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Abstract

This thesis examines the demand for residential Solar Photovoltaic (SP) installations

in Nova Scotia (NS) from 2016 to 2019. There has been no study that estimates the

economic and demographic determinants of demand for SP systems in NS. Using a

negative binomial logit hurdle model, I find that the installation cost of SP systems,

provincial rebate rate available for homeowners, and median household income at the

census dissemination area level have significant effects on the decision to install SP

systems. The point estimate of the price elasticity demand for SP systems is -1.26,

sufficiently high to suggest that the demand for the residential SP market is highly

responsive to rebate and incentive policies.
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Chapter 1

Introduction

Climate change is one of the most pressing global issues. All scientific and policy

proposals for arresting and reversing the human impact on the climate involve, among

other things, dramatically changing how our societies generate electricity. According

to Environment and Climate Change Canada (2019), Canada’s total greenhouse gas

(GHG) emissions in 2017 were 716 megatonnes (Mt) of carbon dioxide equivalent

(CO2 eq) and of these emissions 10% was due to electricity generation. Even though

Nova Scotia (NS) had an average reduction of 0.79% per year in GHG emissions from

2005 to 2017, in 2017 NS still accounted for emissions of 2.23% of CO2 eq,1 with an

increasing use of renewable sources like wind and biomass being responsible for the

reduction in GHG emissions.

Energy sources like wind, hydro, and Solar Photovoltaic (SP) systems are cur-

rently praised as sustainable sources of energy (Lund, 2007). There are two major

uses of solar technology in residential households: solar thermal and SP systems.

While solar thermals are used for home heating, SP systems provide electricity to op-

erate household appliances and recharge electric vehicles. Both solar thermal and SP

market are part of the same goal of using alternative energy sources to meet household

energy needs and thus similar factors such as price and incentive programs drive their

demand. As part of a national strategy to reduce emissions, the federal government

directed all provinces in 2016 to put a price on carbon pollution and NS uses a cap-

and-trade program that came into effect in January 2019. The cap-and-trade covers

1With a population of slightly under 1 million people, this amounted to emission of 16 tons of
CO2 eq per person.
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80% of total emissions and sets annual limits in the total amount of GHG emissions

allowed in the province for the years 2019–2022. NS plans to reduce GHG emissions

to 45-50% below the 2005 level by 2030.

GHG emission in NS due to the electricity sector in 2017 was 42% of the total, a

much higher percentage compared to the rest of the country (Canada Energy Regula-

tor, 2019d). This is because, while hydropower was the principal source of electricity

generation in the country (60%), electricity generation in NS was mainly from coal

(52%). There are policies in place to reduce GHG emissions in the electricity sector.

The federal coal-fired electricity regulations (published in September 2012) set a limit

to 420 tonnes of CO2 per GWh (gigawatt-hour) from electricity generation using coal,

coal derivatives or petroleum coke (Canada Energy Regulator, 2019a). Additionally,

new regulations are in effect from January 2020 to December 2029 for the electricity

market in NS. GHG emissions from the electricity sector are set to be a maximum of

7.5 Mt CO2 eq in 2020, a maximum of 27.5 Mt CO2 from 2021 to 2024 (average 6.8

Mt CO2 eq per year), a maximum of 6 Mt CO2 in 2025 and a maximum of 21.5 Mt

CO2 from 2026 to 2029 (Government of Canada, 2019).

In addition to restrictions in GHG emissions, alternative energy sources also have

the potential to mitigate the effects of climate change and significantly reduce GHG

emissions (Asaee et al., 2019). While the majority of the wind and hydro plants are

used at an industrial scale to produce electricity, one advantage of residential SP is

that it allows households to produce electricity for residential use.

Residential SP provides low maintenance, pollution-free and distributed alter-

native sources compared to the conventional electricity generation and distribution,

with considerable potential for growth (Canadian Solar Industries Association, 2019).

From 2007 to 2015, only about 130 SP systems were installed in NS, but by the end of

2018, total installations rose to 530 systems with an annual capacity of 3.4 megawatts

(MW). Part of the reason explaining this increase in SP system installations stems
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from the fact that from 2012 to 2018 the cost to install SP systems has decreased

42%. This was at least partially made possible by incentives given by the government

(Wayne, Christie, and Sarah, 2018).

Along with subsidies and promotion campaigns, investment in education and

training is available in NS to assist in the diffusion of residential SP system installa-

tions. These policies are typically undertaken by the provincial and municipal gov-

ernments and are currently available in Calgary, British Columbia, Prince Edward

Island and Nova Scotia (Canadian Solar Institute, 2020).

The purpose of this study is to examine the factors that affect residential SP sys-

tem installations in NS and analyze the effectiveness of the rebate program on the

number of installed SP systems. I develop a demand model to evaluate the effec-

tiveness of rebate policies implemented in NS. The model identifies the key economic

variables that influence the demand for residential SP systems. It also identifies sev-

eral policy adjustments introduced to increase the participation of more households

in the market.

I use data from two sources: WattsUp Solar Ltd and 2016 Canadian Census. I

collect installations data of SP systems from WattsUp Solar Ltd. I compute the

cost of each installed SP system and estimates of rebate. From Statistics Canada

(2017), I obtain census data containing demographic and economic variables such as

population density and median household income from 2016 to 2019. Finally, I merge

installed SP systems data, cost of each SP system and rebate with the census data

at the dissemination area (DA) level and create a panel dataset.

The main dependent variable of interest, SP system installations, is a count vari-

able. I use count data econometric techniques to model the installations. In the

literature several methodologies are employed to analyze count data (Cameron and

Trivedi, 2013; Cragg, 1971; Winkelmann, 2008; Yen and Huang, 1996; Weaver et al.,

2015; Chapados, 2014; Englin and Shonkwiler, 1995; Greene et al., 2007; Chin and
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Quddus, 2003). To model the demand for SP systems, Gillingham and Tsvetanov

(2019) use a Poisson hurdle model. Other count data models include the Poisson

regression model (PRM) and the negative binomial regression model (NBRM). PRM

fails to address the overdispersion of data and NBRM does not consider the zero

counts to be generated from a different process than the positive counts, which is

crucial in analyzing count data dependent variable with too many zeroes (Cameron

and Trivedi, 2013). In my dataset 95.6% of the installations data are zeroes, and as

such a hurdle model better accommodates these excess zeros. Based on the Akaike

information criterion (AIC), the negative binomial logit hurdle model (NBLHM) is

the preferred methodology compared to the PRM and NBRM.

One of the key driving forces of residential SP in NS is government incentives

(rebate), which started in 2018. The number of installations in the dataset increases

over time, and this coincides with a gradually reduced rebate rate toward the end

of the study period. I estimate a price elasticity of demand of -1.26 suggesting that

the demand for residential SP systems is highly responsive to rebate and incentive

policies. Simulation results suggest that since its inception in 2018 and until 2021, the

provincial rebate program will have likely incentivize 1,911 SP systems with a capacity

of about 17.8MW, which is about 96% of the capacity targeted by the program. The

provincial rebate program is expected to continue at least until 2022 (Corning, 2019),

and simulation results suggest that in 2022 an additional 671 new SP systems with

a capacity of about 6.2MW will be installed under this program. An important

dimension of incentive programs is the rebate pass-through which is the percentage

of rebate that is passed on to the consumers. I find a 49% rebate pass-through. A

low pass-through rate indicates that the supply schedule of SP systems is inelastic.

There are only a few studies that estimate the price elasticity of demand for

residential SP but there are no notable estimates using Canadian data. Results vary

greatly. Using Connecticut solar market data and a fixed effect Poisson hurdle model,
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Gillingham and Tsvetanov (2019) find a price elasticity of demand of -0.65. Using the

same dataset and a reduced-form approach, Rogers and Sexton (2014) and Hughes

and Podolefsky (2015) find a rebate elasticity of -0.4 and -1.2, respectively.

Consumers perceive an innovative technology as a new product in the market

(Shama, 1982). Research on durable and innovative technologies finds that employ-

ment status, household income and education are directly correlated with their adop-

tion (Im et al., 2003; Martinez et al., 1998; Olli et al., 2001). This is particularly

important in the context of this study, as the use of solar technology in NS is still at

its early stages and can be viewed as innovative technology.

There is an extensive body of literature on the diffusion of SP (Zhang et al., 2012;

Dewald and Truffer, 2011; Duan et al., 2018). A number of them identify the barriers

to SP installations. For example, Burke et al. (2019), Rai and Beck (2017) and Curtius

(2018) find that socio-technical, management, economic and policy barriers hinder SP

installations in both low and high-income countries. Zhai and Williams (2012) also

find that, in the areas in China that are connected to the grid, socio-technical factors,

such as lack of knowledge of SP by the adopters to carry on maintenance of the

rooftop SP systems, are negatively correlated with the decision to install.

Economic barriers also account for the lack of rooftop SP dissemination. The

high initial cost to install (average system cost of $20,000 in Canada) is a major

investment with an uncertain rate of return. Paidipati et al. (2008) present a model

of market penetration of rooftop SP in each of the 50 states in the United States.

Their model takes into account the technical potential of rooftop SP and payback

period for investments. They find that a higher payback period leads to a decrease

in market penetration of SP in Massachusetts, New Jersey and Tennessee. By con-

trast, consumer SP awareness programs, incentives, and net metering tend to increase

installations even with longer payback periods.
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Barriers also exist in the form of a lack of knowledge on the environmental bene-

fits of renewable energy sources and available incentive programs. Islam and Meade

(2013) find that, in Austria and the United States, a lack of trust in the available

information and proper training reduces the diffusion of SP, and educating the public

and suppliers about solar technology is suggested as a possible solution. They also

suggest that education campaigns should be extensively used to educate the suppli-

ers on SP policies, SP’s environmental consequences and feed-in-tariff programs to

increase SP diffusion. Nova Scotia Community College in partnership with the Nova

Scotia Department of Energy and Mines, organizes free training programs to educate

the public on solar technologies and the techniques of installing and maintaining SP

systems.

Social interactions and peer effects can positively affect installation of SP systems

(Rai and Beck, 2017; Noll et al., 2014). Bollinger and Gillingham (2012) find that

in California, an additional installation in a zip code increases the probability of an

SP system installation in the same zip code by 0.78 percentage points. Population

density tends to increase the probability of installations, possibly by reducing the

cost of social interactions. Bollinger and Gillingham (2012) view population density

as an indicator of social interactions and a clustering of SP systems in regions as an

indicator of peer effects.

Similarly, (Graziano and Gillingham, 2015) model the demand for SP by analyzing

spatial patterns of diffusion in Connecticut and find that the grid cost of electricity and

SP marketing campaigns play a significant role in adoption. The authors also find that

the installation of an additional SP system within a 0.5 miles radius in the previous 6

months period, increases expected future installations by 0.44. Moreover, McEachern

and Hanson (2008) model the demand for SP using installed SP systems data in 120

villages in Sri Lanka that are not connected to the electricity grid. The authors find

that decision of villages to install SP systems are governed by expectations of whether
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the villages will be connected to the grid.

A durable investment good like a SP system has close substitutes, especially given

that substitutes like the conventional electricity generated from fossil fuels or nuclear

energy have already incurred sunk and fixed costs. Lower cost of substitutes, thus, is

a major contending factor and incentives can significantly reduce the cost associated

with SP. Groote and Verboven (2016) estimate the decision to install residential

SP systems using data on the Flanders SP market where they consider both static

and dynamic specifications. The static model does not take into consideration the

consumer expectations of the future. The dynamic model uses a discrete choice

model that considers the valuation by the households of the future benefits of SP

investment and their likeliness to wait for better future investment opportunities. The

authors find that using the dynamic model increases the cost coefficient of SP by 40%

compared to the static model. Similarly, Burr (2014) uses a dynamic discrete choice

model for residential SP system demand, assuming that the residential consumers

can perfectly predict the future changes in a subsidy program and decide whether to

install or wait.

Chen and Wei (2018) use a Stackelberg game to analyze the SP market in China

and study socially optimum incentive policies. Gerarden (2017) considers a dynamic

model of demand for and supply of SP and addresses the effects of subsidy programs

on consumer decisions to install and the innovation of firms. The author concludes

that not only does a subsidy increase SP installations, it also increases firms’ revenues,

eventually increasing technical efficiency and lowering the cost of production. In this

study, I consider a static demand analysis, and leave dynamic modeling to future

work.

Lobel and Perakis (2011) develop a discrete choice model for the adoption of SP

by residential consumers using data from Germany for the period 1991-2007. They

argue that policymakers in Germany should give strong subsidies at the beginning and
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continue with a phase-out over time. Initially, when adoptions are low, a high subsidy

helps disseminate information about rooftop SP and reduce costs through learning

by doing. However, as adoption rates increase, it becomes more expensive to provide

high subsidies. Efficiency NS is decreasing the rebate rate since its inception on June

25, 2018, which could be due to the positive externality induced by subsidies. Initially,

subsidies help display and showcase installations that invite demand. However, over

time, as SP installation costs rise, solar panel prices decline, and electricity prices rise,

the need for subsidy could gradually disappear due to the familiarity of the product

among potential customers and gain in experience by the solar panel installers.

