
EVALUATION OF ACTIVE-SET EVOLUTION STRATEGIES FOR
OPTIMIZATION WITH KNOWN CONSTRAINTS

by

Zehao Ba

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

July 2020

c© Copyright by Zehao Ba, 2020

Table of Contents

List of Tables . iv

List of Figures . v

Abstract . vii

List of Abbreviations Used . viii

Acknowledgements . ix

Chapter 1 Introduction . 1

1.1 Motivation . 3

1.2 Contribution . 4

1.3 Outline . 5

Chapter 2 Background and Related Work 6

2.1 Terminology . 6

2.1.1 Global and Local Minima . 6

2.1.2 Constrained Optimization . 8

2.1.3 Karush-Kuhn-Tucker (KKT) Conditions 10

2.1.4 Ill-conditioned Problems . 11

2.2 Evolution Strategy . 11

2.2.1 (1+1)-ES . 13

2.2.2 (µ/µ, λ)-ES . 16

2.2.3 Covariance Matrix Adaptation Evolution Strategy (CMA-ES) 17

2.3 Deterministic Algorithms for Constrained Optimization 19

2.3.1 Active-set Methods . 19

2.3.2 Interior-point Method . 22

2.4 Evolutionary Algorithms for Constrained Optimization 24

2.4.1 Pioneering Constraint-Handling Approaches 25

2.4.2 Current Constraint-Handling Approaches 27

2.4.3 Differential Evolution . 28

2.5 Test Functions . 30

ii

Chapter 3 Method . 32

3.1 Related Work . 32

3.2 Modified Active-set Evolution Strategies 38

3.3 Performance of Active-set Evolution Strategy 40

Chapter 4 Experiments . 45

4.1 Set-up . 45

4.2 Test Function . 46

4.3 Success Rate and Median Function Evaluations 47

4.4 Empirical Cumulative Running Time Distributions 50

Chapter 5 Conclusion . 56

5.1 Summary . 56

5.2 Future Work . 57

Bibliography . 59

Appendix A Test functions . 63

iii

List of Tables

3.1 Median number of objective function evaluations required of
three active-set ES for solving sphere functions with linear con-
straints. n indicates the dimension of variables, and m means
the number of active constraints in the optimal active-set. . . . 41

4.1 Table of details of 24 test functions [26]. n indicates the dimen-
sion of variables. 47

4.2 Median number of objective function evaluations required and
success rates for each problem for each algorithm. 48

A.1 Data set for test problem g19. 74

A.2 Data set for test problem g20 75

iv

List of Figures

2.1 An example of global minima and local minima of unconstrained
and constrained optimization. The x-axis indicates the vari-
ables and the y-axis represents the objective function values.
The red spots indicate the global minimum while the magenta
spots indicate the local minima. The shaded area indicates the
infeasible region. 7

2.2 Ill-conditioned problem with gradient direction and Newton di-
rection. Figure adapted from [6] 12

2.3 Evolution strategy iteration. 13

2.4 Progress rate and success probability of (1+1)-ES on sphere
model. 14

2.5 Flow chart of active-set methods. 21

3.1 This figure shows a special case of equation (3.2). The objective
function is a sphere function with the first two constraints. The
shaded areas and the areas where g1 > 0 and g2 > 0 are the
infeasible regions. The red spot is the optimal solution under
these two constraints. 35

3.2 The histograms of numbers of the objective function evaluation
for sphere function with constraints. The dimensions for (a)
and (c) are both 10 and have six constraints; for (b) and (d)
the dimensions are both n = 20 and have 12 constraints. a
indicates the number of active constraints in the optimal active-
set. There is only one active constraint at the optimal point in
case (a) and (b), while for (c) and (d), half of the constraints
are active at the optimal solution but the rest of the constraints
are not. 42

3.3 From left to right are the the median number of objective func-
tion evaluations required traces of active-set ES in PPSN confer-
ence, GECCO conference and our modified version in the sphere
function with different dimensions. In both problems, half of
the constraints are active at the optimal solution, and the re-
maining half are not active. The magenta triangle indicates the
iteration where active-set is optimal. The black crossing means
the iterations where algorithm releases the constraint(s). . . . 43

v

4.1 The empirical cumulative running time distributions of the active-
set evolution strategy, active-set method, SQP method, interior-
point method, and LSHADE44. 50

4.2 Individual comparison between the active-set ES method, fmin-
con algorithms and LSHADE44 algorithm for the test functions
g01 to g24 empirical cumulative running time distribution. . . 53

vi

Abstract

Evolution strategy (ES) is most often used to solve unconstrained black-box prob-

lems, while active-set methods focus on solving constrained optimization problems.

A recent algorithm combines (1+1)-ES and an active-set method to get an active-set

evolution strategy to solve problems in which the objective function is considered a

black-box, but the constraint functions are known explicitly. We observe that the

previous active-set evolution strategies have some settings result in less than optimal

performance, so we make some adjustments to the past algorithms. More impor-

tantly, we systematically evaluate the performances of the two previous active-set

evolution strategies with our modified version on the spherically symmetric functions

with mutually orthogonal linear constraints. We also compare the performances of

the modified version with three deterministic algorithms and an evolutionary algo-

rithm. The test set we use is from the IEEE Congress on Evolutionary Computation

(CEC) Competitions in 2006.

vii

List of Abbreviations Used

GECCO Geneticand Evolutionary Computation Conference

PPSN Geneticand Evolutionary Computation Conference

KKT Karush-Kuhn-Tucker

ES Evolution Strategie

CMA-ES Covariance Matrix Adaptation Evolution Strategy

QP Quadratic Programming

SQP Sequential Quadratic Programming

EA Evolutionary Algorithms

HM Homomorphous Map

ARCH Adaptive Ranking based Constraint Handling

DE Differential Evolution

CEC Congress on Evolutionary Computation

viii

Acknowledgements

I would like to express my sincere gratitude to Prof. Dirk V. Arnold for his support

during my master study. His patience, carefulness and wisdom constantly urged me to

keep up with him, prompting me to delve into every detail of my study. In addition, I

would also like to thank my parents for their continuous support and encouragement.

Their selfless love and dedication have enabled me to focus and work harder in my

research.

ix

Chapter 1

Introduction

Optimization is an essential tool in several areas, such as mathematics, finance, en-

gineering and machine learning. When you optimize, it means you are looking for

the best solution. However, the definition varies for “best”. For example, if you

are a vaccine researcher, you might want to maximize the efficacy of a vaccine, but

minimize the side effects. Both maximizing and minimizing are optimization prob-

lems. To perform the optimization, we first need to identify the objective function

f : Rn → R, which is a measurable quantity representing the performance of the

system. A system’s performance is affected by properties and characteristics which

can be adjusted, called variables. The optimization process is searching for an opti-

mal solution or a set of optimal solutions that maximize or minimize the objective.

In some cases, variables are constrained to certain acceptable values, which we call

constraints. For instance, setting a cost limitation for each vaccine is a constraint

to medical research. Identifying the objective, variables, and constraints for a given

problem is called modelling. The construction of the model can have a significant

impact on the effectiveness of the optimization process [32, page 9].

To solve an optimization problem, algorithms start from an initial guess of vari-

ables’ settings and iteratively generate improved estimates, based on the measure of

the objective. Ideally, algorithms will terminate after finding a valid solution that

meets some acceptability criterion. Good optimization algorithms tend to have the

following characteristics:

• Robustness, which means the algorithm should be effective on a large number

of problems.

• Efficiency, which means running the algorithm on a computer should not take

too much time or storage.

• Accuracy, which means the algorithm can find a solution that is optimal.

1

2

However, sometimes these properties may conflict. A robust algorithm may be slow;

or a fast algorithm has high storage requirements [32, page 9]. It is important to

balance these elements in a useful algorithm.

In many cases, optimization algorithms employ the objective function values, con-

straint function values, and the function’s first and second derivatives information to

optimize problems. An example of an algorithm using first derivatives of the objec-

tive function is the steepest descent optimization. The first-order gradient provides

the direction in which the objective function increases most rapidly, then the steepest

descent algorithm can iteratively proceed opposite to the direction of the gradient

to find the minima of the objective function. Newton’s method is an example of a

second-order method, which derives the direction from the second-order Taylor series

approximation. This method requires the first and second derivatives of the objective

function [32, page 44]. However, derivatives of the objective function are not always

available, as is the case in black-box optimization where the first and second order

information of the objective function cannot be examined. Under this circumstance,

strategies study the history of previous iterations to get the successful steps and the

directions, and then evolve according to these information. Evolutionary algorithms

are one approach to conduct black-box optimization.

Evolutionary algorithms are commonly applied in problems where the objective

function is difficult or impossible to represent mathematically, or the gradient estima-

tion is expensive or inaccurate [2]. In evolutionary algorithms, optimization occurs

through an iterative process. In each iteration, new candidate solutions (referred to as

offspring) are generated by combining or mutating the best candidate solutions of the

last iteration (referred to as parents), and then evaluate the objective function value

of each. The candidate solutions with the best function values will be selected as the

parents of the next iteration. These principles are inspired by biological evolution

[17].

Optimizing the objective function subject to constraints on the variables is called

constrained optimization. Constraints are denoted as equality and inequality. Le

Digabel and Wild [12] categorize constraints as quantifiable and nonquantifiable,

relaxable and unrelaxable, a-priori and simulation-based, and known and hidden.

Quantifiable and nonquantifiable means the feasibility and/or violation degree of the

3

constraint can be quantified. Relaxable indicates the constraints may not need to be

satisfied to compute meaningful objective function values. A-priori and simulation-

based constraints mean whether or not the constraint needs to be simulated by a

computer to confirm feasibility. Simulation-based constraints are potentially costly

due to launching computer simulations. Known and hidden constraints point out

whether the constraints are explicitly identified. For example, consider the problem

min{
√
x : x ∈ R}. The constraint x ≥ 0 is a hidden constraint unless it is expressed

in the problem.

1.1 Motivation

Evolution strategies most often focus on solving unconstrained continuous black-box

optimization, while active-set methods are designed to solve constrained optimization

problems. Arnold implemented an active-set approach in an evolution strategy for

dealing with constrained optimization [2, 3]. A goal of this thesis is to adjust the

algorithm of Arnold so that it solves more problems in a set of test functions [26] that

expands on those considered by Arnold. A further goal is to evaluate and compare

the performances of our modification with three deterministic algorithms and one

evolutionary algorithm.

The active-set evolution strategy was proposed at Parallel Problem Solving from

Nature (PPSN) Conference. It combines the active-set method with (1+1)-ES to

solve constrained optimization. (1+1)-ES means that a single offspring is generated

by one parent in each iteration, while the active-set method maintains a set of con-

straints that contains the constraints satisfied by successful offspring. Offspring is

usually projected onto the space determined by active-set to avoid unnecessary step-

size reduction. In [2], algorithm checks whether the after-projection offspring is better

than the best candidate solution so far at each iteration. If it does, active-set will

be replaced by the one that generates the current candidate solution. Otherwise, the

algorithm keeps the current active-set unchanged and enters the next iteration.

As more inequality constraints are added into the active-set, the search space

is reduced. Continuously doing this may reduce the search space to zero, in which

case the algorithm will repeatedly yield the same point. Under this circumstances,

Arnold suggested suspending the use of the whole active-set [2]. But this method

4

does not perform well for some problems, especially for those with a large amount of

inequality constraints in the optimal active-set. The algorithm may have long stag-

nation when inequality constraints are in the active-set but are not supposed to be.

Therefore, Arnold revised this algorithm [2] and proposed a new one at the Genetic

and Evolutionary Computation Conference (GECCO) [3]. Rather than suspending

the whole active-set, he suggested releasing individual active inequality constraints in

a random order. This revised algorithm has better performances than the previous

version overall on the Michalewicz and Schoenauer test set.

The Michalewicz and Schoenauer test set [28] contains 11 test problems, g01 to

g11; and Liang et al. extend them to 24 test problems [26]. These problems have

variable dimensions, from 2 to 24, and have different kinds of objective functions and

constraint functions. We tested the algorithm [3] on the additional problems from

Liang et al., and we observed that infinite loops may occur on some problems. Those

loops are internal to the fmincon function in the Matlab Optimization toolbox. Thus,

we are investigating adjustments to options in the fmincon function and the active-set

evolution strategy [3] so that it will work well from g12 to g24.

1.2 Contribution

In our experiments we discovered elements that affect the performance of Arnold’s

algorithm, such as the conditions for triggers to release constraints and the options

that the projection function chooses. A well designed release condition can improve

the efficiency of the algorithm, as does the projection function settings. Thus, we

revise the rules of which constraint should be released, and how to set up the projec-

tion function. More importantly, we systematically compare the performances of our

modified algorithm with algorithms from the PPSN conference and the GECCO con-

ference on different dimensional spheres with different numbers of linear constraints.

We also evaluate the performances of our modified algorithm with three deterministic

algorithms and one evolutionary algorithm on the test set gathered by Liang et al.

[26]. Deterministic algorithms include active-set methods and interior-point methods.

The evolutionary algorithm is LSHADE44.

In the first experiment on a spherically symmetric function with mutually orthogo-

nal linear constraints, we record the median number of objective function evaluations

5

required, and plot the histograms and traces of the algorithms. During the second

experiment, we analyze the performance of a selection of algorithms applied to test

functions from Liang et al. The median number of objective function evaluations re-

quired and success rates are recorded as the standard to evaluate approaches. We also

plot the empirical cumulative running time distribution which illustrates the fraction

of function instances which were optimized to a target value. The more targets the

algorithm achieves, the better its performance.

Overall, we find that our modified version performs the best among three active-

set evolution strategies on the sphere experiment, especially on the higher dimension

problems. Furthermore, it has a better performance than active-set methods, the

interior-point method and LSHADE44. The modified active-set evolution strategy

either has a higher success rate or requires fewer function evaluations to optimize a

function, or sometimes both. It also reaches the target on more function instances

than the other tested algorithms across the 24 problems.

1.3 Outline

This thesis is organized as follows: Chapter 2 introduces necessary terminology, back-

ground information and related work. Chapter 3 describes the modification we made

to the active-set evolution strategy [3] and analysis on simple test problems. In Chap-

ter 4, we explain the set up for the complete experiments and systematically compare

the performance of algorithms on test sets. The results are shown, displaying the

table of success rates and median function evaluations for each test function, and the

plots of empirical cumulative running time distributions. Finally, Chapter 5 discusses

conclusions derived from this work and considers the outlook for future work in this

field.

Chapter 2

Background and Related Work

In this chapter, we review previous work on constrained optimization, including

active-set methods, interior-point methods, and evolutionary algorithms. Active-set

methods work by transforming the optimization problem into an easier subproblem

to be solved, while interior-point methods add a penalty function and convert the

constrained problem to an unconstrained problem [32, page 529, 565]. Evolutionary

algorithms are inspired by biological evolution and are useful for addressing problems

which are difficult to solve mathematically, such as those where gradient information

is unavailable or inaccurate. Although these methods work differently, they can all

solve constrained optimization problems.

This chapter is organized as follows. In Section 2.1, some terminologies will be

given for better understanding of the process of optimization. Then, we will in-

troduce evolution strategies for unconstrained optimization problems in Section 2.2.

Gradient-based methods and evolutionary algorithms for constrained optimization

will be discussed in Section 2.3. Last, we will review the benchmarks established for

Special Sessions held in connection with the IEEE Congress of Evolutionary Compu-

tation [26].

2.1 Terminology

In this section, we introduce some necessary information about optimization, includ-

ing the concept of an optimization problem, and the tools that will be used in the

following sections.

2.1.1 Global and Local Minima

An optimization problem usually describes the process of minimizing or maximizing

an objective function. We will consider the minimization process in this thesis. In

unconstrained optimization problems, algorithms look for the global minima of the

6

7

objective function f , which means a point x∗ meets f(x∗) ≤ f(x) for all x ∈ Rn,

where n is the dimension of the search space. The global minima may be difficult

to find because the objective function value is only known where it has been tested

and may have a sharp dip. Algorithms are thus prone to finding local minima, being

unaware of the global minima. A point x∗ is a local minimum if there is an open

neighbourhood N of x∗ such that f(x∗) ≤ f(x) for all x ∈ N [32, page 13].

