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Abstract 

 

Background: The prevalence of cerebral palsy (CP) is ten times higher in preterm 

compared to term infants. Accurate and early identification of preterm infants at risk for 

CP would enable early referral to intervention programs with the potential to improve their 

functional mobility and quality of life. Large population-based studies of CP in preterm 

infants have only reported measures of association and did not develop prediction models 

of CP and assess their diagnostic properties. Furthermore, all these studies used 

conventional logistic regression for their models. Machine learning may provide more 

accurate predictions than logistic regression due to its ability to better handle complex 

relationships between predictors and the outcome. Machine learning methods have not 

been used yet to predict CP from clinical predictors in former preterm infants.  

Objectives: The objective of this study was to develop prediction models for CP in very 

preterm infants (<31 weeks’ gestation) using the random forest (RF) ensemble method and 

logistic regression and to compare their accuracy in predicting CP. 

Study Design: I used a population-based cohort of 777 very preterm survivors from the 

AC Allen Provincial Perinatal Follow-Up Program Database born between 2000 and 2014 

in Nova Scotia. After randomly splitting the sample into training and testing datasets using 

a 70:30 ratio, clinical and demographic data from the infants and their mothers were used 

to develop prediction models of CP at three time points (prenatal, perinatal, and postnatal) 

in the training dataset using RF and logistic regression. Both models were then compared 

with regard to their discriminative ability (AUC) in the testing dataset. 

 

Results: In this cohort, 86 infants (11%) developed CP.  Predictive performance of the 

models at the prenatal and perinatal time points was poor, regardless of the method used. 

At the postnatal time point, both RF and logistic regression provided good discrimination 

of children with and without CP (AUC 0.84 [95% CI 0.74, 0.94] and AUC 0.81 [95% CI 

0.74, 0.95], respectively). 

 

Conclusion: Using clinical predictors, logistic regression was comparable to the RF 

ensemble method in prediction of CP in a population-based cohort of very preterm 

children. Both methods can be used for predicting CP in former very preterm infants at the 

time of discharge. 
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Statement 
 

Preterm infants are at risk of adverse neurodevelopmental outcomes including cerebral 

palsy (CP). Identification of preterm infants who are at high risk for CP, through prediction 

models, may facilitate early referral to intervention programs, with the potential to improve 

their mobility and their quality of life. Traditionally, logistic regression has been used to 

develop prediction models for CP in literature. The random forest (RF) ensemble method 

is a statistical machine learning method that has been shown to provide accurate prediction 

and may improve the overall performance of the prediction model when compared to 

logistic regression, particularly with large multidimensional data. The advantages of RF, 

over logistic regression, include its ability to accommodate a large number of predictors 

when the sample size is small and to handle complex (non-linear) relations between the 

predictors and the outcome, in addition to not relying on assumptions about the distribution 

of the predictors or the outcome variables. To the best of my knowledge, the RF method 

has not been used to predict CP in population-based studies of preterm infants, using only 

clinical predictors that can be readily abstracted from patient records. The study used the 

AC Allen Provincial Perinatal Follow-Up Program Database to develop prediction models 

of CP using RF and logistic regression. Both models were compared with regard to their 

accuracy in predicting CP among very preterm infants.  
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CHAPTER 1: INTRODUCTION 

 

Survival of preterm infants has increased over the past several decades (1-3). However, the 

rates of neurodevelopmental impairment (NDI), including CP, remain high (4-7). Cerebral 

palsy is defined by a heterogeneous group of clinical signs describing permanent disorders 

of movement and posture, with half of the affected children having either limited or no 

walking ability (8). The disease is commonly associated with other comorbidities (seizures, 

cognitive and behavioral disorders) which require multidisciplinary health services 

utilization (9). The economic burden of prematurity in Canada estimated a national cost of 

$ 587.1 million for all preterm infants with the cost per infant over the first 10 years of life 

being different based on gestational age; $67,467 per infant for those < 28 weeks’ and 

$52,796 per infant for those 28-32 weeks’ (10).  

 

The rate of CP is 10 times higher in preterm and very low birth weight infants (VLBW) 

compared to term infants (8). Accurate and early identification of preterm infants at risk 

for CP would enable early referral to intervention programs with the potential to improve 

their functional mobility and quality of life (11). The majority of studies that examined the 

risk factors associated with development of CP, including large population-based studies, 

reported measures of association (i.e., odds ratio (OR), relative risk (RR)) and not 

diagnostic properties of prediction (12-21). Additionally, studies that reported the 

quantitative measures of prediction of CP (sensitivity, specificity, positive and negative 

likelihood ratios (LR)) were limited by small sample size and their use of convenience 

samples (List of studies in Appendix 1). Traditionally, all these studies used logistic 

regression. 
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For binary outcomes such as CP, random forest (RF) is an ensemble of classification trees 

(CT), each constructed in a bootstrapped sample with a random subset of possible 

predictors (22). Each CT is built recursively by successive divisions or binary splits that 

maximize the discrimination of those who developed the outcome of interest from those 

who did not at each split (22). The RF then votes for the optimal classification or the 

majority vote. Using randomness in building each tree in the forest leads to a better 

prediction and does not have the problem of overfitting (23). The RF is likely superior to 

logistic regression as it accommodates a large number of predictors relative to the 

observations, it considers non-linear relations between predictors and the outcome or high 

order interaction between various predictors, and it does not require assumptions of 

distribution of predictors (23). Importantly, this method has not been used in the context 

of predicting CP in preterm born children from clinical predictors to date. 
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CHAPTER 2: OBJECTIVES 

 

My study’s primary aim was to develop a prediction model of CP in very preterm infants 

(defined as those who were born before 31 weeks gestation) using the AC Allen Provincial 

Perinatal Follow Up Program (PFUP) database. The following specific objectives were 

examined:  

 Objective 1: To develop a prediction model of CP in very preterm infants using logistic 

regression and describe the predictors of CP in this patient population. 

 Objective 2: To develop a prediction model of CP in very preterm infants using RF 

ensemble method.  

 Objective 3: To compare the models developed, using both logistic regression and RF, 

with respect to their ability to discriminate between children who do develop CP from those 

who do not.  
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CHAPTER 3: BACKGROUND 

 

3.1 Cerebral Palsy in Preterm Infants  

 

3.1.1. Burden of Preterm Birth 

Prematurity is defined as infants who are born before complete 37 weeks of gestation and 

can be further sub-categorized into: (i) extremely preterm infants (< 28 weeks gestation), 

(ii) early preterm infants (280 weeks to 316 weeks gestation) and (iii) late preterm infants 

(320 weeks to 366 weeks’ gestation) (3). Preterm birth and its consequences constitute a 

major health problem in Canada and worldwide. In Canada, the rate of preterm births 

increased from 7.0% in 1995 to 7.8% in 2013 (1). In Nova Scotia, infants born very preterm 

(220 weeks to 306 weeks gestation) constitute 1% of the total births and around 10% of the 

annual admissions to the Neonatal Intensive Care Unit (NICU) (5).  

Prematurity has significant societal impact due to the considerable emotional burden and 

economic costs to families of preterm children and the increased health service utilization 

among preterm survivors (10). This patient population represents a subgroup of the 

community with a wide range of health needs requiring multiple resources to provide the 

necessary medical, developmental, educational, and family support. 

Advances in perinatal and neonatal care have led to improved survival of preterm infants 

over the past several decades (2); however, the rates of CP and NDI (defined as any of the 

following: CP, cognitive delay, language delay, visual or hearing impairment), remain high 

(4-7). In addition to NDI, preterm and VLBW (whose birthweight is less than 1500 grams) 

infants are at high risk for learning disability, and behavioral disorders such as attention 

deficit hyperactivity disorder or autism (4, 7). There is an inverse relation between the 

gestational age and intact survival (survival without major NDI), with the effect of 

gestational age being particularly strong in extremely preterm and VLBW infants (4, 7). 
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 3.1.2. Cerebral Palsy 

Cerebral palsy is defined as a non-progressive developmental disorder affecting muscle 

tone, movement and posture and causing mobility restriction or disability that originates 

from insults affecting the fetal or infant brain (8, 24, 25). In addition to motor impairment, 

CP is commonly accompanied by other comorbidities such as seizures, sensory 

impairment, cognitive delay and communication or behavior disorders (9, 26). The impact 

on children’s lives and their families continues through adolescence and into adulthood.  

No single test is available to rule in or rule out CP, and the diagnosis is entirely based on 

clinical neuromotor assessment of muscle tone, posture and movement. Cerebral palsy is 

classified into different subtypes based upon the underlying abnormalities of the muscle 

tone, the anatomical distribution and the severity of motor impairment (8, 24). Based on 

the abnormality of the muscle tone, CP is divided into the following groups: spastic 

(commonest), athetotic, hypotonic or mixed types. Spastic CP is further classified into four 

subtypes, based upon the distribution: monoplegia (if only one arm or one leg is affected); 

hemiplegia (if one arm and one leg on the same side are affected, asymmetric spasticity), 

diplegia (both legs are more affected than arms, symmetric spasticity) or quadriplegia (both 

arms and both legs are affected equally, bilateral symmetric spasticity) (8, 24, 25). Finally, 

once CP diagnosis is confirmed, grading of CP severity is conducted based on ambulation 

with or without aids.  

The mean age at diagnosis of CP is around 12-18 months of corrected age (defined as the 

chronological age in weeks minus the number of weeks a preterm infant is born before 

complete 40 weeks of gestation). By 5 years of age, majority of children with CP have 

established comorbidities and spasticity that greatly impacts their quality of life. Many of 

these comorbidities are modifiable, if early identification and referral to appropriate 

services was initiated using the window of brain plasticity with the potential to optimize 

their motor and cognitiveoutcomes, prevent secondary complications, and importantly 

empowers and enhance the well-being of their caregivers  (27). On the other hand, because 

subtle or mild CP can be diagnosed as late as 24-36 months or even later, serial neuromotor 

assessment of children who were born preterm is necessary (26). 
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3.1.3. Preterm Infants Are at High Risk for Developing Cerebral Palsy 

Cerebral palsy is the most common neuromotor disability in children, with a reported 

prevalence of 1.5-2.5 per 1000 live births (8). Cerebral palsy is 10 times more common in 

preterm and VLBW infants compared to term infants, with nearly half of cases being 

former preterm infants (3, 28). Cerebral palsy was reported in 44 per 1000 live births 

among children born <32 weeks gestation and in 60 per 1000 live births among VLBW 

children (28). It is controversial whether the high incidence rates of CP among preterm 

infants is explained by the increased survival of very preterm infants over the last few 

decades (28, 29). A population-based study in Nova Scotia (1988-2007) showed that 10.6% 

of infants born at a gestational age 220/7-306/7 weeks who survived for at least one year 

developed CP, with 42% of these children having either limited or no walking ability (29). 

The study also reported increased prevalence of CP over a 20-year study period, from 5.5 

per 10,000 live births during the first epoch (1988-1992) to 9.2 per 10,000 live births during 

the third epoch (1998-2002), that was not attributable to increased survival (29). 

Cerebral palsy is one of the most devastating consequences of preterm birth. Preterm birth 

is commonly associated with exposure to risk factors, such as hypoxia/ischemia or 

infection that induce a picture of encephalopathy of prematurity (30). This condition is 

characterized by brain injury or dysmaturation/disruption of the normal developmental 

trajectory and growth of neuronal cells or both. Oligodendrocytes, microglia and astrocytes 

have a crucial role in brain development and microstructural connections of neuronal 

pathways (31, 32). They are also highly vulnerable having high affinity to calcium influx 

and over-expression of glutamate receptors. Activation of these cells in the fetal or preterm 

brain results in a cascade of biochemical responses and release of cytotoxic mediators (such 

as free oxygen radicals) at a time of critical brain development (31, 32). These mediators 

damage the pre-myelinated white matter axons of the developing brain of preterm infants 

and induce injury characterized by destruction and apoptosis (31, 32).  Brain disruption is 

characterized by failed maturation of oligodendrocytes to myelinating oligodendrocytes or 

abnormal organization of cortical neurones leading to myelination abnormalities and 

reduced brain volumes in children born preterm (33, 34). 
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3.1.4. Risk Factors for CP 

Various factors have been identified as potential risk factors for CP in preterm infants. 

These risk factors are interrelated and are inversely related to gestational age, with extreme 

preterm infants being at the highest risk, due to the vulnerability of the brain cells (30). The 

general hypothesis is that these risk factors are associated with injury to the developing 

fetal or neonatal brain, as outlined above, antecedent to CP.   

Potential risk factors for CP in preterm infants may be largely classified into prenatal, 

perinatal, and postnatal factors. Prenatal factors can be either maternal (chorioamnionitis) 

(35-38) or fetal factors (fetal growth restriction, male sex) (39-45). Perinatal factors include 

low gestational age at birth and birth depression (46-50). Postnatal factors include severe 

neurologic injury (defined as severe intraventricular hemorrhage (IVH) (51, 52) or cystic 

periventricular leukomalacia (PVL) (53-55), sepsis (56-58), necrotizing enterocolitis 

(NEC) (59, 60), bronchopulmonary dysplasia (BPD) (61, 62), postnatal steroids (63-68) 

and neurosensory impairment such as retinopathy of prematurity (ROP) (69-73). 

1. Chorioamnionitis is defined as inflammation of the placental membranes and has been 

reported to increase the risk of CP in term infants by 2- to 12-fold (35). Both histologic and 

clinical chorioamnionitis increase the risk of neonatal morbidity and NDI, and they are 

more often associated with diplegia than with other subtypes of CP (35). The risk is even 

higher in preterm infants, as preterm birth is often thought to be secondary to in-utero 

infection or chorioamnionitis (36). This fetal inflammatory status predisposes to preterm 

labor, fetal white matter brain injury and chronic lung disease, all of which are antecedents 

of CP (36-38). The fetal white matter insult in preterm infants, induced by cytokines 

inflammatory mediators, is identified clinically after birth as cystic PVL and subsequent 

CP (37).  
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2. Intrauterine growth restriction is defined as a suboptimal uterine environment and 

placental insufficiency that affects both fetal body and brain growth rates. Utero-placental 

insufficiency eventually results in infants being born as small for gestational age (SGA), 

defined as birth weight < 10th percentile for gestational age and sex. Preterm infants who 

are SGA, have higher risk of CP (44% vs 6%; OR 11., 95% CI 6.25-22.08) compared to 

those who are not SGA (39). Even among children with CP, being SGA significantly 

increased the risk of NDI regardless of gestational age; data from the Canadian Registry of 

CP showed that children with CP who were SGA had significantly higher impairment of 

the fine motor (RR 1.46, 95% CI 1.02-2.11), gross motor (RR 1.53, 95% CI 1.12-2.10), 

language (RR 1.24, 95% CI 1.10-1.40), and cognitive development (RR 1.33, 95% CI 1.06-

1.69) when compared to children with CP who were not SGA (40). The association of SGA 

with CP was attributed to prenatal risk factors associated with SGA (such as utero-placental 

insufficiency, genetic anomalies, fetal infection) that may contribute to brain injury 

antecedent to CP (40-42).  

3. Male preterm infants have higher mortality, morbidity and NDI compared to female 

preterm infants (43). A large population based study of very preterm infants, born before  

33 weeks’ gestion, reported that male sex was independently associated with CP at 5 years 

of corrected age, after controlling for cerebral injury and obstetric risk factors (OR 1.52; 

95% CI 1.03–2.25) (21). Another large population-based study of extremely preterm 

infants, born before 27 weeks’ gestation, showed that boys had significantly lower mean 

composite cognitive and language scores compared to girls (43). Male sex has been known 

to be associated with high rates of severe respiratory insufficiency (severe respiratory 

distress syndrome) and associated comorbidities (postnatal steroids, BPD and abnormal 

brain imaging) that may increase the risk of CP in these infants (44). The higher rates and 

severity of respiratory disease in preterm boys than girls was hypothesized to be due to in-

utero exposure to Mullerian inhibiting factor and androgen, leading to decreased surfactant 

production (45). However, Peacock et al. reported that male sex remained significantly 

associated with NDI in preterm infants even after adjustment for gestational age, birth 

weight, BPD, and abnormal neuroimaging, suggesting an intrinsic male effect to be 

contributing to the poorer outcomes in preterm boys (44).  
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4. Low gestational age is commonly associated with exposure to hypoxia/ischemia or 

infection-related events that can induce fetal brain injury at a critical time of brain growth 

and development and may interfere with establishing the complex microstructural 

connections throughout the fetal brain (30, 31, 46). One of the theories underlying 

spontaneous preterm birth is thought to be secondary to an intrauterine infectious process 

that induces intra-amniotic inflammatory response with activation of cytokines and 

chemokines that precipitates premature uterine contractions (47). The fetal brain growth 

during the third trimester of pregnancy results in a four- to five-fold increase in the brain 

volume including the cortical grey matter, white matter and cerebellum (48). This fetal 

brain growth is also accompanied by complex brain development at the cellular level 

including; neuronal migration, proliferation and myelination (46, 48). Therefore, low 

gestational age infants, born before the third trimester, have small-sized brains with simple 

primitive structure that make them vulnerable to develop brain injury and subsequent NDI, 

including CP. Gestational age has been shown to have an inverse relationship with CP in 

general, particularly spastic diplegia (30). 

5. Birth depression or intrapartum asphyxia involves multiple perinatal factors that 

ultimately result in reduction of blood flow or oxygen delivery to the fetal brain manifested 

as a need for cardiopulmonary resuscitation at birth, low Apgar scores, and fetal/neonatal 

hypoxia and acidosis, collectively known as birth depression. The condition is associated 

with increased mortality and adverse outcomes in both preterm and term infants (49). 

Cerebral palsy was believed to occur secondary to intrapartum asphyxia, but recent reports 

showed that birth depression may account for only 10% of cases of CP and that the timing 

of CP may be related to antepartum, intrapartum or even postpartum hypoxic/ischemic 

events (49). However, the association of birth asphyxia with CP is debatable in preterm 

and VLBW infants, where the majority receive resuscitation at birth, have low Apgar 

scores and evidence of hypoxia and acidosis related to prematurity and respiratory 

insufficiency rather than birth asphyxia.    
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6.  Severe neurologic injury related to prematurity is associated with NDI and CP (13, 

52). Severe neurologic injury in preterm infants is defined as the presence of one or 

more of the following: severe hemorrhage with ventricular dilatation or parenchymal 

bleeding (also called grade 3/4 IVH, as per Papile classification) (51), and or cystic 

PVL). These brain injuries may be clinically silent and can only be identified on cranial 

imaging. Therefore, routine sequential cranial ultrasound screening has been the 

standard of care for very preterm infants. A recent meta-analysis showed that 

parenchymal hemorrhage (with or without ventricular dilatation) in preterm infants was 

associated with increased risk of CP (RR 3.4, 95% CI 1.60-7.22; 9 studies 2876 

infants), whereas both cystic and non-cystic PVL were independently associated with 

CP (RR 19.12 (95% CI 4.57-79.90) and RR 9.27 (95% CI 5.93-14.50), respectively, 2 

studies 802 infants) (52). Spastic diplegia is the most common sequala of PVL in 

preterm infants (52-54). This is attributed to the anatomical distribution of PVL 

involving the descending fibers from the motor cortex to the internal capsule in close 

proximity to the periventricular area. Additionally, PVL involves the neuronal tracts of 

the visual, auditory, and somatosensory regions, therefore PVL-induced CP in preterm 

infants is associated with visual and auditory impairment, cognitive or language delay 

and epilepsy (52-54).The severity of PVL is inversely related to gestational age and 

birth weight, with quadriplegia being common in severe PVL (equal or more than grade 

2) (54). In a large population based French cohort of 1812 infants born before 33 weeks’ 

gestation (EPIPAGE), the prevalence of CP was 61% among infants with cystic PVL, 

50% among those with parenchymal haemorrhage, 8% among those with grade I-IVH, 

and only 4% among those with  undetectable cerebral injury on brain imaging (21). 

Similar findings of increased prevalence of CP in relation to the severity of PVL were 

also reported by Resic et al. (53). Animal models showed that PVL-induced CP in 

preterm infants being characterized by white matter necrotic lesions, hypomyelination, 

microglial activation, astrogliosis and neuronal death, with injury to oligodendrocytes 

being the first step in PVL (55). The underlying mechanism is thought to be due to 

hypoxia ischemia with or without infection (55).  
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7. Sepsis, with or without meningitis, is a common morbidity of preterm infants. Both 

early and late neonatal sepsis are common morbidity of prematurity and are caused by 

a variety of organisms including group B streptococci, gram negative rods, candida or 

coagulase-negative staphylococci.  Among very preterm infants,Danish study, those 

with sepsis have 3 times higher odds CP compared to without sepsis (56, 57). The 

EPIPAGE study (n=1812, < 33 weeks’ gestion) examined the effect of sepsis on the 

neurodevelopment at five years of age, the authors reported that exposure to maternal-

fetal infection was associated with 2 times higher odds of CP (OR 2.13 (95% CI 1.28–

3.55) (21). Similar findings were reported by a Swiss national cohort of very preterm 

infants born between 2000 and 2007 (n=541, gestation 24-27 weeks) who had 3 times 

higher odds of CP among those with proven sepsis (OR 3.23 (95% CI 1.23-8.48) (57). 

The impact on CP is additive in preterm and VLBW infants, if sepsis and 

hypoxia/ischemia co-existed (58). Sepsis may be a manifestation of immunodeficiency 

related to prematurity and the resultant vulnerability of the developing brain. The 

underlying mechanism of brain injury with sepsis was attributed to either systemic 

inflammatory response with influx of cytokines or cerebral ischemia/reperfusion 

secondary to systemic hypotension during bacteremia (30, 31, 58).  