The rest of the thesis is organized as follows. Chapter 2 begins with a discussion

of electricity production using SP systems, describes the electricity market, and SP

landscape in NS. Chapter 3 provides information about data sources, variables and

descriptive statistics. Chapter 4 overviews several count data models and justifies se-

lecting the negative binomial logit hurdle model (NBLHM) to analyze the installation

of SP systems in NS. Chapter 5 presents the estimation results and predictions using

a linear probability model (LPM), PRM, NBRM and NBLHM, policy simulations,

robustness checks and the remaining limitations of the study. Chapter 6 concludes.
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Chapter 2

Background

2.1 Solar Panel Technology

The amount of energy that reaches the earth from the sun in one hour is sufficient to

provide total energy consumed by humans in one year (4.6×1020joules). Solar panels

can be used to capture the energy (photons) from the sun using solar cells and in

turn produce electricity (Gil, 2008). Solar panels are usually made of silicon which

is a semiconductor and its electrical property to be conductive in one direction and

insulating in the opposite direction enables electricity production. When photons

from the sun hit the surface of a solar panel, electrons are knocked off the silicon

atoms in the panels and the negatively charged electrons are driven to one side of the

cells which are then passed through wires in the solar panels (Energy Sage, 2018).

These moving electrons result in direct current (DC) and are converted to alternating

current (AC) using inverters as appliances need AC to operate. The AC then flows

through performance monitoring (optional), main electric panel, and meter. Finally,

the electricity produced can be used by appliances and unused electricity is dispersed

to the main grid or stored using batteries if available (Crabtree and Lewis, 2007).

The amount of electricity produced by a solar panel depends largely on the effi-

ciency of solar panels, as well as several other factors like insolation and the direction

at which panels are mounted in relation to the sun (Energy Sage, 2017). Here, effi-

ciency refers to the percentage of energy from the sun that is converted to electricity

by a solar panel. An LG solar panel, for example, has efficiency in the range of 18.4%
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to 21.7% depending on the type of materials used, wiring and amount of light (pho-

ton) that solar panels reflect away instead of absorbing. In NS, the majority of the

solar panels in use have an efficiency of 15% to 20%.

The size of a panel is measured in Watts and the electrical energy produced is

measured in kWh (kilowatt-hour). For example, 10 units of 400 Watt panels each

amounts to an installed capacity of 4 kilowatts of power and can produce approxi-

mately 4,060 kWh of electrical energy (Natural Resources Canada, 2017).

Source: Natural Resources Canada (2017)

Figure 2.1.1: Electricity Production by Solar Panels in NS

Figure 2.1.1 shows the different amounts of electricity produced in kWh per

kilowatt peak when solar panels are mounted across different directions in Halifax,

NS. There is a sharp decrease in electricity production with SP systems in Octo-

ber through February, and then in April because of a natural decline in insolation.

However, after April electricity production increases. According to Natural Resources

Canada (2017), on average, insolation decreases from 15.1 Mega Joules/squared meter
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(MJ/m2) in March to 13.5 MJ/m2 in April and increases to 14.3 MJ/m2 in May. The

direction of mounting affects the amount of solar radiation absorbed by solar panels.

Panels mounted with a south-facing tilt and latitude−15◦ produce more electrical

energy than other positions.1 Even though this is the optimal position, structure of

the residential units and obstructions from surroundings (trees or other houses and

buildings) can prevent installation at this position.

2.2 Electricity Market

In the year 2018, the energy sector in Canada accounted for 11.1% ($230 billion

CAD) of the GDP and electricity production contributed to 1.7% of GDP. In 2018,

80% of total electricity generation came from non-GHG emitting sources and 67%

from renewable sources with only 0.5% from SP. The installed capacity of SP systems

was 3,113 MW in Canada compared to 49,692 MW in the United States and 45,930

MW in Germany (Whiteman et al., 2019).

In Canada, total electricity generation in 2017 was 652 terawatt-hours (TWh),

among which hydro accounted for 60%, non-hydro renewables 7%, coal 9%, nuclear

15%, and gas/oil/others 10%. Canada is also a net exporter of electricity and from

2007 to 2018, net exports of electricity (only to the United States) increased to

42 TWh by approximately 31% compared to 32 TWh in 2007 (Natural Resources

Canada, 2020).

Figure 2.2.1 shows the change in percentage contribution of nuclear, renewables

and combustible fuels2 to the total electricity production along with total electricity

produced by SP systems (secondary axis) in several provinces in Canada from 2012

to 2018.3 Total electricity generation in 2012 and 2015 was 595 TWh and 593 TWh,

1The latitude of Halifax, NS, Canada is 44.651070.
2Renewable sources include hydro, solar tidal and wind in Canada. Combustible fuels include

fossil fuels.
3Data for solar electricity production is only available for Alberta, British Columbia, Northwest

Territories, Ontario, Prince Edward Island, and Quebec.
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respectively, a 0.3% decrease. During this period both total and percentage of elec-

tricity generation using combustible fuels decreased, while total electricity production

using non-GHG emitting sources increased from 463 TWh to 483 TWh, a 6% increase.

Yet, from 2015 to 2018, total electricity generation increased by 8.2% and so did the

use of combustible fuels (19%) and non-GHG emitting sources (5.7%). However, from

2015 to 2018 electricity production using solar increased by 752%, starting from a low

base. Even though there was a huge deployment of SP in Canada, the share of elec-

tricity produced from solar compared to electricity produced from all other sources

is still low.

Note: Solar electricity production includes data from Alberta, British Columbia, Northwest Terri-
tories, Ontario, Prince Edward Island and Quebec.
Source: Statistics Canada (2019).

Figure 2.2.1: Share of Resources to Produce Electricity and Total Electricity Produc-
tion by Solar Panels in Canada

While hydropower is extensively used to produce electricity in Canada, NS pro-

duces the majority of its electricity from coal, petcoke and natural gas with wind

producing more electricity than hydro. Also, nuclear facilities to produce energy
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is not available in NS and there are currently no plans to do so (Canada Energy

Regulator, 2019c).

The size of the energy sector in the Atlantic region was $10.20 billion: 29,642

petajoules of primary energy4 were produced in 2017, among which 32% was from

crude oil, 29% from uranium, 24% from natural gas, 3% from natural gas liquids, 5%

from hydro, and only 5% from other renewables including SP systems. In 2010, NS

introduced a legislative standard (Renewable Electricity Plan), to produce 25% by

the year 2015 and 40% by the year 2040 of the total electricity in the province using

renewable energy.

In the year 2015, 24% (2,659 GWh) of the total electricity generation in NS

was from renewable sources where hydro constituted 9%, wind 9%, and biomass 6%

(Canada Energy Regulator, 2019b). Nova Scotia Power (2019) states that by the end

of 2018, 30% of total electricity generation in NS was by Renewable Sources.5 Figure

2.2.2 shows electricity production by different sources in NS in the years 2007 and

2018. Majority of the change in resources use were due to an increase in wind along

with a reduction in the use of coal and petcoke.

Several programs were introduced to reach a target of 40% renewable sources

by 2020 in NS, including Competitively-Sourced Commercial Renewables projects

(CSCR), Community Feed-in Tariffs (COMFIT), and net metering. Nova Scotia

Power CSCR is a policy to allow independent power producers to supply electricity

using renewable sources. In 2010, 600 GWh of large-scale renewable energy pro-

duction was undertaken by the NS government under the renewable electricity plan,

where 50% was to be produced with projects implemented by the independent power

producers and the rest from NS power projects. Similarly, the Electricity Reform Act

(2013) enables consumers to select retailers of their choice and electricity sold through

4Primary energy is the energy contained in raw fuels such as crude oil, natural gas, and renewables.
5Electricity production by SP systems is not included.



14

Electricity production using SP systems is not included.
Source: Nova Scotia Power (2019).

Figure 2.2.2: Nova Scotia Electricity Production from Different Sources

these retailers is sourced from low-impact renewables like solar wind and tidal.

The COMFIT program, although currently not accepting new applications, aims

to promote investment in renewable energy in NS by local small-scale investors

(Department of Energy and Mines, 2019). As part of the 2010 renewable electric-

ity plan, the program guarantees to qualified investors a “feed-in-tariff” (rate) per

kilowatt-hour for a certain period regardless of market and economic conditions. En-

ergy produced by these small-scale producers is fed into the grid as denoted by “feed-

in”. Community development investment funds, First Nations, co-operatives, univer-

sities, non-profits and municipalities qualify for the program. Feed-in-tariff is a tool

used in many countries, like the United States and Germany, and other provinces,

like Ontario and Saskatchewan, to attract local investments. In total COMFIT re-

sulted in $135 million investment in NS with a targeted production of 100MW of

renewable electricity by 2020. As of May 2019, under COMFIT, renewable projects
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were generating 157MW of electricity, with 30MW of additional approved capacity.

Also, Developmental Tidal Feed-in Tariff Program, like COMFIT, is used to produce

electricity from tidal energy (Department of Energy and Mines, 2013).

Notes: The left axis shows the rise in electricity price in NS from 2008 to 2019. The right axis shows
the decline in the cost of installed SP systems in NS. Dollar values are in 2019 dollar.
Source: Nova Scotia Power (2018) and WattsUp Solar Ltd.

Figure 2.2.3: Price of Electricity and Cost of Solar Photovoltaic Systems

Figure 2.2.3 shows the price of electricity supplied by the grid and the cost of

SP systems in $/Watt, from 2008 to 2019. The price of electricity has increased by

46% over this period. At the same time, the cost of SP systems per Watt decreased

by 45% from 2012 to 2019. Residential electricity prices are to increase by 1.2% on

average each year from 2020 to 2023. According to Nova Scotia Power (2018), the

increase in the price of electricity provided by the grid is in part due to higher costs

associated with electricity generation using renewable energy sources used to meet

renewable energy targets. While renewable sources indeed decrease the wholesale

cost of electricity (Mills et al., 2019), the unreliable nature of renewable sources (e.g.,



16

bad weather) adds up to the cost. For example, wind necessitates the use of instant

backup power using fossil fuels or batteries, which, when used, drives up the price of

electricity.

Table 2.2.1: SP System Installations in Nova Scotia

Years WattsUp Solar Province Total
2016 17 83

2017 33 127

2018 78 200

2019 107 500

Notes: SP stands for Solar Photovoltaic.
Source: WattsUp Solar, Denty and Jacques (2018) and Corning (2019).

While between 2016 and 2019, on average the cost of SP in NS declined from

$3.78/Watt to $2.53/Watt, the number of SP installations increased. Table 2.2.1

shows the number of SP systems installed by WattsUp Solar and total installations

in the province. The number of newly installed SP systems in NS increased from 83

in 2016 to 500 in 2019. Unfortunately, there is no comprehensive documentation of

the total number of installations nor the installed capacity of residential SP systems

in NS. The province total numbers reported in Table 2.2.1 are from a report by Denty

and Jacques (2018) and Corning (2019), and not meant to be definitive.

2.3 Incentive Programs

The most crucial instrument to stimulate residential SP adoption in NS is a rebate

administered by Efficiency Nova Scotia6 under the Solar Homes program; Table 2.3.1.

Currently, there are around 50 authorized installers actively working with the HRM

(Efficiency Nova Scotia, 2020).

6Efficiency Nova Scotia is an efficiency utility company that works with more than 200 local
partners in NS to conduct energy efficiency projects.
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Table 2.3.1: Rebate Rates for SP System Installations in Nova Scotia

Amount Date Effective
$1/Watt (installed DC capacity) up to 35%
of eligible system costs (excluding HST) or
$10,000, whichever is less June 25,2018

$0.85/Watt (installed DC capacity) up to 30%
of eligible system costs (excluding HST) or
$8,500, whichever is less March 26, 2019

$0.60/Watt (installed DC capacity) up to 25%
of eligible system costs (excluding HST) or
$6,000, whichever is less November 1, 2019

Notes: SP stands for Solar Photovoltaic.
Source: Corning (2019).

According to Corning (2019), with an adoption quota of 200 SP systems, 800

applications were received while $1/Watt rebate was available. The installers were

notified about the rebate reduction to $0.85/Watt, 4 days prior to its announcement

date and 400 among the 1,100 applications were received in 4 days. Total applications

received until November 2019 was 1,900. The total value of the projects is CAD

$47.5 million and the total rebate to be disbursed is CAD$11.8 million. Moreover,

total projects completed are 700 with a capacity of 6.5MW, and the rebate amount

CAD$5.6 million has already been paid. More applications are expected to be received

even though the rebate amount is decreasing in steps.

The second element of SP incentive programs is net metering. This program

allows NS Power customers, who have installed solar electricity generation equipment

on their premises, to sell excess electricity back into the grid at a price. NS power

credits total electricity supplied by any consumer at the same price consumers pay

for the electricity they buy from the grid, even if the price increases.

Another crucial instrument used to stimulate SP system installations, coupled
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with the Solar Homes program, is the Solar City program (Halifax Regional Munici-

pality, 2020b) which has been an important instrument in the dissemination of SP in

NS. It was introduced on May 15, 2016 for three years, and is funded by the Property

Assessed Clean Energy Program (PACE) (Clean Foundation, 2020). PACE is a loan

program that allows homeowners to implement energy efficiency upgrades such as

insulation for ceilings and heat pumps.

The Solar City program is administered by the Halifax Regional Municipality,

which provides financing at a fixed rate of 4.75% over 10 years to eligible property

owners across Halifax regional municipality (HRM) only. Eligible property owners

include residential households, not-for-profits, places of worship, cooperatives, and

charities. SP, solar hot air, and solar hot water systems can also be financed using

the program. Financing is only applied to the property and is transferable if the

owner of the property changes. Credit checks are not required but owners need to be

in good financial standing with respect to local improvement charges, property taxes,

and any other municipal charges. Under the program, interested property owners

can seek guidance from a Solar City officer to better analyze their energy needs and

determine possible solar energy systems that can be used.

Similar programs are adopted to finance energy efficiency and renewable energy

projects by several other NS municipalities, including Towns of Bridgewater, Berwick,

and Municipality of the District of Shelburne (Denty and Jacques, 2018). SP system

installations increased after the introduction of the financing option and from May

2015 to September 2018, 216 systems were installed under the program. The first

phase ended on May 15, 2019, and additional 3 years were approved for this program.

