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Abstract

In this thesis we show how to locate the event horizons for five dimensional (5D)

stationary black holes. We present the Cartan algorithm in an arbitrary number

of dimensions and apply it in 4D and 5D. To facilitate the algorithm in 5D, we

classifiy the Weyl tensor using its boost weight decomposition. We also consider the

Lorentz frame transformations in 5D. We present the algorithm explicitly for the 4D

Kerr metric. For 5D, computations by hand are not feasible. Thus we show how

to perform the algorithm on Maple 2016 and illustrate it with four 5D examples:

the singly rotating Myers-Perry metric, the Kerr-NUTT-(Anti)-de Sitter metric, the

Reissner-Nordstrom-(Anti)-de Sitter metric, and the singly rotating static black ring.
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Chapter 1

Introduction

One of the most important questions in General Relativity is the following: given a

black hole (with mass, angular momentum, electric charge, etc.), how do you find

the event horizon? Sometimes knowing the metric of the black hole is not enough

to identify the event horizon. One way to locate it is to calculate a set of scalar

polynomial invariants (SPI) that vanish on the horizon. However, calculating such

invariants can be computationally challenging and the result can be a long expression

that is difficult to study.

Instead, one can use Cartan invariants. These can be found by applying the Car-

tan algorithm which reduces the Riemann tensor and its covariant derivatives into a

much simpler form that can then be used to locate event horizons. This has been

done successfully by the author and colleagues in [2].

In addition, because of advancements in higher dimensional theories of gravity

(such as String Theory), it is now becoming more important to be able to find event

horizons for black holes in dimensions greater than four (4D). Fortunately, the Cartan

algorithm works for spacetimes of any dimension [3] and there are tools such as boost

weight decomposition to extend the techniques used in 4D for finding event horizons

in higher dimensional black holes. We show in this thesis how to do this with the aid

of Maple 2016.

The focus of this thesis is stationary black holes in five dimensions (5D). We will

first review relevant background material. Chapter 2 gives a brief overview of the

material in differential geometry needed for this thesis. Chapter 3 reviews space-

time equivalence, the Cartan algorithm, and the classification of the Weyl tensor in

1
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5D. Then, we will briefly go over how the algorithm is done on Maple, as demon-

strated with four examples: the Myers-Perry metric, the Kerr-NUTT-Ads metric,

the Reissner-Nordstrom-Ads metric, and the rotating black ring.



Chapter 2

Review of Differential Geometry

2.1 Manifolds and Vectors

Before we begin, note that we will use the projection maps πk : Rm → R for

k = 1, . . . ,m. We will also make extensive use of the Einstein summation convention.

Therefore, aiT ji bj denotes
∑n

i=1

∑n
j=1 a

iT ji bj, where n is the dimension of the manifold

(defined next).

Definition 2.1.1. A topological spaceM is a n-dimensional differentiable man-

ifold if there exists a family of pairs {(Ui, φi)} that satisfy the following:

1. Ui is an open cover of M .

2. φi : Ui → Rn is a homeomorphic map.

3. ∀(Ui, φi), (Uj, φj) with Ui∩Uj ̸= ∅, the compositon map φi◦φ−1
j : Ui∩Uj → Ui∩Uj

and its inverse φj ◦ φ−1
i : Ui ∩ Uj → Ui ∩ Uj are C1.

We call the family {(Ui, φi)} an atlas of M and each pair (Ui, φi) a coordinate

system (or a coordinate chart). If, for k = 1, . . . , n, πk : Rn → R is a projection

map, then the map xki = πk ◦ φi is called a coordinate.

In this text, we will refer to a differentiable manifold as simply a manifold. Also,

when we pick a single coordinate system, we will drop the subscript index and write

simply (U, φ) and the corresponding coordinates as {xk}.

Definition 2.1.2. Let (a, b) be an open inteval with a < 0 < b and let M be a

n-dimensional manifold.. A smooth curve on M is a map λ : (a, b) → M with

the property that for any coordinate system (U, φ), the map φi ◦ λ : (a, b) → Rn is

differentiable in all orders.

3
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Definition 2.1.3. Let M be a n-dimensional manifold. A differentiable function

on M is a map f :M → R with the property that for any coordimate system (U, φ),

the map f ◦φ−1 : Rn → R is differentiable in all orders. Denote C∞(M) to be the set

of differentiable functions on M .

