead to having fewer false positive predictions than

object detection approach.

The proper annotation for semantic segmentation is polygon labeling. We first

had the labeling team try polygon labeling. The time needed for polygon labeling was

substantially higher than bounding boxes, so polygon labeling turned out to be infea-

sible. We therefore introduced elliptic labeling (discussed in Chapter 4) as a method

by which to have annotations better than bounding boxes for semantic segmentation,

while staying within the time budget of the labeling team. From the top view of aerial

imagery, the objects have oval shapes, so they can be covered with elliptic masks with

less amount of noise rather than covering them with rectangular masks, derived from

bounding box labeling. These ellipses are also convertible to the bounding box labels,



6

so it does not prevent us from training object detection models using them. At the

end of this phase, we could get elliptic labels for a portion of the dataset objects

(⇡ 22%), and we used a mixture of elliptic masks and rectangular masks to train

semantic segmentation model. We were aware that both the rectangular masks and

elliptic masks are noisy annotations relative to what semantic segmentation usually

requires.That is, both rectangular and elliptic annotations do include water pixels

(background) incorrectly labeled as an animal. The central rationale behind using

the noisy annotations was that since the number of background pixels is substantially

higher than the objects, this could outweigh the noise, and the prediction masks could

get shapes more proportional to the animals, i.e. neither perfect ellipses nor bounding

boxes. This was successful; we did indeed observe this behavior to some extent in our

qualitative results of semantic segmentation approach.

We chose DeepLabv3 as a state-of-the-art architecture (discussed in Chapter 7)

with reliable implementation as the backbone architecture of our semantic segmenta-

tion approach.We fine-tuned a pre-trained (on COCO 2017 dataset) model similar to

the object detection approach, applying cropping and data augmentations. For this

network, the proper crop size of the data is (600⇥ 400).

In parallel with development of the semantic segmentation approach, we also

developed a technique for visualizing our dataset in large groups of globally similar

images. This technique consisted of a grid containing images clustered using K-means

based on features extracted using a ResNet architecture (discussed in Section 8.3.1).

The purpose of creating this visualization was to get a better understanding of the

dataset and the task and the scope of challenges we might be facing (e.g. what fraction

of the images have significant glare from the sun on the water, making it extremely

hard to detect and identify animals for both the labeler and computer vision model?).

Interestingly, comparing the environmental annotations (discussed in Section 4.4)

with the clusters validated our feature-based clustering approach (discussed in Section

8.3.4), and may suggest more sophisticated techniques that could be used in future

that incorporate environmental conditions.

Having both semantic segmentation and object detection approaches, and moti-

vated by the idea of developing a mechanism which would support a bootstrapping

process for the collection of a large dataset, we finally compared them in a systematic
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experiment (discussed in Section 8.4). This AI-in-the-loop experiment aims to find

the best approach to reduce the amount of time needed to label more data and find

a qualitative relation between numerical metrics and the time of labeling. The ex-

periment has three conditions: manually labeling, labeling with the help of an object

detection model, and labeling with the help of a semantic segmentation model. For

the purpose of labeling, the masks are less important than the regions themselves.

Therefore, to have comparable results, we converted the segmentation masks to the

bounding boxes.

AI-in-the-loop adds complexity to the experiment that it would not be problematic

in an AI-only context. Using the same data three times during the experiment for

comparing three approaches would not produce fair results. The labeler sees them

several times, and the result would favor the last condition that is being timed. On

the contrary, as an example in an AI-only setup, the same validation set can be

used several times in model selection. To overcome this challenge and conduct a

fair comparison, we used K-means clustering and visual feature extraction to prepare

data for training and analysis in this experiment. Doing so, we made sure that

each condition has visually similar data but not the same as the other conditions for

comparison (discussed in Section 8.3).

1.5 Contributions and approaches

In summary, this work includes the following contributions:

• We implemented two computer vision models based on Faster R-CNN and

DeepLabv3 for object detection and semantic segmentation approaches to detect

animals in aerial imagery.

• We leveraged the object-background class imbalance problem to allow use of

noisy labels for semantic segmentation.

• We introduced elliptic labels for object annotation in segmentation to reduce

noise in the ground truth masks while still maintaining e�ciency for the expert

human annotators.
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• We designed and conducted an AI-in-the-loop experiment to show the influ-

ence of object detection and semantic segmentation models on data labeling

compared to manually labeling images.

• We developed a clustered visualization of the dataset based on their extracted

features, and qualitatively validated this for e↵ective data preparation for the

experiment, based on expert human annotators’ workflow and environmental

labels.

• We propose a bootstrapping approach for iterative dataset collection and model

training in data-scarce contexts, and our results suggests that with even slightly

more data than what was available to us, this would be feasible.

1.6 Thesis organization

We arranged the rest of the thesis as follows: In Chapter 2, we briefly discuss the

related research to this work. After describing the data in Chapter 3 on the dataset,

then we introduce the methods used to label and annotate the data in Chapter 4.

Chapter 5 is on Pre-processing and how the data is being processed to be suitable

for the architectures we used. Chapter 6 and 7 are on the object detection (Faster

R-CNN) and semantic segmentation (DeepLabv3) models, respectively. In Chapter

8, we discuss the approaches we used to train and evaluate our object detection and

semantic segmentation models. Finally, in Chapter 9, we have the conclusion and the

future works.
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Related Works

In this chapter, we briefly discuss some of the related works to this research. We

grouped related works into three broad categories: object detection, semantic seg-

mentation, and works at the intersection of biology and computer science for solving

animal detection and classification in the water.

2.1 Object Detection

Object detection is a computer vision task that, given an image, predicts the

location of the objects present in images as well as their class. The evolution of this

field can be divided into two eras of before and after the wide usage of convolutional

neural networks (CNNs). Before CNNs, traditional object detections such as Viola-

Jones Detectors [12,13] and HOG detectors [14] were standard algorithms using hand-

crafted features. HOG detectors evolved into Deformable Part Models (DPMs), and

DPMs [15–18] were the winner of the PASCAL VOC for three consecutive years of

2007 to 2009. DPMs are graphical models in essence, but it was shown by Girshick

et al [19]. that DPMs are also can be formulated as CNNs.

AlexNet [20] heavily influenced the field of computer vision in general, and object

detection was one of the a↵ected topics. AlexNet utilized CNNs, which had already

been used earlier in image classification networks such as LeNet-5 [21]. The detection

pipelines that utilize CNNs are often categorized into one-stage and two-stage

detectors. In two-stage detectors, there is a region proposal mechanism prior to the

primary detection. Figure 2.1 illustrates these two categories with their corresponding

timestamps of development.

2.1.1 Two-Stage Detectors

R-CNN: Regions with CNN features [22] was one of the earliest steps in the field of

object detection with convolutional neural networks. This two-stage object detector

9
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Figure 2.1: The object detection algorithms’ milestones. The image is taken from [1]

had a significant speed problem that was not suitable for real-time usage. Soon

after R-CNN, another two-stage object detector, Spatial Pyramid Pooling Networks

(SPPNet) [23], was proposed to overcome the challenge of speed. The main drawback

of this architecture was that only the fully connected part of the network was being

fine-tuned on the data. In addition to that, the training process was multi-stage. Fast

R-CNN [24] had the advantage of fine-tuning both detector and the fully connected

bounding box regressor parts of the network. Fast R-CNN was not suitable for real-

time detection, and Faster R-CNN [5], the latest version of R-CNN-based detection

pipelines, was proposed that was an end-to-end trainable deep network. One of the

critical challenges in object detection was the presence of multi-scale objects. Feature

Pyramid Networks (FPN) [4] was proposed to make the Faster-RCNN more capable

of detecting objects presented in multiple scales and one of the reliable and accurate

object detection pipelines. We chose this pipeline for the object detection approach

that is described in Chapter 6.

2.1.2 One-Stage Detectors

In one-stage detectors, You Look Only Once (YOLO) [25] was the first research that

later on went through a series of improvements to shape v2 [26] and v3 [27] versions of

it. The authors of the first work proposed the two later versions. Later in 2020, v4 [28]
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was proposed by another set of authors. In the YOLO algorithm, the idea is to slice

the input image into a grid and feed the image into a single CNN to get the feature

map and compute the probability of the presence of an object in any of the cells in

the grid. Despite the higher speed of prediction in YOLO, the error rate of YOLO in

bounding box prediction was initially high [1]. Improving localization accuracy was

one of the goals in developing the newer versions of YOLO and Single Shot MultiBox

Detector (SSD), which was proposed by Liu et al. [29]. SSD had a performance with

mAP of 74.9% on VOC 2012 comparing to YOLO with mAP=57.9%. Eventually,

Tsung-Yi Lin et al. proposed RetinaNet [30] utilizing focal loss, making it one of the

best one-stage detectors. The focal loss was a customized cross-entropy loss with a

lower weight to well-classified cases.

The research in object detection is not limited to the one and two-stage object de-

tectors. With the advent of transformers and their superior performance in sequence

modeling, object detection task also has been influenced by them. End-to-End Object

Detection with Transformers (also known as DETR) [31] is one of the recent frame-

works that utilize transformers to predict bounding boxes for the objects present

in the images. They used transformer architecture as a replacement for the object

detection pipeline in Faster R-CNN architecture. Due to its slow convergence, a

newer transformer-based architecture was proposed, namely deformable DETR [32].

PIX2SEQ [33] is another recent approach by Google Brain that defines object detec-

tion as a language modeling task that reaches a competitive result comparing to the

other high-performing object detectors.

2.2 Image Segmentation

Image segmentation is a task in computer vision that divides the input image

into regions that share the same semantics. Image segmentation has three main

sub-tasks: instance segmentation, semantic segmentation, and panoptic seg-

mentation [34]. In instance segmentation, the goal is to predict objects, or in other

words, the instances of the classes of the objects. Unlike object detection, instance

segmentation predictions have pixel-level labels for each instance. Inspired by the

success of Faster R-CNN architecture, Mask R-CNN was developed, with a similar
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architecture to Faster R-CNN. Mask R-CNN is a successful instance segmentation ar-

chitecture proposed in 2017 [35]. Semantic segmentation predicts pixel-level labels for

every possible pixel in the input image without considering the objects individually.

For example, in the case of having two overlapping objects of a class, the output pre-

diction assigns the same value for all of the pixels covering these two objects without

making any distinction between those. Unifying the two tasks of instance and seman-

tic segmentation, the panoptic segmentation, predicts two values for each pixel in the

input image: class id and object id. Proposed by Kirilov et al. [36], panoptic segmen-

tation task became one of the computer vision research tracks. Panoptic-DeepLab [37]

can be named as one of the best algorithms in the panoptic segmentation task. In

this section, our focus is on semantic segmentation task.

Semantic segmentation task was tackled with graphical models and clustering al-

gorithms before deep learning, but similar to other vision tasks, deep learning heavily

a↵ected semantic segmentation. Fully convolutional networks (FCN) [38] was one

of the earliest attempts to solve semantic segmentation. In FCN, the network is a

modified classification network, such as AlexNet, VGG [39], or GoogLeNet [40]. They

took the classification network and substituted the last fully connected layers with

convolutional layers, making the network fully convolutional. In FCN, they combined

outputs from several stages to produce the final prediction.

Encoder-Decoder design pattern in deep learning has been a blueprint for many

segmentation architectures. DeConvNet [41] is one of the Encoder-Encoder style seg-

mentation architectures that uses convolutional layers in the encoder sub-network that

downsamples the feature map and deconvolution layers in the decoder sub-network to

recover the spatial resolution. SegNet [42] was another approach that adapted VGG

for the encoder, but for the decoder, they used the unpooling method in which the

indices of max-pooling operation in the encoder sub-network were being stored to be

used for the upsampling purpose in the decoder sub-network. U-Net [43] is one of the

significant architecture in this category. It was proposed by Ronneberger et al. that

was initially developed for biomedical image segmentation. U-Net is has a symmet-

ric architecture that activations in each step in “contracting path“ (the encoder) are

concatenated to their correspondings in “expansive path“ (the decoder).

Dilated convolution (also known as atrous convolution), proposed by Holschneider
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et al. [44], is the building block of many successful works in semantic segmentation.

Dilated convolution is a type of convolution operation such that several zeros are

introduced in the convolutional kernel between the values, producing bigger filters

without changing the number of learnable parameters. For example, a dilated variant

of a 2 ⇥ 2 convolutional filter could be a 3 ⇥ 3 filter with the same values of the

original 2 ⇥ 2 filter spread out into the four corners of a 3 ⇥ 3 filter, while the rest

of the elements are zero. Receptive field can be controlled explicitly using dilated

convolution without stacking several convolutional and pooling layers. We described

this operation in detail in Section 7.2.1. The successful DeepLab family of networks is

using this convolutional operator to leverage more context in classifying input image

pixels. DeepLabv1 [45] and DeepLabv2 [8] are incorporating conditional random fields

for the refinements in the prediction, while DeepLabv3 [46] and DeepLabv3+ [47] are

discontinued using CRFs, making them fully convolutional architectures. In this

project, we used DeepLabv3, which reached 85.7 on the mIoU score on the PASCAL

VOC 2012, for the semantic segmentation approach. We describe this architecture in

Chapter 7 on semantic segmentation

2.3 Detecting Whales

Detecting and surveying whales using acoustic data has always been an ongoing ef-

fort. Several research works have been done to facilitate this data domain to locate

and classify cetaceans in the water [48–56], including machine learning and deep

learning methods [57–67]. However, this type of data has an intrinsic uncertainty of

localization that deteriorates the accuracy of locating marine animals [68].

