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ABSTRACT 
 

Improving wild blueberry fruit quality has become increasingly important to producers due to the 

tightening profit margin facing the industry. The continuous development of field management 

practices (i.e., application of fungicides, herbicides, fertilizers, pollination, and pruning, etc.), has 

improved the wild blueberry field vegetation by significant increases in plant densities, plant 

height, and fruit yield. This increased plant debris causes additional leaves and stems to enter into 

the fruit storage bins during mechanical harvesting resulting in a potential reduction of fruit 

quality. An experimental image dataset (1000 images) was collected from a mechanical harvester 

in two commercially managed fields in central Nova Scotia. Three different deep learning 

algorithms (YOLOv3, YOLOv3-Tiny, and YOLOv3-SPP) were implemented and compared for 

developing the real-time debris detection system. The image dataset was augmented using five 

different color-based data augmentation techniques (sharpening, brightness, contrast, gamma 

correction, saturation). T1 dataset containing 2000 images was prepared by changing sharpness, 

brightness, contrast, gamma, and saturation value of 1000 images by factors of 10, 20, 20, 1.3 and 

1.5 respectively and mixing with 1000 experimental images. Similarly, T2 dataset containing 3000 

images was prepared by changing the gamma value of images by factors of 0.70, 0.80, 0.90, 1.10 

and 1.20 and mixing with experimental images and T1 dataset. YOLOv3-SPP achieved 73.03% of 

mAP and 74.38% of mAP after training on T1 and T2 dataset. YOLOv3-SPP improved mAP by 

5.89% from previous accuracy (YOLOv3-SPP: mAP = 68.49%). The two best performing models 

(Model-1: YOLOv3-SPP, mAP: 74.38%; Model-2: YOLOv3-SPP, mAP: 73.03%) were tested on 

four different types of CPU, GPU, and embedded based computers. A 4x2 factorial design was 

used to choose the most appropriate hardware and model for developing the system. Results 

determined YOLOv3-SPP (mAP: 73.03%) operated using Intel® Core™ i9-7900X CPU @ 3.30 

GHz, GeForce RTX™ 2080 Ti @ 1665 MHz on a desktop computer achieved the fastest detection 

(33.30 ms) with the highest average frame rate (30.03 FPS). Model-1 and Model-2 achieved 

85.90% and 86.10% of validation mAP respectively at 0.10 IoU and 0.10 confidence threshold. A 

paired t-test was implemented to investigate the difference between automatic detection with 

ground truths. Results showed that the developed system successfully detected green berries, ripe 

berries and leaves during lab evaluation at 5% level of significance. However, stems, and dirt 

classes were not successfully detected from ground truths at 5% level of significance. 

In this study YOLOv3-SPP was implemented for developing debris detection system 

which performed comparatively better than YOLOv3 or YOLOv3-Tiny. This system can be 

incorporated in a control system to automate brush adjustment on the basis of feedback from 

conveyors of mechanical wild blueberry harvesters. This system can be a valuable addition for 

enhancing berry cleaning efficiency and improving fruit quality. 
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CHAPTER 1: INTRODUCTION 
 

The wild blueberry (Vaccinium angustifolium Ait.) is a naturally growing horticultural crop 

in Atlantic Provinces of Canada and the Maine State of USA. Canada produced around 87.94 

million kg of berries during the year 2019 valued at $88.89 million (Statistics Canada 2019). The 

wild blueberry producers are concerned about the berry quality after the harvesting process; the 

quality wild blueberries are free from poor quality berries and foreign materials (New Brunswick, 

Canada 1996). Spann et al. (2010) stated that debris in the harvested citrus fruits could increase 

transportation and processing costs. Fruit processors also expect debris free berry from the wild 

blueberry producers (Esau et al., 2018). However, the possibilities of debris removal during hand 

harvesting (i.e., hand raking) are limited as it requires extensive labour and adequate time for 

harvesting operation (Kinsman, 1993; Donahue et al., 1999). Therefore, the high labour cost, 

declining availability of farm labour, and the short harvesting window are the major factors behind 

the design and development of efficient mechanical harvester (Yarborough, 1991). Due to the 

continuous development of field management practices (i.e., application of fungicides, herbicides, 

fertilizers, pollination, and pruning etc.,), the blueberry field vegetation has been changed resulted 

in significant increases in plant densities, plants height, and fruit yield (Esau et al., 2018). The 

increased amount of plant leaves and foliage reduces the berry/fruit quality when it enters into the 

storage bin during mechanical harvesting due to inappropriate debris separation technology (Esau 

et al., 2018). The majority of operators (53.8%) run the debris cleaning brush at a shallow 

adjustment depth which can allow debris to accumulate during harvesting (Esau, 2019). Improper 

adjustment of the brush enhances the risk of berry damage and allows the picker teeth to 

accumulate debris in wet and weedy field conditions resulting in reduction of fruit quality (Esau, 

2019). Esau et al. (2018) tested a dual blower fan system and successfully removed 98.8% and 
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98.6% of debris (weight basis) at dry and wet field conditions respectively during mechanical wild 

blueberry harvesting. However, debris occasionally gets stuck in air inlet vanes of commercial 

blower fan system and hampers the debris cleaning performance leading to reduced field efficiency 

of harvesters (Esau, 2019). Therefore, an automatic debris separation technology in mechanical 

wild blueberry harvester may be a solution to separate and monitor debris, by automatically 

adjusting the debris cleaning brush during harvesting. It may save time required for cleaning at the 

processing plant and improve fruit quality by reducing berry shrinkage. Additionally, high-quality 

berry production has become a priority due to the market competition of highbush blueberries with 

wild blueberries on a global scale. Therefore, the development of an automatic debris separation 

technology is utmost important to ensure quality berries in the storage bin. 

Machine vision based automated technology incorporated with machine learning (ML) are 

gaining popularity nowadays for their application in different agricultural cropping systems 

(Granitto et al., 2002; Piedad et al., 2018; Tu et al., 2018). The major concern of ML is that it 

requires the feature of a specified engineering field and domain expertise for feature extraction 

(LeCun et al., 2015). The accuracy and computational cost of ML algorithm can vary due to 

inappropriate feature extraction (Al-Hiary et al., 2011; Chang et al., 2012; Rehman et al., 2018). 

Conversely, Deep Learning (DL) is a current state of the art technique that can extract the required 

features automatically from raw data including image, audio, video, and speech (LeCun et al., 

2015). Cavallo et al. (2018) developed a system using convolutional neural networks (CNNs) 

based computer vision technique for evaluating packaged fresh-cut lettuce quality and achieved 

83% of classification accuracy. Wang et al. (2018) developed a system for evaluating the internal 

quality of blueberry by feeding hyperspectral transmittance images to CNNs (ResNet, ResNeXt) 

and achieved F1 scores of 87.84% and 89.05%, respectively. Researchers also used CNNs in 
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different fields of agriculture including detection of various plant diseases (Mohanty et al., 2016; 

Amara et al., 2017; Khan et al., 2018), weed (Dyrmann et al., 2016; Milioto 2017; Sharpe et al., 

2018), and fruit counting (Rahnemoonfar et al., 2017) with higher success rates. 

The wild blueberry industry faces significant fruit quality losses with mechanical harvesting due 

to inefficient as well as inappropriate debris separating strategies/technologies. A CNN based 

automated debris detection can be powerful technology for separating debris from ripe berries. 

The system can be implemented in a feedback control system for automating the debris cleaning 

brush on the basis of different field conditions which can prevent debris to enter into the storage 

bin. The system can also be incorporated for further upgrading from dual blower fan system to 

multi air channel-based blower fan system for optimizing debris cleaning performance and 

enhance harvester efficiency. Therefore, a CNN based automated debris separation technology can 

be a solution for the wild blueberry industry to improve quality of the harvested fruit. 

1.1 Objectives 
 

1. Training and optimizing a CNN for debris detection during mechanical wild blueberry 

harvesting. 

2. Development of a real-time debris detection system (hardware & software) for mechanical 

wild blueberry harvester. 

3. Evaluation of optimized CNN model for debris detection on the images captured during 

harvesting. 
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CHAPTER 2: REVIEW OF LITERATURE 
 

2.0 Wild Blueberry Cropping System 
 

Wild blueberry (Vaccinium angustifolium Ait.) is a unique crop native to Northeastern 

North America that produced approximately 147 million kg of berries only in New Brunswick, 

Nova Scotia, Prince Edward Island, and Quebec provinces of Canada valued at $90.70 million 

(Statistics Canada 2016). These perennial crops are forced to become a biennial crop by regular 

pruning during the sprout year (Hall et al., 1979); vegetative growth happens during the first year, 

pollination and production of berry occur during the next year (Eaton, 1988). The wild blueberry 

plants are developed from rhizomes that spread under the soil about 0.05 to 0.08 meters (m) per 

year (Kinsman, 1993) with height of the plants ranging from 0.10 to 0.38 m (Farooque et al., 2013). 

Wild blueberry ripening begins in late July to August of the production year (Hall et al., 1979) and 

their harvesting starts from the first week of August to the end of the same month in Nova Scotia 

(Ali, 2016). After harvesting of the berries, the fields are pruned in Fall or Spring by either burning 

or mowing (Malay, 2000). Majority of the wild blueberry fields (above 80%) in Canada are 

harvested with commercial mechanical harvesters (PMRA, 2005) but still, some rough terrain 

fields are hand raked (Yarborough, 1991). 

2.1 Wild Blueberry Harvesting System 
 

Hand raking is a tedious and backbreaking wild blueberry harvesting method (Gidge, 

1995). The berry picking efficiency of hand rakers is about 80% and responsible for 20% losses 

on an average (Kinsman, 1993). However, hand raking cannot separate field debris (stems and 

leaves) from the harvested berries (Kinsman, 1993; Gidge, 1995; Donahue et al., 1999).  
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The research into developing a wild blueberry mechanical harvester started in the early 

1950s (Dale et al., 1994). As a result, a machine manufacturer (Bragg Lumber Company, 

Collingwood, Nova Scotia) got success in developing a viable mechanical harvester in 1979 (Dale 

et al., 1994). They initiated a hydraulic for controlling the rotational speed of header (Malay, 2000). 

Doug Bragg Enterprises Ltd. (DBE) is the leading manufacturers of wild blueberry harvester in 

Northeastern North America (Esau et al., 2018). A study in 1983 proposed that picking efficiency 

of Bragg mechanical harvester can be 68% and 76% in weedy and clean smooth fields, respectively 

(Hall et al. 1983, Malay, 2000). The modern DBE harvester head is configured with 16 rotating 

rakes resulting into low fruit loss and less debris (Esau et al., 2018). Farooque et al. (2014) 

experimented the effect ground speed and header revolution of DBE harvester and achieved higher 

berry picking efficiency (i.e., > 90%). However, for the three levels of harvesting time (early, 

middle, and late) the picked fruits exhibit physical and chemical changes during harvesting (Ali, 

2016). The operation of the mechanical harvester at 0.44 ms-1 and 28 revolutions per minute (rpm) 

results in observable berry loss (Ali, 2016). Ali et al. (2016) developed an effective relationship 

among harvest time, machine parameters, fruit quality for minimizing loss while harvesting. Fruit 

losses are higher in the late season compared to the early and middle season and the combination 

0.33 m s-1 and 26 rpm can be the profitable combination in harvesting season (Ali, 2016). 

2.2 Factors Affecting Wild Blueberry Fruit Quality 
 

Wild Blueberry field management practices have improved over the past few decades 

resulting in the significant increase of berry yield and plant foliage (Yarborough and Ismail, 1985; 

Litten et al., 1997; Esau et al., 2014). This increased plant density produces more debris during 

harvesting process that reduces fruit quality by entering the storage bin of the harvested fruits 

(Esau et al., 2018). The quality berries are indicative of a small number of broken berries and less 
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amount of debris in the storage bins (Hall et al., 1983). The amount of debris in the harvested bins 

may depend on field conditions, the number of picker bar teeth, and the blower fan speed (Esau et 

al., 2018). Esau et al. (2018) tested the performance of a harvester and reported that the tested 

harvester produced a higher percentage of debris at wet harvest conditions compared to the dry 

harvest conditions. They observed that the harvester using head of 63-tooth picker bars harvested 

lesser debris as compared to that with 65-tooth picker bar. They also observed, after increasing 

blower fan speeds from 18 to 23 ms-1, that the percentage of debris in storage bin did not 

significantly change. Field debris is to be removed by a winnowing operation at a processing stage 

(Donahue et al., 1999). Field debris including dirt, small berry, and foreign material increases berry 

shrinkage that reduces the berry quality and acceptability in the processing and cleaning lines 

(McIsaac, 1998). 

2.2 Machine Learning Over Deep Learning 
 

Machine learning has been widely applied for food and fruit quality evaluation in the 

agricultural sector (Nakano, 1997; Nagata et al., 1998; Piedad et al., 2018). However, feature 

extraction is a major concern in ML (LeCun et al., 2015). Kim et al. (2009) developed four 

classification models for classifying grapefruit peel diseases using the textural feature. They 

observed that the model used eleven intensity (I-11) texture features that provided lower overall 

accuracy (81.7%) than other models. Chang et al. (2012) and Rehman et al. (2018) also observed 

significant classification accuracy and computational time difference due to inappropriate feature 

extraction. Feature extraction in ML requires feature engineering, whereas DL can extract feature 

automatically from the raw data (LeCun et al., 2015). The automatic feature extraction from the 

raw data in DL reduces the need of feature engineering (LeCun et al., 2015).  
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2.2.1 Supervised Deep Learning 
 

Supervised learning is the most common form of learning approach in DL and ML. In this 

approach, a machine experiences the known labelled data with its category (LeCun et al., 2015). 

Fan et al. (2014) developed a deep neural network (Pyramid CNN) for face recognition using a 

supervised learning approach. They compared the traditional face representation method 

(LBP+PCA) with Pyramid CNN and achieved 97.3% of recognition accuracy in the labelled Faces 

in the Wild database. Yang et al. (2015a) developed a CNN to recognize human activity using time 

series signal data and observed that the CNN performed better than other classifiers such as 

Support Vector Machine (SVM), k-nearest neighbors (KNN), Means and Variance, and Deep 

Belief Network. A detector based on a DL algorithm had been proposed to detect retouched face 

images (Bharati et al., 2016). The authors reported that the supervised deep model outperformed 

another unsupervised deep Boltzmann machine and Kee and Farid algorithm. Dubrovina et al. 

(2018) proposed a supervised CNN for tissue segmentation and classification using mammography 

images. Do et al. (2018) presented a new supervised DL approach to detect objects and their 

affordances in real-time. Their proposed technique was able to process images end to end with 

higher inference speed which would take 150 milliseconds (ms) for processing each image. Sa et 

al. (2018) developed a detector using a dense semantic segmentation approach based on CNN for 

detecting background, weeds, crops from multispectral images. Their model successfully detected 

weeds with 80% of F1-score. However, there was another kind of learning approach used for 

clustering or determining the distribution of data known as unsupervised learning (Xie et al., 2016). 
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2.3 Convolutional Neural Network 
 

Convolutional Neural Network is a multilayer DL network designed to process data 

including image, audio, and video (LeCun et al., 2015). The convolutional layer of CNN works to 

extract features and uses a polling layer to map the extracted feature(s). Convolutional Neural 

Network can be used either image classification or object detection. Image classification is widely 

used to classify different objects based on the image category. Image classification algorithms are 

limited to understand the locations of objects in images. However, understanding the location of 

objects on images is important for solving several computer vision problems including identifying 

disease location, counting. On the other hand, object detection algorithms are efficient and reliable 

to classify as well as understand the locations of the target objects in images. Convolutional Neural 

Network in past years has achieved success in image classification and object detection in different 

fields of agriculture (Steen et al., 2016; Mohanty et al., 2016; Amara et al., 2017; Rahnemoonfar 

et al., 2017). Several researchers have worked on CNN to improve efficiency and reduce the 

computational cost by changing the structure (Szegedy et al., 2016). AlexNet, ZFNet, GoogleNet 

VGGNet, ResNet, and DenseNet are commonly used CNN architecture (Dyrmann et al., 2016; 

Mohanty et al., 2016; Huang et al., 2017; Rahnemoonfar et al., 2017; Enciso-Aragón et al. 2018; 

Fu et al., 2018; Wang et al., 2018). 