(a) Problem without constraint. (b) Problem with constraint.

Figure 2.1: An example of global minima and local minima of unconstrained and
constrained optimization. The x-axis indicates the variables and the y-axis represents
the objective function values. The red spots indicate the global minimum while the
magenta spots indicate the local minima. The shaded area indicates the infeasible
region.

In constrained optimization, the algorithm looks for the maxima or minima of

the objective function subject to the equality and inequality constraints. The search

space is reduced due to the constraints, and algorithms search for minimal or max-

imum function value within this reduced space. The global minima in constrained

optimization must have the smallest function value for all points satisfying the con-

straints. Figure 2.1 displays a function with and without a constraint. In the Figure

2.1a, there are no constraints so the global minimum is at the position of the red

spot. In the Figure 2.1b, a constraint appears and so the global minimum in the

unconstrained objective function is not available. The algorithm has to search for

the optimal solution in a reduced search space and the global minimum is relocated.

Therefore, It can be seen that constrained optimization problems and unconstrained

optimization problems may have different scenarios, which lead to different global

8

optima.

2.1.2 Constrained Optimization

As we have seen, optimization problems can be constrained, and there are several

methods to solving these problems. Some methods transform constrained problems

into a series of unconstrained problems; others may convert them to easier solved

constrained problems. Generally speaking, a constrained minimization problem can

be written as follows [32, page 304]:

min
x∈Rn

f(x)

subject to

gi(x) ≤ 0 i ∈ [1, ..., l]

hj(x) = 0 j ∈ [1, ...,m]

(2.1)

where f(x) is the objective function, hj, j ∈ [1, ...,m] are the equality constraints

and gi, i ∈ [1, ..., l] are the inequality constraints. The feasible set, denoted by Ω, is

described as the set of points that satisfy all constraints, that is,

Ω = {x ∈ Rn | hj(x) = 0, j ∈ [1, ...,m]; gi(x) ≤ 0, i ∈ [1, ..., l]}. (2.2)

It follows that (2.1) can be rewritten as

min
x∈Ω

f(x), (2.3)

which means constrained optimization algorithms look for the optimal solution within

Ω.

Le Digabel and Wild [12] categorize constraints as quantifiable and nonquan-

tifiable, relaxable and unrelaxable, a-priori and simulation-based, and known and

hidden.

• Quantifiable versus nonquantifiable (Q/N): A quantifiable constraint in-

dicates that the degree of feasibility and/or violation of the constraint can be

quantified. A nonquantifiable constraint means that the satisfaction or violation

degree of a constraint is inaccessible. For example, if the running of a piece of

code is less than 10 seconds, then this constraint is called quantifiable feasibility.

The reason is we can get the time it takes for the code to run, and then know

9

how far we are from the 10-second limit. However, the run will be terminated

if the run time exceeds the limit so we cannot know the degree to which the

constraint was violated. An example of a nonquantifiable constraint is using

a binary indicator for recording whether the constraint has been satisfied or

violated.

• Relaxable versus unrelaxable (R/U): During the process of obtaining op-

timal solutions, a constraint is called relaxable if it does not need to be satisfied

for the objective function to be evaluated. Generally, relaxable constraints are

restrictions from outside of the model. For example, a budget or a weight limit

only needs to be satisfied by the ultimate solution rather than throughout pro-

cess. However, an unrelaxable constraint means we must always consider and

satisfy the constraint during the entire optimization process.

• A-Priori versus simulation-based (A/S): To confirm an a priori con-

straint’s feasibility, there is no need to run an expensive simulation. Simulation-

based constraints on the other hand require that a potentially costly simulation

be run. An example of an a-priori constraint is a one-side bound, such as a

non-negativity constraint, because it is cheap to evaluate whether the solution

violates the constraint.

• Known versus hidden (K/H): Known means that the solver knows the

constraint information, while hidden constraint means the constraint is not

explicitly identified. For example, if the optimization problem is min log(x) for

x ∈ R, then x > 0 is a hidden constraint (as otherwise the objective function is

not defined), but it is not expressed in the problem. A hidden constraint cannot

be a-priori, quantifiable, or relaxable because we do not know the constraint and

cannot quantify it or detect the violation.

In order to classify the constraint-handling techniques, the above classifications

can be expressed by the combination of their initial letters. For example, QRSK

represents the constraint-handling technique that can solve the quantifiable, relaxable,

simulation-based, and known constraints.

10

2.1.3 Karush-Kuhn-Tucker (KKT) Conditions

Karush-Kuhn-Tucker (KKT) is a set of first-order necessary conditions for the optimal

solution of nonlinear programming. To state the necessary conditions, we first need

to introduce the Lagrange function. Consider the constrained minimization problem

as (2.1), the Lagrange function is defined as below [32, page 321]:

L(x, λ) = f(x) +
l∑

i=1

λigi(x) +
m∑
j=1

λl+jhj(x), (2.4)

where λ is called the Lagrange multipliers, gi are the inequality constraints and hj are

the equality constraints. The Lagrange function formulates the objective function,

equality and inequality constraints into one equation, with the Lagrange multipliers

as the coefficients of the constraints.

If x∗ is a locally optimal solution of (2.1), and f , gi and hj are continuously

differentiable at x∗, then there exists a Lagrange multiplier vector λ∗ which consists

of λ∗i , i ∈ [1, ..., l +m] such that the following conditions are satisfied at (x∗,λ∗) [32,

page 321]

∇xL(x∗,λ∗) = 0 (2.5a)

gi(x
∗) ≤ 0 for i = 1, 2, ..., l (2.5b)

hj(x
∗) = 0 for j = 1, 2, ...,m (2.5c)

λ∗i ≥ 0 for i = 1, 2, ..., l (2.5d)

λ∗i gi(x
∗) = 0 for i = 1, 2, ..., l (2.5e)

These are the necessary conditions for searching for the optimal solution of the ob-

jective function f(x) with constraints gi and hj.

(2.5a) states that at the locally optimal solution, the linear combination of the

constraint gradients with the coefficients determined by λ∗ cancel out the gradient

of the objective function. (2.5b) and (2.5c) holds as the optimal solution is feasible.

(2.5d) stipulates that the Lagrange multipliers for inequality constraints are either

zero (if the constraint is not tight at x∗) or strictly positive (if x∗ lies on the constraint

boundary). In the latter case, (2.5e) is satisfied as the value of the constraint function

is zero.

11

2.1.4 Ill-conditioned Problems

Optimization problems may be ill-conditioned. For an optimization problem, if the

condition number of the second partial derivatives matrix of the objective function

is large, then the objective function is considered to be an ill-conditioned problem

[7]. The condition number of a matrix is the ratio of the largest singular value to

the smallest. The second partial derivatives matrix of the objective function f of n

variables is also called the Hessian matrix. The Hessian matrix is given as follows:

∇2f(x) =


∂2

∂x21

∂2

∂x1∂x2
... ∂2

∂x1∂xn

∂2

∂x2∂x1
∂2

∂x22
... ∂2

∂x2∂xn
...

...
...

∂2

∂xn∂x1
∂2

∂xn∂x2
... ∂2

∂x2n

f(x) (2.6)

To solve the ill-conditioned problem, we can apply Newton’s method. Newton’s

method aims to construct a series of points from the initial guess to the minima

of f by looking for a forward direction p iteratively. According to the second-order

Taylor approximation, we have

∇f(x + p) ≈ ∇f(x) +∇2f(x)p = 0. (2.7)

Solving (2.7) can obtain p = (−∇2f(x))−1∇f(x), where (−∇2f(x))−1∇f(x) is called

Newton’s direction [32].

Figure 2.2 illustrates a problem with quadratic objective function, where thin

black lines are contour lines of the objective function, and the optimal solution is

at the center of the contour lines. This figure marks the negative of the gradient

direction −∇f(x) as a green line and Newton’s direction −(∇2f(x))−1∇f(x) as a

red line. They both point in directions where the objective function value decreases,

but it can be seen that the Newton’s direction directly points to where the optimal

solution is located, while the gradient direction does not immediately.

2.2 Evolution Strategy

The principle of biological evolution inspires evolution strategies (ES) [15]. ES are

evolutionary algorithms that date back to the 1960s. ES solve black-box optimization

problems within continuous search spaces by doing mutation, recombination, and

12

Figure 2.2: Ill-conditioned problem with gradient direction and Newton direction.
Figure adapted from [6]

selection. In ES, individuals are denoted as x ∈ Rn, a population may contain one

or more individuals. Generally, ES is an iterative process. People commonly use

mnemonic notation to describe some features of the iteration [17]. The (µ/ρ +, λ)-ES,

where µ is the number of parent individuals, ρ is the number of parent individuals for

recombination used, and λ is the number of offspring generated in each iteration. The

symbol +, denotes the selection process. ES implements either the ‘plus’ or ‘comma’

selection. In each iteration of ES (see Figure 2.3), λ individuals are generated by

mutation. The fitness of individuals in the population is determined by evaluating

them with their objective function values. Selection is conducted according to each

individual’s fitness. In ‘plus’ selection, the strategy selects the µ best candidate

solutions from µ parents and λ offspring individuals. In ‘comma’ selection, only

the λ offspring are eligible for selection. Recombination generates a new offspring

from ρ out of µ selected individuals, where ρ ≤ µ, but recombination is not always

necessary. For example, in (1+1)-ES, we conduct the mutation operator based on one

parent, generate one offspring, and then select the superior offspring as the parent

of the next generation. In this section, we will focus on (1+1)-ES, (µ/µ, λ)-ES and

(µ/µ, λ)-CMA-ES.

13

Figure 2.3: Evolution strategy iteration.

2.2.1 (1+1)-ES

(1+1)-ES is the simplest evolution strategy because there is only one offspring is

generated by a mutation operator applied to a parent in each iteration. During the

minimization process, new offspring y(k)updates by replacing its parent x(k) when the

offspring’s function value is smaller than the parent’s, where the superscript indicates

the iteration number.

The mutation operator adds a symmetric point perturbation to the parent, and

the perturbation comes from a multivariate normal distribution, N (0,C), with zero

mean value and covariance matrix C ∈ Rn×n [17]. The mutation operator in (1+1)-

ES is spherical/isotropic, which means the covariance matrix C is proportional to the

identity matrix I. The mutation distribution follows σ ×N (0, I) in (1+1)-ES where

σ ∈ R+ represents step-size.

Tuning the step-size σ is important because it influences the performance of the

ES. A small σ may lead to a high success probability, but it slows down the progress

towards the solution. The success probability, denoted by Psucc, is the probability

that an offspring’s function value is better than a parent’s. The progress rate, φ, is

defined as the expected distance change of the parent towards the optimum point.

Having too large of a σ decreases the probability of stepping towards the optimum

[8]. Based on the fact that both Psucc and φ depend on σ, Rechenberg [34] develops

14

a step-size adaptation mechanism for (1+1)-ES by calculating the optimum success

probability of the quadratic sphere:

f(x) =
n∑
i=1

x2
i (2.8)

The success probability Psucc and progress rate φ calculated from the sphere model

(2.8) are shown in Figure 2.4 when n approached ∞. It can be seen that the success

probability curve decreases as the step-size increases. In contrast, the progress rate

curve increases first and then decreases as the step-size increases. The x-axis is

represented as σ n
R

, where n indicates the dimension of the problem, and R implies

the distance between the candidate solution to the optimal solution. The choice of

step-size should be small because a smaller step-size can have a higher probability of

success, but too small a step-size will lead to slow progress. Therefore, it is important

to find a balance that makes a proper step-size for achieving a high progress rate.

We can see that the progress rate reaches the optimal value when the corresponding

success probability is ≈ 0.270. Other functions may have different optimal success

(a) Success probability. (b) Progress rate.

Figure 2.4: Progress rate and success probability of (1+1)-ES on sphere model.

probabilities, for example, the corridor function [34] which is defined as

f(x) =

x1 if |xi| < 1 for i = 2, 3, ..., n

∞ otherwise.
(2.9)

The optimal success probability of this function is ≈ 0.184 [34]. As a compromise

between these two probabilities, Rechenberg proposed 0.2 as a target for success

15

probabilities in the (1+1)-ES. In summary, to gain nearly optimal performance in

(1+1)-ES, we increase the step-size if Psucc > 1/5 and we decrease it when Psucc < 1/5.

If Psucc = 1/5, the step-size does not change. This approach is also known as the

1/5th rule.

Algorithm 1 shows (1+1)-ES with the 1/5th rule [17]. σ(k) represents the step-size

and x(k) indicates the parent at the kth iteration, while y(k) is the offspring of the

kth iteration. Line 4 implements mutation, which ensures unbiased random mutation

on x(k) to generate offspring y(k). Line 5 updates σ(k) by the 1/5th rule to become

σ(k+1) in (k + 1)th iteration. Kern et al. [22] proposed a simple implementation

Algorithm 1 (1+1)-ES with 1/5th rule [17]

1: given n, k ∈ N+, d ≈
√
n+ 1

2: Initialize σ(0) ∈ R+,x(0) ∈ Rn

3: while the termination criterion is not met do

4: y(k) ← x(k) + σ(k) ×N (0, I) // mutation

5: σ(k+1) ← σ(k) exp1/d(1f(y(k))≤f(x(k)) − 1/5)

6: if f(y(k)) ≤ f(x(k)) then

7: x(k+1) ← y(k)

8: else

9: x(k+1) ← x(k)

10: end if

11: k ← k + 1

12: end while

of the 1/5th rule. Rather than estimating the success probability, they adapt the

step-size by using σ(k+1) = σ(k) exp1/d(1f(y(k))≤f(x(k)) − 1/5) where 1f(y(k))≤f(x(k)) is an

indicator function. The indicator function equals to one if condition f(y(k)) ≤ f(x(k))

is satisfied, which means the offspring mutated by the parent is successful, and the

step-size increases by the factor of e0.8/d. If not, 1f(y(k))≤f(x(k)) equals zero, and σ

decreases by the factor of e−0.2/d. Lines 6-10 display the selection steps. The function

values of the new candidate solution and the best solution found up to this point are

compared. If the new candidate solution’s function value is less than or equal to the

current best solution, y(k) replaces x(k) as the parent of next iteration. If not, keep

16

the parent x(k). Repeat Line 3-11 until the optimal solution is found or some other

stop criterion is met.

2.2.2 (µ/µ, λ)-ES

The next type of ES we consider is the (µ/µ, λ)-ES [17]. Comparing with (1+1)-ES,

(µ/µ, λ)-ES generates λ candidate solutions in each iteration and selects the µ best

candidates according to their function values. In order to integrate the information of

µ candidates, a recombination mechanism is introduced. This mechanism combines

the µ best parents and produces a recombinant individual.

Apart from recombination, another step-size adaptation strategy is commonly

used in (µ/µ, λ)-ES, called the cumulative step-size adaptation (CSA). CSA accumu-

lates the relationship between past consecutive steps. If there is a positive correlation

between consecutive steps, then the steps can be replaced by fewer and longer steps

in the same direction. Algorithm 2 introduces (µ/µ, λ)-ES with CSA and the recom-

bination mechanism.

Algorithm 2 (µ/µ, λ)-ES [17]

1: given n, k ∈ N+, λ ≥ 5n, µ ≈ λ/4 ∈ N, τ ≈ 1/
√
n

2: initialize x(0) ∈ Rn, σ(0) ∈ Rn
+

3: while the termination criterion is not met do

4: for m ∈ {1, ..., λ} do

5: z
(k)
m = N (0, I)

6: y
(k)
m = x(k) + σ

(k)
m z

(k)
m // mutation

7: Compute f(y
(k)
m)

8: P = sel µ best({(y(k)
m , z

(k)
m , f(y

(k)
m)) | 1 ≤ m ≤ λ})

9: s
(k+1)
σ ← (1− cσ)s

(k)
σ +

√
cσ(2− cσ)

√
µ

µ

∑
z
(k)
m ∈P

z
(k)
m

10: σ(k+1) ← σ(k)expcσ/dσ(||s
(k+1)
σ ||

E||N (0,I)|| − 1)

11: x(k+1) = 1
µ

∑
y
(k)
m ∈P

y
(k)
m

12: k ← k + 1

13: end while

In a single iteration, Algorithm 2 generates λ candidate offspring by mutating

17

from x(k) in Lines 4-6, where y
(k)
m indicates the mth offspring at the kth iteration.