Aerial imagery is another domain of data to be utilized for surveying and detecting

cetaceans. There are a few attempts to automate surveying whales using aerial im-

agery and high-resolution images captured from space from decades ago [69]. Several

recent studies have been conducted to study the feasibility and usefulness of space

imagery in detecting and classifying cetaceans [70–73]. Guirado et al. had a study [74]

on counting whales in satellite and aerial imagery. They proposed a two-step frame-

work with consecutive classification and object detection models. They fine-tuned

the classification network, pre-trained on ImageNet, on their dataset containing 2100
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images evenly distributed into three classes. For the object detection phase, they fine-

tuned only the last two layers of Faster R-CNN, pre-trained on COCO dataset. The

image classifier network gets the input image in a sliding window fashion to detect

the tiles containing whales. Then tiles are being fed to an object detection model for

counting the whales present in them. Their approach reached 81% and 94% of F-1

measure on their proprietary dataset for image classifier and object detection model,

respectively. However, the study has two technical drawbacks. They did not fine-

tune all the network weights for object detection architecture, and their framework

is not an end-to-end di↵erentiable architecture for detecting whales. Borowicz et al.

proposed an approach of training an image classifier on downscaled aerial imagery

to survey cetaceans from satellite imagery [75]. Their approach was based on tiling.

They used aerial imagery that contained 190 images of 17 minke whales to train im-

age classification networks, ResNets and DenseNet. For evaluation, they used satellite

imagery in which the challenging images were excluded. Utilizing this domain can

be beneficial for human activities as well when the animals are dangerous for people,

such as shark detection. Sharma et al. conducted a study of detecting sharks in the

vicinity of beaches using aerial imagery with the help of Faster R-CNN model to alert

about the presence of sharks for people’s safety [76].

Software platforms is another track that researchers are developing for the purpose

of conservation. Wildbook [77] is an open-source platform for crowdsourcing the

e↵ort needed to conserve endangered species and not only whales. WhaleMap [78] is

a software platform to collect and display survey data. The platform collects surveys

from di↵erent sources such as planes and vessels and displays them in near real-time.
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Dataset

In this chapter, we will describe the dataset we have had during this work.

Figure 3.1: Gulf of Saint Lawrence. The map is exported from OpenStreetMap [2]

3.1 Image List

Generally, the dataset description images and samples are provided in the correspond-

ing sections. We provide images in sections that can benefit the most from them for

the purpose of clarity. But for the convenience of the reader who wants to see the

images before reading about them, here is the list of images: Figure 3.2, Figure 3.3,

Figure 3.4, Figure 4.6, and Figure 8.3.

15
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3.2 Data Acquisition

The images are captured and gathered by DFO using in a nadir pointing setup

of two (left and right) cameras mounted on an aircraft. These two cameras were

constantly shooting images over the Gulf of Saint Lawrence region, which is depicted

in figure 3.1. Each image may or may not contain one or more animals. The majority

of images are aerial imagery containing only water and occasional shoreline.

3.3 Data Descriptions

The data samples are images depicting an area from the overhead. The color mode

of these images is RGB, and they are stored in JPEG format. The spatial resolution

of all images is 7360 ⇥ 4920 pixels. Figure 3.2 shows a sample image. We have had

1544 images to develop the models based on them, all of which include at least one

example of the objects discussed in the next section.

The mean object to background ratio among all images is 0.16 percent (calcu-

lations are available in Appendix A), making it challenging to find and identify the

objects without zoom and panning for experts to find the objects manually and for

algorithms to detect objects. Figure 3.3 illustrates a turtle presented in an image (the

image is the same image in figure 3.2) with a 20⇥ zoom level

Due to the various weather conditions and lighting at the time of capturing, the

amount of noise and colors vary. Figure 3.4 shows several sample images containing

objects. Objects are not visible in that scale due to the low ratio of the foreground

(objects of interest) to the background.

3.4 Labels

Two major categories of annotations have been collected for this dataset: object

annotations and environmental tagging. We discussed each type of annotation and

the procedure of obtaining them in the Chapter 4 on labeling.

Several images have more than one object totaling 4892 labels in the 1544 images.

The pie chart in Figure 3.5 shows the proportions of each label. Fishing gear comprises

the majority of the dataset with 2198 samples, and Humpback whale with one sample

is the rarest class of objects.



17

Figure 3.2: A counter-clockwise 90°rotated example image.
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Figure 3.3: An example image with an object visible at 20⇥ zoom level

While some of the labels are clear from their names, others need descriptions

around them. Animal is a class of objects that are di�cult to recognize due to their

small sizes or other unfavorable conditions that hide their significant characteristics.

The Object class contains any distinguishable solid pattern, such as debris. The

Artifact is a class of objects that are not solid entities but instead temporary illu-

sionary patterns such as waves or fractured patterns caused by animal movements or

sudden changes in the water. There are also several classes with abbreviated names.

WNR stands for Whale Not Right, referring to whales that are not right whales. LBWNR

and ULA are two other abbreviations standing for Large Baleen Whale Not Right,

and Unidentified Large Animal, respectively. ULA is a class of animals that are

large enough to be distinguished from animal class but without the details needed to

be precisely recognized. Finally, Right is the short form for Right Whale. Table 3.1

has all of the classes with their summarized descriptions and number of samples.

A part of our industrial collaboration involves justification and the rationale be-

hind having the object labels other than animals and cetaceans. Imagine a self-driving

car that needed to detect and recognize green lights and red lights. Imagine there

were no trees in the training data of it. So, this car will learn that it is okay to go

whenever it sees green in the sky, which is not acceptable. Suppose we train our

object detection and semantic segmentation models without fishing gear, boat, and

fishing line examples. In that case, the models become a detector for those since the

model learns that whatever is not water is an animal and should be detected.
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Table 3.1: Object classes and their description and number of samples in the dataset

Class Name Summarized Description
# of
Samples

Fishing Gear Fishing Gear 2198

Animal
Animals that are impossible to identify due to their
small sizes or other factors that adversely a↵ect the
recognition procedure

1652

Object Solid patterns that are not animal such as debris 297

Artifact
Structures and patterns are not objects created
randomly like waves that look like objects, but a
fractured surface implies nothing but water or wave.

165

Fishing Line Fishing Line 149

Boat Boat 121

Minke Minke Whale 97

Sunfish Sunfish 82

WNR Whale Not Right: Whales that are not Right Whales 24

Shark Shark 22

Right Right Whale 18

Basking Basking Shark 16

LWNR
Large Baleen Whale Not Right: Other species of Baleen
Whales but not Right Whale

11

Whale Whale 10

ULA
Unidentified Large Animal: Large animals, but not
accurately recognizable

8

Fin Fin Whale 7

Blue Shark Blue Shark 7

Turtle Turtle 6

Humpback Humpback Whale 1



20

Table 3.2: The set of environmental tags and their description

Environmental
Tag

Description

High/Medium/Low Glare The amount of glare presented in the image

Rough/Calm Seas The state of water

Debris Presence of debris or similar objects

Land Presence of land in the image

Cloudy Considerable amount of cloud

Night The image was taken in night

Unknown There is no tag provided for the image

The other type of annotation we gathered and utilized is environmental tag-

ging. We used these tags in data preparation. Environmental tags can provide

information about the general appearance of images based on three criteria: sea

state, glare amount, and special tags. Environmental tags comprise of High glare,

Medium glare, Low glare, Calm seas, Rough seas, Debris, Land, Cloudy, Night,

and Unknown. Land represents those images that contain any parts of the land, such

as shorelines. The Unknown tag represents the images that do not have environmen-

tal tags, and the rest are self-explanatory. This scheme was not a comprehensive

approach, and not all samples have tags for all of the three aforementioned crite-

ria. Table 3.2 has a summary of these descriptions for the tags. Figure 3.6 is the

distribution of environmental tags. Forty-three images do not have any tags and are

categorized under the Unknown label, and the rest of the tags are shared between 1501

images.
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a b

c d

e f

Figure 3.4: Several sample images from dataset:
a: The image contains a Humpback whale
b: The image contains an Unidentified Large Animal and an Object (Not animal)
c: The image contains no animal, but some patterns are there due to the harsh
environment
d: The image contains a Large Baleen Whale Not Right
e: The image contains a Minke Whale
f: The image contains a Turtle
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Figure 3.5: The pie chart of the dataset

Figure 3.6: Distribution of Environmental Tags



Chapter 4

Labeling

In supervised learning, labeling has significant importance. Annotating images for

training deep neural networks was an ongoing part of this project, and we learned

as we went forward. We changed the schemes based on our needs. We tried object

detection approach, and for that, we needed bounding box labeling. Then we wanted

to try semantic segmentation out. Then we wanted to try semantic segmentation, and

semantic segmentation needs polygon labeling. Polygon labeling was not a feasible

option given the limited time resources available. We introduced a new way of labeling

that is more accurate than the bounding box but less costly than polygon labeling. A

team of biology researchers was the experts who had done the annotating of objects.

In this chapter, we discuss those labeling procedures.

4.1 Bounding box labeling

In the typical object detection task in computer vision, the model predicts tight axis-

aligned bounding boxes around the objects, so the original way of annotating images

for this task was to annotate objects with boxes similar to those that the would model

predict. In this labeling scheme, each object of interest is annotated with an ordered

set of four points, defining a tight bounding box containing it with a class label.

The bounding box labeling requires a rectangle for each object, and a rectangle can

be represented with its diagonal and needs at least two points for this representation.

Each point in a 2-dimensional (2D) plane needs two values for its x and y coordinates.

Therefore, the minimum number of values for representing a rectangle in a 2D plane

is four.

There are two common ways to collect the bounding box labeling. One way is as a

4-tuple (x0, y0, h, w), where the first two scalars correspond to the top-left corner, and

the other two represent the height and width of the axis-aligned box. COCO, one of

the benchmark datasets in object detection, uses this way of labeling bounding boxes.

23
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Figure 4.1: Bounding Box Labeling Schemes

Another approach is capturing four values of x and y coordinates of the diagonal of

the rectangle directly. In this project, similar to the PASCAL VOC dataset, we

used a 4-tuple (xtl, ytl, xbr, ybr) for defining the bounding boxes around the objects,

which tl and br are referring to top-left and bottom-right, respectively. Figure 4.1,

depicts the relationship between these points and the objects they are covering.

4.2 Polygon labeling

Axis-aligned bounding box labeling is a simple way to annotate objects. However, this

scheme is not suitable for semantic segmentation since the predictions are made at the

pixel-level in that task. Therefore, the labels should have pixel-level information about

the data. Using bounding box labeling for semantic segmentation makes the data

annotations excessively noisy, which not only deteriorates the learner’s performance

but also makes the metrics inaccurate. In this chapter, we use the term “noise“ to

refer to the incorrectly labeled pixel(s). For example, Figure 4.2 contains an animal

in a bounding box; using the bounding box as the pixel-level label of the object yields

the gray area around the animal to be marked as the pixels containing that animal,

which is incorrect.

For this reason, polygon labeling is more proper for the pixel-level predictions of

the semantic segmentation task. In polygon labeling, the goal is to find the exact
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Figure 4.2: Despite being a flawless bounding box for object detection, this annota-
tion has a noticeable amount of noise for semantic segmentation.

shape of the objects present in the image. The exact shapes of objects contain pixel-

level information that is suitable for semantic segmentation.

In polygon labeling, the labels are a set of edges in (x, y) coordinates defining the

polygon’s edges containing the object and the label corresponding to the object’s class.

Connecting the edges with straight lines yields the object’s shape with crisp edges.

This scheme includes only a tiny amount of noise produced by the labeling process

and human error. Figure 4.3 depicts the polygon labeling with an intentional noise

around the object for demonstration purposes. Polygon filling algorithms propagate

the object’s class to the pixels of the image inside the polygon to produce masks that

are target values in the semantic segmentation task.

Figure 4.3: Polygon Labeling Schemes
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Polygon labeling was not a feasible option for this project. Given the limited time

the labeling team had, we could not use polygon labeling since it is time-consuming.

4.3 Elliptic Labeling

Although polygon labeling is the general way of image annotation in semantic seg-

mentation task, it is highly time-consuming. Polygon labeling can be interpreted as

the generalization of bounding box labeling where the number of points required to

determine the polygon is higher than four. This is the source of extra time consump-

tion in the polygon labeling in comparison to bounding box labeling. Hence this is

not always feasible to have accurate labels given available resources.

We introduced a method called elliptic labeling that is less time-consuming than

polygon labeling and less noisy than bounding box labeling. Objects in the imagery

are captured from the top view and have elongated and oval shapes that make the

elliptic curve a better curve than the rectangle to mark the objects’ shapes. Therefore,

elliptic labeling using the axes of the ellipse containing the object is a suitable choice

for the data.

In a 2D plane, an ellipse can be represented by the lengths of major and minor

axes, the rotation angle of the major axis from the positive horizontal axis, and the

position of the ellipse’s center. These four parameters are also computable using the

four ends of the major and minor axes. Hence, an ellipse can be represented by two

line segments corresponding to its axes.

