
A MACHINE LEARNING FRAMEWORK FOR HOST BASED
INTRUSION DETECTION USING SYSTEM CALL

ABSTRACTION

by

Reetam Taj

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

April 2020

© Copyright by Reetam Taj, 2020

This thesis is dedicated to the medical community, volunteers who are
working 24*7 to save the humanity from COVID-19

ii

Table of Contents

List of Tables . vi

List of Figures . viii

Abstract . x

List of Abbreviations and Symbols Used xi

Acknowledgements . xiii

Chapter 1 Introduction . 1

1.1 Overview . 2

1.2 Motivation . 5

1.3 Roadmap of the Thesis . 6

Chapter 2 Background and Literature Review 8

2.1 Cyber Intrusion/attack . 8
2.1.1 Definitions . 8
2.1.2 Type of attacks . 9

2.2 Intrusion Detection Systems (IDSs) 14
2.2.1 Categories based on the types of analyzed data 14
2.2.2 Categories based on the types of methodology 16

2.3 Literature Review . 18
2.3.1 Enumerating Sequence . 18
2.3.2 Hidden Markov Model (HMM) based approaches 20
2.3.3 Machine Learning and Clustering based approaches(Non-Neural

Networks) . 22
2.3.4 Neural Network based approaches 25
2.3.5 Rule based and Filter based approaches 27

Chapter 3 Research Problem . 31

Chapter 4 Data Sources and Datasets 33

4.1 Datasets . 34
4.1.1 Firefox-DS . 34
4.1.2 ADFA-LD12 . 35

iii

4.1.3 NGIDS-DS . 37
4.1.4 UNM and DARPA . 39

Chapter 5 Algorithms . 40

5.1 Feature Retrieval . 40
5.1.1 Frequency-based algorithms 41
5.1.2 Integer Zero Data Watermark (IDZW) 42

5.2 Dimensionality Reduction . 44
5.2.1 Principal Component Analysis (PCA) 45
5.2.2 Recursive Feature Elimination with Random Forest (RF-RFE) 45
5.2.3 Autoencoder . 46

5.3 Decision Engine (DE) . 48
5.3.1 Supervised Algorithms . 48
5.3.2 Semi-supervised Algorithms 52

Chapter 6 Methodology . 54

6.1 Data Source . 54

6.2 Feature Retrieval . 57

6.3 Data Preprossessing and Normalization 59
6.3.1 Min-Max Scaling . 59
6.3.2 Standard Scaling (Z-score Normalization) 60
6.3.3 Robust Scaling . 62
6.3.4 Choosing a Scaling Technique 62

6.4 Dimensionality Reduction . 63
6.4.1 Principal Component Analysis (PCA) 64
6.4.2 Autoencoder . 64
6.4.3 Random Forest - Recursive Feature Elimination (RF-RFE) . . 65

6.5 Data Splitting . 67
6.5.1 Supervised Approach . 67
6.5.2 Semi-supervised Approach . 68

6.6 Decision Engines (DE) . 68
6.6.1 Supervised approach . 69
6.6.2 Semi-Supervised approach . 70

6.7 Evaluation . 70

iv

Chapter 7 Experiments, Results, and Discussion 75

7.1 Hardware Requirements and Configuration 76

7.2 Performance Evaluation . 76
7.2.1 Performance Based on the Features Extracted by PCA 77
7.2.2 Performance Based on the Features Extracted by Autoencoder 79
7.2.3 Performance based on the features selected by RF-RFE 81

7.3 The Trade-off between False Alarm Rate and Detection Rate 83

7.4 Comparison with the existing approaches 85

Chapter 8 Conclusion . 87

8.1 Limitations . 88

8.2 Future Work . 89

Bibliography . 91

Appendix A Extracting Short Sequence from Long Traces 105

v

List of Tables

2.1 Summary of Literature Survey 29

4.1 Distribution of the different types of traces in ADFA-LD12 . . 36

4.2 Distribution of malicious and benign host logs in NGIDS-DS . 38

4.3 Description of different features in NGIDS-DS dataset 38

6.1 Feature Retrieval from a normal system call trace using IDZW
method . 58

6.2 Retrieved features using Frequency modeling 59

6.3 Distribution of the traces for training supervised algorithms . . 68

6.4 Distribution of the traces for training semi-supervised algorithm 68

6.5 Confusion Matrix for Anomaly Detection 71

7.1 Performance of machine learning based classifiers trained with
the features extracted by PCA and scaled with Min-Max nor-
malization . 77

7.2 Performance of neural network based classifier trained with the
features extracted by PCA. 77

7.3 Performance of the classifiers trained with the features extracted
by PCA and scaled with z-normalization 78

7.4 Performance of machine learning classifiers trained with the fea-
tures extracted by Auto Encoder and scaled with Min-Max nor-
malization . 79

7.5 Performance of neural network based classifier trained with the
features extracted by Auto Encoder. 80

7.6 Performance of machine learning classifiers trained with the fea-
tures extracted by Auto Encoder and scaled with Robust Scaling 80

7.7 Performance of machine learning classifiers trained with the fea-
tures extracted by Auto Encoder and scaled with z-score nor-
malization . 81

vi

7.8 Performance of machine learning classifiers trained with the fea-
tures selected by RF-RFE and scaled with Min-Max normalization 82

7.9 Performance of neural network based classifier trained with the
features selected by RF-RFE 82

7.10 Comparison of the performance of the proposed framework with
existing systems . 86

vii

List of Figures

1.1 Overview of the Research Work 3

2.1 Pros and cons of the Intrusion detection system 16

5.1 Zero-Watermark feature retrieval 43

5.2 Notations for Integer Data Zero Watermark retrieval 44

5.3 Pseudo code of RFE algorithm 46

5.4 Autoencoder Architecture . 47

5.5 CNN Architecture . 52

5.6 Convolution Operation . 52

5.7 Pooling Operation . 53

6.1 Simplified representation of individual component of the pro-
posed framework . 55

6.2 Complexity of ADFA-LD 12 ns KDD98 dataset 56

6.3 Original distribution of the features retrieved from IDZWmethod
. 60

6.4 Min-Max scaler transformed data 61

6.5 Standard scaler(z-score normalization) transformed data . . . 61

6.6 Robust scaler transformed data 62

6.7 The number of Principal Components required vs.Retained Vari-
ance . 64

6.8 Configuration of the Encoder module in Autoencoder 65

6.9 Configuration of the Decoder module in Autoencoder 65

6.10 Training Loss v/s Validation Loss (Autoencoder) 66

6.11 Classification accuracy v/s Number of features selected in RFECV
. 67

6.12 Representation of the proposed framework 74

viii

7.1 False Alarm Rate vs Detection Rate(Classifiers trained with the
features retrieved by PCA) . 83

7.2 False Alarm Rate vs Detection Rate(Classifiers trained with the
features retrieved by Auto Encoder) 84

7.3 False Alarm Rate vs Detection Rate(Classifiers trained with the
features selected by RF-RFE) 84

A.1 Short Sequence Extraction using Sliding Window 105

ix

Abstract

The number of cyber threats is increasing faster than the number of defensive strate-
gies deployed to tackle those threats. An automated Intrusion Detection System
(IDS) has the capability to detect, classify, and predict cyber intrusions.

To protect an individual host from low-footprint, new generation attacks, I pro-
pose a machine learning framework for Host-based Intrusion Detection using system
calls identifiers. I chose ADFA-LD12 dataset to evaluate the framework. I developed
a hybrid feature retrieval technique combining Integer Data Zero Watermark method
and Frequency-based System Call modeling. I applied dimensionality reduction tech-
niques to represent the retrieved features into lower-dimensional space. I finally
trained several machine learning and neural network-based classifiers. I evaluated
the efficiency of the proposed framework by comparing it with previously proposed
approaches. Experimental results indicate that the proposed approach outperforms
most of the existing methods in reducing false alarm rate, increasing detection rate,
and reducing training time.

x

List of Abbreviations and Symbols Used

FV Denotes the feature vectors retrieved by IDZW
method

∧ Diagonal Covariance Matrix
fi Number of occurrence of an individual system call

indexed by i
zmin−max Min-Max scaler transformed value
zrobust Robust scaler transformed value
zstandard Standard scaler transformed value

ADS Anomaly Detection System
AUC Area Under Curve

CIDS Collaborative Intrusion Detection System
CNN Convolutional Neural Network

DARPA Defense Advanced Research Projects Agency
DNN Dense Neural Network
DR Detection Rate

ELM Extreme Learning Machine

FAR False Alarm Rate
FNR False Negative Rate
FPR False Positive Rate

HADS Host-based Anomaly Detection System
HIDS Host-based Intrusion Detection System
HMM Hidden Markov Model

xi

IDS Intrusion Detection System
IDZW Integer Data Zero Watermark

KDE Kernel Density Estimate
kMC k-Means Clustering
kNN k-Nearest neighbour

LSTM Long Short-Term Memory

MDS Misuse Detection System

NIDS Network Intrusion Detection System
NLP Natural Language Processing

OCSVM One-Class Support Vector Machine

PCA Principal Component Analysis

RF Random Forest
RF-RFE Recursive Feature Elimination with Random Forest
RNN Recurrent Neural Network
ROC Receiver Operating Characteristics

SPA Stateful Protocol Analysis
STIDE Sequence Time Delay Embedding
SVM Support Vector Machine

XG-Boost Extreme Gradient Boosting

xii

Acknowledgements

I want to thank my supervisor, Dr. Srinivas Sampalli, who has been a constant
source of support and encouragement. He motivated me to explore new dimensions
of my research work. He helped me to sharpen my skills at identifying, contributing
to, and producing research that is aligned to my domain of interest.

I would also like to thank Dr. Kirstie Hawkey for being patient while dis-
cussing the research ideas. I am also thankful to her for helping me to enrich my
research work by teaching the importance of adhering to defined standards, the need
for thorough ethical review, and the significance of statistical literacy in conducting
valuable research.

I want to thank my parents, Taj Mohammad and Sweta Sarkar, and my and
sister, Reetoja Taj for being there as my constant source of inspiration and support.
Their rationality, kindness, farsightedness has inspired me to work hard and conduct
productive research work. This thesis is dedicated to my parents, both of whom have
made huge sacrifices to get me here.

I want to thank my partner, Oyshee, for being there as a friend, philosopher, and
guide. She helped and inspired me throughout the journey of the development of my
life, as well as the thesis and taught me the Latex tool. She also guided me to build
my thesis in an organized approach.

I want to thank my dear friend Mir Masood Ali who always inspired me to
conduct productive research work and stood beside me during hard times. I would
also thank my friend Aditi for being supportive and a great friend, especially during
this COVID crisis. I want to thank Dinesh and Preethi for “breaks,” food, and for
being there as a friend throughout my journey. They did not let me miss my home.
I thank Robbie MacGregor for always being there as a constant inspiration like a
big brother. I am very thankful to my best friend Soumya Mitra, for tolerating me
since 2011 and keeping me energetic throughout the transition of life.

Finally, I would like to thank all the members of MyTech lab, especially Junhong
and Amin, for their strong support, kindness, and productive suggestions.

xiii

Chapter 1

Introduction

The Internet has become one of the essential components of our daily lives. As the
involvement and usage of the Internet is increasing rapidly, the number of cyber
threats are also increasing significantly [1]. As a result, the confidentiality, integrity,
and availability of critical information are heavily compromised [2]. The number of
cyber attacks is growing faster than the development of defensive strategies to pre-
vent these attacks. Some recent techniques to defending the cyber attacks involve
machine learning approaches, policy-driven approaches, and dynamic, rule-based ap-
proaches [3]. These techniques have helped to classify and predict different cyber
threats efficiently to take necessary precautions by system administrators. As the
firewall system does not ensure protection at the open ports of a communication
system, an independent intrusion detection system is required to detect and classify
different cyber attacks. Intrusion Detection Systems can be classified into two cate-
gories according to the data they analyze: 1) Host-based Intrusion Detection System
(HIDS) and 2) Network-based Intrusion Detection System (NIDS).

Network-based techniques collect and analyze network data in the affected system.
In contrast, host-based detection techniques collect and analyze the data in servers
and individual hosts. Even if the detection strategies to defend new generation attacks
are improving significantly, the formidable number of widespread hacking mechanisms
and a combination of the vulnerabilities of software and operating systems make it
impossible to detect all possible modern attacks such as zero-day low-footprint at-
tacks [4,5]. The new generation low-footprint attacks can penetrate network defense
measures such as firewalls and NIDSs. Even anomaly detection systems may not be
able to recognize these activities because of the intelligent usage of automated tools
such as Metasploit [6]. These tools are capable of misguiding anomaly detection sys-
tems by mixing normal with malicious behaviour. The low-footprint attacks contain
a very small portion of malicious behaviour, which makes it difficult for classifiers to

1

2

detect. These types of attacks are only visible at the host level during routine system
analysis or when malicious activities are detected [7]. The targets of these attacks
are usually critical machines such as storage and information processing servers as
these are the backbone of any business and corporate enterprise. During the opera-
tion of these servers, any trace of illegitimate activities in the operating system can
be traced at the kernel level with the help of system call traces. As system calls are
communication channels between processes and the operating system, they efficiently
represent the running activities in an operating system [8].

Forrest et al. [9–11] introduced an approach in 1996 to detect malicious behaviour
in Linux environments using a short sequence of system calls. It has been recently
observed that short sequences are not efficient in detecting low-footprint attacks, and
they do not represent the nature of the whole process. During the last 20 years,
researchers have developed many techniques such as frequency domain-based feature
retrieval, bag of system calls, and sequence-based feature retrieval to extract the
representative features from the system calls. Alongside this research, there have
been numerous innovations in the domain of decision engine building to classify system
calls using enumerating sequence, machine learning, deep learning, Hidden Markov
Models, and rule-based approaches [3,7,12,13]. In the next section, I will present an
overview of my research idea and briefly describe the development of the framework
for HIDS using system call identifiers.

1.1 Overview

The thesis aims to design and evaluate a Host-based Intrusion Detection System
(HIDS) based on System Calls. Figure 1.1 depicts an overview of my research work.

During the initial stage of the research work, I explored different data sources
such as system calls, system logs, application logs, and process logs to evaluate the
HIDS. I finally chose system call traces to evaluate the proposed framework because
of the information richness and authenticity of the data source. I conducted an in-
depth literature survey and compared the pros and cons of publicly available system
call based datasets. In this process, a comparative study was conducted among four
datasets :ADFA-LD12 [14], UNM [15], DARPA [16], Firefox-DS [17]. During
this comparative study, three different factors were considered: 1) level of realism,

3

Figure 1.1: Overview of the Research Work

2) level of representation of the state of the art host-based attacks, and 3) level of
separability between malicious and benign traces. Finally, ADFA-LD12 was chosen
to evaluate the proposed framework.

I further conducted an in-depth literature survey to capture the development
in this field over the last two decades. The literature survey was categorized into
five parts as per the detection approach used by other researchers: 1) Enumerating
Sequence-based approaches , 2) Hidden Markov Model-based approaches, 3) Machine
learning and clustering-based approaches, 4) Neural Network-based approaches, and
5) Rule and Filter-based approaches. Detailed knowledge mining was executed to
understand and analyze different metrics to evaluate the detection mechanisms. I
decided to build the HIDS that focuses on reducing the number of false positives,
increase the detection rate, and reduce the training time.

4

It has been realized from the literature review that feature retrieval techniques play
a major role in differentiating malicious traces from non-malicious traces. Existing
feature retrieval techniques mainly focus on three different approaches: 1) Sequence-
based approach (short and long) [3], 2) Frequency-based approach [18], and 3) Hidden
feature retrieval approach using Integer Data Zero Watermark (IDZW) [7].

I propose a feature retrieval technique that combines frequency-based system call
modeling and hidden representation of system calls based on IDZW method. This
hybrid feature retrieval approach retains the features extracted from the frequency of
an individual system call in a trace. It also carries the hidden abstraction of a trace.
Several normalization and scaling techniques were implemented to conduct further
data pre-processing on the retrieved features.

I used three dimensionality reduction techniques to extract representative infor-
mation from retrieved features: 1) Neural Network-based dimensionality reduction
approach; Auto Encoder, 2) Statistical feature extraction approach; Principle Com-
ponent Analysis(PCA), and 3) Random Forest-based Recursive Feature Elimination.
Dimensionally reduced data was used to train learning classifiers using both super-
vised and semi-supervised approach. Classifiers were trained with only benign traces
to build a normal profile in order to implement a semi-unsupervised approach.

Malicious traces were then compared against the normal profile to determine out-
liers. If a sample produces an output that is higher than the previously specified
threshold, then it is considered as a malicious trace. One of the major reasoning
behind choosing the semi-supervised approach was to tackle highly imbalanced data
efficiently. Highly imbalanced training is a true representation of a real-time scenario,
which makes the semi-supervised approach rational to implement.

The dataset was divided into training data, testing data, and validation data,
before being used to train the classifier with a supervised approach. All subdivisions
contain both malicious and non-malicious system call traces. The classifiers were
trained using both normal and malicious system calls and their respective levels. The
validation training set was used to understand “how well the model is trained” and
tune the parameters of the classifier. Finally, the test set was used to evaluate the
classifier.

To evaluate the proposed framework, and analyze the effectiveness of the hybrid

5

feature retrieval techniques, classifiers were trained with a different configuration
of data normalization/scaling and dimensionality reduction techniques. For each of
the learning models, I have reported accuracy, precision, recall, f-score, false alarm
rate,and detection rate,. In addition to that, the time required for the training process
was also recorded for each of the classifiers. The performance of classifiers and the
calculated metrics were visualized using a Receiver Operating Characteristic curve
for a simplified and efficient interpretation.

The performance of classifiers was compared, and the best one was chosen accord-
ing to their overall performance, considering the trade-off between false alarm rate
and detection rate. Finally, the result of the selected model was compared with the
results achieved by other researchers. The reasoning behind the effectiveness of the
results is discussed in the Conclusion (Chapter 8).

1.2 Motivation

The sensitive information is compromised very often through several cyber intrusions.
In recent times, Internet hackers are coming up with different innovative approaches
to breach the security of digital platforms to access and exploit sensitive information.
Scientists are coming up with solutions to fight against modern approaches, but that
is not enough because the amount of data in the digital platform is increasing expo-
nentially, as is the number of threats. More resources need to be deployed to counter
cyber-attacks, and cybersecurity researchers have long way to go before we catch up
with the modern threats.

It has been observed (2016) that 95 percent of breached records mainly come
from three industries; Government, Retail, and Technology [1]. These industries are
targeted because they store large amounts of personal identification details. As per
a study conducted at the University of Maryland [19], a cyber attack occurs every
39 seconds. As per data published by Juniper Research [20], the average cost of a
data breach will exceed 5 trillion dollars by 2024, and 75 percent of the healthcare
department has already been affected by malware over the last years. "According to
the Q2 2018 Threat Report, Nexusguard’s quarterly report, the average number of
distributed denial-of-service (DDoS) attacks grew more than 26Gbps, increasing in
size by 500% [21]." It is also expected that 6 trillion dollars will be spent globally on

6

cybersecurity by 2021 [21].
I was a victim of "WannaCry," a trojan worm, in May 2017, which exploited

the vulnerabilities of the Windows Operating System. It was a two-step attack,
produced a self-propagating worm that locked up files on a host computer, and a
module that introduced ransom extortion in systems [1]. I began exploring articles
on this topic to learn about prevention from similar attacks in the future. I read
essays and papers [3, 22–24] about the classical techniques of the antivirus software
to prevent and detect cyber threats. I also gained knowledge regarding firewalls and
understood the need for developing an independent Intrusion Detection System (IDS).
The learning process helped me realize that the performance of Machine Learning and
Deep Learning-based IDS has significantly improved in the course of time [2, 23].

As the number and types of cyber threats increase exponentially, we need to
come up with more dynamic and innovative methods and approaches to tackle them
efficiently. During this learning process, I encountered multiple roadblocks for im-
plementing a standalone IDS. High false positive rates left the system incapable of
detecting zero-day attacks in real-time. All these reasons and learning have intrigued
me to deep dive into the domain of the research of building an Intrusion Detection
system using Machine Learning.

1.3 Roadmap of the Thesis

This section provides a roadmap that describes the content of each chapter in the
thesis.

• Chapter 2 contains the background and literature review. In this chapter, dif-
ferent types of cyber threats and intrusion detection systems are introduced.
Then, the research work accomplished by the other researchers in the domain
has been presented in a detailed manner.

• Chapter 3 narrows down the research problem I have been working on and
represents the thesis contribution.

• Chapter 4 focuses on the comparative study of the different datasets that are
publicly available to evaluate HIDS. Chapter 5 includes the algorithms that
were explored and experimented with to build the HIDS framework.

7

• Chapter 6 describes the methodology and the course of action taken to address
the research problem.

• Chapter 7 focuses on describing the experimentation and results, and analysis
of the achieved result.

• Chapter 8 summarizes the present work with concluding remarks, limitation,
and includes an overview of the research work that can be expanded based on
the current course of research.

Chapter 2

Background and Literature Review

2.1 Cyber Intrusion/attack

A cyber attack can be defined as a process that makes a computer system vulnerable
by breaking the security of the system that causes it to enter into an insecure state.
The major target of a cyber attack is computer information systems, infrastructures,
computer networks, and personal computer devices [25].

2.1.1 Definitions

Since late 1980, cyber attacks have evolved to manipulate the vulnerabilities of the
intelligent software systems. In recent times, the scale and robustness of the cyber
attacks have increased exponentially. As per the 2018 report by World Economic
Forum, cyberattacks can be defined as: "Offensive cyber capabilities are developing
more rapidly than our ability to deal with hostile incidents [26]."

The Internet Engineering Taskforce defined the attack in RFC2828 as: "An assault
on system security that derives from an intelligent threat, i.e., an intelligent act that
is a deliberate attempt (especially in the sense of a method or technique) to evade
security services and violate the security policy of a system [27]."

As per CNSS instruction No. 409, a cyber attack is defined as: "An attack, via cy-
berspace, targeting an enterprise’s use of cyberspace for the purpose of disrupting, dis-
abling, destroying, or maliciously controlling a computing environment/infrastructure;
or destroying the integrity of the data or stealing controlled information [28]."

Committee of National Security System by the United States of America defines
cyber attacks as: "Any kind of malicious activity that attempts to collect, disrupt,
deny, degrade, or destroy information system resources or the information itself [28]."

8

9

2.1.2 Type of attacks

This sub-section discusses different attacks and intrusion attempts made at large-
scale infrastructures and government networks. I classify and present an overview
of different types of malicious attacks. The resulting classification has helped me to
gain a broad knowledge about different types of cyber-attacks, which paves the path
for the research on the mitigation techniques. Cyber attacks can be categorized as
below:

1. Attacks classified by purpose

2. Classification by attacker type

3. Classification by target

Attacks classified by Purpose

In this section, I categorize of security attacks based on the intended effect. They can
be further divided into 1) Confidentiality 2) Availability, and 3) Integrity. Each of the
categories of this section is attached to one specific goal, but some attacks broadly
fall under multiple categories.

1. Confidentiality : Attacks under this category attempt to gain access to pri-
vate information. The scope of this type of attack ranges from information
gathering (an initial step for future attacks) to password cracking. This specific
subcategory can be further divided into Reconnaissance, Access attacks,
and attacks on passwords and secret keys.

In Reconnaissance [29], an attacker attempts to gather in-depth knowledge of
a system before launching an attack. They help the attackers to gain a com-
plete understanding of the network that they are attempting to intrude, access-
ing data to realize evasion mechanisms, and design attack strategies. Probing
(nmap ipsweep,satan) [30–33] and Portscan [34] attacks are the example of
Reconnaissance. The access related attacks attempt to gain access to the net-
work, server, or system in question, usually with elevated privileges. In the
event where an attacker is external to the network, they will attempt to ex-
ploit vulnerabilities to gain access to the network. Some examples of the access

10

attacks are User to Root [35] , Remote to Local, Infiltration, Privilege esca-
lation, Backdoor, spoofing, and Webshell attacks [36–39]. A few examples of
attacks on password and secret keys are Statistical Inference Attack, Active
Dictionary attack, Power analysis attacks, Keylogger attack, and SSH brute
force attack [40–42,42,43].

