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Abstract

As far as Gene Ontology (GO) is concerned, most of the existing gene functional
similarity measures combine information content-based semantic similarity scores of
single GO-term pairs to estimate gene functional similarity, whereas a few models
base their approach on Jaccard similarity to compare GO terms in groups for this
measurement. However, almost all of these measures are dependent on the ever-
changing structure of GO, they are slow and task-dependent, and do not consider the
valuable natural language definition of GO terms. The first part of this thesis intro-
duces the simDEF model which avoids these drawbacks by considering the advantage
of distributed representation of GO terms using their text definitions. Manual feature
engineering, large dimensions of distributed GO-term vectors, the use of traditional
metrics to aggregate GO-term similarity scores prior to computation of gene func-
tional similarity, and, resorting to separate evaluation of each sub-ontology in GO
(biological process, cellular component, or molecular function) in a biological task,
are challenges that can be addressed by Deep Learning. Therefore, we introduce
deepSimDEF that avoids the majority of the above-mentioned issues. For this pur-
pose, deepSimDEF network(s) learn low-dimensional vectors of GO terms and gene
products, and then learn how to calculate the functional similarity of protein pairs
using these vectors (a.k.a. embeddings). By considering all GO sub-ontologies, deep-
SimDEF increases yeast PPI predictability by ∼4%, shows a Pearson’s correlation
improvement >6% with yeast gene expression and >4% with human gene expression,
and improves correlation with yeast sequence homology by up to 11%. The beneficial
method for distributed representations of GO terms can be utilized in other domains
of Machine Learning for low-dimensional embedding of concepts. In the second part
of this thesis, this concept embedding method is evaluated in the task of Word Sense
Disambiguation of natural text. Hence, deepBioWSD, a one-size-fits-all model is
devised which consists of a single Bidirectional Long Short-Term Memory network
classifier. We use the MSH-WSD dataset to compare WSD algorithms while macro
and micro accuracies are employed as evaluation metrics. We show deepBioWSD
outperforms the existing supervised models in (biomedical) text WSD by achieving
the state-of-the-art performance of 96.82% for macro accuracy.
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Chapter 1

Part I: Prologue

1 Introduction

1 .1 Gene Ontology and Gene Function Analysis

The Gene Ontology project (GO) [9] is a bioinformatics initiative to characterize all

the important features of genes and gene products within a cell using a structured

and controlled vocabulary. UniProt [36], SwissProt [17], and many other biomedical

databases are annotated by the GO terms in order to communicate semantic roles

of biomedical entities. In addition, countless biomedical and biological studies have

been receiving benefits from GO and GO annotations directly or indirectly in their

experiments. These studies run the gamut from generation and employment of more

focused biological networks of interest (e.g. protein-protein interaction networks [114],

co-expression networks [43, 149, 222], and gene co-functional networks [198, 88]) to in-

vestigation of novel techniques of drug discovery [54, 218], disease-discovery [251, 120],

and cancer treatment [125, 236]. These studies largely employ GO term semantic sim-

ilarity measures which subsequently leads to functional similarity prediction of genes.

This prediction will help a study to come up with their final inference, production,

or tool - however, the results of semantic/functional similarity measures usually will

be integrated with other biological metrics or statistical measures for a more reliable

proposition. Likewise, since the in vitro biomolecular experiments designed for vali-

dating gene functions are expensive, in the recent years, the automatic computation

of gene function prediction of the biomedical entities using their GO annotations has

been under data mining investigations extensively [216, 183]. To this end, every year,

the GO offers a repertoire of functional terms for CAFA competition1 [180, 53, 80]

aiming for Critical Assessment of protein Function Annotation algorithms. In these

regards, these developed methods and software tools get evaluated against a wide

1http://biofunctionprediction.org/

1

http://biofunctionprediction.org/
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range of biological problems such as prediction of protein-protein interaction (PPI)

[214, 131], analysis of gene expressions [236, 73], comparison of homologous genes

[31, 176, 38], and evaluation of functional annotations of enzymes [68, 174].

In several recent studies, distinguished from those that propose various invariants

of semantic similarity and functionality similarity measures, the effect of different

aspects of these measures such as the effect of annotation size [94] and the effect of

shared information on semantic calculations are investigated [15, 245]. For a com-

prehensive review of these studies refer to [41, 121]. As to the significant impact of

the former, certain number of studies have been concerned with the enrichment of

GO annotations by means of biological data hand in hand with computational tools

[195, 27], while some of them even employ deep learning tools such as autoencoders in

order to facilitate reaching this goal [28]. Moreover, due to the importance and wide

applicability of these measures in the domain, speeding up these functional similarity

measures has been the subject of study in several research works as well [212, 98].

The problem of computational efficiency for pair-wise approaches (e.g. information

content-based measures [184]) is even more prominent because they are dependent on

the combination of semantic similarity.

Part 2 of this thesis is concerned with these biological studies as well as biological

concepts and tools available. Furthermore, it proposes two models, namely simDEF

and deepSimDEF, to facilitate and speed up the process of gene function analysis.

1 .2 Word Sense Disambiguation of Natural Text

In the Natural Language Processing (NLP) community, Word Sense Disambiguation

(WSD) has been described as the task which selects the appropriate meaning (sense)

to a given word in a text or discourse where this meaning is distinguishable from

other senses potentially attributable to that word. These senses could be seen as the

target labels of a classification problem. That is, machine learning seems to be a

possible way to tackle this problem. WSD task is a potential intermediate task [228]

for many other NLP systems, including mono and multilingual Information Retrieval,

Information Extraction, Machine Translation or Natural Language Understanding.

One of the important use-cases of a WSD model is in the biomedical domain in
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which lots of polysemous terms2, acronyms, and abbreviations exist. For example,

the simple word cold has several senses and may refer to a disease, a temperature

sensation, or an environmental condition, (or even it is an acronym for a harsh lung-

related disease called chronic obstructive lung disease). The intended specific sense

is determined by the textual context in which an instance of the ambiguous word

appears. In “I am taking aspirin for my cold” the disease sense is intended, in “Let’s

go inside, I’m cold” the temperature sensation sense is meant, while “It’s cold today,

only 2 degrees”, implies the environmental condition sense. Therefore, automatically

identifying the intended sense of ambiguous words improves the proper inference of

biomedical text data for the clinical and biomedical applications.

Furthermore, the need of enhanced WSD capabilities appears in many applica-

tions whose aim is not language understanding or its usage in a specific domain.

Among others, we could mention: Machine Translation [21, 137], Information Re-

trieval [204, 250, 47, 156], Semantic Parsing [18], Speech Synthesis and Recognition

[146], Acquisition of Lexical Knowledge [119], Lexicography [209], and etc..

The Part 3 of this thesis is concerned about WSD models and the advantages

they provide to the NLP applications. Importantly, in the second half of that part,

in Chapter 5, we propose a model named deepBioWSD that is mainly developed to

deal with the problem of needing to have multiple WSD classifiers in a supervised

setting of sense prediction.

1 .3 A Quick Excursion to the Deep Learning Land

With the revival of deep feedforward neural networks around 2006 [13, 66], deep

learning methods have become prevalent in the research community. These are rep-

resentation learning methods that compose multiple non-linear modules to obtain

multiple levels of representation [99]. These non-linear modules can transform the

representation of the raw input at one level into a representation at a higher, more

abstract level. The key advantage of deep learning is that human engineers do not de-

sign these layers of features and, therefore, the least feature engineering is needed [58].

Over the last few years, deep learning methods have brought about breakthroughs in

image recognition and speech recognition [65, 93] and proved their beneficial usage

2A polysemous term has many meanings
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in many natural language processing (NLP) tasks [34, 217, 247, 206]. Since deep

learning methods demonstrate their excellent performance in the general domain, re-

cently they have gained attention from biomedical and bioinformatics communities

as well. Therefore, their effectiveness has been evaluated in text mining of biomedical

data [30, 106] and segmentation of medical images [48, 199]. These studies also ben-

efits from autoencoders (AEs), variational autoencoders (VAEs [90]), and generative

adversarial networks (GANs [59]) for feature construction, information extraction,

and synthetic generation of biomedical images or other biological/biomedical entities

[210, 28, 84, 190].

deepSimDEF presented in Chapter 3 (in Biology Part 2), and deepBioWSD pro-

posed in Chapter 5 (in NLP Part 3) are designed and benefit from deep learning

concepts and methods.

2 Research Problems and Motivations

This thesis addresses two research problems related to A) functional analysis of genes,

and B) word sense disambiguation of natural text. Regarding the former, we introduce

the deepSimDEF model to improve the similarity estimations of the gene products and

their functionalities. Regarding the latter, we introduce deepBioWSD which helps to

improve the disambiguation accuracy of a natural language or specific domain (e.g.,

biomedical or financial documents). We state and discuss each research problem and

objective as follows:

2 .1 Problem/Objective I: Biological Attribute Embedding for Gene

Function Analysis

Problem. As far as GO is concerned, most of the existing gene functional similar-

ity measures combine semantic similarity scores of single GO term pairs to estimate

gene functional similarity (pair-wise measures), whereas others compare GO terms

in groups for this measurement (group-wise measures) [211, 170] (for further details

refer to Chapter 2 and Chapter 3). However, almost all of these measures are strictly

dependent on the ever-changing topological structure of GO; they are very slow and

extremely task-dependent leaving no room for their generalization, and none of them

takes the valuable textual definition of GO terms into consideration. Our first model,
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simDEF (presented in Chapter 2), avoids these drawbacks by taking into account the

significant advantage of distributed (vector-based) representation of GO terms us-

ing their textual definitions. In contrast to information content (IC) based semantic

similarity measures such as Resnik [184] and Lin [110] which depend solely on the

structure of GO, this distributed representation helps for better semantic similarity

measurement of GO terms leading to more accurate gene functional similarity estima-

tion. However, simDEF suffers from some unaddressed yet important shortcomings,

many of which are shared with the existing models. Manual feature engineering, large

dimensions of distributed GO-term vectors, the use of traditional metrics to aggregate

GO-term semantic similarity scores prior to computation of genes functional similar-

ity, and, resorting to separate evaluation of each sub-ontology in GO in a biological

task, are some of these inadequacies. These limitations and problems present the

challenges of measuring genes functional similarity reliably.

Objective. As an objective to deal with the above-mentioned problems, by rely-

ing on the expressive power of deep neural networks, we lay out and develop the

deepSimDEF model (presented in Chapter 3). Briefly, deepSimDEF is an efficient

model for measuring functional similarity of proteins and other gene products (e.g.,

microRNA and mRNA) using natural language definitions of GO terms annotating

those genes. For this purpose, deepSimDEF neural network(s) (single-channel and

multi-channel) learn low-dimensional vectors of GO terms and gene products and then

learn how to calculate the functional similarity of protein pairs using these learned

vectors which are known as embeddings.

2 .2 Problem/Objective II: Natural Language Concept Embedding for

Word Sense Disambiguation

Problem. The reason for the importance of WSD lies in the ambiguity of human

language [135], which is so pervasive that huge numbers of words can be interpreted

in multiple ways depending on the context in which they occur. Therefore, resolv-

ing the sense ambiguity of words is obviously essential for many Natural Language

Understanding applications [75]. However, current WSD models are mostly designed

based on the notion of “one classifier per (one ambiguous) word” [194]. Meaning

a large amount of labelled data are needed for training of a supervised WSD model
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(which consists of a large number of disambiguation classifiers); these supervised mod-

els typically outperform unsupervised, semi-supervised, and knowledge-based models.

However, sense annotation of a large amount of data is an unattainable and arduous

task to achieve as the labelling process is labor-intensive and time-consuming (mainly

when it is done in specific domains in which expert knowledge is needed). This is a

challenging problem as it poses a formidable hurdle on the way of real-life implemen-

tation of supervised WSD algorithms.

Objective. The objective of Part 3 of this thesis is to tackle this inadequacy in ad-

dressing the task of WSD, especially when supervised training of a model is concerned.

For this purpose, inspired by the approach to generate embeddings of biological enti-

ties (e.g., genes and gene products) introduced in Part 2, we introduce deepBioWSD

that can largely benefit from sense embedding of natural language semantic units

(i.e., senses or concepts). To do so, deepBioWSD offers a one-size-fits-all model that

consists of a Bidirectional Long Short-Term Memory network devised to be trained on

all available training data of all ambiguous instances, meaning we do not dedicate one

(labelled) ambiguous instance only to its associated classifier (and vice versa). These

considerations alleviate the need for large numbers of training samples as the network

can be trained in unsupervised fashion as well. This is because as a single classifier

for all instances it shares statistical strength across all words and their contexts by

scaling well when the vocabulary size increases.

2 .3 Research Methodology

We followed an incremental methodology for this thesis. It comprised seven general

tasks, as depicted in Figure 1.1. We began with the literature review, and the data

collection and/or generation task. We then designed our simDEF and deepSimDEF

models for gene function analysis, and our single-network and deepBioWSD models

for word sense disambiguation of natural text. The adjustment of parameters, ex-

periments, and discussion were the oncoming tasks. The central hexagon, i.e., the

analysis task, had an influential role, because we discussed pros and cons of existing

methods and established our developments based on that. Finally, the process was

like a lattice where all tasks were interactively fulfilled (rather than being in a queue).
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Figure 1.1: Research Methodology Lattice

Additionally, in order to ensure the machine learning reproducibility of the con-

ducted experiments and the achieved results would be easily possible for every one,

throughout the studies we made sure the guideline/checklist3 from Dr. Joelle Pineau

for reproducibility was met. For that reason, the source codes of the algorithms are

shared and are publicly available through online repositories.

2 .4 Main Contributions of the Thesis

Despite several popular and well-performing word embedding methods (e.g., Word2Vec

[128], GloVe [151], ...), still there is shortage of promising concept embeddings meth-

ods with which several critical and essential “research problem” would become more

feasible to address in practical sense. Regarding this, the main contributions of the

thesis are as follows:

1. We build a promising concept embedding method based on natural language

definition of concepts coming from:

• Gene Ontology (GO)

• Unified Medical Language System (UMLS)

2. In Bioinformatics, we propose models that can deal with Functional Analysis

of Genes. For such models we have:

• simDEF Model (refer to Chapter 2)

• deepSimDEF Model (refer to Chapter 3)

3https://www.cs.mcgill.ca/ jpineau/ReproducibilityChecklist.pdf

https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf
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3. In NLP, we introduce and develop models which are capable of dealing with

Word Sense Disambiguation of natural language data. These models include:

• single-classifier BLSTM (refer to Chapter 4)

• deepBioWSD Model (refer to Chapter 5)

The description of the concept embedding method is almost repeated in every

chapter depending on the bioinformatics or NLP setup - and that is what glues Part

2 and Part 3.

2 .5 Research Accomplishments and Deliverables

We list our research accomplishments and deliverables, each of which made this thesis

possible, as below:

1. Journal Paper: “simDEF: definition-based semantic similarity measure of

gene ontology terms for functional similarity analysis of genes” (Bioinformatics,

Oxford, England) authorship: A. Pesaranghader et al., [153]

2. Journal Paper: “deepSimDEF: deep neural embeddings of gene products and

Gene Ontology terms for functional analysis of genes” (Journal of Genome

Biology - to be submitted) authorship: A. Pesaranghader et al.

3. Conference Proceeding: “One single deep bidirectional LSTM network for

word sense disambiguation of text data” (In Advances in Artificial Intelligence:

31st Canadian Conference on Artificial Intelligence, Canadian AI 2018, Toronto,

ON, Canada) authorship: A. Pesaranghader et al., [157]

4. Journal Paper: “deepBioWSD: effective deep neural word sense disambigua-

tion of biomedical text data” (JAMIA: Journal of the American Medical Infor-

matics Association) authorship: A. Pesaranghader et al., [154]

5. The simDEF and deepSimDEF source code, embeddings, and prepared data:

• https://github.com/ahmadpgh/simDEF

• https://github.com/ahmadpgh/deepSimDEF

https://github.com/ahmadpgh/simDEF
https://github.com/ahmadpgh/deepSimDEF
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6. The deepBioWSD source code, embeddings, and prepared data:

• https://github.com/iwera-git/deepBioWSD

We state throughout the studies of this thesis we made sure that the guide-

line/checklist4 from Dr. Joelle Pineau for machine learning reproducibility was met.

This list is used by DL/ML community (e.g., NeuroIPS, ICML).

2 .6 Thesis Organization

The remainder of this thesis is organized as follows. After the current chapter, we

provide Part 2 which is concerned with biological aspects of the study. Chapter 2

in that part introduces simDEF that partially addresses some of the existing issues

regarding gene function analysis as long as the employment of Gene Ontology is con-

cerned. In Chapter 3, deepSimDEF offers low-dimensional embeddings of biological

entities (e.g., genes and gene products) and improves simDEF even further by em-

ploying deep learning methods. After dealing with biological aspects of the study, in

Part 3 we address the Natural Language Processing task of WSD. In the first chapter

of that part, Chapter 4, we propose a model that consists of a single WSD classifier.

This model, however, is designed based on the consideration of the word embeddings

of the context words. This consideration of word embeddings instead of sense embed-

dings, however, occurs at the cost of accuracy and true sense prediction (the proposed

model is evaluated in the general language context). Benefiting from our approach

for gene embedding generation, in Chapter 5, we propose deepBioWSD which out-

performs our preceding word embedding-based model as well as the other existing

supervised WSD models; the evaluation is done in the biomedical domain. Finally,

in Part 4, we conclude the thesis and discuss future work in Chapter 6. Each of the

Chapters 2 to 5 are provided in such a way that they would be as self-contained as

possible, meaning some minor overlap in the introduction and the description of the

tools employed might be noticed. Moreover, in the beginning of every chapter, a short

summary regarding the content of that chapter and what is delivers and accomplishes

is provided.

4https://www.cs.mcgill.ca/ jpineau/ReproducibilityChecklist.pdf

https://github.com/iwera-git/deepBioWSD
https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf
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In order to help a reader quickly and conveniently navigate among the results

provided in the thesis, Table 1.1 for Part 2 and Table 1.2 for Part 3 are provided

respectively. For biological experiments, following what is common in the literature,

we compared the results of the proposed models against protein-protein interaction,

gene expression and sequence homology datasets in order to validate the superiority

of the proposed algorithms. For word sense disambiguation experiments, we con-

sidered two cases: comparison between the existing supervised WSD models (using

either SenseEval-3 or MSH-WSD benchmark datasets), and, evaluation of the pro-

posed model(s) with different hyperparameter settings (ablation study). Since the

sample ambiguous terms in SenseEval-3 come from different dictionaries/thesauri,

it caused difficulty for sense embedding construction. Therefore, we limited deep-

BioWSD model to MSH-WSD dataset which is only dependent on the Unified Medical

Language System (UMLS) meta-thesaurus.

Table 1.1: Navigation guideline for functional similarity models and the correlation
experiments in Part 2, Biology and Bioinformatics

PPIs Gene Expression Sequence Homology
F1-score AUC Spearman Pearson Spearman Pearson

simDEF Chapter 2 Table 2.5 Table 2.4 - Table 2.3 - Table 2.1, 2.2
deepSimDEF Chapter 3 Table 3.4 - Table 3.6 Table 3.5 Table 3.8 Table 3.9

Table 1.2: Navigation guideline for WSD models and conducted experiments in Part
3, Natural Language Processing

SensEval-3 MSH-WSD
between-all-models within-our-model between-all-models within-our-model

single BLSTM Chapter 4 Table 4.3 Table 4.4 - -
deepBioWSD Chapter 5 - - Table 5.7 Table 5.8



Chapter 2

Part II: Biological Attribute Embedding for Function

Analysis of Genes

simDEF for Gene Function Analysis

1 Summary

Motivation – Measures of protein functional similarity are essential tools for function

prediction, evaluation of protein-protein interactions (PPIs) and other applications.

Several existing methods perform comparisons between proteins based on the seman-

tic similarity of their Gene Ontology (GO) terms; however, these measures are highly

sensitive to modifications in the topological structure of GO, tend to be focused on

specific analytical tasks and concentrate on the GO terms themselves rather than

considering their textual definitions.

Results – We introduce simDEF, an efficient method for measuring semantic similarity

of GO terms using their GO definitions, which is based on the Gloss Vector measure

commonly used in natural language processing. The simDEF approach builds opti-

mized definition vectors for all relevant GO terms, and expresses the similarity of a

pair of proteins as the cosine of the angle between their definition vectors. Relative to

existing similarity measures, when validated on a yeast reference database, simDEF

improves correlation with sequence homology by up to 50%, shows a correlation im-

provement >4% with gene expression in the biological process hierarchy of GO and

increases PPI predictability by >2.5% in F1-score for molecular function hierarchy.

Publication – Original paper authored by Pesaranghader et al. [153] is available in:

https://doi.org/10.1093/bioinformatics/btv755 (Journal of Oxford Bioinformatics)

2 Introduction

Gene Ontology (GO) [9] describes the attributes of genes and gene products us-

ing a structured vocabulary. Many biomedical databases, such as UniProt [36] and

11

https://doi.org/10.1093/bioinformatics/btv755
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SwissProt [17], are annotated by GO terms to communicate semantic meanings of

biomedical entities. Computing functional similarity of biomedical entities has been

applied to problems such as prediction of protein-protein interaction (PPI) [179], gene

expression studies [141] and homology analysis [176]. Also, in the context of text min-

ing various studies have aimed to enhance the literature-based GO annotation of gene

products [83, 82].

There are two main computational models available to measure similarity of terms.

Ontology-based models take advantage of lexical structures in their estimation of term

similarity. Edge-based ontology measures like Wu [231] and RSS [230] consider the

number of edges along the paths that link two GO terms. Node-based measures

(which we designate as information-content-based), such as Resnik [184], Jiang [78],

Lin [110], Schlicker et al. [192], TCSS [77], GraSM [37] and AIC [200] compare the

properties of the terms augmented with the properties of their ancestors or descen-

dants. IC vectors [155] represent IC values in distributed forms in the computation

of semantic similarity. Hybrid measures such as those of Wang et al. [221], Liu et

al. [113] and HRSS [229] combine node-based and edge-based measures. While these

measures first compute semantic similarity of two gene products and then aggregate

the results as a single functional similarity value, group-wise measures such as simUI

[49], simGIC [171] and SORA [211] calculate similarity by measuring two sets of GO

terms annotating these genes. Huang et al. [71] also proposed a similarity measure

where gene functional similarity is based on vector representations of their GO terms.

Ontology-based measures suffer from three important limitations: first, they depend

on the constantly changing topological structure of GO; second, they use incomplete

GO annotations to compute statistical information; and third, they offer no guarantee

of generalization to multiple biological tasks.

Distributional-based approaches derive from John Rupert Firth’s idea [51] that

a term is characterized by the company it keeps in its context. Measures follow-

ing this notion calculate terms specifications from relevant text data and represent

them in a vector space for subsequent computation of their similarities. The Gloss

Vector semantic relatedness measure [147] is a distributional-based approach with a

wide application in natural language processing. This measure constructs definitions

(glosses) of terms from a predefined thesaurus, and estimates semantic relatedness of
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two terms as the cosine of the angle between those terms’ gloss-vectors. Interpolation

of content words of a text corpus into the terms definition was shown to outperform

the direct definition comparison. Gloss vectors offer a new opportunity to exploit

the information of GO term definitions and to infer gene functional similarity. Liu

et al. [115] successfully applied the Gloss Vector measure to the biomedical domain

using MEDLINE as the text corpus and the unified medical language system and

WordNet for the construction of extended definitions of medical concepts. The Gloss

Vector approach requires a frequency cut-off in selecting the best features describing

one term [156, 158]. We have developed simDEF, an optimized version of the Gloss

Vector targeted to analysis of gene functions. Here, by using MEDLINE as the text

corpus, we compare the performance of simDEF with other leading approaches, and

demonstrate its effectiveness using comparisons based on sequence homology, gene

expression and PPI data.

2 .1 Measures of Semantic Similarity Already Applied in GO Context

Most early semantic similarity measures were developed for linguistic studies in nat-

ural language processing. Recently, semantic similarity measurement methods have

been applied to and further developed and tailored for biological uses as listed below.

Considering GO and gene product annotations as information resources, the seman-

tic similarity measures investigated in this chapter employing these resources are as

follows:

Resnik Measure. Resnik (1995) [184] uses the concept of “information content” (IC)

to define a semantic similarity measure. The IC for a term located in an ontology is

based on the probability or p(t) of occurrence of that term in a corpus.

p(t) =
freq(t)

freq (root)
(2 .1)

freq(t) is the frequency of t and all its descendants in the ontology summed together.

Generally, IC of a term in an ontology indicates how informative that term is in that
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ontology. As a rule of thumb, the closer to the root, the less informative that term

will be. IC of the term t is given by:

IC(t) = − log(p(t)) (2 .2)

The more information two terms share, the higher their similarity. The shared

information is captured by the set of common ancestors in the graph. The amount

of shared information and thus the similarity between the two terms is quantified by

the IC of their least common ancestors (LCA). This leads us to the following formula

for similarity measurement of two terms in an ontology:

simResnik (t1, t2) = max (IC (LCA (t1, t2))) (2 .3)

Jiang and Conrath Measure. Since the Resnik measure considers only the IC of

ancestors and ignores input terms level of specificity, Jiang and Conrath (1997) [78]

deal with this issue by taking the IC of the input term into account:

simJiang (t1, t2) = 1 + IC (LCA (t1, t2))−
IC (t1) + IC (t2)

2
(2 .4)

Lin Measure. Since Jiang was originally an unnormalized distance measure, Lin

(1998) [110] proposed a new similarity measure to resolve that issue:

simLin (t1, t2) =
2× IC (LCA (t1, t2))

IC (t1) + IC (t2)
(2 .5)

GraSM Measure. Resnik uses the most informative common ancestor (LCA), but

GraSM [37] takes into account the average ICs for all disjoint common ancestors

instead of choosing only the maximum IC among all the disjoint common ancestors.
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GraSM assumes that two common ancestors are disjunctive if there are independent

paths from both ancestors to the GO term:

simGrasM (t1, t2) = avg (IC (LCA (t1, t2))) (2 .6)

Wang Measure. Wang et al. [221] attempts to improve existing measures by aggre-

gating the semantic contributions of ancestor terms in the GO graph. Formally, a

GO term c can be represented as DAGc = (c; Tc; Ec) where Tc is the set including

term c and all of its ancestor terms in the GO graph, and Ec is the set of edges

connecting the GO terms in DAGc (edges which connect Tc terms). By defining the

semantic value (SV) of term c as the aggregate contribution of all terms in DAGc to

the semantics of term c, Wang proposes terms closer to term c inDAGc contribute

more to its semantics. The semantic value (SV) of a GO term c is:

SV (c) =
∑
t∈Tc

Sc(t) (2 .7)

where Sc is semantic contribution of term c or its ancestors into c’s meaning. The

semantic contribution of term t to term c is calculable by:

Sc(t) =

{
1 if t = c

max {ωe × Sc(t
′)|t′ ∈ children of t} if t 6= c

(2 .8)

where ωe is the “semantic contribution factor” for edge e ∈ Ec linking term t with its

child term t′. Finally, the semantic similarity between two GO terms tI and t2 is:

simWang (t1, t2) =

∑
t∈T1∩Tt2

(St1(t) + St2(t))

SV (t1) + SV (t2)
(2 .9)
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AIC Measure. AIC or Aggregated Information Content [200] is the latest variation

of IC-based semantic similarity measures which considers the aggregate contribution

of the ancestors of a GO term to the semantics of that GO term. In their study, they

first propose the semantic weight of GO term t as:

SW (t) =
1

1 + e−(IC(t))−1 (2 .10)

and then, by considering Ax as the ancestor set of term x to the root (including

x itself), the semantic value SV(x ) of the GO term x is computed by adding the

semantic weights of its ancestors:

SV (x) =
∑
t∈Ax

SW (t) (2 .11)

Having the above values, the semantic similarity between GO terms t1 and t2 based

on their aggregate IC is as follows:

simAIC (t1, t2) =

∑
t∈A1∩At2

2× SW (t)

SV (t1) + SV (t2)
(2 .12)

simGIC Measure. simGIC or Graph Information Content similarity [171] is a func-

tional similarity of gene products. It directly employs the IC of GO terms associated

with two gene products. For two gene products A and B with annotation sets of TA

and TB, simGIC is given by:

simGIC(A,B) =

∑
t∈TA∩TB

IC(t)∑
t∈TA∪TB

IC(t)
(2 .13)



17

simUI Measure. Like SimGIC, simUI or Union-Intersection similarity [49] is a func-

tional similarity of gene products. simUI is given by the number of terms in the

intersection of TA and TB divided by the number of terms in their union.

simUI(A,B) =
COUNTt∈TA∩TB

COUNTt∈TA∪TB

(2 .14)

2 .2 Gloss Vector Semantic Relatedness Measure

Generally, this measure constructs definitions (glosses) of the terms from a predefined

thesaurus and estimates the semantic relatedness of two terms using the cosine of the

angle between those terms’ gloss-vectors. Pedersen et al. [147] proposed this measure

as a combination of term definitions from a thesaurus and cooccurrence data from a

text corpus. In their approach, every word in the definition of one term from WordNet

gets replaced by its context vector from the co-occurrence data from the corpus, and

then all of these context vectors summed together build that term’s definition-vector

(gloss-vector). The Gloss Vector measure is highly valuable as it employs both terms

definitions and empirical knowledge implicit in a text corpus. The Gloss Vector

comprises five steps:

1. Construction of first order co-occurrence matrix by scanning and counting bi-

gram frequencies (i.e. words that cooccur) in the corpus

2. Removing insignificant words using low and high-frequency cut-off points (done

by elimination of very low/high frequent bigrams),

3. Using a taxonomy (or a linked thesaurus), developing an extended definition

for a term by adding definitions of the directly linked terms to a target term in

the taxonomy to the definition of that term,

4. Constructing a definition matrix (all definition vectors) by employing the thresh-

olded first-order matrix from step 2 (cut-off first-order matrix) and the extended

definitions from step 3, and finally

5. Estimation of semantic relatedness for a concept-pair (pair of input terms).
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3 Experimental Data

3 .1 Gene Ontology and GO Annotations

GO comprises three GOs which express different biological attributes: biological pro-

cess (BP) for processes such as metabolism or cell proliferation; cellular component

(CC) such as the nucleus or cell membrane; and molecular function (MF) such as

catalytic or binding activities. GO is maintained and constantly updated by a group

of curators1.