The Solar City program has not only assisted organizations and residential customers

to adopt the new technology of SP systems, but also resulted in local SP system

installation businesses to expand. Unfortunately, the data used in this study do not

contain information on Solar City program participation, and hence I am not able to
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assess its impact on residential SP system installations. Denty and Jacques (2018)

report that in 2017, SP systems with capacity 319.5 kW were installed within HRM,

among which 161.2 kW were under the Solar City program. By the end of 2017,

$39,710.88 were paid out by net metering with total connections amounting to 453.

(Unfortunately no data are available for 2018 and later years.)

2.4 Capacity Factor and Levelized Cost of Energy

WattsUp Solar is one of the 50 companies operating in 10 of the 18 counties in NS.

WattsUp Solar provides data on electricity generated by more than 300 SP systems

over 4 years from 2016 to 2018. The electricity generation data can be used to

investigate SP efficiency and cost in NS in terms of capacity factor (CF) and levelized

cost of electricity (LCOE), respectively. In total, one SP system in 2016, 13 SP

systems in 2017, 39 SP systems and 110 SP systems in 2019 have year-round electricity

generation data and I use these SP systems to calculate annual CF and LCOE.

CF is defined as the actual electricity produced by an energy system over the total

capacity of the system for a given period. CF can be calculated for any electricity

generation sources using both AC and DC sizes and is used as a metric to analyze

the efficiency of different energy systems (International Renewable Energy Agency,

2019). Annual CF can be calculated using

Capacity Factor =
Actual Output Produced

Total Capacity
, (2.1)

where Total Capacity = size of SP system × 365 days × 24 hours. For example, a

3.25 kW system, situated in Paradise NS, generated 4,349 kWh of electricity in the

year 2016. Total capacity is 3.25 × 365 × 24 = 28,470 kWh. Thus dividing 4,349

by 28,470 gives a capacity factor of 0.15 or 15%. The variation in CF is brought by

different factors such as region, inverter used, angle at which SP system is mounted

and shading.
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Notes: SP is Solar Photovoltaic. SP systems (AC sized) installed in various regions as shown
by circles. 110 residential SP systems operational throughout 2019 are mapped. Capacity factor
expressed as an annual average for each SP system for both residential and commercial SP systems.
Map made with software Tableau.
Source: WattsUp Solar.

Figure 2.4.1: Capacity Factor by SP System Size in Nova Scotia

Figure 2.4.1 shows the variation in CF for different SP system sizes in different

regions of NS in 2019.7 On average, larger SP systems have a higher CF. SP system

installations in Digby, Yarmouth, Shelburne and Colchester counties are relatively

smaller compared to Halifax county and CF is also lower.

Figure 2.4.2 presents the yearly change in CF for SP systems in Nova Scotia and

global weighted average CF for other renewable energy sources. Hydropower has the

highest CF but a decreasing trend since 2016. One reason for the decline can be

the slowing down of the development of hydropower in developed countries due to

the lack of new sites for its generation (Boccard, 2009). CF of SP systems in NS

and on average in the world shows a moderate increasing trend compared to 2014

values. More importantly, the CF of SP systems in NS is lower compared to the

7Both commercial and residential SP systems are used for calculation.
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Notes: For all renewable sources except Nova Scotia Solar, capacity factor is in global weighted av-
erage. Concentrating solar produces electricity by converting thermal energy from sun to electricity.
Solar includes both commercial and residential SP systems (DC size).
Source: International Renewable Energy Agency (2019) and WattsUp Solar.

Figure 2.4.2: Capacity Factors for Renewable Energy Sources

global weighted average. In 2018, CF of an SP system in NS was 12.3%, compared

to the global weighted average of 18.2%.

Additionally, on-shore wind has a higher CF than residential and commercial SP

but lower than concentrating SP. Concentrating SP converts energy from sunlight into

thermal energy which is then used to generate electricity, generally by using a steam or

gas turbines (Müller-Steinhagen, 2013). The global weighted CF of concentrating SP

systems in 2018 increased by 55% compared to 2014 and this high CF of concentrating

SP systems can be a result of the widespread use of this technology around the world

(Whiteman et al., 2019). Djebbar et al. (2014) studied the potential of concentrating

SP systems in Alberta, British Columbia, Saskatchewan, Manitoba and Ontario. At

the end of 2014, the first concentrating SP system started operating in Medicine Hat,

Alberta (Green Energy Futures, 2014). However concentrating SP systems are yet to
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be used in NS to produce electricity.

Levelized cost of electricity (LCOE), on the other hand, compares the cost of

different sources of energy production. The absolute cost to produce electricity by

different sources cannot be compared as the cost varies by region, project, capital

cost, maintenance cost, and many other variables. LCOE takes into consideration

all the different factors that affect electricity price and normalizes it to a comparable

value in $/kWh.

To compare LCOE ($/kWh) values of SP systems in NS with previous study by

International Renewable Energy Agency (2019), I use similar assumptions to calculate

LCOE. I assume an economic life of an SP system to be 25 years, operations and

maintenance expenditures of CAD$25 per kWatt with annual inflation of 2%, energy

produced by an SP system to decrease by 0.6% every year and a discount rate of

6% per year.8 Table 2.4.1 shows the average cost of an SP system in NS, rebate and

average electricity produced by an SP system from 2014 to 2019, as used for LCOE

calculation. LCOE is calculated using

LCOE =

∑︁25
t=1

It+Mt+Ft

(1+r)t∑︁25
t=1

Et

(1+r)t

, (2.2)

where I is investment on an SP system or the total cost per kWatt, M is operations

and maintenance expenditures, F is fuel cost (which in case of SP is zero), r discount

rate and E is energy produced by the SP system. I calculate LCOE of installed SP

systems with actual average electricity production in kWh/kWatt DC in NS. I also

use the average cost of installations in the data for each year to find investment or

total cost of an SP system in a given year.

Figure 2.4.3 shows the change in LCOE ($/kWh) of on-shore wind and SP systems

in the world and NS. LCOE has been decreasing for all renewable energy sources

8Under the Solar City program discount rate is 4.75% per year over 10-years
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Table 2.4.1: Data Used for LCOE Calculations

Variables Values
Total cost of an SP system in 2016 3,780
Total cost of an SP system in 2017 3,110
Total cost of an SP system in 2018 2,680
Total cost of an SP system in 2019 2,520
Rebate in 2018 1.02
Rebate in 2019 0.85
Electricity produced in 2016 1,183
Electricity produced in 2017 1,025
Electricity produced in 2018 1,078
Electricity produced in 2019 1,065

Notes: SP is Solar Photovoltaic. Total cost is in $/kWatt. Rebate is in $/Watt. Electricity
production is in kWh/kWatt direct current (DC). All dollar values are in 2019 dollars. Cost of
installation is for both residential and commercial SP systems.

Notes: SP is solar photovoltaic. LCOE is levelized cost of energy/electricity. NS is Nova Scotia.
Global SP LCOE is in global weighted average. SP LCOE is calculated with DC sized SP systems.
SP includes both commercial and residential SP systems. Dollar values are in 2019 Canadian dollars.
Source: International Renewable Energy Agency (2019) and WattsUp Solar.

Figure 2.4.3: Levelized Cost of Electricity for Different Renewable Sources
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with on-shore wind incurring the lowest cost to produce a kWh of electricity. The

SP systems in NS that benefited from a $1/Watt rebate in 2018, the LCOE is 0.151

$/kWh which is a 44% decrease compared to SP systems installed in 2017.

Given a rebate of $0.85/Watt, the cost to produce electricity by installed SP sys-

tems in 2019 was $0.152/kWh which is less than the grid electricity rate of $0.156/kWh.

Therefore, rebate structure in 2019 enabled SP system installers to reach grid parity

and it was cheaper to produce electricity with SP systems than to use grid electric-

ity. On the other hand, LCOE of SP systems in NS is more than the LCOE of the

global weighted average of SP systems and on-shore wind, even if rebate is applied.

Moreover, if rebate is phased out, LCOE of SP systems is likely to increase in NS as

total costs to be paid by the installers will increase. This also means that it will be

difficult to reach grid parity by SP systems if rebate is no longer available. While the

calculation of LOCE varies by each system installed, location and other factors, the

analysis of LCOE in NS illustrates the importance of rebate to reach grid parity.
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Chapter 3

Data

3.1 Sources

I use data from two sources: WattsUp Solar Ltd and 2016 Canadian Census. Solar

Photovoltaic (SP) system installations data are obtained from the website of WattsUp

Solar. Data were accessed on October 10, 2019 from: https://wattsupsolar.ca. Each

installed SP system is mapped to a geographic location (Figure 3.1.1) and each ob-

servation contains installation information including the date of operation, installed

capacity in both DC and AC sizes, number of panels used, location, and inverter

use. The total number of installed residential SP systems from 2016 to 2019 is 235.

The SP system installations data is geocoded at the DA level using ArcGIS Pro and

merged with the census data at the DA level.

The cost of an individual installed SP system is not provided by WattsUp Solar,

but their website has a user-friendly tool to calculate the cost in 2019 dollar values.

Variation in cost comes from several factors: the make of solar panels installed (e.g.,

LG), type of inverter used (e.g., IQ6+), number of panels installed, size in Watt of

each panel, an approximate total service fee (e.g., administrative cost), and the total

size of the installed SP system. For example, using LG solar panels, IQ6+ inverter,

27 solar panels with a size of 400 Watt per solar panels, CAD$3,000 service fee, a 10.8

kWatt DC sized SP system installation costs, CAD$2.48 per watt in 2019. Similarly,

using Silfab solar panels, M250 inverter, 36 solar panels with a size of 285 Watt per

solar panels, CAD$3000 service fee, a 10.26 kWatt DC sized SP system installation

costs CAD$3.19 per watt in 2019.
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Note: Each point on the map represents an individual SP system installation.
Source: WattsUp Solar website, https://quote.wattsupsolar.ca/systems.

Figure 3.1.1: Solar Photovoltaic System Installations in Nova Scotia

I calculated the cost of these 235 installed SP systems using the web-based tool.

Some DAs have more than one installation. In those cases, I use a cost averaged over

all installations in that DA. This results in 200 distinct DAs with installation and

cost data. Thus, for a variable x, my unit of observation is xit where i is a DA and t

is year. Specifically, if xit is the cost of installation in a DA, I use the average cost of

all the installations in DA i during year t.

The amount of rebate that was applied to each installed SP system is not available.

However, rebate can be computed using Table 2.3.1. I have data on the date at

which each installed SP system started operating, but not when the installation was

approved for a rebate, if it was at all. Rebate is determined based on the date of the

application to install an SP system. I assume an average 4-month period of project

implementation to estimate the date of application and I set rebate equal to what

was available 4 months prior to the date of operation. Several DAs have multiple

installations and an average value of total rebate applied to all the installations is

taken.
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In the WattsUp data, 95% of the DAs in NS have zero installation. The corre-

sponding shadow price and rebate for these DAs are recorded as follows: rebate is set

equal to the maximum amount that was available during a specific year. For exam-

ple, all DAs that had zero installations in 2016 and 2018 are assigned a rebate of 0

$/Watts and 1$/Watts, respectively. The shadow price (cost of installation) variable

needs to be handled with care. In studying the Connecticut solar market, Gillingham

and Tsvetanov (2019) use the average cost of installation in the same municipality,

and, if this is not possible, they use average within-county cost of installation. In this

study, I use the average cost of installation for Nova Scotia by WattsUp in a specific

year to determine the corresponding shadow prices. Additionally, I deduct rebate

from the cost of an SP system to calculate cost-after-rebate for each DA-year pair.

Canadian Census 2016 (Statistics Canada, 2017) provides demographic and eco-

nomic characteristics of 1,721 DAs for NS. The control variables obtained from this

source are average age, population density, education at three levels (no certificate

or degree, secondary education completed, and post-secondary education completed),

owner-occupied households, and median household income. I remove 96 DAs due to

missing information. I extrapolate the census data to an annual basis from 2016 to

2019, by applying average annual or quarterly changes, whichever is available from

Statistics Canada. There is little variation over time in age, education and household

ownership variables. Overall, the panel data consists of 1,625 DAs and 6,500 obser-

vations that include demographic and economic variables, along with rebate and cost

data for each DA.