8. Necrotizing enterocolitis (NEC) is a devastating disease of prematurity resulting in 

severe gut ischemic necrosis and intestinal failure and is associated with increased 

mortality, short- and long-term morbidities among survivors. In a Danish study, 

preterm infants with NEC who were assessed at 36 months of corrected age, had 

significantly higher odds of CP (OR 1.5, 95% CI 1.2-2.0) compared to those without 

NEC (59). This detrimental effect persists until school age with associated gut-related 

morbidities (such as: presence of stoma, prolonged parenteral nutrition, line-associated 

complications and frequent hospitalization) that significantly impact growth, sensory, 

motor and cognitive development (60). The underlying mechanisms of brain injury 

secondary to NEC include concomitant sepsis, release of inflammatory cytokines, 

hemodynamic instability, and ischemia/reperfusion injury (58, 59). 
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9. Bronchopulmonary dysplasia (BPD), defined as oxygen dependency at 36 weeks 

postmenstrual age with or without mechanical ventilation, is a common and serious 

complication of prematurity. The condition is considered to be an inflammatory disease 

with early injury to the premature lungs and is associated with NDI, impaired executive 

functions, overall growth and respiratory morbidities that extend up to adulthood (61). 

Van Marter et al (2011) reported that very preterm infants with severe BPD, requiring 

mechanical ventilation at 36 weeks postmenstrual age, have a six-fold increased risk of 

quadriplegic CP and a fourfold increased risk of diplegia (62). The postulated 

mechanisms for underlying brain injury include inflammatory mediators, frequent 

episodes of hypoxemia, and systemic steroid therapy (30, 31). 

10. Postnatal systemic steroids are used to facilitate extubation and to reduce the 

complications of severe BPD in preterm infants. However, a Cochrane review and a 

meta-analysis of 26 clinical trials reported that preterm infants who received early 

postnatal steroids (< 8 days) had significantly higher rates of CP or abnormal neurologic 

examination compared to controls (63, 64). For late steroids (≥ 8 days), the increased 

rates of CP were partly offset by a reduction in late mortality and, consequently, the 

composite outcome of death or CP was not significantly different between the late 

steroid group and controls (63, 65, 66). The detrimental effect of systemic steroids on 

brain development is supported by studies in animals and humans. In neonatal animals, 

pharmacological doses of steroids are associated with impaired brain development at 

cellular level that led to delayed brain growth and maturation (67). Murphy et al (2001) 

showed that preterm infants treated with dexamethasone for BPD had 35% lower brain 

cortical gray matter volume on brain magnetic resonance imaging compared to 

untreated infants (68). 
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11.  Severe retinopathy of prematurity (ROP), defined as > stage 2 ROP or requiring 

intervention, is the commonest cause of childhood blindness. The disease is 

characterized by an initial phase of vascular arrest of the developing retina followed by 

a neovascularization phase with subsequent retinal detachment if untreated. 

Inflammation, being a control factor for angiogenesis and neovascularization, is a 

major contributor to the development of ROP; the associated release of cytokines and 

other inflammatory mediators that extends beyond the visual cortex and the visual 

pathways to other areas of the developing preterm brain (69, 70). In addition to the 

cognitive delay secondary to visual impairment, children with severe ROP develop 

motor delay with abnormal coordination and lower scores of standardized movement 

assessment compared to those without severe ROP (71-73). 

In addition to the above-listed risk factors associated with CP, there are limited data from 

longitudinal studies of preterm infants on several routinely collected factors that may 

potentially be associated with CP or antecedents of CP including: maternal age, maternal 

chronic illnesses, maternal exposure (medications, smoking, illicit drugs or alcohol use), 

maternal education, socioeconomic status, or being a single parent, among other factors. 

Generally, the results from these reports were inconsistent.  
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3.1.5 Tertiary Prevention of CP  

Prediction of CP in very preterm infants enables identification and early referral of high-

risk infants to intervention programs that have the potential to improve their mobility and 

cognitive development (11, 27, 74, 75). Traditionally, multiple disciplines have been 

involved in managing children with CP and offering various interventions, including 

rehabilitation, physiotherapy, medications (botulinum toxin injections), orthoses and 

surgical interventions. Early intervention for children with CP has been shown to improve 

their motor function, their cognitive and language development (27, 74, 75). Early 

intervention has been also shown to improve hand function in children with hemiplegic CP 

and ambulation in preterm born children with diplegia (74). Parental involvement and 

family integration in early intervention programs has been known to improve children’s 

development and behavior, particularly in relation to communication and relationships, 

independence, and community participation (76, 77). Promoting parenting skills is thought 

to play a major role, not only by improving the cognitive and behavioral outcomes of 

children affected by CP, but also by decreasing anxiety and depression of their caregivers 

(78). 

 

3.2 Prediction of CP in Preterm Born Children  

Multiple studies evaluated the association between various risk factors and the 

development of CP in preterm born children (12-21). The majority of these studies, 

including large population-based studies, reported measures of association (i.e. OR, RR) 

and not diagnostic properties of prediction. Additionally, studies that reported the 

quantitative measures of predictive accuracy (sensitivity, specificity, positive and negative 

LR) were limited by small sample size and their use of convenience samples. 

 

3.2.1 Population-based Studies of CP in Preterm Infants 

Large population-based studies of preterm infants have investigated the role of multiple 

exposures on the development of CP as the primary outcome or as a component of a 

composite outcome of NDI (defined as CP, cognitive or language delay, deafness or 

blindness) (19-21, 29). Notably, all these studies used logistic regression analyses to 

identify risk factors associated with CP among these large population cohorts.                                    



15 

 

The EPIPAGE study, a large population-based prospective cohort of 1812 infants born <33 

weeks of gestation in 1997 in France, reported CP in 14% of survivors and showed 

increased rates of NDI with decreasing gestational age (21). The authors primarily 

examined the role of neuroimaging in predicting CP and showed that significant 

neuroimaging abnormalities, particularly cystic PVL and parenchymal hemorrhage 

(formerly called grade 4 IVH), were independently associated with CP at 5 years of age. 

The EPICure study,  a large population-based prospective cohort of 1031 surviving preterm 

infants (<28 weeks gestation) who were born between 1995-2006 in the United Kingdom 

and Ireland, showed that CP (14% of survivors) was more prevalent in children with 

gestational age < 26 weeks compared to those with gestational age of 26-27 weeks (19). 

The authors reported a trend of improvement in survival without disability over the study 

period, particularly in extreme preterm children (24-25 weeks gestation) (19). Similar 

outcomes were reported by Leversen who followed a prospective cohort of 371 extremely 

preterm infants born before 28 weeks’ gestation in Norway and reported CP (alone or 

combined with NDI) in 11% of survivors (20). In Nova Scotia, Vincer prospectively 

followed a cohort of 1430 preterm infants < 31 weeks’ gestation over a 20-year period 

(1988-2007) divided into four epochs. The study reported CP in 11% of preterm survivors 

(106 of the 1106), with peak prevalence in the third epoch (1998-2002) that is not attributed 

by the increased survival of extremely preterm infants, as the lower mortality rates did not 

correlate with the prevalence of CP (29). The study also showed that maternal anemia, use 

of tocolytics during pregnancy and infant’s home oxygen therapy were highest during the 

peak prevalence of CP (29).   
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3.2.2 Prediction Studies of CP in Preterm Infants  

Three reviews explored studies that reported prognostic factors and predictors of CP in 

high risk term and preterm newborn infants (79-81). A list of studies that reported the 

diagnostic properties for prediction of CP, alone or as part of NDI, in preterm infants 

together with the developmental tests used are provided in Appendix 1 (82-111). The 

selected studies (n=21) were limited to those published between 2000 and 2019 and with 

birth cohorts starting from 1990, known as the post-surfactant era; as the neonatal mortality 

and short and long-term morbidities significantly changed after introduction of antenatal 

steroids and surfactant therapy in management of preterm birth. Studies with a follow up 

of more than 5 years were not included, as the context of prediction and CP outcomes at 

this age are not comparable to the goal of this analysis and would yield different predictors.   

The majority of studies were prospective cohorts (n=14), including two cohorts from 

randomized clinical trials, and the remaining were retrospective cohorts or case control 

studies (n=7). The studies originated from eleven developed countries including Canada: 

Sweden, Norway, Germany, Netherlands, Austria, Italy, Australia, New Zealand, Japan, 

United States and Canada, whereas two studies were conducted across multiple countries. 

Seventeen studies reported CP as the primary outcome or separately reported if it is part of 

a composite outcome, while the remaining studies (n= 4) reported a composite outcome of 

NDI, including CP. The most common method used to classify CP in the majority of studies 

was according to the Gross Motor Function Classification System (GMFCS) by Palisano 

(83) or Hagebrg (87). The gestational age at birth of included infants varied; however, 

twelve studies reported outcomes in very preterm infants born before 32 weeks’ gestation. 

The predictors of CP in these studies included: amplitude-integrated 

electroencephalography (n=2) (82, 84), cranial ultrasound (n=3) (85, 86, 88), brain MRI 

(n=3) (89-91), general movements assessment (n=6) (93, 95, 98-101), standardized 

neuromotor examination (n=1) (106), clinical factors (n=3) (17, 18, 110) or combination 

of these indicators (n=3) (16, 104, 111).  
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Table 3.1 summarizes the characteristics of the fifteen studies that provided the diagnostic 

properties and/or the predictive performance of CP in preterm infants. Two additional 

studies were excluded; one case control study where the authors did not report the 

outcomes of the preterm subgroup separately (111) and another small study (30 preterm 

infants) that used machine learning for video analysis of general movements rather than 

prediction of CP (100).  

 

The majority of the selected studies were small prospective cohorts, with duration for 

follow up ranging between 24-48 months, however some studies had loss to follow up rate 

of up to 50% (98, 99).  Only two studies reported AUC (17, 93), five studies reported the 

classification accuracy (16, 85, 99, 101, 106), whereas the remaining studies reported the 

diagnostic properties, mainly sensitivity and specificity.  

 

Thirteen of the fifteen studies traditionally used logistic regression, only two small studies 

used different machine learning methods, including RF, for prediction of CP from 

multidimensional datasets (i.e. analysis of optic flow cytometry or quantitative analysis of 

ultrasound images) (85, 101).  
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Table 3.1: Characteristics of Studies Predicting CP in Preterm Children 

Study Population 

CP n/N (%) 

Predictors CP 

Outcome 

Sens Spec PPV NPV AUC Accuracy 

Logistic Regression    

Constantinou 

2007 (16) 

<32 weeks, 

<1500g 

CP: 10/102 

(10%) 

term MRI, 

behavioral 

assessment 

Palisonao 

 24 

months 

80 81 36 97  -  80 

Broitman  

2007 (17) 

< 1000 g 

CP: 

347/2103 

(16%) 

All clinical 

model with 

late cUS at 

36 weeks vs 

early clinical 

model with 

cUS at 28 

days   

Abnormal 

tone, 

posture or 

movement 

(Amiel-

Tison) 

(101) 

- - - - 0.78 

vs 

0.72 

- 

Lacey 2004 

(88) 

< 30 weeks, 

CP: 36/203 

(18%) 

  

discharge 

exam vs 

cUS at 7 & 

28 days 

Abnormal 

motor 

exam 

36 months 

86 

48 

83 

87 

57 

88 

96 

43 

  

- 

  

- 

Spittle 2015 

(106) 

<30 weeks 

CP: 6/97 

(6%) 

combined 

motor tests 

at 4, 8, 12 

months 

Palisono 

 48 

months 

(81) 

83 95 56 99   

- 

92 

de Vries, 

2004 (86) 

<33 weeks, 

CP: 76/429 

(17%) 

secquential 

cUS 

Hagberg 

24 months 

(85)  

76 

 

 

95 48 99 - - 

Woodward, 

2006 (89) 

<31 weeks, 

CP: 17/167 

(10%) 

MRI at term 

any vs mod-

severe 

abnormality 

Palisano  

24 months    

94 

65 

31 

84 

- - - - 

Nanba 2007 

(90) 

<34 weeks, 

<1500g 

CP: 38/289 

(13%)  

MRI at term 

for PVL vs 

corona 

radiata 

lesions  

Palisonao 

 31 

months 

62 

78 

87 

96 

- - - - 

Mirmiran 

2004 (91) 

<30 weeks 

or <1250g 

CP: 

7/61(11%) 

MRI at term 

vs sequential 

cUS 

Palisonao 

 31 

months 

86 

43 

89 

82 

60 

33 

97 

87 

- - 
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Study Population 

CP n/N (%) 

Predictors CP 

Outcome 

Sens Spec PPV NPV AUC Accuracy 

Skiold 2013 

(104) 

<27 weeks 

CP: 4/53 

(7.5%) 

term MRI vs 

GMA at 3 

months 

Palisonao 

 30 

months 

100 

50 

98 

92 

80 

33 

100 

96 

- - 

Ferrari 2002 

(93) 

<37 weeks 

with 

abnormal 

cUS 

CP: 41/84 

(49%) 

Synchroniz-

-ed cramped 

GMA and 

Prechtl 

neurologic 

exam over 

first 5 ms 

Palisonao 

24-36 

mths 

79 

89 

100 

52 

100 

67 

84 

84 

0.97 

 

  

 - 

Romeo 2008 

(95) 

<37 weeks 

CP: 57/903 

(6%) 

GMA score 

>57 vs 

HINE 

neurologic 

exam at 3 

ms 

Hagberg 

24 months 

98 

96 

94 

87 

  

- 

  

- 

  

- 

 - 

Oberg 2015 

(98)  

<33 weeks 

or <1500g 

CP: 10/87 

(12%) 

GMA at 3 

months 

Palisonao 

 24 

months 

90 90 53 100 - - 

  

De Bock 

2017 (99) 

<33 weeks 

CP: 7/122 

(6%) 

GMA at 

1&3 months 

Palisonao 

 24 

months 

86 77 19 99   77 

Machine Learning  

Hope 2008 

(85) 

<31 weeks 

or <1500 g 

(37cases, 48 

controls) 

cUS texture 

first week 

Palisano 

4 month 

-  - - -   72 

Stahl 

2012 (101) 

82 infants, 

gestational 

age not 

specified 

optic flow 

cytometry at 

10-18 weeks 

Not 

specified 

5 years 

95 85       94 

Abbreviations: AUC (area under the curve), CP (cerebral palsy), cUS (cranial ultrasound), GMA (general 

movement assessment), HINE (Hammersmith infant neurologic exam), MRI (magnetic resonance imaging), 

NPV (negative predictive value), PPV (positive predictive value), PVL (periventricular leukomalacia), Sens 

(sensitivity), Spec (specificity).  
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3.3 Prediction Modeling 

 

3.3.1 Diagnostic Tests 

A gold standard test is the ideal test(s) to diagnose a particular disease against which all 

other diagnostic tests are compared (112). There is no gold standard test for diagnosing 

CP; its diagnosis relies entirely on the clinical assessment of muscle tone, posture and 

movement. Validity refers to the accuracy of a test or its ultimate ability to correctly 

identify individuals who have a particular disease from those who do not (112). The 

sensitivity and specificity of a test, relative to the gold standard, is the best measure of its 

clinical validity. Table 3.2 highlights the various parameters that are factored in the 

measurement of sensitivity and specificity. To apply the table for the current study; 

“Disease+” indicates children who actually have CP, while “Disease_” indicates children 

who do not have CP, whereas, “Test+” and “Test_” refers to the predicted model (or test) 

of those children with and without CP, respectively. 

 

Table 3.2: Diagnostic Properties of a Test 

True Class 

Predicted 

Class 

 Disease+ Disease- Total 

 

Test+ 

a 

True positive (TP) 

b 

False positive (FP) 

a+b 

Total test+ 

Test- 
c 

False negative (FN) 

d 

True negative (TN) 

c+d 

Total test- 

 

Total 

a+c 

Total disease+ 

b+d 

Total disease- 

a+b+c+d 

Total population 
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 1. True positive (TP): individual with a positive test and has the disease 

2. False positive (FP): individual with a positive test but does not have the disease 

3. True negative (TN): individual with a negative test and does not have the disease 

4. False negative (FN): individual with a negative test but has the disease 

 

Sensitivity measures the ability of the test to correctly identify those with the disease 

Therefore, a highly sensitive test if negative is useful for ruling out the disease  

Sensitivity  = 
𝑎

𝑎+𝑐
  = 

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

Specificity is the ability of the test to correctly identify those free from the disease 

Therefore, a highly specific test if positive is useful for ruling in the disease  

Specificity  = 
𝑑

𝑏+𝑑
  = 

𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

Sensitivity and specificity are inversely proportional, and they are independent of the 

population tested (112, 113). Serious but treatable diseases require a test that is highly 

sensitive (e.g., cancer screening test). However, specificity would be compromised 

resulting in unnecessary anxiety and unwarranted further investigations (113). The 

predictive values are useful in clinical medicine when considering the value of a test for a 

clinician, because they answer the question of how likely an individual with a positive test 

to have or develop the disease or the outcome of interest (113). 

 

The positive predictive value (PPV) is the probability of having the disease when the test 

is positive. 

PPV  = 
𝑎

𝑎+𝑏
  =

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 

The negative predictive value (NPV) is the probability of not having the disease when the 

test is negative. 
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NPV  = 
𝑑

𝑐+𝑑
  = 

𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

Unlike sensitivity and specificity, PPV and NPV are closely related to the prevalence of 

the disease in the population. Assuming that all other factors remain constant, as the 

prevalence declines, the PPV decreases while the NPV increases (112, 113). 

 

Accuracy is the ability of the test to correctly identify those with and without a disease or 

outcome of interest. 

Accuracy = 
𝑎+𝑑

𝑎+𝑏+𝑐+𝑑
  =

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

Likelihood ratio (LR) is used to determine the usefulness of a test by comparing its 

sensitivity and specificity or the ratio of its true positive rate to its false positive rate. The 

positive LR is how likely the test result being positive in an individual with a specific 

disease or outcome of interest compared to the same test result being positive in an 

individual without the disease or outcome; if the test result would change the probability 

of having or developing a disease in an individual. Therefore, the higher the positive LR 

the better the classifier, whereas the lower the negative LR, the better the classifier (113).    

LR+ = 
𝑇𝑃 𝑟𝑎𝑡𝑒

  𝐹𝑃 𝑟𝑎𝑡𝑒
  =  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

1−𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦
 

LR- = 
𝐹𝑁 𝑟𝑎𝑡𝑒

  𝑇𝑁 𝑟𝑎𝑡𝑒
  =  

1−𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦
 

 

Receiver operating characteristic curves (ROC)  

The ROC curve is used to assess the ability of a diagnostic or prognostic test to identify 

individuals who have or will develop a given disease. It is a plot of the true positive rate of 

a test (sensitivity) on the y-axis against its false positive rate (1- specificity) on the x-axis, 

for every possible cut-off point (113, 114), hence depicting the trade-off between the 

sensitivity and the specificity of the test of interest. For logistic regression models, the ROC 

curve evaluates the discriminative or classification performance of the model; the ability 

of the model to identify individuals with or developing a given disease at all possible cut-

off points. Figure 3.1 shows that the closer the ROC curve to the ideal point (top left corner 

with 100% sensitivity and specificity), the better the performance of the classifier (113).  
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The area under the curve (AUC) represents the overall accuracy of a test to discriminate 

between those who have or will develop a given disease from those who do not, over all 

possible thresholds or cut-offs. The AUC ranges from 0.5 to 1. The larger the area the better 

is the classifier; where 1 is the optimal test or classifier (100% specificity and 100% 

sensitivity) and 0.5 is a worthless test or classifier (50% specificity and 50% sensitivity) 

that is not different from flipping a coin. In Figure 3.1, the upper curve (C) represents a test 

with high sensitivity and specificity and AUC approaching 1.0, while the dotted A line 

represents the line of discrimination with an AUC of 0.5. The AUC of most tests used in 

health research lies between these two extremes (curve B).  

 

 

Figure 3.1. Receiver Operating Characteristics Curve  

With permission from: Lalkhen AG, McCluskey A. Clinical tests: sensitivity and specificity.[113] 

(A) line of 0 discrimination (AUC = 0.5); (B) typical clinical test (AUC = 0.5-1.0); (C) perfect test 

(AUC = 1.0) 

 

 

For prediction models, ROC curves can be used for identification of an optimal classifier 

because they provide the cut-off point at which sensitivity and specificity are maximized 

relative to one another.  The ROC curve is also useful to compare different classifiers 

(models) based on the AUC that provides an unbiased measurement of the performance of 

prediction across different models (114).  
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3.3.2 Logistic Regression 

One of the main goals of epidemiological research is to examine the association between an 

exposure and an outcome of interest. Measures of association can be assessed using absolute 

measures (attributable risk or risk difference) or relative measures (RR and OR). Logistic 

regression has been traditionally used in health research to assess the relation between 

independent observations/exposures and a binary outcome both for association and for 

prediction.  

 

Risk prediction models are used to estimate the risk of having a specific prevalent disease 

(diagnostic) or developing one (prognostic). Multivariable prediction models are one method 

to estimate the probability of a certain outcome in individuals, given their set of predictors 

(115, 116).These models can be developed from prospective cohort, randomized clinical 

trials, or nested case-control studies using both categorical and continuous explanatory 

variables (116). For a binary outcome variable, such as CP, logistic regression provides the 

odds of CP (the ratio of the probability of developing CP to the probability of not developing 

CP) using the following formula:                                               

Odds of CP = P/(1-P)             Probability of CP (P) = e (a+bx) / 1+ e (a+bx)               

In logistic regression, the OR or the ratio of the odds, represents the constant effect of a 

predictor X on the likelihood that outcome Y (CP in this study) will occur (115). Whereas 

with probability, the effect of a predictor X on the probability of the outcome Y is not 

constant and has different values depending on the value of X.   

 

Risk prediction models are increasingly used in clinical medicine as adjuncts to guide clinical 

reasoning and decision-making, provided that accurate estimates of the probability risk and 

validation, both internal and external, were performed. Moons et al proposed important steps 

for development, validation and reporting of risk prediction models. The following section 

on developing a multivariable model and assessing its usefulness and its performance is 

derived from the recommendation of the first series of Moons et al (116). External validation 

of the developed model is based on the second series of Moons et al (117). 
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Model Development 

Prior to developing the logistic regression model, both the outcome of interest and the 

predictors should be clearly defined and measured in a standardized and reproducible way. 

