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Abstract

Teleoperation of multiple robot manipulators has been one of the most popular re-

search areas in the robotics research community for the last couple of decades. Such

complex systems can be decoupled into two subsystems, namely, multi-agent systems

(MASs) and teleoperation systems.

In addition to the high nonlinearity of the networked multi-manipulator systems,

deleterious effects, caused by network-induced constraints and the lack of exact robot

modelling information, can make the control systems’ desired performance and sta-

bility difficult to achieve. To meet these challenges, concepts from the non-singular

terminal sliding mode (NTSM) control method are developed to achieve the exoge-

nous disturbance rejection and the finite-time full-pose synchronization. Additionally,

a new adaptive NTSM (ANTSM) scheme is designed for multi-manipulator systems

where the models may be initially uncertain or slowly varying over time. To further

improve the performance, a set of novel techniques are developed, including the use

of novel mixed-type feedback, time-varying logistic-function-based control gain, and

energy-index-based neighbour selection policy. The proposed ANTSM approach has

also successfully been applied to the teleoperation control systems. In addition, the

master manipulator uses a force predictor to estimate the real-time environmental

force on the slave side so that the direct transmission of the force signals is avoided.

The proposed approaches for the MASs and teleoperation subsystems are inte-

grated into a single-master-multiple-slave manipulator system. Simulation and ex-

perimental results validate the efficacy of the proposed schemes.

xii



List of Abbreviations and Symbols Used

Acronym

ANTSM Adaptive Non-singular Terminal Sliding Mode.

AST Active Switching Topology.

CD-UKF Continuous-Discrete Unscented Kalman Filter.

CoM Center of Mass.

D-H Denavit-Hartenberg.

DOF Degree(s) of Freedom.

E-L Euler-Lagrange.

Fuzzy-SMC Fuzzy Sliding Mode Control.

IP Internet Protocol.

IQR Interquartile Range.

IWD Inverse Wishart Distribution.

LAN Local Area Network.

MASs Multi-Agent Systems.

MIMO Multi-Input-Multi-Output.

MMMS Multiple-Master-Multiple-Slave.

MMSS Multiple-Master-Single-Slave.

NTSM Non-singular Terminal Sliding Mode.

PCWF Point-Contact-With-Friction.

P-like Proportional-like.

PD Proportional-Derivative.

PRL Percent Reference Level.

PST Passive Switching Topology.

Rpost Post-Transition Aberration Region of a Wave Form.

Rpre Pre-Transition Aberration Region of a Wave Form.

RBFNN-ASMC Radial Basis Function Neural Network based Adaptive Slid-

ing Mode Control.

xiii



RFI Radio Frequency Interference.

SMC Sliding Mode Control.

SMMS Single-Master-Multiple-Slave.

UDP User Datagram Protocol.

UKF Unscented Kalman Filter.

Chapter 3

A Adjacency matrix indicating the network connectivity be-

tween the followers.

b Adjacency matrix indicating the network connectivity be-

tween the leader and the followers.

q Angular position vector of a robot manipulator’s joints.

w Angular velocity.

ξ∗ Conjugate of ξ.

C Coriolis and centrifugal loading matrix in joint space.

C Coriolis and centrifugal loading matrix in task space.

C̄ Known nominal Coriolis and centrifugal loading matrix in

task space.

τ Control input in joint space.

u Control input in task space.

τ e Equivalent environment torque exerted on the manipulator.

Tij(t) Equivalent delays resulting from network delays and packet

loss.

f f Frictional force.

G Gravitational loading vector in joint space.

g Gravitational loading vector in task space.

T2
1 Homogeneous transformation from the frame o1x1y1z1 to the

frame o2x2y2z2.

Jp, Jo Jacobian matrices for translational and angular operations,

respectively.

xiv
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Chapter 1

Introduction

In this chapter, we will introduce some basic information and necessity to study the

cooperation and teleoperation of robot manipulator systems.

1.1 Robot Manipulation Systems

A robot manipulator (or robotic arm) is an electronically controlled mechanism used

to manipulate materials without direct physical contact by the human operator. The

arm-like mechanism usually consists of a series of sliding or jointed segments with one

fixed end and one free end to perform a given task. In this text, the robot manipulators

will refer to those of rigid bodies. There are different criteria to categorize robot

manipulators. One common way to classify robot arms is by the number of degrees of

freedom (DOFs) determined by the number of joints [1]. Fig.1.1 shows three examples

of serial manipulators classified by DOFs with their joints indicated. A manipulator

should possess at least six independent DOFs in order to reach an arbitrary pose

(translation position and orientation) in its work environment.

Joint 1 Joint 2

(a) 2-DOF

Joint 1

Joint 2

Joint 3

Joint 4

(b) 4-DOF

Base joint

Shoulder joint

Elbow joint

Wrist joint 1

Wrist joint 2Wrist joint 3

(c) 6-DOF

Figure 1.1: Examples of robot manipulators with different DOFs: (a) QUANSER 2
DOFs Serial Flexible Link [2] ; (b) QUANSER QArm 4 DOF serial robotic manipu-
lator [3]; (c) Universal UR3e 6 DOFs robotic manipulator [4].

Robot manipulators are extensively used in the industrial setting for tasks that are

repetitive or exceed the speeds and accuracies of human operators. Applications vary

1
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from assembly tasks in the auto industry to picking and packaging tasks in the food

industry. In those applications, manipulators are not required with high autonomous

ability, and, therefore, are reliable and easy-to-use. Three examples of the industrial

manipulator applications are shown in Fig.1.2. Robot manipulators also have many

other specialized applications that require a higher level of autonomy. In recent years,

techniques of multi-sensing systems and artificial intelligence (AI) developments, like

machine learning (ML) and deep learning, have significantly improved the autonomy

of robotic arms in performing complex tasks. For example, household robots assist

people who need daily physical assistance in getting dressed [5].

Industrial robots (including other types of robots) play a critical role in economic

development worldwide. The preliminary statistics of new World Robotics Report

shows that a new record high of (first time) over 400,000 units were shipped globally

as of 2019, and this number is expected to increase to 584,000 units by the year of 2022,

an increase of +12% on average per year [6]. In 2020, the Coronavirus (COVID-19)

pandemic was reportedly predicted to cause a global economic crisis, and industrial

robots are believed to play a vital role in automating production to speed up the

post-Corona economy. Therefore, research on industrial robotics continues to be of

significant economic meaning in the near future.

(a) Assembly parts (b) Welding automation (c) Cheese picking

Figure 1.2: Industrial applications of robot manipulators: (a) ABB FRIDA dual-
armed robot for assembly tasks [7]; (b) An ABB IRB2400-robot for welding tasks [8];
(c) The PixCell robotic picking unit for the cheese packing [9].

The study of robot manipulators involves dealing with the positions and orien-

tations of the several segments that make up the manipulators. Generally, research

on robot manipulator includes topics such as hardware configurations, mathematical

modelling, control systems, sensing systems, and path planning strategies. Also, new
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research interests keep emerging as robot manipulators have been innovatively used

in many interdisciplinary research areas to improve productivity and safety.

1.2 Multi-Agent Systems

Multi-agent systems (MASs) is a computerized system composed of multiple agents

interacting in the environment. In robotic systems, a group of interconnected robots

exchange information in order to collaboratively perform specific tasks that are be-

yond a single robot’s ability. To define the properties of systems of interacting robots,

the use of graph theory [10] is seen to be advantageous because of its well-studied

definitions and algorithms. During the task implementation, data exchanging on the

fly helps share loads and coordinate the motion of robots ensemble. Network commu-

nications can be classified into explicit communication, implicit communication and

the hybrid of these two communications [11].

� Explicit communication: The agents’ information is directly given and ex-

changed through the physical connection that is established using either cable

media or wireless media.

� Implicit communication: A robot acquires other robots’ data by observing

with onboard sensors, such as visual devices.

� Hybrid communication: Using the combination of explicit communication

and implicit communication to gain rich information and reduce the transmis-

sion complexity.

However, in real-world networks the robot interactions inherently time-delayed. Net-

work delays existing in the communication channels make one robot react sluggishly

to the change of its neighbours’ states, and, therefore, the performance in terms of

accuracy may degrade. In addition, other network constraints such as weak connec-

tivity, packet loss, and out-of-order packet arrival can lead to undesired performance

and even complete failure. Therefore, the robots’ stability and performance under

network constraints have become essential subjects in studying MASs.

MASs implemented by robot manipulators are usually studied with the goal of

consensus, tracking synchronization, or cooperative tasking.
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� Consensus control: For multiple robot manipulators with arbitrary initializa-

tions, consensus control aims at driving the robots’ states to reach a common

agreement by exchanging information with a certain communication protocol.

In the industrial setting, consensus control approaches are usually implemented

by mobile manipulators with tasks like transportation, navigation, or obstacle

avoidance.

� Tracking synchronization: Unlike the consensus control, the tracking syn-

chronization is discussed with a prescribed reference. The objective is then to

drive the robots’ states towards the given reference signals. One of the tracking

synchronization frameworks is in a leader-following structure, which has been

broadly applied in applications with specific and preplanned tasks.

� Cooperative Tasking: In the cooperative manipulation, robots ensemble may

be assigned with different yet cooperative subtasks. By respectively realizing the

subtasks through multiple robot manipulators, more complex and delicate tasks

can be carried out. However, it introduces more complexity in the control design

because they involve more challenging procedures such as motion distribution,

load distribution, and internal force minimization.

1.3 Teleoperation Systems

Teleoperation systems involve the interactive manipulations of a master-slave sys-

tem where the master information is transmitted to instruct the slave manipulation

systems in a remote site. The environmental forces (and/or other primary sensory

elements such as vision and sound) are fed-back to the master side provide the human

operator with the situational awareness of the remote environment. Teleoperation is

most commonly associated with robotics, and, together with the telepresence, make

up the two major subfields of telerobotics. There is a notable interest in so-called

bilateral teleoperation where the teleoperation and telepresence are usually studied at

the same time. Through the bilateral teleoperation, human operators can control a

robot at a distance and, meanwhile, feel present in the remote environment. However,

the human operators’ experience is inevitably affected by network constraints such
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as network delays. Therefore, a great deal of effort seeks to improve the operation

accuracy and enhance the human operator’s instant immersion under time delays.

Bilateral teleoperation has broad industrial applications, such as explosive removal

[12], underwater exploration and inspection [13], and medical surgery [14]. Three

popular industrial applications are described as follows.

� Hazardous applications: Robot manipulators operated by a person from a

distance have been used in hazardous environments to minimize the human op-

erator’s risk. Hazards may come from the handled objects or the environments.

Through the remotely controlled robots, humans are able to work effectively

from a safe environment. A large variety of applications have demonstrated

the effectiveness of teleoperation, such as the hazardous material handling and

transportation (e.g., NBC (nuclear, chemical, biological) operations), landmine

detection and eradication, land excavation, and hazardous material [15].

� Space applications: Remotely manned robots in space can serve as the assis-

tants of astronauts to perform in planetary and lunar scientific missions. The

use of telerobots for space operation significantly reduces the cost and risk in

complex environments arising from the weightlessness, vacuum, and extreme

temperature. Because of the difficulty of designing fully autonomous space

robots, it would be preferable to be supervised by human operators in the space

stations or on the ground. However, the inherent communication constraints

(such as large communication delays) pose significant challenges for outer space

teleoperation, which motivate plenty of developments in terms of the flexibility

and efficiency of the robotic process under the communication complexity and

extreme environmental conditions.

Some highly capable telerobotic systems that are already on the market are (1)

Dextre, which is a two-armed telemanipulator, is part of the Mobile Servicing

System on the International Space Station (ISS) and designed to perform orbital

replacement units [16]; (2) Canadarm 2, which is a 17-metre-long robotic arm

that is designed to perform Station maintenance and payloads in space [17]; (3)

The European Robotic Arm (ERA) is a telerobotic arm with specific tasks like

inspecting the station and handling external payloads [18].
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� Medical applications: Medical telerobotic systems allow procedures, such as

surgeries, treatments, and diagnoses, to be conducted by the physicians from

a distance. A robot surgical system generally includes at least one surgeon-

controlled robot manipulator, a master controller (also called the console), and

a sensory system that provides the surgeon with the feeling of being in that

other location. On the remote side (or patient side), it includes a robotic sys-

tem to embody the human gestures to perform medical tasks. Additionally, a

multi-sensory integration system collects information of the environment and

the tasks and feeds back it to the master side, which provides the telepresence

of human operators. Medical telerobotic systems can relieve the burden of sur-

geon shortage and allows the expertise of specialized surgeons to be available

to patients worldwide with less concern about the physical location limitation.

The development of sensory systems also improves the safety and accuracy

when the area of operation is limited. Some telerobotic medical systems with

successful clinical applications are Telelap ALF-X Endoscopic Robotic Surgical

System [19], ZEUS robotic surgical system [20], da Vinci Surgical System [21],

etc.

1.4 Research Motivation

Single-master-multiple-slave (SMMS) manipulation systems combine the benefits of

teleoperation systems and MASs. However, nonlinear control of an SMMS system

remains a challenging problem as it involves the coordination of slave arms as well

as the real-time interaction between the master side and the slave side. The SMMS

systems have less been discussed due to the control complexity. Nevertheless, it is of

significant meaning to investigate such systems to improve the robots’ load capacity,

rigidity, and dexterity.

Information sharing is a critical process in an SMMS system as the promptness and

quality of the shared states determine the stability and performance of the system.

In practice, however, the transmited data is usually time-varying and time-delayed,

which gives rise to adverse consequences such as horizontal shift effect. When the

communication network is weakly connected [22, 23], the horizontal shift effect exac-

erbates as those who have no direct connection with the leader, for example, must
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rely on the delayed states of their connected neighbours, and, therefore, do not re-

act to the change of the leader until the leader information has been passed through

multiple delays. In nonlinear control of the networked multiple slave manipulators,

the complete pose regulation has been another challenge. The position dynamics and

orientation dynamics are highly coupled, which leads to the difficulty of simultane-

ously controlling the position and orientation. In the situations where heterogeneous

manipulators are used, the quality (e.g., accuracy, noise level, etc) of neighbour sig-

nals may vary. As a result, updating a well-performing agent’s states based on the

low-quality neighbour information can impair the performance of this agent, and,

furthermore, that of the overall MASs.

The limitations described above motivate the developments introduced in Chapter

4. The control strategies should be able to solve the following questions to improve

the motion synchronization performance of multi-manipulator systems.

� How to efficiently reduce the delay-induced horizontal shift effect to improve

motion tracking accuracy?

� How to design a nonlinear controller to realize full-pose synchronization control

of a networked multi-manipulator system?

� How to identify a bad-performing neighbour robots and reduce its effect on the

otherwise well-performing agents?

Control developments for the SMMS system in this work are based on the concept

of the sliding mode control (SMC) method. Conventional SMC approaches that are

applied to networked systems heavily rely on the exact mathematical models of the

robots and network systems. However, the exact mathematical models is hard to ac-

quire. Therefore, to apply the SMC method to physical robot manipulation systems,

the controller should be further developed to deal with unknown network constraints

(e.g., time-varying delays), model uncertainties, and external disturbances.

In many sliding mode control approaches, the control gains are usually selected

constant and larger than necessary to guarantee the robustness. However, due to

the mechanical limitations in many robotic devices (e.g., the limited motor input

range), using high switching gains may result in high control energy. Excessive me-

chanical energy in the system can lead to the significant chattering, oscillations and
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large tracking errors. On the other hand, small switching gains may not be able to

counteract the static friction and, thus, decrease the tracking accuracy in the steady-

state phase. Therefore, there is a notable interest in time-varying switching gains in

the SMC approaches in many previous work. However, they are usually given as a

function of the difference between the current states and the prespecified trajectories.

Consequently, in startup operations, large initial tracking errors can result in high

control gains that cause significant overshoots/undershoots or large control input that

is beyond the motors’ input restriction. Unfortunately, the system performance with

a time-varying gain during the transient phase has not been well discussed.

The above limitations on the unknown model uncertainties and time-varying con-

trol gains motivate the developments in Chapter 5 to address the following questions:

� How to achieve stability and desired motion tracking accuracy for a networked

multi-manipulator system where the upper bounds of the time-varying delay

and modelling uncertainties are unknown?

� How to design time-varying control gains to obtain a good trade-off between a

smooth convergence and a high tracking accuracy in the physical implementa-

tion of the ANTSM controller?

The challenging questions for the MASs also apply to the teleoperation subsystem

when the ANTSM control approach is used. In addition, telerobotic systems are

required to provide the human operators with prompt situation awareness of the

remote environment. In this work, we will only consider the haptic sense so that

force information from the slave side is required to send to the master side. In

the earlier chapters, only the motion consensus control or tracking synchronization

control is considered for a multi-manipulator system. Nevertheless, in an SMMS

system, considering the coordination of the slave manipulators allows more dexterous

operations and more complex tasks, although cooperative control strategies are more

challenging to design. Control strategies for SMMS systems are largely based on

the successful developments for the MASs and the teleoperation systems. Therefore,

in addition to the motivations in the earlier chapters, the two following questions

promote the control developments in Chapter 6 and Chapter 7, respectively.
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� How to predict the environmental force for the human operators with less af-

fected by network delays?

� How to well distribute the time-varying motion and allocate load to the slave

manipulators with a goal of minimizing the internal wrench exerted on the

manipulated tasks?

1.5 Thesis Outline and Contributions

This work is organized as follows. Chapter 1 presents the background information

on robot manipulator systems, multi-agent systems, and teleoperation systems, fol-

lowed by the motivations and contributions of this dissertation. Chapter 2 presents

the literature review of the existing control schemes for MASs, teleoperation systems,

and SMMS systems. Chapter 3 describes the terminology and theory of robot manip-

ulators, network communications, and control methods used in this work. Chapter

4 presents a developed NTSM scheme to ensure the leader-based pose synchroniza-

tion of a group of nonlinear manipulators that are subject to network delays and

weakly connected topology. An novel ANTSM control method is developed for a

multi-manipulator system in Chapter 5 and a bilateral teleoperation system in Chap-

ter 6, respectively. In Chapter 7, an SMMS manipulation system is built based on

the techniques developed for the multi-manipulator system and the bilateral teleop-

eration system in the earlier chapters. Chapter 8 summarizes the conclusions of this

work and suggests areas for future research.

Contributions of the developments in this work are described as follows.

1. Reducing the phase-shift effect in leader-based pose synchronization

using novel mixed-type feedback signals in the NTSM controllers: In a

network-delayed leader-following manipulation system, unlike many previous studies

where a static leader is assumed [24], we consider a more realistic condition where the

leader is dynamical and globally reachable. This, however, introduces a phase-shift

effect under network delays. In Chapter 4, we proposed an NTSM control approach to

significantly reduce the phase-shift effect using the novel mixed-type feedback signals.

In addition, a sufficient condition that ensures the accuracy improvement by using

the mixed-type feedback signals is developed in Chapter 5 .
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To control the end effector’s poses, concepts of the unit quaternion from [25, 26]

are used to represent the orientations, which significantly reduces the design com-

plexity of the full-pose tracking synchronization control. Compared to [25,26] where

the orientation regulation represented by unit quaternion is addressed for a single

manipulator, in Chapter 4, we successfully apply the unit quaternion representation

to the NTSM full pose control for a multi-manipulator system. Besides, multiple

effects on the tracking performance in terms of upper error bounds are quantitatively

evaluated.

2. Reducing noise propagation using a mechanical-energy-based neigh-

bour selection policy: In a networked multi-manipulator system, we introduce an

active neighbour selection policy by monitoring the temporary mechanical energy of

the manipulation system. In contrast to the results in [27] and [28] where the active

neighbour selection strategy aims to reduce the communication complexity and com-

putation load for MASs of a large number of agents, the real-time active neighbour

selection approach in Chapter 4 is designed to reduce the unnecessary noise propa-

gation through a nonlinear, small-volume, and networked multi-manipulator system.

This new approach enables a multi-manipulator system to manage neighbour inter-

actions so as to improve tracking accuracy. Additionally, to lessen the dependability

on imperfect or unavailable velocity and acceleration readings, a CD-UKF method is

successfully used to estimate the manipulator states.

3. Adaptive NTSM control scheme for nonlinear manipulation systems

subject to initially unknown parameters: To address the deleterious effects

caused by the initially unknown parameters, such as dynamic uncertainties, frictions,

external noises, and time-varying network delays, the proposed NTSM controller is

further developed into an ANTSM control method. The ANTSM method does not

require a priori information about the bounds on these uncertain and time-varying

parameters. Additionally, in the proposed ANTSM controller, three novel compen-

satory bounds are estimated in real-time to compensate for the state errors induced

by the system nonlinearity and time-varying network delays. Compared to the most

similar work in [29–31] where a basic ANTSM control method is proposed for only

one manipulator, we successfully apply the proposed ANTSM scheme to regulate the

tracking synchronization of a multi-manipulator system in Chapter 5, the bilateral
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master-slave teleoperation in Chapter 6, and the implementation of an SMMS ma-

nipulation system in Chapter 7. Detailed Lyapunov-based stability and convergence

analysis are provided. Simulation results in comparison with other model-free and

model-based control methods present the performance improvement of the proposed

control approaches. Experimental results of the Phantom Omni haptic devices are

also provided to demonstrate the effectiveness of the developed controllers.

4. Obtaining smooth convergence and high tracking accuracy using the

ANTSM controller with a logistic control gain function: In the experimental

testing in Chapter 5, a constant ANTSM switching gain cannot simultaneously guar-

antee a smooth convergence in the transient phase and high tracking accuracy. This

inadequately addressed issue can be solved efficiently by the proposed time-varying

switching gain that is state-independent and designed in a logistic form. Compared

to many previous results where the time-varying switching gains in SMC controllers

are given as a function of tracking errors for the purpose of chattering reduction and

energy saving [30, 31] , the time-varying ANTSM control gain in this work is devel-

oped to help the robots with arbitrary initial positions smoothly converge to desired

reference signals without significant overshoots/undershoots, and, meanwhile, achieve

high steady-state tracking accuracy.

5. Teleoperation control of a cooperative multi-manipulator system us-

ing the ANTSM control approach: In Chapter 7, we successfully integrate the

developments from the earlier chapters and apply them to an SMMS manipulation

system. The ANTSM control approach guarantees the stability and the manipulation

objective. Compared to [32, 33] where the SMMS system is constructed to remote

control a group of slave robots with simple task motion synchronization, the slave

robots of the SMMS system in this work implement the task cooperatively. There-

fore, we additionally consider the load distribution to avoid significant internal force

exerted on the manipulated object. Compared to [34] where the exact robot model

and perfect network communication are assumed for an SMMS manipulation system,

the proposed ANTSM control approach can tolerate plant modelling uncertainties and

cope with inexactly known and time-varying network delays. Additionally, the use

of an optimal wrench allocation strategy can compensate for the additional internal

torque exerted on the object.
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Literature Review

This chapter begins with a brief overview of the typical sliding-mode-based control

methods with applications to robot manipulators. Additionally, control strategies for

multi-manipulator systems and SMMS systems are reviewed with focus towards the

challenges most relevant to this work.

2.1 Sliding Mode Control

In the practical robotic control problem, it is inevitable to deal with the effects caused

by the discrepancy between the mathematical models and their actual physical sys-

tems, such as the plant parametric uncertainties and external disturbances. This

has led to intense interest in developing of robust control methods for both linear

and nonlinear systems. One of the robust control techniques is the SMC scheme.

The control action switching at a high frequency (termed sliding mode) is efficient

in control of high-order nonlinear dynamic systems in the presence of unknown but

bounded noises.

Since the SMC scheme has also been proved to effectively cope with the parametric

uncertainties for the complex multi-input-multi-output (MIMO) nonlinear systems, it

has been widely studied in robot manipulators with multiple DOFs. Earlier research

in [35,36] outlined the SMC design procedures for the trajectory regulation of multi-

joint robot manipulators. [37] shows that using the Euler-Lagrange (E-L) formulation

to model robot manipulators greatly facilitate the practical design of sliding mode

control scheme, to deal with external disturbances and unstructured model uncertain-

ties, despite the nonlinear interactions and unknown parametric changes. However, a

well-known disadvantage of the SMC approach is the chattering effect due to the slid-

ing mode. The high-frequency switching in the control input may damage the robot

and decrease the robots’ life expectancy. Therefore, extensive research has been made

to reduce the chattering effect in the SMC methods [38–40]. However, the benefits of

12
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the chattering reduction usually come at the cost of accuracy loss.

The SMC techniques can drive the robots’ states towards the desired setpoints

or trajectories in a finite time, and the convergence rate is adjustable by tuning the

control parameters. However, conventional SMC methods fail to drive their system

states to zero in a finite time because of high-frequency switching behaviour. The

first attempt can be seen in [36] where the high-frequency chattering effect is effec-

tively reduced by using the continuous control laws to approximate the discontinuous

control law. As a result, a smooth convergence of the control states to zero can be re-

alized. An alternative approach to realize the finite-time state convergence to zero is

the technique called terminal sliding mode control (TSMC). The TSMC method has

been developed for single-input-single-output systems [41] and MIMO systems [42].

Furthermore, the non-singular terminal sliding mode (NTSM) schemes have been de-

veloped to control nonlinear rigid robotic manipulator systems to avoid mathematical

singularities [42, 43].

Although the NTSM approaches, as well as the conventional SMC methods, make

the robotic systems insensitive to the unknown model conditions, the bounds of the

unknown conditions are required as a prior. This assumption can be removed by ap-

plying the adaptive control technique to the design of the SMC control methods [44].

Z. Man, et al. [29] proposed an ANTSM control method to estimate the boundary

of the uncertainty and the disturbance and, therefore, the prior information of the

bounds is no longer required. However, the ANTSM control design remains a chal-

lenging issue for networked systems in the presence of time-varying delays, parametric

uncertainties and disturbances with unknown bounds.

2.2 Control of Multi-Manipulator Systems

MASs have been broadly applied to different research areas. In this section, we focus

on reviewing some control challenges of MASs in robotic applications. Three most

relevant control issues, namely, phase shift effect, full-pose control, and neighbour

selection, are reviewed as follows.

In practice, transmitting data in a networked multi-manipulator system may suffer

from significant time delays, leading to adverse consequences, such as the instability

and the large internal force/torque. Although the passivity-based control approaches
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have been used to make the systematic stability insensitive to network delays, assump-

tions of a constant/static reference signal are usually made to avoid the consideration

of the horizontal shift effect1 between the tracking signals [45–47]. Provided a time-

varying leader trajectory in a time-delayed and weakly connected leader-following

system [22, 23], the horizontal shift effect becomes evident as the followers that have

no direct connection with the leader must rely on the delayed states of their connected

neighbours. Consequently, those followers cannot react to the leader’s change until

its information has been passed through multiple delays. Therefore, seeking a new

control scheme to alleviate the horizontal shift effect has become necessary in order

to improve the robots tracking performance.

Since the assumption of a constant/static leader in network-delayed MASs cannot

be met in all applications, some leader-based tracking control approaches with a time-

varying leader trajectory have been developed in [48–51]. There are two typical types

of feedback signals considered in the controller design of networked MASs, namely,

feedback signals without self-delay and feedback signals with self-delay [52]. Effects of

using different types of feedback are described as follows.

� Feedback signals without self-delay: Controllers designed from the feed-

back signals without self-delay are superior in maintaining stability, while the

tracking performance degrades. The main reason is that the current states of

the system are constantly forced to track the delayed signals. In other words,

the tracking is less accurate when network delays increase.

� Feedback signals with self-delay: Using the feedback signals with self-delay

in the controller effectively reduces the phase shift effect. The self-delay length

can be either identical or different to the real network delays [52]. In contrast to

the feedback signals without self-delay, controllers using feedback signals with

self-delay help reduce the phase shift effect, but, however, make the system

prone to being unstable, especially when the communication delays are long.

Motivated by different effects of the feedback signals, control policies proposed in [50]

incorporate different types of feedback signals into a proportional controller with

1In this work, the term horizontal shift is used by assuming that the signals considered are
periodic.



15

weighting coefficients, providing a trade-off between the tracking accuracy and the

stability. However, the network delays tend to be time-varying, and the magnitude is

not exactly known, resulting in the common use of feedback signals with inexact self-

delays, such as the estimated delays [53], the average delays [54], or otherwise [55].

Then, the resultant errors caused by the discrepancy between the inexact self-delays

and the actual delays can be treated as unknown but bounded disturbances [54].

Another control challenge in multi-manipulator systems is the complete pose (po-

sition and orientation) control. Kinematics and dynamics of the position and the

orientation are highly coupled, giving rise to the difficulty of controlling the position

and the orientation simultaneously. In control of the orientation, using the 3× 3 ro-

tation matrix is difficult to extract error vectors. The reason is that the nine entries

are not independent but highly related by six constraints caused by the orthogonality

condition [56]. Therefore, to facilitate the controllers design for the pose regulation,

concepts of minimal parameterizations are adopted in the orientation calculations.

Popular minimal parameterizations include Euler angle [57], angle/axis [58], and unit

quaternion (also called Euler parameters) [15]. The minimal parameterizations have

less parameters and constraints, and, thus, decrease the computation complexity in

the expression of the orientation. The Euler angle and angle/axis have been broadly

used in mobile robot control problems [59–61]. However, they may give rise to is-

sues like singularities and discontinuity at certain points when mapping the rotation

matrix to the Euler angle or the angle/axis. Fortunately, this drawback can be well

dealt with using the unit quaternion representation that is singularity-free. Using

the unit quaternion representation enables the decoupling control of the position and

orientation, and, thus, facilitates the pose control design and its analysis [25,26]. Al-

though some attempts have been made for the full pose control of MASs using unit

quaternion [24,62], there remains a need for cooperative controllers that can regulate

the full pose of a class of nonlinear multi-manipulator coordination systems in the

presence of network delays.

In the leader-following MASs, active neighbour selection strategies have received

considerable attention for tracking control tasks. The real-time and reliable network

communications allow a robot to have multiple stable connections with its neighbours

and/or the leader, which enhances the robot’s situation awareness. In the majority
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of previous control approaches, all the transmitted data is immediately used in the

control design. However, the quality (e.g., accuracy, noise level, etc.) of the neigh-

bour signals may vary. Therefore, updating a well-performing agent’s states based

on the low-quality neighbour’s information can impair the performance of this well-

performing agent, and, furthermore, the overall MASs. For this reason, it would be

helpful to consider a neighbour selection strategy to optimize the interaction between

robots.

A great deal of research has studied the changing network connections in MASs

(i.e., switching topology). However, they are essentially caused by the dynamical

connections/disconnections of physical network transmissions over time. Network

arrangement with such switching behaviour is referred to as Passive Switching Topol-

ogy (PST). In many PST cases, efforts seek for the control stability under all possible

topologies [63, 64]. Xie and Wang [65] proposed Active/Strategic Switching Topology

(AST) by intentionally selecting two neighbours’ states for each agent. This method,

however, is more applicable for MASs with a large number of agents since it aims

to reduce the communication complexity/cost [27, 65, 66]. Control approaches with

AST for networked MASs with a small number of agents, such as multi-manipulator

systems, have not been thoroughly studied. In addition, we have not encountered any

work that encompasses the AST approach in a multi-manipulator system context to

address the large tracking inaccuracy induced by the nonlinear state estimators.

2.3 Control of SMMS Systems

Although the autonomous multi-robotic systems could perform many high-level tasks,

fully autonomous operation of the robot manipulators in unstructured environments

is extremely difficult in the present day. Nevertheless, as human intervention and

control can reduce the complexity of a purely autonomous robotic system, the con-

cept of semi-autonomous multi-robotic systems has been attracting many researchers’

interests. A marriage of the multi-robotic systems and teleoperation yields a system

that combines the benefits of the two types of robotic systems. Some well-studied

semi-autonomous frameworks with multiple robots are multiple-master-multiple-slave

(MMMS) systems, multiple-master-single-slave (MMSS) systems, and SMMS sys-

tems. In this work, we are interested in SMMS manipulation systems.
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SMMS systems are asymmetric teleoperation where one operator on the master

side remotely commands multiple slave manipulators. Such systems have been applied

to mobile teleoperation, such as mobile robot formation, remote navigation in uncer-

tain, complex environments, and target searching and transportation. Many conven-

tional control approaches have been used in the SMMS robotic systems. In [33, 67],

a master manipulator remotely controls a formation of slave mobile ground vehicles

using a feedback linearization approach and a PD control method. [68] proposes a

teleoperated leader-follower formation of multiple unmanned aerial vehicles based on

the artificial potential field. An adaptive semi-autonomous formation control for a

group of differentially driven ground vehicles is presented in [69]. However, SMMS

mobile robots with tasks such as formation only involve motion regulation. Never-

theless, it is essential for the SMMS telemanipulation applications to consider both

the kinematic constraints and the force/torque constraints.