2. Availability : The information on a network and services provided by chan-
nels and nodes should be up and available at all times. Critical systems pay
heavily and result in deeper external impact when they are made unavailable
and inaccessible to legitimate requests. Some of the common attacks in this
subcategory are different types of DDos attacks,Scheduling attacks, Stealthy
Collision attack,and Stealthy decoy attacks [44–48].

3. Integrity : Attacks that fall under this category involve tampering and ma-
nipulation of data on the network. Malware based attacks such as Worm, Ran-
somware, Spyware, Trojan horse, and web-based attacks such as Heartbleed,
Web-based SQL Injection attacks fall under this category [49–53].

Attacks classified by Attacker type

In this section, cyber attacks are classified by attacker type. This classification de-
termines whether an attack has resulted in compromise of performance or data, also
serves as a precursor to an incoming attack. These categories of attacks can be further
categorized into 1) Passive and 2) Active.

Passive: Passive attacks do not result in disruption of service or network perfor-
mance. They are instead primarily used for reconnaissance.

1. Eavesdropping: Passive sniffing can be used to gather information regarding
IP addresses, domain names, active ports and machines, operating systems, and
network topology [54].

2. Traffic Analysis: Interception of traffic to realize traffic and information flow
does not necessarily need to enable plain-text message interception. Rate of
traffic flow, channels with higher routing bandwidth, and information flow met-
rics through slow and distributed scans provide information for reconnaissance
that can help with information inference [55].

11

Active:

1. Masquerade: The masquerade attack is a type of attack, in which a user
of a system illegitimately poses as another legitimate user. One of the best
example of masquerade attack is Identity theft in financial transaction system.
Masquerade attacks can be very dangerous in the case of an attacker who has
the capability to cause damage to an organization [56].

2. Man-in-the-middle: In Man-in-the-middle attacks, perpetrators positions
themselves in a conversation between a user and an application. The attackers
eavesdrop or impersonate as one of the legitimate parties in the communication
in order to make it appear as if a normal communication is underway. One of
the major goals of this attack is stealing personal information of the users such
as log in credentials, credit card information [56].

3. Session Hijacking: Session Hijacking occurs when an attacker steals the in-
formation of a legitimate user for a specific website and uses it to bypass the
authentication to that website. Session Hijacking is one most popular cross-
site attack since every website that uses session identifier are vulnerable to this
attack [57].

Attacks classified by the target of the attacker

This section classifies attacks by the intended target of the attack. Bringing the
specified target may fall under one of the more categories of purpose.

Server:
These attacks primarily attempt to bring down web-servers. They disrupt the

availability of service, inject malicious code into the server, or access information
that is otherwise unavailable to client nodes.

1. Cross-site request forgery: Illegitimate requests can be sent to the server
through legitimate, authenticated users. The end-user is unaware of the request
and cannot observe the response. Using POST requests, attackers can exploit
an end-user’s trust in their browser to access information from the server that
should otherwise only be available to legitimate users alone [58].

12

2. SQL Injection: An SQL injection attack gives an attacker unrestricted access
to the database that the server refers to and protects. They allow the attacker
to use SQL queries to access sensitive information and to manipulate not just
the data, but the structure of the database and its tables [59].

3. Command Injection: A code that handles user input to generate queries for
the user is treated as a lexical entity and does not take into consideration the
structure of the programming language. When user inputs are not sanitized,
they can be used to alter the output, making the server access data that they
otherwise should not be accessed [60].

4. DoS Attacks: These attacks affect the availability of the server and halt its
services.

5. Directory Traversal: An attacker can alter HTTP requests to execute path
traversals on the server. The intention is to navigate the restricted directories
that require elevated privileges to access [61].

Network:

1. Man-in-the-middle: In a man-in-the-middle attack, the attacker acquires
access to data in transit between a sender and a receiver.

2. Session Hijacking: Session Hijacking allows a user to bypass authentication
to gain access.

3. Attacks on Network Performance: These attacks attempt collisions on
certain channels, decrease channel availability, such as DoS attacks.

4. Rerouting: An attacker may use stealthy collisions or use IDS flow rerouting
responses to DoS attacks to their advantage. Rerouting traffic to compromised
networks or low bandwidth channels include the objectives of a rerouting attack.

Client:

1. Social Engineering: Social Engineering [62] is a process of getting users to
compromise the information system. Instead of attacking a system technically,

13

social engineers target humans to access confidential information. By following
this process, social engineers carry out malicious attacks by influence and per-
suasion. There are several social engineering techniques, which include baiting,
phishing, pretesting (pretending to be someone else to get access to privileged
data).

2. Phishing: Phishing is an approach that broadly comes under Social Engi-
neering where the cyber attackers manipulate the users into revealing personal
details such as password, credit card, social security number. Phishing can
be carried out by sending the users fake emails or redirecting to the untrusted
website. Phishing messages usually originate from legitimate organizations that
request account information. On providing the account information, users are
redirected to an untrusted website and tricked into entering confidential infor-
mation, which can result in an identity theft [63].

3. Client Application: The application-level attacks target the layer of the in-
ternet that usually faces to the end-users. These types of attacks refer to the
vulnerabilities present in the code of the web application. Application layer
attacks are designed to attack the application itself, resulting in the application
not being able to deliver the content to the users as expected [64].

4. Client Machine: Attacks under this type cover attempts at compromising the
host machine of an end-user on a network.

• Rootkits: A rootkit [65] is a program that is designed to provide attackers
administrative access to a system without letting the users know about it.
It can be used to use a system and manipulate it remotely.A rootkit hides
its presence within the lower layers of the operating system.

• Code Mutation: Malicious dynamic links [66] to libraries in client code
can be altered to execute adversarial code on the execution of regular
programs on an end-user machine.

• Anti-emulation: Malicious code [66] is often run as executable in virtual
sandboxes that help them evade detection. These sandboxes sequester
them to environments where detection systems have limited access.

14

2.2 Intrusion Detection Systems (IDSs)

In order to protect a network or host from the attackers, many traditional techniques
such as password protection, firewall, rule-based network detection have been used
extensively. But these techniques are not enough to completely protect the network
or a host from the intrusions. A dedicated IDS is required to detect, classify, and
generate alerts for any malicious activity. IDS can be categorized into two ways, such
as types of analyzed data and types of methodology it follows [3].

2.2.1 Categories based on the types of analyzed data

This category concentrates on the type of data an IDS analyzes. It can be fur-
ther sub-categorized into Network-based Intrusion Detection System(NIDS), Host-
base Intrusion Detection System(HIDS), and Collaborative Intrusion Detection Sys-
tem(CIDS) [67].

Network-based Intrusion Detection System (NIDS)

NIDS monitors and analyzes network communication to detect any intrusion. In the
past few years, research communities from the cybersecurity field have majorly fo-
cused on developing intelligent network intrusion detection systems, and they were
able to achieve notable success in this field. To satisfy the rapid development of re-
search, the researchers have also developed efficient datasets to evaluate a NIDS such
as NSL-KDD, CICDDoS2019, CSE-CIC-IDS2018, UNSW-NB15, ISCXIDS2012 [68].
Researchers from various fields used several methods such as rule-based learning, pat-
tern mining, netflow based sequence analysis, machine learning, and deep learning-
based techniques to enhance the performance of the NIDS. As NIDS is deployed as
hardware devices between the internet and intranet, NIDs can perform real-time in-
trusion detection. As mentioned by Liu et al. [3] , traditional NIDS cannot process
the encrypted packets, which reduces the detection speed of the system and down-
grade the speed of the network flow. One of the most popular open-source rule-based
NIDS is Snort [69], which can detect intrusion based on the stored attack signatures
but not able to detect if the traffic deflects significantly from the stored signatures.

15

Host-based Intrusion Detection System (HIDS)

HIDS monitors the activity of individual hosts to detect any unauthorized activity.
HIDS is mainly deployed to detect internal and local attacks. It monitors the sys-
tem calls, shell logs, and application logs to find patterns and extract information to
detect illegal behavior. System calls are exchanged between an operating system’s
kernel service and running application process. Every resource adaptive process run-
ning in a host generates a huge number of system calls. The raw system calls are
unstructured and need a significant level of fine-tuning before extracting any meaning-
ful information from it. By capturing the complete system call traces, a generalized
working approach of the processes can be understood. As system calls are operating
system level highly sensitive information, there is only few research group who came
up with system call based datasets. System call based HIDS gained significant at-
tention in the last two decades because of the increasing number of attacks in Linux
servers. System call based HIDS has not only been developed for individual hosts
but also developed for virtual hosts and embedded platforms [3]. As the real-time
system call generation increases exponentially with the number of an active process,
HIDS needs to handle those large amounts of system calls very efficiently for the
training and evaluation process. Unlike NIDS, HIDS needs to be installed in all the
individual host to analyze the system calls and needs to be connected to a central
server to achieve generalization. For these reasons, research groups from this field aim
to accomplish a HIDS with lesser training time with improved accuracy and lower
computation. According to [3], the traditional system call based HIDS does not reach
robust performance as per the expectation. So, various research work in this area is
under progress and has ample scope of further development. OSSEC [70] is one of
the open-source commercial tools that is used for detecting host base attacks.

HIDS can be classified into two classes, such as operating-system-level intrusion
detection systems and application-level intrusion detection systems, based on the
audit data it analyzes [71]. Operating system-level IDS uses the information generated
by low-level system operations such as system calls, file system modifications, and user
log-on. As this information represents the low-level event stream, it is challenging to
tamper with, unless the system is compromised at the kernel level. Application-level
IDS are capable of analyzing the raw information produced by a running application

16

such as application logs.

Collaborative Intrusion Detection System (CIDS)

Collaborative IDS are an amalgamation of NIDS and HIDS. CIDS focuses on de-
tecting intrusion on both the host and the network. As per the survey conducted
by Vasilomanolakis et al. [72], CIDS can be classified in three ways according to
their communication architecture, such as centralized, decentralized, and distributed.
Researchers have mentioned about few mandatory requirements such as accuracy,
minimized overhead, scalability, resilience, privacy, self-operation, and interoperabil-
ity to build the CIDS that can protect large IT systems. A Traditional CIDS lacks
state summarizing and comprehensive analysis of network traffic and host logs.

2.2.2 Categories based on the types of methodology

This category of systems majorly concentrate on the type of methodology an IDS
analyzes. It can be further sub-categorized into Misuse Detection system, Anomaly
Detection system, and Stateful Protocol analysis [3, 73]. Figure 2.1 depicts the cate-
gorization.

Figure 2.1: Pros and cons of the IDSs categorized based on the followed methodology
[24]

Misuse Detection System (MDS)

In the misuse detection system, libraries with attack signatures are created and stored.
The Incoming traffic is compared with the stored attack signatures. If the traffic

17

matches the attack signature, it is considered as a malicious traffics. The systems try
to capture all the abnormal traffic behaviors effectively to create attack signatures
in order to detect the known malicious behaviours of the network. As signatures
the previously defined by the system, every traffic flow deviates from the stored
signatures are considered as nonmalicious [3]. So, these types of systems are not
capable of detecting unforeseen novel attacks. As a result, misuse detection systems
have a high amount of false negative rate. These systems are not at all effective
options for detecting zero day and low footprint attacks. If an intruder gets access
to the signature libraries, it is an easy job for them to bypass that. But, one of the
advantages of this rule-based approach is that the detection rate is impressively high.

Anomaly Detection System (ADS)

Anomaly detection systems are not required to compare the incoming traffic with any
of the existing signatures. These types of systems can detect zero day novel attacks.
Anomaly detection systems can be further classified into Network Anomaly Detection
System(NADS) and Host-based Anomaly Detection System(HADS). Chandola et al.
[74] and Liao et al. [24] have provided a detailed and comprehensive idea about
different types of IDS in their survey research paper. According to Liao et al., the
detection approach for an anomaly can be classified into five categories, such as
statistical-based, pattern-based, rule-based, state-based, and heuristic-based.

As per a few of the recent researches, system call based HADS are created by
building a normal profile of system calls by training a model only with nonmalicious
calls [74]. This training can be executed using data mining and artificial intelligence
techniques, and a generalized platform for in-depth normal behaviors of a system is
created. HADS are usually deployed in the hosts where the normal nature of the
system call traces does not change rapidly. The malicious system calls are compared
to the normal profile to understand if it is deviating significantly and considered as
malicious if it deviates more than a specific threshold configured by the system. These
types of detections are less dependable on operating systems and very efficient for
detecting privilege escalations. Another popular approach is to use both malicious
and nonmalicious system calls to train the AI-based models and use it for attack
detection and classification.

18

It is a challenging task to create a generalized normal profile for an Anomaly
detection system based on system calls due to the rapidly evolved computer systems’
constant change of observed behaviour. Two of the major advantages of Anomaly
detection systems are the unavailability of the system during profile generation and
real-time detection.

Stateful Protocol Analysis (SPA)

In this approach, the IDS analyzes the trace and protocol by pairing port requests with
replies [24]. Unlike anomaly-based detection, SPA depends on the vendor-developed
generic profiles of the specific protocols that are based on protocol standards from
an international standard organization such as IETF. SPA is a specification based
detection that can detect the unexpected sequence of commands. This detection
process is resource-intensive as it needs to analyze the protocol state information.
Unlike system call based HADS, it is unable to detect the attacks by only getting
trained with benign protocol behaviour.

2.3 Literature Review

In recent years, researchers innovated techniques to detect host specific attacks. They
have used different data sources, detection strategies, and methodologies to accom-
plish their intended research gaps. In this section, I will present the development in
this field in the last twenty years. As the attack detection approaches have evolved
over the time with respect to modern attack generation, the literature review can
be categorized into five categories based on their detection approaches [3] as follows;
1) Enumerating Sequence approach, 2) Hidden Markov Model based approaches, 3)
Machine Learning based approaches(Non-Neural Networks), 4) Neural Network based
approaches, and 5) Rule-based and Filter based approaches.

2.3.1 Enumerating Sequence

Forrest et al. [9, 11, 75] primarily introduced the method of detecting anomaly using
the system call sequences. The researchers have introduced a method for detect-
ing intrusion at the level of privileged processes. As per their claim in their previous

19

research works, short sequences of system calls were used to discriminate between nor-
mal and abnormal characteristics of the Unix processes. A normal behavior profile
was created by collecting data synthetically from a live user environment by trac-
ing the actual execution of a program. This approach is based on an enumeration
sequence-based method known as STIDE (sequence time delay embedding) [9] which
is simple and efficient while detecting anomalies in real-time. In this technique, the
sliding window algorithm is used to generate short sequences of system call traces
and then a database with the signature of the normal behavior is created with the
short sequences. For efficiency purposes, the short sequences are stored as trees in
which each tree rooted as a specific system call. The size of the database is usually
described by the number of unique short sequences. As the short sequences are stores
as trees, the storage management of this process is significantly efficient. During the
anomaly detection, the short sequences are extracted from the testing sequences and
compared against the normal profile database. Intrusion is characterized by analyz-
ing the number of mismatches between the testing system calls and normal profile
behavior. If the normal database includes at the possible variation of a normal be-
havior, then a test sequence that has mismatch count more than a specific threshold
considered as malicious activity. In the further course of the research, Hofmeyr et
al. [10] have also applied Hamming distance to calculate the amount of mismatch be-
tween the test sequence and the normal sequences. If the Hamming distance is larger
than the user-defined threshold value, it denotes that the test sequence is deviating
significantly from the normal profile to be considered malicious.

Challenges of Enumerating Sequence based approach:

It is a challenging task to capture all possible normal behaviour to build a gen-
eralized normal profile. As every individual program creates a normal database for
itself, updating and managing a normal database is a complex and computationally
expensive task. Efficient methods need to implement to execute the job of building
normal profiles [3]. In the process of finding an anomaly, each test sequence needs
to be compared with all the entries in the normal profile to achieve the optimum
hamming distance to compare with the pre-defined threshold. If the normal profile
is long enough or the test sequence is many in numbers, the process of detection gets
slower and computational complexity increases significantly.

20

2.3.2 Hidden Markov Model (HMM) based approaches

In this subsection, the research development regarding the application of the Hidden
Markov Model in detecting anomalies is discussed thoroughly. Hidden Markov model
is the simplest form of a dynamic Bayesian network that contains finite numbers of
the hidden state. In this model, each state is not visible, but the output that is
dependent on the state is visible. HMMs can be trained with several states according
to the number of system call types. For each system that can be transmitted through
the model, the probability of state movement and the system call generation is stored.
If the probability of the incoming system call is under a specific threshold, it is
considered as an anomaly. Warrender et al. [75] have initiated the application of
HMM for building a HIDS using system calls. The researchers have trained the HMM
with several state records which are defined by the number of types of system calls in a
program. The states are internally connected to each other which are reachable when
required. As the state movement probabilities and system call generation are stored,
this approach is heavily expensive in the field of computation and storage. This
proposed approach by Warrender and their colleagues need to examine each system
calls separately and calculate the probability of the state movement. If the probability
of a system call does not satisfy the pre-defined threshold, it can be considered as an
anomaly. As mentioned by the authors, this HMM training required a huge amount
of time and resources.

Qiao et al. [76] propose a HMM based approach where it processes the system call
traces as an input and transforms it into a sequence of hidden states. They applied the
enumeration method to build the normal database based on the sequence of hidden
states. A part of pre-processed system calls is considered to train HMM filter using
the Baum-Welch algorithm. All traces are passed to the HMM filter to develop the
state transition sequence using the Viterbi algorithm. One of the major drawbacks of
this research work was the creation of incomplete and inconsistent databases because
a complete database of hidden sequences cannot be created from an incomplete input
of system call sequences due to the one to one relationship.

Hoang et al. [77] propose an approach that addresses the incomplete database
issues by creating a multi-layer model. This proposed model is an amalgamation of
the enumeration method, frequency based approach , and HMM. This model is a

21

combination of two phases: the training phase and testing phase. In the training
phase, normal database and an HMM are created with system calls generated by
normal program execution [78]. In the testing phase, test sequence is compared
against the normal database. If any mismatch is found, sequences are sent through the
HM model for further verification. As per the researchers, this two-way verification
process reduced the false positive rate significantly but still requires high computation
if test sequences are considerably large. This approach is effective for false positive
reduction but inefficient for online detection.

To address the issue with the training time and resource utilization by HMM,
Hoang et al. [79] have extended the research further. The authors trained the HMM
using a modified version of multiple observation sequence algorithm(HMMMOSA).
In this method, long system call sequences were divided into sub-sequences and each
sub-sequences are used to train sub-models. The sub-models are merged to build the
final model. This incremental approach can be used to further reduction of resources
and training time.

Haider et al. [12] randomly sampled Host-based IDS data at different time inter-
vals to analyze the frequency of system call identifiers, sequences of which can be fed
into Hidden Markov Models (HMM’s). They found little difference between anoma-
lous (attack) sequences and normal sequences. They propose the use of a stochastic
model to detect anomalous behaviour on Linux-based Intrusion Detection Systems.
They collected and encoded sequences of system calls (SS) from simulated attack
vectors. These sequences are used to extract Feature State (FS) information of these
SS sequences. Feature states represent characteristics of the sequence, for example,
the frequency of system call identifiers in the sequence. Transition-less FS chains are
used to generate a summary of system states (SSS). Considering each summary SSS
as a single state, the external HMM, includes underlying states, to compute Complete
States (CS). Both FS and CS chains are used to develop a Nested-Arc Hidden Semi-
Markov Model (NAHSMM). Their approach includes state summary (FS chains) that
adapt to varying lengths of state duration. They apply the FS chain, using SSS, to
cope with large data (as captured on cloud servers) in a condensed form, to reduce
computational and storage costs. These Feature States capture the highest and least
appearing system call identifiers in a given sequence for their count and concerning

22

their encoded integer value. Once the state summary has been constructed and es-
tablished, they are then used to train and test the detection engine. The proposed
algorithm trains the engine to learn normal System State behaviour given a tolerance
threshold. The resulting model produces a lower false alarm rate, a higher detection
rate, at half-the processing time of a regular Hidden Markov Model. Accuracy and
training costs were measured to evaluate the model. For further research, the scala-
bility and resilience of the model were evaluated too. Though this approach is very
efficient for detecting an anomaly in the cloud servers, generalizing a normal profile
is still a challenge. The methodology developed by Murtaza et al. [80] focuses on the
trace abstraction technique that helps to reduce the training time without affecting
the detection accuracy. They represented the system call traces as kernel module
interaction and use the representation as an input for the anomaly detection tech-
niques such as Sequence Time Delay Embedding(STIDE) and Hidden Markov Model.
The researchers have experimented on the three publicly available datasets namely
UNM, Firefox-DS, and ADFA-LD. Using Kernel module trace has significantly re-
duced the training time of the model but the accuracy and detection rate was not
compromised. The STIDE technique works better than HMM while detecting the
false positives, but both the model performs similarly if the accuracy is the main
method of measurement.

Challenges of HMM based approach: HMM based models are criticized
for high time complexity and computation complexity. As most of the proposed
approaches mentioned about training HMM with short sequences, the system call
traces with longer length takes considerable time for getting detected as an anomaly
which is unacceptable for online detection. As the system call database for creating
a normal profile increases exponentially, performance tends to degrade for the HMM
models. In some of the research works, it has also been mentioned that deep system
call patterns cannot be mined by single layer HMMs. [3, 12].

2.3.3 Machine Learning and Clustering based approaches(Non-Neural
Networks)

In this section, research development regarding the application of machine learning
techniques in detecting anomalies is discussed. Haider et al. [8] have developed a

23

Host-based Anomaly detection system by utilizing the ADFA-LD [14] dataset as a
data source. This dataset has low footprint attacks that make both the normal and
abnormal host data homogeneous and difficult to separate. This specific of ADFA-LD
represents the modern cyber threat environment. The research team has observed
the drawbacks of the existing approaches while detecting anomalies in the ADFA-
LD dataset is the inability to extract features that represent the system calls. The
researchers have proposed a character data zero watermark inspired global statistical
features acquisition strategy for integer data for extracting the reliable and hidden
features from the systems calls [7]. Three machine learning algorithms, namely, KNN,
SVM with linear or RBF kernel were used to train and test the host-based ADFA-
LD dataset. As the low footprint attacks data are nonseparable from the normal
data, SVM with RBF kernels was used in order to perform an effective non-linear
separation. The major purpose of the kernel was to transform a data point into a
new feature space where it is possible to separate normal and low footprint attack
data using SVM. The researchers have used the nonparametric and computationally
inexpensive KNN model to train a profile with normal behaviours of system calls and
then evaluated by calculating the deviation of a test system call from that normal
profile. One of the main drawbacks of this model is it becomes significantly slow
when the size of the data increases rapidly. Several experiments were performed with
the values of k and euclidean distance in order to find the similarity of the data point
with its neighbor.

Yuxin et al. [81] proposed a behavior-based detection approach using semantic
analysis. The researchers have presented an executable as assemble code and gener-
ated a control flow graph from it. From a control flow graph, the system call execution
path is extracted and merged to build a system call stream from an executable. The
authors have used the decision tree algorithm to classify the system call sequences.
Decision trees are used for inductive learning and it is a method for approximating
discrete-valued functions. The internal nodes of a decision tree represent an attribute
and the leaf nodes correspond to class labels, and the path from the root to leaf
defines the classification rule. Decision trees classify the examples by sorting the tree
from the root to a leaf node. It builds such a tree that checks the best set attribute
for each instance and split the training sample into proper classes. This proposed

24

approach was compared with the dynamic detection approach and reported a higher
accuracy with a lower false positive rate.