2.3.1 AlexNet 
 

Krizhevsky et al. (2012) developed AlexNet won the “Large Scale Visual Recognition 

Challenge” (ILSVRC) in 2012. AlexNet was tested on ImageNet Fall 2011 dataset resulted into 

15.3% of top-5 error rate. The architecture was similar to LeNet-5 (LeCun, 1989) but deeper with 

five convolutional layers, three fully connected layers, and ended with a soft max layer. Enciso-
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Aragón et al. (2018) developed a quality inspection system for lemons based on AlexNet 

architecture and classified fresh and spoiled lemons having accuracies of 98.25% and 93.73%, 

respectively. They estimated the parameter of lemons such as damages, weight, diameter by using 

fuzzy logic to categorized fruit quality as low, medium, and high. The architecture also achieved 

success in the agricultural sector for plant disease detection (Mohanty et al., 2016), obstacle 

detection (Steen et al., 2016), and plant recognition (Lee et al., 2015; Yalcin et al., 2017). 

2.3.2 ZFNet 
 

Zeiler and Fergus (2014) developed a CNN architecture known as ZFNet, which performed 

in ILSVRC-13 and achieved top-5 error rate of 14.8%. It was improved from AlexNet architecture 

by adding convolutional layers, tweaking hyperparameter, reducing filter, and stride size (Tahir et 

al., 2018). Fu et al. (2018) implemented ZFNet for the development of a Kiwi fruit detector in field 

images. The proposed detector performed outstandingly in the images of varying light conditions 

and achieved 92.3% of recognition rate. 

2.3.3 GoogleNet 
 

A 22-layer deep CNN architecture was developed by Szegedy et al. (2015) securing first 

place in ILSVRC-14 with top-5 error rate of 6.67%. The parameter of this architecture was 

optimized nine times more than the previous AlexNet architecture (Szegedy et al., 2016). A plant 

detector was developed by Mohanty et al. (2016) using CNN based GoogleNet architecture 

experiment on a PlantVillage dataset containing 54,306 plant leaves images for identifying crop-

disease and achieved accuracy around 98.86% for classifying 38 different crop-disease. Dyrmann 

et al. (2017) developed an automatic weed detector using GoogleNet architecture that detected 

46% of weeds due to the overlap of the weeds with plants. 
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2.3.4 VGGNet  
 

Simonyan and Zisserman (2014) developed a very deep CNN and secured first runner up 

position in ILSVRC-14. The network is homogeneous in structure; however, employed about 138 

million parameters that require high computational power. Dyrmann et al. (2016) modified the 

VGGNet architecture to develop a plant and weed detector. Their system achieved an overall 

94.4% of classification accuracy and 100% detection rate. A real-time mango detector was 

developed by Liang et al. (2018) using VGGNet based SSD (Single Shot Multi Box Detector) 

network. Their system outperformed Faster Region-based CNN (Faster R-CNN) and achieved an 

F1-score of 0.911 at 35 frames per second (FPS). Zeng (2017) developed a system to classify 26 

categories of fruit and vegetables using VGGNet. Their model achieved 95.6% of classification 

and recognition accuracy and performed better than another ML classifier including KNN and 

KSVM. This architecture also got success in land cover and crop type classifications (Kussul et 

al., 2017) and mango yield estimation (Stein et al., 2016). 

2.3.5 ResNet 
 

He et al. (2016) developed ResNet that became the winner of ILSVRC 15 and achieved 

top-5 error rate of 3.57% on the official validation set. The architecture was improved by 

implementing batch normalization and skip connector. Rahnemoonfar et al. (2017) developed a 

fruit counting system using a modified version of ResNet architecture trained on the dataset 

containing 24,000 synthetic images (artificially generated) and tested it on real (field) images. 

Their system outperformed other area-based techniques including the shallow neural network and 

original Inception-ResNet. The system achieved 91% validation accuracy on real images and 93% 

validation accuracy on synthetic images. 
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Xie et. (2017) developed a CNN architecture known as ResNeXt that secured second place 

in the ILSVRC 2016 and achieved top-5 error of 3.03%. ResNeXt and ResNet both use the same 

number parameter. A ResNeXt based detection system was developed by Wang et al. (2018) for 

evaluating the internal quality of blueberry by feeding hyperspectral transmittance images to CNN; 

it achieved F-1 score of 89%. ResNeXt took only 6.5 milliseconds (ms) for classifying each testing 

sample. Fuentes et al. (2017) used ResNeXt as a deep feature extractor and combined it with Faster 

R-CNN resulting into 71% mean average precision (mAP) for classifying tomato disease and pest. 

2.3.6 DenseNet 
 

DenseNet is a modern deep CNN architecture developed by Huang et al. (2017). A plant 

disease identification system was developed by Too et al. (2018) to identify 38 plant diseases using 

DenseNet. The author trained the four different architectures including DenseNet, VGG16, 

Inception V4, and ResNet using the PlantVillage dataset containing 54,306 images of healthy and 

infected plant leaves. DenseNet outperformed the other architecture such as VGG16, Inception 

V4, ResNet, and achieved 99.75% accuracy in the test dataset. 

Many researchers used CNN architecture for image classification in agriculture where few 

researchers implemented it to understand the location of objects on the scene. Bargoti & 

Underwood (2016) and Stein et al. (2016) both used Faster R-CNN and VGG16 model for fruit 

detection. On the other hand, Dyrmann et al. (2017) and Sharpe et al. (2018) implemented 

DetectNet CNN based on GoogLeNet architecture for weed detection. However, Faster Region-

based CNN uses selective search which requires higher computation cost than DetectNet.  
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2.4 Modern Object Detection Algorithm YOLOv3 
 

YOLOv3 is a modern DL based object detector uses darknet-53 framework which is 

consisted of 53 convolutional layers. In common object in context (COCO) dataset YOLOv3 

performed 3.8x times faster than RetinaNet and 3x times faster than SSD model (Redmon & 

Farhadi, 2018). Benjdira et al. (2019) developed a system for detecting car using CNNs. They 

compared the YOLOv3 with Faster R-CNN and observed YOLOv3 performed faster (0.056 ms) 

than Faster R-CNN (1390 ms) for processing a single image. The experimental results showed that 

YOLOv3 performed better than Faster R-CNN for detecting single object (car) having an accuracy 

of 99.07%. Liu et al., (2018a) also compared the performances YOLOv2 with YOLOv3 by training 

and testing both models on the dataset contained 15 common categories object. YOLOv3 

outperformed YOLOv2 for detecting ships and bridges and took an average of 70 ms for 

processing each image. Ćorović et al. (2018) also experimented for multiclass object detection in 

real-time. They developed a system for detecting traffic participants including cars, trucks, 

pedestrians, traffic signs, and traffic lights. They trained the model on Berkley Deep Drive dataset 

(Yu et al., 2018) and tested on 300 traffic images of city Novi Sad, Serbia. The testing result 

showed that the 120 epochs model achieved highest accuracy (F-Score = 59%, mAP = 46.60%, 

average IoU = 45.98%). This system could run in real-time (~25 FPS) on 1920x1080 pixels video 

streaming. A real-time face detection system was developed by Yang et al. (2018) using YOLOv3. 

The system was trained with Celeb Faces (Yang et al., 2015b), FDDB (Jain et al., 2015), WIDER 

FACE (Yang et al., 2016) datasets. This system took an average of 0.03 ms for detecting the faces 

in an image. Shinde et al. (2018) also developed a system for detecting human behavior or action 

in video. They categorized human actions and labelled the actions from different videos and 
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divided the dataset into training and testing sets. This system performed outstanding in quantitative 

analysis having mAP and F-Score 89.88% and 88.34%, respectively.  

Manual labelling or annotating of data is one of the main constraints for dataset preparation. 

An automatic image annotation system was proposed by Tumas et al. (2018) by usingYOLOv3. A 

YOLOv3 as a detector was trained using the images that only had pedestrian. Then the 

experimental video of it was fed to the system after extracting frames; it was passed through the 

detector. The detector produced a probability for each frame and then frames were annotated by 

the system when the probability met the condition (P ≥ 0.7). The system detected 50 pedestrians 

from 114 in test images. 

Kim et al. (2018) compared 13 different variants of YOLO, SSD, RCNN, R-FCN, and SqueezeDet 

model to select an optimized model for the embedded application. They built GPU based system 

for comparison of these models. They analyzed models based on time complexity and average 

precision measure. The analyzed result showed that YOLOv-314 model outperformed other 

models which met the requirement of precision detection. They also observed that the embedded 

platform Nvidia Jetson TX2 provided more flexibility for deploying model than Movidius. 

Nvidia Jetson TX2 platform was also used by Nagaraj et al. (2017) for YOLO deployment. 

They compared DetectNet with YOLO for detecting various street objects; however, YOLO 

performed better than DetectNet with 0.25 mAP. Similarly, Bhandary et al. (2017) compared 

Nvidia Jetson TX2 embedded platform with a desktop computer environment to investigate faster 

processing time and observed that the desktop computer environment was faster than Nvidia Jetson 

TX2. Therefore, the above literature showed a great potential of DL for classifying and detecting 

objects in the different fields of study.  
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3.0 Conclusion 
 

Several researchers applied DL technology for fruit quality estimation, plant disease 

detection, weed or plant detection, and fruit counting in the agricultural sector. With the fact that 

field debris including weeds, grass, wild blueberry leaves, stems (with leaves, without leaves), and 

dirt are the major constraint for ensuring high fruit quality during harvesting. Esau et al., (2018) 

tested a dual fan blower system and experimented with four different blower fan speeds for 

investigating optimum blower fan speed to improve berry cleaning efficiency during harvesting. 

Esau (2019) also extended the research and determined the effect of debris removal brush on debris 

cleaning performance. Esau (2019 reported a brush bristle length of 120 mm performed better for 

debris cleaning however the shorter bristle length of the brush (shorter than 110 mm) contributed 

to significant debris buildup at the rear cross member. Esau (2019 recommended adjustment of the 

cleaning brush for shorter bristle lengths (shorter than 120 mm) to achieve optimum debris 

cleaning on the picking reel. However, no study has been conducted for adjusting of debris 

cleaning brush automatically using machine vision system. A CNN based debris detection system 

can be used for debris monitoring and assisting a feedback control system in order to adjust the 

debris cleaning brush automatically on the basis of the debris presence in side and rear conveyor. 

Therefore, a CNN based debris detection system can be a valuable addition in berry separation 

technology to improve the quality of the fruit. 
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CHAPTER 3: TRAINING AND OPTIMIZING A CNN FOR DEBRIS DETECTION 

DURING MECHANICAL WILD BLUEBERRY HARVESTING 

Abstract 
 

Wild blueberry (Vaccinium angustifolium Ait.) is an economically important horticultural 

crop in the Atlantic Provinces of Canada and Maine, USA. The continuous development of field 

management practices has changed the wild blueberry’s productiveness through significant 

increases in plant densities, plant height, and fruit yield. This increased plant biomass causes 

additional leaf and stem debris to enter the fruit storage bins during mechanical harvesting, 

resulting in a reduction of fruit quality. CNN based automatic debris separation technology can be 

a viable solution to monitor the quality of berries during harvesting. Three CNNs (YOLOv3, 

YOLOv3-SPP, and YOLOv3-Tiny) were implemented and compared for developing the real-time 

debris detection system. An experimental dataset comprising of 1,000 images were collected from 

two commercially managed fields in central Nova Scotia. The image datasets were labeled in 

Darknet format to ensure the compatibility of detection models. A total of five classes including 

leaves, stems, green berries, ripe berries, and dirt were created and labeled in the images. The 

YOLOv3-SPP achieved the highest mAP (68.49%), YOLOv3 achieved the second-highest mAP 

(67.75%), YOLOv3-Tiny achieved the lowest mAP (60.36%) in the experiment. A total of five 

different data augmentation techniques (sharpening, brightness, contrast, gamma correction, 

saturation) were employed, and a combination of these techniques significantly improving the 

CNNs accuracy.  YOLOv3-SPP achieved 73.03% and 74.38% of mAP on augmented datasets. 

The mAP of YOLOv3-SPP improved by 4.54%, and 5.89 % when trained and tested on T1, T2 

datasets, respectively. The accuracy improved because data augmentation techniques were 

introduced new data and allowed models to learn from the different varieties of data. The 
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YOLOv3-SPP achieved slightly better accuracy than the YOLOv3 and YOLOv3-Tiny network in 

this experiment. 

3.0 Introduction 
 

Wild blueberry (Vaccinium angustifolium Ait.) is an economically important crop of 

Eastern Canada. The large majority of commercially managed fields (above 80%) are harvested 

mechanically following a two-year production cycle (PMRA, 2005). The modern mechanical wild 

blueberry harvester is typically mounted on an agricultural farm tractor and fitted with a rake type 

rotational berry picking head and two conveyors (side and rear) for conveying harvested berries to 

the storage bin. The storage bins, once filled, are loaded from the field onto a trailer for delivery 

to a receiving shed and then to a processing facility for final product cleaning and grading. To 

reduce the debris in the harvested fruit, a blower fan is mounted at the interchange between side 

and rear conveyor on the harvester. The fan helps to remove debris from berries on the go while 

harvesting the crop (Esau et al., 2018). Continuous improvements in field management practices 

(i.e., application of fungicides, herbicides, fertilizers, pollination, and pruning, etc.) have increased 

plant biomass and fruit yield. (Esau et al., 2018). This increased plant biomass causes additional 

leaf and stem debris to enter the fruit storage bins during mechanical harvesting resulting in 

reduction of fruit quality (Esau et al., 2018). 

Computer vision-based technologies are gaining popularity in different fields of agriculture 

(Granitto et al., 2002; Piedad et al., 2018; Tu et al., 2018). Zaman et al. (2008) developed a 

computer vision-based automated wild blueberry fruit yield monitoring system. The system 

achieved a high correlation between actual and predicted fruit yield with an R2 value of 0.99. 

Chang et al. (2012) developed a color co-occurrence matrix-based machine system to identify bare 

spots, wild blueberry plants, and weeds and apply agrochemicals in a spot-specific manner and 
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achieved overall 94.9% accuracy based on three co-occurrence matrices and selected textural 

features. However, a feature extraction approach needs feature engineering skills (LeCun et al., 

2015) and inappropriate feature selection leads to an increase in false-positives and decreases the 

precision of classifiers (Chang et al., 2012; Rehman et al., 2018).  

Deep learning (DL) techniques can learn features by themselves from the pixels of images 

where feature extraction and classification are taken care by the network (LeCun et al., 2015). 