Several issues need to be mentioned and that will matter for the interpretation

of the results. First, a considerable number of counties do not have installations and

this can bias the results. Second, since the installation costs for these counties are

imputed using the provincial average, there will be measurement error. Moreover,

the cost estimates for installations prior to 2019 are not based on historical quotes
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Table 3.1.1: Summary Statistics

Mean SD Min Max
a) All DA-year pairs (N=4,560)
Installations 0.05 0.27 0 7
Cost of installations ($/Watt) 2.99 0.48 2.24 4.42
Rebate ($/Watt installed) 0.46 0.47 0 1.02
Cost-after-rebate ($/Watt) 2.56 0.92 1.24 4.42
Median income ($) 67,250 25,150 17,344 2,20,519
Population density 1,621 3,065 0.40 62,525
% of no education 19.70 9.77 0 61.96
% of secondary education 25.30 6.07 0 51.38
% of post-secondary education 54.99 11.41 19.57 87.16
Average age, in years 43.27 5.34 23.80 65.60
Owner-occupied households 175.09 97.24 0 1,160

b) DAs With At Least One Installation
Installations 1.18 0.61 1 7
Cost of installations ($/Watt) 2.77 0.43 2.24 4.42
Rebate ($/Watt installed) 0.54 0.48 0 1.02
Cost-after-rebate ($/Watt) 2.23 0.80 1.24 4.42
Median income ($) 76,667 26,730 31,714 2,17,169
Population density 952 1528 1.04 6,974
% of no education 18.21 8.27 4.05 45.45
% of secondary education 24.60 5.45 7.27 41.67
% of post-secondary education 57.20 10.22 28.00 78.18
Average age, in years 43.32 5.30 30 57
Owner-occupied households 229.65 125.65 45 680

Notes: The unit of observations is a DA in a year. N is the number of observations. Installations is
a count variable with counts ranging from 0-7. Cost-after-rebate = Cost of installations − Rebate
for each DA-year pair. % of no education is total number of people with no certificate, diploma or
degree expressed as a percentage of total population. Population density: number of people per
square kilometer. Owner-occupied household is the number of households occupied by owner. SD
is standard deviation. All dollar values are in 2019 dollars.

received by customers, but rather based on a hypothetical quote they would have

received in 2019 had they installed the same system. As such, the cost estimates

are likely to understate the change in cost of installations over the years.1 Third,

1One major component of cost is the make and size of solar panels. In the dataset, in 2016
and 2017, the majority of the solar panels were Silfab and the average size of panels was 293W,
whereas, in 2018 and 2019, almost all the panels installed were LG and the average size of panels
was 353W. These changes in make and size are in respond to changes in relative prices and efficiency.
If substitution bias is present, for instance, web-tool based costs estimates would imply a smaller
decrease in average cost of installations.
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WattsUp Solar does not install in eight out of 18 counties,2 and these areas are

removed from the dataset. Thus, following Gillingham and Tsvetanov (2019) and

Hughes and Podolefsky (2015), counties with no installations are not considered for

analysis. Taking everything into account, I have a balanced panel dataset of 1,140

DAs (4,560 observations) over 4 years.

Table 3.1.2: Frequency of Installations

Installations Frequency Percent Cumulative
0 4,360 95.61 95.61
1 177 3.88 99.50
2 16 0.35 99.85
3 5 0.11 99.96
4 1 0.02 99.98
7 1 0.02 100.00
Observations 4,560

Source: Academic (2019).

Figure 3.1.2: County Map of Nova Scotia

2The counties that are not serviced by WattsUp Solar are Antigonish, Cape Breton, Cumberland,
Guysborough, Inverness, Pictou, Richmond, Victoria (Efficiency Nova Scotia, 2020).
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Table 3.1.1, panel a, presents summary statistics for all DA-year pairs (full sam-

ple). Table 3.1.1, panel b, by contrast, shows the summary statistics for all DA-year

pairs with at least one installation (subsample). The low mean of 0.05 in the full

sample reflects the total SP systems installation of 228 in 4,560 DA-year pairs. In-

stallations is a count variable with counts ranging from 0 to 7. Table 3.1.2 shows the

frequency distribution of the installation variable that has 95.6% of zero counts.

The cost of installation ($/Watt) and cost-after-rebate values are higher in the

full sample. This is because the shadow prices are calculated using the average cost of

installations, and the average cost of installations in 2016 and 2017 were $3.87/Watt

and $3.11/Watt, respectively, which drives up the mean value in the full sample. Also,

the mean of owner-occupied households, which is the number of households occupied

by owners in a DA, is higher in the subsample. This highlights that DAs that have

more owner-occupied households are more likely to have SP system installations.

Additionally, the mean of median income is higher in the subsample with at least

one installation than in the full sample. The population density in the full sample is

much higher than that of the subsample. Densely populated DAs are mainly in the

Halifax city centers where owner-occupied households are fewer.

Figure 3.1.3 shows the number of installed SP systems and median household

income by county. During the period from 2016 to 2019, while Digby with a low

median income had only 11 installations, Halifax with the highest median income

had 146 SP system installations. However, in other counties, the relationship is

mixed. For example, the median income in Kings county is lower than that of Hants

county, but Kings county had more SP systems installed. The number of installations

in Shelburne, Yarmouth, Queens, and Colchester is comparatively lower than other

counties. Given that data are from a single installer, one reason can be the presence

of many competitors of the company in those counties. For example, Shelburne

and Colchester have 29 and 32 competitors and these companies can potentially be
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successful in these regions in drawing customers away from WhatsUp Solar Ltd.

Note: Median Income is median household income in logarithms

Figure 3.1.3: Median Income and SP System Installations by County

While Halifax county with the highest population density has the maximum num-

ber of SP system installations among all counties (Figure 3.1.4), Queens, with the

lowest population density, has the lowest number of SP system installations. How-

ever, the same positive relationship is not present if Colchester county is compared

with Annapolis county. Overall, these figures suggest that to estimate the demand

for residential SP systems, one should control for population density and median

household income as these provide distinct information.

Figure 3.1.5 depicts the number of SP system installations in NS from 2016 to

2019. I use the same average cost curve of SP systems as in Figure 2.2.3 to analyze the

relationship between the cost of and demand for residential SP systems and find an
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Note: Population Density is in logarithms.

Figure 3.1.4: Population Density and Solar Photovoltaic Installations by County

inverse relationship. Rebate of $1/Watt was introduced in 2018 and the total number

of installations in 2018 was 78 compared to 33 in 2017. While rebate decreased to

$0.85/Watt on March 26, 2019, the total number of installations increased.

Moreover, the 94% increase in installations from 2016 to 2017 reflects rising grid

price and decreasing SP system cost effect. From 2017 to 2018, the number of in-

stallations increased by 136% and during this time the grid cost per kWh increased

by 1.77% while residential SP systems cost per Watt decreased by 3.03%. The rising

cost of grid electricity cost and decreasing installation costs, coupled with a $1/Watt

rebate increased the number of installations by 136% between 2017 and 2018. On

the other hand, the decrease in the growth rate of installations from 2018 to 2019 is

likely to be due to a combination of the reduction of rebate and the cost decreasing
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Note: The vertical red lines represent the introduction of rebate on June 25, 2018 of 1$/Watt and
a decrease in rebate to 0.85$/Watt on March 26, 2019.

Figure 3.1.5: SP System Installations and Cost of SP Systems from 2016 to 2019

by 5.56% compared to 13.86% in the previous year.

While using data from a single installer is a major concern, alternative data

sources, are not suitable for this study. Halifax Regional Municipality (2020a) pro-

vides solar electric generation data at 5-minute intervals for about 100 SP systems

installed through the Halifax Solar City program. Similarly, a report by Denty and

Jacques (2018) includes data on around 300 residential installations in 2016 and 2017

in NS. Unfortunately, however, none of these data sources can be linked to cost data

required to estimate the price elasticity of demand.

Installing a SP system is an investment that bears a high initial cost and DAs

with higher median income are expected to exhibit higher numbers of installations.

The average cost of SP including rebate in 2019 in NS was $1.57/Watt. Given the

average DC size of an SP system in NS in 2019 was 9.3 kWatt, this amounts to a
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total cost of CAD$14,508.

Additionally, one major concern with SP is that electricity production from SP

depends on shading factor. Also, consumers are unable to rely entirely on electricity

produced by their SP systems even if they install large units, unless they use bat-

tery storage. However, storage adds further costs to an already substantial capital

investment. Unfortunately, I do not have location-specific shading factor and storage

data.

3.2 Endogeneity

The cost of an SP system is a crucial variable in the demand for SP, and if the cost

is endogenous, this may bias the estimates. Gillingham and Tsvetanov (2019) study

Connecticut, which is a big market for SP and pursue an instrumental variable ap-

proach. As instruments they use wage and state incentives for SP systems which are

marginal cost shifters. However, SP in NS is a relatively small market and most of

the supplies (like panels, inverters) are sourced from an internationally competitive

market (mainly China and Canada), and individual contractors do not have enough

market power nor size to obtain discounts from the suppliers. Moreover, the reg-

ulating agencies and NS Power do not place onerous certification requirements on

installers, above and beyond the requirement that the contractor works with certified

electricians. As a result, there are around 50 certified solar panel installers in the

province (Efficiency Nova Scotia, 2020). Since there are no major certification hur-

dles to enter into the installations market, I assume that the residential SP systems

market is competitive and thus treat the installation cost as an exogenous variable

with all changes in the cost of installation driven by unit labor costs and cost of

equipment and not by the number of installations.
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Chapter 4

Methodology

The dependent variable is the number of SP system installations (count variable)

at the DA level and my objective is to estimate the impact of economic factors

on the decision to install SP in NS. To model the demand for SP, I build on the

work of Cameron and Trivedi (2013) who use count data models and Gillingham

and Tsvetanov (2019) who use a Poisson hurdle model to analyze demand for SP

systems in Connecticut. Count data are often modeled as a Poisson process. There

are at least three estimation techniques: linear, Poisson regression model (PRM) and

negative binomial regression model (NBRM). Below, I discuss these models and offer

a list of their limitations. Later in the chapter I introduce negative binomial logit

hurdle model (NBLHM) and present several criteria that will help assess whether to

use NBLHM or other count data models.

I start with a general representation of the demand for SP. Let Qit be the number

of SP systems installed in DA i at time t, Xit be a matrix of independent variables

such as cost of installations and rebate, and β be a vector of parameters. The demand

function is

Qit = D(Xit, β). (4.1)

In the data, the count variable ranges from 0 to 7. I use the cost of installations

($/Watt), rebate ($), and other economic and demographic variables as explanatory

variables. Median income is the median household income in logarithm, population

density is the population density in logarithm, age is the average household age and
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age2 is squared average household age. I also control for the percentage of the pop-

ulation who has a post-secondary degree. Owner-occupied households is the number

of owner-occupied homes in a DA.

4.1 Linear Model

Assuming a linear demand system, the demand for SP can be expressed as

Qit = X ′
itβ + ϵit, (4.2)

where ϵit is idiosyncratic errors, and β is a vector of parameters to be estimated. The

linear model can be estimated by ordinary least squares (or maximum likelihood).

However, OLS treats the dependent variable as continuous and misspecifies the data

generating process of count data leading to predicted non-integer and negative out-

comes; see (Wooldridge, 2010) and (King, 1988). While logit and probit regression

models would deliver consistent estimates, they result in a significant loss of informa-

tion as the range of the count variable is reduced to 0 or 1; see Gardner, Mulvey, and

Shaw (1995).

4.2 Poisson Regression Model

Modeling the data generating process of count data as a Poisson process is standard,

given that the Poisson distribution handles the presence of non-linearity and non-

negative integer values in the data (Cameron and Trivedi, 2013). The probability

distribution of count data using Poisson distribution is

P (Qit = Q|λit) =
e(−λit)λQ

it

Q!
, (4.3)

where Q = 0, 1, 2, 3, ... is a Poisson random variable with

E[Qit|λit] = Var[Qit|λit] = λit, (4.4)
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so that the conditional mean and variance of the Poisson random variable are equal,

with λit = e(x
′
itβ).

In a panel data setting, the conditional expectation of equation 4.1 using the

Poisson regression model (PRM) is

E[Qit|Xit, β] = λit = e(X
′
itβ). (4.5)

The PRM has drawbacks. First, PRM does not take into account unobserved het-

erogeneity. While equation (4.4) assumes equidispersion, often the data are overdis-

persed, which means conditional variance is larger than the conditional mean (as in

the case of installed SP systems used in this study).1 Using PRM to estimate overdis-

persed data understates the standard error, which lowers p-values and might lead to

an erroneous conclusion that the coefficient estimate on a variable is significant when

it is not. Second, when the dependent variable has many zeros (95.61% in the data),

the observations are not represented well by a Poisson distribution unless the sample

mean is small. Problems of overdispersion and excess zeros can be addressed if the

data generating process is such that the dependent variable has a negative binomial

distribution, an extension to the Poisson distribution which is discussed next.

4.3 Negative Binomial Regression

The PRM fails to fit a model when overdispersion is present, as it only models

observed heterogeneity by specifying that λit is a function of observed Xit’s. The

negative binomial regression model (NBRM) is an extension of the PRM. Given

λit = e(X
′
itβ), the NBRM introduces an additional parameter α to address unob-

served heterogeneity and overdispersion (Cameron and Trivedi, 2013). It modifies

1Several studies address the case of underdispersion using the gamma model (Winkelmann, 2008,
p. 180) and the generalized event-count model (King, 1989).



38

equation (4.3) by introducing ϵit which are assumed to be uncorrelated with X ′
its:

λ̃it = e(X
′
itβ+ϵit). (4.6)

Taking eϵ = δ where density of δ is a function of the NBRM overdispersion parameter

α,

λ̃it = e(X
′
itβ)δit. (4.7)

To estimate the model, set E[eϵit ] = 1 which results in E[λ̃it] = λitE[δ] = λit. Thus,

the PRM and the NBRM have the same mean structure. The distribution of obser-

vations conditional on Xit’s and ϵit’s is still Poisson:

P (Q|λit, ϵit) = P (Q|xit, ϵit) =
e(−λ̃it)λ̃

Q
it

Q!
. (4.8)

However, ϵit is unknown and Long (1997) uses a gamma distribution for eϵit and this

gives the negative binomial distribution

P (Q|x) = Γ(Q+ α−1)

Q!Γ(α−1)

(︃
α−1

α−1 + λ

)︃α−1 (︃
λ

α−1 + λ

)︃Q

, (4.9)

where Γ is the gamma function and α is a measure of the degree of dispersion. The

PRM is characterized only by its mean λ, but the NBRM is a function of mean and

the overdispersion parameter α, and the conditional variance equates to λ(1 + αλ)

(Cameron and Trivedi, 2013). As α → 0, the distribution in equation (4.9) converges

to the Poisson distribution. Thus, the NBRM controls for overdispersion and corrects

the standard errors. While NBRM can be used for this study, it does not distinguish

between zero installations and a positive number of installations.