In elliptic labeling, the expert draws a line on the object, which usually lies on the

animals’ spine as the major axis and another line perpendicular to the first one and

from the middle point of it as the ellipse’s minor axis from one end to another end of

the object. The four points generated in this process turn into an ellipse around the

object.

A significant benefit of using the elliptic labeling scheme is the amount of captured

noise, especially in the semantic segmentation task. Based on the rotation angle of

the ellipse, the di↵erence in noise between two schemes of bounding boxes and elliptic

labeling varies from the minimum when the angle is zero depicted in figure 4.4 and

the maximum when the angle is ⇡/4 shown in figure 4.5. The ellipses in the figures

are approximately the same size, so the di↵erence in the gray area of the bounding
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Figure 4.4: An ellipse with the rotation angle of 0. The gray colored area is the
amount of extra noise that could possibly captured using bounding box labeling

Figure 4.5: An ellipse with the rotation angle of ⇡/4. The gray colored area is the
amount of extra noise that could possibly captured using bounding box labeling

boxes is evident.

The number of free parameters that should be defined in elliptic labeling is double

the amount of bounding box labeling needs. Elliptic labeling needs 4 points to be

defined as the endpoints of the line segments, which are major and minor axes of the

ellipse. Each point needs a 2-tuple (x, y), so each annotation in elliptic labeling needs

eight parameters while bounding box labeling needs four parameters. In the dataset,

1104 objects have elliptic labels. The ellipses cover approximately 57 percent of the

rectangles in those objects, giving more than 40 percent noise reduction.
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Implementation Details

Algorithm 1: Ellipse Extraction
Input: List of Lines

Output: List of Ellipses

1: Intersecting Lines = Verify Intersection(Lines)

2: Ellipses = {}
3: for (l1, l2) 2 Intersecting Lines do

4: if Length(l1) >Length(l2) then

5: Major = l1

6: Minor = l2

7: else

8: Major = l2

9: Minor = l1

10: end if

11: ✓ = arctan MajorY
MajorX

12: Center = (MajorX
2 ,

MajorY
2 )

13: Ellipse = (Center,✓,(l1,l2))

14: Add Ellipse To Ellipses

15: end for

16: return Ellipses

Since we introduced this method for this project, here we discuss the implemen-

tation details to elucidate the process. To implement this scheme, we used line anno-

tation that was natively supported in the labeling software. In line annotation, the

output contains four values for endpoints with a class associated with it for each line

segment. Hence, in practice, annotations are line segments. Algorithm 1 contains the

algorithm that converts lines into ellipses. Theoretically, real numbers have an infi-

nite number of decimal point digits, making it practically impossible to divide them

into two identical numbers. Reflecting this, it is invalid to expect the labeling expert

to annotate the major and minor axes of the ellipse where they should intersect each

other in the middle with an exact right angle. Still, it is possible to use this approach

with an assumption: there should not be a line with two intersections within a
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plane of lines. With this assumption, the ellipse extraction algorithm finds pairs of

intersecting lines. Verify Intersection (line 1 in Algorithm 1) makes sure to have

one intersection per line segment to hold the assumption and returns a list of 2-tuples

of intersecting line segments. Then, for each pair of intersecting lines, one becomes

the ellipse’s major axis based on the line segments’ lengths, and the other becomes

the ellipse’s minor axis. We assume that lines intersect each other at the midpoint

of the major axis so that the midpoint becomes the center of the ellipse. The angle

of the ellipse is the arctan of the rise over run of the major axis. These parameters

make it possible to fill the ellipse for semantic segmentation or find boundaries for

object detection.

4.4 Environmental Tags

Environmental tags are a type of label we collected for experimental purposes.

Ultimately, we have not used them in training models, and we adopted them for

cluster verification purposes in data preparation (please refer to Section 8.3.4). The

general (global) appearance of images can vary drastically between instances. In

some images, the water is clear, and the lighting is suitable, while other images are

noisy and dark. The labels for these conditions can help in devising an approach to

train more robust machine learning models. Based on the condition of each image,

environmental tags are grouped into three categories of sea state, glare amount,

conditional tags.

This type of labeling and its procedure was not consistent throughout the project.

The latest approach we decided to follow is to tag images based on three criteria of sea

state, glare amount, and conditional tags. Sea state can be Rough or Calm, and glare

amount can be one of three nominal values of Low Glare, Medium Glare, and High

Glare. There are four other tags of Debris, Land, Cloudy, and Night are conditional

tags. Sea state and glare amount tags are based on the general appearance of the

images, but conditional tags are based on the presence of a certain factor or object

in an image. Figure 4.6 contains 500⇥ 500 crops of images to demonstrate how each

tag corresponds to certain characteristics of the images. Although calm seas and

low glare look similar to each other, they are not the same. Sea state is an intrinsic

characteristic and usually depends on waves, winds. However, glare is an extrinsic
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a:Calm Seas b: Rough Seas c: Low Glare d: High Glare

e:Night f: Cloudy g: Land h: Debris

Figure 4.6: Examples of Environmental tags

factor to the water and has a connection with the time of image capturing, angle,

and sunlight.



Chapter 5

Pre-processing

The common practice in computer vision tasks in deep learning contains minimal pre-

processings such as subtracting the mean of the data from the training examples [20].

Since for some variations that are present in the data, it is beneficial for the model

to learn and be aware of them [79].

For this research, the pre-processing can be divided into two groups of online pre-

processing and o✏ine pre-processing. The o✏ine pre-processing contains only

the input image size adjustments (cropping) to the appropriate sizes that models can

handle. The online processings consist of normalization and data augmentations.

The dataset images’ pixel resolution is 7360 ⇥ 4912 pixels in width and height,

respectively, with three RGB channels. This amount of pixel is roughly 37 times

bigger than the usual size of the images that deep object detection networks work

well with, which is 1200⇥800, keeping the aspect ratio. The challenge is more di�cult

in the semantic segmentation task since the higher volume of computations needed

for the semantic segmentation, the proper image size possible to fit in the memory of

GPUs is even smaller.

One procedure of overcoming this challenge is to downsample the images into the

proper size, but this approach is not applicable for this dataset. In aerial imagery,

the ratio of object area to the background pixels is small. Therefore, downsampling

images has the downside of losing objects of interest in the images. The majority of

objects are packed in smaller sizes, and roughly 57% of the objects have less than 37

pixels in height. So downsampling ends up wiping objects. Hence, the better way of

dealing with this problem is to cut the image into pieces and feed those patches into

the model. In this research, two methods were used to crop the images into smaller

patches: grid cropping and random cropping. The output images of these o✏ine

pre-processing methods, comprise the data used to train neural networks.
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Figure 5.1: Grid Cropping Illustration

5.1 Grid Cropping

Cropping images into small patches can be done by interpreting images as grids. It

is worth mentioning that the small size of the objects in the aerial imagery dictates

having an overlapping window between pieces to ensure no object is being cut into

halves and missed in the cut line. Grid cropping can be done with a predefined

overlapping amount [80]. In this research, the amount of overlapping window is

being calculated with respect to the size of the input images. The height and width

of the patches can be interpreted as an arithmetic progression with dH and dW as

the common di↵erences of successive members in height and width sequences,

respectively, calculated with the formula 5.1 where the Number of Cuts in Height

and Number of Cuts in Width are dOriginal Height
Output Height e and dOriginal Width

Output Width e. Figure 5.1

illustrates this cropping method.

dH =
(Number of Cuts in Height ⇤Output Height)� (Original Height)

Number of Cuts in Height� 1

dW =
(Number of Cuts in Width ⇤Output Width)� (Original Width)

Number of Cuts in Width� 1

(5.1)
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Figure 5.2: The random cropping method

5.2 Random Cropping

Objects comprise only a small fraction of the data, and the majority of data is water.

It is desirable to have a model that can handle various contexts around the objects.

Hence, another random cropping method also was applied to training and testing to

make this possible.

In the random cropping method, the location of the objects is known, and the

cropping algorithm crops images with respect to locations and sizes of the objects

and having a random amount of contextual pixels around the objects. Figure 5.2

shows the random cropping method. This method is also applied to the training and

testing data to have a diverse training set and a fair performance measure.

5.3 Data Augmentation

Training machine learning models using a vast amount of data yields a better general-

ization than training those on small-scale datasets. However, collecting a large-scale

dataset such as ImageNet is not feasible for every problem. The amount of data

can be limited for various reasons, including limited real-world examples, a limited

number of experts, and a limited financial budget. In some cases, the number of

occurrences of a particular event in the real world is limited, such as a rare disease.

In other scenarios, the number of human experts or the expense of acquiring a data

point can be limiting factors.
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Data augmentation or dataset augmentation is a technique for generating fake data

from the actual data and including them in the dataset fed to the machine learning

model. Data augmentation is a part of the online pre-processing techniques used

in this research. Generating fake data does not have a straightforward method for

various machine learning tasks since, for some of them, the problem should be solved

to some extent to have fake data similar to the actual data. Some methods, such as

SMOTE [81], create more training examples synthetically, but the complexity of this

data made it seem unlikely for SMOTE to be e↵ective in our context. The interpolated

images would not be expected to be realistic, and a more e↵ective approach in future

work might be incorporating a strong mechanism for out-of-distribution detection.

Because of its e↵ectiveness, data augmentaion became a de facto part of computer

vision deep learning pipelines.

Although data augmentation cannot solve the insu�cient data problem, it can use

a higher potential of the available data. Augmentations are significantly e↵ective and

advantageous on small-scale datasets [82,83]. Transforms and distortions can be used

in computer vision tasks as long as they do not destroy the data or change the data

class. Di↵erent distortions can be used in computer vision tasks that are computa-

tionally cheap and do not need the main task to be solved. These transforms include

but are not limited to flipping, rotation, a�ne transformations (spatial transforms),

and color jittering, histogram equalization (pixel-wise transforms).

Cropping images creates two kinds of sub-images: positive samples and negative

samples. Positive samples are the sub-images that have objects of interest in them.

On the other hand, negative samples are the sub-images that do not contain any

objects of interest and should be considered background (water). Negative samples are

necessary for the task since only a tiny amount of pixels in images are objects. The

data augmentation pipeline used in this project has separate augmentation policies for

each group of negative and positive image samples. Suppose an input image contains

an object of interest in it. In that case, the image goes through the positive image

augmentation, and the path for the negative samples is through the negative sample

image augmentation.

The positive image augmentations include but are not limited to vertical and

horizontal, jpeg compression, and histogram equalizations. The transforms for the
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negative examples have a longer list, including what is being used on the positive

side since some distortions are useful for capturing various types of noise and sea

colors. The complete list of data augmentations used in training networks is written

in Appendix B. The torchvision and Albumentations library [84] were used to build

the augmentation pipelines.

The other purpose of data augmentation is to use it as a regularization technique

that can be e↵ective in decreasing generalization error. The model capacity is often

high to capture the complexities in the data and learn essential features from it, which

makes the models prone to overfit [85]. Data augmentations in convolutional neural

networks can be more potent than popular regularization techniques such as dropout

[86, 87]. While both data augmentation and dropout are e↵ective methods to reduce

the chance of overfitting, in convolutional neural networks, dropout is less e↵ective

due to two prominent reasons. First, convolutional neural networks are empowered

by parameter sharing concepts to reduce the model complexity. So, in essence, these

networks need less regularization compared to fully connected networks [85]. Second,

in images, the context around each pixel is information-rich so that dropping one

pixel cannot be e↵ective as the surrounding context and the spatial correlation is rich

enough to cancel the e↵ect of dropout [85].

The third possible benefit of data augmentation is that it can increase the net-

works’ robustness to the input noise and deformations. Neural networks are vulner-

able to input noise [88], and adding random noise as a data augmentation technique

can act the same as a regularization method to increase the robustness of the model.

5.4 Normalization

Normalization, also known as feature normalization or z-scoring, is one of the

crucial ingredients of training neural networks [89] and refers to removing moments

- the mean and standard deviation- of the data from samples. As neural networks

started to go deeper, the normalization operation gained more importance. In addi-

tion to being a pre-processing step, some variants of it became internal operations of

neural networks such as batch normalization [90] and group normalization [91].

In this research, as a part of the online pre-processing pipeline of training neural net-

works, the normalization step normalizes the input images after data augmentations.



Chapter 6

Object Detection

In this chapter, we will define object detection as a computer vision task and describe

the deep architecture we used. We discuss training and evaluation of this network

later in Chapter 8.

6.1 Object Detection Computer Vision Task

The object detection task can be considered the successor of two other computer

vision tasks of image classification and image classification + localization.

Image classification is the task of predicting a class value for an input image. The

class value belongs to the object that typically covers the majority of the image, and

there is no other object to be considered in the input image. Image classification

+ localization not only predicts the class value for an image but also predicts the

exact location of the primary object in the input image. Localization predicts four

values representing four corners of a bounding box circumscribing the object. Both

of the aforementioned tasks have a only one object to recognize Object detection is a

generalization of the latter task without a pre-defined number of objects in the input

images. Object detection has several challenges in addition to the ones the other

two have to tackle. Two of the most important ones are the presence of objects in

multiple scales and designing an architecture that can handle variable length outputs

corresponding to the number of objects present in the input image. Figure 6.1 depicts

these tasks.