A GO annotation consists of a GO term associated with a specific reference and an

evidence code to indicate how a given annotation is supported. Out of all the evidence

codes available, Inferred from Electronic Annotation (IEA) is not assigned by a cura-

tor and is thus the least reliable so we treat them separately. GO and the required GO

annotations were downloaded from the GO website (http://geneontology.org Novem-

ber 2, 2015).

3 .2 MEDLINE Abstracts

MEDLINE (https://mbr.nlm.nih.gov/Download/) contains over 20 million citations

of biomedical articles from 1966 to the present. The database includes journal articles

from medicine, pharmacy, dentistry, nursing, healthcare and covers the literature in

biology and biochemistry. For this study, we used MEDLINE 2013 as the corpus

to build a first-order word-word co-occurrence matrix for the later computation of

second-order co-occurrence (SOC) matrices which are used by simDEF.

3 .3 Validation Datasets

Sequence homology

We used bitscores from the Basic Local Alignment Search Tool (BLAST) [4] to create

our sequence homology dataset. In the first step, we performed an all-versus-all

comparison of proteins in the yeast Saccharomyces cerevisiae database [26] with an

expectation-value threshold of 0.1. The e-value is the number of expected hits of

1The Gene Ontology Consortium (GOC) integrates resources from a variety of research groups,
from model organisms to protein databases to the biological research communities actively involved
in the development and implementation of the Gene Ontology. For more information refer to
http://geneontology.org/docs/go-consortium/

http://geneontology.org
https://mbr.nlm.nih.gov/Download/
http://geneontology.org/docs/go-consortium/
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similar quality (score) that could be found just by chance. e-value of 10 means that

up to 10 hits can be expected to be found just by chance, given the same size of a

random database. e-value can be used as a first quality filter for the BLAST search

result, to obtain only results equal to or better than the number given by the e-value

option. Although this threshold is liberal, the corresponding bitscores associated with

e-values near this threshold will be very low and have a minimal effect on our analysis.

The bitscore is the required size of a sequence database in which the current

match could be found just by chance. The bitscore is a log2 scaled and normalized

raw-score (it is non-symmetric). Each increase by 1 doubles the required database

size (2bit−score). Unlike e-value, bitscore does not depend on database size; and since

the bitscore gives the same value for hits in databases of different sizes it can be

used for searching in an constantly increasing database. As a general rule of thumb,

the higher the bitscore, the better the sequence similarity. Since a bitscore for query

and subject proteins is not symmetrical, we calculate log-reciprocal BLAST score

(LRBS) and relative reciprocal BLAST score (RRBS) to express the general sequence

similarity of protein pairs. For proteins A and B, the LRBS and RRBS are:

LRBS(A,B) = log
(Bitscore(A,B) +Bitscore(B,A)

2

)
(3 .1)

RRBS(A,B) =
Bitscore(A,B) +Bitscore(B,A)

Bitscore(A,A) +Bitscore(B,B)
(3 .2)

Finally, after LRBS and RRBS computations, we have a dataset of 20,167 protein

pairs from the yeast S.cerevisiae database along with their LRBS and RRBS sequence

similarity scores. All proteins in the dataset have their own GO annotations from the

CC, BP and MF ontologies without considering IEAs.

Gene expression

The gene expression dataset comes from the study by Jain and Bader [77]. In their

study, the gene-expression dataset for S.cerevisiae was downloaded from GeneMANIA

[226] and other microarray experiments. The authors prepared test datasets of 5000

S.cerevisiae gene pairs randomly selected from a list of all possible pairs of proteins
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in their gene expression dataset. This was done independently for CC, BP and MF

annotations of gene products. Since in our experiments we mainly consider genes

with non-electronic annotations (without IEAs), we used 4800 fitting gene pairs from

their study.

Protein-protein interaction

For the PPI experiment, we employed subsets of the yeast PPI dataset from Wu et

al. [229]. In that study, for each GO, independent gold-standard positive datasets for

yeast were built from a core subset of the Database of Interacting Proteins (DIP) [189].

Negative datasets were independently generated by randomly choosing annotated

protein pairs in BP, CC and MF, which are absent from a combined dataset of all

possible PPIs. Since for different GOs the numbers of generated PPI pairs are different

and more importantly many of them do not have GO annotations after excluding

IEA, we selected subsets of 3000 positive and 3000 negative PPIs for each ontology

from that study to evaluate our measure against other similarity measures in a PPI

prediction task.

4 Methods

4 .1 Method Definition

Pointwise Mutual Information (PMI) is a measure of association used in information

theory. In computational linguistics, the PMI for two given words indicates the

likelihood of finding one word in a text document that includes the other word. PMI

is formulated as:

PMI (w1, w2) = log
p (w1, w2)

p (w1)× p (w2)
(4 .1)

where p(w1, w2) is the probability that words w1 and w2 co-occur in a document, and

p(w1) and p(w2) for w1 and w2, respectively, are the marginal probabilities of their

occurrence in a document. It is expected that rare words are highly associated with

and descriptive of each other, yet due to their sparse nature their bigram frequency
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Figure 2.1: Computation of the simDEF semantic similarity measure

(i.e., number of times they have been seen next to each other) is small in the cor-

pus. This is the main drawback of the Gloss Vector measure in selection of the best

descriptive features.

We use PMI in our proposed measure, simDEF, for statistical elimination of in-

significant features (words). simDEF requires procedures for building the co-occurrence

matrix from a proper text corpus, constructing extended definitions for GO terms us-

ing GO term definitions, and finding words that are appropriate descriptors of that

GO term. simDEF comprises six steps (Figure 2.1).

Step 1 – counting bigrams and building the first-order co-occurrence ma-

trix. After discarding punctuation, changing all characters to lowercase, and re-

moving stop words (a pre-defined list of 204 non-informative words like a and the)

from the MEDLINE corpus, a list of bigrams and their frequencies for all the content

words is constructed. A window size of 2 is used for extraction of bigrams. This win-

dow size controls how close two words can appear in bigrams. Stemming was found



22

to reduce accuracy and was not adopted in simDEF. Then, by ignoring the order of

occurrence in a bigram, we transform it from a bigram list to a co-occurrence list.

Finally, we construct the first-order co-occurrence matrix, which is symmetric and

sparse and represents the contextual information of MEDLINE words. Cell values in

the first-order matrix represent how many times the word associated with its row is

seen in this corpus alongside the word associated with its column.

Step 2 – definition construction of GO terms and then building BP, CC,

and MF definition matrices. In this step, we construct an extended definition

for every term in GO. From the theoretical perspective, definition extension of parent

GO terms (i.e., broader concepts) with their children’s definitions (i.e., narrower and

more specific definitions) adds more specific information. Although child GO terms

may contain contradictory information, this information may nonetheless provide

essential context when calculating functional similarity with other genes (which may

in turn be augmented with conflicting information). From the practical perspective,

we examined all the combinations of definition extension considering GO relationships

such as is a, has part, part of, regulates, siblings and synonyms. What is represented

in Figure 2.1 yielded the best results in our experiments conducted in this study.

Improvement in the results using relationships such as part of and regulates indicates

that besides the similarity, simDEF accounts for relatedness as well. See Subsection

4 .2 for more in-depth explanation of why definition extension can be beneficial.

Each GO term has an identifier, a representative name, a GO definition, a names-

pace defining the sub-ontology of the GO term and other information such as its

relationship to the other GO terms. For example, GO:0001104 has the representative

name ‘RNA polymerase II transcription cofactor activity ’ and belongs to the MF hier-

archy. This GO term has the definition ‘Interacting selectively and non-covalently with

an RNA polymerase II (RNAP II) regulatory transcription factor and also with the

RNAP II basal transcription machinery in order to modulate transcription. Cofactors

generally do not bind DNA, but rather mediate PPIs between regulatory transcription

factors and the basal RNAP II transcription machinery.’ In order to make this defi-

nition even richer we concatenate definitions of its direct parents (i.e. GO:0003712 or

‘transcription cofactor activity ’ and GO:0001076 or ‘RNA polymerase II transcription
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factor binding transcription factor activity ’) and direct children (i.e., GO:0001105 or

‘RNA polymerase II transcription co-activator activity ’ and GO:0001106 or ‘RNA

polymerase II transcription co-repressor activity ’) to its definition. We also add this

GO term’s representative name to this extended definition considering this name as

part of its own definition. This process is done for all GO terms in BP, CC and MF.

Now we see that for each word in the definition of a GO term we have an associated

first-order co-occurrence vector calculated in Step 1. After changing all characters

to lowercase and removing punctuation and stop words from these extended defini-

tions we store them in different matrices for three different sub-ontologies. In these

matrices, the value of a cell represents how many times the word associated with its

column appears in the definition of the GO term associated with its row.

Step 3 – building Second-Order Co-occurrence (SOC) matrices. To build

the SOC vector for a GO term we sum the first-order co-occurrence vectors from the

words in the constructed definition of that GO term (i.e., compute the centroid), and

then normalize the result vector by the number of words in the definition. We do this

process separately for each GO. The results are three different matrices for BP, CC

and MF; each row again represents a GO term and features are the words. We have

three SOC matrices for BP, CC and MF at the end of this step.

Step 4 – PMI on SOC matrices (PMI-on-SOC matrices). In our similarity

measure, PMI-on-SOC matrices replace a conventional approach of low- and high-

frequency cut-offs for detection of insignificant features or words in the Gloss Vector

measure. We statistically measure the level of association between GO terms and their

describing features in the SOC matrices and then apply a cut-off threshold on this

level in the next step. Following the equation 4 .1, here, PMI(ti, wj) measures the level

of association between GO term i and feature j to discover how descriptive the word

j of that GO term is. PMI is biased toward low-frequency words (due to logarithm

utilized in the formula for the measurement of dependency) and consequently tends

to favour them by assigning them a higher degree of importance [155]; in order to

resolve this weakness, we employ the add-one technique. Before applying PMI on a

matrix, all the elements of the matrix are incremented by 1 unit.
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Step 5 – removing insignificant features from the PMI-on-SOC vectors.

Defining a PMI threshold allows us to skip those words which provide low informa-

tion for GO terms in their constructed PMI-on-SOC vectors. By using the available

dataset in an iterative way, we gradually increase the threshold of PMI cut-off from

zero and then evaluate the results generated by simDEF. Depending on the biomed-

ical task, for a chosen cut-off threshold, criteria such as Pearson’s correlation (see

Subsection 5 .1 and Subsection 5 .2) or AUC (see Subsection 5 .3) can be used for

the performance evaluation of the estimated similarity results. In general, as cut-off

thresholds increase we tend to get better results until a point where performance

starts to drop rapidly. Therefore, by recording this curve for different performance

results and cut-off points we try to find the optimal cut-off point in order to keep

only those informative features describing one GO term. Also, to avoid this interval

being sensitive to the choice of dataset, we use 5-fold cross validation to predict the

extent to which the threshold will generalize to an independent dataset. This cut-off

selection is done separately for the three constructed PMI-on-SOC matrices of the

BP, CC and MF ontologies.

Step 6 – calculating semantic similarity. In this final step, the semantic sim-

ilarity among GO terms is estimated. The cosine of the angle between optimized

PMI-on-SOC vectors of two GO terms will indicate the degree of similarity for those

terms. For the final usage of the measure, the last produced matrix is loaded into

memory and used for measuring similarity between GO terms. In these matrices,

each row stores the calculated optimized definition vector of its associated GO term.

As, in most cases, gene products are annotated with more than one GO term in

the same ontology hierarchy (BP, CC or MF), there are several methods to measure

the functional similarity of gene products based on the semantic similarity of these

GO terms. MAX and AVE define functional similarity between gene products as

the maximum or average semantic similarity values, respectively, over the GO terms

annotating the genes. MAX has been shown to be more useful for a PPI task [230].

If TA and TB are the sets of GO terms which annotate proteins A and B, respectively,
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the MAX for their functional similarity measurement is achieved by:

simMAX(A,B) = MAXt1∈TA,t2∈TB
(sim (t1, t2)) (4 .2)

Azuaje et al. [10] developed the best-match average (BMA) method, in which

each term of the first protein is paired only with the most similar term of the second

one and vice versa. The best-match average (BMA) method is found to be the best

for evaluation of semantic similarity measures and the correlation of its results with

sequence homology and gene expression data [172]. BMA for two gene products A

and B with n and m GO annotations is given by:

simBMA(A,B) =
1

2

(
1

n

∑
t1∈TA

MAXt1,t2∈TB
(sim (t1, t2)) +

1

m

∑
t2∈TB

MAXt1∈TA,t2 (sim (t1, t2))

)
(4 .3)

Consider that in these formulae TA of different ontologies would be different (like-

wise for TB). Therefore, we will achieve three different protein functional similarity

values for three different gene ontologies.

MAX and BMA measure similarity between two gene products by combining se-

mantic similarities between their terms. Semantic similarity estimation was used to

evaluate the Resnik [184], Lin [110], Jiang [78], GraSM [37], Wang [221], AIC [200]

and simDEF measures (see Subsection 2 .1 for their definitions and formulas). In

contrast, groupwise measures like simGIC [171] and simUI [49] are functional similar-

ity measures by nature and do not rely on combining similarities between individual

terms to assess gene product similarity, but calculate it directly by their annotation

sets. By employing GO annotations for the previous measures and MEDLINE for the

simDEF as the needed corpora, we implemented these measures as appropriate, and

reported results alongside the best cut-off point for feature removal in each task.

4 .2 On the Importance of Definition Extension

Here, we provide an illustrative example in order to demonstrate the valuable benefits

that will come through extending definition of one GO term with the definitions of

its directly related GO terms.
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Consider the provided information in Figure 2.2 (a). This information is directly

extracted from the GO for the two parent GO terms (broader concepts) GO:0051917

and GO:0001910 and their children (more specific concepts). Take into account that

for each of these parent GO terms, their children provide contradictory definitions.

We added the “Keywords” field among the provided information since they tried to

capture the short yet concise message of their definitions just to illustrate the impact of

definition extension. Considering the presented keywords, our vector space consists of

6 features: modulate, stop, activate, frequency, fibrinolysis, LMC. Therefore, without

definition extension, the vector representation of GO terms will be what is represented

in 2.2 (b) (to keep everything simple we work only with binary values here).

Since the feature frequency is 1 everywhere and provides no unique information

we can skip it. The result matrix would be what is shown in Figure 2.2 (c).

Now, in different scenarios, let’s compute some cosine similarities from this result

matrix and compare it with our intuition of similarity.

1. Comparing similarity of the parent GO:0051917 with its children and also sib-

lings together:

sim(GO:0051917, GO:0051918) = 0.50000

sim(GO:0051917, GO:0051919) = 0.50000

sim(GO:0051918, GO:0051919) = 0.50000

Problem: Intuitively, we expect to see less similarity between the child concepts

(siblings) because there are more specific terms compared to their parent and

therefore should share less information. But it is not captured here.

2. Comparing two different branches:

sim(GO:0051917, GO:0001911) = 0

sim(GO:0051917, GO:0001912) = 0

Problem: From the natural language perspective we are aware that if one GO

term can modulate something, it is capable to stop or activate it. Therefore,

we need to capture this similarity information between two GO terms which

are characterized by these features in order to distinguish them from the other
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Figure 2.2: A Piece of Information from the GO and the Definition Matrices for it
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completely irrelevant GO terms. But the result achieved here cannot find this

semantic connection between the terms modulate, stop and activate. This issue

is not taken into account in the previous problem either (i.e. fibrinolysis is the

only feature that relates those GO terms)

3. Discovering relatedness of two GO terms (not necessarily similarity measure-

ment)2:

sim(GO:0051918, GO:0001912) = 0

Problem: One of the drawbacks of existing semantic similarity measures is

that they just account for similarity and not relatedness. We believe one of

the advantages of simDEF over those measures is its ability to discover these

sorts of relationships and treat them differently. For example here, we expect

to see some, even though small, degree of relatedness between two GO terms

characterized by stop and activate. Due to the poor definitions of GO terms in

this example we could not address this goal.

Now, let’s extend the GO term definitions by adding their direct children/parents

definitions to them. Following this rule, keywords for different GO term will be (again,

for simplicity we do not consider frequency of the words in the definitions here):

Keywords (GO:0051917): modulate, stop, activate, frequency, fibrinolysis

Keywords (GO:0051918): modulate, stop, frequency, fibrinolysis

Keywords (GO:0051919): modulate, activate, frequency, fibrinolysis

Keywords (GO:0001910): modulate, stop, activate, frequency, LMC

Keywords (GO:0001911): modulate, stop, frequency, LMC

Keywords (GO:0001912): modulate, activate, frequency, LMC

Now, the matrix presented in Figure 2.2 (b) will change to what we have in Figure

2.2 (c). By revisiting the problematic scenarios discussed above we will examine if

the consideration of definition extension addresses those problems.

2The term semantic similarity is often confused with semantic relatedness. Semantic relatedness
includes any relation between two terms, while semantic similarity only includes “is a” relations.
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1. Comparing similarity of the parent GO:0051917 with its children and also sib-

lings together:

sim(GO:0051917, GO:0051918) = 0.86603

sim(GO:0051917, GO:0051919) = 0.86603

sim(GO:0051918, GO:0051919) = 0.66667

Solution: We observe that definition extension addressed our first intuition as

we expect to achieve less similarity between two siblings than their similarities

with their parent.

2. Comparing two different branches:

sim(GO:0051917, GO:0001911) = 0.57735

sim(GO:0051917, GO:0001912) = 0.57735

Solution: We observe that definition extension addressed our understanding of

human language

3. Discovering relatedness of two GO terms (not necessarily similarity measure-

ment):

sim(GO:0051918, GO:0001912) = 0.33333

Solution: Definition extension can help us better to measure the degree of

relatedness between two GO terms as well.

5 Results

5 .1 Correlation with Sequence Similarity

Several authors have compared the performance of different semantic similarity mea-

sures by testing how well these measures correlate with sequence similarity. Various

studies [117] showed that the more similar two sequences are the more similar their

ontological annotations will be.

To evaluate the semantic similarity measures, we used two distinct sequence sim-

ilarity measures: LRBS and RRBS with the formulae of (1) and (2). LRBS is similar
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Figure 2.3: Pearsons correlation between semantic measures and LRBS (IEA–)

to the sequence similarity measure used previously by Lord, but compensates for the

fact that BLAST scores are not symmetric. RRBS, suggested by Joshi and Xu [85],

is another indicator of functional similarity acting like the sequence identity percent-

age by taking amino acid substitutions into account. Figure 2.3 shows the degree

of correlation between LRBS and the functional similarity estimations calculated by

semantic measures of 20,167 protein pairs (without IEAs included).

In all cases, whether we use MAX or BMA, simDEF correlates with sequence

similarity better than the other IC-based measures. The high correlation between

simDEF and LRBS in the MF ontology is notable as it is more than the twice of the

second best measure’s result (Jiang). Table 2.1 shows the exact numerical results of

this experiment (with and without IEAs).

The other metric used for sequence similarity measurement is RRBS which is not

directly affected by sequence length (unlike LRBS). We assessed whether the depen-

dency on sequence length affects the outcome of the evaluation. Figure 2.4 shows

the degree of correlation between the similarity estimations calculated by semantic

measures and RRBS. RRBS, like LRBS, shows the highest degree of correlation with

simDEF among the similarity measures.

In general, measures of functional similarity correlate better with LRBS sequence

similarity than RRBS. We also observe among IC-based measures tested here that
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Figure 2.4: Pearson’s correlation between semantic measures and RRBS (IEA–)

no single measure is superior to all others in the BP, CC and MF ontologies, which

suggests task-dependency of these measures. AIC, the latest variant of IC-based

measures, does not offer any improvement over the earlier measures. The Wang

topological measure of similarity works only slightly better than the IC-based mea-

sures in the RRBS sequence similarity comparison of BP. The correlation results for

LRBS and RRBS also demonstrate that BMA is the appropriate metric for functional

similarity measurement of proteins from BP and CC points of view when we use IC-

based measures while for simDEF in CC it is reverse. The difference between results

generated by BMA and MAX for simDEF is typically small, whereas other pairwise

semantic similarity measures tend to show larger discrepancies. Table 2.2 shows the

exact results of this experiment.

Regarding the results for correlation of semantic similarity measures with LRBS

and RRBS scores we have the exact results shown in Table 2.1 (in each column, the

boldface numbers are the highest and the underscored numbers are the second best

results):

5 .2 Correlation with Gene Expression

Correlation with gene expression is another desirable criterion [161]. Since genes

involved in the same process tend to exhibit similar expression patterns, we could
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Table 2.1: Pearson’s correlation of semantic similarity measures for three GO ontolo-
gies against sequence similarity (LRBS and RRBS) without IEA (IEA−)

Semantic
Measure

LRBS RRBS
BP CC MF BP CC MF

Resnik [184] MAX 0.2523 0.4906 0.0441 0.3043 0.5165 0.1117
BMA 0.3997 0.4554 0.0099 0.5272 0.5399 0.0508

Lin [110] MAX 0.1851 0.2379 0.1595 0.3301 0.3363 0.2958
BMA 0.4223 0.4112 0.1486 0.5749 0.4413 0.2558

Jiang [78] MAX 0.2394 0.2495 0.1852 0.3539 0.3327 0.3181
BMA 0.4852 0.4423 0.1997 0.5781 0.4165 0.2998

GraSM [37] MAX 0.2573 0.4938 0.0443 0.3069 0.5188 0.1107
BMA 0.4035 0.4611 0.0098 0.5301 0.5438 0.0518

Wang [221] MAX 0.1874 0.2476 0.1545 0.3255 0.3309 0.2822
BMA 0.4292 0.4398 0.1462 0.5743 0.4165 0.2426

AIC [200] MAX 0.1654 0.1961 0.1631 0.3107 0.2961 0.2802
BMA 0.4181 0.3436 0.1478 0.5725 0.3856 0.2413

simGIC [171] 0.415 0.2108 0.1447 0.1064 0.1938 0.1833
simUI [49] 0.1793 0.3883 0.2874 0.0612 0.0502 0.2266

simDEF [153] MAX 0.5971 0.7272 0.2374 0.6943 0.7263 0.7272
BMA 0.6454 0.6912 0.5366 0.7341 0.6585 0.6892

Table 2.2: Pearson’s correlation of semantic similarity measures for three GO ontolo-
gies against sequence similarity (RRBS and RRBS) with IEA (IEA+)

Semantic
Measure

LRBS RRBS
BP CC MF BP CC MF

Resnik [184] MAX 0.1868 0.3929 -0.019 0.1965 0.4055 0.0403
BMA 0.4278 0.3939 -0.004 0.4129 0.4709 0.0215

Lin [110] MAX 0.1449 0.1579 0.0505 0.2102 0.2404 0.1724
BMA 0.4842 0.3486 0.1213 0.4531 0.3803 0.2102

Jiang [78] MAX 0.2137 0.2112 0.1578 0.3167 0.2886 0.2997
BMA 0.5691 0.4259 0.2431 0.5585 0.4252 0.3508

GraSM [37] MAX 0.1887 0.3938 -0.019 0.1976 0.4103 0.0403
BMA 0.4314 0.3966 -0.004 0.4166 0.4741 0.0216

Wang [221] MAX 0.2187 0.1871 0.0904 0.3217 0.2412 0.1609
BMA 0.5741 0.3623 0.1201 0.5688 0.3912 0.1998

AIC [200] MAX 0.1232 0.1207 0.0459 0.1888 0.1935 0.1531
BMA 0.4757 0.2752 0.1133 0.4501 0.3123 0.1907

simGIC [171] 0.1893 0.1909 0.1138 0.0803 0.1612 0.1603
simUI [49] 0.1795 0.3213 0.3105 0.1553 0.0398 0.3301

simDEF [153] MAX 0.5292 0.5924 0.1001 0.5801 0.5907 0.6273
BMA 0.6517 0.5821 0.5103 0.6107 0.5685 0.6402
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expect good semantic similarity estimations calculated on the BP ontology to be

correlated with the expression similarity (Yang et al., [234]). For our experiments,

the evaluation is done against the available standard reference of 4800 gene expression

values. Here, we report Pearson’s correlation between gene expression data and the

results from simGIC, simUI and BMA of pairwise measures. We focus on the BMA

criterion as it always gave higher correlations. Pearson’s correlation between gene

expression and semantic measures for CC, BP and MF ontologies with and without

IEAs considered are shown in Table 2.33.

Table 2.3: Pearson’s correlation of semantic measures for three GOs using BMA
against gene expression data (IEA+ and IEA–)

Semantic measure Including IEA Excluding IEA
BP CC MF BP CC MF

Resnik 0.2659 0.4562 0.2514 0.2593 0.4426 0.2231
Lin 0.2541 0.3864 0.2155 0.2567 0.3842 0.2075
Jiang 0.2022 0.3217 0.1566 0.1757 0.2845 0.1708
GraSM 0.2677 0.4542 0.2516 0.2624 0.4395 0.2252
Wang 0.1911 0.3013 0.1306 0.1638 0.2805 0.1672
AIC 0.2466 0.3735 0.2149 0.2439 0.3593 0.2078
simGIC 0.0812 0.1542 0.1204 0.0667 0.1328 0.1422
simUI 0.1272 0.2418 0.0654 0.0628 0.0773 0.0455
simDEF 0.3098 0.4649 0.2325 0.3071 0.4559 0.2166

The highest correlations in all cases are seen with the CC ontology, followed by BP

and MF. Although the difference in correlation coefficients is not as striking as in the

homology example, simDEF outperforms the next best method, GraSM, by 4% on the

BP ontology and 12% on the CC ontology. GraSM has the best correlation for MF,

12% better than simDEF, which was also outperformed by the Resnik. Correlation

coefficients were generally higher for datasets with IEAs, suggesting that electronic

annotations have some value when investigating gene-expression profiles.

