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Abstract

In this study, we present a framework for the prediction of catch-per-unit-effort

(CPUE)—an important index in the assessment of fisheries resource exploitation—

using three data sources from the North Adriatic region: fishing-vessel tracking data

(obtained from terrestrial Automatic Identification System (AIS)), the associated

daily landing reports (i.e., the amount and species of fish caught by each vessel), and

the relevant environmental data. As a part of this framework, two high-level spatio-

temporal representations of the data were constructed through the use of semantic

trajectory modelling and fusion of the data sources—namely a set of enriched se-

mantic trajectories of the fishing trips, and gridded spatio-temporal maps of CPUE.

While both representations can have various applications in fisheries management,

here they were used for the task of CPUE forecasting, which is the objective of this

study. Our prediction results demonstrate the potential of Machine Leaning methods

for this task. However, we consider the results to be preliminary due to the limited

two-year temporal horizon of the available data, and also with respect to the broader

set of possible forecasting techniques. To address these limitations, we also propose

several approaches to be employed in the future to expand and improve this work,

some of which will be particularly useful with the availability of more data. Similar

data could also be available for other regions with intense fishing activity; and the

fisheries management in such areas could use methods similar to the ones used in our

framework to facilitate data-driven and evidence-based policy making.
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Chapter 1

Introduction

The economic significance of fisheries as an exhaustible resource underscores the im-

portance of fisheries management to ensure a sustainable exploitation of the marine

resources. Often used in fisheries management, Catch-Per-Unit-Effort (CPUE) is an

important index in the assessment of fisheries resource exploitation [16]. CPUE rep-

resents the amount of catch relative to the intensity of the effort exerted in the fishing

activity leading to the catch. Intuitively, a decline in CPUE implies over-exploitation

of the fishery resources; a steady CPUE indicates a sustainable fishing operation; and

an increase in CPUE suggests a growing fish population. By quantifying the pressure

of fishing activities on the marine resources, CPUE allows for the assessment of the

sustainability of fishing operations. Therefore, accurate forecasting of CPUE plays

an important role in fisheries management by guiding the policy makers in developing

polices that ensure a sustainable fishing industry based on the forecast outcome. This

study provides a framework for CPUE prediction in the North Adriatic sea through

the integration of relevant data sources, vessel trajectory modeling, and the use of

Machine Leaning methods.

The Adriatic sea—the northernmost arm of the Mediterranean sea—accounts for

14% of the fishing fleet that operate in the Mediterranean and Black Sea [29]. Of

the total estimated value of US$3.09 billion in fish landings across the two seas in

2016, US$979 million (32%) was attributed to the Adriatic sea [29]. This highly

productive area is known to be among the most over-exploited marine resources in

the Mediterranean sea. Human activities, intensive fishing, and habitat degradation

have contributed to the steady decline in fish populations in the Adriatic sea, and the

increasing stress on this vital marine resource [17, 65, 66, 76].

The historical mismanagement of the fishing industry in the region is a result of

complex sociopolitical factors which are beyond the scope of this study.1 However,

1Paper [12] provides a context regarding the fisheries management issues in the Adriatic sea.

1
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in recent years there have been developments in regional policies and management

strategies towards achieving a more sustainable fishing industry in the Adriatic sea.2

Most of these policies aim to protect the juvenile and undersized specimens of the

commercial species to ensure a stable stock replacement rate [66]. Measures such

as mesh size regulations, and instituting minimum catch size requirements, are in-

tended to discourage the catch of juvenile specimens. Furthermore, other measures

attempt to protect the nurseries of commercial species through limiting fishing activi-

ties. These measures include closure of areas (e.g. permanent ban on trawling within

3 nautical miles of the coast, closure of juvenile congregation areas), and seasons (e.g.

ban on towed gear during part of the summer) [7]. Designing such policies—that at-

tempt to ensure stable stock replacement rates—must be informed by the current

and the projected state of stock abundance. In this context, forecasting CPUE is of

utmost relevance; since it is considered to be the main index in the assessment of

stock abundance [16].

The objective of this project, prediction modeling of CPUE, is motivated by an

especially valuable dataset which was obtained by the fusion of three data sources:

fishing-vessel tracking data, the corresponding landing reports (i.e.,species and the

quantity of fish catches), and the related environmental data. Vessel tracking tech-

nologies, such as Automatic Identification System (AIS) [5], have become a primary

source of data for scientific works involving fishing activities. In this study, we were

provided with terrestrial AIS data; i.e., AIS data emitted by the vessels that was

received by ground stations located on the Italian coast of the North Adriatic sea.

Terrestrial AIS datasets are considered to be high quality mobility data sources be-

cause of their high temporal resolution (having update frequency from 2 seconds to

two minutes). In contrast, data from satellite AIS (S-AIS) and other VMS (Vessel

Monitoring System) technologies usually have much lower temporal resolution (min-

utes to hours). In this project, the AIS data is used to reconstruct the vessels’ fishing

trajectories in time and space. Another important source of data in this study is

the landing reports dataset from the fish market at Chioggia port, which is the main

fishing port on the Italian coast of North Adriatic sea. The AIS and landing reports

datasets are integrated to create a high-resolution spatio-temporal CPUE dataset.

2The entrance of Croatia into the EU in 2013 facilitated easier agreement between Italy and
Croatia—the two main players in the Adriatic sea, accounting for 99% of its fishing activity [12, 29].
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The generated spatio-temporal dataset is further enriched with environmental factors

such as daily sea surface temperature, chlorophyll-a concentration, and wave height.

The resulting enriched spatio-temporal dataset is then used for prediction modeling

of CPUE.

We consider our prediction results to be preliminary due to the short temporal

span of the available data (two years: 2015-2016); which in turn limits the set of

suitable techniques for the prediction task. However, similar data could be available

for other regions with intense fishing activity; or could become available as more local

authorities implement regulations requiring the monitoring of fishing activities. For

instance, the availability of the AIS dataset used in this project is due to a 2014 Eu-

ropean Union regulation which requires fishing vessels of 15 meters or larger to carry

an AIS device [28]. Almost all commercial fishing vessels in the area are subject to

this strict regional regulation, in comparison to the much more tolerant IMO (Inter-

national Maritime Organization) regulation that only requires ships of 300 or more

gross tonnage and passenger ships to carry AIS [41]. This study demonstrates the

potential of mobility data analysis and machine learning to provide fisheries manage-

ment with valuable insight, and facilitate evidence-based policy making. Considering

the significant environmental and economical effects of such policies on a micro and

macro scale, data-driven and evidence-based approaches in fisheries policy making

are extremely important.

In the light of the three valuable data sources previously mentioned, the two

following main research questions will shape this study.

1. What kinds of information can be extracted from the combination of the avail-

able data sources to assist policy makers by improving our understanding of the

spatio-temporal aspects of fishing activities in the North Adriatic sea?

2. How can we perform CPUE prediction using the available data?

Data-driven answers to these question can be sought through the application of

mobility data analysis, data integration, and Machine Learning methods. This work

mainly addressed the second question by focusing on trajectory modeling of fishing

vessels, and machine learning techniques for prediction modeling of CPUE. The first

question is briefly addressed in the Future Work (Chapter 6), where we discuss other

potential applications of this rich blend of data sources in assisting with fisheries
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policy making.

In this work, we propose a framework for predicting CPUE using the available

data sources, contributions of which are as follows:

1. semantic trajectory modeling of fishing vessels to extract mobility knowledge

relating to fishing activities;

2. integration of heterogeneous data sources to provide more insightful information

for fisheries management;

3. data modeling conducive to the use of Machine Learning for the spatio-temporal

prediction of CPUE;

4. applying Machine Learning techniques to perform CPUE prediction by learning

from the integrated dataset;

5. publication of a paper in the International Workshop on Multiple-Aspect Anal-

ysis of Semantic Trajectories [1].3

A bird’s eye view of the framework is given in Figure 1.1. The figure is divided in

three sections. The top section demonstrates the three data sources that were used in

this study, i.e., (i) the vessel tracking (AIS) dataset, (ii) the landing reports dataset

from the Chioggia fish market, and (iii) the relevant environmental variables. The

middle section of Figure 1.1 lays out the process of semantic trajectory modeling and

data fusion. The trajectories are constructed from the AIS dataset, and enriched

with semantic information such as vessel activity (e.g., fishing, navigating, etc.), and

the amount of fish caught on each fishing segment of the trajectories. Using the

resulting semantic trajectories and a spatial grid, spatio-temporal maps of CPUE

are constructed, and then augmented with the environmental variables. The bottom

section of Figure 1.1 shows the predictive modelling step using the resulting spatio-

temporal dataset and machine learning methods. The prediction models are trained

on data from 2015 (the first of two years with available data), and evaluated on 2016.

This document is structured as follows. Chapter 2 provides the background and

the related work regarding CPUE forecast and trajectory modelling. Chapter 3 de-

scribes the raw datasets, and the process of obtaining the high-resolution spatio-

temporal CPUE datasets from the raw data (corresponding to the top and middle

sections of Figure 1.1). Chapter 4 states the prediction problem, and how regression

3This thesis presents our published work ([1]) in more detail and with additional experiments.
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modelling is used to perform the prediction task. Chapter 5 describes the machine

learning methods employed, and provides a discussion on the forecasting results.

Chapters 4 and 5 correspond to the bottom section of Figure 1.1. Finally, Chapter 6

briefly reiterates what was done, discusses the limitations of the study, and proposes

ideas for future work.

Activity labeling
(fishing, navigating, etc.) 

Machine Learning model Model evaluation

Data
Fusion
&
Trajectory 
Modelling

Data
Sources

Predictive 
Analysis

2015 2016

Trip identification 

Assigning landing 
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Figure 1.1. Overview of the framework for predicting CPUE



Chapter 2

Background and Related Work

In this chapter, we discuss the background and related work regarding two concepts

important for the analysis of fishing activities: (i) Catch-per-unit-effort (CPUE) fore-

casting, which is the objective of this project; and (ii) fishing vessels trajectory mod-

eling, which we employ in the construction of our CPUE datasets.

2.1 Forecasting CPUE

Catch-per-unit-effort (CPUE) is an indicator of the species abundance in the assess-

ment of fishery resources; and can give information about the sustainability of the

fishing activities in the geographical area of interest [6, 26, 22]. In fisheries science,

CPUE is often calculated as the ratio of catch to effort ; where catch is the amount

of fish caught and, effort is a measure that quantifies the effort exerted on the fish-

ing activity leading to the catch. Quantification of fishing effort is done differently

for various types of fishing equipment, resulting in different types of CPUE. For ex-

ample, CPUE for trawler and long-liners fishing are often calculated respectively as

catch-per-kilometer-towed or catch-per-hook [26].

CPUE is often used as in index to evaluate population trends; where a decrease in

CPUE would suggest over-exploitation, a steady CPUE value would suggest sustain-

able exploitation, and an increase of CPUE would suggest growing population [77].

Therefore, accurate forecast of CPUE can help policy makers maintain a sustainable

fishing industry by adapting the fisheries management plans accordingly.

2.1.1 Time-series vs. spatio-temporal CPUE data

CPUE data often consists of values calculated over regular time intervals for the

whole geographical area of interest. Such data can be represented as a univariate

time-series—i.e., a sequence of values in time. Naturally, many CPUE forecasting ap-

proaches use time-series analysis methods such as ARIMA (AutoRegressive Integrated

6
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Moving Average). Works that employ such techniques include [74, 72, 4, 58, 59].

Paper [20] compares linear (ARIMA) and non-linear (ANN) univariate time-series

methods for short-term forecasting of halibut CPUE. CPUE datasets used in the

aforementioned studies have low temporal resolution (monthly, seasonal, or annual),

and CPUE values correspond to the whole geographic study area—that is, no spatial

dimension. In contrast, data sources used in this study make it possible to not only

calculate CPUE for an arbitrarily small temporal resolution, but also with our choice

of spatial granularity. The resulting CPUE dataset is spatio-temporal, for which the

standard time-series forecasting methods cannot be used.

Spatio-temporal CPUE datasets are very uncommon in the literature. The few

studies we found that utilize spatio-temporal CPUE data, do so by combining in-

dependent time-series CPUE data obtained from different areas. For example, [35]

uses time-series CPUE data reported by several countries with fishing operations in

the Atlantic ocean, and compiles a spatio-temporal dataset by placing the data into

coarse time-area strata—monthly time granularity, and 5° latitude–longitude spatial

cells (approximately 560 km). Another study, combines time-series CPUE data from

three different sites to study the spatio-temporal variability of Atlantic cod [63]. Pa-

per [73] uses spatio-temporal CPUE that is calculated monthly for 1° (approximately

111 km) square grid cells. The spatio-temporal CPUE data used in all the aforemen-

tioned studies have very coarse temporal and spatial resolution. Besides, the goal of

none of the studies was forecasting. In fact, to the best of our knowledge, no work

has been done on high-resolution spatio-temporal forecasting of CPUE.

