
INTERACTIVE LEARNING TO RANK AND VISUAL RANK
INTERPRETATION

by

Mateus Malvessi Pereira

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

March 2020

c⃝ Copyright by Mateus Malvessi Pereira, 2020



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Abbreviations and Symbols Used . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2 Iterative Learning to Rank from Explicit Relevance Feedback . 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Information Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Learning to Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3 Relevance Feedback . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.4 Re-Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 Simulated Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.3 Case Study: Community Question Answering . . . . . . . . . . . . 18
2.4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Chapter 3 Visualizations for Learning to Rank Interpretation . . . . . . . . 22

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 General Models for Interpretation . . . . . . . . . . . . . . . . . . 24
3.2.2 Ranking Interpretation . . . . . . . . . . . . . . . . . . . . . . . . 24

ii



3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 Ranking Comparison Visualization . . . . . . . . . . . . . . . . . 27
3.3.2 Cumulative Feature Gain Visualization . . . . . . . . . . . . . . . 28
3.3.3 Cumulative Rule Gain Visualization . . . . . . . . . . . . . . . . . 31

3.4 Case Study: Ranking Model Evolution . . . . . . . . . . . . . . . . . . . . 32
3.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.2 Usage Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Improving the Learning to Rank Method . . . . . . . . . . . . . . . . . . . 36
3.5.1 Problem Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.2 Solution Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Case Study: Understanding Ranking Order . . . . . . . . . . . . . . . . . 38
3.6.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6.2 Usage Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.7 Discussion and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Chapter 4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Learning to Rank Models & Features . . . . . . . . . . . . . . . . . . . . . 47

4.2 Visualizations Design Process . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Appendix A Metrics used in Evaluations . . . . . . . . . . . . . . . . . . . . . 54

A.1 Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A.2 Mean Average Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A.3 Normalized Discounted Cumulative Gain . . . . . . . . . . . . . . . . . . 55

Appendix B ACM Copyright Letter . . . . . . . . . . . . . . . . . . . . . . . 57

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

iii



List of Tables

2.1 The parameters used for evaluating various features of the proposed
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 The MAP calculated on SemEval 2016 and 2017 datasets compared
with results of two baseline models and the top 3 results from the
SemEval competition. Our result represents the configuration with
least amount of iterations to achieve a higher result. . . . . . . . . . . 19

2.3 NDCG for MQ2007/2008 compared with perfect click model from [22].
Our result represents the configuration with least amount of iterations
to achieve a higher result. . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Size of feature sets and average execution time for one iteration for
different feature sets for LambdaMART and Rank SVM, averaged
after 7 iterations of feedback. . . . . . . . . . . . . . . . . . . . . . . 49

iv



List of Figures

2.1 The effect of variations of different parameters of the system on
the quality of the retrieved results in NDCG@10 over 8 iterations.
Iteration 0 is the initial set of results, feedback instances start on
iteration number 1. Every graph shows two static baselines, the
non-pretrained that uses TF-IDF and the pretrained that considers
a LambdaMART model trained on the training set. (a) Effect of
usage of novel documents. (b) Varying starting point from a non-
pretrained model and a pretrained one. (c) Varying type of rein-
forcement of previous feedback. (d) Effect of feedback provided
considering AL instances from model uncertainty and using the top
10 documents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Effect of Question and Answer feedback on validation set of Se-
mEval 2016. Questions using {0, 1, 4} and Answers using {0, 1, 2,
4} feedback per iteration. Question feedback improve results faster
than feedback only on Answers. . . . . . . . . . . . . . . . . . . . 15

2.3 Results on SemEval 2016 and 2017, MQ2007 and MQ2008 con-
sidering 2 feedbacks per iteration on MQ2007 and MQ2008 and 1
question feedback and 2 answers on SemEval. . . . . . . . . . . . . 16

3.1 Overview of interface and proposed visualizations and navigation
flow. a) Search bar. b) Results from search. c) Cumulative Feature
Gain. d) Cumulative Rule Gain. e) RankDiff visualization. . . . . . 26

3.2 Example feature cell utilized in the Cumulative Feature Gain visu-
alization. a) Elements marked as relevant. b,d) Arrows represent
score influence of this feature over the instance. c) Division line, on
the left are the top 20 relevant items, and on the right the bottom 10.
e) An element highlighted by selection. f) The right most division
line is used to separate instances of interest that did not appear in
the previous lists. g) Elements that were marked as irrelevant. El-
ements are positioned sequentially based on their ranking order in
the X-Axis. The position on the Y-Axis encodes the feature value
for each element. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Cumulative Rule Gain, looking only at 3 ranked elements (E1, E2,
E3) and 6 ranking rules (R1 to R6). Color red and green of the rules
indicate a negative or positive contribution, respectively. . . . . . . . 32

v



3.4 First iteration result on the RankDiff case study. The squares repre-
sent items sorted by ranking score, from left to right in descending
order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Behavior of the Learning to Rank algorithm over 4 iterations. a) the
behavior of the original algorithm. b) the behavior after changes to
the algorithm from the intuition taken from the previous result. c,d)
Feedback that did not change position. . . . . . . . . . . . . . . . . 33

3.6 Evaluation on MQ2007 average for all folds on test set. Before
represents the results before the changes to the method, and Af-
ter changes to the method, developed after insights taken from the
RankDiff visualization. . . . . . . . . . . . . . . . . . . . . . . . . 36

3.7 Evaluation of different combinations of parameters j and l in the
proposed solution to avoid the stagnation problem. . . . . . . . . . . 38

3.8 Evaluation on the SemEval 2016 and 2017 and on MQ2008 aver-
aged for all folds on test set, average of 30 executions. Before repre-
sents the results before the changes to the method, and After changes
to the method, developed after insights taken from the RankDiff vi-
sualization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.9 Search results for “pirates” keyword. The left is a list of entries
matching the query term, and on the right the system recommenda-
tions based on the left list. . . . . . . . . . . . . . . . . . . . . . . . 41

3.10 Cumulative Feature Gain view for the recommendations after the
initial search. The rules on the top were shown after hovering the
first element in cell #1. . . . . . . . . . . . . . . . . . . . . . . . . 42

3.11 Cumulative Feature Gain view for the recommendations in the sec-
ond iteration. The rule on the top relate to the first element in cell
#5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.12 Cumulative Rule Gain view for the recommendations, displaying all
rules that are applied to score the documents on the first iteration.
On the top, the selected rules (R1, R2, R3 and R4) are displayed in
detail. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.13 Cumulative Rule Gain view for the recommendations, displaying
the second iteration. The rules related to the current iteration have
a black indication on the left side. Rules with black borders are
selected and shown in detail on the top. . . . . . . . . . . . . . . . . 45

3.14 RankDiff in the middle of the transition to results of the second it-
eration of the ”Understanding Ranking Order” Case Study, showing
how new documents enter the view. . . . . . . . . . . . . . . . . . 46

vi



4.1 Comparison of LambdaMART and Rank SVM performance on NDCG@10
for different feature sets. . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Initial visualizations developed for the dashboard with RankDiff as
the central visualization, along with other surrounding visualiza-
tions. a) Correlation Matrix displaying pairwise cosine similarity
between elements. b) Feature Heat-Map displaying element fea-
tures. c) Leaf Scores visualization, displaying active leaf scores for
every element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Hierarchical Forest visualization, which was initially considered for
the dashboard, here showing five levels of the regression forest.
Each black rectangle represents a feature. Topmost connections
represent a tree, connecting to its first feature for decision. Connec-
tions to the feature nodes are positioned relative to their decision
threshold. Each line represents a branch of a tree. The red and blue
rectangles represent the leaves, which are a shade from red to blue
representing a negative to positive contribution. . . . . . . . . . . . 52

vii



Abstract

Many algorithms in the Information Retrieval domain have been developed considering

training models using vast amounts of data. The acquisition of this data, however, is time-

consuming and requires lots of human effort. Active Learning techniques try to solve this

problem by reducing the number of instances needed in the training phase by selecting rel-

evant instances to be labelled. Although such an approach has been proved to be effective,

it is still hard to understand how the model is changing after every relevance feedback. As a

potential solution, the use of visualizations to help users to understand models is becoming

a widespread approach both to understand the overall behaviour of a model and to analyze

individual data instances. In this thesis, I explore the utilization of a Learning to Rank

algorithm in a relevance feedback scenario and the use of visualizations to understand the

reasoning behind the model’s ranking decisions.
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Chapter 1

Introduction

Since the boom of the internet, unprecedented amounts of data have been created and stored

in such large quantities that it is now impossible for a standard user to extract any informa-

tion from it quickly. This created the need to have machines to do part of the work for us,

leading to the development of Information Retrieval (IR) techniques, which are utilized to

retrieve relevant documents in a sea of information.

IR became a massive field of study, being originally aimed to find relevant information

in small collections of data in text domains, which quickly started to grow for larger collec-

tions and other media with the popularization of the internet and search engines. Like any

other area of research, IR began with simple models, initially based on keyword matching,

then evolved to more complex mathematical models that considered the overall term fre-

quencies of the entire document and collection, such as TFIDF [56, 39] and BM25 [53].

Machine Learning (ML) is another big area of research that is applied to all kinds of tasks,

including IR. The use of ML in IR leads to the development of more complex models and

document representations, such as Bag of Words (BoW) and Word Embeddings [40, 9].

Although Information Retrieval solves many problems when trying to find relevant doc-

uments, there are still difficulties in properly ranking the results in an optimal way. In this

context, the research field of Learning to Rank (LtR) emerges in an attempt to solve the

need to create better rankings [70]. The intention of LtR algorithms is not to classify or

predict values but to find optimal ordering for a set of items. These algorithms, however,

also require some labeled samples to learn patterns in the data and be able to generate

meaningful rankings.

Learning to Rank algorithms are usually trained considering labeled query-document

pairs, which indicate the importance of the document to a given query. The acquisition of

training data is always an expensive and time-consuming process in most domains, requir-

ing lots of manual effort to label instances. In learning to rank tasks, the labeling process

requires the annotator to label the importance of a group of instances in relation to a query,

1
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which should have at least two relevance levels, including relevant and irrelevant, but more

levels can also be used.

A solution that reduces the need for loads of training data is the so-called Active Learn-

ing, where the system returns to the user instances that, if labeled, should help in improving

the prediction behavior using far fewer training instances. Active Learning in LtR is not

new and has already been applied before [58, 10].

Interactive Learning to Rank is a field of research that joins Machine Learning, Human-

Computer Interaction, and other information retrieval related areas, to improve ranking

functions [7]. Usage of user interaction in the form of feedback is a common approach

of including the user in the information retrieval process. Two types of user feedback are

possible: implicit and explicit. Explicit feedback comes in the form of a conscious input

given by a user, such as a review or a grade score. The implicit feedback is extracted from

other indirect user interactions, such as clicks and mouse movements. However, implicit

feedback is often more noisy and biased, usually requiring many users to generate enough

data. Because this work assumes a system with a small number of users and no initial

training data, the explicit feedback approach is used.

The necessity of having a ranking on a new system with a small number of users mo-

tivates the use of Interactive Learning to Rank in this work. Such need is from a partner

organization that supported this research, in which the data lacks the previous existence of

query/document relations and only contains documents. I experimented with a solution to

interactively learn to rank on a query on the fly, assuming no other existing query/document

groups are available. It is worth mentioning that, over time, the system would accumulate

enough data to be used as training, but this is out of the scope of this work.