When trying to find animals and objects in aerial imagery, object detection was

the first approach that we tried. Object detection models are designed to find objects

of interest in images and suggest bounding boxes around them. For this approach,

we utilized the Faster Region-based Convolutional Neural Network or Faster

R-CNN architecture.

36
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Figure 6.1: Object detection and its forerunner computer vision tasks

6.2 Faster R-CNN

Faster R-CNN is the third member of the R-CNN object detection architecture family

after Fast R-CNN [24] and R-CNN [22]. Faster R-CNN enabled end-to-end network

training and evolved into a more complex and more accurate architecture through

several upgrades since its introduction. In this section, we briefly discuss the version

that we used for the project.

Figure 6.2: Faster R-CNN Object detection pipeline. The image is taken from [3]

The Faster R-CNN pipeline has several components that we are going to explain

in detail later in this chapter. The first component is the base network or the back-

bone, a convolutional neural network for feature extraction. The key idea is to use

a pre-trained classification network to extract a rich convolutional feature map. This

component utilizes the Feature Pyramid Network (FPN) approach to deal with the

multiple scale problem of the object detection vision task. The second component is

the region proposal network that takes the extracted convolutional map and does

the first step of object detection with two labels of background and object and
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passes the objects it found to the next component as the proposed regions. Region of

Interest Pooling (RoIP) is the next component that takes the proposed regions, per-

forms a max-pooling operation, and prepares them for the R-CNN head that classifies

these fixed-sized convolutional maps. Finally, classifications and bounding boxes are

being processed to be reflected on the original input image as a post-processing step.

Figure 6.2 shows the pipeline of Faster R-CNN, and the components are discussed in

detail below.

6.2.1 Backbone

Backbone is the base network for feature extraction from the input image. As men-

tioned before, the primary notion is to use a classification network to extract beneficial

useful features. Initially in the original implementation, ZF [92] and VGG [39] were

used as the backbone network of Faster R-CNN, but we used the ResNet-50 network.

The convolution operation keeps the relative locations of the activations fixed

with respect to the input features. In other words, a certain activation that is related

to the presence of a certain feature in the input image appears in the location of

that feature. For example, an edge detection filter has an activation pattern that is

prominent in the location of edges in the input signal. This locality characteristic

in the convolutional operation is called translation equivariance, i.e. the same

pattern translated to another location in the image will elicit the same response

translated by the corresponding amount. Translation equivariance is the key concept

in using a convolutional neural network to extract useful features for object detection.

For this project, we used ResNet-50 network as the backbone network. ResNet-50

consists of five residual blocks that each block shrinks the spatial resolution of the

input to half that the whole architecture makes the input signal 32 times smaller in

each x and y axes. The features can be extracted from the last convolutional layer

of ResNet with semantically strong features or utilizing a Feature Pyramid network,

which we used.

6.2.2 Feature Pyramid Network

Feature pyramids are advantageous components in object detection, but they were

usually not included in deep object detection networks due to their memory and
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Figure 6.3: Building block illustration of the feature pyramid network. The image is
taken from [4]

compute-intensive nature until the introduction of the feature pyramid network

(FPN) [4]. One of the challenges that object detection models face is the presence

of objects with multiple scales, and the feature pyramid network is an e↵ective way

to introduce input in di↵erent scales to the network with a set of low-cost operations.

The feature pyramid network is an add-on network for the feature extractor back-

bone of Faster R-CNN, which is a ResNet. The goal is to merge high-resolution but

semantically weak features with low-resolution and semantically powerful features.

The deeper the layers are in the feature extraction network, the lower spatial

resolution and semantically powerful features they have, and FPN takes advantage

of this hierarchy of features. FPN can be divided into three pieces: the bottom-

up pathway, the top-down pathway, and lateral connections. The bottom-up

pathway goes from the input image to the last convolutional layer in the backbone

network, and the top-down pathway comes back from the last convolutional layer

backward to the input. The first layer in the bottom-up pathway is the last layer in

the top-down pathway and vice versa. Figure 6.3 illustrates the FPN architecture.

The output of FPN is a set of hierarchical feature maps to be fed into the next

component, Region Proposal Network, for a scale-aware region proposal.Each ResNet

block is considered as a level. At each level, the feature map is being upsampled

using the nearest neighbor upsampling algorithm by a factor of two to compensate

for the downsampling e↵ect of the ResNet blocks. In this case, the spatial resolution
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matches the resolution of the feature map of the previous layer (in bottom-up view).

Then using a 1⇥1 convolution operation, the two upsampled finer and coarser feature

maps are being added to produce a feature map for the corresponding level. This

sequence of upsampling, the 1x1 convolution operation, and the addition is called the

lateral connection in the context of the feature pyramid network. As there is no extra

block beyond the fifth one, the lateral connection for the last level only has a 1 ⇥ 1

convolution operation.

6.2.3 Anchors

The object detection task predicts a variable-length sequence of bounding boxes with

their corresponding classification scores. The prediction has a variable length be-

cause the number of objects presented in images is not predefined. Using anchors is a

method to convert the variable-length predictions to fixed-length ones. Anchors (also

known as anchor boxes) are reference boxes that are being generated at every point

in the convolutional feature map. Anchor boxes have di↵erent but predefined aspect

ratios and scales to cover objects that can be presented in multiple scales. Anchor

boxes are the reference regions for the next module (RPN) to find the best candidates

for the final classification. We utilized three aspect ratios of 0.5, 1.0, 2.0, correspond-

ing to a vertical rectangle, a square, and a horizontal rectangle, respectively, with five

scales of 32, 64, 128, 256, and 512, totaling 15 di↵erent combinations at each point

in the feature space. Considering an input image with the size of 1200 ⇥ 800 pixels

and the fact that the backbone of the network decreases the spatial resolution by a

factor of 32 in each direction, it has approximately 14250 anchors (38⇥ 25⇥ 15).

6.2.4 Region Proposal Network

In two-stage object detection algorithms, the underlying idea is to have a sliding

window over every possible position on the image and classify the patch using a

classification network. This approach is not practical due to the high volume of

computations needed. Therefore, several methods have been developed to shrink the

search space for the classification. Region proposal network (RPN) is a building

block of the Faster R-CNN architecture that takes the convolutional feature map

extracted by the backbone and generates (proposes) regions that contain objects.
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Figure 6.4: Region Proposal Network. The figure is taken from [5]

RPN is a weak object detector, and it is the first stage of the detection steps of

Faster R-CNN before the primary classifier of the network. RPN has two heads of

classification and regression. The classification head of RPN is a binary classifier

of object versus background. The regression head optimizes the o↵set of each patch

from the anchor boxes with four values corresponding to four values needed to encode

bounding boxes. Two loss functions should be optimized in this network: binary

cross-entropy loss for the classification head and smoothed L1 loss for the regression

head. Figure 6.4 illustrates this network.

After getting proposed regions, they are filtered by three criteria: objectness score,

region size, and non-maximum suppression. The objectness score is the RPN classifi-

cation score, marking the region as an object instead of the background, and it should

be above a certain threshold. Also, a threshold on the minimum of the proposed re-

gion size helps eliminate tiny regions that are practically false positives. In addition

to these, the non-maximum suppression algorithm (described next in Section 6.2.5)

keeps only one candidate from a set of overlapping proposed regions.

6.2.5 Non-Maximum Suppression

Non-maximum Suppression (NMS) is a simple algorithm to reduce the number

of overlapping bounding boxes and regions. In the object detection task, it is possible

to have several overlapping detections with di↵erent classification scores. NMS tries to

eliminate the overlapping bounding boxes and keep the best candidate among those.
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Figure 6.5: Three predictions for one object with di↵erent confidence scores

The algorithm first sorts the candidate bounding boxes by the confidence score, then

eliminates the bounding boxes that have an IoU (defined in Appendix E.1) of over

0.7 with another one with higher confidence. For example, in figure 6.5, the green

box with higher confidence has a high overlap with orange and red boxes; hence, only

the green one will be kept using NMS. In the presence of multiple classes, the process

will be the same for each class, individually.

Using the classification confidence score as a reference for elimination can be com-

plicated. Deep neural networks often produce incorrect but overconfident results when

the input is out of distribution [93]. Therefore, to have a working NMS algorithm,

this phenomenon should be taken into consideration.

6.2.6 Region of Interest Pooling

Region of Interest Pooling (RoIP) is another module of Faster R-CNN and its

predecessor, Fast R-CNN, that takes the regions that RPN proposes and outputs

feature maps with fixed spatial size. The regions from RPN do not have fixed sizes,

and RoIP mitigates this by applying a max-pooling operation in a window method

fashion. A max-pooling of size HxW (for example, 7 ⇥ 7 is the size used in this

project) picks the maximum values from the regions with a spatial resolution of h⇥w

(the height and width of the proposed regions, respectively)by first slicing that into

squares with the spatial resolution of h
H ⇥ w

W squares and then picking the maximum

value in those squares. For example, assume there is a region with a spatial resolution
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of 56 ⇥ 63 with n channels, a RoIP module with a pre-defined output resolution of

7⇥7, slices that region and applies max-pooling on volumes of resolution 8x9 (height

and width)

6.2.7 Region-based Convolutional Neural Network

Region-based Convolutional Neural Network (R-CNN) is the final stage of

the Faster R-CNN detection pipeline, where the model predicts objects based on

the convolutional feature maps derived using RoIP. R-CNN has two fully connected

networks for classification and regression tasks. The classification task is for predicting

the class of the region, and the regression task is for finding the four corners of the

boxes. The loss functions for the classification and the regression are cross-entropy

loss and smoothed L1 loss, respectively. These two losses are being combined by

summing up these two loss terms without any weights.



Chapter 7

Semantic Segmentation

In this chapter, first, we will define semantic segmentation as a computer vision

task, and second, we will describe Deeplabv3, the deep architecture we used for this

approach. We discuss training and evaluation of this network later in Chapter 8.

Figure 7.1: Semantic Segmentation Task

7.1 Semantic Segmentation Computer Vision Task

Semantic segmentation is another computer vision task in addition to the three tasks

discussed in section 6.1. Semantic segmentation is one step closer to comprehensive

scene perception — the ultimate goal of computer vision. In this task, the processing

algorithm outputs a dense pixel-wise prediction for the input image. Each pixel in the

input image gets classified. That is, the predictions are two-dimensional (one channel)

signals with the exact spatial resolution as the inputs containing information of pixel-

level classification. For example, in figure 7.1, the input image contains four objects,

two of them are from one class and the other two from another class of objects. The
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semantic segmentation mask of this image is a two-dimensional signal with a class id

for each pixel. There is no distinction between instances of a class and all instances

of a class, whether overlapping or not, get the same id in the predictions.

As our second approach besides object detection , we tried DeepLabv3 as a state-

of-the-art semantic segmentation fully-convolutional architecture to find animals and

other objects in the aerial imagery.

7.2 DeepLabv3

DeepLabv3 [46] is an upgraded version of earlier DeepLabv2 [8] and DeepLab [45]

semantic segmentation networks. Despite its relatively simple architecture and using

well-known building blocks, it is one of the best performing semantic segmentation

architectures. Similar to previous models in the DeepLab family, DeepLabv3 tries

to overcome two primary challenges. The first challenge is the undesirable reduction

in the feature map’s spatial resolution after consecutive convolutional and pooling

operations. These operations reduce the resolution as the input goes deeper in con-

volutional networks. This phenomenon makes the networks capable of learning more

abstract features in deeper layers, which benefits a variety of machine learning tasks

that dimensionality reduction is an asset. The second challenge is that objects are

present at di↵erent scales in images. This can be challenging due to the fact that ob-

jects at di↵erent scales have di↵erent prominent features. In this section, after giving

an overview of building blocks, we will briefly discuss the architecture and approaches

used in DeepLabv3 to tackle the challenges mentioned earlier.

7.2.1 Dilated Convolution

In convolutional neural networks, receptive field is the size of a grid from the input

signal that is responsible for computing a feature in the feature map. In other words,

receptive field is the area that a convolutional filter considers for computing a feature.

A higher receptive field means considering more context to compute a feature and

making predictions. Conventionally, stacking more convolutional layers increases the

receptive field, which is vital for feature extraction. With the advent of more complex

and advanced deep learning models, the receptive field increased to the extent that

most recent networks have a receptive field that covers the whole input image [94].
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Figure 7.2: Dilated convolution kernel with various dilation rates. The figure is taken
from [6]

Repeated convolutional layers and pooling operations increase the receptive field

and decrease the feature map’s spatial resolution. Deconvolution is a method to

recover the spatial resolution; however, DeepLab models use dilated convolution

to preserve the resolution.

Dilated convolution (also known as atrous convolution) is a variation of convo-

lution operation in which the convolutional filter is upsampled. Upsampling a convo-

lutional filter means enlarging it. In dilated convolution, the filter is upsampled with

inserting zeros between consecutive values in the filter. This approach increases kernel

size without adding extra learnable parameters. Dilated convolution in 1-dimensional

discrete signals is defined as Equation 7.1 (Note that the non-mirrored notation of the

convolution operation is used). According to the definition, the kernel gets multiplied

by the signal in every r step. The r is called sampling rate or dilation rate. Two

intermediate values in the kernel correspond to two values in the input with the o↵set

of r�1, or in another interpretation, r�1 zeros are inserted between two consecutive

values of the kernel. In a standard convolution filter, the r = 1. Figure 7.2 depicts

a 3⇥ 3 convolutional kernel with several dilation rates. Dilated convolution makes it

possible to explicitly control the receptive field with the dilation rate without stacking

several layers and additional parameters. Figure 7.3 illustrates a 3⇥ 3 convolutional

filter with di↵erent dilation rates and their e↵ect on the receptive field.

y[i] =
KX

k=1

x[i+ r · k]w[k] (7.1)
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Figure 7.3: Receptive field, considering various dilation rates. The figure is taken
from [7].