Several researchers used Convolutional Neural Networks (CNNs) for estimating fruit quality 

(Cavallo et al., 2018; Wang et al., 2018, Jahanbakhshi et al., 2020). Wang et al. (2018) used two 

varieties of CNNs (ResNet and ResNeXt) for classifying sound and damaged highbush blueberries 

and achieved 88.44% and 87.84% accuracy, respectively. Jahanbakhshi et al. (2020) implemented 

a CNN based DL technique for classifying healthy and damaged sour lemons. The CNN 

outperformed traditional machine learning approaches including k-nearest neighbour, artificial 

neural network, Fuzzy, support vector machine, and decision tree. Schumann et al. (2019) also 

used four varieties of the YOLO (you only look once) family of CNNs for recognizing three stages 

wild blueberry maturity (unripe green, unripe red, and ripe blue) and achieved the best accuracy 

with 85.3% of mAP and 28.3 milliseconds inference time in the validation dataset. Researchers 

improved classification and detection accuracy of a CNN by optimizing hyperparameters resulted 

in saving of computational cost (Wang et al. 2019, Lu et al. 2019). However, the optimization of 

CNN is challenging and generally done by weight initialization, stochastic gradient descent 

optimization, batch normalization, shortcut connections, and data augmentation (Gu et al. 2018). 

Wang et al., (2019) used YOLOv3 for monitoring the behavior of egg breeders in real-time. They 

configured the value of the subdivision and batch size of YOLOv3 manually and set the learning 
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rate by observing the value loss function during training. The optimized YOLOv3 achieved an 

overall accuracy of 92.09% on the validation dataset.  

CNN optimization using data augmentation is an artificial process of enlarging a dataset 

for training a CNN with varied data. The augmentation techniques include image rotations, dataset 

partitioning, image cropping, scaling, transposing, mirroring. These techniques were employed by 

several researchers for improving the overall learning procedure and performance (Zhang et al., 

2017; Sladojevic et al., 2016).  Zhang et al. (2019) developed a 13-layer CNN for classifying fruits 

and improved accuracy by applying different data augmentation techniques including image 

rotation, gamma correction, and noise injection on the training dataset. The CNN achieved an 

accuracy of 94.94% for fruit classification when the CNN was trained on an augmented dataset. 

The proposed CNN achieved 5% higher accuracy compared to the state-of-the-art approaches: 

PCA + kSVM (Zhang & Wu, 2012), PCA + FSCABC algorithm (Zhang et al., 2014), WE + BBO 

(Wang et., 2015), FRFE + BPNN (Wang et al., 2016), FRFE + IHGA (Lu & Li, 2017). Kang and 

Chen, (2019) applied image augmentations techniques including image flipping, color saturation, 

contrast, and brightness adjustment, and translation to minimize the unbalanced distribution in the 

training data. A CNN based recognition system was developed by Sladojevic et al. (2016) for 

classifying 13 different types of plant diseases. They observed that augmented images improved 

the performance of the model to 96.30% classification accuracy. Data augmentation techniques 

can also reduce the overfitting of models (Perez and Wang, 2017; Namozov and Im Cho, 2018). 

Improving wild blueberry fruit quality has become increasingly important to producers due 

to the tightening profit margin facing the industry. Therefore, A CNN based automatic debris 

separation technology can be a viable solution to monitor the quality of berries during harvesting. 

https://www.sciencedirect.com/science/article/pii/S016816991831528X#b0125
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3.1 Materials and Methodology 
 

3.1.1 Data Collection and Preparation 
 

Video data was collected from two different commercial fields in central Nova Scotia 

including the Debert site (45.4418°N, 63.4496°W) and the East Mines site (45.42713°N, -

63.48186°W) on 15th August 2019 through the 31st August 2019 from morning to evening (Figure 

3-1). 

  

Figure 3-1. Location of fields in google map 

The videos were captured using two Logitech C920 webcam cameras (Logitech 

International S.A., Lausanne, Switzerland) mounted before and after the blower fan on the Doug 

Bragg Enterprises Ltd. (DBE) commercial mechanical wild blueberry harvester. The cameras were 

connected via two Universal Serial Bus (USB) version 2.0 active extension cables, each measuring 

2 m in length to an Intel® Core™ i5-4300U @ 1.90 GHz and an Intel® Core™ i5-8250U @ 1.60 

GHz central processing unit (CPU) based computers (Hewlett-Packard, Palo Alto, California, 

United States, and Dell Incorporation, Round Rock, Texas, United States) operated with Windows 

10 (Microsoft Crop. Redmond, Washington, United States) 64-bit system. Cameras were mounted 

at 34.00 cm and 48.39 cm height above side and rear conveyor respectively and pointed downward 

by 45 and 90 degrees to the side and rear conveyors, respectively. The videos were recorded using 
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acquisition software Logitech Capture (Logitech International S.A., Lausanne, Switzerland) 

during harvesting. The camera resolution was set to 1280x720 (Horizontal x Vertical) pixels at 25 

frames per second while the autofocus was turned off and image adjustment and antiflicker were 

turned on to ensure no blurry video acquisition. Video frames were extracted at 1s intervals using 

a video to image converter software (Free Video to JPG Converter, Ver.: 5.0.101.201). The videos 

were captured from twelve different plots in the two fields during harvesting. The blurry and empty 

frames were removed manually after extraction, and all the extracted frames were renamed to 

prepare a parent dataset. The dataset, consisting of 1000 images, was generated through the random 

selection of images from the parent dataset. The dataset was labelled using custom software 

developed with the Lazarus compiler (https://www.lazarus-ide.org/). Ripe berries, green berries, 

leaves, stems, and dirt were labelled based on classifiable appearance in the images (Figure 3-2). 

 

Figure 3-2. Image labeling using custom software developed with the Lazarus compiler 

3.1.2 Image Augmentation 
 

Images of the dataset were augmented using five different color augmentation techniques 

such as gamma correction, sharpness, brightness, contrast, saturation. Gamma correction increases 

https://www.lazarus-ide.org/
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or decreases the luminance value in an image (Jiang et al., 2015). Six different gamma corrections 

(0.70, 0.80, 0.90, 1.10, 1.20 and 1.30) were used (Table 3-1). The image variation was ensured by 

setting gamma correction value to 0.70, 0.80, and 0.90 to obtain darker images and 1.10, 1.20, and 

1.30 to obtain brighter images. The Sharpness enhancement improves the edges of objects in an 

image and makes sensitive to detection (Khan et al., 2020). Image sharpness was improved by 

setting the strength value to 10 (Table 3-1). Brightness enhancement increases the pixel value of 

all channels of an image evenly (Huang et., 2019). The brightness of images was enhanced by the 

adding factor of 20 shown in Table 3-1. Contrast enhancement stretches or compresses the range 

of brightness value of an image and helps to stand out the target objects from the background 

(Huang et al., 2019). The contrast of images was enhanced by the factor of 20 shown in (Table 3-

1). The saturation enhancement intensifies the color of an image make it colorful and vibrant. The 

saturation of images was enhanced by a factor of 15 shown in (Table 3-1). Figure 3-3 showed a 

sample of normal and augmented images in the dataset. 

Table 3-1. Description of data augmentation techniques 

Dataset Name Augmentation 

techniques 

Subset images Total Images 

 Gamma correction = 0.70 200  

 Gamma correction = 0.80 200  

Augmentation-1 Gamma correction = 0.90 200 1000 

 Gamma correction = 1.10 200  

 Gamma correction = 1.20 200  

 Sharpness = 10 200  

 Brightness = 20 200  

Augmentation-2 Contrast = 20 200 1000 

 Gamma correction = 1.30 200  

 Saturation = 15 200  

Augmentation-3 Augmentation-1 

Augmentation-2 

1000 

1000 

2000 
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Figure 3-3. Image augmentation techniques (a) Original image (no augmentation) (b) gamma 

correction = 0.70 (c) gamma correction = 0.80 (d) gamma correction = 0.90 (e) gamma 

correction = 1.10 (f) gamma correction = 1.2 (g) gamma correction = 1.30 (h) sharpening = 10 (i) 

brightness = 20 (j) contrast = 20 (k) saturation = 15 

The T1 dataset was prepared by mixing the original dataset with the Augmentation-2 

dataset. Similarly, the T2 dataset was prepared by mixing the original dataset with Augmentation-

1 and Augmentation-2 dataset is shown in Table 3-2. Ninety percent of the image of datasets was 

used for training and 10% was used for validation (Table 3-3). The training and testing dataset 

ratio (9:1) was also reported by previous study. Schumann et al. (2019) used 90% images for 

training and the remaining 10% for testing YOLOv3 and successfully detected wild blueberry 

maturity (unripe green, unripe red, and ripe blue) with higher detection accuracy (mAP: 85.3%). 



23 

 

Table 3-2. Description of original and augmented dataset 

Dataset Name Dataset description Number of images 

No augmentation Original dataset 1000 

T1 Original dataset + Augmentation-2 2000 

T2 Original dataset + Augmentation-1 

+ Augmentation-2 

3000 

 

Table 3-3. Training and testing dataset 

Dataset Name Training Image Testing Image 

No augmentation 900 100 

T1 1800 200 

T2 2700 300 

3.1.3 You Only Look Once Version 3 (YOLOv3) Family 
 

YOLOv3 is a CNN based object detector developed by Redmon & Farhadi (2018) using 

the darknet-53 framework. The network consists of 53 convolutional layers that have been 

improved from the previous framework Darknet-19. In a common object in context (COCO) 

dataset, YOLOv3 performed 3.8 times faster than RetinaNet and 3 times faster than the Single 

Shot MultiBox Detector (Redmon & Farhadi 2018). YOLOv3 network is faster than the Faster R-

CNN because it doesn’t use a proposal region for detecting objects. YOLOv3 generates bounding 

box coordinates and probabilities of each class directly through regression. YOLOv3 divides an 

input image into SxS grids and when a center of a target object falls in any cell of the grid, that 

cell is responsible for detecting target objects. It detects objects at three different scales of the 

bounding box and each of the bounding boxes has five components (x, y, w, h, c). Coordinates (x, 

y) represent the center, and (w, h) represents the height and width of a bounding box where C 

represents a confidence score. The confidence score represents the probability of having an object 

in a bounding box. The confidence score is calculated by (Eq. 3-1). 

 𝐶 = 𝑃𝑟 (𝑐𝑙𝑎𝑠𝑠𝑖) ∗  𝐼𝑜𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ (3-1) 
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The 𝑃𝑟 (𝑐𝑙𝑎𝑠𝑠𝑖) determines whether the center point of leaves, stems, ripe berries, green berries, 

and dirt falls in the cell of a grid. The 𝑃𝑟 (𝑐𝑙𝑎𝑠𝑠𝑖) is 1 when the center point of an object is present 

in a grid cell otherwise, it is zero. The  𝐼𝑜𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ is the ratio of the predicted bounding box of 

leaves, stems, ripe berries, green berries, and dirt with the ground truth bounding box. The IoU 

value confirms the detection of leaves, stems, ripe berries, green berries, and dirt were weather 

true positive or false positive. When the predicted bounding box has an IoU greater than the given 

IoU threshold, the prediction is considered as a true positive, otherwise, it is considered a false 

positive. Then a Non-Maximum Suppression (NMS) method is used to keep the most confident 

boxes and eliminate duplicate and redundant bounding boxes of the same objects by setting a 

confidence threshold. The 𝑃𝑟 (𝑐𝑙𝑎𝑠𝑠𝑖| 𝑜𝑏𝑗𝑒𝑐𝑡) determines the class probability of leaves, stems, 

ripe berries, green berries, and dirt. Finally, conditional class probabilities are multiplied with 

individual bounding box confidence values to determine the classification score of each object, 

which is calculated by using (Eq. 3-2) 

 𝑃𝑟 (𝑐𝑙𝑎𝑠𝑠𝑖| 𝑜𝑏𝑗𝑒𝑐𝑡)  ∗  𝑃𝑟 (𝑜𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑜𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ = 𝑃𝑟 (𝑐𝑙𝑎𝑠𝑠𝑖) ∗  𝐼𝑜𝑈𝑝𝑟𝑒𝑑

𝑡𝑟𝑢𝑡ℎ (3-2) 

YOLOv3 (Redmon and Farhadi, 2018) is the full-size standard version of YOLOv3. YOLOv3-

SPP is the enhanced and revised version of YOLOv3. YOLOv3-Tiny is the scaled-down network 

of YOLOv3 which is less accurate but faster than YOLOv3 (Redmon and Farhadi, 2018). 

3.1.4 YOLO Parameter Settings 
 

The input image size was set to 1280x736 pixels because image width and height must be 

divisible by 32 for YOLOv3 training (Table 3-4). Another reason is the camera resolution 

1280x736 pixels with 34 cm and 48.39 cm camera depth would cover the maximum field of view 

at the side and rear conveyor, respectively. Training batch size represented the number of images 
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that would be processed in one batch while 
𝑏𝑎𝑡𝑐ℎ

𝑠𝑢𝑏𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛
  determined the number of images that 

would be processed by the GPU at a time (Table 3-4). Max batches represented the number of 

training iterations. Models were trained up to 12000 iterations (Table 3-4). The initial learning rate 

confirmed the rate at which the model would learn; lower the better. The initial learning rate 

controls error each time when model weights are updated. The steps sizes indicated that the initial 

learning rate (0.001) would be multiplied with scales (0.20, 0.10, 0.10) at 7000th, 8000th, and 9000th 

iterations (Table 3-4). Other parameters of YOLOs were kept as the default in the configuration 

files.  

Table 3-4. Initialization parameters of the YOLO networks 

Size of input images 1280x736 

Batch size 64 

Subdivision 16 

Max batches 12000 

Initial learning rate 0.001 

Steps 7000,8000,9000 

Scales 0.20, 0.10, 0.10 

3.1.5 YOLO Training and Testing 
 

Three YOLO networks (YOLOv3, YOLOv3-Tiny, and YOlOv3-SPP) were successfully 

trained and tested on a GeForce RTX™ 2080 Ti @ 1665 MHz graphics processing unit (GPU) 

card (NVIDIA, Santa Clara, CA) computer installed with 64-bit Ubuntu 16.04 (Canonical Group 

Ltd, London, UK). The networks were trained and tested on four different datasets using transfer 

learning. The selected training parameters were kept the same for all networks throughout the 

training and testing process. A total of 13 different binary weight files were produced from each 

network. The twelve different weight files were produced from 1000th to 12000th iteration at every 

1000 iterations and the remaining one weight file (yolo_best.weight) was generated and saved 

automatically by the YOLO networks which yielded the best Mean average precision (mAP) 
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during training and testing. Then these YOLO weights were used to record the precision, recall, 

mean average precision, and F1-score values for the networks. 

3.1.6 Model Evaluation  
 

The detection performance models were evaluated by the precision, recall, mAP, and F1-score 

value. Precision is the ratio of true detections of target classes to the identified detections and is 

calculated by (Eq. 3-3) 

 Precision =
TP

TP+FP
 (3-3) 

Recall is the ratio of true detection of target classes among all the ground truth detections and is 

calculated by (Eq. 3-4) 

 Recall =
TP

TP+FN
 (3-4) 

True positive (TP) is the number of correct detections of leaves, stems, ripe berries, green berries, 

and dirt. False positive (FP) is the number of incorrect detections of leaves, stems, ripe berries, 

green berries, and dirt. False negative (FN) is the number where there are leaves, stems, ripe 

berries, green berries, and dirt on the images but YOLO fails to detect objects. 

