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Abstract

Marine life researchers use the concept of fish tracking to determine the activity and

behaviour of fish. It allows the researchers to recognize the valuable biological and

physical support systems required by fish species at various life stages. There have

been several advancements in fish tracking using different approaches that include

electronic tags and acoustic tags. In acoustic fish tracking, the fish are equipped with

acoustic tags that are either externally attached or surgically implanted into the fish.

These tags can be tracked by a receiver placed within a range underwater. The tags

emit high-frequency signals omnidirectionally at regular intervals, and these signals

are recorded as pings in the receiver. The tags are identified by the delay between

the pulses, which is typically between 1 second and 10 seconds. The tags can also be

configured to emit two closely spaced pulses providing a new way to identify the tags.

The pings recorded by the receiver are represented as acoustic time series data

that is analyzed to determine which tag the ping originated from. This analysis of

identifying the pings (marking) from high-frequency tags which use a double pulse

encoding scheme is currently done at Innovasea with the help of a visual analytics

system called ‘MarkTags’, where the marking is done automatically within the soft-

ware, or the user manually tunes the data to a particular tag period and marks the

pings which consume much manual effort. We proposed a machine learning solution

for identifying the tags using deep learning.

Our work discusses a novel approach to finding the pings by segmenting the im-

ages created from the pings. The pings are created as images using a 2D-histogram

approach in which the pings are represented as pixels in an image. These images

are segmented for the pings from the tag using a neural network called UNet. We

developed a model that is trained on data recorded in different conditions. When the

trained model was asked to identify the tags not seen during training, it could do so

with an accuracy of over 95% and is close to human-level annotations. Our exper-

imental results show that the machine learning approach matches the human-level

performance, which can replace human intervention to a great extent.

x



Acknowledgements

I am extremely thankful to DeepSense, Innovasea, and Mitacs for funding my mas-

ter’s program and for providing me an opportunity to work on this project. This

work was supported by Mitacs through the Mitacs Accelerate program. In addi-

tion to Mitacs, this research was enabled in part by support provided by Inno-

vasea Inc.(www.innovasea.com) and DeepSense (www.deepsense.ca) in the form of

the aforementioned Mitacs Accelerate program. Computations were performed on

the DeepSense (deepsense.ca) high-performance computing platform. DeepSense is

funded by ACOA, the Province of Nova Scotia, the Centre for Ocean Ventures and

Entrepreneurship (COVE), IBM Canada Ltd. and the Ocean Frontier Institute (OFI).

I consider myself lucky to have worked under the supervision of Dr. Stan Matwin.

I wish to express my sincere thanks and gratitude to my co-supervisor Dr. Oliver

Kirsebom for constantly supporting me throughout my thesis and providing useful

insights in doing my research. I am grateful to him for guiding and supporting me

for my entire project.

I wish to thank Dr. Christopher Whidden for always providing ideas and useful

suggestions for my project. Special thanks to Jennifer LaPlante, Dr. Lu Yang, Dr.

Geetika Bhatia, and Dr. Jason Newport from DeepSense for constantly supporting

my project.

I would like to thank Jean Quirion and Frank Smith of Innovasea Inc. for offering

me an opportunity to work on this project.

xi



Chapter 1

Introduction

The main objective of this thesis is to determine if deep learning can be used to

identify the high-frequency periodic acoustic fish tags and optimize the methods to

identify the tags.

1.1 Fish Tracking

Aquatic organisms like fish exhibit a variety of behaviours and reactions to factors

present in the marine environment[1]. Our ability to predict organism responses

to these alterations will rely on knowledge of animal movements. The tracking of

fish movements allows scientists to recognize valuable biological and physical sup-

port systems required by fish species at various life stages[2] and also to assess fish

responses to environmental changes. Though fish tracking gives information on fish

migrations due to environmental changes, human disturbances like motorboat noise

can also impact fish movements[3]. This might cause the fish to cease moving or

hide in shelters[4]. Apart from the ecological insights, fish tracking can also provide

information about the abiotic data from the regions that are otherwise impossible

to collect[5]. Fish tracking also has several other uses. E.g., to estimate the natural

mortality and exploitation rates [6], study behavioural and migration patterns. The

process of tracking these movements of fish in any aquatic environment using different

types of sensors like electronic tags or acoustic tags is called fish tracking.

The scientific study of fish has a long history. Initially, the tracking was only

limited to larger organisms like marine mammals[7]. With the development of low-

cost tiny tags, fixed receivers, and coded signals, it is now possible to track the

movements of small fish across vast distances in freshwater[8]. Over the years, there

have been several advancements in fish tracking using different approaches. Most of

them include tracking using electronic tags and acoustic tags[8]. Moreover, in the

1
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last 20 years, the advancements in technology made the researchers shift to long-

term passive telemetry as opposed to active telemetry [9]. In passive telemetry that

involves fish tags, an array of hydrophones is deployed in water and used to track

the tagged fish. The receivers have internal memory and can record the data over a

long period. A single hydrophone is used in active telemetry, and it is lowered into

the water from the vessel. Whenever a transmitter is detected, the position of the

animal can be determined with high precision [10]. Both active and passive telemetry

have advantages in their own way. Even, there was a significant rise in the number

of publications related to fish tracking.

Innovasea, a leading ocean tech company located in Halifax, Nova Scotia, works

on fish tracking technology that employs different types of tags with different coding

schemes. In this thesis, we discuss one of the approaches Innovasea currently uses to

identify fish tags, their limitations, and our solution to their problem.

1.2 Limitations of Innovasea’s Approach and Our Solution

In acoustic fish tracking, the fishes are equipped with acoustic tags either externally

attached to the fish or surgically implanted into the fish. These tags emit the data

omnidirectionally in the form of pulses. Innovasea uses different types of tags with

different coding schemes. A new type of tag called HTI acoustic tag(developed by

Hydroacoustic Technology Inc.) is used with an encoding scheme called pulse rate

encoding scheme, also known as pulse interval encoding scheme. In this encoding

scheme, the time interval between the consecutive pulses is controlled with the help

of a microcontroller present in the tag and this time interval between the pulses

makes the tags unique. There are several other encoding schemes like PPM and

BPSK(Innovasea’s HR system) used in other types of tags at Innovasea, where the

information of the tags is encoded in the time intervals between successive pulses(in

a series of pulses) in PPM and in the phase of the transmitted signal in BPSK. These

tags can be detected by a receiver placed within a range underwater. The signals

received at the receiver contain the direct signals from the fish or by the reflections of

signals from surrounding structures or water surface and contain noise due to external

factors, which will be explained in detail in the preliminaries chapter. The signals

transmitted by the tags are recorded as pings in the receiver.
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The recorded pings are to be analyzed and identified to know from which tag

the ping originated. The analysis of identifying the pings from high-frequency tags

with a pulse rate encoding scheme is currently done at Innovasea with the help of

a visual analytics system called ’MarkTags.’ In the MarkTags, Innovasea developed

an image representation in which the received pings are plotted according to their

time of arrival(x) and their displacement(y) with respect to a chosen clock rate. In

this representation, pings originating from a (stationary) tag with a ping rate that

matches the clock rate will describe a horizontal track, allowing them to be identified

and ”marked” by a human analyst through visual inspection. This is called the

marking process. There exists an auto-marking technique in MarkTags in which the

marking is done automatically by the software. However, the results obtained by

the auto-marking technique are poor, and its performance is less than 50% of the

manual performance. The results of the auto-marking technique are discussed in

the chapter-5. While most of the marking is automatic, a manual annotator verifies

and identifies the pings missed during auto marking. To manually mark the data

generated in 1 day, it takes approximately 24 hours to identify the pings from 40 tags

in 10 hydrophones. Though manual marking is accurate, it consumes much manual

effort to do the task. The main motivation behind the implementation of machine

learning in marking the data is to reduce human involvement and improve the poor

performance of the existing auto-marking solution.

The manual marking process of identifying the tags is replaced by a machine learn-

ing approach to auto-mark the tag data in this project. In this approach, the pings

are converted to images with the help of 2D histograms. The pings are represented as

pixels in these images. These images are segmented using a machine learning model

UNet[11] in which a label is assigned to each pixel. From these segmented images, the

pixels are inversely mapped to pings. The process of creating images and segmenting

them is explained in chapter 4.

1.3 Data and Description

When a tagged fish moves in water, its position is captured by the hydrophones or

receivers within the range, and the data is extracted from the hydrophones. The

information captured in the receivers contains the time at which the ping occurs and
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the strength of the signal from fish tags and other information discussed below. The

time information is used to retrieve which tag is responsible for the ping. This data

is not typical of acoustic telemetry datasets. The data we use has two types of files.

One is the Raw data files, and the other is Marked data files. The raw data files

have the extension *.rat, and the marked data files have the extension *.tat. The

raw data files and the marked data files have almost the same information, but the

marked data files have some extra information about the tag and marking type. The

information about various features in the dataset is given below.

Figure 1.1: A screenshot displaying the header and records information from a TAT
file

• Peak Loc.: The primary element of the dataset to consider is the ’Peak Loca-

tions.’ ’Peak Locations’ are the timestamps at which the pings are received from

the fish tags. In other words, peak locations are integers that represent the time

at which ping occurred. The pings are signals sent from acoustic tags surgically

implanted in fish. Each ping represents a signal of the clock frequency of 12000

kHz. A peak location divided by 12000 gives the number of seconds after which

the ping occurred after the receiver’s auto-reset. The receiver auto-resets every

day at a specific time to start the clock from ’0’ every day implying the peak
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locations to start from ’0’ after the receiver is reset.

• Hyfon No.: The hydrophone number or the receiver number.

• Chan No.: The channel number of the hydrophone.

• PW 3 dB, 6 dB, 12 dB: The next three columns describes the pulse width at -3

dB, -6 dB and -12 dB.

• Noise Level: Average Noise Level in samples over 1 sec. before receiving the

signal.

• Auto Thresh: Average of an adaptive threshold in samples over one second

before receiving the signal.

• Track Type: Type of marking process. ’POST’ indicates the marking done using

MarkTags software. ’USER’ indicates the manual marking done. ’GPS SYNC’

indicates the signals generated by the receiver to synchronize with UTC.

• TagID No. (Period No.): The period of the fish tag. The format of the period

number is PPPP.PP-SS, where P indicates period and S indicates subcode.

• Tag Type: Indicates the type of tag. VSYNC indicates the time-synchronous

tag, and VSTND indicates the fish tag.

The information contained in the RAT files is the same from headers’ Peak Lo-

cation’ to ’Auto Threshold.’ The other two columns,’ Track Type’ and ’Period No.’,

are added in TAT files after the data is marked.

1.4 Questions and Contribution

There have been several advancements in fish tracking over the years. These fish

tracking methods include tracking using video data, image data and acoustic data,

etc. On the other hand, most of the fish tracking methods which involved machine

learning were only done using video data or image data. This thesis proposes a novel

idea of using an image segmentation technique in tracking the fish with acoustic time-

series data generated from high-frequency tags, which use the pulse rate encoding

scheme.
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This work tries to answer the following questions:

1. How are the pings from high-frequency tags viewed as an image?

2. How are the images classified for the presence of a tag?

3. What are the augmentation techniques implemented in this thesis?

4. How is the image segmentation technique useful in identifying the pings from

tags?

5. What is the performance of our proposed machine learning method to auto-mark

data compared to the manual marking and MarkTags’ auto-marking process?