Figure 7.4: Atrous Spatial Pyramid Pooling. Multiple filters with di↵erent field of
views depicted in di↵erent colors are being applied to classify the center orange pixel.
Figure is taken from [8].

7.2.2 Atrous Spatial Pyramid Pooling

The second challenge that DeepLabv3 attempts to overcome isthe presence of objects

at multiple scales.

Deep neural networks are capable of generalization in this manner; however, ex-

plicit consideration of this challenge can benefit the generalization. Spatial Pyra-

mid Pooling (SPP) [23] is a technique that was developed to solve this challenge

in object detection. SPP technique increased the model’s robustness to the input

image deformations while the number of computations was reduced. Inspired by the

success of SPP, an Atrous variant of that called Atrous Spatial Pyramid Pooling
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Figure 7.5: ResNet Blocks and their output sizes

(ASPP) was used in DeepLabv3. In ASPP, multiple parallel atrous convolutions

with di↵erent dilation rates are being applied on the feature map extracted from the

input image. These parallel operations are getting fused together by concatenation

and a 1 ⇥ 1 convolutional filter to form the final logits. Figure 7.4 illustrates the

ASPP module field of view in di↵erent sampling rates.

7.2.3 Architecture

After the introduction of two main components of DeepLabv3, it is simple to demystify

the end-to-end architecture. Repurposing a pre-trained ResNet architecture is the

backbone of DeepLabv3. Considering the modular design of ResNets shown in figure

7.5, each block shrinks the spatial resolution to 1
2 of the resolution of its input ,

resulting in downsampling of ratio 32 at the end of the last convolutional layer. In

DeepLabv3, the stride of the last two convolution layers is set to 1 to prevent the

resolution decimation, and dilated variants replaced the standard convolutions in

those layers. This modification keeps the spatial resolution to 1
8 of the input signal at

the last convolutional layer. This convolution feature map is the input to the ASPP

module to calculate the logits of the pixel-level classification. Then these logits are

being bi-linearly interpolated to the size of the input image that is eight times bigger

than the logits to get the class predictions with an equal size to the input image.

These logits are then being fed to a softmax function to get the belief map to produce

the final pixel-level class label.
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Training Networks and Evaluation

In this chapter, we discuss the approaches we have taken for data preparation, training

networks, and evaluating the models. Appendix C has the full list of hyper-parameters

we used for training our models

8.1 Overview

We prepared data for training models. Then we trained our models on the prepared

datasets using Train and Validation sets. We evaluated the models’ performance on

comparison sets, both numerically and using human experts afterward. The pur-

pose of this evaluation is to find the best-performing model and find a meaningful

relationship between numerical and AI-in-the-loop evaluation.

8.2 The AI-in-the-loop evaluation

To evaluate the e↵ectiveness of a prediction tool for helping a human create a larger

dataset, we first need to understand how human experts currently go about labeling

datasets. Based on extensive discussions with—and observations of—expert annota-

tors, we found that the real-world scenario of image annotation by a human expert

can be divided into three phases. In phase 1, the expert labeler chooses a batch of

images, goes through them manually to find objects of interest. The labeler is un-

aware of the images’ content, so some of the chosen images possibly contain objects

of interest. However, it is not guaranteed to find animals in the batch. In the case

of a successful search, the labeler puts the useful images aside to annotate them. In

phase 2, the labeler prepares the data for labeling in the labeling software. Finally,

during phase 3, the expert labels the images and exports the annotations.

This is the process we wish to accelerate or improve, and thus we used these

observations to to develop the evaluation procedure, as we will explain shortly. We
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will also provide further details on these phases in each condition. We timed these

phases in each condition to observe the e↵ect of the machine learning model’s aid on

object annotation.

We conducted an AI-in-the-loop evaluation that included each of the two ap-

proaches that we used to try to detect animals in the aerial imagery, i.e. object

detection (Chapter 6) and semantic segmentation (Chapter 7). The experiment’s

goal is to find the e↵ect of each of the two approaches (object detection and seman-

tic segmentation) on the amount of time needed to find the objects of interest and

annotate the images in order to help to create a bigger dataset. That is, a successful

system will e↵ectively allow us to bootstrap the creation of a large dataset. This eval-

uation also makes it possible to select the superior model or combination of models

for accelerating labeling.

8.2.1 Experiment Protocol

We conducted the AI-in-the-loop evaluation in the form of an experiment. As we

mentioned earlier, the goal of this experiment is to observe the e↵ect of a computer

vision model as a helper tool on annotating and creating bigger datasets starting from

a limited amount of labeled data.

The experiment has two types of evaluations: metrics and time measurements.

Metrics allow us to evaluate models’ performance on finding objects of interest, their

accuracy, and how they help detect animals. Time measurements assess how helpful

the models are for annotating more images by the expert human labelers.

The experiment has three conditions: The control condition (fully manual), object

detection model as a helper, semantic segmentation model as a helper. In each

condition, the expert labeler gets a set of images; we call this set of images comparison

set, that some have no animals in them, and some contain animals. Then the labeler

annotates images in the comparison set in three phases that we discussed earlier.

More details will be given on each condition in the Section 8.4 on the experiment,

training the models and evaluating them.

Each condition’s comparison set contains 61 images from the 1544 images we have

in the dataset. Between the experimental conditions, the comparison sets should be

di↵erent. If we keep the comparison set the same among all the conditions, the
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human labeler’s performance can vary. If the labeler goes through the same images

several times, the latest rounds of checking become faster, and the time measurements

become unfair. Furthermore, the comparison sets should not be drastically di↵erent

between conditions. Overall appearance and the environmental factors in the images

can a↵ect the performance of the labeler in detecting objects; therefore, it causes

unfair comparisons between conditions. We prepared comparison sets without any

duplicated images between the conditions, but they have similar appearances. We

discuss this process in Section 8.3.

Since we had no data samples beyond 1544 images, neither labeled nor unlabeled

samples, we selected the comparison set images from the primary dataset. The label-

ers have seen those images and already labeled them, we applied three modifications

to them to decrease the chance of recalling some samples. We used random horizontal

flip and vertical flip on the images in the comparison sets. Not all images have objects

of interest in practice. To simulate a real-world scenario, we need to erase some of

the images’ objects. We tried two inpainting methods: Fast Marching Method based

inpainting [9] and Navier-Stokes based inpainting [95]. OpenCV library covers both

of these methods. These methods need a mask for the areas to inpaint, and since

the ground truth masks we have are noisy, the resulting inpainted image sections

had residues. This could a↵ect the experiment, so we decided to remove the objects

manually, using photo editing software. Figure 8.1 illustrates an example of removing

a Humpback whale from the image using inpainting and photo editing software. Re-

moving the animal manually, leaves no residue and makes the images look naturally

empty.

We take two measures to have comparable results between conditions. Object

detection model predicts bounding boxes while semantic segmentation’s predictions

are pixel-level masks. For time measurements, we convert the segmentation predic-

tions from pixel-level to bounding boxes (to read about this procedure, please refer

to Appendix D). Secondly, for time measurement on comparison sets, we omit two

labels that were not the primary intention of the projects. Two labels of Object and

Artifact do not have a comprehensive labeling scheme over the dataset, and labeling

them makes the time measurements inaccurate and subjective. Initially, the expert
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Figure 8.1: An example of using inpainting techniques for removing objects from
images. (a) is the input image, (b) is the inpainting result using [9] and (c) is the
result of manually removing objects with photo editing software.

labeled them when they were similar to some objects in the main object classes. How-

ever, we kept them for the training and evaluation of the models using metrics since

more data samples can make better detection models.

Another point is that the models have di↵erent crop sizes of input images. This

means they need di↵erent input image resolutions for training and inference. Since all

the predictions are automatically adjusted to the original image sizes, the predictions

and images for the conditions are comparable.

8.3 Data Preparation

In this section, we will first develop a visualization to let us observe the dataset all at

once in a grid, making it easier to observe and discuss its characteristics. Based on

these findings, we will describe our approach to prepare the data for each experimental

condition.

8.3.1 Clustered Dataset Grid

Observing the image dataset all at once can reveal information about the dataset that

can be utilized in the research. We used image grids, popular in the field of computer

vision, to do this.

We first built a dataset grid sorted by filenames, and the appearance suggested the

presence of underlying clusters. One possible approach to group the images by visual

similarity is to use unsupervised techniques to cluster images based on the extracted
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features. We used a pre-trained ResNet101 image classification network to extract

features.

Figure 8.2: The image clustering pipeline

Extracting Visual Feature Representations

Since the introduction of Residual Neural Networks (ResNets) [96] in 2015, they

are widely used in several tasks of computer vision. ResNets are the backbone of

object detection, and semantic segmentation models such as Faster R-CNN [5] and

DeepLabv3 [46] since they can extract rich feature representations from images.

To extract convolutional feature representations of the images, we downsampled

them from 4912 ⇥ 7360 pixels to 800 ⇥ 1200 pixels. Then we fed the downsampled

images into a ResNet101 to get the convolutional features tensor of size (2048⇥25⇥38)

from the last convolutional layer of the network (conv5 x). Then we applied an

adaptive average pooling of size 8 ⇥ 12 (proportional to the 800 ⇥ 1200) to them,

making a tensor of the size of 2048⇥ 8⇥ 12, giving 196608 features after flattening.
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Image Clustering

We then reduced the 196608 flattened features to 50 principal components using PCA

algorithm. Since PCA algorithm is sensitive to high variations in the input data, we

did a standardization step before feeding the features to PCA. Then we fed the matrix

of 1544 (number of images) ⇥50 (reduced features) to K-means clustering algorithm

to discover underlying clusters, setting the number of clusters hyperparameter to 10.

Figure 8.2 is the pipeline of the process of clustering. Figure 8.3 (partially) illustrates

the clustered dataset image grid. In order to fit on the page, the grid only shows the

first five clusters.
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Figure 8.3: The grid of the dataset images
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8.3.2 Data Description

For the purpose of training models and evaluating them, we partitioned the data into

four subsets: Training, Validation, Comparison, and Test sets in each of the

conditions of the experiment. Figure 8.4 is a pie chart of the portions of each subset

in the dataset that was used to develop and evaluate models. The training set was

used to train models, and the validation set was an auxiliary set of data to determine

when the model converges and to measure performance. We reserved the test set for

the last evaluation before the deployment of the model. Finally, the comparison set

was used for evaluating models with the help of human experts.

The most critical subset in the data preparation is the comparison set that should

be di↵erent for each condition in the experiment to minimize the human expert’s

memory e↵ect. Comparison sets of di↵erent conditions should be similar to each

other to measure the labeling performance fairly.

75.0%

14.5%

4.0%

6.5%

Training set (1147/1544)
Validation set (231/1544)
Comparison set (61/1544)
Test set (105/1544)

Figure 8.4: The pie chart of the dataset subsets with their percentages and the number
of samples in each of them

The number of data samples was a limiting factor both for training and evaluation.

The law of large numbers suggests that when sample size grows, the mean and the

standard deviation of the samples get closer to the actual mean and standard deviation

of the population. In other words, having more samples means a better understanding

of the data. One of the notions that can happen in a low number of samples is the
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concept of selection bias that makes the data samples not representative of all the

samples in the dataset space. Selection bias can be reduced with proper randomization

of data. In addition to the problem of limited data, the presence of a human expert in

the process of model evaluation is another challenge that we had to consider. Given

the diversity manifested in our dataset and the low number of available samples, and

the presence of a human expert, we introduced our clustering-based data preparation

scheme. We developed an approach similar to the K-fold cross-validation to prepare

the dataset for training and evaluating di↵erent models

8.3.3 K-Fold Cross Validation

K-Fold cross-validation is a model evaluation technique that is an improvement

for the holdout method of model evaluation. In the holdout method, the dataset is

being partitioned into two subsets of training and testing so that the model is being

developed on the training subset and its performance on the test set is the measure of

the model’s performance of prediction on the dataset. In the k-fold cross-validation

method, the data is being partitioned into K equally sized partitions, and in each

model development and training, one of the K partitions is being used in the model

evaluation while the rest of the (K-1) partitions are being used in the training process

of the models. Figure 8.5 is a visual demonstration of k-fold cross-validation. It should

be noted that the size of each partition should satisfy the condition of K⇥(size of the

partitions) dataset size so that the evaluation of the model can hold validity since

each fold has to have no overlap with any other fold. Similarly, in this experiment, we

want to keep the comparison sets similar to each other between experiment conditions;

so, the number of conditions can be any number  dataset size
comparison set size .
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Figure 8.5: Taken from Cross-validation on scikit-learn’s Documentation1

8.3.4 K-Fold Comparison Set Dataset Splitting

To have a data preparation scheme for several experiment conditions while having a

comparison set, we devised four rules that should be satisfied as below. We borrowed

the first three rules from set partitioning definition.