F1-score is the harmonic mean of precision and recall and is calculated by (Eq. 3-5) 

 F1-score =
2 ×Precision×Recall

Precision+Recall
 (3-5) 

Mean average precision is integral to all the precision values of all target classes and is calculated 

by equation (Eq. 3-6) 

 mAP = ∫ 𝑝(𝑜)𝑑𝑜
1

0
 (3-6) 
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3.1.7 Statistical Analysis  
 

One-way analysis of variance (ANOVA) performed using Minitab 17 (Minitab Inc. NY, 

USA) with a 5% (α = 0.05) level of significance to check the effect of models (YOLOv3, YOLOv3-

SPP, and YOLOv3-Tiny) on accuracies such as F1-score, average precisions, and mAP. The 

testing images of datasets were divided into five subsets and used for the evaluation of models. 

The accuracies obtained from the models were recorded. Tukey method and T-test were performed 

to find the mean differences. 

3.0 Result and Discussion 
 

Models were evaluated at 0.5 IoU and 0.25 confidence threshold. Table 3-5 showed 

detection results of YOLOv3-SPP, YOLOv3, and YOLOv3-Tiny when trained and tested on a non 

augmented dataset. The average precision of targets classes were shown in Table 3-6.  

Table 3-5. Precision, Recall, F1-score, and mAP (%) of the YOLOv3-SPP, YOLOv3 and 

YOLOv3-Tiny under 0.5 IoU and 0.25 confidence threshold 

Models Precision  Recall  F1-score  mAP (%) 

YOLOv3 0.85 0.54 0.66 67.75 

YOLOv3-SPP 0.83 0.55 0.66 68.49 

YOLOv3-Tiny 0.79 0.50 0.61 60.36 

 

Table 3-6. Average precision (%) of YOLOv3, YOLOv3-SPP and YOLOv3-Tiny 

Models Leaves Stems Green Berries Ripe Berries Dirt 

YOLOv3 69.22 55.66 72.02 80.56 61.31 

YOLOv3-SPP 72.00 56.14 74.90 79.18 60.24 

YOLOv3-Tiny 65.07 51.88 52.63 77.33 54.88 

 

The overall accuracy (F1-score), mAP, and average class precision of one model were compared 

with other models (Table 3-7). The P-value (<0.001) and (0.004) indicated that means of F1-score 

and mAP of models were significantly different (Table 3-7). Tukey results showed mean F1-score 
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of YOLOv3-Tiny was significantly different than the mean F1-score of YOLOv3 and YOLOv3-

SPP (P <0.001). However, there was no significant difference between the mean F1-score of 

YOLOv3 and the mean F1-score of YOLOv3-SPP. 

Table 3-7. Comparison of F1-score of YOLOv3, YOLOv3-SPP and YOLOv3-Tiny using the 

Tukey method at 5% (α = 0.05) level of significance 

Models Mean (F1-score) P-Value Mean (mAP) P-Value 

YOLOv3 0.65A <0.001 68.57A 0.004 

YOLOv3-SPP 0.66A  69.12A  

YOLOv3-Tiny 0.61B  61.92B  

 

Table 3-8 showed mAP of the leaves of YOLOv3-SPP (72.34%) was significantly different than 

YOLOv3-Tiny (65.48%) but not significantly different than YOLOv3 (69.62%) (P = 0.003). 

However, mAP of stems of YOLOv3 (58.53%), YOLOv3-SPP (57.48%), and YOLOv3-Tiny 

(56.33%) were not significantly different (P = 0.958). Table 3-9 showed mAP of the green berry 

of YOLOv3 (72.26%) was significantly different than YOLOv3-Tiny (55.13%) (P <0.001) but not 

significantly different than YOLOv3-SPP (75.45%). On the other hand, the mAP of ripe berries of 

YOLOv3 (80.71%), YOLOv3-SPP (79.57%), and YOLOv3-Tiny (77.52%) were not significantly 

different (P = 0.170). Table 3-10 showed mAP of dirt of YOLOv3 (61.70%) was not significantly 

different than YOLOv3-SPP (60.80%) but significantly different than YOLOv3-Tiny (54.11%) (P 

= 0.001) 

Table 3-8. Comparison of class average precisions (%) of YOLOv3, YOLOv3-SPP and 

YOLOv3-Tiny for leaves and stems using the Tukey method at 5% (α = 0.05) level of 

significance 

Models Mean (Leaves) P-value Mean (Stems) P-value 

YOLOv3 69.62AB 0.003 58.53A 0.958 

YOLOv3-SPP 72.34A  
 

57.48A  

YOLOv3-Tiny 65.48B 
 

56.33A  
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Table 3-9. Comparison of class average precision (%) of YOLOv3, YOLOv3-SPP and 

YOLOv3-Tiny for green berries and ripe berries using the Tukey method at 5% (α = 0.05) level 

of significance 

Models Means (Green Berries) P-Value Mean (Ripe Berries) P-Value 

YOLOv3 72.26A  0.001 80.71A  0.170 

YOLOv3-SPP 75.45A  79.57A  

YOLOv3-Tiny 55.13B  77.52A  

 

Table 3-10. Comparison of class average precision of YOLOv3, YOLOv3-SPP and YOLOv3-

Tiny for dirt using the Tukey method at 5% (α = 0.05) level of significance 

Models Mean (Dirt) P-value 

YOLOv3 61.70A 0.001 

YOLOv3-SPP 60.80A 
 

YOLOv3-Tiny 54.11B 
 

 

The detection of leaves, stems, green berries, ripe berries, and dirt of models was visually 

compared in Figure 3-4 after training models in non augmented dataset. The detection of leaves, 

stems, green berries, ripe berries, and dirt on images were represented as 1, 2, 3, 4, and 5, 

respectively. 

(a) (b) (c) 

Figure 3-4. Detection comparison of YOLOv3 (a), YOLOv3-SPP(b), and YOLOv3-Tiny(c) 

trained on non augmented dataset. 

 

 

 

 



30 

 

3.2.1 Effects of Data Augmentation on Accuracy 
 

The effect of data augmentation on the accuracy of YOLOv3-SPP and YOLOv3 was 

explored. Table 3-11 showed the detection results of YOLOv3-SPP and YOLOv3 when trained 

and tested on augmented datasets (T1 and T2).  

Table 3-11. Precision, Recall, F1-score, and mAP (%) of the YOLOv3-SPP and YOLOv3 under 

0.5 IoU and 0.25 confidence threshold 

 

The class accuracy of models was also explored after testing models on T1 and T2 dataset. 

Table 3-11 showed detection results of leaves, stems, green berries, ripe berries, and dirt. The 

average precision of leaves, stems, ripe berries, and dirt was improved 5.60%, 10.91%, 4.40%, 

3.86% when YOLOv3-SPP trained and tested on T1 dataset (Table 3-12). Similarly, the average 

precision of leaves, stems, ripe berries, and dirt was improved by 9.11%, 18.41%, 2.81%, 3.41% 

when YOLOv3-SPP trained, and tested on the T2 dataset (Table 3-12). On the other hand, the 

average precision of leaves, stems, green berries, ripe berries, and dirt was improved by 4.93%, 

8.14%, 0.24%, 2.35%, 1.88% respectively when YOLOv3 trained and tested on T1 dataset and 

improved 8.18%, 9.65%, 3.52%, 1.95%, 2.30% respectively when trained and tested on T2 dataset 

(Table 3-12). 

 

 

 

Dataset 

Name 

Models Precision  Recall  F1-score  mAP 

(%) 

T1 YOLOv3-SPP 0.87 0.53 0.66 73.03 

 YOLOv3 0.90 0.46 0.61 71.26 

T2 YOLOv3-SPP 0.86 0.54 0.66 74.38 

 YOLOv3 0.89 0.47 0.62 72.87 
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Table 3-12. Average precision (%) of YOLOs with data augmentation under 0.5 IoU and 0.25 

confidence threshold 

3.2.2 T-test on Testing Images of T1 Dataset 
 

The result showed mean F1-score of YOLOv3-SPP (0.64) was significantly higher (P = 

0.003) than the mean F1-score of YOLOv3 (0.61). Although mAP of YOLOv3-SPP (75.56%) was 

not significantly different than mAP of YOLOv3 (P = 0.150) (Table 3-13) 

Table 3-13. Comparison of F1-score and mAP (%) of YOLOv3-SPP and YOLOv3 using the t-

test at 5% (α = 0.05) level of significance 

Models Mean (F1-score) P-value Mean (mAP) P-value 

YOLOv3-SPP 0.64 0.003 75.56 0.150 

YOLOv3 0.61 
 

71.84  

 

Table 3-14 showed mAP of the leaf of YOLOv3 (74.22%) was significantly different than 

YOLOv3-SPP (81.84%) (P < 0.001). The YOLOv3-SPP yielded significantly higher mAP 

(81.84%) for leaves class than the YOLOv3 (74.22%). However, mAP of stems of YOLOv3 

(75.77%) and YOLOv3-SPP (65.69%) was not significantly different (P = 0.292) (Table 3-15). 

Similarly, mAP of green berries (74.84%), ripe berries (83.32%), and dirt (62.03%) of YOLOv3-

SPP were not significantly different than mAP of green berries (72.90%), ripe berries (83.05%), 

and dirt (63.36%) of YOLOv3 respectively (Table 3-15) (Table 3-16). 

 

 

Dataset Name Models Leaves Stems Green 

Berries 

Ripe 

Berries 

Dirt 

T1 YOLOv3-SPP 77.60 67.05 72.82 83.58 64.10 

 YOLOv3 74.15 63.80 72.26 82.91 63.19 

T2 YOLOv3-SPP 81.11 74.55 70.61 81.99 63.65 

 YOLOv3 77.40 65.31 75.54 82.51 63.61 
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Table 3-14. Comparison of class average precisions (%) of YOLOv3-SPP and YOLOv3 for 

leaves and stems using the t-test at 5% (α = 0.05) level of significance 

Models Mean (Leaves) P-value Mean (Stems) P-value 

YOLOv3-SPP 81.84 <0.001 75.77 0.292 

YOLOv3 74.22 
 

65.69  

 

Table 3-15. Comparison of class average precision of YOLOv3-SPP and YOLOv3 for green 

berries and ripe berries using the t-test at 5% (α = 0.05) level of significance 

Models Mean (Green Berries) P-value Mean (Ripe Berries) P-value 

YOLOv3-SPP 74.84 0.338 83.32 0.762 

YOLOv3 72.90  83.05  

 

Table 3-16. Comparison of class average precision of YOLOv3-SPP and YOLOv3 for dirt using 

the t-test at 5% (α = 0.05) level of significance 

Models Mean (Dirt) P-value  

YOLOv3-SPP 62.03 0.567  

YOLOv3 63.36   

3.2.3 T-test on Testing Images of T2 Dataset 
 

The result showed mean F1-score of YOLOv3-SPP was significantly higher than the mean 

F1-score of YOLOv3 (P < 0.001). YOLOv3-SPP resulted in 0.65 of mean F1-score while YOLOv3 

resulted in 0.62 of mean F1-score. Although mAP of YOLOv3-SPP (75.71%) was not significantly 

different than mAP of YOLOv3 (73.19%) (P = 0.076) (Table 3-17) 

Table 3-17. Comparison of F1-score and mAP (%) of YOLOv3-SPP and YOLOv3 using the t-

test at 5% (α = 0.05) level of significance 

Models Mean (F1-score) P-value Mean (mAP) P-value 

YOLOv3-SPP 0.65 <0.001 75.71 0.076 

YOLOv3 0.62 
 

73.19  

 

The mAP of the leaves (80.19%), green berries (74.89%), ripe berries (82.55%), and dirt 

(65.33%) of YOLOv3-SPP was not significantly different than mAP of the leaves (77.46%), green 

berries (74.14%), ripe berries (82.64%) and dirt (63.80%) of YOLOv3 (Table 3-18) (Table 3-19) 
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(Table 3-20). However, mAP of stems (75.63%) of YOLOv3-SPP was significantly higher than 

mAP of stems (66.08%) of YOLOv3 (P = 0.025) (Table 3-18). The YOLOv3-SPP yielded 

significantly higher mAP (75.63%) for stems class than YOLOv3 (66.08%) (Table 3-18). 

Table 3-18. Comparison of class average precisions (%) of YOLOv3-SPP and YOLOv3 for 

leaves and stems using the t-test at 5% (α = 0.05) level of significance 

Models Mean (Leaves) P-value Mean (Stems) P-value 

YOLOv3-SPP 80.19 0.096 75.63 0.025 

YOLOv3 77.46  66.08  

 

Table 3-19. Comparison of class average precisions (%) of YOLOv3-SPP and YOLOv3 for 

green berries and ripe berries using the t-test at 5% (α = 0.05) level of significance 

Models Mean (Green Berries) P-value Mean (Ripe Berries) P-value 

YOLOv3-SPP 74.89 0.854 82.55 0.938 

YOLOv3 74.14  82.64  

 

Table 3-20. Comparison of class average precision of YOLOv3-SPP and YOLOv3 for dirt using 

the t-test at 5% (α = 0.05) level of significance 

Models Mean (Dirt) P-value 

YOLOv3-SPP 65.33 0.265 

YOLOv3 63.80  

 

Figure 3-5 showed the detection results of two models YOLOv3-SPP (mAP-73.03%) and 

YOLOv3-SPP (mAP-74.38%) after training YOLOv3-SPP on T1 and T2 dataset. Both models 

successfully detected most target classes. However, models struggled to detect dirt at 0.5 IoU and 

0.25 confidence threshold. The probable reason may be the lower average precision of dirt classes 

of both models. The variation of dirt shape in the dataset is likely the reason for lower accuracy 

across the models. Since the lower confident bounding boxes (less than 0.5 IoU) were screen 

models by default, experimenting on the effect of different IoU and confidence scores on detection 

accuracy can be a valuable addition to this experiment in the future. 
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(a) YOLOv3-SPP (T3) (b) YOLOv3-SPP(T2) 

Figure 3-5. Detection results of YOLOv3-SPP on a testing image. 

The detection of leaves, stems, green berries, ripe berries, and dirt on images were represented as 

1, 2, 3, 4, and 5 respectively. 