Aghaei et al. [82] proposed a method for building a host based intrusion detec-
tion system which is a combination of semi-supervised one class learning algorithm
and Principal Component Analysis(PCA) based feature extraction technique. The
researchers have defined the one class classification as combining the target class
probability function with artificial class density function to estimate the target class
density by using Bayes theory. PCA [83] based Eigentraces method was used to ex-
tract the representative features. They have majorly used two learning networks such
as Radial Basis Function neural network and Random forest to train and evaluate the
proposed methodology. Benchmark dataset ADFA LD [14] was used to simulate and
evaluate the experiments. Th have reported high performance for detection malicious
system calls in terms of accuracy, precision, recall.

Xie et al. [84] have proposed a frequency based feature retrieval technique from the
system call traces to detect the anomaly. They have addressed the research problem
of larger training time required for the short sequence based intrusion detection sys-
tems. The researchers have used the ADFA-LD12 dataset to evaluate their proposed
framework. The ADFA-LD dataset is generated in a Linux machine that had kernel
version 2.6.38 which provides 325 different system calls. Every system call in a trace
is indexed with system call numbers which vary from 1 to 325. The authors developed
a technique to calculate the number of frequency of an individual system call in a
trace. The frequency based process converts the system call traces of different length
into equal sized frequency vectors. Because of the sparseness of frequency vectors,
PCA was used to reduce the dimension that reduces the computation cost of the
model too. The researchers used 2 frequency-based machine learning algorithms such
as k-Nearest Neighbour(kNN) [84–86] and k-Means Clustering(kMC) [87] to detect
the anomaly. Xie and their colleagues have compared the performance of the learning
models for detecting each type of attack. The kMC algorithm outperformed the kNN
in terms of accuracy and computation time. In [88], Xie et al. extended the research
by applying one class SVM on ADFA-LD dataset based on the short sequences of
system calls. In this approach, the repeating short sequences were dropped to differ-
entiate the anomalies from the normal profile efficiently. The researchers were able

25

to reach an acceptable performance by keeping the computation cost low. They have
also suggested some improvement in their existing methodology by applying some
weight to the short sequences which maximize the separability between normal and
abnormal activity.

Challenges of Machine Learning based approach: Using Machine Learning
models in a distributed system is very challenging. In a distributed network, HIDS
components are installed in each individual host and their training is performed in the
centralized server. Every individual host creates different types of normal profiles as
per the system calls it generates. Training a machine learning model with differently
structured data in a parallel manner is complex and computationally expensive. Most
system call based datasets contain a large number of normal traces and very few
numbers of anomalous data. This type of data imbalance is actually a generalized
representation of a real-world scenario. When the machine learning models are trained
with heavily imbalanced data, it tends to overfit towards the most occurring class
which is inefficient to detecting true negatives. Therefore, different strategies such as
parameter tuning, semi-supervised methods were used to tackle these problems.

2.3.4 Neural Network based approaches

Kim et al. [89] proposed a hybrid methodology which is an amalgamation of Long
Short-Term Memory(LSTM)-Based System Call Language Modeling and robust en-
semble method to design a HIDS. As per the argument presented by the researchers,
the traditional methods are not capable of capturing the call level and phrase-level
features. Kim et al. propose to create a language model(In natural language process-
ing (NLP), a language model represents a probability distribution over sequences of
words) of system calls that learn the semantic values of individual system calls and the
relationship between multiple system calls which represents a different meaning alto-
gether. Deep Recurrent Neural Networks(RNN) have shown significant performance
in other fields(machine translation, text summarization) where sequence-based and
temporal modeling is required [90]. In the proposed approach, the individual system
calls are considered as words and sequences of system call sequences as a sentence.
The system calls correspond to the language of communication between the user and
the system. In this approach, a neural language modeling technique, LSTM was

26

used to develop and train the language model for enhanced long-range dependence
learning. While training the language model, backpropagation through time algo-
rithm was used to minimize the cross-entropy loss which maximized the likelihood
of a system call sequence. In order to ensure efficient false positives reduction, an
ensemble method based integrated classifier build the team.An integrated classifier
is a group of threshold classifiers that is individually trained with system calls that
have a high probability of being normal. The threshold classifiers are merged into a
robust classifier to reduce the number of false positives significantly. Leaky Rectifier
Linear based function on the ensemble method was used to maintain the linearity of
the method. Creech et al. [91] have proposed a detection mechanism using Extreme
Learning Machine (ELM). ELM was used to train the word and phrase dictionar-
ies formed with various lengths of system call sequences. The key characteristic of
ELM is, it can complete its training in one pass/iteration using the Moore-Penrose
pseudo-inverse to solve a least-squares equation, hence avoiding traditional training
problems associated with neural networks. As per the authors, the higher training
speed consumes high resources but that does not impact the training as HIDS should
be installed in every host individually. While training the ELM, the weights between
the hidden layer and output were adjusted efficiently, whether the weights between
the input layer and the hidden layer along with bias values can be randomly and
statistically assigned. The training process of ELM is significantly faster than the
traditional deep learning methods which also avoids local minima concerns.

Chawla et al. [92] has proposed a framework which is a combination of Convo-
lutional Neural Network (CNN) and Recurrent Neural Network (RNN), to detect
malicious system calls. The group of the researchers proposed to use CNN to ex-
tract the local features of the system call sequences and use this as an input to the
RNN layer. The output of the RNN layer was processed through a fully connected
softmax layer that outputs a probability distribution over the system calls processed
through the network. While processing the input sequence with CNN, filters slide
over the system call sequences to find the local pattern in the system calls. This
technique creates a representation of fixed-sized contexts and effective context size is
increased by stacking several layers of CNN. The model was trained on normal system
calls predicts the probability for next system call. The trained model was used to

27

predict the probability of a testing sequence to detect a malicious trace according
to the pre-defined threshold. The researchers have claimed to reduce the training
time of the RNN based Long Short Term Memory model but could not achieve a
state of the art result achieved by Kim et al. [89]. Chen et al. [93] proposed an
anomaly recognition and detection technique which performs probabilistic inference.
The techniques revolve around building an incremental network that analyzes the fea-
ture dependency and develops a self-structuring method by learning a confabulation
network. This network continuously refines its knowledge with the help of streaming
unlabelled data. The experimentation was executed on the graphic processing unit
and Xeon Phi processor which performs better than the general-purpose micropro-
cessor. The framework offers real-time detection on a concurrent data stream that
has different contextual knowledge. Chen and their colleagues have achieved high
computing performance with memory efficiency.

Challenges of Neural Network based approach: Deep neural network mod-
els are data-hungry and computationally expensive. In a real-time environment, the
system call produced by a computer system increases exponentially with the usage of
the application. Though the quality of the training increases with this exponentially
growing huge amount of data, that increases the computation complexity too. One
solution to this problem is using GPU in each host dedicated to the HIDS that en-
sures parallel processing. Efficient strategies need to be followed to maintain a large
number of system calls and their training using the best hyperparameters [3].

2.3.5 Rule based and Filter based approaches

In [3], a survey regarding the development of HIDS based on Rule and Filter based
approaches has been presented. Lee et al. [94,95] proposed a framework for develop-
ing, designing, and evaluating an IDS. In a traditional rule based framework, a sliding
window was used to extract unique system calls from the normal system call traces.
The short sequences are then extracted from malicious traces and matched against
the normal short sequences. If the exact match occurs, it is considered as normal, else
malicious. This process was inefficient as a malicious system call trace also contains
a large number of normal system calls. The researchers have applied RIPPER rule
learning to the training data. The RIPPER rule outputs if-then rules on the training

28

data. The same rule is applied to testing system call traces. If the "if-then" rule
generated from the testing sequence deviates from the pre-defined rule, the trace is
considered as anomalous. Tandon [96] designed an approach based on LEARD rule
and created rules based system calls sequences and arguments. Ye et al. [96] proposed
an approach based on rough set theory to differentiate the malicious system calls from
the normal traces. Minimized set of rules were extracted in order to define the normal
profile. Ying et al. [97] proposed a log file analysis technique as a part of Host based
Intrusion Detection System. The autors have collected system level log files and ap-
plication level log files and decoded them to extract useful information such as user
name, source IP address.After pre-decoding and decoding of rules, the authors have
made constructed rules based 400 existing OSSEC rules. The combined the rule based
method with Back propagation network based anomaly detection system in order to
increase the efficiency and accuracy of the proposed system. Zimmerman et al. [13,98]
proposed a novel approach to build a policy based HIDS based on information flow
control at the operating system level. The proposed technique enforces restriction on
the operation that restricts the activity to exploit the unprecedented behaviour such
as buffer overflow, race condition, and confused deputies. The goal of the experiment
was to develop a policy based HIDS that ensures high reliability and high detection
rate. In this research, two set of result were presented, one experiments was done on
a controlled environment and other was executed on operational server. The result
from the experiment fulfilled the researchers expectations.

Wang et al. [99] proposed a anomaly detector, Anagram that models a mixture
of higher order ngrams. High order ngrams were used to generate extract a robust
signature to increase the generalization while creating normal profile. The Anagram
content models were implemented using Bloom Filter which reduces the space com-
plexity and ensures the privacy preserving cross-site correlation. The proposed system
were used to detect mimicry attacks which with high accuracy and significantly lower
false positives. The authors have implemented a feedback loop based on gained knowl-
edge by the system that helps to improve the detection efficiency over the time. The
framework was not only used in the stand alone sensors, but also a perfect fit for fault
tolerant host-based environment.

Challenges of Rule and Filter-based approach: Most of the experiments

29

using the rule based approach executed on small scale datasets. Though extracting
rules from non malicious system calls and creating a normal profile is time efficient
and involves less computation but false positive and false negative detection rate
cannot match to the state of the art techniques. Rule based approaches fail to mine
pattern and rules from the deep and long traces. One of the major drawback of the
bloom filter based approach is it allows the false positives. Even if this approach is
fast and computationally inexpensive, a major improvement needs to done in order
to use it for detecting anomalous system calls.

Table 2.1 depicts an comparative representation of different detection approaches
for system call analysis.

Table 2.1: Summary of Literature Survey

Detection Ap-
proach

Papers Advantages Challenges

Enumerating
Sequence based
approach

Forrest et al. [9,
11, 75], Hofmeyr
et al. [10] • Simple and efficient

for creating normal
database.

• Acceptable approach for
fast real time detection.

• Short sequence-based
approaches are highly
efficient when traces are
small.

• Almost impossible to capture
all possible normal short se-
quences to build a generalized
profile.

• Updating and managing the
normal database is complex and
computationally expensive.

• Detection process gets slower if
the traces are significantly long.

• Does not consider the effect
of long trace or sequence-based
features of a trace.

Hidden Markov
Model based ap-
proach

Warrender et al.
[75], Qiao et al.
[76], Hoang et
al. [12,77,78]

• Moderate detection rate.

• Mostly used for theoret-
ical researches.

• High computational complexity
and time complexity.

• Higher false positive rate.

• Traces with longer length take
significantly more time to be
detected which is not ideal for
online detection.

Machine Learn-
ing and Clus-
tering based ap-
proach

Haider et
al. [8] Haider et
al. [7], Yuxin et
al. [81], Aghaei
et al. [82]

• Moderate accuracy and
detection rate.

• Machine Learning models tend
to overfit while training on
highly imbalance data. Needs
to find the optimal hyper pa-
rameter which is computation-
ally expensive

30

Detection Ap-
proach

Papers Advantages Challenges

• Efficient for real-time
detection.

• Adaptive towards the
novel attacks.

• Training machine learning
model in a distributed manner
is challenging and a complex
process.

Neural Network
based approach

Kim et al. [89],
Creech et
al. [91], Kim et
al. [89], Chen et
al. [93], Chawla
et al. [92]

• Moderate accuracy and
detection rate.

• Efficient for real-time
detection.

• Adaptive towards the
novel attacks.

• Training can be computation-
ally expensive depends on the
configuration of the network.

• Neural Network based models
are data hungry. The qual-
ity of the training increase with
the amount of the data but be-
comes computationally expen-
sive eventually.

Rule based ap-
proach

Lee at
al. [94, 95], Ye
et al. [96],Ying
et al. [97],
Zimmerman et
al. [13,98]

• Extracting rules from
the short trace is fast
and the rule-based de-
tection is time efficient.

• Not able to mine pattern from
the long traces.

• Not able to detect the novel
attacks which does not match
with the existing rules.

• Some filter such as bloom filter
allows false positives.

On the basis of the conducted literature survey, I analyzed and refined research
gaps further and formulate the research question and hypothesis in the next chapter.

Chapter 3

Research Problem

After conducting the literature survey, I realized that the techniques for retrieving
the features from the system call traces are one of the major factors that control the
nature of the traces for the evaluation of decision engine. The hidden features can be
extracted by the feature retrieval process that differentiates the malicious system call
traces from the normal system call traces. It has been observed from the literature
survey that the researchers have experimented with sequence based feature retrieval
or frequency based feature retrieval or hidden watermark based feature retrieval. Just
using one feature retrieval technique to extract the feature leads to a significant infor-
mation loss. As an example, if the features are retrieved using only frequency based
technique, then we ignore the sequence and hidden watermark related attribute of the
system call traces. Retrieving the efficient features directly affects the classification
capability of the classifiers. The recent development in this domain has indicated
that the false alarm rate and detection rate of system call based Intrusion Detection
Systems have improved by the course of the time but my proposed solution will fo-
cus to improve and enhance those metrics even more. One of the major concerns
that showed HMM, neural network, and machine learning-based approaches are the
high computational cost. Dimensionality reduction techniques need to be applied
efficiently to extract the necessary, unbiased, uncorrelated features from the pool of
retrieved features. Representing the feature in lower-dimensional space reduces the
computational and time complexity of the learning learning models. So, the proposed
framework will be focused on two major gaps identified during the literature survey.

• As low footprint traces are inseparable from the malicious traces, feature re-
trieval techniques play a major role to extract the representative hidden infor-
mation that differentiates the malicious traces from the normal traces. The
proposed framework focuses on an efficient hybrid features retrieval technique
to improve the detection rate and false positive rate. This research work will

31

32

also address the trade-off between false positive and false negatives to achieve
an optimal solution.

• Feature vector constructed using frequency-based modeling approach is large
in length as every individual system call elements in the original dictionary
are responsible to generate one element in the feature vector. The proposed
framework will also focus on dimensionality reduction by representing the orig-
inal feature vector into a lower-dimensional feature space that improves the
time complexity of the learning models without deteriorating the performance
of it. The training time of the proposed models will be measured in order to
justify the improvement of time complexity. Reducing the training time is a
very importannt measure for realtime detection. As the volume of system calls
increase exponentially with the number of active processes, the training pro-
cess becomes more complex. In a distributive achitecture, the HIDS becomes
unavailable while training. The longer training time of an HIDS increases its
chance of being attacked due to its unavailability.

Chapter 4

Data Sources and Datasets

In this chapter, I will introduce different information sources used to evaluate host
based intrusion detection systems. This chapter will mainly focus on discussing dif-
ferent system call-based datasets but also provides a brief outline regarding other
information sources such as system calls, application logs, and system logs.

Some of the host-based information sources in Linux/Ubuntu OS are Accounting,
Syslog, and Linux Audit. Accounting maintains the record regarding the resource
usage, such as memory, disk, CPU, network usage, and the application or processes
invoked by the users. Syslog is an audit service made available by the OS to the
application program to store the logs generated by them. Audit enables users to
perform various tasks such as mapping a user to a process, generating audit reports
using ‘aureport’, and filtering events of interest at different levels. Other publicly
available tools such as strace, Itrace, LTTng, BSM can also be used in order to trace
and capture the system calls [3]. The information to evaluate an HIDS can broadly
be categorized into three classes : 1) System calls and sequences , 2) Application and
process logs , and 3) System logs.

System Calls and Sequences: Linux provides options to monitor system calls
from the command line [100]. These commands can be used to detect file access,
program executions, and network port access.
Microsoft Windows also provides auditing systems that can be leveraged to perform
host-based intrusion detection. There are three types of logs produced by the audit-
ing facility: system logs, security logs, and application logs.
The system log (SYSEVENT.EVT) contains events that are related to windows ser-
vices and drivers. It can track events during system startup, as well as hardware and
controller failures.
The security log (SECEVENT.EVT) tracks security-related events such as log-ons,
log-offs, changes to access rights, and system startup and shutdown, as well as events

33

34

related to resource usage.
The application log (APPEVENT.EVT) contains events generated by applications.

Application and Process Logs: Logs generated by the applications can also
be considered as one of the most important sources of audit data. " Application audit
data is rich, reliable, and focused. Therefore, it is easy to determine which program
is responsible for a particular event. On the downside, application data is also very
specific and different applications have to be dealt with on an individual basis by the
HIDS [71]."

System Logs: System-level log files can be used to evaluate the host-based in-
trusion detection system. Log files can be pre-decoded to extract three parameters;
Time/date, Hostname, and Program name. Then critical information can be ex-
tracted by using regular expressions. For example, depending on the type of log, the
following data can be extracted: Source IP address, Username, and Log. A rule tree
can then be constructed with the help of the OSSEC system [70] and can be used to
determine if any suspecious or malicious event is observed.

4.1 Datasets

In this section, I will discuss different system call-based datasets that were considered
to evaluate our HIDS. I conducted a comprehensive search in order to select the most
relevant dataset that represents attacks on contemporary operating system environ-
ments such as Linux and Windows. In the following sub-sections, we explore popular,
publicly available system call-based datasets and their features.

4.1.1 Firefox-DS

Murtaza et al. [17] developed this dataset on Linux using contemporary test suites and
hacking techniques. This dataset contains both the normal and anomalous system
calls. It was created using modern penetration testing techniques such as Metasploit.
Normal system call traces are collected by executing seven different testing frame-
works on Firefox 3.5. Each test framework was responsible to execute a different set
of operations which covers most of the functionalities of Firefox in order to ensure
the completeness of normal behavior. The researchers have achieved 60% source code
average, 5931 passing test case files, 1.3 TB of traces, and average 19,000 - 4000,000

35

system calls per test case files from seven different test suites. This dataset includes
five state-of-the-art attacks including memory corruption exploits, integer overflow,
dangling pointer exploits, DOM exploits, and null pointer exploits. [3].

4.1.2 ADFA-LD12

Creech et al. [14] proposed the ADFA-LD12 [8, 101–103] dataset and Linux version
11.4 was selected as a host operating system for executing all the operations required
to generate the dataset. In order to instantiate the web attack vectors, Apache version
2.2.17, running PHP version 5.3.5 was installed. In the patched operating system,
FTP, SSH, and MySQL version 14.4 were run as services and a web collaborative tool
TikiWiki version 8.1 [104] was installed.

The host system was configured in such as way that it represents a generalization of
the modern Linux based processes such as file sharing, database service, remote access,
and web server functionality. The researchers considered the intelligent methodologies
followed by the new generation attackers while generating the dataset to increase
realism and generalization. The target server for the ADFA-LD12 dataset was fully
patched and TikiWiki was used to to introduce flaws.

ADFA-LD12 includes six different attack payload such as password brute force
attacks, privilege escalation, Java-based Meterpreter, Linux Meterpreter, and C100
Webshell. The password brute force attacks are mostly the last resort of an attacker
because of their prominent and large footprint.

In ADFA-LD, password bruteforce attacks were simulated on the open services
such as FTP and SSH which represent a realistic threat on the service and are exposed
to the external sources.

Privilege escalation was implemented by a client side attack were a payload is
included into a Linux executable using Metasploit [6] and uploaded to the server to
simulate social engineering attacks.

The Meterpreter-based attacks were initiated using open source Metasploit frame-
work. In the process of generating this attack, Tikiwiki was used to upload the Java
vulnerability payload which resulted in a reverse TCP connection to the root system.
Once the shell was established, attacks like privilege escalation and installation of
backdoor tool was carried out.

36

In a similar manner, Linux executable Meterpreter was uploaded to the host using
social engineering or similar convenient platforms. Lastly, a PHP based remote file
exclusion attack was generated to upload C100 Webshell to manipulate host system
and escalate privileges. C100 shell provides an illegal GUI to the attacker in order to
manipulate the operating systems.

As ADFA-LD12 was developed for anomaly detection, it has three different groups
in the dataset; training, validation, and attack. In the training and validation dataset,
only the normal raw system calls are included which are recorded while running
normal activities in the host such as web browsing and file preparation. Traces were
generated using auditd and were finally filtered by size in order to avoid unnecessary
processing. The normal group contains 833 traces and validation group contains 4373
traces. In the pool of attack data 10 attacks were included for each attack vector.
Table 4.1 provides an overview of ADFA-LD12 dataset and the distribution of the
trace vectors.

Table 4.1: Distribution of the different types of traces in ADFA-LD12

Type of trace Label No of
traces

Payload/Effect Process of the vector gen-
eration

Filtering size

Training Normal 833 NA Captured the normal oper-
ation in Linux local server
including file sharing,
database service, remote
access.

[300
Bytes,6kB]

Validation Normal 4373 NA Captured the normal oper-
ation in Linux local server
including file sharing,
database service, remote
access.

[300 Bytes,
10 kB]

Adduser Attack 162 Privilege escalation.
Add new superuser
with admin privilege.

Client side poisoned exe-
cutable

N.A.

Hydra-FTP Attack 148 Password brute force FTP by Hydra N.A.

Hydra-SSH Attack 91 Password brute force SSH by Hydra N.A.

Java-
Meterpreter

Attack 125 Java based Meter-
preter

Tiki wiki vulnerable exe-
cutable

N.A.

Meterpreter Attack 75 Linux Meterpreter
payload

Client-side poisoned exe-
cutable

N.A.

Webshell Attack 118 C100 Webshell PHP Remote File Inclusion
vulnerability

N.A.

37

4.1.3 NGIDS-DS

Haider et al. [105] developed the NGIDS-DS dataset with the help of next-generation
infrastructure at Australian Centre for Cyber Security (ACCS) in the University of
New South Wales and Australian Defence Force Academy (ADFA), Canberra. This
dataset is a collection of abnormal and normal host and network activities which were
introduced during the emulation.

The researchers designed the dataset according to the guidelines provided by Davis
et al. [106]. The IXIA Perfect Strom tool was used in order to generate both rep-
resentative traffic and host-based connectivity. The tool provides major advantages
such as producing a mixture of normal and abnormal cyber traffic, generating the
highest number of attacks with different dynamic behaviors, creating profile of the
cyber traffics of multiple enterprises, along with the automatic generation of ground
truth. The test-bed architecture for developing NGIDS-DS can be divided into two
parts, namely, Part A and Part B.

In the Simulation Phase, Part A was designed to generate a mixture of normal
and anomalous traffic as well as operation timing that is related to five different
enterprises such as e-commerce, military, academia, social media, and banks. Part B
of the test-bed was used as a group of victim network.

Part A of the network replicates the real-world scenario that the attack vectors
required to destroy an enterprise network are complex in nature and it might come
from different directions. Part B represents a collective synthetic presentation of an
enterprise network that can be a victim of an attack.

The abnormal/malicious traffic includes seven major attack labels; Exploit, DOS,
Worms, Generic, Reconnaissance, Shellcode, and Backdoors. There were two different
machines deployed in the network. In the first machine Ubuntu 14.04 was installed
and an auditing mechanism was installed in order to act as a critical enterprise ma-
chine that runs several services such as storage, FTP, and email. The second machine
has Ubuntu 14.04 and tcpdump installed on it in order to collect the traffic that was
transferred from testbed Part A to Part B.

38

Table 4.2: Distribution of malicious and benign host logs in NGIDS-DS

File type Feature Quantity

Ground-truth.csv Total Records 313926
Attributes 7

99.csv files of host logs Total records 90054160
Attack records 1262426
Normal records 88791734
Attributes 9

NGIDS.pcap Total Capture Packets 1094231
Unique IPs 18

This dataset specifically concentrates on generating the traffic that resembles
with the real-world network vectors and attacks. The researchers have followed cer-
tain techniques and guidelines in order to generate more realistic and reliable traffic
data. NGIDS-DS was specifically designed for the Australian Defence Force Academy
(ADFA) within a controlled environment.

