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Abstract

The Nova Scotia Inshore Sea Scallop (Placopecten Magellanicus) Fishery is the fourth

most valuable fishery in the province and has been in existence since the 1960s.

Covering the Bay of Fundy and areas close to the shore of Nova Scotia, it is split up

into multiple Scallop Production Areas (SPA) and Scallop Fishing Areas (SFA). Most

areas are assessed separately with a different yearly Total Allowable Catch (TAC) set

to limit maximum landings. SPA 3, encompassing St-Mary’s Bay and a good portion

of the western shore of Nova Scotia, has been difficult to assess due to its strong

spatial patterns in both biological characteristics and fishing effort.

The current model typically used to assess areas of this fishery is a delay-difference

model, a type of biomass dynamics model which only requires an index of abundance

and commercial landings. However, even after recasting it into a frequentist frame-

work, this model has been found to be unable to reliably model SPA 3. The focus

of this work is to incorporate spatial information into this assessment model in two

steps. The first step involves reconsidering abundance indices to reduce the amount

of necessary pre-processing and directly model all intra-annual variability, while si-

multaneously accounting for the large number of zeroes. The second step involves

explicitly modeling the location of survey tows and commercial fishing by modifying

the error structure of the model by using Gaussian Markov Random Fields such that

a spatio-temporal model results.

The new framework for abundance indices is shown to better capture population

changes and can be viewed as a hybrid between a traditional temporal model and a

spatio-temporal version. The full spatio-temporal stock assessment framework is fur-

ther able to capture both local population changes reliably and population trends for

the entire area of interest. This novel framework shows promise to improve the relia-

bility of scientific advice given to fisheries managers while opening up new possibilities

for spatial management.
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Chapter 1

Introduction

Nova Scotia’s relationship with fishing the Atlantic Ocean and the Bay of Fundy is

a long and enduring one. Both pre-European inhabitants and European colonists

have been attracted to and depended on the rich fishing done in and around the

Canadian east coast (Lelièvre, 2017). Over time, technological developments have

allowed access to new fisheries and new species of fish previously inaccessible, such

as yellowtail (Pleuronectes ferroginea) (Merrill and Posgay, 1964), while increasing

fisher’s capacity to capture large amounts of fish. This led to a steady global increase

in amount of fish caught up until recent times, where this amount has stabilized (FAO,

2018). This increase in exploitation of wild fish and shellfish has led to intense debate

over the global status of fish stocks throughout the last few decades. The well-

documented collapse of the Northwest Atlantic population of Atlantic cod (Gadus

morhua) (Hutchings and Myers, 1994; Myers et al., 1996) underlined the necessity

for a global discussion on the causes of worldwide population declines (Myers and

Worm, 2003) to prevent global population collapses. Unsustainable practices such

as overfishing and mismanagement have been identified as causal factors, albeit with

varying degrees of emphasis and mitigative solutions (Worm et al., 2006; Hilborn,

2007).

Ecological theory, while often developed on terrestrial species, has long been ap-

plied with varying levels of success to understand how marine species vary. Evidence

of density dependence in fish populations, wherein population growth depends on the

size of the population (Smith, 1961), has been empirically detected for a long time

(Raitt, 1939). The climate can also have a profound effect on fish populations (Sis-

senwine, 1984), just as preferred habitat (Jones and Martin, 1981), fish behaviour,

and movement/migration (Callihan et al., 2014) can impact population variability.

More specifically, fisheries ecology has focused on attempting to explain variability

in population abundance of commercially important fish stocks (Sissenwine, 1984).

1
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Many of these stocks have historically been very difficult to monitor in an attempt

to manage these fisheries in a sustainable manner. Dozens of theories have been

developed to try to explain commonly observed large or ephemeral spikes in popu-

lations. These theories have ranged from extensive migrations to patterns of larval

dispersal (Houde, 2008). One key component of most approaches has been to focus

on recruitment (wherein young fish grow old or large enough to be of commercial

interest) since it is ultimately responsible for the maintenance and health of a stock

(Sissenwine, 1984). Due to the practical impossibility of directly observing most of

these traits and variables, changes in fish populations must be estimated or predicted,

using different types of deterministic and statistical models.

1.1 Stock Assessment Approaches

Far from a strictly modern phenomena, models in ecology have a very long history

stretching all the way back to Malthus’ original exponential population growth model

(Malthus, 1798, as seen in Angelini and Moloney, 2007). Early statistical approaches

can even be seen pre-20th century with the use of the least squares method to com-

pare different herring (Clupea harengus) populations (Angelini and Moloney, 2007).

Unfortunately, lack of appropriate statistical and computational tools long hindered

the progress of modeling fish stocks (Goethel et al., 2011), and led to the development

of many different methods dependent on the types of data available.

When environmental variables or other types of predictors are available along

with measures of abundance, linear models have formed the basis of many statistical

approaches via the following general form (Venables and Dichmont, 2004)

y = Xβ + ϵ (1.1)

where y is the response variable of interest (e.g. fish length at age), Xβ is the linear

predictor that represents the dynamic process impacting the response variable (for

example, β could be the coefficient for temperature x and ϵ is some error term, of-

ten assumed to be distributed normally). However, fisheries data rarely follow the

assumptions of ordinary linear regression and tend to be inherently noisy (Aeberhard

et al., 2018). For example, standard deviations often increase with the mean (e.g.
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Punt et al., 2000), there can be non-linear relationships between response and ex-

planatory variables (Froese, 2006 for fish weight-length relationships), and data are

often distributed non-normally (e.g. Martin et al., 2005; Yin et al., 2019). Multi-

ple approaches have been developed to extend and generalize ordinary linear models

to account for these complexities. These include generalized linear models (GLM),

generalized additive models (GAM) and generalized linear mixed models (GLMM)

(Venables and Dichmont, 2004; Bolker et al., 2009).

When few or no environmental variables are available, three main approaches

have historically been taken for fisheries stock assessments: catch-at-age methods if

the age distribution is available, biomass dynamics (also called surplus production)

if an index of abundance is available, and length frequency analysis if only length

data is available (Hilborn, 1992). Of interest here are biomass dynamics models,

which are based on logistic growth models. Their main attraction is that they only

require total catch and an index of fish abundance to work (Hilborn, 1992). A good

example of a biomass dynamics model would be the delay-difference model, created

as a compromise between overly simplistic traditional models and overly complex but

more realistic models (Deriso, 1980). The main equation of interest for this type of

model resembles the following:

Bt+1 = (1 + ρ)lSt − ρl2
St

Bt

St−1 + F (St+1−k) (1.2)

where Bt is the biomass of the catchable population before fishing in year t, ρ is

Brody’s growth coefficient with 0 ≤ ρ ≤ 1, St = Bt − Ct where St is the escapement

of adults and Ct is the total catch in year t, l is the annual natural survival fraction

for catchable adults, and F (St+1−k) is a spawner-recruit relationship with k being the

age at recruitment (Deriso, 1980). This type of equation is conceptually simple: to

obtain the next year’s total fishable biomass, one must simply take those from the

previous year, remove those that died either through natural mortality (l) or through

fishing mortality (Ct), grow the survivors (ρ) and add the recruits (F (St+1−k)).

Even when these types of equations had strong conceptual roots, they are dif-

ficult to apply when dealing with real data (Schnute, 1985). Real data are often

thought to have two main sources of error: observation errors, which come from the

observation process and often called measurement errors, and process errors, which
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come from the imperfect knowledge of the true underlying dynamical process (Cressie

et al., 2009; Aeberhard et al., 2018). A classical method was to take a ”curve-fitting”

approach when applying these models to real data (Quinn and Deriso, 1999). This

type of approach consisted of fitting different theoretical curves, such as nonlinear

Ricker or Gompertz curves, and picking out the one that best fits the data (Cressie

et al., 2009). Early implementations of these models often struggled to account for

variability coming from observation errors or imperfect knowledge of the underlying

process. Attempts to deal with these issues included the incorporation of assump-

tions like assuming that one type of error was absent (e.g. Kinas, 1996) or that the

ratio between the two forms of errors was known (e.g. Schnute and Richards, 1995).

A common way of incorporating both types of errors came in the form of hierarchi-

cal models, such as state-space models (SSMs) (Cressie et al., 2009), although these

models can sometimes exhibit problematic behaviors when measurements errors are

larger than process errors (Auger-Méthé et al., 2016). These models are also able to

predict future states, making them useful for the purpose of fisheries management.

A basic SSM is defined by two stochastic processes: Xt representing the unob-

served state of a dynamic process of interest (e.g. stock biomass) and Yt representing

a directly observed response variable with the index t indicating time-steps (Aeber-

hard et al., 2018). These models often include an associated covariate vector zt and

underlying fixed parameters θ (Schnute, 1994; Aeberhard et al., 2018). SSMs fit in a

frequentist framework can be represented by a 2-tiered hierarchical set of equations

(Aeberhard et al., 2018). The first set of equations, which models directly observed

variables, is conditioned on the underlying variables, modeled by the second set of

equations (e.g. E[Yt|Xt]) (Aeberhard et al., 2018). The states of the underlying

process at time t are conditioned on their state at the previous time-step. A general

SSM can therefore be modeled the following way (Aeberhard et al., 2018):

E[Yt|Xt] = g(Xt,θY ) (1.3)

E[Xt|Xt−1] = h(Xt−1,θX) (1.4)

where g and h are functions following regular time-steps (e.g. t = 1, 2, ..., T ). If a

Bayesian framework is selected, a third level of equations would be added to include
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prior distributions for parameters θ.

1.2 Classical Geostatistics

While SSMs have been used effectively to describe temporal trends (e.g. Linton and

Bence, 2008; Yin et al., 2019), the direct inclusion of spatial information is far less

common. Recent work in fisheries science has started to emphasize the importance of

including spatial information to accurately predict species distribution and abundance

(e.g. Ciannelli et al., 2008; Thorson et al., 2015a; Berger et al., 2017). The effect of

spatial variation on fish populations has long been acknowledged (e.g. Baranov, 1918;

Beverton and Holt, 1957; Legendre, 1993) but rarely directly included in statistical

models due to lack of technological and conceptual tools (Goethel et al., 2011). It has

only recently been more widely achieved in general population ecology (e.g. Hooten

et al., 2003; Gelfand et al., 2005) and even more recently in SSMs (e.g. Thorson et al.,

2015c; Cadigan et al., 2017).

Spatial approaches in fisheries science have either borrowed from geostatistics with

a focus on the error structure or modified common regression techniques with a focus

on the mean effect (Ciannelli et al., 2008). Geostatistical methods are of particular

interest since they can be applied to models that do not require plentiful information

on environmental covariates such as biomass dynamics models. In other words, given

that y = µ+ ϵ where y is a spatial response with mean µ and error term ϵ, regression

approaches will focus on spatially modeling µ while geostatistical methods focuses on

spatially modeling ϵ (Ciannelli et al., 2008), which lets the mean be modeled through

other approaches such as traditional stock assessment models.

Classical geostatistical approaches, originally from the field of geology (Matheron

and Krumbein, 1970), focused on cases where the variable of interest is continuous

throughout space with the goal of predicting at unsampled locations through both

large-scale and small-scale variations (Zimmerman and Stein, 2010). This is done

by assuming that the observations are a sample of a single realization of a continu-

ous stochastic spatial process Y (·), called a random field, where Y (·) ≡ Y (s) : s ∈ D

(Zimmerman and Stein, 2010). This leads to the unintuitive fact that, because the

observations are only a partial representation of a single realization of this spatial
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process Y (·), the sample size for this process is 1. This therefore requires the statis-

tician to include constraints to model this type of process. For example, structure is

often imposed so that Y (s) = µ(s) + e(s) where µ(s) is some mean function and e(s)

is a zero-mean random error process (Zimmerman and Stein, 2010).

These approaches, however, require a few assumptions in order to be valid. The

first is stationarity, which can be second-order stationarity or intrinsic stationar-

ity (Zimmerman and Stein, 2010). Intrinsic stationarity, more commonly used than

second-order stationarity, specifies that:

1

2
var[e(s)− e(t)] = γ(s− t), for all s, t ∈ D. (1.5)

where γ(s− t) is the semivariogram tracking the covariance between two locations s

and t (Zimmerman and Stein, 2010). Second-order stationarity is a more stringent

assumption, where the semivariogram γ(·) is replaced by an unspecified covariance

function C(·) (Zimmerman and Stein, 2010). In practice, this approach is usually

done by estimating an empirical semivariogram γ(h) through the semivariance at all

points N separated by distance h:

γ(h) =
1

2N(h)

N(h)∑︂
i=1

(xi − xi+h)
2 (1.6)

where xi is some observation i of interest such as fish abundance (Ciannelli et al.,

2008). This empirical variogram is then fit to the most appropriate theoretical vari-

ogram (e.g. Gaussian, exponential, Matérn) (Ciannelli et al., 2008), after which the

estimation of large-scale and small-scale trends can be made (Zimmerman and Stein,

2010).

Another important assumption often made in these models is that of isotropy,

either second-order or intrinsic. Intrinsic isotropy implies that the semivariogram γ(h)

is a function of the locations through the Euclidean distance between them, meaning

that direction has no impact on this semivariogram (Zimmerman and Stein, 2010).

Second-order isotropy assumes a similar constraint over an unspecified covariance

functions. Real life examples, especially in near-shore fisheries (Thorson et al., 2015c),

often does not respect this important assumption. A simple modification can be used

to account for geometric anisotropy in these cases, wherein a simple positive definite
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matrix (analogous to a rotation matrix) can be introduced in the implementation

of the covariance structures (Zimmerman and Stein, 2010; Lindgren and Rue, 2011;

Thorson et al., 2015c).

1.3 Gaussian Markov Random Fields

Geostatistical methods have since developed into multiple different avenues (e.g. pre-

dictive processes in Banerjee et al., 2008), including extensions into spatially discrete

cases (Rue and Held, 2010). Of greatest interest here are Markov Random Fields

(MRFs) and Gaussian Markov Random Fields (GMRFs). MRFs are a type of ran-

dom field that are specified by conditioning each component on all the others, with

GMRFs being a special case where these conditional distributions are Gaussian (Rue

and Held, 2010). This conditional distribution approach further implies that each lo-

cation is only directly dependent on its set of direct neighbours (Besag, 1974, 1975),

which has very convenient computational properties when it comes to covariance

structures (Rue and Held, 2010; Lindgren and Rue, 2011). MRFs can be visualized

through a graph G = (V,E) where V = {1, ..., n} is the set of vertices (e.g. locations

of interest) and E = {{i, j} : i, j ∈E}. Using the example in Figure 1.1, one can see

how the value of vertex 1 is conditionally independent of the value of vertex 3 given

the values of vertices 2 and 4 (x1 ⊥ x3|x{2,4}).

Figure 1.1: Conditional independence graph (taken from Rue and Held, 2010).

GMRFs and, more broadly, Gaussian Fields (GFs) are usually specified through a

mean µ = µ(s) with mean function µ(·) and covariance Σ = C(si, sj) with covariance

function C(·) (Lindgren and Rue, 2011). However, it can be very computationally

expensive to work with the complete covariance matrix Σ, and one of the advan-

tages of using GMRFs is the use of the sparse precision matrix Q = Σ−1 (Rue and
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Held, 2010; Lindgren and Rue, 2011). The zero structure inside this precision ma-

trix is directly analogous to the neighbouring structure of the vertices, meaning that

Qij ̸= 0 ↔ i ∈ δj ∪ j where δj is the set of neighbours to location j (Lindgren and

Rue, 2011). Furthermore, they can be used to represent underlying GRFs through

the Stochastic Partial Differential Equations (SPDE) approach (for more details see

Lindgren and Rue, 2011), bridging the gap between continuously defined random

fields and discretely defined variables or observations of interest. The modeling ap-

proach has therefore recently consisted of assuming an underlying GF, representing

it through a GMRF whose precision matrix is very close to the real covariance matrix

(Q−1 is close to Σ) and modeling on the GRMF discrete locations (Lindgren and

Rue, 2011; Carson et al., 2017)

While there are many types of covariance structures that can be specified, this

specific approach using GMRFs has been demonstrated to be appropriate when using

Matérn covariance structures, which are widely used structures (Lindgren and Rue,

2011). This structure specifies how the correlation between two locations decays over

distance in the following way:

Σ(s1, s2) = σ2 1

Γ(ν)2ν−1
(κd(s1, s2))

νKν(κd(s1, s2)) (1.7)

where Σ(s1, s2) is the covariance between two locations, σ2 is the spatial variance,

ν determines smoothness and is often fixed in practical applications (e.g. Thorson

et al., 2015c; Carson et al., 2017), κ is the parameter setting the distance at which

two locations are effectively uncorrelated, Γ(·) is the gamma function, K(·) is the

Besel function of the second kind and d(s1, s2) is the Euclidean distance between two

points (d(s1, s2) =
√︁
(x1 − x2)2 + (y1 − y2)2 with xi and yj being coordinates).

One of the advantages of the SPDE approach is that it avoids the need for a

regular grid. Instead, the area of interest is subdivided in non-intersecting triangles

with vertices where the triangles meet and edges connecting those vertices, with

additional vertices usually added to obtain a more useful triangulation (Lindgren and

Rue, 2011). An example triangulation can be seen in Figure 1.2.

This approach will represent some underlying GF X(s) by using piece-wise linear
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Figure 1.2: Example of a triangulation created for the SPDE approach on randomly
simulated locations

interpolation from one vertex to the next in the following way:

X(s) =
n∑︂

i=1

ψi(s)ϵi (1.8)

where n is the number of vertices, ψi(s) are basis functions that take the value 1 at

vertex i and 0 at all other vertices, and ϵi are gaussian weights (Carson et al., 2017).

Spatial approaches and geostatistical methods are not particularly new in fish-

eries science, with known issues created by spatially-aggregated commercial catch

(Paloheimo and Dickie, 1964) and by intrinsically spatial life-history characteristics

of certain species, such as scallops (Caddy, 1975). Geostatistical approaches have

been used sparingly in the past, often on a regular grid (e.g. Petitgas, 1993) or

on non-traditional data such as accoustic surveys (e.g. Mello and Rose, 2005), but

the widespread interest in spatial statistics applied to stock assessments is relatively

recent (Ciannelli et al., 2008). The development of tools for easily and rapidly ap-

plying GMRFs within SSMs has recently expanded, from improvements to general-

ized linear frameworks (Thorson et al., 2015c; Thorson, 2019) to implementations in

spatio-temporal state-space models (e.g. Cadigan et al., 2017).
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1.4 Computational Approaches

While classical geostatistical approaches using semivariograms do not necessarily

make any parametric distributional assumptions, stock assessment methods neces-

sitate the estimation of multiple parameters and the prediction of random effects.