3.0 Conclusions 
 

Results concluded that YOLOv3-SPP and YOLO-v3 both performed well in non-

augmented and augmented datasets. However, Tukey MMC showed mean F1-scores of YOLOv3-

SPP (0.64 and 0.65) were significantly higher than YOLOv3 (0.61 and 0.62) on testing images of 

T1 and T2 dataset (Table 3-13) (Table 3-17). The mAPs of YOLOv3 and YOLOv3-SPP were not 

significantly different (Table 3-14) (Table 3-17) but YOLOv3-SPP (mAP: 73.03%; mAP: 74.38%) 

yielded slightly higher mAP than YOLOv3 (mAP: 71.26%; mAP: 72.87%) on both T1 and T2 

datasets (Table 3-11). However, YOLOv3 and YOLOv3-SPP achieved quite similar mAP in 

different experiments. The most likely reason for yielding similar results could be the sensitivity 

to small object detection of YOLO networks. Pham et al., (2020) experimented with different 

YOLO networks for detecting various small objects (lower than 10 pixels) on aerial and satellite 

images. They also received equivalent mAP score from YOLOv3 and YOLOv3-SPP networks on 

both aerial images (color images: YOLOv3: mAP = 73.11%, YOLOv3-SPP: mAP = 75.04%; 

infrared images: YOLOv3: mAP = 71.01%, YOLOv3-SPP: mAP = 73.70%,two class color 
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images: YOLOv3: mAP = 97.87%, YOLOv3-SPP: mAP = 95.58%) and satellite images 

(YOLOv3: mAP = 78.93%, YOLOv3-SPP: mAP = 77.34%). However, detection accuracy of 

YOLO was improved by adding an extra residual block detection layer and an up sampling layer 

in the YOLO network. Results showed the overall performance (F1-scores) of YOLOv3-SPP 

models were slightly higher than YOLOv3 models. All the target classes were labelled based on 

visual appearance where stems attached with leaves were labelled as stems instead of their own 

class. This strategy of labelling may have led to slight errors in classification. However, the 

accuracies of models can be enhanced by labeling leaves within stems and checking confusion 

matrices during testing. In this study, YOLOv3-SPP models achieved comparatively better results 

than models which can be selected and implemented for the debris detection system. 
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CHAPTER 4: DEVELOPMENT OF A REAL-TIME DEBRIS DETECTION SYSTEM 

(HARDWARE & SOFTWARE) FOR MECHANICAL WILD BLUEBERRY 

HARVESTER 

Abstract 
 

Wild blueberry fruit quality has always been economically important to wild blueberry 

producers due to the competitive global market and tightening profit margins currently facing the 

industry. Continuous development of field management practices (i.e., application of fungicides, 

herbicides, fertilizers, pollination, and pruning, etc.,) has increased plant biomass. This increased 

plant biomass significantly reduces fruit quality which highlights the need to develop a real-time 

automatic debris separation system during harvesting. Three different hardware and two CNN 

models were implemented to detect leaves, stems, ripe berries, green berries, and dirt on images 

and compared with the detection time of each combination of model and hardware for investigating 

a real-time performance. Nine different IoU and confidence thresholds (0.10, 0.20, 0.30, 0.40, 

0.50, 0.60, 0.70, 0.80, and 0.9) were examined for determining the effect of threshold values on 

overall detection of target classes. The result showed that Hardware-4 and Model-2 yielded the 

fastest defection time (33.30 ms) and the highest average frame rate (30.03 FPS). Model-1 

executed on Hardware-1 resulted in the longest detection time (12126.90 ms) and lowest average 

frame rate (0.80). Hardware-3 and Hardware-4 both achieved lower processing time 831.20 ms 

and 33.30 ms respectively than the camera passing time of a scene at side conveyor (2276.67 ms) 

and rear conveyor (1105.21 ms). Model-1 and Model-2 achieved 71.10% and 72.36% of mAP 

respectively when validated under 0.10 IoU and 0.25 confidence threshold.  Model-1 and Model-

2 reached maximum mAP of 85.90% and 86.10% respectively at 0.10 IoU and 0.10 confidence 

threshold. Therefore, a YOLOv3-SPP based debris detection system could meet the demand for 

real-time debris detection with greater accuracy. 
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4.0 Introduction 
 

Wild blueberry (Vaccinium angustifolium Ait.) is a commercially managed native fruit 

crop in northeastern North America. Plant biomass and fruit yields have increased significantly 

due to improved field management practices over the past decades (Esau et al., 2018). As a result 

of increased biomass, additional blueberry leaves, stems, and foreign debris are harvested and 

transferred into the berry storage bins, causing a negative impact on fruit quality at the processing 

facilities (Esau et al., 2018). Esau et al. (2018) tested four different blower fan speeds (0 ms-1, 14 

ms-1, 18 ms-1, 23 ms-1) and successfully removed 98.8% and 98.6% of debris (weight basis) using 

23 ms-1 fan speed under low and high plant moisture conditions respectively. The ratio of 

additional leaf, dirt and stem debris is required to lie below a tolerable bound and should be 

separated from ripe berries during harvesting to improve fruit quality.  

There are many types of automated technologies used in agriculture today, among them 

machine learning and deep learning are becoming the core of many of the latest technological 

developments in precision agriculture due to their automatic decision-making ability (Koirala et 

al., 2019; Tian et al., 2019a). However, the traditional machine learning approach cannot learn 

features automatically from image pixels. Feature extraction requires manual feature engineering 

skills (LeCun et al., 2015). Inappropriate selection of features decreases accuracy and increases 

the computation time for the classifier (Chang et al. 2012). Deep learning (DL) approaches are 

powerful for automatic feature extraction while classification is taken care by the network itself 

(LeCun et al., 2015). Several researchers used Convolutional Neural Network (CNN) based DL 

approaches for estimating fruit quality (Cavallo et al., 2018; Wang et al., 2018, Jahanbakhshi et 

al., 2020). Wang et al. (2018) classified sound and damaged highbush blueberry with 88.44% and 

87.84% precision respectively using two modern CNN architectures ResNet and ResNeXt, 
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originally developed by He et al. (2016) and Xie et al. (2017) respectively. An automatic lettuce 

quality evaluation system was developed by Cavallo et al. (2018) using a deep CNN. The system 

could identify color distorted lettuce through the packaging with 83% classification accuracy. 

  CNN can also be implemented for classification as well as detection at the same time for 

understanding the location of objects within an image. The image can then be classified into two 

categories such as two-stage detection methods and the single-stage detection methods. Two-stage 

detection networks such a Faster Region-based Convolutional Neural Network (R-CNN) uses 

region proposal network (RPN) for generating proposals with multiple scales and aspect ratios and 

then feeds them to a Fast R-CNN detector for final class prediction with localization (Ren et al., 

2015). On the other hand, a single-stage detection CNN network such as YOLOv3 uses a fully 

convolutional neural network (CNN) for generating bounding boxes and class probabilities 

(Redmon & Farhadi 2018). Some researchers found that a one-stage object detector outperformed 

a two-stage detection network (Tian et al., 2019b, Liu et al. 2020). An automatic tomato fruit 

detection system was developed by Liu et al., (2020) using YOLOv3 called YOLO-Tomato that 

achieved 96.40 % of average precision and performed than Faster R-CNN. Tian et al., (2019b) 

also implemented YOLOv3, incorporating with DenseNet developed by Huang et al., (2017) for 

detecting young, expanding, and ripe apples in the orchard. The proposed YOLOv3 achieved 

81.70% of accuracy (F1-score) and performed better than Faster R-CNN with VGG16 net. 

However, DL either one-stage object detector or two-stage detection networks require plenty of 

computational power due to the processing of a large dataset. This limitation in DL approaches 

influenced several researchers to invigilate rich computing resources for solving various 

classification and detection problems in agriculture (Andrea et al., 2017, Shadrin et al., 2019, 

Koirala et al., 2019). Huang et al., (2017) compared tomato average detection time of YOLOv3 
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and Faster R-CNN using a computer configured with Intel i5 (Santa Clara, CA, USA), 64-bit 3.30 

GHz quad-core central processing unit (CPU), and a NVIDIA GeForce GTX 1070Ti graphics 

processing unit (GPU). The author observed YOLOv3 took on average 0.045 seconds for detecting 

a single image and achieved 94.06% of average precision while Faster R-CNN had a longer 

detection time than YOLOv3 which was 177 milliseconds (ms) slower than YOLOv3. Tian et al., 

(2019a) also compared average detection time of young, expanding, and ripe apple images feeding 

to YOLOv3 and Faster R-CNN and observed YOLOv3 detected 8.864 times faster than Faster R-

CNN on a NVIDIA Tesla V100 server.  Instead of using rich computing resources another 

researcher Liu et al., (2019) used a NVIDIA TX2 low-power embedded computer board for 

developing a real-time broken corn monitoring system addressing power and space limitation on 

the corn harvester. They implemented YOLOv3–tiny architecture as a backbone of their system 

and achieved 89.77% of accuracy with 10 frames per second (FPS). Researchers also used YOLO 

on embedded Hardware, NVIDIA TX2, Nvidia Jetson Nano in different fields of agriculture for 

weed detection (Partel et al., 2019), Fish Detection (Liu et al., 2018b), and fruit detection (Mazzia 

et al., 2020) with higher success rates. However, very few researchers implemented CNN on the 

central processing unit (CPU) based computers in agriculture. Quiroz et al., (2020) developed 

legacy blueberries recognition system equipped with AMD Ryzen5 2500U CPU-based computer, 

and the system achieved 86% of accuracy on testing images.  

The modern wild blueberry harvesters were designed for working with an agricultural 

tractor. The modern DBE harvesters are tractor driven and operated by the hydraulic system which 

is controlled from the tractor cabin using an electric controller. The electric controller is powered 

by a 12V direct current battery that could provide maximum 120 W power. Thus, space and power 

limitations in the tractor cabin are the major constraint to install additional computing resources 
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inside of it. This constrains leads to investigate appropriate computing resources for developing a 

real-time debris detection system. Therefore, finding an appropriate and rich computing source 

and selection of appropriate CNN could help hardware and software development of real-time 

debris separation systems for separating debris in real-time to improve fruit quality. 

4.1 Material and Methodology 

4.1.1 Video Acquisition Hardware Development 
 

Video acquisition hardware consisted of two Logitech C920 webcam cameras (Logitech 

International S.A., Lausanne, Switzerland). The cameras were mounted on the side and rear 

conveyor of Doug Bragg Enterprises Ltd. (DBE) mechanical wild blueberry harvester at different 

heights to capture 8-bit RGB 1280x720 (Horizontal x Vertical) pixels video. The side and rear 

cameras were connected to an Intel® Core™ i5-4300U CPU @ 1.90 GHz central processing unit-

based laptop using a built-in 1.5 m Universal Serial Bus (USB) version 2.0 camera cable. The 

camera was mounted at the side conveyor was pointed downward at a 45°angle. The camera height 

at the side conveyor was adjusted to 34.00 cm to get the maximum field of view. The rear camera 

was mounted at 49.80 cm working depth above the rear conveyor and pointed downward at a 90° 

angle. (Figure 4-1).  
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Figure 4-1. Camera setup at the side and rear conveyor 

 

4.1.2 Camera Acquisition Software Development  
 

A video acquisition graphical user interface (GUI) was developed for Windows 10 

(Microsoft Crop. Redmond, Washington, United States) 64-bit computer system using Python 

3.7.2 programming language (Python Software Foundation, Wilmington, Delaware, United States) 

and python version of open computer vision library (OpenCV). OpenCV-Python is a python 

wrapper of OpenCV C++ (Bradsk 2000) and was used because of syntax simplicity, code 

readability, and offering the HighGUI module for developing a simple GUI program.  
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At first, the size of the frame was defined inside of the functions (VideoCapture()) for two 

Logitech C920 webcam cameras (Logitech International S.A., Lausanne, Switzerland). The frame 

size was set to 1280x720 pixels. Then the index value of cameras was passed through the functions 

for capturing frames. A method (isOpened()) was used to confirm camera initialization which 

checks whether cameras were connected properly. Then frames were captured by the two frame 

capturing functions where functions return values (True) confirmed frame readings. Finally, the 

captured frames were displayed at the 1 ms rate to make a video stream. A user-based event was 

added to the GUI to interrupt video streaming.  

The camera acquisition program was executed on the computer system. The field of view 

for the conveyors was marked using a marker and measured with a measuring tape. The field of 

view of side conveyor was 30.00 cm x 118.00 cm (horizontal x vertical) where each pixel covered 

approximately 0.23 cm x 0.16 cm (horizontal x vertical) (Figure 4-2). The rear camera covered 

60.70 cm x 37.50 cm (horizontal × vertical) at the rear conveyor and each pixel occupied 

approximately 0.04 cm x 0.05 cm (horizontal × vertical) of the field of view (Figure 4-2). 

 
(a) (b) 

Figure 4-2. (a) Field of view to the rear conveyor at 48.5 cm camera height; (b) field of view of 

side conveyor at 34.0 cm camera height 
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4.1.3 Determine the Minimum Processing Time Required for a Debris Detection System to 

Perform in Real-time 
 

Conveyors are one of the important parts of the wild blueberry harvester as they convey 

harvested berries from picking head to the storage bin. The conveyors are operated by a hydraulic 

motor which is powered by the central hydraulic system. A sprocket pulley is responsible for the 

rolling plastic flighted belt in the clockwise direction. The maximum shaft revolution per min 

(rpm) of side and rear conveyor motor was measured at 110 rpm and 72 rpm respectively using a 

tachometer on the reel of the conveyor belts. The pulley diameter of the side and rear conveyor 

belt was measured to be 9.00 cm. The width of the side and rear conveyor was measured at 27.00 

and 59.60 cm respectively. The linear speed of the side and rear conveyor belt was also measured 

at 0.52 m s−1 and 0.34 ms-1 respectively using equation (4-1).  

The time required for a scene to pass the cameras at the side and rear conveyors was 2276.67 ms 

and 1105.21 ms respectively, which calculated by the equation (4-2) 

v (ms−1) = 
2𝜋×𝑟

60
 x N (rpm) (4-1) 

where  

v is the linear velocity expressed in ms−1 

N is the angular velocity expressed in rpm 

r is the radius expressed in m 

Time needs to pass a scene  (ms) = 
𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑓𝑖𝑒𝑙𝑑 𝑜𝑓 𝑣𝑖𝑒𝑤

𝑐𝑜𝑛𝑣𝑒𝑦𝑜𝑟 𝑏𝑒𝑙𝑡 𝑠𝑝𝑒𝑒𝑑
 x 1000 (4-2) 

Where, 

Vertical field of view in cm 
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Conveyor belt speed in cm s -1 

4.1.4 Determine Detection Speed of CNNs for Developing Debris Detection System 

4.1.4.1 Data Collection and Preparation 
 

Two commercial fields in central Nova Scotia termed as Debert site (45.4418°N, 

63.4496°W) and the East Mines site (45.42713°N, -63.48186°W) were selected for capturing 

experimental videos using two Logitech C920 webcam cameras (Logitech International S.A., 

Lausanne, Switzerland) mounted on the side and rear conveyors of a mechanical wild blueberry 

harvester during harvesting (Figure 4-3). The videos were captured from twelve different plots in 

the two fields during harvesting and extracted using a video to image converter software (Free 

Video to JPG Converter, Ver.: 5.0.101.201). 

  

Figure 4-3. Location of fields in google map 

A dataset containing a total of 125 images was prepared and sorted based on the total 

number of objects. Images were categorized as simple images, simple-moderate images, moderate, 

moderate-complex, and complex. Five different subsets were prepared from the dataset with each 

subset containing 25 images, having 5 images from each category of image (Table 4-1). The 

dataset was labelled using custom software developed with the Lazarus compiler 

(https://www.lazarus-ide.org/) and labelled ripe berries, green berries, leaves, stems, and dirt based 

https://www.lazarus-ide.org/
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on classifiable appearance in the images (Figure 4-4). The number of objects was labelled 

corresponding to the classes shown in (Table 4-2). 