The scarcity of high-resolution spatio-temporal CPUE datasets is because creating

such dataset requires information that is rarely available. More specifically, we would

need to have high resolution vessel tracking data (GPS coordinates), along with lo-

calized catch amounts at all the points on the vessel trajectories. Most datasets from

commercial fisheries either do not include geographical coordinates, or use coarse-scale

grids to log fishing activities [51]. However, some highly regulated regions, such as

the European Union, have adopted policies that enforce carrying tracking devices for

most fishing vessels [28]. Detailed tracking data coupled with vessel’s corresponding

catch information would make it possible to construct high-resolution spatio-temporal

CPUE datasets. Indeed, as will be described in Chapter 3, one focus of this study is
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to create high-resolution spatio-temporal CPUE maps using vessel tracking and catch

datasets.

2.1.2 Use of environmental factors

Food source and water temperature are understood to be important factors in fish

growth and abundance [39], which in turn affect catch rates. At the base of the aquatic

food chain are phytoplankton; which are considered to be the primary producers, feed-

ing the majority of aquatic life [46]. Similar to plants, phytoplankton convert sunlight

to chemical energy using light-harvesting pigments, primarily chlorophyll-a (chl-a).

Therefore, chl-a concentration in water can be used as an index for phytoplankton

biomass. Effects of the two oceanographic parameters, Sea Surface Temperature (sst)

and chl-a concentration, are commonly considered in marine fisheries research. For

example, [43] found strong association between weekly sst, chl-a concentration, and

daily catch of some small pelagic fish species in the gulf of California. In another

study, sst and chl-a concentration were used to forecast fishing grounds off of Gujarat

coast in India, potentially increasing the catch amounts by 2-3 folds [69].

On the other hand, weather conditions influence fishing vessels activities, therefore

affecting catch rates. Most importantly, turbulent water adversely affect vessels safety,

deterring fishing activity when waves are dangerously high. In fact, wave height is

found to be inversely related to catch rates [67]. Significant wave height is a statistical

quantity which is commonly used as a measure of the ocean waves height. This

measure is defined as mean of the highest third of wave heights (trough to crest) that

occur in a given time period.

Significant wave height can be measured directly by satellite radar altimeters. sst

and chl-a concentration can also be measured using satellites equipped with the proper

optical sensors. In our approach to forecast CPUE, we use sst, chl-a concentration,

and significant wave height data obtained from satellite imagery.

2.2 Fishing vessels trajectory modeling

Thanks to the recent abundance and ubiquity of devices with integrated Global Po-

sitioning System (GPS), a wealth of mobility data is being generated for a variety

of moving objects. The literature on the broad subject of mobility data mining and
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trajectory analysis is vast; only a small subset of which is relevant to our applica-

tion. This section provides the necessary background and an overview of the literature

related to trajectory modeling with a focus on fishing vessel trajectories. More specif-

ically, our focus is on trajectory models that can facilitate creating a high-resolution

CPUE dataset by incorporating the information needed for the task, such as vessel

fishing activity and catch amounts.

2.2.1 Automatic Identification System (AIS)

When it comes to vessels trajectories, a notable data source is information collected

from ships equipped with Automatic Identification System (AIS) [5]. An AIS device

is essentially a GPS tracking device that is integrated with other navigation sensors

(e.g. gyrocompass), and a VHF (Very High Frequency) transceiver. AIS devices use

a standardized, open, and un-encrypted protocol to broadcast the carrying vessel’s

information, and receive information from other AIS-equipped vessels’ in their range.

The un-encrypted protocol of AIS sets it apart form other proprietary VMS (Vessel

Monitoring System) technologies, and makes it an accessible data source for academic

studies.

Broadcast information of an AIS device include a unique vessel identifier num-

ber called MMSI (Maritime Mobile Service Identity), geographical coordinates, time-

stamp, and course information (such as true heading, rate of turn, speed, etc.). Broad-

cast update rate varies from 2 seconds when vessel is moving fast or maneuvering,

to 3 minutes when anchored or moored; giving AIS data a high temporal resolution

compared to other VMS technologies, which have update rates of minutes to hours

[42]. AIS was initially developed as a safety system for vessel collision avoidance by

allowing vessels to detect each other; supplementing radar which has a shorter range.

International Maritime Organization (IMO) requires AIS on ships with 300 or more

gross tonnage (GT), and all passenger ships [41].

In addition to its original purpose as a safety measure, AIS is increasingly being

used in many other applications including fishing activities monitoring. AIS is an at-

tractive data source due to its open protocol, high temporal resolution, and expanding

regional regulations requiring more vessels to carry them. As an example that relates

to our project both in application and geographical region, all fishing vessels of 15
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meters or longer operating in the European Union are required to be fitted with an

AIS device since May 2014 [28]; which applies to the majority of commercial fishing

vessels in the region.

The open protocol of AIS signals means that not only the surrounding vessels,

but anyone with an AIS receiver can access the information transmitted by vessels

within range; including ground stations in coastal areas. The horizontal range of AIS

signals is highly variable, and is influenced by the elevation of the receiver’s antenna,

which in effect determines the receiver’s visible horizon (due to the Earth’s curvature).

Depending on the elevation and antenna height, ground stations in coastal areas are

capable of receiving AIS signals usually only up to a range of about 40 NM (nautical

miles) or 74 Kilometers [27]. In contrast, AIS signals travel much longer vertically

and can reach the satellites in earth’s orbit. Utilizing satellites to receive AIS signals

is particularly useful in monitoring areas that are out of the range of coastal ground

stations. The AIS data collected using ground stations is referred to as coastal or

terrestrial AIS ; and data collected using space-based receivers is called Satellite AIS

or S-AIS. The AIS data used in this project is from terrestrial AIS, which has a more

consistent and higher update rate than S-AIS.

2.2.2 Semantic modeling for fishing vessel trajectories

Trajectories

An object’s raw location data captured by positioning devices, such as AIS, is a

set of spatio-temporal points—i.e., timestamped location coordinates. The temporal

sequence of the spatial points obtained by tracking an object can be referred to as a

the object’s movement track [70]. The movement track of an object can be captured

throughout its existence, however, many applications are only interested in parts of

that track. For example, in the case of tracking a ship’s movements to monitor its

fishing activities, the parts of the movement track that correspond to its mooring are

of no significance. Trajectories are defined as parts of the movement track that are of

interest in a particular application [70]. Two specific points on an object’s movement

track can identify the beginning and the end of a trajectory for that object [71]. Using

the previous example, the beginning of a fishing vessel’s trajectory can be considered

when the ship leaves the port; and its subsequent arrival at the port can be the end.
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Semantic enrichment

Trajectories are often complemented with some contextual information relating to

the particular application. In our example, interpreting the trajectory of a vessel to

infer its fishing activities requires some knowledge about the characteristics of fishing

behaviour. Semantic enrichment is known as the process of supplementing trajecto-

ries with contextual information called annotations [57]. For example, segments of

a fishing vessel’s trajectory may be annotated with its activity: fishing, navigating,

etc.

Depending on the application, segment annotations can be recorded manually

(e.g. fisherman logging fishing activity), or captured automatically. The task of

automatic annotation can be formulated as the automatic segmentation of the trajec-

tory: breaking the trajectory into segments based on some homogeneity criteria. That

is, to automatically determine segments of a trajectory that exhibit a consistent be-

haviour, and can be distinguished from other segments showing different behaviours.

A more precise definition of such homogeneous segments, called episodes, is given as:

“a maximal continuous sub-sequence of a trajectory that adheres to certain criteria”,

according to [52]. We are primarily interested in the automatic segmentation of vessel

trajectories to determine fishing or non-fishing episodes.

Fishing episode identification

Trajectory segmentation is the process of identifying portions of a trajectory that

are homogeneous by some measure. This subject is a broad area of study, most of

which is not within scope of this thesis. Here we focus on techniques that apply to

identifying fishing/non-fishing episodes of vessel trajectories.

Fishing activity identification techniques fall into the two following broad cate-

gories: (i) methods that are based on a set of predefined rules (using domain knowl-

edge); and (ii) methods that do not use predefined criteria. The first category of

methods consist mainly of methods that use speed-based rules to identify fishing ac-

tivity [14, 33, 64, 25, 23, 53, 50]. Such methods are prevalent due to their simplicity,

and effectiveness of vessel’s speed as an indicator for fishing activity. In fact, most

fishing vessels demonstrate a bi-modal speed distribution, where the two peaks corre-

spond to fishing and cruising speeds [54, 8, 45]. The necessary domain knowledge for
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speed-based methods is the operational speed range of the fishing gear; since it varies

significantly among different types of gear (e.g. longliners, trawlers, etc.). Such do-

main knowledge is not always available, necessitating more sophisticated methods to

detect fishing activity. The second category of methods is particularly valuable in the

absence of domain knowledge. A number of such methods use some kind of similarity

measure and various clustering techniques to group similar segments of a trajectory

together [68, 78]. Others use techniques similar to temporal pattern recognition such

as auto-regressive models [34], or Hidden Markov Models (HMM) [21].

Due the presence of detailed information about the types of fishing gear in our

data, we used speed-based criteria to detect fishing episodes.

Semantic trajectory modeling

The concept of trajectories was previously presented in this section, followed by the

introduction of semantic enrichment of the trajectories. Semantic enrichment was de-

scribed as the process of supplementing the trajectories with contextual information;

the result of which is called semantic trajectories. Several data models have been pro-

posed to formalize the representation of semantic trajectories, each of which can be

suitable for specific applications. For example, stops and moves model represents the

trajectory as a series of stop and move episodes, where each episode can be annotated

with semantic information [57]. This model can be used to represent tourist sight-

seeing routes; in which the tourists move from one attraction to another, stopping

at each attraction for a period of time. A more general modelling approach, named

CONSTANT (Conceptual Model of Semantic Trajectories), introduces the concept

of subtrajectories, which can be generated based on the goals or the behaviour of the

moving object, or the means of transportation [9]. More recently, the MASTER (Mul-

tiple Aspect Trajectories) model was proposed, which expands the previous works by

not only providing a conceptual model, but also a logical schema in RDF (Resource

Description Framework) [49]. As a result, the MASTER model accommodates for the

enrichment of the trajectories with complex semantic objects, making it more flexible

and expressive than the previous models.

In this study, the MASTER model will be used for the semantic modelling of

the fishing vessel trajectories. The resulting set of trajectories constructed using the
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MASTER models are referred to as multiple aspect trajectories. The MASTER model

introduces the concept of aspect, which intends to distinguish between the semantic

information that apply to the whole trajectory—called long term aspects—versus

semantic information that apply to parts of the trajectories (or subtrajectories)—

called volatile aspects [49]. This distinction is especially useful in our application for

fishing vessel trajectories, as the semantic information in our case includes both kinds.

For example, long term aspects would include the boat identification number (MMSI),

fishing gear, etc.; which would not change during the course of the trajectory. On

the other hand, volatile aspects would include information that can change during the

trajectory and only apply to subtrajectories, such as speed and the activity of the

vessel (fishing, navigating, etc.).



Chapter 3

From Raw Data to Spatio-Temporal Map of CPUE

Our goal in this chapter is to create a high resolution spatio-temporal map of CPUE,

and then augment it with environmental data. The resulting spatio-temporal dataset

will be used in the Chapter 4 for prediction analysis. The steps involved in the

transformation and integration of the datasets, from their raw form to the format

used for prediction analysis, represent a significant conceptual and practical part of

this project.

To recapitulate, CPUE is an important index in fisheries science and management,

which is used as a key indicator of sustainable harvesting. As noted in Section 2.1,

creating a spatio-tempral CPUE map is not usually possible. That is because, in

most cases the available data can only be used to calculate the CPUE over the whole

study area, which results in a time-series dataset without a spatial dimension. The

studies which we found that involve spatio-temporal CPUE, use very coarse temporal

and spatial granularity. However, a rare combination of detailed and correlated data

sources enabled us to create very high-resolution spatio-temporal CPUE maps, as will

be explained in this chapter.

In Section 3.1, we describe the unique set of three data sources that motivated this

project. Then, in Section 3.2, we explain the process of creating spatio-temporal maps

of CPUE—assuming we are given a set of semantic trajectories that combine two of

the data sources. The resulting CPUE maps are then augmented with environmental

data. Finally, in Section 3.3, we backtrack to describe the construction of the semantic

trajectories that we previously assumed were given, and were used to create the CPUE

maps.

3.1 Data sources

The datasets used in this project, while all pertaining to the Northern Adriatic region,

come from the following three different sources:

14
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1. AIS data from fishing vessels

2. Daily landing reports (quantity and species of fish caught)

3. Environmental data

Each of the three data sources will be described in this section.