Definition 2.1.4. Let M be a n-dimensional manifold and p ∈ M . A map Xp :

C∞(M)→ R is called a derivation at p if it satisfies the following:

1. ∀a ∈ R,∀f, g ∈ C∞(M) =⇒ Xp[af + g] = aXp[f ] +Xp[g] (Linearity)

2. ∀f, g ∈ C∞(M), Xp[fg] = Xp[f ]g(p) + f(p)Xp[g] (Leibniz Rule)

One can show that for any derivation at p, Xp, and any constant a ∈ R (which

can be regarded as an element in C∞(M) by a(p) = a), we have Xp[a] = 0. Note

that if (U, φ) is a coordinate system of M with p ∈ U and {xi} are the corresponding
coordinates, then we can define the coordinate derivations at p, {( ∂

∂xi
)p}, by:(

∂

∂xi

)
p

[f ] =
∂

∂πi
(f ◦ φ−1)|φ(p) (2.1)

Note that the function f ◦ φ−1 maps Rn to R so the right-hand side of (2.1) is just

a partial derivative. Also each of the coordinates {xi} can be regarded as smooth

functions on the subset U ⊂ M . One can show that ( ∂
∂xi

)p[x
j] = δji . If there is no

confusion, we will use the notation (∂i)p to mean ( ∂
∂xi

)p.

Theorem 2.1.5. Let M be a n-dimensional manifold and p ∈M . (A) The set TpM

of derivations at p, called the tangent space at p, is a vector space with the following

definitions:

1. Addition: ∀Xp, Yp ∈ TpM,∀f ∈ C∞(M) =⇒ (Xp + Yp)[f ] = Xp[f ] + Yp[f ]

2. Scalar Multiplication: ∀Xp ∈ TpM, ∀a ∈ R∀f ∈ C∞(M) =⇒ (aXp)[f ] =

a(Xp[f ])

3. Zero Derivation at p: Define 0p ∈ TpM with the property that ∀f ∈ C∞(M) =⇒
0p[f ] = 0

4. Inverses: ∀Xp ∈ TpM , define −Xp ∈ TpM with the property that ∀f ∈ C∞(M) =⇒
(−Xp)[f ] = −(Xp[f ])
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(B) If (U, φ) is a coordinate system of M with p ∈ U , then {(∂i)p} is a basis for TpM .

The proof of (A) is straightforward so we will only prove (B).

Proof. First check for linear independence. Suppose that 0p = ai(∂i)p for some con-

stants ai ∈ R, i = 1, . . . , n. Then 0 = 0p[x
j] = ai(∂i)p[x

j] = aiδji = aj. Thus {(∂i)p} is
linearly independent.

Now we must show that {(∂i)p} spans TpM . LetXp ∈ TpM and define the numbers

X i = Xp[x
i] for i = 1, . . . , n. Claim: Xp = X i(∂i)p. Recall from advanced calculus

that if F : Rn → R is C∞ and a ∈ Rn then ∃Hi : Rn → R which are C∞ ∀i = 1, . . . , n

such that:

Hi(a) =
∂F

∂πi
|a (2.2)

and, for b ∈ Rn:

F (b) = F (a) + (πi(b)− πi(a))Hi(b) (2.3)

Let f ∈ C∞(M). Apply (2.2) to the map F = f ◦ φ−1 and let a = φ(p) and q ∈ U
with b = φ(q):

(f ◦ φ−1)(b) = (f ◦ φ−1)(a) + (πi(b)− πi(a))Hi(b) (2.4)

=⇒ f(q) = f(p) + (xi(q)− xi(p))Hi(φ(q)) (2.5)

Apply Xp to (2.5) and use the properties of derivations (we are fixing p) we get:

Xp[f ] = Xp[f(p)] +Xp[x
i(q)− xi(p)](Hi ◦ φ)|q=p (2.6)

+ (xi(q)− xi(p))|q=pXp[Hi ◦ φ] (2.7)

f(p) is a constant so Xp[f(p)] = 0. Also (xi(q)−xi(p))|q=p = xi(p)−xi(p) = 0. Thus:

Xp[f ] = Xp[x
i(q)− xi(p)](Hi ◦ φ)|q=p

= (Xp[x
i]−Xp[x

i(p)])Hi(φ(p))

= (X i − 0)Hi(a)

= X i∂(f ◦ φ−1)

∂πi
|φ(p) by (2.2)

Xp[f ] = X i(∂i)p[f ] by (2.1)

Thus Xp = X i(∂i)p as claimed. Therefore {(∂i)p} spans TpM .
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Smooth curves on M can be used to define new derivations at p.