It is reasonable to think that there are several ‘hurdles’ (like fixed costs) that

need to be passed before a decision to install an SP system can be made. Once the

hurdle is passed, the number of installations may be determined by a host of novel

factors. Distinguishing these two distinct characteristics of a count data with excess

zeros is crucial in estimating the parameters of the model, an issue addressed by

the hurdle model. A hurdle model can accommodate excess zeros and allows for the
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analysis of the two distinct data generating process. The dataset I use is a panel

data at the DA level. While the hurdle model works best if data are available at the

individual consumer level, for this thesis it is interpreted as an informational hurdle

model applicable at the DA level.

4.4 Negative Binomial Logit Hurdle Model

Hurdle model was introduced by Mullahy (1986) to analyze count data where the zero

counts and the nonzero counts are treated as two different processes. This two-part

structure of the hurdle model has the following probability distribution:

P (Qi = j) =

⎧⎪⎪⎨⎪⎪⎩
f1(0) if j = 0,

1−f1(0)
1−f2(0)

f2(j) if j > 0.

(4.10)

The hurdle model combines a binary model to predict the 0’s and a zero-truncated

Poisson or zero truncated negative binomial to predict nonzero counts. In reference

to this study, let di = 1 if a household does not install SP in a given period, i.e.,

di = 1−min(1, Q). Then the probability function is given by

f(Qi) = fdi
1i [(1− f1i)fT (Qi|Qi > 0)]1−di , (4.11)

where independence is assumed between the hurdle and nonzero part with f1i =

P(di = 1) and fT (Qi|Qi > 0) = f2(Qi)/[1−f2i(0)]. The log-likelihood is given by two

parts:

lnL =
∑︂
i

(di ln f1i + (1− di) ln(1− f1i)) +
∑︂
di=0

(ln f2(Qi)− ln(1− f2i(0))) . (4.12)

Excess zeros or too few zeros are both incorporated into the hurdle model by

f1(0) > f2(0) and f1(0) < f2(0), respectively. The density function f1 (hurdle or
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selection part) can be estimated using logit, probit, Poisson or negative binomial

regression model. The density function f2 is a count density with nonzero counts and

can be estimated using truncated Poisson, truncated negative binomial or truncated

Poisson log-normal regression model.

Equation 4.12 can be estimated using negative binomial logit hurdle model (NBLHM),

in which case the hurdle or selection part density function f1 will be estimated using

a logit model, with the understanding that the number of SP systems (the dependent

variable) is 0 if no installation takes place in a DA and 1 otherwise. The outcome

part density function f2 will be estimated using a truncated negative binomial regres-

sion model (TNBREG). TNBREG only uses those DAs where there is at least one

installation. Justification of using NBLHM is discussed next.

4.5 Model Selection

Figure 4.5.1 shows that the predictions of the number of installations from PRM and

NBRM coincide. However, Figure 4.5.2 shows that the difference between observed

and predicted installations is smaller for the NBRM, suggesting NBRM is a better

model compared to PRM.

The reason both PRM and NBRM predict the number of installations well is

because the available data have few DAs with installations greater than zero. As the

mean λ of a Poisson distribution increases, the distribution approaches a normal and

the probability of zero counts decreases rapidly (Figure 4.5.3). The plot for λ = 0.05

is of importance as λ, the mean number of installations by DA in the dataset, is also

0.05. Given the data has a low mean value of installations, the Poisson distribution

and distribution of the data are similar (Figure 4.5.1). Therefore, even though data

are overdispersed with excess zeros, both PRM and NBRM fit the data well. In sum,

either PRM or NBRM can be used judiciously, if one is prepared to assume that zeros

and positive installations are determined by the same process.
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Notes: NBRM is negative binomial regression model, PRM is Poisson regression model.

Figure 4.5.1: Observed and Predicted Installations, PRM and NBRM

Notes: NBRM is negative binomial regression model, PRM is Poisson regression model.

Figure 4.5.2: Difference in Actual and Predicted Installations, PRM and NBRM
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Figure 4.5.3: Poisson Distribution for Different Means

NBLHM, by contrast, accommodates the possibility that zeros and positive counts

arise from two distinct processes. The Poisson logit hurdle model (PLHM) is an

alternative to NBLHM where the selection part is estimated using a logit model, and

the outcome part is estimated using a truncated Poisson regression model. Using

the Akaike information criterion (AIC) and Bayesian information criterion (BIC) one

can test whether PRM, NBRM, PLHM or NBLHM should be used. The results are

presented in Table 4.5.1 for two specifications: when cost and rebate are controlled

for separately (specification 1), and when only cost minus rebate is controlled for

(specification 2).2

Both AIC and BIC are penalized-likelihood criteria and the model with the lowest

value is suggested as the best model. Even though NBRM has the lowest BIC for both

specifications, NBLHM has the lowest AIC value and is the preferred methodology.

AIC suggests specification 1 but the number of parameters is greater in specification

2Further research is needed to understand whether these two specifications perform significantly
differently at the selection and outcome stages.
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1 compared to specification 2. I choose specification 2 as the preferred specification,

given that the estimated coefficients are statistically significant and compared to

specification 1 the results are more consistent with economic theory.

Table 4.5.1: Selection Criteria

Methodology ll df AIC BIC

Specification 1
PRM -847.72 9 1,713.44 1,771.27
NBRM -832.02 10 1,684.03 1,748.28
PLHM -814.27 18 1,664.54 1,780.19
NBLHM -807.17 19 1,652.33 1,774.41

Specification 2
PRM -895.53 8 1,807.07 1,858.47
NBRM -864.16 9 1,746.32 1,804.15
PLHM -863.08 16 1,758.15 1,860.95
NBLHM -855.96 17 1,745.91 1,855.14

Notes: In specification 1, the cost of installation and rebate are controlled for separately. In specifi-
cation 2, I combine the cost of installation and rebate to get cost-after-rebate. ll is log-likelihood, df
is degrees of freedom, AIC is Akaike information criterion, BIC is Bayesian information criterion,
PRM is Poisson regression model, NBRM is negative binomial regression model, PLHM is Poisson
logit hurdle model, NBLHM is negative binomial logit hurdle model. The number of observations
is 4,560.

4.6 Empirical Model of Demand for SP Systems

Cost of installations, rebate and median income are economic factors that are expected

to be important drivers of demand for SP. Other factors such as population density,

age, education and ownership of the house are also likely to be critical in the decision-

making process to install SP systems.

The cost to install an SP system is expected to be negatively related in both the

selection and outcome parts of the model. A decrease in cost increases demand, and

even if one installation takes place, and the hurdle is crossed, a reduction in the cost of

SP should increase demand for subsequent installations. One of the major estimates

of interest is the price elasticity of demand estimate. While the SP market in NS is

emerging, the price elasticity of demand is likely to be elastic with consumers being

responsive to cost given that SP has close substitutes.
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Rebate directly lowers the cost of SP systems, and once rebate was introduced at

the end of June 2018, SP systems installation in NS increased. At the same time,

with an increasing number of SP systems installation, policy makers tend to lower

rebates at a rate that depends on their adoption targets. For example, in NS the

adoption target between 2018 and 2020 is 2,000 SP systems and there have already

been two levels of rebate reduction. These reductions are meant to increase the cost-

effectiveness of rebate and at the same time increase SP adoption. Both the selection

and the outcome models are expected to find a significant positive relationship be-

tween rebate and SP systems installation. This will imply that, whether a DA has zero

installations or positive installations, rebate plays a significant role in SP adoption.

In specification 2, I use cost-after-rebate instead of using rebate and cost as sep-

arate variables. Consumers are usually given the quote of a cost of SP system in-

stallation after rebate is applied. This is crucial because, while rebate and cost can

individually bring in variation and explain the data, the net cost may be a better

predictor of demand. Keeping other variables constant, median household income

plays an important role in the decision to install an SP and the selection part of the

models is expected to give a positive relationship between median income and SP

system installations.

Owner-occupied households variable measures the number of owner-occupied house-

holds in DA and only owner-occupied households qualify for residential SP. This vari-

able is likely to be positively related to SP system installation as the greater the

number of owner-occupied households, the higher is the likelihood of installations.

More importantly, owner-occupied households give key insights on the effect of pop-

ulation density on SP systems installation.

Population density aids in the diffusion of technology through knowledge sharing

and can increase exposure to SP. In such a case one can expect population density

to increase the growth of the number of SP system installations in DAs with zero or
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Figure 4.6.1: Population Density and Owner-Occupied Households by County

positive installations. However, a high population density also means fewer owner-

occupied households are available in a DA (Figure 4.6.1). As a result, the likelihood

of an installation can decrease if the number of households that are eligible, also

decreases. At the same time, urban residents may be more likely to install SP systems.

Following the literature, I hypothesize education to be positively correlated with

SP adoption (Qureshi, Ullah, and Arentsen, 2017). New technology and environmen-

tal benefits of SP may be more apparent and prevalent among younger generations,

which would suggest a negative relationship between age and SP adoption. However,

both education and age variables do not vary across years in the panel data setting.

To sum up, NBLHM estimates a selection model that explains the hurdles that

need to be crossed and estimates the outcome model which explains the number of

SP system installations, once the hurdle is crossed. While the selection model may

find an explanatory variable to be significantly related to the dependent variable, the
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outcome model may find it insignificant, pointing to the existence of two decision-

making processes. However, the key variables are expected to be significant in both

the selection and outcome parts.
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Chapter 5

Estimation Results

5.1 Parameter Estimates

I consider two aspects of the data generating process and model them using NBLHM.

First, the hurdle that needs to be crossed as determined by the binary part (selection

model) and the decision-making process once the hurdle is crossed as determined

by the truncated negative binomial regression (outcome model). Installation cost,

rebate, and median income are taken as key economic factors determining both the

hurdle process and the decision-making process for positive counts.

I consider two model specifications. Specification 1 includes cost and rebate as

separate variables, but specification 2 uses cost minus rebate as a cost-after-rebate

explanatory variable. I begin the analysis with the linear probability model (LPM).

Next, I present and discuss the results from PRM, NBRM and NBLHM for both

specifications separately.

In the LPM, the dependent variable is a dummy variable with value one if any SP

system installation took place in a DA and zero if no installation took place. Table

5.1.1 shows the estimated coefficients using LPM. According to the LPM estimates a

$0.01/Watt increase in the cost-before-rebate decreases the probability of SP systems

installation by 0.11 percentage points (specification 1) and a $0.01/Watt increase in

the cost-after-rebate decreases the probability of installations by 0.017 percentage

points. The LPM estimates of coefficients on median income, population density and

education are insignificant in both specifications at the 5% significance level..

Also, for specification 1, LPM estimates a negative relationship between rebate
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Table 5.1.1: LPM Estimates for Specifications 1 and 2

Specification 1 Specification 2
LPM LPM

Cost-before-rebate -0.110∗∗∗

(0.016)

Cost-after-rebate -0.017∗∗∗

(0.003)

Rebate -0.079∗∗∗

(0.017)

Median income 0.016 0.017∗

(0.010) (0.010)

Population density -0.002 -0.002
(0.002) (0.002)

Age -0.009 -0.009
(0.006) (0.006)

Age squared 0.000 0.000
(0.000) (0.000)

% Post-secondary education 0.000 0.000
(0.000) (0.000)

Owner-occupied households 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000)

Constant 0.382∗∗ 0.044
(0.171) (0.164)

Notes: Dependent variable is the number of residential SP installations by WattsUp Solar. LPM is
linear probability model. The number of observations is 4,560.
Cost-after-rebate = cost of installations before rebate − rebate for each DA-year pair.
Clustered standard errors at the dissemination area level in parentheses.
* p < 0.10, ** p < 0.05, *** p < 0.01.

do not indicate multicollinearity (Appendix A).

Table 5.1.2 presents the estimation results using PRM, NBRM and NBLHM for

specification 1. A positive value for a coefficient indicates a positive correlation be-

tween a variable and SP system installation, while a negative coefficient indicates a
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Table 5.1.2: PRM, NBRM and NBLHM Estimates for Specification 1

Hurdle Model
PRM NBRM Logit TNBREG

Cost-before-rebate -3.381∗∗∗ -2.923∗∗∗ -3.744∗∗∗ -0.654
(0.488) (0.540) (0.709) (0.591)

Rebate -1.733∗∗∗ -1.432∗∗∗ -2.191∗∗∗ 1.383∗∗

(0.287) (0.356) (0.418) (0.653)

Median income 0.671∗∗∗ 0.594∗∗ 0.788∗∗∗ -2.089
(0.226) (0.246) (0.252) (1.301)

Population density -0.071∗ -0.061 -0.080∗∗ -0.017
(0.038) (0.042) (0.037) (0.115)

Age -0.037 0.022 -0.099 0.991
(0.133) (0.156) (0.123) (0.622)

Age squared 0.001 0.000 0.001 -0.011
(0.001) (0.002) (0.001) (0.007)

% Post-secondary education 0.016∗ 0.018∗ 0.011 0.092∗∗

(0.010) (0.010) (0.009) (0.042)

Owner-occupied households 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.008∗∗∗

(0.001) (0.001) (0.001) (0.003)

Constant -0.522 -2.749 1.092 -26.44
(3.921) (4.811) (4.234) (16.48)

α 0.590 21.13∗∗∗

(0.659) (1.230)
Observations 4,560 4,560 4,560 200

Notes: Dependent variable is the number of residential SP installations by WattsUP.
PRM is Poisson regression model. NBRM is negative binomial regression model. TNBREG is
truncated negative binomial regression model.
Clustered standard errors at the dissemination area level in parentheses.
α is overdispersion parameter used in NBRM and TNBREG.
* p < 0.10, ** p < 0.05, *** p < 0.01.

negative relationship. According to the PRM and NBRM, cost and rebate are neg-

atively related to the number of SP systems installation and the opposite is true for

median household income, % post-secondary education and owner-occupied house-

holds variables.
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NBRM estimates that a 0.01$/Watt increase in cost-before-rebate and rebate

approximately decreases the expected number of installations by 2.9% and 1.4%, re-

spectively. Also, as estimated by NBRM, a one percent increase in median household

income increases SP systems installation by 0.6%. Moreover, both PRM and NBRM

estimates age to be an insignificant factor in the decision-making process. Similar re-

sults are estimated by the PR. Both NBRM and PRM estimates population density

to be insignificant at the 5% significance level.