3.1.1 AIS data

The raw AIS dataset contains tracking data for the trawl fishing vessels operating in

the North Adriatic sea. The dataset, which was provided by the Italian coast guard,

covers the period of January 2015 to December 2016,1 and contains over 62 million

records of timestamped coordinates of the vessel locations. Each record consists

of the boat identification number (MMSI), coordinates of the vessel location, and a

timestamp. The AIS data is captured using land-based receivers, making it terrestrial

AIS; which has very high temporal resolution with update rates up to every 2 seconds.

This dataset is available as a result of the European Union regulation that requires

all fishing vessels of 15 meters or longer to carry an AIS device since May 2014 [28].

The number of distinct vessels in the dataset are 70 for 2015 and 77 for 2016; all of

which belong to the fishing fleet of Chioggia—one of the main fishing ports on the

Italian coast of the North Adriatic sea. The vessels in the dataset are fitted with

one of the four following trawl fishing gear: rapido (RAP), small bottom otter trawl

(SOTB), large bottom otter trawl (LOTB), and midwater pair trawl (PTM). Each

gear has a range of operational speed, which is presented in Table 3.3 and will later

be used in the detection of vessel activities in section 3.3.

3.1.2 Landing data

The landing dataset refers to the daily landing reports—i.e., the quantity of catch

in kilogram per species—for individual vessels, which was obtained from Chioggia’s

fish market. The dataset consists of records for daily landing of 104 fish species in

2015-2016. The dataset represents the landings from 17921 fishing trips carried out

by 82 vessels during the two years. Each record in the dataset includes the boat

identification number (MMSI), date of landing, the amount and the species of fish

1At the time of writing this thesis, new data for 2017 and 2018 has become available. This thesis
is, however, limited to the 2015-2016 data.
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caught. The boat identification number (MMSI) is used to associate the landing

records with the AIS dataset as described in section 3.3. As a result, we can also

determine the type of gear associated with each landing, which allows us to produce

the breakdown of trip counts per each gear type, as shown in Table 3.1.

Exploratory analysis of the landing data reveals details such as the seasonality in

the data and the share of most harvested species. Figure 3.1 shows the total monthly

landings in 2015 and 2016, as well as the share of the five most harvested species.

Comparison of the graphs for the two years indicate the presence of seasonality trends,

such as lower catches in the winter and spring compared to the summer months. The

month of August indicates zero catch for both years, reflecting the fishing ban that

was in effect during that time. Figure 3.2 depicts the annual catch for the five most

harvested species. It is also visible from both figures that 2015 landing amounts were

higher than 2016.

Table 3.1. Number of trips per gear type (2015-2016)

Gear type Number of fishing trips

Rapido (RAP) 8688
Large bottom trawler (LOTB) 3891
Mid-water pair trawl (PTM) 3872
Small bottom trawler (SOTB) 1179
Other 291

Total 17921
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Figure 3.1. Chioggia’s total monthly landing and species share in 2015-16
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Figure 3.2. Annual landing per species in 2015-16

3.1.3 Environmental data

As noted in Section 2.1.2, environmental variables—such as sea surface temperature

(sst), chlorophyll-a (chl-a) concentration, and wave height—can influence the CPUE.

More specifically, sst and chl-a concentration can influence the species abundance and

distribution, which in turn affects the catch rates. On the other hand, wave height is

a measure of water turbulence which directly affects the fishing behaviour, and conse-

quently catch rates. Therefore, considering such environmental factors could improve

the accuracy of CPUE prediction. We utilize the three aforementioned environmental

factors in our prediction analysis, which are obtained from satellite data [19].

3.2 Spatio-temporal dataset of CPUE and environmental factors

In this section we describe the steps involved in creating the spatio-temporal dataset of

CPUE and environmental factors, which will later will be used in prediction modeling

(Chapters 4 and 5). Subsection 3.2.1 describes the process of building the CPUE

dataset using semantic trajectories, and the resulting dataset will be augmented with

environmental factors in Subsection 3.2.2

As the name Catch per Unit Effort suggests, CPUE is calculated as the amount

of ‘catch’ divided by fishing ‘effort ’ ; where fishing effort quantifies the intensity of

the fishing activity over a given area and time period. Therefore, to obtain a spatio-

temporal map of CPUE, we first create separate maps of catch and effort.
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As will be described in Section 3.2.1, obtaining a spatio-temporal map of effort

requires knowing the fishing episodes of a vessel’s trajectory; i.e., parts of the trajec-

tory where the vessel was engaged in fishing activity. We would also need to know the

amount of fish caught over each of those fishing episodes to create a spatio-temporal

map of catches. The rare combination of the two data sources—detailed AIS dataset

and the corresponding landing reports—enables us to infer the aforementioned pieces

of required information. More specifically, the AIS data can be used to determine

fishing episodes of vessel trajectories. Then, amount of catch can be associated with

vessel trajectories by matching the MMSI and timestamps from the two data sources.

Such data can be represented by semantic trajectories; where the trajectories are

enriched with semantic information such as vessel’s activity (fishing or not fishing),

and amount of fish caught. Moreover, a suitable semantic trajectory model would

provide us with a means to unify spatial, temporal, and semantic features; to carry

out complex queries; and to formulate the calculation of CPUE.

In Section 3.2.1, we formulate the derivation of spatio-temporal maps for catch,

effort, and CPUE based on a given set of semantic trajectories. To do so, we assume

that the trajectories are already constructed and given to us. However, the actual

process of constructing the semantic trajectories is not trivial, and is later explained

in detail in Section 3.3. There, we describe how the trajectories were built—using

the AIS and landing reports datasets—by employing the MASTER [49] model.

3.2.1 Deriving spatio-temporal map of CPUE given the multiple aspect

trajectories

Here we describe the process of generating spatio-temporal maps of catch and effort

using a set of multiple aspect trajectories. From the two maps, we proceed to generate

a high-resolution spatio-temporal map of CPUE, which is the objective of trajectory

modeling and integration of the AIS and landing reports data sources.

In this section, we assume that a set of multiple aspect trajectories is previously

constructed from the AIS and landing reports datasets. The given trajectories are

constructed by following the MASTER model, in which they are enriched with volatile

and long-term aspects. As noted in Section 2.2.2, volatile aspects are semantic infor-

mation that can change over the duration of a trajectory, where as long-term aspects
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do not. The constructed trajectories have the following specifications.

• each trajectory represents a unique fishing trip performed by a vessel; i.e., from

when a vessel leaves the port for fishing, until the subsequent arrival at the port

• each trajectory is comprised of a sequence of smaller sections called segments

• volatile aspects pertain to each segment of a trajectory, and include segment

length, segment duration ,average speed on the segment, activity over segment

(fishing, navigating, etc.), amount of fish caught over segment (per species), etc.

• long-term aspects pertain to the whole trajectory, and include MMSI, time of

departure, time of arrival, type of fishing gear, etc.

It is noteworthy that the above description specifies the information that the tra-

jectories must contain for the purpose of creating the spatio-temporal CPUE dataset.

However, as we will see in Section 3.3, the trajectories will contain additional semantic

information that is necessary in their construction process, resulting in more complex

trajectory objects.

Throughout this section, the set of all multiple aspect trajectories is denoted by

T (set of all trips), and a single trajectory by t (a single trip).

Spatial grid

As mentioned previously, fishing effort, and thus CPUE, are defined over a spatial

area. To calculate effort and CPUE with a high spatial granularity, we partition the

study area into smaller square cells. The cells are created by imposing a spatial grid

over the region of North Adriatic sea. Fishing effort and CPUE are then calculated

over the individual cells. As described in later steps, utilizing the spatial grid enables

us to take advantage of the detailed trajectories, and to produce a CPUE map with

a high spatial resolution.

The size of the grid cells will determine the spatial granularity of the CPUE map.

In theory, we can make the grid cells as small or as big as desired. However, care

must be taken with the choice of cell size, as it profoundly affects the resulting CPUE

dataset. For example, if the cell size is too small, then there is less chance that

multiple vessel trajectories would fall in a particular cell. Therefore, the resulting

dataset would consist of many cells with CPUE values obtained from a single, or very

few trajectories. On the other hand, if the cell size is too large, it would not take
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advantage of the availability of detailed vessel tracking data. We found that 5x5 km

gird cells are suitable for our application. Other cell sizes such as .5x.5, 1x1, and

10x10 km were also considered. Figure 3.3 shows the 5x5 km grid imposed over the

study area.

Figure 3.3. Spatial grid imposed on the North Adriatic region (5x5km).

Spatio-temporal map of catches

One of the two components needed in the calculation of CPUE is a spatio-temporal

map of catches. That is, the amount of catch aggregated over the same spatial and

temporal granularity chosen for CPUE—e.g., in a 24 hour period and over 5x5 km

grid cells. The reason for the choice of cell size is explained in the previous section.

Following a similar reasoning, the choice of temporal granularity would also affect

the resulting dataset. If the time window is too short (e.g. hourly), then there is less

chance that multiple vessels would be present in a particular cell within the same time

window. Therefore, the resulting dataset would include many records that represent

only a single, or very few vessels. On the other hand, if the time window is too long

(e.g. weekly), then the effects of short-term environmental factors (e.g. weather) on

catch rates would be lost.
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Having a ‘catch amount ’ attribute attached to our trajectory segments, we calcu-

late the aggregated catch by adding up the catch amounts of segments that fall into

each grid cell, and have timestamps that are within the chosen time period. Maps of

catches can be generated separately for each species, since segment’s ‘catch amount ’

attributes are per species. Moreover, we use the trajectory’s ‘gear type’ attribute to

consider the catches for each fishing gear separately. Grouping catches by gear type

is done because different types of fishing gear differ in their efficiency for catching

different species.

Based on the information above, we can compute the quantity of fish of a particular

species s, caught in a cell c, during a time period p, by boats having a particular gear g.

Definition 1 Let c be a grid cell, p a time period, and g a gear, and s a species

of fish; the catch for species s with respect to the gear g in cell c during the time

period p is defined as follows:

catch(c, p, g, s) =
∑︂

t∈T,gear(t)=g

quantity(t, c, p, s) (3.1)

where

• T is the set of multiple aspect trajectories;

• quantity(t, c, p, s) returns the sum of the catch quantities in kilograms for species s

associated with the fishing segments of trajectory t that fall in cell c during pe-

riod p.

As it will be described in detail in Section 3.3.5, there are two ‘catch amount ’

attributes attached to each trajectory segment: ‘uniform catch’ and ‘weighted catch’.

Because the total catch for each fishing trip is reported at the time of landing, it

is required to distribute the catch amount over the fishing trajectory to obtain a

‘catch amount ’ attribute for each segment of the trajectory. The distribution of catch

is performed in two ways, uniform and weighted, both of which will be discussed

in Section 3.3.5. Consequently, the process described in this section results in the

construction of two distinct maps of catch accordingly: uniform and weighted.

Spatio-temporal map of fishing effort

Fishing effort, or simply effort, is an important measure in fisheries science that

indicates the intensity of fishing activities in the area of interest and over a certain
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period of time. As the name suggests, fishing effort quantifies the “effort” vessels

expend during their fishing activities.

Methods for quantifying effort vary greatly among fisheries due to the variety

of techniques and gear that are employed [48]. For example, fishing effort for long-

lines—which use hooks—and trawlers—which use nets—are not calculated the same

way. Our dataset consists entirely of trawlers, which operate by dragging a trawl net

when fishing. Therefore, our approach for calculating effort uses the length of the

fishing segments from the vessel’s (multiple aspect) trajectory.

We calculate the fishing effort over a time period and grid cell, similar to the

construction of maps of catches described previously. In our approach, fishing effort

is calculated as the area that is “swept” by the vessel inside a cell over a time period,

divided by the area of the cell. The swept area is calculated as the total length of the

fishing segments inside a cell over a time period, multiplied by the width of the trawl

net. Therefore, this approach considers the specifications of the employed gear—in

this case gear width—in the calculation of fishing effort. We used a constant gear

width of 20m based on domain knowledge about the Chioggia’s fishing fleet. Below

is a more precise definition of the fishing effort for given grid cell, time period, and

gear type.

Definition 2 Let c be a cell, p a time period, and g a gear. The fishing effort with

respect to the gear g in the cell c during the time period p is defined as follows:

fe(c, p, g) =

Ñ ∑︂
t∈T,gear(t)=g

len(t, c, p)

é
∗ gear width(g)

area(c)
(3.2)

where

• T is the set of multiple aspect trajectories;

• len(t, c, p) returns the sum of the lengths of the fishing segments of trajectory t

falling in cell c during time period p;

• gear width(g) is the width of the net of gear g;

• area(c) is the total area of the cell c.

Having the segments location and the ‘segment length’ attribute attached to our

trajectory segments, we can calculate the aggregated lengths of the fishing segments
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that fall into each grid cell. As a result, a more realistic and accurate estimation of

the swept area and fishing effort can be calculated for the choice of spatial granularity.

Spatio-temporal map of CPUE

Based on the maps of catch and effort created in the two previous steps, a definition

of CPUE for a given grid cell, time period, gear type, and fish species is provided

below.