In cooperative manipulation tasks, the load distribution problem with the goal of

reducing the internal force/torque needs to be thoroughly analyzed for better perfor-

mance. Earlier results given in [70] address the load distribution problem by minimiz-

ing a linearly constrained quadratic function. This method has been broadly adopted

in the research involving the load distribution [32]. However, as pointed out by the

authors in [71], the load allocation strategy in [70] works for the manipulators with

equality constraints. As a result, when the nonuniform load distribution is required by

cooperative manipulators with heterogeneous payload capacities, additional torques

may be generated and exerted on the manipulating object. This drawback motives

the so-called non-squeezing load distribution method [72] to avoid internal stress.

Furthermore, authors in [73] have shown that there exists no unique nonsqueezing

load distribution solution and provided a more general load distribution paradigm.

Based on the general load distribution solutions in [73], the work in [71] proposes an

interesting dynamic load distribution approach for the multi-manipulator systems in

the presence of dynamical payload constraints.

Like other networked robotic systems, SMMS manipulation systems are prone

to instabilities due to various systematic nonlinearities and significant delays. One

of the popular methods of ensuring stability is the time-domain passivity control
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scheme [74–76]. By investigating the energy content of input-output ports of a sys-

tem, the artificial damping is added to dissipate the energy and, therefore, maintains

the stability. However, the passivity-based control approaches impose passivity con-

straints on the human operator as well as the environment [77] that may not be

satisfied in all applications. Model-based control methods, on the other hand, relax

the strong limitations on the human and environments [78]. However, they require

the exact information of dynamic and kinematic models. Therefore, controllers have

been developed with adaptiveness and robustness to relieve the reliance on the pre-

cise information of the model and other undesired disturbances/frictions acting on

robots [79–81].



Chapter 3

Background Theories

This chapter will introduce some prerequisite information of the following topics:

� Kinematic models of robotic manipulators

� Dynamic models of robotic manipulators

� Network communications

� Non-Singular Sliding Mode Control Theory.

These preliminaries and theories will be used to demonstrate the theoretical contri-

butions and further developed in the following chapters.

3.1 Robotics Terminology

In this work, the term robot will mean an industrial manipulator, which is also com-

monly called a robotic arm. This type of robot is essentially a computer-controlled

mechanical arm to implement human-like operating tasks. A robot manipulator con-

sists of a sequence of links connected by joints. We consider a manipulator as a rigid

body with all revolute joints that are like a hinge and allow relative rotation between

links. We assume that each joint only has one degree of freedom (DOF) such that the

joint number determines the DOF of a manipulator. The part of the robot connected

to the ground is called the base, and the free end is called the end effector. Task space

(or Cartesian space, operational space) is defined by the position and orientation of

the end effector. Joint space is defined by a vector of the angular joint displacements.

Also, to clarify the descriptions in the remaining text, the term position refers to a

linear (or translational) position, while the angular position is referred to as orienta-

tion. Fig.3.1 shows a schematic of a two-link (2 DOFs) planar manipulator with the

essential parts labelled.

19
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End effector

Joint

Link

Base

Figure 3.1: Schematic of a two-link planar robot manipulator illustrating the essential
robotics terminology.

3.2 Kinematic Model

Manipulator kinematics studies the establishment of different coordinate systems as

well as their mutual transformations to represent the positions and orientations of

rigid manipulators. With the transformations, the pose (including position and ori-

entation) of the end effector can be described as a function of joint variables with

respect to the base frame, which is termed forward kinematics. One of the approaches

to systematically derive the forward kinematics is by homogeneous transformations

with the Denavit-Hartenberg (D-H) convention. In contrast, the inverse kinematics

is to determine the joint variables that reproduce the given end effector trajectory. In

this work, we do not require the computation of solutions for the inverse kinematics

of motion states, since we assume the joint variables are directly measured.

3.2.1 Homogeneous Transformations

Homogeneous transformations provide a compact form to operate the rotation and

translation through matrix multiplications. Consider two coordinate systems, de-

noted by o1x1y1z1 and o2x2y2z2, any point p has representations p1 and p2 with

respect to frame o1x1y1z1 and frame o2x2y2z2, respectively. Then, relationship of the
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coordinates is established by:

p2 = T2
1p1. (3.1)

The transformation matrix, i.e., T2
1, defines the homogeneous transformation from

the frame o1x1y1z1 to the frame o2x2y2z2 given by

T2
1 =

[
R2

1 d2
1

0 1

]
∈ SE(3), (3.2)

where R2
1 ∈ SO(3) 1 is the rotation matrix and d2

1 ∈ R
3 denotes the translational

distance from origin o1 to origin o2. Notice that the transformation defined by (3.2)

is a special case as the last row is always taken to be [0 0 0 1]. Nevertheless, it has

been proved to be practically useful for most of the manipulator systems [82].

More generally, for an open-chain manipulator constituted by m + 1 links and

connected by m joints, the end effector pose with respect to the base frame can be

determined by products of the homogeneous transformation matrices as

Tb
e = Tb

0T
0
1T

1
2...T

m−1
n Tm

e . (3.3)

In (3.2) as well as the recursive expression in (3.3), a series of frames should be pre-

determined for computing the coordinate transformations between them. In general,

one can arbitrarily choose the frames as long as they are rigidly attached to the re-

ferring links. Unfortunately, in practice, many industrial manipulators have rather

complex structures. Therefore, an arbitrary selection of frames may result in cumber-

some expressions and make the control design and analysis very difficult. Nonetheless,

by a clever choice of the origin and coordinate axes, we are able to reduce the number

of parameters to formulate the homogeneous transformations. In the following, we

present a convenient method for selecting frames, called D-H convention.

3.2.2 Denavit-Hartenberg Convention

In the D-H convention [82], the transformation between any two consecutive frames

can be concisely expressed by four parameters, including the link length, link twist,

link offset, and joint angle, denoted by ai−1, αi−1, di, and θi, accordingly. With

reference to Fig. 3.2, definitions of the D-H parameters are given as:

1The notation SO(3) stands for Special Orthogonal group of order 3 and SE(3) stands for Special
Euclidean group of order 3.
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� ai: Link length, distance from zi−1 to zi′ measured along xi.

� αi: Link twist, angle between zi−1 and zi about xi to be taken positive when

rotation is made counter-clockwise.

� di: Link offset, the distance from xi−1 to xi measured along zi−1.

� θi: Joint angle, the angle between xi−1 and xi about zi−1 to be taken positive

when rotation is made counter-clockwise.

 

 

Figure 3.2: Coordinate frame assignment and D-H parameters for two links of a
general manipulator [82].

The frame selection rules have been well described in [82]. To characterize the

homogeneous transformations by the four parameters, the following two conditions

should be satisfied, namely:

� The axis xi is perpendicular to the axis zi−1.

� The axis xi intersects the axis zi−1.

Under these conditions, there exists a unique homogeneous transformation along the
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serial rigid body, which can be generally expressed as:

Ti−1
i =

⎡
⎢⎢⎢⎢⎢⎣

cθi −sθicαi sθicαi aicθi

sθi cθicαi −cθisαi aisθi

0 sαi cαi di

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ , (3.4)

where s and c denote the trigonometry of sin(·) and cos(·), respectively.

3.2.3 Jacobian Matrix

To further describe differential kinematics, a useful mapping matrix termed geometric

Jacobian is introduced to relate the velocities and accelerations between the joint

space and the task space. Since in this work we only consider manipulators with

revolute joints, the Jacobian matrix can be computed by

J =

[
Jp

Jo

]
=

[
zi−1 × (pe − pi−1)

zi−1

]
, (3.5)

where Jp and Jo are the Jacobian matrices for translational and angular operations,

respectively. Using the transformation matrices as in (3.3) and (3.4), parameters to

compute the Jacobian matrix are given as

zi = R0
1R

2
1 · · ·Ri−2

i−1R
i−1
i z0, (3.6)

p̃e = T0
1T

2
1 · · ·Tn−2

n−1T
n−1
n p̃0, (3.7)

p̃i−1 = T0
1T

2
1 · · ·Ti−2

i−1p̃0, (3.8)

with z0 = [0 0 1]T , p̃0 = [0 0 0 1]T , p̃i−1 = [pT
i−1 1]T , and p̃e = [pT

e 1]T .

Then, the translational velocity (acceleration) and angular velocity (acceleration)

of the end effector can be expressed as a function of the joint variables:⎧⎨
⎩ẋ = Jpq̇

ẍ = J̇pq̇ + Jpq̈,

⎧⎨
⎩w = Joq̇

ẇ = J̇oq̇ + Joq̈.
(3.9)

Unfortunately, in the orientation control, the commonly used 3×3 rotation matrix

is difficult to extract error vectors. This is because the nine entries are not indepen-

dent but highly related by six constraints caused by the orthogonality condition. To
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address this issue, the minimal parameterization methods have been utilized since

they have fewer parameters and, thus, fewer constraints. As a result, the geometric

Jacobian matrix may not be applicable. Instead, the analytical technique to compute

the Jacobian matrices is considered. The geometric Jacobian and analytical Jacobian

have the same form to determine the translational transformations, but, for the ro-

tational computation, the geometric Jacobian Jo and the analytical Jacobian Ja
o are

different yet related by

Jo(q) = EJa
o (q), (3.10)

Ja
o (q) = E−1Jo(q). (3.11)

In this form, the mapping matrix E is determined subject to the selection of min-

imal parameterization. For example, in this work, we consider the unit quaternion

representation (denoted by ξ) and the E is given by

E = 2H(ξ), (3.12)

E−1 =
1

2
HT (ξ), (3.13)

H(ξ) =

⎡
⎢⎢⎣

−ξ(2) ξ(1) ξ(4) ξ(3)

−ξ(3) ξ(4) ξ(1) −ξ(2)

−ξ(4) −ξ(3) ξ(2) ξ(1)

⎤
⎥⎥⎦ . (3.14)

From the human operators’ viewpoint, it is intuitive to use task space control

schemes, which are based on the task space deviation (Δx) between the measured

data and desired quantity. Then the control input generalized forces 2 (u) has to

be transformed into joint space generalized torque (τ ) to reduce or to cancel the

corresponding joint space deviation (Δq), and in turn, to reduce or cancel Δx. This

can be realized through the Jacobian transpose as

τ = JTu. (3.15)

Notice that above equations hold as we assume that the considered manipulator is

non-redundant [82, p. 167].

2In the remain text, task space generalized forces are called forces, while joint space generalized
forces are termed torques.



25

3.2.4 Unit Quaternion

Unit quaternion is a 4-tuple, which can be denoted by ξ = [η εT ]T ∈ S3, where η is

a scalar representing the real part of the quaternion, and ε = [ε1 ε2 ε3]
T is a vector

representing the imaginary part of the quaternion. With the D-H representation

{θ, a, d, α} provided in Page 62-63 in [82], the end effector orientation represented

by the unit quaternion can be obtained by the forward kinematics in Lemma 3.1.

Lemma 3.1. ( [25]) For a m-DOF manipulator, the pose of the kth joint can be

represented by the unit quaternion ξk and the extended position p̄k as

ξk =

⎡
⎢⎢⎢⎢⎢⎣

cos(θk/2) cos(αk/2)

cos(θk/2) sin(αk/2)

sin(θk/2) sin(αk/2)

sin(θk/2) cos(αk/2)

⎤
⎥⎥⎥⎥⎥⎦ , p̄k =

⎡
⎢⎢⎢⎢⎢⎣

0

ak cos(θk)

ak sin(θk)

dk

⎤
⎥⎥⎥⎥⎥⎦ . (3.16)

Then, the pose of the end effector [p̄T ξT ]T can be calculated in the following form

w.r.t. the base frame.

ξ(q) = ξ1 ⊗ ξ2 ⊗ ...⊗ ξk ⊗ ...⊗ ξm−1 ⊗ ξm

p̄(q) = ξ1 ⊗ ...⊗ ξk ⊗ ...⊗ ξm−1 ⊗ p̄m ⊗ ξ∗m−1 ⊗ ...⊗ ξ∗1

+ ξ1 ⊗ ...⊗ ξm−2 ⊗ p̄m−1 ⊗ ξ∗m−2 ⊗ ...⊗ ξ∗1

+ ...+ ξ1 ⊗ p̄2 ⊗ ξ∗1 + p̄1.

Given two unit quaternions ξ1 = [η1 εT1 ]
T and ξ2 = [η2 εT2 ]

T , the addition acts

component-wise, that is,

ξ1 + ξ2 =

[
η1 + η2

ε1 + ε2

]
,

while the quaternion product ⊗ is defined in terms of the scalar and vector parts as

ξ1 ⊗ ξ2 =

[
η1η2 − εT1 ε2

η1ε2 + η2ε1 + S(ε1)ε2

]
,

where S(ε) is a skew-symmetric matrix of ε = [ε1 ε2 ε3]
T defined as

S(ε) =

⎡
⎢⎢⎣

0 −ε3 ε2

ε3 0 −ε1

−ε2 ε1 0

⎤
⎥⎥⎦ .
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In the subsequent control design, the quaternion errors of angular position eξ and

angular velocity ėξ are calculated in the sense of quaternion product given by

eξ =

[
eη

eε

]
= ξ1 ⊗ ξ∗2 =

[
η1η2 + εT1 ε2

−η1ε2 + η2ε1 − S(ε1)ε2

]
, (3.17)

where ξ∗2 is the conjugate of ξ2, i.e., ξ
∗
2 = [η2 − εT2 ]

T .

The angular velocity error is given by the time-derivative of quaternion error as

ėξ =

[
ėη

ėε

]
=

⎡
⎣ 1

2
eT
ε ew

−1
2

(
eηI3 + S(eε)

)
ew − S(eε)w2

⎤
⎦ , (3.18)

where ew = w2 −w1, wi (i = 1, 2) is the angular speed that can be calculated by

wi = 2

[
−εTi

ηiI3 − S(εi)

]T

ξ̇i. (3.19)

The unit quaternion has several useful properties that will be used in the design

and analysis of the control algorithm.

Property 3.1. The scalar part and the imaginary part satisfy the quadratic norm

constraint given by η2 + εTε = 1.

Property 3.2. The identity quaternion ξI with respect to the product is such that

ξI ⊗ ξ1 = ξ1 ⊗ ξI = ξ1. It encodes the null rotation and can be expressed in a

quaternion form as ξI = [1 0T ]T .

Property 3.3. The norm of a unit quaternion satisfies ‖ξ‖ = 1 and the quaternion

product of two unit quaternions has the property of ‖ξ1⊗ξ2‖ = ‖ξ2⊗ξ1‖ = ‖ξ1‖‖ξ2‖.
Property 3.4. The quaternion product is associative, e.g., (ξ1⊗ξ2)⊗ξ3 = ξ1⊗(ξ2⊗
ξ3), and distributive over the sum, e.g., (ξ1 + ξ2)⊗ ξ3 = ξ1 ⊗ ξ3 + ξ2 ⊗ ξ3.

Property 3.5. The relationship between the unit quaternion and the rotation matrix

R ∈ R
3×3 is given by

R(η, ε) = (η2 + εTε)I + 2ηS(ε) + 3εεT

where S(∗) is a skew-symmetric matrix.

Lemma 3.2. ( [25]) Consider the fact that a quaternion and its negative encode the

same rotation, one orientation represented by ξ1 is aligned with another one repre-

sented by ξ2, either when ξ1 = ξ2, resulting in the quaternion error as eξ = ξ1⊗ξ∗2 =

[1 0T ]T = ξI , or when ξ1 = −ξ2, resulting in eξ = [−1 0T ]T = −ξI .
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Figure 3.3: Coordinate frame assignment of a two-link planar manipulator.

3.2.5 Examples

Based on the aforementioned concepts, in the following, we present two types of

manipulators that will be used to illustrate the proposed theories in the subsequent

chapters.

Two-link Planar Manipulator

Consider a typical two-link planar robot arm shown in Fig.3.3, each frame is estab-

lished with the x-axis along the relative link direction. Such frame selection results

in a simple set of D-H parameters, as specified in Table. 3.1.

Table 3.1: D-H parameters for 2-DOF planar manipulator.

Link ai αi di θi
1 l1 0 0 q1
2 l2 0 0 q2

As the homogeneous transformation has the same structure for each joint, we

obtain the forward kinematics function as

T 0
2 (qi) =

⎡
⎢⎢⎢⎢⎢⎣

c12 −s12 0 l1c1 + l2c12

s12 c12 0 l1s1 + l2s12

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ , (3.20)

where c1 = cos(q1), s1 = sin(q1), c12 = cos(q1 + q2), s12 = sin(q1 + q2).
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For the differential kinematics, the geometric Jacobian matrix is given by

J =

[
Jp

Jo

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−l1s1 − l2s12 −l2s12

l1c1 + l2c12 l2c12

0 0

0 0

0 0

1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.21)

where Jp ∈ R
3×2 and Jo ∈ R

3×2 are the translational Jacobian matrix and angular

Jacobian matrix, respectively.

Three-DOF Phantom Omni haptic device

1
cq

2 2
c oq q

3
oq

3
cq

1
oq

1 0,x y

1 0,z z

2y

3y

3x

2x

(a) Coordinate frame assignment of an
Phantom Omni haptic device.

(b) Picture of an Sensable Phantom Omni
haptic device.

Figure 3.4: Schematics and picture of the Phantom Omni haptic device.

In the numerical and experimental studies, the 3-DOF Phantom Omni haptic

devices3 were also used to implement the proposed theory. The haptic device has

3 actuated revolute joints and its first link length is 0, i.e., l1 = 0. The frames are

determined as depicted in Fig.3.4 (a) and the resultant D-H parameters are shown

in Table.3.2. As a result, the pose of the end effector can be obtained from the

3https://www.3dsystems.com
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Table 3.2: D-H parameters of the Phantom Omni device [83].

Link ai αi di θi
1 0 0 l1 q1
2 l2 0 0 q2
3 l2 0 0 q3

homogeneous transformation matrix as

T 0
3 (qi) =

⎡
⎢⎢⎢⎢⎢⎣

c1c23 −c1s23 s1 rc1

s1c23 −s1s23 −c1 rs1

s23 c23 0 h

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ , (3.22)

where r = l2c2 + l3c23 and h = l2s2 + l3s23.

The expression of the geometric Jacobian matrix is given by

J =

[
Jp

Jo

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−rs1 −hc1 −l3c1s23

rc1 −hs1 −l3s1s23

0 r l3c23

0 0 s1

0 0 −c1

1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.23)

In physical experiments, the measured joint angles from the Phantom Omni

QUARC block do not match the conventions used in the kinematic model of the

device, so there exists a conversion between the conventional angles qc
i and measured

angles qo = [qo1 qo2 qo3]
T as

qc =

⎡
⎢⎢⎣
q1

q2

q3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−1 0 0

0 1 0

0 −1 1

⎤
⎥⎥⎦ qo −

⎡
⎢⎢⎣

0

0

π/2

⎤
⎥⎥⎦ . (3.24)

3.3 Dynamic Model

Dynamic equations of a manipulator are studied to explicitly describe the relationship

between force and motion. In addition, it allows us to simulate the manipulator

motion and control algorithms without having a physically available system.



30

In this work, we use the E-L equations to formulate the dynamic model. It has

been proved to be practically useful in representing nonlinear mechanical systems.

In addition, it is computationally efficient and has several facilitating properties in

particular for developing control algorithms, such as globally bounded inertia matrix,

skew symmetry property, etc. Derivations of the E-L equations have been well dis-

cussed in many existing literature [15, 84]. In what follows, we describe the general

forms of the E-L representations in both joint space and task space.

3.3.1 Joint Space Dynamics

For many robot arms, the default measurements are taken in joint space, e.g. encoder

measurements. Therefore, from the measurement viewpoint, it is straightforward to

design a controller with the joint-space dynamics. Consider a m DOFs robot arm

(indexed by i) in a multi-manipulator system, the mathematical model in joint space

is assumed to have the following E-L form:

Mi(qi)q̈i + Ci(qi, q̇i)q̇i +Gi(qi) + τ n
i = τi − τ e

i , (3.25)

where qi ∈ R
m, q̇i ∈ R

m, and q̈i ∈ R
m are the angular position, velocity and ac-

celeration. The matrices and vector, Mi, Ci, and Gi, contain structure parameters

of the manipulator, such as link length and joint mass. Their definitions are given

as: Mi ∈ R
m×m is the symmetric and uniformly positive definite inertia matrix.

Ci ∈ R
m×m is the Coriolis and centrifugal loading matrix. Gi ∈ R

m is the grav-

itational loading vector. τi ∈ R
m denotes the designed torque control input and

τ e
i ∈ R

m represents the equivalent environment torque exerted on the manipulator.

τ e
i = 0 if only the free motion regulation is considered. τ n

i consists of the disturbance

and the friction, denoted by τ d
i ∈ R

m and τ f
i ∈ R

m, respectively. In other words,

τ n
i = τ f

i + τ d
i . The configuration dependant friction model is given as τ f

i = γiq̇i,

where γi is an unknown coefficient.

3.3.2 Task Space Dynamics

In spite of the convenience of using the dynamic model in joint space, it is more

intuitive to control the motion of the end effector where the tasks are to be specified

to the end effector. By using the forward kinematics, it is easy to acquire indirect
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measurements in task space. As well, in some applications where measurements

are implemented in task space, such as visual measurements, using the task space

kinematic model is more efficient.

Like the joint space dynamic model in (3.25), the mathematical dynamic model

in task space can be formulated by the E-L representation as

Mi(qi)ẍi + Ci(qi, q̇i)ẋi + gi(qi) + fn
i (q̇i) = ui − f e

i , (3.26)

where xi ∈ R
3, ẋi ∈ R

3, and ẍi ∈ R
3 are position, velocity, and acceleration of

the end effector. Mi(qi) ∈ R
3×3, Ci(qi, q̇i) ∈ R

3×3, and gi(qi) ∈ R
3 are systematic

parameters that have the same definitions as those in (3.25). ui ∈ R
3 denotes the

control signals and f e
i ∈ R

3 is the environmental force. The disturbance and friction

in task space are denoted by di ∈ R
3 and f f

i ∈ R
3, respectively, and fn

i = f f
i + di.

The friction model in this paper takes into account the effects of the Coulomb

friction, static friction, viscous friction and Stribeck effect [85], and is given as a

function of the angular velocity q̇i as

f f
i = Ji

{
γ1
i [tanh(γ

2
i q̇i)− tanh(γ3

i q̇i)] + γ4
i tanh(γ

5
i q̇i) + γ6

i q̇i

}
, (3.27)

where γp
i (p = 1 , 2 , . . . , 6 ) are unknown coefficients.

Assume that the manipulator model is non-redundant and in a non-singular con-

figuration, the relationship between the dynamic models in (3.25) and (3.26) is es-

tablished as follows.

Property 3.6. The Jacobian matrix defined by Ji = ∂xi/∂qi ∈ R
3×m encodes rela-

tionships between velocities as ẋi = Jiq̇i.

Property 3.7. The Jacobian matrix also describes the linear transformations of the

force variables, namely, f f
i = Jiτ

f
i , di = Jiτ

d
i , f

f
i = Jiτ

f
i , f

e
i = Jiτ

e
i , and ui = Jiτi.

Property 3.8. The relationship between the dynamics matrices/vectors in joint space

and those in task space can be described by Mi = J−T
i MiJ

−1
i , Ci = J−T

i CiJ
−1
i −

J−T
i MiJ

−1
i J̇iJ

−1
i , and gi = J−T

i Gi [86].

In practice, due to the material properties, measurement variability or thermal

effect, the dynamic model usually contains a certain amount of uncertainties. Taking
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the dynamic model in (3.26) as an example, the actual parametric matrices/vectors,

Mi, Ci, and gi, can be specified as a known nominal portion plus an unknown yet

bounded variation from the nominal values, that is, Mi = M̄i+ΔMi, Ci = C̄i+ΔCi,

and gi = ḡi+Δgi, where M̄i,C̄i, and ḡi are nominal matrices/vector. ΔMi, ΔCi, and

Δgi are unknown modeling uncertainties. Then, the model (3.26) can be rewritten

as

M̄iẍi + C̄iẋi + ḡi = ui + ρi. (3.28)

Assumption 3.1. [43] ρi comprises all of the unknown parameters, i.e., ρi = fn
i −

(ΔMiẍi + ΔCiẋi + Δgi). By assuming the following boundedness: ‖ΔMi‖1 ≤ K1,

‖ΔCixi +Δgi‖1 ≤ K2 +K3‖xi‖1 +K4‖ẋi‖21, ‖di‖1 ≤ K5, and ‖f f
i ‖1 ≤ K6‖ẋi‖1, we

obtain

‖ρi‖1 ≤ ΘiΦi, (3.29)

where Θi represents the unknown parameters consisting of K1 ∼ K6 that determine

the parameter bounds. Φi = 1 + ‖xi‖1 + ‖ẋi‖21 > 0. ‖ ∗ ‖1 denotes the L-1 norm.

3.3.3 Examples

In what follows, we present the parametric matrices and vectors of the dynamic models

in joint space of the two types of manipulators, as shown in Fig.3.3 and Fig.3.4 (a).

Two-link planar manipulator

The parametric matrices and vector in joint space of a 2-DOF planar manipulator is

given by

M =

[
M11 M12

M21 M22

]
, G =

[
g1

g2

]
, C =

[
−cq̇2 −c(q̇1 + q̇2)

cq̇1 0

]
,

where

M11 = m1l
2
c1 +m2(l

2
1 + l2c2 + 2l1lc2 cos(q2)) + I1 + I2,

M12 = M21 = m2(l
2
c2 + l1lc2 cos(q2)) + I2,

M22 = m2l
2
c2 + I2,

c = m2l1lc2 sin(q2),

g1 = (m1lc1 +m2l1)g cos q1 +m2lc2g cos(q1 + q2),
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g2 = m2lc2g cos(q1 + q2).

Definitions of the relevant variables are given as m1 and m2 are link mass, l1 and

l2 are link length, lc1 and lc2 are the distances from the joint to the centre of mass of

the links, I1 and I2 are the moments of inertia with respect to the centres of mass of

the two links, and g is the gravity acceleration.

In the subsequent chapters, when the two-link planar robot arm is used, the

following data [78] is assigned with proper units: l1 = 1, l2 = 0.8, lc1 = 0.5, lc2 = 0.5,

I1 = 5, I2 = 5, m1 = 0.5, m2 = 1.5, g = 9.8 m/s2.

Three-DOF Phantom Omni haptic device

The parametric matrices and vector in joint space of a three-DOF Phantom Omni

haptic device is given by

M =

⎡
⎢⎢⎣
h11 0 0

0 h22 h23

0 h32 h33

⎤
⎥⎥⎦ , G =

⎡
⎢⎢⎣

0

θ5gc2 + θ6gc23

θ6gc23

⎤
⎥⎥⎦ ,

C =

⎡
⎢⎢⎣
−(a1q̇2 + a2q̇3) −a1q̇1 −a2q̇1

a1q̇1 −a3q̇3 −a3(q̇2 + q̇3)

a2q̇1 a3q̇2 0

⎤
⎥⎥⎦ ,

where

h11 = θ1 + θ2c
2
2 + θ3c

2
23 + 2θ4c2c23

h22 = θ2 + θ3 + 2θ4c3

h23 = θ3 + θ4c3

h33 = θ3,

a1 = θ2c2s2 + θ3c23s23 + θ4c2∗23

a2 = θ3c23s23 + θ4c2s23,

a3 = θ4s3

with s2 = sin(q2), c2 = cos(q2), s3 = sin(q3), c3 = cos(q3), s23 = sin(q2 + q3), c23 =

cos(q2+ q3), and c2∗23 = cos(2q2+ q3). Estimated values to compute M, C, and G are

given in Table 3.3. Some mechanical properties to describe the limits of the haptic

device are listed in Table.3.4 [83].
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Table 3.3: Dynamic parameters of the Phantom Omni device [83]

Parameter Value Parameter Value
l1(m) 0 θ2(kg ·m2) 7.0× 10−3

l2(m) 0.135 θ3(kg ·m2) 8.0× 10−3

l3(m) 0.130 θ4(kg ·m2) 0.4× 10−3

g(N/kg) 9.8 θ5(kg ·m) 9.1× 10−3

θ1(kg ·m2) 3.7× 10−3 θ6(kg ·m) 5.2× 10−3

Table 3.4: Mechanical limits of the Phantom Omni device

Joint
Limits

Position(rad) Torque (Nm) Static Friction (Nm)

1 [−π
3
, π

3
] 0.30 N/A

2 [0, 1.79] 0.29 0.065
3 [−2.45, −0.25] 0.20 0.028

3.4 Network Communications

3.4.1 Network Representation

Consider a network with a leader and a finite number of follower agents, the connection

and information flow between agents can be described by a directed graph expressed

as

G = (ν, ε, A, b), (3.30)

where agents (or nodes) are indexed by ν. ε denotes the edge, and the adjacency

matrix A = [aij] describes the connection between agents where aij > 0 if (i, j) ∈ ε

and aij = 0 otherwise. The connection between the follower agent and the leader is

represented as b = [b1, b2, ..., bn] where bi > 0 if the ith agent is connected to the leader

and bi = 0 otherwise.

3.4.2 Directed Graph Connectivity

A graph is called directed graph when its edges have a direction associated with them.

In the networked control system, the graph connectivity has a significant effect on

the performance and stability. The definitions of some examples of connectivity are

given as follows and the corresponding graphs are depicted in Fig.3.5.

A digraph is strongly connected if from each node to each other node there is a

directed walk (See Fig.3.5 (a)), while a digraph is weakly connected if such a directed
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Figure 3.5: Examples of different types of directed graph connectivity.

walk does not always exist for at least one node, but the underlying graph is connected

(See Fig.3.5 (b)).In a directed graph, the node is balanced if and only if its in-degree

and out-degree are equal and a graph is called balanced if and only if all of its nodes

are balanced (See Fig.3.5 (c)). Otherwise, the node and the graph are unbalanced

(See Fig.3.5 (d)).

3.4.3 Network-Induced Constraints

In this work, we consider a weakly connected and unbalanced directed graph with

one leader and a finite number of followers. This makes our theoretical studies more

challenging yet more practical. In addition, we assume that the leader is globally

reachable to the followers, that is, from the leader to each follower agent, there always

exists a directed path [87].

In the following, we specify two network communication constraints, namely, the

network delays and the packet loss.
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Figure 3.6: Schematic of a network control system of two agents with time-varying
delays and the packet loss.

Time-Varying Delays

Based on the physical test in [88] and [89], the time-varying network delays T v
ij(t)

from agent j to i can be expressed as

T v
ij(t) = T̄ v

ij + δvij(t), (3.31)

where T̄ v
ij is a known and constant nominal value and it is assumed that each channel

experiences the same average delay. δvij(t) is the unknown bounded deviation.

Packet Loss

The packet loss probability can be expressed by the Gilbert-Elliott model with the

classical 2-state (G denotes the good state and B denotes the bad state) Markov

model [90, 91]. Let Sij(tk) denote the network states from agent j to i at time tk.

Then the probability of state transition can be represented by

PG→B = P (Sij(tk+1) = B|Sij(tk) = G)

PB→G = P (Sij(tk+1) = G|Sij(tk) = B).
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In the receiver, a buffer is used to store all the successfully transmitted data, as shown

in Fig.3.6. Taking the position signals as an example, the neighbour information that

feeds into the receiver’s controller is expressed by the Simple Gilbert Model (SGM)

as

xj(Tij(tk)) = (1− θ)xj(T
v
ij(tk)) + θxj(T

v
ij(tk−1)), (3.32)

where θ = 0 if xj(T
v
ij(tk)) is transmitted successfully and θ = 1 otherwise. To capture

bursty behaviour in packet loss, we define

xj(T
v
ij(tk−1)) = xj(T

v
ij(tk−2)) = · · · = xj(T

v
ij(tk−�)), (3.33)

where � is the bursty length.

From (3.32) and (3.33), it is equivalent to regard the packet loss as additional time

delays. Therefore, by denoting Δt = tk − tk−�, the equivalent delay, Tij(tk), becomes

Tij(tk) = (1− θ)T v
ij(tk) + θ(T v

ij(tk−�) + Δt). (3.34)

Experimental Setting

In our experiments, the control software used to establish network communications is

provided by Quanser QUARC 2.64. QUARC has a high-level communication blockset

(Stream Client and Stream Server) to establish the connections between the server

host and the client host. Packets are sent/received between two personal comput-

ers (PCs) connected to the Local Area Network (LAN) at the Advance Control and

Mechatronics Lab, Dalhousie University, Canada. Packets are transmitted by using

User Datagram Protocol (UDP) at an updating frequency of 1000 Hz. Packets are

sized 72 bytes in most of our tests. Generally, LAN can be categorized into Wired

(Ethernet) LAN and Wireless LAN. Fig.3.7 shows the measured one-way network de-

lays and its normal distribution by using a wired LAN and wireless LAN, respectively.