The selection of relevant predictors is usually based on expert opinion derived from 

scientific knowledge of the outcome of interest. Careful selection of predictors is critical 

and should include not only causal but all potential correlates. However, attention should 

be paid to the number of predictors to be included in the model, using the rule of 1 to 10 

event per variable; at least 10 individuals having (developed) the outcome of interest are 

required per 1 predictor in the model (118). For the outcome, the methods used to measure 

and ascertain the outcome, independent of or blinded to the studied predictors, and the 

duration of follow-up should be clearly defined. 

 

Analysis of Logistic Regression Model  

● Missing values: Multiple imputation of missing data may be performed to avoid bias 

if the analysis included only individuals with completely observed data.  

● Continuous predictors: Testing for linearity and using simple transformation of non-

linear continuous predictors increases the predictive ability of the model. 

● Predictor selection in the multivariable model is preferably performed using a full 

model approach or backward selection procedure, rather than inclusion of only 

univariate correlates. 

● Logistic regression provides regression coefficients (Wald test or LR test) that assess 

the relative contribution or the relative weight of each predictor in the model (the 

effect of one unit change in the predictor X on the outcome Y, when all other 

predictors were kept constant). The model’s intercept quantifies the baseline risk for 

an individual to develop the outcome of interest, if all predictor values were zero 

(115, 116). 

● The linear predictor from the logistic regression model can be transformed to provide 

a predicted probability. The ROC curve is used to determine the optimal cutoff. The 

model performance can be assessed quantitatively using discrimination (AUC), 

calibration (plots), and classification (115, 116).  
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Internal Validation 

The probability of developing an outcome as predicted by the model compared to the 

observed one, provides the ‘goodness fit’ of this prediction model. By design, prediction 

models are expected to optimally fit the development sample. However, they are less accurate 

when tested in new, but similar, individuals due to overfitting to the development sample. 

The potential for overfitting is indirectly proportional to the number of outcomes/events in 

the development sample and is directly proportional to the number of predictors (relative to 

the number of events) (116). To test for overfitting of prediction models, internal validation 

can be performed using different methods: 

1. Split sample: The training data is randomly split once into two subsamples: one to 

develop the model and the other to test its performance. Splitting can be done as split 

half or other fractions. The measures of performance are based on similar but 

independent data from the same population. However, this method is inefficient 

because of data wasting (119). 

2. Cross-validation: This is an extension of the split method where the model is 

developed on several random splits of the data; within each split, one part serves as 

the training set and the other part serves as the validation or testing set. The 

performance of the model at each split is calculated and the process is repeated, with 

one data subset left out at a time, until all subsets served once to test the model (e.g. 

if within each random split, 90% of the data are used to develop the model and 10% 

to test it, then the process is repeated at least 10 times). The average performance of 

the final model is then calculated from all the splits and the stability of the cross-

validation improves with more repetitions (100 times) (119).                                                                                                 
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3. Bootstrapping: This method uses an intensive computer-based resampling 

technique, or drawing with replacement, of around 100-500 subsamples, from the 

original sample and each bootstrap sample is of the same size as the original sample. 

The prediction model may be developed from the bootstrap sample and tested on 

the original sample, or vice versa, so that 100% of the data is used for model 

development and 100% for model testing. The estimates of performance can be 

assessed on each bootstrap subsample and the final model accuracy can be then 

computed by the average performance of the prediction models. Compared to the 

split methods, bootstrapping is considered to be a more preferred method for 

validation as all the data set will be used without wasting. It is considered to be the 

most efficient validation method, particularly when the sample size is small or with 

a large number of predictors (119, 120).  

 

However, the main disadvantage of the cross validation and the bootstrapping approaches 

is their computer-based automated model selection procedure that does not allow 

exploration of the data or the use of judgment during the selection of predictors.  

 

External Validation  

External validation is a method used to assess the predictive performance of a previously 

developed model when applied to a sample that is temporally or geographically different 

from the development sample and it is considered as a marker of “generalizability” of the 

developed model when applied to different populations (117). The process includes: taking 

the original model with its predictors and regression coefficients, assessing the predictor 

and outcome measures in the new population, applying the original model to these new 

data and finally assessing the model’s predictive performance quantitatively as outlined 

before (117). As expected, external validation often results in lower performance than 

internal validation, when the developed model is applied to different individuals or 

different populations. 
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Limitations of Logistic Regression for Developing Prediction Models  

Traditionally, logistic regression has been used for prediction of outcomes in health 

research, but it has many drawbacks. Logistic regression model requires correct 

specification of the main effects and the interactions between predictors, otherwise the 

resulting prediction may be biased. Additionally, the model assumes a linear relationship 

between the predictors and the outcome (116); ignoring a non-linear relationship would 

result in a poorly fitted model. To overcome these limitations, machine learning methods 

have been increasingly used for prediction and probability estimation for genomic, 

genetics, biomedical and medical research (121-127), and in clinical epidemiology (128). 

They do not require specification of the underlying model and can handle complex and 

non-linear relationships between the predictors and the outcome (22, 23). They are often 

used in settings with a large number of predictors relative to the number of observations, 

such as genomic research, which would pose a problem if logistic regressions were used. 

Machine learning methods are used to develop models that predict an outcome from a set 

of predictors and can rank the predictor variables based on their relative importance 

(weight) for prediction (22, 23). In the following section, I will discuss certain types of 

machine learning methods, namely, decision trees and RF ensemble methods. Building 

prediction models from decision trees and RF will be described and the difference between 

RF and logistic regression will be highlighted (see also Table 3.3).   
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3.3.3 Decision Trees and Ensemble Methods 

Decision Trees  

The Classification and Regression Trees (CART) method was first introduced by Breiman 

in 1984 and provided solutions for regression and classification problems that are easily 

interpreted with a visual graphic display as inverted trees. The CART, also known as binary 

recursive partitioning, are broadly grouped into CT for binary or categorical outcomes and 

regression trees for continuous outcomes (22).Distinguishing “CP” from “non-CP” can be 

regarded as a classification problem within this learning field. 

The CART splits a whole sample in hierarchical manner, starting from the root node and 

growing branches using a sequence of binary split rules for the explanatory variables. Each 

binary split maximizes the discrimination of the outcome between the resulting child nodes 

and maximizes the homogeneity between participants within each child node that is known 

as node purity (127). This split criterion minimizes the residual sum of squares (for 

regression trees) or the Gini index (for CT)) (22). The branching or splitting continues until 

a stopping point is reached or no more splits are possible; these are called the terminal 

nodes. Each terminal node is assigned a predicted numerical value (regression) or a 

predicted outcome category (classification). Once all terminal nodes are identified, the 

CART can be used to provide a prediction for regression (the mean response in each 

terminal node of the tree) or classification (the majority vote or the most commonly 

occurring class in each terminal node of the tree). The tree is then subject to pruning, a 

process by which cross-validation generates nested trees from a training data set and selects 

the optimal final tree when applied to a testing data set (22). As this study investigates CP 

as a binary outcome, the remaining section will focus on CT and RF building, performance, 

and diagnostic properties. 
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Classification Tree 

Building a prediction model using CT follows the same previously described steps for 

building CART with the final decision tree being an inverted tree composed of yes and no 

answers at each split (126).  A decision tree can be easily interpreted by healthcare 

providers and its output is similar to the clinical reasoning process or clinical algorithms 

commonly used to guide patient management. The advantage of a CT in healthcare is its 

ability to clearly identify subgroups of patients who are at the highest risk of developing 

the outcome of interest, represented as the terminal nodes of CT.  

The performance of a CT is dependent on the number of explanatory variables, the size of 

the tree grown (number of splits, leaf size), and the split criterion (22, 126). The 

performance of CT can be assessed by calculating how correctly CT is able to classify 

those with the outcome of interest (sensitivity) and those without (specificity). 

Additionally, penalties for misclassification may be used to improve the accuracy of the 

prediction (22).  

While decision trees are fairly easy to implement, understand, and interpret, they have 

limitations. First, the splitting algorithm is "greedy", so that the built tree is optimal at each 

split but may not be optimal globally. Secondly, the tree is “unstable” where slight changes 

in the data may result in a substantially different tree. Thirdly, the algorithm tends to over-

fit to the training data, resulting in a much weaker performance in a testing data set. The 

predictive accuracy and robustness of decision trees can be improved by aggregating many 

decision trees using the RF ensemble method (23). 
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Random Forest  

To overcome the limitations of prediction using the decision trees, Breiman (2001) 

proposed the RF algorithm, by growing a forest or ensemble of CT and letting them vote 

for the most popular classification. In comparison to a single tree, using randomness in 

building each tree in the forest leads to a better prediction and does not have the problem 

of overfitting (23). The RF develops a large number of trees (hence the name forest) in 

bootstrapped samples of the whole data set. When building each tree within the forest, only 

a random subset of predictors is available at each node to create a split (the random part of 

the forest) (23). The tree-growing process is repeated until a preset number of trees are 

reached. The ensemble of trees then "votes" on the optimal classification or the majority 

vote (mode of the classification of the individual trees). The predicted outcome is estimated 

by the most frequent predicted outcome from each component tree (for classification) (23).  

Important tuning parameters of the RF predicted model include: the number of trees, the 

size of the terminal node, the number of features available at each split and the number of 

predictors used at each node in growing each tree (23). The diversity of the trees helps to 

improve the accuracy and stability of the prediction, because the aggregate vote of several 

decision trees is less susceptible to noise and outliers than a single tree (23). A main 

advantage of RF is providing information on what variables are important in the 

classification by computing an importance score for each variable, based on how much 

their presence in the forest improves the prediction compared to a model without the 

variable. This score can be then used to rank variables relative to each other (23). 

 A fundamental concept in RF is the out-of-bag (OOB) sample, which refers to the set of 

observations that were not included in the bootstrap sample, corresponding to 

approximately one-third of the original data set (23). Each tree within a RF uses a different 

bootstrap sample and therefore a different OOB sample. The OOB sample is then used to 

evaluate each component tree within the forest by estimating the generalization error, 

defined as the error rate of the OOB classifier on the training set (23). 
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Classification using RF is a useful tool for prediction of a binary outcome because of its 

discriminative ability. However, estimating the probability of an outcome (risk) is 

important in clinical medicine. Recently, RF has been used as a probability machine to 

estimate the conditional probability for binary outcomes and providing risk estimates and 

effect size (OR with their 95% confidence intervals) as well as the interaction effects 

between predictors (124, 129, 130). 

  

3.3.4 Comparison of Random Forest and Logistic Regression 

Both RF and logistic regression have been used for risk prediction in health research. 

However, they differ substantially in the method of model development and the output. 

Logistic regression is explanatory; it provides regression coefficients that determine the 

relative contribution of each predictor in the model, when other predictors are kept 

constant. Whereas, RF is like a “black box” that only provides the variables selected in the 

model and their importance ranking. Table 3.3 highlights some of the main differences 

between risk prediction using multiple logistic regression and RF ensemble methods.  
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Table 3.3: Comparison of Multiple Logistic Regression and Random Forest. 

Methodological 

issues 
Multiple logistic regression Random forest 

Sample size A large sample size is required to 

provide a sufficient number in both 

categories of the outcome variable. 

No minimum sample size 

Effect estimates OR and their confidence intervals. By default, only variable importance 

rankings are produced. Risk ratios and 

their confidence intervals may be produced 

using additional steps (128). 

Selection of 

explanatory variables 

The number of explanatory variables 

must be selected first and they 

should not exceed 10% of the events 

number.  

All available variables may be used. When 

building each tree, only a random subset of 

predictors is used.  

Linearity assumption Assumption of linear relationship 

between each explanatory variable 

and the logit of the outcome 

variable. 

No assumption about the shape of the 

relationship between the explanatory and 

the outcome variables. 

Distributional 

assumptions 

No assumptions about the 

distribution of the explanatory 

variables. 

No assumptions about the distribution of 

the explanatory variables. 

Dealing with complex 

interactions 

Interactions (especially higher order 

ones) between explanatory variables 

are difficult to identify and interpret. 

Can deal with higher order interactions but 

does not explicitly identify them in the 

final model. 

Adapted from Henrard et al.(126) 
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Recent studies compared conventional regression models (logistic or Cox-regression) to 

different machine learning methods (RF, neuronal network, support vector machines and 

gradient boosted decision trees) for prediction of clinical outcomes.  These studies reported 

superior prediction (AUC) of machine learning methods over conventional regression or 

clinically-based risk scores in the adult population (131-135). Examples of clinical 

outcomes predicted by these studies included: cardiac complications in patients with acute 

chest pain (131), re-hospitalization in patients with heart failure (132) , mortality in patients 

with sepsis (133), disposition of adults with acute obstructive airway disease (134), and 

triaging of adult patients in Emergency Department (135). 

There is emerging literature comparing machine learning methods to conventional logistic 

regression in perinatal, neonatal or even pediatric research. Recently, Goto et al (2019) 

reported superior performance of RF over conventional regression in prediction of critical 

care and hospitalization among children admitted to the emergency departments (136). 

Similarly, Carlos Campillo-Artero et al (2018) studied data of 6,157 singleton births and 

reported superior performance of RF over logistic regression for predicting emergency 

Cesarean section (AUC 0.94 (95% CI: 0.93–0.95) vs AUC 0.78 (95% CI 0.76–0.8)) (137). 

However, other studies reported inferior performance of RF compared to logistic 

regression when clinical predictors were used with lower AUC and worse predictive 

accuracy. Kuhle et al (2018) conducted a population-based study of 30,705 singleton 

infants comparing logistic regression to machine learning methods for prediction of fetal 

growth abnormalities. The study showed that machine learning methods did not add 

advantage to the conventional logistic regression and reported poor prediction (AUC 0.6–

0.7) for primiparous women and fair prediction (AUC 0.7–0.8) for multiparous women, 

irrespective of the method used (138).   

  



35 

 

In summary, recent studies comparing machine learning methods, including RF, to 

conventional logistic regression for their discriminative ability in prediction of clinical 

outcomes reported conflicting results from superior to similar or even inferior performance. 

The conflicting results suggest that none of the prediction methods is superior and the 

predictive accuracy may rely on the settings or the datasets and may not be constant across 

different studies. The main advantage of machine learning over conventional regression is 

its ability to handle large/multidimensional datasets (where the computer can learn 

iteratively from the data to develop prediction) or complex datasets (with non-linear 

relations between predictors and outcome or interactions between predictors). However, 

their predictive performance compared to conventional regression outside these settings, is 

yet to be explored.   
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 3.4. Relevance and Rationale 

Cerebral palsy is the most common physical disability in children worldwide. Although 

the perinatal insult of CP is considered static, the associated disability is progressive, and 

its severity increases over time.  In addition to spasticity, weakness and immobility, CP is 

commonly associated with major comorbidities (epilepsy, behavioral disorders, 

developmental delay, dysphagia or tube feeding, hip dislocation and muscle contractures). 

This disabling disease has a lifelong impact on the general health of affected children, their 

societal integration and quality-of-life. Additionally, it burdens their families, society and 

the healthcare system with both healthcare cost and services utilization.  

The risk of CP in preterm children is 10 times higher than that of the general population, 

with extreme preterm children being at the highest risk (8). As early diagnosis and 

intervention are important in the management of CP, timely identification of preterm 

children at risk of CP is desirable to benefit from rehabilitation programs with the potential 

to improve their functional outcomes and quality of life (11, 27, 74-76).  

There is a need for reliable tools to accurately predict CP in preterm children early on, as 

the approach for diagnosis and management is challenging; (i) there is no specific test to 

diagnose CP and the diagnosis is solely dependent on detailed neurologic examination 

which may delay the diagnosis if not performed timely and by expert clinicians, (ii) the 

criteria for referral of high risk preterm children to intervention programs varies across 

countries including Canada; depending on the jurisdictional regulations and healthcare 

resources, (iii) the time to diagnose CP is variable and depends on the access to specialized 

care, particularly outside hospital settings or follow up programs, where  the clinical 

diagnosis may be delayed beyond the commonly established time around 18 to 24 months 

of age, (iv) by 5years of age, almost one third of children with CP would have already 

established comorbidities which impact their future health outcomes and quality of life 

(26), (v) the clinical outcomes and healthcare cost have a direct relation with the disease 

severity and the associated comorbidities, both have potential to be ameliorated if 

rehabilitation and interventions were started early within the first 1-2 years of age, at the 

time of brain plasticity, with the potential for neuronal recovery and improve mobility and 

motor functions (11, 27, 74-76).  
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Research that focuses on developing accurate prediction models of CP in this high-risk 

population is very valuable for patients, their families and healthcare providers. Accurate 

prediction of CP in preterm survivors is crucial to enable early identification and to guide 

individualized interventions with the potential for neuronal recovery and improvement of 

mobility and quality of life. Multiple studies showed that the severity of CP and the 

associated comorbidities are modifiable, if the children at risk are identified early and 

referred to the appropriate rehabilitation services. This underlines the importance of early 

implementation of accurate tools to identify those preterm children at the highest risk of 

CP. In addition to improved mobility, improvement of other developmental domains such 

as language, cognitive and problem-solving skills have been reported with early 

intervention in preterm children with CP (11, 27, 74-76). Families of those children 

engaged in such programs were shown to have enhanced parenting skills, improved 

bonding and parent-child interaction and above all improved children’s engagement in 

social activities. Such modifications of the neurosensory stimulation and the environment 

around CP children have an impact on their behavior, communication and social integration 

(77, 78).  

 

For families, accurate prediction is invaluable when counselled about the risk of their 

children developing CP, or NDI, after preterm birth or a significant perinatal event. 

Interaction between parents of preterm children and healthcare providers constitutes an 

integral part of their experience in NICUs and during antenatal counselling prior to preterm 

birth; such a stressful situation reportedly impacts families’ coping with the trauma of 

preterm birth, particularly related to parent child interaction and parental empowerment.  

 

For caregivers, early and accurate prediction of CP may assist in selecting the appropriate 

treatment and providing individualized interventions for this high-risk patient population. 

It would also enable targeting the necessary resources to those children at the highest risk 

who would most likely benefit from early detection and intervention.  
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Finally, logistic regression has been traditionally used for risk prediction in neonatal 

literature. The emergence of novel prediction methods, that overcome the limitations of 

logistic regression, has stimulated researchers to explore and compare the predictive 

accuracy of these methods to conventional logistic regression. The method with the highest 

accuracy and ability to discriminate between those children at risk for an outcome of 

interest from those who are not can be implemented in clinical practice.  

The predicted probability of an outcome of interest, such as CP, for each preterm infant 

given their set of predictors, can be easily transformed into calculated risk based scores and 

algorithms. Clinical calculators of these algorithms or risk-based scores derived from such 

prediction models have been widely used in neonatal practice to aid counselling or when 

critical decisions are discussed. Examples of such clinically available calculators include: 

(i) NICHD calculator for prediction of death or disability when counselling 

families regarding active resuscitation at the edge of viability or to provide 

prognostication of long term outcomes after extreme preterm birth, 

https://www.nichd.nih.gov/research/supported/EPBO/use (139) 

(ii) The BPD calculator to decide for selective administration of systemic 

steroids among very preterm infants with severe RDS, a therapy known to 

increase the risk of CP so selectively given to the sickest infants, 

https://neonatal.rti.org/index.cfm (140). 

(iii) Vincer et al developed an algorithm for prediction of mortality at 

extreme preterm birth, using the same population database of the current 

study (141). 

  

https://www.nichd.nih.gov/research/supported/EPBO/use
https://www.nichd.nih.gov/research/supported/EPBO/use
https://www.nichd.nih.gov/research/supported/EPBO/use
https://neonatal.rti.org/index.cfm
https://neonatal.rti.org/index.cfm
https://neonatal.rti.org/index.cfm
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Knowledge Gap and Rationale 

 

Despite considerable evidence in the literature on the risk factors associated with CP in 

preterm children, few studies have advanced beyond risk analyses to develop risk 

prediction models and measure their diagnostic properties. Moreover, the majority of these 

reports were limited by small sample sizes and not being population-based (Appendix 1). 

Additionally, multiple studies did not investigate CP as the main outcome, but rather 

examined NDI, with CP as one component of this composite outcome. Traditionally, these 

studies used logistic regression for predicting CP in preterm children.  

The role of machine learning methods, such as the RF, in the prediction of CP in the 

preterm population has not yet been adequately explored. The RF method is one of the 

most commonly used and accurate machine learning methods. It does not require a model's 

specification and can handle complex relationships between predictors and the outcome. 

Therefore, RF may result in better prediction of CP when compared to logistic regression. 

Additionally, it is not known if the claimed superiority of RF over logistic regression would 

remain when clinical predictors are used. Therefore, the proposal of this study is to explore 

the role of RF in prediction of CP using clinical predictors and to compare RF to 

conventional logistic regression for the accuracy in prediction of CP among a large 

population-based cohort of very preterm children in Nova Scotia. To my knowledge, no 

study compared RF to logistic regression in this context to date.  

As early identification and referral of preterm born children at risk of CP has been shown 

to improve their outcomes and quality of life, research that focuses on reliable risk 

prediction in this population is needed. With advances in perinatal care and improved 

survival of very preterm children over the last few decades, we expect to see more children 

at risk of CP which makes a reliable prediction tool more pressing now than ever before.  
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CHAPTER 4: METHODS 

 

4.1. Study Population and Design  

 

This study used retrospective data of a prospective population-based cohort of very preterm 

infants. The birth cohort includes all live born very preterm infants (220/6 - 306/7 weeks 

gestation) who were born between January 1, 2000 and December 31, 2014, to mothers 

residing in Nova Scotia. From this birth cohort, only infants with no major congenital 

anomalies or no palliation at birth were eligible for inclusion. Children who died before 36 

months of corrected age, those who were lost to follow-up, those with missing outcome 

data and those who had their last assessment before 18 months of corrected age were 

excluded. Data of surviving very preterm infants who received standardized 

neurodevelopmental assessment up to 36 months corrected age were collected from the 

Nova Scotia PFUP database and were evaluated for the primary outcome of CP.  