Table 4-1. Number of objects per image in different categories of images 

Image categories Number of images Number of objects range 

simple images 25 0-49 

simple-moderate images 25 50-99 

moderate 25 100-199 

moderate-complex 25 200-299 

complex 25 300-399 

 

Table 4-2. Dataset Description 

Classes Number of objects 

Leaves 3290 

Stems 169 

Ripe berries 2494 

Green berries 9418 

Dirt 5840 

 

 

Figure 4-4. Image labeling using custom software developed with the Lazarus compiler 
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4.1.4.2 Hardware Setup 
 

A total of four different configured hardware were used in this experiment as shown in 

Table 4-1. Hardware Jetson TX2 was flashed using Jetpack version 3.0 to enable compute unified 

device architecture (CUDA version 8.0) and loading GPU related files and dependencies. A Linux 

based operating system, Ubuntu 14.04 64 bit (Canonical Ltd., London, UK) was installed on the 

host computer. Jetson TX2 was flashed from the host computer using 2.0 m long standard USB 

type A cable by holding the recovery button and frequently pressing the reset button of Jetson 

TX2. Finally, the additional driver and packages were installed on Jetson TX2 via a secure shell 

using an ethernet connection from the host computer. Similarly, CUDA version 10.20 was installed 

on the Hardware-4 to enable network inference and recognition of images. On the other hand, only 

C++ API of OpenCV was adopted on Hardware-1 and Hardware-2 to use CPU power for network 

inference and recognition on images. 

Table 4-3. Specification of four different hardware 

Specifications Hewlett-

Packard 

(Hardware-1) 

Shuttle XPC 

(Hardware-2) 

Jetson TX2 

(Hardware-3) 

Desktop 

(Hardware-4) 

CPU Intel® Core™ 

i5-4300U 

CPU @ 1.90 

GHz 

Intel® Core™ i7-

6700K CPU @ 

4.00 GHz 

ARM Cortex-A57 

(quadcore) @ 2GHz 

+ NVIDIA Denver2 

(dualcore) @ 2 GHz 

Intel® Core™ 

i9-7900X CPU 

@ 3.30 GHz 

GPU NA NA 256-core Pascal @ 

1300MHz 

NVIDIA 

Turing™ 

GeForce 

RTX™ 2080 Ti 

@ 1665 MHz 

Memory 8 GB 

DDR3@ 

1600 MHz 

8 GB DDR4@ 

2400 MHz 

8GB LPDDR4 @ 

1866 MHz 

32 GB DDR4 

@2800 MHz  

Storage 218 GB HDD 375 GB HDD 32 GB eMMC 5.1 1 TB SSD 

Power (W) 65 300 15 850 
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4.1.4.3 Darknet Installation 
 

Darknet-53 works as a feature extractor in YOLOv3 networks which performs 1.5 times 

faster than ResNet-101 and 2 times faster ResNet-152 frameworks (Redmon & Farhadi 2018). The 

CPUs of Hardware-1 and Hardware-2 were accessed by enabling OPENCV, Advanced Vector 

Extensions (AVX), and Open Multi-Processing (OPENMP) and disabling GPU, CUDA Deep 

Neural Network (CUDNN) library, CUDNN_HALF in the make file of Darknet. The GPU and 

CUDA of Hardware-3 and Hardware-4 were activated by enabling GPU, CUDNN, 

CUDNN_HALF, and disabling OPENCV, AVX, and OPENMP in make the file of Darknet. The 

configuration file of YOLOv3 was kept as same as used in Chapter-3 except batch size was 

changed to 1 for testing because batch = 1 helps DL models to use less memory and achieve real-

time performance (Bianco et al., 2018). YOLOv3 evaluates the whole image at once and generates 

bounding boxes and class probabilities (Figure 4-5).  

 

 

  

 

 

 

 

 

Figure 4- 5. Flow chart of YOLOv3 network architecture 

Input image containing leaves, stems, ripe 

berries, green berries, and dirt 

Feature extraction by darknet-53 

Multi scales features 

Prediction at three different scales or ratios 

with confidence score; score lower than 0.25 

screened by NMS 

Bounding boxes and classification of leaves, 

stems, ripe berries, green berries, and dirt on 

image 
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4.1.4.4 Measurement of Prediction Time 
 

The best two models were selected from chapter-3 and used for network inference. The 

models were denoted as Model-1 and Model-2. Model-1 (YOLOv3-SPP, mAP: 74.38%) was 

trained on 2700 images and tested on 300 images where Model-2 (YOLOv3-SPP, mAP: 73.03%) 

was trained and tested on 1800 and 200 images. These two models were used to measure the 

detection time of images on four different computer architectures. Each subset of the dataset was 

randomly inputted to the YOLOv3-SPP networks installed on four different hardware and the 

average prediction time per image was calculated (Figure 4-6).   

 

 

Figure 4-6. Flowchart of measuring prediction time of an image. 

4.1.4.5 Statistical Analysis for Determining the Effect of Models and Hardwire on 

Prediction Time 
 

A 2x4 factorial design was performed using Minitab 17 (Minitab Inc. NY, USA) on four 

different hardware for determining the effect of hardware and models on the prediction time of 

objects in images. An analysis of variance (ANOVA) was performed with (α = 0.05) level of 

significance to check the effect of hardware and models on prediction time. The data was collected 

for eight different treatments (Hardware-1 x Model-1, Hardware-1 x Model-2, Hardware-2 x 

Model-2, Hardware-2 x Model-1, Hardware-3 x Model-2, Hardware-3 x Model-1, Hardware-4 x 

Model-1, Hardware-4 x Model-2) where each treatment was replicated five times. Tukey’s 

multiple mean comparisons (MMC) were performed to find out means difference.  

 

YOLOv3-SPP 

Algorithms 
Input Image 

Image prediction Time 

Measurement 
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4.1.5 Validation of Models 
 

Models were validated using popular evaluation metrics. Model-1 and Model-2 were 

validated using a total of 125 images and results were recorded. Precision is the ratio of true 

detections of leaves, stems, ripe berries, green berries, and dirt to the identified detections was 

calculated by (Eq. 4-3) 

 Precision =
TP

TP+FP
 (4-3) 

Recall is the ratio of true detection of leaves, stems, ripe berries, green berries, and dirt among all 

the ground truth detections was calculated by (Eq. 4-4) 

 Recall =
TP

TP+FN
 (4-4) 

True positive (TP) is the number of correct detection of leaves, stems, ripe berries, green berries, 

and dirt. False positive (FP) is the number of incorrect detections of leaves, stems, ripe berries, 

green berries, and dirt. False negative (FP) is the number of not detection of leaves, stems, ripe 

berries, green berries, and dirt where ground truths are present. 

F1-score is the harmonic mean of precision and recall was calculated by (Eq. 4-5) 

 F1-score =
2 ×Precision×Recall

Precision+Recall
 (4-5) 

Mean average precision (mAP) is integral to all the precisions values of all target classes was 

calculated by (Eq. 4-6) 

 mAP = ∫ 𝑝(𝑜)𝑑𝑜
1

0
 (4-6) 

The IoU value confirms whether the detection of leaves, stems, ripe berries, green berries, and dirt 

were true positive or false positive.  When predicted bounding boxes have an IoU greater than 

given IoU threshold, prediction is considered as a true positive otherwise, false positive. Selection 
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of IoU value is important before detection thus, nine different IoU threshold (0.10, 0.20, 0.30, 0.40, 

0.50, 0.60, 0.70, 0.80, and 0.90) values were experimented for determining the effect of threshold 

values on detection. IoU can be calculated by (Eq. 4-7) 

 IoU = 
𝐵1⋂𝐵2

𝐵1⋃𝐵2
 4-7 

Where  

B1 = Ground truth bounding box 

B2 = Predicted bounding box 

4.1.6 Development of a Debris Detection System 
 

The video acquisition system was upgraded for developing the debris detection system. 

The best model was selected from the validation of models and deployed in Intel® Core™ i9-

7900X CPU @ 3.30 GHz, GeForce RTX™ 2080 Ti @ 1665 MHz desktop computer. C++ API of 

OpenCV was compiled with CUDA to enable Nvidia GPUs and CUDNN since the deep neural 

network library of OpenCV- Python supports CPU computation by default. The code development 

was divided into three sections such as network definition, video processing, and display output.   

The network was defined by the loading configuration file and binary trained weight of YOLOv3-

SPP using cv2.dnn.readNetFromDarknet() method. The GPU computation was confirmed by 

calling setPreferableBackend (cv2.dnn.DNN_BACKEND_CUDA), net.setPreferableTarget 

(cv2.dnn.DNN_TARGET_CUDA) methods after  loading YOLO network. Images were 

preprocessed using cv2.dnn.blobFromImages() method which created a four-dimensional binary 

object for use in YOLOv3-SPP. The method took six arguments such as image, scale factor, output 

size, mean, swapRB, and crop.  The first argument image was used for taking image input; the 
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second argument scaled pixel of unsigned 8-bit images from 0 to 1 dividing by 255, the third 

argument set up output images to 1280 x 736 pixels. The fifth argument swapped image channel 

order from BGR to RGB by setting True value and the fourth argument was set to (0,0,0) since 

image normalization was not considered during YOLO training. The last argument crop was set to 

false to preserve the original aspect ratio of the image. Then the blobs of images passed through 

the network to obtain a prediction with a confidence score. An NMS technique was applied to filter 

out better and refined bounding boxes. Finally, the detection result was displayed using imshow() 

function. The debris detection GUI was developed for displaying information of leaves, stems, 

ripe berries, green berries, and dirt on the computer screen during harvesting to monitor fruit 

quality on the side and rear conveyor at the same time. 

4.2 Result and Discussion 
 

The result of the ANOVA indicated that the Hardware (P < 0.001) and Hardware*Models 

(0.015) had a significant effect on processing time however only Models had no contribution on 

processing time. Tukey MMC was performed on the interaction factor (Hardware*Models) only 

because the interaction effect was significant (Table 4-4).  

Table 4-4. Results of ANOVA on the detection time on four different hardware at 5% (α = 0.05) 

level of significance 

Source P-Value 

Hardware < 0.001 

Models 0.724 

Hardware*Models 0.015 

 

Interaction of Hardware-1 and Model-1 resulted in the highest mean (12126.90 ms) and the 

interaction of Hardware-4 Model-2 yielded the lowest mean (33.30 ms) as shown in Table 4-5. 
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Table 4-5 also showed that the processing speed of a single image on the CPU was higher than the 

GPU. DL models performed better in GPUs (Hardware -3, Hardware-4) than CPUs (Hardware-1, 

Hardware-2) because GPUs have high bandwidth and parallel computing capabilities (Kim et al., 

2018).  Kim et al. (2018) experimented with 13 different DL object detection algorithms including 

YOLO on CPU and GPU and observed that a GPU accelerated image processing speed better than 

a CPU. The combination of Hardware-4 and Model-2 resulted in the highest frame rate (30.03 

FPS) while Hardware-1 provided the lowest frame rate (0.80 FPS) with models (Table 4-5). GPU 

based hardware resulted in a higher frame rate because the GPU can process an image faster than 

CPU (Kim et al., 2018). 

Table 4-5. Result of MMC using Tukey method to identify significant difference on models and 

hardware at 5% (α = 0.05) level of significance 

 

 

 

 

 

 

 

 

Figure 4-7 showed a GUI of debris detection system developed in OpenCV-Python. GUI shows 

detection of targets at side and rear conveyor. GUI showing detection of leaves, stems, green 

berries, ripe berries, and dirt on videos was represented as 1, 2, 3, 4, and 5, respectively. 

Hardware*Model Prediction time (Mean) 

(unit in ms) 

Frame rate 

(FPS) 

Hardware-1 Model-1 12126.90 A 0.08 

Hardware-1 Model-2 12056.40A 0.08 

Hardware-2 Model-2 3625.60B 0.28 

Hardware-2 Model-1 3608.60B 0.28 

Hardware-3 Model-2 868.70C 1.15 

Hardware-3 Model-1 831.20C 1.20 

Hardware-4 Model-1 34.10D 29.33 

Hardware-4 Model-2 33.30D 30.03 
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Figure 4-7. GUI of a debris detection system. 

4.2.1 Validation of Models  
 

Model-1 and Model-2 were validated using the dataset containing 125 images. The 

validation results showed that both models achieved 83% precision (Table 4-6). All the target 

classes except the dirt class achieved comparatively lower average precision (59.89%) during 

Model-2 validation than Model-1 validation. Model-1 achieved comparatively higher recall (65%) 

and F1-score (0.65) values than Model-2 however, they yielded comparatively lower mAP 

(71.10%) values than the mAP of Model-2 (72.36%) (Table 4-6).  

Table 4-6. Evaluations of Model-1 under IoU (0.5) and threshold (0.25) 

Models Leaves 

 

 

Stems Green 

Berries 

Ripe 

Berries 

Dirt Precision  Recall  F1-

score 

mAP(%) 

Model-

1 

78.49 70.07 65.42 78.64 62.86 0.83 0.53 0.65 71.10 

Model-

2 

79.48 81.33 65.20 75.91 59.89 0.83 0.48 0.61 72.36 

4.2.1.1 Evaluation of Model-1 Under Different IoU and Confidence Thresholds 
 

The performance of Model-1 was recorded with different IoU and confidence threshold 

values. Table 4-7 showed that with the increase of IoU and confidence thresholds from 0.10 to 
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0.90, average precision values increased for all target classes. The threshold value 0.10 provided 

comparatively higher average precision of target classes and the lower average precision was 

achieved at 0.90 IoU and confidence threshold. The target classes leaves, stems, green berries, ripe 

berries, and dirt achieved 78.49%, 70.07%, 65.42%, 78.64%, and 62.86% of average precision 

respectively at the threshold of 0.50 (Table 4-7). Model-1 yielded the highest 85.90% of mAP at 

threshold 0.50 and 0.13% of mAP at a threshold of 0.90 (Table 4-7). Model-1 reached 71.10% of 

mAP at the threshold of 0.50 (Table 4-7). 

Table 4-7. The average precision (%) and mAP (%) of the Model-1 under different IoU and 

confidence threshold 

IoU& 

Confidence 

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

Leaves 86.02 85.82 85.01 83.17 78.49 63.75 34.56 6.64 0.09 

Stems 85.20 84.57 84.14 78.21 70.07 45.81 20.29 4.44 0.38 

Green 

Berries 

88.89 88.44 86.19 80.22 65.42 35.72 13.83 2.02 0.04 

Ripe 

Berries 

90.79 90.63 90.19 88.34 78.64 55.50 29.50 6.83 0.11 

Dirt 78.60 78.22 77.24 72.79 62.86 42.82 18.35 2.37 0.01 

mAP 85.90 85.54 84.55 80.55 71.10 48.72 23.31 4.46 0.13 

 

Table 4-8 showed that Model-1 reached 83%, 53%, and 65% of precision, recall, and F1-

score respectively at 0.50 IoU and confidence threshold. When the threshold was increased from 

0.50 to 0.90, precision, recall, and F1-score were decreased. However, the performance of model-

1 increased when the threshold decreased from 0.50 to 0.10 (Table 4-8). Maximum precision, 

recall, and F1-score were achieved at 0.10 IoU threshold and 0.10 confidence score (Table 4-8). 

The value of true positive decreased from 12284 to 311 when the threshold changed from 0.10 to 

0.90 (Table 4-8). Conversely false positive and false negative detections significantly increased 
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with the increase of threshold from 0.10 to 0.90 which lead to decreased performance of the model 

as well as detection of leaves, stems, green berries, ripe berries, and dirt in an image (Table 4-8). 