For every ML task, including LtR, there are numerous ways of solving the same prob-

lem, and the usage of such models in a production environment is taken with care since

often, it is hard to know what is happening inside the model. This motivated many stud-

ies in trying to explain and find the reasoning behind machine learning models and is a

promising research direction [67, 20, 28]. Machine Learning interpretation can be consid-

ered, overall, in two levels: transparency of the model and post-hoc interpretability. The

former considers a global picture and overall view of how the model sees the data, and the

latter assumes a local interpretation where it is possible to understand a single or compare

a few instances [13, 35, 14].
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In LtR, as in other tasks, the understanding of what information the system is using to

find relevant documents is crucial to gain user trust. Besides that, as other studies have

already shown [3, 1], understanding how the ML model is behaving can reveal weaknesses

and flaws that can then be fixed. This also motivates this work, in which I propose visual-

izations to assist in understanding the behaviour of the LtR model.

1.1 Contributions

This work has two main contributions, the first related to a iterative Learning to Rank

method, and the second in the interpretability of LtR models. The first contribution is a

novel iterative Learning to Rank method. This method is utilized in an interactive tool,

that improves the search results through the user’s relevance feedback provided at each

iteration. This method is deeply evaluated through several ablation studies on standard LtR

datasets.

The second contribution is the development of three new visualization techniques to

enhance learning to rank model understanding and explanation. The first visualization

technique, RankDiff, allows the comparison between different rankings results, indepen-

dently of their underlying ranking models. The second, Cumulative Feature Gain (CFG),

allows an overall understanding of which features are important to the ranking model and

how they affect the ranking of the top instances. The third, Cumulative Rule Gain (CRG),

offers a way to compare the rules that cause difference in ranking of a selection of docu-

ments. Besides these visualizations, I also proposed a new metric to evaluate the Iterative

Learning to Rank models, based on the insights acquired from analyzing them. Finally,

a Case Study is performed to show the value of the proposed visualizations and how to

interpret their results.

1.2 Organization

This work is organized in three chapters, two of which are based on papers developed dur-

ing the Master’s program, and the last which finalizes this work with some discussions.

Chapter 2 is a reproduction of the paper “Iterative Learning to Rank from Explicit Rele-

vance Feedback” accepted in the ACM/SIGAPP Symposium on Applied Computing 20201

1https://www.sigapp.org/sac/sac2020
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conference, in the Information Access and Retrieval Track. This chapter develops the Itera-

tive Learning to Rank with user feedback, starting with a literature review in LtR, followed

by the description of the proposed method, its evaluations and results.

Chapter 3 is an extended version of the research paper “Visualizations for Learning

to Rank Interpretation”, submitted to the Computer Graphics International 20202, which

discusses the development of the visualizations techniques for interpretation of the ML

model applied in LtR. This chapter starts with a discussion of the related works, followed

by elaboration of the proposed visualizations and their evaluations.

Lastly, Chapter 4 discusses early experiments conducted that complement the previous

chapters. It also discusses some future work, limitations and final conclusions.

2http://www.cgs-network.org/cgi20



Chapter 2

Iterative Learning to Rank from Explicit Relevance Feedback

This chapter is a reproduction of the paper [47] submitted and accepted by the ACM Sym-

posium on Applied Computing 2020. The thesis writer is the main author and main contrib-

utor to the respective conference paper, being responsible for implementation, evaluations

and most of the analysis and writing of the paper. A copy of the ACM Copyright agreement

is attached in Appendix B.

2.1 Introduction

Given the increasing amount of information accessible through the internet, many machine

learning approaches have aimed to improve the quality of search engines and Information

Retrieval (IR) techniques. Besides, personalizing the search results has a significant impact

on users’ satisfaction [71]. Interactive Information Retrieval (IIR) systems try to address

both demands by capturing users’ feedback to improve the order of the retrieved results

based on personal preferences and intents when they are presented.

Various IIR approaches have been developed for improving the ranking order of the

retrieved information using Learning to Rank (LtR) techniques, and for capturing the rel-

evance feedback from users [7]. LtR techniques are supervised learning approaches that

train a model using pairs of queries and documents with their relevance scores as labels.

This relevance can be explicitly expressed by or implicitly perceived from user’s inter-

actions. The trained model is then used to rank documents given a new query [8]. The

performance of LtR techniques depends on the amount of available training data, which is

costly to obtain, giving rise to active learning techniques for LtR [10].

Other techniques have been developed for collecting relevance feedback to improve

users’ experience while working with IIR systems. Researchers have studied implicit and

explicit feedback from users and considered the effects of positive and negative feedback

separately and in combination [7]. Implicit feedback is obtained by capturing general user

interactions like user clicks, while explicit feedback happens when the user provides direct

5
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relevance feedback. These techniques have adopted the user feedback for exploration in the

search space [46], finding users’ intent [54], and re-ranking the retrieved documents [31].

Most LtR and relevance feedback techniques have been applied in IIR systems inde-

pendently. Their combination is mostly considered in cases of implicit feedback on search

engines [50, 51]. Methods based on implicit feedback often assume the existence of many

users whose interactions with the system are required for training the model. This is infea-

sible for enterprise-specific systems with less users looking for specific information.

Explicitly capturing user’s feedback is only studied for finding the relevant documents

from PubMed [72] which considers multi-level relevance feedback. Although their tech-

nique is similar to the proposed method, their performance is much lower in the benchmark

dataset considering our base LtR model.

This work describes an online learning to rank approach to personalize and improve

the quality of search results through the user’s explicit feedback. We propose and evaluate

novel approaches on how to use each user’s feedback to improve the ranking of the results.

We have utilized the LambdaMART algorithm [69] for ranking the retrieved documents

and fine-tuning the model based on the accumulated feedback from the user. The proposed

method is evaluated in the scenarios with or without available initial training data. Besides

evaluating our performance on general learning to rank scenarios using LETOR 4.0 [48]

datasets, we have also applied our proposed method in the specific test case of Community

Question Answering forums and evaluated its ranking performance, using the SemEval

2016 and SemEval 2017 datasets [44, 43].

We have provided a brief review of the related works on Learning to Rank and Rele-

vance Feedback in Section 2.2. The details of the proposed method and Learning to Rank

module are elaborated in Section 2.3. The proposed system is evaluated in Section 2.4, and

we conclude this chapter in Section 2.5.

2.2 Related Work

In this section, we present a brief review of the existing Learning to Rank algorithms and

active learning heuristics applied in this domain. We show some of the existing systems

for capturing relevance feedback in general and for improving LtR algorithms. Also, we

discuss techniques used in community question answering forums for finding relevant ques-

tions and answers.
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Learning to Rank: In general, LtR methods train a model on labeled pairs of query

and document and use it to provide a better ranking for the retrieved documents for a query,

usually measured by Normalized Discounted Cumulative Gain (NDCG) metric. There are

three main categories of LtR methods: pointwise [38], pairwise [69], and listwise [68].

They differ in the number of training instances used for updating their loss functions vary-

ing from a single training instance (pointwise), a pair of training instances (pairwise), and

all pairs associated (listwise) [25]. All these techniques require training data in order to

learn the relevance between query and documents, but there are many cases where none or

a small training data is available. This has created a new field of research for active learning

techniques for LtR.

Active Learning (AL) techniques are used to find the most informative documents for

the LtR so they can be labeled by the user. Various heuristics such as Query by Com-

mittee [10], Minimizing Hinge Rank Loss [12] and Expected Loss Optimization [37] have

been applied in the literature for finding these informative training instances. In this work

we evaluated two ways of selecting instances to be labeled, selecting the most uncertain

instances for the model and selecting from the actual top-n ranked documents.

Relevance Feedback: The relevance feedback has been used more often in the context

of exploratory searches. Contrary to the lookup search (focus of this work) in which the

user precisely formulates the query, in the exploratory search, the user may not know his

intent or its exact wording [29]. Various tools have considered the exploratory search sce-

nario to model the concept drift [29], user intent [54], and to evaluate the effect of negative

feedback on the search result [46]. Some other methods have utilized the user’s feedback

to automatically decide whether the user is performing lookup or exploratory search [2].

Some of these methods rely on the term-based relevance feedback for ranking the results

to show the most relevant documents to the users [46]. The main issue with these tech-

niques is the fact that asking for term-based feedback from the user has a high cognitive

load comparing to typing new queries and results in context trap for the user [2]. To avoid

this context trap, we are capturing document-level feedback where the user (simulated)

provides positive or negative feedback on the retrieved documents.

None of these methods has utilized the user’s feedback to improve their LtR algorithms.

However; there are techniques which have used the implicit feedback that is captured in

the system’s logs. This implicit feedback is utilized to recognize the user’s behavior and
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personalize the list of retrieved documents [51], or to predict the next query of the user

based on the previous chain of user’s queries [50]. The explicit feedback which affects the

LtR algorithm was studied in searching for scientific papers where the user can select the

relevance scores of retrieved papers [72].

Some research have been done on Online LtR, where the system uses implicit feed-

back, user clicks on the retrieved results, to improve their LtR module [22, 76]. These

techniques usually balance the returned results by having a mix of documents obtained

by an exploitative and a more relaxed model. The exploitative model retrieves the most

relevant documents while the relaxed model returns documents with the intent of better

exploration of the document space. While these approaches consider the use of implicit

feedback and a considerable amount of iterations with different user queries, our proposed

method utilizes explicit feedback on retrieved documents for a single user query over a

handful of iterations.

Community Question Answering: The Community Question Answering (CQA) fo-

rums are playing an essential role in collaborative learning and knowledge sharing on the

web [59]. Websites such as Stack Overflow are tools for internet users seeking answers to

their questions. These forums constantly capture explicit relevance feedback from user’s

votes and receive new questions and answers.

The ability to accurately retrieve the relevant questions and answers to the user’s query

in a Community Question Answering forum reduces the redundancy of capturing answers

and low-quality questions in the forum [59]. This unwanted redundancy decreases the

sustainability of the forum and its effectiveness in responding to the users’ queries [60].

In the last decade, much research has considered solving the underlying challenges

of community question answering systems. The Natural Language Processing (NLP) ap-

proaches have their focus on retrieving the most similar questions to the input query [75,

49], and the best-provided answer in the existing threads [4, 64]. These techniques mostly

focus on bridging the semantic and lexical gap between the new query and the existing

questions and answers in the database. While they are beneficial in enhancing the IR per-

formance, they do not consider usage of relevance feedback to improve the LtR model.
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Algorithm 1 Interactive Learning to Rank
Variables:

D, Document Collection; Q, Current Query;

RD, Retrieved Documents; RL, Ranked List;

F , Relevance Feedback; PF , Previous Feedback;

Model, LambdaMART Model;

end Variables:

function ILTR(D, Q)

RD = RETRIEVE(Q, D) ▷ 2.3.1

RL = RANK(Model,RD, Q) ▷ 2.3.2

while FINISHED(D, Q) == False do

F = FEEDBACK(RL) ▷ 2.3.3

RL = RERANK(Model, Q, RD, F , PF) ▷ 2.3.4

PF = [PF ;F ]

end while

end function

2.3 Proposed Method

Given an input query, our system employs an active learning to rank approach to rank

documents based on the user’s feedback. Starting with a list of documents retrieved and

initially ranked, the model learns from the user through an iterative feedback process to

refine the ranking of the results until the user is satisfied. The overall system consists

of five main modules: information retrieval, Learning to Rank, relevance feedback, data

preparation, and fine-tuning the ranking model whose calling procedure is illustrated in

Algorithm 1.

2.3.1 Information Retrieval

The main goal of the IR module is fetching all the relevant documents to a given query,

attaining a high recall rate. In this research, a base retrieval system retrieves the candidate

relevant documents to be ranked. This retrieval module is responsible to provide documents

associated with the user’s query to the ranking module. The retrieval module generates an

initial ranking of the results using a base ranker trained on the available data (pretrained

model). When there is no training data available, this retrieval module is considered as
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a simple ranking method using the similarity score between the query and the documents

(non-pretrained model).

When training data is available, the ranking for initial results is obtained from the pre-

trained LambdaMART model. The Term Frequency-Inverse Document Frequency (TF-

IDF)[56] similarity score is utilized as the base ranking of the retrieved documents for the

non-pretrained model.