6. How can the performance of our proposed method improve?

The research summary and contributions of this work can be listed as follows:

• We propose a new method of auto marking the fish tracking data obtained from

high-frequency acoustic tags by building a visual representation of the acoustic

time-series data and training a deep learning model at identifying patterns of

interest.

• We demonstrate the use of two neural networks, one to check if the given tag

is present in a given image and the other neural network to find which pixels

represent the identified tags.

• The models are made robust and made to work on data recorded in different

conditions like different water bodies and different background noise that the

model has not seen during training.

The rest of this thesis is organized as follows: Chapter 2 discusses the previous

related work done. Chapter 3 includes the preliminaries to understand this document.

Chapter 4 and Chapter 5 explain the proposed method, experimentation, and results.

The conclusion and future work are included in Chapter 6.



Chapter 2

Literature Review

Fish tracking involves identifying and tagging the fish to gather data on survival,

reproduction, activity, behavior, and physiology [12]. Many researchers have studied

fish using different tagging and marking techniques. This chapter briefly discusses

some of the related research works and technical advancements that happened over

the years.

2.1 Fish Tracking Methods

For marine life researchers, the concept of tracking and monitoring fish is common.

Fish tracking has many uses, for example, it informs fisheries operations and marine

conservation efforts. Fishery scientists need to understand the movement patterns at

a broader level. Acoustic telemetry can provide useful insights on fish activity and

survival, given that each tag has its signal, and the receivers capture its frequency,

time of arrival, and strength. Over the years, there have been several developments

in tracking fish using different approaches that involve different electronic tags like

radio tags and acoustic tags.

2.1.1 Tracking Using Electronic Tags

An electronic tag is attached to a fish, and the information like position, movements

and physiological parameters can be recorded wirelessly using a mobile receiver or

stationary loggers [13]. These receivers can be of different types like Data Storage

Tags (DST), and Pop-up Satellite Archival Tags (PSAT)[13]. DSTs record and store

information of environmental and/or physiological parameters in the tag, and hence

these are needed to retrieve the information.The PSAT captures data on fish envi-

ronments such as light, pressure, and water temperature. After a predefined period,

the tag detaches from fish and floats on the surface[13]. The stored data is sent to

satellites when the tags loosen from the fish and pop up to the surface.

7
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The recent advancements in electronic tracking technology have provided several

tools to study animal behavior in water and land environments, which was not possi-

ble decades ago. The use of electronic tags has proven to be a powerful and effective

technology for studying movements, migrations, and habitat use of individual free-

swimming fish and other aquatic animals in freshwater, estuaries, near coastal areas,

and the oceans [14]. These methods can be used to monitor fish behaviour in any

aquaculture environment, ponds, tanks, etc. Electronic tags provide repeated infor-

mation from the same individuals, and most methods do not require the fish to be

recaptured to retrieve information. An electronic tag is attached to a fish, and its

information on the position, measurements of environmental and physiological pa-

rameters are transmitted wirelessly from the tag to a receiver. However, some tags

record and store the information and need to be retrieved for downloading data[13].

2.1.2 Radio Telemetry

In this type of tracking, a radio transmitter is attached to a fish, and this tag emits

radio signals to a radio receiver placed at a distance in the range of several tens of

meters to a few kilometers away. Radio signals propagate omnidirectionally and in

both water and air. Hence, the receivers can be placed either in the water or in the

air. The operational frequency for the radio telemetry is in the range of 30-300 MHz.

Highly suitable for depths less than 10 meters.

Each radio transmitter transmits signals with a unique combination of frequency

and pulse rate or coded signals [15]. A digitally coded signal is made up of a unique

sequence of pulses in time that the receiver recognizes. It is more efficient to utilize

coded transmitters to track a large number of fish than to use various frequency

transmitters.[15].

2.1.3 Acoustic Telemetry

In acoustic telemetry, acoustic transmitters are used. Acoustic transmitters are sim-

ilar to radio transmitters attached to fish and transmit signals to a receiver at a

distance of several meters to few kilometers [16]. Unlike radio transmitters’ radio sig-

nals, acoustic transmitters transmit pressure waves that propagate omnidirectionally

only through the water and not air. Hence, the receivers are placed only in water.
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Figure 2.1: Radio telemetry illustrating the use of radio transmitters and the fish
can be tracked using boat, aircraft, car, foot, and stationary receivers on the shore.
Image taken from [13]

The operational frequency of transmitters is in the range of 30-300 kHz [6]. The

transmitters are usually transducers that convert electrical energy into acoustic en-

ergy detected by an underwater receiver. These receivers can be stationary receivers

submerged in water or receivers mounted to a boat. These receivers are termed hy-

drophones. This method is highly effective in depths of more than 20 meters as the

depths less than 20 meters can lead to many multi-path pings, and it will be challeng-

ing to identify the actual signals. Though the data analysis is challenging in shallow

environments in acoustic telemetry, it is still the preferred method because of the

good detection of signals and higher resolution of position reconstruction than the

radio telemetry.

Using multiple hydrophones can provide precise two or three-dimensional tracks of

animals. However, post-processing the data from multiple hydrophones is challenging

and requires high analytical efforts. These hydrophones can be susceptible to noise

from boats or sounds from other sources.

The capabilities of acoustic tags and receivers have improved with microelectronics
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Figure 2.2: Acoustic telemetry illustrating the use of acoustic transmitters and the fish
can be tracked by hydrophones or receivers mounted to boats submerged underwater.
Image taken from [13]

advancements [17]. The miniaturization of acoustic transmitters was a significant

development in telemetry technologies. As tags become smaller, we can learn juvenile

fish’s behavior and examine evolution changes in behavior [6].

Telemetry allows marine researchers to obtain high-resolution information on the

movement and behavior of an individual fish. It also provides solutions to fishery

science problems that have been difficult to solve using other methods, including the

estimation of natural mortality and exploitation rates [6].

Although acoustic and radio telemetry provides several advantages, they have

some limitations too. Telemetry experiments usually generate a large amount of

data, making storage and manipulation difficult [18]. The transmitters and receivers

used in the telemetry studies are expensive, and these constraints lead to smaller-

sized tags. Furthermore, another type of constraint includes the transmitters of one

company that may not be compatible with the receivers made by another company,

limiting the collection of data from tagged fish [19].
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2.2 Research Works on Acoustic Telemetry

The research works explained in this section are not directly related to our work, but

these works give an idea of the areas where tagging and tracking of fish are done.

Several research works have been conducted on acoustic telemetry in recent years.

Leander J et al. [20] discussed two different acoustic telemetry systems, a com-

monly used analog pulse-position-modulation-based system (VEMCO PPM) and a

newly developed high-residency digital binary phase shift key-based system (VEMCO

HR2)(BPSK) to track downstream migrating Atlantic salmon and European eel

around hydropower facilities. The coding scheme used in our project is the HTI

coding scheme. We shall compare the HTI coding scheme with PPM and BPSK in

section 2.3.

Krause et al. [21] estimated the survival rates of weakfish Cynoscion regalis, an

economically important species using acoustic telemetry. As a part of the experi-

ment, telemetered fish were released into five estuaries from New Jersey to North

Carolina. They released around 342 tagged fish in total during 2006-2012, with the

estuary’s sample size differing. Telemetry-tagged fish emigrated from estuaries and

did not return in subsequent years, indicating low survival. Telemetry also provided

information about the mortality timing between the emigration and spring spawning

food during over-winter periods. In another similar research conducted by Block et

al. [22], the natural mortality of Atlantic bluefin tuna fish is estimated. Bluefin tuna

fish tagged in the Gulf of St.Lawrence exhibited high detection rates post-release.

91% were detected one year post-release, 61% were detected 2 years after release. A

Bayesian mark-recapture model was applied to the detection data to estimate the rate

of instantaneous annual mortality rate. Their results demonstrate that the acoustic

tags can provide the life history estimates that are important for developing stock

assessment models.

In another research, Førea et al. [23] conducted experiments to study the effect

of delousing and crowding on Atlantic salmon using acoustic telemetry. They ad-

ministered 21 fish equipped with novel transmitter tag type that use pressure and

accelerometer sensors to compute swimming activity and swimming depth. In the

study conducted over four months, the tagged fish were subjected to three thermal

delousing effects. The swimming activity recorded was highly significant during the
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delousing effects as compared to low activity before and after the effect. The con-

clusion was that the ability to collect information from fish responses using acoustic

telemetry during operations may be important for developing fish farming methods.

Klinard et al. [24] conducted research to identify the predators of stocked fish

in Lake Ontario using acoustic telemetry predation tags with the help of machine

learning. Random Forest[25], a supervised machine learning algorithm, was used in

their analysis. 48 bloater fishes with predation tags were used to track them on an

array of 105 acoustic receivers to quantify the post-stocking survival and predation

of prey fish in Lake Ontario. A total of 25 bloater fishes were consumed by predators

after release. Post-predation detections provided sufficient information to classify

movement patterns. Tagged fish Salvelinus namaycush provided the most reliable

classification from behavioural predictor variables with an 89% success rate and was

identified as the main consumer of bloater fish. Their research showed that supervised

learning methods like random forest would provide information about the fate of

stocked fish and predator-prey interactions, and it can be used to guide future stocking

and management efforts.

2.3 Coding Schemes in Acoustic Telemetry

We shall review the general coding schemes like PPM, BPSK used in acoustic teleme-

try and compare them with the HTI coding scheme used in our project.

2.3.1 Pulse Position Modulation(PPM)

In PPM, the information is a series of pulses that represent a unique ID. This unique

ID is encoded in the time intervals between successive pulses (i.e., the relative posi-

tions of pulses in a series of pulses). Each ID transmitting pulse train takes between

3 to 5 seconds (depending on the tag code space and the ID of the tag), and all pulses

must be heard in order for detection to occur. The pulse train is accompanied by a

pause to allow other tags to transmit. The configurations of the tag decides whether

the delay is fixed or pseudorandom. PPM tag delays are usually in the 30 seconds to

3-minute range. There is a high chance of signal collision since the delay is high [20]

if multiple tags are present in the vicinity of the receiver. As a result of the signal
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collisions, receivers within detecting range hear unfamiliar patterns that they cannot

decode. PPM is useful as it provides a higher detection range than BPSK.

2.3.2 Binary Phase Shift Key

In BPSK, the information is encoded into the signal by modulating the tone wave

phase being transmitted. Transmission using BPSK is done in a fraction of seconds

compared to the few seconds taken in PPM. Hence there is less chance of signal

collision [20]. BPSK is power efficient algorithm than PPM as it uses less power to

transmit the signals.

2.3.3 HTI coding scheme

Innovasea uses an HTI coding scheme, which is also called pulse interval coding

scheme, on some of the high-frequency tags. It is a scheme in which the informa-

tion is encoded in the timing between two consecutive pulses[26]. This time between

the pulses is controlled by the microcontroller present in the tags and is called tag

pulse rate or period that uniquely identifies the specific tag. This coding scheme

is explained in detail in the preliminaries chapter of this document. Compared to

PPM and BPSK, the HTI encoding scheme is useful in noisy environments and the

advantage of this scheme is that all the energy in the transmitted signal is used for

detection as well as to identify the tag.