Definition 3 Let c be a cell, p a time period, g a gear, and s a fish species; the

catch-per-unit-effort (CPUE) for species s with respect to the gear g in cell c during

the time period p is defined as follows:

cpue(c, p, g, s) =
catch(c, p, g, s)

fe(c, p, g)
(3.3)

As noted previously, two distinct maps of catches are produced: one for uniform

and one for weighted catch distribution. Accordingly, two distinct maps of CPUE are

generated based on the two types of catch distributions. Figure 3.4 shows an example

of the CPUE map for arbitrary p, g, and s.

Figure 3.4. Map

of CPUE (uniform

distribution) for day

2015-02-02, gear

rapido, and species

Sardina pilchardus.
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3.2.2 Augmenting the CPUE map with environmental data

As described in the previous section, the resulting CPUE maps are spatio-temporal

datasets, were each record includes a spatial field (grid cell coordinates), a temporal

field (time period), and the CPUE value for that grid cell and time period. Since the

CPUE datasets will be used for prediction analysis, we augment them with environ-

mental data that influence CPUE.

As noted in Section 3.1.3, sea surface temperature and chlorophyll-a concentra-

tions are considered, since they affect species distribution. Wave height is also con-

sidered, as it influences fishing behaviour. All three datasets are resampled to match

the temporal and spatial granularity of the CPUE maps. The resampled values are

then concatenated to the CPUE datasets by matching the temporal and spatial fields

of the records.

3.3 Construction of the multiple aspect trajectories

In this section we backtrack to outline the steps involved in transforming the raw AIS

data into multiple aspect semantic trajectories following the MASTER [49] model

(mentioned in Section 2.2.2), which were used to construct the spatio-temporal maps

of catch, effort, and CPUE as described in Section 3.2.1. Since each step of the way

describes the process of creating a piece that is used in the construction of semantic

trajectories, the trajectory model as whole might get obscured by the detail. For that

reason, we will provide a summary of the completed trajectory model at the end in

Section 3.3.6.

3.3.1 Segment construction

The raw AIS data consists of a temporal sequence of spatial coordinates, where each

point is labeled with a unique ship identification number (MMSI). A table contain-

ing the raw AIS data would have the following fields 〈MMSI, timestamp, longitude,

latitude〉. The first step in our data transformation process is to convert the raw AIS

data into a more convenient format for our analysis, namely line segments or simply

segments. Segments are constructed by linear interpolation of pairs of temporally

consecutive points (with identical MMSI) from the raw AIS table.
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A benefit of working with line segments, instead of points, is that we can calculate

and store semantic information related to each segment; such as segment length, dura-

tion, and average speed over that segment. The data fields of the segment table would

include 〈MMSI, t0, t1, lon0, lat0, long1, lat1, segment length, segment duration, av-

erage speed〉; where t0, long0, and lat0 correspond to the timestamp, longitude, and

latitude of the start point of a segment, and t1, long1, and lat1 similarly correspond

to the end point of the segment. Segment semantic attributes such as segment length,

segment duration, and average speed will be used in activity labeling and removing

implausible trips.

Throughout our analysis, a segment represents the smallest unit of a vessel’s move-

ment. Semantic attributes that are not constant during the whole trajectory, but can

change at the segments granularity level, are considered volatile aspects of the trajec-

tory in MASTER model. Such attributes include segment length, segment duration,

and average speed. In contrast, long-term aspects are attributes that are constant

during the whole trajectory. Such attributes include MMSI and the fishing gear of

the vessel.

3.3.2 Activity labeling

Activity labeling of vessel movements is a cornerstone of our analysis, since calculat-

ing CPUE relies on the detection of vessel’s fishing activity. Additionally, our trip

identification algorithm is based on vessel activities as well. Vessel activity is at-

tributed to each segment as an integer value between 0 and 4 (activity ID), denoting

the activities listed in Table 3.2.

Table 3.2. Vessel activities

Vessel activity Activity ID

in port 0
existing port 1
entering port 2
fishing 3
navigating 4

The ‘in port ’, ‘exiting port ’ and ‘entering port ’ activities are deduced from the

position of the extremes of a segment with respect to Chioggia port’s geographical
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boundaries. Specifically, ‘in port ’ is identified as the situation when both start and

end points of the segment are within the port’s boundaries; ‘exiting port ’ is when the

segment’s start point falls inside and the end point falls outside the port boundaries;

and ‘entering port ’ occurs when the reverse of the previous situation is true.

In the case that none of the previous situations occur, the ‘fishing ’ and ‘navigat-

ing ’ activities are identified by adopting a speed-based detection algorithm using the

segment’s average speed. This method employs domain knowledge about the fishing

gear’s operational speed ranges given in Table 3.3. More precisely, a segment is as-

sumed to be a ‘fishing ’ episode when its average speed falls within the speed range

of the corresponding gear; otherwise it is assumed to be a ‘navigating ’ episode.

Vessel activity is another volatile aspect of the trajectory in the MASTER model,

since it is not constant during the whole trajectory. Figure 3.5 shows an example of

a vessel trajectory with color coded segments based on its activity.

Table 3.3. Fishing gear speed ranges

Gear name Gear ID Min speed (km/h) Max speed (km/h)

Rapido RAP 7.408 12.964
Small bottom otter trawl SOTB 3.704 8.334
Large bottom otter trawl LOTB 3.704 8.334
Midwater pair trawl PTM 3.704 10.186

3.3.3 Trip identification

Up to this point, we have constructed the segments, and supplemented them with

an activity attribute. For the purpose of calculating CPUE, we would also need to

attach the catch amount to the fishing segments. Therefore, we need to associate the

segments—constructed using the AIS data—with the landing reports dataset.

Each record in the landing reports dataset corresponds to the amount of catch

reported after a vessel completes a fishing trip. A fishing trip is considered to be the

trajectory of a vessel between the time it leaves the port, and its subsequent arrival at

the port. However, we have an unbroken sequence of segments without any indication

of the individual trips. Therefore, to associate the AIS and landing reports datasets,

we would need to group the segments into distinct fishing trips. All segments in a
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group can then be labeled with a trip identification number. It naturally follows that

an individual fishing trip can be considered a unique trajectory in our application.

We characterize a trip as a sequence of consecutive segments, where the activity

label of the first segment is ‘exiting port ’ (activity ID 1), and the last segment’s

activity label is ‘entering port ’ (activity ID 2). Then, each trip can be enriched with

long-term aspects such as total duration of the trip (trip duration), total length of

the trip (trip length), and total fishing length of the trip (trip fishing length). We

use these attributes to enforce the following constraints on the trips: it has to last at

least 1 hour, and have a minimum length of 2 km, from which at least 100 m have to

be classified as fishing.

The time of exiting port is then added as an attribute to all segments in the

corresponding trip, and referred to as departure time. As a result, the combination

of MMSI and and departure time identifies all segments belonging to a unique trip.

Similar to MMSI, departure time is also a long-term aspect of the trajectory.

Figure 3.5 shows an example of a uniquely identified fishing trip. Part of the

trajectory is magnified to show the first and last segments of the trip, when the vessel

is ‘exiting port ’ (activity ID 1), and ‘entering port ’ (activity ID 2).

Figure 3.5. Example of a fishing trip trajectory with activity IDs. Trip information
— date: 2014-04-15; gear: RAP; total catch: 399kg.
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3.3.4 Assigning landing reports to trips

The daily landing reports dataset obtained from the Chioggia’s fish market consists

of detailed information about each trading transaction; including the landing date,

MMSI of the fishing vessel, the species caught, and the quantity of catch per species.

The goal here is to associate each landing report with a fishing trip obtained from

the previous step.

To accomplish this task, for each landing report, we attempt to find the vessel’s

trip with the arrival time at port that is consistent with the recorded landing date.

In this step, it is important to take into account the operating hours of the fishing

market at Chioggia port. If a vessel’s arrival time at port is too late in the day,

the trading transaction would be done in the following day. Therefore, we associate

a landing report with the vessel’s trip that has the most recent arrival in the port

before 4 PM of the landing date. Arrivals after 4 PM are associated with transactions

occurring the next day. The amount of catch reported in the caption of Figure 3.5 was

obtained by associating the fishing trip with the corresponding record in the landing

reports dataset.

3.3.5 Distribution of catches over trips

Here we describe the two approaches we used to distribute the catch amounts over

the assigned fishing trips. This step is essential in creating a spatio-temporal map of

catch amounts, which is necessary to create the high resolution spatio-temporal CPUE

dataset. The result of this step is used in Formula 1 to construct the spatio-temporal

map of catches as described in Section 3.2.1.

We employ the two following techniques for distributing catch amounts over trips

• uniform distribution, or

• weighted distribution.

In the first approach, for each landing report, the amount of fish is uniformly

distributed along the fishing segments of the corresponding trip. More precisely,

each fishing segment of the trip is attributed with a portion of the total amount of

catch proportional to the segment’s length. This method is an effective but basic
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approach; and we acknowledge that the assumption of uniform catch distribution is

an oversimplification of reality.

In the second approach, we attempt to improve the first method by performing

a weighted distribution of catches. The idea behind this approach is that the areas

where more vessels are fishing during a given time period, are more likely to have

higher catch rates. Therefore, the segments of a vessel’s trip that fall in areas with

more fishing activities would have higher weights in the catch distribution.

To quantify the fishing activities, we created a heat-map of the count of the vessels

engaged in fishing activities on the spatial grid. The grid is the same one that is used

for calculating CPUE, and is described in Section 3.2.1. The heat-map is created by

counting the number of unique vessels that were engaged in fishing activities inside

each grid cell over a 24 hour period. Each fishing segment is then attributed with

a weight, which is equal to the vessel count in the heat-map cell containing that

segment. Finally, the weighted distribution is performed by attributing each fishing

segment with the portion of the total amount of catch that is proportional to its

length multiplied by the segment’s weight.

The uniform and weighted catch are added to each segment as attributes, and are

considered volatile aspects of the trajectory. Moreover, both methods are performed

for all the species in the landing reports separately, and result in distinct attributes for

each species. This level of detail gives us the choice to consider the species separately.

Of course, we have the option to aggregate them, if the species information is not

relevant to the study.

3.3.6 Summary of the trajectory model

The preceding steps explained the piece by piece construction of semantic trajectories

following the MASTER model [49]. Here we describe resulting trajectory model as a

whole picture.

We defined a trajectory as a sequence of segments that represent a distinct fishing

trip. We chose line segments, instead of spatio-temporal points, as the minimum

granularity to attach semantic information; due to the convenience they provide in

detecting homogeneous trajectory portions for activity labeling. The trajectories
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were enriched with semantic information, which are categorized as volatile or long-

term aspects in the multiple aspect trajectory (MASTER) model [49]. Volatile aspects

are attached to segments, and can change during the trajectory (trip); whereas long-

term aspects are constant during the whole trajectory [49]. Both types of semantic

attributes used in our trajectory model are listed below.

• long-term aspects : MMSI, departure time of the trip, departure port, type of

fishing gear, duration of the trip, total length of the trip, fishing length of the

trip, total amount of fish caught in the trip

• volatile aspects : segment length, segment duration, segment average speed, ac-

tivity of the boat, amount of fish caught on the segment (separate attributes for

all species, each with both values for uniform or weighted distribution methods)

By using the MASTER model we are able to represent different aspects of our

trajectories in a uniform and simple way. Moreover, this representation allows us to

perform complex queries merging together spatial, temporal and semantic features.



Chapter 4

Prediction Modelling: Problem and Methods

As mentioned previously, the final goal of this study is to perform a spatio-temporal

forecast (prediction) of CPUE using the spatio-temporal dataset created in Section

3.2—i.e. the spatio-temporal map of CPUE augmented with environmental variables.

In this chapter we state the specifics of the prediction problem, describe our approach

to perform the prediction task using regression modeling, and finally specify our model

evaluation methods.

As pointed out in Section 3.1.2, the landing dataset contains catch amounts for

various species caught using various types of gear. However, we have limited the

prediction modeling to one species and one gear type. More specifically, Sardina

pilchardus is chosen as the species for prediction modelling, since it constitutes the

largest share of annual catches (see Figure 3.2). Similarly, the fishing gear rapido

(RAP) is chosen, since it makes up almost half of the fishing trips (see Table 3.1).

4.1 Prediction task

Employing the spatial grid that was used to create the CPUE map in Section 3.2.1,

the task of spatio-temporal prediction of CPUE can be described as predicting CPUE

values for individual grid cells and over a specific time period. As mentioned in Section

2.1.1, in fisheries science and management, CPUE is often obtained for relatively long

time periods, such as annual, seasonal, or monthly. Since our dataset only spans over

two years, one of which is going to be used to train the prediction model, we decided

to perform prediction for the shortest conventional time period—i.e. monthly. Given

this information, the problem can be stated as follows.