2.3.2 Learning to Rank

The initial ranking results from the IR module do not capture the relevance between query

and documents, and the user intent. To improve such ranking, we have utilized our adapta-

tion of the LambdaMART learning-to-rank model [69] which learns through feedback itera-

tions. LambdaMART is a supervised LtR model trained on existing pairs of (query,document)

labelled by their degree of relevancy.

LambdaMART [69] combines the LambdaRank [6] and McRank [34] algorithms to

achieve a better performance/speed trade-off. This model optimizes the ranking of docu-

ments by training a forest of boosted regression trees on the gradients of the loss function.

This algorithm optimizes the ranking of results measured by the NDCG, a discrete-valued

and non derivable function, by choosing the lambda values that reduce the pairwise errors.

These lambdas are found by swapping the document pairs in the ranked list and monitoring

the gain imposed on the NDCG metric.

To calculate NDCG gain, two weak learners of R and Ŕ are used for sorting the training

data. Each weak learner is a regression tree, that contributes to the final score of a docu-

ment. The model looks for α ∈ [0,1] which maximizes the score defined by

s j = (1−α)sR
j +αsŔ

j . In this equation, s j is the score for the document D j in the list,

and the sR
j and sŔ

j are the scores of the weak learners R and Ŕ for this document. This

allows an optimal combination of the weak learns to build the forest of regression trees.

To use the LtR model, not only we have to extract features from the query and the

document independently, but we also have to extract features depending on both the query

and the document. These dependent features are essential to encode the relevance between

the query and document pairs.

In the first iteration, the model is initialized by training on the top and bottom n results

returned by the retrieval module. This initial training approximates the retrieval module’s
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ranking with a smaller model that is fine-tuned in the following iterations with the feedback

instances.

2.3.3 Relevance Feedback

The user is able to provide positive or negative feedback f on the retrieved documents.

Since this is a binary operation, we propose to interpolate the current document score with

the relevance feedback value. We consider the value of relevance score fn = minl∈L l and

fp = maxl∈L l, where L is the range of relevance scores in the dataset, for the negative

or positive feedback respectively. The document’s relevance score in iteration i, Yd(i) is

calculated according to equation 2.1 in which α is a parameter of the model, and Yd(0) = 0.

Yd(i) = Yd(i−1)+α( f −Yd(i−1)), f ∈ { fn, fp} (2.1)

The main purpose of this interpolation is to diversify the relevance scores of the in-

stances receiving feedback and still keep some weight of the community scoring when

available. This diversification also addresses the LambdaMART’s requirement of having

various relevance scores for training. As discussed in Section 2.3.2, LambdaMART [69]

is only able to learn the ranking of documents when its training data has instances with

different relevance scores.

The feedback instances from previous iterations are considered as training instances

in the following iterations to reinforce their relevance scores. In case different feedback

values are provided on the same item over the iterations, the latest feedback overrides the

value received on previous iteration.

We evaluated the feedback from the user considering two options: the current top-n

results or the instances selected by active learning. In the case of active learning, a group

of documents are selected by applying the Query by Committee [10] technique to the weak

rankers in the LambdaMART model, as the committee. The standard deviation over the

scores of individual rankers for each document is calculated and the documents with higher

values are considered as uncertain instances for LambdaMART. Higher value of standard

deviation shows higher disagreement between the LambdaMART rankers. These selected

documents are added to the list of candidates for active learning if they have not already

received feedback.

After each iteration of feedback, the LambdaMART model is fine-tuned, considering
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Table 2.1: The parameters used for evaluating various features of the proposed system.

Parameters Fixed Setting Variable Setting
Include novelty True True, False

Reinforcement Both
Negative only, Positive only,
Both, None

Pre-trained model False True, False
Usage of AL False True or False

the training data obtained from the relevance feedback to improve the model’s perfor-

mance. In each iteration, several new regression trees are added as weak learners for Lamb-

daMART. This helps the model to keep updating its weights to capture the relevance score

of the new training data. The process of fine-tuning the model using relevance feedback

continues until the maximum iteration number is reached.

2.3.4 Re-Ranking

All documents that have received feedback in iteration i are considered as new training

data to fine-tune the LambdaMART model. For each instance of feedback, we have a

training sample consisting of the current query, the document with feedback, and the value

of feedback Yd(i). In case there is variety on the values of Yd(i) for the training instances,

this list is utilized to fine-tune the model.

If all Yd(i)s obtained from the relevance feedback module are equal, LambdaMART is

not able to learn from them. To tackle this limitation, we include one new training sample,

called novelty document. This sample is obtained by looking for the most dissimilar doc-

ument to the average feature vector obtained from the relevance feedback instances. Only

documents without feedback history are candidates to be selected as the opposite sample.

The novel document is attributed an opposite relevance score of the documents that

came from the relevance feedback module Yd(i) = max(L)−Yd(i), in which max(L) is the

maximum relevance score considered in the dataset.

2.4 Experimental Results

In this section, we cover the implementation details of the system and the structure of the

datasets used for evaluation. We have used a simulated Oracle to evaluate the performance
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and effectiveness of the system with various parameter settings. We have utilized pyltr1 as

the LambdaMART implementation.

Figure 2.1: The effect of variations of different parameters of the system on the quality of
the retrieved results in NDCG@10 over 8 iterations. Iteration 0 is the initial set of results,
feedback instances start on iteration number 1. Every graph shows two static baselines, the
non-pretrained that uses TF-IDF and the pretrained that considers a LambdaMART model
trained on the training set. (a) Effect of usage of novel documents. (b) Varying starting
point from a non-pretrained model and a pretrained one. (c) Varying type of reinforce-
ment of previous feedback. (d) Effect of feedback provided considering AL instances from
model uncertainty and using the top 10 documents.

We have evaluated our system on four datasets, two standard datasets used for evalu-

ating LtR algorithms, and two in the context of Community Question Answering (CQA)

systems. The first two are MQ2007 and MQ2008 from the LETOR 4 collection [48].

LETOR datasets are composed of features for query-document pairs, where each query is

related to about 40 documents. There are 5 standard folds, containing training, validation,

and test set for each. We utilized the training and validation set to find the best param-

eters on Fold 1 from MQ2007 and tested on all five folds using the test set. We utilized

LETOR standard features and performed the ranking over the instances that are related

to each test query. The last two are datasets in the context of CQA. SemEval 2016 [44]

contains about 400 questions (users’ queries) along with 7K relevant questions and 57K

1https://github.com/jma127/pyltr

https://github.com/jma127/pyltr
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relevant comments in total. SemEval 2017 [43] has 500 questions, 1K relevant questions,

and 9K relevant comments. Every test question has 10 related questions, each of which has

10 related comments. We have evaluated our system considering Task 3, subtask C of the

SemEval (2016/2017) challenges. The objective of this task is to rank the best answers to a

new question. The task assumes that all of these related questions and answers are retrieved

and must be ranked, so we only include these documents in the retrieval for evaluation and

ranking.

All these datasets are labeled in three levels of relevance from 0 (Not relevant) to 2

(Very relevant). The simulated Oracle utilizes these relevance labels from the dataset to

provide feedback (see Section 2.4.1). Since the Oracle uses a random number generator to

provide feedback to documents, all graphs were generated using the average of 30 runs.

2.4.1 Simulated Oracle

The user’s behavior is simulated with an Oracle to evaluate the system. This Oracle ran-

domly selects documents to give feedback with descending probability given by the current

documents’ ranking. This follows the idea that most users check the top results first, so

feedback on those is more likely to happen [18, 19]. Since no click data was available,

we defined the probabilities based on the results presented in [27]. The Oracle is con-

strained to provide feedback only to the top 10 documents (and their respective questions

on Community Question Answering test case), or to the 4 instances selected by AL.

Since the Oracle is simulating the user’s behavior, we have considered the following

two configurations: Perfect feedback and noisy feedback. In the perfect configuration, the

feedback is always correct, while in the noisy configuration, some wrong feedback may be

provided by the Oracle.

In the perfect configuration, relevant documents will receive positive feedback (p(F =

positive|related) = 1), and non-relevant documents will receive negative feedback (p(F =

negative|non− related) = 1) if they are selected. In the case of Community Question An-

swering, the routine mentioned above applies to questions when they receive feedback.

For our experiments, we assumed binary feedback, so documents with a 0 relevancy score

are considered as negative, and those with relevancy scores of 1 and 2 are considered as

positive. The Oracle does not provide duplicated feedback (two feedback on a document)
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in each iteration, which results in having a unique feedback set. However, on the subse-

quent iterations, an item that already has received feedback may be selected again, which

is subjected to feedback reinforcement.

To simulate the noisy feedback configuration, we utilized the informational probability

of the user clicking on a relevant document [22] as our probability distribution of pro-

viding feedback. The noisy feedback model provides correct feedback with 90% chance

(P(correct − f eedback) = 0.9). We consider that a feedback is never repeated for the

perfect feedback configuration, and for the noisy configuration, there is a 10% chance of

repeating positive feedback and a 90% chance of repeating a negative feedback in case the

selected item has already received feedback.

Figure 2.2: Effect of Question and Answer feedback on validation set of SemEval 2016.
Questions using {0, 1, 4} and Answers using {0, 1, 2, 4} feedback per iteration. Question
feedback improve results faster than feedback only on Answers.

2.4.2 Ablation Study

There are various parameters in the proposed method whose values may affect the perfor-

mance. Besides, different settings for those parameters might be found useful for various

cases. In this section, we evaluate these parameters on one fold of a LETOR dataset to

study their importance on the performance of the model.

To find the best parameters for LambdaMART, we performed a grid search on different

combinations of parameters using validation data for MQ2007 Fold1. We consider only a

non-pretrained model, learning from scratch for every test question in the validation set.

The investigated parameters for the LambdaMART algorithm are the maximum depth of
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the trees in the forest, the number of trees added to the forest in the fine-tuning step, and

the learning rate. We have tested with MaxDepth ∈ [1,5,10], TreeGrowth ∈ [1,3,5] and

LearningRate ∈ [0.1,0.01,0.001]. Based on our experimental results, we have chosen the

maximum depth of 10, the number of added trees of 5, and the learning rate of 0.01.

Using the simulated Oracle, we have investigated the effect of some of the proposed

features of our system regarding the overall quality of the produced results. We have se-

lected the values in Table 2.3.4 for our experiments in this section.

The effect of the amount of feedback per iteration can be seen in all graphs in Figure 2.1.

We have compared the improvement on NDCG@10 when the user provides 2 or 4 instances

of feedback per iteration. The value of NDCG@10 increases proportionally to the amount

of feedback, reaching higher levels faster when more feedback instances per iteration. For

instance, considering the corresponding plots for 2 and 4 instances of feedback per iteration

in Figure 2.1(a), the user could achieve a score of 0.47 in two iterations with 4 instances of

feedback per iteration, while the same value could be achieved with 2 instances of feedback

in three iterations.

Figure 2.3: Results on SemEval 2016 and 2017, MQ2007 and MQ2008 considering 2
feedbacks per iteration on MQ2007 and MQ2008 and 1 question feedback and 2 answers
on SemEval.
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The first investigated factor is the effect of adding novelty documents while fine-tuning

the model. This technique is similar to the exploratory concept utilized in [22] with the

purpose of adding some variability to the training set. However, differently, we do not

utilize a separate model for this; instead, we use the most dissimilar documents from the

feedback. The effect of using novelty documents is presented in Figure 2.1(a). For many

feedbacks per iteration, the improvement on NDCG@10 without adding novelty documents

is slower than the improvement when they are included. This is true for different amounts

of feedback per iteration.