Altogether, this dataset provides strong external validity which is a key factor for
the research problem that is addressed in this document.

NGIDS-DS dataset consists of five different files: (1) groundtruth.csv; (2) 99 csv
files of host logs; (3) NGIDS.pcap of the network packets; (4) feature-descr.csv; and
(5) readme.txt.

The number of captured network packets are less than that of host records because
there are 82 corresponding host logs for one network activity (packets). In the host
logs, the ratio of the normal traffic and attack traffic is 90:1 that demonstrates the
furtive behavior of the network activities in NGIDS-DS.

Table 4.2 provides a summarized quantitative description of NGIDS-DS dataset.
Table 4.3 provides description of different features in NGIDS-DS dataset.

Table 4.3: Description of different features in NGIDS-DS dataset

Files Feature Name Type Description

99 host logs csv files date date Contains the date on which the particular activity of the
NGIDS-DS is performed

time time Contains the time on which the activity of the NGIDS-DS is
executed

pro_id number Represents the process of unique identification executed in
the host during the simulation

path nominal It contains the execution path of any process executed in the
host

sys_call number Contains the system calls identifiers executed by the pro-
cesses

event_id number Represents the event’s unique identification which happened
in the host

39

Files Feature Name Type Description

attack_cat nominal It contains the names of the main categories of the attacks
such as Exploits, DoS, Worms, Backdoors, Shellcode, Recon-
naissance and Generic. Also contains "null" where label=0
which means normal activity record

attack_subcat nominal It contains the subtype of attack of main attack category such
as the subcategory "Browser" belongs to the main category
"Exploits". Also contains "null" where label=0 which means
normal activity record

label binary Contain 0 or 1 to show the main category of the activity
whether normal or abnormal

4.1.4 UNM and DARPA

University of NewMexico (UNM) [15] dataset and Defense Advanced Research Projects
Agency (DARPA) [16] dataset are two of the most commonly used datasets which
were very popular for evaluation of HIDSs [107]. DARPA was generated in 1999 and
UNM dataset was released in 2004. System call traces in these datasets are very
simple which does not represent a real world cyber attack scenario. There are a
huge number of researchers built intrusion detection systems using the these datasets
because of the unavailability of datasets which represent the current state-of-the-art
attack methods. DARPA dataset was created by the Defense Advanced Research
Projects Agency and generated in a Solaris-based system. The DARPA dataset con-
sists of both host and network auditing data but UNM dataset consists only of system
call identifiers.

Chapter 5

Algorithms

In this chapter, I will unpack and provide refreshers on the algorithms that have been
explored while building the proposed Host-based Intrusion Detection System (HIDS).
It has been understood from the literature that an efficient HIDS mainly relies on
three major components; 1) Efficient feature retrieval component that differentiates
malicious traces from non-malicious trace, 2) Dimensionality reduction component
to extract true representative, uncorrelated features and reduce the computational
cost , and 3) Decision engines component to classify system call traces. This chapter
is categorized according to these components and focuses discussing on algorithms
which were explored to develop each of the module individually.

5.1 Feature Retrieval

As system calls are collected by different tracing tools, they are heavily unstructured
and unorganized. Feature engineering and data pre-processing techniques need to be
applied in order to extract representative features from system calls. In the area of
system call analysis for detecting intrusions, two techniques are majorly used: Short
Sequence-based System Calls Analysis and Frequency-based System Call Analysis.

The short sequence-based technique mines patterns from the short sub-sequences
of the system calls but it does not consider the whole trace at a time. In this technique,
a model is built with non-malicious patterns in order to build a normal profile and
malicious system calls are compared against the normal profile. The procedure for
building a normal profile is complex and time consuming.

In the frequency-based method, systems calls are transformed into equal-sized
vectors on the principle of frequency of each system call in a trace. This procedure
might experience some significant loss of information while building the normal profile.
As the short sequence-based method does not consider a full trace, this approach will
not be used to develop the system. Feature retrieval algorithms can be categorized

40

41

into 1) Frequency-based algorithms [18] and 2) Integer Data Zero Watermark-based
algorithms [7].

5.1.1 Frequency-based algorithms

In sequence-based system call analysis, the traces of different lengths are converted
into equal-sized frequency vectors. In the ADFA-LD12 dataset, each system call in a
trace is denoted by an integer which is the index of that individual system call. The
index of a system call is determined by the version of the operating system in which
the system call traces were generated. As an example, Linux kernel version 2.6.38
provides a total number of 325 different system calls. In this frequency-based method
proposed by Xie et al. [18] requires recording the occurrence of each system call in a
trace and dividing the number of occurrences with the length of the system call trace
in order to build the frequency vector. If the system call index has a range from 1 to
p (maximum index of a system call in a trace) and fi denotes number of occurrence
of an individual system call indexed by i, where i = 1, 2, 3....p. Each element in the
frequency vector can be represented as

f̄i = fi
|s|
, (5.1)

where |s| denotes the length of system call trace s. The frequency-based transfor-
mation converts system call traces into frequency vectors of same size. If m number
of system call traces are provided and the highest index value of those system calls is
p, the shape of the frequency transformed data will be m ∗ p. The transformed data
can be further used for feature selection and training a classifier.

Haider et al. [22] proposed a host-based anomaly detection system where they
have applied Sine transformation and Fourier transformation to transform raw system
call identifiers time-domain signal into frequency-domain signal. The researchers
have used a sliding window on 1 second to log unit data and apply transformation
strategies. In this 2-step process, input time-domain signal of system call identifiers
in 1 second is transformed by sine transformation which is represented in the equation

f(x) = sin(x)t, (5.2)

42

where x is considered as the system call identifier and t = 1 to T and T can
be 1 second. Fourier transformation was applied to the sine transformed signal.The
Fourier transformed components on the input signal are considered as sequence vec-
tors which are used to train the learning models. Frequency domain vectors generated
from non-malicious short sequence system calls are used to train and build a normal
profile. Malicious systems calls are validated against the normal profile. Fourier
transformation can be represented by the equation

f(ε) =
∫ ∞
−∞

f(x)e−2πεε, (5.3)

where for any real number ε, x represents time in SI unit of seconds and ε represents
frequency in Hertz.

5.1.2 Integer Zero Data Watermark (IDZW)

The principle of Zero Watermarking revolves around utilizing the actual context
for a stream of information and generating a watermark based on it. The zero-
watermarking algorithm does not change the characteristics of the the original data
whose watermark needs to be generated. This approach is very broad and general in
nature.

Most researchers have used this approach in different domains including detecting
malicious modification in database relations [108], detecting tampering of text doc-
uments [109], and copyright authentication [110]. Jalil et al. [109] proposed a novel
watermarking technique for checking text integrity and authentication. In this pro-
posed strategy the text information that needs to be sent is not changed to embed
the watermark which is one of the key principle for exchanging text documents be-
tween multiple parties. The context of the text was used to generate the watermark
pattern and later the pattern is matched with a pattern matching technique in order
to identify any tampering.

Haider et al. [7] proposed a reliable Host-based Anomaly Detection System (HADS)
where a novel data zero watermarking strategy was developed to extract representa-
tive hidden features from system calls. This group of researchers have experienced
two major challenges while constructing the HADS to develop strategies for detecting
new generation attacks (NGA’s). Firstly, NGA causes low footprint activities which

43

are very difficult to differentiate from the normal system calls in terms of accuracy and
processing time. Secondly, it is very challenging to extract natural difference between
normal and malicious system calls. Thirdly, considering system call values and han-
dling strategies, deviation between the values may differ respective to the time and
space complexity. This might introduce bias in the learning model which affects its
outcome. Six different hidden features were extracted using the Zero-Watermarking
technique. The process of feature retrieval described in Figure 5.1. In Figure 5.2, all
the notations that were used in order to retrieve the abstract hidden features from
the system traces are described in detail.

Figure 5.1: Zero-Watermark feature retrieval [7]

FV 1 = argminT1:NεR∀T (5.4)

FV 2 = argmaxT1:NεR∀T (5.5)

FV 3 = argminT1:NεR

N∑
i=1
∀smCT1:N

(5.6)

FV 4 = argmaxT1:NεR

N∑
i=1
∀smCT1:N

(5.7)

FV 5 = ∀T i:N
N∑
i=1

Ti:N%2 = 0 (5.8)

44

FV 6 = ∀T i:N
N∑
i=1

Ti:N%2! = 0 (5.9)

Equation 5.4 extracts the system call with lowest index whether equation 5.5 extracts
the system call with highest index value. Equation 5.6 and 5.7 analyzes the count of
the same system calls in a single trace. Argmax denotes the most repeated system call
Si in Trace T and argmin denotes the least repeated system call in a trace. Equation
5.8 and equation 5.9 initiates the process to count even and odd system calls in a
trace and assigned the results to FV 5 and FV 6. According to the research conducted
in [7], normal and malicious system calls generate dissimilar feature vectors using
the above equations which can efficiently represents the "natural" difference between
normal and malicious system calls.

Figure 5.2: Notations for Integer Data Zero Watermark retrieval [7]

5.2 Dimensionality Reduction

In order to extract/select representative features from the retrieved features, I ex-
plored three different existing algorithms: 1) Principle Component Analysis [111], 2)
Auto-Encoder, and 3) Random Forest-Recursive Feature Elimination [112].

45

5.2.1 Principal Component Analysis (PCA)

Principal Component Analysis is a multivariate feature extraction technique that
captures the most valuable information from the input variables and drops the least
important one [113,114].

In PCA, the effect of highly correlated independent features is minimized and
eliminated from the final calculated component. Each new variable after applying
PCA is independent of the others. It is a linear dimension reduction technique that
exploits the orthogonal transformation. In this process, the orthogonal linear com-
bination of the variable with the largest variance is calculated and used for reducing
dimension data.

Abolhasanzadeh et al. has described the process of PCA mathematically in [83].
For a given sample {xi}Ni=1 which has mean xmean = 1/n∑n

i=1 xi, the covariance matrix
can be written as ∑ = E{(x−xmean)(x−xmean)T}. If the spectral decomposition can
be written in equation 5.10, which signifies the principal component transformation
process generates a system that has mean zero and a diagonal covariance matrix ∧,
which has the eigenvalues of Σ. Finally, PCA generates a set of uncorrelated features
that has a maximum variance. The hyperplane obtained from the first L principle
components is considered as the regression that minimizes the orthogonal distance to
the data.

Σ = ∪ ∧ ∪T (5.10)

5.2.2 Recursive Feature Elimination with Random Forest (RF-RFE)

Random Forest ranks the importance of each predictor by constructing a multitude
of decision trees [115, 116]. Each node of the tree has a different subset of randomly
selected attributes, and the best attribute is selected based on various measures.
Recursive feature elimination is a process that ranks the features according to the
importance in the specific context. During each iteration, the significance of the
features is calculated, and the feature with the least value is dropped. Another com-
putationally efficient approach can be implemented by removing a group of features
in every iteration.

In the case of evaluating highly correlated features, the importance of the same

46

feature can significantly vary while estimated over a different subset of features. The
iterative approach is therefore practical for this feature elimination process. During
training, a subset of the training set is selected in a Random Forest, and these are used
to provide unbiased measures of prediction error. Figure 5.3 provides the pseudo-code
of the RFE algorithm.

Figure 5.3: Pseudo code of RFE algorithm [115]

5.2.3 Autoencoder

Autoencoder is an unsupervised neural network which learns input vectors and repro-
duces them as an output [117]. Every autoencoder based network has two parts i.e.,
an encoder and a decoder. The number of neurons in the first layer of an autoencoder
is the same as the number of features in the input data. Encoder module reduces the
dimensions of input data as specified in the network configuration, and the decoder
reconstructs lower-dimensional data to produce the output with the same proportion
as the input.

Autoencoder can be used for dimensionality reduction by separating the encoder
and decoder. The hidden layer of the autoencoder efficiently learns from highly di-
mensional data to generate output with premium quality that aligns with the original
input. Autoencoder helps to compress data, visualize data in the lower dimension,

47

and extract hidden relation between the features that were not identifiable in a higher
dimension. A hidden layer of autoencoder does not simply sub-select the elements
from the previous layers, but it combines multiple features and represents original
data in a lower-dimensional space.

Figure 5.4: Autoencoder Architecture [117]

ali = f

(
n∑
j=1

W
(l−1)
ij a

(l−1)
j + bli

)
(5.11)

Figure 5.4 shows the basic architecture of an autoencoder. The input vector of
that autoencoder is x(1), x(2), ..., x(5) and output is ˆx(1), ˆx(2), ..., ˆx(5). In the hidden
layer L2, the original dimension of feature has been reduced to a smaller number of
neurons. The activation function of unit i and Layer l can be represented by Eq.
5.11, W and b are denote weight and bias respectively. The weight and bias can be
controlled by the requirement of the network. For the activation function f in the
hidden layer, Rectified Linear Unit (ReLU) function can be used.

48

J(W, b) = 1
m

n∑
i=1

(
1
2 ‖ x(i)− x̂(i) ‖2

)
(5.12)

During training the reconstructed output is compared with the original data dur-
ing every iteration and the error is calculated. During the process of training, the error
needs to be minimized. The objective function that calculates the error is presented
in by Eq. 5.12.

5.3 Decision Engine (DE)

The Decision Engine, a term coined by Haider et al. [7], is a component that decides
if a system call trace is malicious. I focused on machine learning-based approaches to
build the decision engine. This machine learning-based approach includes both the
neural network based classifiers and non-neural network-based classifiers including
Decision Tree and Random Forest.

According to the working principles of machine learning algorithms, I categorized
the algorithms used for building a decision engine into three categories: 1) Unsuper-
vised Algorithms, 2) Supervised Algorithms, and 3) Semi-supervise algorithm. To
address the research problems discussed in Chapter ??, Decision Engines were imple-
mented using only supervised and semi-supervised machine learning approaches. In
this section, both approaches and their feasibility will be discussed.

5.3.1 Supervised Algorithms

Using the supervised approach, the classifiers are trained with the samples and their
respective labels. These models learn with the existing data and learn until a optimal
performance is achieved on the training data. The classifiers are further evaluated
on the unforeseen data. The following subsection will discuss different supervised
machine learning and neural network-based approaches.

Decision Tree (DT)

A decision tree is used for classification and regression problems. It breaks down a
set into smaller subsets to construct a tree comprising decision nodes and leaf nodes.
Decision nodes branch out to possible decision paths. Leaf nodes represent a final

49

classification or decision. The decision tree-based algorithms build the trees based on
the principle of information entropy.

While building the tree, the normalized information gain is calculated for each
node. The feature with the highest value of information gain is chosen for making de-
cisions. The decision tree works recursively in the same manner until all the examples
of the dataset are classified.

One of the significant advantages of the decision tree is the calculation of the
biased information gain values for the categorical features. Extracting rules from
wider and deeper decision trees are complicated but provide excellent accuracy. These
deep decision trees lead to over-fitting, which has a lack of generalization capabilities.
Pruning can be performed on the deep decision tree to get a small tree that has
comparatively better generalization capabilities.

Support Vector Machine (SVM)

The SVM classifier is based on finding a hyperplane that differentiates two classes in
such a way that the distance between the hyperplane and the closest point of a class
is maximized [118].

The approach of SVM is based on the principle of minimized classification risk
[119]. SVM is well known for its generalization ability and it works efficiently when
the number of features is significantly on the higher side but the number of rows is
low. While classifying the non-separable data by SVM, slack variables are added and
cost parameters assigned to every data point to achieve the optimal hyperplane by
performing a quadratic optimization. Several types of classification surfaces can be
achieved by controlling the application of SVM kernels such as linear, polynomial,
Gaussian radial basis function, and hyperbolic tangent.

SVM is majorly used for performing binary classification, but it can also be used
for multi-class classification by finding the optimal hyperplane between each pair of
classes. In the case of anomaly detection, One-class SVM was used to build a “normal”
profile on non-malicious data and test the malicious data against the normal profile.
If the data deviates more than a specific threshold from the model built on a normal
profile, it can be considered malicious.

50

Random Forest (RF)

A common criticism of decision trees is their tendency to overfit. Random forest is
a combination of ensemble and decision trees that constructs multiple decision trees
and outputs the mode of their classes as the result of the trained model. The trees
in the random forest select random data features while building each tree [118].

The process of forest generation is based on the principle of collecting the trees
with controlled variance. The prediction of the random forest model can be executed
by the majority or weighted voting by the individual trees. There are a couple of
advantages of Random Forest, including a low number of model parameters and its
resistance to overfitting. While the number of trees increases in a random forest, the
variance of the model decreases without affecting the bias. The random forest has a
couple of disadvantages, such as low interpretability and its dependence on a random
generator.

Extreme Gradient Boosting (XG-Boost)

Extreme Gradient Boosting [120, 121] is a relatively new ensemble approach to gra-
dient boosting for classification. Multiple models (Decision Trees) are constructed
sequentially. The output of one model is used to determine gradient increments and
introduce weak classifiers before training the next model in the sequence. This process
is carried out until there are no more improvements to be made.

Dense Neural Network (DNN) and Convolutional Neural Network
(CNN)

Dense Neural Networks are consisting of dense layers on an architecture that is similar
to neural network. Each neuron of a layer in a dense neural network is connected
to every neuron of next layer. The number of neurons of the input layer is equal to
number of input feature in the dataset and number of the neuron in the output layer
equals to the number of distinct features that dataset has. The main strength of the
neural network is their ability to learn from their own mistake. In the network, the
weights and biases are defined in such a way that they can predict a value based on
provided input. Then a cost function is deployed to calculate the deviation between

51

the expected output and their predicted output. The main goal of the network is to
find a set of weight and bias values that minimizes the cost function. The principle
of gradient descent helps to reduce the cost function. The gradient descent works
by computing the gradient repeatedly and then update the weight and bias is a way
that minimizes the cost function. The parameter which is used for choosing the
direction of the gradient descent towards the global minimum is the learning rate.
If the learning rate is very small, the network takes more time to reach the global
minimum [122]. Whereas a larger learning rate might speed up the learning process,
but the network might not be able to reach the global minimum at all. Another way to
speed up the gradient descent process is to use stochastic gradient descent. This works
by calculating the gradient of a small set of randomly chosen samples and average
them to get a true estimate. The backpropagation algorithm is used to calculate to
compute the gradient of the cost function. It computes the partial derivative of the
cost function with respect to weight and bias and propagates this back to update
the weight and bias. The backpropagation algorithm calculates the gradient of the
cost function of one training example. However, it needs to be combined with some
learning algorithms, such as stochastic gradient descent, to compute the gradient of
all the samples. This is how the neural network efficiently learns by itself [123].

CNN is variant of neural network which is majorly used for computer vision
[124,125]. LeCun et al. [126] proposed a CNN-based architecture LeNet-5 to classify
handwritten digits. The hidden layers of the Convolutional Neural Network mainly
consists of convolution layer, pooling layer, fully connected layer, and batch normal-
ization layer. Figure 5.5 provides a visual representation of a CNN architecture.

In the pooling layer, the convolution operation which is basically a dot product
between the input data and a filter defined by the network results an output modified
output preferably of lower dimension than the input. Figure 5.6 is a representation
of convolution operation.

The pooling operation is applied on the output of the convolutional layer. Pooling
is a sample-based discretization process. The primary goal of pooling is reducing the
dimensionality of the data without losing significant information from the sub-region
of the original data. There are few types of pooling strategies such as max pooling and
average pooling. As per the naming convention, the max pooling selects the maximum

52

Figure 5.5: CNN Architecture [124]

Figure 5.6: Convolution Operation [124]

value from a selected region and average pooling averages the value of the selected
region which is defined by the pooling size. Pooling operation in explained in Figure
5.7. Several convolution and pooling layer can be stacked as per the requirement and
complexity of the problem. The final output from the pooling is flattened in fed to a
fully connected neural network in order to perform the classification.

5.3.2 Semi-supervised Algorithms

For experimental purposes, decision engines are built using a semi-supervised ap-
proach. The classifier is trained with only non-malicious traces in order build a

53

Figure 5.7: Pooling Operation [124]

normal profile. This normal profile is an efficient and generalized representation of
all the normal system call traces. The test system calls are then evaluated against
the normal profile. In the semi-supervised approach, we have used One-Class Sup-
port Vector Machine. While conducting the literature survey, it was noticed that the
researchers have used custering techniques such as k-means clustering and k-nearest
neighbour to build the anomaly detection system but they did not obtain optimal
result in terms of detection rate and false alarm rate. As a result, I decided not to
conduct any experiments using clustering techniques.

One-Class Support Vector Machine (OCSVM)

The One-Class SVM algorithm, proposed by Scholkopf al. [127] tries to separate the
whole dataset from the origin. This algorithm operates to find a hyperplane which
separates the data from the origin with the maximal margin. OCSVM can be trained
with only one class and it eventually learns the boundary of these points. If the
test samples are compared against this model, the algorithm checks if the sample lies
outside the boundary [88].

Chapter 6

Methodology

The proposed framework for Host-based Intrusion Detection System contains seven
different components: 1) Data Source, 2) Feature Retrieval, 3) Prepossessing and
Normalization, 4) Dimensionality Reduction, 5) Data Splitting 6) Training Decision
Engine, and 7) Evaluation of the Decision Engines. Each of the components will be
discussed in detail in the sections.

Figure 6.1 is a simplified representation of the components of the proposed frame-
work. At the end of this chapter, a detailed representation of the proposed framework
is provided.

6.1 Data Source

I have conducted an in-depth literature review discussing different datasets to evaluate
Host-based Intrusion Detection Systems in Chapter 4. As the Linux based computers
perform efficiently with lowest resource footprint, I have specifically focused on the
datasets which are generated based on Linux system. Finally, I chose ADFA-LD12 to
conduct further experiments. In this section, I will discuss supporting reasons behind
choosing the dataset for conducting further experiments.

Advantages of ADFA-LD12 dataset

• Ubuntu Linux version with Linux kernel 2.6.38 was employed in the host com-
puter during the generation of ADFA-LD12 dataset [14]. The server was config-
ured to allow different operations such as file sharing service,database service,
remote access, web server functionalities which is a reasonable representation
of modern Linux server-based computer systems. In order to capture the data
with a representation of realism, FTP, SSH, and MySQL were enabled in the
default ports. Apache and PHP were installed to enable capture web service ac-
tivities. Altogether, this is a fairly valid representation of a modern Linux-based

54

55

Figure 6.1: Simplified representation of individual component of the proposed frame-
work

computer system which is capable of generating complex system call-based in-
formation.

• State of the art methodologies were adopted while generating the attacks.In
order to introduce realism , the host server was fully patched but a minor re-
mote code execution vulnerability was introduced. This represents a model
secured server with a small vulnerability. The datasets, UNM and KDDCUP,
used highly porous, unsecured servers that could be easily exploited. The at-
tacks were chosen such that they cover the major vulnerabilities experienced by
modern Linux based systems [14].

• In order to evaluate he complexity of the ADFA-LD dataset, Creech et al. [14]

56

performed a cluster analysis technique based on "Bag of System Calls" (BSC)
technique. The BSC technique is based on the popular technique “bag of words”,
which is majorly used in the field of natural language processing [128]. The BSC
technique was applied to KDD98 and ADFA-LD and the result is presented in
Figure 6.2. It can be observed from the graphical representation that the at-
tack data and the normal data are easily separable in KDD98 dataset but not
in ADFA-LD12. In the KDD98 representation, the red attack data and blue
normal data are separable even with manual observation. The degree of separa-
bility can be measured by the minima and maxima generated by the key system
calls which are affecting the nature of the trace. In the representation generated
by ADFA-LD12, the traces are not separable easily, as they are homogeneous
in nature.The minima and maxima alone are insufficient to separate those two
types of traces [129]. This is a representation of realistic representation of low
footprint attacks mixed with normal system call traces.