Problem statement Given a two-year spatio-temporal dataset consisting of daily

CPUE values for individual spatial cells augmented with daily environmental factors,

build and evaluate a model to predict monthly CPUE values for each spatial cell.1

1Spatial cells are from the spatial grid described in Section 3.2.1.
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Prediction for shorter time periods (e.g. daily or shorter) is not suitable for

fisheries management. Besides, the extreme variance in CPUE values over a short time

period and a small area (e.g. a grid cell) makes prediction impractical. Prediction

for longer time periods (e.g. seasonal or annual) would be desirable, but not feasible

with our available dataset which only spans over two years. A dataset with longer

time span would be required to capture seasonal and annual trends in CPUE.

4.1.1 Regression modelling

Since CPUE is real-valued and continuous, the prediction task can be formulated

as a regression problem; where the output of the regression model is the CPUE

value for time period (i.e., month) p and grid cell c. The model is trained on data

from 2015, and evaluated on 2016. This method for splitting the data is chosen

due to the sequential nature of the data, for which random sampling is not suitable.

Furthermore, to evaluate our monthly prediction results on all months of the year, the

data for the whole year of 2016 is set aside for evaluation. The inputs to the model

(model features or attributes) are environmental, spatial, and temporal attributes as

presented in Table 4.1.

Table 4.1. Model attributes

Attribute description Symbol Type Unit

E
n
v
ir
on

m
en
ta
l

daily chlorophyll-a concentration chl float mg/mˆ3

daily sea surface temperature sst float kelvin

daily spectral significant wave height vhm0 float meter

S
p
at
ia
l

latitude of grid cell centre lat float degree

longitude of grid cell centre lon float degree

T
em

p
or
a
l day of year (1-365) doy int

month of year (1-12) moy int

week of year (1-53) woy int

season (1-4) season int

The machine learning algorithms used for regression modelling will be discussed

in Chapter 5.
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4.1.2 Adjusting temporal granularity

In contrast with the goal of our forecast modelling, which is the prediction of monthly

CPUE, the environmental factors (e.g., wave height) can affect fishing activities on a

daily basis. Monthly aggregation of the environmental attributes prior to modelling

could lead to loss of the information regarding their daily effects on the fishing ac-

tivities. We attempt to preserve that information by deferring the aggregation to

after the regression modelling, which is explained as follows. First, daily training

data from 2015 is used to train a regression model that subsequently is used to pro-

duce daily predictions for individual grid cells for the year 2016. Then, the monthly

mean (average) of daily CPUE predictions for each cell is calculated to obtain the

monthly CPUE forecast for the respective cell. Averaging is used to aggregate the

predicted CPUE values, as opposed to summation, because CPUE values are ratios

(CPUE = catch/effort) and do not produce a meaningful sum (as opposed to catch

amounts, for example).

The model output is considered to be the average monthly predictions obtained

from the method that was described above. The model evaluation is performed

against average monthly CPUE values that were calculated in the same fashion, but

using the actual 2016 data. Equation (4.1) shows the calculation of actual and pre-

dicted average CPUE for a given cell c over a given period p (i.e. month),2 respectively

denoted by yc,p and ŷc,p;

yc,p =
1

|Dc,p|
∑︂

d∈Dc,p

cpue(c, d) and ŷc,p =
1

|Dc,p|
∑︂

d∈Dc,p

cpue‘ (c, d) (4.1)

where Dc,p indicates the set of all days d in period p for which cell c has a CPUE

value. cpue(c, d) and cpue‘ (c, d) are respectively the actual and predicted daily CPUE

values for cell c on day d.

2As pointed out in the beginning of Chapter 4, we consider CPUE only for the gear rapido
and species Sardina pilchardus. Hence, instead of writing cpue(c, p, rapido,Sardina pilchardus), we
simply use cpue(c, p), omitting the gear and species names.
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4.2 Model evaluation

Baseline model

The baseline, which is used as the benchmark to compare with our prediction models,

is to simply use the last observed value as the forecast. Using this baseline is standard

practice in forecast modeling, which is referred to as näıve forecast [40]. Comparing

the forecast models against this baseline—rather than comparing to each other—has

the added advantage of providing a consistent benchmark that is independent of the

choice of the regression model. In particular, for this experiment, the baseline average

monthly prediction of CPUE for a given cell and month in 2016 is the respective

average monthly CPUE for that cell and month from 2015. The baseline prediction

is shown in Equation (4.2).

ŷ∗c,p = yc,p↓1 (4.2)

where yc,p↓1 is the actual value for cell c at the same period moved one year backward.

For instance, if p = June2016 then p ↓ 1 = June2015 . In the scenario that a

particular cell is present (has some fishing activity) for a given period in 2016, but is

absent (has no fishing activity) for the same period in 2015, the baseline prediction

is considered to be zero.

Evaluation metrics

The metrics used for model evaluation are as follows.

• Mean Absolute Error (MAE) is calculated for each period p (i.e., month) as

the mean of absolute errors of the predicted average CPUE for all cells in that

period. MAE for period p is shown in Equation (4.3);

MAEp =
1

|Cp|
∑︂
c∈Cp

|ŷc,p − yc,p| (4.3)

where Cp denotes the set of all cells with a CPUE value in period p; and ŷc,p

and yc,p are respectively predicted and actual CPUE values for cell c and period

p. MAE for the baseline prediction is calculated similarly and it is denoted by

MAE∗.
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• Normalized Mean Absolute Error (nMAE) is calculated for each period as the

MAE for that period divided by the mean of the actual CPUE for that period.

nMAE for period p is shown in Equation (4.4).

nMAEp =
MAEp

µp

; µp =
1

|Cp|
∑︂
c∈Cp

yc,p (4.4)

The advantage of this metric over MAE is that it adjusts for the magnitude

of the mean of CPUE in a time period, providing a metric that is comparable

among different periods. Besides, it indicates the size of MAE relative to the

mean.

• Relative Absolute Error (RAE) is a measure of model performance relative to

the baseline model; it is calculated as the ratio of model MAE to the baseline

MAE∗ for a given period [2], as shown in Equation (4.5).

RAEp =
MAEp

MAE∗
p

(4.5)

RAE provides a quick way to determine how a model performs compared to the

baseline model. RAE values of less than 1 indicate that the model is performing

better than the baseline, and values greater than 1 indicate that the model is

performing worse than the baseline.



Chapter 5

Prediction Modelling: Experiments and Results

As noted in Section 4.1.1, our approach to predict monthly CPUE involves training

a regression model to predict daily CPUE. 1 In this chapter we discuss the machine

learning methods that are used for regression modeling, and then report the results

and performance metrics for each method.

5.1 Experiments

Regression models are built using the spatio-temporal dataset consisting of the daily

CPUE and environmental variables pertaining to individual grid cells. The response

(or target) variable of regression is the CPUE value, and the input features to the mod-

els are environmental, spatial, and temporal variables as described in Section 4.1.1.

The only categorical feature, i.e. season with four possible values, was converted to

four binary features using one-hot encoding.

Models are trained on data from 2015, and evaluated on 2016. This method of

partitioning the data is chosen over other sampling methods (e.g. cross-validation)

because of the sequential nature of the dataset. More specifically, this method ensures

that the training data contains records from all time periods in a year (e.g. seasons,

months, etc.). Furthermore, this partitioning strategy simulates the way that data

would be available for forecast modeling in the industry. That is, predictive models

would be trained using historical data as it becomes available.

As noted in Section 3.2.1, two distinct CPUE datasets were created based on the

two catch distribution methods: uniform and weighted catch distributions. Separate

prediction models are built for the two CPUE datasets, and results are reported for

both.

1As described in Section 4.1.2 monthly CPUE for each cell is calculated by taking the average of
daily predictions for that cell over the month.

36
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5.1.1 Machine learning methods

In this section, we discuss the machine learning methods employed for regression

modeling, and reference the particular software implementations that were utilized.

Four machine learning methods were used, each of which was part of either of two

software packages: H2O [37] or Scikit-learn [61]. H2O is an open-source distributed

machine learning platform created by H2O.ai; and Scikit-learn is an open-source

machine learning library for Python.

Model hyperparameters for each method were chosen by performing grid searches

on the hyperparameter space and taking the best scoring settings. Specifically, a

Cartesian grid search was performed on the combination of different values for hy-

perparameters, and the values that resulted in the lowest mean absolute error on

the validation dataset were selected. Choice of hyperparameters for each model is

reported in Appendix A. The four machine learning methods are described below.

Generalized Linear Model (GLM)

Regularized linear regression was used as one of the regression methods. In partic-

ular, we made use of the Generalized Linear Model (GLM) module from H2O [37].

H2O GLM supports elastic net regularization, which is a combination of L1 (LASSO

regression) and L2 (Ridge regression) regularization methods. It also supports the

Tweedie family of distributions, which include normal, Poison, gamma, and their

combinations.

The Tweedie model with elastic net regularization was chosen for regression mod-

eling because it is flexible with respect to the data distribution and resists over-fitting

by penalizing model complexity. The hyperparameteres that parameterize Tweedie

distribution and elastic net regularization are chosen through grid search, and re-

ported in Appendix A.

SVM

Similar to Support Vector Machine (SVM) for classification, SVM for regression uses

the kernel trick to transform the data into a high dimensional space [75]. SVM can
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model nonlinearities by using a nonlinear kernel, such as polynomial or radial ba-

sis function (RBF) kernels. At the time of writing this document, H2O’s [37] im-

plementation of SVM is only for binary classification problems, and not regression.

Therefore, the SVR module from Scikit-learn [61] was used for regression modeling,

which is an SVM implementation for regression based on LIBSVM [13]. Model hyper-

parameters, including the type of kernel, were chosen via grid search and are reported

in Appendix A.

XGBoost

Extreme Gradient Boosting (XGBoost) is an ensemble tree-based machine learning

algorithm which relies on tree boosting [15]. Ensemble learning methods can improve

accuracy, and reduce bias and variance by combining outputs of many base learn-

ers [24]. Tree boosting algorithms, and XGBoost in particular, have recently been

popular due to their success in a number of machine learning competitions [15]. XG-

Boost applies the boosting technique described in [31] to decision trees as its base

learners. More specifically, it sequentially builds decision tree models by training on

versions of the data that are re-weighted based on results from the previous models

such that the new model performance is improved. Then an aggregation of outputs

of all the models is considered to be the final output.

XGboost was chosen as one of the regression methods because of its desirable

properties, such as no assumption on data distribution, being able to model non-

linearities, and resistance to over-fitting. We used the H2O [37] XGBoost module.

Hyperparameters were chosen via grid search and are reported in Appendix A.

Random Forests

Random Forests (RF), similar to XGBoost, is an ensemble tree-based machine learn-

ing algorithm [11]. When used for regression, the RF model output is calculated as

the average of outputs of many individual regression trees. The regression trees are

trained independent of each other using an ensemble learning method called boot-

strap aggregating (Bagging). In Bagging, the base learners are trained on subsets

of the dataset that are chosen using random sampling with replacement—i.e., boot-

strap samples [10]. At each node of the individual trees, one attribute is chosen
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from a randomly selected subset of all attributes. Bagging and the randomization of

the attribute selection process are effective generalization methods that result in the

robustness of RF against overfitting.

RF has similar desirable properties to other ensemble tree-based methods (e.g. XG-

Boost), such as no assumption on data distribution, being able to model nonlineari-

ties, and resistance to over-fitting. Therefore, RF is chosen as one of the regression

methods in this study. The H2O [37] DRF (Distributed Random Forests) module

was employed, and model hyperparameters are chosen via grid search and reported

in Appendix A.

5.2 Results and Discussion

In Section 5.2.1 we present the model performance metrics and a summary of the

results for the four aforementioned machine learning methods. Then we proceed to

provide interpretation and discussion of the results in Section 5.2.2.

5.2.1 Results

Tables 5.1, 5.2, 5.3, and 5.4 present evaluation metrics for monthly CPUE prediction

models built using RF, XGBoost, SVM, and GLM respectively. Each table reports

the three evaluation metrics that were described in Section 4.2 (Mean Absolute Er-

ror (MAE), Normalized Mean Absolute Error (nMAE), and Relative Absolute Error

(RAE)), as well as the mean of CPUE to provide context for the magnitude of MAE.

Defined by Formula 4.4, nMAE allows for a meaningful comparison of model perfor-

mance on different time periods (e.g. months) by normalizing MAE with the mean

CPUE of that period. It also provides a measure of the magnitude of MAE relative

to the mean. On the other hand, RAE—defined by Formula 4.5—provides a measure

of the magnitude of MAE relative to the baseline MAE; where RAE<1 indicates that

the model MAE is less than the baseline MAE, and vice versa.