 

Candidate variables were classified into three groups according to pre-specified time-

points in a chronological fashion: prenatal period (maternal, pregnancy and fetal factors), 

perinatal period (factors related to intrapartum period up to 6 hours after birth), and 

postnatal period (short term morbidities up to hospital discharge at or near the expected 

date of delivery). For the purpose of this study, we defined those three time points being 

relevant for prediction of CP both for families and caregivers. Accurate prediction of CP 

at these three phases are crucial to aid in counselling families for prognostication or when 

informed critical decisions are discussed: (i) before birth (to decide if active resuscitation 

will be provided for extremely preterm infants), (ii) within the first 6 hours after birth (to 

decide regarding continuation or withdrawal of intensive care if a catastrophic perinatal 

event occurred), and (iii) at hospital discharge (to assess the long-term prognosis and to 

guide referral of high-risk infants to early intervention programs and other developmental 

services).  

 

Before analysis, the full dataset was randomly divided into training and testing subsets in 

a 70:30 ratio. Prediction models of CP using logistic regression and RF were developed in 
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the training dataset and were validated in the testing dataset. The internal validation was 

performed to assess for model overfitting and to examine how the model would perform in 

a similar but independent sample from the same population. For internal validation, the 

splitting method was preferred over K-fold cross-validation or bootstrapping as the model 

building procedure for logistic regression requires human intervention that cannot be easily 

automated. The validated prediction models were compared with regard to their 

discriminative ability (AUC), accuracy (correct classification) and diagnostic properties 

(sensitivity, specificity, PPV, NPV, LR). 

 

4.2. The AC Allen Provincial Perinatal Follow Up Program Database 

 

The AC Allen Provincial PFUP database is the data source for this study. Since 1993, the 

PFUP has enrolled all liveborn very preterm (<31 weeks) infants born to mothers who 

resided in Nova Scotia. The database collects a broad range of data including 

sociodemographics, prenatal, perinatal, and postnatal clinical data as well as 

neurodevelopmental data up to 36 months of corrected age.  The database also collects data 

on delivery room deaths at any hospital in Nova Scotia. The PFUP database contained 

records on all 1111 very preterm infants born to mothers residing in Nova Scotia between 

2000 and 2014. The Program Medical Director (Dr. Michael Vincer) and the database 

manager perform periodic audits and code checks of the database including retrospective 

updating of coding schemes (in case of changes in coding definitions) in order to maintain 

the database consistency. 

 

The PFUP performs a standardized neurodevelopmental assessment of all surviving 

preterm children up to 36 months of corrected age with a follow-up rate around 96%. 

Following discharge from NICU, all very preterm infants are scheduled for visits to the 

PFUP clinic at 4, 8, 18, and 36 months of corrected age. If an abnormality is detected at 

any visit, more frequent follow-up may be required. Each infant is assessed during those 

visits by a multidisciplinary team including pediatricians, nurses, physiotherapist, 

occupational therapist, dietician and speech therapist. Each visit includes a complete history 

and physical assessment including a detailed neurologic examination. If serial neuromotor 
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assessments are completely normal up to 18-24 months of corrected age, no further 

neurologic exam is required, but detailed developmental assessment of motor skills 

continues up to 36 months of corrected age using standardized validated tests as described 

below.  However, if an exam shows an abnormal finding or parental concerns were 

identified at the 18-24 months visit, then a detailed neurologic exam is conducted at each 

subsequent visit up to the 36 months to assess for milder forms of CP. 

 

Additionally, standardized neurodevelopmental screening tests are conducted at each 

PFUP visit to assess gross motor functions. The Alberta Infant Motor Scale (AIMS) is 

performed up to 8 months of corrected age (107) and the adapted Bayley Scale of Infant 

and Toddler Development (BSITD) screener is used to evaluate both fine and gross motor 

skills beyond 8 months of corrected age (142). The cognitive and language development 

are also assessed at each visit using the adapted CAT/CLAM (Cognitive Adaptive 

Test/Clinical Linguistic and Auditory Milestone Scale) (97, 143). These validated tests 

were shown to predict motor and cognitive/language outcomes, respectively (97, 107, 142, 

143). Finally, standardized developmental testing (BSITD, Edition II-III), conducted at 36 

months of corrected age, provides psychomotor and mental developmental scores 

(cognitive and language development) that are widely used in longitudinal studies of 

preterm infants (144, 145). 

  

If CP is suspected, the child is referred to a pediatric neurologist to confirm the diagnosis 

and to initiate the management, including referral to a rehabilitation program. Once the 

diagnosis is confirmed, children with CP are further classified based on ambulation into 

mild CP (level 1-2) or moderate to severe CP (level 3-5) using the Palisano GMFCS (83). 

The GMFCS is a validated tool that has been used extensively for classification of CP in 

literature and to standardize reporting of CP allowing comparison of these studies in meta-

analyses and systematic reviews (Appendix 1). 
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4.3 Outcome 

 

The outcome of the study is the presence of CP of any severity, defined as a disorder of 

control of movement, muscle tone and/or reflexes or posture secondary to a non-

progressive brain lesion. The prevalence of CP was determined at 36 months of corrected 

age, rather than at 12 or 24 months, as the diagnostic accuracy is higher, particularly for 

the mild form or the ambulatory subtype (24, 25). If the assessment at 36 months is not 

available, then the most recent standardized assessment close to 36 months (range 18-42 

months) was used to determine CP.  

 

The clinical diagnosis of CP at the PFUP is described above. Cerebral palsy is coded in the 

PFUP database in three ways: as a binary categorical variable (yes/no), as a nominal 

categorical variable based on the clinical subtypes (spastic, athetotic, hypotonic, or ataxic), 

and as an ordinal variable based on the standardized GMFCS level. The definition of CP, 

the primary outcome of this study, has been standardized in the PFUP database since its 

inception and the severity classification of GMFCS levels has been standardized in the 

PFUP database since 2000. 

 

4.4 Candidate Predictors 

 

Potential predictors of CP in this analysis included the maternal and infant factors described 

in Section 3.1.4, or other variables that are associated with CP (e.g., maternal age) or have 

biologic plausibility or are antecedents to CP (e.g., birth asphyxia, infection, or brain 

injury). The complete list of the predictors with detailed information of their corresponding 

codes and definitions is provided in Appendix 2. 

 

Prenatal factors included (i) maternal factors (age, parity, socioeconomic status as per 

Hollingshead classification, single parent, previous neonatal deaths or previous stillbirths); 

(ii) pregnancy factors (exposure to smoking, alcohol or drugs during the current pregnancy, 

gestational hypertension/pre-eclampsia, diabetes, idiopathic preterm labor, tocolytics, pre-

labor premature rupture of membranes, chorioamnionitis, antepartum hemorrhage); and 
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(iii) fetal factors (multiple gestation, fetal growth restriction, fetal distress). 

Perinatal factors included (i) intrapartum factors (intrapartum magnesium sulfate, 

antenatal steroids, mode of delivery, gestational age, birth weight, SGA, infant sex, outborn 

status, birth asphyxia, need for resuscitation (chest compression or epinephrine) at birth, 

and 1- and 5-minute Apgar scores); and (ii) factors related to the first 6 postnatal hours 

(infant’s body temperature, hemoglobin, and blood pressure on admission to the NICU). 

Birth weight z-scores were determined relative to a Canadian reference population to assess 

infant growth independent of gestational age and sex (146). 

 

Postnatal factors included (i) postnatal treatments (surfactant, prophylactic indomethacin, 

ibuprofen or indomethacin for medical closure of patent ductus arteriosus, inhaled nitric 

oxide, antireflux medications, muscle relaxants and systemic dexamethasone); (ii) neonatal 

morbidities related to preterm birth (hypoglycemia, hyperglycemia, anemia, 

thrombocytopenia, respiratory distress syndrome, severe IVH (defined as grade 3 or 4 IVH 

as per Papile classification) (51), parenchymal echodensities, cerebral white matter cystic 

lesions (PVL or porencephaly), BPD (defined as oxygen dependency for at least 28 days 

with cystic changes on chest x-ray), severe ROP (defined as stage 3 or higher based on the 

revised international classification system (147) or requiring intervention), NEC (defined 

as Bell stage 2 or higher) (148), sepsis (defined as positive bacterial, viral, or fungal blood 

or cerebrospinal fluid culture); (iii) severe neonatal illnesses (resuscitation during NICU 

stay, pneumothorax, inotropes for hypotension or cardiac dysfunction, major surgery and 

discharge on home oxygen); and (iv) the number of days on mechanical ventilation and 

length of hospital stay.  
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4.5. Data Preparation 

 

Data coding, checking for missing values, assessment of distribution of continuous 

variables, and testing for linear relationships between continuous variables and the logit of 

CP were performed.  

 

Three observations with unusual clinical courses were removed from the data (1 child with 

extremely long hospital stay and 2 children with extremely long mechanical ventilation 

days). Biologically implausible values were replaced with missing values. Patient’s records 

were checked for extreme values for recording or abstraction errors and no abstraction 

errors were identified. Extreme values confirmed to be true values were retained and those 

with presumed error on recording or abstraction were replaced by missing values. 

 

Data coding included dichotomization of some continuous variables: number of cigarettes 

smoked/day to maternal smoking during pregnancy, duration of rupture of membranes to 

prelabor premature rupture of membranes >18 hours, and duration of nasal continuous 

positive airway pressure (CPAP) to nasal CPAP. Some continuous variables were used to 

create new categorical variables: gestational age in weeks to create extremely low 

gestational age (<26 weeks), birth weight in grams to create extremely low birth weight 

(<1000 g), duration of antenatal steroids to create appropriate antenatal steroids (>24 hours 

prior to delivery), and mean blood pressure to hypotension on admission to NICU (If mean 

blood pressure value is less than gestational age at birth). For variables with multiple 

codings/definitions (e.g. maternal diabetes), the most accurate definition or the one with 

the lowest missing data was selected.  

 

New variables were created for any maternal hypertension (to include pre-existing 

hypertension, gestational hypertension or pre-eclampsia), neonatal inotropes (to include 

receipt of dopamine or dobutamine) and cystic white matter lesions (to include cystic PVL 

and porencephalic cyst). There was a change in practices over time for PDA medical 

treatment (from indomethacin to ibuprofen) and for ROP treatment (from laser surgery to 

intravitreal injection of bevacizumab); therefore, new variables were created to reflect any 
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treatment regardless of the year of birth: PDA medical treatment (ibuprofen or 

indomethacin) and any ROP treatment (laser surgery or bevacizumab). 

 

Checking for missing data revealed 16 variables with missing values in the dataset; the list 

of those variables is provided in Appendix 2. No imputation for missing variables was 

conducted, as the proportion of missing values was low. Only two variables had equal or 

>5% of missingness (maternal smoking 5% and SES 11%), and a "missing" category was 

created for these two variables. Pairwise deletion was used for model development where 

observations with complete data for predictors were included in the model, whereas those 

with missing data for other predictors were excluded. 

 

Histograms were created to assess the distribution of continuous variables; maternal age, 

birth weight, z-scores of birth weight, admission temperature and admission hemoglobin 

were normally distributed (Appendix 2).  

 

Testing for linear relations between continuous variables and the logit of CP was 

conducted. The continuous variables, blood pressure on admission, duration of CPAP, and 

duration of high frequency oscillatory ventilation, were dichotomized as they showed a 

non-linear relation with the logit of CP. The relation of the remaining continuous variables 

was reasonably linear over data-dense sections of the independent variables (Appendix 2). 

 

 

4.6 Statistical Analysis 

 

Comparison of variables between the groups of children with and without CP in the full 

dataset was done using Fisher's exact tests for categorical variables and t-tests or Mann-

Whitney tests for continuous variables as appropriate. Then, the full dataset was randomly 

divided into a training (70%) and a testing (30%) datasets prior to analysis. Stata/IC 16 

(Stata Corp., College Station, TX, US) was used for all analyses with the exception of the 

RF models. 
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Objective 1: Logistic regression model 

Model building. Using the training dataset, candidate predictors of CP were identified 

using a series of logistic regression models. First, unadjusted models were run for each 

candidate predictor of CP. Then, three multivariable regressions were built using the 

candidate predictors available at each of the prespecified time points (prenatal, perinatal, 

and postnatal). Variables with P < 0.1 in the unadjusted analysis were entered into the 

corresponding multivariable model, and variables with P < 0.05 were removed from the 

model (149). 

 

The set of candidate predictors from these three logistic regression models developed at 

each time point were then added incrementally together and only variables with p < 0.1 

were retained, resulting in three multivariable regression models as follows: 

● Prenatal Model:  Maternal and pregnancy-related variables. 

● Prenatal/Perinatal Model: Prenatal Model plus perinatal variables (intrapartum and 

early neonatal variables within 6 hours from birth). 

● Full (Prenatal/Perinatal/Postnatal) Model: Prenatal/Perinatal Model plus postnatal 

variables up to hospital discharge.  

  

Model testing. For each of the three models that were developed, the predicted probability 

of developing CP for each participant given their set of predictors was computed in both 

the training and testing datasets using (115)  

P (CP = 1) = e (a+b1x1+b2x2+….bixi) / 1+ e (a+b1x1+b2x2+….bixi)   

Performance of the logistic regression models at the three time points were assessed for 

discrimination, calibration, and classification. The diagnostic properties of the models were 

determined (149). 

 

Discrimination of the models was assessed using c-statistics or AUC to estimate the overall 

ability of the prediction models to discriminate between children who develop CP from 

those who do not. The AUC, based on the trade-off between the true positive (sensitivity) 

and the false positive (1-specificity) rates of CP, was evaluated from ROC curves at the 

three pre-defined time points.  
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Calibration was assessed using the goodness of fit of the prediction models to evaluate the 

agreement between the observed and the predicted CP in the full sample by Pearson χ2 test 

and across different risk deciles by the Hosmer-Lemeshow method (150). Evidence of poor 

fit is indicated if either test showed statistical significance (p < 0.05). Using Pearson χ2, 

the training full model fits reasonably well with p = 0.32. However, the number of covariate 

patterns was close to the number of observations (528 and 533 respectively), making the 

applicability of the Pearson χ2 test questionable. Therefore, the Hosmer-Lemeshow 

method regrouped the data by forming 10 almost equal-sized groups based on percentiles 

of the predicted probabilities of CP (each group has the same or similar predicted 

probability) (150).  

 

The models’ classification was determined using the average classification accuracy (the 

proportion of correctly classified observations) and the diagnostic properties (sensitivity, 

specificity, PPV, NPV, and LR) at a selected cut-off of a predicted probability (151). 

Accuracy was determined as the proportion of both true positive and true negative 

predicted cases in relation to the whole prediction (both true and false).  

 

The selected cut-off for each model was based on maximizing sensitivity, specificity and 

correct classification, while considering the clinical context in which the prediction was 

used. For prenatal and perinatal prediction, the aim was to ensure high specificity and 

negative predictive value to enable prediction of true negative cases of CP to guide 

counseling parents when providing life support or intensive care after extreme preterm 

birth. By contrast, the postnatal prediction is used to counsel parents about the long-term 

outcome and to refer high risk infants for early intervention, and therefore should have a 

high sensitivity to identify most cases of CP, but with low false positive rate to avoid 

creating anxiety and burden on families and overuse of health care services. 

 

Internal validation. The logistic regression models developed on the training dataset were 

validated using the testing dataset. The AUC of the validated models, their accuracy and 

diagnostic properties (sensitivity, specificity, PPV, NPV, and LR) were determined at the 

selected cut-off of a predicted probability. 
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Objective 2: Random Forest Model 

Model building. The RF ensemble method was used to predict CP from prenatal, perinatal 

and postnatal candidate predictors, as described before. Since RF, in the presence of an 

imbalance of the predicted classes (11% CP vs. 89% non-CP) will favor the majority class, 

up-weighting of the minority class (CP) was performed before the analysis to achieve an 

even ratio of the two classes (152). The number of variables available for splitting at each 

node (2-10) was optimized using 10-fold cross validation, repeated 10 times, over a 

parameter grid in the training data; 500 trees were used for the RF. Classification of CP 

(yes/no) for each observation was based on the majority vote of the RF trees. I qualitatively 

assessed the relative importance of predictors using the variable importance plots. RF 

models were implemented in R / RStudio (153) with the caret package (154) and the 

randomForest package (155). 

 

Model testing. Due to the upweighting of the minority class, assessment of model 

calibration was not meaningful. Discrimination was assessed using AUC and the 

classification accuracy was evaluated based on the confusion matrix for each model. 

 

Internal validation. The RF models developed on the training dataset were validated using 

the testing dataset. The validated models’ AUC, accuracy and diagnostic properties 

(sensitivity, specificity, PPV, NPV, and LR) were determined.  

 

Objective 3: Comparing Logistic Regression and RF Prediction Models  

The c-statistics or AUC, for both the logistic regression and RF full models, provided an 

assessment of their discriminative ability to correctly identify those preterm children who 

do develop CP from those who do not. Using the AUC, I quantitatively compared both full 

prediction models to identify the model that provided a better discrimination of CP.  

Discrimination was considered poor if AUC was 0.5-0.7, fair if AUC was 0.7-0.8, good if 

AUC was 0.8-0.9 and excellent if AUC was > 0.9.  
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4.7. Ethics  

 

The research protocol was reviewed by the Data Management Committee of the PFUP and 

the Research Ethics Board at the IWK Health Centre (file # 1024274). De-identified data 

were stored on the NS Health secure network drive and accessed through a password-

protected computer at the IWK Health Centre.  
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CHAPTER 5: RESULTS 

 

5.1 Study Population 

 

A cohort of 1,111 very preterm infants (< 31 weeks’ gestation) were born during the study 

period. After the exclusion of infants with congenital anomalies (n=44) or receiving 

palliation at delivery (n=117), 950 very preterm infants were eligible for inclusion in this 

study. Of those, 112 infants died prior to 36 months of corrected age (majority during NICU 

stay), 16 children were lost to follow-up, and 42 children had their last assessment done 

prior to 18 months corrected age. A further three infants with influential values were 

excluded from the analysis at the modeling stage; 1 with hospitalization for 729 days and 

2 with > 6 months of mechanical ventilation (4356 hours), leaving 777 preterm survivors 

(93% of the eligible cohort) in the analysis sample.  

 

The mean gestational age in this cohort was 28 weeks (SD 1.9), ranging from 22 to 30 

weeks, and the mean birth weight was 1140 g (SD 324), ranging from 460 to 2180 g. Of 

the 777 infants included in the analysis, 108 (14%) were of extreme low gestational age 

(<26 weeks) and 274 (35%) were of extreme low birth weight < 1000 g. The mean duration 

of follow-up was 35 (SD 9) months of post-term age. 

 

Within this cohort, 86 children were diagnosed with CP (11%) and 691 children were free 

from CP (89%) (Figure 5.1). Almost two thirds of children with CP (65%) had mild disease 

(GMFCS level I: n=57) and the majority (84%) were ambulatory (GMFCS level I: n=57, 

GMFCS level II: n=15). Only 14 children (16%) had non-ambulatory CP (GMFCS level 

III: n=8, GMFCS level IV: n=4, GMFCS level V: n=2).  
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Figure 5.1 Study Population Flow Chart 

 

 

5.1.1 Comparison of Children With and Without CP in the Study Cohort 

Table 5.1 shows the prenatal, perinatal, and postnatal characteristics of children with and 

without CP.  

 

Prenatal variables: Mothers of children with CP were more likely to be single-parent, but 

less likely to have suffered from gestational hypertension compared to mothers of children 

without CP.   

 

 

Preterm 22-30 weeks 

(2000-2014) 

N=1111 

Excluded 

N=44 congenital anomalies 

N=117 palliation at birth  

N=112 died 

N=16 lost to follow up 

N=42 last seen before 18 months of age 

N=3 dropped (extreme outlier) 

Preterm 22-30 

weeks included in 
analysis 

N=777 

N=777 

CP 

N=86 

(11%) 

No CP 

N=691 

(89%) 
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Perinatal variables: Children with CP were less likely to be exposed in-utero to antenatal 

steroids or magnesium sulfate, had lower gestational ages and birth weights compared to 

those without CP. They were more likely to be of extremely low gestational age and 

extremely low birth weight compared to those without CP. They also had higher rates of 

severe birth depression and delivery room resuscitation (chest compression or 

epinephrine), lower 5-minute Apgar scores, and lower blood pressure and hemoglobin 

levels within the first 6 hours of admission to NICU compared to children without CP. 