Definition 2.1.6. Let M be a n-dimensional manifold, p ∈ M , and λ be a smooth

curve on M with λ(0) = p. The tangent vector on M at p is the map Dλ,p :

C∞(M)→ R defined by:

Dλ,p[f ] =
d(f(λ(t)))

dt
|t=0 (2.8)

This map is a derivation at p.

The following theorem shows that tangent vectors at p and derivations at p are

the same thing.

Theorem 2.1.7. Let M be a n-dimensional manifold and p ∈ M . ∀Xp ∈ TpM,∃ a

smooth curve, λ, such that λ(0) = p and Dλ,p = Xp.

Proof. Let (U, φ) be a coordinate system of M with p ∈ U and {xi} be the cor-

responding coordinates. Let a = (a1, . . . , an) = φ(p). Define X i = Xp[x
i]. Then

Xp = X i(∂i)p. Since φ(U) is open in Rn, ∃ϵ > 0 such that the line l : (−ϵ, ϵ)→ φ(U)

defined by l(t) = (X1, . . . , Xn)t + a. Claim: The smooth curve we are looking for is

λ = φ−1 ◦ l.
Note that λ(0) = φ−1(l(0)) = φ−1(0 + a) = φ−1(a) = p. Now let f ∈ C∞(M).

Dλ,p[f ] =
d(f(λ(t)))

dt
|t=0

=
d(f(φ−1(l(t))))

dt
|t=0

=
∂(f ◦ φ−1)

∂πi
|φ(p)

dπi(l(t))

dt
|t=0

= (∂i)p[f ]
d(X it)

dt
|t=0

Dλ,p[f ] = (∂i)p[f ]X
i

Thus Dλ,p = X i(∂i)p = Xp.

2.2 Vector Fields and One-Forms

Definition 2.2.1. Let M be a n-dimensional manifold. A smooth vector field (or

derivation) is a map X : C∞(M) → C∞(M) defined by p ∈ M, f ∈ C∞(M) =⇒
(X[f ])(p) = Xp[f ] where Xp ∈ TpM .
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Definition 2.2.2. If O ∈ M is any open set, we define the set X(O) of all smooth

vector fields on O.

Given a coordinate chart (U, φ), we can define, for i = 1, . . . , n, ∂
∂xi

= ∂i ∈ X(O)

by (∂i[f ])(p) = (∂i)p[f ] where p ∈ M and f ∈ C∞(M). Show that ∂i[x
j] = δji If I is

an open interval with 0 ∈ I and λ : I → M is a smooth curve on M with λ(0) = p,

then we can define the vector field Dλ ∈ X(λ(I)) by (Dλ[f ])(p) = Dλ,p[f ].

Theorem 2.2.3. Let M be a n-dimensional manifold and O ∈M open set. X(O) is

a C∞(M)-module with the following definitions:

1. Addition: X, Y ∈ X(O), f ∈ C∞(M) =⇒ (X + Y )[f ] = X[f ] + Y [f ]

2. Function Multiplication: X ∈ X(O), f, g ∈ C∞(M) =⇒ (gX)[f ] = gX[f ]

3. Zero Field: 0 ∈ X(O) def by 0[f ] = 0 ∀f ∈ C∞(M)

4. Inverse Field: ∀X ∈ X(O), def −X ∈ X(O) by (−X)[f ] = −(X[f ]) ∀f ∈
C∞(M)

Let X : p ↦→ Xp. How do we know if X is a smooth vector field? Take a coordinate

system (U, φ) with coordinates {xi}. Then ∀p ∈ M , we know ∃X1
p , . . . , X

n
p ∈ R such

that Xp = X i
p(∂i)p. We can define the maps X i : p ↦→ X i

p so that X = X i∂i. Thus if

X1, . . . , Xn ∈ C∞(U), then X ∈ X(U). If this is true for any coordinate chart, then

X ∈ X(M).