Each table is divided into two horizontal sections indicated by uniform and weighted

catch distributions. The two sections respectively contain the results pertaining to

the model built using the CPUE dataset obtained from uniform or weighted catch

distributions as described in Section 3.2.1. In each table, the first 12 rows for each

type of distribution (uniform or weighted) pertain to the 12 months of 2016; and
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the 13th row (labeled ‘All’) shows the annually averaged metrics. More specifically, p

(time period)—in the evaluation metrics formulas in Section 4.2—is set to the par-

ticular month in 2016 for the monthly metrics; while it is set to the entire year for

the annually averaged metrics.

Table 5.1. Random Forests evaluation metrics for monthly CPUE

Month MAE CPUE mean nMAE
(2016) RF baseline (actual) RF baseline

RAE

U
n
if
or
m

ca
tc
h
d
is
tr
ib
u
ti
on

1 2065.28 2473.68 2423.60 0.85 1.02 0.83
2 1758.83 2473.26 1728.77 1.02 1.43 0.71
3 812.98 881.96 983.87 0.83 0.90 0.92
4 622.05 663.76 732.72 0.85 0.91 0.94
5 862.11 948.41 936.90 0.92 1.01 0.91
6 675.91 886.13 815.72 0.83 1.09 0.76
7 2333.37 2377.42 2419.54 0.96 0.98 0.98
8† na na na na na na
9 3078.92 3168.13 3379.25 0.91 0.94 0.97
10 1430.51 1705.33 1733.98 0.82 0.98 0.84
11 2101.59 2295.61 2372.60 0.89 0.97 0.92
12 1113.45 1213.80 1237.16 0.90 0.98 0.92

All 1490.18 1707.45 1658.45 0.90 1.03 0.87

W
ei
gh

te
d
ca
tc
h
d
is
tr
ib
u
ti
on

1 1947.78 2188.87 2193.30 0.89 1.00 0.89
2 1474.28 1963.45 1593.04 0.93 1.23 0.75
3 658.65 740.02 782.88 0.84 0.95 0.89
4 441.24 486.75 529.31 0.83 0.92 0.91
5 580.32 643.32 641.55 0.90 1.00 0.90
6 436.84 637.21 542.09 0.81 1.18 0.69
7 1474.76 1491.21 1523.94 0.97 0.98 0.99
8† na na na na na na
9 2239.63 2336.55 2461.78 0.91 0.95 0.96
10 1124.27 1242.47 1312.44 0.86 0.95 0.90
11 1297.63 1660.43 1526.47 0.85 1.09 0.78
12 778.46 876.93 868.05 0.90 1.01 0.89

All 1116.69 1290.72 1254.27 0.89 1.03 0.87

† No data available due to the fishing ban.
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Table 5.2. XGBoost evaluation metrics for monthly CPUE

Month MAE CPUE mean nMAE
(2016) XGBoost baseline (actual) XGBoost baseline

RAE

U
n
if
or
m

ca
tc
h
d
is
tr
ib
u
ti
on

1 2249.65 2473.68 2423.60 0.93 1.02 0.91
2 1522.91 2473.26 1728.77 0.88 1.43 0.62
3 863.99 881.96 983.87 0.88 0.90 0.98
4 635.94 663.76 732.72 0.87 0.91 0.96
5 842.25 948.41 936.90 0.90 1.01 0.89
6 708.75 886.13 815.72 0.87 1.09 0.80
7 2337.65 2377.42 2419.54 0.97 0.98 0.98
8† na na na na na na
9 3269.45 3168.13 3379.25 0.97 0.94 1.03
10 1590.81 1705.33 1733.98 0.92 0.98 0.93
11 2191.33 2295.61 2372.60 0.92 0.97 0.95
12 1072.81 1213.80 1237.16 0.87 0.98 0.88

All 1521.52 1707.45 1658.45 0.92 1.03 0.89

W
ei
gh

te
d
ca
tc
h
d
is
tr
ib
u
ti
on

1 2065.89 2188.87 2193.30 0.94 1.00 0.94
2 1445.94 1963.45 1593.04 0.91 1.23 0.74
3 685.52 740.02 782.88 0.88 0.95 0.93
4 447.53 486.75 529.31 0.85 0.92 0.92
5 568.17 643.32 641.55 0.89 1.00 0.88
6 456.02 637.21 542.09 0.84 1.18 0.72
7 1466.03 1491.21 1523.94 0.96 0.98 0.98
8† na na na na na na
9 2363.72 2336.55 2461.78 0.96 0.95 1.01
10 1203.82 1242.47 1312.44 0.92 0.95 0.97
11 1380.24 1660.43 1526.47 0.90 1.09 0.83
12 741.98 876.93 868.05 0.85 1.01 0.85

All 1148.23 1290.72 1254.27 0.92 1.03 0.89

† No data available due to the fishing ban.
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Table 5.3. SVM evaluation metrics for monthly CPUE

Month MAE CPUE mean nMAE
(2016) SVM baseline (actual) SVM baseline

RAE

U
n
if
or
m

ca
tc
h
d
is
tr
ib
u
ti
on

1 2233.32 2473.68 2423.60 0.92 1.02 0.90
2 1554.33 2473.26 1728.77 0.90 1.43 0.63
3 846.10 881.96 983.87 0.86 0.90 0.96
4 625.52 663.76 732.72 0.85 0.91 0.94
5 835.09 948.41 936.90 0.89 1.01 0.88
6 723.93 886.13 815.72 0.89 1.09 0.82
7 2335.79 2377.42 2419.54 0.97 0.98 0.98
8† na na na na na na
9 3232.64 3168.13 3379.25 0.96 0.94 1.02
10 1588.87 1705.33 1733.98 0.92 0.98 0.93
11 2199.28 2295.61 2372.60 0.93 0.97 0.96
12 1064.26 1213.80 1237.16 0.86 0.98 0.88

All 1518.04 1707.45 1658.45 0.92 1.03 0.89

W
ei
gh

te
d
ca
tc
h
d
is
tr
ib
u
ti
on

1 2068.22 2188.87 2193.30 0.94 1.00 0.94
2 1477.00 1963.45 1593.04 0.93 1.23 0.75
3 691.87 740.02 782.88 0.88 0.95 0.93
4 455.27 486.75 529.31 0.86 0.92 0.94
5 572.28 643.32 641.55 0.89 1.00 0.89
6 475.17 637.21 542.09 0.88 1.18 0.75
7 1469.71 1491.21 1523.94 0.96 0.98 0.99
8† na na na na na na
9 2361.24 2336.55 2461.78 0.96 0.95 1.01
10 1217.63 1242.47 1312.44 0.93 0.95 0.98
11 1403.84 1660.43 1526.47 0.92 1.09 0.85
12 749.66 876.93 868.05 0.86 1.01 0.85

All 1159.26 1290.72 1254.27 0.92 1.03 0.90

† No data available due to the fishing ban.
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Table 5.4. GLM evaluation metrics for monthly CPUE

Month MAE CPUE mean nMAE
(2016) GLM baseline (actual) GLM baseline

RAE

U
n
if
or
m

ca
tc
h
d
is
tr
ib
u
ti
on

1 2228.55 2473.68 2423.60 0.92 1.02 0.90
2 1584.97 2473.26 1728.77 0.92 1.43 0.64
3 940.59 881.96 983.87 0.96 0.90 1.07
4 719.38 663.76 732.72 0.98 0.91 1.08
5 906.55 948.41 936.90 0.97 1.01 0.96
6 723.42 886.13 815.72 0.89 1.09 0.82
7 2357.29 2377.42 2419.54 0.97 0.98 0.99
8† na na na na na na
9 3143.28 3168.13 3379.25 0.93 0.94 0.99
10 1531.83 1705.33 1733.98 0.88 0.98 0.90
11 2133.73 2295.61 2372.60 0.90 0.97 0.93
12 1080.01 1213.80 1237.16 0.87 0.98 0.89

All 1533.19 1707.45 1658.45 0.92 1.03 0.90

W
ei
gh

te
d
ca
tc
h
d
is
tr
ib
u
ti
on

1 2043.92 2188.87 2193.30 0.93 1.00 0.93
2 1483.81 1963.45 1593.04 0.93 1.23 0.76
3 761.41 740.02 782.88 0.97 0.95 1.03
4 517.49 486.75 529.31 0.98 0.92 1.06
5 622.20 643.32 641.55 0.97 1.00 0.97
6 479.77 637.21 542.09 0.89 1.18 0.75
7 1499.37 1491.21 1523.94 0.98 0.98 1.01
8† na na na na na na
9 2296.93 2336.55 2461.78 0.93 0.95 0.98
10 1198.79 1242.47 1312.44 0.91 0.95 0.96
11 1367.93 1660.43 1526.47 0.90 1.09 0.82
12 765.68 876.93 868.05 0.88 1.01 0.87

All 1170.29 1290.72 1254.27 0.93 1.03 0.91

† No data available due to the fishing ban.
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5.2.2 Discussion

Magnitude of MAE

The first noticeable trait in the results, evident from tables 5.1 to 5.4, is that MAE

(Mean Absolute Error) for all the models and the CPUE mean are fairly close in

magnitude. This trait can also be observed from the nMAE (normalized MAE)

values, which are consistently close to 1 for all models (between .81 and 1.02). The

relatively large MAE is an indicative of the limitations of the models, which will be

discussed in Chapter 6. However, regardless of the magnitude of MAE, the models

that outperform the baseline prediction are still of value.

Model performance vs. baseline

To see whether the models provide an improvement over the baseline prediction, the

RAE (Relative Absolute Error) metric can be used. RAE is calculated as the MAE of

the model relative to the MAE of the baseline prediction as defined by Formula 4.5.

The RAE columns of Tables 5.1 to 5.4 (highlighted in gray) predominantly display

values less than 1, with a few exceptions. This indicates that the models perform

better than the baseline prediction for most months. Some of the models, however,

show RAE greater than 1 for a few of the months which are highlighted in red in the

tables. That means that the baseline prediction outperforms that particular model for

those months. It is noteworthy that the RF model has monthly RAE values that are

consistently less than 1. This indicates that the RF model outperforms the baseline

model for all months.

Uniform vs. weighted

As previously mentioned, each of the tables 5.1 to 5.4 contain the results of two

separate models that were built using the two types of CPUE datasets obtained from

uniform or weighted catch distributions, as described in Section 3.2.1. Of course,

evaluation of the models are done against the corresponding type of CPUE dataset.

To recapitulate, the need for choosing a distribution method arises from the fact

that the catch amount for each fishing trip is only measured at the time of land-

ing; which provides us with the total catch for the whole trip. Total catch is then
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distributed over the fishing segments of the vessel trajectory as described in Sec-

tion 3.3.5. The choice of distribution method determines how closely the distributed

catches simulate the reality.

Even though it is imperative that the catch distribution method simulates the

reality of the fishing process as closely as possible, it is not possible to assess the

impact of the choice of distribution method based on the evaluation metrics for pre-

diction modelling. The reason is simply because the prediction models are trained

and evaluated on CPUE datasets that were created based on the same catch distri-

bution method—in this case either uniform or weighted. Therefore, comparing the

prediction models that were built using the two different distribution methods would

not be informative about which distribution method more accurately simulates the

true catch distribution.

Best performing model

Table 5.5 provides an overview of the annually averaged evaluation metrics for monthly

CPUE predictions for the four machine learning methods. The information is the

same as the 13th row (labeled ‘All’) from the Tables 5.1 to 5.4. RF has the lowest

RAE for both uniform and weighted models. With an annually averaged RAE of 0.87

for weighted and uniform models, RF provides a 13% improvement over the baseline

predictions. As mentioned previously, RF is also the only method that exhibited

monthly RAE values that were consistently less than 1 for all months, for both uni-

form and weighted distributions (Table 5.1). Consequently, RF is the best performing

model in our experiment.

Table 5.5. Model comparison (annual metrics)

Method MAE RAE

U
n
if
or
m

ca
tc
h

d
is
tr
ib
u
ti
on RF 1490.18 0.87

XGBoost 1521.52 0.89
SVM 1518.04 0.89
GLM 1533.19 0.90

W
ei
gh

te
d

ca
tc
h

d
is
tr
ib
u
ti
on RF 1116.69 0.87

XGBoost 1148.23 0.89
SVM 1159.26 0.90
GLM 1170.29 0.91
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Summary of the results

All four models produced similar results, with 9 to 13% improvement for monthly

CPUE prediction compared to the baseline. The significant model error with respect

to the baseline is due to paucity of the data which will be discussed in Section 6.1.1.

Nonetheless, Random Forest (RF) performed slightly better than rest of the methods

with 13% improvement compared to the baseline for both uniform and weighted

models; and by having RAE < 1 for all months.