The preferred model to analyze the data is NBLHM and it is characterized by two

parts: logit (selection model) and TNBREG (outcome model). Estimated coefficients

are presented in Table 5.1.2 under the Hurdle Model column. As estimated by the

logit model, cost-before-rebate and population density are negatively related to SP

systems installation and the increase in median income and the number of owner-

occupied households increases the number of SP system installations. Importantly,

this suggests that in DAs with zero SP system installation, a lower installation cost

reduces the hurdle and thus the probability of installing SP systems increases.

The estimated coefficients of the selection model can be interpreted using av-

erage marginal effects which can be used to measure, on average, the amount of

change in the probability of installations due to a unit change in the independent

variable. The results are presented in Appendix B.0.1. According to the selection

model, a 0.01$/Watt increase in cost-before-rebate and rebate decreases the probabil-

ity of installing SP systems by 0.148 percentage points and 0.087 percentage points,

respectively .

The selection model also predicts that as median household income and the num-

ber of owner-occupied households increase, the probability of SP systems installation

increases. Specifically, a 1% increase in median income increases the probability of SP

systems installation by 0.031 percentage points. Moreover, if population density in-

creases by 1% the likelihood of SP systems installation decreases by 0.003 percentage
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points as estimated by the selection model.

On the other hand, in the outcome model, once the hurdle is crossed, in DAs where

there is at least one SP system installation, the response of SP systems installation

is more sensitive to rebate than to cost. Even in the regions where an installation

takes place, rebate remains a cost-reducing element. According to the TNBREG, a

0.01$/Watt increase in rebate increases the number of SP system installations by 1.4

Like the LPM, PRM and NBRM, NBLHM estimates of the selection model give

a negative relationship between rebate and the likelihood of installing SP systems.

The estimated negative relationship between rebate and SP systems installation and

the insignificant coefficient of the cost variable in the outcome model require further

considerations.

To examine whether the variables cost-after-rebate and rebate separately bring a

statistically significant improvement in the fit of the model, I use Wald and likelihood

ratio test, and conclude that this is indeed the case. One interpretation is that, as

the number of SP systems installation increase in NS, the average household becomes

more aware of the benefits of SP. A decreasing rebate might encourage consumers to

install SP before the rebate program is discontinued. The decision to purchase SP

systems by a consumer is considered as a “buy-or-wait” decision and it is important

that a demand model can take into consideration this dynamic nature of consumer

behavior (Rogers and Sexton, 2014). However, NBLHM is a static model that does

not take dynamic consumer behaviors into consideration, and this means that the

model can result in inconsistent results compared to the theory.

In specification 1, I use cost and rebate as a separate variable. While both cost and

rebate jointly determine the decision to install, cost-after-rebate is the net installation

cost a customer needs to pay to install SP systems. Thus, I consider specification

2, where I combine rebate and installation cost to get the after-rebate cost where

cost-after-rebate = cost of installations before rebate − rebate calculated for each
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DA-year pair.

Table 5.1.3: PRM, NBRM and NBLHM Estimates for Specification 2

Hurdle Model
PRM NBRM Logit TNBREG

Cost-after-rebate -0.512∗∗∗ -0.513∗∗∗ -0.446∗∗∗ -1.111∗∗∗

(0.084) (0.086) (0.081) (0.348)

Median income 0.760∗∗∗ 0.664∗∗∗ 0.853∗∗∗ -2.107
(0.237) (0.254) (0.258) (1.341)

Population density -0.084∗∗ -0.066 -0.087∗∗ -0.017
(0.040) (0.040) (0.037) (0.114)

Age -0.060 0.034 -0.106 0.971
(0.144) (0.151) (0.126) (0.616)

Age squared 0.001 -0.000 0.001 -0.011
(0.002) (0.002) (0.001) (0.007)

% Post-secondary education 0.017∗ 0.018∗ 0.011 0.093∗∗

(0.010) (0.010) (0.009) (0.042)

Owner-occupied households 0.003∗∗∗ 0.004∗∗∗ 0.003∗∗∗ 0.008∗∗∗

(0.001) (0.001) (0.001) (0.003)

Constant -10.33∗∗∗ -11.78∗∗∗ -10.26∗∗∗ -21.90
(3.965) (4.177) (3.874) (17.22)

α 1.266∗∗∗ 18.61∗∗∗

(0.373) (1.219)
Observations 4,560 4,560 4,560 200

Notes: Dependent variable is the number of residential SP installations by WattsUp Solar.

PRM is Poisson regression model. NBRM is negative binomial regression model. TNBREG is

truncated negative binomial regression model.

Cost-after-rebate = cost of installations before rebate− rebate for each DA-year pair. Clustered

standard errors at the dissemination area level in parentheses.

α is overdispersion parameter used in NBRM and TNBREG.

* p < 0.10, ** p < 0.05, *** p < 0.01.

Table 5.1.3 present estimated coefficients by PRM, NBRM and NBLHM for spec-

ification 2. In contrast to specification 1, using specification 2, both the selection

and the outcome model identify the cost to be a significant factor in determining SP
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systems installation. Except for the cost variable, both specifications estimate all the

other variables to have a similar magnitude and significance on installing SP systems.

According to the estimates from PRM and NBRM, a 0.01$/Watt increase in cost-

after-rebate decreases expected SP systems installation by approximately 0.51% and

0.51%, in both cases. Similarly, PRM and NBRM estimate that a 1% increase in me-

dian income increases expected SP systems installation by 0.76% and 0.66%, respec-

tively. Moreover, PRM and NBRM estimate that, compared to non post-secondary

educations, a one percentage point increase in population with post-secondary ed-

ucation leads to 1.7% and 1.8% increase in the number of SP system installations,

respectively, only at the 10% significance level.

Similar to specification 1, I again use average marginal effects to interpret the logit

estimates for specification 2 (Appendix B.0.1). I find that a 0.01$/Watt increase in

cost decreases the probability of installations by 0.018 percentage points. Also, a

1% increase in median income increases the probability of SP systems installation by

0.035 percentage points. On the other hand, TNBREG estimates that a 0.01$/Watt

increase in cost-after-rebate decreasesestimated number of SP systems by 1.1%. Ad-

ditionally, compared to non post-secondary education, TNBREG estimates that a

one percentage point increase in population with post-secondary education increases

the number of installations by 9.7%.

I consider specification 2 as the preferred specification and discuss the price elas-

ticity estimates from NBLHM. Elasticity of the cost-after-rebate variable can be

calculated using both the logit and TNBREG estimates to get an overall effect of

cost-after-rebate on the number of installations. However, price elasticity of demand

estimates varies depending on the values at which it is calculated. This is shown in

Figure 5.1.1. The price elasticity of demand at different values of cost-after-rebate (in

2019 prices) increases, holding other variables at their mean values. The figure shows

that the demand for SP system installations is more elastic if evaluated at higher
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Notes: Except for the cost-after-rebate, all other variables, such as median income and population
density are held at their mean values. Estimates are from specification 2.

Figure 5.1.1: Price Elasticity of Demand

cost-after-rebate.

The average value of cost-after-rebate for the full sample and subsample with

positive installations is $2.56/Watt and $2.23/Watt, respectively. Using cost-after-

rebate of $2.56/Watt, I find the price elasticity of demand for SP systems to be -1.26.

The elastic nature of SP systems in NS means that consumers are price sensitive.

5.2 Policy Analysis

In the dataset total number SP system installations in 2018 and 2019 are 78 and

107, respectively. However, 200 SP systems were approved for installation in 2018

and 500 for 2019 (Corning, 2019). Thus, the WattsUp Solar dataset represents 39%

and 21% of the actual number of SP systems installation for the years 2018 and

2019, respectively. For the policy simulations, I extrapolate the estimates specific to

WattsUp to the rest of the installers, assuming that WattsUp Solar is a representative

SP system installers in NS.
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I present two sets of policy simulations that can assist policy makers to evaluate the

effect of rebate on the number of SP systems installation and make policy adjustments

to reach a certain target. First, I consider what would have happened if no rebate

was offered in 2018, if the rebate of $0.85/Watt in 2019 was continued up until 2021

and if the reduction of rebate to $0.60/Watt is continued until 2021. Second, based

on a rebate of $0.60/Watt, I forecast the number of SP system installations from 2020

to 2022. These out-of-sample forecasts help assess the impact of declining rebates on

the number of installations.

5.2.1 Rebate Pass-Through

In this section I discuss the concept of rebate pass-through which is an important

input into the policy simulations. Incentive pass-through measures whether, and if

so by how much, financial incentives pass-through from businesses to consumers. I

now provide estimates of the portion of incentives that the households that install SP

systems actually receive.

Table 5.2.1: OLS Estimates of Rebate Pass-Through

OLS
Rebate -0.510∗∗∗

(0.056)

Median income -0.145∗∗

(0.067)

Population density -0.007
(0.012)

Constant 4.708∗∗∗

(0.770)
Observations 200
Notes: Dependent variable is cost of SP systems before rebate.

OLS is ordinary least squares. Standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.



56

Notes: SP is Solar Photovoltaic, S is supply, D is demand, Price is the cost of an SP system
installation, Q is quantity, and E is Equilibrium.

Figure 5.2.1: Rebate Pass-Through

Figure 5.2.1 illustrates an incentive or rebate pass-through under the assumption

that the supply of SP does not shift. E0 is the initial equilibrium in the SP system

market with price P0 and quantity Q0. As rebate is introduced, the demand for SP

systems increases and demand curve shifts to the right, from D0 to D1. New quantity

demanded is Q1, but instead of reaching E1 with a price of P1, consumers pay P2 for

the same quantity Q1. This is because, the new price to be paid by the consumers, P2

is P1 − Rebate. Thus, new price is P2 and the old price is P0. Rebate pass-through

is ((P2 − P0)/Rebate) × 100 and a value of 100% means that the total value of the

rebate is captured by the consumers.

Several studies using SP systems installation data of the California solar market

find different values of incentive pass-through rate. Dong et al. (2014) find that the

pass-through rate in different counties in California ranges from 68% to 122% using
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the reduced-form regression method but the range varies, if the structural modeling

method is used. Following Sallee (2011), I regress cost-before-rebate on rebate and

control for median income and population density (Table 5.2.1).

The pass-through rate is given by the coefficient of the rebate variable, where a

value of 1 means zero pass-through or that the rebate is captured by the suppliers of

SP and a coefficient of zero means a 100% pass-through (Gillingham and Tsvetanov,

2019). The estimated coefficient on rebate is 0.51, which implies a pass-through rate

of 49%.

This pass-through rate is not uncommon in an SP market. Podolefsky (2013)

used data from California and found a 17% pass-through rate and Dong et al. (2014)

found some counties with less than 70% pass-through rate. A low pass-through rate

indicates an inelastic supply schedule for SP system installations.

5.2.2 Policy Simulations

Table 5.2.2 shows the required values used in the simulations. I assume SP cost

decreases by 3% in 2020 and by 4% in 2021. Table 5.2.3 shows policy simulations

for a no rebate scenario, a rebate reduction to $0.85/Watt, and a rebate reduction to

$0.60/Watt in 2019 which comes into effect in 2020. I compare the 2018 and 2019

simulation results for each rebate change with observed installations in 2018 and 2019.

As an example, to simulate SP systems installation in 2018 assuming that no

rebate was available, first I find the percentage increase in cost-after-rebate in 2018.

Cost-after-rebate in 2018 was $1.70/Watt but with no rebate, cost would have been

$2.72/Watt. This means an increase in cost of 60%. After adjusting for rebate pass-

through, I use price elasticity of demand to get the percent decrease in the number of

installations to be 37% or 74 fewer SP system installations in 2018 out of 200 observed

installations.

Without a rebate, there would have been 187 fewer installations in 2019 (out of
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Table 5.2.2: Values Used in Policy Simulations

Variable Value
Decrease in cost of installation in 2020 (%) 3
Decrease in cost of installation in 2021(%) 4
Average cost-after-rebate in 2018 ($/Watt) 1.70
Average cost-after-rebate in in 2019 ($/Watt) 1.68
Rebate increase from 2017 to 2018 ($/Watt) 1.02
Rebate decrease from 2018 to 2019 ($/Watt) 0.85
Price elasticity of demand (%) -1.26
Rebate pass-through (%) 0.49
Average installed residential SP capacity (kWatt DC) 9.30
Notes: All dollar values are in 2019 dollars.

Table 5.2.3: Policy Simulations

Total added
2018 2019 2020 2021 Capacity (MW)

Observed installations 200 500
No rebate 126 313
Rebate of $0.85/Watt 607 742 12.54
Rebate decreased to $0.60/Watt 575 666 11.54

Notes: Simulation of 2020 is based on observed 200 installations in 2019. Total added capacity is
measured in DC given that the average installed size of SP in NS in 2019 was 9.30 kWatt DC. All
dollar values are in 2019 dollars.