1. In each condition’s dataset, there is no empty subset.

2. In each condition’s dataset, the intersection of the subsets are empty sets

3. In each condition’s dataset, the union of the subsets is equal to the set of the

total dataset

4. The intersection of the comparison sets between folds is an empty set.

Similar to k-fold cross-validation, we devised our approach to split the project’s

dataset into the four subsets discussed earlier. To uniformly distribute the data

samples between the four subsets, we used convolutional feature maps and clustering

similar to the dataset clustered grid in Section 8.3.1.

1https://scikit-learn.org/stable/modules/cross_validation.html

https://scikit-learn.org/stable/modules/cross_validation.html
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We are not claiming that there are any true underlying clusters in the feature map

that we possibly could discover. On the contrary, clustering in high-dimensional space

is a hard task [97] and the purpose of clustering here is to be used as a helper tool

to uniformly distribute data among the subsets with respect to their visual feature

representations. The number of images in each of ten clusters are plotted in figure

8.6.

Figure 8.6: Number of images in each of ten clusters

Cluster Verification

The purpose of clustering images was to find groups of similar images based on their

latent convolutional features extracted using a pre-trained ResNet. While we have no

ground truth for the number of clusters nor the true cluster label for each image, the

environmental tags can be useful to empirically verify our method of clustering. We

have environmental tags for the majority of the images and as figure 8.7 shows, in

each of the ten clusters, there are visible spikes in the categories that make it possible

to name each of them as the following list:

• Cluster 1: Calm seas with Low glare

• Cluster 2: Calm seas with Low glare

• Cluster 3: Rough seas with High glare
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Figure 8.7: The percentage of each environmental tag in each cluster

• Cluster 4: Calm seas with High glare

• Cluster 5: Medium glare

• Cluster 6: Calm seas with Medium to High glare

• Cluster 7: Calm seas with Medium glare

• Cluster 8: Calm seas with Medium to High glare

• Cluster 9: Calm seas with High glare

• Cluster 10: Rough seas with High glare

We would like to emphasize that having similar clusters does not harm our use

case since we are sampling from each cluster with a pre-defined percentage so that

similar clusters will have a greater share similar to having a cluster comprised of those

similar ones.

Data Sampling

We have the ratio of each subset of the dataset from Data Description (Section 8.3.2):

75%, 14.5%, 4%, and 6.5% for Training, Validation, Comparison, and Test sets, re-

spectively. It is possible to form the k-fold comparison set using clusters and ratios
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from previous steps. We wanted to prepare 10 folds that are equivalent to 10 exper-

iment conditions, but we used three folds at the end. To have distinct, but similar

comparison sets, we first sampled K = 10 times the comparison ratio (4%) from each

cluster without replacement and assigned them to their proper folds. This forms

di↵erent comparison sets for each fold (experimental condition), visually similar be-

cause of using clustering. The other 96% of the data (after sampling comparison

sets) in each fold was split into the training, validation, and test subsets. The sub-

sets other than the comparison set could have overlapping data points between folds

(conditions).

Figure 8.8 depicts the K-fold comparison set split procedure. The data distributed

in the folds, then will be fed into the pre-processing pipeline before using them to

develop models.

Figure 8.8: K-Fold Comparison Set Dataset Splitting.
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Figure 8.9: Environmental Tags Distribution of Comparison Data of Condition 1

8.4 Model Training and Evaluation (Experiment)

In this section, we discuss three conditions of manually labeling, labeling with the

aid of an object detection model, and labeling with the assistance of a semantic

segmentation model. We described the numeric metric used in this experiment in

Appendix E and summarized the time measurements of these conditions in Table 8.5.

8.4.1 Condition 1: Manually Labeling

Manual labeling is the first condition to measure the time of three phases of labeling.

This is the control condition for the experiment.

Comparison Set Data

In this condition, the expert receives a batch of images. The received batch is the

comparison set for this fold. The batch contains 61 images in total containing 28

images that are empty of any object of interest. All the images are randomly flipped

horizontally and vertically. The expert is not aware of the number of valuable images

in the batch. The batch has a total of 114 objects. Figure 8.9 illustrates the percentage

of each environmental tag inside the comparison set.
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Phases

Phase one begins with the process of going through images to find the images with

objects in them. The labeler deletes empty images, and phase one ends when the

expert has all the valuable images ready. Phase two is the process of uploading

the images into the labeling software. The final phase starts at the beginning of

annotating the objects in the software and ends with exporting the annotations.

Time Measurement

For this condition, the first phase took 93 minutes. The second phase took 6 minutes.

Phase 3 for this condition took 41 minutes, totaling 140 minutes for this condition.

8.4.2 Condition 2: Object Detection Model

In the second condition, we want to observe the e↵ect of an object detection model

on the amount of time needed for annotating images. Our object detection model is

Faster R-CNN that we discussed in Chapter 6.

Model Training

For this condition, we created the dataset from the original images. The original

images have a spatial resolution of 4912 ⇥ 7360 that is not suitable for Faster R-

CNN. We cropped the images so that we described in Chapter 5 on Pre-Processing

with both the grid and random cropping methods. The crop size for this model

is 800 ⇥ 1200, preserving the original aspect ratio. All of the object annotations

for object detection are bounding boxes. We used bounding box annotations and

bounding boxes extracted from elliptic labeling.

To the best of our knowledge, there is no publicly available dataset similar to

our dataset in appearance, resolution, and annotations. Hence, similar to the related

works [74], we do transfer learning in the form of pre-training the networks with COCO

2017 dataset. We fine-tune the pre-trained network on our dataset. We fine-tuned

all the layers since fine-tuning all of the network weights for the new dataset yields

better performance than freezing the feature extractors [98].
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Figure 8.10: Comparison between COCO F1-Score of Faster R-CNN on the validation
set when trained on the complete class list and binary set of classes.

Referring to some of our earlier model trainings in this project, we found that a

Faster R-CNN model performs considerably better when the task is defined based

on binary classes of background vs. object. Figure 8.10 shows a curve of COCO

F1-Score of Faster R-CNN. We compute the COCO F1-Score based on Equation 8.1

with COCO Precision and Recall (see Appendix E for definitions of these metrics).

For bootstrapping the data labeling process, localization is more important than the

identification of the object. Hence, our model had two classes of background and

object.

COCO F1-Score = 2⇥ COCO Precision⇥ COCO Recall

COCO Precision + COCO Recall
(8.1)

To fine-tune the architecture, we started by changing the Faster R-CNN head for

our purpose of background vs. object detection. We fine-tuned the network for 30

epochs. We used Stochastic Gradient Descent (SGD) with momentum and weight

decay as the optimizer to optimize our network with mini-batch size of 8. We also

have a step learning rate scheduler. The initial learning rate of the fine-tuning is

5e � 3, and the optimizer’s momentum and weight decay parameters are 0.9 and

5e� 4, respectively. The step learning rate scheduler multiplies the learning rate by

0.1 in every three epochs. Figure 8.11 depicts the PASCAL VOC metric of the model

during the fine-tuning procedure. Figure 8.12 shows the complete COCO metrics of
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this model at the end of epoch 30 of the fine-tuning.

Figure 8.11: PASCAL VOC metric of the object detection. The alternate data points
are annotated.

Average Precision @[IoU=0.50:0.95 |area=all |maxDets=100] = 0.404
Average Precision @[IoU=0.50 |area=all |maxDets=100]= 0.732
Average Precision @[IoU=0.75 |area=all |maxDets=100]= 0.413
Average Precision @[IoU=0.50:0.95 |area=small |maxDets=100]= 0.376
Average Precision @[IoU=0.50:0.95 |area=medium |maxDets=100]= 0.502
Average Precision @[IoU=0.50:0.95 |area=large |maxDets=100]= 0.356
Average Recall @[IoU=0.50:0.95 |area=all |maxDets= 1]= 0.396
Average Recall @[IoU=0.50:0.95 |area=all |maxDets= 10]= 0.550
Average Recall @[IoU=0.50:0.95 |area=all |maxDets=100]= 0.555
Average Recall @[IoU=0.50:0.95 |area=small |maxDets=100]= 0.532
Average Recall @[IoU=0.50:0.95 |area=medium |maxDets=100]= 0.638
Average Recall @[IoU=0.50:0.95 |area=large |maxDets=100]= 0.507

Figure 8.12: COCO metrics on the last epoch on the validation set

Comparison Set Data

We did an inference step with the confidence threshold of 0.5 to get model predictions

on the comparison dataset using the fine-tuned model. The labeler receives two copies

of the comparison set. In one copy, the images are annotated with model predictions,

and the other one contains clean images. The comparison set contains 61 images in

total containing 28 images that are empty of any object of interest. All the images are
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Figure 8.13: Environmental Tags Distribution of Comparison Data of Condition 2

randomly flipped horizontally and vertically. The expert is not aware of the number

of valuable images in the batch. The batch has a total of 92 objects. Figure 8.13

illustrates the percentage of each environmental tag inside the comparison set.

Phases

In the first phase, the labeler goes through the annotated images to discover the

images containing any objects of interest. The labeler deletes empty images, and

phase one ends when the expert has all the valuable images ready. With the help of a

provided script, the labeler uploads the soft annotations, predicted by the model, to

the labeling software to modify them for the final label extractions. Phase two is the

process of uploading the images and annotations into the labeling software. The final

phase starts at the beginning of annotating the objects in the labeling software. The

soft annotations show the location of the objects that the model found. If a predicted

box does not contain an object (false positive), the labeler ignores it. On the contrary,

if the box contains an object (true positive), the labeler verifies by changing its label,

which is a class agnostic label, to the correct class label. Finally, if there are any

objects without a bounding box around them (false negatives) or the bounding box

does not contain the whole object, the labeler labels the object in a manual labeling

fashion. Phase three ends with the exportation of the labels.
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Model Evaluation

The model’s performance on the comparison set, based on COCO metrics, is shown

in Figure 8.14. Moreover, we counted the number of false positives and the number of

false negatives in each confidence threshold from 0 to 100 percent with the step size

of five percent (Figure 8.15). We set the threshold to 0.5 before the inference step so

that the model has 973 false positives and seven false negatives in its predictions on

the comparison set.

Average Precision @[IoU=0.50:0.95 |area=all |maxDets=100] = 0.384
Average Precision @[IoU=0.50 |area=all |maxDets=100]= 0.725
Average Precision @[IoU=0.75 |area=all |maxDets=100]= 0.359
Average Precision @[IoU=0.50:0.95 |area=small |maxDets=100]= 0.405
Average Precision @[IoU=0.50:0.95 |area=medium |maxDets=100]= 0.428
Average Precision @[IoU=0.50:0.95 |area=large |maxDets=100]= 0.194
Average Recall @[IoU=0.50:0.95 |area=all |maxDets= 1]= 0.318
Average Recall @[IoU=0.50:0.95 |area=all |maxDets= 10]= 0.526
Average Recall @[IoU=0.50:0.95 |area=all |maxDets=100]= 0.537
Average Recall @[IoU=0.50:0.95 |area=small |maxDets=100]= 0.544
Average Recall @[IoU=0.50:0.95 |area=medium |maxDets=100]= 0.593
Average Recall @[IoU=0.50:0.95 |area=large |maxDets=100]= 0.333

Figure 8.14: COCO metrics on the comparison set

Figure 8.15: The number of false positives/negatives based on the confidence thresh-
old of Faster R-CNN
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Figure 8.16: Environmental Tags of the images with false negatives in condition 2

Table 8.1: The number of false negatives for objects present in the comparison set in
condition 2

Object Type Number of Objects False Negatives

Animal 39 2

Artifact 4 2

Object 2 0

Fishing Gear 37 2

Fishing Line 10 1

Table 8.1 has the list of 92 images in the comparison and the number of false

negatives in each of them. The model successfully detected 37 instances of animals.

Figure 8.16 is the chart for the environmental tags of 5 images in the comparison set

that the model has false negative predictions. The false positives are not distributed

among all the images evenly. There are four images with no false positives, and there

is one image with 161 false positives. In Figure 8.17, we plot the environmental tag

percentage of images with 20 or more false positives. There are 15 images with 20 or

more false positives with 668 false positives in total, comprising approximately 69% of

the total false positives on this condition. Figure 8.17 shows that glare amount is the

dominant factor that causes false positive prediction. Table 8.2 has the breakdown

of the false positives and false negatives per environmental tag.
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Table 8.2: Summary of False positives and False negatives per environmental tags
in condition 2. The first column is the list of environmental tags. The Unknown
sea state and Unknown glare amount tags represent the images that did not have
any sea state tags and glare amount tags, respectively. (x, y) tuples represent the x

number of false positive/negative predictions that the model admitted in y images.
For example, the model produced 410 false positive predictions for 28 images with
the Calm seas tag, leaving three images without any false positives.

