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ABSTRACT 

Yield-limiting weeds in wild blueberry fields, including hair fescue and sheep sorrel, are 
traditionally managed with uniform applications of herbicides. Spot applications of 
herbicides reduce the volume required for management. Convolutional Neural Networks 
(CNNs) were trained to identify hair fescue and sheep sorrel in images of wild blueberry 
fields. Six CNNs identified targets with a minimum F1-score of 0.95 for hair fescue and 
0.89 for sheep sorrel. Two CNNs were selected as viable for controlling applications from 
an eight-camera smart sprayer based on processing speeds above 9 frames per second and 
memory use below 6.4 GB. A graphical user interface was developed for monitoring CNNs 
and controlling hardware in real-time based on identification of target weeds. The results 
of this study indicate that CNNs are suitable for identifying hair fescue and sheep sorrel. 
Future research will involve using the output of the CNNs to automate spray applications, 
limiting herbicide use. 
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CHAPTER 1: INTRODUCTION 

1.1  Literature Review 

1.1.1 Wild Blueberry Cropping System 
Wild blueberries (Vaccinium angustifolium Ait.) are a perennial, rhizomatous crop 

native to northeastern North America which are traditionally managed in a two-year cycle 

(Kinsman, 1993). Commercial fields are developed on deforested areas or abandoned 

farmland after trees and other vegetation are removed (Hall et al., 1979). The flower buds 

begin to grow from August to October in the first (sprout) year and lay dormant through 

the winter (Hall et al., 1979). Growth continues in the spring of the second (crop) year, and 

harvesting begins in August and September when approximately 90% of the berries are 

ripe (Farooque et al., 2014; Hall et al., 1979) (Figure 1). The berries are harvested using a 

mechanical tractor attachment which pulls the berries from the plants and drops them into 

bins (Farooque, 2015). Wild blueberries were harvested with a hand rake prior to the 

introduction of the first viable mechanical harvester by Doug Bragg in 1981 (Dale et al., 

1994; Hall et al., 1983). After harvesting is complete, the branches are pruned by flail 

mowing or controlled burning (Hall et al., 1979). Better management practices, including 

development of the mechanical harvester, resulted in the commercial wild blueberry 

industry expanding in Canada (Farooque et al., 2014; Yarborough, 2004, 2012).When 

mechanized harvesting was introduced in 1984, the cost of picking was reduced by half 

and the quality of harvested berries improved (Kinsman, 1993). Farooque et al. (2014) 

determined that the picking efficiency of the wild blueberry harvesters produced by Doug 

Bragg Enterprises Ltd. (DBE) was more than 90%. 
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Figure 1: Wild blueberries prior to harvesting on August 8, 2019 in Debert, NS 
(45.4430°N, 63.4500°W). The larger bright blue berries are ripe, while the smaller green 
and red berries are not. 

The wild blueberry crop is desired for its health benefits ranging from anti-aging 

and anti-inflammatory properties (Beattie et al., 2005) to high antioxidant content (Kay & 

Holub, 2002) which helps reduce the risk of cardiovascular disease and cancer (Lobo et al., 

2010). The commercial wild blueberry industry is an economic driver in Nova Scotia, 

contributing over $100 million to the provincial economy in 2017, including $65.9 million 

in exports (Wild Blueberry Producers Association of Nova Scotia, 2018). Between 2007 

and 2017, the field price of wild blueberries fell from $2.31 kg-1 to $0.44 kg-1 (Wild 

Blueberry Producers Association of Nova Scotia, 2018). Labour has become more 

expensive over this period, with the minimum wage in Nova Scotia increasing by more 

than 42% (Employment and Social Development Canada, 2018). The price has rebounded 

slightly to $0.99 kg-1 in 2018 and 2019 (Robinson, 2020), but growers continued to express 

concern over the low price (Esau, 2019). The surveyed growers also mentioned the price 
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of equipment and the education of their workers as keys issues affecting their businesses 

(Esau, 2019). 

1.1.2 Weed Management Practices 
Another major concern for growers is the presence of over 100 weed species 

including hair fescue (Festuca filiformis Pourr.) and sheep sorrel (Rumex acetosella L.) 

(Figure 2) in wild blueberry fields (McCully et al., 1991). These weeds inhibit wild 

blueberry growth and interfere with harvesting equipment further reducing collected yield. 

Management of weeds has traditionally occurred with a uniform application of liquid 

herbicide. This method is inefficient because weed instances in wild blueberry fields occur 

intermittently, not uniformly (McCully et al., 1991; White, 2019). Hair fescue and sheep 

sorrel have field uniformities of 25% and 63% respectively (White, 2019). Pronamide, 

which is currently used to manage hair fescue (White & Kumar, 2017), costs $413.65 ha-1 

for a uniform application (Esau et al., 2019). Sheep sorrel is traditionally managed with 

hexazinone (K. I. N. Jensen & Yarborough, 2004; Kennedy et al., 2010), which costs 

$168.03 ha-1 to uniformly apply (Esau et al., 2019). The intermittent nature of these weeds 

presents an opportunity for increased herbicide application efficiency using a variable rate 

smart sprayer. Smart sprayers limit agrochemical application volume by only applying on 

areas of the field with weed cover (Esau et al., 2014, 2016, 2018; Hong et al., 2012; Partel 

et al., 2019; Rehman et al., 2018, 2019; Schieffer & Dillon, 2014). Commercial options 

available for other cropping systems such as See & Spray (Blue River Technologies, 2018), 

GreenSeeker (Trimble Inc., 2020a), WeedSeeker (Trimble Inc., 2020b), and AiCPlus 

(Agrifac Machinery B.V., 2016) are not suitable for wild blueberry management due to the 

highly variable topography of wild blueberry fields (Figure 3). 
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Figure 2: Sheep sorrel and hair fescue in a sprout-year Nova Scotia wild blueberry field 
during spring 2019. The wild blueberry plants have not started to regrow after flail mowing 
during the previous autumn. 

 

 
Figure 3: A wild blueberry field on a series of hills in Murray Siding, NS (45.3654°N, 
63.2118°W) on October 9th, 2020. The berries in this field have been harvested, but the 
plants have not yet been pruned. The leaves that were green in Figure 1 have turned red 
with the change in season from summer to autumn. 

Machine vision systems relying on green colour segmentation and colour co-

occurrence matrices have previously been tested for use in wild blueberry fields (Esau et 

al., 2014, 2016, 2018; Rehman et al., 2018, 2019). Esau et al. (2014) developed a spot 

targeting system based on green colour segmentation to detect weeds in wild blueberry 
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fields. When used on a smart sprayer with cameras 1.2 m from the ground, the system 

resulted in 44.5% reduction in agrochemical usage compared to a basic sprayer (Esau et 

al., 2016). Further work with this smart sprayer resulted in herbicide savings of up to 78.5% 

(Esau et al., 2018). However, this system was limited by its inability to discriminate 

between different weeds of the same colour. This sprayer used 27 spray nozzles and 9 

cameras equally spaced along a 13.7 m boom (Esau et al., 2018) (Figure 4). Colour co-

occurrence matrices were used for real-time targeting of goldenrod (Solidago spp.) in wild 

blueberry fields (Rehman et al., 2019; Rehman et al., 2018). This method was effective but 

had to be designed specifically for goldenrod and was not easily scalable to other weeds. 

This sprayer included 8 nozzles and 4 cameras equally spaced along a 6.1 m boom (Rehman 

et al., 2019). The smart sprayers relying on imaging systems used in wild blueberry 

included graphical user interfaces (GUIs) for operators to control spray settings and view 

images from the cameras in real-time (Esau et al., 2014, 2018; Rehman et al., 2019). 
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Figure 4: Smart sprayer developed by Esau et al. (2018) showing 3 of 9 cameras used in 
the image acquisition system. 

 

1.1.3 Machine Learning and Neural Networks 
Machine learning is the use of statistics by computers to estimate the solution to 

complex problems (Goodfellow et al., 2016). A neural network is a type of machine 

learning algorithm inspired by the way the human brain works. Neural networks are 

comprised of a series of connected nodes called neurons which are organized into groups 

of inputs, computations, and outputs (Schmidhuber, 2015). The computation nodes are not 

shown to users when in use and are usually referred to as hidden neurons. The hidden 

neurons transform data from the input neurons and classify it to an output neuron dependent 

on the result of the transformation (Goodfellow et al., 2016). Some neural networks have 

more than one group (layer) of hidden neurons and are referred to as deep neural networks 

(LeCun et al., 2015) (Figure 5). Data is also transformed when being transferred between 
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layers by a multiplier, called a weight, and an offset, called a bias. The weights and biases 

are initialized by the programmer but are modified by the network to optimize accuracy 

(LeCun et al., 2015). Weights and biases are stored as matrices, and an individual value is 

assigned for each transfer of information between nodes (Goodfellow et al., 2016). Neural 

networks obey the universal approximation theorem, which states that the solution to any 

problem can be approximated with a small degree of error given there is at least one hidden 

layer with non-linear functions (Hornik et al., 1989). 

 

Figure 5: Example of a basic deep neural network (LeCun et al., 2015). An input layer of 
three neurons sends data to a four-neuron hidden layer, a three-neuron hidden layer, and 
finally an output layer with two neurons. 

 

1.1.4 Convolutional Neural Networks 
Convolutional neural networks (CNNs) utilize multiple layers of neurons with 

linear and non-linear abstraction of data for image analysis (Goodfellow et al., 2016). 

CNNs were developed in the 1990s to allow computers at banks to analyse hand-written 
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digits on cheques (LeCun et al., 1998). This network architecture has resulted in faster and 

more accurate analysis of images than any other form of machine learning (Goodfellow et 

al., 2016; Krizhevsky et al., 2012; LeCun et al., 2015). Image processing using CNNs has 

been used in various aspects of agriculture since 2015 (Kamilaris & Prenafeta-Boldú, 

2018). Innovative uses of this technology in agriculture have included livestock monitoring 

(Santoni et al., 2015; Wu et al., 2020; Yang et al., 2018), plant disease detection (Amara et 

al., 2017; Fuentes et al., 2017; Venkataramanan et al., 2019), wild blueberry ripeness 

detection (Schumann et al., 2019), and weed detection for strawberries (Sharpe et al., 

2019), Florida vegetables (Sharpe et al., 2020), turfgrasses (Yu, Sharpe, et al., 2019b, 

2019a), and ryegrass (Yu, Schumann, et al., 2019). 

In CNNs, the most commonly used type of hidden layer is a convolutional layer, 

which contains three sub-layers of calculations (Goodfellow et al., 2016). These 

computations result in the computer finding recognizable patterns in the images regarding 

shape, texture, and colour (Zeiler & Fergus, 2013). The first sub-layer is a convolution 

operation, which transforms the input data by a linear function (Goodfellow et al., 2016). 

The second sub-layer transforms the data using a nonlinear function. This function is often 

a Rectified Linear Unit (ReLU), which raises  the value of all negative numbers to zero, 

while all positive numbers are unchanged (Jarrett et al., 2009; Nair & Hinton, 2010). The 

third sublayer is a pooling function, which outputs an overview of a given node and the 

nodes nearby it (Goodfellow et al., 2016). A commonly used pooling function is max 

pooling, which outputs the maximum value of any node within a given area (Zhou & 

Chellappa, 1988). Other pooling functions output an average or a weighted average of the 
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nodes examined by the pooling function (Goodfellow et al., 2016). The pooling function 

helps to smooth noise from the input data (Boureau et al., 2010; Goodfellow et al., 2016). 

Standard neural networks use fully connected layers of nodes, where each node in 

one layer receives information from every node in the layer before it and sends information 

to every node in the layer after it (Schmidhuber, 2015). The weights and biases are different 

between every node, and these values are stored in matrices large enough to hold every 

value (Goodfellow et al., 2016). With CNNs, the outputs of a small group of nodes are 

instead modified by a small filter, or kernel (Goodfellow et al., 2016). With black and white 

images, each pixel is assigned a value based on how dark it is (Goodfellow et al., 2016; 

Howard, 2018). With colour images, the image must first be separated into the red, green, 

and blue (RGB) colour coordinate system; each colour channel can then be assigned a value 

(J. R. Jensen, 2005). With most images, the values will be integers ranging from 0 to 255, 

as standard digital images have 8-bit colour (J. R. Jensen, 2005). When processing with 

neural networks, these values are sometimes normalized to floating-point numbers between 

0 and 1 (Howard, 2018). The kernel is typically a 3 x 3 or 2 x 2 matrix of values which are 

initialized with random values and trained through backpropagation (Howard, 2018). 

Kernels in early layers are trained to isolate edges and simple patterns, while kernels in 

later layers are trained to isolate more complex objects (Goodfellow et al., 2016; Howard, 

2018; Zeiler & Fergus, 2013). Using small kernels is more computationally efficient than 

fully connected layers (Goodfellow et al., 2016). Simonyan and Zisserman (2015) used a 

combination of kernels and fully connected layers to create VGGNet, a 19-layer 

convolutional neural network which placed second in the 2014 ImageNet classification 

competition (Goodfellow et al., 2016). 
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After transformation by the kernel, the calculated values (activations) are 

transformed by the ReLU and pooling function (Goodfellow et al., 2016; Howard, 2018). 

A final fully connected layer is used to determine the probability that the input image 

corresponds to each output class (Howard, 2018). The weights in this fully connected layer 

can sometimes produce negative values despite that the probability should be a positive 

number. To correct this, a softmax function is used (Elfadel & Wyatt Jr., 1994). One 

example of a softmax function begins by performing an exponential operation on the output 

(x). This value is then compared against the sum of all the exponentials to produce the 

softmax value (s) (Howard, 2018). 

 
𝑠(𝑥𝑖) =

𝑒𝑥𝑖  

∑ 𝑒𝑥𝑖𝑛
𝑖=1  

 (1) 

   

Exponential softmax functions inherently accentuate one result (Howard, 2018). 

Sometimes, an image should be classified in more than one category (Goodfellow et al., 

2016). In this case, the neural network would need to use a different softmax function to 

produce high probabilities for multiple classes. An example of this is the sigmoid function 

(Howard, 2018). 

 
𝑠(𝑥𝑖) =

𝑒𝑥𝑖  

1 + 𝑒𝑥𝑖  
 (2) 

   

The operations in neural networks are inspired by operations that happen in the 

human brain (Goodfellow et al., 2016). CNNs follow this design principle and incorporate 

elements of the human visual system. Hubel and Weisel (1968) discovered that the primary 

visual cortex, the part of the brain initially used in image analysis, responds most to simple 

shapes while more complex patterns are examined later. CNNs are designed similarly, with 
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early layers picking out edges and shapes, and later layers identifying specific objects 

(Zeiler & Fergus, 2013). Another area of the brain used later in the human visual system, 

the medial temporal lobe, is able to recognize objects regardless of minor transformations 

of the image such as lighting or viewing angle (Quiroga et al., 2005). CNNs can also 

recognize objects even with some distortion of the input data (Goodfellow et al., 2016). 