Figure 6.2: Complexity of ADFA-LD 12 ns KDD98 dataset [14]

These criteria were strictly maintained in order to ensure the maximum effective-
ness to achieve the highest quality of realism while simulating the data.

57

6.2 Feature Retrieval

The feature retrieval process was applied on the chosen dataset. As per the devel-
opment in this domain, the feature retrieval techniques from system calls can be
broadly categorized into three parts: 1) Frequency-based techniques , 2) Sequence-
based techniques, and 3) Hidden abstract representation techniques. This component
of the framework proposes a hybrid feature retrieval technique based on the combi-
nation of Hidden abstract representation technique [7] and frequency modeling of
system calls [18] discussed in section 5.1 in Chapter 5.

The reasoning behind choosing Hidden abstract representation based method “In-
teger Data Zero Watermark” (IDZW) [7] combined with frequency modeling method
[18] are discussed below [108,110].

• The ADFA-LD12 dataset contains low footprint attacks that are highly similar
to non-malicious data. In order to classify malicious data from non-malicious
data efficiently, the natural difference between the malicious and non malicious
system calls need to be captured. The IDZW method is capable of capturing
the natural hidden difference of malicious traces from benign instances that
helps the decision engine to classify it.

• For the unsupervised approach, the decision engine needs to be trained with
all possible patterns of normal system calls in order build a generalized normal
profile. As the nature and the pattern of the systems calls tend to change
depending on the operating system’s kernel version, the short sequence-based
methods and standalone use of frequency- based methods become ineffective in
extracting the hidden representation of the system calls. But IDZW method
can cop up with dynamic nature of the system call generation.

• As per the development in this domain, short sequence based and semantic
extraction based strategies fail to capture hidden representative features. But
the IDZW method and the frequency-based method shows promising result
when applied separately. I therefore propose a feature extraction strategy that
poses the quality of both, the method, IDZW, and frequency modeling.

58

• The time complexities for both the semantic-based feature extraction and lan-
guage modeling are significantly higher while training and predicting a new se-
quence. Language models and feature-based extractions are inefficient for real-
time intrusion systems. Both the IDZW strategy and frequency-based methods
are a lot quicker individually and it takes a few seconds to extract the features
and to train a decision engine.

• The hybrid feature extraction technique is designed in such a way that it extracts
the hidden representation from the system call and it records the effectiveness
of the frequency of each system call in a long trace.

• The hybrid approach takes into consideration the whole trace rather than spe-
cific system calls or short sequences extracted from the long traces. In low-
footprint attacks , the short sequences of system calls do not represent the
nature of the whole system call trace. There might be some possibilities where
the trace starts with non-malicious nature but at the end of the trace, some
malicious activity is posed by the trace. The sequence-based method does not
capture the importance of each system call in a trace.

Each trace present in the ADFA-LD dataset is of a different length. Using the fea-
ture retrieval technique, traces of different sizes are converted into equal-sized vectors
which are further processed and finally fed into a learning classifier for evaluation. In
order to retrieve 6 features using the IDZW method, Eq. 5.4, Eq. 5.5, Eq. 5.6, Eq.
5.7, Eq. 5.8, and Eq. 5.8 were used (refer section 5.1). 325 frequency-based features
were retrieved using Eq. 5.1 (refer section 5.1).

Table 6.1: Feature Retrieval from a normal system call trace using IDZW method

Type of system calls Unprocessed version (before feature retrieval) After feature retrieval with IDZW

Training(Normal) 168 54 102 6 102 102 102 102 168 54 102 6 102 102 102 102 91 102
168 54 102 6 102 102 102 102 168 54 102 6 102 102 102 78 240 240
240 168 54 102 6 265 78 78 78 265 240 240 78 240 265 102 102 102
13 102 102 102 102 6 195 5 197 192 3 3 6 91 240 195 102 102 78 168
102 168 54 102 6 195 5 197 192 3 3 6 91 195 102 102 78 168 102 168
54 102 6 265 78 78 265 102 102 102 13 102 102 102 102 6 195 5 197
192 3 3 6 91 195 102 102 78 168 102 168 54 102 6 265 78 78 265 102
102 102 13 102 102 102 102 6 195 5 197 192 3 3 6 91 195 102 102 78
168 102 168 54 102 6 265 78 78 265 102 102 102 13 102 102 102 102
6 195 5 197 192 3 3 6 91 195 102 102..

265,3,102,219,91,256

Table 6.2 provides an example of the retrieved features using frequency modelling.

59

Table 6.2: Retrieved features using Frequency modeling

After Feature Retrieval with Frequency Modelling

0.0,0.0,0.0130475302889096,0.07921714818266543,0.004659
832246039142,0.001863932898415657,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.014911463187325256,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.011183597390493943,0.0,
0.0,0.0,0.0,0.0,0.0065237651444548,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.06337371854613234,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
.........(more features are present)

6.3 Data Preprossessing and Normalization

Data normalization and scaling techniques have been applied to the features that were
retrieved using both IDZW method and frequency modelling. The goal of applying
scaling is to change the numerical values of the features to common scale in such
a manner that the ranges of the values are not distorted. Scaling is very effective
when distance-based algorithms such as k-Nearest Neighbour and SVM are used as
classifiers.

Normalization techniques mainly change the shape of the distribution of the data
so that any other type of distribution can be described as normal distribution. In
neural networks, a model learns by mapping an input variable to the output vari-
able. The input variables that have different scales and distribution make it difficult
for a model to learn efficiently. Large input value leads the model to learn large
weights which affects the learning process of models which in turn result in major
generalization errors.

I have experimented with three data scaling/normalization techniques: 1) Stan-
dard Scaler or Z-score, 2) Min-Max Scaler, and 3) Robust Scaler. In this section , I
will further discuss these three techniques and their corresponding results through vi-
sualization. At the end of this section, I will provide a detailed reasoning for choosing
the best option for that fits perfectly with this proposed methodology.

6.3.1 Min-Max Scaling

In Min-Max scaling each datapoint subtracts the minimum value in its feature and
divides the quantity with its range. As Min-Max scaler does not distort the shape of

60

the original distribution, it does not change the valuable information embedded inside
the original data. Min-Max scaler does not reduce the importance of an outlier. The
operations of the Min-Max scaling can be formulated by Equation

zmin−max = (xi − xmin)/(xmax − xmin), (6.1)

where zmin−max denotes the Min-Max scaler transformed value, xmin denotes mini-
mum value of feature x, xmax denotes the maximum value of feature x, and xi denotes
individual data point in feature x.

Figure 6.3 represents the Kernel Density Estimate(KDE) plot of the original dis-
tribution of the features retrieved from IDZW method. Figure 6.4 describes the
distribution of the transformed features after applying the Min-Max scaling.

It can be observed from Figure 6.4 that the shape of the original distribution is
preserved and the relative difference between the features of original distribution and
the Min-max scaler transformed distribution is maintained.

Figure 6.3: Original distribution of the features retrieved from IDZW method

6.3.2 Standard Scaling (Z-score Normalization)

It rescales the distribution of the values of the dataset. The mean of the observed
value becomes zero and standard deviation becomes 1 [7]. This approach assumes that
the observed data fits a Gaussian distribution with a controlled mean and standard
deviation. The mathematical operation for standard scaling is described in Eq. 6.2.

61

Figure 6.4: Min-Max scaler transformed data

zstandard = (xi − µ)/σ (6.2)

where zstandard represent transformed values of individual feature vectors, µ and
σ denote the mean and standard deviation of the feature matrix after the feature
retrieval.

Figure 6.5 describes the distribution of the transformed features after applying
the standard scaling [130].

Figure 6.5: Standard scaler(z-score normalization) transformed data

62

6.3.3 Robust Scaling

The Robust Scaling technique uses a similar method as Min-Max scaling but uses
inter-quartile range rather than min-max range. As a result, this scaling technique is
robust towards the outliers [131]. Robust scaling technique can be efficiently applied
to each of the individual feature vectors, as mentioned in Eq. 6.3

zrobust = (xi −Q1(x))/(Q3(x)−Q1(x)), (6.3)

where zrobust denotes the transformed datapoint after robust scaling is applied, xi

denotes the individual datapoint of a feature vector, Q1(x) denotes the middle value
of the 1st half of the ranked order datapoints, and Q3(x) denotes the middle value of
the second half of the ranked order datapoints.

Figure 6.6 represent the distribution of the data after Robust scaling is applied
on the original distribution

Figure 6.6: Robust scaler transformed data

6.3.4 Choosing a Scaling Technique

Several experiments were conducted using these three scaling/normalization tech-
niques discussed above. The reasonings behind selecting these specific scaling/normalization
techniques are provided below [131,132].

63

• Distance-based algorithms such SVM is sensitive towards the magnitude of the
datapoints. Therefore, it is necessary to scale the features to weigh-in equally.

• Scaling is very critical while performing dimnensionality reduction using Prin-
ciple Component Analysis [83]. PCA tends to select the feature with higher
variance. As the features with high magnitude have high variance, it skews the
PCA towards the high variance scaling incorrectly.

• Scaling can significantly accelerate the gradient descent process while training
a neural network. If the data is scaled, it quickly reaches the global minimal
rather than oscillating inefficiently away from the convergence point.

6.4 Dimensionality Reduction

In this section, I will discuss several dimensionality reduction techniques which are
used to build this component. The feature matrix produced by the frequency-based
feature retrieval method is high dimensional in nature. As the frequency of each
system call is taken into consideration, there are many system calls which does not
appear in a specific trace at all. This method produces a significant numbers of ze-
roes as feature vectors. Dimensionality reduction algorithms represent the original
features in a lower dimensional space which reduces storage requirements and compu-
tational complexity of the overall system. These methods help to identify the valuable
representative features of a dataset that actually control the nature of the data.

The are two major approaches that comes under the umbrella of Dimensionality
Reduction i.e. Feature selection and Feature extraction. It has been noticed in previ-
ous rearch work that both of these terms have been used interchangeably. But in the
proposed work, both the terminologies have different inteepretation and explained in
the following. Feature selection methods select a subset of the original features. As
a result, some information loss occurs in this process as some of the features are di-
rectly discarded. On the other hand, feature transformation and extraction methods
introduce new features that are constructed from the original features but in a lower
dimensional space. In order to maintain the diversity, detailing, and completeness,
I have experimented with three different dimensionality reduction techniques on fre-
quency modelled features: 1) Principal Component Analysis , 2) Recursive Feature

64

Elimination, and 3) Simple Autoencoder.

6.4.1 Principal Component Analysis (PCA)

PCA was applied on the high dimensional data retrieved by frequency-based feature
retrieval method. As discussed in 5.2.1, covariance matrices were created from stan-
dardized data to represent correlation and dependencies between different features of
the dataset. Then Eigen vectors and Eigen values were calculated from the covariance
matrix. The Eigen vector with the highest Eigen value was considered as the most
significant principal component.

Principal components with lesser significant values were dropped to reduce the di-
mensionality of the data. Finally, original data axis was replaced with newly formed
principal components by multiplying the transpose of original dataset with trans-
pose of the obtained vector. Figure 6.7 denotes that nearly 75 principal components
required to retain 95% variance of the original data. We, finally use 114 features
extracted by PCA.

Figure 6.7: The number of Principal Components required vs.Retained Variance

6.4.2 Autoencoder

The autoencoder network which is built for dimensionality reduction has two parts:
1) an Encoder, and 2) a Decoder. The Encoder compresses the original number
of features from 326 to 80. The Decoder reconstructs those compressed features to

65

map with the original features. The autoencoder is trained with 50 epochs and the
difference was calculated between reconstructed features and actual features after
every epoch. After completion of all the epochs, only the encoder module of the
network was used to generate the compressed features form the scaled frequency
modelled data. The compressed features were merged with the features retrieved by
the IDZW method and used for training and evaluation of the classifiers. Figure
6.8 and Figure 6.9 represents the configuration of the encoder and decoder module
respectively.

Figure 6.8: Configuration of the Encoder module in Autoencoder

Figure 6.9: Configuration of the Decoder module in Autoencoder

Figure 6.10 plots the training loss against the validation loss of AutoEncoder
network.

6.4.3 Random Forest - Recursive Feature Elimination (RF-RFE)

RF-RFE method was used in order to identify the most important features. The
above methods such as Autoencoder and PCA extracts new features from the orig-
inal features in lower dimensional space but feature selection methods like RF-RFE
provides the optimal subset of the existing feature that represents the most of the

66

Figure 6.10: Training Loss v/s Validation Loss (Autoencoder)

information in a dataset. As the data is highly imbalanced, I use the RF-RFE method
with stratified cross-validation in order to get rid of over fitting. In this technique, the
model is built with the entire set of predictors and importance score is calculate for
every individual predictors. The predictor with the lowest score is dropped and again
the model is trained with the rest of the predictors.By this recursive approach, the
optimum number of features are extracted by calculating the importance score. The
model is finally trained with the optimal features. As this approach selects the subset
of the original features, it simply discards the importance of those features those are
dropped. I plotted a graph for Recursive Feature Elimination with Cross Validation
(RFECV) in order to visualize the classification accuracy with respect to the number
of selected features. It can be extracted from the Figure 6.11 that, the features be-
tween the range of 25-320 shows almost same classification accuracy. As the major
goal of this approach is to reduce the dimensionality of the feature, I have used first
86 features selected by RFECV for the further training of the learning models [133].

I experimented with all the dimensionality reduction algorithms in order to find
the optimal set of features and trained the learning models with the obtained features.
A thorough detailing of the results and their respective interpretation is provided in
the 7 Chapter.

PCA and RF-RFE was implemented using Python Scikit-learn libraries [134] [135].
Autoencoder was built using Keras [136] which is a high-level neural networks API,
written in Python and capable of running on top of TensorFlow, CNTK, or Theano.

67

Figure 6.11: Classification accuracy v/s Number of features selected in RFECV

6.5 Data Splitting

The dimensionally reduced data were distributed into three sections: 1) Training, 2)
Validation, and 3) Testing. As the decision engine was built using both the supervised
and semi-supervised approach, the distributions of the samples were also managed in
different manner.

6.5.1 Supervised Approach

In the supervised approach, classifiers were trained using both the malicious and non-
malicious traces. The training data was used to train the learning models. Validation
data was used to provide an unbiased evaluation of a learning model on the training
dataset while tuning the hyperparameters of the model. The samples from the testing
dataset were used to provide an unbiased and generalized evaluation of the trained
learning model. 10-fold stratified cross-validation was used to evaluate the learning
models. The distribution of the trace are represented in table 6.3.

68

Table 6.3: Distribution of the traces for training super-
vised algorithms

Normal
Training
traces

Attack
Training
traces

Normal
Vali-
dation
traces

Attack
Vali-
dation
traces

Normal
Test trace

Attack
Test trace

3346 196 962 225 962 225

6.5.2 Semi-supervised Approach

In the semi-supervised approach, I trained the classifiers using only the non-malicious
traces to build a normal profile. Then validation data which contains only normal
traces was used to evaluate the correctness of the trained normal profile. The test set
was used to provide an unbiased and generalized evaluation of the trained learning
model. The distribution of the trace for semi-supervised approach are represented in
table 6.4.

Table 6.4: Distribution of the traces for training semi-
supervised algorithm

Normal Training
traces

Normal Valida-
tion traces

Test Attack
traces

4205 1000 962

6.6 Decision Engines (DE)

The dimensions of the retrieved features were reduced significantly and prepared for
training the decision engines. As mentioned in the Section 5.3, Chapter 5 , I trained
the decision engine using both, supervised and semi-supervised approaches.

69

6.6.1 Supervised approach

I trained five traditional machine learning based classifiers(non-neural network) to
train the classifier such as Decision Tree, Random Forest, Logistic Regression, SVM
with radial basis function kernel, and XGBoost. In addition to that, we also trained a
5-Layer dense neural network In the supervised approach the classifiers were trained
using both the normal and malicious data.

Several experiments were conducted for searching a hyper parameter space for a
set of values that optimizes the performance of the learning models.

To build the decision tree classifier, I concentrated on few hyperparameters such
as criterion, min_samples_leaf, min_samples_split, and splitter.

Information gain-based entropy measure was used to split the nodes in decision
tree, “Best” splitter was used to identify the most important feature to split the
nodes based on impurity measure. The min_samples_split value is chosen as 2
and min_samples_leaf is chosen as 1 [137]. I have also configured Random Forest
using hyperparameters including the number of trees in the forest, the maximum
number of features considered for splitting a node, the maximum number of levels in
each decision tree, and the minimum number of data points allowed in a leaf node.
The values of the hyperparameters were assigned as per the knowledge gained about
the classifiers functionality and the dataset distribution. The similar approach is
followed when Logistic Regression and XG-Boost Classifiers were tuned with optimal
hyperparameters.

While configuring SVM , Radial Basis Function (RBF) kernel was used because
of non-linear nature of the dataset. RBF kernel combines and uplift the samples to
higher dimensional feature space separates the classes using a linear decision bound-
ary.

I also built a 5-layer neural network. In the first layer 25 units were used, along
with random_uniform as kernel initializer, and ReLU as the activation function. In
a similar way other layers are configured. After every two layers, one dropout layer
was added to prevent the model from over fitting. In the final layer, sigmoid function
is used as it is a binary classification problem. In the Chapter 7, I discuss all the
results using these learning models.

70

6.6.2 Semi-Supervised approach

A varied set of experiments were carried out using One Class SVM (OCSVM) where
the classifier was trained using only non-malicious system calls in order build a normal
profile. Then the malicious system calls are tested on the trained model and verify if
the test traces are significantly deviating from the trained model to be considered as
malicious. If the test sequence deviates more than a previously configured threshold,
it is considered as malicious, else benign.

6.7 Evaluation

In this section, different metrics to evaluate the performance of the classifiers are dis-
cussed. As the proposed methods performs a binary classification task, I am proposing
to use several popular classification metrics that help to justify the efficiency of the
trained models.

One of the most efficient tabular visualization model to represent a classifiers per-
formance in a confusion matrix or an error matrix. The confusion matrix contains
the predictions of the classifier and the ground truth labels. Each row of a confu-
sion matrix contains the instances of an original instance and each row denotes the
predicted instances. The non-malicious instances were labelled as ‘0’ and malicious
instances were labelled as ‘1’.

Learning models were trained using the training data and their respective labels.
The confusion matrix was generated by mapping the prediction of the trained models
on the test data against the labels of the original test data. Table 6.5 represents
a confusion matrix for anomaly detection problem. In the confusion matrix, the
instances marked as true positives are predicted as an attack, and also originally an
attack. The false positive instances are predicted as an attack by the classifier but
not actually an attack. True negatives are the instances which are detected as benign
by the classifier and also actually a benign instance, whereas, false negatives are
detected as non-malicious instances but actually an attack. The diagonal elements of
the elements represents the correct predictions of different classes and other elements
denotes the miss-classified instances. Metrics such as classification accuracy, precision,
recalls, f-score, sensitivity, and specificity can be extracted from the confusion matrix.

71

Table 6.5: Confusion Matrix for Anomaly Detection

Predicted label

Not attack(0) Attack(1)

True label Not attack(0) True Negative(TN) False Positive(FP)

Attack(1) False Negative(FN) True Positive(TP)

Accuracy
Accuracy can be defined as number of correct prediction divided by number total

number of predictions.Accuracy is the simplest and intuitive approach to measure
the performance of the classifier. But accuracy does not consider the records which
are classified as false positives and false negatives. So, it does not provide a whole
picture of how the false positive and false negative affect the result. Accuracy can be
formulated as:

Accuracy =

(
TP + TN)(

TP + FP + TN + FN)
(6.4)

Precision
Precision can be defined as the number of true positives divided by the summation

of true positive and false positives. As ADFA-LD12 dataset is highly imbalanced and
biased towards to non-malicious system call traces, precision is a very useful metric as
it measures the correctly classified instances against all the original instance of that
specific class.Precision can be formulated as:

Precision =

(
TP)(

TP + FP)
(6.5)

Recall
Recall can be defined as number of true positives divided by summation of true

positive and false negatives. As ADFA-LD12 dataset is highly imbalanced and biased
towards to non-malicious system call traces, Recall is a very useful metric as it mea-
sures the correctly classified instances against all the predicted system call traces of
that specific class .Recall can be formulated as:

Recall =

(
TP)(

TP + FN)
(6.6)

F-score

72

F-scores is a combination of precision and recall. As my research question ad-
dresses the issues with false positives and false negatives, F-score is one of the most
appropriate metrics to evaluate the correctness of the model. F-score is the harmonic
mean of precision and recall, can be defined as:

F − score = 2 ∗ Precision ∗Recall
Precision+Recall

(6.7)

Detection Rate (DR)
Detection rate indicates the measure that how the trained model is able to classify.

Detection rate can be defined as the ratio of True Negatives to the all actual negative
instances.

DetectionRate =

(
TP)(

TP + FN)
(6.8)

Receiver Operating Characteristic (ROC) curve
The ROC curve is plotted by keeping True Positive Rate(TPR)(Eqn. 6.10) on

the Y axis, and False Positive Rate(FPR)(6.9) on X axis. Most of the classification
algorithms that I use as a decision engine predicts a probability of an instance [138].
If the probability is smaller/larger than a specific threshold , it is considered as
a part of specific class as per the pre-defined configuration. ROC curve plots the
TPR against FPR of all possible threshold values. ROC curve helps to find the
optimal probability threshold where TPR is high and FPR is low. ROC curve is a
trade-off between TPR and FPR. As our research problem revolves around reducing
the number of false positives and false negatives, ROC curve helps efficiently to find
threshold for classifiers.In ROC curve, the 45 degree diagonal of ROC space represents
the baseline classifier. Another important metric that is closely related to ROC curve
is the are under ROC curve which is known as AUC. AUC provides overall measure
of performance of a model throughout all the possible thresholds [139, 140].AUC is
scale-invariant that measures the quality of the ranked prediction.AUC measures the
degree of separability that represents how the model is able to create a separation
between the classes.

FalsePositiveRate(FPR) = FP

FP + TN
(6.9)

73

TruePositiveRate(TPR) = TP

TP + FN
(6.10)

False Alarm Rate (FAR) False alarm rate can be defined as an average of false
positive rate and false negative rate. FAR can be represented by the Eq. 6.9.

FalseAlarmRate(FAR) = FalsePositiveRate+ FalseNegativeRate

2 (6.11)

The proposed framework is built by efficiently merging all the individual module.
Fig.6.12 represents the proposed framework.

74

Figure 6.12: Representation of the proposed framework

Chapter 7

Experiments, Results, and Discussion

In this Section, I will present and analyze the results that were generated from the
experimentation. As feature retrieval process play a major role in building the frame-
work, I evaluated the performance of each classifier trained with retrieved features
clubbed with different combination of dimensionality reduction, and data scaling tech-
niques. To address the research problems described in 3, I have followed the below
set of tasks to complete the experiments.

• Firstly, two separate sets of features were retrieved using the IDZW method (6
features) and frequency-based feature retrieval (325 features) method.

• Secondly, Data preprocessing was performed on both the features by applying
different scaling and normalization techniques.

• Since the number of features retrieved by the frequency-based approach is large,
dimensionality reduction techniques were applied to represent the feature to a
lower-dimensional space.

• The low-dimension frequency-based features was merged with preprocessed fea-
tures retrieved using the IDZW method.

• The merged data was split into training, validation, and testing. The training
data was used to train the learning models. Validation data was used to provide
an unbiased evaluation of a learning model on the training dataset while tuning
the hyperparameters of the model. The samples from the testing dataset were
used to provide an unbiased and generalized evaluation of the trained learn-
ing model. 10-fold stratified cross-validation was used to evaluate the learning
models.