Mutation distribution is still isotropic here. Each candidate offspring’s function value

is computed in Line 7. Then the µ best offspring from the λ candidates are selected

based on their function values (Line 8). Lines 9-10 implement the cumulative step-

size adaptation. sσ is an exponentially fading record of mutation steps. This record

accumulates a sequence of consecutive successful z
(k)
m steps, and is also called the

search path. Accumulating successful steps into the search path allows for exploiting

correlations between successive steps. For example, if two successful mutation steps

are going in the same direction, s
(k+1)
σ will be comparatively long. If they are going in

the opposite direction, s
(k+1)
σ will be comparatively short [18]. cσ in Line 9 indicates

the cumulative number of iterations of s
(k+1)
σ . If cσ = 1, then (1 − cσ)s

(k)
σ = 0, and

so the prior information is not retained [18]; if cσ = 0, then s
(k+1)
σ = s

(k)
σ , and no

learning takes place.
√
cσ(2− cσ)µ is a normalization constant to ensure that s

(k+1)
σ

is standard normally distributed if the selection of mutation vectors is random. The

reason is if z are independently standard normally distributed, then their average

is normally distributed. The normalization constant
√
cσ(2− cσ)µ cancels out the

µ, resulting in s
(k+1)
σ having standard normally distributed components. σ(k+1) is

updated by comparing the length of search path ||s(k+1)
σ || with the expected length

of N (0, I) (Line 10). When ||s(k+1)
σ || = E||N (0, I)||, expcσ/dσ(||s

(k+1)
σ ||

E||N (0,I)|| − 1) = 1, and

σ(k+1) = σ(k). If ||s(k+1)
σ || < E||N (0, I)||, σ(k+1) is decreased; otherwise, σ(k+1) is

increased. dσ is a damping parameter to decide the scale change of σ(k) [16].

Recombination is conducted in Line 11. x(k+1) at the (k+1)th iteration is obtained

by averaging the current best children over µ [17]. The recombination used here is

intermediate recombination, which computes the average value among all selected

offspring.

2.2.3 Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

So far, only isotropic mutation operators have been used. In covariance matrix adap-

tation evolution strategy (CMA-ES), offspring are sampled as x+σ×N (0,C) where

the covariance matrix C ∈ Rn×n determines the shape of the mutation ellipse. A

symmetric and positive definite covariance matrix is proposed in CMA-ES so that

the distribution of mutation can adjust with the shape of the objective function.

18

This is useful, especially in ill-conditioned problems [16]. For example, if the objec-

tive function contours are an ill-conditioned ellipsoid, the mutated distribution can

adjust as the same shape to the objective function contours with a general covariance

matrix.

Algorithm 3 (µ/µ, λ)-CMA-ES [17]

1: initialize s
(0)
σ = 0, s

(0)
c = 0,C(0) = I,x(0) ∈ Rn, σ(0) ∈ Rn

+, k ∈ N+

2: while the termination criterion is not met do

3: for m ∈ {1, ..., λ} do

4: z
(k)
m = N (0, I)

5: y
(k)
m = x(k) + σ(k)(C(k))1/2 × z

(k)
m

6: P = sel µ best({(y(k)
m , z

(k)
m , f(x

(k)
m)) | 1 ≤ m ≤ λ})

7: x(k+1) ← x(k) + σ(k)(C(k))1/2
∑

z
(k)
m ∈P

z
(k)
m /µ

8: s
(k+1)
σ ← (1− cσ)s

(k)
σ +

√
cσ(2− cσ)

√
µ

µ

∑
z
(k)
m ∈P

z
(k)
m

9: s
(k+1)
c ← (1− cc)s(k)

c +
√
cc(2− cc)

√
µ

µ

∑
z
(k)
m ∈P

(C(k))1/2z
(k)
m

10: σ(k+1) ← σ(k)expcσ/dσ(||s
(k+1)
σ ||

E||N (0,I)|| − 1)

11: C(k+1) ← (1− ccov)C(k) + ccov · s(k+1)
c · (s(k+1)

c)ᵀ

12: k ← k + 1

13: end while

The (µ/µ, λ)-CMA-ES algorithm is described in Algorithm 3. The CMA-ES al-

gorithm described here has some differences from the one in [17] because they use

different recombination operators. It samples λ candidate solutions at the beginning

(Lines 3-5). x(k) is the parent at the kth iteration and y(k) are the offsprings. The al-

gorithm selects the µ best offspring y
(k)
m , corresponding mutation z

(k+1)
m and function

values f(y
(k)
m) from the λ offspring (Line 6). x(k+1) (Line 7) is generated by covariance

matrix C(k) and the average of the selected z
(k)
m over µ.

Two search paths are updated as follows. The first path is s
(k+1)
σ (Line 8), which is

the same as the s
(k+1)
σ in Algorithm 2. The second path s

(k+1)
c (Line 9) is a cumulation

for C [16]. cc works as the same as cσ [18]. The update of σ(k+1) (Line 10) is the

same as the σ(k+1) updating in Algorithm 2. Comparing ||s(k+1)
σ || with its expected

length E||N (0, I)|| and increasing σ(k+1) if ||s(k+1)
σ || > E||N (0, I)||, decreasing σ(k+1)

19

if ||s(k+1)
σ || < E||N (0, I)||. σ(k+1) does not change when ||s(k+1)

σ || = E||N (0, I)|| [16].

The parameter settings for cσ and dσ are given in [18]. Line 11 describes the adapta-

tion of the covariance matrix C(k+1). It takes place by means of the evolution path

s
(k+1)
c . The shape of the covariance matrix of the next generation, C(k+1), is decided

by C(k) and s
(k+1)
c . ccov is the change rate of the covariance matrix, which has the

same effect as cc and cσ [18].

Compared to the (1+1)-ES, Algorithm 3 introduces two search paths, sc and

sσ. Maintaining these two search paths sc and sσ has two benefits: first, the paths

can filter high-frequency information, which is most likely noisy. Second, they can

adjust the shape of the mutation distribution adaptively according to the shape of

the objective function, which makes CMA-ES perform well in ill-conditioned problems

[18].

2.3 Deterministic Algorithms for Constrained Optimization

There are several deterministic algorithms for constrained optimization, such as interior-

point methods, Lagrange multiplier methods, and active-set methods. In this section,

we are going to introduce two deterministic methods that we used for comparison in

our experiment. One is active-set methods, the other is an interior-point method.

2.3.1 Active-set Methods

Active-set methods have been widely used for solving constrained optimization prob-

lems since the 1970s. An active set A(k) is a set to store active constraints at the kth

iterate x(k). The idea of active-set methods is to convert the optimization problem to

an easier subproblem, maintain a set of active constraints, and find a step from one

iterate to the next. Finding a step is conducted by solving the subproblem within

the feasible region that the active set determines until an optimal point is found.

For constrained optimization, equality constraints are always active, and inequality

constraints become active when they are tight [32, page 467].

Active-set methods convert the objective function to quadratic programming (QP)

subproblems, which is the process of solving a quadratic optimization problem in

each step based on the approximation of the first three terms of the Taylor series. It

20

optimizes a quadratic function of multiple variables subjected to linear constraints of

these variables. The general quadratic program can be denoted as

min
x

q(x) =
1

2
xᵀHx + xᵀc

subject to aᵀ
k x = bk, k ∈ [1, ...,m],

rᵀt x ≤ ut, t ∈ [1, ..., l]

(2.10)

where H is the n × n Hessian matrix (2.6), c,x are vectors in Rn, and ak and rt

represent the coefficients of linear equality constraints and inequality constraints,

respectively. If H is positive semi-definite (xᵀHx ≥ 0 for all x ∈ Rn), we say that

(2.10) is a convex problem. On the other hand, if H is an indefinite matrix (xᵀHx <

0 for some x ∈ Rn), then (2.10) is a nonconvex problem, which means the q(x) may

have several local minima in multiple feasible regions or be indefinite, and it is difficult

to find global optimal solution. For this section, we shall focus on convex quadratic

programming.

The goal of active-set methods is to find a step from the current iterate to the

next in the feasible region by solving a QP subproblem aiming to make the objective

function value decrease. Therefore, defining the step as p, the QP subproblems can

be established with p as the variable. This method is also called active-set sequential

quadratic programming (SQP) methods because obtaining the optimal solution of the

objective function requires solving a series of quadratic programming subproblems.

The nonlinear constrained problem is linearized in a QP subproblem as below:

min
p

q(x(k) + p(k)) = l(k)ᵀp(k) +
1

2
p(k)ᵀH(k) p(k)

subject to ∇hj(x(k))ᵀp(k) + hj(x
(k)) = 0, j ∈ [1, ...,m],

∇gi(x(k))ᵀ p(k) + gi(x
(k)) ≤ 0, i ∈ [1, ..., l].

(2.11)

where l(k) = ∇f(x(k)).

Figure 2.5 displays the procedure of active-set methods for a single iteration k.

In each iteration, we solve (2.11) to get p(k). If p(k) is nonzero, the algorithm needs

to define a step length α(k) to decide how far x(k) is going to move. Determining

the value of α(k) is ensuring that the new point x(k+1) is in the feasible region. If

x(k) + p(k) is feasible with respect to all constraints, then α(k) = 1 and x(k+1) =

x(k) + p(k). Otherwise, α(k) is a non-negative number between [0, 1]. It is possible

21

Start

Solve (2.11) and get p(k)

p(k) = 0

Compute λd
where d ∈ A(k) Compute α(k) and update

x by x = x(k) + α(k)p(k)

Any λd < 0
for

inequality
constraints

α = 0

Delete constraint d
from A(k)

Add a constraint
to A(k)

k = k + 1

A(k) equals to A∗,
optimal solution x∗

has been found

yes no

yes

no

yes

no

Figure 2.5: Flow chart of active-set methods.

for α(k) = 0, which means there are other constraints that should have been added

to A(k) but were not added at current iteration point x(k). Under this circumstance,

the algorithm should update A(k) by adding a constraint to get a new active set

22

A(k+1). Repeating this procedure until a point x(k) which minimizes the quadratic

programming subproblem is found with current active set A(k). To verify that x(k) is

the global optimal solution x∗ of the original objective function, the algorithm checks

whether the corresponding λd, d ∈ A(k) for each active inequality constraint satisfies

the KKT conditions in (2.5) . If any λd < 0, the (2.5d) condition is not met, algorithm

deletes constraint d from A(k) and solves this new subproblem (2.11) to obtain a new

step. If x(k) satisfies all KKT conditions, then it is the global optimal solution x∗ for

the original problem (2.10), and A(k) equals to A∗, and the algorithm terminates.

2.3.2 Interior-point Method

Interior-point methods were first introduced in the 1960s [32, page 563]. They typi-

cally look for a solution from the inside of the feasible area. The interior-point method

that we used in our experiment is the barrier method. The idea of the barrier method

is to convert the constrained problem into a series of approximate minimization prob-

lems by adding a barrier function. The logarithm function is used here so that it

prevents the algorithm from generating points that are too close to the boundary of

the feasible region. Associating equation (2.1) with the barrier function, we have:

min
x,s

f(x)− µ
l∑

i=1

log(si)

subject to

gi(x) + si = 0 i ∈ [1, ..., l]

hj(x) = 0 j ∈ [1, ...,m]

(2.12)

where µ is a positive parameter. It can be seen that the inequality constraints gi(x) ≤
0 are transformed into equality constraints with a vector s. Hidden constraints si ≥ 0

are not included in (2.12) because minimization of −µ
∑l

i=1 log(si) prevents si being

too close to zero. The number of si is the same as the number of inequality constraints

gi. The value of si is strictly positive to ensure log(si) is valid.

Incorporating the constraints into the objective function by adding Lagrange mul-

tipliers, we have Lagrangian function

L(x, s,λy,λz) = f(x) + µ

l∑
i=1

log(si) +
l∑

i=1

λi(gi(x) + si) +
m∑
j=1

λl+jhj(x) (2.13)

23

where λy = (λl+1, . . . , λl+m) and λz = (λ1, . . . , λl) are the corresponding Lagrange

multipliers of equality and inequality constraints, respectively. The gradient of the

Lagrangian in (2.13) with respect to x is

∇xL = ∇f(x) + Aᵀ
E(x)λy + Aᵀ

I(x)λz (2.14)

where AE(x) and AI(x) are the matrices of constraints gradients, that are

Aᵀ
E(x) = [∇h1(x),∇h2(x), ...,∇hm(x)],

Aᵀ
I(x) = [∇g1(x),∇g2(x), ...,∇gl(x)].

(2.15)

The partial derivative of the Lagrangian in (2.13) with respect to si is

∂L
∂si

= −µsi + λi (2.16)

Both (2.14) and (2.16) equal zero at the optimal solution x∗, combining them

with the equality and inequality constraints in (2.12), we have below equations at the

optimal solution:

∇f(x∗) + Aᵀ
E(x∗)λ∗y + Aᵀ

I(x
∗)λ∗z = 0 (2.17a)

Sλ∗z + µe = 0 (2.17b)

hj(x
∗) = 0 (2.17c)

gi(x
∗) + s∗i = 0. (2.17d)

where S is the diagonal matrix of s and e = (1, 1, ..., 1)ᵀ.

The Newton’s method of determining root is applied here to find a direction for-

ward at the current point. The search step can be denoted as p(k) = (p
(k)
x ,p

(k)
s ,p

(k)
λy
,p

(k)
λz

)

[32, page 566]. However, Newton’s method iterates with a fixed step length because

it does not have a step length parameter. As such, appropriate step length α is intro-

duced in the interior-point method for better performance. The choice of α ∈ (0, 1]

should make x and s satisfy the corresponding constraints [32, page 567]. The new

iterate (x(k+1), s(k+1),λy
(k+1),λz

(k+1)) can be denoted as

x(k+1) = x(k) + α(k)
s p(k)

x , s(k+1) = s(k) + α(k)
s p(k)

s ,

λy
(k+1) = λy

(k) + α(k)
z p

(k)
λy
, λ(k+1)

z = λ(k)
z + α(k)

z p
(k)
λz
.

(2.18)

24

Algorithm 4 Interior-point algorithm [32, page 568]

1: initialize s(0) > 0, set initial barrier parameter µ(0) > 0.

2: while the termination criterion is not met do

3: if E(k) ≤ ε then

4: Obtain the search direction p(k);

5: Compute the step length α(k);

6: Compute new iterate by (2.18);

7: Update µ(k)

8: end if

9: end while

Basic steps of the interior-point algorithm are summarized in Algorithm 4 [32,

page 565]. The new iterate is generated by p(k) and α(k). Updating the barrier

parameter µ(k) and repeating these procedures until the optimal solution is found.

We notice that Line 3 mentions an error function E(k). It is the condition of

whether or not the current point satisfies the KKT conditions to some accuracy

ε > 0. The error function is defined as:

E(k) = max{||∇f(x(k)) + Aᵀ
E(x(k))λ(k)

y + Aᵀ
I(x

(k))λ(k)
z ||,

||Sλ(k)
z − µ(k)e||, ||hj(x(k))||, ||gi(x(k)) + s(k)||}

(2.19)

where || · || is the vector norm. The algorithm repeats until a point is found that

satisfies all KKT conditions. The principle of updating the barrier parameter µ(k) is

to ensure the sequence of µ(k) converges to zero so that the optimal point meets the

KKT conditions of the original objective function.

Instead of swapping inequality constraints back and forth in active-set methods,

interior-point methods search the optimum by gradually decreasing µ. The drawback

of interior-point methods is they usually require a feasible initial point which is not

easy to guarantee for every problem. Both approaches play a significant role in solving

nonlinear optimization problems.

2.4 Evolutionary Algorithms for Constrained Optimization

There are some evolutionary algorithms (EA) for constrained optimization. EA aim

to solve difficult objective functions, such as non-differentiable or discontinuous ones.

25

In order to be able to solve constrained optimization problems, constraint handling

techniques need to be introduced. In this section, we are going to present some

constraint-handling approaches that were introduced early in the literature [10], fol-

lowed by a discussion of some recent constraint-handling evolution strategies. An

adaptive version of the differential evolution is also considered, that is LSHADE44

[33], which we used in our experiment.