As an example, Figure 5.1 shows the baseline (left), actual (middle), and predicted

monthly CPUE for January 2016 using RF (right). The portrayed CPUE maps

pertain to the uniform catch distribution for gear rapido and the species Sardina

pilchardus. Since the fished area in January of 2015 (left) is smaller than the area

covered in 2016 (middle), the baseline forecast is missing a number of cells. This

limitation is overcome in the RF prediction (right), where we can produce predicted

values for any given cell. Even though the RF prediction is an improvement over the

baseline, it is evident from Figure 5.1 that the RF model is under-predicting on cells

with no fishing activity in January 2015. This issue would likely be mitigated if more

historical data were available.
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Figure 5.1. January CPUE maps pertaining to the uniform catch distribution for
gear Rapido and the species Sardina pilchardus. Actual values for Jan. 2015 (left)
are the baseline for Jan. 2016. Actual values for Jan. 2016 (middle) are used in the
evaluation of the Random Forests model predictions for Jan. 2016 (right).



Chapter 6

Conclusions and Future Work

In this work, we developed a framework for CPUE prediction using three data sources

from the North Adriatic region: (i) AIS vessel tracking data, (ii) daily landing re-

ports dataset, and (iii) related environmental variables. Although CPUE prediction

modeling was the final goal of this study, a significant part of this work is repre-

sented by the process of transformation and integration of the three heterogeneous

data sources to obtain a dataset conducive to the task of prediction modeling. The

data modeling and integration process resulted in two different representations of

the available data: (i) a set of semantic trajectories (described in Section 3.3), and

(ii) gridded1 spatio-temporal maps of aggregated catches, fishing effort, and CPUE

further augmented with environmental factors (described in Section 3.2). The latter

representation was used for prediction modeling, but both representations on their

own can provide valuable insight into the spatio-temporal aspects of fishing activities,

as described below.

By using semantic trajectory modeling and integrating the AIS and landing datasets,

an enriched dataset of semantic trajectories was created, a summary of which is given

in Section 3.3.6. The trajectories dataset consists of records of distinct fishing trips,

each enriched with semantic information such as the vessel’s activity and the amount

of catch per species for individual segments of the trajectories. This representation

allows for asking high level queries about the vessel trajectories, such as “where was

the vessel engaged in fishing activity on a particular trajectory?”, or “what is the

distribution of catch over a particular fishing trip?”.

Subsequently, using the set of semantic trajectories and a spatial grid1, spatio-

temporal maps of aggregate catches, fishing effort, and CPUE were constructed and

augmented with environmental factors. These maps can be customized for any choice

of spatial and temporal granularity, fishing gear, and species caught; allowing for the

1The spatial grid is described in Section 3.2.1.
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creation of tailored distribution maps of the aggregate catches, fishing effort, and

CPUE. This powerful and flexible representation, achieved through the amalgama-

tion of heterogeneous data sources, is especially valuable to fisheries management by

facilitating the spatio-temporal analysis of the aggregate catches, fishing effort, and

CPUE per gear and species.

The resulting spatio-temporal CPUE datasets were then used in the CPUE pre-

diction modelling. The prediction task, as specified in Section 4.1, was to predict

monthly CPUE values for individual spatial cells1 for 2016, given a daily spatio-

temporal dataset of CPUE augmented with environmental factors for 2015. Predic-

tion results using the Machine Learning methods, specified in Section 5.1.1, showed

improvements between 9 to 13% compared to the baseline prediction; with Random

Forests performing slightly better than the other methods. The modest but con-

sistent improvements in the prediction results using Machine Learning methods are

suggestive of the potential of such methods for this task. However, the results are

also indicative of the limitations of the conducted experiments, and point to the pos-

sibility of further improvements, both of which subjects are discussed in the following

sections.

6.1 Limitations

This section discusses the limitations that we recognized in this work. We then pro-

ceed to propose ideas to address these limitations and expand this work in Section 6.2.

6.1.1 Paucity of the data

The main limitation of this study is the short temporal horizon of the available data.

Having a dataset with a short time span of only two years, and having to reserve a

part of it for model evaluation, leaves us with a training dataset that is very short

for prediction modeling relating to fishing activities—which have seasonal and annual

trends by nature. Furthermore, due to the seasonal nature of the data, and because

we wanted to evaluate our monthly prediction results on all months of the year, the

data for the whole year of 2016 was set aside for evaluation. That left us with only

one year of data to train the models on, which is not enough to capture the long term

trends. Additionally, paucity of the data limited this study’s focus to the analysis of
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the gear and species that constitute the largest share of the datasets (i.e. gear rapido

and species Sardina pilchardus).

Sparsity of the data is aggravated by the addition of the spatial dimensions in

our approach.2 As mentioned in Section 2.1.1, in time-series approaches without

spatial dimensions, a single CPUE value is calculated for the whole large study area.

That guarantees having a CPUE value for all the points in time when fishing activity

has occurred anywhere in the study area. In contrast, because CPUE values in our

dataset are calculated for individual spatial cells, not all the cells have CPUE values

for the all the points in time for a period, as evident in Figure 5.1. This means for

most cells the set of available CPUE values in time is even smaller than the already

limited temporal horizon of the dataset.

As more data becomes available3 these problems could be mitigated. Also having

more data would allow for prediction techniques that take advantage of the autocor-

relation of variables in space and time. Such techniques, which will be discussed in

Section 6.2, would in turn alleviate the added sparsity of data by taking advantage of

the dependencies in the spatial and temporal domains, since they can use information

from nearby cells in the spatial and temporal vicinity.

6.1.2 Implicit assumption of spatio-temporal independence

To set the context, lagged dependency is referred to the dependency of the response

variable on the values of itself or another variable from an earlier point in time. When

previous values of a variable is used as input to a model, the variable is referred to

as a lagged variable; and the period it goes back in time is called its lag.

In reality, the response variable in our prediction task—i.e., CPUE—could depend

on its lagged values in time, and its neighbouring values in space—i.e., spatio-temporal

autocorrelation. By disregarding the autocorrelations in our modeling approach, it is

implicitly assumed the response variable is independent of its values in the past or in

its spatial vicinity; which potentially limits the predictive power of the model.

Furthermore, there could be correlations between CPUE and the lagged values

of other variables. For example, chlorophyll-a (chl-a) concentration—being an index

2As noted before, the ability to combine detailed vessel tracking and landing data made the
spatio-temporal approach in this work possible, which also differentiates this study from others.

3At the time of writing this document more data has become available. See Section 6.2.
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for phytoplankton biomass which is at the base of the aquatic food chain [46]—could

have a delayed effect on the amount of catch for different species.

However, the lag between correlated values could be too long to be verified within

the limited temporal horizon of our current dataset. For example, a year worth of data

might not be enough to verify the presence of seasonally lagged correlations. In fact,

a preliminary attempt was made to analyse the spatio-temporal autocorrelation of

CPUE which did not reveal strong autocorrelation, possibly due to limited temporal

horizon of the data.4 In Section 6.2 we discuss prediction methods that take these

correlations into account.

6.1.3 Rudimentary distribution method for catch

As described in Section 3.3.5, we used two methods to distribute the catch that each

vessel reported at the time of landing over the fishing segments of its corresponding

trajectory: (i) uniform and (ii) weighted distributions. In the uniform approach,

the catch is distributed, over the fishing segments of the trajectory, proportional

to the length of each segment. In the weighted approach, the catch is distributed

proportional to the length of the fishing segments multiplied by a weight; where the

weight is proportional to the count of vessels that were fishing during that day in the

same grid cell that the trajectory segment falls into. The weighted approach aims

to improve the uniform approach in terms of simulating the true catch distribution,

based on the idea that areas with more fishing activities are likely to have higher catch

rates. We recognize that both approaches are limited in their ability to simulate the

real catch distribution, and have proposed suggestions to improve the distribution in

Section 6.2.

6.1.4 Temporal granularity mismatch

As noted in Section 4.1.2, to obtain monthly predictions for CPUE while considering

the daily effects of environmental factors (e.g., wave height) on the fishing activities,

we took an indirect approach. Specifically, first daily CPUE values were predicted

for each grid cell, and then the values were averaged over the month to obtain the

4The autocorrelation analysis of CPUE was performed using the variogramST function from the
gstat R package [60].
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monthly prediction for the cell. This indirect approach may limit the predictive power

compared to direct prediction for the month due to the following reasons. First off,

calculating CPUE values for shorter time periods results in higher variance—similar

to the effect of higher spatial granularity, i.e., smaller cell size—which could result

in less accurate predictions. Furthermore, some environmental factors might have a

more significant delayed and/or cumulative effects, rather than effecting CPUE on

the same day as they were measured. In particular, as noted in Section 6.1.2, chl-a

concentration could have a delayed effect on the amount catch. Besides, a direct

prediction approach would result in a simpler forecasting pipeline than the indirect

approach; and reducing the complexity of the pipeline is generally desirable. In

Section 6.2 we will propose alternative approaches to address this issue.

6.2 Future work

At the time of writing this document, the data for 2017 and 2018 has also become

available; which extends the current dataset used in this study to cover the total of

four years between 2015 and 2018. As more data becomes available, this work can

be expanded by considering a wider range of modelling techniques for the predictive

analysis. In this section, we discuss a few of such techniques, suggest ideas to address

the limitations mentioned in the previous section, and also propose other possible

applications of the rich set of data sources used in this study.

6.2.1 Improving the predictive analysis

As noted in Section 6.1.2, by taking advantage of the correlation of CPUE values with

their lagged values in time or their nearby values in the spatial vicinity, the predictive

power of the forecast models can be improved. This type of correlation is considered

spatio-temporal autocorrelation, and relies on the assumption of continuity of the

variable in space and time. As mentioned in Section 2.1.1, moving average autore-

gressive models for time-series data (without spatial dimensions), such as ARIMA, are

prevalent in time-series forecasting. STARMA (Space Time AutoRegressive Moving

Average) model follows the same principles, but is extended for space-time modelling

based on [62]. Alternatively, spTimer is based on hierarchical Bayesian modelling

of point-referenced space-time data, which is available as an R package [3]. Both



52

STARMA and spTimer are methods that take spatio-temporal autocorrelation into

account, and can be used for spatio-temporal CPUE forecasting. However, both of

the mentioned methods only work for univariate datasets, and cannot handle inde-

pendent explanatory variables such as the environmental variables used in this study.

On the other hand, spBayes is a method that can fit both univariate and multivariate

spatio-temporal models using Markov chain Monte Carlo (MCMC), and is available

an R package [30]. As a non-statistical approach, RNN (Recurrent Neural Network)

based spatio-temporal prediction models have been used for problems such as decease

prediction, traffic forecasting, meteorology, and oceanography [79]. Employing pre-

diction techniques with spatio-temporal ‘memory’, such as the techniques mentioned

above, can potentially improve the spatio-temporal forecast of CPUE.

Some environmental variables (e.g., chl-a concentration) can also have a delayed

effect on the CPUE values, as noted in Section 6.1.2. Unlike autocorrelation, this

type of lagged correlation is between the response variable (i.e., CPUE) and the inde-

pendent variables (i.e., environmental variables). Such correlations can be examined

by performing time-lagged correlation analysis between CPUE and the environmental

variables. For example, [47] investigates the time-lagged response of anchovy CPUE

to different environmental variables including chl-a concentration and sea surface tem-

perature (sst); and proceeds to use the time lags which show the highest correlations

for modelling. A similar approach can be used in in the context of this study to

improve the prediction results.

Temporal granularity mismatch, as described in Section 6.1.4, points out the is-

sues with the indirect approach of obtaining monthly CPUE predictions from daily

predicted values. Using feature engineering, we can adapt the features to be used for

direct monthly prediction modelling. However, any alteration of the features needs

to be considered carefully, to preserve as much information as possible regarding the

daily cause and effect of the features on CPUE—which was the reason for using the

indirect approach in this study as noted in Section 4.1.2. Some environmental vari-

ables, such as chl-a concentration and sea surface temperature (sst), are likely to be

effective for prediction modelling even if averaged monthly. For example, the environ-

mental variables used in the study mentioned in the previous paragraph ([47]) were

monthly averages. However, other environmental variables are likely to have a more
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pronounced effect on the catch amounts on a daily basis. For example, turbulent

water—quantified by wave height—has an immediate effect on fishing activities; and

its average over the month loses that information. Transforming such variables to

be used for direct monthly prediction modeling, while preserving the daily cause and

effect information, can be done by careful feature engineering informed by reasoning,

and expert knowledge. For instance, in the case of wave height, we propose the fol-

lowing procedure to transform the feature to be used in direct monthly prediction

modeling, without losing its daily effect on CPUE. First, classify wave height—which

is a continuous value measured in meters—into a set of categories based on the wave

severity. For example, the Douglas Sea Scale classifies waves into nine categories with

descriptive names such as calm, moderate, rough, etc [56]. A similar classification can

be adopted for our application based on expert knowledge about how wave height

affects fishing activities. Using the wave height classification, a monthly count of

days for each category of wave height can be obtained; e.g., calm: 12 days, rough: 10

days, etc. Then, the monthly counts for the wave height categories can be used as

input features for prediction modelling. This approach ensures that the daily effect

of wave height on fishing activities is not dismissed, while allowing for direct monthly

prediction modelling.