• I evaluated the effectiveness of the hybrid feature retrieval technique and dimen-
sionality reduction techniques by focusing fewer metrics including false positive

75

76

rate and detection rate with addition to Accuracy, precision, recall, and f-score.
The detection rate was given importance because it effectively indicates how
well the model can detect an attack. The false positive rate indicates the ef-
ficiency of classifiers to evaluate the miss-classification of the traces that are
considered benign.

7.1 Hardware Requirements and Configuration

Most of the experiments were executed using Google Colab which is a platform that
allows us to write and execute Python scripts in the browser and it does not require
the installation of dependencies separately.

To calculate and compare the training time of the classifiers, I used a personal
computer that has the following configuration. In the personal computer all the
experiments were done using Python installed with an Anaconda Distribution.

• Operating System: Microsoft Windows 10 Home 64- bit Operating system, x-64
based processor

• Version: 10.0.18363 Build 18363

• Processor: Inter(R) Core(TM) i5-8265U CPU @1.60 GHz 1.80GHz

• Installed RAM: 12.0 GB

• BIOS version: LENOVOAPCN31WW

7.2 Performance Evaluation

In order to represent the result in an organized approach, this section has been cat-
egorized into three parts as per different dimensionality reduction techniques used
1.

Each of the sub-categories will describe the performance of the classifiers trained
with features extracted/selected by a specific dimensionality reduction techniques.

1I have also conducted several experiments with CNN Where I represented the long trace of
system call as an image and classified it with CNN. Though the approach is novel, but this approach
was not able to provide satisfactory result while comparing with existing approaches. So the results
related to CNN is not provided here.

77

7.2.1 Performance Based on the Features Extracted by PCA

Table 7.1 describes the performance of different machine learning classifiers when PCA
was used as the dimensionality reduction technique with min-max normalization. It
can be observed from Table 7.1 that the Random Forest classifier has outperformed
other machine learning classifiers while evaluated using this configuration. Even if
the required time to train the random forest model is higher than other classifiers, the
model performs considerably better while reducing the number of false positives and
false negatives. The same configuration was used to train the 5-layer neural network,
which resulted in a high detection rate of 96.8% with a false alarm rate of 2.1%. Table
7.2 provides a detailed result of the neural network-based classifier trained with the
features extracted by PCA.

Table 7.1: Performance of machine learning based classifiers trained with the features
extracted by PCA and scaled with Min-Max normalization

PCA with variance 0.95 and Min-Max scaler

Decision Tree Random For-
est

Logistic Re-
gression

Support
Vector Ma-
chine(with rbf
kernel)

XG-Boost One Class-
SVM

Accuracy 94.76% 96.76% 92.17% 95.66% 95.56% 73.36%

Precision 0.88 0.95 0.87 0.91 0.94 0.72

Recall 0.88 0.90 0.73 0.89 0.85 0.71

F-Score 0.88 0.91 0.77 0.90 0.89 0.72

False Alarm
Rate (FAR)

1.4% 0.76% 2.1% 1.6% 0.76 8.6%

Detection
Rate

88.2% 91.3% 55% 88.12% 86.25 72.26%

Training Time 0.3 seconds 6.189 seconds 0.0005 seconds 0.54 seconds 2.69 seconds 0.06 seconds

AUC score 0.93 0.99 0.97 0.99 0.99 0.83

Table 7.2: Performance of neural network based classifier trained with the features ex-
tracted by PCA.

PCA(with 95% variance)
with Min-Max scaler [80
features]

PCA(with 95% variance)
with Standard scaler [120
features]

PCA (with 95% variance)
with Robust scaler [120
features]

Accuracy 94.78% 93.48% 91.37%

False Alarm Rate (FAR) 2.1% 3.4% 4.4%

Detection Rate 96.8% 94.8% 91.6%

Training Time 3.25 seconds 5.09 seconds 5.09 seconds

78

PCA(with 95% variance)
with Min-Max scaler [80
features]

PCA(with 95% variance)
with Standard scaler [120
features]

PCA (with 95% variance)
with Standard scaler [120
features]

AUC score 0.98 0.97 0.96

Table 7.3 summarizes the performance of machine learning classifiers when PCA
was used as the dimensionality reduction with z-score normalization. While consid-
ering PCA with z-score normalization, Random Forest and Support Vector Machine
with rbf kernel shows the similar false alarm rates which is as low as 1.6%. But,
Random Forest outperforms the SVM model while detecting malicious traces.

Table 7.3: Performance of the classifiers trained with the features extracted by PCA and
scaled with z-normalization

PCA with variance 0.95 and Standard scaler

Decision Tree Random For-
est

Logistic Re-
gression

Support
Vector Ma-
chine(with rbf
kernel)

XG-Boost One Class-
SVM

Accuracy 94.76% 97.1% 94.88% 95.21% 96.05% 78.84%

Precision 0.88 0.96 0.89 0.88 0.94 0.72

Recall 0.88 0.90 0.87 0.91 0.87 0.78

F-Score 0.87 0.92 0.87 0.89 0.90 0.75

False Alarm
Rate (FAR)

2.4% 1.6% 2.4% 1.6% 2.8% 8.46%

Detection
Rate

90.2% 92.3% 85% 88.12% 88.25 71.36%

Training Time 0.4 seconds 6.9 seconds 0.0005 seconds 0.83 seconds 3.86 seconds 0.08 seconds

AUC score 0.94 0.99 0.97 0.99 0.99 0.80

The same configuration was used to evaluate the neural network-based classifier,
which showed a promising detection rate but a higher false-positive rate. When PCA
was clubbed with robust-scaling, SVM showed the lowest false alarm rate, and the
neural network-based classifier indicated the highest detection rate.

Finally, it can be deduced from all the experimentation related to PCA that the
Neural Network and Min-Max scaling together result in the highest detection rate of
96.8%, and Random Forest with Min-Max scaling result the lowest false alarm rate
of 0.76%.

79

7.2.2 Performance Based on the Features Extracted by Autoencoder

Table 7.4 describes the performance of different machine learning classifiers when
min-max normalization was applied to the features extracted by the Autoencoder. It
can be observed from Table 7.4 that the Random Forest classifier has outperformed
other machine learning classifiers while evaluated using this configuration. Even if
the required time to train the random forest model is higher than the other classifiers,
the model performs considerably better while reducing the number of false positives
and false negatives. It can be observed that all the classifiers have performed signif-
icantly well while reducing the false positives. The same configuration was used to
train a neural network, which resulted in a higher detection rate of 93.8%, but the
classifier was not efficient enough to reduce the false alarms. Table 7.5 provides a
performance summarization of the neural network-based classifiers trained with the
features extracted by Auto Encoder.

Table 7.4: Performance of machine learning classifiers trained with the features extracted
by Auto Encoder and scaled with Min-Max normalization

AutoEncoder with Min-Max scaler

Decision Tree Random For-
est

Logistic Re-
gression

Support
Vector Ma-
chine(with rbf
kernel)

XG-Boos t One Class-
SVM

Accuracy 94.36% 96.70% 91.11% 94.31% 95.6% 82.3%

Precision 0.87 0.95 0.83 0.88 0.94 0.82

Recall 0.86 0.89 0.69 0.83 0.84 0.78

F-Score 0.86 0.92 0.74 0.86 0.88 0.80

False Alarm
Rate (FAR)

2% 0.7% 1.5% 1.5% 0.79% 7.89%

Detection
Rate

87.2% 91% 46% 77.77% 77.11% 76.62%

Training Time 0.28 seconds 6.12 seconds 0.0004 seconds 0.54 seconds 2.83 seconds 0.08 seconds

AUC score 0.92 0.99 0.97 0.99 0.99 0.86

80

Table 7.5: Performance of neural network based classifier trained with the features ex-
tracted by Auto Encoder.

AutoEncoder with Min-
Max scaler (86 features)

AutoEncoder with Stan-
dard scaler(86 features)

AutoEncoder with Robust
scaler (86 features)

Accuracy 94.59% 95.59% 91.2%

False Alarm Rate (FAR) 4.4% 1.7% 8.2%

Detection Rate 94.8% 90.5% 91.2%

Training Time 3.55 seconds 3.48 seconds 3.81 seconds

AUC score 0.97 0.97 0.94

Table 7.7 and 7.6 summarizes the performance of machine learning classifiers when
Auto Encoder was used as the dimensionality reduction technique with z-score nor-
malization and robust scaling. While considering Auto Encoder as a dimensionality
reduction technique with z-score normalization, Random Forest, and Decision Tree
shows a similar detection rate which is around 88%. But, Random Forest outperforms
the Decision Tree-based model while reducing the False Alarm rate. As expected, an-
other tree-based model XG-Boost also displays promising results with a false alarm
rate of 0.7%.

Table 7.6: Performance of machine learning classifiers trained with the features extracted
by Auto Encoder and scaled with Robust Scaling

AutoEncoder with Robust scaler

Decision Tree RandomForest Logistic Re-
gression

Support
Vector Ma-
chine(with rbf
kernel)

XG-Boost One Class-
SVM

Accuracy 94.42% 96.33% 92.75% 92.05% 95.10% 76.9%

Precision 0.87 0.93 0.84 0.84 0.93 0.75

Recall 0.85 0.88 0.80 0.73 0.82 0.69

F-Score 0.86 0.91 0.81 0.77 0.86 0.72

False Alarm
Rate (FAR)

2.4% 0.8% 1.5% 1.5% 1.4% 8.2%

Detection
Rate

85.8% 84% 46% 53.08% 72% 72.2%

Training Time 0.31 seconds 6.23 seconds 0.0004 seconds 0.72 seconds 2.76 seconds 0.005 seconds

AUC score 0.91 0.99 0.97 0.99 0.98 0.82

The same configuration was used to evaluate the neural network based classifier,
which showed a promising detection rate of 94.8% but a higher false alarm rate of

81

4.4%. When AutoEncoder was clubbed with robust-scaling, Random Forest again
outperforms the other classifiers straightaway with a high detection rate of 91.65%
and a low false alarm rate of 0.8%.

Finally, it can be deduced from all the experimentation under this specific config-
uration that the Random Forest-based classifier Z-score normalized data shows the
highest detection rate of 91.93%, as well as the lowest false alarm rate of 0.5%.

Table 7.7: Performance of machine learning classifiers trained with the features extracted
by Auto Encoder and scaled with z-score normalization

AutoEncoder with z-score normalization

Decision Tree RandomForest Logistic Re-
gression

Support
Vector Ma-
chine(with rbf
kernel)

XG-Boost One Class-
SVM

Accuracy 94.70% 96.78% 93.81% 91.4% 95.10% 81.24%

Precision 0.87 0.95 0.87 0.89 0.93 0.79

Recall 0.88 0.91 0.83 0.66 0.83 0.78

F-Score 0.88 0.92 0.85 0.71 0.87 0.78

False Alarm
Rate (FAR)

3.1% 0.5% 2.4% 1.7% 0.7% 7.12%

Detection
Rate

87.8% 86.7% 78.6% 80.5% 75.3% 76.6%

Training Time 0.31 seconds 6.23 seconds 0.0005 seconds 0.65 seconds 2.76 seconds 0.056 seconds

AUC score 0.92 0.99 0.97 0.98 0.98 0.82

7.2.3 Performance based on the features selected by RF-RFE

Table 7.8 describes the performance of different machine learning classifiers when
Random Forest-based Recursive Feature elimination is used as the dimensionality
reduction technique with min-max normalization scaling. It can be observed from that
Random Forest classifier has outperformed other machine learning classifiers while
evaluated using this configuration. Even if the required time to train the random
forest model is higher than the other classifiers, the model performs considerably
better while reducing the number of false positives and false negatives. It can be
observed from the table 7.8 that all the classifier has performed significantly well
while reducing the false positives. The same configuration was used to train a neural
network, which resulted in a higher detection rate of 95.7% and false alarm rate of

82

0.8%. Table 7.9 provides a summarization of the neural network-based classifiers
trained with the features extracted by RF-RFE.

Table 7.8: Performance of machine learning classifiers trained with the features selected
by RF-RFE and scaled with Min-Max normalization

RF-RFE and Min-Max scaler

Decision Tree Random For-
est

Logistic Re-
gression

Support
Vector Ma-
chine(with rbf
kernel)

XG-Boost One Class-
SVM

Accuracy 96.28% 97.05% 92.05% 94.66% 95.88% 76.62%

Precision 0.92 0.95 0.87 0.90 0.95 0.76

Recall 0.90 0.91 0.72 0.83 0.85 0.71

F-Score 0.91 0.93 0.76 0.86 0.89 0.73

False Alarm
Rate (FAR)

2.1% 0.7% 1.7% 1.9% 0.8% 7.96%

Detection
Rate

89.5% 91% 55% 84.15% 72.9%

71.16%
Training Time 0.07 seconds 1.78 seconds 0.0002 seconds 0.61 seconds 1.9 seconds 0.006 seconds

AUC score 0.93 1.00 0.96 0.98 0.99 0.82

Table 7.9: Performance of neural network based classifier trained with the features selected
by RF-RFE

RFE with Min-Max scaler
(92 features)

RFE with Standard
scaler(92 features)

RFE with Robust scaler
(92 features)

Accuracy 97.8 98.25 96.9

False Alarm Rate (FAR) 0.72% 3.1% 4.3%

Detection Rate 96.3% 96.2% 94.7%

Training Time 3.52 seconds 3.22 seconds 3.64 seconds

AUC score 0.982 0.987 0.98

I have conducted experiments using other data scaling techniques with RF-RFE
but results were almost similar. The neural network classifier trained on the RF-RFE
based features showed a promising detection rate of 96.2% but a higher false alarm
rate of 3.1% when trained and evaluated normalized data using z-score. When RFE
was clubbed with Min-Max-scaling, it provides a higher detection rate of 96.3% as
well as lower false alarm rate of 0.72%.

83

7.3 The Trade-off between False Alarm Rate and Detection Rate

The effectiveness of classifiers is visually presented by plotting false alarm rate vs
detection rate. The framework was built in such as a manner that maximizes the
detection and minimizes the false alarm rate. It can be depicted from Figure 7.1 that,
the neural network based classifier results the highest detection rate and random forest
shows the lowest false alarm rate while using PCA as feature reduction technique.

Figure 7.1: False Alarm Rate vs Detection Rate(Classifiers trained with the features
retrieved by PCA)

Figure 7.2 visualizes the performance of the classifier when Auto Encoder is used
as dimensionality reduction technique. It can be observed that all the learning mod-
els were able reduce the false alarm rate very efficiently. The performance of Auto
Encoder feature extraction based models has a trade-off between the False alarm rate
and detection rate. As an example from Figure 7.3 , random forest indicates the
lowest false alarm rate rate but lowest detection rate too which is not acceptable. By
analyzing the trade-off for false alarm rate and detection rate, it has been realized
that a the final model needs to be chosen in such a way that shows a higher detection
rate as well as very low false alarm rate. While comapring different proposed meth-
ods, I mainly focused on false alarm rate and detection rate because it represents
the optimal efficiency of the model by interpreting classification capability as well as
misclassification performance of the model. The false alarm rate not only identifies

84

false positives, but also recognizes false negatives too.

Figure 7.2: False Alarm Rate vs Detection Rate(Classifiers trained with the features
retrieved by Auto Encoder)

Figure 7.3: False Alarm Rate vs Detection Rate(Classifiers trained with the features
selected by RF-RFE)

85

7.4 Comparison with the existing approaches

Table 7.10 presents a detailed comparison of performance of the proposed approach
with the existing state of the art approaches. While performing the experiment and
comparing the proposed approaches with the existing ones, I put a significant effort to
build a similar environment (system configuration, hardware, dependencies) followed
by the other researchers to justify the comparisons 2.

Procedures such as semantic feature extraction, frequency-domain feature selec-
tion show a promising detection rate but fail to reduce false-positive rate eventually.
Similarly, the LSTM and CNN based language models show an impressive detection
rate of 100% but fail to generalize while reducing false alarms. In order to address
the trade-off between false alarm rate and detection rate, the designed approach can
provide a better result. From all the experimented configurations, I finally chose six
models for comparing with the existing methods. From the pool of developed mod-
els,PCA+Min-Max normalization + ANN model performs best while detecting
malicious traces. Auto Encoder+Min-Max normalization + Random Forest
model performed better then other models while reducing the false alarm rate. But
I always aimed for a solution that indicates a perfect balance between false alarm
rate and detection rate. I could notice that RF-RFE+Min-Max normalization
+ ANN model showed a high detection rate of 96.8% and a low False alarm rate of
0.72%. This Neural Network-based model exhibits the lowest training time of all the
chosen models. I can confidently conclude from these observations that the proposed
framework was able to perform signifcantly better than the existing approaches in
terms of reducing False alarm rate and increasing detection rate. Additionally, the
proposed approach was also ably reduced the training time of the model, which is
better than most of the existing approach, as indicated in table 7.10. Though the
method proposed by Haider et al. [7] takes lesser time to train the model. However,
our proposed approach exhibits a better performance in terms of false alarm rate and
detection rate. Even if the raining time is more but still acceptable because of the
efficient handling of trade off between false alarm rate and detection rate.

2The proposed models are based on the features retrieved by IDZW method [7] and frequency
based method [84]. As the creators of these techniques already published a set of results using these
methods independently, I compared the result of my proposed hybrid approach with those existing
approaches individually and presented my interpretation.

86

These set of the experiments and evaluation of the models confirm that the pro-
posed framework successfully addresses the research problem discussed in chapter
3.

Table 7.10: Comparison of the performance of the proposed framework with existing sys-
tems

False
Alarm
Rate

Detection Rate AUC Score Processing time

Semantic features and
ELM [91]

15% 90% Not Reported 1 week

System calls short sequence
and one class SVM [88]

20% 70% Not Reported Few Hours

System calls short sequence
and kNN, k-mean cluster-
ing [18]

20% 60% Not Reported Few Seconds(as re-
ported)

Frequency domain Feature
selection approach [22]

16% 95% Not Reported Not reported

Using Hidden Markov
Model

42% 90% Not Reported Few hours

LSTM-Based language
modeling [89]

50% 100% 0.84 More than 10 sec-
onds

Combined CNN/RNN
based model [92]

60% 100% 0.81 Not reported

Integer Zero Watermark
Feature retrieval (using z-
score normalized feature
and ELM) [7]

1% 91% Not Reported 1 millisecond

Proposed
Approach(PCA+Min-
Max normalization +
Random Forest)

0.76% 91.33% 0.99 6.18 seconds

Proposed
Approach(PCA+Min-
Max normalization + ANN
)

2.1% 96.8% 0.98 3.25 seconds

Proposed Approach(Auto
Encoder+Min-Max nor-
malization + ANN)

4.4% 93.8% 0.97 3.55 seconds

Proposed Approach(Auto
Encoder+Min-Max nor-
malization + Random
Forest)

0.7% 91.65% 0.99 6.12 seconds

Proposed Approach(R-
RFE+Min-Max normaliza-
tion + ANN)

0.72% 96.3% 0.98 3.25 seconds

Chapter 8

Conclusion

The thesis has broadly focused on building a machine learning framework for host-
based intrusion detection using system call identifiers. As stated in the research
problem in Section 3, I primarily focused on building a hybrid feature retrieval tech-
nique that retains both the frequency features of the system calls, as well as the
hidden representative information. It has been realized that feature retrieval plays
a crucial role in extracting valuable information from the system call that helps to
differentiate the malicious system calls from the nonmalicious calls. In addition to
the feature retrieval approach, I further concentrated on the efficient application of
dimensionality reduction techniques and development decision engines. Dimension-
ality reduction techniques represent the features in the lower dimensional space that
reduces the processing cost of the decision engine. Decision engines help to classify
if a system call is malicious or not. An efficient amalgamation of all these above
approaches pave the path for building the HIDS framework that increases the detec-
tion rate, reduces the false alarm rate, and minimizes training time than most of the
existing methods.

It has been realized during the framework development that feature retrieval plays
a major role that affects the evaluation of the proposed framework significantly. In
ADFA-LD, some long traces contains more than a thousand system call but only a
small part of it contains anomaly. Short sequences extracted from long malicious
traces can be similar to short sequences extracted from benign traces. Training with
these ambiguous short sequences might lead to major confusion for the decision en-
gines. I have noticed during the literature survey that researchers have focused on
the feature retrieval to improve the performance of the classifiers and I reached to the
same conclusion while evaluating the proposed framework.

The feasability of the application of the feature retireval approach is very generic
in nature and it does not depend on any external dependencies. Even if the kernel

87

88

version is changed, the proposed feature retireval technique can work similarly to
extract both the natural difference and sequence based features for each system call
in a trace.

Another important observation that has been made during the experimental phase
is a balance between false alarm rate and detection rate. It has been noticed that,if
I tune the classifier to maximize the detection rate, it reduces the false alarm rate
eventually and vice versa. It is very important to find the "perfect" spot that balances
between these metrics.

I have used both supervised and semi-supervised approaches in order to train the
classifiers. Both the approach focuses the same set of features but in the supervised
approach, the classifiers are trained with both the benign and malicious traces but in
the semi-supervised approach the classifiers are trained with only benign system call
traces in order create a generalized benign profile. I have two major contributions in
this thesis: 1) The hybrid feature retrieval technique that was able to discriminate
efficiently between benign and malicious traces. I could analyze and justify from
the previous work that the proposed model has performed better the state of the art
approaches based on IDZW method, frequency modeling method, and language mod-
eling methods, and HMM based methods. 2) Using different dimensionality reduction
techniques, the training time of the classifiers have reduced drastically without af-
fecting the evaluation metrics negatively.

8.1 Limitations

The framework is designed and validated to detect low footprint attacks. As the
nature of low footprint and high footprint attacks are diferent and the degree of
separability between these two are significanlty low, it is not sure if the proposed
frmaework will work efficienly for detecting low footprint attacks.

The results of the learning models were compared in term of detection rate, and
false alarm rate. No statistical tests such as comparison of p value have not been
performed to compare the perfomace of learning techniques.

89

8.2 Future Work

As a future scope of the current work, I want to extend my research in the field of
building a Cognitive Module(CM) which can be integrated with the decision engine
module of the existing framework. The cognitive module works on the principle of
rule-based detection. The cognitive module can be placed in such a way that all the
test system call traces can be passed through the Cognitive module at first. Then
the traces coming out of the CM can be fed into the machine learning based decision
engine. The main reasoning behind this approach is to accelerate the attack detection
rate. As the rule based detection is fast and efficient, the traces which are detectable
by the rule-based system, are not required to be passed through the classification
model. This approach can reduce the computation cost of the system dramatically.
This is an amalgamation of the misuse detection approach and the anomaly detection
approach. In addition to that, the observation from the decision engine can be used
to create and update rules and policies for the rule-based detector. This approach
makes will make the framework adaptive for detecting novel attacks.

In addition to the above scope, an Intrusion Response System (IRS) and Alert
Generation module can be integrated with the proposed HIDS framework. An IDS
with an Intrusion Response Module enables a system to mitigate the damage and
recover from any detected attacks. There are a few important criteria that classify
and define the working principles of the Intrusion Response System such as Level of
automation, response cost, response time, and adjustment availability. To implement
this module with effective generalization, I can build several sub-modules such as
the Alert Integration module, Alert correlation module, Adaptive Risk Assessment
module, and Recovery and Eradicate module.

Another future scope of present work can be unfolded by implementing the pro-
posed HIDS based on the principle of Federated Learning. Federate Learning, pro-
posed by McMahan et al. [141] is a collaborative learning technique that jointly
trains global machine learning models without sharing their privacy-sensitive data on
a server. Federated learning can be considered a perfect fit for distributed multitask
computing. In a typical horizontal federated learning structure, there is one server
connected to multiple clients. Each client trains its own data and sends the trained

90

model (updated parameters) to the server in order to execute aggregation. The train-
ing data in each of the individual client is never uploaded to the server. Only, the
aggregated and updated model in the server is sent to the individual host. This train-
ing process gets repeated iteratively until the global model in the server converges or
the number of the maximum round during the training procedure is reached. In the
federated learning structure, the federated averaging algorithm is used to calculate
the average of the local model weights or the gradient updates in each of the individ-
ual clients. This privacy-preserving approach will ensure the security of the training
process as the individual hosts are not required to send any sensitive training data
to the centralized server. As the server and hosts involved in parameter exchanging,
the training cost can be significantly reduced using this approach. Another major
advantage of this approach is the fast and efficient development of the generalized
profile.