Deep CNNs have been used to produce award-winning algorithms for image 

recognition tasks (Krizhevsky et al., 2012; LeCun et al., 1998; Simonyan & Zisserman, 

2015; Szegedy et al., 2015). The number of layers in popular deep CNNs has varied from 

sixteen (Simonyan & Zisserman, 2015) to thirty (Ioffe & Szegedy, 2015). Deep networks 

have the ability to many learn features of varying levels of complexity (Zeiler & Fergus, 

2013). In general, deeper networks produce more accurate image classifiers (Simonyan & 

Zisserman, 2015; Szegedy et al., 2015). 

1.1.5 Object Detection with Convolutional Neural Networks 
CNNs can also be used to detect one or multiple objects within the same image 

(Goodfellow et al., 2016). Uijlings et al. (2012) developed a selective search method which 

became the basis for object detection CNNs. Selective search starts by defining many small 

segments in an image, then recursively combines them with similar segments to form full 

objects (Uijlings et al., 2012). The selective search method was used in conjunction with a 

CNN to develop the region-based convolutional neural network (R-CNN) (Girshick et al., 

2014). R-CNNs analyse an image by applying a CNN to each Region of Interest (RoI) 

proposed by the selective search method (Girshick et al., 2014). This is computationally 

expensive, and the Fast R-CNN model was developed to address this (Girshick, 2015). Fast 

R-CNN works by applying one CNN to the entire image, and using selective search to 
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determine the RoI afterward (Girshick, 2015). Faster R-CNN replaced selective search with 

a Region Proposal Network (RPN), a CNN which proposes the locations of possible objects 

(Ren et al., 2017). The weights determined by training the RPN are shared with the CNN 

used in Fast R-CNN to minimize computational load (Ren et al., 2017). Dai et al. (2016) 

built a region selection system into a CNN to create the region-based fully convolutional 

network (R-FCN), which produced more accurate identification up to 20 times faster than 

its predecessors. 

The You Only Look Once (YOLO) model divides an image into segments and 

determines possible object regions in each segment with a confidence score (Redmon et 

al., 2016). Simultaneously, the probability of each segment belonging to a class is 

determined. The results are pooled together for the final object detection (Figure 6). This 

method allowed for real-time identification of objects, but with slightly less accuracy than 

Faster R-CNN (Redmon et al., 2016). YOLOv2 added batch normalization to help prevent 

overfitting, and increased the processing size of images from 448x488 to 608x608 so 

smaller objects could be detected (Redmon & Farhadi, 2016). YOLOv2 combines 

convolutional layers with 3x3 and 1x1 kernels to detect large and small objects (Redmon 

& Farhadi, 2016). YOLOv2 produced more accurate results than Faster R-CNN, and 

similar processing times to the original YOLO. YOLOv3 increased the network depth from 

30 layers to 106 layers (Redmon & Farhadi, 2018). This decreased the processing speed 

compared to previous iterations of YOLO, but increased object identification accuracy. 

Redmon and Farhadi (2018) also created a “Tiny” version of YOLOv3 (“YOLOv3-Tiny”) 

which reduced the number of layers to 23 to allow for faster processing at the expense of 
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accuracy. Wang et al. (2019a) modified YOLOv3-Tiny with elements of Partial Residual 

Networks (PRNs) to improve processing speed by 18.2% while maintaining accuracy. 

 

Figure 6: Object detection using YOLO (Redmon et al., 2016). 

 

1.1.6 Backpropagation Training for Deep Neural Networks 
The values used for computations between each neuron are determined through 

backpropagation (Rumelhart et al., 1986). Backpropagation involves feeding pre-classified 

training data through the network backwards, so the computation parameters can be trained 

through gradient descent (Cauchy, 1847). This process is repeated for many cycles 

(epochs) until the error produced by the neural network is minimized (Goodfellow et al., 

2016). If too many epochs are used the network may over-fit to the data, which results in 

increased error on independent testing images (Bishop, 1995; Tetko et al., 1995).  

To quickly train neural networks, graphics processing units (GPUs) are used instead 

of central processing units (CPUs) because they have more processing cores, which allows 

images to be processed faster through parallelization of the calculations and greater 
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memory bandwidth (Goodfellow et al., 2016). Steinkraus et al. (2005) were the first to use 

GPUs for machine learning, and found that an Nvidia GeForce 6800 Ultra GPU (Nvidia 

Corporation, Santa Clara, CA, USA) could train and test their neural network three times 

faster than an Intel Pentium 4 CPU (Intel Corporation, Santa Clara, CA, USA). Chellapilla 

et al. (2006) had similar results their neural network testing a GeForce 7800 Ultra and an 

ATI Radeon X800 GPU (Advanced Micro Devices Inc., Santa Clara, CA, USA) with a 

Pentium 4. Nvidia developed the CUDA (Compute Unified Device Architecture) 

programming language so GPUs could be used more easily and more efficiently for 

machine learning tasks (Harris, 2008). After the release of CUDA, Raina et al. (2009) 

trained neural networks up to 15 times faster with an Nvidia GTX 280 GPU than a CPU. 

Cireşan et al. (2010) determined that their neural network could be trained by a GTX 280 

GPU 40 times faster than by an Intel Core2 Quad 9450 CPU. 

1.1.7 Gradient Descent and Learning Rate 
The learning rate defines the degree of change permitted in a neural network with 

each epoch of training (Howard, 2018). Small learning rates result in slow parameter 

training, while large learning rates can cause instability in training, resulting in the 

parameters not being defined correctly (Goodfellow et al., 2016). Training of machine 

learning algorithms often occurs using a variation of gradient descent (Cauchy, 1847; 

Goodfellow et al., 2016). One of the most common training methods is Stochastic Gradient 

Descent (SGD), which allows the learning rate to be adjusted during training (Bottou, 

1998). This gives an advantage over traditional gradient descent, as the learning rate should 

be decreased over time for optimal results (Goodfellow et al., 2016). The method of 

momentum can be used to speed up learning (Polyak, 1964). Instead of adjusting the step 
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size using a single gradient, a series of many gradients are applied (Goodfellow et al., 2016; 

Polyak, 1964). Nesterov (1983) developed an accelerated momentum which has been 

applied for neural network training (Sutskever et al., 2013). Nesterov’s (1983) momentum 

produces less error than Polyak’s (1964) momentum, and trains the neural network in a 

comparable amount of time (Goodfellow et al., 2016; Sutskever et al., 2013).  

The learning rate is one of the most difficult hyperparameters to choose correctly, 

so researchers often use an optimization algorithm to adjust the learning rate during training 

(Goodfellow et al., 2016). Most optimization algorithms result in faster network training 

than simply decreasing the learning rate over time (Howard, 2018). An early optimizer was 

the delta-bar-delta algorithm, which increased the learning rate if the partial derivative with 

respect to the weight did not change signs, and decreased the learning rate if the derivative 

did change signs. (Jacobs, 1988). The AdaGrad optimizer is a more recent method used for 

learning rate optimization (Duchi, 2011). AdaGrad works by dividing the learning rate by 

the square root of the sum of squares of all the previous gradients (Duchi, 2011). AdaGrad 

works well with sparse gradients, as it uses information from all previous gradients (Duchi, 

2011). AdaGrad does not work well with some deep neural networks, as the learning rate 

can become very small resulting in a long training time (Goodfellow et al., 2016). 

RMSProp is another optimizer which adjusts AdaGrad by using a weighted average of the 

gradients for the calculation instead of treating all gradients equally, making it more 

reliable for deep learning (Hinton, 2012). The Adam optimizer adds SGD with momentum 

to RMSProp (Kingma & Ba, 2015). This results in Adam working well with sparse 

gradients, like AdaGrad, and deep neural networks, like RMSProp (Goodfellow et al., 
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2016). Adam produced more accurate results than any other optimization algorithm when 

it was released (Figure 7) (Kingma & Ba, 2015). 

 

Figure 7: Comparison of training losses with different optimizers (Kingma & Ba, 2015). 

1.1.8 Overfitting 
Overfitting is a form of error in neural networks in which a trained network 

correctly classifies data used during training and validation but cannot classify new data 

with the same accuracy (Goodfellow et al., 2016). Overfitting can be caused if a network 

is trained for too many epochs, or if there are too few pieces of training data for a very 

large neural network (Goodfellow et al., 2016; Howard, 2018). If overfitting is the result 

of the number of training epochs, the network can be retrained with fewer epochs 

(Goodfellow et al., 2016; Howard, 2018). If overfitting is the result of the ratio of training 

images to network size, then the network size must be reduced so it can generalize with the 

available data (Goodfellow et al., 2016). 
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Dropout randomly removes nodes in a neural network during training and replaces 

them after a user-defined number of epochs (Srivastava et al., 2014). This improves the 

accuracy of the neural network by reducing overfitting (Srivastava et al., 2014).  Dropout 

has few restrictions on the type of machine learning algorithm it is applied to, and requires 

less computational power than other methods (Goodfellow et al., 2016). A requirement for 

dropout to be effective is a large amount of training data (Goodfellow et al., 2016). Dropout 

was not as effective as Bayesian neural networks (Neal, 1996) with the same architecture, 

however, for classifying data in the Alternative Splicing Dataset which contains 3,665 

pieces of data for modelling gene coding in proteins (Xiong et al., 2011). 

Using larger training datasets is one of the most effective ways to improve machine 

learning algorithms (Goodfellow et al., 2016; Howard, 2018; LeCun et al., 2015). In cases 

where it is difficult or inconvenient to collect more training data, dataset augmentation can 

be used to artificially increase the amount of training data available (Goodfellow et al., 

2016). For image processing, augmentation methods typically use affine transformations 

such as small rotations (5° or 10°), cropping and translating, and mirroring the image 

(Howard, 2018). Data augmentation is common in many convolutional neural network 

models (Devries & Taylor, 2017) such as LeNet (LeCun et al., 1998), AlexNet (Krizhevsky 

et al., 2012), and YOLOv3 (Redmon & Farhadi, 2018). When determining which 

augmentation method to use, the user must ensure that the data is modified in a realistic 

manner. For example, 180° rotation and horizontal mirroring would not be appropriate in 

some image classification tasks such as identification of cats and dogs (Goodfellow et al., 

2016). Wang & Perez (2017) found that using generative adversarial networks 

(Goodfellow et al., 2014) or allowing a neural network to pick an augmentation method 
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resulted in slight improvements over traditional affine transformations, but required three 

times as much processing power. 

1.2  Objectives 
Hair fescue and sheep sorrel are problematic weeds which frequently grow in wild 

blueberry fields. To combat weed growth, a real-time smart sprayer using an advanced 

machine vision system is needed to detect the precise location of weeds for spraying. There 

are currently no commercially available systems that meet this specification which are 

viable for use in the wild blueberry industry. Researchers have had success getting fast and 

accurate results using CNNs in other machine vision applications (Kamilaris & Prenafeta-

Boldú, 2018; LeCun et al., 2015). A requirement of CNNs is the large number of training 

images needed to properly train the network to detect the desired target. Deep learning 

CNNs have never been used for real-time herbicide application in wild blueberry 

production. As such, there are three main objectives to this research project: 

1.) Develop an image dataset, train CNNs which can identify hair fescue and sheep 

sorrel, and determine a baseline number of images needed for accurately training. 

2.) Verify the effectiveness of a trained CNN in a completely randomized field test 

using several cameras, target distances, and field sites. 

3.) Determine processing requirements for using the CNNs to control herbicide 

application on a smart sprayer and develop a GUI for controlling spray applications 

with a CNN. 

The CNN for recognizing these weeds will ideally control the smart sprayer to spray 

every target weed and apply the herbicides as efficiently as possible. Future work will 

involve using the trained CNN for spot-application of herbicide on hair fescue and sheep 
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sorrel in wild blueberry fields. Further development after this project will involve training 

the CNN to detect additional target weeds in wild blueberry fields for spot-application of 

herbicides. This will involve creating additional datasets of field images. This project will 

determine a baseline for the minimum number of images recommended for training a CNN 

in this application, which will limit the amount of labour and time needed for collecting 

training images. 
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CHAPTER 2: DEVELOPMENT OF HAIR FESCUE AND SHEEP 
SORREL IDENTIFICATION SYSTEMS USING CONVOLUTIONAL 

NEURAL NETWORKS 

2.1  Introduction 
Wild blueberries (Vaccinium angustifolium Ait.) are an economically important 

crop native to northeastern North America. Wild blueberry plants grow through naturally 

occurring rhizomes in the soils. Commercial fields are typically developed on abandoned 

farmland or deforested areas after the removal of trees and other vegetation (Hall et al., 

1979). In 2016, there were more than 86,000 ha of fields in production in North America, 

yielding approximately 119 million kg of fruit (Yarborough, 2017). Wild blueberries 

contributed over $100 million to Nova Scotia’s economy in 2017, including $65.9 million 

in exports (Wild Blueberry Producers Association of Nova Scotia, 2018). The crop is 

desired for its health benefits ranging from anti-aging and anti-inflammatory properties 

(Beattie et al., 2005) to high antioxidant content (Kay & Holub, 2002) which helps reduce 

the risk of cardiovascular disease and cancer (Lobo et al., 2010).  

Infestations of hair fescue (Festuca filiformis Pourr.), sheep sorrel (Rumex 

acetosella L.), and over 100 other weed species (McCully et al., 1991) limit yield by 

competing with the wild blueberry plants for nutrients and interfering with harvesting 

equipment. In 2019, sheep sorrel and hair fescue were the first and fourth most common 

weeds in Nova Scotia wild blueberry fields, respectively (White, 2019). Weeds are 

typically managed by applying a uniform application of liquid herbicide using a boom 

sprayer fixed to an agricultural tractor. Hexazinone was used to manage a broad array of 

weeds in wild blueberry fields beginning in 1982 but is no longer used for hair fescue as it 

has developed resistance from repeated use (K. I. N. Jensen & Yarborough, 2004). 
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Hexazinone was shown to reduce instances of sheep sorrel in Nova Scotia wild blueberry 

fields (K. I. N. Jensen & Yarborough, 2004; Kennedy et al., 2010), but was ineffective in 

Maine (K. I. N. Jensen & Yarborough, 2004). Pronamide costing more than twice that of 

hexazinone (Esau et al., 2019), is currently used to manage hair fescue (White & Kumar, 

2017). Other options for hair fescue management include glufosinate, sulfentrazone, and 

terbacil (White, 2018). A study by Hughes et al. (2016) resulted in pronamide reducing the 

number of sheep sorrel plants in three of four test sites, but only reducing the biomass in 

one of four sites. Sulfentrazone is currently being studied as a management option for sheep 

sorrel, with promising initial results (White, 2019).  