Wired LAN transmits electric signals that flow over the cables with less interference.

Thus, the data transmission experiences less and constant delays, as illustrated in

Fig.3.7 (a) and (b) where the nominal delay was T̄ = 1.4× 10−3 sec with a standard

error of σ = 0.00026 sec. Wireless LAN enables robots to move around in a broader

4https://www.quanser.com/products/quarc-real-time-control-software/
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Figure 3.7: (a) Measured one-way network delays and (b) its normal distribution in
a wired LAN; (c) Measured one-way network delays and (d) its normal distribution
in a wireless LAN.

range, but Wireless LAN appears to suffer from interference of various types during

travel from the source to the destination. The WiFi cards used in the test are Tenda

W311M Nano USB Adapter(Wireless N150 speed up to 150 Mbps). As shown in

Fig.3.7 (c) and (d), significant jitters are presented, and the nominal delay increases

to T̄ = 6.3× 10−3 sec with σ = 0.0057 sec.

3.5 Non-Singular Terminal Sliding Mode Control Theory

To improve the robustness of manipulation systems, the SMC method is studied to

make the system less sensitive to the external noises and other unknown disturbance

sources. In addition, the NTSM [42, 43] was developed so that the sliding surface as

well as the zero errors can be realized in a finite time and meanwhile avoid singulari-

ties. The basis of the NTSM algorithm is introduced as follows. Consider a nonlinear

dynamic system in a general form as

{
ẋ1 = x2,

ẋ2 = f(x) + b(x)u+ d(x),
(3.35)

where x = [x1 x2]
T is the system state, f(x) and b(x) are smooth nonlinear functions,

and d(x) is the external disturbances with a known bound, i.e., |d(x)| ≤ D andD ≥ 0.
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To achieve x1 → 0 and x2 → 0 as t → tc where tc is a finite time, a sliding manifold

s is constructed as

s = x1 + βxα
2 , (3.36)

where β > 0. α = (2h + 1)/(2h − 1) with h = 1, 2, ..., such that 1 < α < 2 [43].

The NTSM controller u designed from the sliding surface s enables the finite-time

convergence and disturbance insensitiveness. One standard controller [43] for the

system in (3.35) is designed as:

u = −b−1(x)[f(x) +
x
(2−α)
2

αβ
+ (D + κ)sgn(s)], (3.37)

where κ > 0 and sgn(·) denotes a sign function, that is,

sgn(a) =

⎧⎪⎪⎨
⎪⎪⎩

1, if a > 0

0, if a = 0

−1, if a < 0.

(3.38)

In the finite-time stability analysis using the Lyapunov method, the following lemma

gives the criteria for determining the convergence time.

Lemma 3.3. [92] For a non-Lipschitz continuous non-linear system ẋ = f(x),

suppose there exists a continuous function V (x) defined on a neighbourhood of the

origin such that the following conditions hold: (1) V (x) is positive definite; (2) There

exist real numbers c > 0 and 0 < γ < 1 such that V̇ (x) + cV γ ≤ 0. Then the origin

is locally finite-time stable, and the settling time satisfies

t(x0) ≤ V (x0)
1−γ

c(1− γ)
. (3.39)



Chapter 4

Synchronization Control Design for Leader-Following

Manipulators under Network-Induced Constraints

This chapter investigates the motion synchronization of a networked leader-following

manipulator system. Due to the network-induced constraints as described in Section

3.4.3, we aim at addressing two consequent issues, namely,

� Large phase shift

� Adverse neighbor influence.

Concepts from the NTSM control method (as in Section 3.5) are developed into

novel control approaches that not only guarantee semi-global asymptotic stability but

also improve the tracking performance in terms of accuracy. Numerical simulations

and physical experiments are performed to verify the effectiveness of the proposed

approaches1.

4.1 Problem Description

Let the leader-following manipulator system be formulated by E-L equations of motion

of the following forms:

M0(q0)ẍ0 + C0(q0, q̇0)ẋ0 + g0(q0) = u0, (4.1)

Mi(qi)ẍi + Ci(qi, q̇i)ẋi + gi(qi) = ui, (4.2)

where the leader and the followers are indexed by the subscripts 0 and i, respectively.

i ≥ 2.

1This chapter was published as the work in [93], 2168-2216 �2020 IEEE. Reprinted, with per-
mission, from Henghua Shen, Ya-Jun Pan, Usman Ahmad and Bingwei He, “Pose Synchronization
of Multiple Networked Manipulators using Non-singular Terminal Sliding Mode Control”, IEEE
Transactions on Systems, Man and Cybernetics: Systems, February/2020, and as the work titled
“Online Noise-Estimation-based Neighbor Selection for Multi-Manipulator Systems” by H. Shen et
al. in Proceedings of the 21st IFAC World Congress, 2020, accepted.

40
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In network systems, communication channels inevitably experience a certain amount

of random delays and packet loss. As a result, provided a time-varying leader trajec-

tory (x0(t)) in a time-delayed leader-following system, the followers tend to track the

delayed leader signals, that is,

xi(t) → x0(t− Ti0(t)).

Assume that x0(t) is a periodic signal, the network delays will cause the difference

Δx = xi(t)− x0(t− Ti0(t)), which is termed phase shift (or horizontal shift). When

the network is weakly connected and the data transmission is directed [22, 23], the

horizontal shift becomes more evident as the followers that have no direct connection

with the leader must rely on the delayed states of their connected neighbours and do

not react to the change of the leader until its information has been passed through

multiple delays.

Another issue being discussed in this chapter is the adverse influence from neigh-

bours. For each agent, it may connect to multiple neighbours and tend to follow the

delayed follower states, that is,

xi(t) → xj(t− Tij(t)),

where i 
= j and j = 1, 2, · · · , n.
In addition to the phase shift effect between the neighbour communication, once

the agent i is affected by its neighbour’s incorrect information, it, in return, will

broadcast the poor updated state information to the neighbours. Consequently, state

errors may keep propagating and exacerbating through the MASs.

Without loss of generality, the discussions of these two problems, large phase shift

and adverse neighbour influence, obey the following assumptions to facilitate the

respective discussions.

Assumption 4.1. In analysis of the adverse neighbor influence, it only considers the

translational position regulation of a group of manipulators’ end effectors. Whereas

for discussions of the large phase shift problem, the full pose regulation of a group of

manipulators’ end effectors is considered.

Assumption 4.2. In discussions of both issues, dynamics of the manipulators are

assumed to be known in the control design.
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Assumption 4.3. The joint position is measurable by built-in encoders, while the

differential states are estimated or obtained via the time differentiation of the position

signals when required.

Assumption 4.4. The leader’s end effector pose is time-varying and known to only a

subset of the follower manipulators. In addition, when the pose tracking is realized in

the steady state, the differential states (e.g., velocity and acceleration) of the followers

are upper-bounded by the maximum assigned velocity and acceleration of the leader

[94], that is, ‖ẋi(t)‖ ≤ max(‖ẋ0(t)‖) and ‖ẍi(t)‖ ≤ max(‖ẍ0(t)‖), s.t. ẍi → ẍ0.

Assumption 4.5. For discussions of the large phase shift problem, all network chan-

nels experience a constant and uniform delay, which can be experimentally realized

by using a receiver buffer whose size is not less than the maximum network delay to

store the incoming data from the neighbours [95,96]. In analysis of the adverse neigh-

bour influence, communication amongst the followers is strongly connected, while the

leader’s information is known to only a subset of the follower manipulators. In the

data exchange, the transmission is subject to varying delays and random packet loss.

Control Objective

In discussion of the large phase shift and the adverse neighbour influence, a leader-

following nonlinear manipulator system is considered. The general goal is to drive the

motion synchronization of multiple followers’ end effectors towards a virtual leader’s

trajectory in a finite time. In addition, nonlinear control schemes are developed in an

effort to minimize tracking error between any two agents whose communications are

subject to the network-induced constraints. In other words, by using x to generally

denote the (translational and/or angular) motion of the end effector, the network-

wide objective of this chapter can be described as ‖xi(t)−x0(t)‖1 ≤ Δε,i0 and ‖xi(t)−
xj(t)‖1 ≤ Δε,ij. The bounds Δε,i0 ≥ 0 and Δε,ij ≥ 0 are desired to be as small as

possible.

4.2 NTSM Control Method Using Mixed-Type Feedback

In this section, we aim at dealing with the issue of large phase shift caused by the

network delay and its equivalences. The novel mixed-type feedback is used in an
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NTSM control method to reduce the horizontal shift effect in an effort to improve the

pose tracking synchronization between the manipulators’ end effectors. The stability

analysis is provided to prove the finite-time boundedness of the tracking error signals.

In addition, quantitative evaluations of the multiple effects on the error bound are

carried out to give insight into the subsequent control parameter selection. Numerical

simulation and experimental results are provided to demonstrate the effectiveness of

the developed controller.

4.2.1 Types of Feedback Signals

For networked multi-agent systems, three types of feedback signals are commonly

used in the control design [52].

Feedback without self-delay

ei(t) =
n∑

j=1

aij[xi(t)− xj(t− Tij)]. (4.3)

Feedback with identical (or exact) self-delay

ei(t) =
n∑

j=1

aij[xi(t− Tij)− xj(t− Tij)]. (4.4)

Feedback with different (or inexact) self-delay

ei(t) =
n∑

j=1

aij[xi(t− T̂ij)− xj(t− Tij)], (4.5)

where T̂ij is the inexact estimation of Tij. aij is the adjacency matrix element as in

(3.30).

The comparative advantages and disadvantages are summarized as follows to un-

derstand the trade-off in deciding which type of feedback to be used. In the control

design, using the feedback signals without self-delay as in (4.3) is superior in main-

taining stability while the tracking performance degrades. In contrast, controllers

designed by exploiting the feedback signals with exact self-delay as in (4.4) or inexact

self-delay as in (4.5) help improve the tracking performance, but due to the constant

use of the delayed controllers, the systems are prone to be unstable, especially when

experiencing considerably long network delays. This conflict can be properly man-

aged to reduce, if not eliminate, the phase shift effect. The following remark describes

our novel development of the mixed-type feedback signals.
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Remark 4.1. In many applications, we are concerned only with the synchronization

of position, while the velocity, which is also known as an important power signal, is

managed to guarantee the system stability. Therefore, consider the different effects

of the feedback signal as in (4.3)-(4.5), we develop the mixed-type feedback signals by

using the self-delayed position feedback and the velocity feedback without self-delay, in

attempt to reduce the large phase shift induced by network delays.

The non-trivial feasibility and effectiveness of using the proposed mixed-type feed-

back signals will be illustrated in Fig.4.2.

4.2.2 Controller Development

Let x = [pT ξT]T ∈ R
7 define the full pose of a end effector, where p ∈ R

3 is the

translational position and the unit quaternion ξ ∈ R
4 represents the orientation.

The constant delay is denoted by T . The translational and angular mixed-type feed-

back signals are developed respectively as follows for the subsequent full-pose NTSM

control design.

Translational Mixed-Type Feedback

The translational position error elp
i ∈ R

3 and velocity error elv
i ∈ R

3 of the ith

manipulator are given as

elp
i =

n∑
j=1

aij[pi(t− T )− pj(t− T )] + bi[pi(t− T )− p0(t− T )], (4.6)

elv
i =

n∑
j=1

aij[ṗi − ṗj(t− T )] + bi[ṗi − ṗ0(t− T )]. (4.7)

As a result, the errors elp
i and elv

i have the following relationship:

ėlp
i = elv

i −
( n∑

j=1

aij + bi

)
ėlc
i , (4.8)

ėlc
i = ṗi − ṗi(t− T ). (4.9)

where ėlc
i ∈ R

3 is a self-delayed velocity error, which is achievable since the states at

the current and previous time steps are all available.
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Angular Mixed-Type Feedback

In design of angular error dynamics, recall from Lemma 3.2 in Chapter 3 and the

quaternion error operator in (3.17), the angular position error is given as

eap
i =

n∑
j=1

aij

(
eξ
ij − diag(ξu)sgn(e

ξ
ij)

)
+ bi

(
eξ
i0 − diag(ξu)sgn(e

ξ
i0)

)
, (4.10)

where ξu = [1 0T]T ∈ R
4. diag(∗) returns a diagonal matrix of an input vector.

eξ
ij ∈ R

4 and eξ
i0 ∈ R

4 are given as follows.

eξ
ij =

[
eηij

eε
ij

]
= ξi(t− T )⊗ ξ∗j (t− T )

=

⎡
⎣ ηi(t− T )ηj(t− T ) + (εi)

T (t− T )εj(t− T )

−ηi(t− T )εj(t− T ) + ηj(t− T )εi(t− T )− S(εi(t− T ))εj(t− T )

⎤
⎦ ,

and

eξ
i0 =

[
eηi0

eε
i0

]
= ξi(t− T )⊗ ξ∗0(t− T )

=

⎡
⎣ ηi(t− T )η0(t− T ) + (εi)

T (t− T )ε0(t− T )

−ηi(t− T )ε0(t− T ) + η0(t− T )εi(t− T )− S(εi(t− T ))ε0(t− T )

⎤
⎦ .

The angular velocity error is given by

eav
i =

n∑
j=1

aij �̇
ξ
ij + bi�̇

ξ
i0 =

n∑
j=1

aij

[
�̇
η
ij

�̇
ε
ij

]
+ bi

[
�̇
η
i0

�̇
ε
i0

]

=
n∑

j=1

aij

⎡
⎣ 1

2
(�εij)

Tew
ij

−1
2
�
η
ijI3 + S(�εij)e

w
ij − S(�εij)wi

⎤
⎦

+bi

⎡
⎣ 1

2
(�εi0)

Tew
i0

−1
2
�
η
i0I3 + S(�εi0)e

w
i0 − S(�εi0)wi

⎤
⎦ , (4.11)

where ew
ij = wj(t − T ) − wi, e

w
i0 = w0(t − T ) − wi. wj(t − T ),wi,w0(t − T ) ∈ R

3

can be obtained from (3.19). �ηij, �
ε
ij, �

η
i0, and �

ε
i0 can be acquired from the following

error equations:

�
ξ
ij =

[
�
η
ij

�
ε
ij

]
= ξi ⊗ ξ∗j (t− T ) =

⎡
⎣ ηiηj(t− T ) + (εi)

Tεj(t− T )

−ηiεj(t− T ) + ηj(t− T )εi − S(εi)εj(t− T )

⎤
⎦ ,
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�
ξ
i0 =

[
�
η
i0

�
ε
i0

]
= ξi ⊗ ξ∗0(t− T ) =

⎡
⎣ ηiη0(t− T ) + (εi)

Tε0(t− T )

−ηiε0(t− T ) + η0(t− T )εi − S(εi)ε0(t− T )

⎤
⎦ .

Similar to the design of translational errors as in (4.8), a self-delayed angular velocity

errors eac
i ∈ R

4 is introduced to establish the relationship between the orientation

and the angular velocity as

eac
i =

[
eacηi

eac
εi

]
=

[
ξi − ξi(t− T )

]
⊗ ξ∗j (t− T )

=

⎡
⎣ Δηiηj(t− T ) + (Δεi)

Tεj(t− T )

−Δηiεj(t− T ) + ηj(t− T )Δεi − S(Δεi)εj(t− T )

⎤
⎦ , (4.12)

where Δηi = ηi − ηi(t− T ) and Δεi = εi − εi(t− T ).

Since the ith agent could have connections with multiple agents (including the

neighbors and the leader), ξ∗j (t− T ) in (4.12) transmitted from the connected agents

is not a consistent value. Therefore, ξ∗j (t−T ) is replaced by an estimated orientation

signal ξ̄∗j (t− T ) given as

ξ̄∗j (t− T ) =

[
n∑

j=1,j �=i

aij + bi

]−1 n∑
j=0

ξ∗j (t− T ).

Then, (4.12) becomes

eac
i =

[
ξi − ξ∗i (t− T )

]
⊗ ξ̄∗j (t− T )

=

⎡
⎣ Δηiη̄j(t− T ) + (Δεi)

T ε̄j(t− T )

−Δηiε̄j(t− T ) + η̄j(t− T )Δεi − S(Δεi)ε̄j(t− T )

⎤
⎦ . (4.13)

Accordingly, the self-delayed angular velocity error becomes

ėac
i =

⎡
⎣ 1

2
(eac

εi )
Teac

wi

−1
2
eacηiI3 + S(eac

εi )e
ac
wi − S(eac

εi )Δwi

⎤
⎦ , (4.14)

where eac
wi = w̄i(t− T )−Δwi.

Eventually, we can stack the translational and angular errors to the complete

position error vector, velocity error vector, and self-delayed velocity error vector as

ep
i =

[
elp
i

eap
i

]
∈ R

7, ev
i =

[
elv
i

eav
i

]
∈ R

7, ėc
i =

[
ėlc
i

ėac
i

]
∈ R

7. (4.15)
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Remark 4.2. According to the translational and angular error dynamics, the stacked

self-delayed velocity error relates the stacked pose error and the velocity error as

ėp
i = ev

i −
( n∑

j=1

aij + bi

)
ėc
i . (4.16)

Non-Singular Sliding Mode Controller Design

Based on the NTSM control theory generalized in Section 3.5, the sliding surface,

si ∈ R
7, is constructed as a function of the position error and the velocity error as:

si = ep
i + β(ev

i )
α, (4.17)

where the gains α and β have been defined in (3.36). Then, the task-space controller

for the follower manipulators is designed as

ui = Ciẋi + gi +
( n∑

j=1

aij + bi

)−1

Mi

{
− (ev

i )
(2−α)

αβ
+

1

αβ

( n∑
j=1

aij + bi

)

diag
(
(ev

i )
(1−α)

)
ėc
i +

n∑
j=1

aijẍj(t− T ) + biẍ0(t− T )− κ1sgn(si)

}
,(4.18)

where ui ∈ R
7, and κ1 is a positive constant. Because 1 − α < 0, to avoid the

mathematical singularity, (ev
i )

(α−1) is operated element-wisely as

(evi (m))(1−α) =

⎧⎨
⎩ (evi (m))(1−α), if evi,m 
= 0, m = 1, 2, · · · , 7

0, otherwise.

The following theorems and remarks describe the tracking performance of the

networked multi-manipulator systems through the use of the Lyapunov method.

Theorem 4.1. For the follower manipulators described in operational space given by

(4.2), it is guaranteed to reach the sliding surface in (4.17) and an auxiliary switching

surface given by

‖ev
i ‖ =

( n∑
j=1

aij + bi

)
‖ėc

i‖, sgn(ev
i ) = sgn(ėc

i), s.t. si = 0. (4.19)

in a finite time using the controller in (4.18).
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See Appendix A.1 for the proof.

Theorem 4.1 implies that bounds of the pose error and velocity error are ultimately

related to the self-delayed velocity error. Recall Assumption 4.4, the following propo-

sition and remarks state multiple effects on the upper tracking error bounds.

Proposition 4.1. In the pose tracking synchronization control, when the sliding sur-

face and the switching surface are all reached, the pose error and the velocity error

are bounded as

‖elp
i ‖ ≤ βi

( n∑
j=1

aij + bi

)αi

T
αi
2 (AlM)αi , (4.20)

‖eap
i ‖ ≤ βi

( n∑
j=1

aij + bi

)αi

T
αi
2 (AaM + V aM)αi , (4.21)

where the translational and angular maximum assigned velocities and accelerations are

‖ṗi‖ ≤ V lM , ‖ξ̇i‖ ≤ V aM , ‖p̈i‖ ≤ AlM , and ‖ξ̈i‖ ≤ AaM , and V M =
√
(V lM)2 + (V aM)2

and AM =
√

(AlM)2 + (AaM)2.

See Appendix A.2 for the proof.

Remark 4.3. In the leader-following system where the reference signal is given with

AM
0 = 0 (i.e., the leader is static or moves at a constant speed), the pose tracking error

is independent of the effect of network delays, and zero error can be achieved. On

the other hand, when the reference signal is given with a non-zero maximum assigned

acceleration or a time-varying speed (AM 
= 0), the larger communication delays result

in the increased pose error bound.

Remark 4.4. In a leader-following network-delayed system, the leader trajectory with

a higher maximum assigned acceleration AM increases the pose error bound.

Remark 4.5. Selecting higher control gains β or smaller value of α leads to larger

pose error bounds.

Remark 4.6. The larger network delay causes larger upper bounds of the pose error.

4.2.3 Simulation Results

This section provides numerical simulation results of three follower manipulators syn-

chronizing to a leader’s state trajectory. The leader and followers are all modeled as
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Figure 4.1: Weakly connected topology.

Table 4.1: The maximum assigned velocity and acceleration generated by different
angular frequencies f .

f
Translational Angular

V lM (m/s) AlM (m/s2) V aM AaM

π/40 0.0867 0.0091 0.0604 0.0050

π/35 0.0990 0.0119 0.0690 0.0065

π/30 0.1155 0.0162 0.0805 0.0088

π/25 0.1384 0.0234 0.0965 0.0127

π/20 0.1730 0.0365 0.1207 0.0199

π/15 0.2307 0.0649 0.1606 0.0350

two-link robot manipulators as in Section 3.3.3 and the network topology is shown

in Fig.4.1. The joint states of follower manipulators are initialized at different values

(unit: rad): q1(0) = [1.047 1.047]T, q2(0) = [1.047 1.390]T, q3(0) = [1.500 0.500]T.

All initial velocities are set as zero.

A time-varying reference trajectory in task space is produced from a sinusoidal

joint trajectory of q0 = [0.8 0.8 sin(ft)]T rad through the forward kinematics as

in Section 3.2.5. Consider the angular frequency f ranging from π/40 to π/15, the

resultant translational and angular assigned velocities and accelerations are shown in

Table 4.1. The unit of the orientation is omitted as the four quaternion parameters do

not have an intuitive physical meaning. In the remaining discussions, the according

angular frequency f is used when referring to the assigned velocities and accelerations.

In this simulation, the follower controllers use the same control gains, that is, αi = α,

βi = β, and κi = κ. Notice that the manipulator models in the simulation are planar,
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Figure 4.2: Comparison of the translational tracking performance using different types
of feedback signals of (a) Case I, (b) Case II, and (c) Case III.

so the z coordinate, ε1, and ε2 are zero.

Comparisons of Using Different Types of Feedback Signals

To present the merits of using the mixed-type feedback in the control design, com-

parisons with the use of the following two different types of feedback are performed

(Taking translational feedback as an example).

Case I: Feedback signals without self-delay

elp
i =

n∑
j=1

aij[pi(t)− pj(t− T )] + bi[pi(t)− p0(t− T )],

elv
i =

n∑
j=1

aij[ṗi(t)− ṗj(t− T )] + bi[ṗi(t)− ṗ0(t− T )].

Case II: Feedback signals with self-delay

elp
i =

n∑
j=1

aij[pi(t− T )− pj(t− T )] + bi[pi(t− T )− p0(t− T )],

elv
i =

n∑
j=1

aij[ṗi(t− T )− ṗj(t− T )] + bi[ṗi(t− T )− ṗ0(t− T )].

Case III: The mixed-type feedback as in (4.6) and (4.7).

Fig.4.2 presents the comparison results of three cases simulated with f = π/15.

As to the network delay, Case I and Case III are simulated with T = 0.5 s, while

the delay in Case II is T = 0.1 s because the delay of T = 0.5 s results in the

tracking failure due to the poor stability.
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As can be seen from Fig.4.2(a), merely using the feedback without self-delay (Case

I) can guarantee the tracking stability while the tracking accuracy degrades with a

phase shift caused by time delays. In contrast, in Fig.4.2(b) where the controller

utilizes the feedback signals with self-delay (Case II), the undesired phase shift is

reduced. However, the trajectories of the followers present evident oscillations along

the leader trajectory, and such oscillations will lead to instability when the delay

increases. Fig.4.2(c) shows benefits of the controller using the mixed-type feedback

signals (Case III) to improve the tracking accuracy.

Multiple Effects on Tracking Performance

The following results and discussions demonstrate the influences of time delays, angu-

lar frequencies, and the selection of control gains. In each discussion, six datasets of

the pose error bound are collected and each dataset contains 4000 data. To present

the results, the boxplot is used to display the distribution of the pose error. The

median of a boxplot is used to denote the average pose error and the interquartile

range (IQR) that shows the 25th to the 75th percentile of the distribution is used

to demonstrate the error bound. A boxplot also displays the outlier number that

demonstrates the suddenly large error w.r.t the median value. Table 4.2∼Table 4.5

present the average values, IQR, and outliers of the pose tracking error. In the fol-

lowing discussions, unless other specified, the control gains are selected as α = 7/5,

β = 1, and κ1 = 6, the angular frequency is selected as f = π/40, and the delay is

set as T = 0.05 s.

Effect of Network Delays: In discussion of the effect of the network delay,

the latency is selected in 0.05 s ∼ 0.3 s according to the physical tests in [88, 89].

As it can be seen from Fig.4.3(a), the tracking errors increase exponentially as the

network delay increases from 0.05 s to 0.3 s. This verifies our theoretical results

in Proposition 4.1, showing that the growth of the pose tracking error is a power

function of the increasing time delays. As claimed in Remark 4.3, when the reference

signal is given with a time-varying speed, i.e., AM 
= 0, the longer network delay

results in the increased pose error bounds. This trend can be seen in Table 4.2.

When the delay is small, e.g., T = 0.05 s, the average pose error is very small, that is,

5.902×10−5 m, and the pose error is ranging within a very small bound. For example,
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Translational mean error

Angular mean error

Figure 4.3: The Box plot shows the medians, quartiles, extremes, outliers, and the
average of the pose tracking error varying with (a) different delays; (b) different
angular frequencies f .

Table 4.2: Results of tracking errors affected by network delays

T (s) Mean (m) IQR (m) Outlier Num.

0.05 5.902× 10−5 [5.454, 6.317]× 10−5 0

0.10 2.502× 10−4 [1.703, 3.225]× 10−4 0

0.15 9.362× 10−4 [5.880, 13.041]× 10−4 0

0.20 2.491× 10−3 [1.532, 3.534]× 10−3 0

0.25 5.318× 10−3 [3.252, 7.586]× 10−3 0

0.30 9.676× 10−3 [6.044, 13.327]× 10−3 0

Table 4.3: Results of tracking errors affected by angular frequencies

f Mean (m) IQR (m) Outlier Num.

π/40 5.540× 10−5 [5.206, 5.934]× 10−5 0

π/35 5.185× 10−5 [4.845, 5.534]× 10−5 0

π/30 8.020× 10−5 [7.559, 8.402]× 10−5 85

π/25 1.964× 10−4 [1.815, 2.102]× 10−4 0

π/20 4.908× 10−4 [4.540, 5.106]× 10−4 155

π/15 5.742× 10−4 [5.465, 5.961]× 10−4 129

the interquartile range is only [5.454, 6.317]× 10−5 m. However, when T increases to

0.3 s, the average pose error increases to 9.676× 10−3 m, which is approximately 200

times higher than that of T = 0.05 s. The error bound also significantly increases to

[9.676, 13.327]× 10−3 m.

Effect of Signal Acceleration: The virtual leader given as the trajectory with

q0 = [0.8 0.8 sin(ft)]T rad is with different angular frequency f so as to generate
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Figure 4.4: Results of (a) α values changing with i and (b) the example calculation,
(−0.2)(α−1), with different α values.

different maximum assignment accelerations AM . The mapping from the angular fre-

quency to the maximum assignment velocity and acceleration is provided in Table 4.1.

Fig.4.3(b) demonstrates the distribution of pose errors plotted against the angular

frequency f .

As can be seen from Fig.4.3(b), the pose error grows as the angular frequency

increases. This trend is expected because the followers become more sluggish to

follow the signal with a fast-changing speed when the network is weakly connected

and exists time delays. In addition, as the angular frequency increases up to π/20, it

presents obvious outlier (red cross markers), which implies the undesired jitter in the

trajectory tracking. Table 4.3 lists the pose errors at different angular frequencies.

The behavior in Fig.4.3(b) agrees with the theoretical statements in Proposition 4.1

and Remark 4.4 that the increased AM enlarges the tracking errors. Therefore, in

the physical settings, if the tracking error tends to be higher, it is advisable for the

human to operate the task in a slow and smooth manner.

Effect of Control Gains Proposition 4.1 also reveals that the NTSM control gains,

α and β, can influence the pose tracking error as well. Notice that another control

gain κ is not discussed in this article as its relationship with the tracking error cannot

be concluded from (4.20) and (4.21).

Consider the control gain α has a specific form as α := (2h + 1)/(2h − 1) (h =

1, 2, · · · ), Fig.4.4(a) illustrates the relationship between α and h. α drops significantly

over the range of 2 ≤ h ≤ 20, but it is approximately equal to 1 when h > 20.

Moreover, as analyzed in (C.12), α should be selected to guarantee that the rational

exponent function (ev
i )

(αi−1) ≥ 0 always holds such that the time derivative of the
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Translational mean error

Angular mean error

Figure 4.5: The Box plot shows the medians, quartiles, extremes, outliers, and the
average of the pose tracking error varying with (a) different α values; (b) different β
values.

Table 4.4: Results of tracking errors affected by α.

α Mean (m) IQR (m) Outlier Num.

7/5 8.098× 10−5 [7.317, 8.753]× 10−5 40

15/13 3.568× 10−4 [3.303, 3.854]× 10−4 0

23/21 5.179× 10−4 [4.948, 5.395]× 10−4 0

31/29 6.266× 10−4 [5.998, 6.407]× 10−4 354

39/37 6.875× 10−4 [6.648, 7.084]× 10−4 5

47/45 7.400× 10−4 [7.030, 7.800]× 10−4 0

Table 4.5: Results of tracking errors affected by β.

β Mean (m) IQR (m) Outlier Num.

1 5.747× 10−5 [5.333, 6.124]× 10−5 5

4 2.162× 10−4 [2.106, 2.189]× 10−4 261

7 3.946× 10−4 [3.776, 4.106]× 10−4 0

10 6.169× 10−4 [5.401, 6.717]× 10−4 109

13 3.891× 10−3 [2.160, 5.407]× 10−3 0

16 14.740× 10−3 [10.330, 18.823]× 10−3 0

Lyapunov function is negative semi-definite. Due to the numerical approximation in

the Matlab calculation, selecting αi = 5/3 (or h = 2) may result in (ev
i )

(αi−1) < 0

when ev
i is negative. One illustrative example of this behavior is shown in Fig.4.4(b).

Thus, we suggest to select α value when 3 ≤ h ≤ 20.

In Fig.4.5(a), the plot of average tracking error presents an exponentially decrease

over the increasing α value, while the box width (representing the IQR) does not

have significant changes. This verifies that the pose tracking error is an exponential
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Table 4.6: The convergence time (unit: s)

β
α

7/5 9/7 13/11 25/23

1 2.81 4.25 4.50 5.36

5 7.17 12.42 15.85 20.38

9 10.35 19.61 24.76 31.63

13 12.46 25.87 31.73 41.09

function of α as stated in Proposition 4.1 and Remark 4.5. Therefore, to achieve

smaller pose tracking errors, it is preferred to select a greater α value. For example,

when α = 7/5, the average pose error is only 8.098 × 10−5 m, and the IQR error

bound is [7.317, 8.753]× 10−5 m, as shown in Table 4.4.

In contrast, for the effect of β, results shown in Fig.4.5 (b) and Table 4.5 demon-

strate that a smaller β value allows the smaller pose error. For example, when β = 1,

the error bound is [5.333, 6.124] × 10−5 m with the mean error of 5.747 × 10−5 m,

while error bound increases to [10.330, 18.823] × 10−3 m with the mean error of

14.740 × 10−3 m when β = 16 is selected. Furthermore, Fig.4.5(b) also shows that

selecting β in [1, 10] does not seem to have a remarkable effect on the pose tracking

error, while the tracking error increases drastically when β > 10.

Moreover, choosing the control gains, α and β, affects the convergence time ts.

The results are listed in Table 4.6, which shows that the convergence time is shorter

when choosing smaller β and greater α, e.g., β = 1 and α = 7/5.

Illustrative Example

Based on the analysis of multiple effects on the tracking accuracy, an illustrative

example is simulated with the following control gains: α = 7/5, β = 1, and κ1 = 4.

The network depicted in Fig.4.1 is utilized with the delay of T = 0.05 sec and the

leader trajectory is given with the angular frequency of f = π/40.