PPM-based equipment is typically used for tracking larger species, over larger ge-

ographic areas such as oceans, lakes and rivers whereas BPSK and HTI based equip-

ment are more typically used in smaller species, and most often in rivers and around

hydro-electric facilities(fish passage applications). A PPM tag typically takes a few

seconds to transmit an ID and optional data, whereas BPSK and HTI tags are on

the order of milliseconds. Because BPSK and HTI transmissions are so much shorter

than PPM, BPSK and HTI systems can support much larger numbers of tags in the

water as PPM. PPM is currently much more common than the others due to its

simplicity and there is no need for the type of post-processing required by the HTI

coding scheme.
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2.4 Related Image Segmentation Works

While convolutional neural networks (CNN) have existed for a long time, their ap-

plications were limited to classification tasks. In general, in the classification task,

a single object is present in the image, requiring the CNN to identify the object in

the image. However, in real-world scenarios, we see images with multiple overlapping

objects that require us to classify the objects in the images and identify the boundary

of the objects. This is called image segmentation. For performing image segmenta-

tion, various neural networks like R-CNN(Regional CNN)[27], Fast R-CNN[28], Faster

R-CNN[29], Mask R-CNN[30], etc., were developed.

The dataset we have worked on is an acoustic time series data in which we create a

visual representation of the pings. These visual representations or images are trained

on a machine learning model to segment the pings in the image. To segment the

images, we use a neural network called UNet[11]. The procedure to create a visual

representation of pings and train them on a machine learning model is discussed in the

later chapters. We now briefly discuss some of the research papers in which machine

learning models are used on segmentation data similar to our project.

Unlike our project, which uses the segmentation of images from acoustic time series

data, Burguera et al. [31] worked on the segmentation of Side-scan Sonar acoustic

images. They proposed a method to perform on-line multi-class segmentation of side-

scan sonar acoustic images to build a semantic map of the sea bottom. They used

Convolutional Neural Network that follows encoder-decoder architecture, a similar

Neural Network UNet used by us except that our Neural Network has skip-connections

joining layers. The output images here are called ground truth images, in which each

bin in the image is labeled as a specific class.

In research conducted by Yegireddi S. et al. [32], images generated from the

Subbottom acoustic profiler were segmented. The images are the acoustic images of

the upper sediment layer of the seabed. Here segmentation is necessary to delineate

the subbottom structure from noisy acoustic data, which is not possible from con-

ventional image processing techniques. For this purpose, an SOM (Self Organizing

Maps) unsupervised neural network was used, whereas the UNet used in our project

is a supervised neural network. SOM has the capability to classify the data into

different clusters.
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Ilin S et al. [33] used a similar segmentation technique for segmenting the biomed-

ical acoustic images. This technique efficiently classifies a group of similar pixels and

separates them into particular characteristic regions. The classification is carried out

by learning vector quantization neural networks, which separate the image’s primary

classes.



Chapter 3

Preliminaries

In this thesis, we have used different terms and methods which readers may not be

aware of. This chapter explains the terms and methods used in detail.

3.1 Fish Tag

A fish tag[10] is an electronic device that is surgically implanted into a fish. This

device may contain different sensors like pressure sensors, accelerometer sensors, tem-

perature sensors, gyroscope sensors, and other sensors[7]. These tags transmit infor-

mation in the form of pulses. These tags are either surgically implanted or externally

attached to a fish of interest so that once the tagged fish is released in water, it can

be tracked by a receiver within a range. This range varies from a few meters to more

than a kilometer[6].

3.2 HTI Acoustic Tag

Innovasea uses the high-frequency tags called HTI acoustic tags[26] besides using

other tags for fish tracking. The HTI acoustic tag operates at a high frequency of

307 kHz. As compared to other types of acoustic tags, these HTI tags use ”pulse-

rate encoding,” which increases detection range, enhances signal-to-noise ratio and

pulse-arrival resolution, and decreases position variability [17]. The interval between

each transmission is used through pulse-rate encoding to detect and identify the tag

(Figure 3.1). To detect and monitor individual tagged fish’s actions moving inside

the array of receivers, each tag is programmed with a special pulse-rate encoding.

16
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Figure 3.1: Pulse-rate interval, also referred to as the “tag period” or “ping” rate,
describes the amount of elapsed time between each primary tag transmission. Image
taken from [26]

The pulse rate is measured by calculating the distance between the leading edges

of two consecutive pulses. By using slightly different pulse rates, tags can be identified

uniquely. The timing of the start of each tag can be controlled by a microprocessor

embedded within the tag. This tag can be programmed to have its own tag period

to identify each tag uniquely.

The HTI tag double-pulse mode or ”subcode” option can be used in addition

to the tag time to increase the number of unique tag ID codes available. Each tag

is programmed with a defined primary tag time and a defined secondary transmit

signal, known as the subcode, using this tag coding option. This subcode specifies

the exact amount of time between the transmissions of the primary and secondary

signals (Figure 3.2).

Figure 3.2: Example graph showing the primary (tag period) and secondary (subcode)
transmit signal illustrating double pulse scheme. Please refer to section 1.2 for detailed
information. Image taken from [26]
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3.3 Multipath Signals

The fish tags emit information omnidirectionally. Multipath data are signals received

from the same tag but different sources due to reflections from the water surface

or surrounding structures[17]. Multipath Signals always arrive at the hydrophone

after the direct-path transmission and are usually (but not always) weaker in signal

strength compared to direct-path signals. Since these pings appear at different pixels

in the image, it provides an ambiguous situation to the annotator where an educated

guess is made to mark one of the multipath pings.

3.4 Doppler Effect on Received Pings

The Doppler effect[34] is a change in the observed sound pitch that results from rela-

tive motion. Whenever a fish moves away or towards the receiver, the pings emitted

by the tag reach at a different time than the exact time period due to the doppler

shift. When moving towards the receiver, the pings will have less distance to travel,

so signals arrive faster. And, when moving away from the receiver, the pings have a

greater distance to travel, and so signals arrive with a longer period. For example, a

fish moving toward and passing a receiver generates a roughly semi-circular pattern

of pings in an image when observed at a coarse resolution due to the doppler effect.

Experts manually mark such patterns as a signal using the visual analytics system.

This is challenging for machine learning as the neural network cannot distinguish

between the slant tracks generated due to the doppler effect and the slant tracks

due to the nearby tag period. This effect leads us to implement an augmentation

technique(explained in section 4.4.2) to solve the problem of the machine learning

approach.

Now, we shall go through the machine learning models implemented in this project.
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3.5 Deep Learning

Deep learning[35] is a subset of machine learning mainly concerned with algorithms

inspired by the human brain’s structure and functioning called artificial neural net-

works, which are deep and have many nodes. An Artificial Neural network is a

collection of nodes called artificial neurons. These neurons have connections that

can be activated and transmit values to other neurons based on the received values.

Each neuron performs a linear operation on the input data, which is essentially ma-

trix multiplication, and the coefficients of this linear operation are called weights and

biases. Weights are learned during the training process for the connections between

these neurons. Typically, neurons are aggregated into layers. Different layers perform

different operations on their inputs. Deep Neural networks have more layers, typically

more than three layers, compared to shallow artificial neural networks, which have

less than three layers to learn more features from the data.

Backpropagation[36] is employed in the learning process. Backpropagation is a

gradient descent technique for choosing the optimum weight values depending on

input label. Nodes with greater error rates are given lower weights, and vice versa, in

order to calculate how much of the overall loss is attributable to them. The weights

are then updated in such a way that the total loss is minimized. For further reading,

a more comprehensive introduction to deep learning may be found in [37]

3.5.1 Overview of Neural Networks used in this work

In this work, we have used two different neural networks, the Xception neural network[38]

and the UNet neural network[11]. Xception neural network is used to identify the

presence of a tag in an image. It classifies the image as either ’1’ or ’0’ based on the

presence of a tag. And, the UNet neural network is used identify the pings occurred

from the tag in an image. This is done by image segmentation. A more detailed

information of these neural networks is given in the following subsections.
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3.5.2 Convolution

A convolution[39] is the application of a filter(set of weights) to an input, resulting

in activation. Activation is the result of a linear operation that involves the multi-

plication of a set of weights with the input. When the same filter is applied to the

input repeatedly, it produces a map of activations called a feature map, displaying

the locations and intensities of a detected feature in the input, such as an image.

These are the basic building blocks used in a neural network.

3.5.3 Convolutional Neural Network (CNN)

Convolutional Neural Networks, which are also called ConvNets, are composed of

multiple layers of artificial neurons[39] in which the convolutional layers are the basic

building blocks. In CNN, the layers are organized in 3 dimensions width, height, and

depth. The input is an array with shape (number of inputs) x (input height) x (input

width) x (input channels). Here, each input is an image, and the input channels

can be RGB channels of an image. After passing through a convolutional layer, the

features of the image get extracted within a convolution layer. The image becomes

abstracted to a feature map, also called an activation map, with shape: (number of

inputs) x (feature map height) x (feature map width) x (feature map channels)[39] .

Hyperparameters of a neural network are the variables that determine the network

structure and variables which determine how the network is trained. A convolutional

layer within CNN generally has the following attributes:

• Convolutional filters/kernels defined by a width and height (hyper-parameters).

• The number of input channels and output channels (hyper-parameters).

• Additional hyperparameters that control the output volume of the convolution

layer, such as padding, stride, and dilation.

A more detailed explanation of the CNN can be found at [40]

3.5.4 Xception Neural Network

We generate the images using the pings from acoustic tags(the method to create

images is discussed in chapter 4) and assign labels as either 0 or 1, indicating the
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presence or absence of a chosen tag in a specified interval. To label the images either

positive or negative, we check the image for the number of pings from the tag, and

if the number of pings is greater than the predefined tunable threshold, the image

is labeled as a positive label or ’1’ or else if the number of pings is less than the

predefined threshold, the image is assigned a negative label or ’0’. We train a neural

network with the images and the binary labels to classify the image for the presence

of a tag. The neural network we used for this classification task is an Xception neural

network. We shall discuss the architecture of the Xception neural network[38] briefly.

Figure 3.3: The Xception architecture in which the data goes first through entry
flow, then through middle flow which is repeated 8 times, and then through exit flow.
Image taken from [38]

Xception neural network is an Extreme version of Inception neural network. Xcep-

tion neural network relies mainly on two parts. One is depth-wise separable convolu-

tion, and the other is the shortcuts between the convolution blocks. Xception offers

architecture that is made of depth-wise separable convolution + Max Pooling, all

linked with shortcut connections as shown in figure 3.3. All the convolution and sep-

arable convolution layers are followed by batch normalization. These are explained
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briefly in the next subsection.

3.5.5 Depth Wise Separable Convolution

Depth wise separable convolutions are alternatives to regular convolutions that are

much more efficient in computation time [38]. Depthwise convolution is the process

of applying convolution of size d x d x 1 instead of the convolution of size d x d x

C, where C is the number of channels and d x d is the size of the convolution filter.

This creates the first volume with size K x K x C and not K x K x N, where K is

the resulting dimension after convolution and N is the number of kernels[38] . We

only made convolution for one kernel/ filter of the convolution, not for N of them.

The next step is pointwise convolution[38] . Pointwise convolution operates classical

convolution, with size 1 x 1 x N over the K x K x C volume. This allows creating a

volume of shape K x K x N. Therefore, the number of operations is reduced by a factor

proportional to 1/N. The Depthwise separable convolutions have become popular as

they have fewer parameters than regular convolution layers and are less prone to

overfitting. Since they have fewer parameters, they also require fewer operations to

compute and thus are cheaper and faster. The main point to note in the Xception

neural networks is that the depth-wise separable convolution follows the pointwise

convolutions in an Xception neural network.