SSMs often use Bayesian approaches (e.g. Kinas, 1996; Smith and Hubley, 2014;

Best and Punt, 2020). However, issues with the use of prior distributions have re-

cently been identified wherein these distributions can impact posterior distributions in

non-intuitive ways, potentially rendering these output unreliable. For example, it can

result in erroneous conclusions based on estimated carrying capacity in the absence or

fishing (Thorson and Cope, 2017) or can mask identifiability and estimability issues

(Yin et al., 2019). The frequentist framework, on the other hand, does not tend to

inadvertently mask those issues (Yin et al., 2019). It uses methods where parameters

are estimated by maximizing a likelihood function (often through the log-likelihood).

In the case of SSMs and given some data y, random effects to be predicted x and

unknown parameters θ, the log-likelihood function L(·) and the joint log-likelihood

of interest (where random effects are integrated out), which are based on likelihood

function L(·), resemble the following:

L(θ|y) =
n∑︂

i=1

log(f(yi,θ)) (1.9)

L(θ,y) = log

∫︂
L(θ,y,x)dx (1.10)

In the case of complex state-space and spatial models, the integral in equation 1.10

becomes high-dimensional and must be approximated. The Template Model Builder

(TMB) package (Kristensen et al., 2016), optimized in the R environment (R Core

Team, 2020), is a cutting-edge approach for fitting these complicated SSMs. TMB

uses the Laplace approximation to get the marginal likelihood of the parameters θ in

the following way:

L(θ|y) =
√
2π

n
det(H(θ))−

1
2 exp(−f(y, x̂,θ)) (1.11)

where x̂ is the optimized value of the random effects x, H(·) is the Hessian matrix

evaluated at x̂, and n is the number of random effects (Kristensen et al., 2016). This
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approximation has been shown to be appropriate for a myriad of different models,

from state-space to non-linear mixed effects, and for the use of GMRFs (Kristensen

et al., 2016). TMB has also been shown to be more computationally efficient and faster

than other generally available packages due to its use of automatic differentiation to

keep track of higher order derivatives (Kristensen et al., 2016; Auger-Méthé et al.,

2017). Furthermore, it has shown great success in applications for fisheries and stock

assessments (e.g. (Albertsen et al., 2017; Cadigan et al., 2017; Thorson, 2019).

1.5 Case Study

While the importance of incorporating spatial information into SSMs is clear, a con-

crete setting is necessary to demonstrate the improvements it brings. The work

contained in this thesis has been motivated by the sea scallop (Placopecten magel-

lanicus) fishery of Nova Scotia, Canada. The second largest fishery in the province

in terms of value, it represents a highly important economical driver that has to be

managed very carefully to both maximize its economical impact while minimizing

the risk of overexploitation. The inshore portion of this fishery has been using a

delay-difference model, similar to the version proposed by Schnute (1985), since the

early 2000s (Smith and Lundy, 2002), with the following main population dynamics

equation:

Bt = (e−Mt−1(ρ+
α

wt−1

)(Bt−1 − Ct−1) + wkRt)µt (1.12)

where Bt is the biomass in year t, Mt is the natural mortality, ρ + α
wt−1

is a growth

factor that decreases as average size increases (to represent slower growing older

populations) where α and ρ are unknown parameters estimated from separate growth

data, Ct is the commercial catch, wk is the weight at recruitment size k, Rt is the

number of scallop recruits and µt is a log-normal error term (Smith and Lundy, 2002).

While there are more modern versions of this model (Smith and Hubley, 2014; Yin

et al., 2019), they all follow a similar form.

This fishery, which has been commercially exploited since the early 1960s (Caddy

and Chandler, 1968), is an ideal case in which to incorporate spatial information into

SSMs. Sea scallops have inherent biological properties that makes them very intuitive
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for spatial modeling. Their aggregation behaviors, their recurring colonization of spe-

cific areas (called scallop beds) and their minimal dispersal and movement as adults

(Smith and Rago, 2004) are all inherently spatial characteristics that can intuitively

be modeled through the implementation of spatial statistics in SSMs. Strong spatial

patterns have also been acknowledged in this specific fishery for a long time (Caddy,

1975; Smith and Rago, 2004). Furthermore, many subareas are also known to have

highly aggregated commercial fishing (Nasmith et al., 2016; Smith et al., 2017), which

has long been known to impact the quality of predictions and estimates from strictly

temporal models (Baranov, 1918; Caddy, 1975). These spatial patterns have histori-

cally not been incorporated in models due to lack of available data (Smith and Rago,

2004). However, this has recently changed, with the implementation of a mandatory

satellite Vessel Monitoring System (VMS) for all vessels since 2002 (Smith et al., 2012,

2017). Furthermore, a strong link between habitat suitability and fishing intensity has

been identified, with serious implications for population productivity and long-term

sustainability if not incorporated in the stock assessment (Smith et al., 2017).

The latest work undertaken on the SSM for the inshore Nova Scotia scallop fish-

ery focused on identifying and solving identifiability issues related to the Bayesian

framework currently in use (Yin et al., 2019). This work demonstrated that even

non-informative priors can sometimes overwhelm the information in the data, espe-

cially when the sample size is very low, which can result in unreliable estimates and

predictions. Focused on the Scallop Production Area (SPA) 4 in the Bay of Fundy,

an alternative frequentist framework added new process equations and modeled the

commercial catch directly to overcome these issues (Yin et al., 2019). Attempts to

apply this alternative approach, part of this body of work, to a more difficult and

variable area, SPA 3, were unfortunately unsuccessful due to problems in estimat-

ing variance parameters. This area and neighboring areas are known to have highly

aggregated commercial fishing (Nasmith et al., 2016; Smith et al., 2017) and strong

spatial patterns in biomass and mortality. This motivated the development of new

approaches that could explicitly model the unused information already present in the

data, both strictly temporally and spatio-temporally.
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1.6 Thesis Outline

This thesis aims to integrate spatial information available about a fishery into pre-

existing SSMs to improve the predictive ability and resolution of those predictions of

this model with the broad goal of accurately estimating the current status of the SPA

3 sea scallop stock. Chapter 1 presented the relevant background information, theo-

retical approaches and computational methods necessary for the subsequent chapters.

Chapter 2 and 3 are constructed as manuscripts for publication. Chapter 2 concerns

the expansion of a temporal state-space model developed by Yin et al. (2019) to ac-

count for the intra-annual variability obtained by fishery-independent surveys, avoid-

ing the need to use a single data point per year as has been done in many biomass

dynamics models (Nasmith et al., 2016). Simulation experiments will be utilized to

test model performance before being tested on a real setting as a case study, utilizing

data from SPA 3 in the Inshore Scallop Fishery in Nova Scotia, Canada (Nasmith

et al., 2016). While not incorporating any spatial information, these developments

were necessary before the application of the spatial methods described in Chapter

1. Chapter 3 will further develop this state-space model to directly incorporate the

spatial locations of both survey tows and commercial fleet catches into a stock assess-

ment framework with the ultimate objective of predicting the spatial distribution and

abundance of scallop biomass in SPA 3. Simulation experiments will also be used to

test model performance before being applied to the SPA 3 data. Further simulation

experiments will be run wherein data will be simulated from a spatial model before

fitting the temporal model described in Chapter 2 to test the effect of the spatial

aggregation of commercial catch. Chapter 4 will present the important conclusion

from this body of work before expanding into future work and application of these

approaches.



Chapter 2

Diagnosing and solving identifiability issues related to

fisheries abundance indices in the Assessment of the Nova

Scotia Inshore Sea Scallop Placopecten magellanicus Fishery

Abstract

Biomass dynamics stock assessment models have seen widespread use in fisheries

science. Often implemented in a state-space framework, these models tend to rely

solely on indices of abundance and commercial landings data. Much effort has gone

into improving the reliability of abundance indices, either from fishery-dependent

or independent sources. However, standard practice often still involves simply tak-

ing mean values over large temporal and spatial ranges. This reduces the ability

of biomass dynamics models, including delay-difference models, to accurately track

changes in populations. We explore these issues with the stock assessment model used

for the Nova Scotia Inshore Scallop Fishery, which calculates its abundance indices

based on annual fishery-independent surveys. Using a state-space stock assessment

model based upon a delay-difference model, our proposed approach treats each indi-

vidual survey tow as an independent realization of the true underlying biomass. Given

the abundance of zeroes in these tows, a delta model is incorporated. Results from

fitting this approach to a highly variable sea scallop production area in and around St-

Mary’s Bay, Nova Scotia shows significant improvement in the estimation of variance

parameters over previous model implementations. This increases the reliability of the

patterns predicted by the stock assessment, can easily be generalized to other stock

assessment frameworks, and is the first step to developing a fully spatio-temporal

model for this area.

14
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2.1 Introduction

Fisheries stock assessment has long used deterministic and statistical models to quan-

tify and predict variation in fish populations, often with the goal of providing reliable

information for the purpose of fisheries management. Since many fisheries set quo-

tas or use other forms of regulation to ensure their long-term viability, the scientific

advice they receive must be as accurate and precise as possible to minimize the risk

of overexploitation. The collapse of Atlantic cod (Gadus morhua) in Eastern Canada

(Hutchings and Myers, 1994; Myers et al., 1996) had severe social and economic con-

sequences on the Maritime provinces, which underlined the importance of developing

accurate and reliable stock assessment models. A key part of modern stock assess-

ment is the ability to account for multiple sources of uncertainty (e.g. Schnute and

Richards, 1995; Aeberhard et al., 2018).

State-space models (SSMs) have become increasingly popular for incorporating

multiple sources of uncertainty into a unified framework. SSMs are able to account for

both measurement errors, which occur in the observation of data, and process errors,

which come from the imperfect knowledge of the underlying dynamical processes of

interest (De Valpine, 2002; Cressie et al., 2009; Aeberhard et al., 2018). These models

can be built to account for noisy data (e.g. Punt et al., 2000), complex non-linear

population dynamics (e.g. Froese, 2006; Linton and Bence, 2008) or non-Gaussian

distributions (e.g. Martin et al., 2005; Cressie et al., 2009), all of which are common

with fisheries data. Estimation frameworks for SSMs, traditionally difficult to fit in

practice, have only recently become easily accessible through innovations facilitating

the approximation of intractable integrals. Multiple approaches have been developed,

such as Bayesian methods usually involving the use of Markov Chain Monte Carlo

(MCMC) (Meyer and Millar, 1999; Linton and Bence, 2008; Smith and Hubley, 2014),

and frequentist methods involving the use of automatic differentiation and the Laplace

approximation (Skaug and Fournier, 2006; Kristensen et al., 2016). Both approaches

have been used extensively when incorporating traditional stock assessment models,

such as biomass dynamics models, into SSM frameworks.

Biomass dynamics models are historically one of the three most important types

of models available to fisheries scientists (Hilborn, 1992). Requiring only an index of
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population abundance and commercial landings, their implementation in SSM frame-

works has led to their widespread applicability to modern stock assessment (e.g.

Smith and Hubley, 2014; Xu et al., 2019; Best and Punt, 2020). A common example

is the delay-difference model, derived as a compromise between intractable realis-

tically complex models and overly simplistic models (Deriso, 1980; Schnute, 1985).

Since biomass dynamics models only require two inputs, it is imperative that these in-

puts be reliable. This is especially the case for abundance indices, which often require

extensive data processing before being considered suitable for modeling purposes.

An index of abundance can be calculated from two different sources: fishery-

dependent (e.g. commercial landings, fishing logbooks, etc.) or fishery-independent

(e.g. surveys). A significant amount of work has gone into developing better methods

to obtain reliable indices from fishery-dependent sources (Harley et al., 2001; Maunder

and Punt, 2004; Maunder et al., 2006), but even indices calculated from more reliable

fishery-independent sources usually result in a single datum per year. Even if that may

be enough for some SSMs, situations where time-series are relatively short can lead to

overparameterization and identifiability issues (e.g. Yin et al., 2019). While Bayesian

methods have been highly popular for fitting stock assessment SSMs (e.g. Best and

Punt, 2020), they sometimes simply mask these issues (Thorson and Cope, 2017; Yin

et al., 2019). Modeling these data directly requires dealing with the complications

inherent to fisheries data, such as zero-inflation.

Zero-inflation occurs when a dataset includes a large proportion of zeroes which

cannot be accurately represented by standard distributions (e.g. Gaussian, Poisson,

etc.) (Martin et al., 2005). Ignoring these zeroes can lead to bias in parameter

estimates and negatively impact the resulting inference (e.g. Mackenzie et al., 2002).

These zeroes can either be ”true” zeroes, which would be a real representation of the

underlying process, or ”false” zeroes, when they stem from the observation process

itself (Martin et al., 2005). Using the example of fisheries survey data, ”true” zeroes

could come from fishing in an area without the species of interest, and ”false” zeroes

could be because the animals managed to escape the fishing gear but were indeed

present. The delta approach has shown great success accounting for this zero-inflation.

This approach models the probability of a zero separately as p, often through a

binomial distribution, and the probability of a positive observation as 1− p (Fletcher
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et al., 2005). Used extensively for both standard regression frameworks (e.g. Fletcher

et al., 2005) and spatial approaches (e.g. Thorson et al., 2015c), the delta approach

is readily applicable to the SSM framework.

This work aims to demonstrate how to incorporate survey abundance data di-

rectly into SSMs to increase the reliability of parameter estimation with the broad

goal of reliably estimating the current status of the stock of interest. The model

presented in Yin et al. (2019) is modified here to incorporate each individual survey

observation directly (instead of a single index of abundance per year) while explicitly

accounting for both the variability and zero-inflation present in these data. We view

this approach as a hybrid between a traditional biomass dynamics model and a fully

spatio-temporal model. This framework is vetted using the Nova Scotia Inshore sea

scallop (Placopecten magellanicus) fishery as a case study.

The Nova Scotia Inshore sea scallop fishery is the fourth most important fishery

in the province, worth millions of dollars in revenue each year. Fisheries and Oceans

Canada (DFO) has conducted surveys since the 1980s and currently sets annual quo-

tas to manage the exploitation of this species (Nasmith et al., 2016). For this fishery,

DFO uses a simplified version of the delay-difference model (Deriso, 1980; Schnute,

1985), originally presented in Smith and Lundy (2002) and more recently described

in Nasmith et al. (2016). Identifiability issues masked by a Bayesian framework were

recently diagnosed, and a modified alternative frequentist version was proposed to

help solve many of these issues (Yin et al., 2019). However, while this SSM frame-

work worked well for the Scallop Production Area 4 (SPA 4, labeled by DFO) in

the Bay of Fundy, it struggled to reliably assess the population of sea scallops in the

more highly variable Area 3 (SPA 3), located in and around St-Mary’s Bay. In later

sections we show that, while it successfully converged, this model could not reliably

estimate certain variance and catchability parameters. It is likely that strong spatial

patterns in population dynamics, habitat suitability and fishing effort (Caddy, 1975;

Smith et al., 2017) in SPA 3 are the culprit. Due to the increased difficulty in assess-

ing SPA 3, DFO restratified the area based on the locations of fishing vessels using a

Vessel Monitoring System (VMS) (Nasmith et al., 2016). The three resulting strata

are defined as St-Mary’s Bay, the Inside VMS stratum and the Outside VMS stratum

(seen in Nasmith et al., 2016), of which only St-Mary’s Bay and the Inside VMS are
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Figure 2.1: Map of Scallop Production Areas (SPA) and Scallop Fishing Areas
(SFA) in Bay of Fundy and surroundings (taken from Nasmith et al., 2016). SPAs

and SFAs are regulated differently, hence the difference in labeling.

modeled. This motivated the development of our new model formulation to better

harness existing data and more reliably capture the trends in biomass in SPA 3, with

the ultimate goal of later expanding it into a fully spatio-temporal stock assessment

model.

Section 2.2 describes the specific characteristics of the sea scallop data from SPA

3. It also contains descriptions of the 3 models of interest here: the original Bayesian

model presented in Nasmith et al. (2016), the alternative frequentist model presented

in Yin et al. (2019), and our novel approach treating each survey tow as a separate

observation. Section 2.3 presents the result of a simulation study to assess the reli-

ability and identifiability properties of our new approach. All 3 models are fitted to

SPA 3 in Section 2.4. Finally, Section 2.5 discusses our important findings.

2.2 Model and Data Descriptions

2.2.1 Data Description

SPA 3, shown in Figure 2.1, is surveyed annually using a stratified random sampling

design with partial replacement (Nasmith et al., 2016). Two types of survey drag

are used, either with a lined mesh of 38mm (with the goal of capturing recruit-sized

scallops) or without. Every live scallop and clapper (dead scallop whose shell is still
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attached by a hinge) is counted and binned by size (5mm bins), with commercial size

scallops defined as having shell heights larger than 80mm, recruits defined as those

between 65mm and 79mm, and everything smaller deemed pre-recruits. A subset of

live scallops (3 per 5mm bins that are 50mm and larger) are set aside in order to record

their individual shell height, their meat weight (weight of the adductor muscle) and

their age so as to obtain a yearly shell height to meat weight relation. Although DFO

typically incorporates the condition of the scallop into this relationship (Nasmith

et al., 2016), a simplified approach was used here where:

wi = Ah3i d
β
i ϵi, ϵi

Ind∼ ulN(σ2
ϵ ) (2.1)

where wi is the meat weight of scallop i, A is the intercept parameter on the

log-scale, hi is the shell height of scallop i, di is the depth where it was caught with

associated slope parameter β on the log-scale, and ϵi is a log-normally distributed error

term. This model follows a simple cube law (Froese, 2006) and is fitted separately

for each year. Once the parameters A and β are estimated, the equation is applied

deterministically (i.e. without error) to the live scallops using the size bin midpoints

to predict the meat weight for all scallops in each tow.

The commercial size biomass survey index is typically obtained by summing up

the the predicted biomass of the shells 80mm or larger from the unlined gear (7

drags out of 9 in each tow). The same process is done for scallops between 65mm

and 79.9mm from the lined gear (2 drags out of 9) to obtain a recruitment biomass

survey index. The mean is then taken across all tows in a stratum and these are then

scaled up to their respective strata by multiplying this mean value by the number of

towable units (number of tows that would be necessary to cover the whole area) in

this stratum. The approach taken for the DFO model and the one described by Yin

et al. (2019) only models the St-Mary’s Bay and the Inside VMS strata. The clapper

and live scallop index is obtained by taking the scaled up mean number of clappers

or live scallops per stratum.