Taking the simulation results of the follower 1 as an example, as it can be seen in

Fig.4.6(a), the auxiliary switching surface (red grid) is reached from around 3.5 sec.

This practically is the same time when the sliding variable s converges to zero, as

shown in Fig.4.9(c). However, after the switching surface is reached, it presents some

random jitter during the time interval [3.5, 13] sec (see the green plot in Fig.4.6(a))
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Figure 4.6: (a) The convergence to the auxiliary switching surface (red grid) during
the complete time interval [0, 20] sec. (b) Zoomed plot of the data representing the
variable pair [‖ev

1‖, ‖ėc
1‖] during the time interval [13, 20] sec, and scattering around

the switching surface (red line).

Figure 4.7: The convergence of the sliding surface.

and Fig.4.7 presents the same phenomenon during this time interval. Consequently,

a sudden change in the tracking errors can be seen from Fig.4.9 (a) and (b) during

the time interval [3.5, 13] sec.

From t = 13 s onwards, the black-color plot Fig.4.6(a) shows that the system

settles down and becomes more stable. By zooming in the plot during the time

interval [13, 20] sec in Fig.4.6(a), and casting it into a two-dimensional plane as

shown in Fig.4.6(b), a “bee swarm” plot demonstrates the data of the variable pair

[‖ev
1‖, ‖ėc

1‖] scattering around the switching surface as in Theorem 4.1, which is

represented by a red line in Fig.4.6(b). This behavior agrees with the results in

Fig.4.9 during the time interval [13, 20] sec, where the tracking error is stable and

small bounded, that is, the error bound is [5.206, 5.934] × 10−5 m with the mean

error of 5.540× 10−5 m and without any outliers.

The tracking profiles and tracking errors are presented in Fig.4.8 and Fig.4.9,



57

Figure 4.8: The pose tracking synchronization of the illustrative example with α =
7/5, β = 1, κ1 = 4, f = π/40 and T = 0.05 sec.

Figure 4.9: (a) The norm of the translational position tracking error; (b) The norm
of the angular position tracking error.

respectively. They show that the follower end effectors’ poses are able to well syn-

chronize to the leader’s in a finite time. Additionally, the controller allows a smooth

convergence from their different initial poses.

4.2.4 Experimental Results

To support the practical feasibility of the control theory, experiments were performed

using a pair of 3-DOF Phantom Omni haptic devices as two followers and a virtual

leader. The topology is given by A = [0 0; 1 0] and b = [1, 0]. The experimental

setup is shown in Fig.4.10. Two devices are run in two different computers that

are connected through an Ethernet LAN. The measured one-way delays of UDP
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Figure 4.10: The experimental testbed.

Figure 4.11: (a) Measured one-way network delays in a wired LAN by manually
adding a delay of 0.03 s; (b) Mean value of delays and the standard deviation.

send/receive are shown in Fig.4.11 (by manually adding a delay of 0.03 sec), where

the average network delay of T̄ = 0.042 sec and the standard error of σ = 0.004 sec

are obtained by computing the normal distribution probability density function (ND-

pdf). Using the proposed controller with the control gains chosen as α = 7/5, β = 1

and κ = 10, Fig.4.13 demonstrates the good tracking performance of the systems’

translational and angular motions. It can be observed that the translational tracking

errors along x, y, and z directions are bounded. The orientation tracking, as well as

the orientational tracking error, are depicted in Fig.4.14.

As the control software only provides position measurements, the velocity and

acceleration signals are obtained by time-differentiation. As a result, the raw cal-

culations of the velocities and accelerations inevitably suffer from noises and high
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Figure 4.12: Control inputs of the two followers.

Figure 4.13: The translational position tracking and tracking errors with time-varying
reference signals.

frequencies. Therefore, they were filtered by a first order low-pass filter, that is,

G(s) =
1

0.09s+ 1
.

The filter can greatly reduce the high frequency and chattering effect, as illustrated

in Fig.4.15. As depicted in Fig.4.12, the control input signals of the followers are all

within the torque limits of the three joints as in Table 3.3. This verifies that our

control design in (4.18) is practically feasible. In addition, the sign function in the

sliding mode control method is replaced by a saturation function, which helps reduce
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Figure 4.14: The angular position tracking and tracking errors with time-varying
reference signals.

Figure 4.15: The unfiltered (black lines) and filtered (red lines) velocities and accel-
erations.

the chattering effect in the control signals.

sat(s) =

⎧⎨
⎩ ‖ s

Δ
‖1sgn(s), ‖s‖1 < Δ,

sgn(s), otherwise,
(4.22)
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where Δ is the boundary layer width that provides a proper trade-off between the

chattering effect and the tracking accuracy. Here, we select Δ = 0.08.

4.3 Cooperation Control Design with Online Neighbor Selection

In the control design to deal with the adverse neighbour influence, the following two

interesting approaches will be introduced into the NTSM controller to enhance each

agent’s ability to reject the noisy neighbours’ influence.

� Continuous-discrete unscented Kalman filter (CD-UKF)

� Energy index-based neighbor-selection policy.

In many engineering and physics applications, a continuous-time signal from a nonlin-

ear system is observed discretely due to processing delays or the manner of operation.

Therefore, we consider a continuous-discrete filtering approach [97]. In the nonlin-

ear CD-UKF algorithm, the manipulator dynamics are modelled as continuous-time

state-transition functions, while the measurement is regarded as a discrete-time pro-

cess. The CD-UKF estimates velocity and acceleration readings in joint space, which

are then transformed into those in task space via forward kinematics.

To facilitate the description of the CD-UKF, the manipulator dynamics (or process

model) are rewritten as:

Ẋi(t) = Fm(Xi(tk), τi(tk), tk) + υi(tk+1), (4.23)

Fm(Xi(tk), τi(tk), tk) =

⎡
⎣ ∫ tk+1

tk
Fv(Xi(τ), τi(τ), τ)dτ

Fv(Xi(tk), τi(tk), tk)

⎤
⎦ ,

Fv(Xi(tk), τi(tk), tk) = M̄−1
i (tk)(τi(tk)− C̄i(tk)q̇i(tk)− Ḡi(tk)),

where τi = JT
i ui ∈ R

m denotes the control inputs in joint space. M̄i, C̄i, and Ḡ are

nominal model parameters. The process noise is denoted by υi(tk) ∈ R
L. Fm is a

known and noise-free process model. Xi(t) ∈ R
L and Ẋi(t) ∈ R

L (L = 2m) are joint

states as

Xi(t) =

[
qi(t)

q̇i(t)

]
, Ẋi(t) =

[
q̇i(t)

q̈i(t)

]
. (4.24)
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The measurement model, Hm, is given by

Yi,k+1 = Hm(Xi(tk+1), tk+1) + ri,k+1, (4.25)

Hm(Xi(tk+1), tk+1) = DiXi(tk+1),

where Yi,k+1 ∈ R
L
2 is the actual measurement and the measurement noise is denoted

by ri,k ∈ R
L
2 . Di is the measurement model coefficient.

In addition to Assumption 4.1 ∼ Assumption 4.5, the following assumptions are

made in discussion of the CD-UKF and the neighbor selection policy.

Assumption 4.6. Assume that the noises in the state transition and observation

are additive zero-mean Gaussian processes, that is, υi(tk) ∼ N(0, Vi(tk)) and ri,k ∼
N(0, Ri,k). Vi(tk) and Ri,k are noise covariance matrices.

Assumption 4.7. Assume that only joint positions are measurable such that

Di =
[
IL

2
×L

2
0L

2
×L

2

]
, Di ∈ R

L
2
×L.

Assumption 4.8. [86] The manipulator model is non-redundant and in a non-

singular configuration, so that the relationship between the dynamics matrices/vector

in joint space (i.e., M̄i ∈ R
m×m, C̄i ∈ R

m×m, Ḡi ∈ R
m) and the nominal matri-

ces/vector M̄i,C̄i, and ḡi as in (3.28) can be described by M̄i = J−T
i M̄iJ

−1
i , C̄i =

J−T
i C̄iJ

−1
i − J−T

i M̄iJ
−1
i J̇iJ

−1
i , and ḡi = J−T

i Ḡi.

4.3.1 Continuous-Discrete Unscented Kalman Filter

The CD-UKF algorithm is iteratively implemented with two steps: a prediction step

and an update step [97], which will be outlined in this section. The UKF uses the

idea of unscented transform that is to deterministically choose a set of sample points,

named sigma points. The unscented transform will use the following weights.

Wm = [wm
0 wm

1 · · · wm
2L]

T,

W c = [wc
0 wc

1 · · · wc
2L]

T,

Wmc = (I − [Wm Wm · · · Wm])diag(W c)(I − [Wm Wm · · · Wm])T,
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where I ∈ R
(2L+1)×(2L+1) is an identity matrix. Wmc ∈ R

(2L+1)×(2L+1), Wm ∈ R
2L+1

and W c ∈ R
2L+1.

wm
0 =

λ

L+ λ
,

wc
0 =

λ

L+ λ
+ (1− μ2 + ς),

wm
p = wc

p =
1

2(L+ λ)
, p = 1, 2, · · · , 2L,

and λ = μ2(L + κ) − L. Guideline to select the scalars of κ, μ, and ς can be found

in [98].

Prediction step

In the prediction step, the probability density at time tk+1 is predicted from the

posterior probability density at time tk as the boundary condition. Letting X̄i(tk)

and Pi(tk) denote the mean and covariance of Xi(tk), the calculation of sigma points,

χi(tk) ∈ R
L×(2L+1), is performed as follows.

χi(tk) = [X̄i(tk) X̄i(tk) · · · X̄i(tk)] + c [0L×L chol(Pi(tk)) − chol(Pi(tk))],

where c =
√
L+ λ and chol(·) represents the Cholesky factorization.

The differential equations of the predicted mean and covariance of the state at

time instance tk are written as

˙̄X−
i (tk) = Fm(χi(tk),υi(tk), τi(tk))W

m, (4.26)

Ṗ x−
i (tk) = χi(tk)W

mcFT
m(χi(tk), τi(tk))

+Fm(χi(tk), τi(tk))W
mcχT

i (tk) + Vi(tk). (4.27)

Then, by integrating the equations in (4.26) and (4.27) over [tk, tk+1], we have the

predicted mean and covariance as

X̄−
i (tk+1) =

∫ tk+1

tk

˙̄X−
i (τ)dτ,

Px−
i (tk+1) =

∫ tk+1

tk

Ṗ xi(τ)dτ.
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Update step

In the measurement update step, we continue with computing the sigma points with

the predicted mean and covariance from the prediction step, that is,

χ−
i (tk+1) = [X̄−

i (tk+1) X̄−
i (tk+1) · · · X̄−

i (tk+1)]

+c
[
0L×L chol(Px−

i (tk+1)) − chol(Px−
i (tk+1))

]
.

Note that measurements are implemented in discrete time, so the mean (Ŷi,k+1) and

covariance (P̄ yi,k+1) of the measurements are predicted in a discrete-time manner as

well.

Y
−
i,k+1 = Hm(χ

−
i (tk+1), tk+1),

Ŷi,k+1 = Y
−
i,k+1W

m.

In the standard UKF process [97], covariance of the measurement is given by

P̄ yi,k+1 = Y
−
i,k+1W

mc(Y−
i,k+1)

T +Ri,k+1,

and we denote the predicted measurement residual vector as

ΔYi,k+1 = Yi,k+1 − Ŷi,k+1.

Then predicted covariance of the measurement becomes

Pyi,k+1 = Y
−
i,k+1W

mc(Y−
i,k+1)

T +Ri,k+1. (4.28)

The cross-covariance of the state and measurement is

Pxyi,k+1 = χ−
i (tk+1)W

mc(Y−
i,k+1)

T .

Eventually, the mean and covariance of the state at time tk+1 are updated by

Kk+1 = Pxyi,k+1Py−1
i,k+1,

X̄+
i (tk+1) = X̄−

i (tk+1) +Kk+1ΔYi,k+1,

Px+
i (tk+1) = Px−

i (tk+1)−Kk+1P̄ yi,k+1K
T
k+1,

where Kk+1 denotes the filter gain.
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4.3.2 Noise Estimation

Another common assumption that we attempts to relax is that the noise covariances

in (4.27) and (4.28) are given as a priori. This does not always hold in practice.

Therefore, we introduce the online covariance estimation method [99] into the CD-

UKF algorithm, and it is outlined as follows.

Letting εi,tk ∈ R
1 and Φi,tk ∈ R

L×L define two prior parameters (shape and rate,

respectively) of an inverse Wishart distribution (IWD), their posteriors are computed

by

εi,tk+1
= εi,tk + 1, (4.29)

Φi,tk+1
= Φi,tk +ΔSi(tk+1)ΔST

i (tk+1), (4.30)

where ΔSi(tk+1) is the Gaussian noise sample given as follows. To estimate Vi in

(4.27), we use

ΔSi(tk+1) = X+
i (tk+1)− Fm(X

+
i (tk), τi(tk)). (4.31)

To estimate Ri in (4.28), we use

ΔSi(tk+1) = Yi,k+1 − Ŷi,k+1. (4.32)

Then, along with the CD-UKF procedure, the noise covariance matrices are iteratively

approximated by a point estimation as

ωi,tk+1
=

Diag(Φi,tk+1
)

εi,tk+1
+ 1 + p

, (4.33)

where p is a positive constant. Diag(∗) returns a vector that contains all diagonal

entries of an input square matrix. Notice that ωi,tk+1
represents the estimations of Vi

or Ri at time tk+1, subject to the choice of ΔSi(tk+1) from (4.31) or (4.32).

4.3.3 Neighbor Selection Policy

Although the CD-UKF has been proved to successfully provide smooth estimations,

we found that it may not be advantageous to use the estimated states in nonlin-

ear closed-loop control schemes. The estimations may cause fast accumulation of

the mechanical energy that leads to temporary or ultimate instability. This effect
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exacerbates in multi-manipulator systems due to the interplay of agents as well as

network-induced constraints (e.g., delays and packet loss). A “performing-well” agent

may be affected by its neighbour’s incorrect information, and it, in return, will broad-

cast the poor updated state information to the neighbours. Consequently, state errors

can keep propagating and increasing through the MASs. In what follows, we propose

an energy-based neighbour selection policy to regulate the interaction between agents

in the multi-manipulator system.

Lemma 4.1. [100] Consider a robot system as a Port-Hamiltonian System connected

to its actuators through power ports, the rate of change of its Hamiltonian is the sup-

plied power, that is, τiq̇i, where torque τi and rotational velocity q̇i are port variables.

With the damping dissipation, the energy balance equation can be expressed as

Hi(tp+1)−Hi(tp)︸ ︷︷ ︸
Stored Energy

=

∫ tp+1

tp

[ q̇T
i (t)τi(t)︸ ︷︷ ︸

Supplied Energy

− q̇T
i (t)

∂Fi(q̇i)

∂q̇i︸ ︷︷ ︸
Dissipated Energy

]dt,

where Fi represents the linear friction in joint space [101]. Notice that tp+1 denotes

the current time instant.

Remark 4.7. For a dissipative manipulator system that is supplied with excessive

energy between two times tp and tp+1, the storage energy will exceed the dissipation.

Consequently, the manipulation performance would be temporarily perturbed since the

excessive kinematic energy or potential energy drives the system away from the equi-

librium states.

Based on Lemma 4.1 and Remark 4.7, we monitor the stored mechanical energy

that is estimated by

Ei(tp+1) =

∫ tp+1

tp

ˆ̇qi(t)τi(t)dt− B‖ˆ̇qi(t)‖2, (4.34)

where Ei(tp+1) ∈ R
m. Let Tns = tp+1 − tp denote the time interval of updating the

selection law that will be introduced in Theorem 4.2. Tns is user-defined and not less

than sampling time of sensor measurements and assume that tp is an integral multiple

of tk.

Remark 4.8. By monitoring the stored energy between two times tp and tp+1, as

in (4.34), a drastic motion change can be expected if the storage energy appears to
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accumulate or oscillate considerably. Therefore, the temporary storage energy can be

used as an indicator of operating performance of the manipulator.

To facilitate the use of the stored mechanical energy as an indicator, it is normal-

ized by

�i =
sat(‖Ei(tp+1)‖)− EM,i

EM,i − Em,i

, 0 ≤ �i ≤ 1, (4.35)

where sat(∗) represents a saturation function, and Ei is then clipped to the upper and

lower bounds that are denoted by EM and Em, respectively. At this stage, EM and Em

are chosen at the designer’s discretion and the individual robots’ application-specific

performance requirements. The energy index �i will be attached to the network

packets that are delivered to other connected neighbours.

Remark 4.9. When �i is approaching to 0, it indicates the significant mechanical

energy accumulation during times tp and tp+1, while less mechanical energy is stored

when �i is approaching to 1.

Theorem 4.2. For the ith manipulator in MASs, when receiving its neighbours’ en-

ergy indexes, it selects its neighbours based on the neighbour selection indexes given

by

Ωj =

⎧⎨
⎩

1
2
[1 + sgn(�d,i − aij�j)], if max(Wi) ≥ �d,i

(1− bi)[1− sgn(max(Wi)− aij�j)], otherwise

where �d,i is the desired energy index. Wi = [aij�j] defines a vector of receiving en-

ergy indexes from its neighbours. min(∗) and max(∗) return minimum and maximum

values of the input. sgn(∗) represents the sign function.

Remark 4.10. When max(Wi) < �d,i, it implies that there is no eligible neighbour

to select. Nevertheless, to avoid an agent to completely disconnect to the MASs,

this agent compromises to use the information of either the leader (if bi = 1) or the

“least-worst” neighbor (if bi = 0).

Remark 4.11. Mostly, 0 and 1 are assigned to Ωj. For the occasional case where

aij�j = �d,i, we obtain Ωj = 1/2, which means that “50%” of the neighbor informa-

tion is used in the controller. One may want to use the full percent of the neighbor

information by manually multiplying Ωj by 2 under the condition of aij�j = �d,i.
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4.3.4 NTSM Controller Design

With the neighbour selection policy given in Theorem 4.2, the error dynamics are

given as follows.

ei =
n∑

j=1

Ωj(p̂i(t)− p̂j(t− Tij(t))) + bi(p̂i(t)− p0(t− Ti0(t)))), (4.36)

ėi =
n∑

j=1

Ωj(ˆ̇pi(t)− ˆ̇pj(t− Tij(t)))) + bi(ˆ̇pi(t)− ṗ0(t− Ti0(t))), (4.37)

where ei ∈ R
3 and ėi ∈ R

3. Through the forward kinematics, x̂ and ˆ̇p are acquired

from the joint states estimated by the CD-UKF algorithm. Since ∂p̂j(t − Tij(t))/∂t

gives the velocity by taking the time-derivative of the estimated and delayed position,

while ˆ̇pj(t−Tij(t))) is the delayed velocity generated from the CD-UKF method. The

following assumption is made to facilitate the stability analysis.

Assumption 4.9. Assume that ˆ̇pj(t − Tij(t))) = ∂p̂j(t − Tij(t))/∂t such that ėi =

∂ei/∂t. Furthermore, it is assumed that ˆ̈pj(t−Tij(t))) = ∂ ˆ̈pj(t−Tij(t))/∂t such that

ëi = ∂ėi/∂t.

Substitute the errors defined in (4.36) and (4.37) into the sliding surface in the

form as in (3.36), we have

si = ei + βi(ėi)
αi . (4.38)

Theorem 4.3. For the leader-following manipulator system described in (4.1) and

(4.2), the proposed neighbor selection policy can be incorporated into a NTSM control

that is designed as follows:

ui = Ci
ˆ̇pi + gi +

( n∑
j=1

Ωj + bi

)−1

Mi

{−(ėi)
(2−αi)

αiβi

+
n∑

j=1

Ωj
¨̂pj(t− Tij(t))

+bip̈0(t− Ti0(t))−
( n∑

j=1

Ωj + bi

)
C̄iLiM

M+
i sgn(si)− κisgn(si)

}
, (4.39)

where i denotes the ith follower. κi > 0. Li is the upper bound of the velocity

estimation error, given by Li ≥ ‖Δṗ‖1 and Δṗ = ˆ̇pi− ṗi. M
M+
i ≥ ‖M+

i ‖1 where M+
i

represents the Pseudo-inverse of M̄i.

The stability proof is provided in Appendix A.3.
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Figure 4.16: Leader-following network topology.

4.3.5 Simulation Results

The numerical simulations were performed with a mathematical model of the 3-DOF

Phantom Omni haptic devices described in Section 3.3.3. The leader trajectories were

pre-recorded from the Phantom Omni haptic device. The same control gains were

chosen for all agents’ controllers as αi = 7/5 and βi = 1, κi = 8. Tns = 0.1 sec.

ξ = [0.2 0.2 0.2]T . κ = 0, μ = 1 × 10−3, and ς = 2. p = 1 as in (4.33). We take one

leader, four followers as an example (n = 4), and assume that the followers are fully

connected, as shown in Fig.4.16. Therefore, we have the adjacency matrices of A and

b as

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

⎤
⎥⎥⎥⎥⎥⎦ , b =

[
1 0 0 1

]
.

The delays were 0.03 ± 0.005 s and the packet loss rate was set to 20%. The mea-

surement and process noise variances were selected as: R = [0.1257 0.2000 0.3200]

and Q = diag([0.01 0.01 0.01 0 0 0 0 0 0]), respectively. As in (4.22), the saturation

function is used to reduce the chattering effect.

In what follows, we will present the estimating performance of the CD-UKF al-

gorithm, the adverse effect of agent interplay in a multi-manipulator system, and the

benefit of using the proposed neighbour selection policy. Four cases as follows will be

discussed and compared:
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Figure 4.17: The CD-UKF has a good ability to obtain the smooth average state
from the noisy measuring signals.

Case 1: The NTSM control for one single manipulator without the CD-UKF

algorithm in the closed-loop;

Case 2: The NTSM control for one single manipulator with the CD-UKF algo-

rithm in the closed-loop;

Case 3: The NTSM control for a networked multi-manipulator system as in

Fig.4.16 with the CD-UKF algorithm in the closed-loop but without the proposed

neighbour selection policy;

Case 4: The NTSM control for a networked multi-manipulator system with the

CD-UKF algorithm in the closed-loop and with the proposed neighbour selection

policy.

Estimating Performance of CD-UKF Algorithm

We begin with Case 1 without using the estimated states in the controller. In other

words, it is assumed that all states are measurable, while estimations from the CD-

UKF method are only for us to see its estimating quality. As can be seen in Fig.4.17,

CD-UKF algorithm has a good ability to provide smooth average states out of the

noisy measuring signals.
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Figure 4.18: (a) The convergence of estimated measurement noise levels (solid lines)
to their actual noise levels (dash lines). (b) Comparisons of estimated process noise
levels to their actual noise levels (red dash lines).

As to the noise estimations, the measurement noise levels denoted by the covari-

ance can be estimated accurately and promptly, as shown in Fig.4.18(a). However,

the estimated process noises fail to converge to their true values (see Fig.4.18(b)).

This is because the robust controller makes the system insensitive to the process

noises. Therefore, the estimated process noises converge to zero regardless of the

actual process noises.

Comparison Results

After confirming the good performance of the CD-UKF method, Case 2 is considered.

We simulated the closed-loop control scheme by feeding back the estimated states to

the NTSM controller. Fig.4.19 shows the comparison results between Case 1 and

Case 2. Without loss of generality, when comparing tracking errors, we only present

the results of the 3rd manipulator along the x-axis as an example.

In both cases, we observe significant changes in the energy during the transient

phase, and occasional fluctuations occur in the steady-state phase (see Fig.4.19(a)).

In addition, the energy change of Case 2 is slightly greater than that of Case 1. For

instance, during 10 ∼ 15 s, the mechanical energy of Case 2 experiences frequent

oscillations with larger amplitudes than Case 1. This is caused by the jerky and

oscillatory estimation of power signals (i.e., the velocity estimation in this case) using

the CD-UKF approach. Consequently, the system tends to accumulate excessive

energy.

Accordingly, as shown in Fig.4.19(b), more perturbations can be expected in the
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Figure 4.19: (a) The mechanical energy evolution and (b) tracking error (in x direc-
tion) of the 3rd manipulator in Case 1 and Case 2.
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Figure 4.20: (a) The mechanical energy evolution and (b) tracking errors (in x direc-
tion) of the 3rd manipulator in Case 3 and Case 4.

position signals of Case 2. Nevertheless, in many industrial applications, the track-

ing accuracy (≤ 2 × 10−3 m) as in Case 2 is acceptable [102–104]. Therefore, for
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Figure 4.21: (a) Energy indexes of manipulator 1 ∼ 4 (denoted by A1 ∼ A4); (b)
Selection indexes of agent 3 where Ωj = 1 indicates information of the neighbor j is
used, and Ωj = 0 otherwise.

applications with a single manipulator, the NTSM control with the CD-UKF estima-

tions can provide satisfactory performance. Next, we will examine the performance

in a multi-manipulator system where the network delays and packet loss are involved.

Fig.4.20 and Fig.4.21 illustrate results of the 3rd manipulator that has the same

configurations as in Case 1 and Case 2. Unfortunately, it can be seen from Fig.4.20

that the small perturbations in both energy and tracking error of Case 2 have become

significantly large in Case 3. The drastic amplification of oscillations and tracking

errors in MASs results from multiple effects, including the intercommunications of

the inaccurate and oscillatory states, network delays, packet loss, etc. Consequently,

the overall performance degrades. As shown by the results of Case 3 in Fig.4.20(b),

the tracking error after 15 s is up to 0.2 m, which is far beyond desired performance.

Fig. 4.20 also presents the results of Case 4 where the proposed neighbor selection

policy is applied to address the issues in Case 3. As shown in Fig. 4.20, Case 3 and

Case 4 have the same performance in the transient phase. Nonetheless, using the

neighbour selection policy, the manipulator presents good tracking accuracy during

the steady-state phase.

Fig.4.21 helps explain the reason why Case 4 outperforms Case 3. Taking the
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time 9 ∼ 12 s as an example, we set the desired energy index �d,3 = 0.85 for the

3rd manipulator (denoted by A3 as in Fig.4.21). When the energy indexes of its

neighbours (i.e., A1, A2, and A4) decrease to be below the desired energy index of

the 3rd manipulator, the 3rd manipulator decides to actively disconnect agent 1 and

agent 4, as well as agent 2 subsequently. In Case 4, by cutting off the unnecessary

interactions amongst the agents, the 3rd manipulator is less affected by the increasing

tracking errors from its neighbours. In return, the 3rd manipulator is able to main-

tain its good tracking performance and serves as a good-performing neighbour for

its connecting agents. This gives a healthier interaction amongst the manipulators

compared to Case 3.

4.4 Concluding Remarks

The NTSM control method incorporating other techniques were developed for a

leader-following cooperation system communicating in a weak topology in the pres-

ence of time delays. By using the mixed-type feedback signal and energy-based neigh-

bour selections, the controllers are able to deal with issues of the large phase shift

and the adverse neighbour influence, respectively. For each network-delayed agent,

the performance that is measured by tracking error is significantly improved, when it

is able to promptly react to the change of the reference signals, and, as well, receives

less adverse influence from the noisy neighbours. The developed nonlinear controller

has been theoretically and experimentally proved to be able to regulate the syn-

chronization of multiple network-delayed manipulators, in the presence of practical

constraints/challenges, such as network delays, weakly connected network, unknown

dynamics and external noises.



Chapter 5

Adaptive NTSM Control with Time-varying Gains

Although a great deal of exact-model-based control policies have been theoretically

proved to be able to achieve or to maintain a desired level of performance, from

the practical point of view, these methods may be impracticable because the model

parameters could be initially uncertain or vary during the operation. For example,

the payload dynamics of a robot manipulator may be initially unknown and time-

varying during the manipulation tasks. Therefore, to allow a control system to adjust

itself to the unknown parameters, concepts of the adaptive control techniques have

been developed.

In this chapter, we aim at developing the automated adaptation of the NTSM

control method as discussed in Chapter 4. The purpose of the developed ANTSM is

to address the deleterious effects caused by the initially unknown parameters, such

as dynamic uncertainties, frictions, external noise bounds, and time-varying network

delays, and, therefore, maintain the good synchronization performance1.

5.1 Problem Description

In the leader-following framework, the leader is assumed as a given desired trajectory.

Therefore the modelling of the leader as well as its control design will not be discussed.

For the follower manipulators, they are modelled by the E-L representation as in (3.28)

with the same variable definitions:

M̄iẍi + C̄iẋi + ḡi = ui + ρi. (5.1)

1This chapter was published as the work in [105],�2019 AACC,�2019 IEEE. Reprinted, with
permission, from Henghua Shen and Ya-Jun Pan, “Adaptive Robust Control of Networked Multi-
Manipulators with Time-Varying Delays”, 2019 IEEE American Control Conference, July/2019,
and as the work in [54], 0278-0046 �2020 IEEE. Reprinted, with permission, from Henghua Shen
and Ya-Jun Pan, “Tracking Synchronization Improvement of Networked Manipulators Using Novel
Adaptive Non-Singular Terminal Sliding Mode Control”, IEEE Transactions on Industrial Electron-
ics, April/2020.
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In (5.1), ρi compactly denotes the unknown components of the model parameters,

including the model uncertainties, ΔMi, ΔCi, Δgi, the unknown external distur-

bances, di, and the unknown friction, f f
i , which can be expressed by

ρi = ΔMiẍi +ΔCiẋi +Δgi + di + f f
i . (5.2)

Nonlinear control schemes that rely on the exact model information may not work

as desired due to the adverse effect of the unknown parameters in ρi. One can treat

ρi as disturbances and use robust control approaches (e.g. SMC-based approaches)

to solve the problem. However, the upper bound of ρi is required as a prior. To

relax this requirement, we want to develop the adaptation in the NTSM approach to

adjust estimates of the upper bounds. With the online estimation for the unknown

parameters, the system is able to provide desired performance.

Another issue addressed in this chapter is the selection of NTSM control gain κ.

Theoretically, the NTSM control method can well stabilize a nonlinear manipulator

system as long as κ is a positive constant. However, in physical experiments, when

a robot experiences significant static frictions, selecting a constant value of κ that

guarantees the smooth convergence during the transient phase may not be able to

provide high tracking accuracy during the steady-state phase, and vice versa. There-

fore, we wish to find a time-varying control gain that is tunable in different phases

to achieve a good trade-off between the smooth convergence and high steady-state

tracking accuracy.

Control Objective

An adaptive NTSM controller will be designed to guarantee the position synchroniza-

tion of the followers to a time-varying leader trajectory when the network communi-

cation is with unknown time-varying transmitting delays and weakly connectedness.

In the presence of model uncertainties, unknown external noises, unknown frictions,

and network delays, the network-wide objective is to achieve the leader-following syn-

chronization described by ‖xi(t)− x0(t)‖1 ≤ Δε,i0 and ‖xi(t)− xj(t)‖1 ≤ Δε,ij. The

bounds Δε,i0 ≥ 0 and Δε,ij ≥ 0 are desired to be as small as possible. In addition, a

time-varying ANTSM control gain is to design to guarantee the positions of the fol-

lower end effectors to smoothly converge to the leader from arbitrary initial positions,
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and, meanwhile, ensure the high tracking accuracy during the operation.

5.2 Adaptive NTSM Control with Time Varying Gains

In this section, an ANTSM control method in task space will be introduced with

mixed-type feedback signals, three time-varying compensatory bounds, and a time-

varying ANTSM control gain.

5.2.1 Mixed-Type Feedback Signals

As previously discussed in Chapter 4, The mixed-type signal can be designed as

ep
i =

n∑
j=1

aij[xi(t− T̄ij)− xj(t− Tij(t))] + bi[xi(t− T̄i0)− x0(t− Ti0(t))],(5.3)

ev
i =

n∑
j=1

aij

[
ẋi(t)− ẋj(t− Tij(t))

]
+ bi

[
ẋi(t)− ẋ0(t− Ti0(t))

]
, (5.4)

where ep
i ∈ R

3×1 and ev
i ∈ R

3×1 define the position error and velocity error, respec-

tively. Tij(t) and Ti0(t) are the time-varying network delays from agent j to i, and

agent 0 to i, respectively. From the formulation in (3.31), we have Tij(t) = T̄ij+δij(t)

and Ti0(t) = T̄i0 + δi0(t), where T̄ij and T̄i0 are nominal delays. It is assumed that

T̄ = T̄ij = T̄i0 and they are constant and known. In the rest of this chapter, the

dependence on t is omitted unless otherwise specified, e.g., Ti0 = Ti0(t), Tij = Tij(t),

δ̇ij = δ̇ij(t), and δ̇i0 = δ̇i0(t). xi(t − T̄ij) = xi(t − T̄i0) are the positions with inexact

self-delay.