3.5.6 ResNet-50 Neural Network

ResNet-50[41] is a variant of the ResNet model, which has 48 convolutional layers

with 1 Max Pooling layer and 1 Average Pooling layer. The ResNets were initially

applied to image recognition tasks, but the framework can also be applied to non

computer vision tasks to achieve better accuracy. Deep Neural Networks are known

for identifying small, high-level features from the images, and stacking more layers

can generally improve accuracy[41] . Besides, they are also susceptible to the problem

of vanishing gradients. During backpropagation, the error is calculated, and gradient

values are determined. These gradients are sent back to hidden layers, and weights

are updated accordingly. These gradients are sent back until it reaches input layer.

The vanishing gradient is a gradient that gets smaller and smaller as it approaches

the input layer. In other words, the input layer does not learn effectively[41] . Hence,
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deep networks will not converge, and accuracy will start to degrade or saturate at

a particular value. This problem is handled by introducing shortcut connections

between the layers in the deep neural network to perform identity mappings. A more

detailed explanation of ResNet-50 can be found at [41]

3.5.7 Semantic Image Segmentation

Image segmentation is used to know the location of an object like a car or a cat in an

image. To do this, the image is segmented, which means each pixel is assigned a label,

thereby generating a pixel-wise mask of the image. Semantic image segmentation

involves training a neural network to generate a pixel-wise mask of the image[42].

In general, a mask is a two-dimensional array in which each pixel has a value in-

between ’0’ and ’1’. We also used the term ’binary mask’ in our thesis, which means

that the value of each element in the two-dimensional array is either a ’0’ or ’1’.

This aids in the comprehension of the image at the pixel level. The output here

is a high-resolution image in which each pixel is classified into a particular class.

It involves training a neural network, which can be trained to generate the pixel-

wise mask of the image. The neural network’s output will be a high-resolution image

whose size is equal to the input image. Medical imaging [43], self-driving vehicles [44],

and satellite photography[45] are just a few applications for image segmentation. In

medical imaging, the image segmentation technique detects any types of tumors or

cancers present in the human body. In self-driving vehicles, semantic segmentation

provides information about free space on the roads and detects lane markings and

traffic signs. Land cover classification may be thought of as a multi-class semantic

segmentation problem in satellite imaging, recognizing the kind of land cover (e.g.,

urban, agricultural, water, etc.) for each pixel on a satellite picture. In this thesis, we

used a neural network called UNet for performing image segmentation of the images

to find the pings from the fish tags. As opposed to other alternatives, we chose UNet

for image segmentation because the UNet has an extra feature called skip connections

joining the output of upsampling layers and the input layers which help in retrieving

the precise location of features in a image. As a part of future work, we also have a

plan to test other neural networks which are known for image segmentation.
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3.5.8 UNet Neural Network

The UNet was developed by Ronneberger for biomedical image segmentation[11].

The main blocks of a UNet are convolution and max-pooling. Convolution and max-

pooling[46] are the two most important concepts to consider in order to understand

the UNet architecture [11]. Convolution is discussed in section 3.5.2. Pooling’s general

purpose is to reduce the size of the feature map obtained after convolution, resulting

in fewer parameters in the network. The concept behind max pooling is to hold only

the essential features (max valued pixels) from each area and discard the irrelevant

information thereby spatially reducing the size of the image by 1/4 after max-pooling.

Convolution and max-pooling also minimize the size of the images; for example, a

4 x 4 image before pooling will become a 2 x 2 image after pooling. This is known

as downsampling. For example, the information present in the 4 x 4 image before

pooling, almost the same information will be present in the 2 x 2 image. When we

repeat the convolution step, the next layer’s filters will see more context; that is, as we

go further through the network, the size of the image shrinks, and the receptive field

increases. The model can precisely understand the information present in the picture

by downsampling[11] but loses the precise location of information present in the image.

Upsampling is needed to retrieve the location detail, which requires converting the

low-resolution image to a high-resolution image. Transposed convolution[47] is the

most common method used for image upsampling. Transposed convolution is the

inverse process of regular convolution. After transposed convolution, the output image

will be of higher resolution than the input image.

The UNet architecture is split into two parts. The encoding part captures the con-

text of the image, and the decoding part allows precise localization using transposed

convolutions. In other words, the model understands what information is present in

the image in the encoding part, but it loses where the information is present. This lost

location information is retrieved in the decoding phase after transpose convolution.

By concatenating the output of the transposed convolution layers with the feature

maps from the Encoder at the same stage, we can obtain precise locations of features

at each level of the decoder. This results in symmetric architecture in the form of a

U, hence the term UNet.
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Figure 3.4: U-net architecture (example for 32x32 pixels in the lowest resolution).
Each blue box corresponds to a multi-channel feature map. The number of channels
is denoted on top of the box. The x-y-size is provided at the lower-left edge of the
box. White boxes represent copied feature maps. The arrows denote the different
operations. The image is taken from [11]

3.6 Post-Processing Filtering Algorithms

The application of post-processing filtering algorithms is to get the final list of marked

pings from the tag. These algorithms are mainly used to filter out the false negatives

identified after the inverse mapping of pixels to pings. The pings which are unmarked

after the segmentation can be marked after applying the post-processing filters. These

filters can be tuned using few parameters like the threshold and tolerance. There are

two types of filtering algorithms implemented by my co-supervisor and co-worker in

the project Dr. Oliver Kirsebom. The algorithms are the ’subcode filter’ and the

’trajectory filter.’

The subcode identifies the ping pairs with a distance equal to the subcode dis-

tance of the chosen tag into account. There are two modes, ’EARLIEST TIME’ and

’LARGEST AMPLITUDE,’ in which the earlier mode marks the pixels with the ear-

liest time arrival, i.e., out of the multiple ping pairs, the pings which arrive first to
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Figure 3.5: Image illustrating the post-processing filtering algorithms. The time
elapsed is indicated in the horizontal axis and the displacement with respect to chosen
clock rate(represented as time elapsed % chosen tag period ) is indicated in vertical
axis.

the receiver are marked, whereas the latter mode will mark the pixels that have the

largest combinational amplitude, i.e., the pings whose combined sum of peak ampli-

tude is maximum are marked. As shown in figure 3.5, the pings in orange are the

pings from the tag, and based on the mode selected, and the ping pair will be marked.

Once the ping pairs are identified, a trend line is drawn, joining the pings identified

by the subcode filter, as shown in the figure. Based on the tolerance parameter set

in the trajectory filter, the pings close to this trend line will be marked as the pings

from the tag.
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3.7 Test Metrics

The performance of the models is evaluated by comparing the UNet predicted output

to the original output both at the pixel level and the ping level. The performance of

the models is computed by calculating few metrics described below.

3.7.1 True Positives

These are the correctly predicted positive values which mean that the value of the

actual class is yes, and the value of the predicted class is also yes[48]. In our case,

the class is either a pixel or a ping associated with the tag.

3.7.2 True Negatives

These are the correctly predicted negative values which mean that the value of the

actual class is no and value of the predicted class is also no.[48]

False Positives and False Negatives are the values that occur when the actual class

contradicts the predicted class.

3.7.3 False Positives

When the actual class is no, and the predicted class is yes.[48]

3.7.4 False Negatives

When the actual class is yes, but the predicted class is no.[48]

3.7.5 Precision

Precision (P)[49] identifies the total number of correctly predicted samples out of the

total predicted samples. It is defined as the number of true positives (Tp) over the

number of true positives plus the number of false positives (Fp).

Precision =
Tp

Tp + Fp
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3.7.6 Recall

Recall (R)[49] is identified as the total number of predicted samples over the total

number of samples present. It is defined as the number of true positives (Tp) over the

number of true positives plus the number of false negatives (Fn).

Recall =
Tp

Tp + Fn

3.7.7 Jaccard Index

Jaccard Index (J)[50] gives the total number of correctly predicted samples out of a

total number of samples present. It is a similarity measure index that compares the

members of two sets to see which members are similar and which are distinct. The

higher the Jaccard index, the higher the similarity between the original and predicted

samples. This metric can be used to know how similar the predicted, and original

samples are.

JaccardIndex =
Tp

Tp + Fn + Fp

3.7.8 F1 score

F1 score[51] is a function of precision and recall. F1 score conveys the balance between

precision and recall. When there is an imbalanced class distribution, the F1 score is

the best metric to evaluate the model.[52]

F1score =
2 ∗ precision ∗ recall
precision+ recall



Chapter 4

Methodologies

Our work requires analyzing the data from fish tags, recorded as pings in the receiver,

to know which tag the ping originated from. This chapter explains the step-by-step

process in detail, from preprocessing the data to create images, classifying the image

for the presence of the tag, and segmenting the pixels from the tag in an image. Our

approach contains below main steps:

1. Preprocess data to create images from raw data (RAT files).

2. Create the labels for the images using TAT data.

3. Train and test the Xception neural network with the image data.

4. Train and test the UNet neural network with the image data.

5. Inverse mapping of the pixels to pings from the UNet predicted mask.

6. Apply post-processing filtering algorithms.

4.1 Preprocess and Create Images from Raw Data

We create an image representation with the time of arrival of pings on the horizontal

axis and the displacement on the vertical axis to facilitate the identification of tags

based on ping rate. The main information required is the peak locations and known

tag period to create images from the raw data. The initial step is to read the data

from all the RAT and TAT files. Each file has information about the hydrophones,

the time the file generated, peak location, channel number, and gain. The description

of all these columns is discussed in section 1.3. Reading the data from files involves

parsing the RAT and TAT files one at a time, matching the entries in the TAT file

with the entries in the RAT file.

29



30

The peak locations, which represent the time at which pings reach the receiver,

are signals of clock frequency 12000 kHz. Each peak location divided by 12000 gives

the number of seconds after which the signal is transmitted after the receiver is reset,

which happens every day at a specific time, implying the peak locations to start from

’0’ after the receiver is reset. We grouped the peak locations into 30-minute intervals

to create images. These are grouped such that there is a 20-minute overlap between

any two consecutive 30-minute intervals. We used the overlap to make the best use

of available data. The peak locations in each of the 30-minute intervals are used to

create images. An illustration of how the intervals are split is given in figure 4.1.

Figure 4.1: Image illustrates how we split the data into 30-minute intervals to create
images. The image shows only the first four intervals split. The process continues for
the entire dataset.

Figure 4.2: Image illustrating how the total data in 30-minute intervals is grouped
into 6-hour intervals. The image shows only the first four intervals grouped. The
process continues for the entire dataset.

The 30-minute intervals are now grouped such that each interval has data of 6-

hours duration, as shown in figure 4.2. This is done to have separate data in each

6-hour interval, i.e., no two 6-hour intervals have pings in common. These 6-hour

intervals are randomly chosen and used as training, validation, and test sets such

that 60% of the total intervals form the training data, 20% of the total intervals into

validation, and the rest 20% to test data as shown in figure 4.3.
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Figure 4.3: Illustration of how the data is split into training, validation and test sets

We convert the data in these intervals to images. For each peak location in the

30-minute intervals, remainders are obtained by dividing each peak location with the

chosen tag period. The remainders are the displacements with respect to chosen clock

rate. In this representation, pings originating from a stationary tag with a ping rate

that matches the clock rate will display a horizontal track. The process of how we

represent the pings as an image is given in the below equation.