2.4.1 Pioneering Constraint-Handling Approaches

Some of the pioneering work on constraint-handling methods were created by Mezura-

Montes and Coello Coello [27] who categorized these methods into four main groups:

penalty functions, special representations and operators, repair algorithms and sepa-

ration of objective function and constraints.

Penalty functions are common methods to solve a constrained problems and were

first proposed by Courant in 1943 [11]. The normal approach of penalty functions is

transforming a constrained problem to an unconstrained problem, and then measuring

the degree to which a point violates the constraints. In mathematical programming,

penalty methods are categorized as interior methods and exterior methods. In interior

cases, when a point is far from the constraint boundary, the penalty function value is

small, and when it is close to the constraint boundary, the penalty function value tends

to infinity. Therefore, constraint boundaries are similar to barriers which prevent

points from getting into the infeasible region. The method used in Section 2.3.2 is an

example of an interior method. On the other hand, exterior methods design a function

so that the penalty function value is equal to the original objective function value at a

feasible point, but equals the original objective function value plus a large constraint

positive at an infeasible point. The exterior penalty functions can be written as [27]:

Φ(x) = f(x) + d(x) (2.20)

where Φ(x) is the new objective function with penalty elements d(x). d(x) can be

calculated as follows:

d(x) =
l∑

i=1

ri ×max [0, gi(x)]2 +
m∑
j=1

cj × |hj(x)| (2.21)

26

where ri and cj are penalty factors, which are normally positive constants during the

entire evolutionary process. The equality and inequality constraints are treated differ-

ently because an equality constraint is violated only when hj(x) 6= 0, but an inequality

constraint is violated only when gi(x) > 0. To make d(x) = 0 when all constraints

are met, (2.21) uses (max [0, gi(x)]). The difficulty of the penalty function is choosing

the appropriate penalty factors. Penalty factors are highly problem-independent and

need careful tuning for each problem.

The special representations and operator methods intend to map the feasible re-

gion onto a space with a different shape so that the problem is easier to be solved [27].

The space after-mapped is also called decoded space. The principle of mapping is

each feasible solution in the search space must be included in the decoded space, and

vice versa. Any small change in the search space leads to a small change in the de-

coded space as well. The homomorphous maps (HM) approach is proposed by Koziel

and Michalewicz in 1998 [23], which mapped the feasible region onto a n-dimensional

cube. However, HM are sometimes too complex to implement, and usually need a

large number of objective function evaluations. Therefore, the special representations

and operator approaches are rarely used [27].

Repair algorithms transform an infeasible solution into a feasible one, in other

words, repair the infeasible candidate. Michalewicz proposed the GENOCOP in 1991

[29], but it was only used for solving linear constraints. Later, the GENOCOP III

method [30] was introduced, which uses GENOCOP [29] to deal with one of its two

populations. The first population is used to store candidate solutions in GENOCOP

that only satisfy the linear constraints. A special operator is designed to convert these

solutions into fully feasible solutions. The second population stores these feasible

points. This process repairs only the points that satisfy the linear constraints to

the points that satisfy all constraints so that they can be evaluated by the objective

function.

The idea of separation of constraints and objective is opposite to the penalty func-

tion techniques. Hinterding and Michalewicz [20] introduced the idea of separating

the optimization problem into two phases: the first one focuses on generating feasible

solutions but ignores their objective function values. The second phase optimizes the

objective function among at these candidate solutions. A disadvantage of this kind of

27

approach is that an algorithm may be biased because it concentrates on searching for

the smaller constraint function values first, but ignoring the objective function value

[27].

The stochastic ranking was originally proposed by Runarsson and Yao in 2000 [35].

It is designed to deal with the shortcoming of penalty function approaches, especially

for those suffering from poorly chosen penalty factors. It introduces a user-defined

parameter to decide how to compare the infeasible candidate points, either based on

the objective function value of these points or the sum of constraint violations of

them.

2.4.2 Current Constraint-Handling Approaches

Beyond the constraint-handling methods mentioned above, there are a set of recent

constraint-handling techniques which are used more often in current research. Arnold

and Porter [4] proposed the adaptive augmented Lagrangian constraint handling tech-

nique which converts a constrained problem to an unconstrained problem by adapting

the augmented Lagrange function. This method utilizes a strategy for adapting the

penalty parameter and Lagrange factor, which was first proposed for (1+1)-ES and

extended to CMA-ES with a single constraint problem by Atamna, Auger and Hansen

[5]. The taxonomy of the adaptive augmented Lagrangian constraint handling tech-

nique is QRSK, and it exhibits affine invariance. Other strategies reduce the dimen-

sion of the search space by forcing active inequality constraints to be equalities; such

as active-set ES [2, 3]. The constraint taxonomy of active-set ES is Q*AK, it means

Q, R/U, A, K. Linear constraint covariance matrix self-adaptation ES method [37]

applies on a variant of CMA-ES, and it focuses on explicitly and linearly constrained

problems. This algorithm solves the same type of constraints as active-set ES. In

2019, Sakamoto and Akimoto [36] proposed an adaptive ranking based constraint

handling (ARCH) for CMA-ES with explicitly constrained optimization, it can also

solve Q*AK constraints. Moreover, ARCH has both invariance properties.

The first invariance property is invariance with respect to strictly increasing trans-

formations of the objective and constraint functions. It indicates the performance of

the algorithm is not influenced by the increasing transformation of the objective and

constraint functions. The second invariance property is the invariance to an affine

28

transformation of the search space. An affine transformation means that, a linear

transformation is performed on a vector space, followed by a translation. Invariance

to an affine transformation of the search space means the algorithm has the same

ability to solve constrained problems on the original coordinate system as well as

the affine transformed coordinate system. An algorithm with such an invariance can

transform the shape of search space that is difficult to solve into a shape that is easier

to solve [36].

In ARCH, the algorithm first repairs the infeasible points before they are evalu-

ated. Then a total ranking is used in ARCH as the fitness value of candidate solutions

instead of their function values. The total ranking is calculated by the weighted sum

of candidate solutions’ ranking based on their objective function value plus the con-

straint violations which are measured by the Mahalanobis distance with a ranking

coefficient. The Mahalanobis distance is the distance between an infeasible point

and the intersection of the violated constraints but is independent to the coordinate

choices. Using the Mahalanobis distance allows the algorithm to obtain the invariant

affine properties of the search space. The total ranking helps the algorithm maintain

the invariance to element-wise increasing transformations of the objective and con-

straint functions. An adaptation of the ranking coefficient is employed during the

calculatation of the total ranking, which is inspired by the weighted recombination

in ES [1]. Overall, ARCH is a useful algorithm because of its invariance properties.

Furthermore, the repair operator used when dealing with the infeasible points is very

similar to the projection that was used to repair the infeasible point in active-set ES.

We will discuss active-set ES in detail in chapter 3.

2.4.3 Differential Evolution

In this section, we mainly focus on differential evolution, or DE, algorithms because

one of our comparison algorithms, LSHADE44, is an adaptive version of a DE algo-

rithm.

Differential evolution was first introduced by Storn and Price in 1996 [39, 38]. It

works by maintaining a population P of N individuals within the search space S.

New trial points are generated by mutation, crossover and selection.

DE and ES have the similarities and differences. They both produce new points

29

from past iterations and do selection for the next generation. The differences are

that they carry out different mutation and recombination/crossover strategies for

individuals. In DE, each vector x
(k)
s is in the population P , where s ∈ [1, 2, ..., N], and

k indicates the generation number. In each iteration, mutation is conducted by adding

the scaled differences between two existing vectors x
(k)
2 and x

(k)
3 to another distinct

vector x
(k)
1 . That is y(k+1) = x

(k)
1 +F (x

(k)
2 −x

(k)
3) where F is called the mutation factor

which is a constant in [0, 2], and y is called the trial vector. Whether crossover occurs

depends on a probability CR in from [0, 1] which is called the crossover probability.

For each dimension i ∈ [1, ..., n] in xs where s ∈ [1, 2, ..., N]. If a random number in

[0, 1] is less than the value of CR, y
(k+1)
i,s = x

(k)
1,s+F (x

(k)
2,s−x

(k)
3,s); otherwise, y

(k+1)
i,s = x

(k)
i,s .

The function value of y
(k+1)
s and x

(k)
s is evaluated and the vector with the lower

function value will replace the other in the population. When all the individuals in

the population have undergone mutation, crossover and selection, the algorithm will

enter the next iteration with the updated population until the termination criterion

is met.

DE can be modified for constrained optimization problems, Takahama and Sakai

first proposed εDE in 2005 [40]. These DE are denoted by incorporating the ε method.

This method defines an order relation, the ε level comparison, between the objective

function value f(x) and the constraint violation g(x), and optimizes the constraint vi-

olation and the objective function separately. The constraint violation g(x) indicates

how much a point x violates the constraints. If x is in the feasible region, g(x) = 0;

otherwise, g(x) > 0. Let f1, f2 and g1, g2 denote the function values and constraint

violations at the point x1 and x2, respectively. For any ε ≥ 0, the ε level comparisons

<ε and ≤ε between (f1, g1) and (f2, g2) are defined as:

(f1, g1) <ε (f2, g2)⇔


f1 < f2, if g1, g2 ≤ ε

f1 < f2, if g1 = g2

g1 < g2, otherwise

(2.22)

(f1, g1) ≤ε (f2, g2)⇔


f1 ≤ f2, if g1, g2 ≤ ε

f1 ≤ f2, if g1 = g2

g1 ≤ g2, otherwise

(2.23)

In summary, εDE no longer compares the parent and child by their objective function

value, but uses the ε level comparisons above. Applying the ε level comparisons can

30

obtain constraints violations and choose points that violate the constraints less often.

These εDE were improved by introducing a gradient-based mutation and elitism

in 2006 [40]. The gradient-based mutation finds a feasible point by using the gradi-

ent of constraints at the infeasible point. Elitism preserves feasible points with less

constraint violations as feasible elites. The improved εDE searches for vectors within

both the original population and the elite population.

Another adaptive version of the DE algorithm is LSHADE44. It is initially used for

solving bound-constrained optimization, but Poláková et al. modified it for solving

constrained problems in 2016 [33]. It combines the L-SHADE algorithm with two

mutation strategies and two crossover strategies to make the algorithm more efficient.

In each iteration, LSHADE44 maintains a population set P = {x1,x2, ...,xN}. A trial

point is generated from a point in P through mutation and crossover. The choice of

strategies depends on the previous count of successes. The higher the number of

successes, the more likely this strategy will be selected. Once a trial point is chosen,

LSHADE44 evaluates the function value and constraint violation of the trial point.

The algorithm tends to leave the feasible points with small function value or the

infeasible point with small constraint violation in the population. After all points in

P are processed as a parent, an updated population is generated. Finally, LSHADE44

applies a linearly decreasing population size mechanism. As the number of objective

function evaluations increase, the population size decreases linearly generation by

generation. This is because reducing the population size has been shown to improve

the performance of the EA algorithm [9, 25]. These steps are repeated until the

termination condition is met.

2.5 Test Functions

The test functions are chosen from IEEE Congress on Evolutionary Computation

(CEC) competitions. They are the benchmark for the evolutionary algorithm since

they provide the environment of constrained tests and are used for comparing and

evaluating algorithms. CEC competitions proposed a benchmark for single objective

optimization with constraints in CEC2006 and CEC2010.

To solve a constrained problem, it is unclear what characteristics make it difficult

31

to be solved by evolutionary algorithms. Any constrained problem may contain mul-

tiple parameters, such as the number of linear or nonlinear constraints, the number of

equality or inequality constraints, and the type of the objective function. CEC2006

special session benchmark presented 24 distinct constrained functions with varying

search space dimension between n = 2 and n = 24, as well as different types and

numbers of constraints and different types of the objection functions. The constraints

include linear equality and inequality constraints, and nonlinear equality and inequal-

ity constraints. The objective function types are linear, quadratic, cubic, polynomial,

and nonlinear. The number of active constraints in the optimal active-set ranges from

0 to 24 [26].

CEC2010 special session benchmark defines 18 new constrained problems and have

only one overlap functions with CEC2006 [41]. It focuses on eight distinct objective

functions with their variations, including parameter translations and/or rotations.

Some of the objective and constraint functions are collected from unconstrained prob-

lems, such as the Rosenbrock function, Schwefel’s function, and other functions which

can be found in [28] by the test-case generator. The dimension of the search space

in CEC2010 benchmark is also scalable. Problems are demanded to be solved in di-

mension n = 10 and n = 30. Later, CEC2017 competition increased the dimension

of the search space to n = 50, and n = 100 with 28 new benchmark problems.

In the problem definitions and evaluation criteria presented in CEC 2017, it was

claimed that CEC2006 have been solved successfully [42]. However, the problems

were solved with a large number of function evaluations which is not ideal. For

example, in the process of solving the problems in CEC2006 with the εDE algorithm,

the algorithm had the least function evaluation to solve the eighth problem among the

24 problems, which was 1,139. We will see that applying the interior-point method

in Matlab to the constrained nonlinear optimization toolbox on the same problem,

produces the median value of function evaluation as 52, which is 22 times faster than

the result of εDE. There is clearly have room for improvement, so we continue to

study the problems in CEC2006 special session benchmark.

Chapter 3

Method

As we have seen, the active-set method is applied to constrained optimization prob-

lems with both equality constraints and inequality constraints. We also saw that evo-

lution strategies (ES) are algorithms for stochastic black-box optimization, which are

widely used to solve unconstrained optimization problems. Arnold proposed to com-

bine the active-set method with (1+1)-ES for optimization with Q*AK constraints at

the Parallel Problem Solving from Nature (PPSN) conference [2] and then improved

it in Genetic and Evolutionary Computation Conference (GECCO) [3]. He evaluated

these two algorithms using the first 11 test functions in the Congress on Evolution

Computing (CEC) competition test set from 2006. In our method, we revise his al-

gorithms, adjust the projection setting and the decision to release constraints. We

then examine the performances of our modified active-set ES algorithm at PPSN con-

ference and at GECCO conference on spherically symmetric functions with mutually

orthogonal linear constraints.

3.1 Related Work

In unconstrained (1+1)-ES, a candidate solution is generated by sampling a multi-

variate normal distribution centred on the best solution from past iterations. If

the new candidate solution’s function value is better than the previous values, the

algorithm replaces the parent by the new candidate solution; otherwise, it keeps the

parent. In the active-set method, it maintains a set of active inequality constraints

and searches the result within the subspace determined by the active-set. Working

set W stores the active constraints. If an inequality constraint is violated at the

successful candidate solution, it becomes tight and will be added to the working

set W . Algorithm 5 describes the procedure of the active-set (1+1)-ES which was

proposed by Arnold at PPSN conference in 2016 [2].

We recall the minimization problem as described in (2.1) on page 8, active-set

32

33

Algorithm 5 Active-set Evolution Strategy in PPSN Conference [2]

1: Initialize σ ∈ R+,x ∈ Rn

2: while the termination criterion is not met do

3: Compute the dimension of the reduced search space at x by n′ = n− rank(N)

where N is the matrix whose columns are normal vectors of constraints in

the active-set.

4: repeat

5: y ← x + σ ×N (0, I).

6: If n′ = 0, let κ be true. If n′ > 0, let κ be true with probability p and false

otherwise.

7: If κ is true, project y onto the feasible region; otherwise, project y onto

the intersection of the feasible region with the reduced search space at x.

8: until y is feasible

9: if f(y) < f(x) then

10: x← y,

11: if κ is false then

12: σ ← σ21/n′
,

13: end if

14: else

15: if κ is false then

16: σ ← σ2−1/(4n′).

17: end if

18: end if

19: end while

ES generates new candidate solutions in a similar way as the (1+1)-ES method, and

uses the 1/5th rule to adapt the step-size. The candidate solution is usually projected

onto the reduced search space determined by active-set to avoid unnecessary step-size

reduction. The search space is reduced because the search space dimension will be

decreased when an inequality constraint is tight and is added to the working set. The

point projection is accomplished by minimizing the function d(w) = ||w−y||2 subject

34

to the constraints

gi(w) ≤ 0 for i ∈ {1, ..., l} \W

gi(w) = 0 for i ∈ W

hj(w) = 0 for j ∈ {1, ...,m},

(3.1)

where y are the candidate solutions, gi indicates the inequality constraints and hj

are the equality constraints. This minimization process aims to project the current

candidate solution onto the intersection between the reduced search space determined

by W and the feasible region. This does not require the algorithm to perform more

than a single evaluation of the objective function per iteration because the objective

function f is not used here. The minimization can be done by any constrained

optimization algorithm, for instance the fmincon function in the Matlab optimization

toolbox.