Let εsdi ∈ R
3×1 define the self-delayed velocity error that establish the relationship

between the tracking errors in (5.3) and (5.4) as

ėp
i = ev

i − εsdi , (5.5)

εsdi =
( n∑

j=1

aij + bi

)
[ẋi(t)− ẋi(t− T̄ )]−

n∑
j=1

aijẋj(t− Tij)δ̇ij − biẋ0(t− Ti0)δ̇i0.

(5.6)

5.2.2 Compensatory Bounds

One of the advantages of the SMC methods is that any bounded undesired signals

can be treated as disturbances and be well handled using the knowledge of the upper
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bounds. In what follows, three explicit error bounds are online estimated to com-

pensate for the velocity and acceleration errors induced by the self-delay, acceleration

estimation error, and time-varying network delays.

Self-Delay-Induced Velocity Error Bound

Assumed that the deviations δi0(t) and δij(t) are changing sufficiently slowly such

that ‖δ̇i0(t)‖1 ≤ 1 and ‖δ̇ij(t)‖1 ≤ 1 [50]. From (5.6), the compensatory bound for

the self-delay-induced velocity error is defined by

B
sd
i =

( n∑
j=1

aij + bi

)
‖ẋi(t)− ẋi(t− T̄ )‖1

+
n∑

j=1

aij‖ẋj(t− Tij)‖1 + bi‖ẋ0(t− Ti0)‖1. (5.7)

Then, the inequality of ‖εsdi ‖1 ≤ B
sd
i always holds.

Acceleration Estimating Error Bound

In this chapter, the acceleration is estimated from the model in (5.1) with the known

components, that is,

¨̂xj(t− Tij) = M̄+
j (t− Tij)

[
uj(t− Tij)− C̄j(t− Tij)ẋj(t− Tij)− ḡj(t− Tij)

]
. (5.8)

As a result, comparing the estimating acceleration in (5.8) with the actual acceleration

obtained from (5.1) gives the acceleration estimation error as

εaeij = ẍj(t− Tij)− ¨̂xj(t− Tij) = M̄+
j (t− Tij)ρj(t− Tij). (5.9)

Recall the bound of ρj(t− Tij) as in (3.29), we have,

‖εaeij ‖1 ≤ ‖M̄+
j (t− Tij)‖1Θ̂j(t− Tij)Φj(t− Tij). (5.10)

As the leader is assumed as a desired trajectory, no acceleration estimating error

occurs in the leader manipulator. The network-wide acceleration estimation error

only comes from neighbours, so the sum of the estimation errors is

εaei =
n∑

j=1

aij[ẍj(t− Tij)− ¨̂xj(t− Tij)] =
n∑

j=1

aijε
ae
ij . (5.11)
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Consider the inequalities in (5.10), let the compensatory bound for the acceleration

estimating error be

B
ae
i =

n∑
j=1

aij‖M̄+
j (t− Tij)‖1Θ̂j(t− Tij)Φj(t− Tij), (5.12)

such that we have ‖εaei ‖1 ≤ B
ae
i .

Delay-Variation-Induced Acceleration Error Bound

Another acceleration error is caused by the delay variation in the time-derivative

operation of the time-delayed velocity signals. For example, the acceleration error

without self-delay is

ea
i =

n∑
j=1

aij

[
ẍi(t)− ẍj(t− Tij)

]
+ bi

[
ẍi(t)− ẍ0(t− Ti0)

]
,

while the acceleration error obtained by differentiating the velocity error in (5.4) is

ėv
i =

n∑
j=1

aij

[
ẍi(t)− ẍj(t− Tij)(1− Ṫij)

]
+ bi

[
ẍi(t)− ẍ0(t− Ti0)(1− Ṫi0)

]
.

Comparing ea
i with ėv

i gives rise to an acceleration error as

εtvi = ea
i − ėv

i = −
n∑

j=1

aijẍj(t− Tij)Ṫij − biẍ0(t− Ti0)Ṫi0. (5.13)

Because ‖Ṫij‖ = ‖δ̇ij‖ ≤ 1 and ‖Ṫi0‖ = ‖δ̇i0‖ ≤ 1, the delay-variation-induced accel-

eration error is upper-bounded by

‖εtvi ‖1 ≤
n∑

j=1

aij‖ẍj(t− Tij)‖1 + bi‖ẍ0(t− Ti0)‖1.

From (5.9) and (5.10), we have ‖ẍj(t−Tij)‖1 ≤ ‖ ¨̂xj(t−Tij)‖1+‖M̄+
j (t−Tij)‖1Θ̂j(t−

Tij)Φj(t− Tij). Therefore, defining the compensatory bound as

B
tv
i =

n∑
j=1

aij‖ ¨̂xj(t− Tij)‖1 + bi‖ẍ0(t− Ti0)‖1 + B
ae
i , (5.14)

ensures that the acceleration error caused by time-varying delays is upper-bounded

by B
tv
i , that is, ‖εtvi ‖1 ≤ B

tv
i .

In the above, the three compensatory bounds in (5.7), (5.12), and (5.14) are all

time-varying and can be calculated online from the available parameters.
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5.2.3 Adaptive NTSM Control

Following the basics of the NTSM control design Section 3.5, the sliding surface of

si ∈ R
3×1 for the control design is given by

si = ep
i + βi(e

v
i )

αi , (5.15)

and the followers’ controller is then designed as

ui = C̄iẋi + ḡi +
( n∑

j=1

aij + bi

)−1

M̄i

{
−(ev

i )
(2−αi)

αiβi

+
n∑

j=1

aij ¨̂xj(t− Tij)

+biẍ0(t− Ti0)−
( n∑

j=1

aij + bi

)
M̄M+

i Θ̂iΦisgn(si)

−
[
B

ae
i + B

tv
i +

1

αiβi

B
sd
i diag((ev

i )
(1−αi))

]
sgn(si)− κisgn(si)

}
, (5.16)

where κi > 0 and M̄M+
i ≥ ‖M̄+

i ‖1. (ev
i )

(α−1) follows the same operation as in (4.18).

Θ̂i is the estimate of Θi and obeys the following adaptive law in dealing with the

unknown modeling parameters.

Theorem 5.1. For the nonlinear manipulator model described in (5.1), the estimate

of the unknown parameters, represented by Θ̃i, is repeatedly updated with the following

adaptation law:

˙̃Θi = −αiβi

( n∑
j=1

aij + bi

)
‖sTi diag[(ev

i )
(αi−1)]‖1M̄M+

i Φi, (5.17)

so that the ANTSM controller in (5.16) is able to adjust itself and guarantee the

tracking stability as well as the reachability of the sliding surface in (5.15) in a finite

time.

The analysis of the control stability and the reachability of the sliding surface are

provided in Appendix B.1.

However, successfully converging to the sliding surfaces is not necessarily equiva-

lent to the fact that the tracking errors decay to zero or into bounds. Therefore, the

following theorem describes the finite-time bound on the convergence of each follower

towards the leader states.
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Theorem 5.2. For the control systems described by (5.1) and (5.16), the velocity

error ev
i = 0 is not an attractor for si 
= 0 and Θ̃i 
= 0. The tracking error ep

i is

bounded, and the convergence time is related to the control gains αi and βi as well as

the initial states of the end effectors.

The proof for Theorem 5.2 is presented in Appendix B.2.

5.2.4 Time-Varying Gain Design

As discussed in the proof of Theorem 5.1 (see Appendix B.1), the finite-time stability

can be guaranteed as long as κi > 0 holds. However, when it comes to experiments,

using the constant gain κi > 0 cannot always provide a smooth convergence to the

desired trajectory during the transient phased and followed by a high accuracy motion

tracking. In fact, due to the limitations of the maximum control inputs in many

robots, high switching gains may result in high control energy that can cause some

deleterious effects, such as large overshoots, the significant chattering, oscillations, or

even the complete operation failure. On the other hand, using the smaller switching

gains may not be able to counteract the static friction and thus significantly decrease

the tracking accuracy in the steady-state phase. In what follows, a time-varying

ANTSM control gain is introduced in a piecewise logistic form.

Lemma 5.1. A logistic function (or logistic curve) is a function with a common “S”

shape (sigmoid curve). It models the exponential growth over time with limits with

the equation of

f(t) = a+
L

1 + e−p(t−tsm)
, (5.18)

where a denotes the lower asymptote, L denotes the curve’s maximum value, e is

the natural logarithm base (also known as Euler’s Number), p represents the logistic

growth rate, and tsm denotes the sigmoid’s midpoint.

Lemma 5.2. A logistic curves can be divided into three regions: an Initial Establish-

ment Phase in which the growth is slow, followed by an Expansion Phase in which

the value grows relatively quickly. Eventually the curve enters a long Entrenchment

Phase where the output is close to its limit due to the intra-species competition.
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The following theorem and remarks describe the design of the time-varying control

gain as well as effects of the parameters that characterize the control gain.

Theorem 5.3. In the ANTSM controller in (5.16), the constant gain κi is replaced

by a time-varying ANTSM gain κi(t) that is given in a piecewise logistic form as

κi(t) =

⎧⎪⎪⎨
⎪⎪⎩

κi(0) +
L1

1+e−p(t−tsm) , 0 ≤ t ≤ 2tsm,

L2

1+e−p(t−1.8tsm) , 2tsm < t < ∞,

(5.19)

such that in physical experiments, the ANTSM controller enables the end effectors’ po-

sition to smoothly converge to the desired trajectory from any initial positions. Mean-

while, the high tracking accuracy can be achieved after the convergence. κi(0) is the

initial control gain. Definitions related to the logistic function are provided in (5.18).

Remark 5.1. In design of the ANTSM control gain, the nonlinear logistic function

provides adjustable parameters, including the natural logarithm base(e), the logistic

growth rate (p), and sigmoid’s midpoint (tsm), to manage the transition from the low

gain (κi(0)) to the high gain (L). By properly selecting the adjustable parameters,

the overshoot/undershoot can be significantly reduced when switching the small gain

to the high gain.

In (5.19), 2tsm and −1.8tsm are determined by experience. This discontinuity

is designed to provide a sudden input impulse at the end of the transient phase to

“break” the “sticky” static friction. As a result, higher steady-state tracking accuracy

can be achieved. The duration of the Initial Establishment Phase that is denoted as

the establishment time Tetm is mainly determined by the parameters of e, p and

tsm. The end effector position profile may present a compound waveform by using

the time-varying gain in (5.19), including a pre-transition aberration region and a

post-transition aberration region.

The pre-transition overshoot/undershoot is associated with the initial control gain

κi(0) and the maximum value L1 and the duration of the pre-transition aberra-

tion region of the position profile is affected by the establishment time Tetm. In

the post-transition aberration region, the maximum value L2 determines the over-

shoot/undershoot. Definitions of different components in a waveform are given in

Appendix D.
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Table 5.1: The oscillation and settling time with different constant κi.

κi

1 2 4 6 8 10

OS (%) 1.25 6.85 61.70 82.92 85.55 84.30

US (%) 0 0 9.49 70.90 102.01 126.29

ST (s) 0.169 0.157 0.251 0.327 0.414 0.562

OS: Overshoot; US: Undershoot; ST : Settling Time

5.3 Discussions on Control Gain κi

In this section, we will discuss the constraint of using the constant switching gain κi

and the benefit of using the proposed time-varying control gain κi(t). The effects of

multiple variables in (5.19) on the tracking performance were experimentally tested

by a Phantom Omni haptic device that is shown in Fig.3.4 (b).

5.3.1 Results of Constant Gain Control

As previously discussed, using the constant control gain κi, one may either achieve

high tracking accuracy but significant overshoot/undershoot with a large control gain,

or a smooth convergence but low tracking accuracy with a smaller κi. This constraint

is illustrated in Fig. 5.1. It shows that the increasing κi value improves the tracking

accuracy during the steady-state but leads to an increasingly significant oscillation

during the transient phase. The overshoot/undershoot measurements during the tran-

sition phase with respect to κi are given in Table. 5.1. Choosing the control gain

κi = 10 provides a high tracking accuracy, i.e., Exss = 0.0018 m (as shown in Fig.

5.1(b)), and, however, results in a high overshoot/undershoot, i.e., OS = 84.30% and

US = 126.29%. In contrast, the lower control gain, e.g., κi = 1, gives a very smooth

transition, but the tracking error grows to Exss = 0.008 m. Besides, as seen in Table.

5.1, the greater value of κi results in a longer settling time. The results well illustrate

the limitation of using constant control gains κi.

5.3.2 Results of the Time-varying Gain control

Before giving detailed discussions on the time-varying control gain κi(t), Fig.5.2 (a)

depicts a sample result of using κi(t) comparing with those of using the constant
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Figure 5.1: (a) Position profiles with different fixed κi; (b) The relation between κi

and steady-state error Exss with Ex(0) = 0.03 m.

Figure 5.2: (a) Comparison of the tracking results using time-varying gain and con-
stant gains; (b) Two aberration regions: Rpre and Rpost.

gains (κi = 1 and κi = 10, respectively). The logistic parameters for the time-varying

control gain were set to κ0 = 1.8, tsm = 0.13, and L1 = 5 and L2 = 17. As expected,

using the time-varying control gain κi(t) greatly improves the steady-state accuracy

compared with the result of using κi = 1, and, meanwhile, reduces the oscillation in

the transient phase, compared with the result of using κi = 10. However, as shown

in Fig.5.2 (b), by using the time-varying gain in the ANTSM controller, the position

profile presents a compound waveform, including a pre-transition aberration region

(Rpre) and a post-transition aberration region (Rpost). Some small oscillations can be

observed too. Therefore, in the following experiments, we aim at finding solutions
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Figure 5.3: The effects of the Sigmoid midpoint tsm, logarithm base e, and growth
rate p on the establishment time Tetm.

to improve the tracking performance in terms of the settling time, oscillation and

steady-state error by empirically examining effects of the establishment time Tetm,

lower asymptote κi(0), and the maximum values: L1 and L2 during the two aberration

regions, Rpre and Rpost.

Settling Time

Fig.5.3 demonstrates the change of the establishment time Tetm with respect to three

logistic parameters: e, p and tsm. Fig.5.3 (a) shows that the establishment duration

linearly increases with the increasing Sigmoid’s midpoint tsm. The natural base e

has less effect on Tetm, especially when e ≥ 1.1 (see Fig.5.3 (b)). In Fig.5.3 (c), Tetm

changes exponentially with respect to the growth rate p. Therefore, we can tune the

Sigmoid’s midpoint tsm and/or growth rate p to adjust the establishment time Tetm,

Since the transition features mostly present in the pre-transition aberration region,

the control gain κi(t) was given by a half-logistic function during the time 0 ∼ tsm,

that is,

κi(t) =

⎧⎨
⎩ κi(0) +

L1

1+e−p(t−tsm) , 0 ≤ t ≤ tsm,

κi(0) +
L1

2
, tsm < t < ∞.

(5.20)
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Figure 5.4: (a) The effect of the establishment time on the duration of the pre-
transition aberration region; (b) Relation of establishment time and the settling time
under different initial errors.

The initial error was set to Ex(0) = 40 mm and the control gain was selected with

κi(0) = 1.1, e = 1.1, p = 1000, tsm = 0.13, and L1 = 15. The transition characteristics

are then investigated in terms of κ0, L1, and the establishment time that is determined

by e, p, and tsm as in Fig.5.3.

Fig.5.4 (a) illustrates that the pre-transition aberration region appears when

Tetm ≥ 0.129 s and the duration of Rpre tends to become longer as Tetm keeps in-

creasing. This finding is consistent with the results shown in Fig.5.4 (b) where the

longer Tetm tends to increase the settling time. For example, given Ex(0) = 50 mm,

when Tetm = 0.069 sec, the settling time is Tst = 0.296 sec, while the settling time

increases to Tst = 0.38 sec when Tetm = 0.169 sec.

Oscillations

As oscillations may occur in both the pre-transition aberration region (Rpre) and the

post-transition aberration region (Rpost), reasons that cause oscillations in the two

regions are examined as follows.

Oscillations in Rpre: Experimental results of using the constant control gain
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between L2 and the steady-state error.

suggest that a sufficiently large initial control gain κi(0) can cause the oscillations in

Rpre. Using the half-logistic control gain in (5.20), Table.5.2 presents the oscillations

indicated by the overshoot/undershoot with respect to the initial control gain κi(0)

and under different initial errors from 10 mm to 50 mm. As expected, selecting a

larger κi(0) results in oscillations in Rpre. Similarly, a larger initial error can cause

significant overshoot/undershoot. Therefore, it is advised to select a smaller κi(0)

when the initial errors are considerably large.

Oscillations in Rpost: To further investigate the effects of the maximum values

L1 and L2 in the post-transition aberration region, the full-logistic control gain as in

(5.19) was used and the initial control gain was κi(0) = 1.1. Table.5.3 and Table.5.4

present the testing results of the oscillations with respect to L1 and L2, respectively,

during Rpost.

When the initial error is small (e.g., Ex(0) = 10 mm), selecting a higher value

of L1 is more likely to excite significant oscillations, while for larger initial error

(e.g., Ex(0) = 50 mm), the oscillation is less significantly affected by L1. However,

using a lower L1 may not be able to provide sufficient torque input to generate a

post-transition aberration region, which is necessary for improving the steady-state
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Table 5.2: The oscillation (unit: %) subject to the intial switching gain κi(0).

κi(0)

Initial Errors Ex(0)

10 mm 20 mm 30 mm 40 mm 50 mm

OSpre USpre OSpre USpre OSpre USpre OSpre USpre OSpre USpre

0.2 0 0 0 0 0 0 0 0 0 0

0.5 0 0 0 0 0 0 0 0 0 0

0.8 0 0 0 0 0 0 0 0 0 0

1.1 0 0 0.676 0 0.765 0 0.430 0 0.297 0

1.4 0.6725 0 1.094 0 0.735 0 1.491 0 2.035 0

1.7 2.1487 0 1.014 0 3.133 0 4.346 0 10.296 0

2.0 1.4611 0 1.974 0 5.324 0 11.430 0 16.783 0

2.3 2.3683 0 6.477 0 7.840 0 20.273 0 28.649 −0.5812

2.6 3.6984 0 9.981 0 18.628 0 30.456 0 38.264 −1.6416

Table 5.3: The oscillation (unit: %) subject to the maximum value L1.

L1

Initial Errors Ex(0)

10 mm 20 mm 30 mm 40 mm 50 mm

OSpost USpost OSpost USpost OSpost USpost OSpost USpost OSpost USpost

6 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 2.226 0 0.321 0 2.000 −0.906

10 0.464 0 2.052 0 11.722 −1.086 8.158 −2.832 6.506 −13.164

12 16.680 0 12.957 −0.327 11.667 −16.854 10.988 −16.009 5.048 −11.434

14 42.193 −7.436 15.590 −12.519 14.085 −25.674 7.304 −16.774 4.229 −10.221

accuracy. To investigate the effect of the maximum value, L2, in Rpost, L1 = 6 was

selected to guarantee the smoothness of the transition. Table.5.4 shows the results

of the overshoot/undershoot in Rpost as L2 increases from 10 to 28. It shows that,

with smaller initial errors, significant oscillations can be expected when L2 increases

up to 28. Whereas the oscillation is smaller when the initial errors are large, e.g.,

Ex(0) = 50 mm, although higher L2 values were chosen. Therefore, the selection of

L2 is also subject to the initial distance between the follower end effectors and the

reference trajectories.
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Table 5.4: The oscillation (unit: %) subject to the maximum value L2.

L2

Initial Errors Ex(0)

10 mm 20 mm 30 mm 40 mm 50 mm

OSpost USpost OSpost USpost OSpost USpost OSpost USpost OSpost USpost

10 0 0 −0.123 −0.951 0 −0.231 0 −0.162 0 −0.124

12 0 0 −0.271 −1.112 0 −0.433 −0.025 −0.183 −0.058 −0.295

14 0 −0.136 0 −0.386 0 −0.212 0 −0.151 0 −0.242

16 −0.269 −1.116 0 0 0 −0.201 −0.104 −0.104 0 −0.113

18 0 0 0 0 0 0 −0.017 −0.017 0 −0.111

20 2.967 −0.080 0.395 −0.184 0.224 −0.283 0 0 0 −0.110

22 19.849 −3.246 6.670 −0.202 2.228 −0.178 0.430 −0.290 0 −0.108

24 21.380 −23.281 13.272 −2.527 3.944 −1.801 1.375 −1.271 0 0

26 31.227 −37.855 11.972 −16.005 5.134 −7.218 1.364 −4.609 0 0

28 34.549 −52.655 16.983 −22.855 8.706 −13.107 3.607 −8.269 0 0

Steady-State Error

In the above, the establishment time Tetm, initial control gain κi(0), and maximum

value L1 post more influence on the performance of the pre-transition aberration re-

gion Rpre, while performance of the post-transition aberration region Rpost is primarily

associated with the maximum value L2. By properly selecting Tetm, κi(0) and L1 to

achieve a smooth Rpre waveform, we investigate the effect of L2 on the steady-state

accuracy in Rpost. Fig.5.5 (a) depicts the effects of L2 values on the steady-state

tracking accuracy. Using a higher L2 value can improve the tracking accuracy, which

can be seen from Fig.5.5 (b) where the tracking accuracy, represented by the absolute

static error |Ess|, improves with the increasing L2 regardless the initial tracking error.

In addition, with the same L2 value, the steady-state error is lower when the initial

position error is smaller. Therefore, for applications with large initial errors, it is

advised to select a greater value of L2.

Designing Rules of the Time-varying Control Gain

Based on the above analysis, guidelines to design the time-varying control gain are

summarized as follows.

The effects of parameters tsm, e and p can be characterized by the establishment

time Tetm of the initial establishment phase. It is recommended to fix the values of e

and p (e.g., e = 1.1 and p = 1000), such that the length of the establishment time Tetm
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can be linearly changed by arranging location of the Sigmoid’s point tsm. Tetm is the

primary factor in tuning the length of settling time. As Tetm has less influence on the

steady-state accuracy in Rpre, users are suggested to increase Tetm from a relatively

small value until obtaining an optimal value when it is right before the pre-transition

aberration region appears. This optimal value allows a short settling time and avoids

the significant overshoot/undershoot.

In the selection of κi(0), according to the results in Table.5.2, it is recommended

to select κi(0) ≤ 1.4 to avoid significant oscillations regardless the amplitude of initial

errors.

The selection of the maximum values, L1 and L2, is subject to the initial errors. To

repeat experiments without concerning the initial error, users are suggested to select a

smaller value of L1 (e.g., L1 < 8 in this experiment) so that less significant oscillations

can be observed. For L2, since a larger L2 gives better steady-state accuracy but also

excites significant oscillations in Rpost as in Table.5.4, a trade-off between oscillations

and the steady-state accuracy is required when selecting L2 values. For example, for

any initial error in this experiment, L2 = 20 was selected as it allows the relatively

small oscillation and drives the tracking error within 5× 10−3 m.

The above guidelines help users have a quick control gain tuning to obtain optimal

performance. Note that tuning results of the logistic parameters may change a bit

due to the individual use of devices with different nonlinearities.

5.4 Illustrative Examples

In this section, the proposed methods were applied to the synchronization control of

a multi-manipulator system through numerical simulations as well as experiments.

In what follows, we will demonstrate two illustrative examples using 2-DOF planar

manipulators and Phantom Omni haptic devices, respectively.

5.4.1 Simulation Results

In the numerical simulations, a group of identical 2-DOF (k = 2) manipulators as

modelled in Section 3.3.3 were used to test the proposed control approach with con-

stant control gain. Different initial joint positions of manipulators were selected

so that each end effector had a different initial pose, that is (unit: rad), q1(0) =
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Figure 5.7: (a) The time-varying network delays, and (b) the external torque distur-
bances.

[1.500 2.000]T , q2(0) = [1.000 1.000]T , q3(0) = [0.500 0.500]T . The initial joint

velocities were 0 for all manipulators.

In the simulation, the graph contains one leader and three followers, as shown in

Fig.5.6 where the followers are weakly connected, and the leader is globally reachable.

The leader was given as a time-varying trajectory, i.e., sinusoidal signals of x0 =

J0[0.800 0.800 sin(πt/40)]T m. The same control gains were selected as: α = 7/5,

β = 5, and κ = 10 for the follower manipulators.

The network delays in the simulation were varying with a nominal delay of T̄ =

0.03 s [88]. The network delays and the external disturbance are depicted in Fig.5.7.

Assume that the parameter uncertainties were half of the true values, that is, ΔMi =

1
2
Mi, ΔCi = 1

2
Ci, and Δgi = 1

2
gi. The friction was given with the coefficients of

γ1
i = 3, γ2

i = 6, γ3
i = 1, γ4

i = 2, γ5
i = 4, γ6

i = 1.

The position tracking in Fig.5.8 (a) and (b) demonstrates that the synchronization

of the followers to the leader can be achieved in a finite time (about 10 s). During the

steady-state phase, the tracking errors are small and bounded in [−4.294, 5.516] ×
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Figure 5.9: Position tracking errors between the followers and the leader by using (a)
sign function, and (b) saturation function in the follower controllers.

0 10 20 30 40
-5

0

5 Follower1

Follower2

Follower3

0 10 20 30 40
-5

0

5

Figure 5.10: The resultant friction of follower manipulators using (a) sign function,
and (b) saturation function in the controller.

10−4 m, as depicted in Fig.5.9 (a).

However, as shown in Fig.5.10 (a), the frictions profile of the followers present

the significant chatter. This is caused by the sign function used in the SMC method.

In practice, saturation function as in (4.22) is used instead to reduce the chattering

effect. Fig.5.10 (b) depicts the chattering reduction by using the saturation func-

tion. However, using the saturation function in the control design sacrifices a certain

amount of accuracy. This is illustrated by comparing the results between Fig.5.9

(a) and (b). Using the saturation function in the control design, the tracking error

bounds increase to [−4.888, 3.736]×10−3 m, which is approximately ten times higher
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Figure 5.11: (a) The adaption of the unknown parameter Θ̂i; The compensatory
bounds for (b) for velocity error caused by self-delay; (c) for acceleration error caused
by time-varying delays; (d) for acceleration estimating error.

than that in Fig.5.9 (a). Therefore, by adjusting the value of Δ, we can find a proper

trade-off between the chattering effect and the tracking accuracy to achieve desired

performance.

Fig.5.11 (a) illustrates that the ANTSM control approach provides a fast esti-

mation of the unknown parameter Θ̂i that consists of all unknown upper bounds,

k1
0,i ∼ k6

0,i. As expected, Θ̂i converges to constants in a finite time, about 10 s. Notice

that, depending on the individual requirements, the convergence time is adjustable

by properly setting the initial position error and the control gains. During the oper-

ation, the three compensatory bounds are expected to vary within certain reasonable

ranges, and this is verified in Fig.5.11 (b)-(d).

5.4.2 Experimental Results

In the experimental tests, the control approach with the time-varying control gains

κi(t) in (5.19) was validated. A virtual leader and two followers running by the

Phantom Omni haptic devices were used, as shown in Fig.5.12. The topology is

denoted by A = [0 0; 1 0] and b = [1 0]T . Two control parameters were set to α = 7/5,

β = 1, and for the time-varying switching gain κi(t), the following parameters were
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Figure 5.12: Testbed of the networked leader-following system with a pair of Phantom
Omni haptic devices.

selected: κ(0) = 1.1, tsm = 0.13, L1 = 2.0 and L2 = 18. Notice that the values for the

control gains were selected from the experimental testing with the Phantom Omni

haptic devices. For other robotic devices, those parameters may need to be reselected

based on the rules in Section 5.3.2.

The Wireless LAN communication was implemented with the average one-way

delay of T̄ = 6.3 × 10−3 sec (see Fig.3.7 (c) and (d)). The time-varying prescribed

reference trajectories were recorded from operating a Phantom Omni haptic device.

Both arms were then controlled to repeat the recorded trajectories. As the Omni

devices only give position measurements, a first-order low-pass filter, G(s) = 1
0.09s+1

,

was used to reduce the high frequency of the velocity and acceleration signals that

were obtained by the time-differentiation.

The tracking results are given in Fig.5.13 (a)-(c), showing that the position of the

two followers along x, y, z directions synchronize to the leader trajectory smoothly.

As expected, small and bounded tracking errors during the steady-state phase can

be achieved. Fig.5.13 (d)-(f) show that the steady-state errors are all approximately

within [−6, 6]× 10−3 m.

To protect the devices from overloading, a saturation block is used to limit the

control input signal in joint space. The upper and lower saturation values were

τm,s ∈ [−0.200 0.200] Nm. Fig.5.14 (a) and (b) respectively present the control input

of the two followers. The proposed time-varying gain helps prevent the persistent

over-limit control inputs during the transient phase. The chattering effect in the
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Figure 5.13: Position tracking and the tracking errors of the leader-following system
with time-varying human-commanded reference signals.

Figure 5.14: Filtered control inputs for (a) the follower 1 and (b) the follower 2; The
compensatory bounds: (c) Bsd, (d) Btv and (e) Bae; (f) Estimation parameter Θ̂.

control input signals is reduced by using the saturation function, although a certain

level of chattering effect can still be observed.

Fig.5.14 (c) and (d) depict that during the steady-state phase, the compensatory

bounds B
sd
s and B

tv are bounded within a small range, i.e., Bsd ≤ 0.004 m/s and
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B
tv ≤ 0.150 m/s2. Although it is hard to conclude the boundedness of B

a from

Fig.5.14 (e), the definition of Btv in (5.16) implies that Ba is also bounded. Fig.5.14

(f) demonstrates the estimation of Θ̂ that includes all unknown parameters and upper

bounds. As expected, since the trajectories are time-varying, the state-dependent

estimation parameter Θ̂ does not converge to a constant but is under a slow change.

Fig. 5.15 shows the experimental results in comparison with other control ap-

proaches, including the fuzzy sliding mode control (Fuzzy-SMC) method [106, p.273-

276] and the Radial-Basis-Function-Neural-Network-based adaptive sliding mode con-

trol (RBFNN-ASMC) method [106, p.300-303]. In the steady-state phase, both the

SMC-Fuzzy approach and the proposed ANTSM approach enable the good position

tracking (see Fig. 5.15(a)). However, the Fuzzy-SMC approach fails to provide a

smooth convergence to the desired trajectory during the transient phase, as shown in

Fig. 5.15(b). As for the RBFNN-ASMC approach, the end effector positions fail to

follow the reference signals. We manually stopped the program at t = 2 sec as the

reason for the tracking failure is due to the torque limit of the haptic device. Accord-

ingly, to protect the device, a saturation function is applied to cut off the over-limit

generated control inputs. Using the RBFNN-ASMC approach, the plant constantly
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receives upper/lower limits of the control inputs, instead of the proper control effort

that ensures the position tracking. In contrast, using the proposed ANTSM with a

logistic time-varying gain allows smooth convergence, and, meanwhile, ensures a high

steady-state tracking accuracy.

5.5 Concluding Remarks

A robust ANTSM controller has been presented for a networked leader-following ma-

nipulation system. The mixed-type feedback signals and the compensatory bounds

are used in the ANTSM controller. The controller ensures the tracking synchro-

nization of the end effectors where the model dynamics are subjected to parametric

uncertainties, unknown frictions, unknown external disturbances, and weak topology

with time-varying network delays.

With a constant ANTSM control gain, the controller fails to address the hard-

ware limitations, wherea smooth convergence during the transient phase and the

high tracking accuracy in the steady-state phase cannot be simultaneously achieved.

Therefore, a novel time-varying switching gain has been designed to successfully pro-

vide a smooth convergence, and, meanwhile, improves the tracking accuracy during

the steady-state phase. The scheme has been successfully applied to a pair of Phantom

Omni haptic devices, and relevant parameters to design the time-varying switching

gain have been empirically discussed. Rules to design the time-varying switching gain

have been generalized as well.

Through numerical simulations and experiments, case studies have been carried

out to demonstrate the good position tracking synchronization with bounded errors

using the proposed ANTSM control approaches.



Chapter 6

Bilateral Teleoperation Control Design

Another primary subsystem considered in this work is the bilateral telemanipulation

system. The bilateral teleoperation robots include one master manipulator that is a

human-interface device for taking human commands, and one slave manipulator that

interacts with the remote environment. In addition, wireless internet protocol (IP)

networks are used to transmit data such as motion signals, force signals, and control

inputs. However, due to the long distance and radio frequency interference (RFI),

wireless networks can be affected by significant time delays and packet loss, which

post challenges to the performance of telemanipulation systems. In this chapter,

the development of the ANTSM control approach will be extended to the bilateral

teleoperation system1.