Smart sprayers such as See & Spray (Blue River Technologies, 2018), GreenSeeker 

(Trimble Inc., 2020a) and WeedSeeker (Trimble Inc., 2020b) when used in other cropping 

systems such as cotton can detect and spray specific areas of fields that require application 

reducing the volume of agrochemical needed. Machine vision systems relying on imaging 

data from cameras have previously been researched for controlling smart sprayers in wild 

blueberry production (Esau et al., 2014, 2016, 2018; Rehman et al., 2018, 2019). A green 

colour segmentation algorithm was used to detect areas with weed cover, which resulted 

in herbicide savings of up to 78.5% (Esau et al., 2018). However, this system did not 

distinguish different species of green coloured weeds. Colour co-occurrence matrices were 

used to detect and spray goldenrod (Solidago spp.) in wild blueberry fields (Rehman et al., 

2018, 2019). The algorithm developed by Rehman et al. (2018) was accurate, but 

inconvenient due to long processing times and because it had to be purpose-built for 

goldenrod. Convolutional neural networks (CNNs) are a recent processing technique which 

can classify entire images or objects within an image (LeCun et al., 2015). Image-
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classification CNNs provide an inference about an entire image, while object-detection 

CNNs identify objects within images and label them with bounding boxes (Goodfellow et 

al., 2016). CNNs intelligently identify visual features and find patterns associated with the 

target with minimal input from the user, making them easily adaptable for new targets. 

They are trained to detect new targets through backpropagation, which involves repeatedly 

showing a computer many labelled pictures of the desired target (Rumelhart et al., 1986). 

This technology has been used in wild blueberry production for detecting fruit ripeness 

stages and estimating potential fruit yield (Schumann et al., 2019). In other cropping 

systems, CNNs have been effective for detecting weeds in strawberry fields (Sharpe et al., 

2019), turfgrasses (Yu, Sharpe, et al., 2019b, 2019a), ryegrasses (Yu, Schumann, et al., 

2019), and Florida vegetables (Sharpe et al., 2020). CNNs have also been used for detecting 

diseases on tomato (Fuentes et al., 2017; Venkataramanan et al., 2019), apple, strawberry, 

and various other plants (Venkataramanan et al., 2019). These CNNs used between 1,472 

(Sharpe et al., 2019) and 40,800 (Yu, Schumann, et al., 2019) labelled images for training 

and validation. Given that there are more than 100 unique weed species in Nova Scotia 

wild blueberry fields, it would be best to train CNNs to identify more than just fescue and 

sheep sorrel. It is impractical to collect 40,800 images for weed detection in wild blueberry 

without significant resources. Spring applications of herbicide must occur before new 

blueberry plant growth, and autumn applications of herbicide must occur after plant 

defoliation but before the soil is frozen (Government of New Brunswick, 2020). This leaves 

only a few weeks during each spray timing interval for image collection. 

This study evaluated the effectiveness of three object-detection CNNs and three 

image-classification CNNs for identifying hair fescue and sheep sorrel in images of wild 
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blueberry fields. The object-detection CNNs used were YOLOv3, YOLOv3-Tiny 

(Redmon & Farhadi, 2018), and YOLOv3-Tiny-PRN (C.-Y. Wang et al., 2019). YOLOv3 

and YOLOv3-Tiny are leading object-detection CNNs designed on the Darknet framework 

(Redmon, 2016) which processed 416x416 images at 35 and 220 frames per second (FPS) 

respectively on an Nvidia Titan X graphics processing unit (GPU, Nvidia Corporation, 

Santa Clara, CA, USA), while achieving mean average precision (mAP, Szegedy et al., 

2015) scores of 55.3% and 31.0% (Redmon, 2018; Redmon & Farhadi, 2018) on the COCO 

dataset (Lin et al., 2014). YOLOv3-Tiny-PRN added elements from Partial Residual 

Networks to improve the inference speed of YOLOv3-Tiny by 18.2% and maintain its 

accuracy on the COCO dataset (C.-Y. Wang et al., 2019). The image-classification CNNs 

used in this study were Darknet Reference (Redmon, 2016), EfficientNet-B0 (Tan & Le, 

2019), and MobileNetV2 (Sandler et al., 2018). Darknet Reference is an image classifier 

which achieved a Top-1 accuracy (Szegedy et al., 2015) of 61.1% on the ImageNet dataset 

(Deng et al., 2009) and processed 224x224 images at 345 FPS on a Titan X GPU (Redmon, 

2016). EfficientNet-B0 and MobileNetV2 achieved higher Top-1 scores (77.1% (Tan & 

Le, 2019) and 74.7% (Sandler et al., 2018), respectively) than Darknet Reference at the 

same resolution. The internal resolution of the CNNs can be increased for identifying small 

visual features, as was performed by Schumann et al. (2019), but large increases can result 

in a limiting return in accuracy improvements (Tan & Le, 2019). This technology can be 

used to discriminate between weed species in real-time, providing a level of control not 

present in previous wild blueberry smart sprayers (Esau et al., 2014, 2016, 2018; Rehman 

et al., 2018, 2019). Using a CNN to control herbicide spray has the potential to greatly 
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increase application efficiency, leading to significant cost-savings for wild blueberry 

growers. 

2.2  Materials and Methods 

2.2.1 Image Datasets 
Images used for this study were collected from 58 fields in northern and central 

Nova Scotia during the 2019 field season (Figure 8). Eight digital cameras with resolutions 

ranging from 4000x3000 to 6000x4000 pixels captured colour pictures of wild blueberry 

fields containing hair fescue and sheep sorrel. All pictures were captured with the camera 

lens pointed downward and without zoom. The photographers were instructed to capture 

approximately 70% of images from waist height (0.99 ± 0.09 m), 15% from knee height 

(0.52 ± 0.04 m), and 15% from chest height (1.35 ± 0.07 m) to allow the CNNs to recognize 

targets at a range of distances. A total of 4,200 images with hair fescue, 2,365 images with 

sheep sorrel, 2,337 with both weeds, and 2,041 with neither weed were collected from April 

24 to May 17, 2019 (spring), during the herbicide application timing interval. An additional 

2,442 images with hair fescue and 1,506 images with sheep sorrel were collected from 

November 13 to December 17, 2019 (autumn), during the herbicide application timing 

interval. 
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Figure 8: Map of image collection sites in Nova Scotia, Canada. Images were collected in 
58 different fields to ensure variability of the dataset (Google, 2020). 

The images were scaled and cropped to 1280x720 pixels (720p) using IrfanView 

(v4.52, IrfanView, Wiener Neustadt, Austria) for target labeling, training, validation, and 

testing processes. The hair fescue and sheep sorrel datasets were randomly subdivided into 

three datasets for training, validation, and independent testing of the object-detection CNNs 

in the Darknet framework (Redmon, 2016). For hair fescue, 3,780 images were used for 

training, 420 images were used for validation, and 250 images were used for testing. 

Training and validation images were randomly selected from the spring dataset, while the 

testing images were randomly selected from the autumn dataset. The training, validation, 

and testing datasets for sheep sorrel consisted of 960, 120, and 120 images from spring. 

Instances of hair fescue and sheep sorrel in the cropped images were labeled using custom-

built software developed by Schumann et al. (2019). One bounding box was created for 

each hair fescue tuft or sheep sorrel plant whenever possible. Weeds were densely packed 

in some images, making it impossible to determine where one instance ended, and another 
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started. Hair fescue tufts would overlap one another, and it was unclear which sheep sorrel 

leaves belonged a common plant. In these cases, a box was drawn around the entire region 

encompassing the densely packed weeds. 

For image classification CNNs, 2,000 images were randomly selected from each 

image set (hair fescue, sheep sorrel, both weeds, neither weed) from spring. Image-

classification CNNs for hair fescue identification were trained to put images into one of 

two classes: “hair fescue” and “not hair fescue”. The datasets containing images with hair 

fescue and images with both weeds were labelled as “hair fescue”, while the datasets 

containing images with sheep sorrel and neither weed were labelled as “not hair fescue”. 

The same methodology was used for classifying images as “sheep sorrel” or “not sheep 

sorrel”, with the hair fescue dataset replaced by the sheep sorrel dataset and vice-versa. 

Randomly selected subsets containing 10% of the images were used for validation, while 

the remaining images were used for training. The testing datasets consisted of 700 

randomly selected images from autumn. 

2.2.2 Convolutional Neural Network Training and Validation 
The networks were trained and validated on a custom-built Ubuntu 16.04 

(Canonical Ltd., London, UK) computer with an Nvidia RTX 2080 Ti GPU. The object-

detection networks were trained for 5,000 iterations each, with trained weights being saved 

every 50 iterations. The initial learning rate was set at 0.001, the default learning rate for 

each network, and was decreased by a factor of 10 after 2,000, 3,000, and 4,000 iterations. 

A general rule-of-thumb states that object detectors require 2,000 iterations per class to 

train (Redmon et al., 2020; Schumann et al., 2019), so the learning rate was decreased after 

2,000 iterations to avoid overfitting. The default batch size, 64, for all networks was used 
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for training. The batch was subdivided into 16 for YOLOv3-Tiny and YOLOv3-Tiny-PRN, 

and 64 for YOLOv3 so the CNNs would fit within the GPU memory limits while training. 

All other hyperparameters were left identical to the settings used by Redmon and Farhadi 

(2018) and Wang et al. (2019a) in each network. After training was complete, the weight 

file achieving the highest average precision (AP) score was used for analysis. The image-

classification networks were trained for 10,000 iterations each the default learning rates of 

0.1 for Darknet Reference and MobileNetV2, and 0.256 for EfficientNet-B0. The batch 

size of 64 was subdivided by 16 for Darknet Reference, 16 for MobileNetV2, and 64 for 

EfficientNet-B0. All other parameters for each CNN were left as defined by their respective 

authors. The weight file achieving the highest Top-1 score was used for analysis. The 

network configuration files used for EfficientNet-B0 and MobileNetV2 were converted to 

the Darknet framework by Wang et al. (2019b). The Darknet framework requires image 

resolutions to be a multiple of 32, so the internal network resolutions were set to 1280x736 

pixels for training and four different resolutions (1280x736, 1024x576, 960x544, and 

864x480) for testing.  

All networks were evaluated on three additional performance metrics with the 

detection threshold of object-detectors set at 0.25: precision, recall, and F1-score (Sokolova 

& Lapalme, 2009). Precision, recall, and F1-score are functions of true positive detections 

(tp), false positive detections (fp), and false negative detections (fn) of targets. Precision is 

ratio of true positives to all detections: 

 Pr =  
tp

tp + fp
 (3) 

Recall is the ratio of true positives to all actual targets: 
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 Re =  
tp

tp + fn
 (4) 

F1-score is the harmonic mean of precision and recall: 

 𝐹1 =  2 ∙
Pr ∙ Re
Pr + Re

 (5) 

Object-detection networks were first tested on their ability to detect all instances of 

hair fescue or sheep sorrel in each validation image. A detection was counted as a true 

positive if the Intersection-over-Union (IoU, Rahman & Wang, 2016), the overlap between 

the ground-truth box and the detection box, was greater than 50%. However, a machine 

vision system on a smart sprayer would require one or more detections in an image to 

trigger a spray event. The area sprayed due to a single detection would be wide enough to 

cover all target weeds in an image, even if only one is detected. A second set of tests were 

performed on object-detection networks to measure their ability to detect one or more 

instances of the target weed in a picture, regardless of how many total targets were in each 

image. A result was considered a true positive if the network detected at least one instance 

of the target weed in an image containing the desired target. The second set of tests were 

performed at two detection thresholds, 0.15 and 0.25, and the same four resolutions. The 

networks were evaluated on precision, recall, and F1-score. 

Finally, all networks for hair fescue detection were retrained with progressively 

smaller datasets to examine the effect that the number of training images had on 

identification accuracy. Five training datasets containing 3,780, 2,835, 1,890, 945, and 472 

images were used for this test. All networks were trained for the same number of iterations, 

at the same learning rate, and with the same batch sizes as in the initial tests. The F1-scores 
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of all networks at 1280x736 resolution were compared to determine a preliminary baseline 

for the number of images needed to train a CNN for weed detection. 

2.3  Results and Discussion 

2.3.1 Fescue and Sheep Sorrel Targeting with Object-Detection Networks 
YOLOv3, YOLOv3-Tiny, and YOLOv3-Tiny-PRN were successfully trained to 

detect hair fescue and sheep sorrel (Figure 9). The largest difference between validation 

and testing AP scores on ground-truth images was 2.99 percentage points with YOLOv3 

at 1280x736 resolution, indicating that the trained networks did not overfit to the validation 

images (Table 1). The highest validation AP score for hair fescue detection (75.83%) was 

achieved with YOLOv3 at 1280x736 resolution, although the difference in AP score was 

within 1% for YOLOv3 and YOLOv3-Tiny networks with resolutions from 960x544 to 

1280x736. The highest F1-score (0.62) was achieved by YOLOv3 at 1280x736 resolution 

and YOLOv3-Tiny at 1024x576 resolution. YOLOv3-Tiny-PRN yielded the lowest AP 

and F1-scores at each resolution. The precision of all networks at all resolutions was 0.90 

or greater, indicating minimal false-positive detections. The recall varied from 0.34 to 0.46, 

indicating that more than half of the hair fescue plants were not detected at a threshold of 

0.25. This was lower than in other agricultural applications, including Sharpe et al. (2020), 

which saw recall values ranging from 0.59 to 0.99 for detection of vegetation in vegetable 

row middles. This may be a result of the light-coloured soil in the images used by Sharpe 

et al. (2020) creating a larger contrast between the targets and the background compared to 

the images used in this study. Given that a machine vision system on a smart sprayer would 

require one or more detections in an image to trigger a spray event, the current level of 

detection accuracy may be acceptable. Alternatively, the detection threshold could be 
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lowered to decrease the overall number of true and false positive detections, thereby 

increasing the recall at the expense of precision. 

 

Figure 9: Examples of hair fescue (L) and sheep sorrel (R) detections on images captured 
in wild blueberry fields using YOLOv3-Tiny at 1280x736 resolution. The base hair fescue 
picture was captured on the morning of April 24, 2019 in Murray Siding, NS (45.3674°N, 
63.2124°W), while the base sheep sorrel picture was captured on the morning of April 25, 
2019 in Kemptown, NS (45.4980°N, 63.1023°W). Both pictures contain the respective 
target weeds with wild blueberry plants after flail mowing. The hair fescue detection 
picture also contains some sheep sorrel. 
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Table 1: Object-detection results for hair fescue plants in images of wild blueberry fields. 