X =time elapsed (in minutes)

Y = time elapsed % tag period (in seconds)

Histogram = matplotlib.pyplot.hist2d(X, Y, bins)

A 2D histogram is plotted with the array of peak locations(X) and the remain-

ders(Y) by choosing a suitable binning of the histogram. A sample image of a 2D

histogram is shown in figure 4.4.

In this 2D histogram, the horizontal axis and the vertical axis both represent a

time where the peak locations are shown in the horizontal axes, and the remain-

ders(displacements) are shown in the vertical axes. The third axis represents the

number of pings present in each pixel indicated by a colour bar. Time progresses
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Figure 4.4: Sample 2D histogram image generated from RAT data; colour bar indi-
cates the number of pings present in each pixel

from bottom to top in each 2D histogram. Each side of the histogram is divided into

bins, and there are 192 bins on each side of the histogram. The reason for choosing

192 as the bin size is explained in section 4.6. To generalize the image, the range of

the horizontal axis is taken as 0 to 30 minutes. The range of the vertical axis is 0

to the tag period (in seconds). Figure 4.4 is an example representation of the image

used to train the machine learning model.

Below are the standard parameters we used to generate the images.

• Range of horizontal axis is 0 to 30-minutes.

• Range of vertical axis is 0 to chosen tag period expressed in seconds.

• The dimensions of each image are 192 x 192.
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4.2 Generating Binary Labels for Image Classification

The Xception neural network used in this project classifies the image for the presence

of a tag. For this, the number of pings in an image from the chosen tag is considered,

and the images are assigned positive or negative labels that are either ’0’ or ’1’ based

on the predefined threshold. If the number of pings in the 30-minute interval image

is greater than the predefined threshold(0.2 in our case, the reason for choosing 0.2

is explained in chapter 5), then the image is assigned with a positive label of ’1’.

Similarly, If the number of pings in the 30-minute interval is less than the threshold,

the image is assigned with a negative label of ’0’. This array of images and their

respective binary labels are used to train the neural network to filter the images for

the presence of a tag.

4.3 Creating Binary Mask Images from TAT Data

The binary masks are images created from the marked data files (TAT files). These

images are used as labeled output images during the training of the UNet model. In

a 30-minute interval, pings from the RAT file are taken, and each ping is assigned

either a ’1’ or ’0’ based on the condition that the ping has come from the chosen

tag(checked in the TAT file), thus creating a weighted array of 0’s and 1’s. The

length of the weighted array is equal to the length of the pings list from a 30-minute

interval in the RAT file. This weighted array is used in creating the binary mask.

The equation of how the binary mask is plotted is given below.

X =time elapsed (in minutes)

Y = time elapsed % tag period (in seconds)

W=Array of 0’s and 1’s.(length equal to length of X)

Histogram = matplotlib.pyplot.hist2d(X, Y, bins, weights=W)

The binary TAT mask contains only the pings from the chosen tag, whereas the

image generated from the RAT file contains all the pings in the RAT file.

The generalized parameters like horizontal and vertical axes range and the image

dimensions for binary TAT masks are the same as the RAT images. The initial clas-

sification of images for the presence of tags is tested on two different neural networks.

1. Xception Neural Network[38]
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Figure 4.5: Sample binary TAT mask generated from TAT data; colour bar indicates
the number of pings present in each pixel

2. ResNet-50 [41]

The two neural network models were trained on a subset of data that was recorded

using stationery tags. To train the models, a subset of data recorded from a single

tag in a single hydrophone is used. The subset of data is divided into 6024 train-

ing samples and 2006 validation samples. The distribution of positive and negative

samples for training, validation, and test sets is given in the tables. The relative

proportions of the number of positive and negative samples can vary substantially

from dataset to dataset. However, this depends on how much time the fish is present

within the detection range of hydrophone. We haven’t tested our models on datasets

with different proportion of positive and negative samples, but we anticipate that the

recall and the false positive probability would be similar. The information about the

training data is given in table 4.1.
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Threshold=10 pings Positive Samples Negative samples

Training data 1620 4404

Validation data 395 1611

Test data 343 1663

Table 4.1: Distribution of positive and negative samples among datasets

When the same test data was used to test both the Xception neural network and

ResNet-50, the Xception neural network was 99.5% accurate in predicting the labels

correctly, whereas the ResNet-50 was 90.7% accurate in predicting the labels. So, we

focused our analysis with the Xception neural network.

The classification of an image for the presence of a tag was done on the other

datasets recorded in different water bodies. In classifying the images, we encountered

few scenarios in which the model failed to predict the labels correctly. These failures

showed us the need to augment the data to improve the performance of the model.

The augmentation methods and the scenarios at which these augmentation methods

were developed are discussed in section 4.4.

4.4 Augmentation Methods

There are two augmentation methods introduced in this project when working on

filtering out the images for the tag, i.e. when performing analysis with the Xcep-

tion Neural network. These augmentation techniques are also implemented in UNet

analysis.

The two augmentation methods are:

1. Adding a random offset to shift the horizontal lines vertically.

2. Tweaking the tag period by 10ms to create negatively labeled images.

Let us discuss the two augmentation methods briefly.

4.4.1 Augmentation-1: Adding Random Offset

In the analysis of classifying the images for the presence of the chosen tag period, the

model failed to detect some pings in the image in which the horizontal lines were at
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the bottom of the image, as shown in figure 4.6. The model also failed in some cases

where the lines were at the top of the image and also in the images in which one

track was at the top of the image and the other track at the bottom. So, a random

offset is added to the remainders so that each pixel in the image shifts upwards in the

image. This random offset is constant for all the pixels in a 30-minute interval. An

example is shown in figure 4.7, in which the low-lying horizontal lines in the image

shift upwards after adding a random offset.

Figure 4.6: Sample image in which the horizontal lines are at the bottom of the image

When the images similar to figure 4.6 are passed through the Xception neural

network, the model fails in a few cases to detect some of the pixels in the image. Fur-

thermore, when the images with low-lying horizontal lines are replaced with random

offset added images similar to figure 4.7, the neural network was able to detect most

of the pixels in the image.

In an analysis done on 782 test images, 14 images were wrongly predicted by the

Xception neural network. When these 14 images were replaced with the random offset
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Figure 4.7: Sample image in which the low-lying horizontal lines shift upwards after
random offset is added.

added images, the overall performance was improved significantly. The overall accu-

racy was improved from 95.2% to 96.9%. In addition to accuracy, the precision and

recall were also computed before and after replacing the images with a random off-

set. The precision and recall before adding offset were 100% and 93.7%, respectively.

When the misclassified images were replaced with the random offset added images in

test data, the precision and recall were increased to 100% and 95.4%, respectively.

Since there was an improvement in the performance when the 14 misclassified images

were replaced, the training data is replaced with the original images, and the same

images with the random offset are added to create the double-sized dataset to train

the neural network. When training the model with the updated training data, the

model’s performance on the test data was further improved, i.e., the model was able

to predict the labels with 99.6% accuracy.

When the model which is trained using augmentation method-1 is tested on the

different data not used for training and validation, there were several false positives

though there were no pings from the test tag. Looking at the false-positive images,
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it was found that there were pings from other tags with a minor difference in the tag

period causing the model to treat the lines as horizontal lines though the lines had

a non-zero slope. The reason for the lines with a non-zero slope is explained in the

next section.

4.4.2 Augmentation-2: Tweaking the Tag Period

A fish moving towards or away from the receiver generates pings with delay less than

or greater than the actual period, respectively. This effect is also referred to as the

doppler effect (explained in section 3.4). Due to the acoustic Doppler effect, the pings

obtained from a moving fish appear as tracks with a non-zero slope when viewed as

an image. This is because of the difference in the arrival time of pings. The pings

which arrive with a minor change in the usual time delay than the actual tag period

can also be considered as the pings from the tag.

Now comes the question of an expected possible delay of pings. For example, a

fish with a tag period of 3000 ms moving towards the receiver at a speed of 1m/s will

appear to have its period reduced by approximately (3000)*(1/1500)=2 ms where

the speed of sound in water is 1500m/s. Considering the fish with a tag period of

3000 ms moving at an average speed can have its period reduced by not more than

2-3ms. So, the pings which occur with a delay of + or – 3 ms can be treated as actual

tag period. Most of the fish tags used in this project have a tag period in the range

of 1000 ms to 10000 ms. So, a cut-off delay of 10 ms is used so that a tag period

with t ms may expect pings with delay in the range (t-10) ms and (t+10) ms. This

resulted in implementing another augmentation method of adding negative labeled

images with minor tag period differences.

This augmentation is used to handle the model’s misclassifications in case the tag’s

period close to the chosen tag period is present in the same image. If there is any tag

with a minute difference in the period in the order of tens of milliseconds, the model

will not treat the tag as a different tag than the chosen one because of a slight slope

in the horizontal lines. Hence, there will be many false positives. Several negatively

labeled images are created with tag periods with a difference of 10ms before and after

the chosen tag period to handle this problem of false positives. If the chosen tag
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period is t milliseconds, the augmented periods will be (t – 10), (t + 10). So, there

will be two sets of additional tag period images for each set of tag periods but with

negative labels. In other words, out of all the images used for training, only one-

third will be original images, and the other two-thirds will be duplicate and negative

labeled images.

With the two augmentation techniques implemented, each 30-minute interval will

have three sets of images with tag period t, (t-10), and (t+10) milliseconds. Along

with these three images, there will be additional three images with a random offset

added. So, for each 30-minute interval, there will be six images in total for a single

tag. These two augmentation methods were also used in training the UNet model for

image segmentation.

Another main point to be noted here is that these augmentation methods are used

only for training and validation data. The augmentation is not applied to the test

data.

4.5 CNN for Image Classification

The idea of using the Xception neural network to classify the image for the presence of

tag is to check if the deep neural networks are compatible with the images generated

from acoustic time series data. The goal here is to show that the neural networks can

identify the tags. Let us now see the classification of images for the presence of a tag

is done.

After creating images from the raw data, the next step is to train CNN to classify

the images for the presence of the chosen tag. We have trained and tested a CNN

called Xception Neural Network.

In the training process, the necessary preprocessing is done to prepare the data for

training. The Xception neural network accepts the input image with four dimensions.

So, the array of input images is reshaped to form a four-dimensional input. Since

the Xception neural network has the output dimension as two-dimensions, the labels

are one-hot encoded. One-hot encoding transforms the categorical data into a binary

representation that could be provided to ML algorithms.

The array of images and their binary labels are fed to the neural network, and

the model is trained for a significant number of epochs(20 epochs in our case) until
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the validation loss gets saturated, i.e., if the validation loss decreases over the course

of training and it stabilizes, that means the model has achieved a good fit. Standard

values were used for hyperparameters like learning rate throughout the training. Call

back is set to save the best-performing model with the highest validation accuracy

throughout the training process. This best-performing model is used to test the test

data. The result of this analysis is given in chapter 5.

Our analysis showed that the deep neural networks are compatible in providing

good results on the images created from acoustic time series data. Since the deep

neural networks showed better performance on the project data, we used UNet (a

deep neural network) for image segmentation.

4.6 CNN for Image Segmentation

After the images are classified for the presence of a tag, our next goal was to design

a model that identifies the pings from the tag in an image by performing image

segmentation. For the image segmentation, we have used a neural network called

UNet[11]. The detailed architecture of the UNet is explained in section 3.5.8.