6.1 Problem Descriptions

For the master and slave manipulators, their end effectors are modelled by the non-

linear E-L formulations as

M̄mẍm + C̄mẋm + ḡm = um + ρm + fh, (6.1)

M̄sẍs + C̄sẋs + ḡs = us + ρs − fe, (6.2)

where the subscripts m and s denote the variables of the master and slave, respec-

tively. In the rest of this chapter, the subscript of (·)m,s will be used to denote the

same variables for both the master and slave manipulators. fh ∈ R
3×1 defines the

human/operator force and fe ∈ R
3×1 represents the environmental force. Definitions

of the other variables are the same as in (3.28).

1This chapter was published as the work in [79], 1083-4435�2019 IEEE. Reprinted, with permis-
sion, from Henghua Shen and Ya-Jun Pan, “Improving Tracking Performance of Nonlinear Uncertain
Bilateral Teleoperation Systems with Time-Varying Delays and Disturbances”, IEEE/ASME Trans-
actions on Mechatronics, June/2020.

98
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The environment is usually a nonlinear system with unknown dynamics. Nev-

ertheless, the interaction dynamics between the slave arm and environment can be

modelled as a spring-damp system. Then, the environmental force can be expressed

in a general form [86] as

fe = Beẋs +Kexs + Ce
−→
1 , (6.3)

where Be ∈ R
3×3, Ke ∈ R

3×3, and Ce ∈ R
3×3 are damping, stiffness and constant

respectively.
−→
1 ∈ R

3×1 is a vector of all ones.

Since Be, Ke, and Ce are unknown parameters, by stacking the unknown param-

eters into a matrix Θe, that is, Θe = [Be Ke Ce] ∈ R
3×9, the environmental force can

be rewritten in the following form:

fe = ΘeΦe, (6.4)

where Φe = [ẋT
s xT

s

−→
1 T ]T ∈ R

9×1 denotes the known regressor.

The modelling assumptions of the robot and network in this chapter follow those

in (3.28) and (3.31), respectively. In addition, We assume that both the human

operator force fh and the environmental force fe are measurable,

Control Objective

The objective is to drive the states of slave manipulators towards the state of the

master that is commanded by a human operator such that ‖xm(t)−xs(t)‖1 ≤ ε with

a small bound ε ≥ 0. Controllers to be designed should be capable of dealing with

the unknown modelling information (including parametric uncertainties, unknown

frictions, and external disturbances) and unknown time-varying delays. In addition,

to avoid direct force transmission, the master controller is required to predict the

real-time environmental force feedback with a small force estimation error.

6.2 Control Development

The bilateral telemanipulation system that will be considered is illustrated in Fig.6.1.

A force estimator and a force predictor allow the environmental force to be recur-

sively predicted in the master side without directly transmitting force signals over

the network channels. Reference signals are generated from the human input and
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Figure 6.1: Bilateral teleoperation control architecture.

the predicted environmental force through a reference signal generator. As a result,

tasks for the ANTSM controllers (in both the master side and the slave side) can

be merely simplified to motion control. In what follows, the force prediction and

ANTSM control methods will be introduced.

6.2.1 Environmental Force Prediction

Since forces are power signals and their direct transmission over the network channels

may cause instability problems. One of the solutions is to transform the environmental

force into non-power signals that are actually transmitted. Consider the linearization

in (6.4), the environmental force information can be carried by an unknown force

parameter Θ̂e [107] which is estimated by

˙̂
Θe = −HΦe(Φ

T
e Θ̂e − fe), (6.5)

d

dt
H−1 = ΦeΦ

T
e , H(0) = h0I3×3, h0 > 0. (6.6)

Then, instead of the force signal itself, the non-power parameter Θ̂e is sent to the

master side. If the regressor Φe is also fed back to the master side, the environmental
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force can be recovered easily by

f̂e(t− T2(t)) = Θ̂e(t− T2(t))Φe(t− T2(t)). (6.7)

As can be seen from (6.7), the recovered force is delayed, and the human operator

would feel large force sluggish if the network experiences large latencies. Therefore,

assume that the controllers provide finite-time motion synchronization between the

master and slave, the regressor in the force predictor can use the current master

states, instead of the network-delayed slave states, to reduce the effect of the network

delays. Let Φm = [ẋT
m,x

T
m,

−→
1 T ]T , the environmental force can be predicted by

f̂e = Θ̂e(t− T2(t))Φm. (6.8)

6.2.2 Master Controller Design

To allow the master controller to be designed for the purpose of motion tracking

only, the human force input and the estimated environmental force generate reference

signals through a target impedance model given by

Mrẍr + Crẋr + gr = ksc1fh − ksc2f̂e, (6.9)

where xr ∈ R
3×1, ẋr ∈ R

3×1, and ẍr ∈ R
3×1 denote the reference position, velocity,

and acceleration for the motion control design. ksc1 and ksc2 are the scaling factors

for the human operator force and the estimated environmental force, respectively.

Mr ∈ R
3×3, Cr ∈ R

3×3, gr ∈ R
3×1 are the target parameters of the master behavior.

With the reference signals from (6.9), feedback signals for the subsequent master

controller design are given by {
ep
m = xm − xr,

ev
m = ẋm − ẋr,

(6.10)

where ep
m ∈ R

3×1 is the position error and the velocity error is denoted by ev
m ∈ R

3×1

for the subsequent design. From (3.36), the sliding surface sm ∈ R
3×1 is given by

sm = ep
m + βm(e

v
m)

αm . (6.11)

With the sliding surface in (6.11), the The adaptive controller for the developed

master manipulator is described in the following theorem.
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Theorem 6.1. Let the adaptive law be given by

˙̃Θm = −αmβm‖sTmdiag[(ev
m)

(αm−1)]‖1M̄M+
m Φm,

the ANTSM controller for the master manipulator is designed by

um = C̄mẋm + ḡm − fh + M̄m

{−(ev
m)

(2−αm)

αmβm

+ ẍr

−M̄M+
m Θ̂mΦmsgn(sm)− κmsgn(sm)

}
. (6.12)

where κm > 0, M̄M+
m ≥ ‖M̄+

m‖1 and Θ̂m is the estimate of Θm.

See the stability proof in Appendix C.1.

6.2.3 Follower Controller Design

Unlike the master controller, the slave’s reference signals (i.e., master states) are

delayed and, therefore, a phase shift is inevitable. Consider the functionalities of

different types of feedback signals in Section 4.2.1 as well as the benefits of using the

mixed-type feedback in (5.3) and (5.4), the mixed-type feedback to compute the slave

controller is given by ⎧⎨
⎩ ep

s = xs(t− T̄ )− xm(t− T1(t)),

ev
s = ẋs(t)− ẋm(t− T1(t)),

(6.13)

Then, the relationship between the position and velocity errors can be established by

an auxiliary self-delayed velocity error, εsds ∈ R
3×1, that is,

εsds = ev
s − ėp

s

= ẋs(t)− ẋs(t− T̄ )− ẋm(t− T1(t))(1 + δ̇1(t)). (6.14)

The self-delay-induced error is upper-bounded as follows.

B
sd
s = ‖ẋs(t)− ẋs(t− T̄ )‖1 + 2‖ẋm(t− T1(t))‖1, (6.15)

such that ‖εsds ‖1 ≤ B
sd
s holds. To deal with another error caused by time-varying

delays when the acceleration signals are acquired by time derivative, a compensatory

bound B
a
s is introduced as follows.

B
a
s(t) = 2||ẍm(t− T1(t))||1, (6.16)
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The sliding surfaces of ss ∈ R
3×1 for the control design are given by

ss = ep
s + βs(e

v
s)

αs , (6.17)

and the adaptive controllers are designed as

us = C̄sẋs + ḡs + M̄s

{−(ev
s)

(2−αs)

αsβs

+ ẍm(t− T1(t))

−
( 1

αsβs

B
sd
s diag(ev

s)
(1−αs) + B

a
s

)
sgn(ss)

−M̄M+
s Θ̂sΦssgn(ss)− κssgn(ss)

}
+ fe, (6.18)

where Θ̂s is the estimate of Θs. The following theorem presents the adaptive law to

design Θ̂s, which guarantees the finite-time stability of the slave control system.

Theorem 6.2. For the slave manipulator in a teleoperation system, the ANTSM

controller in (6.18) with the compensatory bounds updated by (6.15) and (6.16), and

the adaptive law given by

˙̃Θs = −αsβs‖sTs diag[(ev
s)

(αs−1)]‖1M̄M+
s Φs, (6.19)

guarantees the system stability and the sliding surface ss = 0 in (6.17) to be reached

in a finite time ts that satisfies

ts ≤
√
6Vs(xs(0))

1
2

3αsβsκs‖(ev
s)

(αs−1)‖1 . (6.20)

See the proof in Appendix C.2.

As using the mixed-type feedback does not always provide optimal performance,

the following theorem provides sufficient condition that demonstrates the outperfor-

mance of the mixed-type feedback.

Theorem 6.3. When ss = 0 is satisfied, the ANTSM controller in (6.18) guarantees

the slave manipulator to track the position of the master manipulator with bounded

tracking errors. In addition, the tracking error bound indicates that using the mixed-

type feedback signal outperforms the utilization of feedback without self-delays by se-

lecting the control gains that satisfy the following sufficient condition:

(4αsβs)
1

1−αs < BvT̄
1

1−αs , (6.21)

where Bv denotes the master velocity bound.
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See the proof in Appendix C.3.

From the analysis of Theorem 6.2 and Theorem 6.1, two facilitating propositions

can be concluded as follows.

Proposition 6.1. Utilizing the mixed-type feedback signal in the slave control design

improves the velocity tracking between the master and the slave in the sense that

‖ẋs(t− T̄ )‖1 → ‖ẋm(t− T1(t))‖1,

which explains the reduction of the delay-induced phase shift in the position profiles

between the master and slave.

See the proof in Appendix C.4.

Proposition 6.2. After ss = 0 is satisfied, provided that the reference signal is

constant with zero speed, the tracking errors ep
m,s tend to converge to zero, that is,

ep
m,s(t) → 0 as t → ts.

See the proof in Appendix C.5.

6.3 Numerical Simulations

A numerical study was carried out using mathematical models of the 3-DOF (k = 3)

Phantom Omni haptic devices, as described in Section 3.3.3.

Unless otherwise specified, the initial setting for the manipulators is as follows.

The manipulator joints are initially static and their positions are initialized as (unit:

rad): qs(0) = [0.700 0.600 − 0.500]T , qm(0) = [−0.300 0.300 − 0.800]T .

A virtual human force exerted on the master manipulator is given by: [0.030 sin(ft)+

0.100 0.070 0.040 sin(ft)]T N with f = pi/10. The virtual environmental force in the

slave side is assumed to be static as [0.025 0.040 0.030]T N . The assigned velocity is

upper-bounded by Bv = 0.250 m/s. The random time-varying network delay is given

in a bound as T1(t) = T2(t) = 0.3±0.002 s. To satisfy the condition (6.21) in Theorem

6.3, the control gains are chosen as αm,s = 7/5, βm,s = 1, and κm,s = 8. The frictional

force coefficients are γ1
m,s = 3, γ2

m,s = 6, γ3
m,s = 1, γ4

m,s = 2, γ5
m,s = 4, γ6

m,s = 1. Assume

that the parameter uncertainties are half of the true values, that is, ΔMm,s =
1
2
Mm,s,

ΔCm,s = 1
2
Cm,s, and Δgm,s = 1

2
gm,s. Mr = diag[2 2 1.4], Cr = diag[1.5 2 1.5],
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Figure 6.2: The end effector position tracking synchronization of the master and the
slave (along x and y directions) with controllers using different types of feedback as:
Case I: (a) and (b) using feedback without self-delays (T = 0.3 sec); Case II: (c) and
(d) using feedback without self-delays (T = 0.02 sec); Case III: (e) and (f) using the
mixed-type feedback (T = 0.3 sec).

gr = [2.5 2 1.6]T , and ksc1 = ksc2 = 1 as in (6.9). As discussed previously, in the

sliding mode controllers, a saturation function replaces the sign function to reduce

the chattering effect.

6.3.1 Comparison of Different Types of Feedbacks

As discussed previously, it is beneficial to use the mixed-type feedback signals in

the ANTSM controllers. By purposely assigning time-varying reference signals and

constant reference signals along x and y directions, respectively, results in Fig.6.2

demonstrate the effects of different types of feedback signals as:

Case I: Fig.6.2 (a) and (b) show the results of using feedback without self-delays

with T̄ = 0.3 s;

Case II: Fig.6.2 (c) and (d) show the results of using feedback without self-delays

with T̄ = 0.02 s. Notice that a smaller nominal delay interval T̄ = 0.02 s was chosen

in this case because the controllers failed to maintain the stability when T̄ > 0.02 s.

Case III: Fig.6.2 (e) and (f) show the results of using the mixed-type feedback

with T̄ = 0.3 s.

The results in Fig.6.2 (a), (c), and (e) are consistent with those in Fig. 4.2 that
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Figure 6.3: Plots of the (a) Network delays; (b) External disturbances and the fric-
tional forces in (c) Case 1 and (d) Case 2.

using the mixed-type feedback significantly improves the tracking accuracy, although

the network delay is long. However, Fig.6.2 (b), (d), and (f) demonstrate that,

given constant reference signal, there is no much difference using whichever type

of feedback signals. This agrees with Proposition 6.2 and explains why the wait-

and-move operations are preferred in many time-delayed applications to avoid the

phase-shift effect.

6.3.2 Tracking Performance Illustration

Performance of the bilateral telemanipulation system is demonstrated with the fol-

lowing two cases:

Case 1: The motion commands sent from the master manipulator are constant sig-

nals.

Case 2: The motion commands sent from the master manipulator are time-varying

signals.

The random network delays and external disturbance are shown in Fig.6.3 (a) and

(b), respectively. Fig.6.3 (c) and (d) present the frictional forces in Case 1 and Case

2. As the friction force is joint-velocity dependent, in Case 1, velocities of the slave

joints approximate to zero when the joint positions converge to the constant reference

signals. As a result, frictional forces go to zero in Case 1. In contrast, the non-zero
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Figure 6.4: (a) Estimation parameters Θ̂ in Case 1; (b) Estimation parameters in
Case 2; Compensatory bound B

sd
s (c) in Case 1 and (d) in Case 2; Compensatory

bound B
a
s (e) in Case 1 and (f) in Case 2.

frictions exist throughout the operation in Case 2.

Similarly, the simulation results in Fig.6.4 shows that estimations of the unknown

parameters Θ and the compensatory bounds are continuously time-varying in Case

2. Nevertheless, the plots of the unknown parameter estimations and compensatory

bounds are all bounded and varying slowly inCase 2, which reveals the good adaptive

ability of the controller in dealing with the unknown dynamics models. In addition,

in Fig.6.4 (a), (c), and (e) the velocity-dependent variables are, as expected, close to

zero during the steady-state phase in Case 1.

Fig.6.5 and Fig.6.6 demonstrate that asymptotic synchronization of the master

and slave manipulators for the developed controller, despite the inexact information

of system parameters, external noise bounds, time-varying network delays, and fric-

tional forces. The tracking errors are defined by the difference between the reference

trajectories and those of the master and the slave, respectively. In both cases, the

tracking errors appear to be within small bounds. For example, the error bounds are

[−3.179, −0.105]× 10−3 m in Case 1, and [−3.684, 4.167]× 10−3 m in Case 2. In

addition, synchronizations toward the reference signals are all in a finite time, i.e.,

about 5 s.

The performance of the environmental force predictor is illustrated in Fig.6.7,
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Figure 6.5: The position tracking and tracking errors with constant reference signals
as in Case 1.
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Figure 6.6: The position tracking and tracking errors with time-varying reference
signals as in Case 2.

which shows that the 3D environmental force can be accurately predicted in the

master side in both Case 1 and Case 2.

6.3.3 Comparisons with existing control methods

Some additional simulation results are provided which demonstrate the enhanced per-

formance of the proposed controller compared to other prominent controllers, namely,

a model-free P-like control method in [88] and a model-based NTSM control method
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Figure 6.7: Environmental force estimations for (a) Case 1 and (b) Case 2 where
the solid lines represent the true environment forces measured in the slave side and
and dash lines represent the according predicted forces in the master side.

Table 6.1: Comparisons of three control methods

Control Method
Features

Self-Delay Adaptiveness Robustness Force Transmission

P-like [88] No No No Wave Form

NTSM [108] No No Yes Direct Transmission

ANTSM Yes Yes Yes Force Prediction

Table 6.2: Steady-state errors using three different controllers

Errors
(×10−3 m)

Control Methods

P-like [88] NTSM [108] ANTSM

Constant
reference

Mean 1.933 -2.822 -1.284

SD 0.522 1.839 1.143

Max 2.869 0.078 -0.105

Min 0.962 -4.808 -3.179

Time-varying
reference

Mean -0.947 -2.615 -0.952

SD 33.933 4.400 1.959

Max 74.104 6.643 4.167

Min -66.246 -10.613 -3.684

SD: Standard Deviation.

in [108].

The P-like control method is based on the passivity theory and does not require

to know the dynamic model. Therefore, the P-like controller is able to handle the

dynamic uncertainties. The NTSM method, however, is model-based. An NTSM

controller provides high tracking accuracy when the dynamic parameters are exactly
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Figure 6.8: The master-slave position tracking in Cartesian space with time-varying
reference signals using P-like controller in [88]. Left column: without noises; right
column: with noises. (Note that the trajectories are different from those in Fig.6.6
because the controllers are designed in joint space.)
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Figure 6.9: The master-slave position tracking in Cartesian space with time-varying
reference signals using a model-based NTSM controller in [108], using the feedback
signals without self-delays. Left column: without noises; right column: with noises.

known. In addition, like other sliding mode control methods, it facilitates the robust

control once the disturbance bounds are known. The major features of the compared
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control methods are listed in Table.6.1, including the utilization of feedback types,

adaptive ability, robust ability, and methods of the environmental force transmission.

The tracking error comparisons of the three controllers are presented in Table.6.2.

Given constant reference signals, the three control schemes provide the similar track-

ing performance with small tracking error bounds. However, when the reference

signals are time-varying, using P-like controller results in large tracking errors with

a standard deviation of 33.933× 10−3 m). The NTSM method presents considerably

smaller average tracking errors. However, a significant variation between the maxi-

mum and minimum values can still be observed. In contrast, the proposed ANTSM

scheme can provide better tracking accuracy regardless of the time-dependent changes

of the reference.

The results in Fig.6.8 and Fig.6.9 are presented to highlight the proposed ANTSM

controller’s robustness and ability in dealing with the phase shift effect. Fig.6.8

shows that the P-like controller cannot reduce the phase shift caused by network

delays. As a result, the delay-induced tracking error persists. In addition, although

the operation is executed with the same human force and environmental force, the

external disturbances have significantly changed the behaviours of the master and

slave manipulators, as can be seen from Fig.6.8 (d)-(f), in comparison with those

in Fig.6.8 (a)-(c). Therefore, for systems with unknown external disturbances, the

P-like controller may not provide expected motions and operations.

As depicted in Fig.6.9, the NTSM controller allows the systems to maintain desired

performance in the presence of bounded external disturbances. However, similar to

the P-like controller, the NTSM method cannot address the issue of the delay-induced

tracking error. In addition, the NTSM method is model-based, so the tracking errors

may further increase when the initial dynamic uncertainties are large.

By comparing the results in Fig.6.8, Fig.6.9 and Fig.6.6, we can see that the

proposed ANTSM controller has a good ability in dealing with model uncertainties,

external noises, and the delay-induce phase-shift effect.

6.4 Experimental Results

In this section, experiments were conducted on a pair of 3-DoF Phantom Omni hap-

tic devices served as the master and slave, respectively. The experimental setup is
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Figure 6.10: The teleoperation experimental testbed with two network-connected
Phantom Omni haptic devices.

presented in Fig.6.10. Two devices are run in two different computers connected

through a wireless LAN. The one-way delays of the User Datagram Protocol (UDP)

send/receive are with an average network delay of T̄ = 0.05 s and a standard error

of σ = 0.005 s. The control gains were set to: αm = αs = 7/5, βm = βs = 1, and

κm = κs = 8.

Tests with pre-recorded time-varying reference trajectories were carried out and

the end effector position tracking is presented in Fig.6.11 (a)-(c). It shows that the

ANTSM controller guarantees the good tracking synchronization between the master

and the slave, with small and bounded tracking errors. As shown in Fig.6.11 (d)-(f),

the tracking errors are bounded within [−0.005 0.005] m.

To protect the devices from exceeding input limits, saturation blocks in the

Simulink model were used to constrain the control inputs to τm,s ∈ [−0.200 0.200] Nm.

From Fig.6.12, the master and slave controllers are able to generate torque inputs

that satisfy the safety requirements. In operating of the slave manipulator, during

the steady-state phase, the two compensatory bounds are constrained within a small

range, i.e., Bsd
s ≤ 0.004 m/s and B

a
s ≤ 0.150 m/s2, as depicted in Fig.6.13 (a) and

(b), respectively. Fig.6.14 (a) depicts good ability of the force predictor to estimate

the virtual environment forces. Fig.6.14 (b) demonstrates the estimation parameters
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Figure 6.11: Position tracking and the tracking error of the master-slave system with
time-varying reference signal.

Figure 6.12: Control inputs for joint motors of (a) the master and (b) the slave
manipulators.
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Figure 6.13: The compensatory bounds of (a) Bsd
s and (b) Ba

s for the slave controller.

for the master and slave systems. As the trajectories are time-varying, the estimation

parameters do not converge to a constant.
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Figure 6.14: Plots of (a) the estimated environmental forces (solid lines) and the true
environmental forces (dash lines), and (b) the estimation of the unknown dynamic
parameters.

6.5 Concluding Remarks

The ANTSM control approaches were developed for a bilateral teleoperation system in

the presence of time-varying network delays and unknown model information. Results

of the simulations and experiments carried out in this chapter show that the ANTSM

controllers using the mixture of feedback signals, as well as the compensatory bounds,

work well in improving the motion tracking performance of the slave manipulator.

The use of force estimation and prediction reduces the network-delayed effect on the

force transmission, which enables the human operator to perceive the environmental

force in a remote environment.



Chapter 7

Teleoperation of Multiple Cooperative Slave Manipulators

This chapter1 aims at building a single-master-multiple-slave (SMMS) manipulation

system based on the techniques developed for multi-manipulator systems and bilateral

teleoperation systems in the earlier chapters. Specifically, techniques developed for the

SMMS system include the full pose control method as in Chapter 4, adaptive control

approaches as Chapter 5, and bilateral teleoperation control and force prediction as

in Chapter 6. The distributed control framework facilitates the integration of the

two subsystems into one complex system without changing a significant amount of

the control architecture for each manipulator. Additionally, the multi-manipulator

system in the slave side is constructed in a cooperative manner. Therefore, the

motion distribution and load allocation2 strategies are taken into account. As well,

concepts from the ANTSM control approach are used for the pose tracking of the

networked SMMS manipulation system in the presence of time-varying delays, model

uncertainties, and external disturbances. Simulation results of Phantom Omni haptic

devices demonstrate the effectiveness of the proposed control design.

7.1 Problem Description

An SMMS system consists of one master manipulator, one leader manipulator on the

slave side, and the follower manipulators that are driven to track the leader manipu-

lator’s states. The SMMS system is illustrated in Fig.7.1. Reference motion signals

1This chapter was partially published as the work in [78], �2017 IEEE. Reprinted, with per-
mission, from Henghua Shen, Ya-Jun Pan and Bingwei He, “Teleoperation of multiple cooperative
slave manipulators using graph-based non-singular terminal sliding-mode control”, 2017 IEEE In-
ternational Conference on Robotics and Biomimetics, December/2017, and partially published as
the work in [109], �2019 IEEE. Reprinted, with permission, from Henghua Shen, Ya-Jun Pan and
Georgeta Bauer, “Manipulability-Based Load Allocation and Kinematic Decoupling in Cooperative
Manipulations”, 2019 IEEE 28th International Symposium on Industrial Electronics, June/2019.

2In this chapter, the concept of load, also referred to as wrench, consists of linear force and torque
that is the rotational equivalent of linear force. Unless otherwise specified, the force in the remaining
chapter refers to the linear force.
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Figure 7.1: Control architecture of an SMMS manipulation system.

for the slave manipulators are given by the master robot arm manipulated by the

human operator. On the slave side, manipulators form a leader-following cooperative

framework with a common task, e.g., handling a common object. Therefore, not all

of the slave robots are required to communicate with the master agent. Instead, the

master only mutually communicates with the leader, while the rest of the slave ma-

nipulators obtain the master information through the leader. In the remaining text,

the slaves, except the leader, are referred to as followers. The robot dynamics are

modelled as follows.

M̄mẍm + C̄mẋm + ḡm = um + ρm + hh, (7.1)

M̄iẍi + C̄iẋi + ḡi = ui + ρi − hi, (7.2)

where (∗)m denotes variables of the master manipulator and (∗)i denotes the slave

variables with i = 0 for the leader and i = 1, 2, · · · , n (n ≥ 1) for the followers.

Detailed definitions of the variables can be found in (3.28). As we consider the full

pose operation, dimensions of the variables are as follows. xm, xi ∈ R
7 denote the

poses that consist of position and orientation. For example,

xm = [pT
m ξTm]

T,

where pm ∈ R
3 is the translational position and the unit quaternion ξm = [ηm εTm]

T ∈
S3 represents the orientation. ηm is a scalar representing the real part of the quater-

nion, and εm = [ε1 ε2 ε3]
T is a vector representing the imaginary part of the
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quaternion. hh, hi ∈ R
6 are wrench vectors exerted on the master manipulator and

slave manipulators, respectively. hh = [fT
h tTh ]

T and hi = [fT
i tTi ]

T, where f∗ and

t∗ denote the force and torque, respectively. To correspond to the dimension of the

wrench vectors, we define

ẋm = [ṗT
m ωT

m]
T ∈ R

6, ẍm = [p̈T
m ω̇T

m]
T ∈ R

6,

where ωm ∈ R
3 and ω̇m ∈ R

3 are angular velocity and acceleration, which can be

resolved from (3.20). Accordingly, we have M̄m, M̄i, ∈ R
6×6, C̄m, C̄i ∈ R

6×6,

ḡm, ḡi ∈ R
6, um, ui ∈ R

6, and ρm, ρi ∈ R
6.

For the motion regulation in the slave side, the reference trajectory sent from

the master side is geometrically distributed into multiple desired trajectories in task

space for the according slave manipulators. As well, in a cooperative task, the wrench

exerted by the object is required to be well distributed for the manipulators ensem-

ble. To allow potentially heterogeneous payload capacities and internal wrenches

compensation [62, 70, 73], an optimal force allocation strategy will be used in this

chapter.

As discussed in Chapter 6, it is optional to feedback the slave motion signals to

the master side depending on the controller requirements. Force signals, however, are

usually required in teleoperation systems to enhance the telepresence of the human

operator. In this study, we choose to send back the environmental force exerted on the

manipulator along with the load distribution matrix so that the operator can perceive

either the environmental wrench that exerts on the leader only or that exerted on the

overall slave system. The force estimation and prediction, as in Chapter 6 will be

used to predict the environmental wrench for the master manipulator as well as the

human operator on the master side.

Without loss of generality, the following assumptions are made for the subsequent

discussions.

Assumption 7.1. The manipulated object is a rigid and undeformable body. Also,

it is tightly grasped by the end effectors of the slave manipulators such that we can

determine the motion and load allocation through the geometrical distribution of the

manipulators.

Assumption 7.2. The pose and velocity of the end effectors are measurable, while the



118

acceleration signals are obtained by time differentiation. Besides, the environmental

force and human force input are assumed measurable.

Assumption 7.3. Network delays are time-varying as modelled in (3.31), and the

average delays between the master and the slave are considerably longer than that

those amongst the slaves.

Assumption 7.4. The weight of the object is beyond one manipulator’s capacity but

below the sum of the involving manipulators’ maximum payload capacity. In addition,

through the load allocation strategy, the distributed load is within the payload capacity

of the manipulators ensemble.

Control Objective

The objective is to drive pose (xO) of an object handled by multiple slave manip-

ulators towards a reference pose trajectory commanded by a master manipulator,

that is ‖xO(t) − xi(t)‖1 ≤ εms with a small bound εms ≥ 0. Controllers to be

designed should be capable of dealing with the unknown modelling information (in-

cluding parametric uncertainties, unknown frictions, and external disturbances) and

unknown time-varying network delays. A motion and load distribution strategy will

be designed to allocate the desired motion and wrench for the slave manipulators

ensemble. Additionally, the allocation approach should be able to compensate for the

additional torque caused by the heterogeneous wrench distribution. On the master

side, the environmental wrench is to be predicted with a small prediction error.

7.2 Controller Development

In what follows, we present the controller design for the master, leader, and slave

manipulators. The wrench allocation strategy will be introduced as well.

7.2.1 Master Controller Design

The master manipulator is directly handled by the human operator on the local

side. To allow the motion controller design, a target impedance model is designed to

generate reference motions in task space. An environmental wrench predictor based on
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recursive estimation is used to recover the wrench from the transmitted environmental

wrench parameters, and, meanwhile, reduce the effect of network delays.

Target Impedance Model

Procedures to design the master controller are similar to Section 6.2.2. Nevertheless,

due to the use of the unit quaternion to represent the orientation vector, the pose

vector has a different dimension to other motion (e.g., velocity vectors) and wrench

vectors. Therefore, in view of Hogan [110], the target impedance model is redesigned

in joint space as

q̇r = q̇d +Mr(qd − qr) + CrJ
T(qr)(hh − ĥ0), (7.3)

where ĥ0 ∈ R
6 is the estimation of the environmental wrench exerted on the leader

manipulator in the slave side. J(qr) ∈ R
6×3 is the Jacobian matrix given in (3.23).

[qT
d q̇T

d ]
T ∈ R

6 is the desired trajectory in joint space. From (7.3), we obtain the

reference signal in joint space, i.e., [qT
r q̇T

r q̈T
r ]

T ∈ R
9, which is, then, used to

calculate the reference signal for the master end effector as xr = [pT
r ξTr ]

T ∈ R
7,

ẋr = [ṗT
r ωT

r ]
T ∈ R

6, and ẍr = [p̈T
r ω̇T

r ]
T ∈ R

6 through the forward kinematics as

described in Section 3.2.

Remark 7.1. [111] The impedance parameters Mr ∈ R
3×3 and Cr ∈ R

3×3 must be

carefully selected such that the impedance model is not subject to unstable behaviour

and the target impedance is attainable for the manipulators.

Environmental Wrench Prediction

In order to avoid the direct transmission of power signals over the network channels,

the environmental wrench is transformed into non-power signals that are actually

transmitted. In the slave side, let Φ0,e ∈ R
6×3 denote the known regressor as

Φ0,e =

⎡
⎢⎢⎣
ṗ0(1) ṗ0(2) ṗ0(3) ω0(1) ω0(2) ω0(3)

p0(1) p0(2) p0(3) xξ,0(1) xξ,0(2) xξ,0(3)

1 1 1 1 1 1

⎤
⎥⎥⎦
T

. (7.4)

Note that since the orientation is represented by unit quaternion that is a 4-tuple, in

(7.4) we use xξ,0 = η0ε0 ∈ R
3, where ξ0 = [η0 εT0 ]

T is the orientation of the leader
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end effector. To facilitate the following expression of the wrench estimation, it is

denoted that3 Φ0,e{k} = [ẋ0(k) X0(k) 1]T ∈ R
3, where X0 = [pT

0 xT
ξ,0]

T ∈ R
6×1

and k = 1, 2, · · · , 6. Consider the linearization in (6.4), the environmental wrench

can be represented by an environment wrench parameter Θ0,e{k} ∈ R
3×1 [107] which

is recursively estimated by

˙̂
Θ0,e{k} = −H0Φ0,e{k}(ΦT

0,e{k}Θ̂0,e{k} − h0(k)), (7.5)

d

dt
H−1

0 = Φ0,e{k}ΦT
0,e{k}, (7.6)

where H0 is initialized as H0 = h0I3×3, h0 > 0. Then, the estimated environment

wrench parameter Θ̂0,e{k} is sent to the master side to predict the environmental

wrench ĥ0 by the following wrench predictor:

ĥ0{k} = Θ̂0,e{k}(t− T0m(t))Φm{k}. (7.7)

where Θ̂0,e{k}(t − T0m(t)) denotes the delayed signal of Θ̂0,e{k}. T0m(t) represents

the network delay of channels from the slave side to the master side. Φm{k} =

[ẋm(k),Xξ,m(k), 1]
T ∈ R

3×1, where Xm = [pT
m xT

ξ,m]
T ∈ R

6 and xξ,m = ηmεm ∈ R
3.

k = 1, 2, · · · , 6.