Network Resolution 
Validation Testing 

Precision Recall F1-Score AP50 (%) AP50 (%) 

YOLOv3 

1280x736 0.94 0.46 0.62 75.83 72.84 
1024x576 0.94 0.44 0.60 75.56 73.87 
960x544 0.94 0.43 0.59 75.13 72.81 
864x480 0.95 0.39 0.55 71.68 70.61 

YOLOv3-Tiny 

1280x736 0.91 0.45 0.60 74.83 75.18 
1024x576 0.92 0.46 0.62 75.46 76.57 
960x544 0.91 0.46 0.61 75.27 75.63 
864x480 0.9 0.45 0.60 71.40 74.06 

YOLOv3-Tiny-PRN 

1280x736 0.92 0.44 0.59 71.40 73.26 
1024x576 0.94 0.39 0.56 66.40 63.91 
960x544 0.94 0.38 0.54 61.38 61.04 
864x480 0.94 0.34 0.50 55.29 54.89 

 

Detection accuracy for sheep sorrel was considerably lower than the accuracy for 

hair fescue. The peak validation AP score (60.81%) and F1-score (0.51) were achieved by 

YOLOv3 at 1280x736 resolution (Table 2). The largest difference between validation and 

testing AP scores was 4.85 percentage points, indicating that the trained networks did not 

overfit to the validation images. The precision and recall metrics were lower for sheep 

sorrel than fescue for every test, with a mean change of 0.15 and 0.22, respectively. The 

peak recall (0.37) was achieved by YOLOv3 at 1280x736 resolution, with no other 

resolutions achieving above 0.29 for any network. YOLOv3-Tiny-PRN had lower scores 

than the other two networks, with the AP score decreasing by an average of 35.82 

percentage points compared to YOLOv3 and 31.64 percentage points compared to 

YOLOv3-Tiny. The labelling strategy may have affected the sheep sorrel detection 

accuracy. The training bounding boxes were drawn to encompass each entire sheep sorrel 

plant, but this resulted in background pixels encompassing more than 50% of the bounding 



32 
 

box area in some cases. Additionally, the network may be drawing a box around a group 

of sheep sorrel leaves that is inconsistent with the box drawn in the labelling software. If 

the IoU between the ground-truth and detected boxes is less than 50%, the result would be 

considered a false negative and a false positive instead of a true positive. Labelling each 

individual leaf instead of each plant may improve the results. Alternatively, semantic image 

segmentation methods like the one used by He et al. (2015) could be effective as well. 

However, only one instance of sheep sorrel needs to be detected per image to trigger a 

spray application, so the current CNN may be viable for this application. 

Table 2: Object-detection results for sheep sorrel plants in images of wild blueberry fields. 

Network Resolution 
Validation Testing 

Precision Recall F1-Score AP50 (%) AP50 (%) 

YOLOv3 

1280x736 0.79 0.37 0.51 60.18 62.98 
1024x576 0.82 0.28 0.42 52.20 57.05 
960x544 0.83 0.26 0.40 49.15 53.04 
864x480 0.83 0.21 0.34 42.06 46.63 

YOLOv3-Tiny 

1280x736 0.79 0.29 0.42 54.02 57.00 
1024x576 0.81 0.24 0.37 48.29 52.32 
960x544 0.80 0.23 0.35 45.16 49.46 
864x480 0.78 0.19 0.31 39.40 42.91 

YOLOv3-Tiny-PRN 

1280x736 0.80 0.13 0.22 26.80 29.41 
1024x576 0.74 0.07 0.13 14.26 15.28 
960x544 0.72 0.06 0.11 11.54 12.26 
864x480 0.69 0.04 0.08 7.73 7.98 

 

Given the high precision and low recall scores for detection of each weed, the 

networks’ ability to detect at least one target weed per image was tested at a threshold of 

0.15 in addition to the original threshold of 0.25. Through lowering the threshold, average 

recall and F1-scores in fescue detection were improved by 0.08 and 0.03, respectively at 

the expense of 0.02 from precision. In hair fescue detection, the peak F1-score (0.98) was 
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achieved by YOLOv3-Tiny-PRN at 1280x736 and 1024x736 and a threshold of 0.15, 

although no network at any resolution or threshold had an F1-score of less than 0.90. (Table 

3). Precision varied between 0.93 and 0.99, with the latter being achieved by YOLOv3-

Tiny-PRN at the three lower resolutions. YOLOv3-Tiny at 864x480 produced a recall score 

of 1.00, and all other networks produced a recall of 0.93 or greater at a threshold of 0.15 

and 0.83 or greater at a threshold of 0.25. All three object-detection networks at the tested 

resolutions are highly effective at detection of at least one hair fescue plant per image. 

Table 3: Results for correct detection of at least one hair fescue plant per image. 

Network Resolution 
Threshold = 0.15 Threshold = 0.25 

Precision Recall F1-Score Precision Recall F1-Score 

YOLOv3 

1280x736 0.97 0.93 0.95 0.98 0.88 0.93 
1024x576 0.96 0.94 0.95 0.98 0.88 0.93 
960x544 0.96 0.95 0.95 0.98 0.88 0.93 
864x480 0.96 0.96 0.96 0.98 0.86 0.91 

YOLOv3-
Tiny 

1280x736 0.97 0.97 0.97 0.97 0.91 0.94 
1024x576 0.96 0.97 0.96 0.97 0.93 0.95 
960x544 0.95 0.97 0.96 0.97 0.92 0.94 
864x480 0.93 1.00 0.96 0.96 0.94 0.95 

YOLOv3-
Tiny-PRN 

1280x736 0.97 0.99 0.98 0.98 0.88 0.93 
1024x576 0.97 0.98 0.98 0.99 0.87 0.93 
960x544 0.97 0.96 0.97 0.99 0.86 0.92 
864x480 0.97 0.95 0.96 0.99 0.83 0.90 

 

Similar to hair fescue, detection of at least one sheep sorrel plant produced greatly 

improved results compared to detection of all sheep sorrel plants (Table 4). Lowering the 

detection threshold yielded variable results on the F1-scores. YOLOv3-Tiny-PRN 

improved at all four resolutions by an average of 0.06 while YOLOv3-Tiny performed 

better by an average of 0.01 at the original 0.25 threshold. The F1-score for YOLOv3 

showed no change at the two middle resolutions, increased by 0.01 at 864x480, and 
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decreased by 0.02 at 1280x736. The peak F1-score (0.91) was achieved with YOLOv3 at 

1280x736 and a threshold of 0.25, while the minimum F1-score (0.68) was produced with 

YOLOv3-Tiny-PRN at 860x480 and a threshold of 0.25. All three networks except 

YOLOv3-Tiny-PRN at the three lowest resolutions had F1-scores of 0.87 or higher at both 

thresholds. 

Table 4: Results for correct detection of at least one sheep sorrel plant per image. 

Network Resolution 
Threshold = 0.15 Threshold = 0.25 

Precision Recall F1-Score Precision Recall F1-Score 

YOLOv3 

1280x736 0.83 0.96 0.89 0.88 0.94 0.91 
1024x576 0.86 0.94 0.90 0.91 0.89 0.90 
960x544 0.87 0.91 0.89 0.91 0.87 0.89 
864x480 0.89 0.88 0.88 0.92 0.83 0.87 

YOLOv3-
Tiny 

1280x736 0.81 0.97 0.88 0.87 0.93 0.90 
1024x576 0.82 0.94 0.88 0.88 0.91 0.89 
960x544 0.82 0.94 0.88 0.89 0.90 0.89 
864x480 0.82 0.93 0.87 0.89 0.87 0.88 

YOLOv3-
Tiny-PRN 

1280x736 0.84 0.89 0.86 0.88 0.78 0.82 
1024x576 0.82 0.79 0.80 0.88 0.65 0.75 
960x544 0.82 0.76 0.79 0.88 0.64 0.74 
864x480 0.82 0.69 0.75 0.86 0.56 0.68 

 

Inference speed is also an important consideration for using CNNs to control spray 

applications. YOLOv3, YOLOv3-Tiny, YOLOv3-Tiny-PRN process 416x416 images at 

46, 330, and 400 FPS respectively using a GTX 1080 Ti GPU (C.-Y. Wang et al., 2020). 

Sprayers used in the wild blueberry industry typically range up to 36.6 m in width, meaning 

that multiple cameras will be required to automate spray applications. The prototype 

research sprayer developed by Esau et al. (2018) used 9 cameras for capturing images along 

the spray boom. Assuming the single-image inference time scales proportionally with the 

number of cameras and one camera is required per nozzle, using YOLOv3 at 416x416 
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resolution would result in an inference speed of 5.11 FPS per camera in a 9-camera system. 

The higher resolution images used in fescue and sheep sorrel detection will also take longer 

to process. Additional testing will be required to confirm, but a framerate of 5.11 FPS on 

a GTX 1080 Ti GPU is not ideal for scaling to real-time spray applications. Using this GPU 

in a sprayer would be inconvenient because it is only available for desktop computers and 

has a 600 W system power requirement. Mobile processing hardware will take longer to 

process images, so using YOLOv3 for real-time spray may not be feasible. YOLOv3-Tiny 

and YOLOv3-Tiny-PRN process images 7.2 and 8.7 times faster respectively than 

YOLOv3. Considering their superior processing speed, YOLOv3-Tiny and YOLOv3-

Tiny-PRN are more feasible options than YOLOv3 for real-time spray applications. 

2.3.2 Classification of Images Containing Hair Fescue and Sheep Sorrel 
The Darknet Reference network at 1280x736 resolution achieved the highest Top-

1 accuracy for hair fescue classification with 96.25% on the validation dataset (Table 5). 

All networks at all resolutions scored above 90% except EfficientNet-B0 at 864x480 on 

the validation dataset. MobileNetV2 was the most consistent across different resolutions, 

with only a 1.13 percentage point difference between its best (95.63%) and worst (94.50%) 

Top-1 scores. Recall was higher than precision for each network at every resolution except 

MobileNetV2 and EfficientNet-B0 at 1280x736, while the recall of Darknet-Reference at 

this resolution was only slightly (0.01) higher than the precision. These results indicate that 

lower resolutions yield more false positive hair fescue classifications than false negatives. 

Given the high accuracy of these networks at lower resolutions, future work should involve 

further reducing the resolution to determine the minimum image size for accurate 

classification.  
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Table 5: Classification results for images with or without hair fescue. 

Network Resolution 
Validation Testing 

Precision Recall F1-Score Top-1 (%) Top-1 (%) 

Darknet Reference 

1280x736 0.96 0.97 0.96 96.25 96.29 
1024x576 0.91 0.98 0.94 93.88 95.29 
960x544 0.93 0.98 0.95 95.25 96.14 
864x480 0.86 0.99 0.92 91.38 93.00 

EfficientNet-B0 

1280x736 0.96 0.95 0.96 95.50 95.71 
1024x576 0.90 0.96 0.93 92.75 97.29 
960x544 0.86 0.96 0.91 90.25 96.14 
864x480 0.83 0.95 0.88 87.38 95.57 

MobileNetV2 

1280x736 0.98 0.93 0.96 95.63 95.43 
1024x576 0.94 0.98 0.96 95.88 97.29 
960x544 0.95 0.97 0.96 95.75 98.14 
864x480 0.91 0.99 0.95 94.50 97.28 

 

The best Top-1 validation accuracy for sheep sorrel classification (95.25%) was 

achieved by Darknet Reference at 1024x576 and 864x480 and by MobileNetV2 at 864x480 

(Table 6). Darknet-Reference was the most consistent on the validation dataset, producing 

an F1-score of 0.95 at all resolutions. An interesting observation is that the validation Top-

1 scores of MobileNetV2 increased as the resolution was decreased. Decreasing the 

resolution results in the finer details of the sheep sorrel plants being removed, indicating 

that MobileNetV2 may be classifying the images on the colour and round overall shape. 

The results show that this works well when the network must choose between two very 

different classes but MobileNetV2 may struggle if it must differentiate between sheep 

sorrel and another weed with similar features. Another observation is that EfficientNet-B0 

consistently performed better on the testing dataset than the validation dataset by an 

average of 10.34 percentage points. Darknet Reference and MobileNetV2 performed worse 

on the testing dataset by 1.78 and 2.94 percentage points, respectively. Like with fescue, 
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the accuracy of the CNNs at lower resolutions indicates that further testing should involve 

determine the minimum image size for accurate classification. Additionally, multiclass 

CNNs should be trained and tested to determine if they can distinguish between sheep 

sorrel and other similarly shaped weeds. 

Table 6: Classification results for images with or without sheep sorrel. 

Network Resolution 
Validation Testing 

Precision Recall F1-Score Top-1 (%) Top-1 (%) 

Darknet Reference 

1280x736 0.96 0.93 0.95 94.75 94.14 
1024x576 0.93 0.98 0.95 95.25 92.42 
960x544 0.93 0.97 0.95 95.00 92.42 
864x480 0.94 0.96 0.95 95.25 94.14 

EfficientNet-B0 

1280x736 0.97 0.87 0.92 92.13 96.57 
1024x576 0.98 0.74 0.84 86.25 98.00 
960x544 0.97 0.76 0.85 87.38 96.57 
864x480 0.97 0.63 0.76 80.88 96.86 

MobileNetV2 

1280x736 1.00 0.75 0.86 87.63 82.29 
1024x576 0.98 0.86 0.91 92.13 89.71 
960x544 0.96 0.91 0.94 93.88 92.71 
864x480 0.97 0.93 0.95 95.25 92.43 

 

2.3.3 Effect of Training Dataset Size on Detection Accuracy 
The CNNs were retrained for hair fescue identification with progressively smaller 

datasets and their F1-scores were compared to understand the minimum requirements for 

training dataset size (Figure 10). For object-detection networks, the F1-score for detecting 

at least one weed per image at a threshold of 0.15 was used. All networks except Darknet 

Reference consistently produced F1-scores above 0.90 for all training dataset sizes from 

472 to 3,780 images. F1-scores for Darknet reference varied from 0.92 to 0.77. 

Interestingly, Darknet was consistently on the worst performing networks in this test, 

despite being one of the best when trained with 7,200 images. The results from the other 
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networks indicate that datasets of approximately 500 images can be used to train all tested 

CNNs except Darknet Reference for hair fescue detection in wild blueberry fields. This 

test should be performed with other datasets to confirm whether this is always the case for 

other weeds. If the results are consistent across other targets, this can greatly decrease the 

amount of time spent collecting images for training. 

 
Figure 10: F1-scores scores for object-detection CNNs at 1280x736 resolution when 
trained with different dataset sizes. 
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2.4  Conclusions 
Limitations with previous machine vision systems for real-time spraying in wild 

blueberry were their inability to discriminate between weed species of the same colour or 

were not practical for scaling to other targets. Convolutional neural networks provide a 

promising solution to these problems, as they can successfully discriminate between 

different weeds and can be repurposed for other targets without manual feature extraction. 