Wang et al. [220] and Sevilla et al. [196] showed that the correlation between gene

expression and semantic similarity was negligible when semantic similarity values were

low, but the two measures were highly related when semantic similarity was high.

Xu et al. [233] further showed a linear relationship for gene pairs with high levels of

3In each column, the boldface numbers are the highest and the underscored numbers are the
second best results
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expression correlation. We examined this trend by comparing Resnik against simDEF

for variable numbers of the highest correlated genes. For this purpose, after sorting

gene expression data from the highest to the lowest values, we measured correlation

of these data with Resnik and simDEF as we go from the top correlated expressions

to the bottom. Figure 2.5 demonstrates the trend of change for this test.

Considering other studies’ findings and our result demonstrated in Figure 2.5, we

see that by being more focused on highly correlated gene expression pairs the overall

correlation between functional similarity and gene expression increase only when we

take the BP ontology into account. For CC and MF the reverse is true. The other

important point learned for BP is that by employing simDEF as semantic measure,

when we ignore electronic annotation we get better correlation with highly-correlated

gene expression data while this is not true for Resnik. Moreover, we observe that for

BP and CC simDEF works better than Resnik no matter which subset we consider.

Nevertheless, this issue does not hold for MF and we only get better results from

simDEF when we focus on higher correlated genes in terms of their expression.

5 .3 Comparison with PPIs

Semantic similarity can also be used as an indicator for the plausibility of putative

PPIs, as proteins that interact in the cell in vivo are expected to participate in similar

cellular locations and BPs. Like other studies (Jain and Bader [77]; Wu et al. [229]),

we formulated this as a classification problem and checked how well the different

semantic similarity measures perform for predicting true PPIs. For this purpose,

the MAX and BMA results are directly interpreted as the classification probability of

‘Interaction’ and ‘Not Interaction’. The higher this value is, the higher the probability

of interaction will be. We applied this approach to a dataset of 6000 PPI pairs for

each GO while half of the data have positive labels (due to experimentally confirmed

PPIs) and the other half have negative labels.

In our evaluation, the results of prediction were investigated by receiver operating

characteristic (ROC) curves, with area under the curve (AUC) as the main accuracy

criterion. Here, we report only MAX since, as we expected from the previous studies,

for all the cases MAX predicted better results compared with BMA. Table 2.4 shows

the values of AUC for different semantic measures, including a hybrid measure that
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Figure 2.5: Relationship of gene expression correlation and semantic similarity in
three GO ontologies.
X = 500 means that only the 500 most highly correlated gene pairs were considered
when generating the correlation scores
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uses the average of the simDEF and Resnik values as the probability of interaction.

Table 2.4: AUC of the semantic similarity measures for three GOs using MAX in the
PPI task on the yeast dataset (IEA+ and IEA–)

Semantic measure Including IEA Excluding IEA
BP CC MF BP CC MF

Resnik 0.8961 0.8658 0.7969 0.8685 0.8525 0.7429
Lin 0.8856 0.7588 0.7814 0.8629 0.7805 0.7419
Jiang 0.8719 0.7555 0.7613 0.8541 0.7467 0.7621
GraSM 0.8965 0.8658 0.7969 0.8691 0.8488 0.7413
Wang 0.8687 0.7835 0.7612 0.8483 0.7507 0.7496
AIC 0.8812 0.7623 0.7802 0.8613 0.7727 0.7427
simGIC 0.8014 0.8003 0.7025 0.7415 0.7673 0.6634
simUI 0.7999 0.7364 0.6921 0.7413 0.7098 0.6705
simDEF 0.9086 0.7742 0.8202 0.9059 0.8001 0.8115
simDEF + Res 0.9264 0.8809 0.8306 0.9039 0.8564 0.8073

As in the gene expression case, we found that including IEA records from GO

improved the accuracy (in this case, the AUC). simDEF gave the highest accuracy

when the BP and MF ontologies were used, while Resnik and GraSM performed best

for CC. The hybrid classifiers AUC results are represented in the last row of Table

2.4. This result shows that simDEF is useful on all three ontologies, whether alone or

as a complement to the Resnik measure. We believe different approaches of simDEF

and IC-based semantic measures in similarity estimation is the main reason for this

improvement. With consideration of IEA, the ROC for CC ontology shown in Figure

2.6 represents that the combination of Resnik and simDEF benefits from the results

of simDEF and Resnik both.

ROC is not always the only best approach to evaluate a classifier’s performance

in a PPI task (Jain and Bader [77]; Wu et al. [229]). Therefore, in our second

experiment, by keeping the feature cut-off point of simDEF as before, considering

Resnik as the baseline measure, and including IEA in the evaluation, we calculated

different F1-scores for different classification cut-off points in the simDEF, Resnik and

hybrid measures. Then, we compared the calculated mean and maximum F1-score

values. While the mean and maximum F1-scores can be indicators of one classifiers

performance in the detection of positive interactions (similar to AUC), maximum

F1-score also helps in selection of the best classification cut-off point of a classifier
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Figure 2.6: ROC evaluation of the simDEF, Resnik and the hybrid measure of them
by MAX for the PPI task at different classification cut-offs based on the yeast dataset
using CC ontology (IEA+)

having its ROC curve. The mean and maximum F1-score results are shown in Table

2.5.

Table 2.5: F1-score of the simDEF, Resnik and the hybrid measure by MAX for the
PPI task (IEA+)

Semantic measure Mean of F1-score Max of F1-score
BP CC MF BP CC MF

Resnik 0.5973 0.5719 0.4699 0.8416 0.7815 0.7264
simDEF 0.8154 0.7591 0.7084 0.8483 0.7889 0.7521
simDEF + Res 0.6318 0.6686 0.5921 0.8519 0.7962 0.7546

The simDEF prediction of PPIs based on the F1-score is always better than the

results achieved by Resnik. Even though Resnik gave the best AUC for the CC

ontology, the simDEF mean F1-score is considerably higher than that of Resnik,

while the maximum scores differ by <1%. For the other two ontologies the improved

mean of the F1-scores in the simDEF measure against Resnik is notable. For MF

the difference between max F1-score in the hybrid measure is >2.5% compared with
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Resniks F1-score itself. We also see this improvement in the result is due more to

simDEF than to the Resnik measure.

6 Discussion

Our approach to similarity estimation based on shared context makes intuitive sense,

as concepts which share closely related attributes in their representation should ex-

hibit high levels of similarity. We have shown that implementing these ideas via the

Gloss Vector representation yields improved effectiveness across the majority of on-

tologies and problem types. For the yeast database, simDEF increases the correlation

of semantic similarity with sequence homology by 50%, yields an increase of >4% in

correlation with gene expression on the BP ontology, and improves the PPI prediction

F1-score by >2.5% on the MF ontology.

A key advantage of simDEF in comparison with IC-based measures is its reduced

dependency on annotation data, and the GO structure. New GO terms typically do

not have rich annotation information, which can influence the IC calculation of all

GO terms as they depend on the root frequency which itself depends on all GO term

frequencies. In contrast, simDEF needs to access only the direct parents and children

of one GO term to expand that GO terms definition.

7 Conclusion

This chapter introduced simDEF, an efficient method for measuring semantic simi-

larity of GO terms using their GO definitions, which was based on the Gloss Vector

measure commonly used in natural language processing. We showed that thus see-

mantic similarity measure can be helful In future work, simDEF can be evaluated

against Enzyme Commission (EC) and protein family (Pfam) similarities. Gene clus-

tering and orthologous protein distinguishing tasks present yet another opportunity

for simDEF performance evaluation. Moreover, further investigation of miss-classified

PPIs will help to improve that aspect of study. simDEF also needs to be tested on

the other species than S.cerevisiae as well. Moreover, other statistical measures of

association, such as Chi-square and log-likelihood, can be examined in replacement

of PMI for further improvement of simDEF. More in-depth studies can also find out
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if using larger window sizes of bigrams or even tri-grams in the word extraction of

MEDLINE abstracts would improve the achieved results. Also, current advancement

in deep neural networks for the low-dimensional yet more accurate representation of

GO terms leaves room for further investigation of semantic similarity measures in the

distributional model. Many of these aspects will be investigated in the next chapter

in depth.



Chapter 3

deepSimDEF for Deep Neural Embedding of Biological

Attributes and Deep Neural Gene Function Analysis

1 Summary

Background – There exists a plethora of measures to evaluate functional similarity

(FS) of genes; measures which are widely used in many bioinformatics applications

including identifying co-expressed genes, predicting protein-protein interactions, and

prioritization of disease genes. These FS measures are mostly derived from Informa-

tion Contents (IC) of Gene Ontology (GO) terms annotating genes. However, existing

measures employing IC of terms based their results on different hand-engineered and

application-specific metrics in order to quantify the degree of shared information be-

tween two genes given their GO annotations.

Results – deepSimDEF, however, by relying on the power of deep neural networks, is

an efficient model that learns this FS aggregation metric automatically given a set of

genes and their paired annotation data. Once trained, deepSimDEF is able to measure

FS of genes, that were absent at the time of training, when provided with their new

paired GO annotations. To this end, deepSimDEF learns low-dimensional vectors of

GO terms and gene products, and then calculates FS using these learned vectors (i.e.,

embeddings). Relative to best-performing similarity measures, by considering all GO

sub-ontologies, when validated on a yeast reference database, deepSimDEF increases

PPI predictability by ∼4%, shows a correlation improvement >6% with gene expres-

sion, and improves correlation with sequence homology by up to 11%.

Conclusions – As far as similarity of genes with respect to their GO annotations is

concerned, next to providing GO term and gene product embeddings, deepSimDEF

offers a powerful, flexible, easily transferable and adaptable deep neural architecture,

as well as a software tool, that a wide range of problems in proteomics and genomics

can benefit from.

40
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2 Background

With the revival of deep neural networks around 2006 [13, 66], deep learning methods

have become prevalent in the research community. These methods are basically rep-

resentation learning techniques that combine multiple non-linear modules to obtain

multiple levels of representation [99]. These modules can transform the representa-

tion of the raw input at one level into a representation at a higher, more abstract

level. The key advantage of deep learning is that human engineers do not design these

layers of features and, therefore, the least feature engineering is needed as features

are learned ‘dynamically’ and ‘automatically’. As a result, over the last decade, deep

learning methods have brought about breakthroughs in image and speech recognition

[65, 93, 59], two challenging tasks that traditionally took years of experts’ efforts to

design handcrafted features which were not close to perfect. Considering the excel-

lent performance of the deep learning methods in the general domain, in recent years,

their effectiveness has been evaluated in the biological domain as well. For example,

BioVec [8], inspired by the Word2Vec [128] widely used in natural language processing

(NLP), is an initiative in the biomedical domain to offer a solution for an unsupervised

data-driven distributed representation of biological sequences. The learned vectors

(also known as embeddings) can be used later on in other machine learning models

addressing biological tasks. For a comprehensive review of deep learning applications

in biology, medicine, and medical imaging an avid reader can refer to [29, 111].

The Gene Ontology project (GO) [9] is a bioinformatics initiative to character-

ize important features of genes and gene products using a controlled vocabulary.

UniProt [6], SwissProt [17], and many other biomedical databases are annotated

with GO terms to describe the semantic role of biomedical entities. Since in vitro

biomolecular experiments to validate gene functions are expensive, recently, func-

tional similarity (FS) measurement of genes from their GO annotations has become

the focus of several challenges such as the Critical Assessment of protein Function

Annotation algorithms (CAFA) [180, 80], whereas the ongoing developed methods

have been compared against vast biological problems such as prediction of protein-

protein interaction (PPI) [22, 240, 22], analysis of gene expressions [197, 222], pro-

tein function prediction [241, 92, 242, 180], protein subcellular localization prediction

[20, 218, 235], and study of homologous genes [109]. Dessimoz et al. in [42] provide
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a thorough overview of GO, and the molecular biology analyses and applications it

corrects or facilitates.

As far as GO is concerned, there exist two main computational classes of FS mea-

surements. Ontology-based methods take advantage of GO structure in their model

in which typically GO term semantic similarity (SS) values are computed pair-wise

prior to drawing on them for the gene functional estimation. The proposed SS mea-

sures revolve around the idea of shared Information Contents (IC) [184] of GO terms

annotating genes. The IC-based FS measures of Resnik [184], Lin [110], Jiang [78],

GraSM [37] and AIC [200] depend on these engineered SS measures. Recently, Dutta

et al. [45] presented a new approach (which we call clusteredGO in our evaluation)

that utilized IC of the GO terms and the GO graph to do GO term clustering. In

contrast to this approach, while pair-wise FS measures first compute SS of two gene

products and then aggregate the results as a single FS value using another engi-

neered metric, group-wise FS measures such as simUI [49], simGIC [171] and SORA

[211] directly calculate FS by measuring the distance between two sets of GO term

annotations. Motivated by Jaccard distance [103], the group-wise measures are less

computationally intensive, however, this occurs at the cost of accuracy. This process

of FS estimation is executed and then reported for every GO sub-ontology separately

(refer to Gene Ontology and GO annotations regarding GO sub-ontologies). Apart

from the above-mentioned engineered metrics, more than a decade ago, Schlicker et

al. also proposed another handcrafted metric to combine FS scores from every GO

sub-ontology into a single FS score through computing the root mean square of the

sub-ontologies results [193]. Examined on this metric, recently, Weichenberger et al.

in one part of their study showed that the consideration of combined information

from all three GO sub-ontologies can reduce the error rate in a task to discriminate

between orthologues and random protein pairs [227].

Distributional-based methods of FS measurement are based upon Firth [51], which

characterized one natural language term by the company the term keeps in its context.

Our previous work, a text-mining approach called simDEF [153] to compare the text

definitions of two GO terms, was inspired by this notion to address several drawbacks

of the ontology-based methods. Recently Duong et al. [44] by introducing their

distributional definition-based model called AicInferSentGO attempted to improve
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simDEF even further by proposing a new approach for (distributed) vector represen-

tation of GO terms. Even though simDEF and AicInferSentGO demonstrated the

significant advantage of distributed vector representation of GO terms, they suffered

from important shortcomings, some of which are still shared with even the most re-

cent methods: manual metric and feature engineering for aggregating GO-term SS

scores prior to the computation of gene FS; large dimensions of the ‘static’ GO-term

vectors; and, typically separate consideration of each sub-ontology of GO for a bio-

logical task at hand due to the lack of certainty on how the downstream biological

attributes from those sub-ontologies should be combined. The paired multi-channel

deepSimDEF neural network presented in this chapter attempts to address all of these

shortcomings simultaneously.

deepSimDEF relies on GO annotation data while BioVec takes into account only

the sequence information of the biological entities in which the functional character-

istics of those biological entities are not entirely encoded. Supervised deepSimDEF

neural networks are also designed to address the biological tasks by themselves; i.e.,

the main output of the deepSimDEF is a prediction model, where GO-term and

gene-product embeddings will be the by-products of the training process. However,

in contrast to previous FS measures in which the estimation results hinged upon the

choice of hand-engineered metrics such as Minimum (MIN), Maximum (MAX), Aver-

age (AVG), Best-Match Average (BMA), Average Best-Match (ABM), and modified

Hausdorff distance (MHD) to aggregate the SS scores and the underlying information

of two annotation sets [173, 122, 44], a deepSimDEF network automatically learns this

quantification regarding an application of interest, and later, measures FS of genes

which are absent at the time of training. Prior to training, deepSimDEF networks

are ideally initialized with our pretrained GO-term embeddings that we compute in

advance. We tested the performance of deepSimDEF against the FS measures of

Resnik [184], Lin [110], Jiang [78], GraSM [37], AIC [200], clusteredGO [45], simGIC

[171], simDEF [153] and AicInferSentGO [44] introduced above (see Chapter 2 and

Subsection 2 .1 for their details). However, there existed more FS measures in the

literature several of which are surveyed in [121]. With the consideration of the bi-

ological experiments in the original works of the FS measures and the experiments

designed in this study, we aimed at choosing the most well-known and the most recent
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measures which were the best representative of their types and the most challenging

landmarks to overcome regarding the conducted tasks.

3 Experimental Data

Prior to explaining the results of the study, we discuss the resources that we employed

as well as the experimental data that were created during the course of study on which

the experiments were based.

3 .1 Gene Ontology and GO annotations

GO terms annotating genes and gene products are structured in three mutually-

exclusive sub-ontologies, namely, biological process (BP), cellular component (CC)

and molecular function (MF). Generally, a BP term describes a change or complex

of changes on the level of granularity of the cell or organism that is mediated by one

or more gene products; metabolism and cell proliferation are examples of such BP

terms. A CC term, such as the nucleus or cell membrane, defines a part of a cell or its

extra-cellular environment where a gene product may be located. An MF term is the

enduring potential of a gene product instance to perform actions, such as catalysis or

binding activities, on the molecular level of granularity.

Each GO annotation consists of an association between a gene and a GO term

with a specific reference and an evidence code that shows how a given annotation is

supported. Out of all the evidence codes, inferred from electronic annotation (IEA)

and no biological data available (ND) are the least reliable. For experiments of this

study, the latest Gene Ontology and the GO annotations of yeast Saccharomyces

cerevisiae were downloaded from the Gene Ontology website1.

3 .2 MEDLINE Abstracts

MEDLINE2 includes over 20 million citations of life sciences and biomedical articles

from 1966 to the present. Combined with the GO term definitions, we employed the

MEDLINE 2013 bigram list3 to build our pretrained GO-term embeddings.

1http://www.geneontology.org/page/download-ontology (as of Nov. 2018)
2https://www.nlm.nih.gov/databases/download/pubmed medline.html
3https://mbr.nlm.nih.gov/Download/

http://www.geneontology.org/page/download-ontology
https://www.nlm.nih.gov/databases/download/pubmed_medline.html
https://mbr.nlm.nih.gov/Download/
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3 .3 Evaluation and Validation Datasets

Protein-protein interaction

We built a PPI dataset from a list of manually curated positive physical interactions

(PI) provided in yeast Saccharomyces cerevisiae database4. As to negative interac-

tions, following what is common in the literature, a list of negative interactions was

independently generated by randomly choosing annotated protein pairs which were

absent from the provided list of PPIs (including genetic and high-throughput interac-

tions). After removing those proteins that had no GO term annotations from all three

sub-ontologies of BP, CC and MF (without considering IEA and ND annotations),

each pair of interacting proteins was labeled with 1 indicating a positive interaction,

or 0 which offered no interaction. The final balanced PPI dataset contained 28,996

interactions in total.

Gene expression

Yeas (Saccharomyces cerevisiae). Having a microarray gene expression data from a

study by Eisen et al. [46], our gene expression dataset was built by integrating gene

expression data constructed for 2465 yeast genes under 79 biological conditions (4 ex-

periments on cell cycle, sporulation, temperature shock and diauxic shift processes).

We computed the absolute Pearson correlation of all possible gene-gene pairs based

on the expression values calculated on these 79 biological conditions - regardless of

whether their correlation was positive or negative as we focused on the strength of

expressions, and then applied Fisher’s z transformation to these results to convert

them into normally distributed variables suitable for parametric statistical testing.

After removing those genes that had no GO annotations, all the genes in the final

dataset had their own GO annotations from all three sub-ontologies (without consid-

ering IEAs and NDs). The final dataset contained 2,149,701 gene-gene pairs along

with the transformed Pearson’s correlation of their expressions.

Human (Homo sapiens). The data comes from a study by [15] (due to a large size

a random subset of the original data is use). In their study, probes from the human

U133A array were mapped to their Refseq identifiers which were then mapped to

4https://downloads.yeastgenome.org/curation/literature/interaction data.tab

https://downloads.yeastgenome.org/curation/literature/interaction_data.tab
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Uniprot identifiers. Genes without any GO annotations in GOA were removed. After

filtering, the all-pairs correlation of 5688 genes was calculated resulting in 16,173,828

unique correlation pairs (we only used 300,000 pairs which covered 8228 genes that

had full GO annotations). The absolute value of the correlation was calculated be-

tween expression pairs to attempt to detect a relationship either negative or positive.

Sequence homology

We employed sequence homology5 data from our previous study [153]. To create this

dataset, we used bitscores from the Basic Local Alignment Search Tool (BLAST)

algorithm [3]. Since a bitscore for query and subject proteins is not symmetrical,

we computed log-reciprocal BLAST score (LRBS) and relative reciprocal BLAST

score (RRBS) to express the general sequence similarity of yeast protein pairs. After

computation of LRBS and RRBS, we had a dataset of 16,570 protein pairs along with

their LRBS and RRBS sequence similarity scores. We removed a few protein pairs

from the original dataset due to new changes in Gene Ontology and GO annotation

data. All proteins in the final dataset had GO annotations from the BP, CC and MF

sub-ontologies (non-IEA and non-ND annotations).

4 Method

4 .1 Pretraining of GO-term Embeddings

Initialization of a neural network with pretrained embeddings has proven to be effec-

tive in a variety of applications [23, 232]. Inspired by studies for (high-dimensional)

distributed representation of biomedical concepts [115, 161] and the low-dimensional

vector representation of words [104, 11] we pretrained GO-term embeddings in six

steps depicted in Figure 3.1. The pretraining of GO-term embeddings closely fol-

lowed our approach in the work explained in Part 2 in which we pretrained sense

embeddings for every concept in the Unified Medical Language System (UMLS) to

5A homologous gene (or homolog) is a gene inherited in two species by a common ancestor; hence,
it is a binary concept. While homologous genes can be similar in sequence, similar sequences are not
necessarily homologous. Orthologous are homologous genes where a gene diverges after a speciation
event, but the gene and its main function are conserved. If a gene is duplicated in a species, the
resulting duplicated genes are paralogs of each other, even though over time they might become
different in sequence composition and function.
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address the word sense disambiguation (WSD) of biomedical text data. For pre-

training of GO-term embeddings, however, we dealt with three GO sub-ontologies

of BP, CC and MF, in which GO terms had biologically-concerned text definitions

that were represented as low-dimensional vector embeddings. As we show in Experi-

mental Results, these pretrained vectors facilitate and accelerate the exploration and

exploitation of training data in order to gain more accurate knowledge regarding a

biological task in hand.
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Figure 3.1: Definition-based embedding model of the Gene Ontology terms.
The pretraining of GO-term embeddings consists of 6 steps. Breifly, the Second-order
vector representation of GO terms prevents sparsity (of word features) in the First-order
representation of their text definitions; Pointwise Mutual Information statistically defines
the degree of association between GO terms and these second-order word features; and
Latent Semantic Analysis reduces the result high-dimensional vectors to a size proper for
initialization of a deepSimDEF network. Steps 2–6 are executed for each sub-ontology of
BP, CC and MF separately.

In essence, in this pretraining approach, the Second-order computation of vector
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representation of GO terms (their text definitions) prevents the issue of sparsity

of word features in the First-order vector representation of their text definitions;

Pointwise Mutual Information statistically defines the degree of association between

each GO term and its second-order word features; and Latent Semantic Analysis

aims at condensing the final high-dimensional vectors to a size proper for a deep

neural network. These steps explained below are executed in advance in order to

compute GO-term embeddings before training our deepSimDEF networks which these

embeddings initialize. Steps 2–6 were executed for each sub-ontology separately.

Step 1 – MEDLINE Word Co-occurrence Matrix. After discarding punctu-

ation, changing all characters to lowercase, and removing stop-words from the MED-

LINE bigram list, a list of bigrams and their frequencies for all the content words

in the GO term definitions were constructed. We built a Co-occurrence Matrix from

this bigram list of MEDLINE abstracts; a symmetric and sparse matrix that stored

contextual information of the MEDLINE words in which we were interested.

Step 2 – Definition Extension and Definition Matrix. In this step, following

the simDEF guideline [153], we constructed an extended definition for every GO term.

The definition extension of a concept by the definitions of its neighbour concepts in a

taxonomy, such as their parents and children, enriches that concept’s semantics [115]

and to some extent avoids sparsity of the first-order word features in its original and

typically brief definition. For this reason, we extended the original definition of every

GO term by adding the definitions of the other GO terms which were directly related

to that term in the GO structure. The Definition Matrix stored the frequency of the

words in every GO-term extended definition. If one word (i.e., Wi word feature) did

not appear in a GO term definition the frequency was 0 – which still could indicate

sparsity in these vectors despite the extension.

Step 3 – Normalized Second-order Co-occurrence (SOC) Matrix. Each of

the Wi word features from the previous step has an associated co-occurrence vector

that we computed in Step 1. Following [115, 153, 154], these rich co-occurrence vectors

helped to resolve the issue of sparsity of the first-order definition vectors of the GO

terms further through the construction of the second-order vector presentations of
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the definitions.

To build a normalized SOC vector of a GO term, we first summed the MEDLINE co-

occurrence vectors of the content words in that GO term’s extended definition, and

then divided the resulting vector by the number of words in that definition (these

frequency statistics were stored in the Definition Matrix built in the previous step).

In other words, we took the centroid of the co-occurrence vectors associated with the

words in one definition, and then normalized the result by the number of constituent

vectors in the summation in order to deal with variable lengths of the GO term

definitions.

Step 4 – Pointwise Mutual Information (PMI) on SOC Matrix. Not all

word features associated with a GO term are equally important [156]. PMI, as in

Eq. (8 .1), statistically measures the level of association between one GO term, i.e.,

every associated word in its normalized SOC vector denoted by wordi, and the word

features Wj. This statistical approach is a replacement for the naive consideration of

word feature frequency cut-off threshold for the removal of low-frequency occurrences

[115]. As a principal rule in NLP, the total frequency of one occurrence indicates

how informative that occurrence is, stating the less frequent the occurrence is in a

series of events, the more informative that occurrence will be in general [182] – an

important consideration ignored in the low-frequency cut-off threshold [156]. PMI

on the other hand took these total frequencies into consideration through p(wordi)

and p(Wj) probabilities denoted in Eq. (8 .1). Once PMI values were calculated for

all the GO terms and word features, our validation sets helped to set a low cut-off

threshold for the removal of (statistically) irrelevant features. As a common practice

in the computation of PMI values, we also applied the Laplace (add-one) smoothing

technique to the Normalized SOC Matrix in advance to avoid bias towards infrequent

occurrences [40].

PMI(wordi,Wj) = log
p(wordi,Wj)

p(wordi)× p(Wj)
(4 .1)

Step 5 – Latent Semantic Analysis (LSA) on PMI-on-SOC Matrix. LSA

is a statistical approach of acquisition and representation of semantics that allows

similarities among the elements of a language – such as words or sentences – to be
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computed based on their co-occurrence patterns in a large corpus [140]; a computa-

tional model of meaning that closely mimics human understanding of the contextual

use of language widely used for information retrieval and machine understanding of

text [96]. Hence, unlike standard keyword-based methods, LSA can detect subtle

aspects of semantic content. Employing this statistical approach, formulated by Eq.

(8 .2), LSA used Singular Value Decomposition (SVD) algorithm that resulted in two

square and unitary matrices U an V T , and a non-negative diagonal matrix Σ that

held singular values on its diagonal in a non-increasing order [57].