Postnatal variables: Children with CP were generally sicker than those without CP as 

indicated by higher rates of respiratory morbidity, severe brain injury (including cystic 

white matter lesions, posthemorrhagic hydrocephalus and cerebral parenchymal echodense 

lesions), hemodynamically significant ductus arteriosus, sepsis, NEC, severe ROP, and 

hematologic abnormalities compared to those without CP. They also received more 

intensive medical and surgical therapy during their NICU stay and they had longer median 

length of hospitalization compared to those without CP (Table 5.1).  
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Table 5.1: Comparison of Children With and Without CP in the Study Cohort 

Variable 
 

Type 

% 

Missing 

CP 

(n=86) 

No CP 

(n=691) 

PRENATAL VARIABLES 

Maternal age (mean, SD) Continuous - 27.2 (2.1) 27.9 (1.9) 

Married or common law Binary 1 63/86 (73) 584/681 (86) 

SES Categorical 11     

         Class I   8/76 (11) 58/613 (10) 

         Class II   18/76 (24) 209/613 (34) 

         Class III   22/76 (29) 176/613 (29) 

         Class IV   15/76 (20) 108/613 (18) 

         Class V   13/76 (17) 62/613 (10) 

Urban residence  Binary - 67/86 (78) 500/691 (72) 

Primigravida Binary - 39/86 (45) 290/691 (42) 

Multiparity Binary - 13/86 (15) 98/691 (14) 

Abortion/miscarriages Binary - 27/86 (31) 233/691 (34) 

Previous stillbirth Binary - <5/86 (5) 16/691 (2) 

Smoking Binary 5 24/76 (32) 180/661 (27) 

Substance use Binary - 6/86 (7) 76/691 (11) 

Psychiatric disease Binary - 11/86 (13) 90/691 (13) 

Antidepressants Binary - 5/86 (6) 50/691 (7) 
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Variable 
 

Type 

% 

Missing 

CP 

(n=86) 

No CP 

(n=691) 

Hypertension Binary - 11/86 (13) 141/691 (20) 

Diabetes Binary - 5/86 (6) 34/691 (5) 

Tocolytics Binary - 25/86 (29) 247/691 (36) 

Indomethacin (for tocolysis) Binary - 12/86 (14) 98/691 (14) 

Prelabor premature rupture of 

membranes 
Binary - 16/86 (19) 187/691 (27) 

Chorioamnionitis or funisitis Binary - 11/86 (13) 84/691 (12) 

GBS colonization Binary - 8/86 (9) 73/691 (11) 

Intrapartum antibiotics Binary - 36/86 (42) 309/691 (45) 

Abruption Binary - 9/86 (11) 49/691 (7) 

Antepartum hemorrhage Binary - 25/86 (29) 151/691 (22) 

Multiples Binary - 24/86 (28) 216/691 (31) 

Fetal growth restriction Binary - 9/86 (11) 97/691 (14) 

Fetal distress Binary - 8/86 (9) 

63/691 (9) 

 

 

PERINATAL VARIABLES 

Intrapartum magnesium sulfate Binary - 13/86 (15) 213/691 (31) 
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Variable 
 

Type 

% 

Missing 

CP 

(n=86) 

No CP 

(n=691) 

Any antenatal steroids Categorical 0.1 68/86 (79 ) 636/691 (92) 

Antenatal steroids (>24 hours prior to 

delivery) 
Binary 0.1 35/86 (41)  509/690 (74)  

Cesarean section Binary - 42/86 (49) 408/690 (59) 

Moderate-severe asphyxia Binary - 75/86 (87) 501/691 (73) 

Chest compression/epinephrine Binary 0.5 15/84 (18) 33/689 (5) 

Outborn Binary - 9/86 (10) 44/691 (6) 

Male sex Binary - 42/86 (49) 369/691 (53) 

Gestational age in weeks  

(mean, SD) 
Continuous - 27.2 (2.1) 27.9 (1.9) 

Extremely low gestational age Binary - 24/86 (28) 84/691 (12) 

Birth weight in grams (mean, SD) Continuous - 1089 (344) 1148 (321) 

Extremely low birth weight Binary - 39/86 (45) 235/691 (34) 

Birth weight z-score (mean, SD) Continuous 0.2 0.125 (0.88) -0.035 (0.84) 

Small for gestational age Binary - 6/86 (7) 49/691 (7) 

Apgar at 1 minute (median, IQR) Continuous 1 4 (4) 5 (3) 

Apgar at 5 minutes (median, IQR) Continuous 1 7 (2) 8 (3) 

Admission temperature 

 (mean, SD) 
Continuous 2 36.6 (0.8) 36.7 (0.8) 

Admission hemoglobin  Continuous 1 153 (28) 162 (27) 
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Variable 
 

Type 

% 

Missing 

CP 

(n=86) 

No CP 

(n=691) 

(mean, SD) 

Hypotension on NICU admission  Binary 2 20/83 (24) 94/679 (14) 

POSTNATAL VARIABLES 

Lowest hemoglobin during first 24 

hours (median, IQR) 
Continuous 0.6 83 (12)  86 (6)  

Severe IVH (≥ grade 3 IVH) Binary - 35/86 (41) 38/691 (6) 

Posthemorrhagic hydrocephalus Binary - 22/86 (26) 11/691 (2) 

Ventriculoperitoneal shunt Binary - 18/86 (21) 5/691 (1) 

Cystic brain lesions  

(PVL, porencephaly) 
Binary - 40/86 (47) 9/691 (1) 

Parenchymal echodense brain lesions Binary - 15/86 (17) 99/691 (14) 

Severe RDS Binary - 80/86 (93) 453/691 (66) 

Surfactant for RDS Binary - 77/86 (90) 486/691 (70) 

Hours on mechanical ventilation 

(median, IQR) 
Continuous - 349 (1091) 44 (442.3) 

Cystic BPD Binary - 28/86 (33) 119/691 (17) 

Dexamethasone for BPD Binary - 26/86 (30) 107/691 (16) 

Home oxygen at discharge Binary - <5/86 (4) 30/691 (4) 

Nasal CPAP Binary - 63/86 (73) 552/691 (80) 

High frequency oscillation Binary - 22/86 (26) 65/691 (9) 
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Variable 
 

Type 

% 

Missing 

CP 

(n=86) 

No CP 

(n=691) 

Pneumothorax Binary - <5/86 (5) 30/691 (4) 

Pulmonary hemorrhage Binary - 5/86 (6) 18/691 (3) 

Treatment for ROP Binary - 50/86 (58) 320/691 (46) 

Significant PDA Binary - 37/86 (43) 167/691 (24) 

Medical treatment for PDA Binary - 40/86 (47) 212/691 (31) 

PDA ligation Binary - 18/86 (21) 60/691 (9) 

NEC ≥ Bell stage 2 Binary - 6/86 (7) 18/691 (3)  

Duration of TPN (Median, IQR) Continuous 2 40 (34) 26 (27) 

Neonatal septicemia Binary - 32/86 (37) 160/691 (23) 

Clinical (culture negative) sepsis Binary - 5/86 (6) 72/691 (10) 

Systemic infection Binary - 38/86 (44) 242/691 (35) 

Neonatal anemia Binary - 77/86 (90) 522/691 (76) 

Neonatal thrombocytopenia 

(<100,000) 
Binary - 33/86 (38) 123/691 (18) 

Severe neonatal hypoglycemia  

(<1.67 mmol/L) 
Binary - 14/86 (16) 77/691 (11) 

Insulin for neonatal hyperglycemia Binary - 22/86 (26) 70/691 (10) 

Inhaled nitric oxide Binary - 13/86 (15) 37/691 (5) 

Prophylactic indomethacin Binary 0.1 9/85 (11) 68/691 (10) 

Inotropes Binary - 34/86 (40) 79/691 (11) 

Muscle relaxant Binary - 26/86 (30) 111/691 (16) 
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Variable 
 

Type 

% 

Missing 

CP 

(n=86) 

No CP 

(n=691) 

Major surgery Binary - 21/86 (24) 53/691 (8) 

Antireflux medications Binary - 14/86 (16) 97/691 (14) 

Resuscitation during NICU stay Binary - 13/86 (15) 32/691 (5) 

Hospitalization days  

(median, IQR) 
Continuous 1 87 (60) 70 (44) 

Data are presented as n/N (percentage), mean (±SD) or median (IQR).       The dash indicates no missing data                                               

Abbreviations: BPD (bronchopulmonary dysplasia), CP (cerebral palsy), CPAP (continuous positive airway 

pressure), GBS (group B streptococci), IVH (intraventricular hemorrhage), IQR (interquartile range), NEC 

(necrotizing enterocolitis), NICU (Neonatal Intensive Care Unit), PDA (patent ductus arteriosus), PVL 

(periventricular leukomalacia), RDS (respiratory distress syndrome), ROP ( retinopathy of prematurity), SD 

(standard deviation), SES (socioeconomic status).   

 

The full population dataset was then randomly assigned to a training set (70%, n=544) to 

develop the prediction models and a testing set (30%, n=233) to test their predictive 

performance.  

 

Table 5.2: Random Splitting of Population Dataset 

 CP No CP Total 

Testing Dataset 26 (11) 207 (89) 233 (100) 

Training Dataset 60 (11) 484 (89) 544 (100) 

Total  86 (11) 691 (89) 777 (100) 

Data are presented as number (percentage) 
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5.2 Logistic Regression Model Development and Testing 

The development and internal validation of the CP prediction models at the three time 

points (prenatal, perinatal, and postnatal) was reported as per the TRIPOD statement 

“Transparent Reporting of a Multivariable prediction model for Individual Prognosis or 

Diagnosis” (TRIPOD) [http://www.tripod-statement.org/TRIPOD/TRIPOD-Checklists].  

 

 

5.2.1 Univariate analysis of the Training Dataset 

The list of the prenatal, perinatal, and postnatal candidate predictors and their unadjusted 

association with CP (OR with 95% CI) are provided in Tables 5.3 (1-3). Thirty-eight 

candidate predictors were associated with CP at the three time points with p < 0.05. 

  

http://www.tripod-statement.org/TRIPOD/TRIPOD-Checklists
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Table 5.3.1 Prenatal Risk Factors Associated with CP on Univariate Analysis 

Variable Unadjusted OR (95% CI) 

Maternal age 0.97  (0.93-1.02) 

Married or common law  0.4  (0.22-0.74) 

SES                    Class I 

                           Class II 

Class III 

Class IV 

Class V 

Ref. 

0.59  

0.80 

1.41 

2.04  

Ref. 

(0.19-1.80) 

 (0.27-2.38) 

 (0.65-6.41) 

(0.47-4.24) 

Urban residence 2.28  (1.09-4.76) 

Primigravida 1.01  (0.58-1.73) 

Multiparity 1.12  (0.53-2.38) 

Abortion/miscarriage 1.03  (0.59-1.81) 

Previous stillbirths 3.13  (0.81-12.14) 

Smoking 1.21  (0.66-2.24) 

Substance use 0.79  (0.30-2.06) 

Psychiatric disease 0.72  (0.30-1.73) 

Antidepressants 0.92  (0.31-2.67) 

Hypertension 0.51  (0.22-1.15) 

Diabetes 1.43  (0.48-4.29) 

Tocolytics 0.79  (0.44-1.43) 

Indomethacin 1.56  (0.77-3.16) 

Prelabor premature rupture of membranes 0.67  (0.35-1.31) 

Chorioamnionitis or funisitis 1.45  (0.72-2.93) 

Maternal antibiotics 0.96  (0.56-1.66) 

Antepartum hemorrhage 1.90  (1.07-3.36) 
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Variable Unadjusted OR (95% CI) 

Multiples 0.83  (0.46-1.53) 

Fetal growth restriction 0.84  (0.37-1.92) 

Fetal distress 1.17  (0.48-2.88) 

Data presented as unadjusted OR (95% CI), bold font indicates statistical significance    

Abbreviations: CI (confidence interval), CP (cerebral palsy), OR (Odds ratio), SES 

(socioeconomic status)  
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Table 5.3.2: Perinatal Risk Factors Associated with CP on Univariate Analysis 

Variable Unadjusted OR (95% CI) 

Cesarean Section 0.55 (0.32-0.94) 

Intrapartum magnesium sulfate 0.40  (0.19-0.84) 

Antenatal steroids  0.23  (0.13-0.40) 

Moderate-severe asphyxia 2.49  (1.15-5.38) 

Chest compression/epinephrine  4.03  (1.87-8.66) 

Gestational age  0.83  (0.73-0.95) 

Extreme prematurity (< 26 weeks) 2.92  (1.58-5.34) 

Birth weight  1.0  (1.00-1.00) 

Birth weight z score  1.34  (0.97-1.85) 

Extreme low birth weight (<1000 grams) 1.48  (0.86-2.55) 

Small for gestational age (<10th centile) 1.28  (0.48-3.43) 

Male 0.79  (0.46-1.36) 

Apgar at 1 minute  0.82 (0.73-0.92) 

Apgar at 5 minutes  0.77  (0.67-0.88) 

Admission temperature 0.85  (0.57-1.27) 

Admission hemoglobin  0.99  (0.98-1.00) 

Hypotension on admission to NICU  2.09  (1.08-4.04) 

Outborn 1.47  (0.59-3.66) 

Data presented as unadjusted OR (95% CI), bold font indicates statistical significance           

Abbreviations: CI (confidence interval), CP (cerebral palsy), NICU (Neonatal Intensive Care 

Unit), OR (Odds ratio)  

Table 5.3.3: Postnatal Risk Factors Associated with CP on Univariate Analysis 

Variable Unadjusted OR (95% CI) 

Lowest hemoglobin during first 24 hours  0.97  (0.96-0.99) 

Severe IVH (≥ grade 3 IVH) 10.46  (5.52-19.81) 

Posthemorrhagic hydrocephalus  19.83  (7.98-49.32) 

Ventriculoperitoneal shunt 40.08  (10.93-147.00) 
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Variable Unadjusted OR (95% CI) 

Cystic brain lesions (PVL, porencephaly) 83.83 (30.33-231.68) 

Parenchymal echodense brain lesions 1.24  (0.60-2.57) 

Severe RDS 5.00 (2.11-11.88) 

Surfactant for RDS 3.21 (1.42-7.22) 

Nasal CPAP 0.63  (0.34-1.16) 

Home oxygen at discharge 1.11  (0.32-3.81) 

Duration of tracheal intubation 1.00 ( 1.00-1.00) 

Cystic BPD 2.42  (1.36-4.32) 

Dexamethasone 1.86  (1.01-3.41) 

Pneumothorax 0.72  (0.17-3.16) 

Pulmonary hemorrhage 2.26  (0.61-8.35) 

NEC (≥ stage 2 Bell’s) 3.91 (1.31-11.67) 

Days of parenteral nutrition  1.02  (1.00-1.03) 

Neonatal septicemia 2.32 (1.33-4.06) 

Clinical sepsis 0.66  (0.23-1.91) 

Systemic infection 1.96  (1.15-3.30) 

Severe ROP (≥ stage 3) 3.70  (1.90-7.22) 

Treatment for ROP 1.44  (0.84-2.48) 

Prophylactic Indomethacin  0.50  (0.15-1.65) 

Significant PDA 2.60 (1.50-4.49) 

Treatment for PDA 1.93 (1.12-3.32) 

PDA ligation 2.97  (1.52-5.82) 

Neonatal thrombocytopenia 

 (<100,000 10 e/L)) 

3.14  

 

(1.77-5.57) 

Neonatal anemia 3.55 (1.39-9.07) 

Severe neonatal hypoglycemia  1.63  (0.78-3.40) 

Inhaled nitric oxide 3.52  (1.66-7.49) 

Antireflux medications 0.84  (0.38-1.84) 

Insulin for hyperglycemia 3.46  (1.81-6.62) 

High frequency oscillatory ventilation 3.30  (1.73-6.30) 

Inotropes  4.48  (2.49-8.06) 
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Variable Unadjusted OR (95% CI) 

Muscle paralysis 2.01  (1.10-3.66) 

Major surgery 1.26  (1.90-7.22) 

Resuscitation during NICU stay 3.24  (1.43-7.32) 

Length of hospitalization 1.00 (1.00-1.01) 

    Data presented as unadjusted OR (95% CI), bold font indicates statistical significance 

Abbreviations: BPD (bronchopulmonary dysplasia), CI (confidence interval), CP (cerebral palsy), 

CPAP (continuous positive airway pressure), IVH (intraventricular hemorrhage), NEC (necrotizing 

enterocolitis), NICU (Neonatal Intensive Care Unit), OR (Odds ratio), PDA (patent ductus 

arteriosus), PVL (periventricular leukomalacia), RDS (respiratory distress syndrome),ROP 

(retinopathy of prematurity)  

 

 

5.2.2 Multivariable Logistic regression Model Development on Training Dataset 

The prediction models at each time point with their predictors and diagnostic properties are 

reported below. Table 5.4 compares the individual logistic regression and the full model 

developed from these multiple regressions in incremental steps using prenatal, perinatal, 

and postnatal predictors. The predictors for each model with their adjusted OR (95% CI) 

and the model’s AUC are provided. 

 

Prenatal Model (Time Point 1) 

Maternal characteristics identified as independent predictors of CP in the Prenatal model 

included: marital status (being married or common-law), receipt of tocolytics, 

hypertension, geographic area of residence, and indomethacin therapy). No evidence of a 

poor fit was demonstrated by the goodness of fit (p = 0.95) and Hosmer-Lemeshow (p = 

0.66) tests. The Prenatal model discrimination was poor (AUC 0.68, 95% CI 0.61-0.76). 

The model correctly classified 80% of children with respect to CP status; the model’s 

diagnostic properties were: sensitivity 42%, specificity 85%, PPV 26%, NPV 92%, LR+ 

2.75, LR- 0.69, false positive rate 15%, and false negative rate 58%. 
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Perinatal Model  

Using only perinatal predictors, antenatal steroids, small for gestational age, receipt of 

resuscitation at birth (chest compression or epinephrine) and one unit change in the 

exponentially transformed birth weight z scores (cubed birth weight z scores) were 

predictors of CP, when other predictors were kept constant. There was no evidence of poor 

fit as demonstrated by the goodness of fit (p = 0.68) and Hosmer-Lemeshow (p = 0.62) 

tests. The perinatal model discrimination was fair (AUC of 0.76, 95 % CI 0.69-0.83).  

 

Combined Prenatal and Perinatal Model (Time Point 2)  

In the combined prenatal/perinatal model, marital status, receipt of antenatal steroids, small 

for gestational age, resuscitation at birth, and birth weight z-score were predictors of CP. 

There was no evidence of poor fit as demonstrated by testing for goodness of fit (p = 0.2) 

and Hosmer-Lemeshow (p = 0.7) tests. Adding perinatal variables to the prenatal model 

improved the discriminative performance from poor to fair (AUC 0.77, 95% CI 0.70-0.84). 

The combined prenatal-perinatal model correctly classified 77% of children; the model’s 

diagnostic properties were: sensitivity 68%, specificity 78%, PPV 27%, NPV 95%, LR+ 

3.06, LR- 0.41.  

 

Postnatal Model  

Cystic white matter lesions, brain parenchymal echodensities, posthemorrhagic 

hydrocephalus, severe RDS, treatment for ROP, receipt of inotropes, and receipt of nasal 

CPAP were predictors of CP. There was no evidence of poor fit as demonstrated by 

goodness of fit (p = 0.99) and Hosmer-Lemeshow (p = 0.84) tests. The postnatal model 

discrimination was good (AUC 0.88 (95 % CI 0.83-0.93). 

 

Full Model (Combined Prenatal/Perinatal/Postnatal Model) (Time point 3) 

All prenatal, perinatal, and postnatal predictors from the three models were combined to 

develop the full prediction model of CP. Marital status, antenatal steroids, birth weight z-

score, cystic white matter lesions, brain parenchymal echodensities, posthemorrhagic 

hydrocephalus, treatment for ROP, neonatal thrombocytopenia, receipt of nasal CPAP and 

medical treatment of reflux were independent predictors of CP. There was no evidence of 
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poor fit by goodness of fit (p = 0.32) and Hosmer-Lemeshow (p = 0.53) tests. The full 

model had excellent discrimination with AUC of 0.91 (95% CI 0.87-0.96) and correctly 

classified 86% of children with and without CP. The model diagnostic properties were: 

sensitivity 80%, specificity 87%, PPV 43%, NPV 97%, LR+ 6.29, LR- 0.23.  
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5.2.3 Comparison of Logistic Regression Models of CP on the Training Dataset 

The performance of the logistic regression models in the training dataset at the three time 

points (prenatal, perinatal, and postnatal) was assessed using discrimination, calibration 

and classification. Table 5.4 compares the logistic regression models of CP in the training 

dataset. 

 

 

Table 5.4: Logistic Regression Models of CP in the Training Dataset 

 Prenatal 

 Model  

(Time 

point 1) 

Perinatal  

Model 

   Prenatal/ 

Perinatal  

Model  

(Time  

point 2) 

Postnatal  

Model 

Full  

Model (Time 

point 3) 

No. candidate predictors 25 19 13 38 24 

No. predictors in model 5 4 5 7 11 

AUC 

(95% CI) 

0.68 

(0.61-0.76) 

0.76 

(0.69-0.83) 

0.77 

(070-0.84) 

0.88 

(0.83-0.93) 

0.91 

(0.87-0.96) 

Odds ratio (95% CI) 

Prenatal Variables 

Married or common law 0.44 

(0.23-0.85) 

 0.48 

(0.24-0.98) 

 0.24 

(0.11-0.55) 

Urban residency 2.64 

(1.10-4.98 

 2.07 

(0.95-4.54) 

  

Maternal Indomethacin 3.21 

(1.09-9.50) 

    

Tocolytics 0.39     
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 Prenatal 

 Model  

(Time 

point 1) 

Perinatal  

Model 

   Prenatal/ 

Perinatal  

Model  

(Time  

point 2) 

Postnatal  

Model 

Full  

Model (Time 

point 3) 

(0.16-0.98) 

Maternal hypertension 0.37 

(0.15-0.91) 

    

Maternal diabetes 2.64 

(0.83-8.42) 

    

Smoking 1.01 

(0.99-1.02) 

    

Prelabor premature rupture of 

membranes 

0.52 

(0.26-1.03) 

    

Perinatal Variables 

Antenatal steroids  0.21 

(0.11-0.40) 

0.22 

(0.12-0.42) 

 0.43 

(0.20-0.93) 

Resuscitation at birth  2.53 

(1.07-5.97) 

3.38 

(1.46-7.86) 

  

Small for gestational age  6.21 

(1.67-23.05) 

5.51 

(1.47-20.67) 

  

Birth weight z-score  1.75 

(1.16-2.63) 

1.73 

(1.15-2.61) 

 1.81 

(1.13-2.89) 

Hypotension on admission  2.02 

(0.98-4.15) 

1.87 

(0.90-3.87) 

  

Postnatal Variables 
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 Prenatal 

 Model  

(Time 

point 1) 

Perinatal  

Model 

   Prenatal/ 

Perinatal  

Model  

(Time  

point 2) 

Postnatal  

Model 

Full  

Model (Time 

point 3) 

Cystic white matter lesions    128.63 

(34.80-475.39) 

100.57 

(29.70-340.61) 

Parenchymal echodensities    2.76 

(1.09-6.81) 

3.45 

(1.38-8.63) 

Posthemorrhagic 

hydrocephalus 

   7.76 

(1.93-31.20) 

5.36 

(1.32-21.84) 

Severe RDS    3.99 

(1.36-11.72) 

 

Nasal CPAP    0.17 

(0.06-0.48) 

0.34 

(0.14-0.84) 

Inotropes    3.91 

(1.25-12.19) 

 

ROP treatment    3.97 

(1.62-9.73) 

2.68 

(1.16-6.16) 

Thrombocytopenia    2.48 

(0.98-6.24) 

2.60 

(1.01-6.68) 

Reflux treatment    0.30 

(0.09-1.01) 

0.26 

(0.08-0.91) 

Necrotizing enterocolitis    0.05 

)0.02-1.53) 

 

Dexamethasone    0.36 

(0.11-1.15) 
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Abbreviations: AUC (Area under the curve), CI (confidence interval), CP (cerebral palsy), CPAP 

(continuous positive airway pressure, OR (Odds ratio), RDS (respiratory distress syndrome), ROP 

(retinopathy of prematurity). 