The array of images generated from the RAT data and their binary masks gen-

erated from TAT data are used to train the UNet model. One main point to note

when training the UNet model is that the image dimensions should be a multiple of

16. In our case, the image dimensions are 192 x 192, which is a multiple of 16. This

is because, at each level of UNet, the size of the image reduces to half. Since there

are four levels in UNet architecture, the size of the image gets divided by two for four

times, i.e., the size of the image becomes (1/16) times the initial dimensions. Hence

the initial dimensions of the image should be a multiple of 16.

Similar to Xception Neural Network, a standard UNet model also accepts the input

only with four dimensions. The array of images is converted to a four-dimensional

input to feed to the UNet neural network, and it is trained for a significant number

of epochs(10 epochs in our case) until the validation accuracy and loss curves reach

saturation point, i.e., the loss and accuracy values of validation data reach stability.

Standard values are used for UNet hyperparameters throughout the training[11]. The

segmentation outputs an image in which each pixel value ranges from 0 to 1. By

carefully choosing the threshold(0.2 in our case; analysis showing why we chose 0.2 as
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threshold is given in section 5.3), we can convert the image into a binary 2-dimensional

array by assigning each pixel a ’0’ or ’1’ with the help of threshold. The best-

performing model with the highest validation accuracy is saved and used to test the

test data. When an image is given to the trained UNet model, the model should

segment the pings from the tag. A detailed analysis of the experiment is given in

chapter 5.

4.7 Inverse Mapping of Pixels to Pings

The next step after the image is segmented is to find the pings from the segmented

pixels. Because the UNet model finds the pixels in an image associated with the pings,

hence, by inverse mapping, the pings which occurred from the tag can be known. In-

verse mapping of pixels to pings gives the list of marked pings in the image. The

segmented image is divided into bins by computing the remainders for each of the

pings in the 30-minute interval. In other words, the image is divided into x and y

pairs where x is ping times, and y is the residual obtained by dividing the ping times

by tag period. The equations of how the x,y values are computed are given below.

X =time elapsed (in minutes)

Y = time elapsed % tag period (in seconds)

From the x,y values, the bin numbers of each x,y pair are calculated in the image.

The mask value of each bin is returned as an array. This is an array of 0’s and 1’s.

The length of this array is equal to the length of the ping times. The locations at

which there are 1’s in the returned array give the locations of marked pings in the

ping times array.

4.8 Implementing Post-Processing Filtering Algorithm

The final step is to apply the post-processing filtering algorithm. Application of

these filtering algorithms will mark the previously unmarked pixels by the UNet.

The filtering algorithms are rule-based processes whose performance depends on a

few hand-tuned parameters like threshold, tolerance, and mode. The two algorithms

applied are the ’subcode filter’ and the ’trajectory filter’ algorithms. A detailed
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explanation of the algorithms is discussed in chapter 3.

Applying the subcode filter algorithm will mark the pixels by looking for the ping

pairs that match the sub-period. The two modes used by the subcode filter are ’EAR-

LIEST TIME’ or ’LARGEST AMPLITUDE. When the ’EARLIEST TIME’ mode is

selected, the ping pairs with the earliest arrival time are selected, and when the

’LARGEST AMPLITUDE’ mode is selected, the ping pairs with the largest com-

bined signal amplitude are selected.

The next filtering algorithm applied after the subcode filter is the trajectory filter

algorithm. In this algorithm, the pixels are joined by the trend line going through

the ping pairs identified in the subcode filter algorithm, and the pings close to this

trend line are also marked as pings from the tag.

4.9 Inference phase

Once the model is developed and trained, the sequence of steps in the project’s in-

ference or testing phase is given in the flowchart (Figure 4.8).

As shown in figure 4.8, in the testing phase or inference phase, the marking of

the pings from the images is an easy process. The images are created from pings

by choosing a suitable time window; for example, images are generated for each 30-

minute duration. The number of pings in the specified window is extracted from raw

data files by choosing a suitable time window(30-minute duration). A 2D-histogram

image is created with the extracted pings and the test tag period. The generated

image is passed through the UNet to segment the pixels from the tag. Once the

image has been segmented for the pixels, the next step is to map the segmented

pixels to pings. The final step is to apply the subcode filter, and the trajectory filter

in the post-processing filter step to extract the final list of marked pings from the raw

data. Finally, we obtain the list of marked pings from the tag in an image. Thus,

the machine learning approach provides a useful solution to extract the pings from a

chosen tag from the data containing pings from multiple tags.
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Figure 4.8: Flowchart illustrating the sequence of steps in the inference phase of the
project



Chapter 5

Experiments and Results

In this chapter, we present our analysis of the information we extracted from the

dataset, classification of the images for the presence of the tag, and segmenting the

images for the pings from the tag. The experimental results discuss the performance

of our proposed method.

5.1 Dataset

We have conducted our analysis on multiple datasets and tested the performance

of the model on these datasets. In this chapter, we would like to present our de-

tailed analysis of one of the datasets which we used the most. Later we compare

the performance of the models on another dataset which is recorded in a different

environment.

The name of the dataset we used for our analysis is recorded in a Shallow River

Environment(SRE), so we refer to it as the ’SRE dataset.’ The dataset contains 426

raw data files (RAT) and 426 marked data files (TAT). A single file in this dataset

contains data of one day from a single hydrophone. In the TAT files, the tag period

is in the format as explained below.

Format: PPPP.PP-SS where PPPP.PP indicates period as a fixed-point number

of milliseconds, and SS indicates subcode index (01, 02, ..., 31)

Subcodes: { 225, 248, 270, 291, 311, 330, 348, 365, 381, 396, 410, 423, 435, 446,

456, 512, 523, 535, 548, 562, 577, 593, 610, 628, 647, 667, 688, 710, 733, 757, 782}

Example: The example tag period is 9152.00-24. The period here is 9152.00 in

milliseconds, and the subcode is 628 milliseconds (the 24th interval in the above list).

Subcode defines the separation between the primary pulse and the secondary pulse

44
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in milliseconds.

The contents and the meaning of each column in the file are explained in section

1.3. Below is some of the information about the dataset.

• The dataset is recorded for 43 days.

• The total number of hydrophones used is 10.

• Pings from 35 different tags are recorded. Out of 35 tags, 25 are fish tags, and

the other 10 are time-synchronous tags used to synchronize the receivers with

the GPS clock.

• Total number of pings in the dataset is 21.5 Million.

Figures 5.1 and 5.2 show how the pings are distributed over the hydrophones and

the tags. From figure 5.1, we can see which hydrophone captured the most number of

pings. From figure 5.2, we can get the information of which tags were present more

within the range of receivers

Figure 5.1: Bar plot showing the distribution of pings over the hydrophones

Tags with a period in the range of 9-10 seconds are fish tags, and the other tags

with a period greater than 10 seconds are time-synchronous.
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Figure 5.2: Bar plot showing the distribution of pings over the tags(tag period is
given in milliseconds)

Figure 5.1 show that there are some fluctuations, but the hydrophones have the

similar number of pings. Variations are only of the order of a factor of two or less.

This could be taken to indicate a certain level of uniformity or similarity across the

hydrophones. One might expect the UNet to generalise well across the hydrophones.

However, this distribution can be different for different datasets i.e., other datasets

can exhibit greater variation between hydrophones. Figure 5.2 shows that there is a

greater variation between the number of pings from each tag in the order of atleast

a factor of 10. For UNet to generalise well across the tags, we have chosen tags with

different appearance rates for training and testing (discussed in section 5.3).

Out of all tags, we chose three tags with the greatest number of pings and only a

single hydrophone, hydrophone:1, for our initial analysis. The total duration of the

tags present at each of the hydrophones is given as the cumulative presence of the

tag. The cumulative presence of the three chosen tags in all the hydrophones is given

in figures 5.3, 5.4, and 5.5 in the form of bar plots.

The distribution of pings in bar plots 5.3, 5.4, and 5.5 show that the pings have
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Figure 5.3: Cumulative presence of tag 9289.00-25

Figure 5.4: Cumulative presence of tag 9152.00-24
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Figure 5.5: Cumulative presence of tag 9262.00-23

different distributions for different hydrophones. For generating models, we used a

subset of data that has most of the data and another subset of data that has most as

well as comparatively fewer data. Thereby creating the images from most frequently

appearing as well as the rarely appearing tags.

The total duration of the three chosen tags is divided into 30-minute intervals, and

the data is split into training, validation, and test sets using the procedure mentioned

in section 4.1. There are 7918 30-minute intervals in this data. 60% of the intervals are

divided into training data, 20% into validation data, and the remaining 20% into test

data. There are 4756 training intervals, 1598 validation intervals, 1564 test intervals

for each tag period. These 30-minute intervals are converted to images for each of the

three tags selected. The procedure to create images is explained in section 4.1. The

two augmentation techniques discussed in section 4.4 are applied to these images in

training and validation data sets. After augmentation is applied, the total number

of training samples is 85608; validation samples are 28764, and 4692 test samples.

Similarly, the binary labels are generated for training, validation, and test samples,

as mentioned in section 4.2.
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5.2 Training an Xception Neural Network

An ’Xception’ neural network[38] is trained on these 85608 training samples and

28764 validation samples. The model is trained for 20 epochs until the training and

validation accuracy reaches saturation, and the best-performing model with maximum

validation accuracy is saved. The plots of the accuracy of training and validation data

are given in figure 5.6.

Figure 5.6: Accuracy plot of training and validation data of Xception Neural network

As seen in figure 5.6, there is a dip in the validation accuracy at epoch 7. Though

training the model multiple times and with different random initialization of the

model, the dip seems to appear over the course of the training. The reason for the

dip was unknown. Despite the dip, all models trained with different random seed ini-

tialization converge to the same solution in a reproducible manner. The saved model

with the highest validation accuracy is tested on 4692 test samples. The model is

found to be 98.31% accurate in predicting the labels correctly. The other model

evaluation parameters, precision, and recall are 0.9743 and 0.9724, respectively. The

distribution of positive and negative samples is given in table 5.1. This table shows

that there are a large number of negative samples in the training and validation
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datasets. This is because the second augmentation technique we implemented gener-

ates a more number of negative samples. For example, out of six samples generated for

a tag period, four of them will be negatively labeled in augmentation 2. The implica-

tions of unbalanced training set for the inference were not systematically investigated.

For further explanation, please refer to section 4.4.2. Since the augmentation is not

implemented in the test set, it looks more balanced.

Threshold=10 pings Positive Samples Negative samples

Training data 11360 74248

Validation data 3852 24912

Test data 2030 2662

Table 5.1: Distribution of positive and negative samples among datasets for Xception

Neural network analysis

To determine if the model is trained with ’good fit’ or ’under fit’ or ’over fit,’

validation data plays an important role. In training, we compute the validation

accuracy and save the model when the validation accuracy is maximum to avoid

overfitting. To check if the model is overfitted, we also tested the trained model on a

different subset of data to see if the model can generalize the data well.

The Xception neural network model saved with the highest validation accuracy is

now tested on different data that is not used for training, and the model performance

is evaluated. The results are shown in Table 5.2.
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Hydrophone

and

Tag

Accuracy Precision Recall Number of

positive

samples

Number of

negative

samples

Hydrophone:2

Tag:9891.00-27

99.86% 97.38% 99% 301 7617

Hydrophone:2

Tag:9234.00-28

99.83% 94.68% 91.75% 97 7821

Hydrophone:2

Tag:9289.00-25

95.18% 99.62% 90.41% 3841 4077

Hydrophone:3

Tag:9289.00-25

94.92% 97.53% 84.28% 2253 5665

Table 5.2: Xception neural network performance on various test dataset

The accuracy is simply the ratio of correctly predicted observations to the total

number of observations. Whereas precision is the ratio of correctly predicted positive

observations to the total number of positive observations, and recall is the ratio of

correctly predicted positive observations to all the observations in the actual class (not

predicted class). The use of the Xception Neural network is to classify the images for

the presence of the chosen tag.