Table 4-8. True positive, False positive, False negative, Precision, Recall and F1-score of 

Model-1 under different IoU and confidence threshold 

IoU& 

Confidence 

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

True 

positive 

12284 12271 12216 12019 11246 9413 6623 2872 311 

False 

positive 

1392 1405 1460 1657 2377 4263 7053 10804 13365 

False 

negative 

8927 8940 8995 9192 9965 11798 14588 18339 20900 

Precision 0.90 0.90 0.89 0.88 0.83 0.69 0.48 0.21 0.02 

Recall 0.58 0.58 0.58 0.57 0.53 0.44 0.31 0.14 0.01 

F1-score 0.70 0.70 0.70 0.69 0.65 0.54 0.38 0.16 0.02 

 

4.2.1.2 Evaluation of the Model-2 Under Different IoU and Confidence Thresholds 
 

Table 4 -9 showed that Model-2 also achieved the highest mAP (86.10%) at the threshold 

of 0.10 and gradually decreased when the threshold increased up to 0.90. Model-2 reached 79.48%, 

81.33%, 65.20%, 75.91%, and 59.89% of average precision at standard IoU (0.50) (Table 4-9). At 

the lowest threshold (0.10) leaves, stems, green berries, ripe berries, and dirt classes achieved best 

average precision 87.57%, 89.98%, 87.70%, 90.38%, and 75.85% respectively and decreased with 

the increase of the threshold value (Table 4-9). 

Table 4-9. The average precision (%) and mAP (%) of the Model-2 under different IoU and 

confidence threshold 

IoU& 

Confidence 

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

Leaves 86.57 86.26 85.58 84.05 79.48 65.38 36.16 5.99 0.12 

Stems 89.98 89.53 88.30 85.87 81.33 53.78 16.61 1.56 0.02 

Green 

Berries 

87.70 87.22 84.93 79.89 65.20 37.25 13.62 1.93 0.04 
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IoU& 

Confidence 

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

Dirt 75.85 75.51 74.25 69.54 59.89 41.27 16.86 2.11 0.02 

mAP 86.10 85.74 84.54 81.32 72.36 50.07 22.44 3.73 0.07 

 

Model-2 behaved similar to Model-1 at 0.10 IoU threshold and 0.10 confidence score, 

except that it detected comparatively lower true positive and higher false positive than Model-1. 

Model-1 detected a total of 10181, 2110, and 11030 true positive, false positive, and false negatives 

respectively at the threshold of 0.50 and the number of false positives increased with the increasing 

of the threshold (Table 4-10). The precision (0.91), recall (0.53), and F1-score (0.67) were 

achieved at the threshold of 0.10 (Table 4-10). When the threshold value increased from the 

standard value (0.50) false negative detection increased and the overall performance of models 

also decreased. The models yielded comparatively higher F1-score at 0.10 threshold than the 

threshold of 0.50. 

Table 4-10. True positive, False positive, False negative, Precision, Recall and F1-score of 

Model-2 under different IoU and confidence threshold 

IoU& 

Confidence 

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

True 

positive 

11136 11129 11072 10880 10181 8474 6040 2645 281 

False 

positive 

1124 1131 1188 1380 2110 3786 6220 9615 11979 

False 

negative 

10075 10082 10139 10331 11030 12737 15171 18566 20930 

Precision 0.91 91 0.90 0.89 0.83 0.69 0.49 0.22 0.02 

Recall 0.53 0.52 0.52 0.51 0.48 0.40 0.28 0.12 0.01 

F1-score 0.67 0.66 0.66 0.65 0.61 0.51 0.36 0.16 0.02 

 

The results showed that with the increases in the threshold value from 0.50, the overall 

performance of both models decreased (Figure 4-8). The probable reason was small anchors of 
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objects such as leaves stems, dirt, green berries, and ripe berries which had a lower average IoU 

than larger object IoUs (Yan et al., 2019). Because of this, the models might struggle to consider 

objects as true positive, and overall performance was decreased at a higher threshold. The true 

positives started to increase and false positives and false negatives started to decrease with a 

decrease of the threshold from 0.50. The maximum true positive achieved for both models using 

the same dataset was at 0.10 threshold value. False positives and false negatives reached a peak at 

the threshold of 0.90.  

 

Figure 4-8. Validation of models under different IoU and confidence thresholds. 

Detection of leaves, stems, green berries, ripe berries, and dirt on videos were represented as 1, 2, 

3, 4, and 5, respectively. The detection result of Model -1 and Model-2 is shown in the first row 

and second row respectively. Figure (a) and (d) showed detection at 0.10 IoU and 0.10 confidence 

threshold. Figure (b) and (e) showed detection at 0.50 IoU and 0.50 confidence threshold. Figure 

(c) and (f) showed detection at 0.90 IoU and 0.90 confidence threshold. 
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4.3 Conclusion 
 

Automatic separation of leaves, stems, and dirt from the fruits using a CNN can be an 

essential step for improving wild blueberry fruit quality and enhancing processing facilities. A DL 

based real-time automatic separating system requires not only a great detection accuracy but also 

needs high-speed image processing hardware. Two CNN models and four different hardware were 

investigated to select an appropriate combination of model and hardware which achieve the lowest 

average image prediction time and highest frame rate. A desktop configured with Intel® Core™ 

i9-7900X CPU @ 3.30 GHz and GeForce RTX™ 2080 Ti @ 1665 MHz GPU combined with a 

CNN model YOLOv3-SPP(mAP: 73.03%) achieved the lowest prediction time (33.30 ms) with 

the highest frame rate (30.03 FPS) when tested on 125 different images where image complexity 

was considered by varying the number of objects from 0 to 399 images. The processing time of a 

single image must be lower than the camera passing time of a scene. Hardware-4 processed images 

faster than other hardware in our experiment which achieved lower processing time than the 

camera passing time of a scene. The overall performance of both models reached, increased when 

threshold values were near to 0.50. The threshold values such as 0.10, 0.20, 0.30, and 0.40 

enhanced the overall performance of models which, can be used in future experiments for real-

time detection. Model-1 detected a greater number of true positive (11246) than Model-2 (10181) 

and a smaller number of false positive (1392) and false negative (8927) compared to false positive 

(2110) and false negative (11030) of Model-2 at 0.50 IoU and confidence threshold. In terms of 

true positive detection, Model-1 outperformed Model-2. However, validation mAP of Model-2 

(72.36%) was slightly better than Model-1 (71.10%). The probable reason is the models were 

trained on two different datasets (Model-1: 2700 images; Model-2: 1800 images) however 

validated on a common dataset will need future investigation. A real-time automatic debris 
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separation system can be developed using these two models and Hardware-4 which would be a 

valuable addition to the wild blueberry industry for improving fruit quality by separating debris 

during harvesting. 
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CHAPTER 5: EVALUATION OF OPTIMIZED CNN MODEL FOR DEBRIS 

DETECTION ON THE IMAGES CAPTURED DURING HARVESTING 

Abstract 
 

A total of 300 images of which, 150 were of the side conveyor and 150 were of the rear 

conveyor were selected from a dataset. The images were selected randomly from the 1000 images 

which were collected from two different fields in Central Nova Scotia. Thirty different sample 

datasets each contained ten images; five images from side conveyor and five images from the rear 

conveyor. The images were labelled in darknet format to ensure the compatibility of the CNN 

(YOLOv3-SPP) for evaluation. The system was developed with the YOLOv3-SPP and 

incorporated with GeForce RTX™ 2080 Ti @ 1665 MHz graphics processing unit (GPU) card 

(NVIDIA, Santa Clara, CA) hardware. The system achieved R2 = 0.86, R2 = 0.81, R2 = 0.77, R2 = 

0.34, and R2 = 0.25% for green berries, ripe berries, leaves, stem and dirt respectively. There was 

no significant difference observed between system detection of green berries, ripe berries and 

leaves and manual detection of green berries ripe berries and leaves and yielded P = 0.593, P = 

0.061 and P = 0.641, respectively. However, there was a significant difference between system 

detection of stems, and dirt with the manual detection of stems, and dirt and achieved P < 0.001 

and P < 0.001 respectively. These results can help to deploy the system for real-time detection of 

leaves, stems, green berries, ripe berries, and dirt to monitor wild blueberry fruit quality. 

5.0 Introduction 
 

Wild blueberry (Vaccinium angustifolium Ait.) is a commercially managed horticultural 

crop native to northeastern North America. It is a biennial crop thus, vegetation is grown in the 

first year, and pollination and pruning occur in the following year. Wild blueberry fields were 

developed from deforested farmland, abandoned cropland, and fields. However, the improved 
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management practices (application of fungicides, herbicides, fertilizers, pollination, and pruning, 

etc.,) have changed the wild blueberry vegetation resulting in significant increases in plant 

densities, plant height, and fruit yield (Esau et al., 2018). This increased plant foliage reduces the 

fruit quality by entering into the storage bin during mechanical wild blueberry harvesting. 

Application of computer vision-based technologies are growing fast in different field of 

agriculture including yield estimation (Zaman et al., 2008), weed detection (Esau et al., 2018, 

Rehman et al., 2018), leaf disease detection (Mahmud et al., 2019), etc. because of its robust 

classification and automatic decision-making ability. Zaman et al. (2008) developed an automated 

yield monitoring system using computer vision techniques and achieved a high correlation 

between actual and predicted fruit yield with an R2 value of 0.99. Chang et al. (2012) developed 

an automated yield monitoring system for the double head mechanical wild blueberry harvester 

and observed high correlations (R2 = 0.94; P < 0.001; R2 = 0.95; P < 0.001) between the percentage 

of blue pixels of wild blueberry and actual fruit yield. The system achieved a higher R2 value of 

0.95 between actual and predicted fruit yield for two different fields. Mahmud (2019) also 

developed an artificial neural network (ANN) based on computer vision technology to detect 

powdery mildew disease in strawberry fields. The system yielded R2 of 0.93, 0.88, and 0.92 

between manual and automatic powdery mildew disease detection for three different fields. 

Computer vision-based technologies incorporated with deep learning (DL) can extract 

features automatically (LeCun et al., 2015). Manual feature extraction requires feature engineering 

skill and selection of redundant features may lead to decreased classification accuracy and 

increased computation time (Chang et al., 2012; Mahmud et al., 2019).  

Convolutional Neural Networks (CNNs) are a multilayer DL network that has been 

implemented by several researchers in precision agriculture (Granitto et al., 2002; Piedad et al., 
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2018; Tu et al., 2018). Schumann et al. (2019) also developed a wild blueberry maturity (unripe 

green, unripe red, and ripe blue) recognition system using YOLO (you only look once) CNNs and 

achieved 85.3% of mAP. Wang et al. (2018) classified sound and damaged highbush blueberries 

using two varieties of CNNs (ResNet and ResNeXt) and achieved 88.44% and 87.84% accuracy, 

respectively. Sun et al. (2019) developed soybean yield prediction using Long Short-Term 

Memory network and achieved R2 of 0.74 between predicted and actual yield in season and R2 of 

0.78 between predicted and actual yield in the end of the season. Gutiérrez et al. (2019) also 

developed a mango yield prediction system using a CNN and achieved R2 of 0.75 for field-based 

mango counting and R2 of 0.83 for image-based counting. Convolutional Neural Networks can 

also be used for monitoring wild blueberry fruit quality by separating debris from harvested 

berries. Automatic separation of debris during harvesting can increase cleaning line speeds at 

processing facilities and reduce fruit shrinkage. Thus, the automatic separation of debris in situ 

can be a valuable addition for the wild blueberry industry as a whole. 

5.1 Material and Methodology 
 

5.1.1 Data Collection 
 

A dataset containing 1000 images was collected from two different commercial fields in Central 

Nova Scotia termed as Debert site (45.4418°N, 63.4496°W) and the East Mines site (45.42713°N, 

-63.48186°W). Images were collected from 15th August 2019 to 31st August 2019 from morning 

to evening. The images were captured using two Logitech C920 webcam cameras (Logitech 

International S.A., Lausanne, Switzerland) mounted before and after the blower fan on a Doug 

Bragg Enterprises Ltd. (DBE) commercial mechanical wild blueberry harvester. A total of 300 

images, of them 150 images of side conveyor, and 150 images of the rear conveyor, were selected 
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randomly from the dataset. Thirty different subsets of the dataset were produced from 300 images 

and each set contained 5 images of the side conveyor and 5 images of the rear conveyor. The subset 

images were labeled in Darknet format to make it compatible with YOLOv3-SPP testing.  The 

objects of images such as ripe berries, green berries, leaves, stems, and dirt were labelled using 

custom software developed with the Lazarus compiler (https://www.lazarus-ide.org/) based on the 

classifiable appearance. The number of ground truths of ripe berries, green berries, leaves, stems, 

and dirt in each subset was counted and recorded using a bash script. 

5.1.2 YOLOv3-SPP Evaluation on the Images 

The model (YOLOv3-SPP; mAP-74.38%) was selected from the previous chapter-4. The 

YOLOv3-SPP was implemented for developing a debris detection system and evaluated using the 

subsets of the dataset. The fastest hardware was selected from chapter-4 and was used for 

evaluating the subset images. The hardware consisted of GeForce RTX™ 2080 Ti @ 1665 MHz 

graphics processing unit card (NVIDIA, Santa Clara, CA) installed with 64-bit Ubuntu 16.04 

(Canonical Group Ltd, London, UK). The batch size in the configuration file of YOLOv3-SPP was 

set to 1 because batch = 1 helps DL models to use less memory and achieve real-time performance 

(Bianco et al., 2018). The detection results of ripe berries, green berries, leaves, stems, and dirt 

were saved as a text (.txt) file for each subset of the dataset and then counted and recorded using 

a bash script. 

 

 

Figure 5-1. Flowchart of saving detection results of YOLOv3-SPP. 

Figure 5-2 showed the Graphical User Interface (GUI) of the debris detection system. The two 

windows of GUI represented side and rear conveyor view respectively. The system was detecting 

YOLOv3-SPP 

Algorithms 
Images Save detection results in a 

text (.txt) file 
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the target classes from the video feeds. GUI showing detection of leaves, stems, green berries, 

ripe berries, and dirt on videos was represented as 1, 2, 3, 4, and 5, respectively. 

 

Figure 5-2. Automatic detection of leaves, stems, green berries, ripe berries, and dirt using GUI 

5.1.3 Statistical Analysis 
 

A linear regression analysis was used to compare the manual detections (ground truths) with 

automatic system detection for 30 different subsets of the dataset using Minitab 19 (Minitab Inc. 

NY, USA) statistical software. The coefficient of determination (R2) was calculated to find out the 

correlation of automatic detection with ground truths. A paired t-test was also used to compare the 

mean of two measurements in Minitab version 19. 

5.2 Results and Discussion 
 

The linear regression analysis results showed correlations of automatic detection of leaves 

stems green berries ripe berries and dirt with ground truths (Figure 5-3). The system showed strong 

correlation (R2 = 0.86, P < 0.001, N = 30) between automatic detection and ground truths of green 

berries (Figure 5-3, (a)). The automatic detection of ripe berries was also strongly correlated (R2 = 

0.81, P < 0.001, N = 30) with ground truths of ripe berries (Figure 5-3, (b)). The automatic 

detection of leaves was strongly correlated (R2 = 0.77, P < 0.001, N = 30) with ground truths of 
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leaves (Figure 5-3, (c)). Lower correlation (R2 = 0.34, P = 0.001, N = 30) was achieved for stems 

detection by the system (Figure 5-3, (d)). Similarly, lower correlation (R2 = 0.25, P = 0.005, N= 

30) was achieved for dirt by the system (Figure 5-3, (e)). 