For our novel approach, we instead consider each individual survey tow as a sepa-

rate observation of the true underlying processes. Only the data from the St-Mary’s

Bay and Inside VMS strata are taken, but they are treated as if from a single stra-

tum in this case. For the biomass and recruitment processes, the number of towable
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units is first computed. Each observed commercial size and recruit biomass is then

multiplied by this number of towable units. In this way, each individual tow can be

thought of as a replicate of the traditional single index of abundance. We do not

modify the number of clappers and live scallops caught in each tow.

The last data inputs required are commercial landings. There are two different

commercial catch time series used here. The commercial catch used to fit the Bayesian

model are simply the official landings in a given fishing year, since this is the approach

currently taken by DFO. However, since the surveys tend to be done between June

and August but the fishing period is from October to September (Nasmith et al.,

2016), the commercial catch needs to be temporally aligned so that landings are

appropriately attributed to each survey year (e.g. fishing done in September 2015 is

taken out after 2015 survey). This was done for both frequentist models from fishing

logbooks obtained from DFO. Due to a mismatch between the yearly sums of the

logbook catches and the official landings, which are considered highly reliable, this

difference is also proportionally added to the commercial catches in a given survey

year. Visualizations of all these data inputs can be seen in Appendix A.

2.2.2 Model Descriptions

State-space models (SSMs) are hierarchical models defined by two stochastic pro-

cesses: Xt, t = 1, ..., T , representing the unobserved dynamic state process describing

real population dynamics between discrete time-steps t, and Yt, which are the ob-

servations linked to the true underlying dynamical processes of interest (Aeberhard

et al., 2018). All models of interest for this study follow the state-space hierarchi-

cal approach, with the model described in Nasmith et al. (2016) referred to as the

Bayesian model (BM), the model described in Yin et al. (2019) referred to as Frequen-

tist Model A (FMA) and the novel model described here referred to as Frequentist

Model B (FMB). For all, the unobserved states are labeled in Xt, and the observed

states are labeled Yt, the model parameters are combined in a p-vector θ ∈ Θ ⊆ Rp ,

while fixed covariates are indicated by zt.
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BM

The implementation of a Bayesian approach allows the scientist to include prior knowl-

edge (such as expert opinion, biological knowledge, historical experience, etc.) into

any statistical analysis or modeling exercise (Meyer and Millar, 1999) through prior

distributions π(θ). This is done by using observed data Y1:T , unobserved variables

X1:T , and θ to set up the joint density p(Y1:T ,X1:T ,θ). Since only the data are

observed, the unobserved variables are conditioned on the observations to obtain the

posterior distribution from which conclusions can be drawn (Meyer and Millar, 1999).

In this case, the posterior distribution is the following (using notation borrowed from

Yin et al., 2019):

p(θ,X1:T |Y1:T ) =
p(θ,Y1:T ,X1:T )∫︁ ∫︁

p(θ,Y1:T ,X1:T )dX1:Tdθ
(2.2)

A Markov Chain Monte Carlo (MCMC) algorithm, whose goal is to sample from

the posterior distribution for the purpose of inference (Best and Punt, 2020), is used

to fit the model in R using the WinBUGS package (Lunn et al., 2000). This approach

used a Gibbs Sampling method wherein a sample can be simulated from the posterior

distribution without knowing what it is, meaning that with enough simulations one

can calculate any characteristic of this distribution or any of its components to a

desired accuracy (Casella et al., 1992).

The first level of the hierarchical framework includes the following equations link-

ing observed Yt to unobserved states Xt:

It = qBtϵt, ϵt
Ind∼ ulN(σ2

ϵ,t) (2.3)

IRt = qrtRtυt, υt
Ind∼ ulN(σ2

υ,t) (2.4)

Lt = mtS(
S

2
Nt−1 + (1− S

2
Nt))κt, κt

Ind∼ ulN(σ2
κ) (2.5)

ulN(σ2) denotes a log-normal distribution with unit mean on the natural scale (µl =

−0.5σ2 on the log scale) and variance σ2 on the log scale. Equation 2.3 links the

survey commercial size biomass index (mean biomass per tow scaled up to modeled

area) It to the underlying biomass Bt, scaled by a catchability parameter q, and with
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a multiplicative error term ϵt and its associated log-normal variance σ2
ϵ,t. Equation 2.4

links the recruit commercial size biomass index IRt to the underlying recruit biomass

Rt, scaled by the same catchability parameter q modified by the ratio of lined to

unlined gear rt, and with a multiplicative error term υt and its associated log-normal

variance σ2
υ,t. q and variances σ2

ϵ,t, σ
2
υ,t and σ

2
κ are parameters estimated from the data,

although σ2
ϵ,t and σ2

υ,t are only allowed to vary through time due to the availability

of survey coefficients of variations (CVs) used in the prior distributions (Yin et al.,

2019).

Equation 2.5, called the ”popcorn” model (Smith and Lundy, 2002), links the

number of clappers (dead scallops with hinges still attached) Lt to the number of

live scallops Nt and natural mortality mt using parameter S, which represents the

average hinge separation time in years for a clapper (known as dissolution rate). This

assumes a fixed lifespan for clappers and that hinges for clappers of the same age

dissolve in a short time-span.

The second hierarchical level models the population dynamics the following way:

Bt

K
= [e−mtgt−1

Bt−1 − Ct−1

K
+ e−mtgRt−1

Rt−1

K
]τt (2.6)

Here, τt
Ind∼ ulN(σ2

τ )1[0,8] for t = 2, ..., T . Equation 2.6 moves the biomass Bt from

one year to the next after removing the commercial catch Ct, removing those that

died from natural mortality mt, and growing the surviving scallop biomass by growth

scalar gt−1. The natural mortality is afterwards applied to the recruitment biomass

Rt, which is then grown by recruit growth scalar gRt−1 and added to the biomass to

obtain the final value, which is then associated with error term τt and its associated

log-normal variance σ2
τ . Both scaling constant K and 1[a,b], an indicator function

indicating censoring within the interval [a, b], are present for numerical stability and

convergence reasons (Yin et al., 2019). The growth scalars gt and gRt are assumed

known and are estimated through separate work done by DFO and unreported here.

Equation 2.6 is a simplified version of the delay-difference model shown in (Hilborn,

1992, p.335). The biomass in year 1 is specified as B1/K∼ulN(σ2
τ ). K and σ2

τ are

both estimated parameters.

There are no underlying process equations for recruitment Rt and natural mor-

tality mt. Instead, both the ratio Rt/K and mt are assumed to independently and
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identically distributed (i.i.d.) following log-normal distributions with mean -1.9 and

variance 2 on the natural logarithm scale. A third hierarchical level is included to use

the Bayesian framework wherein prior distributions π(θ) are specified.

In summary, BM contains the observed states Yt = (It, I
R
t , Lt)

T , the unobserved

states Xt = (Bt, Rt,mt)
T , the fixed covariates zt = (Nt, Ct, gt, g

R
t , rt, CVϵ,t, CVυ,t)

T

and the parameters θ = (K, q, S, σ2
ϵ,t, σ

2
υ,t, σ

2
κ, σ

2
τ )

T . Identifiability issues have been

identified for BM, wherein priors intended to be non-informative had a strong impact

on the model output, which motivated its reformulation using a frequentist perspec-

tive (Yin et al., 2019).

Frequentist Approaches

A frequentist perspective was proposed as an alternative (Yin et al., 2019) wherein θ is

considered a vector of fixed effects and X1:T a vector of random effects predicted from

estimates of θ. These variables can be combined into the following joint likelihood

and marginal log-likelihood:

L(θ,Y1:T ,X1:T ) = p(Y1|X1,θ)
T∏︂
t=2

p(Yt|Xt,θ)p(Xt|Xt−1,θ) (2.7)

L(θ,Y1:T ) = log

∫︂
L(θ,Y1:T ,X1:T )dX1:T (2.8)

The approximation for these high-dimensional integral is done using the Laplace

method using the TMB package in R (Kristensen et al., 2016). Aside from consistency,

TMB’s use of Automatic Differentiation, which keeps track of higher order derivatives

for all modeled functions, has been shown to be computationally more efficient than

most other packages without losing accuracy (Kristensen et al., 2016; Auger-Méthé

et al., 2017).

FMA

The original goal for FMA was to be fully identifiable without the use of Bayesian

priors or constraints between parameters while staying as close as possible to BM

(Yin et al., 2019). FMA is reproduced here with the exception of the commercial

catch equation for a few reasons. First, to preserve a higher degree of similarity with
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BM. Furthermore, one of the commercial catch parameters had a proportionally large

standard error associated with it (Yin et al., 2019) and preliminary analyses of SPA 3

using FMA showed no improvement in model fit when using the catch equation than

without. Finally, the landings are considered highly reliable in this area (Nasmith

et al., 2016), so the necessity of modeling the catch was not clear. Commercial catch

is therefore not explicitly modeled here.

The first level of the hierarchical framework of FMA includes the following equa-

tions linking observed Yt to unobserved states Xt:

It = qIBtϵt, ϵt
Ind∼ ulN(σ2

ϵ ) (2.9)

IRt = qRRtυt, υt
Ind∼ ulN(σ2

υ) (2.10)

Lt = mtS(
S

2
Nt−1 + (1− S

2
Nt))κt, κt

Ind∼ ulN(σ2
κ) (2.11)

Equations 2.9 and 2.10 are almost the same as Equations 2.3 and 2.4. The only

differences are that commercial size biomass and recruit biomass have separate catch-

ability parameters qI and qR and their variances are not allowed to vary across time.

This last modification was introduced to reduce the number of parameters that needed

to be estimated in a frequentist framework (Yin et al., 2019). Equation 2.11 is un-

modified from Equation 2.5. For year 1, since there is no Nt−1, Equation 2.11 is

simplified to L1 = m1SN1κ1.

The second level of the hierarchical structure includes the following equations that

model the population dynamics:

Bt = [e−mtgt−1(Bt−1 − Ct−1) + e−mtgRt−1Rt−1]τt (2.12)

Rt = Rt−1ϕt, ϕt
Ind∼ ulN(σ2

ϕ) (2.13)

mt = mt−1ηt, ηt
Ind∼ ulN(σ2

η) (2.14)

Aside from the removal of scaling constant K, Equation 2.12 is identical to Equa-

tion 2.6. The largest modifications is the addition of process equations for recruitment



25

and natural mortality. Equation 2.13 and 2.14 move the recruitment biomass and the

natural mortality through time with a simple random walk through the error terms

ϕt and ηt and their associated constant log-normal variances σ2
ϕ and σ2

η. Although not

designed to capture realistic dynamics of these processes, they include some temporal

dependency while minimizing the number of new parameters to estimate and were

considered adequate for this purpose (Yin et al., 2019). While log-normal random

walks, which are geometric random walks, will decrease over long periods of time

(Lewontin and Cohen, 1969), this was not thought to be an issue since the data

should overcome these prior assumptions. No distributions were assumed for the ini-

tial states for all 3 processes (B1, R1 and m1) and were all left free to be predicted

from the data.

In summary, FMA contains the observed states Yt = (It, I
R
t , Lt)

T , the unob-

served states Xt = (Bt, Rt,mt)
T , the fixed covariates zt = (Nt, Ct, gt, g

R
t )

T and the

parameters θ = (qI , qR, S, σ
2
ϵ , σ

2
υ, σ

2
κ, σ

2
τ , σ

2
ϕ, σ

2
η)

T .

FMB

Preliminary analyses using FMA on the SPA 3 dataset identified issues related to

the estimation of variance and catchability parameters, which prompted the develop-

ment of a new approach. The simplest fix concerned the problematic use of a single

data point per year described earlier. Problems with variance estimation and simula-

tions done for FMA (Yin et al., 2019) indicated that the model was likely struggling

due to the short length of the time-series. An approach that could account for every

observations should be able to solve these issues.

Some survey tows caught no scallops at all, which led to zero-inflation issues

during preliminary analyses. A delta approach was therefore implemented to account

for this. While it does not separate ”true” and ”false” zeroes like other zero-inflated

models do, the output would be exactly identical since this portion is essentially an

intercept-only model (Thorson, 2018). This simply means that the observation stage

of this state-space model is split into 2 components: predicting the probability of

catching scallops, then linking the positive catches to the underlying biomass.

Therefore, the first part of the hierarchical structure is split into two, with the

first equations modeling the survey positive catch probabilities for commercial size
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and recruit biomass:

P I
t

Ind∼ Bin(ntows
t , pI) (2.15)

PR
t

Ind∼ Bin(ntows
t , pRI ) (2.16)

Here, both pI and pRI are probabilities estimated using a binomial distribution

where P I
t is the number of tows with positive commercial size catches and PR

t is the

number of tows with positive recruit catches. They are both assumed independently

distributed based on the number of tows ntows
t in each year t for t = 1, ..., T . The

probabilities are also defined as P (It > 0) = pI and P (I
R
t > 0) = pRI and represent the

probability of a positive survey catch for commercial and recruit biomass respectively.

Once this step is taken, the modified observation equations are the following:

Ii,t = qIB
⋆
t ϵi,t, ϵi,t

Ind∼ ulN(σ2
ϵ ) (2.17)

IRi,t = qRR
⋆
tυi,t, υi,t

Ind∼ ulN(σ2
υ) (2.18)

Li,t
Ind∼ Bin(Li,t +Ni,t,mtS) (2.19)

Equation 2.17 is very close to Equation 2.9 with a few additions. Instead of

having a single data point for each year t = 1, ..., T , each observed commercial size

biomass Ii,t in each tow i in year t is treated as an independent representation of

the underlying biomass B⋆
t with constant catchability qI and log-normal errors ϵi,t

with a constant variance of σ2
ϵ . B⋆

t is not the true underlying biomass, rather it

is the predicted biomass if pI = 1, meaning that it represents the biomass if every

survey tow had positive catches. Equation 2.18 is modified the same way relative to

equation 2.10 where each individual survey observation for recruitment IRi,t linked to

recruitment biomass R⋆
t if pR = 1, with catchability qR and log-normal error terms

υi,t and associated variance σ2
υ.

Equation 2.11 has been dramatically simplified. Although conceptually interest-

ing, the ”popcorn” model is not easy to fit and hard to generalize. A much simpler

approach was taken instead, where it is assumed that the proportion mtS is bounded
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Table 2.1: Parameters for all 3 models with description.

Parameter Model Description
K BM Scaling constant
q BM Catchability
qI FMA, FMB Commercial Size Catchability
qR FMA, FMB Recruit Size Catchability
S BM, FMA, FMB Clapper hinge dissolution rate (BM, FMA)/Clapper catchability (FMB)
στ BM, FMA, FMB Commercial size biomass process error
σϕ FMA, FMB Recruitment process error
ση FMA, FMB Natural mortality process error
σϵ FMA, FMB Commercial size index observation error
συ FMA, FMB Recruitment index observation error
σκ BM, FMA Clapper index observation error
pI FMB Probability of positive commercial size survey tow
pRI FMB Probability of positive recruit survey tow

between 0 and 1. This means that each individual shell in a tow i in year t can be

seen as having the same probability mtS of being a clapper Li,t with the total number

of shells caught being the number of clappers plus the number of live scallops Ni,t.

The parameter S, instead of representing hinge dissolution rate, becomes akin to a

catchability parameter specific to clappers.

Since B⋆
t and R⋆

t do not account for zeroes, the real underlying biomass and

recruitment is obtained using the estimated probability of capturing scallops:

B⋆
t = pIBt (2.20)

R⋆
t = pRI Rt (2.21)

Here, Bt is the real underlying biomass in year t while Rt is the real underlying

recruitment after accounting for probability of zeroes. The process equations for this

model are identical to Equations 2.12 to 2.14, so they are not reported again.

In summary, FMB contains the observed states Yt = (Ii,t, I
R
i,t, Li,t)

T , the unob-

served states Xt = (Bt, Rt,mt)
T , the fixed covariates zt = (Ni,t, Ct, gt, g

R
t )

T and the

parameters θ = (pI , p
R
I , qI , qR, S, σ

2
ϵ , σ

2
υ, σ

2
τ , σ

2
ϕ, σ

2
η)

T . Table 2.1 shows all parameters

used in all models and their descriptions.
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Table 2.2: Difference between setups for each experiment.

Experiment Status of qI Time-Series Length
1 Estimated 22 Years
2 Fixed 22 Years
3 Estimated 50 Years
4 Fixed 50 Years

2.3 Simulation Study

Four simulation experiments were done to assess the estimability and identifiability

of the proposed FMB with the focus on parameter estimation and random effects

prediction. The simulation design is inspired by that presented in Yin et al. (2019).

Both data simulation and model fit is done using TMB. Preliminary analyses identified

qI as one of the most difficult parameter to reliably estimate. Due to this, the first

experiment estimated qI normally while the second fixed it at the simulated real value.

The motivation for this was to identify how much improvement would be gained by

fixing this parameter, given that it was fixed to the correct value. These first two

experiments simulated data of the same time length as the SPA 3 data at 22 years.

The last two experiments replicated the design and approach of the first two but

extended the simulated time series to 50 years.

2.3.1 Simulation Design

Equations 2.12 to 2.21 were used to simulate Y1:T and X1:T 1000 times. Fixed

covariates zt needed to be directly specified. Since the growth rates gt and g
R
t are fixed,

they are made constant and set at 1.1 and 1.5 for simplicity’s sake. Other elements

that are necessary but cannot be simulated through equations are the following: the

number of tows ntows
t is set to 100 every year, the total number of live and dead

scallops caught (Li,t+Ni,t) is also set to 100 in every tow. This last element needs to

be simulated separately because, as was done for Nt in Yin et al. (2019), the number

of shell caught is not a response but is part of fixed covariates zt, and is essential

to fitting a binomial distribution. The initial states for the processes are set to the

following: B0 is set to 1000 metric tons, R0 is set to 100 metric tons and m0 is set at

0.1.
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Table 2.3: Parameters used for simulation experiment and their respective
optimization starting values.