The Xception Neural network was used to test if the acoustic data involving

images can be used for Deep learning approaches. Since the deep neural network

like Xception neural network detected the pings with more than 95% accuracy, we

used UNet, another Deep neural network for image segmentation tasks. We feed the

images to the UNet model for segmentation in our project final pipeline once the

images are created.

5.3 Analysis with UNet Model

5.3.1 Training the model

Training the UNet model involves the model to segment the image to find the pings

from a chosen tag. To train the UNet model, for all the training, validation, and test

samples, binary masks are generated using the procedure mentioned in section 4.3.

For UNet analysis, another tag, ’9316.00-25’, with a comparatively smaller number



52

of pings than the other chosen tags is chosen. The choice of four tags with three tags

having the greater number of pings and the fourth tag having fewer pings is made

to maximize the number of images containing pings while still exposing the model

to both frequently and rarely appearing tags in order to achieve satisfactory perfor-

mance. Once the binary masks are generated for all the images, a UNet model[11]

is trained for a significant number of epochs(20 epochs in our case) until the valida-

tion loss and accuracy reaches saturation. However, the validation accuracy reached

saturation after two epochs. The accuracy is close to 0.99. This happens because

of class imbalance[53]. Since the pixels from the tag (pixels with label ’1’) are less

compared to the other pixels (pixels with label ’0’), i.e., for example, in the case of a

full track, the fraction of positive pixels to negative pixels is low which is close to 1%,

the accuracy of the model will be more than 99% even if the model identifies all the

positive pixels wrongly. So, accuracy is not a correct measure if there is a large class

imbalance, as in our case. Hence, we used F1-score as our performance evaluation

metric. Since the accuracy is close to 0.99, we plotted (1-accuracy) at each epoch

in a logarithmic scale as shown in figure 5.7. The validation accuracy continues to

improve slightly after the first epoch.

Figure 5.7: Accuracy plot for training and validation data on UNet model
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The best-performing model with the highest validation accuracy during model

training is saved and used on test data. An example of how the UNet segments the

pixels in the image is shown in figures 5.8, 5.9, 5.10.

Figure 5.8: Image generated from RAT data

Figure 5.9: Binary mask generated from TAT data
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Figure 5.10: Image predicted by the UNet model

The UNet mask predicted by the model is an image, and each pixel in the image

has a value in the range of 0 to 1. All the pixels in the image are converted to binary

labels by carefully choosing a suitable threshold value. If the pixel value in the image

is greater than the threshold, the pixel is labeled 1 and 0 otherwise. Hence we obtain

the UNet mask as a 2-dimensional binary array.

To choose a threshold that converts UNet output mask to a binary 2-dimensional

mask, we trained two models, one (Model-1) with a small subset of data which con-

tains the data of only a single hydrophone and a tag combination, and another model

(Model-2) was trained with a large subset of data compared to the model-1 with data

containing multiple tags and hydrophones.

• Model-1 is trained with Hydrophone:1 and Tag: 9289.00-25

• Model-2 is trained with Hydrophones: 1 to 6 and Tags: 9289.00-25, 9152.00-24,

9262.00-23, 9316.00-25

5.3.2 Choosing Optimal Threshold

The two models are tested on six different test datasets, and the Precision-Recall

curve is plotted by varying thresholds from 0.0001 to 0.9 in steps of 0.05.
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The test datasets to plot Precision-Recall curves are:

• Hydrophone:1, Tag:9180.00-29

• Hydrophone:3, Tag:9180.00-29

• Hydrophone:5, Tag:9180.00-29

• Hydrophone:1, Tag:9234.00-28

• Hydrophone:3, Tag:9234.00-28

• Hydrophone:5, Tag:9234.00-28

The Precision-Recall plots are given in figures 5.11 and 5.12 for the two different

models tested on six different test datasets.

Figure 5.11: Precision-Recall plot for model trained on single hydrophone and single
tag (Model-1)
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Figure 5.12: Precision-Recall plot for model trained on multiple hydrophones and
multiple tags (Model-2).The points indicate threshold 0.1, 0.2 and 0.5 respectively
from right to left

Figures 5.11 and 5.12 show that the precision and recall are more than 90-95%.

These two plots summarize the trade-off between the true positive rate and the pos-

itive predictive value for a model using different thresholds. In other words, the

Model-1 is able to detect atleast 80% of pings in an image and correctly predict

atleast 90% of the detected pings. Similarly, the Model-2 is able to detect atleast

91% of the pings and correctly predict atleast 95% of the detected pings in all the

datasets. Clearly Model-2 performs better than the Model-1. The curves in figure

5.12 have a sharp bend for the thresholds 0.1 to 0.2. So, an optimal threshold of 0.2

is chosen to label the pixels in the image.
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5.3.3 Performance at Pixel and Ping Level

Two types of analysis are done after the UNet segmentation is done.

• Performance analysis at the pixel level.

• Performance analysis at the ping level.

For pixel-level analysis, the pixel values of the binary mask generated from TAT

data and the mask predicted by the UNet are considered. For each of the images,

precision, recall, Jaccard index, and F1 score are calculated. These metrics are ex-

plained in section 3.7.

Test Data

A test dataset containing different Hydrophone – Tag combinations is created to

perform pixel-level and ping-level analysis. The test data contains below Hydrophone

– Tag combinations.

• Hydrophone:1, Tag: 9234.00-28

• Hydrophone:2, Tag: 9891.00-27

• Hydrophone:3, Tag: 9508.00-19

• Hydrophone:4, Tag: 9234.00-28

• Hydrophone:5, Tag: 9180.00-29

• Hydrophone:6, Tag: 9508.00-19

For the above six test sets, the overall precision and recall are computed at the

pixel level. Then the post-processing filtering algorithms are applied to compute the

metrics at the ping level. To compute the precision and recall, the data in the TAT

files is taken as the ground truth labels.

The test sets are tested on the models trained on small data (Model-1) and the

model trained on large data (Model-2). Figures 5.13 and 5.14 are the plots showing the

performance of the UNet model on the different test datasets at pixel level compared

to manual marking. The dashed line at 100% shows the level of manual marking.
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Figure 5.13: Performance comparison at pixel level for the Model-1

Figure 5.14: Performance comparison at pixel level for the Model-2
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Now the pixels are converted to pings using the inverse mapping procedure men-

tioned in section 4.7, and both the models are tested on the test datasets. The results

are given in figures 5.15, 5.16.

Figure 5.15: Performance comparison at ping level for Model-1

Increasing the training data improved the model’s performance, as seen in plots

5.13 and 5.14 in all the test cases at pixel and ping levels. Looking at the plots 5.15

and 5.16, the UNet performance on all the test sets is between 94% to 99%, which

indicates that the model can segment the pings close to human-level annotations.

However, the ping level performance is low compared to the pixel level performance

in few cases. When the image is created, multiple pings can be assigned in a single

pixel, and when inverse mapping is done, the pixel to ping conversion can map only

one pixel to a ping, ignoring the other pings that should have been marked. Hence,

the performance at the ping level can be low in a few cases. The models perform

poorly in a few cases in which the tracks are faint in the images. These models are

nearly sufficient in producing the study results that involve the presence or absence of

a fish tag. Also, the same performance of the models may not be reproducible on other

datasets as the other datasets might have data recorded in different environments or
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Figure 5.16: Performance comparison at ping level for the Model-2

may have different data distributions. The analysis of the models on other datasets

is discussed in the subsection 5.3.5.

Moreover, in the six test datasets, two datasets, Hydrophone:4, Tag: 9234.00-28

and Hydrophone:6, Tag: 9508.00-19, have less performance than the other test sets.

Most of the images in these Hydrophone-Tag combinations were noisy images. The

pings in the images were not clearly visible, and the model could not identify the

pings correctly. Hence there were many false positive and false negative pings in the

images resulting in low precision and recall. Therefore, the F1-score is low for these

two test datasets.

Bar plots in figures 5.17, 5.18, 5.19 show how the precision, recall, and the Jaccard

index are distributed in all the test datasets.

From figures 5.17, 5.18, 5.19, we can infer that more than 75% of the images have

high precision, recall, and Jaccard coefficient. In comparison, the plots say that many

images have zero precision, recall, and Jaccard coefficient. The images in which the

metrics are zero do not have any pings present, but the images predicted by the UNet

have a couple of pings predicted by the model, which are false positives. Most of the
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Figure 5.17: Bar plot showing the distribution of precision

Figure 5.18: Bar plot showing the distribution of Recall

images were noisy, so the pings were not visible, resulting in many false positives and

false negatives. A noisy sample image is shown in figure 5.23, where no pings were



62

Figure 5.19: Bar plot showing the distribution of Jaccard Index

visible, but the model identified a couple of pings in a similar type of images.

5.3.4 Models Performance Compared to Auto Marking

The same dataset which had the marking done by the automatic process in the

’MarkTags’ application was provided by Innovasea. The marking in this dataset is

compared with the markings done manually by the annotator, and the performance

is computed. The marking in the manually marked files is taken as the ground truth

labels to compute the performance metrics of auto-marking.

A plot showing the comparison of the performance of auto marking and the UNet

marking to the manual marking at ping level is given in figure 5.20.

In all the cases, the UNet model outperforms the auto marking annotations by

more than 45%, and also, the UNet model performance is close to the human-level

performance. The auto marking and UNet marking results show that UNet produces

better auto marking results than the MarkTags’ auto marking approach. However,

though the UNet marking is close to manual annotations in the SRE dataset, its

performance on other datasets is comparatively less. The results of the UNet perfor-

mance on other dataset is discussed in the next subsection.
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Figure 5.20: Performance comparison of auto marking and UNet marking to manual
marking

5.3.5 Reproducibility on Other Datasets

The model trained on SRE data is tested on a completely different dataset called

’Hydrodam’ data recorded in a highly noisier environment. The dataset is recorded

near a hydropower dam. Hence the data recorded contains noise from external sources,

and also the dataset contains many multi-path pings. The explanation about multi-

path pings is given in section 3.3. Another three models trained on different data

distributions of the hydrodam data are compared with the model trained on SRE

data. This comparison analysis is done to see if the model trained in one environment

can identify the pings in another environment. The performance comparison is made

at both pixel and ping level on five different test datasets of hydrodam data, and

the plot showing the F1-score of four models on five test sets is plotted. The details

about the models and the comparison plot are shown in figures 5.21 and 5.22.

• Model-1: SRE Model: Best performing model of SRE dataset.

– Training data: Trained on Hydrophones: 1 to 6 and Tags: 9289.00-25,

9152.00-24, 9262.00-23, 9316.00-25 of SRE data.
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– Image dimensions: 192 x 192 for each image.

• Model-2: Hydrodam Model-1: Trained on fewer data.

– Training data: Model trained on Hydrophones: 203, 204, 205, Tags: 5875.13,

6547.15, 7156.14, 7408.26. It contains data of three hydrophones and four

tags but has less number of pings. The number of pings used for training

is 79427.