As more inequality constraints are added toW , the algorithm needs a mechanism

to release constraints from the working set. Arnold [2] introduced a Boolean flag κ to

determine whether or not to use W . If κ is true, the algorithm considers releasing all

inequality constraints inW , or in other words, suspendingW . Releasing a constraint

indicates turning the active inequality constraints back to inequalities. On the other

hand, if κ is false, then the algorithm keeps searching within the reduced search space.

The Boolean flag κ is set to true either if the dimension of the reduced search space

is zero, or a random number in [0, 1] falls below a probability p.

The above method performs inadequately under certain circumstances. For in-

stance, if there is a constraint that is relatively close to the optimal solution but it is

not active at the optimal solution, then Algorithm 5 will have difficulty solving the

problem. For example: consider the objective function subject to the linear inequality

constraints [3]:

f(x) = xᵀ x

subject to g1(x) = 100 eᵀ
1x− 1 ≤ 0

gi(x) = eᵀ
ix + 1 ≤ 0 for i = 2, ..., l

(3.2)

where ei is the ith coordinate axis direction written as the unit column vector. The

35

optimal solution to this problem is

x∗ = (0,−1, ...,−1,︸ ︷︷ ︸
l−1

0, ..., 0︸ ︷︷ ︸
n−l

)ᵀ (3.3)

and the optimal active-set is

A∗ = (0, 1, ..., 1,︸ ︷︷ ︸
l−1

0, ..., 0︸ ︷︷ ︸
n−l

)ᵀ (3.4)

where l ≤ n. It can be seen that the optimal A∗ is formed by all inequality constraints

except the first one. However, the first constraint is much closer to the unconstrained

optimum compare to other constraints due to the relatively large function coefficient,

which makes it is easy to be added into W .

Figure 3.1: This figure shows a special case of equation (3.2). The objective function
is a sphere function with the first two constraints. The shaded areas and the areas
where g1 > 0 and g2 > 0 are the infeasible regions. The red spot is the optimal
solution under these two constraints.

Figure 3.1 visualizes a special case of (3.2) with the first two constraints. The red

spot indicates the global optimum. During the search process, if the first constraint

36

g1 is added intoW but the second constraint g2 is not, then constraint g1 will become

tight and the algorithm will search for the optimal solution on the intersection of

x1 = 0.01 and x2 ≤ −1. It is impossible to find the red spot on this intersection

because the optimal solution is not on the plane determined by g1. A large number

of iterations may be needed to improve the solution in a subspace that does not

contain the optimal solution. At this point, the algorithm needs to release g1 from

the active-set. In order to release g1, the candidate solution needs to be satisfied

before the projection. However, the algorithm in PPSN conference can only suspend

the whole active-set, it lets those constraints that should be active become inactive

constraints, and algorithm will generate to inferior points. Therefore, the algorithm

takes longer to locate constraint g1 among so many constraints, and suspending the

whole active-set will not help in this situation. The algorithm needs a mechanism to

determine which individual constraints need to be released, and keep the other l − 1

constraints as active.

At the Genetic and Evolutionary Computation Conference (GECCO) in 2017 [3],

Arnold came up with releasing the individual constraint in the active-set periodically.

Rather than suspending the whole active-set, he added the steps of considering each

active inequality constraint are determined which to release in random order after Line

3 in Algorithm 5. The rest steps of the revised algorithm remain the same. Algorithm

6 represents the added parts of the active-set ES from the GECCO conference.

A σ threshold is introduced by Arnold as another condition to release the active

inequality constraints [3]. When the dimension of the reduced search space equals to

zero, the algorithm reduces the step-size to 1/2 of the previous step-size so that the

algorithm can release the first constraint on the above problem (3.2) when l = n. If

the step-size is too large, the algorithm may repeatedly go beyond the optimal solution

in the first dimension and fail to release it. The algorithm then considers releasing

every active inequality constraint in a random order from the working set and forms a

temporary active-set. A point is generated from a normal distribution and is projected

onto the intersection of the feasible region and the reduced search space determined

by the temporary working set. This step is repeated until a feasible point that satisfies

the constraints in the temporary working set is found and the constraint k is not tight

at y. If the objective function value of this candidate solution is better than the best

37

Algorithm 6 Revised releasing policy in GECCO conference [3]

1: if n′ = 0 or σ < σthresh then

2: if n′ = 0 then

3: σ ← σ/2.

4: end if

5: for all k ∈ W do

6: repeat

7: y← x + σ ×N (0, I).

8: Project y onto the intersection of the feasible region with W \ {k},
9: until y is feasible and constraint k is not tight at y.

10: if f(y) < f(x) then

11: x← y

12: W ←W \ {k}

13: end if

14: end for

15: σthresh ← σthresh/10,

16: n′ = n− rank(N)

17: end if

solution found so far, it replaces the best solution and updates the working set to

the temporary one. Otherwise, the algorithm abandons the temporary working set.

In this way, all active inequality constraints are considered to be released and the

dimension of reduced search space is recomputed. At the end of these releasing steps,

the σ threshold is reduced to one-tenth of the previous threshold.

The test functions Arnold used are gathered by Michalewicz and Schoenauer [28]

to evaluate both algorithms [2, 3]. The test set consists of 11 benchmark functions

from g01 to g11 and Liang et al. expanded this 24 problems [26]. When testing

the revised algorithm on problems g12 to g24, we found there are infinite loops that

happen in the function fmincon during the projection of g21 and g22. Therefore, we

consider to revise Algorithm 5 and 6 and systematically compare the performances

of them.

38

3.2 Modified Active-set Evolution Strategies

In our modified active-set ES, we used the SQP method instead of the active-set

method in fmincon to avoid the infinite loops. In addition, we combined the releasing

policy of the active-set ES from the PPSN conference and the GECCO conference

and increased the adapt factor of the step-size so that the modified active-set ES can

be improved. Algorithm 7 describes the details of the modified active-set ES.

Modified active-set ES has the following adjustments compared to the previous

algorithm:

• The releasing process is described in Lines 5-7. Rather than suspending the

entire active-set as in Algorithm 5, we consider releasing only one constraint

when κ is true. The settings of κ are the same as in Algorithm 5. Compared with

Algorithm 6, we release the constraint at most once in each iteration instead of

considering whether to release every constraint in the active-set, which makes

the algorithm simpler. To decide which constraint the algorithm will release,

we set a counter for each constraint to count the iteration number when they

have been released. When κ is true, we choose the constraint that has not

been released for the longest, which is the one with the smallest number in

counter, to avoid always releasing a certain constraint. We also abandon σthresh

because we observed it is too late as a condition for releasing constraints, the

algorithm needs to consider releasing constraints before σ decreases to σthresh.

In addition, reducing σ when n′ = 0 makes it difficult for the algorithm to find

a better candidate solution, and thus trapped at the local minimum. Therefore,

we consider releasing the constraint if either n′ = 0 or κ are true, but we do not

modify σ here.

• The step-size updating is also different from Algorithm 5 and 6. The modified

active-set ES employs the 1/5th rule [22] with larger factors compared with the

algorithms from the PPSN conference and the GECCO conference. Regardless

of whether we are releasing constraints, as long as the generated offspring is

better than the parent, the algorithm will adjust the step-size. These operations

of step-size updating can cause the step-size to adapt faster, thereby speeding

up the process of the algorithm.

39

Algorithm 7 Modified Active-set Evolution Strategy

1: Initialize σ ∈ R+,x ∈ Rn

2: while the termination criterion is not met do

3: Compute the dimension of the reduced search space at x by n′ = n− rank(N)

where N is the matrix whose columns are normal vector of constraints in

W .

4: If n′ = 0, let κ be true. If n′ > 0, let κ be true with probability p and false

otherwise.

5: if κ is True then

6: Release the inequality constraint that has not been released for the longest,

constraint m, W ←W\{m}

7: end if

8: repeat

9: y ← x + σ ×N (0, I),

10: project y onto the reduced search space that W determined,

11: until y is feasible and constraint k is not tight at y.

12: if f(y) < f(x) then

13: x← y,

14: σ ← σexp0.8/
√

(1+n′),

15: else

16: σ ← σexp−0.2/
√

(1+n′).

17: if κ is True then

18: W ←W ∪ {m},

19: end if

20: end if

21: end while

• During the process of point projection, the active-set method is used in the

fmincon function of the Matlab optimization toolbox. We observe that fmincon

has infinite loops when solving problems g21 and g22. We notice both of there

methods have constraints with non-integer powers and with natural logarithms.

When the base of the natural logarithm or the base of non-integer power is

40

negative, the value of this constraint will have complex value which makes

the active-set method unable to continue to execute. One difference between

the active-set method and the SQP method is their robustness to non-double

results. The SQP method allows functions to return infinite values, values

that are neither real or complex numbers, or complex numbers in the iteration;

however, the active-set method does not allow there values. Therefore, using

the SQP method when there is a complex value, for example, in problems g21

and g22, rather than the active-set method will avoid infinite loops in these

problems.

3.3 Performance of Active-set Evolution Strategy

In order to systematically evaluate the active-set evolution strategies from the PPSN

conference [2], the GECCO conference [3] and our modified version, we generate

spherically symmetric functions with mutually orthogonal linear constraints, similar

to the problem described in (3.2). These problems of the form such that:

f(x) = xᵀ x

subject to gi(x) = 100 eᵀ
ix− 1 ≤ 0 for i = 1, ...,m

gi(x) = eᵀ
ix + 1 ≤ 0 for i = m+ 1, ..., l

(3.5)

The dimension of the problem is n ∈ {10, 20}, and the constraint numbers are six

and twelve in total, respectively. There are two experiments for each dimension of the

problem, which are m = 1 and m = l/2. Therefore, we can observe the algorithm’s

ability of dealing with the problems with different dimensions and different numbers

of active constraints. We use the same step-size adaptation for all three algorithms

(see Algorithm 7 Line 14 and Line 16), and run the algorithms 500 times each. The

algorithms terminate when an x which optimal solution satisfies f(x) < f ∗+|f ∗×10−8|
is found, given ε = 10−8. We consider 8,000 iterations here because we want all

algorithms to be as successful as possible and not be affected by the limit of maximum

iterations. A median number of function evaluations are recorded in Table 3.1 below.

It can be seen from the Table 3.1 that the modified active-set ES has the smallest

median number of evaluations among all test function with all algorithms. The ad-

vantage of active-set ES is not particularly obvious in low-dimensional problems, but

41

Total m PPSN [2] GECCO [3] Modified
constraints active-set ES

n = 10 6 1 661 671 603
n = 10 6 3 723 633 510
n = 20 12 1 1442 1410 1142
n = 20 12 6 2958 1618 1123

Table 3.1: Median number of objective function evaluations required of three active-
set ES for solving sphere functions with linear constraints. n indicates the dimension
of variables, and m means the number of active constraints in the optimal active-set.

it is more obvious in high-dimensional and more active constraint in optimal active-

set. Look at the last row of this table, the median number of objective function

evaluations required of the modified algorithm is only one-third of the algorithm in

the PPSN conference.

Figure 3.2 shows the histograms of the number of objective function evaluations

required to solve all problems. It can be seen that the distribution of runs in the

first figure is very concentrated. As the number of active constraints gradually in-

creases (see Figure 3.2(c) and (d)), the superiority of the performance of the modified

algorithm is reflected. In Figure 3.2(d), the running distribution of algorithms from

the PPSN conference and the GECCO conference are very decentralized compared

with the modified algorithm. Moreover, the median number of objective function

evaluations required of the modified algorithm is only one-third of the algorithm in

the PPSN conference.

To see the differences between three algorithms in these two experiments clearly,

we plot the traces of median number of objective function evaluations required which

n = 10, a = 3 and n = 20, a = 6 in Figure 3.3. The plots in Figure 3.3(a) are the

traces of three algorithms on the sphere function with six constraints when n = 10;

half of the constraints are active at the optimal solution and half of them are not. The

magenta triangle indicates the iteration where the optimal active-set has been found,

and the black crosses show the iterations where the algorithm releases one or more

constraints. It can be seen that the algorithm from the PPSN conference stagnates

between iteration 424 and 605, and the step-size decreases at the same time until

iteration 608 and then increases. The step-size decreases first because the algorithm

has not get released the constraint at the beginning, and therefore no better candidate

42

(a) n = 10, a = 1. (b) n = 20, a = 1.

(c) n = 10, a = 3. (d) n = 20, a = 6.

Figure 3.2: The histograms of numbers of the objective function evaluation for sphere
function with constraints. The dimensions for (a) and (c) are both 10 and have six
constraints; for (b) and (d) the dimensions are both n = 20 and have 12 constraints.
a indicates the number of active constraints in the optimal active-set. There is only
one active constraint at the optimal point in case (a) and (b), while for (c) and (d),
half of the constraints are active at the optimal solution but the rest of the constraints
are not.

solution can be found and the step size continues to decrease until it is small enough

to locate the constraint that needs to be released. At 608 iterations, the constraints

are released, and the optimal active-set is found. Thus the candidate solution can

be further reduced, and therefore the step size is increased. The algorithm from the

GECCO conference avoids the stagnation by releasing individual constraints three

times and finding the optimal active-set at iteration 537. However, we notice that the

step-size decreases quickly from the beginning until iteration 274 compared with the

modified active-set ES, but the corresponding function value does not change a lot

between iteration 200 and 274. The reason is that one of the conditions for releasing

43

(a) Sphere function with six constraints when n = 10.

(b) Sphere function with 12 constraints when n = 20.

Figure 3.3: From left to right are the the median number of objective function evalua-
tions required traces of active-set ES in PPSN conference, GECCO conference and our
modified version in the sphere function with different dimensions. In both problems,
half of the constraints are active at the optimal solution, and the remaining half are
not active. The magenta triangle indicates the iteration where active-set is optimal.
The black crossing means the iterations where algorithm releases the constraint(s).

the constraint from the GECCO conference algorithm is when σ drops below σthresh.

From the trace, we can observe that the algorithm wastes too many iterations to

reduce σ so that it will satisfy σ < σthresh between iteration 200 and 274, thus

preventing the algorithm from releasing the constraints timely. In addition, too small

a step-size will slow down the progress of the optimization process, which is improved

in the modified algorithm. The modified active-set ES discards the setting of σthresh

and allows the algorithm to consider when to release the constraints more frequently,

44

thereby improving the process rate of the algorithm.

The advantage of the modified active-set ES is more obvious when dealing with

the problem of n = 20, see Figure (3.3(b)). From the traces of the algorithm from

the PPSN conference, we notice that the function value starts to be stagnated from

iterations 1075 to 1918, and the step-size decreases to 10−7 during these iterations

until the constraints are released and the search can proceed. The situation improved

when the algorithm in GECCO conference is applied to this problem, the function

value no longer has a long stagnation, and the step-size does not need to be reduced

to a very small value. Compared to the traces of the algorithm from the GECCO

conference with the modified active-set ES, we find that the function value decreases

slowly between iterations 418 to 593 and between iterations 1034 to 1395 in the

algorithm from the GECCO conference. We find that the reason that the step-

size has been decreasing is the step-size threshold is set too small which results in

the conditions for releasing the constraints cannot be met and triggered. In order to

satisfy the conditions of releasing the constraints, the step-size is even reduced further

to below 10−5. Compared with the modified active-set ES, the step-size has not been

reduced to 10−5 for the whole process. Therefore, discarding σthresh as a condition

for releasing constraints is very helpful to improve the performance of the algorithm.

Overall, we can say that the modified active-set ES performs the best in this

experiment, followed by the algorithm from the GECCO conference [3]. The algorithm

from the PPSN conference [2] performs the worst. The modified active-set ES has

a greater advantage when the dimension of the problem and the number of active

constraints become larger. In next chapter, we will compare the performance of

modified active-set ES with other optimization algorithms.