The results of this study indicate that YOLOv3-Tiny is more suited than YOLOv3 and 

YOLOv3-Tiny-PRN due to its high level of accuracy in detection of both weeds and fast 

processing speed. For detection of at least one target weed per image, all three networks 

produced F1-scores of at least 0.95 for hair fescue at 1280x736 resolution after lowering 

the detection threshold from the default 0.25 to 0.15. The results of changing the threshold 

were variable for sheep sorrel detection, with only small changes in the F1-score. Object-

detection results for sheep sorrel may be improved by labelling each individual sheep sorrel 

leaf or by selection regions of weed cover using semantic segmentation methods. Among 

image-classification networks, Darknet Reference produced the best overall results with 

F1-scores of 0.92 or greater at all resolutions for classification of both weeds when trained 

with 7,200 images. MobileNetV2 and EfficientNet-B0 were more consistent than Darknet 

Reference with smaller dataset sizes, with F1-scores above 0.92 with all training dataset 

sizes. Future work will involve testing the processing speed of all networks on a mobile 

GPU to determine if they can process images quickly enough for use in a real-time 

herbicide smart sprayer. The CNNs will also be tested on a moving sprayer, as the motion 

blur may limit their effectiveness. Using a CNN as part of a machine vision system in a 

smart sprayer could reduce herbicide use, resulting in major cost-savings for wild blueberry 
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growers. Field scouting software relying on CNNs to detect weeds could also be 

implemented into a smartphone application to aid growers with management decisions. 
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CHAPTER 3: FIELD EVALUATION OF HAIR FESCUE AND 
SHEEP SORREL DETECTION SYSTEMS 

3.1 Introduction 
Wild blueberries (Vaccinium angustifolium Ait.) are a perennial crop native to 

northeastern North America. The plants spread through rhizomes (Hall et al., 1979) and 

grow to a stem height of 5 to 30 cm (Farooque et al., 2014). Wild blueberries are grown in 

a two-year cycle, during which the plants are pruned by flail mowing or burning after the 

harvesting period in August and September of the second (crop) year. During the first 

(sprout) year after pruning, plant growth begins, and berry buds begin to regrow in August 

(Hall et al., 1979). The plants lay dormant through the winter, and growth continues during 

the crop year (Hall et al., 1979). Harvest begins when approximately 90% of the berries 

are ripe (Farooque et al., 2014). Wild blueberries were harvested with a hand rake prior to 

the introduction of a viable mechanical harvester by Doug Bragg in 1981 (Dale et al., 1994; 

Hall et al., 1983). Better management practices, including development of the mechanical 

harvester, resulted in the wild blueberry industry expanding in Canada (Farooque et al., 

2014; Yarborough, 2004, 2012). 

Weeds are a major yield limiting factor in wild blueberry production (K. I. N. 

Jensen & Yarborough, 2004; Yarborough, 2006; Yarborough & Bhowmik, 1993). Weeds 

in organic crops can be managed using tillage, crop rotation, and hand weeding (Klonsky, 

2012). Tillage and crop rotation are not viable for the wild blueberry industry due to the 

perennial and rhizomatous nature of the crop (Hall et al., 1979). Hand weeding is 

prohibitively expensive due to labour costs (Fennimore et al., 2014), so a uniform 

application of liquid herbicides is typically performed to manage weeds in wild blueberry 

fields (Jensen & Yarborough, 2004; McCully et al., 1991). Hair fescue (Festuca filiformis 
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Pourr.) was the fourth most common weed in Nova Scotia wild blueberry fields in 2019 

with a frequency and uniformity of 68% and 25% respectively (White, 2019). Hair fescue 

grows in tufts and is characterized by thin, green and tan coloured blades (Figure 11). The 

field uniformity of 25% indicates that hair fescue grows in patches of wild blueberry fields, 

rather than uniformly throughout each field. Hexazinone was commonly used to manage 

hair fescue until resistance developed from repeated applications (K. I. N. Jensen & 

Yarborough, 2004). Hair fescue in wild blueberry fields is currently best managed with 

pronamide (White & Kumar, 2017), which costs more than double the cost of hexazinone 

to spray on wild blueberry fields (Esau et al., 2019). Sheep sorrel (Rumex acetosella L.) 

was the most common weed in Nova Scotia wild blueberry fields in 2019 with a frequency 

and uniformity of 98% and 63% respectively (White, 2019). It is visually recognizable by 

its small, round arrow-shaped leaves which are green or red in colour (Figure 11). The 

measured uniformity of 63% stipulates that there are substantial sections of the fields which 

do not contain sheep sorrel. Pollen from sheep sorrel plants may increase the likelihood of 

botrytis blight (Botrytis cinerea) disease on wild blueberry leaves (Hughes et al., 2016), 

which can spread to the fruit buds if left unmanaged (Agriculture and Agri-Food Canada, 

2016). Sheep sorrel has been managed using hexazinone (K. I. N. Jensen & Yarborough, 

2004; Kennedy et al., 2010) and pronamide (Hughes et al., 2016) with mixed results. Spring 

applications of sulfentrazone have shown a reduction in sheep sorrel seedlings, indicating 

that this may be an effective future management option (White, 2019). Due to the 

intermittent nature of hair fescue and sheep sorrel in wild blueberry fields, spot application 

using a smart sprayer would reduce the overall volume of herbicide needed to manage these 

weeds. 
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Figure 11: Hair fescue and sheep sorrel growing in a spout-year wild blueberry field during 
spring 2019 in Nova Scotia. The hair fescue tuft is characterized by its thin, green blades, 
while the sheep sorrel plants are characterized by their green and red arrow-shaped leaves.  

Smart sprayers limit agrochemical application volume by only applying on areas of 

the field with weed cover (Esau et al., 2014, 2016, 2018; Hong et al., 2012; Rehman et al., 

2018, 2019; Schieffer & Dillon, 2014). Esau et al. (2014) developed a spot targeting system 

based on green colour segmentation to detect weeds in wild blueberry fields. When used 

on a smart sprayer with cameras 1.2 m from the ground, the system resulted in 44.5% 

reduction in agrochemical usage compared to a basic sprayer (Esau et al., 2016). Further 

work with this smart sprayer resulted in herbicide savings of up to 78.5% (Esau et al., 

2018). However, this system was limited by its inability to discriminate between different 

weeds of the same colour. Commercial smart sprayers GreenSeeker (Trimble Inc., 2020a) 

and WeedSeeker (Trimble Inc., 2020b) are available in other cropping systems and also 

work based on green colour detection. Colour co-occurrence matrices were used for real-

time targeting of goldenrod (Solidago spp.) in wild blueberry fields (Rehman et al., 2019; 

Rehman et al., 2018). This method was effective but had to be designed specifically for 

goldenrod and was not easily scalable to other weeds.  
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Convolutional neural networks (CNNs) are an advanced form of machine vision 

which can successfully classify whole images or objects within an image (LeCun et al., 

2015). They are trained using backpropagation (Rumelhart et al., 1986) with thousands of 

labelled pictures. CNNs intelligently identify visual features and find patterns associated 

with the target with minimal input from the user, making them easily adaptable for new 

targets. Images are typically processed at resolutions from 224x224 (Redmon, 2016; 

Sandler et al., 2018; Tan & Le, 2019) to 608x608 (Redmon & Farhadi, 2018; C.-Y. Wang 

et al., 2020), but this can be increased to improve clarity of visual features (Schumann et 

al., 2019; Tan & Le, 2019). CNNs have been used in agriculture for detecting weeds (Blue 

River Technologies, 2018; Sharpe et al., 2019; Yu, Schumann, et al., 2019; Yu, Sharpe, et 

al., 2019a, 2019b), detecting plant diseases (Fuentes et al., 2017; Venkataramanan, et al., 

2019), monitoring plant growth and ripeness (Schumann et al., 2019; Tian et al., 2019), 

and monitoring livestock (Wu et al., 2020; Yang et al., 2018). Chapter 2 trained six CNNs 

using the Darknet framework (Redmon et al., 2020) to identify hair fescue and sheep sorrel 

in images of wild blueberry fields. The study concluded that the YOLOv3-Tiny CNN 

(Redmon & Farhadi, 2018) was highly effective for detecting these weeds in wild blueberry 

fields, and was a promising option for controlling spray applications from a smart sprayer. 

This study used YOLOv3-Tiny to evaluate images captured at distances of 0.57 m 

to 1.29 m from target weeds with three digital colour cameras in wild blueberry fields in 

Nova Scotia, Canada. Images were captured in three commercial wild blueberry fields on 

three dates in May 2020 during the herbicide application timing interval. The results of this 

study provide valuable information for selecting cameras and spray boom height on smart 

sprayers. Using a CNN to control herbicide applications from a smart sprayer can reduce 
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the volume of agrochemical needed for field management, resulting in cost-savings for 

growers.  

3.2 Materials and Methods 

3.2.1 Image Collection at Varying Target Distances with Three Cameras 
Images were captured on May 6, May 14, and May 25, 2020 in sprout year wild 

blueberry fields. The three dates were selected to correspond with the range of dates wild 

blueberry growers typically apply herbicides in the spring. The weather was overcast on 

May 6, sunny on May 14, and partly cloudy on May 25. Images were collected from three 

fields in Debert (45.4265°N, 63.4826°W), Folly Mountain (45.4829°N, 63.5755°W), and 

Portapique (45.4054°N, 63.6706°W), Nova Scotia from 9:00 am to 3:00 pm each day. Test 

sites were selected in each field by walking an inverted “W” pattern (Hughes et al., 2016; 

McCully et al., 1991; Thomas, 1985). The starting point was selected by walking 10 paces 

along the edge of the field, then 10 paces into the field, perpendicular to the original 

direction. Test plots were marked with flags along the “W” and randomly determined 

intervals of 5 to 10 paces created using Minitab 19 (Minitab, LLC, State College, PA, 

USA). Images were captured at each test plot at one of three possible heights, 0.57 m, 0.98 

m, or 1.29 m, to account for variations in sprayer boom height. The 0.98 m and 1.29 m 

image heights did not vary significantly from image capture heights in chapter 2 (0.99 ± 

0.09 m, 1.35 ± 0.07 m), while the 0.57 m height was significantly different (0.52 ± 0.04 

m). The selected height for each test plot was also randomly determined with Minitab 19. 

This process was repeated until there were at least three target and three non-target plots at 

each height in each field for hair fescue and sheep sorrel (Table 7). A total of 83 plots were 

used: 29 at the Debert field, 23 at the Folly Mountain field, and 31 at the Portapique field. 
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Table 7: Number of target and non-target images collected for hair fescue and sheep sorrel. 
The images were captured three separate times on May 6, May 14, and May 25, 2020. 

Field Target 
Height 

Total 
0.57 m 0.98 m 1.29 m 

Debert 

Hair Fescue 5 5 5 15 
Not Hair Fescue 4 4 6 14 

Sheep Sorrel 3 3 3 9 
Not Sheep Sorrel 6 6 8 20 

Folly Mountain 

Hair Fescue 3 5 3 11 
Not Hair Fescue 5 3 4 12 

Sheep Sorrel 4 4 4 12 
Not Sheep Sorrel 4 4 3 11 

Portapique 

Hair Fescue 6 4 7 17 
Not Hair Fescue 6 4 4 14 

Sheep Sorrel 8 4 5 17 
Not Sheep Sorrel 4 4 6 14 

 

Three cameras were used to take images at each test plot. A Logitech c920 USB 

2.0 webcam (Logitech International S.A., Lausanne, Switzerland) was mounted to a tripod 

with an extension arm with the camera lens pointed toward the ground (Figure 12). The 

camera was connected to USB 3.1 port on an MSI Workstation laptop (WS65 9TM-

1410CA, Micro-Star International Co., Ltd, New Taipei, Taiwan) through a 2 m USB 3.0 

extension cable (AmazonBasics HL-007250, Amazon.com, Inc., Seattle, WA, USA), and 

images were saved using Logitech Capture at 1920x1080 resolution. All settings in 

Logitech Capture except sharpness were left at their default values. Sharpness was reduced 

from 128 to 95 to prevent image tearing and artifacts (Figure 13). The autofocus 

sporadically changed the focus setting, so a manual focus of infinity was used. This camera 

was selected for being a low-cost consumer camera which easily interfaces with Windows 

(Microsoft Corporation, Redmond, WA, USA) and had been previously used in a smart 

sprayer (Partel et al., 2019). Eight Logitech c920 cameras were tested to make sure that the 
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image glitches and sporadic autofocus changes were not limited to a single faulty model. 

All eight Logitech c920 cameras exhibited similar behaviour. A Canon T6 DSLR camera 

(EOS Rebel T6, Canon Inc., Tokyo, Japan) and an LG G6 smartphone (G6-H873, LG 

Electronics Inc., Seoul, South Korea) were used to capture images in the same orientation 

with their respective lenses placed directly next to the lens of the Logitech camera (Figure 

12). These cameras were selected for their subjectively clearer images and greater colour 

depth. The Canon T6 and LG G6 captured images at resolutions of 5184x3456 and 

4160x3120, respectively. Images were captured with the Canon T6 and LG G6 using 

autofocus and without zoom. 

 
Figure 12: Field experimental setup showing image capture in the Portapique field on May 
25, 2020. A tripod with an extension arm was used to hold the Logitech c920 camera at a 
position of 0.98 m between the lens and the ground while the laptop captured the image 
(L). The Canon T6 camera was held with the lens directly beside the Logitech c920 at the 
same height for image capture (R). 
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Figure 13: Examples of image tearing and artifacts seen in the Logitech c920 images when 
the default sharpness setting was used. 

 

3.2.2 Target Dimension Measurements 
A sample of hair fescue and sheep sorrel dimensions were measured in the Debert 

field on May 1, 2020 at the sampling plots along the “W” pattern. Measurements were 

recorded from up to three instances of each weed at each test location, pending availability, 

resulting in 25 measurements for hair fescue and 24 measurements for sheep sorrel. A ruler 

was held above the plants to record the length and width of each weed.  The length was 

defined as the largest horizontal dimension of the weed and the width was defined as the 

widest measurement perpendicular to the length measurement (Figure 14). To understand 

the field of view (FOV) of the images, a measuring tape was placed on the ground 

underneath the Logitech c920 camera to measure the physical image size at each of the 
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three heights. Understanding the sizes of these weeds will help with interpretation of the 

detection results from the CNN.  

 
Figure 14: Example of the measurement method for a hair fescue tuft, with the red 
bounding box showing the length and width of the tuft. The base image was captured on 
April 26, 2019 with the Canon T6 camera at a sprout-year field in Debert, NS (45.4381°N, 
63.4534°W). The image also shows branches and leaves from wild blueberry plants after 
mechanical flail mowing. 