The diagram in Figure 2.1(b) compares the performance of the model considering the

scenario with existing training data (pretrained) and non-existing training data. In our tests,

we train the model on iteration 0 using the top 10 and bottom 10 results to reflect the

initial rank provided by the retrieval module. As shown in the graphs, there is almost no

loss in performance in this approximation. It is clear that the pretrained model is better in

delivering the first set of results to the user and can achieve higher NDCG much earlier.

However, the non-pretrained model also learns well and can achieve comparable results

only with a few more iterations. This shows that a non-pretrained model is a valuable

option when no training data is available.

We have tested four settings for reinforcing previous feedback. The reinforcement

works by reusing the instances of feedback as part of the training data while fine-tuning

the model. We have investigated the following four scenarios: reinforcing only negative,

only positive, all, and none of the previous feedback instances. The results in Figure 2.1(c)

suggest that reinforcement does not have a significant effect in general. However, reinforc-

ing positive and negative feedback instances achieves the best score with 2 feedback per

iteration and is the second-best with 4 feedback per iteration. It is important to reinforce

both feedback types to avoid the model from overriding previous knowledge.

The techniques for selecting the documents for feedback are compared in Figure 2.1(d).

The active learning technique provides some gain when the total user’s feedback instances

increases; however, selecting from the top 10 documents shows steady improvement over

iterations. Therefore we consider the top 10 documents for the evaluation on test data.
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2.4.3 Case Study: Community Question Answering

In the question-answering environment, the question context is not repeated in its associ-

ated answers. To address this limitation, the text of the existing question in the database

(not the user query) is concatenated to all of its related answers and is considered as a doc-

ument. This document, along with the user’s query, is one pair that is used for generating

features.

We have utilized SemEval datasets as a case study in Community Question Answering.

Each training instance in these datasets is represented by 36 features similar to the features

in LETOR datasets. Since SemEval datasets provide answers and their related questions

Rq, the feature vector for each pair is built considering this relationship. This representation

contains the following combinations of the answer’s content: A+Rqt , A+Rqb, A+Rqt +

Rqb, where A represents the answer body and Rqt and Rqb the related question title and

body, respectively. The following features concerning the new question are calculated for

each of these combinations: TF-IDF similarity, BM25 similarity, count of query terms,

count of query terms ratio, binary occurrence of query terms, binary occurrence ratio of

query terms. There are some features extracted only from the document, which are the

Inverse Document Frequency and the Term Frequency.

In the context of information retrieval from question-answering datasets, we have two

levels of abstraction. Answers have a detailed description of the solution, while questions

produce a higher level of abstraction that contains the problem and various related solu-

tions. To consider this hierarchical structure, we have devised two different mechanisms

for imposing user’s feedback on questions and on answers.

Negative feedback on a question q, fn, is spread towards all of its associated answers,

Aq, and marks all of them as non-relevant answers to the user’s query, Ya(i) = 0 ∀a ∈ Aq.

On the other hand, positive feedback on a question, fp, results in increasing the relevance of

all its associated answers, a ∈ Aq, to the current query according to Equation 2.2 in which

Ya(i) is the relevance score of answer a in relation to the user’s query in iteration i and Ya(0)

is the relevance of answer a in relation to the question q.

Ya(i) = Ya(i−1)+max
a∈Aq

Ya(i−1) ∀a ∈ Aq (2.2)

The feedback f on an answer a, is similar to the feedback on documents in the single-

level datasets and is calculated according to equation 2.1 for d ≡ a. The only difference
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is the initial value of the relevance score. In this case, Ya(0) is the initial relevance score

of answer a toward its parent question q. In case there is a feedback in an answer, and

its related question also has a feedback, the answer’s feedback is considered without being

affected by the question feedback.

In our system, the user has the option to provide feedback on questions and/or answers.

The evaluation presented in Figure 2.2 shows that if the feedback is provided on both ques-

tions and answers, a higher performance is achieved compared to scenarios where feed-

back is provided in just one of them. The feedback only on questions produces higher

NDCG@10 compared with feedback on only answers because the feedback on a ques-

tion provides more information (training instances) than the feedback on an answer. The

combination of both also results in better overall performance.

2.4.4 Evaluation

Figure 2.3 shows the NDCG@10 and Recall@10 achieved by the best configurations for

our proposed method across 8 iterations. We utilized reinforcement of positive and negative

feedback instances and added novelty documents to show the results for a pretrained and a

non-pretrained model. The results show an increase in NDCG@10 across all datasets.

We have considered 2 instances of feedback per iteration for MQ2007 and MQ2008,

and 1 feedback on question and 2 feedback on answers are considered for SemEval 2016

and 2017. The increase in recall shows that our system is not only reordering documents in

the top 10 results but also is finding new relevant documents over time. This is true for all

evaluated datasets.

For instance, in SemEval 2017, the system was able to achieve more than three times

Table 2.2: The MAP calculated on SemEval 2016 and 2017 datasets compared with results
of two baseline models and the top 3 results from the SemEval competition. Our result
represents the configuration with least amount of iterations to achieve a higher result.

SemEval 2016 MAP@10 SemEval 2017 MAP@10
Baseline 2 (Random) 15.01 Baseline 2 (Random) 5.77
Baseline 1 (IR) 40.36 Baseline 1 (IR) 9.18
SemanticZ-primary 51.68 KeLP-primary 14.35
Kelp-primary 52.95 bunji-primary 14.71
SUper team-primary 55.41 IIT-UHH-primary 15.46
Our pre-perf-it7 55.19 Our nonp-perf-it3 16.66
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the initial NDCG after only three iterations considering the non-noisy feedback in the non-

pretrained model setting. It is expected that the noisy feedback performs worse than the

perfect one. By comparing these curves, it is possible to see that the system is sensitive to

wrong feedback. However, even then, it can improve the ranking and recover but in a slower

pace. Although we have achieved higher performance comparing to the best algorithms in

the SemEval 2017 competition, our method does not give the same performance in the first

iteration.

As the results for NDCG of SemEval in Figure 2.3 suggest, the proposed method has

beaten the winner of the competition by 11% on the 2017 competition when there is 1

Question and 2 Document feedback per iteration for 5 iterations, and by 7% on SemEval

2016 at iteration 7. We compared our results with baselines and winners [44, 43] from the

competition, considering the Mean Average Precision, the main metric used in the SemEval

competitions, on the test data and reported in Table 2.4.3. In this table, we report the results

that achieve the best result for MAP in less amount of iterations. For 2016 we consider the

pretrained model with perfect feedback, on iteration 7 and for 2017 the non-pretrained with

perfect feedback on iteration 3. In Table 2.4.3, we report the evaluation on the LETOR

datasets. For MQ2007 and MQ2008 we compared with the online model presented in

[22]. The baseline in the graph represents their purely exploitative pairwise algorithm.

We achieved higher results with the non-pretrained model on perfect and noisy feedback

at iteration 2 on MQ2007, and our pretrained model achieved better base results, so we

include the result for the first iteration of noisy feedback to show that our method maintains

a good result. On MQ2008 the results follow the same trend, and we achieve better results

on iteration 3 and 4 on perfect and noisy feedback, respectively. Even if compared with

the values in the final iteration (1000) in Hofmann’s work, which is reported in a graph

Table 2.3: NDCG for MQ2007/2008 compared with perfect click model from [22]. Our
result represents the configuration with least amount of iterations to achieve a higher result.

MQ2007 NDCG@10 MQ2008 NDCG@10
Hofmann-pwise-r0 0.377 Hofmann-pwise-r0 0.490
- - - -
Our nonp-perf-it2 0.418 Our nonp-perf-it3 0.527
Our nonp-noisy-it2 0.395 Our nonp-noisy-it4 0.504
Offline LambdaMART 0.440 Offline LambdaMART 0.506
Our pre-noisy-it1 0.461 Our pre-noisy-it1 0.510
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for MQ2007, their model stabilizes at around 0.55 NDCG, while ours can achieve much

higher results, reaching 0.62 on the pretrained with perfect feedback model at iteration 7.

Although this project did not consider optimizations for speed, since we are propos-

ing an interactive system, we also measured the execution time of each iteration. In all

evaluated datasets, all the features for every query-document pair that will be ranked are

available. Thus we mostly only measure the model training time. Overall, every iteration

takes around 4.6ms. However, these numbers vary across iterations based on the amount

of feedback count and model type. The pre-trained model is expected to have a higher

execution time since its model is bigger from the beginning. Also, the model is increasing

throughout the iterations, from the addition of trees, so it gets more expensive at each iter-

ation; however, in our tests, the slowest iteration took around 11ms on a Intel i7-7820X @

3.60GHz CPU.

2.5 Conclusion

In this chapter, we have proposed an interactive LtR method, which improves the ranking of

retrieved documents through explicit relevance feedback. This system is evaluated on the

Community Question Answering task, besides the general information retrieval datasets,

and has shown significant improvement over the state-of-the-art. Our proposed method is

capable of improving the ranking in a few iterations, making it a valuable option, specially

when no training data is available.

As future work, it is possible to utilize an information retrieval module with higher re-

call, indirectly improving the LtR performance. Besides, generating context-aware features

using word embedding is another area for improvement.



Chapter 3

Visualizations for Learning to Rank Interpretation

This section is, in part, based on the paper submitted to the Computer Graphics Interna-

tional 2020. The thesis writer is the main author and contributor to the paper, being re-

sponsible for the conception, design and implementation of the RankDiff and Cumulative

Feature Gain visualizations proposed. He was also responsible for the implementation of

the CRG, for the analysis of all visualizations, most of the writing of the paper.

3.1 Introduction

Over the past years, Machine Learning (ML) has been used to solve a diverse range of

problems. Most ML models work by finding patterns and relations in data (indirectly) op-

timizing an objective function, e.g., the accuracy of classification models. Although ML

models have attained a relative success, in many cases, the patterns found by a model are

not meaningful in the real world or are not considered correct from a human perspective.

Therefore, not only the degree to which a model can optimize an objective function is rel-

evant, but also the understanding of how models make decisions is more and more critical.

This gives rise to a currently hot topic for research involving model understanding and

interpretation [66].

Learning to Rank (LtR) is a relevant area of research in ML. LtR models are used

in many commercial applications from advertisement sorting [30] to general informa-

tion retrieval [36]. As in most ML areas, much effort has been put into creating better

LtR models [63], focusing on metrics, such as Normalized Discounted Cumulative Gain

(NDCG) [26] and Mean Average Precision (MAP). But little or no effort has been put into

understanding how data items are ranked. The same is true for studies that consider in-

teractive learning to rank settings [7], in which models are trained through user feedback.

Consequently, there is an acute need for new techniques to support model interpretation in

LtR activities; otherwise, meaningless patterns can be used to drive sensitive decisions.

In general, there are a few different approaches to perform ML model interpretation [13],

22
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which extend from global model interpretation, that tries to understand the entire model,

and local interpretation, that provides a more detailed analysis on individual instances.

Among the approaches that give support to interpretability, single tree-based models are

known for being easily understandable by merely showing the list of decision rules or us-

ing a tree diagram. However, in more complex models, such as tree ensembles, the number

of rules increases to the point of being infeasible to be analyzed. With this increase, a

summarized approach must be defined to keep the model inside understandable to a user.

One way of achieving this is by making it possible to analyze many rules at the same time,

show their overall influences without cluttering the resulting view.

This work aims to fill this gap by using novel visualization techniques to explain better

how LtR models rank elements. Our visualizations provide information about the most im-

portant features to a specific ranking result and what differentiates the elements’ positions

in the ranking. We propose three visualizations. One model-agnostic that considers the

final ranked list to compare two different rankings. And two visualizations, applicable to

any Regression Tree based ML model, that explains the ranking by showing how the doc-

uments are scored considering their features and allowing a detailed comparison of which

rules influence the final ranking.