 

 

Discrimination of the three logistic regression models of CP in the training dataset was 

determined by AUC as shown from ROC curves in Figure 5.2. The Prenatal model had 

poor discrimination of CP. The model’s discrimination was fair when perinatal predictors 

were added to the prenatal model. The combined prenatal/perinatal/postnatal predictors 

had excellent discrimination with an AUC of 0.91 (95% CI 0.87-0.96).  

 

 

Figure 5.2 The ROC Curves of Logistic Regression Models of CP in the  

Training Dataset 
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The calibration for all the three logistic regression prediction models in the training dataset 

showed no evidence of poor fit as demonstrated by goodness of fit and Hosmer-Lemeshow 

tests.  

 

The classification of the three models in the training dataset was determined by the 

proportion of correctly classified observations at the selected cut-off points, as described 

before. Both the prenatal and the combined prenatal-perinatal models had poor sensitivity 

(42% and 68%, respectively) but relatively good specificity (85% and 78%, respectively). 

They both had high NPV (92% and 95%, respectively) and correctly classified 80% and 

77% of children with and without CP, respectively. The full model provided the highest 

sensitivity, specificity and NPV (80%, 87%, 97% respectively) with a low false positive 

rate of 13% and yielded the best accuracy correctly classifying 86% of children on the basis 

of CP status.  

 

 

5.2.4 Internal Validation of the Developed Logistic Regression Model of CP 

The AUC of the models in the testing dataset at the three time points are shown in Figure 

5.3. Similar to the training dataset, the prenatal model including only maternal and fetal 

predictors resulted in poor discrimination of CP. Combining prenatal and perinatal 

predictors improved the model’s discrimination only slightly but remained poor. The full 

model combining predictors from all three time points showed a good discrimination with 

an AUC of 0.84 (95% CI 0.74-0.95). 
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Figure 5.3: The ROC Curves of the Logistic Regression Models of CP in the Testing Dataset 

 

The calibration for all three models of CP in the testing dataset showed no evidence of poor 

fit as demonstrated by goodness of fit and Hosmer-Lemeshow tests.  

 

Table 5.5 compares the discrimination (AUC), correct classification (accuracy) and 

diagnostic properties of the three validation models. Both the prenatal and perinatal models 

had poor sensitivity, but relatively good specificity. They both had high NPV (89% and 

92%, respectively) and correctly classified 74% and 76% of children with and without CP, 

respectively. The full model provided the highest sensitivity, specificity and NPV (77%, 

85%, 97% respectively) with a low false positive rate of 15% and yielded the best accuracy 

correctly classifying 84 % of children with and without CP in this cohort.  
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5.3 RANDOM FOREST DEVELOPMENT AND TESTING  
 

The discrimination (AUC), accuracy and the diagnostic properties of the RF prediction 

models of CP at the three time points in the testing dataset are shown in Table 5.5.  

 

Figure 5.4 shows the AUC of the three RF models in the testing dataset. Similar to logistic 

regression, the prenatal model discrimination was poor. The addition of perinatal predictors 

to the prenatal model improved the model performance by 11%, resulting in fair 

discrimination. The full model resulted in 14% further improvement and good 

discrimination with an AUC of 0.83 (95% CI 0.73-0.93). 

 

        Prenatal Model                      Prenatal-Perinatal Model                  Full Model 

 

Figure 5.4: The ROC Curves of RF Models of CP in the Testing Dataset 

 

The prenatal and combined prenatal-perinatal RF models correctly classified 72% and 82% 

of children with and without CP. The full RF prediction model, combining predictors of 

all three time points, had the best accuracy correctly classifying 91% of children with and 

without CP in this cohort of very preterm children.  

 

Figures 5.5.1-5.5.3 show the variable importance plots of the three RF models.  Maternal 

age, antenatal steroids and cystic white matter lesions were identified as the most important 

predictors in the prenatal, combined prenatal-perinatal, and the full model, respectively. 
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Figure 5.5.1: Variable Importance Plot of the Prenatal RF Model in the Testing Dataset 
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Figure 5.5.2: Variable Importance Plot of the Prenatal-Perinatal RF Model in the Testing 

Dataset
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Figure 5.5.3: Variable Importance Plot of the Full RF Model in the Testing Dataset  
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5.4 Comparing Logistic Regression and RF Prediction Models 

 

Table 5.5 shows the comparison of the discrimination (AUC) and accuracy (correct 

classification) between the validated logistic regression and RF models in the testing 

dataset at the three time points. The discrimination (AUC) and accuracy (correct 

classification) were similar between RF and logistic regression at all three time points. For 

the full prediction model, both RF and logistic regression yield comparable AUC (0.83 and 

0.84, respectively) with similar precision for both methods. Similarly, RF prenatal and 

perinatal models yield comparable AUC and confidence intervals compared to the 

corresponding logistic regression models. Regardless of the method used for prediction, 

including only prenatal predictors resulted in poor discrimination of CP.  Combining 

prenatal and perinatal predictors, slightly improved the discrimination, but it remained only 

poor to fair. The full prediction model, combining predictors from all three time points, 

resulted in good discrimination and the best accuracy in prediction of CP.  

 

Table 5.5: Comparison of RF and Logistic Regression Models of CP in the Testing 

Datasets 

 Prenatal Model 
Prenatal/Perinatal 

Model 
Full Model 

 Log. Reg. RF Log. Reg. RF  Log. Reg. RF 

AUC 0.53  0.52 0.66  0.70 0.84  0.83 

(95% CI) (0.41-0.66) (0.39-0.65) (0.54-0.78) (0.58-0.82) (0.74-0.95) (0.73-0.93) 

Accuracy 74% 72% 76% 82% 84% 91% 

Data presented as percentages and AUC (95% CI) 

Abbreviations: AUC (area under the curve), CI (confidence interval), Log. Reg. (logistic 

regression), LR (likelihood ratio), NPV (negative predictive value), PPV (positive predictive 

value) 
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Tables 5.6 and 5.7 show the comparison of the diagnostic properties, at the three time 

points, between the logistic regression models and RF models in the testing dataset, 

respectively. 

 

Table 5.6: Comparison of the Diagnostic Properties of Logistic Regression Models of 

CP in the Testing Dataset 

 Prenatal Model Prenatal/Perinatal 

Model 

Full Model 

Cutoff 0.16 0.14 0.1 

Sensitivity 23% 44% 77% 

Specificity 81% 80% 85% 

PPV 13% 22% 40% 

NPV 89% 92% 97% 

LR+ 1.19 2.21 5.26 

LR- 0.95 0.70 0.27 

Data presented as percentages  

Abbreviations: LR (likelihood ratio), NPV (negative predictive value), PPV (positive predictive 

value) 
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Table 5.7: Comparison of the Diagnostic Properties of RF Models of CP in the Testing 

Dataset 

 Prenatal Model Prenatal/ Perinatal 

Model 

Full Model 

Sensitivity 23% 36% 24% 

Specificity 79% 88% 98% 

PPV 12% 27% 75% 

NPV 89% 91% 91% 

LR+ 1.00 3.00 12.0 

LR- 1.00 0.73 0.78 

Data presented as percentages  

Abbreviations: LR (likelihood ratio), NPV (negative predictive value), PPV (positive predictive 

value)  
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CHAPTER 6: DISCUSSION 

 

6.1 Summary of Results 

 

In this study, I developed and compared prediction models for CP using logistic regression 

and RF in a population cohort of very preterm children in Nova Scotia. The full prediction 

model of CP was developed by incremental addition of predictors that were identified from 

three models that included prenatal, perinatal, and postnatal variables, respectively. 

Logistic regression identified maternal marital status (being married or common-law), 

antenatal steroids, birth weight z scores, cystic white matter lesions, parenchymal 

echodensities, hydrocephalus, treatment of severe ROP, receipt of nasal CPAP, treatment 

of reflux and neonatal thrombocytopenia, as independent predictors of CP. By contrast, the 

variable importance plot from RF ranked maternal age, antenatal steroids and cystic white 

matter lesions to be the most important predictors of CP at the three time points, 

respectively. 

 

On internal validation, both RF and logistic regression provided good discrimination 

between children with and without CP in this cohort. In this study, using clinical predictors, 

both RF and logistic regression provided similar AUC (0.83 and 0.84, respectively) and 

comparable classification accuracy (91% and 84%, respectively). Regardless of the method 

used for prediction, the full model that included predictors from all three time points 

provided the highest discrimination and the best accuracy.  

 

This is the first population-based study that developed a prediction model for CP based on 

clinical predictors using the RF ensemble method. The study is also the first to compare 

the predictive performance of RF to the traditionally used logistic regression in this context. 

 

 6.2 Generalizability and Validity 

 

The CP prediction models in this study are likely to be generalizable as they were 

developed from a sample that is representative to other preterm populations in Canada and 

developed countries.  Those populations share similar characteristics in relation to survival, 
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CP rates and the maternal and infants’ characteristics that are considered to be antecedent 

to CP, as shown in table 5.1. The 12% mortality rate of eligible infants in this cohort 

(112/950) is comparable to that reported in the literature, including the International 

Network for Evaluation of Outcomes (iNEo) in neonates (2, 156-158). The iNEo reported 

hospital mortality rate of 9.9% (range 4.7%-17%) among 154,233 infants (<32 weeks, 

<1500 grams) across 11 developed countries including: Canada, Australia, New Zealand, 

Finland, Sweden, Switzerland, United Kingdom, Tuscany region in Italy, Spain, Israel and 

Japan (2). In this cohort, 11% of children born very preterm developed CP, which agrees 

with the incidence rates of CP reported by large population-based studies from Canada and 

other developed countries (8, 9, 20, 26, 28). Of note, Center variability and care practices 

may impact the rates of brain injury antecedent to CP, limiting the generalizability of this 

analysis. However, the rate of cystic white matter lesions, alone or as part of severe 

neurologic injury, identified as the most important predictor in this study, is comparable to 

the published rates in large cohorts of preterm infants (52-54, 157, 158). 

 

A common concern regarding the applicability or the generalizability of prediction models 

is the inconsistency in the definition, assessment procedure or timing of the predictors. 

Database studies that span a longer time period generally have the limitation of changes in 

variable definitions over time or even changes in the diagnostic criteria to define some 

variables. However, the AC Allen Provincial PFUP database has kept all codes constant 

with addition of new codes over time and the program director (M. Vincer) and database 

manager conduct periodic audits to ensure the accuracy and the reliability of the database 

coding. Importantly, the definition of CP has been standardized in the database since its 

inception and the severity classification of CP using GMFCS has been standardized in the 

database since 2000 (over the study period).  

 

In diagnostic prediction models, bias may be introduced by misclassification of outcome 

status due to multiple definitions of the outcome, assessment done at different times, 

assessment not following a standardized referenced method or requiring subjective 

interpretation. The risk of ascertainment bias is low in this study, since the clinical 

diagnosis of CP relied on standardized multiple neuromotor assessment of all infants in 



83 

 

this cohort at regular intervals, regardless of their postnatal course of illness. The 

ascertainment of the outcome in this study was done using a standardized validated method 

(GMFCS)81 performed by clinical experts and confirmed by a Pediatric Neurologist. This 

approach reduces the risk of bias due to unblinding of the assessors to predictors (e.g., 

abnormal findings on brain imaging). Outcomes assessed at different occasions may 

introduce risk of bias, if the frequency of the assessment between participants varied. 

However, this is not the case for this study as participants were assessed at regular intervals 

(at 4, 8, 18 and 36 months of corrected age), and the diagnosis of CP was confirmed at or 

close to 36 months of corrected age. Additionally, there is low risk of selection bias with 

100% of the birth cohort identified and 93% of eligible preterm survivors in this cohort 

having their neurodevelopmental assessments completed. 

 

6.3 Predictors of CP 

 

In the following section, the most pertinent predictors of CP that were identified in the 

current analysis will be discussed in the context of the relevant literature. While most of 

these predictors have physiologic plausibility for their relationship with CP, it should be 

emphasized that the current analysis was not designed to identify explanatory (i.e. causal) 

factors. Some of the studies cited below, however, aimed to assess explanatory factors, and 

hence, the comparability with the current study and predictors identified herein is limited. 

 

6.3.1 Marital status 

In this cohort, being married or in a common-law relationship was identified as an 

independent predictor of CP by logistic regression and was ranked the third on the variable 

importance plot of the prenatal model using RF.  A recent Canadian study reported 

increased risk of mortality (18% vs. 11%, p = 0.009) and NDI (47% vs. 29%, p = 0.003) in 

preterm infants born to a single parent compared to those born to two-parent families (159). 

Almost one in five Canadian families are of single parent status, the majority (80-90%) of 

those being female single parents, with Nova Scotia having the highest rate of children 

living in lone parent families in Canada (160). There are two postulated pathways by which 

single parent status may adversely affect parental mental health and infant outcomes. 

Firstly, single mothers have high stress levels, which may disrupt the placental function of 
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maintaining maternal-fetal intermediary homeostasis, and adversely affect the developing 

fetal brain (161); this is supported by data from human and animal studies showing 

negative adverse effect of parental stress and uterine environment on the neuroplasticity of 

the developing brain, the parental bonding, and the subsequent psychosocial and behavioral 

development of the offspring (161). Secondly, single parents often have lower education, 

lower income, and less access to adequate prenatal care and they are more likely to face 

financial and social challenges compared to two-parent families (162, 163). Thirdly, 

parental stress may affect maternal perceptions, attitude and parent-child 

interaction/attachment, thus negatively impacting the social environment and neurosensory 

stimulation of the child and leads to behavioral and emotional adverse development (164, 

165). Preterm infants may be at special risk of adverse behavioral and psychosocial 

outcomes related to parental stress compared to term infants, owing to their inherent 

biologic risk for brain injury and the vulnerability of their developing brains to 

environmental stressors. Maternal stress related to preterm birth, augmented by the lack of 

support from a partner, was associated with internalizing and externalizing behavior of 

their children at 3 years of corrected age (165).  

  

6.3.2 Maternal age 

Maternal age was identified as an independent predictor of CP in the RF model (see Figure 

5.5.1 and Figure S3a in Appendix 2), but not in logistic regression. In the RF variable 

importance plot, maternal age ranked the first on the prenatal model and the 7th, out of 30 

predictors, in the full prediction model of CP. Several studies and a recent systematic 

review reported an association between advanced maternal age (>35 years) and CP 

particularly in late preterm and term infants (166). However, other studies identified a 

nonlinear (U or J shaped) relation between maternal age at childbirth and development of 

CP in their offspring (167, 168). A recent report on 1391 children with CP from the 

Canadian CP Registry showed that 19% of those children were born to mothers aged 35 or 

older and 4% were born to mothers younger than 20 years (167). The Australian Early 

Development Census compared 107,666 aboriginal and non-aboriginal children and 

reported similar findings with a J-relation between maternal and neurodevelopment of the 

offspring at 5 years of age; being highest (40%, 95% CI 32-49) in children born to mothers 
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younger than 16 years of age and lowest (17%-18%) in children born to mothers 30-35 

years of age, to increase again (reaching 17%-24%) for children born to mother older than 

35 years of age (168).  Both studies identified age-related socioeconomic or pregnancy risk 

factors at both extremes of maternal age. During logistic regression development, I 

examined the shape of the relationship between maternal age and the logit of CP and found 

it to be linear; therefore, I did not categorize the maternal age variable. The fact that RF 

identified maternal age as a predictor may be due to an interaction of maternal age with 

another variable that was strongly predictive of CP; such interaction was not considered in 

the main effects-only logistic regression model. 

  

6.3.3 Antenatal steroids 

Use of maternal antenatal steroids was identified as an independent predictor of CP in both 

the logistic regression and RF models. This finding is in agreement with a large body of 

evidence on the role of antenatal steroids in improving survival, reducing short-term 

morbidities (such as RDS, IVH, NEC), and improving long-term outcomes in preterm 

infants (169). A systematic review of clinical trials of single-course of antenatal steroids 

for preterm birth (before 34 weeks’ gestation) showed a significant reduction in CP (7 

studies, 146 of 1379 infants; RR 0.68, 95%CI 0.56-0.81), severe NDI (RR 0.79, 95%CI 

0.73-0.80) and a significant improvement of intact survival (RR 1.19, 95%CI 1.06-1.33) 

(169). The exact mechanism is unknown, but animal studies showed that antenatal steroids 

resulted in maturation of the sympathoadrenal mechanisms involved in postnatal 

adaptation of preterm sheep, thus optimizing the metabolic, cardiac and respiratory 

responses to preterm birth (170). 

 

6.3.4 Cystic white matter injury 

Both RF and logistic regression showed that cystic white matter lesions (defined as cystic 

PVL and/or porencephaly) was the strongest predictor of CP in this cohort. The strong 

association between cystic white matter lesions and CP agrees with a systematic review 

and meta-analysis of 12 studies of CP in preterm children (79). The definition of cystic 

white matter lesions in the current analysis included both ischemic (cystic PVL) and 

hemorrhagic (porencephalic cyst as a consequence to parenchymal hemorrhage) lesions. 
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This is consistent with definitions of preterm white matter injury defined in literature based 

on abnormalities of brain imaging, with parenchymal hemorrhage, alone or in combination 

with cystic PVL, being the standard definition used by most studies (13-17, 21, 50-52, 

155,156). Cystic PVL, also called “encephalopathy of prematurity”, is a neuronal/axonal 

disease that affects the white matter, but may extend to include the thalamus, basal ganglia, 

brainstem and cerebellum (31). Cystic PVL is characterized by ischemia reperfusion injury, 

influx of inflammatory mediators, apoptosis and delayed neuronal maturation (31). With 

advances in perinatal care, the rates of cystic PVL have declined, but the rate of 

parenchymal hemorrhage remained unchanged at around 10 to 15% over the last decade. 

Therefore, this analysis and previous studies have commonly combined the devastating but 

rare cystic PVL with other cystic white matter lesions (such as porencephaly) into one 

exposure, particularly in studies with small sample size or with few cases of cystic PVL. 

 

The diagnosis of brain lesions in this cohort was largely based on sequential bed-side 

cranial ultrasound done at regular intervals from birth until discharge or term age. At IWK, 

routine sequential cranial ultrasound is done on days 7, 14, and 42 after birth and at term-

equivalent age, with more frequent scans performed if an abnormality is detected on routine 

screening. Sequential ultrasound up to term age provided high specificity and negative 

predictive value for the prediction of CP (sensitivity 76%, specificity 95%, PPV 48% and 

NPV 99%) (84). Although brain MRI at term-equivalent age has been used for prediction 

of CP in preterm children, (16, 87-89, 102, 109), it is not a standard practice at IWK; it is 

sometimes offered for high risk subgroup of preterm survivors, with established severe 

brain injury, hence it was not included as a predictor of CP in this study. 

 

6.3.5 Other predictors of CP 

Gestational age was not retained as a predictor for CP in any of the logistic regression 

models, in spite of the well-established inverse association between gestational age and 

CP. In the RF variable importance plot, Gestational age was ranked as 8th and 14th, among 

30 predictors, in the combined prenatal-perinatal model and the full model, respectively. 

The lack of association between gestational age and CP was reported by 7 out of 9 studies 

included in a meta-analysis of CP in preterm children (79). The explanation for this finding 
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in this cohort is likely the presence of stronger downstream predictors of CP, such as cystic 

white matter lesions, that nullified the association between gestational age and CP. Another 

contributing factor may be the higher hospital mortality in extremely low gestational age 

infants, which may have removed infants from the sample that would otherwise be at high 

risk of CP. 

 

The current study was limited to early clinical predictors that could be abstracted from the 

medical records prior to term age or hospital discharge. Therefore, it did not include some 

late predictors of CP reported in literature, such as assessment of general movements or 

other standardized neuromotor tests conducted over the first 6-12 months of post-term age 

(16,91,93,96, 97,102,109). The AIMS and the BSITD adapted screener are the only 

standardized neuromotor tests collected by the AC Allen Provincial PFUP database and 

are done routinely at 4-8 months of post-term age (105,140). I did not include those tests 

as predictors of CP in this study as they are performed beyond the postnatal time point 

(term age or hospital discharge) which was selected for early prediction of CP and early 

referrals to rehabilitation. Additionally, assessment of general movements was not included 

in this analysis as it was not performed in our center at the time the cohort was assembled.   

 

6.4 Comparison of logistic regression and random forest  

 

The main objectives of this study were to develop prediction models of CP using logistic 

regression and RF in a population-based cohort of very preterm children, to test their 

predictive performance individually and to examine whether a non-parametric model like 

RF would predict CP better than conventional logistic regression. In this section, I will 

discuss the performance of each prediction method individually and then compare their 

predictive performance to what is reported in the literature and to each other. 

 

6.4.1 Logistic regression 

Traditionally, logistic regression has been used in neonatal literature for the prediction of 

outcomes. The logistic regression model that was developed in this cohort provided good 

discrimination (AUC of 0.84) and accuracy (84%) in classifying children with and without 

CP. Compared to the thirteen prediction studies of CP in preterm children using logistic 
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regression listed in Table 3.1, only two studies (17,91) reported the discriminative ability 

of the developed model (AUC). Broitman et al. (2007) reported CP among 2103 surviving 

extreme low birth weight infants (<1000 grams) admitted to the National Neonatal 

Research Network (19 centers). The authors showed that isolated cranial ultrasound 

findings were poor predictors of CP compared to clinical models and that “All” model 

(clinical and ultrasound variables up to 36 weeks) improved CP prediction compared to 

“early” model (clinical and ultrasound variables at 28 days); AUC 0.78 vs AUC 0.72, 

respectively (P<0.01) (17). Ferrari et al. (2002) followed a small cohort of 84 preterm 

infants <37 weeks’ (CP rate 49%) with abnormal cranial ultrasound findings (defined as 

cystic or non-cystic white matter lesions or grade 3 IVH) and examined late clinical 

variables (general movement assessment and standardized neuromotor exams over the first 

5 months) as predictors of CP at 2-3 years of age (93). The study showed that consistent 

cramped synchronized movements to accurately predict CP and reported a significant 

difference in the discrimination between general movement and ultrasound abnormality as 

predictors of CP; AUC 0.97 and AUC 0.88, respectively (P = 0.001).  