 

Figure 5-3. Automatic detection vs manual detection (ground truth). Automatic detection vs 

manual detection of green berries (a), ripe berries (b), leaves (c), stems (d) and, dirt (e). 
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Table 5-1 showed manual and automatic detection of classes. The automatic detection of 

green berries was not significantly different than manual detection (P = 0.593) (Table 5-1). Results 

showed there was no significant difference automatic detection of ripe berries (P = 0.061) with the 

manual (ground truth) detections of ripe berries (Table 5-1). The P-value (0.641) of leaves 

indicated that there was no significant difference between automatic and manual detection (ground 

truth) of leaves. However, the P-values < 0.001, and < 0.001 indicated that there was a significant 

detection difference between ground truth and automatic detection of stems and dirt detection 

respectively (Table 5-1).  

Table 5-1. Pair-wise t-test for manually and automatically leaves, green berries, ripe berries, 

stems, and dirt detection 

Classes Detection N Mean StDev 95% CI P-value 

Green-Berries Automatic 30 113.40 56.10 (93.90, 133.00) 0.593  
Manual 30 106.00 50.87 (86.43, 125.57) 

 

Ripe-Berries Automatic 30 695.90 266.80 (606.20, 785.60) 0.061  
Manual 30 574.90 221.90 (485.20, 664.60) 

 

Leaves Automatic 

Manual 

30 

30 

145.90 

133.30 

97.90 

109.80 

(107.80, 183.90) 

(95.20, 171.30) 

0.641 

Stems Automatic 30 9.16 3.71 (7.54, 10.78) < 0.001 

 Manual 30 14.26 14.26 (12.68, 15.88)  

Dirt Automatic 30 403.00 83.90 (371.20, 434.80) < 0.001 

 Manual 30 280.70 89.80 (248.90, 312.40)  

 

Figure 5-3 and Figure 5-4 showed automatic detection and manual detection (ground truth) of 

leaves, stems, green berries, ripe berries, and dirt respectively. In Figure 5-4 the system counted 

a total of 188 objects while a total of 263 objects were labelled (Figure 5-4). 
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Figure 5-4. Automatic detection of leaves, stems, green berries, ripe berries, and dirt on the 

image was represented as 1, 2, 3, 4, and 5, respectively. 

 

Figure 5-5. Image labeling using custom software developed with the Lazarus compiler 
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5.3 Conclusion 
 

Results concluded that automatic and manual detections of green berries, ripe berries and 

leaves were not significantly different. However, a significant difference was observed between 

automatic and manual detection of stems, and automatic and manual detection of dirt. The 

correlations R2 = 0.86, R2 = 0.81, R2 = 0.77, R2 = 0.34 and R2 = 0.25 were achieved for green 

berries, ripe berries, leaves, stems and dirt respectively. This developed system can be 

implemented and tested in realtime during wild blueberry harvesting which could be an important 

and valuable addition for the future development of an automatic debris detection system. 
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CHAPTER 6:  GENERAL CONCLUSION AND FUTURE RECOMMENDATION 
 

Wild blueberries are grown on over 55,000 hectares in Canada and more than 80% of that 

area is harvested mechanically (PMRA, 2005). Due to the continuous development of field 

management practices (i.e., application of fungicides, herbicides, fertilizers, pollination, and 

pruning, etc.,) augmented plant characteristics have resulted in increased debris in the harvester’s 

handling systems. This increases the quantity of plant debris and reduces berry quality during 

harvesting. A CNN based automatic debris separation technology can be a viable solution to 

monitor the quality of berries during harvesting.  

6.1 General Conclusion 
 

In chapter-3, three CNNs (YOLOv3, YOLOv3-SPP, and YOLOv3-Tiny) were 

implemented and compared for detecting leaves, stems, green berries, ripe berries, and dirt. The 

CNNs were trained and tested using an experimental dataset comprised of 1,000 images. The 

dataset was collected from 12 different plots in two commercially managed fields, the Debert site 

(45.4418°N, 63.4496°W) and the East Mines site (45.4412°N, -63.48186°W) in central Nova 

Scotia. The performance of CNN models was evaluated using precision, recall, F1-score, and mAP 

(%) values. The YOLOv3-SPP, YOLOv3, and YOLOv3-Tiny achieved 68.49%, 67.75%, and 

60.36% of mAP when trained and tested on the non-augmentation datasets. A total of five different 

color augmentation techniques (sharpening, brightness, contrast, gamma correction, and 

saturation) were used for determining the effects of data augmentation on accuracy. The 

combination of these techniques improved CNN accuracy (mAP) by 5.89%. YOLOv3-SPP 

achieved slightly higher mAP (74.38%) when trained and tested on the augmented dataset (T2). 
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In chapter-4, The two models (mAP-74.38%; mAP-73.03%) were selected from chapter-3 

and implemented on four different hardware to detect leaves, stems, ripe berries, green berries, 

and dirt within images. The processing time of each hardware and model combination was 

compared for investigating real-time performance. The combination of Hardware-4 and Model-2 

yielded fastest detection (33.30 ms) and achieved highest average frames per second (30.03 FPS). 

The slowest detection was achieved from Model-1 and Hardware-1 (12126.90 ms) which yielded 

the lowest average frame rate (0.80 FPS). The Model-2 achieved comparatively better mAP 

(72.36%) than Model-1 (71.10%) under 0.5 IoU and 0.25 confidence threshold. The effect of IoU 

and confidence threshold values on the overall detection of target classes were also examined by 

changing nine different IoU and confidence thresholds (0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 

0.80, and 0.90). The maximum mAP was achieved from Model-1 (85.90%) and Model-2 (86.10%) 

under 0.10 IoU and 0.10 confidence threshold. 

In chapter-5, the automatic detection was compared to the ground truth data. The system 

was developed using a YOLOv3-SPP (mAP-74.38%) model incorporating with GeForce RTX™ 

2080 Ti @ 1665 MHz graphics processing unit card (NVIDIA, Santa Clara, CA) hardware. The 

system yielded 0.86, 0.81, 0.77, 0.34, and 0.25 of R2 for green berries, ripe berries, leaves, stems, 

and dirt respectively. Among of the five target classes, the system detected green berries, ripe 

berries and leaves successfully at 5% level of significance i.e., significant difference was not 

observed between system and ground truth detection for green berries, ripe berries and leaves. 

6.2 Future Recommendation 
 

The result of this study suggests the ability to install the developed machine vision system 

on a mechanical wild blueberry harvester to monitor wild blueberry fruit quality. The developed 
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machine vision system has the potential to automate the speed and position of the debris cleaning 

brush to optimize berry quality. A feedback loop using the developed machine vision system could 

relay information from the hydraulic control system to precisely control the debris cleaning brush. 

The developed system could also be incorporated onto commercial berry processing units for 

automatic separation of leaves, stems, dirt, and green berries from ripe harvested berries and used 

for saving manual labour and costs required for manual separation. The system could be 

implemented for developing a multi air channel-based blower fan system for optimizing debris 

cleaning performance and enhancing harvester efficiency. The result of this study recommends 

evaluating the system in the wild blueberry fields during harvesting. The CNN based detection 

technology was introduced in this system but, the incorporation of object tracking technology in 

the system could be valuable for monitoring debris as well as tracking during harvesting. It could 

likewise be used for fruit and debris yield prediction. The fruit and debris yield can be calculated 

by multiplying average weight of fruit and debris with the total count of harvested berry and debris 

by the system, respectively. The existing GUI could be improved by adding buttons for opening 

and closing cameras, checkboxes for opening a specific camera, and a display section to show 

output information.  The GUI could be updated by using an advanced python module including 

PyQT, Tkinter, and wxPython (Summerfield, 2017). 

Several factors were not considered in this study which might affect detection accuracy of 

the developed system. The labelling of target objects was done by visual appearance, where 

labelling of dirt and stems class could be improved. Dirt, including sand, silt and clay on conveyors 

were labelled based on appearance.  The variable size of dirt particles might have caused lower 

detection accuracy (59.89%) for the dirt class shown in chapter-4. High resolution cameras with 

zoom lenses could be used for better detection of small dirt particles during harvesting. Stems 
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attached with leaves which were labelled as stems rather than their own class, Labelling leaves 

within stems could provide enough information to discriminate stems from leaves class. Those 

factors could be considered in future system development in order to improve debris detection. 
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Appendix a: Class average precisions (%) of YOLOv3, YOLOv3-SPP, and YOLOv3-Tiny 

for leaves and stems class on non augmentation dataset 

 

Leaves Stems Green Berries 

v3  SPP  Tiny  v3 SPP Tiny v3 SPP Tiny 

67.83 71.73 64.14 45.92 46.22 40.24 72.95 72.34 56.52 

70.67 75.29 64.69 67.27 52.86 60.07 76.84 80.62 60.45 

72.12 74.41 70.55 69.14 72.69 68.29 59.34 66.56 61.31 

69.19 69.99 62.11 45.71 57.98 43.37 73.15 76.61 43.73 

68.29 70.3 65.93 64.62 57.64 69.67 79.03 81.11 53.63 
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Appendix b: Class average precisions (%) of YOLOv3, YOLOv3-SPP, and YOLOv3-Tiny 

for ripe berries and dirt class on non augmentation dataset 

 

Ripe Berries Dirt 

v3  SPP  Tiny  v3 SPP Tiny 

79.72 78.00 75.74 66.42 64.63 55.42 

80.35 78.67 76.00 60.40 59.17 55.29 

77.57 77.08 79.11 59.58 57.70 52.99 

81.37 79.14 77.52 60.30 59.52 53.50 

84.55 84.97 79.24 61.81 62.98 53.39 
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Appendix c: F1-score and mAP (%) of YOLOv3, YOLOv3-SPP, and YOLOv3-Tiny on non 

augmentation dataset 

 

F1-score mAP 

YOLOv3 YOLOv3-SPP YOLOv3-Tiny YOLOv3 YOLOv3-SPP YOLOv3-

Tiny 

0.66 0.67 0.62 66.57 66.58 59.41 

0.64 0.65 0.60 71.11 69.32 63.3 

0.64 0.64 0.62 67.55 69.69 66.45 

0.67 0.68 0.62 65.94 68.65 56.05 

0.67 0.67 0.61 71.66 71.40 64.37 
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Appendix d: Class average precisions (%) of YOLOv3 and YOLOv3-SPP for leaves and 

stems class on T1 augmentation dataset 

 

Leaves Stems Green Berries Ripe Berries Dirt 

v3  SPP  v3 SPP v3 SPP v3 SPP v3 SPP 

71.91 81.21 52.57 65.42 71.14 72.23 81.62 82.07 61.83 61.96 

73.65 82.80 67.70 76.89 77.57 79.36 82.54 84.54 60.01 57.65 

74.24 81.95 43.67 67.27 71.82 74.68 82.61 83.14 61.76 58.72 

74.89 82.61 82.73 89.80 75.31 76.39 83.21 81.94 65.42 65.82 

76.41 80.65 81.77 79.49 68.67 71.54 85.28 84.93 67.80 65.98 
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Appendix e: F1-score and mAP(%) of YOLOv3, YOLOv3-SPP on T1 dataset 

 

F1-score mAP 

YOLOv3 YOLOv3-SPP YOLOv3 YOLOv3-SPP 

0.60 0.63 67.82 72.58 

0.61 0.65 72.29 76.25 

0.62 0.66 66.82 73.15 

0.61 0.63 76.31 79.31 

0.62 0.64 75.98 76.52 
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Appendix f: Class average precisions (%) of YOLOv3 and YOLOv3-SPP for leaves and 

stems class on T2 augmentation dataset 

 

Leaves Stems Green Berries Ripe Berries Dirt 

v3  SPP  v3 SPP v3 SPP v3 SPP v3 SPP 

76.88 79.55 65.73 68.95 80.97 80.11 83.29 84.73 63.28 64.52 

76.35 79.24 62.30 75.70 62.30 68.78 80.96 78.83 63.09 63.70 

74.12 78.28 59.05 72.43 76.01 78.36 83.07 83.88 64.94 66.56 

80.60 83.51 69.25 81.25 72.43 71.08 82.04 81.51 61.52 63.30 

79.35 80.40 74.08 79.83 78.98 76.10 83.88 83.81 66.19 68.57 
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Appendix g: F1-score and mAP(%) of YOLOv3, YOLOv3-SPP on T2 augmentation 

dataset 
 

F1-score mAP 

YOLOv3 YOLOv3-SPP YOLOv3 YOLOv3-SPP 

0.61 0.65 74.03 75.57 

0.63 0.66 70.80 73.25 

0.61 0.65 71.44 75.90 

0.62 0.66 73.17 76.13 

0.63 0.66 76.49 77.74 
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Appendix h: Prediction time on four different hardware and model combinations 
 

Hardware Models Prediction Time (ms) 

H1 M1 12.1038 

H1 M2 12.0929 

H1 M1 12.1779 

H1 M2 12.0843 

H1 M1 12.1319 

H1 M2 12.0719 

H1 M1 12.0513 

H1 M2 12.0203 

H1 M1 12.1695 

H1 M2 12.0127 

H2 M1 3.5498 

H2 M2 3.6579 

H2 M1 3.6757 

H2 M2 3.6498 

H2 M1 3.5390 

H2 M2 3.6101 

H2 M1 3.6452 

H2 M2 3.6112 

H2 M1 3.6331 

H2 M2 3.5992 

H3 M1 0.8365 

H3 M2 0.8449 

H3 M1 0.8381 

H3 M2 0.8371 

H3 M1 0.8351 

H3 M2 0.8312 

H3 M1 0.8244 

H3 M2 0.9498 

H3 M1 0.8220 

H3 M2 0.8806 

H4 M1 0.0341 

H4 M2 0.0323 

H4 M1 0.0335 

H4 M2 0.0329 

H4 M1 0.0342 

H4 M2 0.0327 

H4 M1 0.0341 

H4 M2 0.0343 

H4 M1 0.0344 

H4 M2 0.0344 
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Appendix i: Automatic detection of leaves, stems, green berries, ripe berries, stems, and 

dirt with corresponding ground truth 

  

Leav

es 

GT Stems GT Green GT Ripe GT Dirt GT 

266 365 9 16 36 17 486 533 332 216 

253 373 6 14 54 41 519 517 291 234 

254 277 14 12 92 69 570 576 290 137 

306 368 16 17 90 128 642 676 286 196 

274 325 4 15 146 128 744 728 304 130 

73 62 15 20 58 47 319 257 324 195 

68 73 10 15 29 32 214 253 317 349 

70 67 10 10 25 30 186 197 294 331 

76 66 7 9 45 50 231 221 291 311 

64 91 9 6 40 53 253 270 344 341 

93 107 6 11 196 150 798 551 401 418 

99 91 6 11 204 159 810 478 448 319 

115 81 2 9 203 173 744 428 490 337 

128 105 5 1 210 172 771 492 560 281 

87 85 6 8 167 165 578 533 459 311 

95 34 15 22 172 168 664 506 529 343 

87 51 13 23 168 163 665 502 508 297 

72 25 11 19 156 132 739 477 464 267 

80 66 17 21 105 102 771 541 512 304 

83 54 9 22 95 68 753 616 503 419 

81 63 9 17 87 78 720 591 459 374 

89 69 9 17 68 42 714 570 399 324 

106 94 11 16 78 98 767 650 489 421 

145 102 7 16 105 99 873 682 464 338 

145 112 5 15 134 116 940 718 413 310 

162 121 8 10 110 119 982 745 401 285 

164 104 8 12 103 130 1020 900 392 241 

162 131 7 15 128 150 1095 1100 387 178 

173 92 9 15 137 120 1174 990 402 141 

506 344 12 14 162 181 1134 950 337 72 

 

 