Throughout this chapter we use the terms document, element and instance interchange-

ably. This work is organized as follows: on Section 3.2 we perform a literature review

of related work on the field of model transparency and visualization. Section 3.3 details

the LtR model utilized and the proposed visualization methods. On Sections 3.4 and 3.6,

we delineate two case studies to show the usefulness of our visualizations. Section 3.5

details the solution considered in Sec 3.4. Finally, we include discussion and limitations in

Section 3.7 and final conclusions on Section 3.8.

3.2 Related Work

In this section, our focus is to present papers related with the visualization of LtR models.

However, the underlying techniques employed by most LtR algorithms are also used in

other tasks. Because of that, we also review studies that are either generic or applied to

similar models. We also discuss applications of visualizations in model interpretability and

some related works in the area of Interactive Recommendation Systems.
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3.2.1 General Models for Interpretation

Given the number of different Machine Learning models, some frameworks for model

interpretation are agnostic and provide some level of interpretation over the results of any

model. This is usually done by considering only inputs and outputs, without looking in the

internal parts of the model.

Manifold [74] is a generic framework capable of analyzing many types of ML algo-

rithms. The goal of the framework is to assist analysis, debugging, and comparison of

results. In [32], the authors propose a system to interpret prediction results, allowing in-

spection of prediction behavior with manual changes to instance features. The study de-

scribed in [57], proposes a new visualization to show the error “contribution” of different

models across different scenarios. LIME [52] is another tool created for model interpre-

tation, highly focused on local interpretation. None of these have focused on LtR and are

limited in their instance comparison capabilities. Our visualization technique allows the

comparison of a selection of documents at both feature and rule levels.

The study presented in RuleMatrix [41] shows a visualization focused on explaining

rule-based models. Their system performs an approximation of decision rules, through

model induction, of a black-box model, like Neural Networks, and then uses visualization

to help users to explore the data and understand the classification model. Their visualiza-

tion, however, is focused on interpretation of classification models while ours focus is on

interpretation of LtR models.

BaobabView [65] proposes a system to build and visualize tree-based models. However,

it does not apply to more complex ensemble models composed of multiple trees. VISE [61]

is another work considering trees, which allows the comparison of small ensemble mod-

els, but is limited on its exploration and visual capabilities, allowing only the exploration

of some branches of a single tree at a time. The visualizations used in these works, how-

ever, are not directed to LtR interpretation, while our visualizations allow the view of all

rules being applied to a selection of documents, displaying its accumulated effect to the

document’s score.

3.2.2 Ranking Interpretation

Recommendation systems are related to Learning to Rank techniques in the sense that both

seek to provide a ranked list of results. They mostly differ from the way the algorithms
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are designed and the type of training data considered. The survey presented in [20] recaps

recent research studies in Interactive Recommender Systems that focus on transparency and

explainability of the recommendations. These are based on collaborative filtering, content-

based, or hybrid approaches.

Collaborative Filtering recommenders usually explain recommendations based on other

users’ interests, leveraging similar users or social networks to define the recommenda-

tions [17, 45, 15]. Other systems base their recommendations on content, MoviExplain [62]

provides a table-based interface that displays a single important feature related with user

information to justify the decision, such as how many types of similar movies the user

reviewed. Intent Radar [55] utilizes a radial visualization to display relevant terms to the

users’ initial search and allows the user to guide the search by moving the words in the

space. However, visualizations on recommender systems do not consider an LtR model

and are usually focused on the exploration of results and use high-level descriptions, while

we consider a LtR model, focused on the comparison of a selection of elements, showing

how specific features from the element influence its score.

Techniques that employ visualization in item ranking typically have their visual repre-

sentations and ranking based solely on feature weighting. LineUp [16] and Rank as you

Go [11] propose similar visualization approaches for ranking explanation. The user can

change the weight of the terms or features, and the resulting rank is updated, display-

ing the contribution of each feature using a stacked bar chart. In [31] the user can use

a node-link visualization to distribute the results in a space delimited by keywords. All

these approaches are applied to simple ranking functions that use term weighting and do

not consider a Machine Learning model that learns based on user feedback. As suggested

in a recent study [42], the usage of wrapped bars is beneficial for explaining ranked lists.

Nevertheless, they make difficult the comparison of the same feature for multiple items.

We apply a similar idea in one of our visualizations to show rule contribution, but, for

better individual feature comparison on elements, we utilized a different approach which

compare the feature values and how it influences the element score.

3.3 Method

Typically, LtR are supervised models that learn from query-document pairs associated with

a relevance label. Some studies consider learning based on click models [24], where the



26

ranking model is learned based on the history of clicks for different searches. In contrast,

others consider an online scenario where the models are updated on the fly, based on the

implicit feedback provided by the click data generated by the users [22]. Relevant to the

latter type of model is that systems can reflect changes of interest of the general public over

time.

In cases where there is a lack of training data or in information seeking tasks where

interests vary, it can be challenging to have a generic model that attends all needs. Thus

it is necessary to follow a strategy that allows a dynamic model to reflect the user needs.

There are few studies in interactive learning to rank [7, 47] showing that user feedback can

effectively retrieve relevant data. However, it can be challenging to interpret the reasoning

behind the ranking of the results.

In the system implemented for this work, we utilize the LambdaMART [69] technique

as the base ranking algorithm. LambdaMART is a popular LtR model, based on a forest

Figure 3.1: Overview of interface and proposed visualizations and navigation flow. a)
Search bar. b) Results from search. c) Cumulative Feature Gain. d) Cumulative Rule Gain.
e) RankDiff visualization.
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of boosted regression trees. The model is built by optimizing the lambdas that minimize

the pairwise error regarding the NDCG metric. The lambdas are obtained from the NDCG

values resulted from swapping the training pairs in different orders. Given that E is the

group of elements, and e represents one instance, the score Se is calculated from the forest

of regression trees. Each tree in the forest is composed of multiple branches that end up

in a leaf node with score sb. Each instance is evaluated for all trees and falls in one leaf

node of a tree. Assuming that L represents the group of leaves that the document falls into

considering every tree, the score of an instance can be calculated as Se = ∑
L
p sp. The score

of the instances is used to sort the list of entries E to provide the final ranked list.

Our system learns considering the user in a feedback loop, that allows the user to search

and interpret the results using our visualizations as shown in Figure 3.1. The figure shows

the search bar (a), the list of results found (b), and the three visualizations proposed: Cu-

mulative Feature Gain (c), Cumulative Rule Gain (d) and RankDiff (e).

The numbers in the figure represents the flow of the system. Initially, the user enters a

query and receives the initial set of results that match with the user’s query (1). This set is

expanded into a recommendation list (2). The recommended items are represented in the

3 proposed visualizations (3), that are displayed in a panel that allows switching between

active visualization (4, 5). At any point, the user may provide relevancy feedback on a set

of items (6), followed by asking for a new recommendation (7), which returns a new set of

recommended items (8). Steps 6, 7 and 8 may be repeated many times. After step 8, the

visualizations are updated to represent the new information.

All visualizations were implemented in a web environment, using D3 [5], and backend

implementations were made in Python, using pyltr1 as the lambdaMART implementation.

Next, we describe the three proposed visualizations, the first supporting understanding

the difference between two ranked lists, the second providing information about feature

usage on document scoring and the last, providing information of which rules affect the

score of each document.

3.3.1 Ranking Comparison Visualization

The first visualization, RankDiff (Fig. 3.1 e), is a pairwise matrix representation that can

be used to compare the difference in the ordering of two different ranked lists. Given that

1https://github.com/jma127/pyltr

https://github.com/jma127/pyltr
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i and j represent the rank position of an element e, in the baseline ranker b and the main

ranker m, respectively. Then e can be indexed in a matrix at ( j, i), in which the first index

represents the row, and the second the column. Considering W and H as the maximum

available space in the X-Axis and Y-Axis, and N the selected number of instances from the

group E to be displayed, each element can be displayed as a square of size min(W,H)
N .

To see the difference between two rankers, the visualization is first initiated by posi-

tioning the elements with coordinates (i, i), so the items are aligned in a diagonal following

the ranking of b. Then, to compare with the ordering of the main ranker, the elements are

transitioned to ( j, i). This transition allows the perception of items that are moving up or

down in the ranking. The closest the items are to be aligned to a diagonal, from the top left

to the bottom right corner, more similar is the ordering of the items for both rankers.

Because of space constraints, when ranking many items, only the top N items ranked by

each ranker are shown. In this case, the elements from ranker b that do not appear in the list

ranker m, thus were ranked lower, are considered to have a rank position below the items

of m. This is considered so that the elements do not pop up or disappear, making it clear

that different items are entering or leaving the view. This effect can be seen in Figure 3.14.

Although this visualization can compare two unrelated rankers, it is most interesting

when analyzing the evolution of the ranking function over time by using m as the latest

ranker and b as the previous state. Then by sequentially swapping the main ranker to be

the base ranker while a new ranker takes the main place for the next iteration, it is possible

to identify how items move across many iterations. In this case, we draw a trail behind

the moving entries, showing how the instances change their ranks over time. Trails that

are above the main diagonal indicate elements that moved up in ranking. Those below

the diagonal are from instances that moved down. Items of interest can also be color-coded

differently to provide a better overview for a specific context, for example, to indicate item’s

true labels (in case of labeled benchmarks) or highlight items that received user feedback.

3.3.2 Cumulative Feature Gain Visualization

We designed the Cumulative Feature Gain (CFG)(Fig 3.1 c) visualization to provide an

overview of the feature utilization by a model and how they influence the ranking score of

a selection of items. In this visualization, each feature is represented by a cell C f , where f

represents a feature index. An overview of a single feature cell is shown in Figure 3.2. The
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Figure 3.2: Example feature cell utilized in the Cumulative Feature Gain visualization. a)
Elements marked as relevant. b,d) Arrows represent score influence of this feature over
the instance. c) Division line, on the left are the top 20 relevant items, and on the right the
bottom 10. e) An element highlighted by selection. f) The right most division line is used to
separate instances of interest that did not appear in the previous lists. g) Elements that were
marked as irrelevant. Elements are positioned sequentially based on their ranking order in
the X-Axis. The position on the Y-Axis encodes the feature value for each element.

cells are displayed in a grid, of C columns by R rows, where we consider C as a constant

with value 2 and R calculated by R = W
C . Then the horizontal and vertical size of a cell

can be defined as w = W
C and h = W

R , respectively. Given that Pr is an array that contains

the position of every instance in the ranker r and that µ represents the size of the element,

given by µ = w
N . The position of elements in the X-Axis (ex) encode their rank position for

a ranker r, following the equation:

ex = µ ·Pr[x]. (3.1)

The Y-Axis is used to encode the feature value for each item displayed in the cell. In

both axes, the visual representation is scaled to fit the available space in the cell, considering

the number of instances and the respective feature range Fmin and Fmax of the elements

being displayed. To be more intuitive, each cell displays in the top the feature name or

other relevant identification, so we use a constant gap λ at the top and a proportion of the

space for the arrows θ , explained later in this section. Given that Fe is a list of feature

values for the element e, the value of a feature f can be accessed by Fe[ f ]. Assuming that

the Y-Axis has the origin at the top of the cell, the position ey for an element can then be

calculated as

ey = h− Fe[ f ]−Fmin

Fmax −Fmin
· (h− (2µ +2θh+λ ))− (µ +θ ·h)− µ

2
(3.2)

We divided the horizontal space of the cell to represent different groups of elements. In

our case, we show first the top 20 instances, then the last 10 instances, and then instances
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that may be of interest that did not appear in the previous lists (Fig. 3.2 c & f ). The groups

are split using a line.