Definition 2.2.4. Given X, Y ∈ X(M), the Lie bracket is a map [X, Y ] : C∞(M)→
C∞(M) defined by f ∈ C∞(M) =⇒ [X, Y ][f ] = X[Y [f ]]− Y [X[f ]].

Proposition 2.2.5. [X, Y ] ∈ X(M) for all X, Y ∈ X(M) and satisfies:

1. X, Y, Z ∈ X(M), a ∈ R =⇒ [aX + Y, Z] = a[X,Z] + [Y, Z]

2. X, Y ∈ X(M) =⇒ [X, Y ] = −[Y,X]

3. X, Y, Z ∈ X(M) =⇒ [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0
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If X = X i∂i and Y = Y i∂i, then [X, Y ]i = Xj∂j[Y
i]− Y j∂j[X

i].

Every vector space V has a corresponding dual space V ∗. For p ∈ M , we define

T ∗
pM = (TpM)∗ and call it the cotangent space at p. If (U, φ) is a coordinate system

with p ∈ U , we can define the dual basis {(dxi)p} of {(∂i)p}. Thus (dxi)p((∂j)p) = δij.

Definition 2.2.6. Let M be a n-dimensional manifold. A smooth 1-form is a map

ω : X(M) → C∞(M) defined by p ∈ M,X ∈ X(M) =⇒ (ω(X))(p) = ωp(Xp) where

ωp ∈ T ∗
pM .

If (U, φ) is any chart with coordinates {xi}, any smooth 1-form ω can be written

as ω = ωidx
i where ω1, . . . , ωn ∈ C∞(M). We denote Ω1(M) to be the set of smooth

1-forms. Like X(M), Ω1(M) is a C∞(M)-module.

2.3 Tensor Fields

A review of tensors of vector spaces of finite dimension is presented in appendix A.

Since tangent spaces are vector spaces of finite dimension, we can define, for a n-

dimensional manifold M and a point p ∈ M , the valence (r, s) tensor at p to be

an element of T(r,s) (TpM). This leads naturally to the definition of a tensor field.

Definition 2.3.1. Let M be a n-dimensional manifold. A smooth valence (r, s)

tensor field is a map T :
∏r

i=0 Ω
1(M) ×

∏s
i=0X(M) → C∞(M) defined by p ∈

M,ω1, . . . , ωr ∈ Ω1(M), X1, . . . , Xs ∈ X(M) =⇒
(T (ω1, . . . , ωr, X1, . . . , Xs))(p) = Tp(ω1p, . . . , ωrp, X1p, . . . , Xsp) where Tp ∈ T(r,s) (TpM).

The set of smooth valence (r, s) tensor fields is denoted by T(r,s) (M) and we also let

T(0,0) (M) = C∞(M).

We can naturally extend all of the tensor operations defined in appendix A in a

natural way. The only major difference is that scalar multiplication of tensors at a

point p ∈M now becomes function multiplication on tensor fields. From now on, we

will refer to tensor fields as simply tensors, unless there is the possibility of confusion.

Given a coordinate chart (U, φ) with coordinates {xi}, a tensor can be written in

the form T = T i1i2...ir j1j2...js∂i1 ⊗ · · · ⊗ ∂ir ⊗ dxj1 ⊗ · · · ⊗ dxjs where T i1i2...ir j1j2...js ∈
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C∞(M). If {yi} is another coordinate system, then:

T k1k2...kr l1l2...ls = T i1i2...ir j1j2...js
∂yk1

∂xi1
. . .

∂ykr

∂xir
∂xj1

∂yl1
. . .

∂xjs

∂yls

2.4 Differential Forms

There is a special subset of the valence (0, s) tensors. We call these differential forms.

Definition 2.4.1. A k-form is a valence (0, k) tensor T ∈ T(0,k) (M) such that ÃT =

T . The set of k-forms is denoted by Ωk(M).

Note that 0-forms are just elements of C∞(M) and 1-forms defined above are

the same as the 1-forms defined in section 2.2. Consider this as an extension of the

definition of a 1-form.

Definition 2.4.2. If ω ∈ Ωk(M), γ ∈ Ωl(M), we define wedge product (or exte-

rior product) of ω and γ to be ω ∧ γ = Ã(ω ⊗ γ) ∈ Ωk+l(m).