Chapter 4

Experiments

To test the performance of our modified active-set evolution strategy, we compare

it with the four other algorithms; three of which are deterministic algorithms from

the optimization toolbox in Matlab, two active set methods and one interior-point

method; and the forth one is the differential evolution, LSHADE44. We use these five

algorithms to solve g01 to g24 gathered by Liang et al [26], and measure their per-

formance by their success rate; the median number of objective function evaluations

required, and empirical cumulative running time distribution.

4.1 Set-up

In the experiment of testing deterministic algorithms, we use the active-set, sequen-

tial quadratic programming, and interior-point method in the fmincon function in the

Matlab optimization toolbox. The inputs of the fmincon function are the objective

function, an initial point, lower bounds and upper bounds of the variables, linear

equality and inequality constraints, nonlinear inequality and equality constraints,

and some specified optimization options which will be introduced below. We initial-

ize the starting point by sampling a point within the bound-constrained search space

uniformly and randomly. For the optimization options, we choose the constraint tol-

erance as 10−9, the constraint tolerance indicates the acceptable degree of constraint

violation. In other words, the maximum value that a point can violate the constraint

is 10−9. The target accuracy ε is 10−8, and the algorithm terminates either its objec-

tive function value f(x) < f ∗ + |f ∗ × 10−8|, where f ∗ is the optimal function value,

or the maximum function evaluation is reached but no optimal value has been found.

All settings of the maximum function evaluation number are determined by the num-

ber of evaluations where the algorithm continues to run but cannot find the best

value. We set the maximum function evaluation number as 4,000 for deterministic

algorithms.

45

46

For the active-set evolution strategy, we initialize the starting point as we do in

the deterministic algorithms, and then project it onto the feasible region to ensure

its feasibility. The initial step-size is set as 0.2 · min{ui − li|i = 1, ..., n}, where

ui and li are the upper bounds and lower bounds of the search space in dimension

i, respectively. The termination condition of this algorithm is either there is a f ∗

satisfies f(x) < f ∗ + |f ∗ × 10−8|, or the maximum iteration limit is reached but the

algorithm has not found a function value that meets f(x) < f ∗ + |f ∗ × 10−8|. ε is

set as 10−8 and the maximum iteration is set as 2,000. The constraint tolerance in

fmincon is set as 10−9.

The inputs of the LSHADE44 algorithm are the upper bounds and lower bounds

of the variables, maximum function evaluations, target accuracy, and the constraints

information. The initial point is sampled like previous methods. The maximum

number of function iterations we set is 20,000, and the target accuracy is 10−8. The

maximum function iterations limit is quite large in this algorithm because the maxi-

mum function evaluation is 20, 000× n for each test function, where n indicates the

function dimension [33].

4.2 Test Function

The test functions we used are 24 test problems gathered by Liang et al [26] from

g01 to g24 with variety of dimensions. Table 4.1 lists the dimensions of the objec-

tive functions, as well as the types of objective functions and constraint functions.

It can be seen in Appendix that this test function set includes linear, nonlinear,

quadratic, polynomial, and cubic functions and the constraint functions includes lin-

ear, quadratic, cubic, polynomial and nonlinear functions. The dimensions of the test

functions range from 2 to 24. The diversity of test functions combines with different

kinds of constraint functions which allows us to test the performance of all algorithms

in various aspect, for example, the ability of algorithms to solve problems of different

dimensions.

47

Problem n Type of Type of
objective function constraint functions

g01 13 quadratic linear
g02 20 nonlinear polynomial
g03 10 polynomial quadratic
g04 5 quadratic quadratic
g05 4 cubic nonlinear
g06 2 cubic quadratic
g07 10 quadratic quadratic
g08 2 nonlinear quadratic
g09 7 polynomial polynomial
g10 8 linear quadratic
g11 2 quadratic quadratic
g12 3 quadratic quadratic
g13 5 nonlinear cubic
g14 10 nonlinear linear
g15 3 quadratic quadratic
g16 5 nonlinear quadratic
g17 6 nonlinear nonlinear
g18 9 quadratic quadratic
g19 15 nonlinear quadratic
g20 24 linear nonlinear
g21 7 linear nonlinear
g22 22 linear nonlinear
g23 9 linear quadratic
g24 2 linear polynomial

Table 4.1: Table of details of 24 test functions [26]. n indicates the dimension of
variables.

4.3 Success Rate and Median Function Evaluations

We set the success rate and the median function evaluations as the criterion for

evaluating the algorithms. For each test function, we run each algorithm 30 times.

We say that a run is successful if the function value hits the target accuracy within

maximum iterations; and otherwise the run fails. We measure the performance of the

algorithms by recording the median number of success function evaluations and the

success rates over 30 runs. If all runs are successful, the success rate will be 1, see

Table 4.2 for results. There are several useful observations in the table:

• It can be seen that the active-set evolution strategy can completely solve 11 test

48

Test Active-set Active-set SQP Interior-point LSHADE44
Function ES method method method algorithm

success rate / the median number of objective function evaluations required
g01 0.58/25 0.05/28 0.05/24 0.65/410 1.0/9,124
g02 0/- 0/- 0/- 0/- 0/-
g03 1.0/575 0.80/689 0.55/652 1.0/998 0/-
g04 1.0/22 1.0/28 1.0/30 1.0/60 1.0/23,810
g05 1.0/98 1.0/40 1.0/55 1.0/60 0/-
g06 1.0/4 1.0/33 1.0/37 1.0/104 1.0/7,159
g07 1.0/450 1.0/145 1.0/160 1.0/250 1.0/8,173
g08 0.74/203 0.05/44 0.10/82 0.80/52 0.91/1,874
g09 1.0/515 1.0/332 1.0/283 1.0/291 1.0/31,515
g10 1.0/200 0.99/319 0.95/387 0.70/1,153 0.92/88,536
g11 1.0/81 1.0/18 1.0/21 1.0/28 0/-
g12 0.97/195 0.10/14 0/- 0/- 1.0/4,184
g13 0.74/154 0.35/121 0.35/115 0.45/115 0/-
g14 0.94/1,164 1.0/376 1.0/382 1.0/328 0/-
g15 1.0/41 0.85/44 0.93/40 0.85/44 0/-
g16 1.0/16 0.05/96 1.0/193 0.95/772 1.0/25,563
g17 0.73/187 0/- 0.15/330 0/- 0/-
g18 0.71/48 0.70/95 0.60/120 0.85/385 0.97/71,744
g19 1.0/330 1.0/210 1.0/224 1.0/528 1.0/13,977
g20 0.77/77 0.25/525 0.75/425 0/- 0/-
g21 0.88/39 0.28/89 0.88/120 0.83/561 0/-
g22 0.70/79 0/- 0.10/2826 0.20/2,719 0/-
g23 0.90/87 0.90/150 0.90/160 0.90/307 0/-
g24 0.84/17 0.30/18 0.65/21 0.30/63 1.0/6,006

Table 4.2: Median number of objective function evaluations required and success
rates for each problem for each algorithm.

problems out of 24. In comparison, the active-set method solves eight problems

out of the total 24, and the SQP, interior-point method and LSHADE44 solve

nine problems out of 24, respectively. If we also take into account problems that

cannot be fully solved, LSHADE44 can only solve 50% among these problems

while the active-set ES, active-set method, SQP method, and interior-point

method solve 95.8% 87.5%, 91.7%, and 83.3%, respectively.

• The active-set, SQP and interior-point methods have either a higher success

rate or a lower median number of objective function evaluations required com-

pared with the active-set evolution strategy on g04, g05, g07, g11, g14, g19, and

49

g24. Among them, it is worth noting that active-set and SQP have great advan-

tages on g05, g07, g11, and g19 because both methods can solve these problems

completely and have smaller median numbers of objective function evaluations

required compared with the active-set evolution strategy. The interior-point

method has the same performances on g05, g07, g11.

• Problems for which no algorithm can solve completely, the active-set evolution

strategy has either a higher success rate or a lower number of the median num-

ber of objective function evaluations required than other methods. Although

LSHADE44 holds a higher success rate on some problems, such as g08, g12, g18,

and g24, the median number of objective function evaluations required is about

a maximum of 3,000 times more than the active-set evolution strategy has on

g18, and a minimum of 14 times more on g08.

• It is worth noting that there is no single run that reaches the global minimum

for g02 by any algorithm. The reason is g02 is a complex multimodal case

that having a large number of local minima, which results in the algorithm has

difficulty to converge to the global minima.

• For the high dimensional functions including problems g20 and g22 (n ≥ 22),

Active-set, SQP, and interior-point methods have relatively bad performances.

While reviewing the objective functions we noticed that both functions also have

a large number of constraints active at the optimal solution. The deterministic

algorithms present a lower success rate with a higher median number of objective

function evaluations required when solving these two problems, or they cannot

find the optimal solution at all.

• The algorithm by Takahama and Sakai [40] is the best performing algorithm

submitted to the CEC 2006 Special Session on Constrained Real-Parameter

Optimization. Using their algorithm to solve all of the problems with the median

number of objective function evaluations required from 1,139 in g08 to 356,350

in g19. Overall, the active-set ES has greatly improved the median number of

objective function evaluations require compared to the algorithm by Takahama

and Sakai. Furthermore, their algorithm faces difficulties in solving g20 and g22

50

but the active-set ES does not. However, the advantage of their algorithm is

they achieved 100% success rate on all other test functions except g20 and g22,

even on g02.

4.4 Empirical Cumulative Running Time Distributions

To evaluate several algorithms tested by several test functions, we plotted the empir-

ical cumulative running time distribution. For each problem, we create 20 different

targets. The most strict target is set at f(x) + |(f ∗)× 10−8|, whereas the least strict

target is determined by the median number of 100 random feasible solutions for each

problem. The rest of the targets are generated to be logarithmically uniformly spaced

between the most strict and the least strict targets. We then record the function eval-

uation number when each algorithm reaches every target. Figure 4.1 illustrates the

distribution of the cumulative running time and aggregates the proportion of each

test function that reaches all targets.

Figure 4.1: The empirical cumulative running time distributions of the active-set
evolution strategy, active-set method, SQP method, interior-point method, and
LSHADE44.

51

(a) g01 (b) g02

(c) g03 (d) g04

(e) g05 (f) g06

(g) g07 (h) g08

52

(i) g09 (j) g10

(k) g11 (l) g12

(m) g13 (n) g14

(o) g15 (p) g16

53

(q) g17 (r) g18

(s) g19 (t) g20

(u) g21 (v) g22

(w) g23 (x) g24

Figure 4.2: Individual comparison between the active-set ES method, fmincon algo-
rithms and LSHADE44 algorithm for the test functions g01 to g24 empirical cumu-
lative running time distribution.

54

The horizontal axis in Figure 4.1 indicates the number of function evaluations

while the vertical axis is the proportion of targets that hit by the algorithms. It can

be seen that 87.2% of the problems hit the targets among g01 to g24 with the active-

set evolution strategy. At the same time, the active-set method solves 60.74%, the

SQP method solves 67.02%, the interior-point solves 69.21%, and LSHADE44 solves

63.87% among the 24 problems. Setting a fixed evaluation number is also helpful

for analyzing, see the magenta line in Figure 4.1 on page 52. We include a line

when the function evaluation reaches 4,000, which makes it clear that the active-set

evolution strategy already has 87.2% problems reaching all targets at this point, while

LSHADE44 only has 25%. Therefore, this leads to the conclusion that the active-set

evolution strategy converges faster than the other algorithms considered. This may

be due to other algorithms needing to take several iterations at the beginning to

have function values hit the targets, whereas the active-set evolution strategy does

not need to this because it always projects the candidate solution onto the feasible

region. This makes approximately 4.5% of the function values reach some targets

although the function evaluation is 1.

The individual empirical cumulative running time distribution from g01 to g24

are shown in Figure 4.2. The axis information is the same as Figure 4.1, as well as

the target values. There are several phenomena that can be observed:

• Problems g01, g02, g08, g13, g21, g22, and g23 have more than one local optima;

therefore, there is a chance that the function value does not completely satisfy

all targets.

• Not all runs are successful in g12 and g24 because of the existence of the dis-

jointed feasible regions. Problem g12 has a feasible region that consists of 93

disjointed spheres, and the feasible region of g24 consists of two disconnected

sub-regions. These disjointed feasible regions prevent the algorithm from locat-

ing the global optimum.

• Although there is no single run for g02 that located the global optimum, there

are some function evaluations that did reach targets. This is because a small

number of function evaluations hit the large targets before they fall into the

local minima.

55

• We also notice that the active-set, SQP, and interior-point methods converge

faster than the active-set evolution strategy in problems g04, g07, g11, g15, g18.

The reason is that the objective functions of the above problems are quadratic;

the principle of deterministic algorithms is modeling the objective function as

a quadratic subproblem, which gives these algorithms an advantage in solving

problems with quadratic objective functions.

Chapter 5

Conclusion

In this section, we present a summary of our method and experiments, and provide

potential future work.

5.1 Summary

Arnold [2] combines the active-set method with (1+1)-ES in 2016. When too many

inequality constraints have been added into the active-set, he proposes to suspend

from using the whole active-set to avoid the algorithm wasting too much time in a non-

optimal active-set. This method works well on the test problems g01 to g11 gathered

by Michalewicz and Schoenauer [28] but is stagnated under some circumstances, so

he modifies it and suggests a revised policy for considering to release the constraints

[3]. Instead of suspending the whole active-set, he proposes to periodically release

the individual constraints in the active-set, which significantly improves the algorithm

performances on some problems among g01 to g11.

In our study, we adjusted some details based on the active-set ES from the PPSN

conference [2] and the GECCO conference [3] so that it works well in the rest of

the test functions summarized by Liang et al. [26]. We also tailored the releasing

condition and the way to release the inequality constraints, speed up the factor of

the step-size adaptation, and adjusted the options of the projection function. We

then systematically compared the performances of both of the conferences with our

modified version. We created a sphere function with different numbers of active con-

straints in different dimensions. The modified active-set ES has the best performance,

especially in the high dimensional sphere with more active constraints.

To evaluate the performance of modified active-set ES, we compared it with three

deterministic algorithms and one evolutionary algorithm on the test function set g01

to g24 which was held at the Congress on Evolutionary Computation Competitions in

2006. We used each algorithm to solve each problem 30 times and recorded the median

56

57

number of objective function evaluations required and the success rates required by

the algorithm. We also created several function targets based on the feasible points’

function value and plotted the proportion of algorithms that hit the targets versus the

number of function evaluations for both individual function and the summation over

24 functions. From these experiments, we observed that the active-set and sequential

quadratic programming algorithms converge faster on some quadratic problems, but it

depends on the type of constraint functions. The LSHADE44 algorithm has a higher

success rate on some problems but it is time-consuming. Among these five algorithms,

the active-set ES can solve the most test problems. It has either a smaller function

evaluation or a higher success rate, or even both. However, the active-set ES does

not converge as quickly as the active-set and SQP algorithm on quadratic problems.

In summary, the active-set ES performs the best on the test functions from the

Congress on Evolutionary Computation Competitions in 2006 when compared to the

three deterministic algorithms and the LSHADE44 algorithm. The active-set ES

shows a fair success rate and the median number of objective function evaluations

required.

5.2 Future Work

Many open problems and work that can be done to improve our algorithm. Cat-

egorizing the test functions could be one potential work. Observing which kind of

problem that each method is good at, and summarizing the advantages and weakness

for each algorithm systematically will be beneficial. Moreover, it will be valuable to

compare the active-set ES with other algorithms. For example, Sakamoto and Aki-

moto [36] proposed an adaptive ranking based constraint handling (ARCH) in 2019

which has similarities with active-set ES, and it is noteworthy to compare it with the

active-set ES on the test functions which were held at the Congress on Evolutionary

Computation Competitions in 2006.

We introduced a method to count the number of iterations for which the constraint

has not been released, it will be useful to think about other ways to choose which

constraints to release. Determining the relationship between the constraints may

be helpful because releasing one constraint may also affect other constraints. An

active-set ES that can solve g02 and also works for other functions simultaneously is

58

desirable.