500 actual). In 2019 rebate decreased from $1/Watt to $0.85/Watt. I use observed

SP systems installation in 2019 to forecast results for the years 2020 and 2021. If this

reduced rate of $0.85/Watt was continued, the number of new SP system installations

would have increased to 607 in 2020 and to 742 in 2021, with an installed capacity of

12.54MW by 2021. On November 1, 2019, rebate was further reduced to $0.60/Watt

and its effect can only be seen in 2020 and 2021. I find that, if rebate in the years

2020 and 2021 remains at $0.60/Watt, the number of new installations will increase

to 575 and 666, respectively, with an installed capacity of 11.54 MW by 2021.

I also forecast SP system installations for the years 2020, 2021 and 2022 if rebate is

further reduced from $0.60/Watt using three distinct scenarios. Applicable rebate in
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2020 is $0.60/Watt for all the scenarios. In scenario 1, I consider rebate to decrease

by $0.20/Watt each year from $0.60/Watt. In scenario 2, I consider a decrease of

$0.15 every year. Finally, in scenario 3, I consider a decrease of $0.10/Watt every

year. I assume SP cost decreases by 3% from 2019 to 2020 and 4% each year in 2021

and 2022.

Table 5.2.4: Additional Policy Simulations

Total added
2019 2020 2021 2022 Capacity (MW)

Rebate of $0.85/Watt 500 4.65
Scenario 1 575 636 671 17.50
Scenario 2 575 643 696 17.81
Scenario 3 575 651 722 18.12

Notes: In scenario 1, rebate decreases by $0.20/Watt each year from $0.60/Watt. In scenario 2,
rebate decreases by $0.15/Watt every year. Finally in scenario 3, rebate decreases by $0.10/Watt
every year. Simulations are based on SP systems installation of 500 in 2019. Total added capacity
is measured in DC given average installed size of an SP system in NS in 2018 and 2019 was 9.30
kWatt DC. All dollar values are in 2019 dollars.

The policy simulations in Table 5.2.4 suggest that a rebate of $0.60/Watt in 2020

is expected to increase the number of SP system installations in 2020 to 575, from 500

installations in 2019. Given that there were 500 installations in 2019, scenario 3 gives

an additional capacity of 22.77 MW from 2019 to 2022. Assuming all installations

receive the applicable rebate, this measures to $12.78 million of rebate to be paid

from 2019 to 2022. Using electricity production data of 104 residential SP systems

in NS in 2019, I find that a one kWatt DC system in NS on average produced 1,065

kWh/kWatt of electricity in 2019. Therefore, using scenario 3, this results in the

production of 24,250 MWh of electricity over 4 years. According to Environmental

Protection Agency (2020), this amounts to a reduction in GHG emissions of 17,176

metric tons CO2 equivalent or GHG emissions from 3,146 households’ electricity use

in one year.1 Efficiency NS aims to install 2000 SP systems from 2018 to 2021. With

1In 2017 average household electricity use in NS was 11,222 kWh, which amounts to GHG emis-
sions of 5.46 metric tons CO2/household equivalent (Canada Energy Regulator, 2020; Environmental
Protection Agency, 2020).
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700 SP systems already installed in the years 2018 and 2019, scenario 3 suggests that

by the end of 2021, total SP systems installation over the four years period will be

1,926.

In the aforementioned simulations, two important factors are not taken into con-

sideration. First, the increasing grid cost of electricity can be a crucial factor in policy

simulations but is ignored for simplicity. Second, the simulations do not take dynamic

consumer behavior into consideration. Nevertheless, the simulations attest that the

rebate program will continue to stimulate SP growth in NS. Moreover, the gradual

decrease in rebate have a moderate effect on the number of installations.

5.3 Robustness

In the data, only 200 DAs have SP system installations with corresponding price

and rebate data. To fill in 95.6% of the missing price data, I use a shadow price,

calculated using the average cost of installations in NS in a year. Also, I do not have

information on the date of rebate application. So far, I calculated rebate using an

average four-month period of project implementation to identify the data of applica-

tion and consequently applied rebate that was available four months prior to the date

of operation, assuming it on average takes four months for an SP to start operating

since an application to install is made. In this section I undertake robustness check

for specification 1 and specification 2 using NBLHM with a different shadow price

along with a 3 and 5-month project implementation period to calculate the rebate.

To impute the shadow price Gillingham and Tsvetanov (2019) use average annual

value for the same municipality and if this is not possible, they use average within

county cost of installation. As a robustness check, I use the average shadow price

within a county in a specific year to determine the corresponding shadow price. For

example, all DAs with zero installation in Shelburne county in the year 2016 has the

same average cost calculated using installed SP in Shelburne in 2016. However, there
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were no installations in 2018 and in such cases average cost of installations using

cost data of available years in a county is used. Appendix C presents the parameters

estimated by PRM, NBRM and NBLHM for each of the specifications.

Table 5.3.1: Elasticity Estimates Under Different Specifications

County
Baseline Price 3-month 5-month

Specification 1
Cost-before-rebate -8.20 -4.89 -8.32 -8.86

Rebate -1.03 -0.41 -1.05 -1.17
Specification 2 Cost-after-rebate -1.26 -1.19 -1.26 -1.17

Notes: Specification 1 includes cost-before-rebate and rebate as a separate variable. Specification
2 combines the cost-before-rebate and rebate where cost-after-rebate = cost of installations before
rebate − rebate for each DA-year pair. In baseline, the rebate is calculated using a 4-month project
implementation period and missing cost replaced with the average cost of SP system installations in
NS in a year. 3-month corresponds to rebate calculation using a three-months project implementa-
tion period. 5-month corresponds to rebate calculation using a five-months project implementation
period. County price corresponds to the missing cost of installations replaced with average cost at
the county level. For specification 1, elasticity estimates are calculated at cost-before-rebate = 3,
rebate = 0.85 and other variables at their mean values. For specification 2, elasticity estimates are
calculated at cost-after-rebate = 2.56 and other variables at their mean values.

Tables C.0.1 shows the estimation results for specification 1 if the shadow price is

calculated using the average cost of SP systems within a county. The estimated coef-

ficients of cost-before-rebate are -2.070 and -0.911, respectively, which is much lower

than -3.744 and 2.191, respectively, as estimated by the baseline specification. How-

ever, estimated coefficients of other variables are similar to the baseline specification

estimates. The PRM and NBRM also estimate different effects of cost-before-rebate

and rebate compared to the baseline specification. Table 5.3.1 shows that price elas-

ticity of demand is -4.89 if the county price is used compared to price elasticity of

demand of -8.20 when the baseline specification is used. Therefore, for specification

1, calculating the shadow price using a different method significantly changes results.

On the other hand, the estimation results for specification 2 remain much similar

to the baseline specification estimates, even if I calculate shadow price using the

average cost of SP systems within a county. The results are shown in Table C.0.4.

Similarly, as shown in Table 5.3.1, compared to the baseline specification estimate of
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-1.26, the price elasticity of demand is -1.19 if the county price is used to calculate

the shadow price. Thus, for specification 2, the estimates of the logit model and

essentially NBLHM are not significantly affected if I use the average annual cost of

SP systems installation in NS in a year to calculate the shadow price.

Alternatively, using three-month and five-month project implementation period

give similar results compared to the baseline specifications. Tables C.0.2, C.0.3, C.0.5

and C.0.6 show parameter estimates when 3-month and 5-month project implemen-

tation periods are assumed. Table 5.3.1 presents the corresponding price elasticity

of demand estimates for both the specifications. I find a similar price elasticity of

demand estimates for both specifications.

Finally, I conduct a sensitivity test using the NBLHM with a specification without

age and education controls (Tables D.0.1 and D.0.2). Price elasticity estimates for

specification 1 and specification 2 are -8.24 and -1.30, respectively, which are similar

to the baseline specification. Age and education variables vary little in the data and

the estimated coefficients for the new specification is similar to the estimates from

baseline specification.

5.4 Limitations

There are several limitations in this study that could be addressed in future studies.

First, I consider a static model to estimate the demand for SP systems. Consumer

dynamics in terms of “buy-or-wait” decisions and the existence of bunching in NS

is not incorporated into the model. Figure 5.4.1 shows the number of SP system

installations in NS before and after the introduction of rebate on June 25, 2018. It is

evident that SP system installations took off after the rebate was introduced and there

is “bunching”. Therefore, rebate had a positive effect on the number of SP systems

installation through both the selection and outcome models. However, specification

1 estimates rebate to have a negative relationship with the likelihood of SP systems
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installation. This can occur due to measurement errors in how I assigned rebate to

the SP system installations. Specifically, many installations that occurred after the

reduction in the rebate might have already been signed up for, and I assigned them

to a reduced-rebate regime.

Notes: SP is Solar Photovoltaic. Vertical line represents introduction of rebate on June 25, 2018.

Figure 5.4.1: Bunching of SP System Installations in Nova Scotia

Second, the data used does not represent the actual number of residential SP

systems installation during the period from 2016 to 2019 and the actual cost of each

installed SP system is not available, rather calculated. Moreover, some counties are

removed from the data as WhatsUp Solar does not install in those counties. This

eliminates the possibility of installations to take place in those regions, which in

reality may not be the case.

Third, several incentive programs and government policies are in effect in NS to
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facilitate installations. These include the Solar City program administered by Halifax

Regional Municipality, marketing and training sessions. The Solar City Program can

play an important role in the decision-making process by lowering the burden of initial

capital investment. However, data on this variable was not available. Additionally,

the grid cost of electricity can positively affect SP systems installation. I have data

on annual changes in the grid cost of electricity in NS but it is highly correlated with

the cost-before-rebate and rebate variables. Thus I could not account for the grid

cost of electricity, but future studies can incorporate such an effect.

Fourth, there are DAs, included in the data, where no SP system installations can

take place due to nature of geographic location. For example, DAs with forest cover

where ample sunlight does not reach will always have zero installations. Including

these DAs can bias the estimated coefficients and hence the price elasticity of demand

estimates. In the literature, zero-inflated models are available that can address this

issue.

Finally, the coronavirus pandemic significantly reduced economic activity all around

the world in the first quarter of 2020. This means that there may be significant dis-

ruption in the SP market from both the demand and supply side, and future studies

should also take this into consideration.
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Chapter 6

Conclusion

This thesis studied the demand for residential SP systems in NS using a negative

binomial logit hurdle model (NBLHM), which allows to model the decision to install

and conditional on that the number of installations, separately. The results suggest

that the cost of SP systems, rebate and median income plays the most significant

role in determining whether SP system installations will take place in a DA. I find a

price elasticity of demand of -1.26. However, the model does not take into account

the dynamic behavior of consumers.

I find that since the introduction of rebate, the number of SP system installations

in NS increased, despite a gradual reduction in rebate. The provincial rebate program

is expected to continue at least until 2022 and I forecast installations in NS for the

years 2020, 2021 and 2022 assuming an annual $0.20/Watt rebate reduction from 2020

onward. I find that, given there were 500 SP system installations in 2019, this gradual

rebate reduction will result in total 1,882 SP system installations from 2020 to 2022,

with an installed capacity of 17.50MW. This corresponds to electricity generation of

23,595 MWh from 2019 to 2022 and a reduction in GHG emissions of 16,681 metric

tons CO2 equivalent or reduction in emissions from 3,055 households’ electricity use

in one year in NS.

SP market in NS is at an early stage of development. The provincial government,

with assistance from Efficiency Nova Scotia, is undertaking several training initia-

tives and promoting SP systems through marketing campaigns in several regions of

the province to facilitate SP adoption. The results from this thesis can aid policy
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makers to promote further growth of SP and meet overall goals toward reducing GHG

emissions in the province, and ultimately having a carbon-neutral economy. Future

studies can address the dynamics of consumer behavior and use a discrete choice

model to analyze the SP market in NS and Canada.
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Appendix A: Correlation and Variance Inflation Factor

Table A.0.1: Correlation Test

Rebate
Rebate 1.00

Cost-before-rebate -0.834

Median income 0.010

Population density 0.006

Age 0.002

Age squared 0.002

% Post-secondary education -0.007

Owner-occupied households -0.009

Installations 0.046
Note: Installations is the dependent variable

Table A.0.2: Variance Inflation Factor

Variable VIF 1/VIF
Rebate 3.28 0.30
Notes: VIF is variance inflation factor.

A VIF value greater than 10 can indicate presence of collinearity.
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Appendix B: Average Marginal Effects of Logit Model

Table B.0.1: Average Marginal Effects of Logit Model for Specifications 1 and 2

Specification 1 Specification 2
Average Marginal Effect Average Marginal Effect

Cost-before-rebate -0.148∗∗∗

(0.026)

Cost-after-rebate -0.018∗∗∗

(0.003)

Rebate -0.087∗∗∗

(0.015)

Median income 0.031∗∗∗ 0.035∗∗∗

(0.010) (0.011)

Population density -0.003∗∗ -0.004∗∗

(0.001) (0.002)

Age -0.004 -0.004
(0.005) (0.005)

Age squared 0.00005 0.00006
(0.000) (0.000)

% Post-secondary education 0.0004 0.0005
(0.000) (0.000)

Owner-occupied households 0.0001∗∗∗ 0.0001∗∗∗

(0.000) (0.000)
Notes: Dependent variable is the number of residential SP installations by WattsUp Solar.
The number of observations is 4,560.
Cost-after-rebate = cost of installations before rebate − rebate for each DA-year pair.
Clustered standard errors at the dissemination area level in parentheses.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Appendix C: Robustness Check

Table C.0.1: Robustness Check using a Different Shadow Price for Specification 1

Hurdle Model
PRM NBRM Logit TNBREG

Cost-before-rebate -2.034∗∗∗ -1.854∗∗∗ -2.070∗∗∗ -0.654
(0.353) (0.352) (0.403) (0.591)

Rebate -0.700∗∗∗ -0.615∗∗∗ -0.911∗∗∗ 1.383∗∗

(0.219) (0.230) (0.244) (0.653)
Median income 0.787∗∗∗ 0.659∗∗∗ 0.890∗∗∗ -2.089

(0.237) (0.254) (0.261) (1.301)
Population density -0.061 -0.049 -0.064∗ -0.017

(0.042) (0.042) (0.039) (0.115)
Age -0.032 0.052 -0.079 0.991

(0.139) (0.151) (0.123) (0.622)
Age squared 0.001 -0.000 0.001 -0.011

(0.001) (0.002) (0.001) (0.007)
% Post-secondary education 0.016 0.017 0.010 0.092∗∗

(0.010) (0.011) (0.009) (0.042)
Owner-occupied households 0.003∗∗∗ 0.004∗∗∗ 0.003∗∗∗ 0.008∗∗∗

(0.001) (0.001) (0.001) (0.003)
Constant -6.246 -7.633∗ -5.880 -26.443

(3.930) (4.282) (3.874) (16.48)
α 1.038∗∗ 21.13∗∗∗

(0.454) (1.230)
Observations 4,560 4,560 4,560 200

Notes: Dependent variable is the number of residential SP installations by WattsUp Solar.
PRM is Poisson regression model. NBRM is negative binomial regression model. TNBREG is
truncated negative binomial regression model.
Clustered standard errors at the dissemination area level in parentheses.
Missing cost of installations replaced with average cost at the county level. α is overdispersion
parameter used in NBRM and TNBREG.
* p < 0.10, ** p < 0.05, *** p < 0.01.