This is how the existing research can be further developed in different directions.

Bibliography

[1] SYSTEMS and TECHNOLOGY, “Detecting cyberattacks through the
ever-evolving cybersecurity industry,” 2019. [Online]. Available: https:
//www.getsmarter.com/blog/career-advice/how-to-detect-a-cyberattack/

[2] P. Sangkatsanee, N. Wattanapongsakorn, and C. Charnsripinyo, “Practical
real-time intrusion detection using machine learning approaches,” Computer
Communications, vol. 34, no. 18, pp. 2227 – 2235, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S014036641100209X

[3] M. Liu, Z. Xue, X. Xu, C. Zhong, and J. Chen, “Host-Based Intrusion
Detection System with System Calls: Review and Future Trends,” ACM
Comput. Surv., vol. 51, no. 5, pp. 1–36, November 2018. [Online]. Available:
http://doi.acm.org/10.1145/3214304

[4] Y. Wang, S. Wen, Y. Xiang, and W. Zhou, “Modeling the Propagation
of Worms in Networks: A Survey,” IEEE Communications Surveys
& Tutorials, vol. 16, no. 2, pp. 942–960, 2014. [Online]. Available:
http://ieeexplore.ieee.org/document/6644336/

[5] N. Moustafa and J. Slay, “The Significant Features of the UNSW-
NB15 and the KDD99 Data Sets for Network Intrusion Detection
Systems,” in 2015 4th International Workshop on Building Analysis
Datasets and Gathering Experience Returns for Security (BADGERS).
Kyoto, Japan: IEEE, November 2015, pp. 25–31. [Online]. Available:
http://ieeexplore.ieee.org/document/7809531/

[6] Metasploit, “Metasploit | Penetration Testing Software, Pen Testing Security |
Metasploit.” [Online]. Available: https://www.metasploit.com/

[7] W. Haider, J. Hu, X. Yu, and Y. Xie, “Integer Data Zero-Watermark Assisted
System Calls Abstraction and Normalization for Host Based Anomaly Detection
Systems,” in 2015 IEEE 2nd International Conference on Cyber Security and
Cloud Computing, November 2015, pp. 349–355.

[8] W. Haider, J. Hu, and M. Xie, “Towards reliable data feature retrieval and
decision engine in host-based anomaly detection systems,” in 2015 IEEE 10th
Conference on Industrial Electronics and Applications (ICIEA), June 2015, pp.
513–517.

[9] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff, “A sense of self for Unix
processes,” in Proceedings 1996 IEEE Symposium on Security and Privacy, May
1996, pp. 120–128, iSSN: 1081-6011.

91

https://www.getsmarter.com/blog/career-advice/how-to-detect-a-cyberattack/
https://www.getsmarter.com/blog/career-advice/how-to-detect-a-cyberattack/
http://www.sciencedirect.com/science/article/pii/S014036641100209X
http://doi.acm.org/10.1145/3214304
http://ieeexplore.ieee.org/document/6644336/
http://ieeexplore.ieee.org/document/7809531/
https://www.metasploit.com/

92

[10] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using
sequences of system calls,” Journal of Computer Security, vol. 6, no. 3,
pp. 151–180, July 1998. [Online]. Available: https://www.medra.org/servlet/
aliasResolver?alias=iospress&doi=10.3233/JCS-980109

[11] S. Forrest, S. Hofmeyr, and A. Somayaji, “The Evolution of System-Call
Monitoring,” in 2008 Annual Computer Security Applications Conference
(ACSAC). Anaheim, CA, USA: IEEE, December 2008, pp. 418–430. [Online].
Available: http://ieeexplore.ieee.org/document/4721577/

[12] W. Haider, J. Hu, Y. Xie, X. Yu, and Q. Wu, “Detecting Anomalous Behav-
ior in Cloud Servers by Nested-Arc Hidden SEMI-Markov Model with State
Summarization,” IEEE Transactions on Big Data, vol. 5, no. 3, pp. 305–316,
September 2019.

[13] L. Mé, S. Profile, J. Zimmermann, L. Mé, and C. Bidan, “Experimenting with a
policy-based hids based on an information flow control model,” in In Proceedings
of the Annual Computer Security Applications Conference (ACSAC, 2003.

[14] G. Creech and J. Hu, “Generation of a new IDS test dataset: Time to retire
the KDD collection,” in 2013 IEEE Wireless Communications and Networking
Conference (WCNC), April 2013, pp. 4487–4492.

[15] U. o. N. M. Computer Science Department, Farris Engineering Center,
“Computer Immune Systems - Data Sets and Software.” [Online]. Available:
https://www.cs.unm.edu/~immsec/systemcalls.htm

[16] M. V. Mahoney and P. K. Chan, “An Analysis of the 1999 DARPA/Lincoln
Laboratory Evaluation Data for Network Anomaly Detection,” in Recent
Advances in Intrusion Detection, G. Goos, J. Hartmanis, J. van Leeuwen,
G. Vigna, C. Kruegel, and E. Jonsson, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003, vol. 2820, pp. 220–237. [Online]. Available:
http://link.springer.com/10.1007/978-3-540-45248-5_13

[17] S. S. Murtaza, W. Khreich, A. Hamou-Lhadj, and M. Couture, “A host-based
anomaly detection approach by representing system calls as states of kernel
modules,” in 2013 IEEE 24th International Symposium on Software Reliability
Engineering (ISSRE), November 2013, iSSN: 1071-9458, 2332-6549.

[18] M. Xie, J. Hu, X. Yu, and E. Chang, “Evaluating Host-Based Anomaly
Detection Systems: Application of the Frequency-Based Algorithms to
ADFA-LD,” in Network and System Security, M. H. Au, B. Carminati, and
C.-C. J. Kuo, Eds. Cham: Springer International Publishing, 2014, vol. 8792,
pp. 542–549. [Online]. Available: http://link.springer.com/10.1007/978-3-319-
11698-3_44

https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JCS-980109
https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JCS-980109
http://ieeexplore.ieee.org/document/4721577/
https://www.cs.unm.edu/~immsec/systemcalls.htm
http://link.springer.com/10.1007/978-3-540-45248-5_13
http://link.springer.com/10.1007/978-3-319-11698-3_44
http://link.springer.com/10.1007/978-3-319-11698-3_44

93

[19] “Study: Hackers Attack Every 39 Seconds,” library Catalog: eng.umd.edu.
[Online]. Available: https://eng.umd.edu/news/story/study-hackers-attack-
every-39-seconds

[20] “Business Losses to Cybercrime Data Breaches to Exceed $5 trillion
by 2024,” library Catalog: www.juniperresearch.com. [Online]. Avail-
able: https://www.juniperresearch.com/press/press-releases/business-losses-
cybercrime-data-breaches

[21] D. Milkovich, “13 alarming cyber security facts and stats,” 2018. [Online].
Available: https://www.cybintsolutions.com/cyber-security-facts-stats/

[22] W. Haider, J. Hu, and N. Moustafa, “Designing Anomaly Detection System for
Cloud Servers by Frequency Domain Features of System Call Identifiers and
Machine Learning,” in Mobile Networks and Management, ser. Lecture Notes
of the Institute for Computer Sciences, Social Informatics and Telecommunica-
tions Engineering. Springer International Publishing, 2018, pp. 137–149.

[23] W.Lin, H.Lin, P.Wang, B.Wu, and J.Tsai, “Using convolutional neural networks
to network intrusion detection for cyber threats,” in 2018 IEEE International
Conference on Applied System Invention (ICASI). Chiba, Japan: IEEE, 2018,
pp. 1107–1110.

[24] H.-J. Liao, C.-H. Richard Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion
detection system: A comprehensive review,” Journal of Network and Computer
Applications, vol. 36, no. 1, pp. 16–24, January 2013. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1084804512001944

[25] “Cyberattack,” February 2020, page Version ID: 940598565. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Cyberattack&oldid=940598565

[26] Weltwirtschaftsforum and Z. I. Group, Global risks 2019: insight
report. World Economic Forum, Switzerland, 2019. [Online]. Available:
http://www3.weforum.org/docs/WEF_Global_Risks_Report_2019.pdf

[27] R. Shirey, “Internet Security Glossary,” RFC Editor, Tech. Rep. RFC2828,
May 2000. [Online]. Available: https://www.rfc-editor.org/info/rfc2828

[28] he National Counterintelligence and S. C. (NCSC), “Ncsc home.” [Online].
Available: https://www.dni.gov/index.php/ncsc-home

[29] J. H. Jafarian, E. Al-Shaer, and Q. Duan, “An effective address mutation ap-
proach for disrupting reconnaissance attacks,” IEEE Transactions on Informa-
tion Forensics and Security, vol. 10, no. 12, pp. 2562–2577, December 2015.

[30] G. R. Zargar and P. Kabiri, “Identification of effective network features for
probing attack detection,” in 2009 First International Conference on Networked
Digital Technologies, July 2009, pp. 392–397.

https://eng.umd.edu/news/story/study-hackers-attack-every-39-seconds
https://eng.umd.edu/news/story/study-hackers-attack-every-39-seconds
https://www.juniperresearch.com/press/press-releases/business-losses-cybercrime-data-breaches
https://www.juniperresearch.com/press/press-releases/business-losses-cybercrime-data-breaches
https://www.cybintsolutions.com/cyber-security-facts-stats/
https://linkinghub.elsevier.com/retrieve/pii/S1084804512001944
https://en.wikipedia.org/w/index.php?title=Cyberattack&oldid=940598565
http://www3.weforum.org/docs/WEF_Global_Risks_Report_2019.pdf
https://www.rfc-editor.org/info/rfc2828
https://www.dni.gov/index.php/ncsc-home

94

[31] G. F. Lyon, Nmap Network Scanning: The Official Nmap Project Guide to
Network Discovery and Security Scanning. USA: Insecure, 2009.

[32] P. Ning, Y. Cui, and D. S. Reeves, “Constructing attack scenarios
through correlation of intrusion alerts,” in Proceedings of the 9th ACM
Conference on Computer and Communications Security, ser. CCS ’02.
New York, NY, USA: ACM, 2002, pp. 245–254. [Online]. Available:
http://doi.acm.org/10.1145/586110.586144

[33] P. Ram and D. K. Rand, “Satan: double-edged sword,” Computer, vol. 28,
no. 6, pp. 82–83, June 1995.

[34] J. Gadge and A. A. Patil, “Port scan detection,” in 2008 16th IEEE Interna-
tional Conference on Networks, December 2008, pp. 1–6.

[35] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, “A deep learning approach
for network intrusion detection system,” in Proceedings of the 9th EAI
International Conference on Bio-inspired Information and Communications
Technologies (Formerly BIONETICS), ser. BICT’15. ICST, Brussels, Belgium,
Belgium: ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2016, pp. 21–26. [Online]. Available:
http://dx.doi.org/10.4108/eai.3-12-2015.2262516

[36] R.Masood, U. e Ghazia, and Z. Anwar, “Swam: Stuxnet worm analysis in
metasploit,” in 2011 Frontiers of Information Technology. Islamabad, Pak-
istan: IEEE, December 2011, pp. 142–147.

[37] N. Moustafa and J. Slay, “Unsw-nb15: a comprehensive data set for network
intrusion detection systems (unsw-nb15 network data set),” in 2015 Military
Communications and Information Systems Conference (MilCIS), November
2015, pp. 1–6.

[38] J. A. Mahal and T. Charles Clancy, “Analysis of pilot-spoofing attack in miso-
ofdm system over correlated fading channel,” in MILCOM 2018 - 2018 IEEE
Military Communications Conference (MILCOM), October 2018, pp. 341–346.

[39] T. Dinh Tu, C. Guang, G. Xiaojun, and P. Wubin, “Webshell detection tech-
niques in web applications,” in Fifth International Conference on Computing,
Communications and Networking Technologies (ICCCNT), July 2014, pp. 1–7.

[40] R. Zhu, T. Shu, and H. Fu, “Empirical statistical inference attack against PHY-
layer key extraction in real environments,” in MILCOM 2017 - 2017 IEEE
Military Communications Conference (MILCOM), October 2017, pp. 46–51.

[41] O. Nakhila, A. Attiah, Y. Jin, and C. Zou, “Parallel active dictionary attack
on wpa2-psk wi-fi networks,” in MILCOM 2015 - 2015 IEEE Military Commu-
nications Conference, October 2015, pp. 665–670.

http://doi.acm.org/10.1145/586110.586144
http://dx.doi.org/10.4108/eai.3-12-2015.2262516

95

[42] E. Erdin, H. Aksu, S. Uluagac, M. Vai, and K. Akkaya, “OS Independent and
Hardware-Assisted Insider Threat Detection and Prevention Framework,” in
MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM),
October 2018, pp. 926–932.

[43] E. Ficke, K. M. Schweitzer, R. M. Bateman, and S. Xu, “Characterizing the Ef-
fectiveness of Network-Based Intrusion Detection Systems,” in MILCOM 2018
- 2018 IEEE Military Communications Conference (MILCOM), October 2018,
pp. 76–81.

[44] Y. Dai, M. Xie, K. Poh, and G. Liu, “A study of service reliability
and availability for distributed systems,” Reliability Engineering & System
Safety, vol. 79, no. 1, pp. 103 – 112, 2003. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0951832002002004

[45] A. Muallem, S. Shetty, L. Hong, and J. W. Pan, “Tddeht: Threat detection
using distributed ensembles of hoeffding trees on streaming cyber datasets,” in
MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM),
October 2018, pp. 1–6.

[46] M. Feily, A. Shahrestani, and S. Ramadass, “A survey of botnet and botnet
detection,” in 2009 Third International Conference on Emerging Security In-
formation, Systems and Technologies, June 2009, pp. 268–273.

[47] I. Almomani and B. Al-Kasasbeh, “Performance analysis of leach protocol under
denial of service attacks,” in 2015 6th International Conference on Information
and Communication Systems (ICICS), April 2015, pp. 292–297.

[48] A. H. Anwar, J. Kelly, G. Atia, and M. Guirguis, “Stealthy edge decoy attacks
against dynamic channel assignment in wireless networks,” in MILCOM 2015 -
2015 IEEE Military Communications Conference, October 2015, pp. 671–676.

[49] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer, N. Weaver,
D. Adrian, V. Paxson, M. Bailey, and J. A. Halderman, “The matter of
heartbleed,” in Proceedings of the 2014 Conference on Internet Measurement
Conference, ser. IMC ’14. New York, NY, USA: ACM, 2014, pp. 475–488.
[Online]. Available: http://doi.acm.org/10.1145/2663716.2663755

[50] Avast, “What is Spyware | Free Spyware Scanner & Removal Tool | Avast.”
[Online]. Available: https://www.avast.com/c-spyware?hsSkipCache=true&
hs_ungate__cos_renderer_combine_all_css_disable=true

[51] Norton, “What is a computer worm and how does it work?” [On-
line]. Available: https://us.norton.com/internetsecurity-malware-what-is-a-
computer-worm.html

http://www.sciencedirect.com/science/article/pii/S0951832002002004
http://doi.acm.org/10.1145/2663716.2663755
https://www.avast.com/c-spyware?hsSkipCache=true&hs_ungate__cos_renderer_combine_all_css_disable=true
https://www.avast.com/c-spyware?hsSkipCache=true&hs_ungate__cos_renderer_combine_all_css_disable=true
https://us.norton.com/internetsecurity-malware-what-is-a-computer-worm.html
https://us.norton.com/internetsecurity-malware-what-is-a-computer-worm.html

96

[52] Avast, “What is ransomware & how to remove it avast.” [Online]. Avail-
able: https://www.avast.com/c-ransomware?hsSkipCache=true&hs_ungate_
_cos_renderer_combine_all_css_disable=true

[53] S. W. Boyd and A. D. Keromytis, “SQLrand: Preventing SQL Injection At-
tacks,” in Applied Cryptography and Network Security, M. Jakobsson, M. Yung,
and J. Zhou, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp.
292–302.

[54] D. Kapetanovic, G. Zheng, and F. Rusek, “Physical layer security for mas-
sive mimo: An overview on passive eavesdropping and active attacks,” IEEE
Communications Magazine, vol. 53, no. 6, pp. 21–27, 2015.

[55] G. Conti and K. Abdullah, “Passive visual fingerprinting of network
attack tools,” in Proceedings of the 2004 ACM Workshop on Visualization
and Data Mining for Computer Security, ser. VizSEC/DMSEC ’04.
New York, NY, USA: ACM, 2004, pp. 45–54. [Online]. Available:
http://doi.acm.org/10.1145/1029208.1029216

[56] M. B. Salem and S. J. Stolfo, “Masquerade attack detection using a search-
behavior modeling approach,” Columbia University, Computer Science Depart-
ment, Technical Report CUCS-027-09, 2009.

[57] N. Nikiforakis, W. Meert, Y. Younan, M. Johns, and W. Joosen, “Sessionshield:
Lightweight protection against session hijacking,” in Engineering Secure Soft-
ware and Systems, Ú. Erlingsson, R. Wieringa, and N. Zannone, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 87–100.

[58] N. Jovanovic, E. Kirda, and C. Kruegel, “Preventing cross site request forgery
attacks,” in 2006 Securecomm and Workshops, August 2006, pp. 1–10.

[59] D. Hartley, “What Is SQL Injection?” in SQL Injection Attacks
and Defense. Elsevier, 2012, pp. 1–25. [Online]. Available: https:
//linkinghub.elsevier.com/retrieve/pii/B9781597499637000013

[60] Z. Su and G. Wassermann, “The essence of command injection attacks
in web applications,” in Conference Record of the 33rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ser. POPL
’06. New York, NY, USA: ACM, 2006, pp. 372–382. [Online]. Available:
http://doi.acm.org/10.1145/1111037.1111070

[61] T. Threepak and A. Watcharapupong, “Web attack detection using entropy-
based analysis,” in The International Conference on Information Networking
2014 (ICOIN2014), February 2014, pp. 244–247.

[62] K. Krombholz, H. Hobel, M. Huber, and E. Weippl, “Advanced social engi-
neering attacks,” Journal of Information Security and applications, vol. 22, pp.
113–122, 2015.

https://www.avast.com/c-ransomware?hsSkipCache=true&hs_ungate__cos_renderer_combine_all_css_disable=true
https://www.avast.com/c-ransomware?hsSkipCache=true&hs_ungate__cos_renderer_combine_all_css_disable=true
http://doi.acm.org/10.1145/1029208.1029216
https://linkinghub.elsevier.com/retrieve/pii/B9781597499637000013
https://linkinghub.elsevier.com/retrieve/pii/B9781597499637000013
http://doi.acm.org/10.1145/1111037.1111070

97

[63] Avast, “What is Phishing? | Avoid Phishing Emails, Scams & Attacks |
Avast.” [Online]. Available: https://www.avast.com/c-phishing?hsSkipCache=
true&hs_ungate__cos_renderer_combine_all_css_disable=true

[64] D. Scott and R. Sharp, “Abstracting application-level web security,” in
Proceedings of the 11th International Conference on World Wide Web, ser.
WWW ’02. New York, NY, USA: ACM, 2002, pp. 396–407. [Online].
Available: http://doi.acm.org/10.1145/511446.511498

[65] Avast, “Rootkit Definition | Free Rootkit Scanner & Remover | Anti-rootkit.”
[Online]. Available: https://www.avast.com/c-rootkit?hsSkipCache=true&hs_
ungate__cos_renderer_combine_all_css_disable=true

[66] E. M. Rudd, A. Rozsa, M. Günther, and T. E. Boult, “A survey of stealth mal-
ware attacks, mitigation measures, and steps toward autonomous open world
solutions,” IEEE Communications Surveys Tutorials, vol. 19, no. 2, pp. 1145–
1172, 2017.

[67] A. Milenkoski, M. Vieira, S. Kounev, A. Avritzer, and B. D. Payne,
“Evaluating Computer Intrusion Detection Systems: A Survey of Common
Practices,” ACM Computing Surveys, vol. 48, no. 1, pp. 1–41, September 2015.
[Online]. Available: http://dl.acm.org/citation.cfm?doid=2808687.2808691

[68] H. Hindy, D. Brosset, E. Bayne, A. Seeam, C. Tachtatzis, R. Atkinson, and
X. Bellekens, “A Taxonomy and Survey of Intrusion Detection System Design
Techniques, Network Threats and Datasets,” arXiv:1806.03517 [cs], June 2018,
arXiv: 1806.03517. [Online]. Available: http://arxiv.org/abs/1806.03517

[69] M. Roesch, “Snort - lightweight intrusion detection for networks,” LISA ’99:
Proceedings of the 13th USENIX conference on System administrationNovember
1999, p. 11, 1999.

[70] OSSEC, “OSSEC - World’s Most Widely Used Host Intrusion Detection
System - HIDS.” [Online]. Available: https://www.ossec.net/

[71] G. Vigna and C. Kruegel, “Host-based Intrusion Detection,” in Handbook of
Information Security, 2006, p. 35.

[72] E. Vasilomanolakis, S. Karuppayah, M. Mühlhäuser, and M. Fischer,
“Taxonomy and Survey of Collaborative Intrusion Detection,” ACM
Computing Surveys, vol. 47, no. 4, pp. 1–33, May 2015. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2775083.2716260

[73] Z. A. Haddad, M. Hanoune, and A. Mamouni, “A collaborative framework for
intrusion detection (C-NIDS) in Cloud computing,” in 2016 2nd International
Conference on Cloud Computing Technologies and Applications (CloudTech),
May 2016, pp. 261–265.

https://www.avast.com/c-phishing?hsSkipCache=true&hs_ungate__cos_renderer_combine_all_css_disable=true
https://www.avast.com/c-phishing?hsSkipCache=true&hs_ungate__cos_renderer_combine_all_css_disable=true
http://doi.acm.org/10.1145/511446.511498
https://www.avast.com/c-rootkit?hsSkipCache=true&hs_ungate__cos_renderer_combine_all_css_disable=true
https://www.avast.com/c-rootkit?hsSkipCache=true&hs_ungate__cos_renderer_combine_all_css_disable=true
http://dl.acm.org/citation.cfm?doid=2808687.2808691
http://arxiv.org/abs/1806.03517
https://www.ossec.net/
http://dl.acm.org/citation.cfm?doid=2775083.2716260

98

[74] V. Chandola, E. Eilertson, L. Ertoz, G. Simon, and V. Kumar, “Minds:
Architecture & Design,” in Data Warehousing and Data Mining Techniques for
Cyber Security. Boston, MA: Springer US, 2007, vol. 31, pp. 83–107. [Online].
Available: http://link.springer.com/10.1007/978-0-387-47653-7_6

[75] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions using sys-
tem calls: alternative data models,” in Proceedings of the 1999 IEEE Symposium
on Security and Privacy (Cat. No.99CB36344), May 1999, pp. 133–145, iSSN:
1081-6011.

[76] Y. Qiao, X. Xin, Y. Bin, and S. Ge, “Anomaly intrusion detection method based
on HMM,” Electronics Letters, vol. 38, no. 13, pp. 663–664, June 2002.

[77] D. Hoang, J. Hu, and P. Bertok, “A multi-layer model for anomaly intrusion
detection using program sequences of system calls,” in The 11th IEEE Interna-
tional Conference on Networks, 2003. ICON2003., 01 2003, pp. 531– 536.