 

3.2.3 Image Processing 
The field images were organized by date, field, camera, height, and targets on the 

MSI Workstation Laptop with an Intel Core i9-9980H central processing unit (CPU, Intel 

Corporation, Santa Clara, California, USA) and an Nvidia RTX Quadro 5000 graphics 

processing unit (GPU, Nvidia Corporation, Santa Clara, California, USA) for analysis. The 

YOLOv3-Tiny CNN running on the Darknet framework with the trained weights from 

chapter 2 was used to detect hair fescue and sheep sorrel in the field images. The images 
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were initially run as entire batches to determine the optimal image resolution and detection 

threshold for detection of the two weeds. The internal network resolutions tested were 

1280x736 and 864x480, with an initial threshold of 0.15. The results of each resolution and 

threshold combination were evaluated on their effectiveness of detecting at least one target 

weed per image using the precision, recall, and F1-score metrics (Sokolova & Lapalme, 

2009). These scores are calculated based on the number of true positive (tp), false positive 

(fp), and false negative (fn) detection of targets. Precision is ratio of true positives to all 

detections: 

 Pr =  
tp

tp + fp
 (3) 

Recall is the ratio of true positives to all actual targets: 

 Re =  
tp

tp + fn
 (4) 

F1-score is the harmonic mean of precision and recall: 

 𝐹1 =  2 ∙
Pr ∙ Re
Pr + Re

 (5) 

The precision was observed to be higher than the recall in all cases at the threshold of 0.15, 

so two lower thresholds, 0.10 and 0.05, were also tested. The lowering the threshold 

increases the number of true and false positive detections, thus lowering precision and 

increasing recall. A resolution of 1280x736 and threshold of 0.05 produced the highest F1-

score for both weeds and was used for the rest of the analysis. 
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3.2.4 Experimental Design 
 Field images were tested for detecting hair fescue and sheep sorrel with the 

YOLOv3-Tiny CNN using the Darknet framework and trained weights from chapter 2. The 

F1-score for detection of at least one target weed per image was calculated for each 

combination of date, field, camera, and lens height. An analysis of variance was done using 

Minitab 19 to determine the significant main and interaction effects. The main effects of 

camera selection, image height, and field, and the three-way interaction between these 

effects were significant for hair fescue. Further analysis for hair fescue was done in a 3x3 

factorial arrangement of lens height (0.57 m, 0.98 m, 1.29 m) and camera (Canon T6, LG 

G6, Logitech c920) in a randomized complete block design for each field. The mean F1-

score for interaction effect of camera and lens height in each field was calculated and the 

mean comparisons generated with Tukey’s pairwise comparison in Minitab 19. The 

analysis for sheep sorrel was done in a 3x2 factorial arrangement with the same three lens 

heights but omitted the results from the Logitech c920 camera due to insufficient data from 

this camera. 

3.3 Results and Discussion 

3.3.1 Determination of Optimal Resolution and Threshold 
F1-scores for detection of at least one hair fescue plant per image varied between 

0.80 and 0.81 when changing the threshold and resolution (Table 8). The highest precision 

score (0.85) was produced at 1280x736 resolution at the threshold of 0.15, while the lowest 

precision score (0.78) was produced with both resolutions at the 0.05 threshold. Recall 

peaked (0.85) at 1280x736 resolution and 0.05 threshold, although it only decreased by 

0.01 when the resolution was changed to 864x480. The general trend for both target weeds 

was that decreasing the threshold increased the recall at the expense of precision. The key 
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factor for sheep sorrel detection was maximizing the resolution. The networks were trained 

at 1280x736 resolution, which may have influenced the results. The F1-scores for sheep 

sorrel were higher at 1280x736 than 864x480 by an average of 0.07, with the peak F1-score 

(0.67) being produced at 0.05 threshold. A resolution of 1280x736 and a threshold of 0.05 

was determined to be the optimal parameter combination for both weeds. The peak F1-

scores in this test were lower than the F1-scores produced in chapter 2 for hair fescue (0.97) 

and sheep sorrel (0.90). The effects of camera selection are examined in this study, but 

another factor which influenced results may have been the training dataset. The images 

were collected by personnel walking through fields and manually scouting for target weeds. 

The personnel could have been more inclined to walk towards larger, more visible weeds 

when creating the training dataset. The “W” sampling method used in this study has less 

bias and should produce a better representation of the hair fescue and sheep sorrel present 

in wild blueberry fields used. 

Table 8: Precision, recall, and F1-scores for detection of at least one hair fescue or sheep 
sorrel target per image at varying detection threshold and resolution. 

Threshold Resolution 
Hair Fescue Sheep Sorrel 

Precision Recall F1-Score Precision Recall F1-Score 

0.05 
864x480 0.78 0.84 0.81 0.72 0.57 0.63 

1280x736 0.78 0.85 0.81 0.68 0.66 0.67 

0.10 
864x480 0.81 0.79 0.80 0.73 0.48 0.58 

1280x736 0.84 0.79 0.81 0.71 0.59 0.65 

0.15 
864x480 0.85 0.75 0.80 0.74 0.40 0.52 

1280x736 0.89 0.74 0.80 0.76 0.53 0.63 
 

3.3.2 Measurement of Hair Fescue and Sheep Sorrel Targets 
The mean length and width of hair fescue tufts at the Debert site were 54.6 ± 15.9 

mm and 42.6 ± 13.3 mm, respectively (Table 9). The mean length and width of sheep sorrel 
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were much smaller, at 11.0 ± 1.7 mm and 6.0 ± 0.9 mm, respectively. The 95% C.I. for the 

hair fescue measurements were much larger than for the sheep sorrel measurements, 

indicating more variability in the size of hair fescue tufts. The physical measurement 

represented by an individual pixel varied from 0.60 mm to 1.35 mm for 1280x736 images, 

and 0.89 mm to 2.00 mm for 864x480 images (Table 10). At both resolutions, the finer 

features of sheep sorrel may not be clear at higher image heights. With pixel sizes of 1.35 

mm and 2.00 mm, the average width of a sheep sorrel leaf in an image was 4 and 3 pixels, 

respectively. Higher resolutions may be necessary for accurate detection of sheep sorrel. 

Table 9: Mean measurements of hair fescue and sheep sorrel plants at the Debert Site on 
May 1, 2020. 

Target Weed Dimension Mean Measurement (mm) 

Hair Fescue 
Length 54.6 ± 15.9 
Width 42.6 ± 13.3 

Sheep Sorrel 
Length 11.0 ± 1.7 
Width 6.0 ± 0.9 

 

Table 10: FOV of the Logitech c920 camera at each tested image height. The size of the 
field represented by each pixel at 1280x736 and 864x480 resolution was calculated based 
on the FOV.  

Height (m) 
FOV (m) 

Pixel Size, 1280x736 (mm) Pixel Size, 864x480 (mm) 
Length Width 

0.57 0.77 0.43 0.60 0.89 
0.98 1.30 0.73 1.02 1.51 
1.29 1.72 0.97 1.35 2.00 

 

3.3.3 Effects of Camera Selection and Image Height 
For hair fescue detection, the main effects of camera selection, image height, and 

field selection, the two-way interaction effect between image height and field, and the 

three-way interaction effect between camera selection, image height, and field were 
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significant (p < 0.05). The main effect of day, the two-way interaction effects between day 

and camera, day and height, day and field, camera and height, camera and field, and the 

three-way interaction between day, camera, and height were not significant. The Tukey’s 

pairwise comparison for interaction between image height and camera selection showed 

that the best option for the Debert field was the LG G6 at 0.98 m (F1-score = 0.972) (Table 

11). The Canon T6 at 0.98 m (F1-score = 0.819) was the second-best option for this field, 

but was not significantly different from any lesser performing combinations. In the Folly 

Mountain field, the best detection results came from images captured at 0.98 m with the 

Canon T6 and LG G6 cameras (F1-score = 0.972). The images from the LG G6 at 1.29 m 

were produced the best detection in the Portapique field (F1-score = 0.918), but they were 

not significantly different from detection results from all other combinations in this field. 

The only scenario where camera selection produced significantly different results was in 

the Debert field at a height of 0.98 m. The LG G6 performed the best (F1-score = 0.972), 

followed by the Canon T6 (F1-score = 0.819), and the Logitech c920 (F1-score = 0.626). 

The LG G6 and Logitech c920 cameras varied significantly from each other, but not from 

the Canon T6. Approximately 70% of the images in the original training dataset were 

captured at 0.99 ± 0.09 m, which may have contributed to the high level of accuracy at the 

0.98 m height. 
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Table 11: Effect of lens height and camera selection on mean F1-score for detection of hair 
fescue plants using the YOLOv3-Tiny weights trained in chapter 2. Test images were 
captured in Nova Scotia on May 6, May 14, and May 25, 2020. 

Height (m) Camera 
Field 

Debert Folly Mountain Portapique 
        

0.57 Canon T6 0.742 CD 0.697 CD 0.839 ABCD 
0.57 LG G6 0.667 CD 0.724 CD 0.839 ABCD 
0.57 Logitech c920 0.608 D 0.750 BCD 0.773 ABCD 

        
0.98 Canon T6 0.819 ABCD 0.972 A 0.830 ABCD 
0.98 LG G6 0.972 A 0.972 A 0.766 ABCD 
0.98 Logitech c920 0.626 D 0.966 AB 0.783 ABCD 

        
1.29 Canon T6 0.800 ABCD 0.724 CD 0.864 ABCD 
1.29 LG G6 0.811 ABCD 0.789 ABCD 0.918 ABC 
1.29 Logitech c920 0.817 ABCD 0.761 ABCD 0.890 ABCD 

 

During calculation of F1-scores for sheep sorrel detection, 19 of 27 combinations 

of height, date, and field for images captured with the Logitech c920 did not return a result. 

There were zero true positive detections in these scenarios, thus creating precision and 

recall scores of zero, which resulted in the F1-scores being incalculable due to a division 

by zero. The maximum average F1-score from images captured with the Logitech c920 

camera was 0.444 (Table 12). The features in images captured with the Logitech c920 were 

blurrier due to the reduced sharpness, and there was less contrast between colours (Figure 

15). Preprocessing images from the Logitech c920 to accentuate green hues may improve 

results for sheep sorrel and hair fescue detection but would likely have a negative impact 

on processing speed. The Canon T6 and LG G6 cameras were used to collect training 

images, while the Logitech c920 was not used. This may have resulted in the CNN being 

more biased towards detecting weed instances in the Canon T6 and LG G6 images.  
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Table 12: Sheep sorrel detection results from YOLOv3-Tiny on images captured with the 
Logitech c920 camera at three wild blueberry fields in Nova Scotia. 

Date Field Height (m) F1-Score 

06-May Portapique 
0.57 0.222 
1.29 0.444 

14-May 

Debert 
0.57 0.286 
1.29 0.333 

Folly Mountain 0.78 0.333 

Portapique 
0.57 0.222 
1.29 0.444 

25-May Debert 0.57 0.333 
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Figure 15: Sample of field images captured in the Folly Mountain field on May 6th, 2020. 
Pictures in the left column were captured at a height of 0.98 m and have a hair fescue tuft 
in the centre of the image. Pictures in the right column were captured at 0.57 m and have 
sheep sorrel leaves dispersed throughout the images. Images in the top row were captured 
with the Canon T6 camera, the middle row were captured with the LG G6 smartphone, and 
the bottom row were captured with the Logitech c920. 

 

Significant effects (p < 0.05) for sheep sorrel detection were the main effects of 

image height and field, and the two-way interaction between field and image height. The 

main effect of camera, the two-way interaction effects between day and camera, day and 

height, day and field, camera and height, camera and field, and all three-way interaction 

effects were not significant. The best height for capturing images in the Debert field was 

0.98 m, with images from both cameras producing an F1-score of 0.833 (Table 13). The 
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other combinations of camera and image height did not vary significantly. In the Folly 

Mountain field, the best detection results were produced with images captured at 0.57 m 

with both cameras (F1-score = 0.944, 0.933), but other combinations were not significantly 

different. Similar results were produced with images from the Portapique field, with images 

captured at 0.57 m using both cameras producing the best results (F1-score = 0.884, 830), 

while the results at other heights were not significantly different. The small size of the 

sheep sorrel leaves may be contributing to the reduced accuracy in images captured from 

higher positions. 

Table 13: Effect of lens height and camera selection on mean F1-score for detection of 
sheep sorrel plants using the YOLOv3-Tiny weights trained in chapter 2. Test images were 
captured in Nova Scotia on May 6, May 14, and May 25, 2020. 

Height (m) Camera 
Field 

Debert Folly Mountain Portapique 
        

0.57 Canon T6 0.429 BC 0.933 A 0.884 AB 
0.57 LG G6 0.429 BC 0.944 A 0.830 ABC 

        
0.98 Canon T6 0.833 ABC 0.833 ABC 0.756 ABC 
0.98 LG G6 0.833 ABC 0.722 ABC 0.750 ABC 

        
1.29 Canon T6 0.356 C 0.889 AB 0.649 ABC 
1.29 LG G6 0.411 BC 0.833 ABC 0.722 ABC 

 

3.4 Conclusions 
The higher resolution, 1280x736, with the lowest threshold, 0.05, produced the best 

results for detecting sheep sorrel with the YOLOv3-Tiny CNN producing a peak F1-score 

of 0.67 across all images captured in three fields in Nova Scotia. These parameters had 

little effect on the F1-scores for hair fescue detection, which were consistently 0.80 or 0.81. 

These results were lower than the validation scores produced when the networks were 

trained, which may be the result of bias in the original image dataset. The small size of 
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sheep sorrel leaves indicates the higher resolution may have been necessary to adequately 

represent their visual features. Camera selection had minimal effect on hair fescue 

detection except in the Debert field at a height of 0.98 m. The Logitech c920 camera was 

not viable for sheep sorrel detection, as 19 of 27 parameter combinations resulted in zero 

detections. This may have been due to either lower quality images compared to the Canon 

T6 and LG G6 or because images from the Logitech c920 were not used to train the CNN. 

A lens height of 0.57 m produced the best results for sheep sorrel in two out of three fields. 

Preprocessing images to accentuate the green colours may cause the sheep sorrel to be 

more visible, potentially improving detection results. This would add another step to image 

processing, potentially reducing processing speed. Results from the LG G6 camera indicate 

that the quality of smartphone pictures is adequate for identifying hair fescue and sheep 

sorrel in field images. Future work should involve selecting a high-quality camera for use 

on a smart sprayer and collecting an unbiased image dataset for retraining the CNNs. 

Preprocessing techniques should also be examined for their effect on CNN accuracy and 

their impact on processing speed. Additionally, the CNNs should be tested for use in real-

time on a smartphone, to allow wild blueberry growers to identify hair fescue and sheep 

sorrel in their fields. Using a CNN to target hair fescue, sheep sorrel, and other weeds in 

wild blueberry fields on a smart sprayer can reduce herbicide use and create cost-savings 

for growers.  
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CHAPTER 4: PROCESSING REQUIREMENTS FOR 
INTEGRATION OF CONVOLUTIONAL NEURAL NETWORKS ON 

A SMART SPRAYER 

4.1 Introduction 
Wild blueberries (Vaccinium angustifolium Ait.) are a perennial crop native to 

northeastern North America with a total production of over 108 million kg in 2019 

(Robinson, 2020). In 2017, the crop contributed over $100 million to Nova Scotia’s 

economy, including $65.9 million in exports (Wild Blueberry Producers Association of 

Nova Scotia, 2018). Production occurs in a two-year cycle with the flower buds beginning 

to grow from August to October in the first (sprout) year before lying dormant during the 

winter. The plants continue growing in the second (crop) year with fruit being harvested in 

August and September when approximately 90% of the berries are ripe (Farooque et al., 

2014). The bare branches are pruned by flail mowing or burning after harvesting, restarting 

the growth cycle (Hall et al., 1979). Wild blueberries are desired for their health benefits, 

including anti-aging and anti-inflammatory properties (Beattie et al., 2005), and high 

antioxidant content (Kay & Holub, 2002) which helps reduce the risk of cardiovascular 

disease and cancer (Lobo et al., 2010). 