Bibliography

[1] Youhei Akimoto, Anne Auger, and Nikolaus Hansen. Quality Gain Analysis of
the Weighted Recombination Evolution Strategy on General Convex Quadratic
Functions. Theoretical Computer Science, 832:42–67, 2018.

[2] Dirk V Arnold. An Active-set Evolution Strategy for Optimization with Known
Constraints. In International Conference on Parallel Problem Solving from Na-
ture, pages 192–202. Springer, 2016.

[3] Dirk V Arnold. Reconsidering Constraint Release for Active-set Evolution Strate-
gies. In Proceedings of the Genetic and Evolutionary Computation Conference,
pages 665–672. ACM, 2017.

[4] Dirk V Arnold and Jeremy Porter. Towards an Augmented Lagrangian Con-
straint Handling Approach for the (1+1)-ES. In Proceedings of the 2015 Annual
Conference on Genetic and Evolutionary Computation, pages 249–256, 2015.

[5] Asma Atamna, Anne Auger, and Nikolaus Hansen. Augmented Lagrangian Con-
straint Handling for CMA-ES Case of a Single Linear Constraint. In International
Conference on Parallel Problem Solving from Nature, pages 181–191. Springer,
2016.

[6] Anne Auger and Nikolaus Hansen. Tutorial CMA-ES: Evolution Strategies and
Covariance Matrix Adaptation. In Proceedings of the 14th annual conference
companion on Genetic and evolutionary computation, pages 827–848, 2012.

[7] Anne Auger and Nikolaus Hansen. Introduction to Randomized Continuous Op-
timization. In Proceedings of the Genetic and Evolutionary Computation Con-
ference Companion, pages 319–334, 2017.

[8] Hans-Georg Beyer and Hans-Paul Schwefel. Evolution Strategies – A Compre-
hensive Introduction. Natural Computing, 1(1):3–52, 2002.

[9] Janez Brest and Mirjam Sepesy Maučec. Population Size Reduction for the
Differential Evolution Algorithm. Applied Intelligence, 29(3):228–247, 2008.

[10] Carlos A Coello Coello. Constraint-handling Techniques Used with Evolution-
ary Algorithms. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion, pages 675–701, 2017.

[11] Richard Courant. Variational Methods for the Solution of Problems of Equilib-
rium and Vibrations. Verlag nicht ermittelbar, 1943.

59

60

[12] Sébastien Le Digabel and Stefan M Wild. A Taxonomy of Constraints in
Simulation-based Optimization. arXiv preprint arXiv:1505.07881, 2015.

[13] Thomas Epperly, Ross E Swaney, et al. Global Optimization Test Problems with
Solutions, 1996.

[14] Christodoulos A Floudas and Panos M Pardalos. A Collection of Test Problems
for Constrained Global Optimization Algorithms, volume 455. Springer Science
& Business Media, 1990.

[15] Lawrence J Fogel, Alvin J Owens, and Michael J Walsh. Artificial Intelligence
through Simulated Evolution. 1966.

[16] Nikolaus Hansen. The CMA Evolution Strategy: A Tutorial. arXiv preprint
arXiv:1604.00772, 2016.

[17] Nikolaus Hansen, Dirk V Arnold, and Anne Auger. Evolution Strategies. In
Springer Handbook of Computational Intelligence, pages 871–898. Springer, 2015.

[18] Nikolaus Hansen and Andreas Ostermeier. Completely Derandomized Self-
adaptation in Evolution Strategies. Evolutionary Computation, 9(2):159–195,
2001.

[19] David M Himmelblau et al. Applied Nonlinear Programming. McGraw-Hill,
1972.

[20] Robert Hinterding and Zbigniew Michalewicz. Your Brains and My Beauty:
Parent Matching for Constrained Optimisation. In 1998 IEEE International
Conference on Evolutionary Computation Proceedings. IEEE World Congress
on Computational Intelligence, pages 810–815. IEEE, 1998.

[21] Willi Hock and Klaus Schittkowski. Test Examples for Nonlinear Programming
Codes. Journal of optimization theory and applications, 30(1):127–129, 1980.

[22] Stefan Kern, Sibylle D Müller, Nikolaus Hansen, Dirk Büche, Jiri Ocenasek,
and Petros Koumoutsakos. Learning Probability Distributions in Continuous
Evolutionary Algorithms – A Comparative Review. Natural Computing, 3(1):77–
112, 2004.

[23] Slawomir Koziel and Zbigniew Michalewicz. A Decoder-based Evolutionary Al-
gorithm for Constrained Parameter Optimization Problems. In International
Conference on Parallel Problem Solving from Nature, pages 231–240. Springer,
1998.

[24] Slawomir Koziel and Zbigniew Michalewicz. Evolutionary Algorithms, Homo-
morphous Mappings, and Constrained Parameter Optimization. Evolutionary
computation, 7(1):19–44, 1999.

61

[25] Juan Lúıs J Laredo, Carlos Fernandes, Juan Julián Merelo, and Christian Gagné.
Improving Genetic Algorithms Performance via Deterministic Population Shrink-
age. In Proceedings of the 11th Annual conference on Genetic and evolutionary
computation, pages 819–826, 2009.

[26] Jing Liang, Thomas Philip Runarsson, Efrén Mezura-Montes, Maurice Clerc,
PN Suganthan, Carlos A Coello Coello, and K Deb. Problem Definitions and
Evaluation Criteria for the CEC 2006 Special Session on Constrained Real-
parameter Optimization. Nangyang Technological University, Singapore, Tech.
Rep, 41, 2006.

[27] Efrén Mezura-Montes and Carlos A. Coello Coello. Constraint-handling in
Nature-inspired Numerical Optimization: Past, Present and Future. Swarm and
Evolutionary Computation, 1(4):173–194, 2011.

[28] Zbigniew Michalewicz, Kalyanmoy Deb, Martin Schmidt, and Thomas Stidsen.
Test-case Generator for Nonlinear Continuous Parameter Optimization Tech-
niques. IEEE Transactions on Evolutionary Computation, 4(3):197–215, 2000.

[29] Zbigniew Michalewicz and Cezary Z Janikow. Handling Constraints in Genetic
Algorithms. In International Conference on Genetic Algorithms, pages 151–157,
1991.

[30] Zbigniew Michalewicz and Girish Nazhiyath. Genocop III: A Co-evolutionary
Algorithm for Numerical Optimization Problems with Nonlinear Constraints. In
Proceedings of 1995 IEEE International Conference on Evolutionary Computa-
tion, volume 2, pages 647–651. IEEE, 1995.

[31] Zbigniew Michalewicz, Girish Nazhiyath, and Maciej Michalewicz. A Note on
Usefulness of Geometrical Crossover for Numerical Optimization Problems. Evo-
lutionary programming, 5(1):305–312, 1996.

[32] Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer Science
& Business Media, 2006.

[33] Radka Poláková, Josef Tvrd́ık, and Petr Bujok. Evaluating the Performance of
L-SHADE with Competing Strategies on CEC2014 Single Parameter-operator
Test Suite. In 2016 IEEE Congress on Evolutionary Computation (CEC), pages
1181–1187. IEEE, 2016.

[34] Ingo Rechenberg. Optimierung Technischer Systeme nach Prinzipien der Biolo-
gischen Evolution. PhD thesis, TU Berlin, 1970.

[35] Thomas P. Runarsson and Xin Yao. Stochastic Ranking for Constrained Evo-
lutionary Optimization. IEEE Transactions on Evolutionary Computation,
4(3):284–294, 2000.

62

[36] Naoki Sakamoto and Youhei Akimoto. Adaptive Ranking based Constraint Han-
dling for Explicitly Constrained Black-box Optimization. In Proceedings of the
Genetic and Evolutionary Computation Conference, pages 700–708, 2019.

[37] Patrick Spettel, Hans-Georg Beyer, and Michael Hellwig. A Covariance Matrix
Self-adaptation Evolution Strategy for Optimization under Linear Constraints.
IEEE Transactions on Evolutionary Computation, 23(3):514–524, 2018.

[38] Rainer Storn. On the Usage of Differential Evolution for Function Optimization.
In Proceedings of North American Fuzzy Information Processing, pages 519–523.
IEEE, 1996.

[39] Rainer Storn and Kenneth Price. Differential Evolution – A Simple and Efficient
Heuristic for Global Optimization over Continuous Spaces. Journal of Global
Optimization, 11(4):341–359, 1997.

[40] Tetsuyuki Takahama and Setsuko Sakai. Constrained Optimization by the ε
Constrained Differential Evolution with Gradient-based Mutation and Feasible
Elites. In 2006 IEEE International Conference on Evolutionary Computation,
pages 1–8. IEEE, 2006.

[41] Ke Tang, Xiaodong Li, Ponnuthurai N Suganthan, Zhenyhu Yang, and Thomas
Weise. Benchmark Functions for the CEC 2010 Special Session and Competition
on Large Scale Global Optimization. Technical report, University of Science and
Technology of China, 2010.

[42] Guohua Wu, Rammohan Mallipeddi, and Ponnuthurai N Suganthan. Problem
Definitions and Evaluation Criteria for the CEC 2017 Competition on Con-
strained Real-parameter Optimization. National University of Defense Technol-
ogy, Changsha, Hunan, PR China and Kyungpook National University, Daegu,
South Korea and Nanyang Technological University, Singapore, Technical Report,
2017.

[43] Quanshi Xia. Global Optimization Test Problems, 1996.

Appendix A

Test functions

The test functions are gathered by Liang et al. [26]. The original references are

given for each problem as well. The objective function, constraint functions and the

optimal function value are listed.

g01 [14]

Minimize:

f(x) =5
4∑
i=1

xi − 5
4∑
i=1

xi
2 −

13∑
i=5

xi (A.1)

subject to:

g1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

g4(x) = −8x1 + x10 ≤ 0

g5(x) = −8x2 + x11 ≤ 0

g6(x) = −8x3 + x12 ≤ 0

g7(x) = −2x4 − x5 + x10 ≤ 0

g8(x) = −2x6 − x7 + x11 ≤ 0

g9(x) = −2x8 − x9 + x12 ≤ 0

(A.2)

where the bounds are 0 ≤ xi ≤ 1 (i = 1, . . . , 9), 0 ≤ xi ≤ 100 (i = 10, 11, 12) and

0 ≤ x13 ≤ 1. f(x∗) = −15.

g02 [24]

Minimize:

f(x) = −|
∑n
i=1 cos4(xi)−2

∏n
i=1 cos2(xi)√∑n

i=1 ix
2
i

(A.3)

subject to:

63

64

g1(x) = 0.75−
∏n

i=1 xi ≤ 0

g2(x) =
∑n

i=1 xi − 7.5n ≤ 0
(A.4)

where n = 20 and 0 < xi ≤ 10 (i = 1, . . . , n). f (x∗) = −0.803619104125199.

g03 [31]

Minimize:

f(x) = −(
√
n)n

∏n
i=1 xi (A.5)

subject to:

h1(x) =
∑n

i=1 x
2
i − 1 = 0 (A.6)

where n = 10 and 0 ≤ xi ≤ 1 (i = 1, . . . , n). f (x∗) = −1.

g04 [19]

Minimize:

f(x) = 5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141 (A.7)

subject to:

g1(x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5 − 92 ≤ 0

g2(x) = −85.334407− 0.0056858x2x5 − 0.0006262x1x4 + 0.0022053x3x5 ≤ 0

g3(x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x2
3 − 110 ≤ 0

g4(x) = −80.51249− 0.0071317x2x5 − 0.0029955x1x2 − 0.0021813x2
3 + 90 ≤ 0

g5(x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 − 25 ≤ 0

g6(x) = −9.300961− 0.0047026x3x5 − 0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0

(A.8)

where 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45 and 27n ≤ xi ≤ 45 (i = 3, 4, 5). f(x∗) =

−30665.53867178332.

g05 [21]

Minimize:

f(x) = 3x1 + 0.000001x3
1 + 2x2 + (0.000002/3)x3

2 (A.9)

65

subject to:

g1(x) = −x4 + x3 − 0.55 ≤ 0

g2(x) = −x3 + x4 − 0.55 ≤ 0

h3(x) = 1000 sin (−x3 − 0.25) + 1000 sin (−x4 − 0.25) + 894.8− x1 = 0

h4(x) = 1000 sin (x3 − 0.25) + 1000 sin (x3 − x4 − 0.25) + 894.8− x2 = 0

h5(x) = 1000 sin (x4 − 0.25) + 1000 sin (x4 − x3 − 0.25) + 1294.8 = 0

(A.10)

where 0 ≤ x1 ≤ 1200, 0 ≤ x2 ≤ 1200,−0.55 ≤ x3 ≤ 0.55 and −0.55 ≤ x4 ≤ 0.55.

f (x∗) = 5126.498109595271.

g06 [14]

Minimize:

f(x) = (x1 − 10)3 + (x2 − 20)3 (A.11)

subject to:

g1(x) = − (x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0

g2(x) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0
(A.12)

where 13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100. f (x∗) = −6961.813875580147.

g07 [21]

Minimize:

f(x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4 (x4 − 5)2 + (x5 − 3)2

+2 (x6 − 1)2 + 5x2
7 + 7 (x8 − 11)2 + 2 (x9 − 10)2 + (x10 − 7)2 + 45

(A.13)

subject to:

g1(x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0

g2(x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0

g3(x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

g4(x) = 3 (x1 − 2)2 + 4 (x2 − 3)2 + 2x2
3 − 7x4 − 120 ≤ 0

g5(x) = 5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

g6(x) = x2
1 + 2 (x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

g7(x) = 0.5 (x1 − 8)2 + 2 (x2 − 4)2 + 3x2
5 − x6 − 30 ≤ 0

g8(x) = −3x1 + 6x2 + 12 (x9 − 8)2 − 7x10 ≤ 0

(A.14)

66

where −10 ≤ xi ≤ 10 (i = 1, . . . , 10). f (x∗) = 24.306209068179840.

g08 [24]

Minimize:

f(x) = − sin3(2πx1) sin(2πx2)

x31(x1+x2)
(A.15)

subject to:

g1(x) = x2
1 − x2 + 1 ≤ 0

g2(x) = 1− x1 + (x2 − 4)2 ≤ 0
(A.16)

where 0 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 10. f (x∗) = −0.095825041418033.

g09 [21]

Minimize:

f(x) = (x1 − 10)2 + 5 (x2 − 12)2 + x4
3 + 3 (x4 − 11)2

+10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7

(A.17)

subject to:

g1(x) = −127 + 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 ≤ 0

g2(x) = −282 + 7x1 + 3x2 + 10x2
3 + x4 − x5 ≤ 0

g3(x) = −196 + 23x1 + x2
2 + 6x2

6 − 8x7 ≤ 0

g4(x) = 4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0

(A.18)

where −10 ≤ xi ≤ 10 for (i = 1, . . . , 7). f (x∗) = 680.6300573744027.

g10 [21]

Minimize:

f(x) = x1 + x2 + x3 (A.19)

subject to:

67

g1(x) = −1 + 0.0025 (x4 + x6) ≤ 0

g2(x) = −1 + 0.0025 (x5 + x7 − x4) ≤ 0

g3(x) = −1 + 0.01 (x8 − x5) ≤ 0

g4(x) = −x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0

g5(x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0

g6(x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0

(A.20)

where 100 ≤ x1 ≤ 10000, 1000 ≤ xi ≤ 10000 (i = 2, 3) and 10 ≤ xi ≤ 1000 (i =

4, . . . , 8). f (x∗) = 7049.248020528665.

g11 [24]

Minimize:

f(x) = x2
1 + (x2 − 1)2 (A.21)

subject to:

h(x) = x2 − x2
1 = 0 (A.22)

where −1 ≤ x1 ≤ 1 and −1 ≤ x2 ≤ 1. f (x∗) = 0.7500.

g12 [24]

Minimize:

f(x) = −(100−
∑3

i=1(xi − 5)2/100 (A.23)

subject to:

g(x) =
3∑
i=1

(xi − (min(9, (max(1, bxe))))2 − 0.0625 ≤ 0 (A.24)

where 0 ≤ xi ≤ 10 (i = 1, 2, 3). f (x∗) = −1.

g13 [21]

Minimize:

f(x) = ex1x2x3x4x5 (A.25)

subject to:

68

h1(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 10 = 0

h2(x) = x2x3 − 5x4x5 = 0

h3(x) = x3
1 + x3

2 + 1 = 0

(A.26)

where −2.3 ≤ xi ≤ 2.3 (i = 1, 2) and −3.2 ≤ xi ≤ 3.2 (i = 3, 4, 5). f (x∗) =

0.053949847770272.

g14 [19]

Minimize:

f(x) =
10∑
i=1

xi

(
ci + ln

xi∑10
j=1 xj

)
(A.27)

subject to:

h1(x) = x1 + 2x2 + +2x3 + x6 + x10 − 2 = 0

h2(x) = x4 + 2x5 + x6 + x7 − 1 = 0

h3(x) = x3 + x7 + x8 + 2x9 + x10 − 1 = 0

(A.28)

where the bounds are 0 < xi ≤ 10(i = 1, . . . , 10), and c1 = −6.089, c2 = −17.164, c3 =

−34.054 c4 = −5.914, c5 = −24.721, c6 = −14.986, c7 = −24.1, c8 = −10.708, c9 =

−26.662, c10 = −22.179. f (x∗) = −47.761090859346020.

g15 [19]

Minimize:

f(x) = 1000− x2
1 − 2x2

2 − x2
3 − x1x2 − x1x3 (A.29)

subject to:

h1(x) = x2
1 + x2

2 + x2
3 − 25 = 0

h2(x) = 8x1 + 14x2 + 7x3 − 56 = 0
(A.30)

where the bounds are 0 ≤ xi ≤ 10 (i = 1, 2, 3). f (x∗) = 961.7151721300521.

g16 [19]

Minimize:

f(x) = 0.000117y14 + 0.1365 + 0.00002358y13 + 0.000001502y16 + 0.0321y12

+0.004324y5 + 0.0001 c15
c16

+ 37.48 y2
c12
− 0.0000005843y17

(A.31)

69

subject to:

g1(x) =
0.28

0.72
y5 − y4 ≤ 0

g2(x) = x3 − 1.5x2 ≤ 0

g3(x) = 3496
y2

c12

− 21 ≤ 0

g4(x) = 110.6 + y1 −
62212

c17

≤ 0

g5(x) = 213.1− y1 ≤ 0

g6(x) = y1 − 405.23 ≤ 0

g7(x) = 17.505− y2 ≤ 0

g8(x) = y2 − 1053.6667 ≤ 0

g9(x) = 11.275− y3 ≤ 0

g10(x) = y3 − 35.03 ≤ 0

g11(x) = 214.228− y4 ≤ 0

g12(x) = y4 − 665.585 ≤ 0

g13(x) = 7.458− y5 ≤ 0

g14(x) = y5 − 584.463 ≤ 0

g15(x) = 0.961− y6 ≤ 0

g16(x) = y6 − 265.916 ≤ 0

g17(x) = 1.612− y7 ≤ 0

g18(x) = y7 − 7.046 ≤ 0

g19(x) = 0.146− y8 ≤ 0

g20(x) = y8 − 0.222 ≤ 0

g21(x) = 107.99− y9 ≤ 0

g22(x) = y9 − 273.366 ≤ 0

g23(x) = 922.693− y10 ≤ 0

g24(x) = y10 − 1286.105 ≤ 0

g25(x) = 926.832− y11 ≤ 0

(A.32)

70

g26(x) = y11 − 1444.046 ≤ 0

g27(x) = 18.766− y12 ≤ 0

g28(x) = y12 − 537.141 ≤ 0

g29(x) = 1072.163− y13 ≤ 0

g30(x) = y13 − 3247.039 ≤ 0

g31(x) = 8961.448− y14 ≤ 0

g32(x) = y14 − 26844.086 ≤ 0

g33(x) = 0.063− y15 ≤ 0

g34(x) = y15 − 0.386 ≤ 0

g35(x) = 71084.33− y16 ≤ 0

g36(x) = −140000 + y16 ≤ 0

g37(x) = 2802713− y17 ≤ 0

g38(x) = y17 − 12146108 ≤ 0

where:

y1 = x2 + x3 + 41.6

c1 = 0.024x4 − 4.62

y2 =
12.5

c1

+ 12

c2 = 0.0003535x2
1 + 0.5311x1 + 0.08705y2x1

c3 = 0.052x1 + 78 + 0.002377y2x1

y3 =
c2

c3

y4 = 19y3

c4 = 0.04782 (x1 − y3) +
0.1956 (x1 − y3)2

x2

+ 0.6376y4 + 1.594y3

c5 = 100x2

c6 = x1 − y3 − y4

c7 = 0.950− c4

c5
(A.33)

71

y5 = c6c7

y6 = x1 − y5 − y4 − y3

c8 = (y5 + y4) 0.995

y7 =
c8

y1

y8 =
c8

3798

c9 = y7 −
0.0663y7

y8

− 0.3153

y9 =
96.82

c9

+ 0.321y1

y10 = 1.29y5 + 1.258y4 + 2.29y3 + 1.71y6

y11 = 1.71x1 − 0.452y4 + 0.580y3

c10 =
12.3

752.3

c11 = (1.75y2) (0.995x1)

c12 = 0.995y10 + 1998

y12 = c10x1 +
c11

c12

y13 = c12 − 1.75y2

y14 = 3623 + 64.4x2 + 58.4x3 +
146312

y9 + x5

c13 = 0.995y10 + 60.8x2 + 48x4 − 0.1121y14 − 5095

y15 =
y13

c13

y16 = 148000− 331000y15 + 40y13 − 61y15y13

c14 = 2324y10 − 28740000y2

y17 = 14130000− 1328y10 − 531

y11 +
c14

c12

c15 =
y13

y15

− y13

0.52

c16 = 1.104− 0.72y15

c17 = y9 + x5

(A.34)

and where the bounds are 704.4148 ≤ x1 ≤ 906.3855, 68.6 ≤ x2 ≤ 288.88, 0 ≤ x3 ≤
134.75, 193 ≤ x4 ≤ 287.0966 and 25 ≤ x5 ≤ 84.1988. f (x∗) = -1.905155258534784.

72

g17 [19]

Minimize:

f(x) = f (x1) + f (x2) (A.35)

where:

f1 (x1) =

{
30x1 0 ≤ x1 < 300

31x1 300 ≤ x1 < 400

f2 (x2) =


28x2 0 ≤ x2 < 100

29x2 100 ≤ x2 < 200

30x2 200 ≤ x2 < 1000

(A.36)

subject to:

h1(x) = −x1 + 300− x3x4
131.078

cos (1.48477− x6) +
0.90798x23
131.078

cos(1.47588)

h2(x) = −x2 − x3x4
131.078

cos
(

(1.48477 + x6) +
0.90798x24
131.078

cos(1.47588)

h3(x) = −x5 − x3x4
131.078

sin
(

(1.48477 + x6) +
0.90798x24
131.078

sin(1.47588)

h4(x) = 200− x3x4
131.078

sin
(

(1.48477− x6) +
0.90798x23
131.078

sin(1.47588)

(A.37)

where the bounds are 0 ≤ x1 ≤ 400, 0 ≤ x2 ≤ 1000, 340 ≤ x3 ≤ 420, 340 ≤ x4 ≤
420,−1000 ≤ x5 ≤ 1000 and 0 ≤ x6 ≤ 0.5236. f (x∗) = 8853.539891329588.

g18 [19]

Minimize:

f(x) = −0.5 (x1x4 − x2x3 + x3x9 − x5x9 + x5x8 − x6x7) (A.38)

subject to:

73

g1(x) = x2
3 + x2

4 − 1 ≤ 0

g2(x) = x2
9 − 1 ≤ 0

g3(x) = x2
5 + x2

6 − 1 ≤ 0

g4(x) = x2
1 + (x2 − x9)2 − 1 ≤ 0

g5(x) = (x1 − x5)2 + (x2 − x6)2 − 1 ≤ 0

g6(x) = (x1 − x7)2 + (x2 − x8)2 − 1 ≤ 0

g7(x) = (x3 − x5)2 + (x4 − x6)2 − 1 ≤ 0

g8(x) = (x3 − x7)2 + (x4 − x8)2 − 1 ≤ 0

g9(x) = x2
7 + (x8 − x9)2 − 1 ≤ 0

g10(x) = x2x3 − x1x4 ≤ 0

g11(x) = −x3x9 ≤ 0

g12(x) = x5x9 ≤ 0

g13(x) = x6x7 − x5x8 ≤ 0

(A.39)

where the bounds are −10 ≤ xi ≤ 10 (i = 1, . . . , 8) and 0 ≤ x9 ≤ 20. f (x∗) =

−0.866025403784439.

g19 [19]

Minimize:

f(x) =
5∑
j=1

5∑
i=1

cijx(10+i)x(10+j) + 2
5∑
j=1

djx
3
(10+j) −

10∑
i=1

bixi (A.40)

subject to:

gj(x) = −2
5∑
i=1

cijx(10+i) − 3djx
2
(10+j) − ej +

10∑
i=1

aijxi ≤ 0 j = 1, . . . , 5 (A.41)

where ~b = [−40,−2,−0.25,−4,−4,−1,−40,−60, 5, 1] and the remaining data is on

Table 1. The bounds are 0 ≤ xi ≤ 10 (i = 1, . . . , 15). f (x∗) = 32.655592950246340.

g20 [19]

Minimize:

f(x) =
24∑
i=1

aixi (A.42)

74

j 1 2 3 4 5
ej -15 -27 -36 -18 -12
c1j 30 -20 -10 32 -10
c2j -20 39 -6 -31 32
c3j -10 -6 10 -6 -10
c4j 32 -31 -6 39 -20
c5j -10 32 -10 -20 30
dj 4 8 10 6 2
a1j -16 2 0 1 0
a2j 0 -2 0 0.4 2
a3j -3.5 0 2 0 0
a4j 0 -2 0 -4 -1
a5j 0 -9 -2 1 -2.8
a6j 2 0 -4 0 0
a7j -1 -1 -1 -1 -1
a8j -1 -2 -3 -2 -1
a9j 1 2 3 4 5
a10j 1 1 1 1 1

Table A.1: Data set for test problem g19.

subject to:

gi(x) =
(xi+x(i+12))∑24

j=1 xj+ei
≤ 0 i = 1, 2, 3

gi(x) =
(x(i+3)+x(i+15))∑24

j=1 xj+ei
≤ 0 i = 4, 5, 6

hi(x) =
x(i+12)

b(i+12)

∑24
j=13

xj
bj

− cixi
40bi

∑12
j=1

xj
bj

= 0 i = 1, . . . , 12

h13(x) =
∑24

i=1 xi − 1 = 0

h14(x) =
∑12

i=1
xi
di

+ k
∑24

i=13
xi
bi
− 1.671 = 0

(A.43)

where k = (0.7302)(530)
(

14.7
40

)
and the data set is detailed on Table 2. The bounds

are 0 ≤ xi ≤ 10 (i = 1, . . . , 24). f(x∗) = 0.147466071547197.

g21 [13]

Minimize:

f(x) = x1 (A.44)

subject to:

75

i ai bi ci di ei
1 0.0693 44.094 123.7 31.244 0.1
2 0.0577 58.12 31.7 36.12 0.3
3 0.05 58.12 45.7 34.784 0.4
4 0.2 137.4 14.7 92.7 0.3
5 0.26 120.9 84.7 82.7 0.6
6 0.55 170.9 27.7 91.6 0.3
7 0.06 62.501 49.7 56.708
8 0.1 84.94 7.1 82.7
9 0.12 133.425 2.1 80.8
10 0.18 82.507 17.7 64.517
11 0.1 46.07 0.85 49.4
12 0.09 60.097 0.64 49.1
13 0.0693 44.094
14 0.0577 58.12
15 0.05 58.12
16 0.2 137.4
17 0.26 120.9
18 0.55 170.9
19 0.06 62.501
20 0.1 84.94
21 0.12 133.425
22 0.18 82.507
23 0.1 46.07
24 0.09 60.097

Table A.2: Data set for test problem g20

g1(x) = −x1 + 35x0.6
2 + 35x0.6

3 ≤ 0

h1(x) = −300x3 + 7500x5 − 7500x6 − 25x4x5 + 25x4x6 + x3x4 = 0

h2(x) = 100x2 + 155.365x4 + 2500x7 − x2x4 − 25x4x7 − 15536.5 = 0

h3(x) = −x5 + ln (−x4 + 900) = 0

h4(x) = −x6 + ln (x4 + 300) = 0

h5(x) = −x7 + ln (−2x4 + 700) = 0

(A.45)

where the bounds are 0 ≤ x1 ≤ 1000, 0 ≤ x2, x3 ≤ 40, 100 ≤ x4 ≤ 300, 6.3 ≤ x5 ≤
6.7, 5.9 ≤ x6 ≤ 6.4 and 4.5 ≤ x7 ≤ 6.25. f (x∗) = 193.7881988317070.

g22 [13]

Minimize:

76

f(x) = x1 (A.46)

subject to:

g1(x) = −x1 + x0.6
2 + x0.6

3 + x0.6
4 ≤ 0

h1(x) = x5 − 100000x8 + 1× 107 = 0

h2(x) = x6 + 100000x8 − 100000x9 = 0

h3(x) = x7 + 100000x9 − 5× 107 = 0

h4(x) = x5 + 100000x10 − 3.3× 107 = 0

h5(x) = x6 + 100000x11 − 4.4× 107 = 0

h6(x) = x7 + 100000x12 − 6.6× 107 = 0

h7(x) = x5 − 120x2x13 = 0

h8(x) = x6 − 80x3x14 = 0

h9(x) = x7 − 40x4x15 = 0

h10(x) = x8 − x11 + x16 = 0

h11(x) = x9 − x12 + x17 = 0

h12(x) = −x18 + ln (x10 − 100) = 0

h13(x) = −x19 + ln (−x8 + 300) = 0

h14(x) = −x20 + ln (x16) = 0

h15(x) = −x21 + ln (−x9 + 400) = 0

h16(x) = −x22 + ln (x17) = 0

h17(x) = −x8 − x10 + x13x18 − x13x19 + 400 = 0

h18(x) = x8 − x9 − x11 + x14x20 − x14x21 + 400 = 0

h19(x) = x9 − x12 − 4.60517x15 + x15x22 + 100 = 0

(A.47)

where the bounds are 0 ≤ x1 ≤ 20000, 0 ≤ x2, x3, x4 ≤ 1 × 106, 0 ≤ x5, x6, x7 ≤
4 × 107, 100 ≤ x8 ≤ 299.99, 100 ≤ x9 ≤ 399.99, 100.01 ≤ x10 ≤ 300, 100 ≤ x11 ≤
400, 100 ≤ x12 ≤ 600, 0 ≤ x13, x14, x15 ≤ 500, 0.01 ≤ x16 ≤ 300, 0.01 ≤ x17 ≤
400,−4.7 ≤ x18, x19, x20, x21, x22 ≤ 6.25. f (x∗) = 236.3703133145661.

g23 [14]

Minimize:

f(x) = −9x5 − 15x8 + 6x1 + 16x2 + 10 (x6 + x7) (A.48)

subject to:

77

g1(x) = x9x3 + 0.02x6 − 0.025x5 ≤ 0

g2(x) = x9x4 + 0.02x7 − 0.015x8 ≤ 0

h1(x) = x1 + x2 − x3 − x4 = 0

h2(x) = 0.03x1 + 0.01x2 − x9 (x3 + x4) = 0

h3(x) = x3 + x6 − x5 = 0

h4(x) = x4 + x7 − x8 = 0

(A.49)

where the bounds are 0 ≤ x1, x2, x6 ≤ 300, 0 ≤ x3, x5, x7 ≤ 100, 0 ≤ x4, x8 ≤ 200 and

0.01 ≤ x9 ≤ 0.03. f (x∗) = −400.

g24 [43]

Minimize:

f(x) = −x1 − x2 (A.50)

subject to:

g1(x) = −2x4
1 + 8x3

1 − 8x2
1 + x2 − 2 ≤ 0

g2(x) = −4x4
1 + 32x3

1 − 88x2
1 + 96x1 + x2 − 36 ≤ 0

(A.51)

where the bounds are 0 ≤ x1 ≤ 3 and 0 ≤ x2 ≤ 4. f (x∗) = −5.508013271595251.