Master Controller

To design the ANTSM controller for the master manipulator, the pose tracking error

is defined by ⎧⎨
⎩ el

m = pm − pr

ėl
m = ṗm − ṗr

⎧⎨
⎩ eξ

m = ξm ⊗ ξ∗r

ėa
m = wm −wr,

(7.8)

where the superscript ∗l denotes the translational errors and ∗a the angular errors. ⊗
is the quaternion product defined in (3.17). ξ∗r is the conjugate of reference orientation

ξr, i.e., ξ
∗
r = [ηr − εTr ]

T. As the dimension of the quaternion error is eξ
m ∈ R

4, let

ea
m = ea

m(1)[e
a
m(2) ea

m(3) ea
m(4)]

T ∈ R
3. Consider the definition of quaternion error

in (3.17), we have

ea
m = (ηmηr + εTmεr)(−ηmεr + ηrεm − S(εm)εr). (7.9)

3In this chapter, the augment of A{k} denotes a vector that is the kth row of a matrix A, while
A(k) denotes the kth element of a vector A.
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Then, we can stack the according translational errors and angular errors as

em =

[
el
m

ea
m

]
∈ R

6, ėm =

[
ėl
m

ėa
m

]
∈ R

6. (7.10)

With the reference signals from (7.3), the ANTSM controller, um ∈ R
6, for the master

manipulator is described as:

um = C̄mẋm + ḡm − hh + M̄m

{−ė
(2−αm)
m

αmβm

+ ẍr

−M̄M+
m Θ̂mΦmsgn(sm)− κmsgn(sm)

}
, (7.11)

˙̃Θm = −αmβm‖sTmdiag[ė(αm−1)
m ]‖1M̄M+

m Φm, (7.12)

where sm ∈ R
6 is the sliding surface given by sm = em + βm(ė

v
m)

αm . κm > 0,

M̄M+
m ≥ ‖M̄+

m‖1 and Θ̂m is the estimate of Θm. The stability proof follows the same

procedure as that of Theorem 6.1, which is provided in Appendix C.1.

7.2.2 Slave Controller Design

Controllers to be designed on the slave side include the leader controller and follower

controllers. The selected leader manipulator receives the desired trajectory of the ob-

ject commanded by the human operator and feedbacks the force signals to the master

side. Meanwhile, the leader serves as an intermediary that passes the distributed

information to the followers.

In synchronization tasks, given a time-varying reference pose, the goal is to simply

drive the robots to track the poses with respect to each robot’s own base coordinate

systems and, thus, there is not force interaction involved amongst the manipulators.

However, a cooperative manipulation system requires the robots’ pose and payload

to be well distributed for each individual manipulator. When a cooperative system

consists of heterogeneous manipulators, the distributed poses and forces may vary

from one manipulator to another due to their different load capacities. In what

follows, an optimal wrench allocation approach will be introduced.

Optimal Wrench Allocation

Fig 7.2 illustrates a cooperative manipulation system with one leader and three fol-

lowers that hold a common object. Some pose representations are defined as follows.
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Figure 7.2: Grasp kinematics of the cooperative manipulation system.

� O: center of mass (CoM) of the object.

� pO ∈ R
3: position of O with respect to the world frame {OwXwYwZw}.

� pi ∈ R
3: position of the grasp point of the ith manipulator with respect to the

world frame {OwXwYwZw}. (i = 0, 1, 2, · · · , n).

� ξO ∈ R
4: orientation (in unit-quaternion representation) of O with respect to

the world frame {OwXwYwZw}.

� ξiO ∈ R
4: orientation of frame {OOXOYOZO} with respect to coordinate {OiXiYiZi}

of the ith grasp point.

� ξi ∈ R
4: orientation of the grasp point of the ith manipulator with respect to

the world frame {OwXwYwZw}.

� ri ∈ R
3 : position of the CoM with respect to the coordinate {OiXiYiZi} of the

ith grasp point.

� RO
i ∈ R

3×3: rotation matrix of frame {OiXiYiZi} with respect to the frame

{OOXOYOZO}.

The dynamics of the object in task space are given by

MOẍO + COẋO + gO = hO, (7.13)
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where the pose xO = [pT
O ξTO]

T ∈ R
7, ẋO = [ṗT

O ωT
O]

T ∈ R
6, and ẍO = [p̈T

O ω̇T
O]

T ∈
R

6. hO ∈ R
6 is the task space wrench that exerts on the slave end effectors. Param-

eters of the object dynamics are given as

MO =

[
mOI3 03

03 IO

]
, CO =

[
03 03

03 ωOIO

]
, gO =

[
−mOg

03×1

]
, (7.14)

where mO and IO ∈ R
3×3 are the object’s mass and inertia, respectively (Note that

I with a number subscript denotes an identity matrix of the appropriate dimension).

Remark 7.2. The desired motion of the object is commanded by the master manipula-

tor, so we have xO = xm(t−Tm0(t)), ẋO = ẋm(t−Tm0(t)), and ẍO = ẍm(t−Tm0(t)).

Then, from (7.13), the wrench exerted on the slave manipulators can be expressed as

hO = MOẍm(t− Tm0(t)) + COẋm(t− Tm0(t)) + gO. (7.15)

The slave manipulators’ end effectors are subject to the following constraints:

pd
i = pO +RO

i ri, (7.16)

ξdi = ξiO ⊗ ξO. (7.17)

For the velocity distribution, let ẋd
i = [(ṗd

i )
T (ωd

i )
T]T define the allocated desired

velocities for the slave manipulators. By stacking the desired slave velocities into one

vector, we have ẋd = [(ẋd
0)

T (ẋd
1)

T · · · (ẋd
n)

T]T. A grasp matrix G is used to describe

the velocity constraint [70] as:

ẋd = GT ẋO, (7.18)

G =

[
I3 03 · · · I3 03

S(r0) I3 · · · S(rn) I3

]
. (7.19)

In contrast, provided the measured pose, xi = [pT
i , ξTi ]

T of the manipulator i, the

pose of the object, xOi = [pT
Oi ξTOi]

T, can be obtained by

pOi = pi −RO
i ri, (7.20)

ξOi = (ξiO)
−1 ⊗ ξi. (7.21)

Note that xOi may not be equal to xO as in (7.13) because of the tracking error of

the manipulators towards the distributed motions.
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Remark 7.3. Consider that a subset of follower manipulators are not directly con-

nected to the leader, they are driven to follow their connected neighbours’ trajectories

that are transformed into those with respect to these followers’ own base frames. For

example, the neighbor state xj is transformed to xi
j = [(pi

j)
T (ξij)

T]T that is with

respect to the base frame of the ith manipulator and given by

pj
i = pj −RO

j rj +RO
i ri, (7.22)

ξji = ξiO ⊗ (ξOj )
−1 ⊗ ξj. (7.23)

As to the load distribution, given the payload, hO, of the manipulated object, and

let a stacked vector h = [(h0)
T (h1)

T · · · , (hn)
T]T denote the distribute wrenches for

the slave manipulators, the grasp matrix G in (7.19) relates the distributed wrenches

in hd and the object wrench hO as:

hO = Gh =

[
I3 03 · · · I3 03

S(r0) I3 · · · S(rn) I3

]
h. (7.24)

However, The equality in (7.24) holds only when the fixed point O exactly locates

at the CoM (see Fig.7.2), which is not always true in reality. For example, when the

cooperative system is constructed by multiple heterogeneous manipulators with dif-

ferent load capacities, the force is not equally distributed, which generates additional

torques exerted on the object’s physical center of mass. Then, it results in a non-zero

displacement, Δ, between the virtual mass center (denoted by O′) and the physical

center, as shown in Fig.7.2. With this in mind, the following Lemma [71] provides an

optimized load distribution strategy for situations where the physical CoM does not

coincide with the virtual CoM.

Lemma 7.1. To compensate the additional torques that cause the non-zero displace-

ment, Δ, between the physical CoM and the virtual CoM, a set of distribution coeffi-

cients ζi are introduced such that
∑n

i=1 ζi = 1. Then, the optimized load distribution

is described by a quadratic minimization of the wrench as

min {hTWh}, s.t. hO = Gh, (7.25)

where W = blockdiag{ 1
ζi
I6} and I6 is a 6× 6 identity matrix. Then, the optimization

modifies the load distribution strategy as

h = G+ho + Cλ

[
S(Δ)KΔ

S(Δ)

]
ho, (7.26)
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where Δ =
∑n

i=1 ζiri is the displacement as shown in Fig.7.2. G+ denotes the gener-

alized inverse of the grasp matrix G and Cλ is a compensation matrix given by

G+ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ1I3 ζ1S(r1)KΔ

03 ζ1KΔ

...
...

ζnI3 ζnS(rn)KΔ

03 ζnKΔ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Cλ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ1I3 λ1Sλ1Kλ

03 λ1Kλ

...
...

ζnI3 λnSλnKλ

03 λnKλ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

λi is a torque compensation coefficient in the case where Δ 
= 0. KΔ = [I3 +∑n
i=1 ζiS

T (ri)S(ri)−ST (Δ)S(Δ)]−1, Kλ = [I3+
∑n

i=1 λiS
T (ri)S(ri)−ST (Δλ)S(Δλ)]

−1,

Sλi = S(Δλ)− S(ri) and Δλ =
∑n

i=1 λiri.

Remark 7.4. Eq.(7.26) provides a more general solution for the load distribution

in a cooperative manipulation system. The load distribution strategy in (7.24) is a

special case where the wrench is equally distributed to the manipulators ensemble, and

the displacement is zero, i.e., Δ = 0.

With the distributed motion and wrench information for the slave manipulators,

their controllers can be designed in a distributed manner.

Leader Controller Design

The leader manipulator is driven to follow the allocated signal xd
0 = [(pd

0)
T (ξd0)

T]T

and ẋd
0 = [(ṗd

0)
T (ωd

0)
T]T. Since the desired pose xd

0 is calculated from the network-

delayed master signals xm(t− Tm0(t)), the mixed-type feedback signals, e0 ∈ R
6 and

ė0 ∈ R
6, are used to compute the leader controller.⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e0 =

[
el
0

ea
0

]
=

[
p0(t− T̄1)− pd

0,

(η0η
d
0 + εT0 ε

d
0)(−η0ε

d
0 + ηd0ε0 − S(ε0)ε

d
0)

]

ė0 =

[
ėl
0

ėa
0

]
=

[
ṗ0(t)− ṗd

0

w0(t)− ωd
0)

]
,

(7.27)

where T̄1 is the average delay of Tm0(t). Note that, in (7.27), ξ0 = [η0 εT0 ]
T is

actually a self-delayed signal as ξ0(t− T̄1) = [η0(t− T̄1) εT0 (t− T̄1)]
T. The functional

dependency of time and delay in (7.27) is omitted for compactness.
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Based on the results in (4.14) and (7.27), an auxiliary self-delayed velocity error

ε̇sd0 ∈ R
6 can be given by

ε̇sd0 =

[
ėsd,l
0

ėsd,a
0

]
=

[
ṗ0(t)− ṗ0(t− T̄1)

w0(t)−w0(t− T̄1)]

]
. (7.28)

Let Bsd
0 denote the upper bound of ε̇sd0 , i.e., ‖ε̇sd0 ‖1 ≤ B

sd
0 .

The sliding surface of s0 ∈ R
6 for the leader control design is given by

s0 = e0 + β0ė
α0
0 , (7.29)

and the ANTSM controller. u0 ∈ R
6, for the leader manipulator is designed as

u0 = h0 + C̄0ẋ0 + ḡ0 + M̄0

{−ė
(2−α0)
0

α0β0

+ ẍd
0

− 1

α0β0

B
sd
0 diag(ė

(1−α0)
0 )sgn(s0)− M̄M+

0 Θ̂0Φ0sgn(s0)− κ0sgn(s0)
}
, (7.30)

where Θ̂0 is the estimate of Θ0 updated by the adaptive law as

˙̃Θ0 = −α0β0‖sT0 diag[ė(α0−1)
0 ]‖1M̄M+

0 Φ0. (7.31)

The stability proof follows the same steps as in Appendix C.2.

Follower Controller Design

We consider that the slave manipulators are network connected and experience delays.

Therefore, the mixed-type feedback is used in the subsequent control design.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ei =

[
el
i

ea
i

]
=

∑n
j=1 aij

[
pi(t− T̄2)− pj

i (t− Tij(t)),

(ηiη
j
i + εTi εj)(−ηiε

j
i + ηji εi − S(εi)ε

j
i )

]

+bi

[
pi(t− T̄1 − T̄2)− pd

i (t− Ti0(t)),

(η′iη
d
i + ε′Ti εdi )(−η′iε

d
i + ηdi ε

′
i − S(ε′i)ε

d
i )

]
,

ėi =

[
ėl
i

ėa
i

]
=

∑n
j=1 aij

[
ṗi(t)− ṗj

i (t− Tij(t))

wi(t)−wj
i (t− Tij(t))

]

+bi

[
ṗi(t)− ṗd

i (t− Ti0(t))

wi(t)−wd
i (t− Ti0(t))

]
,

(7.32)
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where ei ∈ R
6 and ėi ∈ R

6 are the position error and velocity error, respectively.

xj
i = [(pj

i )
T, (ξji )

T]T is the poses of neighbor manipulators that are transformed

to those with respect to the base frame of the agent i as described in Remark 7.3.

Tij(t) and Ti0(t) are the time-varying network delays from agent j to i, and agent

0 to i, respectively. T̄2 is the average delay of Tij(t) and Ti0(t). Again, in (7.32),

ξi = [ηi εTi ]
T, ξ′i = [η′i ε′Ti ]T, ξji = [ηji εjTi ]T, and ξdi = [ηdi εdTi ]T are actually delayed

signals that are accordingly expressed as

ξi(t− T̄2) = [ηi(t− T̄2) εTi (t− T̄2)]
T,

ξ′i(t− T̄1 − T̄2) = [ηi(t− T̄1 − T̄2) εTi (t− T̄1 − T̄2)]
T,

ξji (t− T2(t)) = [ηji (t− T2(t)) εjTi (t− T2(t))]
T,

ξdi (t− T2(t)) = [ηdi (t− T2(t)) εdTi (t− T2(t))]
T.

These functional dependencies of time and delays are omitted for compactness in

(7.32).

Similar to the results in (7.28), we can find an auxiliary self-delayed velocity error

ε̇sdi ∈ R
6 to establish the relationship between the position error and velocity as in

(7.32), that is,

ε̇sdi =

[
ėsd,l
i

ėsd,a
i

]

=
n∑

j=1

aij

[
ṗi(t)− ṗi(t− T̄2)

wi(t)−wi(t− T̄2)]

]
+ bi

[
ṗi(t)− ṗi(t− T̄1 − T̄2)

wi(t)−wi(t− T̄1 − T̄2)]

]
. (7.33)

Let Bsd
i denote the upper bound of ε̇sdi such that ‖ε̇sdi ‖1 ≤ B

sd
i . The sliding surface of

si ∈ R
6 is given by

si = ei + βiė
αi
i , (7.34)

and follower controller, ui ∈ R
6, is designed as

ui = C̄iẋi + ḡi +
( n∑

j=1

aij + bi

)−1

M̄i

{
−ė

(2−αi)
i

αiβi

+
n∑

j=1

aijẍ
j
i (t− Tij)

+biẍ
d
i (t− Ti0)−

( n∑
j=1

aij + bi

)
M̄M+

i Θ̂iΦisgn(si)

− 1

αiβi

B
sd
i diag(ė

(1−αi)
i )sgn(si)− κisgn(si)

}
+ hi, (7.35)
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where hi is the distributed wrench given in Lemma 7.1. κi > 0 and M̄M+
i ≥ ‖M̄+

i ‖1.
ė
(α−1)
i follows the same operation as in (4.18). Θ̂i is the estimate of Θi and obeys the

following adaptive law in dealing with the unknown modeling parameters.

˙̃Θi = −αiβi

( n∑
j=1

aij + bi

)
‖sTi diag[ė(αi−1)

i ]‖1M̄M+
i Φi. (7.36)

The stability proof of the controller (7.35) and (7.36) follows the similar procedures

as in Appendix B.1 and Appendix B.2.

In motion control, the tracking errors tend to cause the relative displacement

between the end effector and object. However, since the slave manipulators’ end

effectors are assumed to rigidly attach to the object, tracking control errors give rise

to the internal wrench exerted on the object. To assess the tracking error induced

internal wrench, we assume that the contact of the end effector and object surface

behaves like a point-contact-with-friction (PCWF) model [112]. Then, the internal

wrench is approximated by:

hint =
1

2

⎡
⎢⎣ Kf

stiff

[ ∑n
i=0(p

W
i − pd,W

i )
]2

Kt
stiff

[
(ηW0 εW0 − ηd,W0 εd,W0 )− ∑n

i=1(η
W
i εWi − ηd,Wi εd,Wi )

]2
⎤
⎥⎦ , (7.37)

where Kf
stiff > 0 and Kt

stiff > 0 denote the connecting stiffness for force and torque,

respectively, between the end effector and the object. Variables with the superscript

of ∗W denote the transformed variables with respect to the world frame.

7.3 Simulation Results

The numerical simulations were performed with one master and two slave manip-

ulators (one leader and one follower) using the mathematical model of the 3-DOF

Phantom Omni haptic devices described in Section 3.3.3. Fig. 7.3 illustrates the

setup of the SMMS manipulation system.

Unless otherwise specified, the initial setting for the manipulators is as follows.

The manipulator’s joints are initially static, and their positions are initialized as (unit:

rad): qm(0) = [−0.3 0.3 − 0.8]T, q0(0) = [0.7 0.6 − 0.5]T, and q1(0) = [0.3 0.6 −
1.1]T. The desired joint signal is given as qd(0) = [0.08 sin(π/10) 0.02 sin(π/10 +

0.7) − 0.09 sin(π/10 − 1)]T rad for the calculation of reference signals in (7.3).
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Figure 7.3: Schematic of the SMMS manipulation system using the Phantom Omni
haptic devices.

A human wrench exerted on the master manipulator is given by: [0.03 sin(ft) +

0.1 0.07 0.04 sin(ft) 0 0 0]T with f = π/30.

The random time-varying network delay is given as Tm0(t) = T0m(t) = 0.3±0.002 s

for teleoperation network channels and Tij(t) = Ti0(t) = 0.03±0.002 s for cooperation

network channels in the slave side. The same control gains were chosen for all agents’

controllers as αi = 7/5 and βi = 1, κi = 13. The frictional force coefficients are

γ1
m,s = 3, γ2

m,s = 6, γ3
m,s = 1, γ4

m,s = 2, γ5
m,s = 4, γ6

m,s = 1. Fig.6.7 illustrates an

example of the random network delays, external disturbance, and friction force.

Assume that the parameter uncertainties are 20% of the true values, that is,

ΔMm,i = 0.2Mm,i, ΔCm,i = 0.2Cm,i, and Δgm,s = 0.2gm,s. Mr = diag[15 15 21] and

Cr = diag[1 1 1] as in (7.3). mO = 0.45, IO = diag[0.5 0.5 0.5], and g = 9.81 as in

(7.14). As discussed previously, in the sliding mode controllers, a saturation function

replaces the sign function to reduce the chattering effect.

7.3.1 Performance of the Master Manipulator

The master manipulator’s performance is evaluated by predicting the accuracy of

the remote environmental wrench and the motion tracking accuracy of the master

manipulator towards the reference signals. It is assumed that no torque generated
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Figure 7.4: Environmental wrench prediction and comparison to the true values where
the solid lines represent the actual environment forces measured in the slave side and
dash lines represent the according predicted forces in the master side.

from the object model in (7.13), and the object force and its prediction are illustrated

in Fig. 7.4. It shows that given the noisy environmental wrench, the force predictor

provides the smooth estimations on the master side. The smoothness is due to the

recursive process in the wrench estimation. This is beneficial in many cases as it

provides the human operator with a better tactile sense when operating. However,

using the recursive process cannot well predict the fast-changing and time-varying

environmental wrench.

Fig.7.5 and Fig.7.6 respectively demonstrate the asymptotic translational and an-

gular position synchronization of the master towards the generated reference signals.

The designed master controller guarantees the finite-time tracking convergence (in

about 3 s) and stability, despite the inexact information of system parameters, ex-

ternal noise bounds, and frictional forces. Tracking errors given by the difference

between the reference trajectories and those of the master manipulator’s end effec-

tor are presented in Fig.7.5 and Fig.7.6 as well. The tracking errors appear to be

within small bounds during the steady-state phase. For example, the translational

error bounds are in [−3.179, −0.105] × 10−3 m, and [−3.684, 4.167] × 10−3 for the

orientation tracking.
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Figure 7.5: Translational position tracking of the master end effector towards the
generated reference signals.
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Figure 7.6: Angular position tracking of the master end effector towards the generated
reference signals.
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Figure 7.7: Position tracking errors and the resultant internal forces.

0 10 20 30

-2

0

2

10
-3

0 10 20 30

-2

0

2

10
-3

0 10 20 30

-2

0

2

10
-3

0 10 20 30

-2

0

2

10
-3

0 10 20 30

-2

0

2

10
-3

0 10 20 30

-2

0

2

10
-3

Figure 7.8: Orientation controller errors and the resultant internal torques.

7.3.2 Performance of the Cooperative Slave Manipulators

As formulated in (7.37), the tracking errors that tend to cause the relative displace-

ment between the end effector and object actually appears in the form of internal

force exerted on the object. By selecting the connecting stiffness as Kf
stiff = 150 and
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Figure 7.9: Translational position tracking of the leader end effector towards the
master manipulator’s translational trajectory.
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Figure 7.10: Angular position tracking of the leader end effector towards the master
manipulator’s orientation.

Kt
stiff = 10 [112], Fig.7.7 and Fig.7.8 illustrate the sum of pose tracking errors and

their resultant internal wrench. The ANTSM controller provides accurate orientation

control so that, in Fig.7.8, there is almost no internal torque about the x, y, and z
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Figure 7.11: Wrench distribution with the weighting factors given in Case 1.

axes exerted on the object. Internal forces, however, are non-zero due to the trans-

lational tracking errors, as shown in Fig.7.7. Nevertheless, the internal forces along

the the x, y, and z axes are very small, i.e., ≤ 0.02 N .

The tracking performance of the slave manipulators towards the master manip-

ulator’s states is presented by the pose tracking of the object towards the leader

manipulator, which is shown in Fig.7.9 and Fig.7.10. As can be seen, the tracking

synchronization can be achieved in a finite time (about 5 s). However, compared to

the results in Fig.7.5 and Fig.7.6, the motion of the object presents more chatter.

This is mainly caused by the effect of time delays. Nevertheless, the tracking error is

still bounded and small. However, since we do not consider the time-varying control

gain that is discussed in Chapter 5, we can see that the tracking errors during the

transient phase are considerably large.

As to the load distribution, we assume that no torque is produced from the object

dynamics as in (7.13). Two cases were simulated with the following weighting factors:

� Case 1: ζi = 0.5 and λi = 0.5. i = 1, 2.

� Case 2: ζ1 = 0.3, ζ2 = 0.7, and ζi = λi.

In Case 1, the selection of weighting factors results in the equal wrench distribution
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Figure 7.12: Wrench distribution with the weighting factors given in Case 2.
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Figure 7.13: The produced additional torques in (a) Case 1 and (b) Case 2 are
respectively compensated by the allocated torques shown in (c) and (d) from the
wrench allocation policy.

to slave manipulators ensemble, and this is illustrated in Fig.7.11. The force exerted

to the slave manipulators is primarily along z direction, because the force from the

object is essentially caused by its gravity. As shown in Fig.7.11, the object force along

the z-axis (around 4 N) is evenly distributed for the slave manipulators, i.e., 2 N for
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each agent. In addition, the selection of weighting factors in Case 1 implies that the

coordinate frame O coincides with the center of mass of the object, which, in other

words, the displacement Δ = 0 as in Fig.7.2. As a result, there is no additional torque

produced. Therefore, as illustrated in Fig.7.13 (a) and (b), the distributed desired

torque and additional torques from the exerted forces are all zero.

In Case 2, the follower manipulator is assigned to bear more load than the leader

manipulator. As show in Fig.7.12, additional torques are allocated about y-axis and z-

axis. This is because the selection of weighting factors results in the offset coordinate

frame O from the center of mass of the object, i.e., Δ 
= 0. For example, the allocated

forces along z-axis are −1.232 N for the leader manipulator and −2.864 N for the

follower manipulator. As a result, the additional torque that the forces generate is

τΔ = r1f1(3) − r2f2(3) = 0.01 × (−1.232) − 0.01 × (−2.864) Nm = 0.016 Nm, as

also shown in Fig.7.13 (d). Therefore, the torques in Fig.7.12 and Fig.7.13 (c) are

allocated to compensate this additional torque such that no significant internal torque

exerted on the object.

7.4 Concluding Remarks

In this chapter, the ANTSM control approaches have been successfully applied to

a comprehensive SMMS manipulation system. Multiple manipulators in the slave

side cooperatively handle a common object whose motion is commanded by a master

manipulator. An optimal wrench distribution approach has been applied to allocate

the motion and wrench to the slave manipulator ensemble. In addition, additional

internal torques exerted on the object have been well compensated for by the allocated

torques. Simulations were carried out with Phantom Omni haptic devices, and the

results verified the guaranteed stability of the system and the good tracking accuracy

that also helps reduce the internal wrench.



Chapter 8

Conclusions and Future Work

This chapter summarizes the contributions of this work and provides some future

directions to extend the proposed control techniques for the networked cooperative

manipulation systems and teleoperation systems.

8.1 Conclusions

In this thesis, concepts of the NTSM control method have been developed for a

multi-manipulator system and its teleoperation. The goal of this work was to realize

motion synchronization and force prediction with less effected by network constraints,

modelling inaccuracy, and external disturbances.

By reviewing extensive existing literature in Chapter 2 and Chapter 1, we know

that a semi-autonomous SMMS system enhances the human operators’ ability to

implement heavy and/or complex manipulation tasks in the remote and hazardous

environments. However, the complexity of maintaining the tracking stability and

accuracy arises when it comes to more real-life conditions, such as the network con-

straints, imperfect modelling of the robots, and nonlinear control requirements. These

challenges have been well addressed by the developed ANTSM control method. The

ANTSM controller has presented good adaptability and robustness in dealing with

the parametric uncertainties, exogenous disturbances, and frictions without knowing

their bounds. The stability of the proposed ANTSM control method has been proved

by the Lyapunov functions. Numerical studies and experimental testing using the

3-DOF Phantom Omni haptic devices also showed the reliability and effectiveness of

the developed ANTSM control strategy. The network constraints, including time-

varying network delay, packet loss, and weakly connected topology, give rise to the

phase-shift effect in the motion synchronization. This effect has been addressed by

the proposed novel mixed-type feedback in the ANTSM controllers. The mixed-type

feedback contains the non-self-delayed velocity that helps maintain the stability and

137



138

the self-delayed position signal to reduce the tracking error. Sufficient conditions to

attain the improvement of tracking accuracy are provided in Chapter 6 (i.e., Theorem

6.3). As the self-delayed process requires the knowledge of the network delay that is

inexactly known and time-varying, the mean delay is used instead, while the random

signals caused by uncertain delay deviation from its mean value can be regarded as

signal disturbances that can be well dealt with by the robust control. Network delays

considered in this work are up to 0.3 s, which is sufficient to represent the delays

in many cooperation and teleoperation scenarios. The simulation results suggested

significant improvements in reducing the phase shift effect.

A novel ANTSM time-varying switching gain as a piecewise logistic function was

designed to address the issue where a constant control gain is unable to simultane-

ously achieve smooth convergence during the transient phase and the high tracking

accuracy in the steady-state phase. The logistic function models a tunable exponen-

tial growth of the control gain with respect to time. Since the time of convergence to

the desired trajectory can be known in the ANTSM controller method, one can adjust

the evolution of the control gain to achieve a smooth convergence, and, meanwhile,

improve the tracking accuracy during the steady-state phase, which was borne out

by the experimental results. The tuning rules for time-varying switching gain have

been generalized in Chapter 5 as well.

In multi-agent systems with heterogeneous robots, performance in terms of track-

ing accuracy, disturbance level, and payload capacity may vary from one robot to

another. As a result, two particular topics, namely, neighbour selection and load

distribution, should be taken into account. As to the neighbour selection, our the-

oretical studies have shown that unnecessarily using the information from the “less

than perfect” neighbour/s can degrade an otherwise “well performing” agent’s perfor-

mance. An energy-based neighbour selection policy is introduced in Chapter 4 to help

an agent efficiently identify and select proper neighbours in a synchronization task.

Simulation results suggested that the proposed neighbour selection strategy success-

fully reduces the unnecessary interplay and the resulting energy accumulation of the

overall system. As to the load distribution, an optimal wrench distribution approach

has been applied to allocate the desired motion and wrench to the slave manipula-

tors ensemble, as has been discussed in Chapter 7. The unwanted additional internal
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torques exerted on the object’s center of mass have been well compensated by the

allocated torques from the optimal wrench distribution approach. In addition, to

transmit the wrench signals to the master side, an environmental wrench predictor

provides the human operator with smooth and prompt wrench estimations regardless

of the network delay effect.

Eventually, we built a comprehensive SMMS manipulation system where the hu-

man operator remotely commands the object’s trajectory and perceives environmental

wrench through the wrench predictor. On the slave side, multiple manipulators co-

operatively handle a common object. Thanks to the target impedance model and

distributed control framework, developments for the multi-agent systems and teleop-

eration systems have been successfully applied to the SMMS manipulation system.

Simulations were carried out with three Phantom Omni haptic devices. The results

verified not only the guaranteed stability of the system but also the good tracking

accuracy that helps reduce the internal wrench exerted on the manipulated object.

8.2 Future Work

The developments given in this dissertation are fundamental, and there are many

potential opportunities to continue the research. These are outside the scope of the

work or were not explored due to constraints on space, resources or time.

From the theoretical point of view, some techniques for improving the ANTSM

control method can be extended to other advanced control approaches when it comes

to addressing similar issues. For example, the mixed-type feedback signals can be

adopted in other linear or nonlinear control approaches to reduce the delay-induced

phase shift effect. A detailed study of the effects of changing self delay on the resulting

tracking performance would lead to much better insight in constructing the feedback

signals. For control methods that require high control gain to obtain a better control

accuracy yet experience significant overshoot/undershoot in the transient phase, using

the control gain scheduled in a logistic growth manner would provide some exciting

results of smooth convergence and high control accuracy. Also, since the wrench

predictor used in this work only applies to constant wrench estimation, it would be

beneficial to investigate other predictors that allow the prediction of the changing

environmental wrench.
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Another potential area for further research is the application of the robotic system.

The proposed control theories have been verified and validated through numerical

simulations and laboratory experiments under controlled conditions. Justifications of

these developed theories could be further established if their industrial applicability

could be further verified in the industrial setting. For example, remote control of

a group of mobile manipulators with a transportation task. Manipulation perfor-

mance is to be examined if more technical challenges (such as significant external

disturbances from the terrain or changing weight of the tasks) could be posed to the

control systems.

Our control strategies are developed with a general Euler Lagrange model that can

be used to represent a wide variety of physical systems such as electrical, electrome-

chanical and mechanical devices. Therefore, extending the developments to other

types of robotic systems with different tasks is potential. For instance, in formation

control of a group of semi-autonomous areal vehicles or ground vehicles, the ANTSM

control schemes could be used to realize motion synchronization under network con-

straints and plant modelling uncertainties. Another example is the integration of

robotic manipulators with other types of robots, such as mobile manipulators built

from a robotic manipulator arm mounted on a mobile platform. Such systems com-

bine the advantages of different robotic systems and reduce their drawbacks.
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Appendix A

Theoratical Proof in Chapter 4

A.1 Proof of Theorem 4.1

Proof. After substituting the control input signal in (4.18) into (4.2), and cancelling

out Ciẋi + gi, the closed-loop dynamics can be expressed as

Miẍi =
( n∑

j=1

aij + bi

)−1

Mi

{
− (ev

i )
(2−α)

αβ
+

1

αβ

( n∑
j=1

aij + bi

)
diag

(
(ev

i )
(1−α)

)
ėc
i

+
n∑

j=1

aijẍj(t− T ) + biẍ0(t− T )− κ1sgn(si)

}
.