PMI on SOC = UΣV T (4 .2)

Step 6 – Reducing the Rank of Singular Values. The reduced dimension

semantic representation from LSA allows comparison by computing the semantic

similarity between individual terms or groups of terms in a more efficient manner.

We use this dimensionality reduction technique to prepare our well-sized GO-trem

embeddings for an effective deepSimDEF network initialization. Having Eq. (8 .3),

we truncated the SVD to 100 for low-dimensional representation of GO terms. The

resulting matrix (its columns) contained 100 principal components of the original

matrix. Basically, these principal components are calculated from a covariance matrix

which is encoded in Σ in the form of the square root of its eigenvalues (i.e., singular

values) [57]. That is, principal components with larger associated variances represent

interesting structure, while those with lower variances indicate noise. Determined by

our validation sets in the conducted experiments, embedding sizes smaller than 100

yielded worse results whereas higher dimensions did not improve the accuracy and

just increased the training time of the networks.

GO terms LSA embeddings = UΣ100 (4 .3)

4 .2 deepSimDEF Network Definition

deepSimDEF offers single-channel and multi-channel network architectures which

learn and represent the shared information of two proteins based on their GO an-

notations, and then measure FS of genes for an application of interest. While a
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single-channel network only considers annotations of one sub-ontology, as depicted in

Figure 3.2 for the BP sub-ontology, the multi-channel architecture, with more layers

shown in Figure 3.3, takes into account all the three GO sub-ontologies together. The

6 layers fundamental to both deepSimDEF architectures are described as follows.
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Figure 3.2: Paired single-channel deepSimDEF network architecture for BP.
The paired single-channel deepSimDEF architecture consists of 7 layers for functional simi-
larity measurement of genes and gene products using their Gene Ontology term annotations
from one of the GO sub-ontologies. For two input genes, their annotations are fed to the
network in the first layer in which they will be represented as two lists of 100-dimensional em-
bedding vectors. Max-pooling layer condenses each of these two lists into a 100-dimensional
row-vector. Merge and highway layers together encode the degree of shared information of
these two pooled vectors. In several locations of the architecture, fully-connected layers
are considered for better representation of their underlying layers. Finally, based on the
biological application in hand, the result of the prediction network is computed which can
be either a scalar or a classification probability. The weights of the two pairs are shared
during the network training and testing. This architecture is shown for BP, however, for
CC and MF it stays the same with only having different length of the input annotations in
the first layer that is defined by the maximum number of annotations given to a gene from
that sub-ontology.
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GO-term Embedding Layer. The GO term annotations of two proteins are fed

to the model as indexes taken from three fixed sets of GOBP, GOCC, or/and GOMF.

These sets contain the indexed GO terms of a particular database from the sub-

ontologies of BP, CC, and MF (yeast database in our case). Each set is also associated

with a look-up table of 100-dimension in row size; e.g., WLT BP∈R100×|GOBP| is the look-

up table for BP GO terms of the yeast database. These tables, ideally initialized with

our pretrained LSA GO-term embeddings, are parameters of the model. First, for

every protein, its GO term indexes transform into vectors by looking up their GO-

term embeddings. Then, within the embedding layer, for each sub-ontology, the two

input proteins are represented as two lists of fixed length t0, each list containing the

100-dimensional GO embeddings of those two genes’ annotations looked up already

(Eq. (4 .4)). In the architectures, for consistency across GO annotations of all genes,

whenever the annotation sets of a gene had the length of less than t0, we padded the

annotation list with a generic vector of a large negative value (padding was repeated

whenever needed); subsequent Max-pooling Layer later suppressed the effect of this

generic vector and the final estimations were calculated only based on the actual

annotations. Without the consideration of IEAs (i,e., IEA−), the fixed length for

BP, CC, and MF were 40, 14, and 10, respectively (i.e., the longest number of the

GO term annotations of a gene in the yeast database from that sub-ontology); for

IEA+ these numbers were 44, 17, and 33.

Xebm = [x1,x2, ...,xt0 ] ∈ R100×t0 (4 .4)

where xi denotes the GO-term embedding of the ith BP GO annotation of a protein.

An embedding layer is denoted by emb(100, t0) in the figures.

Max-pooling Layer. Max-pooling operations are commonly used to extract global

features from convolution [93]. In our method, since we deal with the sets of annota-

tions instead of sequences of words or adjacent pixels, we do not need any convolution

layer, so max-pooling is applied directly to the embeddings. Generally, a pooling layer

aggregates the input vectors by taking the maximum over a set of intervals. Here,
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for the output of an embedding layer, the max operation is applied over all column-

features, which is denoted by maxpool(t0). We also considered flattening of the result-

ing pooled column-vector into a row feature-vector representation as an integrated

part of the max-pooling layer. This flattening needs to be done prior to passing the

results of a lower layer to a higher fully-connected layer. After max-pooling, proteins

with different lengths of GO annotations are represented with 100-dimensional global

feature vectors each for one sub-ontology (e.g., bpool ∈ R1×100 is the pooling layer

result for BP).

Merge Layer. Depending on whether we use the paired single-channel or the paired

multi-channel architecture, we have one or two merge layers. For a paired single-

channel architecture, we have only one merge layer, which happens at the gene-

product (similarity) level due to the paired nature of the input data. That means

prior to the extraction and representation of the shared information between two gene

products, their individual feature-vectors need to be merged through the concatena-

tion technique. For the multi-channel architecture however, besides having a merge

layer at the gene-product level, we have one more merge layer that occurs at the

GO term annotations level. For a given gene product of an input protein pair, this

extra merge layer is used to concatenate the three 100-dimensional feature-vectors of

the BP, CC, and MF annotations from the max-pooling layer. In the multi-channel

architecture, at the GO term annotations level, mgo multi ∈ R1×300 is the result of the

merge layer. At the gene-product level, mgp single ∈ R1×200 and mgp multi ∈ R1×600 are

the results of the merge layers for the paired single-channel and paired multi-channel

architectures, respectively. Merge layers are denoted by merge(‘concat’).

Fully-connected Layer. The fully-connected layer takes a d0-dimensional input

row-vector xfch ∈ Rd0 to learn higher level feature representations of the underneath

layers6:

h = ReLU(Wh · xfch + bh) (4 .5)

where Wh ∈ Rnhid×d0 , nhid is the size of the fully-connected hidden layer, bh ∈
6In the equations, · denotes matrix multiplication.
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Rnhid is the bias vector, and ReLU is rectified linear activation function [133]. The

output of the first fully-connected layer can be seen as the embeddings of the input

gene products. Depending on whether the single-channel or multi-channel network

is employed, this embedding size can be 100-dimensional or 300-dimensional. The

fully-connected hidden layers are denoted by dense(nhid, ‘relu’). At the similarity

level, the output of the fully-connected layer improves for better representation of the

shared information between two given gene products.

Highway Layer. In the previous measures including simDEF, for FS estimation

of two input gene products, human-engineered aggregation metrics were used – while

the SS scores of their pair-wise GO annotations made the inputs of these metrics.

However, there is no consensus in the literature on what metric is the best choice

for the aggregation of the shared information, as from one biological experiment to

another the results vary, and even sometimes, the conclusions contradict each other

[62]. In the deepSimDEF model, the highway layer [203] is devised in such a way that

the model itself properly learns an adaptive representation of the provided information

of the two input gene products encoded in the lower layer for the comparison of

their as well as other gene products functionality. This representation uses a gating

mechanism that controls the flow of information from the two gene products into

an aggregated high-level representation. This adaptive representation of the shared

information strengthens an affine transformation - similar to what is presented in Eq.

(4 .5) - with a non-linear transform function T . We refer to the vector T as the

transform gate since it expresses how the output is produced through transforming

or carrying the input. If we consider the size of the concatenated feature vectors of

two input genes to be d1-dimensional, T can be formulated as:

T = σ(WT · xfch + bT ) (4 .6)

where WT ∈ Rnhid×d1 is the weight matrix, nhid is the size of the fully-connected

hidden layer and here is equal to d1 since we do not want to expand or shrink the

representation result at this stage, bT ∈ Rnhid is the bias vector, and σ is a sigmoid

function employed in the original paper as the transform function [203]. If we want

to represent two extreme cases which apply either transform state or block (or carry)
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state on the input data, Eq. (4 .7) formulates that for us:

x′ =

xfch, if T = 0

σ(Wh · xfch + bh), if T = 1
(4 .7)

Therefore, depending on the output of the transform gates, a highway layer should

smoothly vary its behavior between that of a plain layer with a non-linear activation of

interest (if T = 1; in deepSimDEF we achieved better results with sigmoid function)

and that of a layer which simply passes its inputs through (if T = 0). Eq. (4 .8)

formulates this favorable behavior of a highway layer7:

x′ = σ(Wh · xfch + bh)� T + xfch � (1− T ) (4 .8)

The transform gate - which is the principal component in the deepSimDEF network(s)

for a high-level representation of the shared information of two input genes, and all

the weights in the highway layer, will be learned during the training phase. The

highway layer is denoted by highway(‘sigmoid’).

Classification / Regression Layer. Depending on whether an experiment con-

ducted in a study is formulated as a classification problem or as a regression problem,

the output of the last dense layer is fully connected to either a softmax classification

layer (e.g., for our PPI experiment) or a linear regression layer (for the gene expres-

sion and sequence homology experiments). After the lower layer processing, a fixed

dimensional feature vector xcl or xrg ∈ Rd2 is the input to the classification/regression

layer, with a sigmoid or linear activation, whose output is the FS estimation of the

genes. For a classification task we have:

7In the equation, � implies element-wise multiplication.
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p(y = i|xcl) =
exp(Wouti · xcl + bouti)∑nout

j=1 exp(Woutj · xcl + boutj)
(4 .9)

where p(y = i|xcl) outputs probability distribution over labels, Wout ∈ Rnout×d2 , nout

is the size of the classification layer (for the PPI prediction it is equal to two types),

bout ∈ R is the bias vector, and d2 is either 100-dimensional (for single-channel) or

300-dimensional (for multi-channel architecture). The classification layer is denoted

by dense(1, ‘sigmoid’). For a regression task:

ŷ = Wout · xrg + bout (4 .10)

where ŷ outputs a scalar value, Wout ∈ R1×d2 , d2 is either 100- or 300-dimensional

feature vectors depending on the chosen architecture, and bout ∈ R is the bias vector.

The regression layer is denoted by dense(1, ‘linear’).

Since a deepSimDEF network needs to be symmetric and produce the same result for

the two input pairs of [g1, g2] and [g2, g1], all equivalent layers of the paired networks

must share the same weights; this applies to the embedding layers as well (similar to

Siamese network8). Meaning, for each sub-ontology, we only have one look-up table

(initialized randomly or with the pretrained LSA GO-term embeddings). In the train-

ing phase and during back-propagation, this table(s) will be updated simultaneously

for every gene product in a training gene product pair. We also used dropout [202]

of 0.3 on the fully-connected and highway layers to allow a more accurate general-

ization. The parameters of the networks are optimized to maximize the correlation

between the estimated FS of gene products predicted by the models and the target

scores in the training datasets. This selection was done in a 10-fold cross-validation

manner where validation splits chose the best parameters using an early stopping

8Siamese network is an artificial neural network that use the same weights while working in
tandem on two different input vectors to compute comparable output vectors.
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strategy [177]. Additionally, since the weight matrices of the highway layer for the

concatenated feature-vectors of the paired networks are not symmetric and do not

update symmetrically, we not only trained the networks on ([g1, g2], score) instances,

we also trained them on ([g2, g1], score) instances.

5 Experimental Results

The experiments were designed in a 10-fold cross-validation fashion. Meaning, in

every experiment (i.e., dealing with PPI, gene expression, or sequence homology),

we randomly divided the total number of proteins (in that experiment) into 10 non-

overlapping sets. In a 10-time experiment, each time we reserved one of those sets,

and all the protein pairs in which they occurred, for testing; the rest of the protein

pairs were employed for network training (10% of them were set aside for validation in

advance). After the hyper-parameters were selected, the final networks were trained

on the whole training set that contained the validation set and then were evaluated

on the test set protein pairs in which at least one protein was unseen during training,

therefore, no proteins were presented in both the training and testing sets. Through

this design, we attempted to break the inter-connection between the pairs of the gene

products in the training data (i.e., we avoided direct transitive inference between

the protein pairs). Additionally, as to the motivation for conducting this design,

we assumed the reserved proteins were new proteins which were discovered recently,

so there existed no concrete prior knowledge (i.e., their GO annotations) about their

functionality. Therefore, following what is common in the literature regarding SS and

FS, we wanted to see how deepSimDEF networks worked with a set of entirely new

proteins. Despite the negligible variance in the results, for a more solid conclusion,

we repeated the shuffling of proteins in every experiment 10 times and the average of

all 100 results was considered as the final result of that experiment.

5 .1 Semantic Similarity of Pretrained GO-term Embeddings

In the following subsections, we will show that the initialization of a deepSimDEF

network with pretrained GO-term embeddings improved the results of the experi-

ments (refer to Pretraining of GO-term Embeddings to see how these embeddings
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are constructed; for how they initialize the deepSimDEF networks see GO-term Em-

bedding Layer). In essence, our pretraining method organizes embeddings of the

GO terms within a Euclidean space based on those GO terms’ semantics (arranging

books in a physical library is an appropriate analogy for this attempt). Once intro-

duced to a network, these embeddings put that network in a proper state prior to

training leading to faster convergence and more accurate results. For three randomly

selected GO terms from a pool of >16,000 biological process (BP) terms, Table 3.1

shows the 5 top-most similar GO terms to those terms drawn from our pretrained

GO-term embeddings using cosine similarity (in the library analogy they are similar

books arranged next to the given book title). We can see for a given GO-term query,

the returned GO terms are very close conceptually. For cellular component (CC) and

molecular function (MF), we observed the same sense-similarity organizations in their

embedding spaces as well.

Table 3.1: Sense similarity results for three BP terms over pretrained embeddings

Query GO term ID GO term Name
Q #1 GO:0072521 purine-containing compound metabolic process

1 GO:0072523 purine-containing compound catabolic process
2 GO:0072527 pyrimidine-containing compound metabolic process
3 GO:0072529 pyrimidine-containing compound catabolic process
4 GO:0052803 imidazole-containing compound metabolic process
5 GO:0046453 dipyrrin metabolic process

Q #2 GO:0045292 mRNA cis splicing, via spliceosome
1 GO:0000398 mRNA splicing, via spliceosome
2 GO:0048024 regulation of mRNA splicing, via spliceosome
3 GO:0000380 alternative mRNA splicing, via spliceosome
4 GO:0090615 mitochondrial mRNA processing
5 GO:0000395 mRNA 5’-splice site recognition

Q #3 GO:0001116 protein-DNA-RNA complex assembly
1 GO:0001115 protein-DNA-RNA complex subunit organization
2 GO:0001117 protein-DNA-RNA complex disassembly
3 GO:0071165 GINS complex assembly
4 GO:0071824 protein-DNA complex subunit organization
5 GO:0032986 protein-DNA complex disassembly

Semantic similarity of pretrained GO-term embeddings of Cellular Component

and Molecular Function subontologies are demonstrated in Table 3.2 and Table 3.3

respectively.
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Table 3.2: Sense similarity results for three CC terms over pretrained embeddings

Query GO term ID GO term Name
Q #1 GO:0000109 nucleotide-excision repair complex

1 GO:0033061 DNA recombinase mediator complex
2 GO:0009380 excinuclease repair complex
3 GO:0019812 type I site-specific deoxyribonuclease complex
4 GO:1990391 DNA repair complex
5 GO:1990249 nucleotide-excision repair, DNA damage recognition complex

Q #2 GO:0000306 extrinsic component of vacuolar membrane
1 GO:0032419 extrinsic component of lysosome membrane
2 GO:0019898 extrinsic component of membrane
3 GO:0031312 extrinsic component of organelle membrane
4 GO:0035452 extrinsic component of plastid membrane
5 GO:0031313 extrinsic component of endosome membrane

Q #3 GO:0044611 nuclear pore inner ring
1 GO:0070762 nuclear pore transmembrane ring
2 GO:0044614 nuclear pore cytoplasmic filaments
3 GO:0031080 nuclear pore outer ring
4 GO:0044612 nuclear pore linkers
5 GO:0044615 nuclear pore nuclear basket

5 .2 Comparison with PPIs

Protein-protein interactions play a key role in various aspects of the structural and

functional organization of the cell; studies demonstrate knowledge of PPIs unveils the

molecular mechanisms of biological processes that lead to rational drug design [132].

To this end, it has been shown that the (aggregate of) SS values can be employed as

an indicator for the plausibility of putative PPIs [246]. This is because proteins that

interact in the cell in vivo are expected to participate in similar cellular locations and

to be involved in close or/and related biological processes [153], attributes that are

expressed by Gene Ontology annotations.

Like other studies, we formulated this as a classification problem and checked how

well a deepSimDEF network, as a tool of FS measurement, performed to predict true

PPIs. For this purpose, the result of an FS measure (ours or others’) was directly

interpreted as the classification probability of “Interaction” and “Not Interaction”.

Generally, the higher this value is, the higher the probability of interaction will be. In

our evaluation, represented in Table 3.4, the results of predictions from deepSimDEF

and other similarity measures are compared with respect to F1-scores computed for
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Table 3.3: Sense similarity results for three MF terms over pretrained embeddings

Query GO term ID GO term Name
Q #1 GO:0044653 dextrin alpha-glucosidase activity

1 GO:0044654 starch alpha-glucosidase activity
2 GO:0032450 maltose alpha-glucosidase activity
3 GO:0090600 alpha-1,3-glucosidase activity
4 GO:0004558 alpha-1,4-glucosidase activity
5 GO:0033919 glucan 1,3-alpha-glucosidase activity

Q #2 GO:0071667 DNA/RNA hybrid binding
1 GO:0097098 DNA/RNA hybrid annealing activity
2 GO:0001069 regulatory region RNA binding
3 GO:0003697 single-stranded DNA binding
4 GO:0001067 regulatory region nucleic acid binding
5 GO:1990471 piRNA uni-strand cluster binding

Q #3 GO:0000034 adenine deaminase activity
1 GO:0008892 guanine deaminase activity
2 GO:0004126 cytidine deaminase activity
3 GO:0004131 cytosine deaminase activity
4 GO:0047974 guanosine deaminase activity
5 GO:0035888 isoguanine deaminase activity

each classifier (i.e., each gene FS measure). Among the aggregation metrics used in the

previous studies, MAX yielded the highest PPI prediction results, so, we considered

it in our evaluation and presented it in the table.

Table 3.4: F1-score of deepSimDEF in the PPI prediction task of the yeast dataset
for three sub-ontologies compared to other FS measures aggregated by MAX

Semantic
Measure

Excluding IEA (%) Including IEA (%)
BP CC MF BP CC MF

Resnik [184] 82.93 77.77 72.12 83.09 77.93 72.64
Lin [110] 82.43 76.61 71.63 82.79 76.73 71.84
Jiang and Conrath [78] 82.49 76.75 71.78 82.85 76.86 71.97
GraSM [37] 82.93 77.86 72.01 83.12 77.96 72.58
AIC [200] 82.49 76.59 71.41 82.79 76.73 71.67
clusteredGO [45] 82.98 77.78 72.23 83.18 77.93 72.76
simGIC [171] 78.89 73.72 69.93 79.46 74.43 70.23
simDEF [153] 83.39 78.41 75.21 83.79 78.63 75.63
AicInferSentGO [44] 83.21 78.48 75.09 83.73 78.71 75.61
deepSimDEFsingle-channel-rand-emb 81.48 ± 0.45 80.52 ± 0.42 77.11 ± 0.45 81.91 ± 0.49 80.64 ± 0.51 78.08 ± 0.39
deepSimDEFmulti-channel-rand-emb 82.82 ± 0.36 83.43 ± 0.33
deepSimDEFsingle-channel-LSA-emb 85.42 ± 0.23 82.41 ± 0.24 80.78 ± 0.18 85.84 ± 0.31 82.77 ± 0.23 81.49 ± 0.19
deepSimDEFmulti-channel-LSA-emb 87.37 ± 0.29 87.69 ± 0.26

deepSimDEF, when pretrained with LSA GO-term embeddings, in a single-channel
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network achieved F1-score improvement of>2% compared to the second best method’s

results, simDEF in BP (∼4% on average for all three sub-ontologies). Also, in the

multi-channels we observed a further increase of ∼2% compared to BP of deep-

SimDEF which yielded the best result among the evaluated FS measures and among

the three sub-ontologies (∼4% improvement compared to simDEF in BP); this indi-

cates the consideration of all three sub-ontologies together provides us with a better

PPI prediction model. clusteredGO slightly improved the results of Resnik, whereas

the group-wise simGIC represented the worst performance among the evaluated FS

measures. Comparing simDEF with AicInferSentGO, we observed their results were

very close – which, due to their definition-based nature, was expected. What sep-

arates simDEF and AicInferSentGO is their way of GO term vector representation;

simDEF relies on extended definitions of GO terms; AicInferSentGO, however, com-

putes them using an approach already proposed in [35] for supervised learning of

sentence representations using a Bidirectional Long Short-Term memory (BiLSTM)

encoder. Also, we observed that the consideration of IEAs for PPI prediction slightly

improved all results.

By comparing the results of the deepSimDEF networks when started with random

embeddings versus when initialized with pretrained LSA GO-term embeddings, we

understood the influential impact of the latter as we achieved >4% increase for the

multi-channel and >3% for the single-channel networks in the F1-scores. This means

that the initialization of the networks with LSA embeddings avoids some critical local

minima that a deepSimDEF network can fall into during training if it is initialized

with random weights.

5 .3 Correlation with Gene Expression

Highly correlated genes are often functionally related and participate in the same

biological processes. Previous studies have evaluated the performance of their FS

measures by calculating the correlation between their estimations and gene-expression

correlation data [236, 15].

Wu et al. in [229], by achieving a poor correlation between their GO-based FS

measure and gene expression from microarray data of yeast and human argued that

the inconsistent results experienced in the previous studies indicate the correlations
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between GO-based FS measures and gene co-expression data are sensitive to the

source of data and the method of evaluation. Similar to Wang et al. [221], we believe

this inconsistency stems from the inherent complexity of the gene-expression data,

and the fact that there exists no direct correlation between GO annotations and

gene-expression data that one ideal GO-based FS measure can completely discover

and portray. We believe, however, deep neural networks, such as ours, have the

potential of exploiting this (non-linear) complexity and discovering the underlying

inner dependency to the greatest degree possible.

In our evaluation, represented in Table 3.5, the Pearson’s correlation coefficients

between the FS measures and the gene-expression data were studied (see Table 3.6 for

Spearman’s correlation results). In contrast to the PPI experiment, however, BMA

metric showed better correlation with the gene-expression data, hence, we considered

it in the evaluation.

Table 3.5: Pearson’s correlation of deepSimDEF and yeast gene expression data for
three sub-ontologies compared with other FS measures aggregated by BMA

Semantic
Measure

Excluding IEA Including IEA
BP CC MF BP CC MF

Resnik [184] 0.241 0.393 0.213 0.225 0.396 0.221
Lin [110] 0.217 0.362 0.201 0.201 0.374 0.203
Jiang and Conrath [78] 0.185 0.335 0.178 0.178 0.345 0.181
GraSM [37] 0.245 0.393 0.215 0.228 0.389 0.226
AIC [200] 0.206 0.353 0.201 0.196 0.371 0.205
clusteredGO [45] 0.209 0.325 0.201 0.193 0.345 0.205
simGIC [171] 0.066 0.152 0.142 0.081 0.156 0.121
simDEF [153] 0.323 0.401 0.191 0.329 0.403 0.218
AicInferSentGO [44] 0.323 0.399 0.189 0.329 0.405 0.212
deepSimDEFsingle-channel-rand-emb 0.448 ± 0.025 0.414 ± 0.026 0.333 ± 0.021 0.452 ± 0.031 0.418 ± 0.029 0.343 ± 0.026
deepSimDEFmulti-channel-rand-emb 0.462 ± 0.018 0.466 ± 0.021
deepSimDEFsingle-channel-LSA-emb 0.451 ± 0.019 0.414 ± 0.017 0.335 ± 0.016 0.456 ± 0.015 0.422 ± 0.017 0.343 ± 0.017
deepSimDEFmulti-channel-LSA-emb 0.464 ± 0.015 0.469 ± 0.012

The pretrained deepSimDEF, in the single-channel networks, improved Pearson’s

correlation with the expression data by >8% (on average); >5% for deepSimDEF in

BP compared to the second best results achieved by simDEF and AicInferSentGO in

CC. In contrast to the previous FS measures which in general expressed better corre-

lation results in CC, deepSimDEF represented higher correlation with the expression

data in BP. Moreover, in the previous FS measure, GraSM showed better correla-

tion with the expression data for MF whereas simDEF and AicInferSentGO acted

better in the CC and BP departments; nevertheless, single-channel deepSimDEF net-

works outperformed them all in the three sub-ontologies. Additionally, as expected,

in the multi-channel deepSimDEF architecture we observed an increase of >1% in
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the Pearson’s correlation result compared to the single-channel model architecture.

Similar to the PPI experiment, after taking IEA annotations into account, we

gained minor improvements in the correlation results with the expression data. In

contrast to the PPI experiment, however, initialization of a network with pretrained

GO-term embeddings did not increase the correlation results with the expression

data significantly; considering the large data size in this experiment this observation

made sense since the GO-term embeddings could be trained almost entirely from

scratch during the network training; nevertheless, initialization of the networks with

the pretrained GO-term embeddings accelerated the training process.

The Spearman’s correlation results between the FS measures and the gene expres-

sion data are shown in Table 3.6.

Table 3.6: Spearman’s correlation of deepSimDEF and yeast gene expression data for
three sub-ontologies compared with other FS measures aggregated by BMA

Semantic
Measure

Excluding IEA Including IEA
BP CC MF BP CC MF

Resnik [184] 0.052 0.193 0.102 0.038 0.189 0.106
Lin [110] 0.029 0.163 0.091 -0.005 0.169 0.088
Jiang and Conrath [78] -0.027 0.136 0.067 -0.028 0.139 0.066
GraSM [37] 0.056 0.193 0.104 0.042 0.183 0.101
AIC [200] -0.003 0.154 0.091 -0.009 0.165 0.091
clusteredGO [45] 0.021 0.126 0.091 -0.013 0.139 0.091
simGIC [171] 0.032 0.042 0.031 0.033 0.056 0.036
simDEF [153] 0.134 0.201 0.101 0.142 0.196 0.103
AicInferSentGO [44] 0.134 0.199 0.078 0.142 0.198 0.097
deepSimDEFsingle-channel-rand-emb 0.239 ± 0.025 0.214 ± 0.024 0.202 ± 0.022 0.245 ± 0.021 0.212 ± 0.028 0.208 ± 0.023
deepSimDEFmulti-channel-rand-emb 0.249 ± 0.021 0.262 ± 0.017
deepSimDEFsingle-channel-LSA-emb 0.242 ± 0.019 0.206 ± 0.015 0.197 ± 0.019 0.241 ± 0.016 0.211 ± 0.015 0.195 ± 0.015
deepSimDEFmulti-channel-LSA-emb 0.251 ± 0.013 0.254 ± 0.012

We also conducted the same experiment working with human gene expression

data. As presented in Table 3.7, we observe deepSimDEF outperforms all other gene

function similarity measures when compared against human gene expression data in

terms of Pearson correlation.

5 .4 Correlation with Sequence Similarity

Proteins with similar sequence are usually homologous and thus have a similar func-

tion [176, 38]. For that reason, proteins in a newly sequenced genome are routinely

annotated using the sequences of similar proteins in other genomes.