Weeds, a major yield limiting factor in wild blueberry production (K. I. N. Jensen 

& Yarborough, 2004; Yarborough, 2006; Yarborough & Bhowmik, 1993),  are 

traditionally managed with application of liquid herbicides (K. I. N. Jensen & Yarborough, 

2004; McCully et al., 1991). Hair fescue (Festuca filiformis Pourr.) and sheep sorrel 

(Rumex acetosella L.) are the fourth and first most common weeds in Nova Scotia wild 

blueberry fields, respectively (White, 2019). Pronamide, which is currently used to manage 

hair fescue (White & Kumar, 2017), costs $413.65 ha-1 for a uniform application (Esau et 
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al., 2019). Hexazinone, used for sheep sorrel management (K. I. N. Jensen & Yarborough, 

2004; Kennedy et al., 2010), costs $168.03 ha-1 to uniformly apply (Esau et al., 2019). Hair 

fescue and sheep sorrel had field uniformities of 25% and 63% respectively in 2019 (White, 

2019), which presents an opportunity for increased herbicide application efficiency using 

a variable rate smart sprayer. Smart sprayers use sensors to intelligently select which areas 

of a field to apply agrochemicals, reducing the volume of agrochemical needed for field 

management. Commercial options available for other cropping systems such as See & 

Spray (Blue River Technologies, 2018), GreenSeeker (Trimble Inc., 2020a), WeedSeeker 

(Trimble Inc., 2020b), and AiCPlus (Agrifac Machinery B.V., 2016) are not suitable for 

wild blueberry management due to the highly variable topography of wild blueberry fields. 

Smart sprayers for wild blueberry management have relied on ultrasonic sensors to 

detect plant height (Zaman et al., 2011) or image data from cameras to detect foliage (Esau 

et al., 2014, 2016, 2018; Rehman et al., 2018, 2019). The ultrasonic sensors detected weeds 

taller than the wild blueberry plant canopy but could not detect weeds at the same height 

or shorter than the canopy (Zaman et al., 2011). A smart sprayer relying on green colour 

segmentation could successfully isolate green foliage from blueberry branches and bare 

ground (Esau et al., 2014, 2016, 2018). This resulted in herbicide savings of up to 78.5% 

(Esau et al., 2018), but the algorithm could not discriminate different weed species 

containing green. This sprayer used 27 spray nozzles and 9 cameras equally spaced along 

a 13.7 m boom and travelled at a maximum speed of 1.77 m s-1 (Esau et al., 2018). Another 

imaging system relying on colour co-occurrence matrices was created to detect goldenrod 

(Solidago spp.) in wild blueberry fields, but is not easily scalable to other weeds (Rehman 

et al., 2018, 2019). This sprayer included 8 nozzles and 4 cameras equally spaced along a 
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6.1 m boom (Rehman et al., 2019). The smart sprayers relying on imaging systems included 

graphical user interfaces (GUIs) for operators to control spray settings and view images 

from the cameras in real-time (Esau et al., 2014, 2018; Rehman et al., 2019). The GUIs 

were designed for use on the Windows operating system (Microsoft Corporation, Redmon, 

WA, USA), so commercial deployment of these sprayers would require paid Windows 

licences. A cross-platform GUI which also works on Linux-based operating systems such 

as Ubuntu (Canonical Ltd., London, UK) would remove this additional cost. 

Deep learning convolutional neural networks (CNNs) are a novel processing 

technique used to automatically classify images or objects within images in real-time 

(LeCun et al., 2015). Datasets with thousands of images labelled according to their 

classification are used to train a CNN to classify new, unlabelled images through 

backpropagation (Rumelhart et al., 1986). Image processing using CNNs has been used in 

various aspects of agriculture since 2015 (Kamilaris & Prenafeta-Boldú, 2018), including 

classification of weeds in strawberry fields (Sharpe et al., 2019), various vegetables 

(Sharpe et al., 2020), turfgrasses (Yu, Sharpe, et al., 2019a, 2019b), and ryegrasses (Yu, 

Schumann, et al., 2019). 

In chapter 2, three object-detection and three image-classification CNNs were 

trained to identify hair fescue and sheep sorrel in images of wild blueberry fields at four 

network resolutions from 1280x736 to 864x480 pixels. The CNNs accurately identified 

both target weeds, but the conclusion noted that the processing speed of the CNNs should 

be tested to determine if they were viable for use in a real-time smart sprayer. The three 

object-detection CNNs, YOLOv3, YOLOv3-Tiny (Redmon & Farhadi, 2018), and 

YOLOv3-Tiny-PRN (C.-Y. Wang et al., 2019), can process 416x416 resolution images at 
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46, 330, and 400 frames per second (FPS) respectively (C.-Y. Wang et al., 2020) on an 

Nvidia GTX 1080 Ti graphics processing unit (GPU, Nvidia Corporation, Santa Clara, CA, 

USA). The three image classification networks used were Darknet Reference (Redmon, 

2016), EfficientNet-B0 (Tan & Le, 2019), and MobileNetV2 (Sandler et al., 2018). Darknet 

Reference operates at 345 FPS at a resolution of 224x224 on an Nvidia Titan X GPU 

(Redmon, 2016). Most consumer-grade Nvidia GPUs currently available contain between 

6 GB and 11 GB (Nvidia Corporation, 2019, 2020b) of video random access memory 

(vRAM) needed to process CNNs. 

 This study examined the processing speed and vRAM requirements when 

processing multiple instances of the CNNs on a mobile GPU to determine if they would be 

viable for controlling spray applications in real-time. The three object-detection and three 

image-classification CNNs trained in chapter 2 were each tested at four resolutions ranging 

from 864x480 to 1280x736 pixels to process video frames from up to eight cameras 

simultaneously. A cross-platform GUI was developed in the Python programming 

language to control and view CNNs from multiple live camera feeds for use on a smart 

sprayer. Using CNNs to control spray applications will lead to greater herbicide application 

efficiency, resulting in major cost savings for wild blueberry producers. 

4.2 Materials and Methods 

4.2.1 Processing Hardware 
An MSI workstation laptop (WS65 9TM-1410CA, Micro-Star International Co., 

Ltd, New Taipei, Taiwan) running Windows 10 Pro (Microsoft Corporation, Seattle, WA, 

USA) was used for testing the neural networks and developing the GUI. The laptop 

contained an Intel Core i9-9980H central processing unit (CPU, Intel Corporation, Santa 
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Clara, CA, USA) running at 2.30 GHz with 64 GB of system random access memory 

(RAM). The laptop’s GPU, an Nvidia Quadro RTX 5000 Max-Q with a core clock speed 

of 600 MHz, boost clock speed of 1350 MHz, and 16 GB of vRAM was used to process 

the neural networks. 

4.2.2 Speed and Memory Requirements for Processing Multiple Camera 

Streams with Convolutional Neural Networks 
A version of the Darknet framework compatible with Windows (Redmon et al., 

2020) was installed on the laptop and compiled with CUDA (Compute Unified Device 

Architecture, v10.0, Nvidia Corporation, Santa Clara, CA, USA), the CUDA Deep Neural 

Network Library (cuDNN, v7.6.4, Nvidia Corporation), and OpenCV (v3.4.9, The 

OpenCV Team). Eight Logitech c920 USB 2.0 cameras (Logitech International S.A., 

Lausanne, Switzerland) were connected to the laptop and the video captured by each 

camera was processed using a separate instance of the Darknet framework. Four of these 

cameras were connected through USB 3.1 ports on the laptop. The remaining four cameras 

were connected to the laptop via ethernet through a Raspberry Pi 3 Model B+ (The 

Raspberry Pi Foundation, Cambridge, UK) running motionEyeOS (Crisan, 2019) (Figure 

16). A USB hub could not be used to connect all eight cameras due to bandwidth limitations 

of USB 2.0. Object-detection networks YOLOv3, YOLOv3-Tiny, and YOLOv3-Tiny-

PRN were tested with 1, 2, 4, 6, and 8 cameras running simultaneously at 1920x1080 

resolution. The networks were processed with internal resolutions of 1280x736, 1024x576, 

960x544, and 864x480 with a batch size of 1. This test took place indoors instead of in-

field conditions, so the CNNs were loaded using weights trained on the COCO dataset (Lin 

et al., 2014) by their respective authors rather than the weights trained to detect hair fescue 

and sheep sorrel in chapter 2. The average FPS for each camera reported by Darknet, and 
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the total amount of vRAM needed, as reported by Task Manager, in each test were 

recorded. This test was repeated using with identical parameters using the image-

classification networks Darknet Reference, EfficientNet-B0, and MobileNetV2, loaded 

with weights trained on the ImageNet dataset (Deng et al., 2009) by their respective 

authors. 

 
Figure 16: Block diagram of 8-camera setup used for testing. Four Logitech c920 cameras 
were connected to the laptop through USB 3.1 ports. A Raspberry Pi 3 Model B+ was 
connected to the laptop via ethernet to connect four additional Logitech c920 cameras. 

 

4.2.3 Development of a Graphical User Interface for Controlling 

Convolutional Neural Networks on a Smart Sprayer 
A cross-platform GUI was developed in the Python programming language (v3.8.2, 

Python Software Foundation, Wilmington, DE, USA) to control CNNs on a smart sprayer. 

The GUI was designed for an 8-camera, 8-nozzle sprayer with all cameras attached to a 

central computer for processing. Functions from the Tkinter library were used to create 

user input options and display CNN outputs. The GUI allows the user to select whether to 

use an object-detection or image-classification CNN for controlling spray applications. 

YOLOv3-Tiny and Darknet Reference were selected as the object-detection and image-
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classification networks, respectively for their high level of accuracy and fast processing 

speeds. The user controls the internal network resolution, threshold for the object-detection 

network, and the target weed for spraying. The currently supported target weeds are hair 

fescue and sheep sorrel, which use the weights trained in chapter 2. The GUI was tested in 

Windows 10 Pro on the laptop and Ubuntu 16.04 LTS (Canonical Ltd., London, UK) on a 

custom-built PC with an Intel Core-i9 7900X CPU running at 3.3 GHz with 32 GB of RAM 

and Nvidia RTX 2080 Ti GPU clocked at 1650 MHz. 

4.3 Results and Discussion 

4.3.1 Memory Use and Processing Speed for Object-Detection Networks 
The amount of vRAM needed to process multiple object-detection CNNs was found 

to scale linearly with the number of cameras being processed (Figure 17). The 16 GB of 

vRAM in the RTX 5000 GPU was enough for processing eight CNNs simultaneously at 

all resolutions except 1280x736 with YOLOv3. Extrapolating the memory measurements 

for YOLOv3 at 1280x736 linearly gives an estimated vRAM requirement of 18.4 GB for 

8 cameras. YOLOv3-Tiny and YOLOv3-Tiny-PRN required 6.4 GB and 6.1 GB of vRAM, 

respectively, to process 8 video streams at 1280x736. Lowering the processing resolution 

resulted in a reduction of vRAM use for all three CNNs. YOLOv3 saw a 35.5% reduction 

in vRAM use when the processing resolution was changed from 1280x736 to 864x480. 

Adjusting the resolution by the same interval with YOLOv3-Tiny and YOLOv3-Tiny-PRN 

produced vRAM reductions of 18.2% and 21.3%, respectively. Understanding this 

relationship will be useful for selecting CNNs and GPUs for future research. The Nvidia 

GeForce RTX 3090, which contains 24 GB of vRAM (Nvidia Corporation, 2020c), is the 

only consumer-grade Nvidia GPU in production which contains enough vRAM to process 
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8 video streams with YOLOv3 at 1280x736 resolution. For a single camera at 1280x736 

resolution, YOLOv3 required 2.3 GB of vRAM. YOLOv3-Tiny and YOLOv3-Tiny-PRN 

both required 0.8 GB of vRAM to process a single camera stream at 1280x736. Using 

YOLOv3-Tiny or YOLOv3-Tiny-PRN for processing video streams would be preferable 

because of their smaller memory requirement. 

As video streams were added, the average framerate decayed non-linearly (Figure 

18). The fastest CNN for processing 8 cameras at 1280x736 resolution was YOLOv3-Tiny-

PRN, which achieved 9.6 FPS. YOLOv3-Tiny was slightly slower at 8.8 FPS. YOLOv3 

processed images at 2.7 FPS at 1024x576 when 8 video streams were used simultaneously. 

YOLOv3-Tiny was the fastest CNN for processing a single video stream at 1280x736, 

achieving a framerate of 83.6 FPS. YOLOv3-Tiny-PRN was slightly slower at 82.2 FPS, 

and YOLOv3 was substantially slower at 16.2 FPS. Lowering the network resolution from 

1280x736 to 864x480 improved processing speed by an average of 113.3% for YOLOv3, 

80.3% for YOLOv3-Tiny, and 81.5% for YOLOv3-Tiny-PRN. In chapter 3, the minimum 

vertical FOV was found to be 0.43 m (Table 10). If the maximum ground speed  used by 

Esau et al. (2018) is maintained (1.77 m s-1), this results in a minimum framerate 

requirement of 4.12 FPS to ensure every area of the sprayer path is processed. YOLOv3-

Tiny and YOLOv3-Tiny-PRN both meet this requirement. Considering the similar vRAM 

usage and processing speed for YOLOv3-Tiny compared to YOLOv3-Tiny-PRN, and its 

greater ability to detect sheep sorrel, YOLOv3-Tiny is the best option for use on a smart 

sprayer. 
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Figure 17: Graph of total vRAM required to process multiple cameras for object-detection 
networks. YOLOv3 at 1280x736 resolution was not tested with 8 cameras because it 
exceeded the 16 GB of vRAM available in the GPU. 
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Figure 18: Graph of average processed frames per second from each camera against the 
number of cameras being processed for object-detection networks. YOLOv3 at 1280x736 
resolution was not tested with 8 cameras because it exceeded the 16 GB of vRAM available 
in the GPU. 
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4.3.2 Memory Use and Processing Speed for Image-Classification Networks 
Similar to object-detection CNNs, the amount of vRAM needed to process multiple 

image-classification CNNs was found to scale linearly with the number of video streams 

being processed (Figure 19). Processing video streams with EfficientNet-B0 presented the 

same problem as with YOLOv3, where the GPU did not have enough vRAM to process 8 

CNNs at 1280x736 resolution. Extrapolating the memory measurements for 

EfficientNetB0 at 1280x736 linearly gives an estimated vRAM requirement of 17.6 GB 

for 8 cameras. MobileNetV2 required 10.3 GB of vRAM to process 8 video streams 

simultaneously at 1280x736, while Darknet Reference required 6.0 GB.  As with object-

detection CNNs, lowering the processing resolution resulted in a reduction of vRAM use 

for all three image-classification CNNs. EfficientNet-B0 saw the largest benefit from 

lowering the processing resolution, a reduction of vRAM use by 44.0% when the resolution 

was changed from 1280x736 to 864x480. Darknet Reference and MobileNetV2 saw 

reductions of 16.2% and 36.1%, respectively over the same interval. 
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Figure 19: Graph of total vRAM required to process multiple cameras for image-
classification networks. EfficientNet-B0 at 1280x736 resolution was not tested with 8 
cameras because it exceeded the 16 GB of vRAM available in the GPU. 
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As with object-detection networks, the processing speed of image-classification 

networks decayed non-linearly as more cameras were added (Figure 20). The fastest CNN 

for processing 8 cameras at 1280x736 resolution was Darknet Reference, which achieved 

19.2 FPS. MobileNetV2 was significantly slower than Darknet Reference, achieving 5.3 

FPS under the same parameters. EfficientNet-B0 was slowest network for processing 8 

cameras, with a framerate of 2.1 FPS at 1024x576. Lowering the network resolution from 

1280x736 to 864x480 improved processing speed by an average of 135.8% for 

EfficientNet-B0, 108.6% for MobileNetV2, and 81.5% for Darknet Reference. Darknet 

Reference was the fastest CNN for processing a single video stream at 1280x736, achieving 

a framerate of 133.8 FPS. EfficientNet-B0 and MobileNetV2 were significantly slower at 

12.0 FPS and 52.3 FPS, respectively. Darknet Reference and MobileNetV2 both exceed 

the minimum framerate requirement of 4.12 FPS. The faster processing speed of Darknet 

would allow a less powerful GPU to be used for processing, creating cost-savings. 