Parameter True Value Starting Value
στ 0.1 exp(−1)
σϕ 0.1 exp(−1)
ση 0.1 exp(−1)
σϵ 0.1 exp(−1)
συ 0.1 exp(−1)
qI 0.3 exp(−1)
qR 0.1 exp(−1)
S 0.2 exp(−1)
pI 0.8 0.5
pRI 0.4 0.5

Since the commercial catch is not modeled, it was therefore set as a log-normal

distribution with a mean of 20% of Bt for every year with a variance of 0.1 on the

log scale. Simulating the commercial catch as a direct proportion of the biomass was

chosen to avoid the possibility of simulating negative biomass, which is a common

issue in this type of models (Yin et al., 2019; Best and Punt, 2020).

The true values for the parameters θ and their optimization starting values can

be seen in Table 2.3. Optimization starting values for the random effects, chosen to

be much larger than realistically expected, are 2000 metric tons for Bt, 200 metric

tons for Rt and 0.3 for mt. The maximization of the likelihood was done using the

quasi-Newton optimizer nlminb in R. The design for the simulations where qI is fixed

at 0.3 are identical aside from the obvious change.

2.3.2 Simulation Results

For all 4 experiments, all simulations converged. However, quite a few did not succeed

in reliably estimating certain parameters (qI , qR and S). These would be estimated

at nonsensical values with standard errors that were orders of magnitudes larger than

their point estimates. A more stringent definition of success therefore needed to be

developed, since convergence did not appear to be sufficient. Simulations where any

of these 3 parameters were estimated at values larger than 2 were rejected. For a

tow to capture 200% of the available biomass, it would require capturing every single
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Figure 2.2: Distribution of parameter estimates from first experiment (778
simulations of 22 years). Red line denotes true value.
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(a) Bt (b) Rt

(c) mt

Figure 2.3: Functional boxplots (without whiskers) for Experiment 1 of the
difference of the predicted processes and their true value with horizontal dotted line

at 0 and median difference shown by solid black line. 2.3a and 2.3b show the
difference as a percentage of the true value (predicted - true / true) while 2.3c

simply shows the net difference (predicted - true).

scallop in the towed area while also attracting the same number from neighboring

areas, which seems highly unrealistic for a mostly sedentary species (Hart and Chute,

2004). There is clear evidence of avoidance behavior for scallops (Caddy, 1968), so

it would be highly unlikely for a catchability larger than 2 to happen. Furthermore,

every simulation where a catchability was estimated at a value larger than 2 was

always associated with a massive standard error, indicating that it should not be

trusted.

For the first 2 experiments, the number of successful simulations using this def-

inition was 778 when qI is estimated and 922 when qI is fixed. For the last two

experiments, the number of successes when qI is fixed was 983 and 918 when qI is

estimated. Rejecting these unsuccessful simulations implies that simple convergence

is not a sufficient criteria for the applicability of this model, and that the user must

pay particular attention to the parameter estimates to validate it.
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(a) Bt (b) Rt

(c) mt

Figure 2.4: Functional boxplots (without whiskers) for Experiment 2 of the
difference of the predicted processes and their true value with horizontal dotted line
at 0 and median difference shown by solid black line when qI is fixed. 2.4a and 2.4b
show the difference as a percentage of the true value (predicted - true / true) while

2.4c simply shows the net difference (predicted - true).

Figure 2.2 shows the histogram of parameter estimates for the 778 successful sim-

ulations of the first experiment. All variance parameters are on average well recovered

without noticeable bias. A non-negligible number of simulations have had estimates

of qI and qR arbitrarily close to 0. However, it is easy to identify these as erroneous

since they all came with standard errors larger than their point estimates, indicating

that the model did not reliably estimate them. qR and S appear to be underestimated

on average. Since both of these parameters are related to the productivity of the sys-

tem (recruitment and mortality), it is likely that they are confounded together. This

points to potential identifiability issues where FMB might not be able to reliably sep-

arate the recruitment and mortality parameters, but is able to reliably estimate and

predict their combined effect on the biomass. There are clear cases where the model

is able to capture patterns appropriately (since all variances are estimated mostly

correctly), but struggles to find the true magnitude.
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Parameter estimation behaved extremely similarly when qI is fixed (see Appendix

A for corresponding figure), with the exception that qR was never estimated arbitrarily

close to 0.

Figure 2.3 shows the functional boxplot (Sun and Genton, 2011) without whiskers

of the difference between the predicted processes and their simulated true value, with

Bt and Rt shown as a percentage of the true simulated value and mt as the point-wise

difference. Since the biomass is generally very well predicted but the recruitment and

natural mortality are both positively biased, the model can accurately capture the

true productivity but it cannot separate them consistently, leading to confounding of

the recruitment and natural mortality. However, even by leaving the initial state free,

the drastic change in the number of data points used here (from 1 a year to 100 a

year) seems to have completely removed the slight initial bias seen in Yin et al. (2019).

The model is also extremely consistent, wherein if the actual biomass magnitude is

slightly off, it seems to be off by the same factor for the entirety of the time-series.

This seems to be entirely driven by issues with the estimation of qI , since Figure 2.4

shows that fixing qI at the correct value captures the biomass almost perfectly.

The effects of extending the simulated time-series to 50 years in experiments 3

and 4 was to stabilize the estimation of qI (Figures in Appendix A). This indicates

that having more yearly commercial catch data would increase the ability of this

model to estimate qI reliably. One caveat that should be mentioned is that the

simulated populations tended to decrease over time, as expected from the use of log-

normal random walks (Lewontin and Cohen, 1969). However, population biomass

only reached unrealistic numbers on much longer time scales than analyzed for real

data (around 200 years), so are not expected to have caused any issues in these

simulations (Figures in Appendix A).

2.4 Application to Nova Scotia Inshore Scallop Fishery

A request was made to obtain the commercial logbook data between 1995 and 2018

from DFO, but since location data for these logbooks was only available from 1998

onwards, 1995 to 1997 were not obtained. Therefore, FMA and FMB fit show the

output from 1997 to 2018, while only the output between 1996 and 2017 was available

for BM. BM had been fit using the R package SSModel, which runs WinBUGS in the
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Table 2.4: Parameter estimates for BM, FMA and FMB fit to Scallop Production
Area 3 (standard error in parentheses).

Bayesian Approach Frequentist Approach
BM FMA FMB

Parameter Estimate Parameter Estimate Parameter Estimate

K 746.19(234.681) στ 0.232(0.080) στ 0.212(0.058)
q 0.307(0.073) σϕ 4.14X10−5(0.004) σϕ 0.345(0.082)
S 0.261(0.065) ση 3.73X10−5(0.005) ση 0.680(0.097)
σκ 0.260(0.059) σϵ 0.213(0.064) σϵ 1.000(0.019)
στ 0.252(0.189) συ 1.123(0.173) συ 1.069(0.028)

σκ 0.568(0.088) qI 0.212(0.301)
qI 3.45X10−8(NaN) qR 0.048(0.050)
qR 2.57X10−7(NaN) S 0.221(0.099)
S 0.948(0.543) pI 0.913(0.007)

pRI 0.491(0.013)

background, while FMA and FMB were both fit using the Template Model Builder

(TMB) package in R using the nlminb optimizer with the same starting values shown

in Table 2.3 and random effects starting values set to 10 ∗ max(It) or 10max(Ii,t)

for Bt, 10max(IRt ) or 10max(IRi,t) for Rt and 0.3 for mt. Every model converged

successfully.

Table 2.4 shows that aside from στ , the few directly comparable parameters can

have different behaviors depending on which parameter is examined. στ appears

highly consistent between all three models, the FMB estimate of qI seems somewhat

consistent with the BM estimate, albeit with a very wide standard error, while the

estimates of σκ from BM and FMA greatly differ. FMA has clear problems in esti-

mating σϕ, σϕ, qI and qR, which are all arbitrarily close to 0 with either no standard

errors or standard errors orders of magnitude larger than their point estimates.

Estimates of variances, S and both probabilities of capturing live scallops are all in

reasonable spaces with small standard errors for FMB. The model can clearly identify

two separate catchabilities, but both of them have standard errors larger than their

point estimates. στ and σϕ are reasonably small, indicating that the commercial size

biomass and the recruit biomass have a rather steady behavior, while ση indicates

that natural mortality varies quite a bit. σϵ and συ have large values consistent with

the large variability present in the data.
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(a) Predicted Biomass (metric ton)

(b) Predicted Recruitment (metric ton)

(c) Predicted Natural Mortality

Figure 2.5: Predicted random effects on the SPA 3 scallop data from BM (red) and
FMB (blue). Envelopes represent interpolated point-wise 95% credible intervals and

95% confidence intervals respectively.
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Table 2.5: Parameter estimates for FMB fit to Scallop Production Area 3 (standard
error in parentheses).

Parameter Estimates
στ 0.211(0.058)
σϕ 0.344(0.081)
ση 0.661(0.095)
σϵ 0.998(0.019)
συ 1.069(0.028)
qR 0.056(0.026)
S 0.222(0.098)
pI 0.913(0.007)
pRI 0.491(0.013)

Since the catchability parameters could be not be confidently captured, the de-

cision was made to fix qI at 0.3. This value was chosen since most issues related to

the Bayesian framework were related to variance estimates and not catchability (Yin

et al., 2019). While estimates of gear efficiency with typical scallop fishing gear is

usually higher in the open ocean (Gedamke et al., 2004; Miller et al., 2019), they

are relatively close and it is likely that nearshore areas would have slightly different

catchabilities. Furthermore, preliminary analyses had shown that while biomass pre-

dictions were very sensitive to catchabilities below 0.3, the effect was not very strong

at and above 0.3. This approach successfully converged with the estimates presented

in Table 2.5. All other parameters have almost identical estimates and standard errors

aside from the standard error of qR which has noticeably shrinked.

Figure 2.5 shows the predicted random effects for all 3 underlying processes for

both BM and FMB with fixed qI . For BM, the lines represent the posterior mean

and the envelope represents the interpolated point-wise 95% credible interval, while

for FMB the solid line represents the predicted value given the optimized θ and the

envelope is based on the exponentiated bounds constructed on the log scale (pre-

diction ± 1.96 standard error). These last are not as rigorous as other methods

(e.g. bootstrapped standard errors) and are simply meant to give a general idea of

the variability of these predictions. The recruitment predicted by FMB looks like a

smoothed version of the one predicted by BM with a larger uncertainty, stemming

from the large standard error associated with qR. The mortality predicted by both
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models are almost identical aside from the larger uncertainty associated with FMB.

The commercial size biomass is highly consistent between both models, with very few

cases where the posterior mean obtained by BM is outside of the confidence interval

for the predictions from FMB. The confidence interval for the predicted biomass from

FMB is much smaller than the credible interval for BM, likely due to a fixed qI . Lastly,

the same model was tested replacing the delta-approach with a zero-inflated poisson

distribution and the outputs were, as expected (Thorson, 2018), exactly identical

(Figures in Appendix A).

2.5 Discussion

Given the rigorous testing of FMA for SPA 4 (Yin et al., 2019), its inability to properly

estimate some variance parameters for SPA 3 suggests that it is not flexible enough

to fit this area well. The simulation study done by Yin et al. (2019) demonstrated

that it became more reliable the longer the time series. Therefore, if more data

were available, FMA would likely be able to account for the increased variability in

SPA 3 (as compared to SPA 4) and reliably estimate variance parameters. However,

our new approach suggests that waiting several years to obtain more data may not

be necessary. The simulations in Section 3 demonstrated the reliability with which

trends in population changes are estimated with the data currently available. Our

new model retains all the advantages of using a frequentist SSM framework, amply

demonstrated by Yin et al. (2019), while increasing its reliability and accuracy with

the available time series.

Directly incorporating each individual survey tow as an individual observation

brings forward a significant improvement to the estimation of the variance param-

eters, which results in accurate and reliable predictions of population trends. The

information required to reliably estimate trends in populations already exist in most

stock assessment data, but many standard approaches fail to harness this informa-

tion fully. While it does not posit whether the empty tows are ”true” or ”false”

zeroes (Martin et al., 2005), the implemented delta approach is able to incorporate

the information they contain and use it to capture changes in scallop adult and recruit

populations. Furthermore, the simplified natural mortality model is flexible enough to

capture both yearly changes, like the ”popcorn” model did (Nasmith et al., 2016; Yin
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et al., 2019), while making fewer assumptions and predicting the long-term average

for this species (Merrill and Posgay, 1964). Stock assessment models, and the subse-

quent advice provided to fisheries management, should incorporate as much available

information as possible while accounting for every potential sources of uncertainty.

While patterns of population change are reliably estimated using this approach,

the actual population magnitude (through the catchability parameters) is more diffi-

cult to assess. Simulations have shown that having a longer time series would alleviate

this issue, but many fisheries do not have access such long term and high quality data

(Costello et al., 2012). Particular attention therefore needs to be paid by the user to

their uncertainty to properly assess the appropriateness of the model. In some cases,

it becomes necessary to include external information to reliably predict the magni-

tude of the commercial size biomass and recruitment. This could be done successfully

by adapting our novel approach to a Bayesian framework, which would only require

the addition of prior distributions. If a frequentist framework is preferred, the easiest

solution would be to fix a parameter as was done here. This has the advantage of

making any assumptions explicit and thus easier to replicate, but requires validation

of the values chosen for parameters that have to be fixed.

There remain ways in which this model could be improved. The underlying pro-

cesses for recruitment and natural mortality do not have any biological basis and any

number of different, more realistic models could replace the relatively straightforward

random walks. Other information, such as habitat suitability, could be used to prop-

erly understand the sources of zeroes. Furthermore, the model does not account for

the spatial patterns present in the SPA 3 sea scallop populations.

Spatial autocorrelation, wherein observations are correlated according to the dis-

tance between them instead of randomly, is intrinsic to a large proportion of ecological

data (Legendre, 1993), including the SPA 3 data. Ignoring these spatial patterns may

misrepresent the underlying mechanisms (Ciannelli et al., 2008) and can have serious

consequences in regards to fisheries management (Carson et al., 2017). Furthermore,

the spatial aggregation of the fishing effort for this species (Caddy, 1975; Nasmith

et al., 2016; Smith et al., 2017) can also lead to serious modeling issues. For example,

aggregating over space can result in only a few tows dragging the biomass and re-

cruitment predictions up, when in reality these outliers only represent a local event.
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While it may be true that the population in a specific sub-area boomed, extrapolat-

ing from that to the entire population can potentially result in mismanagement and

overfishing. We expect that accounting for these spatial issues will lead to further

improvement of this model and any resulting stock assessment.

Explicitly modeling each individual tow instead of a single index of abundance

per year takes the first step into explicitly incorporating spatial information into the

sea scallop stock assessment model. Directly modeling each individual observation

represents the mid-point between a single data point a year to modeling the location of

each individual data point to explicitly incorporate the effect of space (e.g. Kristensen

et al., 2014; Thorson et al., 2015c). This novel model demonstrates how general stock

assessments across the world can better harness their own existing data in a simple

and straightforward manner. Expanding pre-existing models to properly account for

the true variability and zero-inflation instead of averaging over everything promises to

improve the ability to appropriately track changes in populations over time without

requiring new investments or difficult conceptual tools. Proper use of this type of

approach should increase the confidence that fisheries managers and stakeholders

have in the predictions used to manage important fish stocks.



Chapter 3

Applying a new spatio-temporal state-space stock assessment

model for the Nova Scotia Inshore Sea Scallop (Placopecten

magellanicus) Fishery

Abstract

Traditional stock assessment models have tended to focus on temporal variations

in productivity. These models assume the area of interest to be homogeneous with

respect to both the recruitment and mortality of the fish stock. However, strong

spatial patterns in fisheries data have been shown to cause issues when fitting strictly

temporal models. Recent technological and statistical improvements have provided

modelers with the capacity to incorporate spatial variability into the stock assessment

framework. Here, we propose a spatio-temporal state-space delay-difference stock as-

sessment model for the Nova Scotia Inshore Sea Scallop Fishery. Results demonstrate

that this framework can predict the distribution and abundance of scallops at a much

finer spatial scale than previously available. Simulations show how the spatial cover-

age of fishing effort can introduce bias in predictions from the temporal model unlike

the proposed spatio-temporal model which reliably captures strong anisotropic be-

havior, predicts biomass in both space and time and retains the ability to scale back

up to predictions for the entire area.

3.1 Introduction

An over-arching objective of fisheries science is to explain and predict the variability

in population abundance of important fish stocks. Strong spatial patterns in fish-

ing pressure (Baranov, 1918; Beverton and Holt, 1957; Caddy, 1975) and biological

characteristics (e.g. Smith and Rago, 2004) have long been known to exist, and

ignoring these patterns has been shown to result in serious issues for the manage-

ment of these stocks (Carson et al., 2017). Spatial methods have only recently seen

40
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widespread use because of improvements in statistical approaches and computational

capacities. Utilizing either geostatistical approaches or generalizations of common

regression techniques (Ciannelli et al., 2008), the implementation of spatial statistics

into fisheries stock assessment has greatly improved our ability to model fine-scale

changes in population abundance and distribution (e.g. Cadigan et al., 2017; Kai

et al., 2017).

Regression-based methods focus on modeling the mean effect, often through gen-

eralized additive frameworks (Ciannelli et al., 2008; Pedersen et al., 2018). These

typically require high quality information on both environmental variables (tempera-

ture, nutrient availability, etc.) and the fish population, and tend to not be available

for many fisheries (Costello et al., 2012). Alternatives such as geostatistics account for

spatial patterns by incorporating spatial autocorrelation into the residual structure of

a model (Ciannelli et al., 2008). This has been done in generalized linear model frame-

works by splitting the error structure into its spatial and non-spatial components (e.g.

Thorson et al., 2015c, 2019) or by explicitly modeling a single spatial error structure

to capture the latent spatial variability (e.g. Cadigan et al., 2017; Stock et al., 2020).

These methods allow the mean effect to be specified by other components, including

traditional stock assessment models such as biomass dynamics models.

Biomass dynamics models only require two inputs per year: an index of population

abundance, and commercial landings (Hilborn, 1992). While there are many formula-

tions, a common example is the delay-difference model (Deriso, 1980; Schnute, 1985).

Modern applications often involve the use of a state-space framework (e.g. Smith and

Hubley, 2014; Xu et al., 2019; Best and Punt, 2020), which allows the separation of

observation errors (from the measurement itself) and process errors (from the imper-

fect knowledge of the underlying dynamical process) (Cressie et al., 2009; Aeberhard

et al., 2018). These approaches tend to be strictly temporal, and only recently has

there been increased interest in incorporating spatial information (e.g. Thorson et al.,

2015b; Cadigan et al., 2017).