Every gene pair in our sequence homology data is accompanied by the LRBS and

RRBS scores indicating the level of sequence similarity of their component genes.
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Table 3.7: Pearson’s correlation of deepSimDEF and human gene expression data for
three sub-ontologies compared with other FS measures aggregated by BMA

Semantic
Measure

Excluding IEA Including IEA
BP CC MF BP CC MF

Resnik [184] 0.225 0.373 0.225 0.242 0.368 0.242
Lin [110] 0.217 0.319 0.231 0.212 0.355 0.216
Jiang and Conrath [78] 0.195 0.345 0.186 0.185 0.375 0.201
GraSM [37] 0.255 0.402 0.265 0.237 0.396 0.237
AIC [200] 0.226 0.343 0.212 0.207 0.351 0.215
clusteredGO [45] 0.215 0.346 0.212 0.205 0.336 0.225
simGIC [171] 0.106 0.131 0.122 0.102 0.168 0.134
simDEF [153] 0.307 0.411 0.202 0.336 0.418 0.221
AicInferSentGO [44] 0.312 0.376 0.209 0.346 0.411 0.228
deepSimDEFsingle-channel-rand-emb 0.448 ± 0.028 0.414 ± 0.029 0.333 ± 0.031 0.452 ± 0.025 0.418 ± 0.027 0.343 ± 0.024
deepSimDEFmulti-channel-rand-emb 0.438 ± 0.024 0.434 ± 0.021
deepSimDEFsingle-channel-LSA-emb 0.425 ± 0.021 0.401 ± 0.022 0.319 ± 0.024 0.434 ± 0.027 0.411 ± 0.017 0.321 ± 0.022
deepSimDEFmulti-channel-LSA-emb 0.434 ± 0.017 0.457 ± 0.014

Pesquita et al. [172] noted the relationship between semantically-derived shared in-

formation from Gene Ontology and RRBS is non-linear. Therefore, in our experiment

with sequence data, the results of non-linear Spearman’s correlations were primarily

considered for the evaluation of the FS measures (see Table 3.9 for Pearson’s correla-

tion results).

Table 3.8 shows deepSimDEF outperformed all the existing FS measures in the

correlation task with the yeast sequence homology data (the pretrained single-channel

deepSimDEF improved the correlation results by >8% for RRBS, and >7% for

LRBS). In contrast to deepSimDEF, among the previous FS measures, there ex-

isted no single measure that was superior to all others with respect to all the three

sub-ontologies of BP, CC and MF; additionally, compered to IC-based measures, dis-

tributional definition-based measures consistently worked better. The multi-channel

deepSimDEF improved these FS results even more by at least 3% (>10% and ∼11%

compared to AicInferSentGO for RRBS and LRBS scores, respectively).

In the previous FS measures, MAX and BMA metrics also showed inconsistency

in their correlation results with sequence homology data as depending on the mea-

sure and the sub-ontology of choice one metric could work better than the other.

deepSimDEF architecture design, however, fundamentally alleviates this dependency

on the manually engineered aggregation metrics of such. Additionally, initialization

of the deepSimDEF networks with the pretrained embeddings improved the corre-

lation results with the sequence homology data in RRBS for ∼1%; this increase for

LRBS was ∼2%. Regarding RRBS and LRBS comparison, we noticed that the FS

measures correlated better with RRBS scores in all cases with respect to Spearman’s
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Table 3.8: Spearman’s correlation of deepSimDEF and other FS measures for three
sub-ontologies against yeast sequence homology (RRBS and LRBS) (IEA+)

Semantic
Measure

LRBS RRBS
BP CC MF BP CC MF

Resnik [184] MAX 0.389 0.401 0.342 0.563 0.438 0.432
BMA 0.443 0.409 0.312 0.546 0.415 0.491

Lin [110] MAX 0.391 0.392 0.384 0.483 0.486 0.477
BMA 0.452 0.401 0.362 0.564 0.526 0.531

Jiang and Conrath [78] MAX 0.398 0.383 0.397 0.483 0.483 0.468
BMA 0.452 0.398 0.386 0.557 0.528 0.491

GraSM [37] MAX 0.398 0.392 0.397 0.486 0.489 0.477
BMA 0.458 0.401 0.386 0.579 0.522 0.531

AIC [200] MAX 0.391 0.392 0.384 0.492 0.484 0.473
BMA 0.452 0.409 0.386 0.564 0.526 0.491

clusteredGO [45] MAX 0.392 0.386 0.397 0.483 0.489 0.477
BMA 0.458 0.409 0.362 0.579 0.516 0.529

simGIC [171] 0.415 0.381 0.396 0.554 0.516 0.552
simDEF [153] MAX 0.661 0.628 0.673 0.683 0.641 0.689

BMA 0.682 0.602 0.646 0.693 0.628 0.703
AicInferSentGO [44] MAX 0.663 0.633 0.673 0.676 0.644 0.689

BMA 0.687 0.602 0.651 0.698 0.635 0.701
deepSimDEF single-channel-rand-emb 0.757 ± 0.047 0.701 ± 0.037 0.751 ± 0.049 0.791 ± 0.035 0.713 ± 0.041 0.802 ± 0.041
deepSimDEF multi-channel-rand-emb 0.788 ± 0.034 0.809 ± 0.032
deepSimDEF single-channel-LSA-emb 0.769 ± 0.029 0.719 ± 0.031 0.765 ± 0.036 0.799 ± 0.042 0.724 ± 0.034 0.814 ± 0.035
deepSimDEF multi-channel-LSA-emb 0.806 ± 0.028 0.819 ± 0.026

correlation, and deepSimDEF was not an exception to that.

The Pearson’s correlation results between the FS measures and the sequence ho-

mology data are shown in the Table 3.9.

Table 3.9: Pearson’s correlation of deepSimDEF and other FS measures for three
sub-ontologies against yeast sequence homology (RRBS and LRBS) (IEA+)

Semantic
Measure

LRBS RRBS
BP CC MF BP CC MF

Resnik [184] MAX 0.504 0.547 0.469 0.629 0.568 0.483
BMA 0.558 0.549 0.437 0.615 0.548 0.547

Lin [110] MAX 0.511 0.392 0.506 0.544 0.613 0.527
BMA 0.567 0.545 0.489 0.631 0.655 0.578

Jiang and Conrath [78] MAX 0.517 0.525 0.525 0.548 0.618 0.517
BMA 0.571 0.544 0.507 0.623 0.661 0.544

GraSM [37] MAX 0.518 0.531 0.519 0.546 0.621 0.525
BMA 0.581 0.546 0.515 0.645 0.649 0.587

AIC [200] MAX 0.511 0.534 0.513 0.552 0.613 0.521
BMA 0.573 0.551 0.508 0.631 0.662 0.546

clusteredGO [45] MAX 0.506 0.533 0.523 0.547 0.615 0.525
BMA 0.577 0.556 0.489 0.643 0.646 0.576

simGIC [171] 0.533 0.521 0.516 0.622 0.644 0.606
simDEF [153] MAX 0.778 0.768 0.799 0.751 0.769 0.736

BMA 0.799 0.744 0.772 0.759 0.757 0.749
AicInferSentGO [44] MAX 0.781 0.777 0.799 0.741 0.775 0.736

BMA 0.806 0.742 0.779 0.761 0.768 0.751
deepSimDEF single-channel-rand-emb 0.848 ± 0.043 0.838 ± 0.039 0.871 ± 0.038 0.851 ± 0.037 0.839 ± 0.042 0.848 ± 0.038
deepSimDEF multi-channel-rand-emb 0.883 ± 0.031 0.877 ± 0.029
deepSimDEF single-channel-LSA-emb 0.869 ± 0.026 0.845 ± 0.026 0.877 ± 0.028 0.853 ± 0.031 0.842 ± 0.029 0.851 ± 0.026
deepSimDEF multi-channel-LSA-emb 0.892 ± 0.019 0.879 ± 0.017

5 .5 On the Importance of ‘Highway Layer’

Prior to working with ‘unseen’ genes, a deepSimDEF network itself learns how the

shared information of two ‘known’ genes should be transferred to a higher level repre-

sentation. This learned representation will ideally dictate the degree of FS association
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for all genes with respect to a particular biological task or data for which an assump-

tion of gene FS is made already (e.g., the indication of function similarity/relatedness

of genes that are closely linked to each other in a PPI network, or the association

of homologous genes and their functionality). Even though this aggregation of the

shared information can be learned by a fully-connected layer, we suspected a High-

way network (described in Section Method, Subsection Highway Layer) could do this

task more effectively due to its gating mechanism. The experiments on the validation

and test split genes supported this belief. As we demonstrate in Table 3.10, regard-

ing the PPI experiment, we achieved an increase of >1% when a Highway network

was designed in the deepSimDEF architecture; we experienced the same range of

improvement when we worked with the gene-expression and sequence homology data.

Table 3.10: F1-scores for deepSimDEF with a highway network compared to the
deepSimDEF with a fully-connected layer in the task of PPI prediction

Network Architecture +
Aggregation Layer

Excluding IEA (%) Including IEA (%)
BP CC MF BP CC MF

deepSimDEF sgl-ch Fully connected 84.72 81.23 79.78 84.93 81.42 80.26
deepSimDEF mlt-ch Fully connected 85.94 86.41
deepSimDEF sgl-ch Highway network 85.42 82.41 80.78 85.84 82.77 81.49
deepSimDEF mlt-ch Highway network 87.37 87.69

5 .6 ‘Negative Control’ Experiments

To make sure correct annotations of gene products played an important role in the

understanding of their functionality, and also a valid deepSimDEF model training,

we conducted several negative control experiments by randomly assigning GO term

annotations to the genes. For our random annotations, we considered several scenarios

to be completely certain of the importance of correct GO annotations in the whole

process. As presented in Figure 3.4, first, we fully stripped genes of their original

GO term annotations and assigned fully random annotations to them and conducted

experiments listed above, and then, slowly injected true annotations to the data to

observe how the results changed by having more true GO term annotations assigned.

We noticed as we added more true annotations to the training/test data the results

improved. For example, the results of PPI experiments were ∼50% for the F1-score

when fully random annotations were given to the genes; once we started to inject true
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annotations to the data, those results began to increase. This observation was true

for the correlation results of the gene expression and sequence homology experiments

as well.

Figure 3.4: Negative control experiment to verify the importance of correct GO term
annotations for a reliable model training (IEA+).
In the experiment we first stripped the examined gene from any correct GO term
annotations and assigned completely random GO term annotations to them and then
trained and tested the model based on the those GO term annotations. Then, we
gradually removed random annotations and replaced them with the original and the
correct GO term annotations to see the effect of correct annotations for model training
and the prediction of PPIs. Having the embedding layers of the networks initialized
with pretrained GO-term embeddings and the rest of weights randomly assigned, we
repeated this experiment 10 times to find the mean and the variance of the F1-scores
in each consideration.

6 Discussion

Besides automatically learning how to aggregate the shared information of the two

compared genes (given their GO term annotations) through the means of a Highway

Layer, another innovative aspect regarding deepSimDEF architecture is the system-

atic idea of using GO annotations of all three sub-ontologies at the same time. We
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believe the absence of this notion in the other FS measures mainly stems from their

dependence on the topological structure of Gene Ontology and the lack of certainty

on how this basically distinguished information should be combined – which largely

forced the existing FS measure to consider each sub-ontology separately and then of-

fer the best one at the end. However, the multi-channel deepSimDEF network makes

use of all the annotations concurrently. To this end, the multi-channel architecture

introduces parallel biological information into a deepSimDEF network with multi-

ple types of GO-term embeddings aiming to combine this distinguished yet entwined

information, and subsequently, to further improve the performance of a biological

application.

One important aspect regarding the hyper-parameter setting of the deepSimDEF

networks was that for all the experiments, one set of hyper-parameters always helped

to get the optimal results for the networks (multi- or single-channel). For example,

if we changed the embeddings size in one experiment and observed a decline or an

improvement in the results, for other experiments, we observed the same trend in the

results applying the same changes to their networks. This helped the structure of

the final model stay the same and not change from one experiment to another, which

can be very beneficial to the future biological applications meant to be studied and

investigated later.

7 Conclusion

deepSimDEF, a novel deep neural-based model for gene function prediction, results

in a valuable low-dimensional distributed representation of GO terms and gene prod-

ucts (e.g., RNAs and proteins), also known as embeddings, and introduces a power-

ful, flexible, easily transferable and adaptable deep neural architectures that a wide

range of problems in proteomics and genomics can benefit from. When applied to

yeast database, our single-channel and multi-channel models outperformed the best-

performing FS measures in the tasks of PPI prediction, correlation with gene expres-

sion as well as correlation with sequence homology data by gaining a large margin of

improvement.

One important future work direction regarding deepSimDEF is extrinsic consid-

eration of what it offers to address biological tasks to which FS and SS measures
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have been applied already. These applications run the gamut from microRNA func-

tion analysis [149, 95, 236] and coexpression network construction [222, 70, 69, 39]

to drug-discovery [201, 107, 112] and cancer treatment studies [191, 139, 108]. Some

studies also intrinsically evaluated their FS measure against Enzyme Commission

(EC) [150, 248] and protein family (Pfam) similarities [15]. Moreover, further investi-

gation of miss-classified PPIs will help to improve deepSimDEf’s prediction of positive

interactions. deepSimDEF needs to be tested on the other species other than yeast as

well. Also, more recent deep neural techniques may help to improve the quality of the

pretrained GO-term embeddings. In spite of what we explained above, in an in-depth

study, the prediction result of a deepSimDEF FS network can be seen secondary to

the production of the GO-term and gene-product embeddings as, similar to what was

suggested in [8, 128], they can help to acquire further insights into GO terms as well

as gene products from the hidden (arithmetic) relationships among their embeddings.

Also, adding an attention mechanism [237, 55] to the network architecture might fur-

ther improve the FS results. Last but not least, in the context of transfer learning,

more studies are needed to be done to discover how the learned information from a

biological task for an organism can be transferred to another organism in an attempt

to put their networks in a more proper state prior to training.



Chapter 4

Part III: Natural Language Concept Embedding for Word

Sense Disambiguation

A single Bidirectional Long Short-Term Memory Network

for Word Sense Disambiguation of Natural Text

1 Summary

Due to recent technical and scientific advances, we have a wealth of information hid-

den in unstructured text data such as offline/online narratives, research articles, and

clinical reports. To mine these data properly, attributable to their innate ambiguity,

a Word Sense Disambiguation (WSD) algorithm can avoid numbers of difficulties in

Natural Language Processing (NLP) pipeline. However, considering a large number

of ambiguous words in one language or technical domain, we may encounter limiting

constraints for proper deployment of existing WSD models. This chapter attempts

to address the problem of one-classifier-per-one-word WSD algorithms by proposing

a single Bidirectional Long Short-Term Memory (BLSTM) network which through

the consideration of senses and context sequences works on all ambiguous words col-

lectively. Evaluated on SensEval-3 benchmark, we show the result of our model is

comparable with top-performing WSD algorithms. We also discuss how applying ad-

ditional modifications alleviates the model fault (i.e., consideration of two embedding

spaces) and the need for more training data.

Publication – Original paper authored by Pesaranghader et al. [157] is available in:

https://doi.org/10.1007/978-3-319-89656-4˙8 (In Proceedings of Canadian AI confer-

ence, Toronto, 2018)
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2 Introduction

Word Sense Disambiguation (WSD) is an important problem in Natural Language

Processing (NLP), both in its own right and as a stepping stone to other advanced

tasks in the NLP pipeline, applications such as machine translation [215] and question

answering [72]. WSD specifically deals with identifying the correct sense of a word,

among a set of given candidate senses for that word, when it is presented in a brief

narrative (surrounding text) which is generally referred to as context. Consider the

ambiguous word ‘cold ’. In the sentence “He started to give me a cold shoulder after

that experiment”, the possible senses for cold can be cold temperature (S1), a cold

sensation (S2), common cold (S3), or a negative emotional reaction (S4). Therefore,

the ambiguous word cold is specified along with the sense set {S1, S2, S3, S4} and

our goal is to identify the correct sense S4 (as the closest meaning) for this specific

occurrence of cold after considering - the semantic and the syntactic information of -

its context.

In this effort, we develop our supervised WSD model that leverages a Bidirec-

tional Long Short-Term Memory (BLSTM) network. This network works with neu-

ral sense vectors (i.e., sense embeddings), which are learned during model train-

ing, and employs neural word vectors (i.e. word embeddings), which are learned

through an unsupervised deep learning approach called GloVe (Global Vectors for

word representation)[151] for the context words. By evaluating our one-model-fits-all

WSD network over the public gold standard dataset of SensEval-3 [126], we demon-

strate that the accuracy of our model in terms of F-measure is comparable with the

state-of-the-art WSD algorithms’.

We outline the organization of the rest of the chapter as follows. In Section 3 , we

briefly explore earlier efforts in WSD and discuss recent approaches that incorporate

deep neural networks and word embeddings. Our main model that employs BLSTM

with the sense and word embeddings is detailed in Section 4 . We then present our

experiments and results in Section 5 supported by a discussion on how to avoid some

drawbacks of the current model in order to achieve higher accuracies and demand less

number of training data which is desirable. Finally, in Section 7 , we conclude with

some future research directions for the construction of sense embeddings as well as

applications of such model in other domains such as biomedicine.
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3 Background and Related Work

Generally, there are three categories of WSD algorithms: supervised, knowledge-

based, and unsupervised. Supervised algorithms consist of automatically inducing

classification models or rules from labeled examples [249]. Knowledge-based WSD

approaches are dependent on manually created lexical resources such as WordNet

[129] and the Unified Medical Language System1 (UMLS) [158]. Unsupervised algo-

rithms may employ topic modeling-based methods to disambiguate when the senses

are known ahead of time [89]. For a thorough survey of WSD algorithms refer to

Navigli [134].

3 .1 Neural Embeddings for WSD

In the past few years, there has been an increasing interest in training neural word

embeddings from large unlabeled corpora using neural networks [33][127]. Word em-

beddings are typically represented as a dense real-valued low dimensional matrix W

(i.e. a lookup table) of size d×v, where d is the predefined embedding dimension and v

is the vocabulary size. Each column of the matrix is an embedding vector associated

with a word in the vocabulary and each row of the matrix represents a latent fea-

ture. These vectors can subsequently be used to initialize the input layer of a neural

network or some other NLP model. GloVe [151] is one of the existing unsupervised

learning algorithms for obtaining these vector representations of the words in which

training is performed on aggregated global word-word co-occurrence statistics from a

corpus.

Besides word embeddings, recently, computation of sense embeddings has gained

the attention of numerous studies as well. For example, Chen et al. [24] adapted

neural word embeddings to compute different sense embeddings (of the same word)

and showed competitive performance on the SemEval-2007 data [136].

3 .2 Bidirectional LSTM

Long Short-Term Memory (LSTM), introduced by Hochreiter and Schmidhuber (1997)

[67], is a gated recurrent neural network (RNN) architecture that has been designed to

1https://www.nlm.nih.gov/research/umls/
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address the vanishing and exploding gradient problems of conventional RNNs. Unlike

feedforward neural networks, RNNs have cyclic connections making them powerful

for modeling sequences. A Bidirectional LSTM is made up of two reversed unidirec-

tional LSTMs [60, 79]. For WSD this means we are able to encode information of

both preceding and succeeding words within context of an ambiguous word, which is

necessary to correctly classify its sense.

4 One Single BLSTM Network for WSD

Given a document and the position of a target word, our model computes a probability

distribution over possible senses related to that word. The architecture of our model,

depicted in Figure 4.1, consist of 6 layers which are a sigmoid layer (at the top), a

fully-connected layer, a concatenation layer, a BLSTM layer, a cosine layer, and a

sense and word embeddings layer (on the bottom).

In contrast to other supervised neural WSD networks in which generally a softmax

layer - with a cross entropy or hinge loss - is parameterized by the context words and

selects the corresponding weight matrix and bias vector for each ambiguous word’s

senses [86][208], our network shares parameters over all words’ senses. While remain-

ing computationally efficient, this structure aims to encode statistical information

across different words enabling the network to select the true sense (or even a proper

word) in a blank space within a context.

Due to the replacement of their softmax layers with a sigmoid layer in our network,

we need to impose a modification in the input of the model. For this purpose, not only

the contextual features are going to make the input of the network, but also, the sense

for which we are interested to find out whether that given context makes sense or not

(no pun intended) would be provided to the network. Next, the context words would

be transferred to a sequence of word embeddings while the sense would be represented

as a sense embedding (the shaded embeddings in Figure 4.1). For a set of candidate

senses (i.e., {s1, ..., sn}) for an ambiguous term, after computing cosine similarities

of each sense embedding with the word embeddings of the context words, we expect

the sequence result of similarities between the true sense and the surrounding context

communicate a pattern-like information that can be encoded through our BLSTM

network; for the incorrect senses this premise does not hold. Several WSD studies
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already incorporated the idea of sense-context cosine similarities in their models [123].

4 .1 Model Definition

For one instance (or one document), the input of the network consists of a sense and

a list of context words (left and right) which paired together form a list of context

components. For the context D which encompasses the ambiguous term T, that

takes the set of predefined candidate senses {s1, ..., sn}, the input for the sense si for

which we are interested in to find out whether the context is a proper match will be

determined by Equation (4 .1). Then, this input is copied (next) to |D| positions of

the context to form the first pair of the context components.

li = W l
s · vs(si), i ∈ {1, ..., n}. (4 .1)

Here, vs(si) is the one-hot representation of the sense corresponding to si ∈
{s1, ..., sn}. A one-hot representation is a vector with dimension Vs consisting of

|Vs|−1 zeros and a single one which index indicates the sense. The Vs size is equal

to the number of all senses in the language (or the domain of interest). Equation

(4 .1) will have the effect of picking the column (i.e. sense embeddings) from W l
s

corresponding to that sense. The W l
s (stored in the sense embeddings lookup table)

is initialized randomly since no sense embedding is computed a priori.

Regarding the context word inputs that form the second pairs of context compo-

nents, at position m in the same context D the input is determined by:

xm = W x
w · vw(wm), m ∈ {−|D|/2, ...,−2,−1, 1, 2, ..., |D|/2}. (4 .2)

Here, vw(wm) is the one-hot representation of the word corresponding to wm ∈ D.

Similar to a sense one-hot representation (Vs), this one-hot representation is a vector

with dimension Vw consisting of |Vw|−1 zeros and a single one which index indicates

the word in the context. The Vw size is equal to the number of words in the lan-

guage (or the domain of interest). Equation (4 .2) will choose the column (i.e. word

embeddings) from W x
w corresponding to that word. The W x

w (stored in the word

embeddings lookup table) can be initialized using pre-trained word embeddings; in
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this work, GloVe vectors are used.

On the other hand, the output of the network that is examining sense si is

ŷsi = σ(Wout · hcl + bout), si ∈ {s1, ..., sn} (4 .3)

where Wout ∈ R1×50 and bout ∈ R are the weights and the bias of the classification

layer (sigmoid), and hcl is the result of the merge layer (concatenation).

When we train the network, for an instance with the correct sense and the given

context as inputs, ŷsi is set to be 1.0, and for incorrect senses they are set to be

0.0. During testing, however, among all the senses, the output of the network for a

sense that gives the highest value of ŷsi will be considered as the true sense of the

ambiguous term, in other words, the correct sense would be:

arg max
si
{ŷs1 , ..., ŷsn}, si ∈ {s1, ..., sn} . (4 .4)

By applying softmax to the result of estimated classification values, {ŷs1 , ..., ŷsn}, we

can show them as probabilities; this facilitates interpretation of the results.

Further, the hidden layer hcl is computed as

hcl = ReLU(Wh · [hL
C−1

;hR
C+1

] + bh) (4 .5)

where ReLU means rectified linear unit; [hL
C−1

;hR
C+1

] is the concatenated outputs of

the right and left traversing LSTMs of the BLSTM when the last context components

are met. Wh and bh are the weights and bias for the hidden layer.

4 .2 Validation for Selection of Hyper-parameters

SensEval-3 data [126] on which the network is evaluated, consist of separate training

and test samples. In order to find hyper-parameters of the network 5% of the training

samples were used for the validation in advance. Once the hyper-parameters are

selected, the whole network is trained on all training samples prior to testing. As

to the loss function employed for the network, even though is it common to use

(binary) cross entropy loss function when the last unit is a sigmoidal classification, we
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observed that mean square error led to better results for the final argmax classification

(Equation (4 .4)) that we used. Regarding parameter optimization, RMSprop [64] is

employed. Also, all weights including embeddings are updated during training.

4 .3 Dropout and Dropword

Dropout [202] is a regularization technique for neural network models where randomly

selected neurons are ignored during training. This means that their contribution to

the activation of downstream neurons is temporally removed on the forward pass, and

any weight updates are not applied to the neuron on the backward pass. The effect

is that the network becomes less sensitive to the specific weights of neurons, resulting

in better generalization, and a network that is less likely to overfit the training data.

In our network, dropout is applied to the embeddings as well as the outputs of the

merge and fully-connected layers.

Following the dropout logic, dropword [76] is the word level generalizations of it,

but in word dropout the word is set to zero while in dropword it is replaced with a

specific tag. The tag is subsequently treated just like one word in the vocabulary.

The motivation for doing dropword and word dropout is to decrease the dependency

on individual words in the training context. Since by replacing word dropout with

dropword we observed no change in the results, only word dropout was applied to the

sequence of context words during training.

5 Experiments

In SensEval-3 data (lexical sample task2), the sense inventory used for nouns and

adjectives is WordNet 1.7.1 [129] whereas verbs are annotated with senses from

Wordsmyth3. Table 4.1 presents the number of words under each part of speech,

and the average number of senses for each class.

As stated, training and test data are supplied as the instances of this task; and

the task consist of disambiguating one indicated word within a context.

2http://www.senseval.org/senseval3
3http://www.wordsmyth.net/
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Table 4.1: Summary of senses in SensEval-3

Class Number of words Average senses

Nouns 20 5.8
Verbs 32 6.31
Adjectives 5 10.2

Total 57 6.47

Table 4.2: Hyper-parameter used for the experiments and the ranges that were
searched during tuning. ‘-’ indicates no tuning was performed on that parameter.

Hyper-prameter Range searched Values used

Context size [10, 100] [Left, Right] [15 Left, 15 Right]
Embedding size {50, 100, 200, 300} 100
BLSTM hidden layer size [50, 300] 2*50
Dropout on sense/word embeddings [0, 50%] 20%
Dropout on LSTM outputs [0, 70%] 50%
Dropout on fully-connected layer [0, 70%] 50%
Word dropout [0, 50%] 20%
Sense embedding initialization - Random ∈ unif(-0.1, 0.1)
Word embedding initialization - GloVe4 (uncased)

5 .1 Experimental Settings

The hyper-parameters that were determined during the validation is presented in

Table 5.6. The preprocessing of the data was conducted by lower-casing all the words

in the documents and removing numbers. This results in a vocabulary size of |V | =

29044. Words not present in the training set are considered unknown during testing.

Also, in order to have fixed-size contexts around the ambiguous words, the padding

and truncating are applied to them whenever needed.

5 .2 Results

Between-all-models comparisons - When SensEval-3 task was launched 47 submis-

sions (supervised and unsupervised algorithms) were received addressing this task.

Afterwards, some other papers tried to work on this data and reported their results in

separate articles as well. We compare the result of our model with the top-performing

4Wikipedia and Gigaword (400K vocab): https://nlp.stanford.edu/projects/glove/
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Table 4.3: F-measure results for SensEval-3 (English lexical samples)

Rank Method F-measure(%)

1 Multi-classifier BLSTM [86] 73.4
1 IMS+adapted CW [208] 73.4
2 htsa3 [61] 72.9
3 IRST-Kernels [205] 72.6
4 Our Single-classifier BLSTMleast−square−error−loss 72.5
5 Our Single-classifier BLSTMcross−entropy−loss 72.4
6 nusels [102] 72.4

35 IRST-Ties 58.9
37 R2D2 57.2
39 NRC-Coarse 48.5
40 NRC-Coarse2 48.4
42 DLSI-UA-LS-SU 44.4

and low-performing algorithms 5 (supervised). We show our single model sits among

the 5 top-performing algorithms, considering that in other algorithms for each am-

biguous word one separate classifier is trained (i.e. in the same number of ambiguous

words in a language there have to be classifiers; which means 57 classifiers for this

specific task). Table 5.7 shows the results of the top-performing and low-performing

supervised algorithms.