Then, we have

( n∑
j=1

aij + bi

)
ẍi −

n∑
j=1

aijẍj(t− T )− biẍ0(t− T )

= −(ev
i )

(2−α)

αβ
+

1

αβ

( n∑
j=1

aij + bi

)
diag

(
(ev

i )
(1−α)

)
ėc
i − κ1sgn(si). (A.1)

As the right-hand side of (A.1) is equal to ėv
i , premultiplying by αβdiag

(
(ev

i )
(α−1)

)
on both sides leads to

ev
i + αβdiag

(
(ev

i )
(α−1)

)
ėv
i −

( n∑
j=1

aij + bi

)
ėc
i = −αiβiκidiag

(
(ev

i )
(α−1)

)
sgn(si).(A.2)

By using (4.17), (4.16), and (A.2), the time derivative of si can be derived as

ṡi = ėp
i + αiβidiag

(
(ev

i )
(α−1)

)
ėv
i

= ev
i + αiβidiag

(
(ev

i )
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ėv
i −
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j=1

aij + bi

)
ėc
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= −αiβiκidiag
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i )
(α−1)

)
sgn(si). (A.3)
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Consider the Lyapunov function candidate defined in a quadratic form as V = 1
2
sTi si,

by using (A.3), the time derivative of V is determined as

V̇ = sTi ṡi = sTi [−αiβiκidiag
(
(ev

i )
(α−1)

)
sgn(si)]

≤ −
√
2αiβiκi(‖ev

i ‖)(αi−1)(
1

2
sTi si)

1
2

= −
√
2αiβiκi(‖ev

i ‖)(αi−1)V
1
2 . (A.4)

Consider Lemma 3.3, we have c =
√
2αiβiκi(‖ev

i ‖)(αi−1) and γ = 1
2
. Therefore, when

ev
i 
= 0, an estimate of the time T s

i to reach the sliding surface si = 0 is given by

T s
i ≤ (sTi (0)si(0))

1
2

αiβiκi‖ev
i ‖αi−1

, (A.5)

where si(0) = ep
i (0) + βi(e

v
i (0))

αi .

However, when ev
i = 0, (A.5) holds only when it can be proved that ev

i = 0 is

not an attractor of si 
= 0. By taking the time-derivative of the velocity error, the

following expression can be obtained

ėv
i =

n∑
j=1

aij[ẍi − ẍj(t− T )] + bi[ẍi − ẍ0(t− T )]

=
( n∑

j=1

aij + bi

)
[M−1

i (ui − Cẋi − gi)]−
n∑

j=1

aijẍj(t− T )− biẍ0(t− T ).

(A.6)

Substituting the control input ui in (4.18) into (A.6) leads to

ėv
i =

1

αiβi

diag
(
(ev

i )
(α−1)

)[
− ev

i +
( n∑

j=1

aij + bi

)
ėc
i

]
− κisgn(si). (A.7)

When ev
i = 0 and si 
= 0, (A.7) becomes

ėv
i = −κisgn(si). (A.8)

Consider the fact that, for a vector x ∈ R
m×1, (m = 1, 2, · · · ), ‖x‖ = 0 if and only

if x = 0. Therefore, by the definition of sgn(si), we know that ‖sgn(si)‖ = 1 when

si 
= 0. Therefore, ‖ėv
i ‖ = κi‖sgn(si)‖ = κi > 0, and thus we have that ėv

i 
= 0, which

implies that ev
i = 0 is not an attractor [113] [114]. This complete the finiteness proof

in (A.5).
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Furthermore, as the numerator of the rational exponent (1−αi) is always an even

number, (ev
i )

1−αi ≥ 0 always holds. Therefore, in (A.7), when the sliding surface

si = 0 is reached, we have⎧⎨
⎩ ėv

i ≤ 0, −ev
i +

( ∑n
j=1 aij + bi

)
ėc
i ≤ 0,

ėv
i ≥ 0, −ev

i +
( ∑n

j=1 aij + bi

)
ėc
i ≥ 0.

(A.9)

The monotonicity in (A.9) suggests that there is an auxiliary switching surface given

by

‖ev
i ‖ =

( n∑
j=1

aij + bi

)
‖ėc

i‖ s.t. sgn(ev
i ) = sgn(ėc

i) (A.10)

that can always be reached. This concludes the proof.

A.2 Proof of Proposition 4.1

Proof. For the translational self-delayed velocity error in (4.9), using the Schwartz

inequality results in

‖ėlc
i ‖ = ‖ṗi(t)− ṗi(t− T )‖ =

∥∥∥ ∫ T

0
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∥∥∥
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∥∥∥ 1

2 ≤ T
1
2‖p̈i‖ ≤ T

1
2AlM .

(A.11)

Similarly, consider the angular self-delayed velocity error

ėac
i = [ξ̇i − ξ̇∗i (t− T )]⊗ ξ∗j (t− T ) + [ξi − ξ∗i (t− T )]⊗ ξ̇∗j (t− T ), (A.12)

we have the L2−norm of ėac
i as

‖ėac
i ‖ =
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∥∥∥ +
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≤ T

1
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By using the equality in (A.10), the translational and angular velocity errors are then

upper-bounded as

‖elv
i ‖ ≤

( n∑
j=1

aij + bi

)
T

1
2AlM , (A.14)

‖eav
i ‖ ≤

( n∑
j=1

aij + bi

)
T

1
2 (AaM + V aM). (A.15)

Reaching the auxiliary switching surface implies that the sliding surface in (4.17) has

been reached, i.e., si = 0, resulting in ‖ep
i ‖ = βi‖ev

i ‖αi . Consider the velocity error

bounds in (A.14) and (A.15), the pose error bounds satisfy the inequalities

‖elp
i ‖ ≤ βi

( n∑
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aij + bi

)αi

T
αi
2 (AlM)αi , (A.16)

‖eap
i ‖ ≤ βi
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aij + bi

)αi

T
αi
2 (AaM + V aM)αi . (A.17)

Therefore, (A.16) and (A.17) show that the pose errors are upper-bounded by network

delays T , control gains αi and βi, and the maximum assigned velocity and acceleration

AlM
i , AaM

i , and V aM
i . (A.16) and (A.17) also indicate the effect of the network

connectivity, which is not discussed in this paper as the fixed topology is assumed.

This concludes the proof.

A.3 Stability Proof of Theorem 4.3

Proof. In what follows, the tracking stability and convergence proof are provided.

Substituting the control input in (4.39) into the dynamics in (3.28) and cancelling

out gi yield

Miẍi = CiΔẋ +
( n∑
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Ωj + bi

)−1

Mi

{−(ėi)
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+
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)
CiLiM

M+
i sgn(si)− κisgn(si)

}
.(A.18)
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Multiplying both sides by
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( n∑
j=1

Ωj + bi

)
ẍi =

( n∑
j=1

Ωj + bi

)
M+

i CiΔẋ − (ėi)
(2−αi)

αiβi

+
n∑

j=1

Ωj
¨̂xj(t− Tij(t))

+biẍ0(t− Ti0(t))−
( n∑

j=1

Ωj + bi

)
CiLiM

M+
i sgn(si)− κisgn(si).

Using the equation of
( ∑n

j=1 Ωj+bi

)
ẍi−

∑n
j=1 Ωj

¨̂xj(t−Tij(t))−biẍ0(t−Ti0(t)) = ëi

results in

ëi =
( n∑

j=1

Ωj + bi

)
M+

i CiΔẋ − (ėi)
(2−αi)

αiβi

−
( n∑

j=1

Ωj + bi

)
CiLiM

M+
i sgn(si)− κisgn(si).

Multiplying both sides by αiβidiag(ė
αi−1
i ) gives

ėi + αiβidiag(ė
αi−1
i )ëi =

( n∑
j=1

Ωj + bi

)
αiβiM

+
i diag(ė

αi−1
i )CiΔẋ

−
( n∑

j=1

Ωj + bi

)
αiβiCiLiM

M+
i diag(ėαi−1

i )sgn(si)

−αiβidiag(ė
αi−1
i )κisgn(si). (A.19)

Since the time derivative of the sliding surface is ṡi = ėi+αiβidiag(ė
αi−1
i )ëi, we have

ṡi = −
( n∑

j=1

Ωj + bi

)
αiβidiag(ė

αi−1
i )[MM+

i CiLisgn(si)−M+CiΔẋ]

−αiβidiag(ė
αi−1
i )κisgn(si). (A.20)

Constructing the Lyapunov function in a quadratic form as

Vi =
1

2
sTi si.

Using (A.20), the derivative of Vi becomes

V̇i = sTi ṡi

= −
( n∑

j=1

Ωj + bi

)
αiβidiag(ė

αi−1
i )[MM+

i CiLi‖si‖ − sTi M
+CiΔẋ]

−αiβidiag(ė
αi−1
i )κi‖si‖. (A.21)

Since sTi M
+Δẋ ≤ ‖si‖MM+

i Li, (A.21) becomes

V̇i ≤ −αiβidiag(ė
αi−1
i )κi‖si‖ ≤ 0.
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Therefore, the proposed control system is stable and the sliding surface can be

reached, i.e., si → 0. Furthermore, when the sliding surface is reached, we have

ėi = −βi
− 1

αi e
− 1

αi
i . (A.22)

To prove the motion tracking convergence, another Lyapunov function is defined as

V e
i = 1

2
eT
i ei and its derivative is

V̇ e
i = eT

i ėi = −βi
− 1

αi ‖ei‖
1− 1

αi
1 . (A.23)

As βi > 0 we have V̇ e
i ≤ 0, which proves that the tracking error can ultimately

converge to zero. This concludes the proof.



Appendix B

Theoratical Proof in Chapter 5

B.1 Proof of Theorem 5.1

Proof. Substituting the control input signals in (5.16) into the dynamics in (5.1) and

cancelling out C̄iẋi + ḡi yield the closed-loop dynamics:

M̄iẍi = ρi +
( n∑

j=1

aij + bi

)−1

M̄i

{
−(ev

i )
(2−αi)

αiβi

+
n∑

j=1

aij ¨̂xj(t− Tij)

+biẍ0(t− Ti0)−
( n∑

j=1

aij + bi

)
M̄M+

i Θ̂iΦisgn(si)

−
[
B
ae
i + B

tv
i +

1

αiβi

B
sd
i diag((ev

i )
(1−αi))

]
sgn(si)− κisgn(si)

}
.

Multiplying (
∑n

j=1 aij+bi)M̄
+
i at both sides, and moving

∑n
j=1 aij

¨̂xj(t−Tij)+biẍ0(t−
Ti0) to the left hand side, the closed-loop dynamics of the ith manipulator becomes

(
n∑

j=1

aij + bi)ẍi −
n∑

j=1

aij ¨̂xj(t− Tij)− biẍ0(t− Ti0)

= (
n∑

j=1

aij + bi)M̄
+
i ρi +

−(ev
i )

(2−αi)

αiβi

−
( n∑

j=1

aij + bi

)
M̄M+

i Θ̂iΦisgn(si)

−
[
B
ae
i + B

tv
i +

1

αiβi

B
sd
i diag((ev

i )
(1−αi))

]
sgn(si)− κisgn(si). (B.1)

According to (5.11) and (5.13), the left-hand side of (B.1):

( n∑
j=1

aij + bi

)
ẍi −

n∑
j=1

aij ¨̂xj(t− Tij)− biẍ0(t− Ti0) = ėv
i + εtvi + εaei . (B.2)
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For the sake of compactness, denote Ev
i = diag[(ev

i )
(αi−1)]. Then multiplying αiβiE

v
i

at both sides of (B.1) and using the relations in (5.5), (5.15) and (B.2) lead to

ṡi = −αiβiE
v
i (ε

tv
i + εaei )− αiβi(B

ae
i + B

tv
i )E

v
i sgn(si)− B

sd
i sgn(si)− εsdi

−
( n∑

j=1

aij + bi

)
αiβiM̄

M+
i Θ̂iΦiE

v
i sgn(si) +

( n∑
j=1

aij + bi

)
αiβiE

v
i M̄

+
i ρi

−αiβiκiE
v
i sgn(si). (B.3)

Constructing the Lyapunov function in a quadratic form as

Vi =
1

2
sTi si +

1

2
Θ̃2

i , (B.4)

where Θ̃i is the estimating error of Θi, i.e., Θ̃i = Θi − Θ̂i.

Using (B.3), the derivative of Vi becomes

V̇i = sTi ṡi + Θ̃i
˙̃Θi

= −αiβis
T
i E

v
i (ε

tv
i + εaei )− αiβi(B

ae
i + B

tv
i )s

T
i E

v
i sgn(si)− B

sd
i sTi sgn(si)− sTi ε

sd
i

−
( n∑

j=1

aij + bi

)
αiβiM̄

M+
i Θ̂iΦis

T
i E

v
i sgn(si) +

( n∑
j=1

aij + bi

)
αiβis

T
i E

v
i M̄

+
i ρi

+Θ̃i
˙̃Θi − αiβiκis

T
i E

v
i sgn(si).

As sTi sgn(si) ≥ 0, and according to the definitions of the compensatory bounds, we

have the following inequalities: −sTi ε
sd
i − B

sd
i sTi sgn(si) ≤ 0, and −αiβis

T
i E

v
i (ε

tv
i +

εaei )− αiβi(B
ae
i + B

tv
i )s

T
i E

v
i sgn(si) ≤ 0, Then, V̇i becomes

V̇i ≤ −
( n∑

j=1

aij + bi

)
αiβiM̄

M+
i Θ̂iΦis

T
i E

v
i sgn(si) +

( n∑
j=1

aij + bi

)
αiβis

T
i E

v
i M̄

+
i ρi

+Θ̃i
˙̃Θi − αiβiκis

T
i E

v
i sgn(si)

≤ −αiβi

( n∑
j=1

aij + bi

)
‖sTi Ev

i ‖1M̄M+
i (Θ̂iΦi −ΘiΦi)− αiβiκi‖sTi Ev

i ‖1 + Θ̃i
˙̃Θi.

Let the adaptive law be

˙̃Θi = −αiβi

( n∑
j=1

aij + bi

)
‖sTi Ev

i ‖1M̄M+
i Φi, (B.5)

and use the fact that
˙̂
Θi =

˙̃Θi, we have V̇i as

V̇i ≤ −αiβiκi‖sTi Ev
i ‖1. (B.6)
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When ev
i 
= 0, the finite time stability of the delayed systems can be realized. Ac-

cording to Lemma 3.3, the sliding surface si = 0 is reachable in a finite time tsi that

is given by

tsi ≤
√
6Vi(x0)

1
2

3αiβiκi‖(ev
i )

(αi−1)‖1 . (B.7)

This concludes the proof.

B.2 Proof of Theorem 5.2

Proof. When ev
i = 0, si 
= 0, and Θ̃i 
= 0, from (B.1) and (B.2), we have

ėv
i = −(Bae

i + B
tv
i )sgn(si)− (εtvi + εaei )− κisgn(si)

+
( n∑

j=1

aij + bi

)
M̄M+

i (ρi − Θ̂iΦisgn(si)). (B.8)

Consider the following properties of the vector norm: (1) x ∈ R
m×1 and y ∈ R

m×1

(m = 1, 2, · · · ), ‖x‖1 = 0 if and only if x = 0; (2) |‖x‖1 −‖y‖1| ≤ ‖x−y‖1, we have

‖ėv
i ‖1 ≥

∣∣∣‖Bae
i + B

tv
i ‖1 − ‖εtvi + εaei ‖1 + κi +

( n∑
j=1

aij + bi

)
M̄M+

i |‖ρi‖ − Θ̂iΦi|
∣∣∣.

From the definitions of the compensatory bounds and adaption bounds, we have

‖ėv
i ‖1 > 0 and therefore ėv

i 
= 0. This shows that ev
i = 0 is not an attractor for si 
= 0

and Θ̃i 
= 0 [108]. When the sliding surface is reached, si = 0 and making the time

derivative on both sides of (5.15) leads to

ėv
i =

1

αiβi

diag[(ev
i )

1−αi ](−ev
i + εsdi ). (B.9)

Considering the fact that (ev
i )

1−αi ≥ 0, (B.9) can be expressed by the element-wise

inequalities as (p = 1, 2, 3),{
ėv
i (p) ≤ 0 when −ev

i (p) + εsdi (p) ≤ 0,

ėv
i (p) ≥ 0 when −ev

i (p) + εsdi (p) ≥ 0.
(B.10)

The monotonicity in (B.10) implies that there exists a switching surface given by

abs(ev
i ) = abs(εsdi ), with sgn(ev

i ) = sgn(εsdi ), (B.11)
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that can always be reached with any initial velocity error. When the sliding surface

in (5.15) and the switching surfaces in (B.11) are all reached, the position error ep
i

can be expressed as

ep
i = −βi

( n∑
j=1

aij + bi

)αi

diag(|εsdi |αi)sgn(εsdi ),

where | ∗ | is the absolute operation.

From (5.7), the position tracking error ep
i is bounded, that is,

‖ep
i ‖1 ≤ βi

( n∑
j=1

aij + bi

)αi

(Bsd
i )αi . (B.12)

To determine the convergence time to the switching surface in (B.11), let εti(t) ∈ R
3×1

denote the distance (along the direction of ev
i ) of the velocity error state to the

switching surface at time step t, and then the velocity error can be expressed as

ev
i (t) = εsdi (t) + εti(t). (B.13)

From the monotonicity in (B.10), there always exists an time-varying diagonal matrix

K(t) ∈ R
3×3 such that εti(t) = K(t)ev

i (t). Substituting (B.13) in (B.9) leads to

ėv
i (t) =

1

αiβi

diag[(ev
i (t))

1−αi ]εti(t) =
K(t)

αiβi

(ev
i (t))

2−αi

= −α−1
i β

− 2
αi

i K(t)[ep
i (t)]

2−αi
αi . (B.14)

Assume that when si(t
s
i ) = 0 at tsi in (B.7), the switching surface in (B.11) has not

been reached yet and then the convergence time tei counts from tsi , that is,

tei =
‖K(tsi )e

v
i (t

s
i )−K(tsi + tei )e

v
i (t

s
i + tei )‖1

‖ėv
i (t)‖1

. (B.15)

As K(tsi + tei ) = diag[0 0 0]T when the switching surface is reached, substituting

(B.14) into (B.15), the convergence time becomes

tei =
‖K(tsi )e

v
i (t

s
i )‖1

‖K(t)‖1α−1
i β

− 2
αi

i

∥∥∥ep
i (t)

∥∥∥ 2−αi
αi

1

≤ αiβ
2
αi
i ‖K(t)‖−1

1 ‖K(tsi )‖1‖ev
i (t

s
i )‖1

∥∥∥epmin
i

∥∥∥1− 2
αi

1
.

where epmin
i is the minimal of ep

i (t), which does always exist. ‖K(t)‖1 is bounded

considering the fact of the monotonicity in (B.10). Therefore, tei is a finite time, and

the length is related to the control gains αi and βi. This concludes the proof.



Appendix C

Theoratical Proof in Chapter 6

C.1 Proof of Theorem 6.1

Proof. The closed-loop dynamics of the master manipulator are

M̄mẍm + C̄mẋm + ḡm = C̄mẋm + ḡm − fh + M̄m

{−(ev
m)

(2−αm)

αmβm

+ ẍr

−M̄M+
m Θ̂mΦmsgn(sm)− κmsgn(sm)

}
+ ρm + fh.

Cancelling out common terms yields

ẍm =
−(ev

m)
(2−αm)

αmβm

+ ẍr − M̄M+
m Θ̂mΦmsgn(sm)− κmsgn(sm) + M̄+

mρm.

From (6.13), we have ėv
m = ẍm − ẍr and multiplying αmβm(e

v
m)

(αm−1) on both sides

and using the relation ṡm = ev
m + αmβm(e

v
m)

(αm−1)ėv
m, we obtain

ṡm = ev
m + αmβm(e

v
m)

(αm−1)ėv
m

= −M̄M+
m αmβm(e

v
m)

(αm−1)Θ̂mΦmsgn(sm) + M̄+
mαmβm(e

v
m)

(αm−1)ρm

−κmαmβm(e
v
m)

(αm−1)sgn(sm).

A continuously differentiable, positive definite candidate Lyapunov function, Vm, is

defined as

Vm =
1

2
sTmsm +

1

2
Θ̃2

m. (C.1)

The time derivative of Vm gives

V̇m = sTmṡm + Θ̃m
˙̃Θm

= −M̄M+
m αmβm(e

v
m)

(αm−1)Θ̂mΦms
T
msgn(sm) + M̄+

mαmβms
T
m(e

v
m)

(αm−1)ρm

−κmαmβm(e
v
m)

(αm−1)sTmsgn(sm) + Θ̃m
˙̃Θm. (C.2)
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Consider the inequalities of M̄M+
m αmβm(e

v
m)

(αm−1) ≥ 0, sTmsgn(sm) ≥ 0, and ρm ≤
ΘmΦm, (C.2) becomes

V̇m ≤ M̄M+
m αmβm(e

v
m)

(αm−1)Θ̃mΦm‖sTm‖+ Θ̃m
˙̃Θm

−κmαmβm(e
v
m)

(αm−1)sTmsgn(sm).

Substituting the adaptive law in (6.12), we get

V̇m ≤ −κmαmβm(e
v
m)

(αm−1)sTmsgn(sm) ≤ 0.

According to Lemma 3.3, when ev
m 
= 0, sm = 0 and the stability of the slave control

system can be realized in a finite time. As well, follow the procedure in (A.22)-(A.23),

it can be proved that ep
m → 0 when sm = 0.

C.2 Proof of Theorem 6.2

In the proof of Theorem 6.2, a Lyapunov-based stability analysis is provided to con-

clude the finite-time convergence of sliding surface.

Proof. Substituting the control input (6.18) into the dynamics in (6.2) yields the

closed-loop dynamics:

M̄sẍs + C̄sẋs + ḡs = C̄sẋs + ḡs + M̄s

{−(ev
s)

(2−αs)

αsβs

+ ẍm(t− T1(t))

−
( 1

αsβs

B
sd
s diag(ev

s)
(1−αs) + B

a
s

)
sgn(ss)

−M̄M+
s Θ̂sΦssgn(ss)− κssgn(ss)

}
+ fe + ρs − fe. (C.3)

Then it follows that

ẍs − ẍm(t− T1(t)) =
−(ev

s)
(2−αs)

αsβs

−
( 1

αsβs

B
sd
s diag(ev

s)
(1−αs) + B

a
s

)
sgn(ss)

−M̄M+
s Θ̂sΦssgn(ss)− κssgn(ss) + M̄+

i ρs. (C.4)

The left-hand-side of (C.4) has the relationship

ẍs − ẍm(t− T1(t)) = ėv
s + εas , (C.5)
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where εas = ẍm(t − T1(t))(1 − δ̇1(t)) that is upper-bounded by B
a
s(t) given in (6.16).

The relation in (C.5) facilitates the expression of time-derivative of sliding variable

ṡs

ṡs = αsβsdiag[(e
v
s)

(αs−1)]
[
εas − B

a
ssgn(ss) + M̄+

i ρs − M̄M+
s Θ̂sΦssgn(ss)

−κs(t)sgn(ss)
]
+ εsds − B

sd
s sgn(ss). (C.6)

A continuously differentiable, positive definite candidate Lyapunov function is defined

as

Vs =
1

2
sTs ss +

1

2
Θ̃2

s, (C.7)

where Θ̃s is the estimating error of Θs, i.e., Θ̃s = Θs − Θ̂s, and
˙̂
Θs = ˙̃Θs. Taking

derivative of Vs and using (C.6), we get

V̇s = sTs ṡs + Θ̃s
˙̃Θs

= Θ̃i
˙̃Θi + αsβsdiag[(e

v
s)

(αs−1)]
[
sTs ε

a
s − B

a
ss

T
s sgn(ss) + M̄+

i s
T
s ρs

−M̄M+
s Θ̂sΦss

T
s sgn(ss)− κs(t)s

T
s sgn(ss)

]
+ sTs ε

sd
s − B

sd
s sTs sgn(ss). (C.8)

Exploiting the fact that sTs sgn(ss) ≥ 0, we obtain the following inequalities:

sTs ε
sd
s − B

sd
s sTs sgn(ss) ≤ 0,

sTs ε
a
s − B

a
i s

T
s sgn(ss) ≤ 0.

Then, V̇s in (C.8) becomes

V̇s ≤ Θ̃s
˙̃Θs + αsβsdiag[(e

v
s)

(αs−1)]
[
‖M̄+

s ‖1sTs ΘsΦs

−M̄M+
s Θ̂sΦss

T
s sgn(ss)− κs(t)s

T
s sgn(ss)

]
.

Recall the adaptive law in (6.19), the following inequality can be derived

V̇s ≤ −αsβsκs‖ss‖1diag[(ev
s)

(αs−1)] ≤ 0. (C.9)

According to Lemma 3.3, when ev
s 
= 0, the finite time stability of the slave control

system can be realized and the sliding surface ss = 0 can be achieved in a finite time

ts given by

ts ≤
√
6Vs(xs(0))

1
2

3αsβsκs‖(ev
s)

(αs−1)‖1 . (C.10)
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Furthermore, the conclusion in (C.10) still holds if it can be proved that ev
s = 0 is

not an attractor for ss 
= 0 and Θ̃s 
= 0 [108]. Provided that ss 
= 0 and Θ̃i 
= 0 when

ev
s = 0, the following expression can be obtained from (C.4) and (C.5):

ėv
s = M̄+

i ρs − εas − (M̄M+
s Θ̂sΦs + B

a
s + κs(t))sgn(ss). (C.11)

To investigate the boundedness of ėv
s , two basic properties of vector norm are intro-

duced as follows (x ∈ R
m×1, y ∈ R

m×1, and m = 1, 2, · · · ).

� ‖x‖1 = 0 if and only if x = 0;

� |‖x‖1 − ‖y‖1| ≤ ‖x− y‖1.

As a result, (C.11) has the following inequality:

‖ėv
s‖1 ≥

∣∣∣‖M̄+
s ρs − M̄M+

s Θ̂sΦssgn(ss)‖1
−‖κs(t))sgn(ss)‖1 − ‖εas + B

a
ssgn(ss)‖1

∣∣∣ > 0.

Therefore, ‖ėv
s‖1 > 0 implies that ėv

s 
= 0, which further verifies that ev
s = 0 is not an

attractor for ss 
= 0 and Θ̃s 
= 0. This concludes the proof of Theorem 6.2.

C.3 Proof of Theorem 6.3

Proof. Let ēp
s ∈ R

3 denote the position feedback without self-delay as

ēp
s = xs(t)− xm(t− T1(t))

= xs(t)− xm(t) + xm(t)− xm(t− T1(t))

= ε̄sm(t) + [xm(t)− xm(t− T1(t))], (C.12)

where ε̄sm(t) = xs(t) − xm(t) is the tracking error at the current time step between

the master and the slave manipulators. When ēp
s → 0 [88, 108], using the Euler’s

approximation of T1(t)ẋm(t) = xm(t)− xm(t− T1(t)), we have

‖ε̄sm(t)‖1 = T1(t)‖ẋm(t)‖1. (C.13)
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On the other hand, the inexactly self-delayed position error is given by

ep
s = xs(t− T̄ )− xm(t− T1(t))

= xs(t− T̄ )− xm(t− T̄ ) + xm(t− T̄ )− xm(t− T1(t))

= εsm(t− T̄ ) + [xm(t− T̄ )− xm(t− T1(t))]

= εsm(t− T̄ ) + δ1(t)ẋm(t− T1(t)). (C.14)

Provided that ēp
s → 0 is realized, from (6.15) and the subsequent result in (C.22), we

obtain that ‖ev
s‖1 = ‖εsds ‖1 ≤ 4Bv. Then, εsm(t− T̄ ) is upper-bounded by

‖εsm(t− T̄ )‖1 ≤ βs(4Bv)
αs + δ1(t)‖ẋm(t− T1(t))‖1. (C.15)

In addition, throughout the entire manipulation, we can assume the following equiv-

alent expression of the inequality in (C.15):

‖εsm(t)‖1 ≤ βs(4Bv)
αs + δ1(t)‖ẋm(t)‖1. (C.16)

Let an auxiliary error Ep
s define the difference between the the upper bounds of ε̄sm(t)

and εsm(t), we obtain

Ep
s = ‖εsm(t)‖1 − ‖ε̄sm(t)‖1 ≤ βs(4Bv)

αs − T̄‖ẋm(t)‖1. (C.17)

In words, the inequality in (C.17) can be interpreted as follows:

1) when Ep
s > 0, using the mixed-type feedback signals results in larger tracking

errors than using the feedback signals without self-delays.

2) when Ep
s = 0, using the mixed-type feedback signals obtains the same tracking

accuracy as using the feedback signals without self-delays.

3) when Ep
s < 0, controllers using the mixed-type feedback signals provides smaller

tracking errors than those using the feedback signals without self-delays.

Therefore, for the ANTSM control system in the presence of network delays, using

the mixed-type feedback can improve the tracking accuracy if the control gains satisfy

the following sufficient condition:

(4αsβs)
1

1−αs < BvT̄
1

1−αs . (C.18)

such that Ep
s < 0 holds. This concludes the proof.
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C.4 Proof of Proposition 6.1

Proof. When the sliding manifold ss = 0 is reached, from (6.17) we have

ėv
s =

1

αsβs

diag[(ev
s)

1−αs ](−ev
s + εsds ). (C.19)

Since the definition of αs guarantees that (ev
i )

1−αs ≥ 0 always holds. (C.19) can be

expressed element-wise as (p = 1, 2, 3),{
ėv
s(p) ≤ 0, when −ev

s(p) + εsds (p) ≤ 0,

ėv
s(p) ≥ 0, when −ev

s(p) + εsds (p) ≥ 0.
(C.20)

The monotonicity in (C.20) implies the reachability of a switching surface given by

|ev
s | = |εsds |, s.t. sgn(ev

s) = sgn(εsds ). (C.21)

As the switching surface in (C.21) is reached, using (6.13) and (6.14), we obtain

ev
s − εsds = ẋs(t− T̄ )− ẋm(t− T1(t))δ̇1 → 0. (C.22)

In other words, the delayed master and slave positions are converged and bounded,

that is, ‖ẋs(t− T̄ )‖1 → ‖ẋm(t−T1(t))‖1 ≤ Bv, where Bv denotes the velocity bound.

This concludes the proof.

C.5 Proof of Proposition 6.2

Proof. Provided that ẋm(t) = 0 and consider (C.22), we obtain ẋs(t) = 0 and Bv = 0

when the sliding surface ss = 0 is reached. In other words, the tracking error between

the master and slave converges to zero in the sense of εsm(t) = xs(t) − xm(t) = 0.

This concludes the proof.



Appendix D

Transition Waveform

Figure D.1: The positive-going transition waveform [115].

This section briefly provides some basic waveform-related terms and parameters

to facilitate the description and discussion of the manipulation performance in this

paper (See [115,116] for a complete description of waveform standards).

Fig.D.1 illustrates the relevant definitions of a two-state (designated by s1 and

s2, s1 < s2) waveform with a transition. Each state has an associated State Level :

level(s1) and level(s2).

Percent Reference Level

Reference levels are user-specified and constant throughout a waveform epoch. Ref-

erence level is usually expressed as a Percent Reference Level (PRL) to facilitate the

167



168

descriptions of other terms and parameters. Commonly used reference levels are 0%,

10%, 50%, 90%, and 100%, which are specified by

yx% = y0% +
x

100
(y100% − y0%), (D.1)

where x = {0, 10, 50, 90, 100}. y0% and y100% are the levels of low state and high state,

respectively, e.g., in Fig.D.1, y0% = level(s1) and y100% = level(s2).

Pre-Transition and Post-Transition Aberration Regions

Aberration Region is the interval between a user-specified instant and a fixed instant.

For the Pre-(Post-)Transition Aberration Region, the fixed instant is defined as the

first sampling instant preceding(succeeding) the 50% Percent Reference Level (PRL)

instant when the waveform value is within the State Boundaries of the state preced-

ing(succeeding) the 50% PRL instant. PRL is user-specified and constant throughout

a waveform epoch. The user-specified instant occurs before (after) the fixed instant

and is typically equal to the fixed instant minus (plus) three times the transition

duration, that is, tpost ∓ 3t10%−90% (or as determined by the user). State Boundaries

is user-defined and in this paper it is specified as s1,2 ± 5%s1,2.

Overshoot and Undershoot

A single-transition waveform may exhibit four of special aberrations: pre-transition

overshoot, pre-transition undershoot, post-transition overshoot and post-transition

undershoot, which are determined by

OSregion(%) =
ymax,region − level(sk)

|A| 100%, (D.2)

USregion(%) =
level(sk)− ymin,region

|A| 100%, (D.3)

where region = {pre, post}. A is theWaveform Amplitude given by |A| = |level(s1)−
level(s2)|.

Compound Waveform

A compound waveform is completely represented by m states and n transitions where

m+ n ≥ 4.
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