(False Positives,
# of images)

(False Negatives,
# of images)

Total
# of images
with this tag

Calm seas (410, 28) (3, 2) 31

Rough seas (189, 8) (1, 1) 8

Unknown sea state (374, 21) (3, 2) 22

Low Glare (204, 20) (2, 2) 23

Medium Glare (386, 17) (2, 1) 17

High Glare (287, 16) (2, 1) 17

Unknown glare amount (96, 4) (1, 1) 4

Cloudy (12, 2) (0, 0) 2

Night (29, 1) (1, 1) 1

Land (0, 0) (2, 1) 1

Debris (1, 1) (0, 0) 1

Unknown (67, 3) (0, 0) 3
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Figure 8.17: Environmental Tags of the images with 20 or more false positives in
condition 2

Time Measurement

For this condition, the first phase took 59 minutes. The second phase took 6 minutes.

Phase 3 for this condition took 48 minutes, totaling 113 minutes for this condition.

Qualitative Results

Our qualitative results suggest that the Faster R-CNN model can correctly detect

objects in images with less adverse environmental factors such as sun glare with

some false positives. However, the model produces overconfident false positives and

false negative predictions in some samples with sun glare and reflections and other

unfavorable environmental factors.

In Figure 8.18, there are two instances from Animal class. We set the detection

threshold to 0.5 and run inference on these images using trained Faster R-CNN. The

ground truth annotations have green boxes with green texts, and model predictions

have orange boxes in the image. Since the model has only two classes (Background,

Object), the label texts in the model predictions are not present. In this image, due

to the high amount of sun glare, the model predicts numerous false positives.

Figure 8.19 is another example of our Faster R-CNN model. This image contains

one Turtle. With the detection threshold of 0.5, the model correctly detects that
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object. Although the sea is calmer and the amount of glare is lower than Figure 8.18,

the model also predicts a few false positives.

Figure 8.18: The image contains two animals. The model predicts both false positive
and true positive results.

Figure 8.19: The image contains one Turtle. The model predicts both false positive
and true positive results.
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Figure 8.20: Loss Values for DeepLabv3 Fine-Tuning

8.4.3 Condition 3: Semantic Segmentation

In the third condition, we want to observe the e↵ect of a semantic segmentation model

on the amount of time needed for annotating images. We selected DeepLabv3 archi-

tecture discussed in Chapter 7 with ResNet101 backbone for semantic segmentation.

Model Training

Semantic Segmentation model needs input images and ground truth masks. We ex-

tracted rectangular masks for the objects from bounding box annotations and elliptic

masks from elliptic annotations. We prepared the data using the extracted masks

and original images by cropping them similar to the second condition with a crop size

of 400⇥ 600. As mentioned before, there is no similar open data for pre-training and

transfer learning to the best of our knowledge. Therefore, also for this model, we do

the transfer learning from a pre-trained model with the source dataset of COCO 2017.

COCO 2017 has 20 object classes, including the background class, the final belief map

has 21 channels. Our dataset has 19 classes, and considering the background, the

number of channels in the belief map is 20. But, since we have only one sample from

the Humpback whale, we do not use it for training, and we fine-tune the model for

19 channels in the belief map for 18 object classes and one background class. For

the fine-tuning, we utilized an auxiliary classifier that is one of the successful ideas
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Figure 8.21: Environmental Tags Distribution of Comparison Data of Condition 3

in the literature. Auxiliary classifiers can boost gradient signals in the intermediate

layers [40]. The auxiliary classifier is only being used during training, and for the

inference, the primary decoder produces the predictions. For auxiliary classifier, we

used a fully-convolutional classifier head, similar to the classifier head in the decoder

part of the fully-convolutional network (FCN) with the weighted loss of 0.4. The FCN

head gets the convolutional feature map from conv4 x (figure 7.5) of the backbone

ResNet101. We set the weight of the primary segmentation head (DeepLabv3 head)

to 1.0. The loss criterion for both of these heads was Cross-Entropy Loss. Figure

8.20 shows the loss of the network during the fine-tuning. Using Adam optimizer,

we fine-tuned this network for 40 epochs with the mini-batch size of 4. The initial

learning rate was 1e� 4. The learning rate gets multiplied by 0.1 in every five epochs

by a step learning rate scheduler. Figure 8.20 shows the loss of the network during

the fine-tuning.

Comparison Set Data

An inference step has been done to get model predictions on the comparison dataset

using the fine-tuned model. For the purpose of having comparable predictions between

conditions, we converted the prediction masks to bounding boxes using the method

discussed in Appendix D. The labeler receives two copies of the comparison set.
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In one copy, the images are annotated with model predictions, and the other one

contains clean images. The comparison set contains 61 images in total containing

27 images that are empty of any object of interest. All the images are randomly

flipped horizontally and vertically. The expert is not aware of the number of valuable

images in the batch. The batch has a total of 81 objects. Figure 8.21 illustrates the

percentage of each environmental tag inside the comparison set.

Phases

The first two phases are the same as the phases for the second condition, but the final

phase di↵ers in some details. If a prediction box contains an object (true positive),

the labeler verifies the class and the location by changing its label to the correct class

label. For this condition, the model predictions have the classes in addition to the

location.

Model Evaluation

For this condition, the DeepLabv3 reaches the mIoU of 0.4142. Note that we used

noisy ground truth masks and do not have the ideal set of ground truth labels with

crisp edges of objects similar to benchmark datasets. We are aware that the computed

metric is not as accurate as those in the benchmark dataset, and the noise in the masks

a↵ects computing metrics. The model produced 25 false negatives in 15 images. Table

8.3 has a list of classes and the number of false negatives. Figure 8.22 shows the

distribution of environmental tags in these 15 images. The model produced 1065

false positive predictions. There are 21 images with 20 or more false positives with a

max number of 84 for an image. Figure 8.23 depicts the distribution of environmental

tags for these 21 images. There are 9 images that the model that did not produce any

false positives. Table 8.4 has the breakdown of the false positives and false negatives

per environmental tag.

8.4.4 Time Measurement

For this condition, the first phase took 41 minutes. The second phase initially took 10

minutes, but we created an optimized the script for this phase the time was reduced
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Table 8.3: The number of false negatives for objects present in the comparison set in
condition 3

Object Type Number of Objects False Negative

Animal 20 3

Shark 4 4

WNR 2 2

Minke 2 1

Artifact 2 1

Object 2 0

Fishing Gear 48 1

Fishing Line 1 0

Figure 8.22: Environmental Tags of the images with false negatives
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Table 8.4: Summary of False positives and False negatives per environmental tags
in condition 3. The first column is the list of environmental tags. The Unknown
sea state and Unknown glare amount tags represent the images that did not have
any sea state tags and glare amount tags, respectively. (x, y) tuples represent the x

number of false positive/negative predictions that the model admitted in y images.
For example, the model produced 485 false positive predictions for 27 images with
the Calm seas tag, leaving three images without any false positives.

(False Positives,
# of images)

(False Negatives,
# of images)

Total
# of images
with this tag

Calm seas (485, 27) (10, 6) 33

Rough seas (115, 5) (2, 2) 6

Unknown sea state (465, 20) (13, 7) 22

Low Glare (204, 20) (3, 3) 26

Medium Glare (274, 13) (3, 2) 13

High Glare (407, 16) (11, 7) 17

Unknown glare amount (16, 3) (8, 3) 5

Cloudy (36, 1) (1, 1) 1

Night (0, 0) (7, 2) 2

Land (30, 1) (1, 1) 1

Debris (83, 1) (1, 1) 1

Unknown (16, 3) (1, 1) 3



77

Figure 8.23: Environmental Tags of the images with 20 or more false positives

to 6 minutes. Phase three for this condition took 62 minutes, totaling 109 minutes

for this condition.

Qualitative Results

Figure 8.24 is an example of the qualitative result of the semantic segmentation model.

In this image, there is only one instance of LBWNR (as a reminder, LBWNR stands for

”Large Baleen Whale not Right”). We depicted the elliptic ground truth mask of the

object in green color and the model prediction’s mask in orange. Ground truth and

predictions have bounding boxes around the mask for better visibility with darker

color shades than the overlaid segmentation mask. The model correctly located the

animal but misclassified it. The model predicts an oval mask (not a perfect ellipse)

containing the animal’s tail, while the ellipse ground truth for the object does not

include the tail.

Figure 8.25 is another example of the qualitative result of the semantic segmenta-

tion model. In this image, there is only one instance of Humpback. We depicted the

ground truth in green color and model predictions in orange. The model missed the

animal and predicted several other false positives. Since we only have one example

of this class, we did not use this for training and the model has never seen any other

object from this class. This example also supports the idea of using noisy annotations



78

for semantic segmentation. For example, the model predicted a false positive object

(the zoomed-in false positive) that is a wave and has no ground truth mask; the

prediction’s segmentation mask (a light shade of orange inside the orange bounding

box) has a wave shape that has never appeared in the training data.

Figure 8.26 contains one instance of ULA (ULA: Unidentified Large Animal). The

model correctly localized the animal labeled it as Sunfish and predicted several other

false positives. The prediction mask for this object with a light orange color shade also

has a non-elliptic and non-rectangular shape. The prediction mask is more accurate

rather than the rectangular ground truth mask.

The training data for semantic segmentation contains a mixture of rectangular

masks (produced from bounding boxes) and elliptic masks. Hence, the model has

never seen any polygon mask, and the masks are always noisy. We observed that the

model tends to correctly identify the shape of the objects rather than perfect ellipses

or rectangles. The qualitative results confirm that the assumption of using noisy

annotation in the presence of unbalanced data (in favor of the water (background)

class) is valid.

Figure 8.24: The image contains one instance from LBWNR class. The model predicts
false positive and false negative results.
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Figure 8.25: The image contains one instance from Humpback class. The model
predicts both false positive and false negative results.

Figure 8.26: The image contains one instance from ULA class. The model predicts
both false positive and true positive results.
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Table 8.5: The time measurements and the number of false positives and false nega-
tives in each condition

Phase 1
Time

(minutes)

Phase 2
Time

(minutes)

Phase 3
Time

(minutes)

Total
Time

(minutes)

Number
of False
Positives

Number
of False
Negatives

Manually
Labeling

93 6 41 140 - -

Object
Detection

59 6 48 113 973 7

Semantic
Segmentation

41 6 62 109 1065 25

8.4.5 Summary

Table 8.5 contains the time measurements and number of false positives and false

negatives for each condition, except for the manually labeling condition that has no

machine learning prediction and false positive and false negative counts. The time

measurements and the number of false positives and false negatives suggest that a

computer vision model helps to reduce the time needed for phase one of image an-

notation. The semantic segmentation model has nine images without false positives,

while object detection has four images with no false positive predictions. Time mea-

surements suggest that with approximately the same number of total false positives,

the number of images without any false positives plays a dominant role in accelerating

phase one. Phase one of the annotation workflow consumes the majority of the time.

Finding images with objects of interest is indeed a more laborious task than annotat-

ing found objects in images. That is, these models are helpful in bootstrapping data

collection. However, AI-in-the-loop is not an entire solution for an extremely under-

resourced initial dataset. Several classes have a small number of examples, and some

of them have only a few. A slightly larger dataset, especially with more examples in

underrepresented classes, may be su�cient to bootstrap the training and collection

with e↵ectively no false negatives.

It is worthwhile to mention that due to an agreement with the data owner, we

only have the right to include a limited number of data examples in the publication.

Moreover, as mentioned before in the dataset section, the intention behind using
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Figure 8.27: Figure 8.18 without Model Prediction

object class labels other than animals is not to detect them. We use them in the

training set and model evaluation to make the models less sensitive to those objects

and to evaluate the approaches, respectively.

8.4.6 Discussion

The results show that sun glare and rough sea state (e.g. more waves) are dominant

in the images with a high false positive rate and false negative rate. Here we want to

elucidate the reason behind this with an example photo. Figure 8.27 is an image with

noticeable sun glare, and the model predicted several false positives on it (see Figure

8.18 for the predictions). Figure 8.28 is a zoomed crop of a region from Figure 8.27.

We applied the Canny edge detection algorithm on this crop to find the edges with

a minimum threshold of 5 and a maximum threshold of 50. As we can see in Figure

8.28, the edges of the animal are similar to the edges of the waves. This similarity

makes object detection and semantic segmentation extremely challenging, resulting

in high false positive and false negative rates.
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Figure 8.28: A crop from 8.27 and the output of the Canny Edge Detection algorithm
on it.

Detecting animals in this image is a complex problem due to the small sizes of

objects. Experts usually incorporate more context around the animals themselves to

ensure they correctly detected them. For example, in the case of finding an animal-

shaped object in the water, a tailing wave produced by the swimming of the animal

is hard evidence to consider the object as an animal. This type of context originated

from common knowledge or advanced studies on animals that are not included in the

dataset with object annotations. However, more data can mitigate this challenge.

For example, algorithms such as semantic segmentation incorporate visual context

around a pixel to classify it.



Chapter 9

Conclusion and Future Work

In this chapter, we discuss the conclusion of this research and some possible future

work tracks in this field.

Figure 9.1: The time measurements for three conditions of labeling

9.1 Conclusion

In this work, we develop a computer vision system to help biologists detect endangered

whales in an AI-in-the-loop data collection setup. Given access to limited aerial

imagery data, we implemented two computer vision models for this purpose: object

detection and semantic segmentation. We introduced elliptic object annotation for

the semantic segmentation model that captures less noise than bounding box object

83
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a b

Figure 9.2: Usage of elliptic labeling for two di↵erent type of applications.

annotation in the ground truth segmentation masks while constrained by the labeler’s

time.