Finally, the availability of more data opens doors to further improve and expand on

the predictive analysis. For example, the baseline prediction (described in Section 4.2)

can be improved by using more historical data instead of only using the data for 2015.

Particularly, the issue of unavailable CPUE values for numerous grid cells in the

baseline prediction, as evident in Figure 5.1, can be mitigated if we use the average

of historical CPUE values for more years to obtain the baseline predictions. This

approach would also have the befit of reducing the variance in the baseline prediction

values. Besides, with more data available, it would be feasible to consider analyzing

other types of gear and species rather than focusing on the ones that constitute the

largest share of the data, as was done in this study.
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6.2.2 Improving the catch distribution

The (hypothetical) true distribution of catch along the vessel trajectory would be

equivalent to having records of local catch amounts at all points on the vessel’s tra-

jectory; which is obviously not possible to attain in a commercial setting. To ap-

proximate the catch distribution over the trajectories, two distribution methods were

introduced in Section 3.3.5; i.e., uniform and weighted. The latter method aimed to

improve the former based on the idea that areas with a higher count of vessels en-

gaged in fishing activities in a 24 hour window are likely to have higher catch rates on

that day. This method can be further improved by experimenting with longer time

windows (e.g., weekly), or perhaps considering a moving average of vessel counts

with the longer time window. The longer time window would reduce the variance in

vessel counts, which could provide a better measure for sustained fishing activities

in the area. Alternatively, more sophisticated distribution methods can be utilized

that employ existing regional surveys of species abundance to produce more accurate

approximations of the catch distributions [44].

6.2.3 Alternative applications

Data modelling and integration of the rich data sources available in this study resulted

in two high-level representations of the combined data: (i) the set of semantic trajecto-

ries of the fishing trips (described in Section 3.3), and (ii) the detailed spatio-temporal

maps of catch, fishing effort, and CPUE per fishing gear and species (described in

Section 3.2). Although the second representation was used for prediction modelling

in this study, both representations can be the basis for other applications in fisheries

management. For example, the high-resolution spatio-temporal maps of fishing effort

and CPUE can be used in the analysis of the effects of policies that restrict fishing

activities in the North Adriatic sea. Paper [66] uses spatio-temporal maps of fishing

effort to evaluate the simulated effects of spatial and temporal closures in the north-

ern and central Adriatic sea to rebuild the stock of a single species (common sole).

The landing dataset used in our study allows for generating spatio-temporal maps

of fishing effort for several different species, which would allow studying the effects

of closure policies on a wider variety of species. Also, the spatio-temporal CPUE

datasets can be used in a similar type of analysis.
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As mentioned in Section 3.1.2, the landing dataset in this study includes daily

catch amounts of 104 different species. Detailed information about the species of

catch opens the possibility of analysing non-selective exploitation patterns in the

north Adriatic sea. This refers to the problem of catching unintended species while

fishing for certain target species. The species that were caught unintentionally are

referred to as bycatch. Considering that bycatch problem in the trawl fishery—which

is the source of the catch data in this study—is seriously harming the sustainability of

the fishing activities in the Adriatic region [29], analysing non-selective exploitation

patterns is critical.



Appendix A

Model Hyperparameters

As noted in Section 5.1.1, model hyperparameters were selected by performing a grid

search for each model, and hyperparameter values that resulted in the lowest mean

absolute error on the validation dataset were selected. Here we discuss the models

hyperparameters that were selected via grid search, and their selected values are

reported in Tables A.2, A.3, A.4, and A.5 for GLM, SVM, XGboost, and Random

Forests respectively. Two grid searches were performed for each method, one to

build a model on the uniform CPUE dataset and one for the weighted dataset. Best

hyperparameters are reported for both models in each table.

A.1 Generalized linear model (GLM)

As noted in Section 5.1.1, we used H2O’s [37] implementation of GLM. H2O’s GLM

supports elastic net regularization, which is a combination of L1 (Lasso regression)

and L2 (ridge regression) regularization methods [55]. Elastic net regularization is

parameterized by two hyperparameters: alpha and lambda, which are described

below. H2O GLM also supports Tweedie distributions, which are a family of dis-

tributions that consist of normal, Poisson, gamma distributions, and their combi-

nations [55]. Parameterization of the Tweedie distribution in H2O is done by the

tweedie variance power hyperparameter, which is described below.

• alpha specifies the distribution between L1 and L2 norms in the elastic net

penalty [55]. It can take any value between 0 and 1, where alpha=0 is equivalent

to L2 (ridge regression), alpha=1 would be equivalent to L1 (Lasso regression),

and values in between would mean a combination of both.

• lambda is a strictly positive number that specifies the penalty strength [55].

As a part of the GLM algorithm, H2O performs a lambda search over a range

of possible values that are determined heuristically [36]. Therefore, lambda

56
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parameter was not chosen via grid search, but the lambda values reported in

Table A.2 are chosen by H2O’s heuristic.

• tweedie variance power (p) parameterizes the Tweedie distribution. p can

take all values except in the interval (0, 1). Some p values result in special cases

of Tweedie distribution [55], which are listed in Table A.1.

Table A.1. Tweedie variance power (p) special cases

Tweedie variance power (p) Distribution

p = 0 Normal
p = 1 Poisson
p ∈ (1, 2) Compound Poisson
p = 2 Gamma
p = 3 Inverse-Gaussian

Table A.2. GLM hyperparamters

Best value
Parameter

uniform weighted
Searched values

alpha 1 1 0, 0.05, ..., 0.95, 1.0
lambda 2.162e-6 5.953e-6 H2O heuristic†

tweedie variance power 2.9 2.8 0, 1, 1.1, ..., 2.9, 3, 5, 7

† lambda value chosen automatically by H2O from a range of values determined heuristically [36].

A.2 SVM

As noted in Section 5.1.1, we used Scikit-learn’s [61] implementation of SVM, which

uses the LIBSVM library [13]. Hyperparamters that are selected via grid search are

as follows.

• kernel specifies the type of kernel to be used with the SVM algorithm. As

mentioned in Section 5.1.1, SVM utilizes kernel functions. Scikit-learn [61]

provide four pre-computed kernels to choose from — linear, polynomial, radial

basis function (rbf), and sigmoid. All four kernels were considered through the

grid search.
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• C is a strictly positive number that specifies the regularization parameter. C is

inversely proportional to the strength of regularization [13]. Higher values of C

would result in higher model specificity by forcing smaller hyper-plane margins,

and vice versa.

• epsilon is a strictly positive number that specifies the epsilon tube. That

is, if the distance between a predicated and actual training point is within the

epsilon threshold, the loss function does not associate a penalty with that sample

point [13]. Smaller epsilon values would result in higher model specificity, and

vice versa.

Table A.3. SVM hyperparamters

Best value
Parameter

uniform weighted
Searched values

kernel poly (cubic) poly (cubic) linear, poly (cubic), rbf, sigmoid
C 1000 1000 0.001, 0.01, 0.1, 1, 10, 100 , 1000
epsilon 0.1 0.001 0, 0.001, 0.01, 0.1, 1

A.3 XGBoost

As noted in Section 5.1.1, we used H2O’s [37] implementation of XGBoost. Hyper-

paramters that are selected via grid search are as follows.

• ntrees specifies the total number of trees to build as base learners for the

tree boosting algorithm; which also would be equal to the number of boosting

iterations. Although higher number of trees would result in overfitting, H2O [37]

uses an early stopping criterion based on evaluation on the validation dataset

to keep the number of trees as low as possible. XGBoost also uses additional

regularization techniques, such as ‘learning rate’ and ‘sample rate’, which are

described below.

• max depth specifies the maximum depth of the trees. The deeper the trees, the

more complex the model would be, potentially resulting in overfitting [36]. Grid

search is used to find the smallest appropriate value for this parameter.
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• min rows specifies the minimum number of samples needed to split a node [36].

As the value of this parameter increases, each tree becomes more constrained

as it considers more samples at each node, which could result in underfitting

[36].

• learn rate specifies the learning rate, which corresponds to the shrinkage pa-

rameter in the boosting algorithm [36]. Small learning rates (e.g. less than 0.1)

greatly improves model generalization at the expense of increasing training time

[38].

• sample rate specifies the sampling ratio of the training data [36]. Values for

this parameter range from 0 to 1. Sample rate of 0.5 means that half of the data

is randomly sampled without replacement to build each base learner. Smaller

values for sample rates introduce randomness into the algorithm and help reduce

overfitting [32].

Table A.4. XGBoost hyperparamters

Best value
Parameter

uniform weighted
Searched values

ntrees 30 30 20 to 200
max depth 5 5 2 to 50
min rows 7 5 1 to 50
learn rate 0.01 0.01 0.01 to 1
sample rate 0.5 0.5 0.01 to 1

A.4 Random Forests

As noted in Section 5.1.1, we used H2O’s [37] implementation of Random Forests.

Hyperparamters that are selected via grid search are as follows.

• ntrees specifies the total number of trees as base learners in the RF model.

In paper [11], it is proven that RF does not overfit as the number of trees

increase, but the generalization error converges to a limiting value. However,

the training time is proportionally related to the number of trees times the
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number of training samples [18]. Therefore, it is desirable for the number of

trees to be as small as possible without compromising the model accuracy. To

limit the number of trees, H2O monitors the improvement in model goodness-

of-fit (regression deviance), and stops adding trees if the model is not improving

within a certain threshold.

• max depth specifies the maximum depth of each tree. This parameter together

with the number of trees determines the size of the model [18]. Therefore,

deeper trees, especially depths greater than 10, increase the computing time

required [36]. Deeper trees generally improve the accuracy on the training set

and can result in overfitting [36]. A grid search is recommended to find the

appropriate value for this parameter.

• min rows specifies the minimum number of samples needed to split a node [36].

As the value of this parameter increases, each tree becomes more constrained

as it considers more samples at each node, which could result in underfitting

[36].

• nbins specifies the number of bins for building the histograms of each numerical

feature at the node level [36]. Boundaries of the bins are then used as poten-

tial split points. As nbins increases, the model more closely approximates

considering each sample as an split point, resulting in more model specificity

(overfitting) and vice versa [36].

• nbins cats specifies the number of bins for building the histograms of each cat-

egorical feature at the node level, similar to nbins [36]. However, an increase

nbins cats value has a far greater effect than nbins on model generalization

[37]. Mainly because larger values for nbins would lead to more accurate nu-

merical splits for numerical features; but larger values nbins cats can result in

perfect splitting on categorical features, leading to overfitting. Since the only

categorical feature of our data set is ‘Seasons ’ with 4 categories, small values

for nbins cats are considered (between 2 and 4).
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Table A.5. Random Forests hyperparamters

Selected value
Best value

uniform weighted
Searched values

ntrees 41 76 20 to 200
max depth 17 7 1 to 30
min rows 28 40 1 to 50
nbins 10 8 5 to 500
nbins cats 4 2 2 to 4
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Fiorentino. Rebuilding mediterranean fisheries: a new paradigm for ecological
sustainability. Fish and fisheries, 14(1):89–109, 2013.

[18] Darren Cook. Practical machine learning with H2O: powerful, scalable techniques
for deep learning and AI. ” O’Reilly Media, Inc.”, 2016.

[19] Copernicus: Europe’s eyes on Earth. https://www.copernicus.eu/en.

[20] Ivone Alejandra Czerwinski, Juan Carlos Gutiérrez-Estrada, and José Antonio
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Guitton, Youen Vermard, and Marie-Pierre Etienne. An autoregressive model
to describe fishing vessel movement and activity. Environmetrics, 26(1):17–28,
2015.

[35] C Phillip Goodyear. Spatio-temporal distribution of longline catch per unit effort,
sea surface temperature and atlantic marlin. Marine and Freshwater Research,
54(4):409–417, 2003.

[36] H2O.ai. H2O Docs - Appendix A - Parameters. http://docs.h2o.ai/h2o/

latest-stable/h2o-docs/parameters.html. Accessed: 2020-2-23.

[37] H2O.ai. H2O, Feb. 2020. Version 3.28.0.2. https://github.com/h2oai/h2o-3.

[38] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of sta-
tistical learning: data mining, inference, and prediction. Springer Science &
Business Media, 2009.

[39] MR Heath. Field investigations of the early life stages of marine fish. In Advances
in marine biology, volume 28, pages 1–174. Elsevier, 1992.

[40] Rob J. Hyndman and George Athanasopoulos. Forecasting: principles and prac-
tice. OTexts, 2 edition, 2018.

[41] Regulations for carriage of AIS. http://www.imo.org/en/OurWork/safety/

navigation/pages/ais.aspx. Accessed: 2019-11-13.

[42] International Maritime Organization (IMO). Revised Guidelines For The On-
board Operational Use Of Shipborne Automatic Identification Systems (AIS),
December 2015.

[43] Edgar Lanz, Manuel Nevarez-Martinez, Juana López-Mart́ınez, and JUAN A
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