The first two algorithms represent the state-of-the-art models of supervised WSD

when evaluated on SensEval-3. Multi-classifier BLSTM [86] consists of deep neural

networks which make use of pre-trained word embeddings. While the lower layers of

these networks are shared, upper layers of each network are responsible to individu-

ally classify the ambiguous that word the network is associated with. IMS+adapted

CW [208] is another WSD model that considers deep neural networks and also uses

pre-trained word embeddings as inputs. In contrast to Multi-classifier BLSTM, this

model relies on features such as POS tags, collocations, and surrounding words to

achieve their result. For these two models, softmax constitutes the output layers of

all networks. htsa3 [61] was the winner of the SensEval-3 lexical sample. It is a Naive

Bayes system applied mainly to raw words, lemmas, and POS tags with correction

of the a-priori frequencies. IRST-Kernels [205] utilizes kernel methods for pattern

5low-performing algorithms are listed for a better comparison among the supervised WSD models
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Table 4.4: WSD single-classifier BLSTM with other pieces or hyper-parameters

Network (Our Single-classifier) F-measure(%)

Full network in Figure 4.1 72.5

BLSTM with reverse directions in Figure 4.1 68.9
BLSTM with a shuffled context 67.3
Fully-connected layers instead of BLSTM layer 70.2

BLSTM without GloVe for the context (all weights are random) 65.6
BLSTM without word dropout 71.1
BLSTM with a larger context size [25 left, 25 right] 71.4

abstraction, paradigmatic and syntagmatic information and unsupervised term prox-

imity on British National Corpus (BNC), in SVM classifiers. Likewise, nusels [102]

makes use of SVM classifiers with a combination of knowledge sources (part-of-speech

of neighboring words, words in context, local collocations, syntactic relations. The

second part of the table lists the low-performing supervised algorithms [126]. Consid-

ering their ranking scores we see that there are unsupervised methods that outperform

these supervised algorithms.

Within-our-model comparisons - Besides several internal experiments to examine the

importance of some hyper-parameters to our network, we investigated if the sequen-

tial follow of cosine similarities computed between a true sense and its preceding and

succeeding context words carries a pattern-like information that can be encoded with

BLSTM. Table 4.4 presents the results of these experiments.

The first row shows the best result of the network that we described above (and

depicted in Figure 4.1). Each of the other rows shows one change that we applied to

the network to see the behavior of the network in terms of F-measure. In the middle

part, we are specifically concerned about the importance of the presence of a BLSTM

layer in our network. So, we introduced some fundamental changes in the input or

in the structure of the network. Generally, it is expected that the cosine similarities

of closer words (in the context) to the true sense be larger than the incorrect senses’

[123]; however, if a series of cosine similarities can be encoded through an LSTM

(or BLSTM) network should be experimented. We observe if reverse the sequential

follow of information into our Bidirectional LSTM, we shuffle the order of the context
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words, or even replace our Bidirectional LSTMs with two different fully-connected

networks of the same size 50 (the size of the LSTMs outputs), the achieved results

were notably less than 72.5%.

In the third section of the table, we report our changes to the hyper-parameters.

Specifically, we see the importance of using GloVe as pre-trained word embeddings,

how word dropout improves generalization, and how context size plays an important

role in the final classification result (showing one of our experiments).

6 Discussion

From the results of Table 4.3, we notice our single WSD network, despite eliminating

the problem of having a large number of WSD classifiers, still falls short when is

compared with the state-of-the-art WSD algorithms. Based on our intuition and

supported by some of our preliminary experiments, this deficiency stems from an

important factor in our BLSTM network. Since no sense embedding is made publicly

available for use, the sense embeddings are initialized randomly; yet, word embeddings

are initialized by pre-trained GloVe vectors in order to benefit from the semantic

and syntactic properties of the context words conveyed by these embeddings. That

is to say, the separate spaces that the sense embeddings and the (context) word

embeddings come from enforces some delay for the alignment of these spaces which

in turn demands more training data. Furthermore, this early misalignment does not

allow the BLSTM to fully take advantage of larger context sizes which can be helpful.

Our first attempt to deal with such problem was to pre-train the sense embeddings

by some techniques - such as taking the average of the GloVe embeddings of the

(informative) definition content words of senses, or taking the average of the GloVe

embeddings of the (informative) context words in their training samples - did not give

us a better result than our random initialization. Our preliminary experiments though

in which we replaced all GloVe embeddings in the network with sense embeddings

(using a method proposed by Chen et al. [24]), showed considerable improvements

in the results of some ambiguous words. That means both senses and context words

(while they can be ambiguous by themselves) come from one vector space. In other

words, the context would also be represented by the possible senses that its words

can take. This idea not only can help to improve the results of the current model, it
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can also avoid the need for a large amount of training data since senses can be seen

in both places, center and context, to be trained.

7 Conclusion

In contrast to common one-classifier-per-each-word supervised WSD algorithms, we

developed our single network of BLSTM that is able to effectively exploit word orders

and achieve comparable results with the best-performing supervised algorithms. This

single WSD BLSTM network is language and domain independent and can be applied

to resource-poor languages (or domains) as well. As an ongoing project, we also

provided a direction which can lead us to the improvement of the results of the

current network using pre-trained sense embeddings.

For future work, besides following the discussed direction in order to resolve the

inadequacy of the network regarding having two non-overlapping vector spaces of

the embeddings; this in turn would lead to less number of labelled data needed for

trainingn. We plan to examine the network on technical domains such as biomedicine

as well. In this case, our model will be evaluated on MSH WSD dataset6 prepared

by National Library of Medicine7 (NLM). Also, construction of sense embeddings

using (extended) definitions of senses [153][163] can be tested. Moreover, considering

that for many senses we have at least one (lexically) unambiguous word represent-

ing that sense, we also aim to experiment with unsupervised (pre-)training of our

network which benefits form quarry management by which more training data will

be automatically collected from the web. For future work, the current model can be

evaluated against extrinsic tasks such as text symmetrization or more specific appli-

cations serving as multi-term topics focused crawling [166, 165] in online/streaming

environments [168, 167, 169].

6https://wsd.nlm.nih.gov/collaboration.shtml
7https://www.nlm.nih.gov/



Chapter 5

deepBioWSD: a one-size-fits-all network for an effective deep

neural Word Sense Disambiguation of biomedical text data

1 Summary

Objective – In biomedicine, there is a wealth of information hidden in unstructured

narratives such as research articles and clinical reports. To exploit these data prop-

erly, a word sense disambiguation (WSD) algorithm prevents downstream difficulties

in the natural language processing applications pipeline. Supervised WSD algorithms

largely outperform un- or semisupervised and knowledge-based methods; however,

they train 1 separate classifier for each ambiguous term, necessitating a large num-

ber of expert-labeled training data, an unattainable goal in medical informatics. To

alleviate this need, a single model that shares statistical strength across all instances

and scales well with the vocabulary size is desirable.

Materials and Methods – Built on recent advances in deep learning, our deepBioWSD

model leverages 1 single bidirectional long short-term memory network that makes

sense prediction for any ambiguous term. In the model, first, the Unified Medical

Language System sense embeddings will be computed using their text definitions;

and then, after initializing the network with these embeddings, it will be trained on

all (available) training data collectively. This method also considers a novel technique

for automatic collection of training data from PubMed to (pre)train the network in

an unsupervised manner.

Results – We use the MSH WSD dataset to compare WSD algorithms, with macro

and micro accuracies employed as evaluation metrics. deepBioWSD outperforms ex-

isting models in biomedical text WSD by achieving the state-of-the-art performance

of 96.82% for macro accuracy.

Conclusions – Apart from the disambiguation improvement and unsupervised train-

ing, deepBioWSD depends on considerably smaller amount of expert-labelled data as

84
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it learns the target and the context terms jointly. These merit deepBioWSD to be

conveniently deployable in real-time biomedical applications.

Publication – Original paper authored by Pesaranghader et al. [154] is available in:

https://doi.org/10.1093/jamia/ocy189 (Journal of Oxford JAMIA)

2 Introduction

With recent advances in biomedicine, we see a massive amount of biomedical text

data being generated every day. To gain knowledge from these data, developing nat-

ural language processing (NLP) tools that mine them accurately within a reasonable

time is crucially important. NLP components that include named entity recognition

programs[63] syntactic parsers [56], and relation extractors [100, 118] build the foun-

dation of many high-level biomedical information extraction and knowledge discovery

applications [97, 142, 101]. Also, it is shown that the biomedical text data such as

scientific articles [19], clinical narratives [87], and health-related social media posts

[188], abound with ambiguous terms (hereafter, instead of saying ambiguous word

we use ambiguous term because a [biomedical] conceptual unit that we try to dis-

ambiguate can be represented by a series of words; as in malignant B-cell lymphoma

or benign B-cell lymphoma for the target ambiguous term B-cell lymphoma). In the

lowest level, surrounded by this innate ambiguity, all other components and the full

biomedical application will suffer if it is not resolved properly.

A word sense disambiguation (WSD) algorithm attempts to predict the correct

sense of a term within a context given a set of candidates. For example, in the

sentence “Ca intakes in the United States and Canada appear satisfactory among

young adults,” the sense set for Ca consists of Canada (s1), California (s2), cal-

cium (s3), and cornu ammonis (s4) and the goal is to predict the correct sense s3

for this specific occurrence of Ca. It is shown that this automatically identifying

the intended sense of ambiguous words improves the performance of clinical and

biomedical applications such as medical coding and indexing,[178, 130] detection of

adverse drug event,[219] automatic medical reporting,[32, 223] and other secondary

uses of data such as information retrieval and extraction,[138] and question-answering

systems.[185] These capabilities are becoming essential tasks due to the growing

https://doi.org/10.1093/jamia/ocy189
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amount of information available to researchers, the transition of healthcare docu-

mentation and patient-practitioner interaction toward electronic health records and

automatic expert systems, and the push for quality and efficiency in health care.

Supervised machine learning WSD algorithms typically build one separate clas-

sifier for each ambiguous term, which will be trained solely on the instances of that

term. That is, to train an accurate WSD model, a large amount of annotated instances

are needed, the curation of which will be expensive and labor-intensive particularly

in health informatics [175, 243]. Recent studies in the biomedical domain incorporate

expert-involved active learning techniques to accelerate the labeling process of this

training data [225, 224]. Nevertheless, considering the multiclassifier design of the

traditional supervised WSD models, the real-world implementation of them in the

domain is still impracticable.

We introduce a one-size-fits-all deepBioWSD architecture for disambiguation of

biomedical text data, a deep learning-based model that unifies all disambiguation

classifiers into 1 single network. In a supervised manner, this network will be trained

on all existing instances of the ambiguous terms as 1 group of training data in which

sense-context pair and si ∈ {1.0, 0.0} constitute the input and the output, respec-

tively. While the network encodes the shared information among all instances, for a

given training-instance, it learns the senses of the unlabeled terms in the context and

the sense of the labeled center term at the same time. To this end, our architecture

employs a bidirectional long short-term memory network (BLSTM), and works with

neural sense embeddings, which can be pretrained.

3 Supervised WSD in Biomedicine

Jimeno-Yepes et al. [81] prepared the National Library of Medicine’s MSH WSD

dataset in 2011 with naive Bayes accuracy of 93.84% (NB [these abbreviations are

used during evaluation of the WSD algorithms]). Later, traditional discriminative

models with rigorous linguistic and biomedical specific features were used for WSD

evaluation [124, 14]. To avoid an intense feature engineering, recently, the state-

of-the-art accuracy of 95.97% was achieved by Jimeno-Yepes [239] using unigrams

and word embeddings with support vector machines (SVMYepes); they also reported

the accuracy of 94.87% for their long short-term memory networks (LSTMs). In
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another supervised model, Antunes and Matos [5] used bag-of-words as local features

and word embeddings as global features and reported accuracy of 95.6% when SVM

classifiers were employed (SVMAnt-Mat). To eliminate an extreme need for extensive

amount of annotated data to train classifier of each term, Sabbir et al. [187] recently

developed a knowledge-based model at the cost of accuracy (92.24%, KN). In another

recent knowledge-based study, Duque et al. [50] reported accuracy of 71.52% on MSH

WSD for their system called Bio-Graph that employs a PageRank algorithm to work

with occurrence graphs built from MEDLINE abstract to address WSD (Bio-Graph).

Moreover, MetaMap [7] is a highly configurable program developed at the National

Library of Medicine (NLM) to map biomedical text to the UMLS Metathesaurus

or, equivalently, to discover Metathesaurus concepts referred to in text. MetaMap

for WSD uses a knowledge-intensive approach based on symbolic, natural-language

processing (NLP) and computational-linguistic techniques.

4 Neural Embeddings for WSD

With recent interests in training neural word embeddings from large raw corpora

[33, 127, 151], several studies included pretrained word embeddings in their WSD

models, some of which were concerned with biomedical text [74, 144, 86, 157]. Lately,

computation of sense embeddings has gained the attention of researchers as well where

their importance in the WSD tasks has been investigated [12, 148, 24]; however, the

mapping of these hardly interpretable inducted sense embeddings to a sense inventory

(e.g., the Unified Medical Language System [UMLS]) has been the main bottleneck

for their wider employment in WSD systems [16]. In the deepBioWSD model, first,

we build our sense embeddings using the UMLS text definition of senses; then, these

embeddings initialize our BLSTM network before training.

5 Bidirectional LSTM

LSTMs address the vanishing gradient problem in RNNs by incorporating gating

functions into their state dynamics [67] (see Appendix A). Standard Recurrent Neu-

ral Networks (RNNs) and LSTMs, however, have restrictions as the future input

information cannot be reached from the current state, so, a Bidirectional LSTM fuses
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1 forward and 1 backward LSTM [60]. In WSD, this means we are able to encode the

information of both preceding and succeeding words with respect to a pivotal ambigu-

ous term. Kgebck and Salomonsson [86] proposed a partially shared multiclassifier

WSD model with BLSTMs that employed word embeddings (BLSTMsKg-Sal). In our

previous work which we described in Chapter 4, we developed a single-classifier WSD

model with just 1 BLSTM network (BLSTMPes-etal) [157]; this model, however, uses

2 separate word and sense spaces for the context and center words, which caused

inconsistency and worse performance. As we will see, the deepBioWSD network is

only dependent on sense space for both center and context terms, an architectural

improvement over BLSTMPes-etal network for better sense prediction, faster training,

and less dependency on expert-labeled data. Other existing BLSTM-based WSD

algorithms are Seq2Seq-inspired models, which typically underperform conventional

supervised WSD models [207, 181, 1].

6 Zero-shot Learning

Zero-shot learning (ZSL) aims at predicting labels for instances that belong to classes

that were not directly seen during training [2, 186]. The underlying secret ensuring

the success of ZSL is to find an intermediate semantic representation to transfer the

knowledge learned from seen classes to unseen ones [244]. The scalability of the model

is of utmost importance since a large amount of unlabeled data is generally present and

can be received by interaction with the environment [91], which is the case in medical

informatics. We show deepBioWSD with a unitary and uniform network architecture

that it offers benefits from ZSL as ambiguous terms in the context would be trained

indirectly at the time of direct training on another ambiguous term’s labelled instances

(leading to need for less amount of training instances); that also, in turn, prevents the

“cold start” problem that exists in other supervised WSD algorithms. Regarding cold

start problem, when a model cannot draw any inferences as it has not yet gathered

sufficient information related to a subject matter or application; hence, training of

the model from scratch with sufficient amount of labelled data seems inevitable.
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7 Experimental Data

7 .1 Unified Medical Language System

The UMLS (https://www.nlm.nih.gov/research/umls/) is a terminology integration

system that contains Metathesaurus and SPECIALIST Lexicon. The Metathesaurus

holds ∼3.4 million biomedical and clinical concepts (hereafter, we use concept and

sense [of a term] interchangeably) by maintaining their hierarchical relationships.

Each concept has a unique identifier called CUI (Concept Unique Identifier), a set

of representative terms, and a text definition. The Metathesaurus provided us with

the sense sets of the ambiguous terms. The SPECIALIST Lexicon resource contains

information about common English vocabulary and biomedical terms by offering tools

for language processing. We used its programs to demarcate terms in the contexts;

in our early example, the United States is an unambiguous term (CUI: C0041703)

consisting of 3 words, and satisfactory is a single-word ambiguous term (C0205410,

C1547307). The latest UMLS release 2018AA was used in the study. This release

covers >83 000 ambiguous representative terms.

7 .2 MEDLINE Abstracts

MEDLINE includes over 20 million citations of life sciences and biomedical articles

from 1966 to the present. Combined with the UMLS concept definitions, we em-

ployed MEDLINE 2013 bigram-list (https://mbr.nlm.nih.gov/Download/) to create

our sense embeddings.

7 .3 Validation Datasets

We employed the MSH WSD dataset (https://wsd.nlm.nih.gov/collaboration.shtml)

for the evaluation of WSD algorithms [81]. This dataset provides 37,888 instances for

203 ambiguous terms (including abbreviations) that take 25 senses (∼100 instances

per each sense are provided). Prepared from MEDLINE, every instance of a tar-

get ambiguous term is manually annotated with a CUI within the sense set of that

term. For example, an instance of Ca is labeled with either C0006823 (Canada),

C0006675 (California), C0006754 (calcium), or C3887642 (cornu ammonis); while

every instance of the target term lymphogranulomatosis takes the sense C0036202

https://www.nlm.nih.gov/research/umls/
https://mbr.nlm.nih.gov/Download/
https://wsd.nlm.nih.gov/collaboration.shtml
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(benign lymphogranulomatosis) or C0019829 (malignant lymphogranulomatosis).

8 Materials and Methods

8 .1 Pretraining of Sense Embeddings

Inspired by studies for (high-dimensional) distributed representation of biomedical

concepts [115, 153, 162], and low-dimensional vector representation of words [105, 11],

we pretrained UMLS sense embeddings in 6 steps as depicted in Figure 5.1. In

essence, the second-order computation of vector representation of concepts prevents

the issue of sparsity (of word features) in the first-order vector representation of their

definitions, pointwise mutual information statistically defines the degree of relevance

between each biomedical concept and its (second-order) word features, and latent

semantic analysis aims at condensing the final high-dimensional vectors to a size

proper for a deep neural network. These steps briefly explained below are executed

in advance to compute sense embeddings of the UMLS concepts before training our

deepBioWSD network which they initialize (see below and Subsection 8 .2 for further

details of each part).

Figure 5.1: Definition-based sense embedding model for the UMLS concepts.
The figure represents different steps in our unsupervised method to generate low-dimensional
sense embeddings for the Unified Medical Language System (UMLS) concepts. These em-
beddings initialize of disambiguation deep neural network. C: concept; f: new feature;
LSA: latent semantic analysis; PMI: pointwise mutual information; S: salient feature; SOC:
second-order co-occurrence; W: word feature.
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Step 1 – Bigrams and MEDLINE word co-occurrence matrix. We built a co-occurrence

matrix from the bigram-list of MEDLINE abstract. This matrix is symmetric and

sparse, and represents the contextual information of the MEDLINE words.

Step 2 – UMLS concept definition extension and definition matrix. The definition

extension of concepts by their neighbour concepts’ in an ontology/thesaurus enriches

their semantic [143, 116]. When applied to the UMLS concepts, words in the ex-

tended definitions have associated co-occurrence vectors from MEDLINE computed

in step 1. For every (extended) definition, the definition matrix stores the frequency

of these word features.

Step 3 – Second-order co-occurrence (SOC) matrix. To build a SOC vector of a

concept, we first summed the MEDLINE co-occurrence vectors of the content words

in that concept’s extended definition, and then normalized the result vector by the

number of words in the definition. In other words, we took the centroid of the vec-

tors associated with each word in the definition, and then normalized the result to

uniformly treat the different size definitions.

Step 4 – Pointwise mutual information (PMI) on SOC matrix. Not all word fea-

tures associated with a concept are equally important. PMI, as in Equation (8 .1),

statistically measures the level of association between the concepts (their associated

words; i.e., wordi) and the word features (i.e., wordj), instead of naive considera-

tion of word feature frequency cutoff threshold [152, 164, 160]. Once PMI values

are calculated - with respect to the (frequency) probabilities of (co-)occurrences of

these words, our validation set helps to set a low cutoff threshold for the removal of

irrelevant features. We applied the add-1 smoothing technique to the SOC matrix in

advance to avoid bias toward infrequent occurrences [153, 159].

PMI(sensei, wordj) = log
p(sensei, wordj)

p(sensei)× p(wordj)
(8 .1)

Step 5 – Latent semantic analysis (LSA) on PMI-on-SOC matrix. LSA, given by
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Equation (8 .2), uses a singular value decomposition algorithm that resulted 2 square

and unitary matrices U and V T , and a non-negative diagonal matrix Σ that holds

singular values on its diagonal in a non-increasing order.

PMI on SOC = UΣV T (8 .2)

Step 6 – Reducing the rank of singular values. Having Equation (8 .3), we truncated

the singular value decomposition to 100 for low-dimensional representation of UMLS

concepts. Determined by our validation set, smaller embedding sizes yielded worse

WSD results, and higher dimensions did not improve the accuracy and just increased

the training time.

sense embeddings = UΣ100 (8 .3)

8 .2 The Rationale Behind Different Considerations in Pre-trained

Sense-embeddings Method

Bigrams

The bigrams of the MEDLINE abstracts are used to compute unsupervised sense-

embeddings prior to supervised training of the network which works with senses of

any size of words (this step is executed separately to compute sense-embeddings before

starting to train the network). These pre-computed sense-embeddings initialize the

weight of the first layer of the network in order to put the network in proper state. The

benefits are 2-fold: faster training and more-importantly avoiding to fall into local

minima in the backpropagation process which could have happened with a greater

probability if the network’s embedding weights were initialized randomly (i.e., better

classification result with pre-trained sense-embeddings as presented in Table 5.7).

To calculate sense-embeddings, our method is inspired by a work done by Lie et al.

[115] work in which they use bigrams. In their study, the bigrams, combined with the

text definition of UMLS concepts, produce distributed representations of the UMLS
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concepts on which we build our sense-embeddings after adding PMI and LSA to the

approach to get more accurate final presentations that are low-dimensional.

The idea of using “bigrams+definitions” instead of only definition is to avoid

sparsity in vector representation and to avoid the“hard semantic overlap” of the defi-

nitions. Just as a toy example assume we have two different concepts with definitions

provided as below:

• Sense1: Chemotherapy is a regimen typically taken for cancer treatment.

• Sense2: A combination of immunotherapy and radiation therapy to treat metas-

tasis cells.

If we only consider the definition overlap between these two definitions (their exact

content words), there is no overlap or relatedness between them whatsoever, except

for the uninformative word “a” (i.e., the first-order vectors fails similarity estima-

tion here). However, by considering bigram vectors created from MEDLINE for each

content word in the definitions we can overcome this hard overlap. This is because

in MEDLINE chemotherapy usually occurs in the context in which immunotherapy

and radiation most probably occur, i.e. have more similar bigram vectors. The same

reasoning for therapy and treatment, as well as cancer and metastasis. If we com-

puted bigram vectors of all content words in definitions in advance using MEDLINE

abstracts, the second-order vector representation of a definition would be the sum-

mation of the bigram-vectors of the content words in that definition (the centroid of

all bigram-vectors associated with that definition). Once computed for all definitions,

we observe the results convey concept similarity/relatedness more accurately.

Definition Extension

In the above-mentioned work by Lie et al. [115] (Figure 6 in their paper), they

presented by having richer text definitions for concepts, the method results in more

accurate vector representations, hence, they suggested the idea of definition extension

by their immediate parents and children in the UMLS. In our experiments, we ob-

served the same trend, however not that dramatic as if any lacking in the generated

sense-embeddings, the supervised training of the network later on attempts to cover

for that. Moreover, definition extension is the safest option since it (almost) causes
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no extra computational overhead as the size of the matrices remain the same with

and without them (i.e., the number of word features and concepts are the same). For

further detailed justification on the importance of definition extension you can refer

to the subsection 4 .2.

Pointwise Mutual Information (PMI)

Not all word-features associated with a concept are equally important. We employ

PMI to deal with Gloss Vectors (above paper) low/high frequency cut-off phase when

addressing the degree of importance. This naive approach of cutting is indecisive

and causes loss of valuable information. This is because, first, we believe when a

concept is specific (or concrete) in its meaning it needs more specific (or informative)

words in its definition describing that concept. Second, it is that when one term is

more specific in the meaning has lower frequency in the corpus compared to those

terms that are general (or abstract). As an example of these considerations, we can

juxtapose these two definitions:

• Cancer: A term for diseases in which abnormal cells divide without control

and can invade nearby tissue.

• Gliosarcomas: Rare mixed tumors of the brain and the spinal cord which con-

tain malignant neuroectodermal (glial) and mesenchymal components including

spindleshaped fibrosarcoma cells.

We can see the term gliosarcomas is described with more specific and detailed

terms which are naturally less frequent in the corpus (consequently their bigrams are

of lower frequency as well). Therefore, the above-mentioned issues call into ques-

tion the idea of fixed frequency cut-off points since by removing the low frequency

terms/bigrams as we face a trouble defining pointed concepts like gliosarcomas since

we waste some beneficial and expressive amount of information. Therefore, before

considering any strict low and high cut-off points to remove features, we need to mea-

sure the relative level of association between concepts and their word-features; the

help of PMI measure (Equation (8 .1)) achieves this.

It is highly possible that wordi (as in row for a concept) and wordj (as in column

for a feature-word) co-occur in the MEDLINE with rather low frequency but they can
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be associated with and descriptive of each other (e.g., very few yet important concepts

are dependent on wordi). The problem of the conventional low and high frequency

cut-off in Gloss Vector measure is that it takes into account only the frequency of

wordi and wordj co-occurred in the MEDLINE without being concerned with fre-

quencies of wordi and wordj individually describing concepts. Once computed, for

the removal of uninformative word-features, 0.7 was found to be the appropriate cut-

off point with the help of our validation sets (i.e., low association values were changed

to 0.0).

8 .3 deepBioWSD Network Definition

In contrast to other supervised WSD networks, in which a softmax layer with a cross-

entropy or hinge loss is often parametrized to select the corresponding weight matrix

and bias vector for every sense of an ambiguous term, our network shares parameters

over all senses. Given an instance and the position of a target term, the deepBioWSD

network computes a probability distribution over candidate senses of that term.

The architecture of our network consists of 7 layers (Figure 5.2). Due to the

replacement of the conventional softmax layer with a linear or sigmoid layer, we im-

posed a modification to the input. That is, apart from the contextual features, the

sense for which we want to discover whether the given context is meaningful will be

provided as input. For an ambiguous term with the sense set {s1, , sn}, the network

runs n times (for every sense) and the highest-confidence sense would be selected.

In lower layers, to determine proximity of the senses and the given context, after

computing cosine similarities of each candidate sense (embedding) with the senses

of the context terms, the sequential result of the cosine similarities between the cor-

rect sense and the surrounding context communicate a pattern-like information that

our BLSTM layer encodes which consequently yields higher confidence in the upper

regression layer; however, for the incorrect senses, this premise of homogeneity and

proximity does not hold (i.e., match and mismatch classification of a sense and a

given context). Several studies already incorporated the idea of sense-context cosine

similarities in their WSD models.[157, 52, 123] Nevertheless, the context terms, which

are determined by the SPECIALIST Lexicon during the disambiguation process, can

be ambiguous themselves. To deal with their ambiguity, just before the cosine layer,
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a pooling layer is devised, the result of which learns the senses of the ambiguous

terms appeared in the context. This means the network takes gradients with respect

to (shared) sense embeddings of both the target term and the context terms at the

same time.