Element colors can be used for various purposes, but here the elements that received

feedback were colored with distinct colors to indicate positive (green) and negative (red)

feedback (Fig. 3.2 a & g). The contribution of the features for each element is calculated

considering the decisions of the forest model. These contributions are shown as arrows that

point up or down (Fig. 3.2 b & d) based on the average contribution of rules that use the

feature for the element. To better identify the overall contribution of features, these arrows

are scaled to indicate the contributions for the features of the N displayed elements.

The feature contribution of each instance D f e is calculated by the sum of the leaf score

for all relevant rules. Relevant rules are extracted from the branching paths B f e for all trees

in the model that uses the feature f in which the element e falls into. This is done using

D f e =
B f e

∑
b

L[b] where L[b] ∈ ℜ (3.3)

where L is an array of leaf values for the branches and L[b] is the leaf value for the branch

b. Worth noting that this is different from the final instance score Se, since now we only

consider the leaves that were in a branch that considered the current cells’ feature. The

sum of the absolute contribution value of a feature for every instance provides the feature

importance, and is calculated as

I f =
N

∑
e
|D f e| (3.4)

The intuition is that we consider of high importance the features that apply more difference

to the documents scores.

To show the feature contribution for every document, an arrow is displayed pointing

either up or down, based on the signal of D f e and with length l normalized using

l =
|D f e|− I f min
I f max − I f min

·h ·θ (3.5)

where the limits I f max and I f min are the maximum and minimum importance for the feature.

Such arrows are then positioned using

x = ex +
µ

2
(3.6)
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y = ey +
µ

2
· sign(D f e) (3.7)

The feature importance is utilized to decide the order and which features to show. Fea-

tures with importance 0 are omitted since any tree uses them. By hovering one instance of

one of the cells, the system displays in a space on the top of the visualization, all rules that

utilize the cell’s feature (Figure 3.10).

3.3.3 Cumulative Rule Gain Visualization

The third proposed visualization, Cumulative Rule Gain (CRG)(Fig 3.1 d), displays all

rules, from the ranking model, that are used to score each instance. The visualization was

built considering documents represented on the X-Axis as columns, and the rules taking

the Y-Axis as rows. Documents that are displayed are distributed in the space and have a

base guideline going down through all rules. Rules that do not affect visible documents are

omitted to save space, and we will refer to the visible set as U .

This guideline represents the origin, with 0 score, and is used as a base to draw a

bar chart that represents the accumulated score for every rule, from top to bottom, for

each document. This accumulated score, Sacc, is calculated similarly to Equation 3.3, but

considering the U set of rules instead of B f e. All rules in the set U are applied to at least

one document in the view, and when it is not, thus not changing the accumulated score, the

rule is represented using a more transparent color. All of these can be seen in Figure 3.3,

that displays a diagram that explains this visualization.

Given that Vmin and Vmax represent the upper and lower limits of the accumulated score

for the visible set of documents E. The bar-chart for every document assumes these values

as baselines to normalize the size of the bars, similarly to Equation 3.4. Where |D f e| is

replaced by |Sacc|, I f are replaced by the V limits, h is the horizontal space for representing

a document, and θ is 0.5, since the bar takes either the left or the right side of the origin

line. Note that negative accumulated scores are displayed to the left of the origin line. The

way the cumulative scores are displayed as bars is represented in Figure 3.3, for instance at

E2 getting some score from rule 2 (R2) and later from rule 6 (R6).

The documents are sorted on the X-Axis following the ranking order, and the features

can be ranked in different ways, e.g., all positives first, then all negatives to show the

contrasting rules. Here we keep them in order of creation. Similarly to the CFG, we also
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R1

R2

R3

R4

R5

R6

E1 E2 E3

Origin guide line for E3

R2 applied to E2

R5 applied to E3

R6 accumulated to E1
and E2 but not for E3

Rules not applied to E2

Figure 3.3: Cumulative Rule Gain, looking only at 3 ranked elements (E1, E2, E3) and 6
ranking rules (R1 to R6). Color red and green of the rules indicate a negative or positive
contribution, respectively.

have a dividing line to split specific groups of documents.

Both rules and the cumulative bar chart are color encoded using a red to green color

scale, which represents negative and positive values, respectively. A small rectangle is

also displayed on the top of every column to represent the element, which can be color

encoded to represent relevant information to the context, such as true labels or marked

documents. In Figure 3.13, on the top, there are 3 elements with green color and one red

by the end, indicating that those documents received positive and negative user feedback,

respectively.

3.4 Case Study: Ranking Model Evolution

In this case study, we assume a LtR system that performs re-ranking of the results based

on user feedback. The user can select documents as relevant or irrelevant and then ask the

system to refresh the results. Using the RankDiff visualization, we show that it is possible

Iteration 0

Relevant Irrelevant

Figure 3.4: First iteration result on the RankDiff case study. The squares represent items
sorted by ranking score, from left to right in descending order.
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Cycle 1 Cycle 2 Cycle 3

Relevant Irrelevant

a)

NDCG: 0.208 NDCG: 0.220 NDCG: 0.220 NDCG: 0.220

0-1 1-1 1-2 2-2 2-3 3-3

c) d)
4o

9o

3o

8o

b)

NDCG: 0.208 NDCG: 0.228 NDCG: 0.359 NDCG: 0.314

0-1 1-1 1-2 2-2 2-3 3-3

Figure 3.5: Behavior of the Learning to Rank algorithm over 4 iterations. a) the behavior
of the original algorithm. b) the behavior after changes to the algorithm from the intuition
taken from the previous result. c,d) Feedback that did not change position.

to better understand the behavior of the model and potential flaws in the learning model.

3.4.1 Dataset

For this case study, we selected one query in the validation set of the MQ2007-Fold1

dataset as an example of how our RankDiff visualization can be used to understand at a

high level how the ranking changes over iterations. MQ2007 is one of the datasets provided

in the LETOR 4 [48] collection, that contains many groups of query-document pairs with

relevance labels. This is a standard dataset used on the evaluation of LtR algorithms.

3.4.2 Usage Scenario

The first results are retrieved from the information retrieval system and ranked by a model

that approximates the order of a TFIDF score. From the initial results, we can then analyze

how the ranking order changes after receiving feedback. Considering that, the first results

retrieved for the query to be analyzed are represented in Figure 3.4, where relevant docu-

ments are represented by the blue color and irrelevant documents by orange. The leftmost

documents are at the top and the rightmost are at the bottom of the ranking.
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Given this initial ranking, now we start our feedback iterations. In the row a) of Fig-

ure 3.5, are displayed the cycle of 3 iterations of feedback. For every cycle, a transition is

shown, where items are moving in the vertical axis, showing where they are going to after

the feedback. After the transition, the items are aligned in a diagonal, showing the final

ranking order.

On the first iteration, one relevant and one irrelevant instance receive positive and neg-

ative feedback. A user can select these instances by looking at their content and judging it

either relevant or not. Here the user is simulated by an oracle, that knows the true labels

of the instances. Any number of instances can be marked as feedback, but in this study

we always consider 2 instances per cycle. The instances that received feedback in the first

cycle are the first two instances, that are highlighted in red and green in the transition (0-1).

This transition then is followed by the final ranking at (1-1), which represents the result at

iteration 1.

Then 2 new instances of feedback are selected at positions 4 and 9, as seen in the

transition (1-2). The newly marked documents did not change positions (Fig. 3.5 c), but

there were a few changes in the middle of the result set. Such changes are not visible to

a user since we consider, in this example, that only the top 10 instances are shown to the

user. The final result for this iteration is shown in (2-2).

At the last iteration, the transition (2-3) shows 2 new irrelevant documents selected at

positions 3 and 8, again resulting in no meaningful changes in the top-ranked results, as

seen in the final state (3-3) with final NDCG@10 of 0.19.

As displayed by this example, at iteration 1, where there are some feedback on wrongly

ranked instances, e.g. a relevant one after an irrelevant one, the model perform a meaningful

change in the ranking. However, after this iteration the model is stagnated and does not

change further since the following instances of feedback are, by the model’s perspective,

already ranked properly, because they are below the relevant instance.

A more usual behavior to most users would be that the irrelevant result should probably

not be visible in the top N results after receiving feedback. Considering that, it is possible

to change the algorithm by adding another objective to the training of the model. The idea

is to make changes so that the feedback is considered more thoroughly, leading to a better

ranking function.

The change to the interactive algorithm will be discussed in more detail in Section 3.5,
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but as an overview, we made the algorithm reconsider some items that were not in the

feedback list to be in between them. This change forces the algorithm to look for more

features that split the feedback instances, thus avoiding getting stuck in a solution that only

properly ranks the feedback instances.

After updating the algorithm, we can verify the behavior of the model considering the

same starting state. Looking in the row b) of images in Figure 3.5, it is possible to see how

the behavior has improved. The first iteration receives the same instances of feedback. In

transition (0-1) is visible that the selected irrelevant instance is being forced down more

positions than the previous method, being ranked at position 5 versus 2 from before as seen

in a) vs b) at step (1-1).

The transition (1-2) shows two new instances that were marked as irrelevant at positions

3 and 9 to be pushed down along with the previously selected instance. All of the marked

negative instances have now been pushed below the top 10, as the state in (2-2) clearly

shows. At the next iteration, two other irrelevant instances are marked, and the transition

(2-3) takes us to the final state (3-3), achieving final NDCG@10 of 0.31, which indicates a

better ranking order than the previous method.

Although, on average, the results considering the NDCG, MAP and Recall metrics

seemed to be satisfactory as in the before setting represented in Figure 3.6, where they

seem to improve over time. The RankDiff visualization exposed one flaw that was not

visible through the metrics average. The visualization showed that, in some cases, the items

that received negative feedback were still being ranked in the top positions, as indicated by

the arrows (Fig. 3.5 c & d), even after being explicitly marked as irrelevant documents,

showing that the model was stuck and not having any significant changes.

One could argue that by simply removing these items from the list, the problem would

be solved. However, the fact that those items are still at the top indicates that the model

might have failed to properly learn from that feedback.

Knowing the problem, we can then define a new metric that will capture whether the

model is getting stuck, thus allowing us to properly numerically evaluate our solution to the

issue. We define the NDCGlearn in Equation 3.8, where Dr represents the list of labels for

the current top K documents where relevant items have value Smax and all others Smin with

feedback are considered, similarly Di represents a list of labels where irrelevant documents

have value Smax, and Smin for all others. Smax and Smin represent the range of the true labels
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of the dataset. As displayed in the last graph in Figure 3.6, we can see that the NDCGlearn

is mostly stable for many iterations in the before configuration, indicating the stagnation.

NDCGlearn =
NDCG(Dr)+(1−NDCG(Di))

2
(3.8)

Lastly, after tuning some parameters of our new method in the validation set of MQ2007,

we then re-evaluate using the test set. The average of 30 runs over the test set is reported

in Figure 3.6. The new method achieved comparable or even higher levels of NDCG and

MAP. Considering the NDCGlearn, we see that the new method is superior, indicating that

our solution should have minimized the stagnation problem, presented in this case study,

for more queries. Note that the NDCGlearn is undefined at iteration 0, since it depends on

existing feedback, thus we just use the value from Iteration 1 when plotting the graph, to

keep the axis consistent.

Figure 3.6: Evaluation on MQ2007 average for all folds on test set. Before represents the
results before the changes to the method, and After changes to the method, developed after
insights taken from the RankDiff visualization.

3.5 Improving the Learning to Rank Method

Earlier in this chapter, the RankDiff visualization was demonstrated in a Case Study. The

case study described an issue where the iterative learning method stagnated and could not

improve the lists of results any further even after receiving multiple instances of feedback.

In this section I go over more details on the issue and the proposed solution.

3.5.1 Problem Analysis

A closer analysis and considerations regarding the LtR model utilized provided an in-

sight of why it was happening and how the problem could be minimized. As explained
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in Section 2.3.2, LambdaMART learns based on the lambda obtained from the difference

in NDCG from pairwise changes in the list of training instances.