Masks extracted from the elliptic labeling scheme captured 43% less noise in the

ground truth mask than rectangular masks extracted from bounding boxes. Elliptic

labeling assumes that the shapes of objects are near-oval in the images. For semantic

segmentation applications that this assumption holds validity, elliptic labeling is bet-

ter than bounding box labeling. Nevertheless, polygon labeling is the standard way

of object annotation in semantic segmentation, and it is recommended over elliptic

labeling if it is feasible to collect based on time or financial budget. To elucidate the

di↵erence between elliptic and bounding box labeling, we show two di↵erent shapes

of the objects in Figure 9.2. In Figure 9.2 (a), the object has a near-oval shape that

can be annotated e↵ectively with less noise in the ground truth mask than bounding

box annotation. On the other hand, Figure 9.2 (b) depicts another shape type that

cannot capture elliptic labeling without adding more noise to the ground truth mask,

so for this case, bounding box labeling is more suitable.

The data mainly comprises water pixels and forces data imbalance. We leveraged

this imbalance by training the semantic segmentation architecture using noisy target

masks produced by the bounding box and elliptic annotations. This approach was

successful and qualitative results show the model’s tendency to correctly recognize the

shapes of the objects rather than the shapes of noisy labels present during training.

The developed models reach PASCAL VOC metric of 73.2%, distinguishing objects

from water, for object detection model and a mIoU of 41.42% on the dataset, for
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semantic segmentation model.

The data scarcity and imbalance made the zero-false-negative rate infeasible. We

minimized false negatives while having few enough false positives that it could still

help an expert annotator accelerate the annotation process itself. Having a computer

vision system as such enables a bootstrapping data collection process. This allows

gradually building a set of increasingly accurate models, each of which in turn helps

build larger datasets more e�ciently and so on.

We evaluated the performance of the system for the downstream bootstrapping

task with an AI-in-the-Loop experiment. We designed and conducted an experiment

imitating expert user’s object annotation workflow. The experiment’s result (Figure

9.1) shows that using an AI-in-the-loop setup takes less time to collect the same

amount of labeled data than manual data collection despite having a few false negative

predictions. Despite the significant time-saving results, the proposed approach cannot

entirely solve the challenge of the extremely small dataset. The results show the

possibility of improvement with a slightly larger dataset that may be su�cient to

bootstrap the training and collection with e↵ectively no false negatives.

9.2 Future Work

During this work, we observed that high confidence and wrong predictions could be

probable problematic outcomes. Neural networks produce high confidence results in

the case of being fed with out-of-distribution (OOD) data. We believe that training

dataset size can play a crucial role in the occurrence of this incident. For future work,

a study of out-of-distribution data is a possible direction. Methods such as Gram-

OOD [93] and Gram-OOD* [99] may help to produce reliable classification scores and

yield better AI-in-the-loop data collecting pipelines.

Another track of future work can be exploring approaches that incorporate envi-

ronmental conditions. Comparing the environmental tags with the clusters shaped

using K-means and the extracted features of data samples suggests the possibility

of developing more advanced techniques to incorporate environmental conditions in

computer vision models.

As mentioned in the related works section, whale surveying using acoustic data

is more explored than aerial imagery. One possible future work is to use acoustic
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data and aerial imagery for marine animal detection. Having both kinds of acoustic

and aerial imagery can be beneficial. For example, a negative prediction using the

acoustic domain can correct a false positive prediction in aerial imagery.

Bootstrapping data collection is crucial for data-scarce problems. Once data col-

lection reaches a point that trained models can detect objects with no false negatives,

some machine learning techniques can accelerate the process further. Some recent ad-

vances in few-shot learning [100,101] show the possibility of using them in the future

that also can be applied in the context of whale detection in aerial imagery. However,

these approaches are not applicable in the context of scarce data, and they are not

as accurate as supervised methods. In few-shot learning, some of the novel classes

need a few labeled examples, while the base classes need an abundance of annotated

images for training. With an abundance of unlabeled images and more annotated

data, another track of future works can be leveraging the concept of semi-supervised

learning. Recent studies such as ”End-to-End Semi-Supervised Object Detection with

Soft Teacher” [102] can be investigated in the context of whale detection. Moreover,

once the dataset size grows in size and the classification scores become reliable, ac-

tive learning can be another track of future works to facilitate data collection with

labeling more useful examples for training more accurate models.

Sun glare is a dominant factor in aerial imagery that adversely a↵ects the perfor-

mance of computer vision models. Therefore, modeling the noise on aerial imagery

and denoising images before feeding the images into the detection models can be stud-

ied as future work. Recent approaches such as Noise Flow [103] show the possibility

of having a noise model for developing better denoiser networks.

Motivated by the experiment of using the binarized class list in Section 8.4.2,

one possible approach for future work is to use several hierarchies of classes. Such as

combining two or more classes into one that holds validity from a scientific standpoint.

We proposed an AI-in-the-loop setup to collect data for creating a whale detection

dataset. We conducted an experiment to see the e↵ect of our system on the speed

of annotation. Having a fine-grained timed variant of the experiment with details

of every image and the time it took for annotation can be beneficial for devising

better strategies. To make this experiment possible, an interesting future work can

be developing a software platform that combines all the phases in one place and logs
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every action of the user without adding distractions to the annotation workflow.

An ideal detection system can detect whales and marine mammals with no false

negatives and only a few false positives. This means the model learned the representa-

tions needed by getting numerous training data. This can bring up the interpretability

of the model, especially when there is a disagreement between a human expert and

the model. Interpretable object detection and semantic segmentation [104, 105] can

be beneficial to find the features that the model looks for in the context of detecting

whales.
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Appendix A

Object to Background Ratio Calculation

We used generated masks from the two labeling schemes of elliptic and bounding box

labeling to calculate the object to background ratio. In this project, we used the more

accurate labeling scheme, elliptic labeling, for semantic segmentation whenever possi-

ble. Hence, to accurately calculate the ratio of object to the background, we used the

same masks. To calculate the ratio, we added up the binary index of the pixels where

they are not 0 (background) to get the summed value of pixels for the objects. Then

we averaged this value over the spatial resolution of images (7360⇥ 4912) over 1544

images to get the mean ratio. The exact value for the ratio is 0.0016152578314526246,

and algorithm 2 shows the approach we used for this calculation.

Algorithm 2: Object to Background Ratio Calculation
Input: List of Masks

Output: Object to Background Ratio

1: ObjectP ixelsSum = 0

2: for Mask 2 Masks do

3: ObjectP ixelsIndices = 1 Where Mask 6= 0

4: ObjectP ixelsSum = ObjectP ixelsSum + ObjectP ixelsIndices

5: end for

6: Object to Background Ratio = ObjectP ixelsSum
1544⇥7360⇥4912

7: return Object to Background Ratio
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Appendix B

Data augmentation policies

The following is the complete list of data augmentation policies that we discussed in

Chapter 5. These data augmentations are in Albumentation Notation. There is a

web app1 for illustrating the e↵ect of augmentation in Albumentation.

B.1 Object Detection

B.1.1 Positive

• HorizontalFlip

• VerticalFlip

• ToGray

• RandomBrightnessContrast

• RandomRotate90

• ToSepia

• CLAHE

• FancyPCA

• JpegCompression

• Equalize

B.1.2 Negative

• HorizontalFlip

• VerticalFlip

• Rotate

• RandomBrightnessContrast

• Transpose

• RandomRotate90

• RandomRain

• RandomGamma

• RandomFog

• RGBShift

• MultiplicativeNoise

• MotionBlur

• JpegCompression
1https://albumentations-demo.herokuapp.com/
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• ISONoise

• GridDistortion

• GaussNoise

• Equalize

• ElasticTransform

• Downscale

• CoarseDropout

• Cutout

• ChannelShu✏e

• GaussianBlur

• GlassBlur

• Blur

• ShiftScaleRotate

• ToGray

• ToSepia

• RandomSunFlare

• CLAHE

• GridDistortion

B.2 Semantic Segmentation

• RandomHorizontalFlip

• RandomVerticalFlip

• ColorJitter

• RandomGrayscale

• Rotate

• GridDistortion

• JpegCompression

• Cutout

• MotionBlur

• RGBShift

• FancyPCA

• CLAHE

• Equalize



Appendix C

Models Hyper-parameters

In this appendix, we list the hyper-parameters we utilized for our model training.

C.1 Faster R-CNN

• Backbone: ResNet50 with FPN

• Anchor Generator: 3 Aspect ratios:

0.5, 1.0, 2.0 with 5 Scales: 32, 64,

128, 256, 512 ! Total combina-

tions: 15

• Pre-training: COCO 2017

• Fine-tuning Epochs: 30

• Training image resolution: 1200px⇥
800px

• Optimizer: SGD

– Learning Rate: 5e� 3

– Momentum: 0.9

– Weight Decay: 5e� 4

• Learning Rate Scheduler:

– Step: 3

– � : 0.1

• Batch Size: 8

C.2 DeepLabv3

• Backbone: ResNet101

• Pre-training: COCO 2017

• Fine-tuning Epochs: 40

• Training image resolution: 600px⇥
400px

• Optimizer:Adam

– Initial Learning Rate: 1e� 4

– betas: (0.9, 0.999)

– Weight Decay: 0

• Learning Rate Scheduler:

– Step: 5

– � : 0.1

• Batch Size: 4
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Appendix D

Segmentation Mask to Bounding Box Conversion

Segmentation masks have a class value for each pixel in the input image, and the

bounding box needs four corners of objects. We applied the connected-component

labeling algorithm to segmentation masks to extract bounding boxes from them.

This algorithm is derived from graph theory to extract sub-graphs that any two

vertices are connected in a graph. Applying it to binary images gives a label for each

region. A segmentation mask for C classes can be converted into C binary images.

The indices where the input mask corresponds to a specific class label (L) comprise a

binary image useful for a connected-component labeling algorithm to extract regions.

When needed to convert segmentation masks to bounding boxes, we applied the

connected-component labeling on the segmentation masks in a class-wise fashion to

extract regions. The minimum and maximum values of x and y coordinates of these

numbered regions are the bounding box corner coordinate. Hence the tuple of (X1

(xmin), X2 (xmax), Y1 (ymin), Y2 (ymax), L) is the extracted bounding box for each

object. This procedure is depicted in figure D.1.

Figure D.1: Pixel-wise predictions to bounding box conversion (Bounding Box Ex-
traction). An example input mask consists of regions with the same label that goes
into the connected-component labeling algorithm to form two distinct labeled regions
that provide the proper format for the output bounding boxes.
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Appendix E

Metrics

Here, we discuss the metrics we used for evaluating models. Two common metrics

have been widely used in competitions and academic research for object detection:

PASCAL VOC and COCO. Both of these metrics are based on the concept of Inter-

section over Union.

Venn Diagram of Ground Truth and Predicted Labels

Intersection Union

Figure E.1: Venn diagram of IoU

E.1 Intersection over Union

Intersection over Union (IoU), also known as the Jaccard Index, is a metric

to analyze how well an object detection or a segmentation model performs. IoU is

defined as the intersection of two sets (ground truth and model predictions) over

their union. The Venn diagrams of these notions are depicted in figure E.1. If data

is skewed in favor of the majority class, pixel-wise accuracy is not informative since
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gathering the distribution information into a scalar value washes away the detail

about the distribution. In these cases, IoU is a better metric because it computes the

similarities between ground truth and prediction sets while it normalizes the scale of

it based on the sizes of the objects.

E.2 COCO and PASCAL VOC Metrics

Figure E.2: COCO metrics. Taken from COCO Detection Evaluation1

In the case of having a confidence score threshold in the model, such as classifier score

in Faster R-CNN, true positive, false positive, and false negative can be defined

as below:

If a prediction has a higher confidence score than the threshold and the class

matches the ground truth class with an IoU above the threshold, the prediction is a

true positive. If a prediction has a higher confidence score than the threshold, but

its class does not match the ground truth, or the IoU threshold is lower than the

threshold, the prediction is a false positive. Finally, if the confidence score is lower

than the threshold for an object, that prediction is a false negative. With these three,

precision and recall can be computed. Since the precision and recall values are

di↵erent for each confidence threshold, the interpolated area under the precision-recall

curve for every confidence threshold is a standard metric, namely average precision

(AP). For multi-class object detection tasks, averaging AP over per class yieldsmean

1https://cocodataset.org/#detection-eval

https://cocodataset.org/#detection-eval
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average precision (mAP). Another numerical metric is average recall (AR),

which is twice the area under recall-IoU for IoU> 0.5. PASCAL VOC metric is mAP

when the IoU threshold is set to 0.5. COCO metrics and their descriptions are shown

in Figure E.2.

E.3 Mean IoU (mIoU)

Mean IoU (mIoU) is a metric based on IoU to evaluate models for semantic segmen-

tation task. Mean IoU is the average of IoUs computed for ground truth masks and

predictions over all the classes.



Appendix F

Programming Details

Here is the list of technologies/libraries we used for this project.

F.1 Deep Learning Framework

• PyTorch: For model development alongside with Torchvision

F.2 Computer Vision Library

• OpenCV • PIL

F.3 General Purpose Data Wrangling and Scientific Computing

• NumPy

• scikit-learn

• pandas

• SymPy

• Albumentations

F.4 Experimental Tracking

• Weights and Biases [106]

F.5 Image Annotation

• CVAT
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