While a significant proportion of fisheries are likely to benefit from the inclusion of

spatial information in their assessment (Berger et al., 2017), some species lend them-

selves more intuitively to these approaches. Sea scallops (Placopecten magellanicus)

are a shellfish species that inhabit the Western North Atlantic from Cape Hatteras
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Figure 3.1: Map of Scallop Production Areas (SPA) and Scallop Fishing Areas
(SFA) in Bay of Fundy and surroundings (taken from Nasmith et al., 2016). SPAs

and SFAs are regulated differently, hence the difference in labeling.

to Labrador (Smith and Rago, 2004). These animals are characterized by strong

spatial patterns in growth rates and egg production, minimal dispersal as adults,

and recurring aggregation in scallop beds (Smith and Rago, 2004). Furthermore, the

fishing effort for this species tends to be strongly linked to higher habitat suitability

(Smith and Rago, 2004; Smith et al., 2017). This spatially aggregated fishing mortal-

ity has been identified as a potential issue when assessing the stock status for these

animals (Caddy, 1975; Smith and Rago, 2004; Smith et al., 2017). Explicitly model-

ing this spatial variability should improve the advice given to fisheries managers and

stakeholders, increasing the likelihood that sea scallops remain ecologically viable and

commercially sustainable.

The fishery of concern here is the Nova Scotia Inshore Sea Scallop Fishery, partic-

ularly the areas in and around the Bay of Fundy seen in Figure 3.1. Extensive efforts

have gone into describing the impact of spatially aggregated commercial fishing and

habitat suitability on scallop populations and model predictions (Caddy, 1975; Smith

et al., 2017). The recent focus has been on two different areas: Scallop Production

Area (SPA) 4, and the Scallop Fishing Area (SFA) 29. The analysis of SPA 4 focused

on issues related to the use of a Bayesian model framework (Yin et al., 2019), while a

clear link between habitat suitability and fishing effort was identified for the western
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part of SFA 29 (Smith et al., 2017). This can lead to the spatial aggregation of fishing

effort, which impacts model predictions (Caddy, 1975; Smith et al., 2017).

Data from SPA 3, north-west of SFA 29, have exhibited strong spatial variations

in population abundance and commercial fishing effort, which has resulted in seri-

ous modeling issues. These issues are likely caused by these strong spatial patterns,

which the strictly temporal biomass dynamics model used for the area ignores (Na-

smith et al., 2016). Because of this, Fisheries and Oceans Canada (DFO) recently

restratified SPA 3 based on recurrent commercial fishing locations through the im-

plementation of a Vessel Monitor System (VMS) on each ship, and only the regularly

exploited strata (St-Mary’s Bay and the Inside VMS strata) are modeled while the

rest (Outside VMS stratum) is ignored (Nasmith et al., 2016). These factors identi-

fied SPA 3 as a strong candidate area to incorporate the existing spatial information

into its stock assessment model, and will be the focus of our efforts.

The current stock assessment model used by DFO is a type of delay-difference

model described in detail in both Nasmith et al. (2016) and Yin et al. (2019). Due to

identifiability issues associated with its use of a Bayesian framework, an alternative

frequentist framework was proposed (Yin et al., 2019). We developed a hybrid be-

tween a strictly temporal model and a spatio-temporal model (Chapter 2). However,

this was done only for St-Mary’s Bay and the Inside VMS strata and its applicabil-

ity for the entirety of SPA 3 was not tested. Furthermore, the heterogeneity of the

area is likely to be obfuscated by a strictly temporal model. We propose two closely

related spatio-temporal models to incorporate fine-scale spatial information into the

stock assessment for SPA 3 and test them to see if their local predictions are reliable

with the broad goal of reliably estimating the current status of the SPA 3 stock. The

output from these explicitly spatial models will be compared to the temporal model

to test their ability to capture population trends for the whole area. We also aim to

examine the effect of fitting a strictly temporal model to variable spatial data through

simulation studies.

Section 3.2 describes SPA 3 data and introduces the notation and structure of the

three models of interest: a strictly temporal state-space model (TM) which treats

each survey tow as an independent observation and tracks the total biomass over
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time, a spatio-temporal model (STM1) where recruitment and mortality are spatially-

autocorrelated but the commercial size biomass is considered spatially independent,

and a spatio-temporal model (STM2) where recruitment, mortality and commercial

size biomass are all spatially-autocorrelated. Section 3.3 presents two simulation

studies, where the first demonstrates the reliability and identifiability of the spatio-

temporal models developed in Section 2, while the second demonstrates the effects

of fitting a strictly temporal model to data simulated from a spatio-temporal model.

This second study aims to demonstrate the effect of spatially uneven fishing pressure

on the strictly temporal predictions. Section 3.4 presents the results of fitting all

three models to SPA 3, with Section 3.5 discussing key findings.

3.2 Model and Data Descriptions

3.2.1 SPA 3 Data

SPA 3 is surveyed annually using a stratified random sampling design with partial

replacement. A subset of the survey fishing gear is lined with a mesh of 38mm to

capture recruit-sized scallops, while the rest is left as is (Nasmith et al., 2016). All

scallops and clappers are counted and binned by size (5mm bins). Scallops with

shells larger than 80mm are classified as commercial size, scallops between 65mm

and 79mm are classified as recruits while scallops smaller than 65mm are classified

as pre-recruits. The data for the recruits are taken from the lined gear, while the

commercial size data are obtained from the unlined gear. Out of the scallops larger

than 50mm, a subset is set aside (3 per 5mm bins) to record individual shell height,

meat weight and age in order to estimate a shell height to meat weight relationship

(as it would be impossible to measure them all). The approach taken here follows a

simple cube law (Froese, 2006):

wi = Ah3i d
b
iϵi, ϵi

Ind∼ ulN(σ2
ϵ ) (3.1)

where wi is the meat weight of scallop i, A is the intercept on the log-scale, hi

is the shell height of scallop i, di is the depth where it was caught with associated

slope b on the log-scale, and ϵi is a log-normally distributed error term. This model

is fit separately for each year. Once estimates of A and b are obtained, the equation
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is applied deterministically (i.e. without error) to all live scallops in every tow. This

is done by applying Equation 3.1 to the midpoint of each size bin in each tow (e.g.

42.5mm for bin 40-45mm), at which point the observed commercial size biomass and

recruit size biomass can be summed up in every tow.

Some portions of SPA 3 were removed from the modeled area. A large portion in

the north-west of SPA 3 contains very few scallops due to its different composition

of glaciomarine mud (Shaw et al., 2012, 2014). The south-easternmost portion of the

area was also removed from the modeled area due to the absence of any observations,

either survey tows or commercial fishing. For the coastline, the commercial fishing

data showed that over 99% of the fishing was done at depths deeper than 7m, so the

modeled area was cut off at this depth.

The spatial approaches involve setting up a grid over the area. Due to the large

number of random fields involved in the spatio-temporal models described here, the

”predictive” approach described in Thorson et al. (2015c) was adopted. This means

that instead of modeling a given random field over every possible location, its value

is approximated as being piece-wise constant. The user must specify the number

of locations, called ”knots”, at which the model will track the value of the random

fields. This choice drives both the resolution of the model predictions and the com-

putational load, since more knots will lead to higher resolution but the fitting process

will be slower. The decision concerning the number of knots used should be based

on the spatial coverage of the data to control the accuracy of the piece-wise approx-

imation. This means that having more knots than data is likely to lead to a less

accurate approximation, since the model will have to predict the values at certain

knots exclusively based on the values in neighboring cells. The locations of these

knots are obtained by applying a k -means clustering algorithm on the location of all

survey tows. The number and location of knots is held constant for model fitting and

all observations (both survey tows and commercial catches) are attributed to their

respective closest knot.

Preliminary tests were done with different numbers of knots (20, and 30 and 40)

to find the best resolution that the data allowed. Serious convergence issues were

identified when fitting to 30 or more knots. These issues appeared to be caused by

the survey spatial cover. Higher numbers of knots resulted in a grid in which the first
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Figure 3.2: Modeled area of SPA 3 with grid obtained from knots based on survey
tow locations. Greyscale used to delineate grid cells.

ten years did not have complete spatial cover (defined as each grid cell having at least

one positive survey tow), while fewer knots usually had complete cover in the first or

second year. It is also possible that these issues were caused by overparameterization,

since each additional knot meant an additional 60 random effects. To avoid these

convergence issues, the chosen number of knots was 20. The resulting grid is shown

in Figure 3.2.

To obtain the survey observations for TM, the observed commercial size and re-

cruit biomass of each individual tow is multiplied by the number of towable units

(total modeled area divided by area covered by a standard tow). The number of

clappers and live scallops in each tow is taken as is.

To obtain the survey observations for STM1 and STM2, the commercial size and

recruit biomass of each tow is divided by the area covered by a standard tow (scaling

it to 1km2) and attributed to the closest knot. Visualizations of the data are available

in Appendix B. The number of clappers and live scallops is once more taken as is and

attributed to the closest knot.

Commercial landings are obtained by summing up all landings reported in fishing

logbooks for each separate fishing year. The model assumes that all commercial fishing

is done after a given survey, but there is a mismatch between survey years, which are

from June to May since the surveys are done between June and August (Nasmith
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Figure 3.3: Spatial distribution of commercial catch (metric tonnes) between 1999
and 2018. Striped grid cells represent areas where the number of licenses operating

was beneath 5, so cannot be reported.
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et al., 2016), and fishing years, which are from October to September. This is fixed

by temporally aligning the commercial fishing data appropriately by assigning each

individual logbook to the appropriate survey year instead of their respective fishing

year. For example, a logbook detailing landings from a fishing trip done in September

2002 should be assigned to the survey year of 2002-2003, even if it is in the fishing

year of 2001-2002.

Furthermore, there is a mismatch between the annual official landings and the

annual sums obtained from the logbooks. The official landings have been deemed a

more accurate representation of the total landings in a fishing year, so the difference

between the two sources must be added onto the logbook data. This difference must

also be prorated into the appropriate survey years. For example, if this difference is

10 tonnes in the 2002-2003 fishing year and 70% of the landings in that fishing period

were done before the survey, then 7 tonnes are attributed to the 2001-2002 survey

year and 3 tonnes to the 2002-2003 survey year. This can then be used directly by

TM.

The logbooks from which the commercial landings are obtained contain a unique

location for each fishing trip. For STM1 and STM2, the landings from each individual

trip is attributed to the closest knot. The commercial catch is then summed up in

each cell. The previously mentioned difference between the official landings and the

yearly sums from the logbooks is proportionally added to each cell (e.g. if a given

cell contains 10% of the total catch, 10% of the difference is added to that cell).

Afterwards, the total landings for each cell is scaled down to represent 1km2 (e.g. if

100 tonnes was caught in a cell covering 100km2, it is scaled down to 1 ton). A key

difficulty in modeling SPA 3 is the spatial aggregation of commercial catch in the

near shore areas seen in Figure 3.3. This has been identified as a potential issue by

previous work (Caddy, 1975; Smith et al., 2017) and its effect will be examined in

simulation studies.

3.2.2 Model Descriptions

State-space models (SSMs) are hierarchical models defined by two stochastic pro-

cesses: Xt represents the unobserved dynamic state process describing population
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abundance and productivity in year t = 1, ..., T , and Yt represents the directly ob-

served variables linked to the true underlying dynamical processes of interest (Aeber-

hard et al., 2018). The model parameters are contained in a p-vector θ ∈ Θ ⊆ Rp ,

with fixed covariates zt. A frequentist perspective is taken wherein θ is considered a

vector of fixed effects and Xt a vector of random effects predicted from estimates of

θ. Both Yt and zt are directly observed.

These models focuses on maximizing the following marginal log-likelihood:

L(θ,Y1:T ) = log

∫︂
L(θ,Y1:T ,X1:T )dX1:T (3.2)

These intractable high-dimensional integrals are approximated using the Laplace

method through the TMB package in R (Kristensen et al., 2016). TMB’s use of

Automatic Differentiation, which keeps track of higher order derivatives for all mod-

eled functions, has been shown to be computationally more efficient than most other

packages without loss of accuracy (Kristensen et al., 2016; Auger-Méthé et al., 2017).

Furthermore, it has been successfully used to fit similarly complex spatial models

(e.g. Thorson et al., 2015c; Cadigan et al., 2017; Thorson et al., 2019).

Temporal Model (TM)

Based on the state-space model described in (Yin et al., 2019), itself based on

DFO’s Bayesian model first presented in (Smith and Lundy, 2002) and more recently

in (Nasmith et al., 2016), the temporal model described here was developed to solve

issues with parameter estimation associated with the highly variable SPA 3 (Chapter

2). The first level of the hierarchical structure follows a delta approach, which models

the zeroes separately from the positive observations (Thorson et al., 2015c). The first

part (Equations 3.3 to 3.4) uses the number of tows where no scallops were caught to

estimate the probability of capturing scallops (either commercial or recruit size). The

second part (Equations 3.5 and 3.6) focuses on the tows where scallops were caught

and relates them to the underlying commercial and recruit biomass. Finally, they

are recombined together so that the predicted processes (commercial biomass and

recruitment) account for both empty and positive tows. The observation equation

for the natural mortality (Equation 3.7) can account for zeroes, so does not use a

delta-approach.
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The zeroes are modeled the following way:

P I
t

Ind∼ Bin(ntows
t , pI) (3.3)

PR
t

Ind∼ Bin(ntows
t , pRI ) (3.4)

Here, both pI and pRI are probabilities estimated using a binomial distribution

where P I
t is the number of tows with positive commercial size catches and PR

t is the

number of tows with positive recruit catches. They are both assumed independently

distributed based on the number of tows ntows
t in each year t for t = 1, ..., T .

The positive observations are then modeled the following way:

Ii,t = qIB
⋆
t ϵi,t, ϵi,t

Ind∼ ulN(σ2
ϵ ) (3.5)

IRi,t = qRR
⋆
tυi,t, υi,t

Ind∼ ulN(σ2
υ) (3.6)

Li,t
Ind∼ Bin(Li,t +Ni,t,mtS) (3.7)

All variables are indexed by a discrete time index for each year t with t = 1, ..., T ,

and ulN(σ2) denotes a log-normal distribution with unit mean on the natural scale

(µl = −0.5σ2 on the log scale) and variance σ2 on the log scale. B⋆
t = pIBt where

Bt is the underlying commercial biomass, and R⋆
t = pRI Rt where Rt is the underlying

recruit biomass. Equation 3.5 links each observed commercial size biomass Ii,t as

independent observations of the underlying biomass Bt while accounting for zeroes

through pI . qI is the catchability parameter for the commercial size biomass, and ϵi,t

are log-normal error terms with associated variance σ2
ϵ . Equation 3.6 links recruit size

biomass IRi,t to the underlying recruitment Rt after accounting for zeroes through pRI ,

scaled with recruit catchability qR, and with log-normal error term υi,t with associated

variance σ2
υ. Equation 3.7 links the number of clappers Li,t (empty shells with their

hinge still present) to the natural mortality mt, scaled by a clapper catchability S

through a binomial distribution with the size being the total number of shells caught

(clappers plus live scallops Ni,t). This assumes that each shell caught has an equal

probability of dying between each surveys.
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The second level of the hierarchical structure, which models the latent population

dynamics, is the following:

Bt = [e−mtgt−1(Bt−1 − Ct−1) + e−mtgRt−1Rt−1]τt (3.8)

Rt = Rt−1ϕt, ϕt
Ind∼ ulN(σ2

ϕ) (3.9)

mt = mt−1ηt, ηt
Ind∼ ulN(σ2

η) (3.10)

Here, τt
Ind∼ ulN(σ2

τ ) for t = 2, ..., T . Equation 3.8 moves the biomass Bt from

one year to the next after removing the commercial catch Ct, removing those that

died from natural mortality mt, and growing the surviving scallop biomass by growth

gt−1. The natural mortality is afterwards applied to the recruitment biomass Rt,

which is grown by recruit growth gRt−1 and added to the biomass to obtain the final

value, which is then associated with error term τt and log-normal variance σ2
τ . Yearly

growth rates are obtained from separate work and are considered fixed.

Equation 3.9 and 3.10 are both simple random walks on the log scale with error

terms ϕt and ηt, with associated variances σ2
ϕ and σ2

η. While these do not incorporate

realistic dynamics for these processes, they were added as a way of incorporating

more variability in their predictions (Yin et al., 2019). The data was assumed more

than sufficient to overcome the expected long-term population decrease inherent to

geometric random walks such as log-normal ones (Lewontin and Cohen, 1969). Pre-

dictions well into the future would decrease steadily, but this should not unduly affect

predictions a single year ahead. The initial state for all processes are left free to be

predicted.

In summary, TM contains the observed states Yt = (Ii,t, I
R
i,t, Li,t)

T , the unob-

served states Xt = (Bt, Rt,mt)
T , the fixed covariates zt = (Ni,t, Ct, gt, g

R
t )

T and the

parameters θ = (pI , p
R
I , qI , qR, S, σ

2
ϵ , σ

2
υ, σ

2
τ , σ

2
ϕ, σ

2
η)

T .

Spatial Approach

The state-space framework described earlier has to be modified to incorporate the

location of every knot. Therefore, the unobserved dynamic state process describ-

ing population abundance and productivity in year t = 1, ..., T and knot location
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s = 1, ..., S is now Xs,t, while the directly observed variables are now Ys,t. Model

parameters are still contained in a p-vector θ ∈ Θ ⊆ Rp with fixed covariates zs,t.

The frequentist perspective is retained where θ is still a vector of fixed effects, Xs,t

is a vector of random effects predicted from estimates of θ, while both Ys,t and zs,t

are directly observed.

This results in a modified marginal log-likelihood:

L(θ,Y1:S,1:T ) = log

∫︂
L(θ,Y1:S,1:T ,X1:S,1:T )dX1:S,1:T (3.11)

Since each knot covers a different area, the model was set up to predict biomass

and recruit density, meaning that each data point has to be scaled to 1km2. This can

later be scaled back up to represent the whole area covered by a given knot and then

combined into a total prediction of biomass for all of SPA 3.