70

Table C.0.2: Robustness Check using Rebate: Three-Month Project Implementation
Period for Specification 1

Hurdle Model
PRM NBRM Logit TNBREG

Cost-before-rebate -3.432∗∗∗ -2.967∗∗∗ -3.748∗∗∗ -0.985
(0.489) (0.545) (0.711) (0.655)

Rebate -1.784∗∗∗ -1.481∗∗∗ -2.200∗∗∗ 1.045
(0.283) (0.356) (0.418) (0.671)

Median Income 0.673∗∗∗ 0.602∗∗ 0.794∗∗∗ -2.071
(0.228) (0.249) (0.255) (1.289)

Population density -0.071∗ -0.061 -0.080∗∗ -0.014
(0.038) (0.042) (0.036) (0.115)

Age -0.041 0.015 -0.104 0.958
(0.132) (0.157) (0.123) (0.605)

Age squared 0.001 0.000 0.001 -0.011
(0.001) (0.002) (0.001) (0.007)

% Post-secondary education 0.016∗ 0.017∗ 0.011 0.091∗∗

(0.010) (0.010) (0.009) (0.041)

Owner-occupied households 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.007∗∗∗

(0.001) (0.001) (0.001) (0.003)

Constant -0.288 -2.535 1.152 -25.74
(3.969) (4.902) (4.328) (16.84)

α 0.558 22.16∗∗∗

(0.671) (1.017)
Observations 4,560 4,560 4,560 200

Notes: Dependent variable is the number of residential SP installations by WattsUp Solar.
PRM is Poisson regression model. NBRM is negative binomial regression model. TNBREG is
truncated negative binomial regression model.
A three-month project implementation period is assumed.
Clustered standard errors at the dissemination area level in parentheses.
α is overdispersion parameter used in NBRM and TNBREG.
* p < 0.10, ** p < 0.05, *** p < 0.01.
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Table C.0.3: Robustness Check using Rebate: Five-Month Project Implementation
Period for Specification 1

Hurdle Model
PRM NBRM Logit TNBREG

Cost-before-rebate -3.605∗∗∗ -3.140∗∗∗ -3.999∗∗∗ -1.125∗

(0.465) (0.575) (0.713) (0.610)

Rebate -1.947∗∗∗ -1.632∗∗∗ -2.425∗∗∗ 0.798
(0.264) (0.381) (0.407) (0.569)

Median income 0.656∗∗∗ 0.599∗∗ 0.787∗∗∗ -2.089
(0.224) (0.246) (0.252) (1.301)

Population density -0.066∗ -0.058 -0.078∗∗ -0.019
(0.037) (0.041) (0.036) (0.116)

Age -0.014 0.037 -0.093 0.836
(0.123) (0.153) (0.121) (0.597)

Age squared 0.000 -0.000 0.001 -0.009
(0.001) (0.002) (0.001) (0.007)

% Post-secondary education 0.015 0.017 0.010 0.092∗∗

(0.010) (0.010) (0.009) (0.041)

Owner-occupied households 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.007∗∗∗

(0.001) (0.001) (0.001) (0.003)

Constant -0.111 -2.375 1.820 -22.72
(3.790) (4.830) (4.205) (15.72)

α 0.375 22.54∗∗∗

(0.821) (4.454)
Observations 4,560 4,560 4,560 200

Notes: Dependent variable is the number of residential SP installations by WattsUp Solar.
PRM is Poisson regression model. NBRM is negative binomial regression model. TNBREG is
truncated negative binomial regression model.
A five-month project implementation period is assumed.
Clustered standard errors at the dissemination area level in parentheses.
α is overdispersion parameter used in NBRM and TNBREG.
* p < 0.10, ** p < 0.05, *** p < 0.01.
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Table C.0.4: Robustness Check using a Different Shadow Price for Specification 2

Hurdle Model
PRM NBRM Logit TNBREG

Cost-after-rebate -0.491∗∗∗ -0.486∗∗∗ -0.419∗∗∗ -1.111∗∗∗

(0.089) (0.089) (0.085) (0.348)

Median income 0.769∗∗∗ 0.670∗∗∗ 0.861∗∗∗ -2.107
(0.237) (0.254) (0.258) (1.341)

Population density -0.082∗∗ -0.064 -0.085∗∗ -0.017
(0.041) (0.041) (0.037) (0.114)

Age -0.055 0.040 -0.101 0.971
(0.144) (0.151) (0.125) (0.616)

Age squared 0.001 -0.000 0.001 -0.011
(0.002) (0.002) (0.001) (0.007)

% Post-secondary education 0.017∗ 0.018∗ 0.011 0.093∗∗

(0.010) (0.010) (0.009) (0.042)

Owner-occupied households 0.003∗∗∗ 0.004∗∗∗ 0.003∗∗∗ 0.008∗∗∗

(0.001) (0.001) (0.001) (0.003)

Constant -10.57∗∗∗ -12.02∗∗∗ -10.51∗∗∗ -21.90
(3.969) (4.177) (3.867) (17.22)

α 1.286∗∗∗ 18.61∗∗∗

(0.373) (1.219)
Observations 4,560 4,560 4,560 200

Notes: Dependent variable is the number of residential SP installations by WattsUP.
PRM is Poisson regression model. NBRM is negative binomial regression model. TNBREG is
truncated negative binomial regression model.
Clustered standard errors at the dissemination area level in parentheses.
Missing cost of installations replaced with average cost at the county level. Cost-before-rebate =
cost of installations − rebate for each DA-year pair.
α is overdispersion parameter used in NBRM and TNBREG.
* p < 0.10, ** p < 0.05, *** p < 0.01.
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Table C.0.5: Robustness Check using Rebate: Three-Month Project Implementation
Period for Specification 2

Hurdle Model
PRM NBRM Logit TNBREG

Cost-after-rebate -0.506∗∗∗ -0.507∗∗∗ -0.446∗∗∗ -1.023∗∗∗

(0.083) (0.085) (0.080) (0.341)

Median income 0.760∗∗∗ 0.661∗∗∗ 0.852∗∗∗ -2.073
(0.236) (0.253) (0.258) (1.292)

Population density -0.084∗∗ -0.066 -0.087∗∗ -0.014
(0.040) (0.041) (0.037) (0.115)

Age -0.060 0.035 -0.106 0.957
(0.144) (0.151) (0.126) (0.602)

Age squared 0.001 -0.000 0.001 -0.011
(0.002) (0.002) (0.001) (0.007)

% Post-secondary education 0.017∗ 0.018∗ 0.011 0.091∗∗

(0.010) (0.010) (0.009) (0.041)

Owner-occupied households 0.003∗∗∗ 0.004∗∗∗ 0.003∗∗∗ 0.007∗∗∗

(0.001) (0.001) (0.001) (0.003)

Constant -10.34∗∗∗ -11.77∗∗∗ -10.25∗∗∗ -20.61
(3.958) (4.153) (3.865) (17.623)

α 1.269∗∗∗ 17.18∗∗

(0.374) (8.051)
Observations 4,560 4,560 4,560 200

Notes: Dependent variable is the number of residential SP installations by WattsUp Solar.
PRM is poisson regression model. NBRM is negative binomial regression model. TNBREG is
truncated negative binomial regression model.
Clustered standard errors at the dissemination area level in parentheses.
A three-month project implementation period is assumed and cost-after-rebate = cost of installations
before rebate − rebate for each DA-year pair. α is overdispersion parameter used in NBRM and
TNBREG.
* p < 0.10, ** p < 0.05, *** p < 0.01.
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Table C.0.6: Robustness Check using Rebate: Five-Month Project Implementation
Period for Specification 2

Hurdle Model
PRM NBRM Logit TNBREG

Cost-after-rebate -0.469∗∗∗ -0.474∗∗∗ -0.411∗∗∗ -0.911∗∗∗

(0.082) (0.084) (0.078) (0.308)

Median income 0.764∗∗∗ 0.663∗∗∗ 0.855∗∗∗ -2.079
(0.237) (0.254) (0.258) (1.296)

Population density -0.085∗∗ -0.066 -0.087∗∗ -0.020
(0.041) (0.041) (0.037) (0.117)

Age -0.063 0.029 -0.107 0.826
(0.146) (0.151) (0.126) (0.600)

Age squared 0.001 -0.000 0.001 -0.009
(0.002) (0.002) (0.001) (0.007)

% Post-secondary education 0.017∗ 0.018∗ 0.011 0.092∗∗

(0.010) (0.010) (0.009) (0.041)

Owner-occupied households 0.003∗∗∗ 0.004∗∗∗ 0.003∗∗∗ 0.008∗∗∗

(0.001) (0.001) (0.001) (0.003)

Constant -10.395∗∗∗ -11.746∗∗∗ -10.334∗∗∗ -21.636
(3.982) (4.184) (3.879) (16.610)

α 1.295∗∗∗ 20.93∗∗∗

(0.369) (0.888)
Observations 4,560 4,560 4,560 200

Notes: Dependent variable is the number of residential SP installations by WattsUp Solar.
PRM is poisson regression model. NBRM is negative binomial regression model. TNBREG is
truncated negative binomial regression model.
Clustered standard errors at the dissemination area level in parentheses.
A five-month project implementation period is assumed. Cost-after-rebate = cost of installations
before rebate − rebate for each DA-year pair.
α is overdispersion parameter used in NBRM and TNBREG.
* p < 0.10, ** p < 0.05, *** p < 0.01.
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Appendix D: Sensitivity Analysis

Table D.0.1: Sensitivity Analysis for Specification 1

Hurdle Model
PRM NBRM Logit TNBREG

Cost-before-rebate -3.381∗∗∗ -2.914∗∗∗ -3.741∗∗∗ -0.610
(0.486) (0.543) (0.707) (0.532)

Rebate -1.735∗∗∗ -1.428∗∗∗ -2.191∗∗∗ 1.318∗∗

(0.286) (0.364) (0.417) (0.637)

Median income 0.723∗∗∗ 0.642∗∗∗ 0.807∗∗∗ -1.165
(0.203) (0.217) (0.226) (0.789)

Population density -0.059 -0.052 -0.070∗∗ 0.128
(0.037) (0.040) (0.034) (0.156)

Owner-occupied households 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.005∗∗

(0.001) (0.001) (0.001) (0.002)

Constant -0.726 -1.430 -0.449 -6.238
(2.727) (2.680) (3.206) (8.453)

α 0.586 17.212∗∗∗

(0.679) (0.693)
Observations 4,560 4,560 4,560 200

Notes: Dependent variable is the number of residential SP system installations by WattsUp Solar.

PRM is Poisson regression model. NBRM is negative binomial regression model. TNBREG is

truncated negative binomial regression model.

α is overdispersion parameter used in NBRM and TNBREG.

Clustered standard errors at the dissemination area level in parentheses.

* p < 0.10, ** p < 0.05, *** p < 0.01.



76

Table D.0.2: Sensitivity Analysis for Specification 2

Hurdle Model
PRM NBRM Logit TNBREG

Cost-after-rebate -0.511∗∗∗ -0.513∗∗∗ -0.445∗∗∗ -1.054∗∗∗

(0.084) (0.087) (0.081) (0.361)

Median income 0.825∗∗∗ 0.714∗∗∗ 0.880∗∗∗ -1.183
(0.217) (0.220) (0.232) (0.797)

Population density -0.0678∗ -0.0569 -0.0761∗∗ 0.128
(0.039) (0.039) (0.034) (0.157)

Owner-occupied households 0.00298∗∗∗ 0.00346∗∗∗ 0.00306∗∗∗ 0.00480∗∗

(0.001) (0.001) (0.001) (0.002)

Constant -11.22∗∗∗ -10.13∗∗∗ -12.05∗∗∗ -4.393
(2.402) (2.417) (2.524) (8.601)

α 1.281∗∗∗ 16.94∗∗∗

(0.395) (0.471)
Observations 4,560 4,560 4,560 200

Notes: Dependent variable is the number of residential SP installations by WattsUp Solar.

PRM is Poisson regression model. NBRM is negative binomial regression model. TNBREG is

truncated negative binomial regression model. Cost-after-rebate = cost of installations before rebate

− rebate for each DA-year pair. α is overdispersion parameter used in NBRM and TNBREG.

Clustered standard errors at the dissemination area level in parentheses.

* p < 0.10, ** p < 0.05, *** p < 0.01.
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