UMLS Concept Embedding Layer. For one instance, the input of the network consists

of a sense and a list of (left and right) context terms, which paired together form a list

of context components. For context D , which encompasses an ambiguous term with

the sense set of {s1, , sn}, the embedding layer weights for the examined input sense

si, is determined by Equation (8 .4). Then, this input is copied to |D| positions of the

context to form the first pair of the context-components and set the same embedding

weights in the layer.

li = W l
s · vs(si), i ∈ {1, ..., n} (8 .4)

where, li ∈ R100 and vs(si) is the 1-hot representation of the sense. A 1-hot repre-

sentation is a vector with the dimension Vs consisting of |V s|−1 zeros and a single

one that indicates the index of a sense in a look-up table; the Vs size is equal to the

number of CUIs in the UMLS. The W l
s is the shared look-up table for the center

terms and context terms; it is initialized with the sense embeddings that we com-

puted in advance. Equation (8 .4) have the effect of picking the column (i.e., a sense

embedding) from W l
s corresponding to that sense.

Regarding a context term input, which forms the second pair of a context com-

ponent, at position k in the same context D the embedding weights are determined

by:

xk = [l1, ..., lm] ∈ R100×m, k ∈ {−|D|/2, ...,−2,−1, 1, 2, ..., |D|/2} (8 .5)

where, li is set by Equation (8 .5), and k is the position of the term in the context (left
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or right) while |D|/2=125 is a hyperparameter of the network (padding or truncating

was applied wherever needed). m is another hyperparameter that typically should

be equal to the size of the largest sense set; however, in the experiments of the study

we observed an inverse relationship between the sense set size and the occurrence

frequency of the terms, therefore we limited m to be 5. This means only those terms

in the context were inputted to the network that had the sense set of size 5 or less

(i.e., some infrequent terms were ignored). This resulted in a faster convergence with

no accuracy loss. For those terms with the sense set size of <5, a generic embedding

vector of very large negative numbers was employed to fill in the void senses; this

helped maxpooling consider only the sense embeddings of a context term.

Pooling and Flattening Layer. Here, max operation is applied over all rows per

each context terms sense embeddings, denoted as maxpool(5) in Figure 5.2. After

maxpooling, each context term is represented with a 100-dimensional global feature

vector. We also flattened the result column vector into a row vector as an integrated

part of the maxpooling layer; that is, at position k in the context, the pooling and

flattening layer gives l
k ∈ R1×100 for a target term sense and xk ∈ R1×100 for the pre-

dicted context term sense. Despite the intuitive use case of maxpooling to deduce the

proper sense of a context term, experimentally it worked better than averagepooling.

Cosine Layer. In |D| positions of context components, the cosine similarities be-

tween the embedding vector of the examined sense and the maxpooled of the context

terms are calculated. Computed by Equation (8 .6), the results are 2 row-vectors of

size |D|/2 each containing the cosine similarities of the context components of their

side:

cleft = [c1l , ..., c
k
l ] ∈ R1×|D|/2, k ∈ {−|D|/2, ...,−2,−1}

cright = [c1r, ..., c
k
r ] ∈ R1×|D|/2, k ∈ {1, 2, ..., |D|/2}

ci = cosine(l̄i,xi) =

∑
l̄i � xi

‖l̄i‖×‖xi‖
, i ∈ {1, ..., k}

(8 .6)
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Bidirectional LSTM Layer. With 1 forward and 1 backward LSTM networks, we

have a left context-dedicated LSTM network that receives the cosine similarities from

left to right, and right context-dedicated LSTM network that receives the cosine sim-

ilarities from right to left. cleft and cright are the inputs of these networks; their

outputs are the vectors hleft ∈ R1×50 and hright ∈ R1×50, each encoding the received

information from one side of the target ambiguous term (50 is another hyperparam-

eter).

Concatenation Layer. This layer concatenates the output row vectors of the BLSTM

layer:

hmerge = [hleft,hright] ∈ R1×100 (8 .7)

Fully Connected Layer. Further, for a better representation, a hidden fully connected

layer hfc is devised which is:

hfc = ReLU(hmerge ·Wh + bh) ∈ R1×50 (8 .8)

where, ReLU is rectified linear unit function; Wh ∈ R100×50 and bh ∈ R1×50 are the

weights and bias for the hidden layer. The result of this layer embeds the input se-

quence into a vector of size 50.

Regression for Classification Layer - This layer outputs a single value that is computed

by:

ŷsi = hfc ·Wout + bout, si ∈ {s1, ..., sn} (8 .9)
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where, Wout and bout are the weights and the bias of the regression for classification

layer (linear), and hfc is the result of the previous hidden fully-connected layer.

During network training, for an instance with its given context and the correct

sense as inputs, ŷsi is set to be 1.0, whereas for the same context with incorrect senses

it is set to be 0.0. During testing, however, among all the senses, the output of the

network for a sense that gives the highest value of ŷsi is considered as the true sense

of the ambiguous term. In other words, the correct sense is:

argmax
si

{ŷs1 , ..., ŷsn}, si ∈ {s1, ..., sn} (8 .10)

By applying softmax to the results of the estimated values {ŷs1 , ..., ŷsn}, we can

represent them as probabilities. This will facilitate interpretation of them especially

when deepBioWSD is benefiting from an active learning setting where intricacy and

importance of one instance can be measured.

The final recommended hyperparameters of the network which were determined

during validation are provided in Table 5.6.

8 .4 Unsupervised Collection of Training Data

Considering the uniform structure of deepBioWSD, we also aimed at collecting more

training data on which deepBioWSD could be pretrained. For this purpose, we em-

ployed Entrez Direct (https://www.ncbi.nlm.nih.gov/books/NBK179288/) to auto-

matically gather data from PubMed. So, we devised a query management scheme

that benefited from the notion of polyonymy of a concept (polyonomy is the em-

ployment of multiple names for the same concept): besides ambiguous representa-

tive terms, usually, one concept has other representative terms that are unambiguous

(e.g., lymphogranulomatosis vs malignant lymphogranulomatosis). By sending queries

to PubMed for these unambiguous terms, we obtain abstracts for which we already

know the true sense. It allowed us to create samples of unsupervised instances in a

https://www.ncbi.nlm.nih.gov/books/NBK179288/
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large quantity (see the following subsection). For each (unambiguous) sense query,

we only considered the first 500 instances retrieved from PubMed (excluding the

MSH WSD instances). A total of 180,175 instances were automatically prepared as

PubMed returned <500 abstracts for some sense queries.

Entrez Direct

Since this study aimed at developing a single network that is convenient to pre-train

and maintain - a model that can benefit from continuous learning - we made use

of Entrez Direct to automatically collect training data from PubMed. Entrez Direct

(https://www.ncbi.nlm.nih.gov/books/NBK179288/) is a set of executables that pro-

vides a UNIX command line interface to the E-utilities which makes access to the

NCBI’s suite of interconnected databases (PubMed, Gene, Structure, and etc.) pos-

sible.[12] We explore how to pre-train the network with these automatically collected

data prior to the supervised training. We also investigate how the network trained

only on these data compares to an existing non-supervised WSD algorithm.

Here we represent how Entrez Direct helps to send unique sense-queries to PubMed

and retrieve abstracts. The example that we provide here is for the ambiguous term

moles with the sense-set: C0324740, C0027960.

The process of data preparation is executed in three steps (fully-automated):

1. Selection of unique representative terms of a concept/sense (in the UMLS)

2. Sending unique sense-queries to PubMed through Entrez Direct interface, col-

lecting the data, and labeling them with the sense of the sense-query they are

associated with (notice that the Entrez Direct query returns the abstracts in

bulk)

3. Finding unique representative terms in the collected abstracts and replacing

them with the ambiguous representative term

Step 1:

https://www.ncbi.nlm.nih.gov/books/NBK179288/
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• List of representative terms for C0324740: talpidae, moles, talpidae family mole,

family talpidae, mole Unique representative terms for C0324740: talpidae, fam-

ily talpidae, talpidae family mole

• List of representative terms for C0027960: skin mole, naevus, nevi, nevus, moles,

skin moles, mole of skin, mole Unique representative terms for C0027960: nevi,

skin moles

Step 2:

• � esearch db pubmed query ‘((‘‘talpidae’’[TIAB] OR ‘‘family talpidae’’[TIAB]

OR ‘‘talpidae family mole’’[TIAB] OR ‘‘moles’’[TIAB])) AND ‘‘moles’’[MESH])’

| efetch format xml > C0324740.xml

• � esearch db pubmed query ‘((‘‘nevi’’[TIAB] OR ‘‘skin moles’’[TIAB]))

AND ‘‘nevus’’[MESH])’ | efetch format xml > C0027960.xml

Step 3 (sample excerpts retrieved and processed):

• PMID: 29309911 (one of the abstracts retrieved for the first query)

– Results unequivocally demonstrate that the presence of β4 Ser and β5 Gly,

together with a low DPG sensitivity Hb phenotype, predates the radiation

of the family Talpidae moles, and did not evolve as an adaptation to

fossorial life. (True label: C0324740)

• PMID: 29718885 (one of the abstracts retrieved for the second query)

– All patients (100%) had multiple pigmented nevi moles on the face and a

lack or thinning of subcutaneous tissue around the neck and face. (True label:

C0027960)
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Table 5.1: Sense similarity for candidate senses of the ambiguous term, CP

Cerebral Palsy Propionibacterium acnes Cleft Palate

Convulsion Staphylococcus Glossoptosis
Spastic syndrome Propionibacterium Cleft Lip
Muscle Dystonia Stomatococcus Omodysplasia
Dysdiadochokinesis Micrococcus Congenital Megacolon
Choreoathetosis Flavobacterium Ectromelia
Quadriplegia Neisseriaceae Polydactylism
Trismus Acidovorax Teething
Hemiplegia Abiotrophia Congenital Aniridia
Muscle Hypertonia Paenibacillaceae Omphalocele
Muscle Spasticity Helicobacter Syndactyly

9 Results

9 .1 Sense similarity of Pretrained Embeddings

We will see our method for pre-training of the sense embedding plays an important

role in sense predictions. Table 5.1 represents an example of a sense similarity for

the ambiguous term Ca that takes 4 different senses. In the table, instead of rep-

resenting the uninterpretable identifiers of the concepts in the UMLS, their selected

representative terms are shown. Providing just one example here, we observed that

other senses followed the same sense similarity pattern in the sense embedding space.

Table 5.1 represents a (cosine) sense similarity example for the ambiguous term

CP (computed over the pretrained sense embeddings; i.e., books in the library). Each

column header represents one sense of CP, and the listed terms below are the closest

UMLS concepts to that meaning of CP. In the table, instead of unfamiliar sense CUIs,

the selected representative terms of the concepts are shown. Providing just 1 example

here, we observed other senses followed the same sense similarity organization in the

sense embedding space as well.

The following tables (Table 5.2, 5.3, 5.4, 5.5) represent the sense similarities for

the ambiguous term Iris, Sterilization, OCD, Ca, respectively:
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Table 5.2: Sense similarity for candidate senses of the ambiguous term, Iris

Eye iris Iris Plant

Uvea Capparis
Esodeviation Bryonia
Entire orbital region Trichosanthe
Exodeviation Petiveria
Phoria Daphne
Ophthalmoparesis Pseudotsuga
Exophoria Hydrangeaceae
Eye lens Luffa
Epicanthal fold Clusia

Table 5.3: Sense similarity for candidate senses of the ambiguous term, Sterilization

Reproductive Sterilization Sterilization

Hysterotomy Incineration
Hysterectomy Freeze Drying
Ovariectomy Blast
Cystectomy Fluoropolymer
Ovariohysterectomy Lightnings
Male Circumcision Synchrotron
Orchidectomy Low Density Lipoproteins
Vaginotomy Polytetrafluoroethylene
Penectomy Mercury

Table 5.4: Sense similarity for candidate senses of the ambiguous term, OCD

Obsessive Compulsive Disorder Osteochondritis Dissecans

Alexithymia Osteochondrosis
Murder Brachymetatarsia
Hypomania Entire bony skeleton
Forgetfulness Melorheostosis
Apprehension Epiphysis
Excitability Osteoradionecrosis
Sluggishness Exostosis
Hysteria Bone Fracture
Paranoia Condyle
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Table 5.5: Sense similarity for candidate senses of the ambiguous term, Ca

Canada California Calcium Cornu ammonis

Geographic Area Ohio Calcium Carbonate Cerebellar Cortex
Racial Group Alabama Calcium Sulfate Dentate Gyrus
Nova Scotia Maryland Mineral Tissue of Brainstem
Country Idaho Silicate Cerebellopontine Angle
United States Montana Apatite Hindbrain
North America Wyoming Alkali Metals Olfactory Cortex
America West Virginia Potassium Compound Limbic System
New Brunswick South Carolina Lithium Diencephalon
France North Carolina Ions Olivary Nucleus

Table 5.6: Hyper-parameter settings in deepBioWSD network

Hyper-prameter Range searched Values used

Context size [10, 150] [Left, Right] [125 Left, 125 Right]
Embedding size {50, 100, 200, 300} 100
BLSTM hidden layer size [50, 300] 2*50
Dropout on sense embeddings [0, 50%] 25%
Context term dropout [0, 50%] 25%
Dropout on merged & fully-connected layers [0, 70%] 50%
Sense embedding initialization - PMI-LSA pre-training Method

9 .2 Experimental Settings of the deepBioWSD Network

The network hyper-parameters that were determined during validation are presented

in Table 5.6. In other words, this final architecture was discovered and was confirmed

by our experiments on validation sets prior to reporting the results on the held-out

test data. To have a fixed-size context, padding or truncating was applied wherever

needed. Regarding optimization, RMSprop was employed.[213] Also, all weights in-

cluding embeddings were updated during training. Moreover, all the context-sense

inputs were shuffled during training.

9 .3 First WSD Experiment: Direct Learning From Center Terms

Between-all-models comparisons: Table 5.7 compares the deepBioWSD with

the other WSD algorithms. Despite those for which we already had the accuracy

results on MSH WSD dataset, BLSTMsKg-Sal and BLSTMPes-etal were reimplemented

with their best hyperparameters chosen, a few of which were slightly different from
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Table 5.7: Accuracy results for MSH-WSD dataset

Method Algorithm Macro Acc(%) Micro Acc(%)

Unsupervised Bio-Graph 71.52 -
KB 92.24 -
deepBioWSDwith random embeddings 92.16 91.93
deepBioWSDwith pre-trained embeddings 92.67 92.51

Supervised MetaMap with WSD 81.77 -
NBs 93.84 -
SVMAnt-Mat 65.60 -
LSTMs 94.87 94.78
SVMs 95.97 95.81
BLSTMsKg-Sal 95.64 95.47
BLSTMPes-etal 95.53 95.39

Supervised (sigmoid) deepBioWSDwith random embeddings 93.53 93.40
deepBioWSDwith pre-trained embeddings 95.79 95.63
deepBioWSDpre-trained unsupervised w/o sense embdgs 96.44 96.25
deepBioWSDpre-trained unsupervised w/ sense embdgs 96.71 96.52

Supervised (linear) deepBioWSDwith random embeddings 93.88 93.71
deepBioWSDwith pre-trained embeddings 96.14 95.96
deepBioWSDpre-trained unsupervised w/o sense embdgs 96.64 96.47
deepBioWSDpre-trained unsupervised w/ sense embdgs 96.82 96.64

their original papers (e.g., different context size). What we report here for deep-

BioWSD is based on 10-fold validation experiments we conducted after considering

training, validation, and test splits; other models might not necessarily follow this

strategy.

Supervised. Instances of every term in 203 terms included in MSH WSD data were

divided into 10 non-overlapping folds in which one fold was put aside for a final testing

in a 10-time validation. Training on the rest of the 9 folds, we first randomly selected

5% as a validation set to tune hyperparameters and to find the proper number of

epoch the network needed to train. After hyperparameters were chosen, the final

model was trained on the whole training set (including the validation set), and then

was evaluated on the 203 test data folds taken out already. In the experiments, macro

and micro accuracies were considered for hyperparameter tuning as well as for the

final evaluation of the test data (refer to Table 5.6 for the hyperparameters). After

computing the test results of the all 10 times of validation, their average was consid-

ered as the results of the models. For the description of macro and micro accuracies

refer to Appendix B.
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Unsupervised. After finding the proper structure of the network, we experimented

with 2 scenarios. First, the network was trained on the automatically collected data

where the MSH WSD instances made the test data. Second, the network was pre-

trained on these unsupervised data and then it was retrained and evaluated according

to the supervised layout described previously.

These results indicate the importance of pretrained sense embeddings initializing

the network. Their influence, however, is minimal when the network is pretrained on

the unsupervised training data. In that case, the network produces sense embeddings

from scratch, and the final updated embeddings are the byproduct of the network.

Overall, deepBioWSDs single network architecture outperforms unsupervised KB and

(multiclassifier) supervised WSD algorithms in the biomedical WSD task. Regarding

training time, deepBioWSD also showed better efficiency.

In order to test time efficiency, we trained deepBioWSD network on a single GPU

(NVIDIA GeForce GTX 980M) in a dedicated time-frame of 4 hours. For per-term

WSD model of BLSTMsKg-Sal [86] we divided this time by the number of terms 203

and assigned that portion of time to train classifier of each term in the model. The

average result was far worse than what we gained for deepBioWSD when the network

was only initialized by sense embeddings (86.87% vs. 93.67% for Macro accuracy). For

BLSTMPes-etal, [157] (presented in Chapter 4) since we have two separate and disjoint

spaces for the target term and context terms, the communication of information

occurs very slowly as the alignment of these sense and word spaces is the first and

utmost requirement for accurate predictions, which in turn demands more training

data (86.17% vs. 93.67% for Macro accuracy, for the same time-frame of training).

Also, by the same token for these models, we realized that in per-term models the

full-training time of a classifier varies from one term to another as understandably

some terms are more challenging to be trained (since they are treated in isolation).

This case was less intense for deepBioWSD though as it attempted to learn about

all senses jointly and more fairly; that is because at training time the network aims

at making sense of the contexts (in the same space) at the same time rather than

focusing on a single term. It means deepBioWSD can be trained for just a few hours

(still not fully-trained) and then put in an application; in parallel the model can

constantly continue towards full-training and updating itself while it is in use (with
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Table 5.8: deepBioWSD with other architectural settings

Network (Our Single-classifier) Macro Accuracy(%)

Full network in Figure 5.2 96.82

BLSTM with reverse directions in Figure 5.2 93.86
BLSTM with a shuffled context 91.98
Fully-connected layers instead of BLSTM layer 95.23
BLSTM on the left & BLSTM on the right 95.81

some resemblance to life-long machine learning) [25].

Regarding the storage to keep the training data in, we encountered no difficulty;

however, it may cause problems when the training data grows larger. However, this

can be easily dealt with using distributed storage systems. Moreover, due to batch

training of the network, similar to deep per-term models, deepBioWSD can benefit

from multi-GPU training and data parallelism for faster.

Within-our-model comparisons: We also studied if the flow of cosine similarities

between a true sense and its preceding and succeeding terms (their senses) carried

a sequential information that one BLSTM could encode and learn from. Therefore,

according to what Table 5.8 represents, we introduced some changes in the input or in

the structure of the network to verify that. We observed if we reverse the sequential

flow of information into our BLSTM, we shuffle the order of the context terms, or

replace our LSTMs with 2 fully connected networks of the same size 50, the achieved

results were notably less than our original structure. Expectedly, due to a variable size

of the original contexts (which forced padding/truncation), replacement of LSTMs

with BLSTMs had negative effects.

9 .4 Second WSD Experiment: Indirect Learning from Context Terms

Considering zero-shot learning, we also experimented if training on one target term’s

instances led to indirect insights into other terms. As an example, assume we are

training the ventricles instance, “Coronal measurements of both ventricles were sim-

ilar when obtained by US and MRI images”; having ventricles (meaning cerebral

ventricles here) as the target ambiguous term, we gain knowledge about the context

terms as well, including US and MRI. In a new US instance, this insight helps the
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Table 5.9: Accuracy results for indirect learning from the context terms

Stage Supervised Setting Macro Acc(%) Micro Acc(%)

Before Training deepBioWSDwith random embeddings 49.37 49.53
deepBioWSDwith pre-trained embeddings 65.46 65.73

After Training deepBioWSDwith random embeddings 67.32 66.92
deepBioWSDwith pre-trained embeddings 82.08 81.85

network to predict if US means United States or ultrasonography.

To investigate indirect learning, we randomly divided 203 numbers of MSH WSD

terms into 10 non-overlapping folds, and then held (instances of) one of the folds for

testing (as unseen data) and the rest for training (10-time 10-fold validation). We

selected 5% of the training set as a validation set to tune hyperparameters. The final

network was trained on the whole training set and then was evaluated on the test set

(averaged the individual test results on the unseen target terms).

Table 5.9 represents the average of the 10 times of validation. These results

clearly represent the influence of pretrained sense embeddings on the predictions.

More importantly, we observe, when deepBioWSD is not directly trained on one

term’s instances, the preserved statistical information learned from the context (and

its maxpooled embeddings) guides the network for more accurate sense prediction of

that term when located at the center. Furthermore, with the current state of the

network, the model will not suffer from the cold start problem because the model has

been gaining the momentum, and with smaller amount of training data needed, it

will be fully trained on unseen terms in short order as well. Except for BLSTMPes-etal,

for which the results of this experiment were completely random (in all cases), we

could not envision and conduct the experiment for the other supervised algorithms

due to their multiclassifier design.

10 Discussion

The deepBioWSD introduces an unorthodox WSD network in which all conceptual

pieces of the biomedical domain (i.e., pivotal and contextual terms) are designed to

be interconnected-pieces that constantly communicate information to solve the jigsaw

puzzle of WSD. The network, however, found 2 types of instances challenging. First,
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when the syntactic structure with similar semantic theme surrounding the candidate

senses were very similar (e.g., veterinary assistant and veterinary medicine for the

ambiguous term veterinary). Second, when the senses are semantically so close that

they share the same immediate parent in the UMLS, or 1 term directly subsumes the

other sense (as in senses for borrelia, heregulin, and HGF in the MSH-WSD dataset)

(see Appendix C).

We let MeSH and SNOMED CT demarcate the context terms (following the pre-

vious studies) [52, 158]. We found however by adding more vocabularies from the

UMLS, fewer context terms will be ignored during prediction as the model will be

inclusive of more biomedical terms or senses. For example, the term 12-step program

appeared frequently in the context of AA when it meant Alcoholics Anonymous (an-

other meaning is amino acid); however, 12-step program belongs to neither MeSH

nor SNOMED CT, whereas the National Cancer Institute ontology (NCI) covers it.

This consideration of more vocabularies was helpful, as it slightly improved the re-

sults with a smaller context size needed. Nonetheless, with more vocabularies, the

possible number of senses one term can take grows, which to some extent offsets the

advantage of a smaller context size.

11 Conclusions

One future work direction can be consideration of other unsupervised biomedical sense

embedding methods in the model. Adding an attention mechanism to the network

architecture might further improve the disambiguation results as well [238]. Also,

more comprehensive and systematic study for the collection of unsupervised training

data is needed. The model can also be evaluated on an extrinsic task with real-world

applications (e.g., Clinical Information Extraction) [138]. Moreover, adding more

text data from external resources such as Wikipedia to the definitions of concepts can

enrich their meaning and improve their vector representation, hence, an interesting

study to investigate [160].



Chapter 6

Part IV: Epilogue

Conclusions and Future Work

1 Conclusions

We restate that as a priority, throughout the studies of this thesis we made sure that

the guideline/checklist1 from Dr. Joelle Pineau for machine learning reproducibility

was met. The list is used by DL/ML community (e.g., NeuroIPS, ICML). For that

reason, the source codes of the algorithms are shared and are publicly available on

online repositories - refer to Section 2 .5.

The conclusions of the thesis are concerned with two individual components of

the study discussed in Part 2 and Part 3.

1 .1 Biological Attribute Embedding for Function Analysis of Genes

Our approach for functional similarity estimation based on the shared context makes

intuitive sense, as concepts which share closely related attributes in their represen-

tation should exhibit higher levels of similarity. We showed that implementing these

ideas via the deep learning tools, which helped for low-dimensional distributed rep-

resentations of GO terms and gene products, improved effectiveness of the correla-

tion of functional similarity with sequence homology data, namely, LRBS and RRBS

scores, gene expression, as well as protein interaction (PPI) data. For the yeast Sac-

charomyces cerevisiae database, relative to best-performing similarity measures, by

considering all GO sub-ontologies (i.e., with a multi-channel deepSimDEF network),

deepSimDEF increased PPI predictability by ∼4%, showed a correlation improvement

>6% with gene expression data, and improved correlation with sequence homology

by up to 11%. However, these increases using paired single-channel deepSimDEF

networks was a little less. More importantly, these improvements compared to the

1https://www.cs.mcgill.ca/ jpineau/ReproducibilityChecklist.pdf
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previous functional similarity measures, mainly those that use semantic similarity

measures at the backend, was much larger indicating superiority of the deepSimDEF

model over the traditional IC-based functional similarity measures.

Compared to IC-based measures, deepSimDEF has less dependency on ever-

changing structure of GO. A key advantage of deepSimDEF in comparison with

simDEF is its automatic and supervised training of the GO-term embeddings by

means of one particular available biological data (i.e., the training dataset) and GO

annotations. Later, these embeddings and the trained networks will be evaluated

on a separate piece of data which is meant for testing. Once the testing passes all

evaluation stages, the model will be trained on the whole data and will be available

for use in a multitude of biological applications. One important phenomenon that

deepSimDEF networks address is the method for aggregation of the GO annotations

of two compared gene products. While all the previous similarity measures employ or

introduce a human engineered metric such as MAX or BMA, deepSimDEF networks

attempt to devise and propose the best possible way of aggregation of the shared

information by means of a highway layer. Furthermore, in contrast with a single-

channel network which deals only with one sub-ontology in GO, concurrent flow of

annotations of the genes from all three sub-ontologies into the multi-channel deep-

SimDEF network provides the measure with richer information which consequently

results in more accurate functional similarity estimation.

Succinctly, accomplishments of this part can be listed as follows:

1. We proposed a method for GO term vector embedding using their text definition

2. We built a deep neural network named deepSimDEF used for gene function

analysis which offered:

(a) single-channel and multi-channel networks for gene similarity estimation

(b) PPI predictability increase by ∼4% (for yeast database, multi-channel ar-

chitecture)

(c) correlation improvement >6% with gene expression (for yeast database,

multi-channel architecture)
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(d) correlation improvement >4% with gene expression (for human database,

multi-channel architecture)

(e) correlation improvement with sequence homology by up to 11% (for yeast

database, multi-channel architecture)

(f) a method to embed genes and genes products in low-dimensional vector

space based on their given GO annotations

1 .2 Natural Language Concept Embedding for Word Sense

Disambiguation

This part of study addressed the critical problem of WSD in NLP by introducing

and developing a novel deep Bidirectional Long Short-Term Memory (BLSTM) net-

work named deepBioWSD. For the training of deepBioWSD, first, we initialized the

BLSTM network using pretrained sense vector embeddings. Then, we trained the net-

work on the biomedical textual data that was already manually annotated/labelled.