 

The current study reported a higher AUC compared to that by Broitman et al (AUC 0.84 

vs 0.78). Both studies used clinical predictors up to hospital discharge or 36 weeks, 

including ultrasound abnormalities. However, Broitman et al included smaller extreme 

preterm infants at higher risk of CP (CP rate 16%) and reported CP as part of composite 

outcome of NDI in a multicentre cohort with 23% loss to follow up rate, compared to this 

analysis of population-based cohort of bigger preterm infants with low attrition of 7%.  

 

Although the AUC reported by this analysis is inferior to that by Ferrari et al, both studies 

are not comparable: (i) Ferrari et al included a small cohort of higher gestational age infants 

compared to the population-based cohort of very preterm infants (<31 weeks) in this 

analysis, (ii) the study had high risk of selection bias (CP rate 49%); including only those 

infants with ultrasound abnormalities, as a selective small high-risk subgroup of their 

preterm cohort (iii) and finally, the authors assessed mainly late predictors compared to 

early clinical predictors in this analysis.  

 



89 

 

The added benefit of including late predictors, particularly general movement assessment 

and standardized neuromotor tests, to brain imaging in prediction of CP in the preterm 

population has been reported elsewhere. Morgan et al. (2019) conducted a retrospective 

case control study on 441 high risk preterm and term infants and combined all three 

predictors (neuroimaging, general movements assessment and Hammersmith Infant 

Neurological Examination scores at 3 months of post-term age) to develop a pooled early 

prediction model of CP (111). The authors reported a pooled prediction with AUC of 0.99, 

which was higher than that for any individual predictor with excellent classification 

accuracy (98.7%) and diagnostic properties (sensitivity 97.9; specificity 99; PPV 98.6; 

NPV 98.8) (111). Including late variables in future prediction studies of CP may improve 

the discriminative abilities of CP prediction models in preterm children. As of 2020, many 

follow-up programs in Canada, including the Nova Scotia PFUP, routinely assess the 

general movements in preterm infants, so it could be included in future prediction studies 

of CP in Nova Scotia. 

 

The classification accuracy of the full logistic regression model in this analysis is 

comparable to three small studies reporting accuracy of CP classification of 74%, 80% and 

94% (16, 99, 106). All these studies were limited by small sample size, low absolute 

number of CP cases (< 10 per study), and using late clinical predictors (general movements 

assessment, term neuroimaging/behavioral assessment, combined motor tests) assessed at 

3-12 months of post-term age.  

 

The diagnostic properties of the full logistic regression in this study has a high NPV of 

97% and low false positive rate (15%) which makes it useful for clinical use. The PPV of 

the full model was low (40%) which is consistent with the findings from eight prediction 

studies of CP using logistic regression and reporting low PPV ranging from 19%-60% (16, 

86, 89, 91, 99, 104, 106). However, with the exception of AUC, caution with the 

interpretation of the diagnostic properties of the developed prediction models is advised as 

they depend on the selected cutoff and would result in different values for the same sample 

if a different cutoff was selected. 
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 6.4.2 Machine learning 

Over the last two decades, health researchers have increasingly used machine learning to 

develop diagnostic or prognostic models using clinical variables. In neonatal research, two 

small studies used multidimensional data to develop machine learning prediction of CP in 

children born preterm. One study by Hope et al (2008) used RF for prediction of CP (85), 

whereas the other study used support vector machines (101). The study that used RF was 

a single centre retrospective Canadian study, conducted at the IWK Health Centre. The 

authors predicted CP from quantitative texture measures of early cranial ultrasound scans 

performed within the first seven postnatal days. The study was limited by the small sample 

size (37 CP cases and 48 controls) and the case-control design (85). The authors did not 

report AUC or the diagnostic properties of their CP prediction model, but they reported the 

classification accuracy which is lower compared to the full model in the current analysis 

(72% vs 91%, respectively) (83). Stahl et al. prospectively followed 82 infants at 10-18 

weeks post-term age and predicted CP from the infants’ movement patterns; they reported 

that a combination of three motion image variables was the most accurate in predicting CP 

(85% sensitivity, 88% specificity, AUC 0.88 (95% CI 0.77–1.00) (101). 

  

The main difference between this analysis and those studies is their use of machine learning 

for CP prediction in the context of multidimensional data, such as video analysis of 

movements or texture analysis of ultrasound images, in contrast with the current analysis 

testing RF predictive validity relying only on clinical predictors.   

 

The developed prediction model of CP using RF in the present study has many advantages 

over other prediction studies of CP using machine learning methods: (i) being the first 

population-based study that used RF to predict CP in preterm children and to compare the 

predictive performance to conventional logistic regression in this context; (ii) being the 

first study to test RF based only on clinical predictors that can be abstracted from patient 

records compared to the multidimensional data used by other studies; (iii) the low risk of 

selection bias compared to the other studies that included only a selected high risk subgroup 

of preterm infants with CP rates being much higher than the general population; and (iv) 
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using early predictors, prior to hospital discharge or before term age, whereas Stahl et al. 

used relatively late predictors occurring between 10 and 18 weeks of corrected age (101).  

  

 

6.4.3 Comparing the predictive performance of RF and logistic regression models of 

CP  

In the present study, both RF and logistic regression yield comparable prediction of CP 

using clinical predictors with regards to discrimination and classification. Both methods 

resulted in good discrimination with similar AUC (0.83 vs. 0.84) and slightly better 

classification favoring RF (91% vs 84%). For binary outcomes with low dimensional data 

(the number of covariates is small relative to the sample size), logistic regression is the 

conventional statistical method used for prediction, particularly when researchers are 

interested in explanation (i.e. estimating the causal association between a risk factor and 

an outcome) in addition to prediction. The existing literature comparing different machine 

learning methods (RF, neuronal network, support vector machines and gradient boosted 

decision trees) over conventional regression (logistic or Cox-regression) for prediction of 

clinical outcomes reported conflicting results from superior (131-135) to similar or even 

inferior discrimination (136-138).  

 

The lack of additional benefit of RF over logistic regression in the current study has been 

recently reported in a handful of studies, particularly when clinical variables were used 

(111, 136-138, 171). Pua et al. followed a cohort of 4026 adult patients and compared seven 

different machine learning methods to logistic regression for prediction of walking 

limitation after total knee arthroplasty using demographic and clinical variables similar to 

this analysis. The authors reported similar discrimination of the ordinal logistic regression 

and RF (AUC 0.75 vs. 0.74) and suggested that this could be expected to occur when the 

predictors act additively (i.e. there are no interactions between predictors) or when non-

linearity is not substantial enough for machine learning to be of additional benefit (171).  

  

The conflicting reports in literature, from superior to inferior discrimination of RF 

compared to conventional regression, suggest that none of the methods is superior and that 
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the predictive validity may rely on the settings or the datasets and may not be constant 

across different studies. A recent systematic review of 71 studies published between 

January 2016 and August 2017 reported similar predictive accuracy of machine learning 

and logistic regression in the group of studies with low risk of bias, but superior predictive 

accuracy of machine learning in the group of studies at high risk of bias (172). Almost half 

(137/282) of the included studies in the review were at high risk of bias that was attributed 

to poor methodology or poor reporting of variable selection procedures, the number of 

predictors, checking for linearity and interactions between continuous predictors, dealing 

with class imbalance of the outcome, or validation (172).  

 

Recently, Couronne et al. designed a benchmarking experiment, using 243 real-life datasets 

to compare the predictive ability between logistic regression and RF using the standard RF 

variant with the default tuning parameters as implemented in the widely used R package 

randomForests for pragmatic comparisons (173). The authors showed that RF was superior 

to logistic regression in approximately 69% of the datasets for AUC and accuracy, but the 

difference between both methods was small. The authors also observed that certain 

characteristics of the dataset such as the sample size and the number of predictors were 

associated with superior accuracy of RF over conventional regression when the number of 

predictors was ≥ 5 or the ratio of predictors to sample size was > 0.1 (173). 

  

Apart from discrimination (AUC), caution when interpreting the diagnostic properties of 

the developed prediction models of CP in the current study is advised. For logistic 

regression models, I selected the cutoff that maximized the sensitivity, specificity and 

correct classification. However, different cutoffs would result in different diagnostic 

properties. For RF, I used the confusion matrix to obtain the diagnostic properties of the 

developed RF models. However, this has to be interpreted with caution in view of the 

correction for the class imbalance in the dataset. As the classification algorithms make 

assumptions that the test data are drawn from the same class distribution of the training 

data, RF will favor the majority class in presence of class imbalance. This makes it 

challenging to create appropriate testing and training data sets, unless correction of the 
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imbalance is performed. In this analysis, the minority class (CP) was up-weighed to create 

even groups, before splitting of the study sample. 

 

6.5 Strengths and Limitations   

 

This study provides insight on a novel prediction method of CP using RF applied to a 

population-based cohort of very preterm children and it compared its predictive 

performance to the traditionally used logistic regression. With increased survival of 

extreme preterm infants at highest risk for CP, research that focuses on developing accurate 

prediction models of CP in those infants is very valuable for patients, their families and 

healthcare providers.  

 

This study has several strengths. First, a major strength is the use of a population-based 

cohort of very preterm children. Second, the attrition was low: 93% of the eligible cohort 

had completed the outcome assessment improving the validity of the results, particularly 

with the high loss to follow-up (20-50%) reported by previous population-based studies of 

preterm children (16,17,88,91,98,99). Third, the ascertainment of the primary outcome in 

this study was based on multiple neurological assessments by experienced care providers 

and confirmed by expert neurologists with standardized grading of CP severity based on a 

validated classification system (GMFCS). The primary outcome was ascertained close to 

36 months corrected age, which increases the robustness of the diagnosis and improves the 

diagnostic accuracy of CP, particularly for the mild ambulatory subtype. Finally, the 

analysis used a split sample for internal validation of the developed prediction models.  

 

Compared to the published studies of CP prediction in preterm children [Table 3.1], this 

study reported the measures of performance of the developed models (discrimination, 

calibration and correct classification) in addition to their diagnostic properties. Importantly, 

none of the studies in Table 3.1 performed internal validation to test the performance of 

the developed prediction models in a similar but independent sample from the same 

population.  
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The development and reporting of CP prediction using RF and logistic regression in this 

cohort could be considered superior compared to some of the published studies despite the 

retrospective design. This could be attributed to multiple factors: (i) the low risk of 

selection bias because it was a large population-based cohort with excellent follow up rate, 

compared to the majority of reported studies derived from small cohorts; (ii) inclusion of 

very preterm infants (< 31 weeks) who are at highest risk of CP compared to bigger preterm 

infants included in other studies (86,90,93,95,98-100), particularly the largest two studies 

(429 infants <33 weeks’ gestation and 903 infants < 37 weeks’ gestation) (86,95); (iii) the 

predictors identified by this study have established physiological plausibility in the 

development of CP and the fact that both RF and logistic regression yield similar predictors 

at each time point, reflects the robustness of these predictors and the validity of the 

developed models. 

 

This study used early clinical predictors of CP, starting from the prenatal period, through 

the perinatal and postnatal periods and up to hospital discharge or the expected date of 

delivery. This in contrast with the majority of prediction studies of CP in preterm children 

relying on late predictors: Thirteen studies in Appendix 1 used relatively late predictors (4 

studies at term age, 7 studies at 3-4 months post term age and 2 studies over the first 6-12 

months). The clinical implications and objectives of CP prediction at different time points 

vary considerably, both for families and caregivers. Early prediction at birth or during the 

first postnatal days are crucial to guide critical discussions around provision or withdrawal 

of life support or intensive care for extremely preterm or critically ill infants. The full model 

in this study provided prediction at or near-term age to enable early referral to targeted 

interventions and individualized care planning that impact both patient outcomes and 

health services utilization. 

  

This study has some limitations that need to be acknowledged. The retrospective nature of 

the data excluded potential predictors that were not included in the database (e.g., general 

movement assessment), which may have affected the selected predictors and the predictive 

performance. Some known predictors of CP (such as race/ethnicity) were not included in 

the analysis, because of inconsistency in data collection that would have impacted the 
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internal validity of the study. The fact that the majority of the population in Nova Scotia 

are Caucasians limits the generalizability of the findings from this analysis to other 

populations with different ethnic groups or race-related determinants of health.  

  

Missing data is a known limitation, but the proportion of missing values in this study was 

small.  Only SES had more than 5% missing values (11%). If SES is missing not at random, 

e.g. if a parent's decision to report SES information depends on their SES, estimates from 

the model’s will be biased, which in turn would adversely affect the model’s predictive 

performance in new data. Additionally, some variables known to be associated with 

mortality and CP in preterm infants were not included in the study, because of a large 

number of missing values (e.g. neonatal severity of illness scores, physiologic definition 

of BPD). However, the model contained several predictors that are closely related to the 

ones omitted, so that the negative effect on model performance is likely negligible. 

 There is a possibility of misclassification with some children that were classified as having 

mild or suspected CP would have been classified with motor delay without CP, if followed 

beyond 3 years of corrected age. A Canadian cohort of preterm children born before 29 

weeks’ gestation with suspected CP at 18 months of corrected age showed that their 

developmental trajectory at 3 years of age was midway between those with CP and normal 

children (174). Conversely, preterm children with mild CP may only exhibit clinical signs 

after 36 months of corrected age. Although this remains a possibility, the identification of 

CP in this cohort was based on multiple assessments by experienced clinicians, using 

standardized tests, and those with suspected CP were referred to Pediatric neurologists for 

confirmation of the diagnosis. Only those with normal neuromotor exams on multiple 

assessments up to 18-24 months of corrected age receive standardized neurodevelopmental 

assessment with BSITD at 3 years. If a subtle abnormality in motor development is detected 

or a parental concern is raised at that time, a detailed neurologic exam would be repeated 

to confirm the findings. Paneth et al (2006) argued from a public health perspective that 

those children with subtle or subclinical CP should not be counted as CP cases as they lack 

the social, familial and medical burden of a typical child with CP (8).   
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6.6 Implications for Clinical Practice and Future Research Directions 

 

In this cohort, the full RF model provides similar discrimination and accuracy compared 

to logistic regression for prediction of CP in very preterm children. If external validation 

of the developed RF model (very preterm birth cohort from PEI) shows superior predictive 

performance, then this model may be used as adjunct to improve the identification of 

preterm children at risk of CP to target early intervention and to make efficient use of the 

limited health care resources. Regardless of the prediction method used, the poor 

discrimination of the prenatal and perinatal models do not allow for their use in prediction 

or for counselling parents at the respective timepoints. Additionally, clinicians should be 

aware of the false positive and false negative results of these prediction models when 

counselling families of preterm infants. Therefore, these prediction models should not be 

used in isolation, but as adjunct to other clinical parameters to aid in the diagnosis of CP.   

   

Parents are often interested in individualized timely prediction of CP or NDI of their 

preterm child. Caregivers are often asked about this prognostic information at various 

times: prior to preterm birth, within the first few days following NICU admission, and at 

hospital discharge. The prediction models developed in the present study may be used to 

predict an infant’s probability of developing CP given his/her set of predictors. The 

predicted probability of developing CP can be easily transformed into calculated risk-based 

scores and algorithms. The clinical calculators derived from such prediction models have 

been widely used in neonatal practice to aid for counselling families or when critical 

decisions are discussed and can be made available for use by clinicians at hand.   

 

Future research should continue to explore the role of machine learning methods in 

prediction of CP and other clinical outcomes using existing datasets. The Canadian 

Neonatal Network database collects maternal and infant data for an average of 2500 

preterm infants < 33 weeks or VLBW infants < 1500 g admitted to all 31 tertiary level 

Canadian neonatal units every year. The long-term follow-up data of a subgroup of 

survivors who were born before 29 weeks’ gestation (around 1000 infants/year) is linkable 

through the Canadian Perinatal Follow up Network collecting data from 28 regional follow 
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up programs across Canada (175). These programs collect and share parental demographic 

and socioeconomic data, children’s general health and growth data, neurodevelopmental 

outcomes and health services utilization at 18-24 months corrected age for research 

purposes (175). Accurate risk prediction of preterm survivors would help to redirect 

resources toward those who are most likely to benefit, including rehabilitation, family 

resources, and social support. Tools should be developed to implement the use of machine 

learning prediction models at the bedside.  
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APPENDIX 1 

 Studies Providing Diagnostic Properties of Prediction of Cerebral Palsy in Preterm Infants 

Literature search using the following Mesh terms; cerebral palsy AND (preterm OR premature) AND (“SENSITIVITY 

AND SPECIFICITY”# OR predict* OR diagnos* OR accura*). The outcome was CP either alone or as part of a 

composite outcome of neurodevelopmental impairment (NDI). The search was limited to studies of preterm infants with 

birth cohorts at or after 1990 (post surfactant era), mostly published between 2000 and 2017. After exclusion by title, 325 

abstracts were reviewed, of which 41 studies were selected for full review, including some studies selected from citations 

references. The following 21 studies were included in this review table. 

 

Study Population Exposure/ 

Intervention 

Outcome Findings Diagnostic properties 

of model 

Amplitude integrated electroencephalography (aEEG) 

Wikstrom80 

2012 

Sweden 

Prospective 

cohort 

 

< 31 weeks 

36/49 (73%) 

born 2005-

2007 

single centre 

 

multiple 

records of 

aEEG during 

the first 72 

postnatal 

hours  

death or NDI 

at 24 months  

(CP, motor, 

cognitive, 

blindness, 

deafness) 

 

CP: Palisano81 

(GMFCS) 

early aEEG recorded at 

24–48 postnatal hours, 

is predictive of outcome 

with around 80% 

accuracy  

 

burst suppression, inter-

burst intervals (IBI) & 

IB% predict poor 

outcome 

 

 

for aEEG Sens, Spec, 

PPV, NPV & accuracy 

were (89, 67, 63, 91 & 

76) (AUC 0.79, 95% 

CI, 0.65–0.93) 

 

 

PPV, NPV, accuracy 

for IBI > 6 sec were  

(67, 79, 74) and for 

IB% > 55% at 24 hrs 

of age were (72,80,79)  

Schwindt82  

2015 

Austria 

Case control 

study 

 

< 30 weeks & 

SGA 

136 (47 SGA 

& 89 controls) 

single centre 

 

multiple 

records of 

aEEG during 

the first two 

weeks of life  

  

death or NDI 

at 24 months  

(CP, motor, 

cognitive) 

 

CP: Palisano  

SGA infants <30 weeks 

had less optimal scores 

on early aEEG and a 

poorer outcome at 24 

months than the AGA 

controls 

combined aEEG score: 

Sens, Spec, PPV, NPV 

(52,80, 76,53) 

respectively 

 

Cranial Ultrasound (cUS) 
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Study Population Exposure/ 

Intervention 

Outcome Findings Diagnostic properties 

of model 

Hope83 

2008 

Canada 

Case control 

study 

 

< 31 weeks or 

< 1500grams 

84 (37 CP, 48 

controls), 

born 1990-

2000 

single centre 

cUS texture 

measure of 

white matter/ 

choroid 

plexus within 

first week  

CP at 24 

months  

 

 

CP: Palisano  

 

quantitative early 

texture measures by 

cUS contain diagnostic 

information relevant to 

CP development  

 

Sens, Spec (75, 69). 

the incidence of CP is 

much greater than the 

general population (46 

vs 11%) 

De Vries84 

2004 

Netherlands 

Prospective 

cohort 

< 33 weeks 

all 429 

survivors 

born 1990-

1999 

single centre 

Sequential 

high 

resolution 

weekly cUS 

until term age 

(40 weeks) 

CP at 24 

months  

 

 

CP: Hagberg85 

 

79% of CP cases had 

cUS abnormalities. 

Sequential cUS detected 

major US abnormalities 

in the majority of CP 

children CP  

sequential cUS; Sens, 

Spec, PPV, NPV (76, 

95, 48, 99).  

The most sensitive 

predictor was cystic 

PVL  

Lacey86 

2004 

Australia 

Prospective 

cohort 

 

< 30 weeks 

203/249 

(81%) 

born 1992-

1996 

single centre 

cUS at day 7, 

28 for IVH &    

LAPI before 

discharge 

(Lacey 

assessment of 

preterm 

infants) 

 

CP at 36 

months  

(delayedmotor 

development 

with abnormal 

tone) 

LAPI has better 

diagnostic accuracy 

than early cUS in 

prediction of normal 

motor development or 

CP at 3 years of age 

for cUS; Sens, Spec, 

PPV, NPV (44, 87, 88, 

43). LAPI assessed at 

> 33 weeks; Sens, 

Spec, PPV, NPV (86, 

83,57, 96) 

Woodward87 

2006 

New Zealand 

Prospective 

cohort 

< 31 weeks 

164/167 

(98%) 

born1998-

2002 

2centres  

 

 

MRI at term 

age (81% of 

the cohort had 

MRI) 

 

CP or NDI at 

24 months 

(CP, 

cognitive, 

blindness, 

deafness)  

 

CP: Palisano 

Moderate-severe white 

matter lesions on MRI 

were significant 

predictors of severe 

motor delay and CP 

after adjustment for 

confounders (neonatal 

factors & cUS findings 

For CP: Sens, Spec of 

any white matter 

abnormalities (94,31) 

& for moderate-severe 

abnormalities 

(65,84) respectively  
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Study Population Exposure/ 

Intervention 

Outcome Findings Diagnostic properties 

of model 

Conventional (structural) MRI 

Nanba88 

2007 

Japan 

Prospective 

cohort 

< 34 weeks & 

< 1500 grams 

289/328 

(88%) 

born 1993-

2000 

single centre  

 

MRI at near  

term (36-43 

weeks). To 

assess 

whether PVL 

on MRI 

(n=62) are 

predictive of 

CP & motor   

outcomes  

CP at 20 & 

31 months 

 

 

CP: Palisano  

Lesions in the corona 

radiata above posterior 

limb of internal capsule 

at term MRI  were 

predictive of 

motor prognosis 

in preterm infants  

with PVL 

 

For white matter 

lesions; Sens, Spec, 

LR+, LR- (62, 87, 4.9, 

0.4). 