[78] R. Davis, B. Lovell, and T. Caelli, “Improved estimation of hidden Markov
model parameters from multiple observation sequences,” in Object recognition
supported by user interaction for service robots, vol. 2. Quebec City,
Que., Canada: IEEE Comput. Soc, 2002, pp. 168–171. [Online]. Available:
http://ieeexplore.ieee.org/document/1048264/

[79] X. Hoang and J. Hu, “An efficient hidden Markov model training scheme for
anomaly intrusion detection of server applications based on system calls,” in
Proceedings. 2004 12th IEEE International Conference on Networks (ICON
2004) (IEEE Cat. No.04EX955), vol. 2, November 2004, pp. 470–474, iSSN:
1531-2216.

[80] S. S. Murtaza, W. Khreich, A. Hamou-Lhadj, and S. Gagnon, “A
trace abstraction approach for host-based anomaly detection,” in 2015
IEEE Symposium on Computational Intelligence for Security and Defense
Applications (CISDA). Verona, NY, USA: IEEE, May 2015, pp. 1–8. [Online].
Available: http://ieeexplore.ieee.org/document/7208644/

[81] D. Yuxin, Y. Xuebing, Z. Di, D. Li, and A. Zhanchao, “Feature representation
and selection in malicious code detection methods based on static system calls,”
Computers & Security, vol. 30, no. 6-7, pp. 514–524, September 2011. [Online].
Available: https://linkinghub.elsevier.com/retrieve/pii/S016740481100068X

[82] E. Aghaei and G. Serpen, “Host-based anomaly detection using Eigentraces
feature extraction and one-class classification on system call trace data,” ArXiv,
p. 11, 2019.

[83] B. Abolhasanzadeh, “Nonlinear dimensionality reduction for intrusion detection
using auto-encoder bottleneck features,” in 2015 7th Conference on Information
and Knowledge Technology (IKT), May 2015, pp. 1–5.

http://link.springer.com/10.1007/978-0-387-47653-7_6
http://ieeexplore.ieee.org/document/1048264/
http://ieeexplore.ieee.org/document/7208644/
https://linkinghub.elsevier.com/retrieve/pii/S016740481100068X

99

[84] M. Xie, J. Hu, X. Yu, and E. Chang, “Evaluating Host-Based Anomaly
Detection Systems: Application of the Frequency-Based Algorithms to
ADFA-LD,” in Network and System Security, M. H. Au, B. Carminati, and
C.-C. J. Kuo, Eds. Cham: Springer International Publishing, 2014, vol. 8792,
pp. 542–549. [Online]. Available: http://link.springer.com/10.1007/978-3-319-
11698-3_44

[85] M. Xie, S. Han, and B. Tian, “Highly Efficient Distance-Based Anomaly Detec-
tion through Univariate with PCA in Wireless Sensor Networks,” in 2011IEEE
10th International Conference on Trust, Security and Privacy in Computing
and Communications, November 2011, pp. 564–571, iSSN: 2324-9013.

[86] M. Xie, J. Hu, S. Han, and H.-H. Chen, “Scalable Hypergrid k-NN-Based On-
line Anomaly Detection in Wireless Sensor Networks,” IEEE Transactions on
Parallel and Distributed Systems, vol. 24, no. 8, pp. 1661–1670, August 2013,
conference Name: IEEE Transactions on Parallel and Distributed Systems.

[87] A. N. Mahmood, J. Hu, Z. Tari, and C. Leckie, “Critical infrastructure
protection: Resource efficient sampling to improve detection of less frequent
patterns in network traffic,” J. Netw. Comput. Appl., vol. 33, no. 4, p. 491–502,
July 2010. [Online]. Available: https://doi.org/10.1016/j.jnca.2010.01.003

[88] M. Xie, J. Hu, and J. Slay, “Evaluating host-based anomaly detection systems:
Application of the one-class SVM algorithm to ADFA-LD,” in 2014 11th In-
ternational Conference on Fuzzy Systems and Knowledge Discovery (FSKD),
august 2014, pp. 978–982.

[89] G. Kim, H. Yi, J. Lee, Y. Paek, and S. Yoon, “LSTM-Based System-Call
Language Modeling and Robust Ensemble Method for Designing Host-Based
Intrusion Detection Systems,” arXiv:1611.01726 [cs], November 2016. [Online].
Available: http://arxiv.org/abs/1611.01726

[90] H. Sak, A. Senior, and F. Beaufays, “Long Short-Term Memory Based
Recurrent Neural Network Architectures for Large Vocabulary Speech
Recognition,” 2014. [Online]. Available: http://arxiv.org/abs/1402.1128

[91] G. Creech and J. Hu, “A Semantic Approach to Host-Based Intrusion Detec-
tion Systems Using Contiguousand Discontiguous System Call Patterns,” IEEE
Transactions on Computers, vol. 63, no. 4, pp. 807–819, April 2014.

[92] A. Chawla, B. Lee, S. Fallon, and P. Jacob, “Host Based Intrusion Detection
System with Combined CNN/RNN Model,” in ECML PKDD 2018 Workshops,
C. Alzate, A. Monreale, H. Assem, A. Bifet, T. S. Buda, B. Caglayan, B. Drury,
E. García-Martín, R. Gavaldà, I. Koprinska, S. Kramer, N. Lavesson, M. Mad-
den, I. Molloy, M.-I. Nicolae, and M. Sinn, Eds. Cham: Springer International
Publishing, 2019, vol. 11329, pp. 149–158.

http://link.springer.com/10.1007/978-3-319-11698-3_44
http://link.springer.com/10.1007/978-3-319-11698-3_44
https://doi.org/10.1016/j.jnca.2010.01.003
http://arxiv.org/abs/1611.01726
http://arxiv.org/abs/1402.1128

100

[93] Q. Chen, R. Luley, Q. Wu, M. Bishop, R. W. Linderman, and Q. Qiu, “An-
RAD: A Neuromorphic Anomaly Detection Framework for Massive Concurrent
Data Streams,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 29, pp. 1622–1636, May 2018, conference Name: IEEE Transactions on
Neural Networks and Learning Systems.

[94] W. Lee and S. J. Stolfo, “Data mining approaches for intrusion detection,”
Defense Technical Information Center, Tech. Rep., October 2000. [Online].
Available: http://www.dtic.mil/docs/citations/ADA401496

[95] W. Lee, S. Stolfo, and P. Chan, “Learning patterns from unix process execution
traces for intrusion detection,” AAAI Workshop on AI Approaches to Fraud
Detection and Risk Management, May 1997.

[96] G. Tandon and P. Chan, “Learning rules from system call arguments and se-
quences for anomaly detection,” Proceedings of the Eighteenth International
Florida Artificial Intelligence Research Society Conference, p. 10, 2005.

[97] Y. Lin, Y. Zhang, and Y.-j. Ou, “The Design and Implementation of Host-
Based Intrusion Detection System,” in 2010 Third International Symposium on
Intelligent Information Technology and Security Informatics, April 2010, pp.
595–598.

[98] J. Zimmermann, L. Mé, and C. Bidan, “Introducing reference flow control for
detecting intrusion symptoms at the os level,” in RAID’02: Proceedings of the
5th international conference on Recent advances in intrusion detection October
2002, vol. 2516, 10 2002, pp. 292–306.

[99] K. Wang, J. J. Parekh, and S. J. Stolfo, “Anagram: A Content Anomaly
Detector Resistant to Mimicry Attack,” in Recent Advances in Intrusion
Detection, D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern,
J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen,
M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, D. Zamboni,
and C. Kruegel, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
vol. 4219, pp. 226–248, series Title: Lecture Notes in Computer Science.
[Online]. Available: http://link.springer.com/10.1007/11856214_12

[100] T. Y. Win, H. Tianfield, and Q. Mair, “Detection of Malware and
Kernel-Level Rootkits in Cloud Computing Environments,” in 2015 IEEE
2nd International Conference on Cyber Security and Cloud Computing. New
York, NY, USA: IEEE, November 2015, pp. 295–300. [Online]. Available:
http://ieeexplore.ieee.org/document/7371497/

[101] E. . I. T. U. C. U. Creech, Gideon, “Developing a high-accuracy cross platform
host-based intrusion detection system capable of reliably detecting zero-day
attacks,” 2014.

http://www.dtic.mil/docs/citations/ADA401496
http://link.springer.com/10.1007/11856214_12
http://ieeexplore.ieee.org/document/7371497/

101

[102] Q. A. Tran, F. Jiang, and J. Hu, “A Real-Time NetFlow-based Intrusion De-
tection System with Improved BBNN and High-Frequency Field Programmable
Gate Arrays,” June 2012, pp. 201–208, iSSN: 2324-9013.

[103] W. Haider, J. Hu, J. Slay, B. P. Turnbull, and Y. Xie, “Generating realistic
intrusion detection system dataset based on fuzzy qualitative modeling,”
Journal of Network and Computer Applications, vol. 87, pp. 185–192, June
2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1084804517301273

[104] T. Community, “HomePage.” [Online]. Available: https://tiki.org/HomePage

[105] W. Haider, J. Hu, and N. Moustafa, “Designing Anomaly Detection System for
Cloud Servers by Frequency Domain Features of System Call Identifiers and
Machine Learning,” in Mobile Networks and Management, ser. Lecture Notes
of the Institute for Computer Sciences, Social Informatics and Telecommuni-
cations Engineering, J. Hu, I. Khalil, Z. Tari, and S. Wen, Eds. Springer
International Publishing, 2018, pp. 137–149.

[106] J. Davis and S. Magrath, “A Survey of Cyber Ranges and Testbeds.” Edin-
burgh, Australia: Cyber Electronic Welfare Division, 2013, p. 38.

[107] A. I. Abubakar, H. Chiroma, S. A. Muaz, and L. B. Ila, “A
Review of the Advances in Cyber Security Benchmark Datasets for
Evaluating Data-Driven Based Intrusion Detection Systems,” Procedia
Computer Science, vol. 62, pp. 221–227, 2015. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1877050915025788

[108] A. Khan and S. A. Husain, “A fragile zero watermarking scheme to detect
and characterize malicious modifications in database relations,” in The
Scientific World Journal, vol. 2013, 2013, pp. 1–16. [Online]. Available:
http://www.hindawi.com/journals/tswj/2013/796726/

[109] Z. Jalil, A. M. Mirza, and H. Jabeen, “Word length based zero-watermarking
algorithm for tamper detection in text documents,” in 2010 2nd International
Conference on Computer Engineering and Technology, vol. 6, April 2010, pp.
378–382.

[110] A. Li, B. Lin, and G. Lü, “Authentication of gis vector data based on zero-
watermarking,” in The international archives of the photogrammetry, remote
sensing and spatial information sciences. Beijing, China: ISPRS, 2008.

[111] K. Pearson, “LIII. On lines and planes of closest fit to systems of points
in space,” The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science, vol. 2, no. 11, pp. 559–572, November 1901. [Online].
Available: https://www.tandfonline.com/doi/full/10.1080/14786440109462720

http://www.sciencedirect.com/science/article/pii/S1084804517301273
http://www.sciencedirect.com/science/article/pii/S1084804517301273
https://tiki.org/HomePage
https://linkinghub.elsevier.com/retrieve/pii/S1877050915025788
http://www.hindawi.com/journals/tswj/2013/796726/
https://www.tandfonline.com/doi/full/10.1080/14786440109462720

102

[112] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for cancer
classification using support vector machines,” Machine learning, vol. 46,
no. 1-3, pp. 389–422, 2002. [Online]. Available: https://doi.org/10.1023/A:
1012487302797

[113] F. E. Heba, A. Darwish, A. E. Hassanien, and A. Abraham, “Principle compo-
nents analysis and support vector machine based intrusion detection system,”
in 2010 10th International Conference on Intelligent Systems Design and Ap-
plications, November 2010, pp. 363–367.

[114] H. Abdi and L. J. Williams, “Principal component analysis: Principal
component analysis,” Wiley Interdisciplinary Reviews: Computational
Statistics, vol. 2, no. 4, pp. 433–459, July 2010. [Online]. Available:
http://doi.wiley.com/10.1002/wics.101

[115] P. M. Granitto, C. Furlanello, F. Biasioli, and F. Gasperi, “Recursive
feature elimination with random forest for PTR-MS analysis of agroindustrial
products,” Chemometrics and Intelligent Laboratory Systems, vol. 83, no. 2,
pp. 83 – 90, 2006. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0169743906000232

[116] B. F. Darst, K. C. Malecki, and C. D. Engelman, “Using recursive feature
elimination in random forest to account for correlated variables in high
dimensional data,” BMC Genetics, vol. 19, no. S1, p. 65, September
2018. [Online]. Available: https://bmcgenet.biomedcentral.com/articles/10.
1186/s12863-018-0633-8

[117] M. Sakurada and T. Yairi, “Anomaly Detection Using Autoencoders with
Nonlinear Dimensionality Reduction,” in Proceedings of the MLSDA 2014 2nd
Workshop on Machine Learning for Sensory Data Analysis - MLSDA’14. Gold
Coast, Australia QLD, Australia: ACM, 2014, pp. 4–11. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2689746.2689747

[118] A. L. Buczak and E. Guven, “A Survey of Data Mining and Machine Learning
Methods for Cyber Security Intrusion Detection,” IEEE Communications
Surveys & Tutorials, vol. 18, no. 2, pp. 1153–1176, 2016. [Online]. Available:
http://ieeexplore.ieee.org/document/7307098/

[119] V. Vapnik, The Nature of Statistical Learning Theory. Springer Science &
Business Media, June 2013.

[120] J. Brownlee, “A gentle introduction to xgboost for applied machine learning,”
August 2016. [Online]. Available: https://machinelearningmastery.com/gentle-
introduction-xgboost-applied-machine-learning/

[121] XGBoost, “Xgboost.” [Online]. Available: https://xgboost.ai/

https://doi.org/10.1023/A:1012487302797
https://doi.org/10.1023/A:1012487302797
http://doi.wiley.com/10.1002/wics.101
http://www.sciencedirect.com/science/article/pii/S0169743906000232
http://www.sciencedirect.com/science/article/pii/S0169743906000232
https://bmcgenet.biomedcentral.com/articles/10.1186/s12863-018-0633-8
https://bmcgenet.biomedcentral.com/articles/10.1186/s12863-018-0633-8
http://dl.acm.org/citation.cfm?doid=2689746.2689747
http://ieeexplore.ieee.org/document/7307098/
https://machinelearningmastery.com/gentle-introduction-xgboost-applied-machine-learning/
https://machinelearningmastery.com/gentle-introduction-xgboost-applied-machine-learning/
https://xgboost.ai/

103

[122] E. Inzaugarat, “Understanding Neural Networks: What, How and
Why?” May 2019, library Catalog: towardsdatascience.com. [Online].
Available: https://towardsdatascience.com/understanding-neural-networks-
what-how-and-why-18ec703ebd31

[123] X. Yao, “Evolving artificial neural networks,” vol. 87, no. 9. IEEE, September
1999, pp. 1423–1447.

[124] V. Nigam, “Understanding Neural Networks. From neuron to
RNN, CNN, and Deep Learning,” February 2020. [Online]. Avail-
able: https://towardsdatascience.com/understanding-neural-networks-from-
neuron-to-rnn-cnn-and-deep-learning-cd88e90e0a90

[125] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with
Deep Convolutional Neural Networks,” in Advances in Neural Information
Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1097–1105.
[Online]. Available: http://papers.nips.cc/paper/4824-imagenet-classification-
with-deep-convolutional-neural-networks.pdf

[126] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio, “Object Recognition with
Gradient-Based Learning,” in Shape, Contour and Grouping in Computer
Vision. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 319–345.
[Online]. Available: https://doi.org/10.1007/3-540-46805-6_19

[127] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.
Williamson, “Estimating the support of a high dimensional distribution,”
Neural Computation, vol. 13, no. 7, pp. 1443–1471, July 2001. [Online].
Available: http://www.mitpressjournals.org/doi/10.1162/089976601750264965

[128] Y. Zhang, R. Jin, and Z.-H. Zhou, “Understanding bag-of-words model:
a statistical framework,” International Journal of Machine Learning and
Cybernetics, vol. 1, no. 1-4, pp. 43–52, December 2010. [Online]. Available:
http://link.springer.com/10.1007/s13042-010-0001-0

[129] M. Xie and J. Hu, “Evaluating host-based anomaly detection systems: A
preliminary analysis of ADFA-LD,” in 2013 6th International Congress on Image
and Signal Processing (CISP). Hangzhou, China: IEEE, December 2013, pp.
1711–1716. [Online]. Available: http://ieeexplore.ieee.org/document/6743952/

[130] X. H. Cao, I. Stojkovic, and Z. Obradovic, “A robust data scaling
algorithm to improve classification accuracies in biomedical data,” BMC
Bioinformatics, vol. 17, no. 1, p. 359, December 2016. [Online]. Available: http:
//bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016-1236-x

[131] S. Asaithambi, “Why, How and When to Scale your Features,” December
2017, library Catalog: medium.com. [Online]. Available: https://medium.com/
greyatom/why-how-and-when-to-scale-your-features-4b30ab09db5e

https://towardsdatascience.com/understanding-neural-networks-what-how-and-why-18ec703ebd31
https://towardsdatascience.com/understanding-neural-networks-what-how-and-why-18ec703ebd31
https://towardsdatascience.com/understanding-neural-networks-from-neuron-to-rnn-cnn-and-deep-learning-cd88e90e0a90
https://towardsdatascience.com/understanding-neural-networks-from-neuron-to-rnn-cnn-and-deep-learning-cd88e90e0a90
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1007/3-540-46805-6_19
http://www.mitpressjournals.org/doi/10.1162/089976601750264965
http://link.springer.com/10.1007/s13042-010-0001-0
http://ieeexplore.ieee.org/document/6743952/
http://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016-1236-x
http://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016-1236-x
https://medium.com/greyatom/why-how-and-when-to-scale-your-features-4b30ab09db5e
https://medium.com/greyatom/why-how-and-when-to-scale-your-features-4b30ab09db5e

104

[132] B. A. Keen, “Feature scaling with scikit-learn- ben alex keen.” [Online].
Available: http://benalexkeen.com/feature-scaling-with-scikit-learn/

[133] X. Huang, L. Zhang, B. Wang, F. Li, and Z. Zhang, “Feature clustering
based support vector machine recursive feature elimination for gene selection,”
Applied Intelligence, vol. 48, no. 3, pp. 594–607, March 2018. [Online].
Available: http://link.springer.com/10.1007/s10489-017-0992-2

[134] s.-l. d. B. L. 2007 2019, “sklearn.decomposition.pca scikitlearn 0.22.2
documentation.” [Online]. Available: https://scikit-learn.org/stable/modules/
generated/sklearn.decomposition.PCA.html

[135] s. d. B. L. 2007-2019, “sklearn.feature selection.rfe scikitlearn 0.22.2
documentation.” [Online]. Available: https://scikit-learn.org/stable/modules/
generated/sklearn.feature_selection.RFE.html

[136] “Home - Keras Documentation.” [Online]. Available: https://keras.io/

[137] R. G. Mantovani, T. Horváth, R. Cerri, S. B. Junior, J. Vanschoren, and A. C.
P. d. L. F. de Carvalho, “An empirical study on hyperparameter tuning of
decision trees,” arXiv:1812.02207 [cs, stat], February 2019, arXiv: 1812.02207.
[Online]. Available: http://arxiv.org/abs/1812.02207

[138] R. Toshniwal, “Demystifying ROC Curves,” January 2020, library Catalog:
towardsdatascience.com. [Online]. Available: https://towardsdatascience.com/
demystifying-roc-curves-df809474529a

[139] N. R. Cook, “Use and Misuse of the Receiver Operating Characteristic
Curve in Risk Prediction,” Circulation, vol. 115, no. 7, pp. 928–935,
February 2007. [Online]. Available: https://www.ahajournals.org/doi/10.1161/
CIRCULATIONAHA.106.672402

[140] R. A. Maxion and R. R. Roberts, “Proper use of roc curves in intrusion/anomaly
detection,” University of Newcastle upon Tyne, Computing Science Tyne, UK,
p. 33, 2004.

[141] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas,
“Communication-Efficient Learning of Deep Networks from Decentralized
Data,” arXiv:1602.05629 [cs], February 2017, arXiv: 1602.05629. [Online].
Available: http://arxiv.org/abs/1602.05629

[142] E. . I. T. U. C. U. Creech, Gideon, “Developing a high-accuracy cross platform
host-based intrusion detection system capable of reliably detecting zero-day
attacks,” 2014.

http://benalexkeen.com/feature-scaling-with-scikit-learn/
http://link.springer.com/10.1007/s10489-017-0992-2
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html
https://keras.io/
http://arxiv.org/abs/1812.02207
https://towardsdatascience.com/demystifying-roc-curves-df809474529a
https://towardsdatascience.com/demystifying-roc-curves-df809474529a
https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.106.672402
https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.106.672402
http://arxiv.org/abs/1602.05629

Appendix A

Extracting Short Sequence from Long Traces

The method proposed by Forrest et al. [9] used STIDE(Sequency Time Delay Em-
bedding) algorithm to extract short sequence from system call traces. The STIDE
algorithm is designed to model individual program and it needs to trained for every
individual process. The process has two parts such as creating the database with nor-
mal traces, and comparison of new sequences against the database. While creating
the database, the allowable short sequences are extracted using a sliding window of
specific size to extract an understanding reagrding which system calls typically follow
the other system calls. The length of the system calls is arbitary and defined by the
user. Figure A.1 describes an example where short sequences are extracted using a
window of size 5 [142].

Figure A.1: Short Sequence Extraction using Sliding Window [142]

This sliding window with same window size is applied to the test system calls.
Then, the created databased is searched with the short sequences retireved from the
test system calls. If a short sequence is not found in the database, that is considered
as a mismatch. Forrest et al. defined maximum number of possible mimatch by
considering length of the trace and windown size. Any new trace that has surpasses
the maximum number of mismatch considered as a malicious trace.

105

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	List of Abbreviations and Symbols Used
	Acknowledgements
	Introduction
	Overview
	Motivation
	Roadmap of the Thesis

	Background and Literature Review
	Cyber Intrusion/attack
	Definitions
	Type of attacks

	Intrusion Detection Systems (IDSs)
	Categories based on the types of analyzed data
	Categories based on the types of methodology

	Literature Review
	Enumerating Sequence
	Hidden Markov Model (HMM) based approaches
	Machine Learning and Clustering based approaches(Non-Neural Networks)
	Neural Network based approaches
	Rule based and Filter based approaches

	Research Problem
	Data Sources and Datasets
	Datasets
	Firefox-DS
	ADFA-LD12
	NGIDS-DS
	UNM and DARPA

	Algorithms
	Feature Retrieval
	Frequency-based algorithms
	Integer Zero Data Watermark (IDZW)

	Dimensionality Reduction
	Principal Component Analysis (PCA)
	Recursive Feature Elimination with Random Forest (RF-RFE)
	Autoencoder

	Decision Engine (DE)
	Supervised Algorithms
	Semi-supervised Algorithms

	Methodology
	Data Source
	Feature Retrieval
	Data Preprossessing and Normalization
	Min-Max Scaling
	Standard Scaling (Z-score Normalization)
	Robust Scaling
	Choosing a Scaling Technique

	Dimensionality Reduction
	Principal Component Analysis (PCA)
	Autoencoder
	Random Forest - Recursive Feature Elimination (RF-RFE)

	Data Splitting
	Supervised Approach
	Semi-supervised Approach

	Decision Engines (DE)
	Supervised approach
	Semi-Supervised approach

	Evaluation

	Experiments, Results, and Discussion
	Hardware Requirements and Configuration
	Performance Evaluation
	Performance Based on the Features Extracted by PCA
	Performance Based on the Features Extracted by Autoencoder
	Performance based on the features selected by RF-RFE

	The Trade-off between False Alarm Rate and Detection Rate
	Comparison with the existing approaches

	Conclusion
	Limitations
	Future Work

	Bibliography
	Extracting Short Sequence from Long Traces