The incorporation of spatial statistics is done through the use of Gaussian Markov

Random Fields (GMRFs), which models spatial autocorrelation at discrete locations

(Zimmerman and Stein, 2010). This assumes that a continuous underlying Gaussian

Random Field (GRF) exists that can be represented by a discrete GMRF (Lindgren

and Rue, 2011). When implemented with constant discrete locations s in year t, a

GMRF can be reduced to a multivariate Gaussian distribution:

Ωt ∼MVN(µ,Σt) (3.12)

Here, GMRF Ωt follows a multivariate normal distribution with mean µ and

explicitly spatial covariance matrix Σt in year t. For this application, the mean is

set to 0 everywhere. This covariance matrix is set to follow a stationary Matérn

distribution that can account for geometric anisotropy in the following way:

Matérn(s, s′) = τ 2
1

Γ(ν)2ν−1
(κd(s, s′))νKν(κd(s, s

′)) (3.13)

Σ(s, s′) =Matérn(||H(s− s′)||) (3.14)

Equation 3.13 shows the Matérn covariance function where τ 2 is the spatial vari-

ance, ν determines smoothness and is fixed at 1 (e.g. Thorson et al., 2015c; Carson

et al., 2017), κ is the range parameter which determines the distance at which two



53

locations are effectively uncorrelated, Γ(·) is the gamma function, K(·) is the Bessel

function of the second kind and d(s, s′) is the Euclidean distance between two points

(d(s, s′) =
√︁
(x− x′)2 + (y − y′)2 with x and y being coordinates). Equation 3.14

shows the covariance function itself, where H is a linear transformation (similar to a

rotation matrix) to account for anisotropy. H is parameterized to preserve volume

with two unique parameters following the approach taken by Thorson et al. (2015c).

Incorporating anisotropy is extremely important for near-shore fisheries since their

distribution often follows depth profiles (Thorson et al., 2015c).

Although there are methods to apply GMRFs on a sphere (Lindgren and Rue,

2011), it is computationally easier and more interpretable if the surface is flat. To

accomplish this, the locations are projected onto the Universal Transverse Mercator

(UTM) system. This has the added advantage of making spatial parameters more

interpretable, since the UTM coordinate units are in meters (rescaled into kilometers

for numerical stability).

Spatio-Temporal Model 1 (STM1)

Following the same hierarchical framework as TM, the initial step to estimate

the probability of having positive survey observations are identical between TM and

STM1 and are not reported again. The second part of the first hierarchical level

modeling the observations are the following:

Ii,s,t = qIB
⋆
s,tϵi,s,t, ϵi,s,t

Ind∼ uℓN(σ2
ϵ ) (3.15)

IRi,s,t = qRR
⋆
s,tυi,s,t, νi,s,t

Ind∼ uℓN(σ2
υ) (3.16)

Li,s,t
Ind∼ Bin(Li,s,t +Ni,s,t,ms,tS) (3.17)

where B⋆
s,t = pIBs,t and R⋆

s,t = pRI Rs,t. These equations are almost identical

to Equations 3.5, 3.6 and 3.7 except that each observed density in tow i in year

t is modeled separately at each knot s. This assumes that the observations are

conditionally independent of one another given the underlying spatial patterns, and

further assumes that all 3 catchabilities are constant across space and time.
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The second hierarchical level that models the process dynamics is the following:

Bs,t = [e−ms,tgt−1(Bs,t−1 − Cs,t−1) + e−ms,tgRt−1Rs,t−1]τs,t (3.18)

Rs,t = Rs,t−1e
ΩR

s,t (3.19)

ms,t = ms,t−1e
Ωm

s,t (3.20)

Equation 3.18 is the same as Equation 3.8 but is done separately at each knot s in

year t with t = 2, ..., T , assuming that each knot is independent of one another. There

is biological evidence that commercial size scallops are mostly sedentary (Smith and

Rago, 2004) and, since each area covers over 100km2, it appears to be a reasonable

assumption. Recruitment and mortality, however, directly incorporate spatial auto-

correlation by constructing their error structures ΩR and Ωm as GMRFs on the log

scale. Each year has its respective GMRF, indicating that the error structure can

vary every year. These are based on their respective constant spatial variance τR and

τm and their respective range parameters κR and κm, which are constant over time.

Furthermore, each process has their respective anisotropy matrices HR and Hm. The

initial value at every knot in year 1 for Equation 3.18 is left open to be predicted.

For Equations 3.19 and 3.20, since the GMRFs are set up as error structures with

mean 0, the first year must be initialized. To minimize the number of random effects

and parameters, this is done by simply specifying a single mean parameter to give

some mean value in the following way:

Rs,1 = R0e
ΩR

s,1 (3.21)

ms,1 = m0e
Ωm

s,1 (3.22)

Here, R0 and m0 represent an overall mean value that is then modified by the

first year’s GMRF. This initializes each knot with a different spatially autocorrelated

value based on the patterns seen in the observations without having to fix the starting

values.
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The total recruitment and biomass can then be derived by multiplying Bs,t and

Rs,t by the area covered by their respective knots, then summing up over all knots s

to obtain a single Bt and Rt per year t.

In summary, STM1 contains the observed states Ys,t = (Ii,s,t, I
R
i,s,t, Li,s,t)

T , the un-

observed statesXs,t = (Bs,t, Rs,t,ms,t)
T , the fixed covariates zs,t = (Ni,s,t, Cs,t, gt, g

R
t )

T

and the parameters θ = (pI , p
R
I , qI , qR, S, σ

2
ϵ , σ

2
υ, σ

2
τ , R0,m0, τR, τm, κR, κm,H

R
input,H

m
input)

T .

Spatio-Temporal Model 2 (STM2)

The first hierarchical level of STM1 and STM2 is identical, so is not reported again.

The second hierarchical level is very similar, with the processes for recruitment and

mortality being identical and initialized the same way. However, the biomass process

in Equation 3.18 is replaced by the following:

Bs,t = [e−ms,tgt−1(Bs,t−1 − Cs,t−1) + e−ms,tgRt−1Rt−1]e
ΩB

s,t (3.23)

The error term τt is replaced by ΩB
s,t, which represents a GMRF calculated the

same way as the ones described previously, with separate spatial parameters (τB and

κB) and anisotropy matrix HB from the other processes. The initial states for every

knot is furthermore set as the following:

Bs,1 = B0e
ΩB

s,1 (3.24)

The only difference between STM1 and STM2 is the removal of the independence

assumption between each knot for the commercial size biomass. In summary, STM2

contains the observed states Ys,t = (Ii,s,t, I
R
i,s,t, Li,s,t)

T , the unobserved states Xs,t =

(Bs,t, Rs,t,ms,t)
T , the fixed covariates zs,t = (Ni,s,t, Cs,t, gt, g

R
t )

T and the parameters

θ = (pI , p
R
I , qI , qR, S, σ

2
ϵ , σ

2
υ, B0, R0,m0, τB, τR, τm, κB, κR, κm,H

B
input,H

R
input,H

m
input)

T .

Table 3.1 summarizes and describes all parameters for all three models.

3.3 Simulation Studies

Two simulation studies were performed. The first, consisting of 4 different settings

(A to D) as shown in Table 3.2, was to assess the identifiability and estimability of

the proposed spatio-temporal models. The second, with three different settings (E
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Table 3.1: Parameters for all 3 models with description.

Parameter Model Description
qI TM, STM1, STM2 Commercial Size Catchability
qR TM, STM1, STM2 Recruit Size Catchability
S TM, STM1, STM2 Clapper catchability (FMB)
στ TM, STM1 Commercial size biomass process error
σϕ TM Recruitment process error
ση TM Natural mortality process error
σϵ TM, STM1, STM2 Commercial size index observation error
συ TM, STM1, STM2 Recruitment index observation error
pI TM, STM1, STM2 Probability of positive commercial size survey tow
pRI TM, STM1, STM2 Probability of positive recruit survey tow
κB STM2 Biomass range parameter
κR STM1, STM2 Recruitment range parameter
κm STM1, STM2 Natural mortality range parameter
τB STM2 Biomass spatial variation parameter
τR STM1, STM2 Recruitment spatial variation parameter
τm STM1, STM2 Natural mortality spatial variation parameter
HB STM2 Biomass anisotropy matrix
HR STM1, STM2 Recruitment anisotropy matrix
Hm STM1, STM2 Natural mortality anisotropy matrix
B0 STM2 Biomass initial mean parameter
R0 STM1, STM2 Recruitment initial mean parameter
m0 STM1, STM2 Natural mortality initial mean parameter
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Table 3.2: Difference between settings for first simulation study.

Setting Simulating Model Fitting Model Status of qI Simulated Fishing Cover
A STM1 STM1 Estimated Constant Partial
B STM1 STM1 Fixed Constant Partial
C STM2 STM2 Estimated Constant Partial
D STM2 STM2 Fixed Constant Partial
E STM1 TM Fixed Constant Partial
F STM1 TM Fixed Complete
G STM1 TM Fixed Moving Partial

to G) as shown in Table 3.2, aimed to test the effect of uneven spatial coverage on

temporal model predictions.

3.3.1 Simulation Design

For the first study, settings A and B concerned STM1, wherein Equations 3.15 to

3.22 were used to simulate and fit data using the TMB package in R. Previous work

(Chapter 2) identified qI as one of the most difficult parameters to reliably estimate.

In the first setting, qI was estimated, while in the second it was fixed at its real value

in order to identify how much improvement would be achieved by doing so. Settings

C and D explored the same for STM2, replacing Equation 3.18 by Equation 3.23 and

adding Equation 3.24.

For the second simulation study, settings E to G assessed the effect of commercial

catch aggregation. STM1 was used to simulate data with Equations 3.15 to 3.22.

After modifying the data to be on the scale for the entire area, TM was then fit using

Equations 3.5 to 3.10. Setting E simulated commercial catch in a constant subset

of knots, setting F simulated complete spatial coverage of the commercial catch (i.e.

commercial catch at every knot), while setting G simulated commercial catch in a

variable subset of knots.

Aside from commercial catch, all seven settings follow the same simulation design.

The simulated area was a 50km by 50km square shown in Figure 3.4. 20 years of

data with ntows
t = 100 each year were simulated. The locations of these 2000 data

points were randomly assigned across the space. The knots were then obtained based

on those random locations following the same approach as with the real data. gt and
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Figure 3.4: Grid for simulation experiments based on simulated locations, greyscale
used simply to delineate cells and does not represent simulated value.

gRt were assumed constant and set at 1.1 and 1.5. The total number of live and dead

scallops (Li,t + Ni,t) is set to 120 in every tow. The initial states at each knot for

the biomass in year 1 are left open to be predicted and are thus not obtained from

the equations directly. Therefore, the initial value at each knot was simulated from

a log-normal distribution with a mean of 400kg per km2 on the natural scale with

a variance of 0.1 on the log scale. The low biomass value was chosen to reduce the

chance of having the population increase exponentially, while the low variance was

chosen to reduce the chance of simulating strong outliers as initial states.

The parameter values chosen for the simulations along with the starting values

used during optimization are shown in Table 3.3. The anisotropy parameters (Hinput)

were chosen to simulate strong anisotropy where the decorrelation range going north-

south was much larger than east-west. The true values for the spatial variability

parameters τB, τR and τm were obtained by setting the variance of the random fields

at 0.1 and range parameters κB, κm and κR are obtained by setting the mean decor-

relation ranges of the random fields at 50km for commercial size biomass, 40km for

recruitment and 20km for mortality. For STM1, the optimization starting values for

the random effects for were set to 3000 for Bs,t and 0 for all random fields (ΩR
s,t and

Ωm
s,t). For STM2, the optimization starting values for the random fields (ΩB

s,t,Ω
R
s,t and

Ωm
s,t) in STM2 were also set to 0.

For settings A to D and to mimic the spatially uneven fishing pressure present in
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Table 3.3: Parameters used for simulation study and their respective optimization
starting values.

STM1 STM2
Parameter True Value Starting Value Parameter True Value Starting Value

στ 0.1 exp(−1) σϵ 0.1 exp(−1)
σϵ 0.1 exp(−1) συ 0.1 exp(−1)
συ 0.1 exp(−1) qI 0.3 exp(−1)
qI 0.3 exp(−1) qR 0.2 exp(−1)
qR 0.2 exp(−1) S 0.5 exp(−1)
S 0.5 exp(−1) pI 0.8 exp(−1)
pI 0.8 exp(−1) pRI 0.4 exp(−1)
pRI 0.4 exp(−1) B0 400 1000
R0 50 150 R0 50 150
m0 0.1 0.3 m0 0.1 0.3
κR 0.0707 1 κB 0.0566 1
τR 39.8942 1 τB 49.8678 1
κm 0.1414 1 κR 0.0707 1
τm 19.9471 1 τR 39.8942 1

HR
input −1.83,−0.24 0, 0 κm 0.1414 1

Hm
input −0.56, 0.12 0, 0 τm 19.9471 1

HB
input −1.23,−0.54 0, 0

HR
input −1.83,−0.24 0, 0

Hm
input −0.56, 0.12 0, 0
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the SPA 3 data, presence of commercial catch was simulated as Bernoulli process with

probability of 0.6 at every knot s. If commercial catch was present, each year’s catch

was simulated from a log-normal distribution with the mean of 20% of the biomass on

the natural scale at knot s in year s and a variance of 0.1 on the log scale. This was

done to simulate an overall exploitation rate a little higher than 10% every year and

avoid simulating negative biomass, a common issue for these types of models (Yin

et al., 2019; Best and Punt, 2020). If there was no catch present in the first year at

a knot, commercial catch was kept at 0 there for the rest of the simulation.

The starting values for TM used in setting E to G are shown in Table 3.4. Setting E

simulated an uneven spatial distribution of catch, with the presence of catch simulated

as Bernoulli process with probability of 0.6 at each knot s. This was only done in

the first year, meaning that knots with simulated fishing effort were fished across

the entire time lapse while other knots were never fished. If commercial catch was

present, each year’s catch in knot s was simulated from a log-normal distribution with

the mean at 10% of the biomass on the natural scale at that knot in year t and a

variance of 0.5 on the log scale. Setting F simulated a complete spatial coverage of the

commercial catch with each knot’s catch simulated from log-normal distribution with

the mean at 20% of the biomass on the natural scale at that knot in that year and

a variance of 0.5 on the log scale. Setting G simulated the presence of catch through

a Bernoulli process with probability of 0.6. This was done separately for every year,

simulating a partial spatial cover of fishing effort but one that moved every year. If

commercial catch was present, each year’s catch in a knot was simulated from a log-

normal distribution with the mean at 20% of the biomass on the natural scale at that

knot in that year and a variance of 0.5 on the log scale. This way, all of them had

an overall exploitation rate around 10%, but only the spatial coverage of it differed.

The catchability qI was fixed at 0.3 for the estimation process using TM for all three

experiments.

Simulation Results

Since both STM1 (settings A and B) and STM 2 (settings C and D) behaved similarly,

only the results from settings A and B are presented here with Figures for settings C

and D shown in Appendix B.
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Table 3.4: Parameter optimization starting values set for TM before model fitting
attempts.

Parameter Starting Value
στ exp(−1)
σϕ exp(−1)
ση exp(−1)
σϵ exp(−1)
συ exp(−1)
qI exp(−1)
qR exp(−1)
S exp(−1)
pI 0.5
pRI 0.5

For settings A to D, 200 simulations were run for each and every single run con-

verged. Some fits were unsuccessful in estimating the spatial parameters correctly

and would estimate them at non-sensical values with massive standard errors. Due

to this, any simulations where the anisotropy parameters were estimated below -5

or above 5 (which are already unrealistic bounds) were not included in the results.

Using this new definition, 36 simulations were rejected for setting A, 24 for setting B,

37 for setting C, and 54 for setting D. This implies that convergence is not a sufficient

criterion to assess fitting success when applied to real data and closer examination is

necessary. However, it is easy to identify parameter estimates far from their true value

since they were all associated with standard errors larger than their point estimates,

indicating that the model did not reliably estimate them.

Figure 3.5 shows the distribution of parameter estimates for simulations from

setting A where qI is estimated. Variance, probability and catchability parameters

are recovered with high accuracy. The spatial parameters appear more difficult to

estimate, but are still generally well recovered. Fixing qI does not show any clear

improvement in parameter estimations as seen in Figure 3.6.

The median difference at every knot in every year for the biomass density shown

in Figure 3.7 is very small and does not show any particular pattern. STM1 is able to

recapture the true values very well with minimal errors. The positive bias, wherein the

biomass is too high everywhere, is driven by issues estimating qI since it disappears
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Figure 3.5: Histograms of parameter estimates from successful simulations from
setting A. Red line denotes true value.
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Figure 3.6: Histograms of parameter estimates from successful simulations from
setting B. Red line denotes true value.
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Figure 3.7: Median percent difference biomass density ((predicted-true)/true) at
every knot for every year for successful simulations of setting A.
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(a) Bt (b) Rt

(c) mt

Figure 3.8: Functional boxplots (without whiskers) of the difference of the predicted
processes and their true value with horizontal dotted line at 0 and median difference
shown by solid black line from setting A. 3.8a and 3.8b show the difference as a
percentage of the true value (predicted - true / true) while 3.8c simply shows the

net difference (predicted - true).

when it is fixed (figures in Appendix B). The results are consistent for the recruitment

and mortality, and for STM2. These figures are shown in Appendix B.

The Nova Scotia scallop fishery uses a management approach based on a Total

Allowable Catch (TAC), which sets the maximum amount of landings that the com-

mercial fleets are allowed to catch in a given year (Nasmith et al., 2016). This type of

approach currently requires a single prediction for the total amount of biomass over

the entire area. It is therefore essential that the spatial models can reliably predict

the population biomass for the entire area, which is what we focused on for these

simulations.

Figure 3.8 shows the functional boxplots (Sun and Genton, 2011) without whiskers

of the difference between the predicted processes (biomass, recruitment and natural

mortality) and their simulated true value. Bt and Rt are obtained by multiplying

each Bs,t and Rs,t by the area covered by their respective knot s before summing
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across all knots. mt is obtained by simply taking the mean of all ms,t across knots

s. All 3 processes exhibit slight positive bias, most likely driven by the catchability

estimates since this bias consistent over time. The second simulation experiment

(Figures in Appendix B), where the bias for Bt is completely eliminated, supports

this. Both models fully capture the temporal trends for all three processes. Unlike

the strictly temporal random walks studied in Chapter 2, the populations simulated

through log-normal random walks did not show any tendency to decrease Lewontin

and Cohen (1969) on the time scales analyzed here, but only when they were simulated

on significantly longer and unrealistic time scales (e.g. 200 years). Figures showing

examples of these simulated populations are shown in Appendix B.