 

For lesions in corona 

radiata; Sens, Spec 

(100, 97) respectively  

Mirmiran89 

2004 

US 

Prospective 

cohort 

 

< 30 weeks or 

< 1250 grams 

61/99 (60%) 

born 1996-

1999 

single centre  

 

MRI at term 

age compared 

to cUS 

obtained at 

least twice 

during the 

first 2 weeks 

of life 

CP at 20 & 

31 months 

 

CP: Palisano, 

Rosenbaum90  

MRI predict CP better 

than cUS both at 20 & 

31 months corrected age 

At 31 months 

corrected age; MRI 

Sens, Spec, LR+, LR- 

(86, 89, 10, 0.1) 

compared to cUS (43, 

82, 2, 0.7) respectively  

 

 

General movements assessment (GMA) 

Ferrari91 

2002 

Italy 

Prospective 

cohort  

< 37 weeks  

with 

significantly 

abnormal cUS 

84/93 (90%) 

single centre 

 

cramped sync

hronized GM 

from birth 

until 56-60 

wks vs 

neurological 

exam 

CP at 24-36 

months 

 

CP:Ellenberg9

2 

Consistent & 

predominant cramped s

ynchronized GM 

specifically predict CP. 

The earlier this appears, 

the worse is the later 

disability 

 

 

Cramped synchronized 

GM predicts CP better 

than ultrasound (AUC 

0.97 vs 0.88) and 

neurologic exam; Sens, 

Spec (79, 100) vs (8)  

Study Population Exposure/ 

Intervention 

Outcome Findings Diagnostic properties 

of model 

Romeo93 

2008 

< 37 weeks GMA 

“Fidgety 

CP or NDI at 

24 months 

Combining the 2 

methods is more 

For single assessment, 

GMA is better 
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Study Population Exposure/ 

Intervention 

Outcome Findings Diagnostic properties 

of model 

Italy 

Prospective 

cohort 

903/925 

(98%)  

born 2000-

2004 

single centre  

 

movements” 

combined to 

neurologic 

exam(HINE)9

4 at 3 months 

corrected age 

(CAT-

CLAMS95quo

tient below 70 

but no CP) 

 

CP: Hagberg 

effective than single 

assessment in predicting 

outcome particularly for 

discriminating unilateral 

and bilateral CP  

 

predictor of CP 

compared to HINE; 

Sens, Spec (98,94) for 

GMA vs  (96,87) for 

HINE score < 57 

Oberg96 

2015 

Norway 

Prospective 

cohort 

<33weeks or 

< 1500 grams 

87/173 (50%) 

born 2002-

2010 

Single centre  

“Fidgety 

movements” at 

3 months in a 

routine clinical 

setting 

CP at 24 

months  

 

 

CP: Palisano 

 

Absence of “Fidgety 

movements” at 3  

months corrected age 

predict CP & motor 

outcome at 2 years of 

age 

Sens, Spec, LH+, LH 

(90,90,8.7,0.1) 

The NPV 99% & PPV  

53% 

Adde 201098 

 

Norway 

Prospective  

cohort 

13/30 (43%) 

high risk 

infants (23-42 

weeks) born 

2002-2004 

 

video analysis 

of GMA at 10-

15 weeks (1 

record to assess 

fidgety 

movements) 

CP at 5 years 

CP: Palisano 

Variability of centroid 

motion at 10-15 weeks , 

with assessment of 

fidgety movements, 

predict CP at 5 years  

Sens, Spec 85 and 71 

Specificity increased 

to 88% when 

combined with 

variables of the 

amount of motion 

De Bock97 

2017 

Germany 

Prospective  

cohort 

< 33 weeks 

122/256 

(48%)  

born 2007-

2009. Single 

centre  

GMA at 1 & 3 

months  

in a routine 

clinical 

setting 

CP or MDI/ 

PDI ≤70 at 

24 months  

 

CP: Palisano 

 

Definitely abnormal 

GM at 3 months 

corrected age identified 

all children with CP at 2 

years 

Definitely abnormal 

GM were predictors of 

atypical outcome 

(Sens, Spec; 56, 82) 
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Study Population Exposure/ 

Intervention 

Outcome Findings Diagnostic properties 

of model 

Stahl, 201299 

Norway 

Prospective 

observationa

l study 

15/82 (CP 

18%) infants 

(preterm or 

term) with 1-

2 videos at 

10-18 weeks 

corrected age 

applying 

computer 

vision-based 

(optical flow) 

movement 

assessment and 

statistical 

pattern 

recognition

  

CP at 2-5 

years 

CP: not 

specified 

Early detection of CP can 

be done using SVM 

machine learning of 3 

movement patterns for 

classification of CP (The 

simple features (relative 

frequency and absolute motion 

distance) comprised a higher 

discrimination than the feature 

based on wavelet decomposition 

of the signal.   

Accuracy of 93.7% +/- 

2.1, Sens, Spec of 85 and 

specificity of 95  

Combined conventional MRI & GMA 

Constantino1

6 

2007 

US 

Prospective 

cohort 

 

<32wks 

&<1500 g  

102/130 

(78%), born 

1996-1999 

single centre 

combined 

MRI at term, 

GMA & 

behavioral 

assessment 

(NAPI)100  

CP at 18 

months  

 

CP: Palisano, 

Amiel-

Tison101   

 

All tests NPV 90-97%. 

For Spec & accuracy; 

MRI was superior (91& 

84), GM at 52 wks was 

better than at 36wks. 

Sensitivity increased 

with NAPI + MRI  

for combined MRI & 

NAPI; Sens, Spec, 

PPV, NPV & accuracy 

(80, 81, 36, 97, 80)  

Skoild102 

2013 

Sweden 

Prospective 

cohort  

< 27 weeks 

all 53 infants 

born 2004-

2007 

population 

based study 

Combined 

MRI at term 

age &  GMA 

at 3 months   

CP and/or 

abnormal 

motor 

development 

at 30 months 

Tests:SCPE103

, Palisano 

Moderate –severe white 

matter injury on MRI 

predicts CP better than 

abnormal GMs. When 

combined, increase GM 

specificity to 100% but 

did not affect 

Sensitivity  

Abnormal MRI vs 

abnormal GM; Sens, 

Spec, PPV, NPV; 

(100, 98, 80, 100) vs 

(50, 92, 33, 96). 

Combining both; Sens, 

spec, PPV, NPV 

(50,100, 100,96) 
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Study Population Exposure/ 

Intervention 

Outcome Findings Diagnostic properties 

of model 

Others 

Broitman17  

2007 

US 

Retrospectiv

e cohort 

ELBW(<1000

g) 

2103/2750 

(76%)  

born 

1998-2001 

19centres 

NICHD 

 

Clinical 

model 

compared to 

cUS (early at 

28 days & late 

at 36 weeks)  

 

NDI at 18-22 

months  

 (CP, 

cognitive, 

blindness, 

deafness) & 

independently 

walk/feed  

 

Tests: 

Amiel-Tison    

The clinical models 

were better predictors 

than early and late cUs 

for NDI (AUC 0.68 vs 

0.58 and 0.57, 

p<0.001).  

 

Isolated cUS findings 

were poor predictors of 

CP. Only PVL at 36 

weeks (OR 5.2 (2.8–

9.6)) and VP shunt (OR 

3.7 (1.8-7.8)) were 

predictive of CP  

 

Improvement in the 

predictive ability 

(AUC) for mental 

developmental 

index<70 (0.72 vs 

0.69), CP (0.78 vs 

0.72) and independent 

walking (0.79 vs 0.74) 

for the cUS-36/“All” 

clinical model as 

compared to the cUS-

28/“Early” clinical 

model. 

Tyson18 

2008  

US 

Retrospectiv

e cohort 

22-25 weeks 

4165/4446 

(94%)  

born1998-

2003 

19 centres 

NICHD 

 

only 

gestational 

age for 

providing 

intensive care 

at the edge of 

viability. To 

develop a 

predictive 

model of 

death, death 

with any NDI 

or death with 

severe NDI 

for counseling 

death or NDI 

at 18-22 

months  

 

(CP, 

cognitive, 

blindness, 

deafness) 

 

CP: Palisano  

Each 100 grams 

increased birth weight, 

female sex, antenatal 

steroids, singleton were 

each associated 

with reductions in risks 

of death and death/NDI 

similar to the reductions  

with a 1-week increase 

gestation 

 

The five-factor model 

provided for death; 

AUC 0.75 (0.74–0.77)  

 and  

 

for death or NDI; 

AUC 0.75  

(0.73-0.77)  
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Study Population Exposure/ 

Intervention 

Outcome Findings Diagnostic properties 

of model 

Spittle104 

2015 

Australia 

Prospective 

cohort from 

a RCT of a 

preventive 

care program 

to improve 

development  

< 30 weeks 

97/138 

born  

single centre 

 

Combined 2 

motor tests 

(AIMS105/ 

NSMDA)106 

over the first 

year of life  

CP and 

motor 

impairment 

at 48 months 

 

CP: Palisano 

& Movement 

Assessment 

Battery for 

Children 

(2)107  

Although false positives 

were common, CP was 

most accurately 

predicted by NSMDA at 

12 months whereas 

AIMS at 4 months 

provided the best 

accuracy for motor 

impairment  

Combining both the 

NSMDA and AIMS 

provided the best 

accuracy at 4 months, 

although results were 

similar at 8 and 12 

months Combined 

tests Sens, spec, PPV 

& NPV for CP (83, 93, 

45, 99) and predictive 

accuracy of 92 (84, 97) 

Manuck108 

2014 

US 

Secondary 

analysis of 

RCT of 

antenatal 

magnesium 

sulfate 

 

< 32 weeks 

1771/1954 

 

neonatal 

diagnoses 

prior to initial 

hospital 

discharge  

NDI (CP or 

MDI/PDI< 

2SD) at 24 

months  

 

CP: Palisano  

models of individual 

neonatal morbidities 

were moderately 

predictive of NDI after 

controlling for GA, 

maternal education 

maternal race, use of 

tobacco, alcohol or 

drug, fetal sex, 

magnesium & 

chorioamnionitis  

best model for NDI 

had AUC of 0.68 

(0.65-0.71).  

 

Combinations of 2, 3 

& 4 morbidities did 

not improve NDI 

prediction  

Morgan et al, 

2019109 

Italy (3 sites) 

retrospective 

case control 

study born 

between 

2002 - 2016 

 

441 preterm 

and term high 

risk infants 

(147 CP, 147 

mild 

disability, 

147 controls) 

HINE scores 

at 3 months+ 

early brain 

imaging 

(MRI or US) 

+ Absent 

fidgets on 

GMA 

CP at 24 

months  

 

CP: Palisano 

the pooled analysis 

with the 3 predictors 

provided the highest 

AUC compared to any 

individual predictor 

(AUC 0.99 vs 0.85, 

0.96, 0.96 respectively) 

AUC 0.99 

98.74% of children 

were correctly 

classified, 

Sensitivity for 

detecting CP was 

98%, and specificity 

was 99% (PPV 

98.56; NPV 98.84) 
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APPENDIX 2 

             Table S1: Characteristics of Population Dataset  

Variable Type Code Definition 

Sociodemographic Maternal Variables 

Maternal age in years Continuous matAge maternal age in years 

Hollingshead socioeconomic status  

at birth 

Categorical ses Class I to V 

Married or common law   Binary marriedCL married or common law vs 

single parent  

Urban accommodation  Binary urban urban vs rural accommodation 

Prenatal Variables 

Primigravida Binary gravid1 primigravida 

Multiparity Binary multipara More than one previous delivery 

Abortion/miscarriages Binary aborMisc previous abortion/miscarriages 

Previous stillbirths Binary prvStb previous stillbirth 

Maternal smoking during pregnancy Binary smk any smoking during pregnancy 

Maternal substance use during 

pregnancy  

Binary substUse any substance use (illicit or non 

illicit) 

Maternal antidepressants*  Binary antidepr 

 

treatment for anxiety/depression 

during pregnancy 

Maternal psychiatric disorder*  Binary psych 

 

psychiatric disorder during 

pregnancy 

Maternal treatment for diabetes* Binary diabAny any treatment for diabetes during 

pregnancy 

Maternal hypertension* Binary hyptAny 

 

gestational or pre-existing 

hypertension 

Chorioamnionitis /funisitis * Binary 

 

chorioFuni histologic chorioamnionitis or 

funisitis 

Prelabor premature rupture of 

membranes 

Binary pprom prolonged rupture of membranes 

>18 hours 

Maternal antibiotics* Binary ipAbx maternal intrapartum antibiotics 
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Variable Type Code Definition 

Mother colonized with group B 

streptococci 

Binary 

 

gbsPos Maternal group B streptococci 

colonization during pregnancy 

Antepartum hemorrhage* Binary apHemo Any antepartum hemorrhage 

Placental abruption Binary abruptio placental abruption 

Any tocolytic use* Binary tocolyt any tocolytic 

Maternal indomethacin Binary matindo indomethacin for tocolysis 

Fetal growth restriction  Binary fetIUGR fetal growth restriction by 

ultrasound  

Fetal distress 

 

Binary fetDistr fetal abnormal heart tracing or 

fetal acidosis  

Perinatal Variables (including intrapartum and the first 6 postnatal hours) 

Antenatal steroids Categorical anSteroid ( 0 , none),( 1 ,<24 hrs}, ( 2 ,24-

47 hrs},( 3 ,48-167 hrs},( 4 ,>= 

168 hrs} 

Optimal antenatal steroids  Binary  > 24 hours prior to delivery 

Intrapartum magnesium sulfate Binary mgsulf intrapartum magnesium sulfate 

Gestational age in weeks# Continuous ga gestational age in weeks 

Extreme low gestational age Binary elgan gestational age < 26 weeks  

Birth weight in grams Continuous bw birth weight in grams 

Extreme low birth weight Binary elbw birth weight <1000 grams 

z-scores of weight for age  Continuous bwz z scores of birth weight based on 

Canadian growth curves 

(Kramer) 

Small for gestational age  Binary sga < 10th centile based on Canadian 

growth curves (Kramer) 

Male sex Binary sexY male vs female 

Outborn delivery Binary outborn outborn vs inborn  

Moderate to severe birth depression Binary modsevAsph

yx 

receipt of positive pressure 

ventilation or resuscitation 

1-minute Apgar score Continuous apgar1 Apgar score at 1 minute 

5-minute Apgar score Continuous apgar5 Apgare score at 5 minutes 
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Variable Type Code Definition 

Chest compression/epinephrine at 

delivery  

Binary resusDel 

 

resuscitation at delivery 

Delivery by Caesarean section  Binary cs Caesarean vs vaginal delivery 

Admission temperature (degrees 

Celsius) 

Continuous admTemp 

 

NICU admission temperature 

(degrees Celsius) 

Admission hemoglobin (g/L) Continuous admHgb 

 

NICU admission hemoglobin 

(g/L) 

Hypotension on admission  

 

Binary admBPLow 

 

mean blood pressure less than 

gestational age at birth 

Postnatal Variables 

Lowest hemoglobin in the first 24 hours Continuous lowestbp 

 

lowest hemoglobin during the 

first 24 hours 

Neonatal Insulin therapy Binary neoInsulin severe hyperglycemia requiring 

Insulin 

Neonatal hypoglycemia  Binary neoHypogly

c 

 

severe hypoglycemia <1.67 

mmol/L 

Neonatal anemia Binary neoAnemia neonatal anemia 

Neonatal thrombocytopenia  

 

Binary neoThrombp

en 

thrombocytopenia (<100,000) 

Cystic white matter lesions^ Binary cystWMD cystic PVL or porencephaly 

Parenchymal echodense lesions Binary echodens 

WMD 

parencyhmal hemorrhage or 

ischemia 

Severe intraventricular hemorrhage^  Binary ivhGrade34 grade 3, 4 IVH  

Posthemorrhagic hydrocephalus^ Binary phhydro hydrocephalus following severe 

IVH 

Ventriculoperitoneal shunt for 

hydrocephalus* 

Binary phhshunt 

 

hydrocephalus requiring shunt  

Necrotizing enterocolitis Binary nec NEC  stage2 Bell’s 

Patent ductus arteriosus (PDA)  Binary signifPDAp 

 

hemodynamically significant 

PDA 
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Variable Type Code Definition 

Persistent pulmonary hypertension Binary pfcnew 

 

pulmonary hypertension of 

newborn 

Severe Retinopathy of prematurity 

(ROP)  

Binary sevROP severe ROP  stage 3 

 

Intervention for ROP  Binary ropTx surgery or Bevacizumab 

intravitreal injection 

Surfactant therapy*  Binary surfact surfactant for respiratory distress 

syndrome (RDS) 

Severe hyaline membrane disease Binary sevHMD  severe RDS requiring invasive 

mechanical ventilation 

Nasal ventilation  Binary ncpap nasal continuous positive airway 

pressure (CPAP) 

High frequency oscillatory ventilation Binary hfov High frequency oscillatory 

ventilation 

Hours on tracheal ventilation  Continuous durETT duration of tracheal (invasive) 

mechanical ventilation in hours 

Pneumothorax  Binary pneutx pneumothorax requiring 

drainage 

Pulmonary Hemorrhage Binary pulmHemo pulmonary hemorrhage 

Cystic bronchopulmonary dysplasia  Binary cystBPD cystic BPD 

Dexamethasone  Binary neoDexa systemic steroids for BPD 

Oxygen use at discharge from the 

nursery* 

Binary homeO2 discharge on home oxygen 

 

Neonatal septicemia Binary neoSeptic positive blood culture 

Clinical (culture negative) sepsis 

 

Binary neoClinSepsi

s 

infection treated with antibiotics 

> 5 days 

Systemic infection  

 

Binary noeSystinf pneumonia, cellulitis, 

bacteremia, urinary infection 

Any cardiopulmonary resuscitation* Binary cpr any CPR during hospital stay 

Inotropes* Binary inotrop neonatal inotropes  

Inhaled Nitric oxide* Binary iNO2 inhaled nitric oxide therapy 
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Variable Type Code Definition 

Hours on total parenteral nutrition  Continuous durTPN duration of parenteral nutrition 

in hours 

Major surgery Binary nepSurgery major neonatal surgery 

Prophylactic indomethacin Binary prphylindo 

 

neonatal prophylactic 

indomethacin 

Total length of stay (days)  Continuous neoLOS 

 

total hospital stay in days in all 

nurseries 

Outcome Variables 

Corrected age at latest assessment 

 

Continuous ageseen post term age seen at last 

assessment in weeks 

Normal at latest assessment Binary normal 

 

no neurodevelopmental 

impairment (no CP 

Cerebral palsy (CP) Binary cp ( 0 no CP},( 1, CP} 

Cerebral palsy severity  Categorical cpstage CP GMFCS stages 1 to 5 

              *Atlee database code 

          Abbreviation: BPD (bronchopulmonary dysplasia), CP (cerebral palsy), CPAP (continuous positive 

airway pressure), CPR (cardiopulmonary resuscitation), GMFCS (gross motor functional 

classification system), NEC (necrotizing enterocolitis), NICU (neonatal intensive care unit), PDA 

(patent ductus arteriosus), PVL (periventricular leukomalacia), RDS (respiratory distress 

syndrome)  

 

# Confirmation of gestational age is determined according to the following hierarchical order: 

1. Conception dating, if mother was receiving fertility treatments; 

2. The last menstrual period, if it corresponds to ultrasound dating within 10 days; 

3. Ultrasound dating, if it was >10 days difference from the last menstrual period or no dates were known; 

4. Physical examination of the infant at birth, if none of the three preceding estimates were available 

^ Routine cranial ultrasound screening of all preterm infants is standard of care at the IWK. This includes serial cranial 

ultrasound imaging with the initial screening is done between 3-7 days after birth, then at 2 and 6 weeks after birth 

and finally at term equivalent age. If an abnormality is identified, more imaging is performed as clinically indicated. 

Brain MRI is done in a selected subgroup of infants with severe abnormality identified on routine cranial ultrasound 

as per the discretion of the treating physician. Reporting of abnormal findings on neuroimaging includes the type, site 
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(unilateral or bilateral) and the extent of brain injury. However, coding of abnormal neuroimaging in the PFUP 

database includes the worst finding (type) and laterality.  
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                     Table S2: Missing Values in Population Dataset  

 Missing 

Values 

Number of  

Observations 

%  

Missing 

Continuous Variables 

Apgar score at 1 minute 8 769 1.0 

Apgar score at 5 minutes 8 769 1.0 

Z scores of birth weight 2 775 0.2 

Admission hemoglobin 8 769 1.0 

Admission temperature 18 759 2.3 

Lowest hemoglobin during first 24 hours 5 772 0.6 

Days of parenteral nutrition 14 763 1.8 

Hospitalization days  7                  770 0.9 

Binary/Categorical Variables 

Married or common Law 10 767 1.3 

Optimal antenatal steroids 

(>24 hours prior to delivery) 

1 776 0.1 

Chest compression /epinephrine  4 773 0.5 

Hypotension on admission 15 762 1.9 

Prophylactic indomethacin 1 776 0.1 

cystic bronchopulmonary dysplasia 1 776 0.1 

Socioeconomic Status 88 689 11.3 

Smoking 40 737 5.1 
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Figure S1. Distribution of Continuous Variables in the Population Dataset 
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Figure S2. Assessment of the Linear Relation Between Continuous Variables and  

Logit of CP in the Population Dataset  
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Figure S3.a. Classification Tree of the Prenatal Model  



132 

 

 

Figure S3.b. Classification Tree of the Prenatal-Perinatal Model 
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Figure S3.c. Classification Tree of the Full Mode 

 

 

 

 

 

 

 

 

 

 

 

 