Considering the smaller vRAM usage and faster inference speed compared to EfficientNet-

B0 and MobileNetV2, Darknet Reference is the best option for use on a smart sprayer. 
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Figure 20: Graph of average processed frames per second from each camera against the 
number of cameras being processed for image-classification networks. EfficientNet-B0 at 
1280x736 resolution was not tested with 8 cameras because it exceeded the 16 GB of 
vRAM available in the GPU. 
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YOLOv3-Tiny and Darknet Reference could both process 8 cameras at 1280x736 

resolution in the GPU’s 16 GB of vRAM, as they required 6.4 GB and 6.0 GB of vRAM, 

respectively.  The vRAM required by these network limits the number of cameras which 

can be used from 7 (in a 6 GB GPU) to 13 (in an 11 GB GPU). Using a low-cost embedded 

GPU system such as an Nvidia Jetson (Nvidia Corporation, 2020a) to process images from 

each camera is an alternative to using a single central GPU to process all cameras. An array 

of embedded GPUs would allow for easier scaling of the entire system, as the GPUs could 

simply be added or removed with the cameras. Nvidia Jetson GPUs range in price from 

$59 USD to $899 USD and vRAM capacities from 2 GB to 32 GB (Nvidia Corporation, 

2020a). Future work should involve testing embedded GPU systems to determine their 

viability for use in a real-time smart sprayer. 

4.3.3 Graphical User Interface for Controlling Convolutional Neural 

Networks 
 A cross-platform GUI for controlling spray applications using CNNs was 

developed in Python and verified to run on Windows 10 and Ubuntu 16.04 (Figure 21). 

The GUI includes a frame of input settings in the upper-left corner which control the CNN 

parameters. Each camera includes a frame with options for accessing the camera showing 

the output frame produced by the CNN. The upper-right corner includes a “Start” button 

to initialize CNN processing for all selected cameras using the parameters defined by the 

user, and a “Stop” button to end CNN processing. 



75 
 

 
Figure 21: GUI written in Python 3.8.2 using the Tkinter library for controlling herbicide 
application on an 8-camera, 8-nozzle sprayer using CNNs. The top window shows the 
appearance on Windows 10 and the bottom window shows the appearance on Ubuntu 
16.04. 

 The input options frame includes settings for detection mode, resolution, threshold, 

and target weed (Figure 22). YOLOv3-Tiny is used for target identification in “Detector” 

mode, while Darknet Reference is used for target identification in “Classifier” mode. The 

Darknet framework requires network resolutions to be a multiple of 32, so the user input 

options are automatically rounded up to the next multiple of 32 if the user inputs an 

incompatible value. The detection threshold can be modified when the GUI is used in 

“Detector” mode. Lower thresholds will yield more true and false positive detections, while 
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higher thresholds will yield less. The “Target” option selects whether to load the trained 

weights for hair fescue or sheep sorrel. 

 

Figure 22: Options frame of the GUI. The user selects whether to use an object-detection 
or image-classification CNN, the internal network resolution, detection threshold (for 
object-detection only), and target weed. 

 The GUI includes a frame for each camera to be processed using the CNN (Figure 

23). The frame is initialized with an image showing the camera number which is replaced 

with the output image produced by the CNN during processing. The options below the 

image display require the user to select the connection type and address for the CNN to 

connect to the camera. 

 

Figure 23: A camera frame from the GUI. A base image with a camera reference number 
is shown when the GUI is initialized. The user selects the camera connection method (USB 
or IP), and the address of the camera. 
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4.4 Conclusions 
 An important consideration for using CNNs to control herbicide application on a 

smart sprayer is the amount of processing power required. The amount of vRAM needed 

to process the CNNs scaled linearly with the number of cameras being processed 

simultaneously. The average framerate decayed non-linearly as the number of cameras was 

increased. 

YOLOv3-Tiny and YOLOv3-Tiny-PRN required 6.4 GB and 6.1 GB of vRAM, 

respectively, to process images from 8 video streams at 1280x736 resolution. With 8 

cameras, YOLOv3-Tiny and YOLOv3-Tiny-PRN achieved average processing speeds of 

8.8 FPS and 9.6 FPS per camera, respectively. YOLOv3 would require approximately 18.4 

GB of vRAM to process 8 video streams at 1280x736 pixels simultaneously, which did not 

fit in the 16 GB available in the Nvidia RTX 5000 GPU. When the resolution was decreased 

to 1024x576, YOLOv3 achieved an average processing speed of 2.7 FPS using 14.0 GB of 

vRAM to process 8 cameras simultaneously. Given the large amount of vRAM needed and 

slow processing speed, YOLOv3 is not viable for use on a real-time smart sprayer. 

Considering the similar vRAM usage and processing speed for YOLOv3-Tiny compared 

to YOLOv3-Tiny-PRN, and its greater ability to detect sheep sorrel, YOLOv3-Tiny is the 

best object-detection CNN for use on a smart sprayer. 

Among image-classification CNNs, Darknet Reference achieved the fastest 

processing speed (19.2 FPS) using the smallest amount of vRAM (6.0 GB) for processing 

images from 8 video streams at 1280x736 pixels. MobileNetV2 achieved an average 

processing speed of 5.3 FPS using 10.3 GB of vRAM under the same parameters. 

EfficientNet-B0 required more vRAM than was available in the GPU to process 8 video 
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streams at 1280x736. Reducing the resolution to 1024x576 allowed EfficientNet-B0 to 

achieve an average framerate of 2.1 FPS using 12.4 GB of vRAM. 

The results of this study identify YOLOv3-Tiny and Darknet Reference as the 

optimal object-detection and image-classification CNNs for use on a variable-rate smart 

sprayer. The Python-based GUI allows for control of the YOLOv3-Tiny and Darknet 

Reference CNNs for identification of hair fescue and sheep sorrel. The cross-platform 

nature of the GUI was verified to work on Windows 10 and Ubuntu 16.04, allowing 

flexibility during deployment. Using a CNN to control herbicide applications from a 

variable-rate smart sprayer will reduce the volume of herbicide needed for field 

management, resulting in cost-savings for wild blueberry producers. 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 
The commercial wild blueberry industry is continually evolving and innovating to 

stay economically viable. The reduced price of wild blueberries and increasing labour costs 

have put a strain on the industry which requires creative, novel solutions to alleviate. 

Reducing agrochemical input costs through selectively applying herbicide only on areas of 

fields with weed cover is one such solution. This study trained and evaluated six 

convolutional neural networks for identifying hair fescue and sheep sorrel in wild blueberry 

fields. The trained networks were evaluated using three different cameras at varying target 

distances. Processing speed and video memory requirements were tested for each network, 

and a cross-platform GUI was developed for controlling the networks on a variable rate 

smart sprayer. 

Images were collected from 58 Nova Scotia wild blueberry fields to train and test 

the networks. During the initial development, YOLOv3-Tiny was identified as the best 

object-detection network due to its high level of accuracy in detection of both weeds and 

fast processing speed. For detection of at least one target weed per image, all three object-

detection networks produced F1-scores of at least 0.95 for hair fescue at 1280x736 

resolution and a threshold of 0.15. The results of changing the threshold were variable for 

sheep sorrel detection, with only small changes in the F1-score. Object-detection results for 

sheep sorrel may be improved by labelling each individual sheep sorrel leaf or by selection 

regions of weed cover using semantic segmentation methods. Among image-classification 

networks, Darknet Reference produced the best overall results with F1-scores of 0.92 or 

greater at all resolutions for classification of both weeds when trained with 7,200 images. 
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Darknet Reference was less consistent than the other five CNNs with smaller dataset sizes, 

with the F1-score dropping to 0.77 when it was trained with 1,890 images. All other CNNs 

consistently produced F1-scores above 0.90 when trained with dataset sizes from 472 to 

3,780 images. 

During independent field testing, the higher resolution, 1280x736, with the lowest 

threshold, 0.05, produced the best results. Sheep sorrel was detected by YOLOv3-Tiny 

with an F1-score of 0.67 across all images in the dataset.  F1-scores for hair fescue detection, 

were consistently 0.80 or 0.81 regardless of resolution. These results were lower than the 

validation scores produced when the networks were trained, which may be the result of 

bias in the original image dataset. Camera selection did not have a significant effect on hair 

fescue detection except at a height of 0.98 m in the Debert field. A lens height of 0.57 m 

produced the best results for sheep sorrel in two out of three fields. The Logitech c920 

camera failed to detect any sheep sorrel in 19 of 27 parameter combinations, indicating that 

it is not viable for this purpose. This may have been due to either lower quality images 

compared to the Canon T6 and LG G6 or because the CNNs were not trained with images 

from the Logitech c920. 

The amount of vRAM needed to process the CNNs increased linearly with the 

number of cameras being processed simultaneously, while the average framerate decayed 

non-linearly. YOLOv3 would require approximately 18.4 GB of vRAM to process 8 video 

streams simultaneously at 1280x736 pixels, which did not fit in the 16 GB available in the 

Nvidia RTX 5000 GPU. YOLOv3-Tiny and YOLOv3-Tiny-PRN required 6.4 GB and 6.1 

GB of vRAM, respectively, to process images from 8 video streams at 1280x736 

resolution. With 8 cameras, YOLOv3-Tiny and YOLOv3-Tiny-PRN achieved average 



81 
 

processing speeds of 8.8 FPS and 9.6 FPS per camera, respectively. YOLOv3 achieved an 

average processing speed of 2.7 FPS using 14.0 GB of vRAM to process 8 cameras 

simultaneously at 1280x736. Given the large amount of vRAM needed and slow processing 

speed, YOLOv3 is not viable for use on a real-time smart sprayer. YOLOv3-Tiny and 

YOLOv3-Tiny-PRN had comparable processing requirements; however, YOLOv3-Tiny 

produced much better results for sheep sorrel detection than YOLOv3-Tiny-PRN. 

EfficientNet-B0 required more vRAM than was available in the GPU to process 8 video 

streams at 1280x736. Reducing the resolution to 1024x576 allowed EfficientNet-B0 to 

achieve an average framerate of 2.1 FPS using 12.4 GB of vRAM. Darknet Reference 

achieved the fastest processing speed (19.2 FPS) using the smallest amount of vRAM (6.0 

GB) for processing images from 8 video streams at 1280x736 pixels. MobileNetV2 

achieved an average processing speed of 5.3 FPS using 10.3 GB of vRAM under the same 

parameters. The GUI allows for control of YOLOv3-Tiny and Darknet Reference for 

identification of target weeds on Windows 10 and Ubuntu 16.04. Using a CNN to target 

hair fescue, sheep sorrel, and other weeds in wild blueberry fields on a smart sprayer can 

reduce herbicide use and create cost-savings for growers. 

5.2 Recommendations 
The results of this study indicate that deep learning CNNs can be trained to identify 

hair fescue and sheep sorrel in images of wild blueberry fields. YOLOv3-Tiny and Darknet 

Reference are both effective networks which can quickly perform deep learning inferences 

on images. Future work should involve testing of multiple high-quality cameras to 

determine the best option for use on a variable rate smart sprayer. Images should be 

captured with the selected camera and the CNNs should be retrained to potentially increase 
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identification accuracy. Additional CNNs can be tested to determine if there is a better 

option for weed identification. YOLOv4, which was published after most of the data 

analysis for this thesis was complete, is approximately 30% more accurate than YOLOv3 

on the COCO dataset with similar processing speed (Bochkovskiy et al., 2020). Labelling 

images through semantic segmentation of regions of target weeds may improve detection 

accuracy over the bounding box method used by traditional object-detectors. Additionally, 

the CNNs should be trained to detect other common weeds in wild blueberry fields to 

maximize the potential use on a smart sprayer. Potential future targets include bunchberry 

(Cornus canadensis L.), goldenrod (Solidago spp.), haircap moss (Polytrichum commune 

Hedw.), and hawkweed (Hieracium spp.).  

Other field management tasks in wild blueberry such as fungicide timing, pest 

scouting, and yield estimation can benefit from CNN technology. Currently, wild blueberry 

growers in Nova Scotia call a hotline to obtain information to help choose the appropriate 

timing for disease prevention. Diseases such as monilinia blight (Monilinia vaccinii-

corymbosi) and botrytis blight (Botrytis cinerea) can begin growing at the F2 stage of bud 

development (Agriculture and Agri-Food Canada, 2016). A smartphone application with a 

CNN which identifies this bud stage could provide site-specific information to aid growers 

with timing fungicide application. A CNN which could recognize the diseases after their 

development would aid growers with future field management decisions. 

A smartphone application for field scouting in wild blueberry would not be limited 

to disease management. Weed identification CNNs such as the ones developed in this thesis 

could be integrated into a smartphone application to provide growers with instantaneous 

information regarding the species of weeds in their fields and the current best practices for 
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management. Additionally, the ripeness detection CNN developed by Schumann et al. 

(2019)  could be improved to provide a yield estimation prior to harvest, indicating whether 

a section of the field was worth the input cost to manage. 

Finally, the CNNs should be deployed on a smart applicator to control herbicide 

use in wild blueberry fields. Although liquid herbicides are traditionally used for 

management, a machine vision system based on CNNs would also work to control 

application of granular herbicides, such as Dichlobenil, if the appropriate hardware for 

variable-rate application was developed. Overall, CNNs provide an opportunity to create 

cost-savings for the wild blueberry industry through limiting excess herbicide use and 

providing field-specific information for better management decisions. Widespread 

adoption of this novel technology in the wild blueberry industry has the potential to lower 

input costs and increase yield, making the industry more financially sustainable. 
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