For settings E to G, 200 simulations were also run for each. For setting E, all

of them converged. For setting F, 11 runs could not work because the simulated

catch was too high for the optimization starting values to run the initial step. All

simulations converged for setting G. However, a significant amount of simulations led

to non-sensical parameter estimates, often arbitrarily close to 0 and with standard

errors orders of magnitude larger than their point estimates. Since the goal of this

study was to examine the effect of the spatial cover of fishing effort and not the

estimability of the models, successful simulations were therefore defined as those that

contained no standard errors larger than 1.2 times their point estimate. We chose

this much narrower definition of success to only examine the ones where the model

gives the impression that it captured the trends reliably. The value of 1.2, while

somewhat arbitrary, was chosen since it would only include the simulations where the

model was highly confident in its estimates. Using this more stringent definition of

success, 26 models were considered successful for settings E, 8 for setting F, and 26

were successful for setting G.

Figure 3.9 shows the difference between the predicted processes and their true

value when fitting TM to explicitly spatial data when the commercial catch only

covers a constant portion of the area, while Figure 3.10 shows the same variables

when the simulated commercial catch covers the entirety of the space. Figure 3.11

shows the same variables when the simulated commercial catch covers a variable

portion of the area. Since all experiments followed an identical design except for the

commercial catch, it stands to reason that the differences seen in Figures 3.9 to 3.11
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(a) Bt (b) Rt

(c) mt

Figure 3.9: Functional boxplots (without whiskers) of the difference of the predicted
processes and their true value for setting E, with horizontal dotted line at 0 and
median difference shown by solid black line. All panels simply show the difference

between the predicted process and the true value.
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(a) Bt (b) Rt

(c) mt

Figure 3.10: Functional boxplots (without whiskers) of the difference of the
predicted processes and their true value for setting F, with horizontal dotted line at

0 and median difference shown by solid black line. All panels simply show the
difference between the predicted random effect and the true value.
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(a) Bt (b) Rt

(c) mt

Figure 3.11: Functional boxplots (without whiskers) of the difference of the
predicted processes and their true value for setting G, with horizontal dotted line at

0 and median difference shown by solid black line. All panels simply show the
difference between the predicted random effect and the true value.
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are only caused by differences in commercial catch.

The trend in the predicted biomass bias is worrying since its cause is not clear.

The predicted biomass is positively biased at the start of the time-series, but this

bias steadily decreases until it flips into the negative as time goes on. Preliminary

runs with different simulation values of different parameters or fixed covariates did not

help elucidate why this is happening. Furthermore, other tests with longer time-series

presented an identical pattern where the lack of bias would appear at the midpoint.

This hints that fitting a temporal model to explicitly spatial data might result in

persistent bias in future predictions, but that adding years does not strongly impact

the amount of bias.

The impact of the spatial coverage of fishing effort is of great interest. Having

a complete spatial coverage reduces the persistent bias in predicted biomass by an

order of magnitude. This indicates that predictions from an aggregated temporal

model over spatial data might not be too far off the mark as long as it only models

the area covered by the commercial catch, such as is currently done in the SPA 3

stock assessment (Nasmith et al., 2016). This complete coverage of commercial catch

appears to cause the natural mortality and the recruitment to become confounded.

Interestingly, if the spatial coverage of the fishing effort moves around, the bias is

also dramatically reduced, albeit to a slightly lesser extent than consistent partial

coverage. It appears that it is not the percent coverage of the fishing effort that

matters most, it is its temporal persistence that impacts the bias of the temporal

model output.

3.4 Application to Scallop Data

Since the survey data was available from 1996 to 2018, a request was made to obtain

spatially indexed fishing logbooks from 1995 to 2018, but the locations of these fishing

trips were only available from 1998 to 2018. Furthermore, it was discovered during

preliminary analyses that an almost complete spatial coverage of the area by the

survey data in the initial year was necessary for STM1 and STM2 to converge. Since

there were no tows in St-Mary’s Bay between 1996 and 1998, the fishery was only

modeled from 1999 to 2018. All 3 models were fit twice using the Template Model

Builder (TMB) package in R using the nlminb optimizer, once with qI fixed at 0.3
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Table 3.5: Parameter estimates for TM, STM1 and STM2 fit to Scallop Production
Area 3 (standard error in parentheses).

TM STM1 STM2
Parameter Estimate Parameter Estimate Parameter Estimate

στ 0.234(0.051) κR 0.070(0.019) κB 0.068(0.013)
σϕ 0.241(0.062) τR 17.047(7.185) τB 18.571(5.072)
ση 0.553(0.085) κm 0.141(0.018) κR 0.070(0.020)
σϵ 1.176(0.016) τm 2.329(0.382) τR 16.641(7.202)
συ 1.078(0.024) στ 0.265(0.030) κm 0.142(0.018)
qI 1.25X10−7(3.25X10−5) σϵ 1.050(0.015) τm 2.311(0.377)
qR 2.95X10−10(7.68X10−6) συ 0.924(0.022) σϵ 1.059(0.015)
S 0.242(0.138) S 0.571(0.105) συ 0.924(0.022)
pI 0.910(0.005) qR 0.146(0.224) S 0.628(0.121)
pRI 0.358(0.009) qI 0.087(0.124) qR 42.952(1.198X106)

R0 47.847(74.252) qI 8.57X108(7.29X105)
m0 0.029(0.013) R0 0.1627(4.54eX103)
pI 0.913(0.005) B0 3.76X109(3.20X1012)
pRI 0.359(0.009) m0 0.029(0.013)
HR1

input −1.83(0.585) pI 0.913(0.005)

HR2
input −0.237(0.440) pRI 0.359(0.009)

Hm1
input −0.561(0.228) HB1

input −0.854(0.447)

Hm2
input 0.118(0.214) HB2

input −0.779(0.525)

HR1
input −1.871(0.599)

HR2
input −0.244(0.449)

Hm1
input −0.563(0.227)

Hm2
input 0.124(0.213)

and once estimating qI . The choice of 0.3 was made because it matched the original

best estimate of the Bayesian model (Chapter 2) and was also reasonably close to the

estimated efficiency of similar types of gear to the same species, albeit out in the open

ocean (Gedamke et al., 2004; Miller et al., 2019). Unlike previous work (Chapter 2),

all models are fit to the entirety of the area instead of strictly St-Mary’s Bay and the

Inside VMS strata (Nasmith et al., 2016).

For TM, the same starting values shown in Table 3.4 were used, with optimization

starting values set to 10max(Ii,t) for Bt, 10max(I
R
i,t) for Rt and 0.3 formt. For STM1,

the optimization starting values shown in Table 3.3 were used, with optimization

starting values set to 3000 everywhere for Bt and the starting values for all random

fields (ΩR
s,t and Ωm

s,t) set to 0. STM2 also uses the optimization starting values shown

in Table 3.3 with the optimization starting values for all random fields (ΩB
s,t,Ω

R
s,t and

Ωm
s,t) set to 0. Every model converged successfully.
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Table 3.6: Parameter estimates for TM, STM1 and STM2 fit to Scallop Production
Area 3 when qI is fixed to 0.3 (standard error in parentheses).

TM STM1 STM2
Parameter Estimate Parameter Estimate Parameter Estimate

στ 0.242(0.052) κR 0.069(0.018) κB 0.081(0.015)
σϕ 0.240(0.062) τR 17.591(6.922) τB 13.575(3.499)
ση 0.553(0.085) κm 0.141(0.018) κR 0.074(0.022)
σϵ 1.176(0.016) τm 2.327(0.382) τR 15.598(6.743)
συ 1.078(0.024) στ 0.263(0.030) κm 0.141(0.018)
qR 0.060(0.058) σϵ 1.051(0.015) τm 2.321(0.382)
S 0.246(0.148) συ 0.925(0.022) σϵ 1.058(0.016)
pI 0.910(0.005) S 0.541(0.093) συ 0.922(0.022)
pRI 0.358(0.009) qR 0.164(0.083) S 0.555(0.131)

R0 42.104(23.058) qR 0.099(0.103)
m0 0.025(0.011) R0 68.981(71.483)
pI 0.914(0.005) B0 1069.17(210.65)
pRI 0.359(0.009) m0 0.024(0.011)
HR1

input −1.714(0.535) pI 0.914(0.005)

HR2
input −0.230(0.427) pRI 0.359(0.009)

Hm1
input −0.563(0.229) HB1

input −0.984(0.475)

Hm2
input 0.116(0.214) HB2

input −0.324(0.387)

HR1
input −1.772(0.594)

HR2
input −0.246(0.440)

Hm1
input −0.563(0.227)

Hm2
input 0.122(0.213)

For the fits estimating qI , all variance and spatial parameters shown in Table

3.5 are estimated reliably for all models, but none of them are able to get reliable

estimates of qI or qR. The qI estimate from TM is significantly worse than shown

during the temporal analysis (Chapter 2), with the only differences being spatial

coverage and length of time series. Anisotropy parameters are difficult to interpret

on their own, but the estimated standard errors are in reasonable spaces.

As seen in Table 3.6, fixing qI to 0.3 only impacts parameters related to the

magnitude of commercial size biomass and recruit such as qR, B0 and R0. All other

parameters are almost identical.

Figure 3.12 shows that natural mortality is not correlated at very high distances,
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(a) STM1 (b) STM2

Figure 3.12: Decorrelation ranges in all directions for biomass (solid line),
recruitment (dotted line) and natural mortality (dashed line) processes for both

STM1 and STM2.

while recruitment is very highly correlated following the bathymetry of SPA 3 at

ranges larger than the area itself, but decorrelates rapidly from east to west. Biomass

presents a similar pattern to recruitment but decorrelates more rapidly when it is

explicitly modeled spatially.

Figures 3.13 to 3.15 shows the predicted biomass density Bs,t, recruitment density

Rs,t and survival e−ms,t at all knots between 1999 and 2018, with their respective

predictions for 2019 for the biomass and natural mortality using STM1 with qI fixed

at 0.3. Due to the absence of any data in 2019, the predicted mortality is identical to

2018. The patterns predicted by STM2 are extremely similar and are not reported

here (Figures in Appendix B). The figures showing the standard errors for Figures

3.13 to 3.15 are all presented in Appendix B.

The knots with a high commercial size biomass density are generally the same

knots that are more intensely fished, as seen in Figure 3.3. There are three recurring

hot spots of biomass: a specific section in the south-west, the nearshore areas and

the tip of St-Mary’s Bay. Recruitment is sparse and patchy aside from two notable

events, the first in the south-west in 2000-2001 and one at the tip of St-Mary’s bay

in 2015. Outer sections of the area consistently show lower survival, with the rest of

the knots presenting patchy but generally high survival.
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Figure 3.13: Predicted commercial size biomass density (kg/km2) at each knot
between 1999 and 2019.
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Figure 3.14: Predicted recruit biomass density (kg/km2) at each knot between 1999
and 2018.
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Figure 3.15: Predicted survival at each knot between 1999 and 2019.
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(a) Commercial Size Biomass (b) Recruit Biomass

(c) Natural Mortality

Figure 3.16: Predicted total biomass, total recruitment and mean natural mortality
for SPA 3 from TM (blue), STM1 (red) and STM2 (black). Envelopes represent

interpolated point-wise 95% confidence intervals.
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Figure 3.16 shows the predicted total biomass, recruitment and the mean natural

mortality for SPA 3. The envelopes represent the 95% confidence interval based on

the exponentiated bounds constructed on the log scale (prediction ± 1.96 standard

error). While not as rigorous as other methods (e.g. bootstrapped standard errors)

these intervals simply aim to give an idea of the variability of these predictions.

All three models are extremely similar in their prediction for total biomass with

highly similar uncertainties. The general pattern of population change is captured well

by all three models. Both spatio-temporal models predict drastically lower recruit-

ment and natural mortality than TM, which consistently captures a higher temporal

variability than either STM1 or STM2. STM1 and STM2 indicate that population

changes are mostly related to growth of adult size scallops instead of the produc-

tivity, which seems to drive TM. The recruitment predicted by STM2 has a much

larger uncertainty, which is caused by the large uncertainty around the estimate of

qR. However, although they both present relatively smooth lines for recruitment and

mortality, both of these processes have a clear spatial structure. While the recruit-

ment event in 2000-2001 is clearly reflected in the prediction for TM, it is restricted

to a couple grid cells in both STM1 and STM2 and is not strongly affecting the total

recruitment. A similar pattern is exhibited by the natural mortality, but the overall

mean mortality stays near 0.1. This is consistent with what is known of this species

(Merrill and Posgay, 1964).

The uncertainty for TM expands greatly when predicting 1 year forward into

2019, while the uncertainty predicted by STM2 shrinks. Since the random fields

between years are not correlated in any way, the model simply assumes that the

error structure in 2019 is identical to 2018 without error, which arbitrarily shrinks

the uncertainty around the biomass. The uncertainty predicted by STM1 expands

slightly, but nowhere near as much as TM. This makes sense since STM1 predicts the

uncertainty of a derived quantity obtained from 20 predicted points, while TM has

to predict the uncertainty of a single point which has to be more variable.

3.5 Discussion

A clear relation between the bathymetry and the abundance of scallops is apparent,

with both spatio-temporal models predicting higher biomass in nearshore areas and
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St-Mary’s Bay. Furthermore, these areas generally line up with areas that are under a

much higher fishing pressure. This demonstrates the reliability of STM1 and STM2,

since fishing effort tends to focus on areas of higher density (Smith et al., 2017),

therefore the areas with highest biomass are expected to be under the highest fishing

pressure. While STM2 was expected to be successful at modeling SPA 3, it is likely

that the similar success of STM1, which has no spatial structure on the commercial

biomass, is caused by the sedentary nature of scallops.

It is surprising, given the results of the simulation study, just how closely the three

models concur in their predictions of biomass. It appears that, although fishing effort

is highly aggregated, it does not completely ignore certain areas and has moved around

over time. It therefore seems likely that the bias present in the temporal predictions

is minimal. All of them indicate that the population across the entirety of SPA 3 has

been relatively stable over time. However, the spatial models clearly show how the

distribution and areas of peak density have shifted over time. Nearshore areas have

always tended towards higher abundances, but a specific spot in the south-west has

gone from extremely high density (from an extreme recruitment event in 2000-2001)

to relatively low, before increasing again in recent years. These clearly appear to

be the most important scallop beds for the area, and coincide with the area that is

currently modeled by DFO for the stock assessment. Since that model (described in

Chapter 2) does not account for any spatial information, subsetting the area with

the populations of highest interest appears to have been an enlightened decision and

highlights why this stock has been managed so successfully.

While TM might capture the temporal population changes well, it does not pre-

dict the productivity of the whole area to be anywhere near the same as the spatio-

temporal models. Both STM1 and STM2 predict a low, relatively constant recruit-

ment over time when taken across the entire space accompanied with a low, steady

natural mortality. TM, on the other hand, predicts wildly variable recruitment and

natural mortality. The large spikes predicted by TM can be seen from the STM1

and STM2 results, but only if one looks at individual areas. The massive recruitment

spike in 2000-2001 was a local spike in the south-west portion of SPA 3, but was

not reflected elsewhere. The spikes in natural mortality further match up with larger

death events on the margins of SPA 3, which were also localized events. Just a few
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outlying observations appear to be enough to pull TM in strong directions, while

they are appropriately attributed to only local areas for the spatio-temporal models.

It seems unreasonable to extrapolate from these localized events to the whole area,

but non-spatial models have no easy way of avoiding this extrapolation. However,

these outliers are very useful to identify productivity hot spots. Fishing pressure

also responds to these events rapidly, which is reflected by the vast majority of the

commercial catch in 2003 being localized to the same area as the recruitment spike 2

years prior.

The key factor here is that these spatio-temporal models are fully able to track

local changes in population abundance without the presence of any covariates or

predictors. Incorporating spatial-autocorrelation in the productivity processes or in

all of the processes appears to capture the underlying spatial pattern. This pattern

could be related to habitat suitability (Smith et al., 2017), growth rates (Smith and

Rago, 2004) or larval retention (Tremblay and Sinclair, 1988), all of which would

require extensive work and investment to obtain reliable information about them.

While including them in a model would likely improve its accuracy, these models

show that one can harness these latent spatial patterns without extensive information

about the ecosystem in which these populations evolve.

The main lingering issues are the estimability of the parameters related to the

population magnitude (qI and qR, which lead to issues with B0 and R0). While fixing

a parameter based on sensible values has the advantage of making any assumption

explicitly clear, it removes any uncertainty around these parameters. Many other

approaches could be used to deal with this estimability issue, such as priors in a

Bayesian framework. There were attempts, in preliminary model formulations, to

explicitly model the catchability spatially, temporally or spatio-temporally, but these

approaches were all unsuccessful in improving catchability estimates. The information

to estimate these parameters in the temporal version of this model usually comes from

the interplay between the index of abundance and the commercial landings (Chapter

2). Given that more information on this interplay became available, it was thought

that splitting up the area would facilitate the estimation of these catchabilities. This

has instead introduced much more variability into this relationship, which the models

are unable to deal with. The simulation experiments, where the commercial landings
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do not vary as much as the real data, were able to reliably recapture them. It

is possible, since adding random fields to the biomass hindered the estimation of

catchabilities, that the model is slightly overparameterized in this case. It is also

likely that having data for a longer time-frame would help stabilize these estimates,

especially for STM1. However, the vast majority of fisheries do not have the extensive

time-series and data to reliably do so (Costello et al., 2012).

To help improve the estimability of the catchability parameters, the first thought

would be to attempt to explicitly model the commercial landings. For example, one

could implement an observation equation to model the catch through some form of

the Baranov catch equation or based on effort dynamics (e.g. Thorson et al., 2013;

Yin et al., 2019). Unfortunately, this did not help the TM fit in this area (Chapter

2). Furthermore, modeling the commercial catch would likely involve incorporating

uncertainty in the landings reported, which can be unnecessary in a fishery where

the reported landings are considered highly reliable (Nasmith et al., 2016). However,

that is not to say that there is no uncertainty associated to them, especially in this

spatio-temporal setting. Each logbook record represents an individual trip from an

individual fishing vessel, and only has a single location associated with it. That does

not mean that every single scallop caught on this fishing trip was caught at that

location, it instead represents an area that was covered during this trip. The actual

spatial cover of each trip is unknown, and while the resolution chosen here likely

accounts for this in some way, fishing trips near the edges of the grid cells likely

captured some scallops in neighboring cells. It is therefore possible that explicitly

modeling this might help catchability estimates. Since it has been shown that spatial

coverage of fishing effort is related to the productivity of the local area (Caddy, 1998;

Smith et al., 2017), placing some constraint or structure on this commercial catch to

explicitly link it to the recruitment process might also be an avenue worth exploring.