Considering that X is the current list of training instances and that the current model M

already ranks X in a perfect order. By extending X with new instances t, labeled in such

a way that if ranked by the model, M, results in the same order of the original elements

in X . And that the extended elements being ranked anywhere, as long as they respect the

ordering from their labels, e.g. if labeled good it is in a better rank position than bad labeled

instances, LambdaMART wil not enforce any changes to the current model. This happens

because all possible lambdas from pairwise changes will have no effect and result in no

changes to the model.

A new metric to evaluate if the model was stagnated during learning was defined in

Equation 3.8. The metric measures how well the model is representing the feedback in the

final list, and is considered better for higher values.

3.5.2 Solution Evaluation

After understanding why LambdaMART was getting stuck, an intuitive solution to the

problem is to include more training data so that we stimulate the model to consider more

information that differentiate the negative feedback elements from the good feedback. The

proposed solution was to then include a set t that would make LambdaMART find lambdas

that would change the current ranking function. The group of elements t is defined by

selecting the top j instances that did not receive feedback, and temporarily marking them

with a static label l that is in between the instances with positive and negative feedback. The

value l influences the lambda value seen by LambdaMART and causes different decisions

inside the model, since lower l will make the model see the set t as more close to the

negative instances, and vice-versa for higher values and positive instances.

A parameter fine-tuning was executed with a few different combinations of parame-

ters on MQ2007-Fold1, displayed in Figure 3.7. The graph on the left shows that the

NDCGlearn achieved higher results, indicating a better behavior, regarding the stagnation

problem. Also, on the right it is possible to see the influence of the change on the NDCG

metric, that has a small improvement, specially after the second iteration. The results

reported earlier, in Section 3.4, considered l = 1 and j = 100. In Figure 3.8 the same eval-

uations are performed for the MQ2008, Semeval 2016 and SemEval 2017 datasets on the
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Figure 3.7: Evaluation of different combinations of parameters j and l in the proposed
solution to avoid the stagnation problem.

test set. MQ2008 uses 2 feedback per iteration and the SemEval datasets use 1 question

and 2 answers feedback per iteration, same to the settings used in Section 2.4. It is possible

to see that, overall, the implemented solution is beneficial across all evaluated datasets.

3.6 Case Study: Understanding Ranking Order

In this section, we analyze how the LtR algorithm generated a ranked list of recommenda-

tions based on an initial set of results. We demonstrate how our CFG and CRG visualiza-

tions can be applied to explain the reasoning behind the LtR model results.

3.6.1 Dataset

For this case study, we utilized the IMDB 5000 dataset [73] available on Kaggle. The

original dataset contains around 5,000 movie entries with 28 attributes. The data contains

general movie information, plot keywords, directors, revenue, review scores, actor infor-

mation, and social media related scores.

The dataset was cleaned by dropping all rows with missing values, removing attributes

with people’s names and their related social media scores, and excluding keywords related

to adult content. We also transformed categorical columns to a one hot-encoding since

our LtR model is based on regression trees and expect only numerical attributes. After

preprocessing, the final dataset remained with 3,656 movies and 1,055 attributes, most of

which are plot keywords that appear for more than 3 unique entries.
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Figure 3.8: Evaluation on the SemEval 2016 and 2017 and on MQ2008 averaged for all
folds on test set, average of 30 executions. Before represents the results before the changes
to the method, and After changes to the method, developed after insights taken from the
RankDiff visualization.

3.6.2 Usage Scenario

Consider a system that recommends similar movies based on a single search. In our usage

scenario, the user enters the word “pirate” and the system initially finds 6 movies that

relate with the search by their name. Then a LtR model is trained to find recommendations

considering that those results may be relevant.

A list of recommendations is then created, seen in Figure 3.9. Many entries related to

pirates are found, even some that do not match the exact term used in the search. Now,

looking at the CFG visualization, Figure 3.10, the user can quickly understand what type

of features are being used to generate the ranked list. As expected, the term “pirate” is a

relevant feature, which is a plot key-term present in the movies found on the initial search.
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Note that these key-terms are binary features and are divided by the regression trees at the

mean value of 0.5, where lower values indicate no occurrence of the term, and the opposite

its presence.

On the recommendation list, starting at position 16, we have many movies that are

not related with pirate, such as “Monsters, Inc.”, “Aliens” and “Scooby-Doo 2: Monsters

Unleashed”. By inspecting the CRG (Figure 3.12) we can have a better idea of what type

of rules brought these results up. In the figure, we see that the last documents (a) are

receiving +2.0 score from just one rule (R1 : pirate < 0.5 and monster ≥ 0.5), which

can be seen in (b). Then, the elements are penalized in −1.96 by the rule (R3 : pirate <

0.5 and heart < 0.5 and gross ≥ 10298042), which is perceived by the reduction of the

accumulated score represented in the bars at (c). We select this positive rule (R1) and all

the red ones (R2,R3,R4) to see what the model is considering as bad entries. Looking at

the rule description on the top, we then see that the last documents received points for being

“non-pirate” and “monster” types of movies from rule R2. Besides, they lost some points

in rule R3 for not being pirate or heart related and having a gross revenue of over 10.29$

million. We can also see that the bottom documents are scored by the three negative rules,

that relate with “non-pirate”, “non-monster”, “non-italian” and “non-heart”.

The movie at position 8 is seen in the CFG, Figure 3.10, as not being related with

“pirate” since it is represented on the lower part of the cell, however, by the movie name,

this is wrong and indicates a possible data issue. Even though this item has value 0 for

this feature, it receives a positive score, while the results at the end of the list, after the first

division, receive a negative score on this feature. Note that the movie was on the initial

search results. Thus the LtR model considered it as relevant when preparing the recom-

mendations. Also, because the “non-pirate” feature entered in conflict with the others, the

model had to look for other possible features to score the document, such as Heart and

Monster, which are very related with the movie in question. This caused the model to rank

other items related to those features higher as well.

Now consider that the user selected the first 3 movies from the recommendation list

as relevant instances and the fourth as not relevant. The CFG for the second iteration is

shown in Figure 3.11, which shows the top 10 important features. In this figure, we can

see that new features started to be considered for ranking the documents. If we consider

the documents that received feedback, it is possible to understand why the model included
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Figure 3.9: Search results for “pirates” keyword. The left is a list of entries matching the
query term, and on the right the system recommendations based on the left list.

these features. All the documents that received positive feedbacks were animations, “The

Pirates! Band of Misfits” has a relation to the keyword “scientist” from one of its charac-

ters, “Jonah: A VeggieTales Movie” is related with a “whale” that is part of the movie and

”Treasure Planet” is an adventure in space which is linked to the keyword “planet”.

The feature “man with glasses” is not related in any of the documents that received

feedback. However, it is still being considered in the ranking. This is an artifact from the

change to the training model performed on Case Study 1, which implicitly includes more

training instances along with the feedback instances. By looking at the rule related to this

feature, on the top of the Figure 3.11, we can see that it still relates to relevant features

regarding the documents that received positive feedback. The negative feedback was in an

“action” movie, feature which applies a negative score to some movies, besides other rules

considering the absence of the keywords mentioned previously (Figure 3.13). This iteration

is also interesting to be analyzed in the RankDiff visualization shown in Figure 3.14, which
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Figure 3.10: Cumulative Feature Gain view for the recommendations after the initial
search. The rules on the top were shown after hovering the first element in cell #1.

indicates that some documents remained in the view, and new ones entered the top 20.

3.7 Discussion and Limitations

This work proposes three visualizations to be applied in LtR. One of them revealed a stag-

nation issue in the iterative LtR method that was not clearly visible in the standard metrics.

After the issue was identified, a metric to capture the unwanted behavior was defined, so

it was possible to evaluate potential solutions. Besides that, other visualizations are pro-

posed to explain how elements are ranked by the models, making it clear what the model

is prioritizing in the ranking.

Our work is not perfect and has some limitations in the proposed visualizations. For

instance, our visualizations can not provide much assistance in analyzing the feature de-

pendencies considered in the model. The CFG visualization tries to express the overall

contribution of the features in an isolated form, thus not making obvious its relations with

other features. We only try to provide this rule dependency information with basic textual
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Figure 3.11: Cumulative Feature Gain view for the recommendations in the second itera-
tion. The rule on the top relate to the first element in cell #5.

rule descriptions. The CRG shows the contribution of rules for the documents, but for mod-

els with many rules, the visualization can become extensive, and may require other ways

to filter or select visible rules.

All visualizations have some limitations in the number of elements they can display, so

we try to focus on showing interesting instances. Other approaches could be considered

to select displayed instances, such as allowing the user to select specific instances to be

analyzed. It is also worth noting that interpretation of the CFG and CRG is subject to user

knowledge on the domain and understanding of the features.

3.8 Conclusion

Three visualization techniques are proposed in this work, viz., RankDiff, Cumulative Fea-

ture Gain (CFG), and Cumulative Rule Gain (CRG), each focused on explaining one differ-

ent aspect of the Learning to Rank algorithm. With the RankDiff visualization, it is possible

to quickly recognize how the ordering of two ranked lists differs, and to identify potential

flaws that are not obvious when looking at standard LtR metrics. The visualization pro-

vided enough information to improve the iterative LtR method, and, as a result, we propose
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Figure 3.12: Cumulative Rule Gain view for the recommendations, displaying all rules that
are applied to score the documents on the first iteration. On the top, the selected rules (R1,
R2, R3 and R4) are displayed in detail.
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Figure 3.13: Cumulative Rule Gain view for the recommendations, displaying the second
iteration. The rules related to the current iteration have a black indication on the left side.
Rules with black borders are selected and shown in detail on the top.
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Figure 3.14: RankDiff in the middle of the transition to results of the second iteration of
the ”Understanding Ranking Order” Case Study, showing how new documents enter the
view.

a new metric to evaluate the learning aspect of the algorithm. The CFG visualization allows

easy identification of important features and how they influence the ranking of the results.

And the CRG summarizes the rule contribution over documents, allowing analysis of the

score change of the documents as rules are applied.

By combining the CFG and the CRG visualizations, it is possible to verify the most

critical rules necessary to rank the results. Although the presented visualizations are uti-

lized in an active learning setting, the same concept can be applied to offline models to

explain the results of individual queries. As future work, it would be interesting to perform

a user test, that could suggest possible improvements to the proposed methods. Also, we

believe these visualizations could also be applied to other tasks, such as classification, with

small adaptations.



Chapter 4

Discussion

In this chapter, I complement this work with a discussion of earlier experiments performed.

Including some justifications on decisions, which led to the selected models, features and

design process of the visualizations considered in the previous chapters. I also discuss some

limitations of this work and the final conclusions.

4.1 Learning to Rank Models & Features

Many LtR algorithms could have been used in this work, but it is impossible to evaluate

them all. Neural Network models were not considered because they usually require many

training instances to perform well. Thus they did not look like the right approach for our

problem. Support Vector Machines (SVM) had performed well in previous studies and

have been adapted to ranking tasks before [21]. Therefore, it was considered and will be

referred to as Rank SVM. LambaMART is another algorithm designed for LtR tasks and

used in recent studies [24, 10, 63], so it was also considered in this work. Besides the

models, there are numerous ways to generate query-document representations, and some

of them were also explored in this work.

Although the LETOR 4.0 dataset already contains features to be used for learning,

the SemEval 2016 and 2017 datasets are based on text. Thus I was required to generate

features to be able to use this dataset for evaluation. The SemEval dataset was also selected

for evaluation because it is a recent dataset and of manageable size in which I could learn

more about feature generation for text documents while also applying it to evaluate the

interactive learning to rank from explicit feedback method.