As to the calculation of the pretrained sense embeddings, we made use of Unified Med-

ical Language System (UMLS) and MEDLINE abstracts and also employed Pointwise

Mutual Information (PMI) and Latent Semantic Analysis/Indexing (LSA/LSI). Fi-

nally, for evaluation, we tested the converged model on a holdout set that was absent

during training. The experimental result on the MSH-WSD dataset (MeSH WSD

dataset from National Library of Medicine, NLM) represented that the introduced

deep learning model outperforms the state-of-the-art supervised methods in terms of

accuracy results. Specifically, deepBioWSD achieves 96.82% for macro accuracy when

was trained and evaluated based on the supervised labelled instances. In another sce-

nario, when deepBioWSD was trained on training instances automatically collected

from the web and annotated (in completely unsupervised fashion) it achieved the ac-

curacy of 92.67%, outperforming the state-of-the-art unsupervised WSD models. We

also showed that deepBioWSD was capable of predicting the sense of the terms for

which we do not have any direct training data instances. This is done through a semi

zero-shot-learning training of deepBioWSD, meaning the information regarding those

(unlabelled) terms were learned when they occurred in the context of the directly

annotated ambiguous terms.
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Succinctly, accomplishments of this part can be listed as follows:

1. We introduced a method for sense embedding of semantic natural language

units (i.e., concepts) using their text definition

2. We built a deep neural network named deepBioWSD used for word sense dis-

ambiguation of biomedical text which offered:

(a) a single BLSTM WSD network that considerably needs less number of

training instances

(b) this network can be trained in an unsupervised fashion through automatic

collection of instances from the web

(c) deepBioWSD achieves the state-of-the-are 96.82% for macro accuracy when

evaluated on MSH-WSD (supervised training)

(d) deepBioWSD achieves the state-of-the-are 92.67% for macro accuracy when

evaluated on MSH-WSD (unsupervised training)

2 Future Work

Similar to conclusion, future work can be separated based on what we discussed and

presented in Part 2 and Part 3.

2 .1 Future Work for deepSimDEF

For the future work, Enzyme Commission (EC) similarity and orthologous protein

distinguishing tasks present another opportunity for deepSimDEF performance evalu-

ation. deepSimDEF networks as gene functional similarity measures need to be tested

on the other species other than Saccharomyces cerevisiae as well. deepSimDEF mod-

els can also be utilized in the context of transfer learning for more improvement and

faster training[145]. This transfer learning can occur by training on one species and

then testing or fine-tuning on another species, or from one biological application to

another application. Moreover, what deepSimDEF offers to the community is more

than a functional similarity measure. deepSimDEF opens door to thinking that any

biological entity can be presented in the form of embeddings. To give a direction,
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we know that a protein domain is a conserved part of a given protein sequence that

can evolve, function, and exist independently of the rest of the protein chain. Many

proteins consist of several structural domains, and one domain may appear in a va-

riety of different proteins. Molecular evolution also uses domains as building blocks

as these may be recombined in different arrangements to create proteins with differ-

ent functions. Having these kinds of knowledge in biology, and our understanding of

deepSimDEF model, one will have a motivation to see if by the means of any relevant

biological data it would be possible to represent these units in the form of embed-

dings, and then through statistical metrics or visualization tools infer some implicit

knowledge hidden among the protein domains. deepSimDEF idea can also be applied

to any (biomedical and biological) ontology of interest as well. For example, Online

Mendelian Inheritance in Man2 (OMIM) is a continuously updated ontology of human

genes and genetic disorders and traits, with a particular focus on the gene-phenotype

relationships. This ontology has proved its significant usefulness for discovery of dis-

eases and drugs in many studies that take full advantage of the similarity between

the biological entities covered in this ontology. Through a well-designed study, which

follows the steps of deepSimDEF model in order to accurately quantify the relation-

ships among genes and their phenotypic expressions, we might reach a breakthrough

for a more advance approach of disease and drug discovery. And last but not least, a

creative modification of deepSimDEF model from a functional similarity measure to

a function assignment algorithm can be an interesting adventure to explore as well.

2 .2 Future Work for deepBioWSD

The outcome of deepBioWSD is directly applicable to a wide range of NLP appli-

cations. These applications run the gamut from machine translation and automatic

text summarization to information extraction and query answering in any given lan-

guage or domain; these applications can also cover specific tasks such as detection of

adverse drug reactions from social media data and association discovery of diagnosis

codes from electronic medical records (EMR). Apart from the intrinsic evaluation of

deepSimDEF conducted in this study, any of these applications can provide a de-

sirable testing field for the extrinsic evaluation of this WSD model. Moreover, by

2https://www.omim.org/

https://www.omim.org/
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growing more interests in unsupervised pretraining of sense embeddings in the natu-

ral language domain, these new approaches can replace our sense embedding method

in order to be evaluated and further improve the result of deepBioWSD. Additionally,

better strategies for the collection of unsupervised training data from the web should

be devised. Furthermore, consideration of an attention mechanism in the network

design of deepBioWSD can improve its sense predictability.
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Appendix A

Long Short-Term Memory (LSTM)

A standard fully-connected Deep Neural Networks (DNN) is simply a multi-layer

perceptron (MLP) with many hidden layers between its input and output. Next to

nonlinear transformations, the most important advantage of DNNs is their multilevel

distributed representation of input. DNNs also do not require detailed assumptions

about the input data distribution, a trait to successfully exploit large amounts of data

without lapsing into overtraining. Attributed to their topological structure, however,

they are lacking in modeling sequence data properly.

Recurrent neural networks (RNNs), shown in Figure A.1, are a DNN contain-

ing a self-connected hidden layer designed to resolve the shortcoming of traditional

DNNs. One benefit of the recurrent connection is that a memory of previous inputs

remains in the network’s internal state through mapping real-valued input sequences

to real-valued output sequences. As a result, RNNs can exhibit dynamic temporal

behavior by accessing to the past context. Context, i.e. the sequence of preceding

and succeeding terms that come before and after one target ambiguous term, plays

an important role in an accurate disambiguation. Nonetheless, classical RNNs them-

selves have issues with long-range dependencies as the gradient either explodes or

vanishes too quickly during backpropagation.

LSTMs address the vanishing gradient problem in RNNs by incorporating gating

functions into their state dynamics (Figure A.2).[10]

Each LSTM network maintains a hidden vector h and a memory cell vector c

responsible for controlling state updates and outputs. An LSTM block at time step

t takes xt,ht−1 and ct−1 as input and produces ht and ct via the following formulas

(Equation (.1))1:

1In the equations, · means matrix multiplication, � implies element-wise product of vectors,
variable in lowercase represents a vector, and uppercase letters denote matrices; σ is the element-
wise sigmoid function.
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Figure A.1: Recurrent neural network architecture.
From one RNN block to another connections between their units form a directed graph
along a sequence. Input xi and output hi of each block can be either a scalar or a vector
while they stay homogeneous throughout the sequence.

c̃t = tanh (Wc · [xt,ht−1] + bc)

it = σ (Wi· [xt,ht−1] + bi)

ft = σ (Wf · [xt,ht−1] + bf )

ot = σ (Wo· [xt,ht−1] + bo)

ct = ft � ct−1 + it � c̃t

ht = ot � tanh (ct)

(.1)

where c̃t is the self-recurrent which is equal to standard RNN, it,ft and ot are

the input, forget, and output gates activation vector, ct is the memory cell vector,

Wi,Wf ,Wc,Wo are the weight matrices of the input signal (i.e. xt and ht−1) with

respect to the gatesand the memory cell, and bi, bf , bc and bo denote the bias vectors.

The initial value for c0 and h0 is 0.
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Figure A.2: Long Short-Term Memory network architecture.
For clarity, a single memory cell is shown at time step t. The LSTM blocks are composed
of three multiplicative gates: an input gate, a forget gate and an output gate, which in turn
control the proportion of input information transferred to a memory cell, the proportion of
historical information from the previous state to remember/forget, and the proportion of
output information to pass on to the next time step. The output hi goes to every unit in
the next layer.

Standard RNNs and LSTMs however have restrictions as the future input informa-

tion can not be reached from the current state. To resolve this issue, a Bidirectional

LSTM, depicted in Figure A.3, fuses two reversed unidirectional LSTMs. For WSD

this means we are able to encode information of both preceding and succeeding terms.
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Figure A.3: Bidirectional Long Short-Term Memory network architecture.



Appendix B

Macro Accuracy and Micro Accuracy

Macro- and micro-accuracy will compute slightly different things, and thus their in-

terpretation differs. A macro-accuracy will compute the accuracy independently for

each class and then take the average (hence treating all classes equally), whereas a

micro accuracy will aggregate the contributions of all classes to compute the average

accuracy. Assume we have two confusion matrices for two sample classifiers shown in

Figure B.1:

Figure B.1: Confusion matrices of two sample classifiers

Sample 1: accuracy = (10 + 40) / (10 + 20 + 30 + 40) = 0.5

Sample 2: accuracy = (1 + 5 + 9) / (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9) = 0.33

Macro-accuracy (as a whole) = (0.5 + 0.33) / 2 = 0.42

Micro-accuracy (as a whole) = ((10+40) + (1+5+9)) / ((10+20+30+40) +

(1+2+3+4+5+6+7+8+9)) = 0.45

In our first experiment we have 203 confusion matrices each for one ambiguous

term (it is in each round of validation in a 10-fold validation experiment). In the

second experiment the number of confusion matrices is 20 (or 21) in a validation

round; each matrix for one unseen ambiguous term (this number depends on our
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validation number between 1 to 10).



Appendix C

Results For 203 Ambiguous Terms

Table C.1 represents the average accuracy of the 10 validations for each ambiguous

term (in deepBioWSDpre-trained unsupervised w/ sense embdgs).
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Table C.1: Disambiguation Accuracy of 203 terms using deepBioWSD

# Ambiguous term Senses (representatives terms) ACC%
1 veterinary (1) Veterinary Assistant, (2) Veterinary Medicine 59.6
2 Heregulin (1) NRG Proteins, (2) NRG1 Protein 61.8
3 Borrelia (1) Lyme Borreliosis, (2) Borrelia 71.8
4 CI (1) Ivory Coast, (2) Chile 74
5 Hybridization (1) Genetic Hybridization, (2) Nucleic Acid Hybridization 75.9
6 B-Cell Leukemia (1) B-Cell Lymphocytic Leukemia, (2) Chronic B-Lymphocytic Leukemia 78.5
7 HGF (1) Hybridoma Growth Factor, (2) Hepatocyte Growth Factor 80.3
8 Murine sarcoma virus (1) Mouse Sarcoma Viruses, (2) Moloney Sarcoma Virus 81.8
9 HHV 8 (1) Kaposi Sarcoma-Associated Herpesvirus, (2) Kaposi Sarcoma 84.5
10 EGG (1) Ovum, (2) Egg (food product) 84.6
11 Ion (1) Iontophoreses, (2) Ions 85.8
12 RBC (1) Red Blood Cell, (2) Red Blood Cell Count 86.1
13 rDNA (1) Recombinant DNA, Ribosomal DNA 86.2
14 Exercises (1) Rehabilitation Exercise, (2) Physical Activity 88
15 lens (1) Lens (device), (2) Lens Disease, (3) Eye Lens 88
16 WT1 (1) WT1 Protein, (2) Wilm’s Tumor 88.5
17 Erythrocytes (1) Red Blood Corpuscle, (2) Red Blood Cell Count 88.6
18 Adrenal (1) Epinephrine, (2) Adrenal Gland 88.9
19 tomography (1) Tomography, (2) Computed X Ray Tomography 88.9
20 BR (1) Brazil, (2) Bromide 89.4
21 Digestive (1) Ailmentary System, (2) Digestion 89.4
22 Phosphorylase (1) Glucan Phosphorylase, (2) Glycogen Phosphorylase (muscle form) 89.5
23 Lupus (1) Lupus Vulgaris, (2) Systemic Lupus Erythematosus, (3) Discoid Lupus 89.9
24 Pleuropneumonia (1) Pleuropneumonia, (2) Haemobartonella 89.9
25 Ca (1) Calcium, (2) California, (3) Cornu Ammonis, (4) Canada 90.3
26 Gamma-Interferon (1) Recombinant Interferon-Gamma, (2) Type II Interferon 90.3
27 CH (1) China, (2) Switzerland 90.6
28 FAS (1) Fatty Acid Synthases, (2) Fetal Alcohol Syndrome 90.8
29 Staph (1) Staphylococcal Infection, (2) Staphylococcus (organism) 90.8
30 TEM (1) Transmission Electron Microscopy, (2) Triethylene Melamine 90.9
31 Glycoside (1) Cardiac Glycosides, (2) Glycosides 91.3
32 Coffee (1) Caffea (plant), (2) Coffee (drink) 91.6
33 posterior pituitary (1) Posterior Pituitary Hormones, (2) Posterior Pituitary Gland 91.6
34 MAF (1) Macrophage Activating Factors, (2) Maf Proteins 92.2
35 NEUROFIBROMATOSIS (1) Neurofibromatosis Syndrome, (2) Neurofibromatosis 1 Gene 92.2
36 Phosphorus (1) Dietary Phosphorus, (2) Phosphorus (non-metal element) 92.7
37 Potassium (1) Potassium (an element), (2) Dietary Potassium 92.8
38 Strep (1) Streptococcus (organism), (2) Streptococcal Infection 92.8
39 STEM (1) Plant Stem, (2) Scanning Transmission Electron Microscopy 93
40 WBS (1) Williams-Beuren Syndrome, (2) Beckwith-Wiedemann Syndrome 93
41 Leishmaniasis (1) Leishmania Vaccines, (2) Leishmania Infection 93.1
42 Torula (1) Cryptococcus neoformans Infection, (2) Cryptococcus (organism) 93.2
43 Familial Adenomatous Polyposis (1) APC Gene, (2) Familial Polyposis Syndrome 94.1
44 Arteriovenous Anastomoses (1) Surgical Arteriovenous Shunt, (2) Arteriovenous Anastomose 94.5
45 Milk (1) Mammary Gland Milk, (2) Mother’s milk 94.6
46 Malaria (1) Malaria Vaccines, (2) Malaria (infection) 94.7
47 Nurse (1) Nurse, (2) Breast Feeding 94.8
48 TMJ (1) Temporomandibular Joint Syndrome, (2) Temporomandibular Joint Structure 94.9
49 Laryngeal (1) Larynx, (2) Artificial Larynx 95.2
50 Haemophilus ducreyi (1) Chancroid, (2) Haemophilus ducreyi 95.9
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# Ambiguous term Senses (representatives terms) ACC%
51 Yellow Fever (1) Yellow Fever (infectious disease), (2) Yellow Fever Vaccine 95.9
52 MCC (1) MCC Gene, (2) Merkel Cell Carcinoma 96
53 Medullary (1) Adrenal Medulla, (2) Medulla Oblongata 96
54 Crown (1) Tooth Crown, (2) Dental Prosthetic Crown 97
55 Parotitis (1) Epidemic Parotitis, (2) Parotiditides 97.1
56 Cement (1) Dental Adhesive, (2) Dental Cementum 97.2
57 Semen (1) Plant Zygote, (2) Seminal Plasma 97.2
58 Schistosoma mansoni (1) Schistosoma mansoni (organism), (2) Schistosoma mansoni Infection 97.4
59 Moles (1) Family Talpidae, (2) Skin mole 97.7
60 DE (1) Delaware, (2) Germany 98
61 Platelet (1) Platelet Count, (2) Blood Platelet 98
62 Fe (1) Dietary Iron, (2) Iron (metallic element) 98.4
63 Nursing (1) Nursing, (2) Breast Feeding 98.4
64 Astragalus (1) Astragalus Bone, (2) Astragalus Plant 98.5
65 Brucella abortus (1) Bovine Brucellosis, (2) Brucella melitensis biovar abortus 98.5
66 Cold (1) Cold Temperature, (2) Chronic Obstructive Lung Disease, (3) Common Cold 98.5
67 Hip (1) Coxa, (2) Ischium 98.6
68 CIS (1) Carcinoma in Situ, (2) Commonwealth of Independent States 99.5
69 Ice (1) Methamphetamine, (2) Frozen Water, (3) Interleukin 1 Converting Enzyme 99.5
70 Pneumocystis (1) Pneumocystis Pneumonia, (2) Pneumocystis 99.5
71 SARS-associated coronavirus (1) Severe Acute Respiratory Syndrome (infection), (2) SARS Associated Coronavirus (virus) 99.5
72 Cell (1) Cell, (2) Cellular Phone 99.6
73 Polymyalgia Rheumatica (1) Forestier-Certonciny Syndrome, (2) Giant Cell Arteritis 99.6
74 TAT (1) Thematic Apperception Test, (2) TAT Gene, (3) TAT Protein 99.6
75 HIV (1) HIV Infection, (2) AIDS Virus 99.7
76 AA (1) Amino Acids, (2) Alcoholics Anonymous 99.9
77 Ala (1) L-Isomer Alanine, (2) Delta-Aminolevulinic Acid, (3) Alpha Linolenic Acid 99.9
78 Cardiac pacemaker (1) Sinoatrial Node, (2) Artificial Pacemaker 99.9
79 Cholera (1) Vibrio cholerae Infection, (2) Cholera Vaccines 99.9
80 Compliance (1) Index of Expandability, (2) Patient Adherence 99.9
81 Cortical (1) Kidney Cortex, (2) Cerebral Cortex, (3) Adrenal Cortex 99.9
82 DDD (1) Mitotane, (2) Dichlorodiphenyldichloroethane 99.9
83 eCG (1) Equine Gonadotropins, (2) Electrocardiography 99.9
84 Eels (1) Electron Energy Loss Spectroscopy, (2) Anguilliformes 99.9
85 Hemlock (1) Tsuga (coniferous tree), (2) Hemlock (poisonous plant) 99.9
86 Iris (1) Eye Iris, (2) Iris Plant 99.9
87 LABOR (1) Obstetric Labor, (2) Working 99.9
88 Lactation (1) Milk Secretion, (2) Breast Feeding 99.9
89 lymphogranulomatosis (1) Boeck’s Sarcoid, (2) Hodgkin’s Granuloma 99.9
90 MBP (1) Myelin Basic Protein, (2) Mannan Binding Protein 99.9
91 NBS (1) Neuroblastoma, (2) Seemanova Syndrome II 99.9
92 Projection (1) Forecasting, (2) Mental defence through projection 99.9
93 Radiation (1) Radiation, (2) Radiotherapy 99.9
94 Respiration (1) Respiration, (2) Cellular Respiration 99.9
95 Retinal (1) Vitamin A Aldehyde, (2) Retina 99.9
96 SARS (1) Severe Acute Respiratory Syndrome (infection), (2) SARS Associated Coronavirus (virus) 99.9
97 Sodium (1) Sodium (metallic element), (2) Dietary Sodium 99.9
98 Synapsis (1) Synapse, (2) Chromosome Pairing 99.9
99 THYMUS (1) Thymus Extract, (2) Thymus Gland, (3) Thymus Plant 99.9
100 Tolerance (1) Drug Tolerance, (2) Immune Tolerance 99.9
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# Ambiguous term Senses (representatives terms) ACC%
101 TPO (1) Thrombopoietin, (2) Iodotyrosine Deiodase 99.9
102 ADA (1) American Dental Association, (2) Adenosine Deaminase 100
103 ADH (1) Alcohol Dehydrogenase, (2) Arginine Vasopressin 100
104 ADP (1) Adenosine Diphosphate, (2) Automatic Data Processing 100
105 ALS (1) Antilymphocyte Serum, (2) Amyotrophic Lateral Sclerosis 100
106 ANA (1) American Nurses Association, (2) Antinuclear Antibody 100
107 BAT (1) Brown Adipose Tissue, (2) Chiroptera 100
108 BLM (1) Bloom Syndrome, (2) Bleomycin 100
109 BPD (1) Bronchopulmonary Dysplasia, (2) Borderline Personality Disorder 100
110 BSA (1) Body Surface Area, (2) Bovine Serum Albumin 100
111 BSE (1) Bovine Spongiform Encephalitis, (2) Breast Self-Examination 100
112 CAD (1) Computer Assisted Diagnosis, (2) Coronary Artery Disease 100
113 Callus (1) Bony Callus, (2) Skin Callus 100
114 CAM (1) Cell Adhesion Molecules, (2) Chorioallantoic Membrane 100
115 CCD (1) Central Core Disease, (2) Cleidocranial Dysostosis 100
116 CCl4 (1) CCL4 Chemokine, (2) Carbon Tetrachloride 100
117 CDA (1) Cladribine, (2) Congenital Dyserythropoietic Anemia 100
118 CDR (1) Deoxycytidine, (2) Immunoglobulin Hypervariable Region 100
119 Cilia (1) Cilium, (2) Eyelashes 100
120 CLS (1) Coffin-Lowry Syndrome, (2) Capillary Leak Syndrome 100
121 CNS (1) Clinical Nurse Specialist, (2) Central Nervous System 100
122 Cortex (1) Cerebral Cortex, (2) Adrenal Cortex Disease 100
123 CP (1) Cerebral Palsy, (2) Corynebacterium acnes, (2) Cleft Palate 100
124 CPDD (1) Calcium Pyrophosphate Deposition Disease, (2) cis-Diamminedichloroplatinum 100
125 Crack (1) Crack Cocaine, (2) Tooth Fracture 100
126 CRF (1) Chronic Renal Failure, (2) Corticotropin Releasing Hormone 100
127 cRNA (1) Nurse Anesthetist, (2) Complementary RNA 100
128 CTX (1) Cerebral Cholesterinoses, (2) Cyclophosphamide 100
129 DAT (1) Alzheimer’s Disease, (2) DAT Dopamine Transporter 100
130 DBA (1) Diamond Blackfan Anemia, (2) DBA Mice 100
131 dC (1) District of Columbia, (2) Cytosine Deoxyriboside 100
132 DDS (1) Diaminodiphenylsulfone, (2) Denys Drash Syndrome, (3) Drug Delivery System 100
133 DI (1) Diabetes Insipidus, (2) Ploidy 100
134 DON (1) Nurse Administrator, (2) Diazooxonorleucine 100
135 drinking (1) Drinking (liquid consumption), (2) Alcohol Drinking 100
136 EM (1) Electron Microscopy, (2) Estramustine 100
137 EMS (1) Emergency Medical Service, (2) Ethylmethane Sulfonate 100
138 Epi (1) Epinephrine, (2) Epirubicin 100
139 ERP (1) Evoked Potential, (2) Endoscopic Retrograde Cholangiopancreatography 100
140 ERUPTION (1) Skin Rash, (2) Tooth Eruption 100
141 FA (1) Folic Acid, (2) Fanconi Anemia 100
142 Fish (1) Fishes, (2) Fluorescent in Situ Hybridization 100
143 Follicle (1) Hair Follicle, (2) Ovarian Follicle 100
144 Follicles (1) Hair Follicle, (2) Ovarian Follicle 100
145 FTC (1) United States Federal Trade Commission, (2) Follicular Thyroid Carcinoma 100
146 GAG (1) gag Gene, (2) Glycosaminoglycans 100
147 Ganglion (1) Ganglia, (2) Ganglionic Cyst 100
148 Gas (1) Gases, (2) Flatulence 100
149 HCl (1) Hairy Cell Leukemia, (2) Hydrochloric Acid 100
150 HPS (1) Hantavirus Infection, (2) Hermanski Pudlak Syndrome 100
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# Ambiguous term Senses (representatives terms) ACC%
151 HR (1) Croatia, (2) Heart Rate 100
152 IA (1) Iowa, (2) Intra-Arterial Injection 100
153 INDO (1) Indonesia, (2) Indomethacin 100
154 IP (1) Immune Precipitation, (2) Bloch-Siemens Syndrome 100
155 ITP (1) Inosine Triphosphate, (2) Autoimmune Thrombocytopenia 100
156 JP (1) Aggressive Periodontitis, (2) Japan 100
157 Language (1) Programming Language, (2) Natural Language 100
158 Lawsonia (1) Lawsonia Plant, (2) Lawsonia Bacteria 100
159 MHC (1) Myosin Heavy Chain, (2) Histocompatibility Complex 100
160 MRS (1) Melkersson-Rosenthal Syndrome, (2) Magnetic Resonance Spectroscopies 100
161 NM (1) Nitrogen Mustard, (2) New Mexico 100
162 NPC (1) Niemann Pick’s Disease, (2) Nuclear Pore 100
163 OCD (1) Obsessive Compulsive Disorder, (2) Osteochondritis Dissecans 100
164 OH (1) Hydroxyl Radical, (2) Ohio 100
165 Orf (1) Protein Coding Region, (2) Orf Virus Infection 100
166 ORI (1) Origin of Replication, (2) Office of Research Integrity 100
167 PAC (1) Premature Atrial Contraction, (2) P1-Derived Artificial Chromosome 100
168 PAF (1) Progressive Autonomic Failure, (2) Platelet Activating Factor 100
169 PCA (1) Principal Component Analyses, (2) Posterior Cerebral Artery,(3) Patient Controlled Analgesia, 100

(3) Patient Controlled Analgesia, (4) Passive Cutaneous Anaphylaxis, (5) p-Chloroamphetamine
170 PCB (1) Polychlorinated Biphenyls, (2) Procarbazine 100
171 PCD (1) Apoptosis, (2) Kartagener’s Syndrome 100
172 PCP (1) Pneumocystis carinii Pneumonia, (2) Pentachlorophenol, (3) Phencyclidine 100
173 PEP (1) Phosphoenolpyruvate, (2) Peplomycin 100
174 PHA (1) Kidney Bean Lectins, (2) Pelger Huet Anomaly 100
175 Pharmaceutical (1) Dosage Form, (2) Pharmacy 100
176 pI (1) Isoelectric Point, (2) Mitotic Index 100
177 Plague (1) Yersinia pestis Infection, (2) Plague Vaccine 100
178 Plaque (1) Senile Plaque, (2) Dental Plaque 100
179 POL (1) pol Gene, (2) Poland 100
180 PR (1) Puerto Rico, (2) Progesterone Receptor 100
181 PVC (1) Premature Ventricular Complex, (2) Polyvinyl Chloride 100
182 RA (1) Refractory Anemia, (2) Radium, (3) Rheumatoid Arthritis 100
183 RB (1) Retinoblastoma, (2) Rubidium 100
184 Root (1) Plant Root, (2) Tooth Root 100
185 RSV (1) Rous sarcoma virus, (2) Respiratory Syncytial Virus 100
186 SCD (1) Sudden Cardiac Death, (2) Sickle Cell Anemia 100
187 sex factor (1) Sex Factor (in studies), (2) Bacterial Sex Factor 100
188 SLS (1) Sjogren Larsson Syndrome, (2) Sodium Lauryl Sulfate 100
189 SPR (1) Substance P Receptor, (2) Surface Plasmon Resonance 100
190 SS (1) Synovial Sarcoma, (2) Sweet’s Syndrome 100
191 Sterilization (1) Reproductive Sterilization, (2) Sterilization (disinfectant) 100
192 Tax (1) Paclitaxel, (2) Taxes 100
193 TLC (1) Total Lung Capacity, (2) Thin Layer Chromatography 100
194 TMP (1) Trimethoprim, (2) Thymidylic Acid 100
195 TNC (1) Tenascin-C, (2) Troponin-C 100
196 TNT (1) Troponin-T, (2) Trinitrotoluene 100
197 TPA (1) Phorbol Myristate Acetate, (2) Tissue Plasminogen Activator 100
198 TRF (1) Thyrotropin Releasing Factor, (2) T-Cell Replacing Factor 100
199 TSF (1) Thrombocytopoiesis Stimulating Factor, (2) T-Cell Stimulating Factor 100
200 TYR (1) Tyrosine, (2) Tyrosinase 100
201 US (1) United States, (2) Ultrasonography 100
202 Ventricles (1) Heart Ventricle, (2) Cerebral Ventricle 100
203 Wasp (1) WASP Protein, (2) Wasp (animal) 100
Average 96.82
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