STM1 and STM2 are very similar, which begs the question as to why two models

were created. The initial setup mostly focused on STM2, but its issues with the

catchability parameters prompted the creation of STM1 to see if fewer parameters

might realistically improve these estimates. While it wasn’t fully successful in that

endeavor, the estimate of qI obtained by STM1 was not as biologically unreasonable

as the estimate from STM2, which seemed to indicate that STM2 might be suffering
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from overparameterization when it comes to fitting SPA 3. While fixing qI solves

that issue, including both models seemed advisable for a couple reasons. First, as

stated before, a lot of fisheries do not have access to long time-series so a simpler

model with fewer parameters might be more practical. Second, it suggested the

reliability of both models since they both predicted similar patterns. Finally, while

STM1 is clearly applicable to sedentary shellfish species or groundfish species whose

distribution is relatively constant, its applicability to motile fish species is less clear.

Therefore, we felt that STM1 would be great to assess the status of more sedentary

species when fewer years of data are available, but that STM2 is a better model for

non-sedentary species and overall better if one has enough data or low variability in

commercial catch.

While they successfully model the highly variable SPA 3, there are multiple ways

in which STM1 and STM2 could be modified to incorporate other important factors

related to scallop biology. Specifically for STM2, some reasonable correlation between

the random fields in each year would need to be implemented for its predictions a

year forward to be reliable. For both STM1 and STM2, more realistic processes for

the natural mortality or the recruitment could be examined. A stock-recruitment

relationship could be incorporated, which has been done to some success with other

stocks of the same species (McGarvey et al., 1993). Given more environmental infor-

mation, it would be possible to explicitly model the environmental effects on natural

mortality. Furthermore, the probability of capturing commercial size or recruit scal-

lops could be modified using similar spatial methods to explicitly predict a different

probability at each knot based on these same environmental variables. The effect of

habitat suitability on the scallop themselves and on the fishing pressure, which have

been clearly demonstrated (Smith et al., 2017), could be incorporated. This could be

related directly to the probability of capturing scallops, to the commercial fishing and

to the catchabilities. Finally, having constant growth parameters across the entirety

of SPA 3 seems unreasonable, since it has been shown that the biomass growth is

affected by environmental factors that change over space (Smith et al., 2001). Since

these are not taken into account, it is possible that the models overestimate the

biomass in poorer habitats. The common trend here is that extensive work needs

to be done to obtain information related to most of these variables for them to be
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included in SPA 3 and its resulting management.

The regulations and management of the scallop population of SPA 3 is already

implicitly spatial, in that decisions are based on strictly modeling the areas where

fishing pressure is or has been highest (Nasmith et al., 2016). While questionable on a

surface level, this work demonstrates how this approach has likely led to high-quality

and reliable predictions and has led to the sustainability and health of the scallop

population in the area (Nasmith et al., 2016). However, this geographic approach is

somewhat inflexible, and extensive work and analysis will be required to modify the

modeled strata if the fishing pressure ever moves or extends outside of the modeled

bounds. Adopting a spatio-temporal stock assessment approach, such as the one

shown here with STM1 and STM2, will provide invaluable flexiblity necessary to

deal with potential changes in spatial fishing pressure. It would also allow DFO

to track local changes in population abundance and distribution. This increased

knowledge could be harnessed directly into the mandated Precautionary Approach,

wherein reference points based on biological characteristics are set to determine the

health of a population (Hilborn et al., 2001; Smith and Rago, 2004; Nasmith et al.,

2016), to determine local reference points. These could then be used to reliably

manage local trends and ensure the biological and commercial sustainability of this

fishery for the foreseeable future.
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Conclusion

In this thesis, we examined ways of modeling the highly variable and spatially ex-

plicit data available for Scallop Production Area (SPA) 3 of the Nova Scotia Inshore

Sea Scallop (Placopecten magellanicus) Fishery for the purposes of better predicting

changes in scallop abundance and biomass. In Chapter 2 we showed how explicitly

modeling the intra-annual variability in the survey tows improved the estimation of

variance parameters, which led to more reliable predictions of population change. This

approach removed the need to aggregate all intra-annual observations into a single

index of abundance. It also introduced the requirement to account for zero-inflation

in the survey tows.

In Chapter 3 we expanded the model framework further to incorporate spatial au-

tocorrelation into the dynamical processes for commercial biomass, recruit biomass

and natural mortality. This was performed using Gaussian Markov Random Fields

(GMRF) without requiring extensive information about environmental covariates.

Results showed that while a strictly temporal approach was appropriate for capturing

changes in population for SPA 3 as a whole, it inflated estimates of natural mortality

and recruitment. This was driven by large outliers including the recruitment spike in

2001. On the other hand, our spatio-temporal model framework was able to attribute

these spikes to their local areas while reliably tracking the rest of the population.

Our approach of simultaneously predicting both the total biomass and its distribu-

tion across space is highly appropriate for various management approaches, from the

implementation of quotas for the entire area to explicitly spatial management.

Thorough examination of SPA 3 demonstrates the importance of modeling the

spatial characteristics of fish stocks. Even if a temporal model can reliably capture

the total biomass, key information that may impact management decisions is missed.

For example, the SPA 3 sea scallop population was seen to have been relatively

stable on a temporal scale, but the distribution of scallops and of fishing effort has

84
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undergone great shifts in space over time. Since heavily fished areas are most likely

the most productive scallop beds (Smith et al., 2017), ignoring local changes could

endanger the biological and economical sustainability of this area. While the current

assessment compensates by exclusively modeling areas under high fishing pressure

(Nasmith et al., 2016), it cannot guarantee that the fishing effort or areas of high

biomass will not shift in the future. Our spatio-temporal model framework helps

future-proof assessments against these unforeseen circumstances.

Spatio-temporal stock assessment models can be fully embedded into the Precau-

tionary Approach used by DFO. Not only can these models provide reference points

for total population biomass, they also open up the possibility of setting spatially-

explicit reference points. For example, one could set reference points for different

subareas that could be adjusted according to an area’s productivity. These types of

assessments promise to improve the economical and biological sustainability of any

fisheries that make the effort to incorporate them.

4.1 Future Directions

The most obvious future direction is to incorporate environmental covariates. This

could be done in a fairly straightforward manner by modifying the observation equa-

tions for survey tows to include environmental covariate information by way of a

regression framework. However, this would require obtaining explicit information on

these covariates through substantial time and expense, such as putting instruments

to record temperature or other variables on the survey gear.

Other research directions include modifying the underlying structure of these

spatio-temporal models. For example, one could examine the effect of having a Gaus-

sian or exponential correlation structure instead of a Matérn structure for spatial

autocorrelation. Furthermore, implementing potentially more realistic formulations

for natural mortality and recruitment may be fruitful. These could take the form

of a stock-recruit relationship for recruitment, while the popcorn model described in

Chapter 2 could be reworked into one that incorporates spatial structure directly.

It would be very interesting to see how effective our spatio-temporal models are

when applied to different areas or fisheries that are more or less variable than SPA

3. If they could be successfully fit to multiple areas of the same fishery, one could
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even try to fit these models to the entire inshore fishery. While this would require

modifications so that correlation does not extend across land (see Bakka et al., 2016),

it may well result in a unified assessment instead of having to fit multiple models, all

the while maintaining the ability to manage them separately.

While the applicability of these models to populations of relatively sedentary

species is clear, generalizing them to other fisheries might require some more work.

For motile species, it would be interesting to implement some form of movement

model to track the movement between subareas of interest. The inclusion of large-

scale population movements, such as salmon migrations, could also be beneficial to

the assessments of certain stocks.

Finally, it will be important to assess the effect of processing the locations of

commercial landings data. These landings represent the total catches from a single

trip, whose lengths can vary greatly, and are only associated with a single location.

This introduces uncertainty regarding the true locations of these removals which

our current models ignore. Obtaining more information about the length and area

covered by a particular fishing trip could help. Alternatively, one could also try

to explicitly model the potential area covered by a single fishing trip (e.g. fuzzy

clustering, spatial approaches, etc.) and split up each fishing trip into the appropriate

subareas. Regardless of what remains, it seems abundantly clear that the future of

stock assessments is necessarily spatial.
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Appendix A

This appendix contains supplemental figures for Chapter 2. The discrepancies be-

tween the indices (It, I
R
t , Lt and Nt) are caused by slight differences between ap-

proaches taken in Chapter 2 and by DFO. DFO uses a linear model to correct the

index in St-Mary’s Bay when no survey tows are done there in a year, which was not

the case for our approach. Furthermore, the repeated tows in the stratified random

sampling design with partial replacement are slightly modified in the DFO approach

to account for the previous year’s abundance, which our approach also did not do.

Discrepancies in the commercial catch (Ct) is caused by the temporal alignment de-

scribed in Chapter 2, which was not the case for the DFO input.

The zero-inflated poisson approach replaced Equation 2.16 and 2.15 by the fol-

lowing:

P (yIi ) =

⎧⎪⎨⎪⎩
πB + (1− πB)e

−λB , if yIi = 0

(1− πB)
λ
yIi
B e−λB

yIi !
, if yIi > 0

(A.1)

P (yRi ) =

⎧⎪⎨⎪⎩
πR + (1− πR)e

−λR , if yRi = 0

(1− πR)
λ
yRi
R e−λR

yRi !
, if yRi > 0

(A.2)

where yRi and yRi are the number of commercial size and recruit size scallops caught

in tow i, πB and πR are the respective probability of extra zeroes, and λB and λR are

the respective Poisson expectations.
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Figure A.1: Indices of Commercial Size Biomass (It) between 1996 and 2018
calculated by DFO (black) and from the raw survey data (red).

Figure A.2: Indices of Recruit Size Biomass (IRt ) between 1996 and 2018 calculated
by DFO (black) and from the raw survey data (red).



97

Figure A.3: Indices of Clapper Abundance (Lt) between 1996 and 2018 calculated
by DFO (black) and from the raw survey data (red).

Figure A.4: Indices of Live Scallop Abundance (Nt) between 1996 and 2018
calculated by DFO (black) and from the raw survey data (red).
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Figure A.5: Commercial Catch (Ct) between 1996 and 2018 calculated by DFO
(black) and from the raw survey data (red).

Figure A.6: Distribution of parameter estimates from second experiment experiment
(922 simulations of 22 years). Red line denotes true value.
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Figure A.7: Distribution of parameter estimates from third experiment (918
simulations of 50 years). Red line denotes true value.
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(a) Bt (b) Rt

(c) mt

Figure A.8: Functional boxplots (without whiskers) for Experiment 3 of the
difference of the predicted random effects and their true value with horizontal

dotted line at 0 and median difference shown by solid black line. 2.3a and 2.3b show
the difference as a percentage of the true value (predicted - true / true) while 2.3c

simply shows the net difference (predicted - true).
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Figure A.9: Distribution of parameter estimates from fourth experiment (983
simulations of 50 years). Red line denotes true value.
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(a) Bt (b) Rt

(c) mt

Figure A.10: Functional boxplots (without whiskers) for Experiment 4 of the
difference of the predicted random effects and their true value with horizontal

dotted line at 0 and median difference shown by solid black line. 2.3a and 2.3b show
the difference as a percentage of the true value (predicted - true / true) while 2.3c

simply shows the net difference (predicted - true).

Figure A.11: Examples of simulated biomass over 22 years by FMB.
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Figure A.12: Examples of simulated recruit biomass over 22 years by FMB.

Figure A.13: Examples of simulated natural mortality over 22 years by FMB.

Figure A.14: Examples of simulated biomass over 200 years by FMB.
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Figure A.15: Examples of simulated recruit biomass over 200 years by FMB.

Figure A.16: Examples of simulated natural mortality over 200 years by FMB.
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(a) Predicted Biomass (metric ton)

(b) Predicted Recruitment (metric ton)

(c) Predicted Natural Mortality

Figure A.17: Predicted random effects on the SPA 3 scallop data from modified
model using a zero-inflated poisson approach to zeroes (red) and FMB (blue).

Envelopes represent interpolated point-wise 95% confidence intervals respectively.
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This appendix contains supplemental figures for Chapter 3.
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Figure B.1: Observed commercial size biomass at every survey tow between 1996
and 2018. Grey dots are tows where no commercial size scallops were caught.
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Figure B.2: Observed recruit size biomass at every survey tow between 1996 and
2018. Grey dots are tows where no recruit size scallops were caught.
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Figure B.3: Observed clapper abundance at every survey tow between 1996 and
2018. Grey dots are tows where no clappers were caught.
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Figure B.4: Observed live scallop abundance at every survey tow between 1996 and
2018. Grey dots are tows where no live scallops were caught.
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Figure B.5: Median percent difference recruit density ((predicted-true)/true) for
setting A at every knot for 164 successful simulations of 20 years.
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Figure B.6: Median percent difference natural mortality ((predicted-true)/true) for
setting A at every knot for 164 successful simulations of 20 years.
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Figure B.7: Median percent difference biomass density ((predicted-true)/true) for
setting B at every knot for 176 successful simulations of 20 years.
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Figure B.8: Median percent difference recruit density ((predicted-true)/true) for
setting B at every knot for 176 successful simulations of 20 years.
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Figure B.9: Median percent difference natural mortality ((predicted-true)/true) for
setting B at every knot for 176 successful simulations of 20 years.
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(a) Bt (b) Rt

(c) mt

Figure B.10: Functional boxplots (without whiskers) of the difference of the
predicted random effects and their true value with horizontal dotted line at 0 and

median difference shown by solid black line for setting B. B.10a and B.10b show the
difference as a percentage of the true value (predicted - true / true) while B.10c

simply shows the net difference (predicted - true).
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Figure B.11: Distribution of parameter estimates from setting C (163 simulations of
20 years). Red line denotes true value.
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Figure B.12: Median percent difference biomass density ((predicted-true)/true) for
setting C at every knot for 163 successful simulations of 20 years.
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Figure B.13: Median percent difference recruit density ((predicted-true)/true) for
setting C at every knot for 163 successful simulations of 20 years.
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Figure B.14: Median percent difference natural mortality ((predicted-true)/true) for
setting C at every knot for 163 successful simulations of 20 years.
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Figure B.15: Functional boxplots (without whiskers) of the difference of the
predicted random effects and their true value with horizontal dotted line at 0 and

median difference shown by solid black line for setting C. B.15a and B.15b show the
difference as a percentage of the true value (predicted - true / true) while B.15c

simply shows the net difference (predicted - true).
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Figure B.16: Distribution of parameter estimates for setting D (146 simulations of
20 years). Red line denotes true value.
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Figure B.17: Median percent difference biomass density ((predicted-true)/true) for
setting D at every knot for 146 successful simulations of 20 years.
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Figure B.18: Median percent difference recruit density ((predicted-true)/true) for
setting D at every knot for 146 successful simulations of 20 years.
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Figure B.19: Median percent difference natural mortality ((predicted-true)/true) for
setting D at every knot for 146 successful simulations of 20 years.
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Figure B.20: Functional boxplots (without whiskers) of the difference of the
predicted random effects and their true value with horizontal dotted line at 0 and

median difference shown by solid black line for setting D. B.20a and B.20b show the
difference as a percentage of the true value (predicted - true / true) while B.20c

simply shows the net difference (predicted - true).

Figure B.21: Examples of simulated total biomass over 22 years by STM1.
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Figure B.22: Examples of simulated total recruit biomass over 22 years by STM1.

Figure B.23: Examples of simulated mean natural mortality over 22 years by STM1.

Figure B.24: Examples of simulated total biomass over 200 years by STM1.
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Figure B.25: Examples of simulated total recruit biomass over 200 years by STM1.

Figure B.26: Examples of simulated mean natural mortality over 200 years by
STM1.
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Figure B.27: Commercial size biomass density standard error (kg/km2) at each knot
between 1999 and 2019 for STM1 when qI is fixed..
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Figure B.28: Recruit biomass density standard error (kg/km2) at each knot between
1999 and 2018 for STM1 when qI is fixed..
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Figure B.29: Natural mortality standard error at each knot between 1999 and 2019
for STM1 when qI is fixed.
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Figure B.30: Predicted commercial size biomass density (kg/km2) at each knot
between 1999 and 2019 for STM1 when qI is estimated.
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Figure B.31: Predicted recruit biomass density (kg/km2) at each knot between 1999
and 2018 for STM1 when qI is estimated.
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Figure B.32: Predicted survival at each knot between 1999 and 2019 for STM1
when qI is estimated.
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Figure B.33: Commercial size biomass density standard error (kg/km2) at each knot
between 1999 and 2019 for STM1 when qI is estimated.
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Figure B.34: Recruit biomass density standard error (kg/km2) at each knot between
1999 and 2018 for STM1 when qI is estimated.
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Figure B.35: Natural mortality standard error at each knot between 1999 and 2019
for STM1 when qI is estimated.
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Figure B.36: Predicted commercial size biomass density (kg/km2) at each knot
between 1999 and 2019 for STM2 when qI is fixed.
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Figure B.37: Predicted recruit biomass density (kg/km2) at each knot between 1999
and 2018 for STM2 when qI is fixed.
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Figure B.38: Predicted survival at each knot between 1999 and 2019 for STM2
when qI is fixed.
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Figure B.39: Commercial size biomass density standard error (kg/km2) at each knot
between 1999 and 2019 for STM2 when qI is fixed.
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Figure B.40: Recruit biomass density standard error (kg/km2) at each knot between
1999 and 2018 for STM2 when qI is fixed.
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Figure B.41: Natural mortality standard error at each knot between 1999 and 2019
for STM2 when qI is fixed.
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Figure B.42: Predicted commercial size biomass density (kg/km2) at each knot
between 1999 and 2019 for STM2 when qI is estimated.
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Figure B.43: Predicted recruit biomass density (kg/km2) at each knot between 1999
and 2018 for STM2 when qI is estimated.
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Figure B.44: Predicted survival at each knot between 1999 and 2019 for STM2
when qI is estimated.



147

Figure B.45: Commercial size biomass density standard error (kg/km2) at each knot
between 1999 and 2019 for STM2 when qI is estimated.
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Figure B.46: Recruit biomass density standard error (kg/km2) at each knot between
1999 and 2018 for STM2 when qI is estimated.
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Figure B.47: Natural mortality standard error at each knot between 1999 and 2019
for STM2 when qI is estimated.
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