To generate features, it is necessary to preprocess the original content and use some

method to generate the query-document vector representations. The prepossessing by itself

is a very complex task. The data contained misspellings, emoticons (faces and expressions

based on special characters), urls and some garbage text with many repeated characters.

After getting some cleaned data I started testing with simple approaches of feature vectors,

47
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Figure 4.1: Comparison of LambdaMART and Rank SVM performance on NDCG@10 for
different feature sets.

such as BOWs and TFIDF vectors. Later I also tried more complex features based on word

embeddings such as Doc2Vec [33] and Infersent [9].

The feature set that showed to perform best and more consistently was used as the final

feature set for evaluations. Such feature set was composed of similar features considered in

Letor 4.0, which is referred to as LetorLike in this section. The size of the feature sets tested

are displayed in Table 4.1 along with execution time comparison. Figure 4.1 compares the

ranking performance using the NDCG@10 metric of both models in different feature sets.

All these results are based on the validation set for SemEval2016. Any training required by

the feature models was performed using the training set.

All types of features worked to some extent for both LambdaMART and Rank SVM

models. However, they also came with a cost. Since the generation of query-document

features depends on a dynamic element, the query, the generation of features must be con-

sidered on-demand on a real system. Nevertheless, my main concern was in studying the

iterative learning behavior and improvements to the ranking. So for faster iteration, the

features were generated once before execution. Although little effort was put into time op-

timizations, the times in Table 4.1 shows that both models achieved acceptable execution

times, disregarding feature generation, overall to be used for real-time purposes.

Regarding ranking performance, Rank SVM managed to improve over time. However,

in the first few iterations, which are most important, the model performed very poorly and

worse than LambdaMART. The usage of word embedding features seems to make it harder
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Table 4.1: Size of feature sets and average execution time for one iteration for different
feature sets for LambdaMART and Rank SVM, averaged after 7 iterations of feedback.

FeatSize LambdaMART Rank SVM
Avg. exec. time (ms) Avg. exec. time (ms)

LetorLike 36 6.05 4.44
TFIDF 1184 9.57 7.83
D2V 100 6.83 5.06
Infersent 4096 20.76 11.45

for both models to learn because they were too noisy to be learned well with just a few feed-

back instances. The results were better when using sparser features or using small feature

sets, as can be seen in Figure 4.1. Another attempt was generating a smaller embedding by

fine-tuning the Infersent features. However, it also did not achieve performance as good as

using more straightforward features or the original Infersent embedding. Considering these

results and that LambdaMART provided a direct way of being used incrementally, due to

its boosted nature, and that it is considered an effective LTR model [63], LambdaMART

was preferred.

4.2 Visualizations Design Process

Four other visualizations were designed and analyzed before the ones proposed in Chap-

ter 3. Initially, they were considered as being part of a big dashboard, using the RankDiff

visualization as the primary guide, as displayed in Figure 4.2. The idea was to have dif-

ferent views, showing various aspects of the main ranker. For that, the views were aligned

to either the rows or the columns of the RankDiff visualization, so that surrounding views

would be displaying diverse information regarding those documents.

Two of these four visualizations are model agnostic and consider only input features

and model output (ranked order). One of the visualizations is a correlation matrix (Fig. 4.2

a) that displays the similarity of pairs of elements considering the cosine-similarity be-

tween their feature vectors. Although this visualization allows seeing some related groups

of documents, it did not provide information regarding which features were related and

affected their ranking.

Considering this gap on that first strategy, a new visualization was developed,to display

individual features (Figure 4.2 b). This visualization is simple and displays the feature
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a)

b)

c)

Figure 4.2: Initial visualizations developed for the dashboard with RankDiff as the central
visualization, along with other surrounding visualizations. a) Correlation Matrix display-
ing pairwise cosine similarity between elements. b) Feature Heat-Map displaying element
features. c) Leaf Scores visualization, displaying active leaf scores for every element.

vectors as small heat-maps, in which similar documents were evident when close together,

same as what happened in the correlation matrix. Although it was possible to see similar

feature patterns in the heat-map, the actual feature description still depended on special in-

teraction, such as hovering. Also, if big feature vectors are used, the view gets too complex

for a general overview, and there is no connection between the features and their actual

influence in the ranking.

The other two visualizations tried to grasp more specific aspects of the tree-based model

used in the approach presented in Chapter 2. Considering that the overall ranking score of

the documents is based on the leaf values, a visualization that displays those values was

developed (Figure 4.2 c). This visualization generated compelling patterns and allowed

the overall view of how many positive and negative rules each document was falling into.
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However, it was not related to any feature, so it was difficult to link those rules with relevant

or irrelevant features.

Trying to create a view to show features used, a hierarchical visualization that displays

all the levels for every tree in the forest was developed (Figure 4.3). The initial implemen-

tation used straight lines to represent the feature connections, but it was very noisy, with

many lines overlapping. Then an edge-bundling[23] technique was applied to group edges

and emphasize groups of similar connections. Also, the visualization considered connect-

ing the branching paths over feature nodes at a relative position to the threshold value for

the feature space. For example, a connection precisely in the middle of a feature node rep-

resents that the threshold is the middle value considering the value range for that feature

for all elements. This visualization allowed an overview of used features and inter-feature

dependency. By highlighting active nodes for a document, it was possible to see which

features were considered when ranking the document. However, it was difficult to compare

multiple documents at once because of the overlap.

All of these four visualizations had some positive sides and negative sides, but they

did not cover well the information of interest required to understand the model considered

in Chapter 2. Eventually, new ideas led to the concepts presented in Chapter 3, which

condenses the information, allowing easy understanding of rank differences, feature im-

portance, and feature influence on the ranking of individual documents.

4.3 Limitations and Future Work

Many algorithms could be used in Learning to Rank, but this work focused mostly on

LambdaMART. Other models and/or features could achieve better results, but more study

is required to determine that. Three visualizations for interpreting the LtR algorithm were

analyzed through Case Studies. However, a formal user study could reveal possible im-

provements to the proposed visualizations that could lead to better interpretability of the

ranking and the model. While the visualizations were proposed for use on ranking inter-

pretability, they may be adaptable for other purposes, especially the CFG and CRG visu-

alizations. For instance, CFG could be adapted to show the most probable class that the

instance tends to be in regards to the individual features. While CRG could be used to dis-

play contrasting rules over different classes by using the bar color to represent the probably

predicted class over the rules.



52

Figure 4.3: Hierarchical Forest visualization, which was initially considered for the dash-
board, here showing five levels of the regression forest. Each black rectangle represents a
feature. Topmost connections represent a tree, connecting to its first feature for decision.
Connections to the feature nodes are positioned relative to their decision threshold. Each
line represents a branch of a tree. The red and blue rectangles represent the leaves, which
are a shade from red to blue representing a negative to positive contribution.
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4.4 Conclusion

This work shows that LambdaMART can be used in iterative learning to rank systems that

learn from explicit user feedback. I also explore diverse formats of the training methodol-

ogy to find settings that would better utilize explicit user feedback to achieve higher results

in fewer iterations. The evaluations show that the system can be a valuable option when

no previous training data is available, achieving comparable or higher performance than

offline methods in just a few iterations.

The proposed visualizations summarize diverse aspects of the ranking model and re-

sults, allowing a better understanding of how the ranking list was generated. RankDiff

allows easy comparison between two ranked lists, and it was already demonstrated useful,

by exposing a stagnation issue in the iterative learning to rank system. This issue was not

obvious by only looking at standard metrics. After more analysis of this issue, a solution

was considered and tested, resulting in improvements to the performance of the method.

The Cumulative Feature Gain visualization provides a condensed view of how features in-

fluence the ranking of the results. In contrast, the Cumulative Rule Gain complements the

previous visualization by providing a high-level overview of the rule’s influence on ele-

ments. These visualizations allow comparison of multiple elements and reveal the rule’s

contribution and contrasting rules applied to the documents. I show, through a detailed

Case Study, that these visualizations are effective in understanding why elements differ in

ranking and what matters in their ranking.



Appendix A

Metrics used in Evaluations

There are many standard metrics from Information Retrieval that can be applied on Learn-

ing to Rank, such as Precision@K, Recall@K, MAP@K, NDCG@K and others. Here are

described the main metrics that were used for evaluations performed in this work.

A.1 Recall

Recall is a metric to evaluate amount of relevant information found considering the amount

of relevant information that could be found. For LtR, it is common to consider a Re-

call@K, which consider elements retrieved until position K at the ranking. As defined in

Equation A.1, where r represent the number of relevant documents retrieved up to position

K and R the total amount of relevant documents that exist, up to K. The final recall value

range is [0,1], where 1 would indicate a total recall, where all relevant documents were

retrieved up to K.

Recall@K =
r
R

(A.1)

A.2 Mean Average Precision

To calculate The Mean Average Precision (MAP) it is necessary to calculate many precision

values at different levels. The Precision@K is calculated by the fraction of found relevant

items r divided by the amount of documents found K in the list, as in Equation A.2.

Precision@K =
r
K

(A.2)

Then, Equation A.3 shows how the Average Precision can be calculated by averaging

all Precision@x, with X going from 1 to K.
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AveragePrecision@K =
K

∑
x=1

Precision@x (A.3)

The average precision is calculated for every test query and then averaged by all queries,

which then gives the final MAP value. The MAP metric ranges from 0 to 1, where 1

represents the best score possible.

A.3 Normalized Discounted Cumulative Gain

The Normalized Discounted Cumulative Gain (NDCG) [26], is a ranking evaluating metric

with the purpose of providing a good metric to access the quality of a sorted list of results

with different levels of importance. For instance, relevant documents should be considered

more valuable than irrelevant documents.

Note that the NDCG differs from the Recall@K and MAP@K in the sense that the last

two only considers a binary relevance level, since the precision and recall are calculated

based on an amount of relevant documents, which must be defined as a threshold in case a

dataset with more relevance levels is used. The NDCG calculates a score based on how far

the relevant documents are from the top of the list and is usually considered up to the top

K documents. This comes from the intuition the documents farther from the top are less

likely to be seen.

To define NDCG it is necessary to first define the Cumulated Gain (CG) and the Dis-

counted CG. Considering a list G of discrete relevance scores that relate to the list of doc-

uments to be evaluated, CG is a the vector of accumulated relevance scores until position i

of all entries i in G, represented by Gi. CG can be recursively defined as in Equation A.4.

⎧⎨⎩CGi = Gi If i = 0

CGi = Gi +Gi−1 If i > 0
(A.4)

The DCGi is then defined considering the relevance scores weighted by a discount

factor, based on the item’s position in the list, as in Equation A.5. The discounting factor

is calculated using logb i, where b is usually set to 2, and higher values would increase the

importance of documents farther away from the beginning of the list.
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⎧⎪⎨⎪⎩
DCGi = Gi If i < b

DCGi = DCGi +
Gi

logb i
If i ≥ 0

(A.5)

Then, to calculate the NDCG, it is necessary to get an ideal list I, that contains the

relevance of the same documents from G, but in descending order: from most relevant to

least relevant. The NDCG@K can be then calculated by the fraction of the DCG for the

list relevance scores G and I, as seen in Equation A.6:

NDCG@K =
DCGk

IDCGk
(A.6)

The NDCG should yield a value in the [0, 1], range, where 1 indicates the best ranking

order.
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lymäki, Giulio Jacucci, and Samuel Kaski. Directing exploratory search with inter-
active intent modeling. In International Conference on Information and Knowledge
Management, Proceedings, pages 1759–1764, New York, New York, USA, 2013.
ACM Press.



67

[56] Gerard Salton and Michael J McGill. Introduction to modern information retrieval.
1986.

[57] Catarina Silva and Bernardete Ribeiro. Visualization of individual ensemble classifier
contributions. In Communications in Computer and Information Science, volume 611,
pages 633–642. Springer Verlag, 2016.
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