– Image dimensions: 192 x 192 for each image.

• Model-3: Hydrodam Model-2: Trained on more data.

– Training data: Model trained on Hydrophones: 206, 207, Tags: 5329.17,

7009.06, 6505.13. It contains two hydrophones and three tags but has

more pings than the data used for Model-2. The number of pings used for

training is 636876.

– Image dimensions: 192 x 192 for each image.

• Model-4: Hydrodam Model-3: Trained on the same data as Model-2 but with

increased image size.

– Training data: The training data is the same as the Model-3. Hydrophones:

206, 207 and Tags: 5329.17, 7009.06, 6505.13 are used as training data.

– Image dimensions: 384 x 384 for each image, double the standard size of

each image used in other models.

The Hydrodam Model-1 and Hydrodam Model-2 were trained on fewer and more

data respectively to investigate if the amount of training data would have an impact

on the model performance. Similarly the dimensions of the image is doubled in

training the Hydrodam Model-3 to see if this would impact the model performance.

Doubling the image size will make the pings visible more clearly and provides more

detailed information to the model but makes the computation slower.

The plots showing the comparison of the F1-score of five different test datasets

tested using the above four models are given in figures 5.21 and 5.22.

The performance of the models on the hydrodam data is in the range of 70-

80%. From plots 5.21 and 5.22, the below conclusions can be drawn. On hydrodam
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Figure 5.21: Performance comparison of hydrodam data on different models at pixel
level.

Figure 5.22: Performance comparison of hydrodam data on different models at ping
level.

test data, the hydrodam models seem to perform better than the SRE model since

the training data of hydrodam models include noisy data compared to the SRE data.

There was a 1% improvement in the model’s performance when the hydrodam model-

1 and hydrodam model-2 are compared. This is because the data used for training

model-2 has more pings. Increasing the image’s dimensions by two times showed an
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improvement of 1% in the performance when the hydrodam model-2 and hydrodam

model-3 are compared at both ping level and pixel-level analysis.

The overall performance of the models on Hydrodam data is poor compared to

the SRE data because of the noisy nature of the data. The model struggles to identify

the pings from the noisy images, and we also identified that the manual annotations

were not accurate. Few images had pings visible in the image but were not marked

by the annotator. Sample images that are noisy and which show incorrect marking

are given in figures 5.23 and 5.24.

Figure 5.23: Sample noisy image in hydrodam data

Looking at the images in figures 5.24 and 5.25, in the duration 0 to 10 minutes of

the image 5.24, few pings are visible but were not marked by the manual annotator

(figure 5.25) while providing the dataset. There are many similar images in which

the data was not marked correctly in the hydrodam data.

5.4 Remarking Analysis

Another expert at Innovasea was requested to re-annotate a subset of whole data

which had marking errors.
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Figure 5.24: Sample RAT image showing incorrect marking

Figure 5.25: Sample TAT image showing incorrect marking
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The information about the remarked data is given in below.

• Total duration of the data: 24 hours. (Day 310 in the hydrodam dataset).

• Hydrophones: 203 and 204; Tag: 6547.15 .

The original and the remarked data are tested on the hydrodam model and SRE

model, and the performance is computed. Also, the level of agreement between the

original and the remarking efforts is also computed. The results are given in figures

5.26 and 5.27.

Figure 5.26: Performance comparison of original and remarked data on hydrodam
and SRE models at pixel level

The figures 5.26 and 5.27 can be explained below. Bar-1(Blue) indicates the

level of original marking compared to the remarking effort. (Only 75-80% of the re-

marked pings were present in the original data(previous marking). The rest 20-25%

of the pings were not marked previously. Bar-2(Orange) indicates the performance

of the UNet model(trained on Hydrodam data(Hydrodam Model-2)) on the original

data. Bar-3(Green) indicates the performance of the UNet model(trained on Hy-

drodam data(Hydrodam Model-2)) on the remarked data. Bar-4(Red) indicates the
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Figure 5.27: Performance comparison of original and remarked data on hydrodam
and SRE models at ping level

performance of the UNet model(trained on SRE data(SRE Model-2)) on the original

data. Bar-5(Purple) indicates the performance of the UNet model(trained on SRE

data(SRE Model-2)) on the remarked data.

Below inferences can be drawn from figures 5.26 and 5.27. Both at pixel level

and ping level, the original marking only matches 75 to 80% of the data. In other

words, 20-25% of the actual pixels were not marked in the previous annotations. Hy-

drodam model’s performance improved by nearly 10% after remarking the data. The

performance of the SRE model on the remarked data improved by nearly 15% than

the original data, i.e., the model was performing better than the original annota-

tions. Also, the performance of the SRE model is better than the hydrodam model

on remarked data. This is because the data used to train the SRE model is more

accurately annotated than the hydrodam data. The remarking of data improved the

performance of existing models. Parts of the data which had marking errors can

be remarked and the models can be re-trained. Training the model on well anno-

tated and on the data recorded in different environment may reproduce the similar

performance metrics as in SRE dataset.
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Conclusion and Future Work

6.1 Discussion

In this section, the research questions that were asked in the Introduction chapter are

answered.

1. How are the pings in data represented as an image? We create images by

plotting a 2D histogram with pings on the horizontal axis and the remainders

obtained by dividing the pings with tag period on the vertical axis. These 2D

histograms are used to train neural networks.

2. How are the images classified for the presence of a tag? The number of pings

from a chosen tag is considered, and if the number of pings is greater than the

desired threshold, the image is assigned a positive label, and if the number of

pings is less than the threshold, the image is assigned a negative label. We use

’Xception Neural Network’ for this classification task.

3. What are the augmentation techniques implemented in this thesis? We imple-

mented an augmentation technique of adding a random offset to the remainders

to shift the pixels vertically upwards in an image making the pings visible clearly

in an image. In another augmentation technique, negatively labeled images are

generated by tweaking the tag period by 10 milliseconds so that the augmented

period is outside the expected deviation of the tag period caused due to the

acoustic doppler effect.

4. How is the image segmentation technique used in fish tracking with the images

generated from the data? Once the images are generated, these images are

segmented using the UNet neural network. UNet segments the image for pixels

from the tag.

70
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5. What is the performance of our proposed machine learning method to auto-

mark data compared to the manual marking process? As shown in the results

chapter, the annotations of automarking in the MarkTags software are less than

50% to the human level annotations, whereas the machine learning approach

annotations are 96% accurate and close to the same human level annotations.

This shows the usefulness of the novel approach.

6. How can the performance of our proposed method improve? As shown in the

results, training the model with a large subset(data containing more pings) of

data results in improved model performance. Also, to overcome the model’s

poor performance in the noisier environment, training the model with noisier

and well-annotated data may improve the model’s performance.

6.2 Conclusion

For marine life researchers, the concept of tracking and monitoring the fish is im-

portant to know where they are as fish tracking has many advantages, for example,

to know the behaviour of fish and also it informs about the fisheries operations and

marine conservation efforts. Depending on the type of data involved, the methods

used in various fish tracking techniques differ. To track the fish, besides using other

types of tags, Innovasea uses a new technology in which high-frequency tags are used

with a coding scheme called pulse rate encoding scheme to identify the tags uniquely.

In this scheme, the tags are identified by the separation between the pulses being

transmitted. These high-frequency tags are smaller in size, making the tags suitable

for smaller fish and also produce precise trajectories than the old tags, which are

larger in size.

To track the high-frequency fish tags, which use a pulse rate encoding scheme,

Innovasea uses a visual analytics system called ’MarkTags’ where the marking is

done automatically, or the user manually marks the pings from the fish tag, which

is time-consuming. This is a problem as it prevents scaling up the approach to deal

with larger volumes of data. In this thesis, we discussed our proposed method of

using the acoustic time series periodic data and mark the pings from the tags that

eliminate human involvement to a great extent. Our proposed method of marking
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the pings from acoustic period data to track fish is a novel image approach as it uses

an image segmentation technique to track the fish from acoustic time series data.

From the pings, also known as peak locations, we create an image using the 2D

histogram approach. Then, we segmented the images for the pings from the tag using

a UNet neural network. The segmentation by UNet identifies the pixels associated

with the pings in the input image. The segmented pixels are inversely mapped to

pings from the tag by converting the image into the pairs of pings and residuals

(obtained by dividing pings with tag period) and taking only the pairs which UNet

segmented. The uniqueness of our method is that we use deep learning techniques

to find the pings from the tag by generating images with the pings. The image

augmentation techniques we developed are also new which helped in improving the

model’s performance.

When the trained UNet was asked to identify the tags not seen during training, it

was able to do so with an accuracy of 95% which is close to human-level annotations.

These results show that the deep learning can, if not entirely eliminate, drastically

reduce the need for manual analysis of the data generated by Innovasea’s new encoding

scheme. The results also show that the weaker predictions are due to poor marking of

the data or noisy data. The existing model has shown close to human level annotations

in the study that involves identifying the pings. However, the existing model is not

sufficiently accurate in the fish movement reconstruction study which requires better

handling of tail or faint tracks in an image. These limitations of the model can be

handled in the future to improve and optimize the UNet model so that it can be

integrated into Innovasea’s operations.

6.3 Future Work

Our work is the first approach in which the semantic image segmentation technique

is applied on acoustic time series data for fish tracking to the best of our knowledge.

Therefore, many aspects of our approach can be explored in the future or implemented

for similar tasks. Specific tasks that can be done in future works for our method are

as follows:

• Our work requires prior knowledge of the tag period to create images. However,

in the future, a model that does not require the information of the tag period can
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be developed for some applications, like detecting a tagged fish that has traveled

long distances. A possible solution would be to compute the autocorrelation of

the raw ping time series to detect acoustic tags with unknown periods; however,

this technique is unlikely to work if the signal-to-noise ratio is poor or the tag

suffers frequent and large Doppler shifts. Some of these issues could be alleviated

by a double-pass approach that combines autocorrelation with the UNet.

• The current approach marks the pings from only a single hydrophone-tag com-

bination at a time. An approach that can mark the pings from multiple tags

and receivers can be developed. One approach to do this is to mark the pings of

each hydrophone-tag combination at a time and combine the results of multiple

hydrophone-tag combinations. It is a matter of parallel computing required to

the task efficiently.

• Based on the task and type of data, the architectures of the Xception neural

network and UNet can be modified to improve the overall performance. For

example, for an input image with multiple channels, the network’s architecture

should be modified to support the input data.

• For the image segmentation task, a different version of CNN can be tested and

see if the model performs better than the UNet model used in our project.

Other advanced neural networks like R-CNN, UNet++, known for image seg-

mentation, can be tested as these architectures can provide enhanced feature

maps that may more accurately detect pings in our data.

• A more robust model trained on data recorded in different conditions like differ-

ent water bodies and different background noise levels can be developed. Our

approach now has models trained on each of the datasets, but to produce a

model that can work on all conditions, a single model can be trained on the

data recorded in all conditions.

• To detect the pings in a noisy image, as future work, two input images, one

image with the original data and the same image with a subcode filter applied,

can be added to the training set of UNet. Applying the subcode filter may
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remove the noise from the image, and only the pings with their pairs at the

subcode distance will be displayed.

Overall, our machine learning solution produced better results than the existing

automarking approach of marking the data in MarkTags. If the few edge cases like

identifying the pings in faint tracks and noisy images with the existing model are

handled, our approach can be integrated into Innovasea’s operations.
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