Proposition 2.4.3. For differential forms ω ∈ Ωp(M), β ∈ Ωq(M), γ ∈ Ωr(M) and

f ∈ C∞(M):

1. (fω + β) ∧ γ = (ω ∧ γ)f + β ∧ γ.

2. ω ∧ γ = (−1)pqγ ∧ ω (Wedge products are anti-commutative)

3. ω ∧ ω = 0. (A consequence of property 2)

4. (ω ∧ β) ∧ γ = ω ∧ (β ∧ γ) (Wedge products are associative)

Property 4 of proposition 2.4.3 gives us the freedom to write the wedge product

of multiple differential forms ω1, . . . , ωn as ω1 ∧ ω2 ∧ · · · ∧ ωn without parentheses..

Proposition 2.4.4. If M has dimension n, ω ∈ Ωk(M) can be written in the form

ω = ω [i1...ik]dx
i1 ∧ · · · ∧ dxik for 0 ≤ k ≤ n and i1 < i2 < · · · < ik. Thus Ωk(M) has

the dimension
(
n
k

)
and no non-zero k-forms exist when k > n.

Definition 2.4.5. An exterior derivative is a map d : Ωk(M) → Ωk+1(M) that

satisfies the following:
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1. If f ∈ C∞(M), then df is defined by X ∈ X(M) =⇒ df(X) = X[f ].

2. ω ∈ Ωk(M) =⇒ d(dω) = 0

3. ω ∈ Ωk(M), γ ∈ Ωk(M) =⇒ d(ω + γ) = dω + dγ

4. ω ∈ Ωk(M), γ ∈ Ωl(M) =⇒ d(ω ∧ γ) = dω ∧ γ + (−1)klω ∧ dγ

Proposition 2.4.6. The exterior derivative is unique. Also if ω = ω [i1...ik]dx
i1 ∧· · ·∧

dxik , then dω =
∂ω [i1...ik]

∂xα
dxα ∧ dxi1 ∧ · · · ∧ dxik

Definition 2.4.7. The interior product is a map ι : X(M)× Ωp(M) → Ωp−1(M)

defined by ω ∈ Ωp(M), Y,X1, . . . , Xp−1 ∈ X(M) =⇒
(ιY ω)(X1, . . . , Xp−1) = ω(Y,X1, . . . , Xp−1).

2.5 Maps between Manifolds

For this section, assume thatM is am dimensional manifold and N is a n dimensional

manifold. Also let h :M → N .

Definition 2.5.1. h is C∞ if for any coordinate charts (U, φ) on M and (V, ψ) on

N , the map H = ψ ◦ h ◦ φ−1 : Rm → Rn is C∞. If in addition h−1 exists and is also

C∞, then h is a diffeomorphism.

For the next 3 definitions, assume that h is C∞.

Definition 2.5.2. If f ∈ C∞(N), then h∗f = f ◦ h ∈ C∞(M). This new map

h∗ : C∞(N) → C∞(M) is called the pullback. If h is a diffeomorphism, h∗ =

(h−1)∗ = (h∗)−1 exists and is called the pushfoward.

Definition 2.5.3. If X ∈ X(M), define h∗X ∈ X(N) by f ∈ C∞(N) =⇒ (h∗X)[f ] =

X[h∗f ]. This new map h∗ : X(M) → X(N) is called the pushfoward (of vector

fields). If h is a diffeomorphism, h∗ = (h−1)∗ = (h∗)
−1 exists and is called the pull-

back (of vector fields).

Definition 2.5.4. If ω ∈ Ω1(N), define h∗ω ∈ Ω1(M) by X ∈ X(M) =⇒ (h∗ω)(X) =

ω(h∗X). This new map h∗ : Ω1(N)→ Ω1(M) is called the pullback (of 1-forms). If

h is a diffeomorphism, h∗ = (h−1)∗ = (h∗)−1 exists and is called the pushfoward (of

1-forms).
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The definitions of pullback and pushfoward can only be extended to arbitrary

tensors if h is a diffeomorphism.

Let {xi} be coordinates of M and {yi} be coordinates of N . Given a C∞ map

h : M → N , how do you relate the coordinate basis ∂
∂xi

to ∂
∂yi

? Define hi = yi ◦ h ∈
C∞(M). Then

(
h∗

∂
∂xi

)
[yj] = ∂

∂xi
[h∗yj] = ∂

∂xi
[yj ◦ h] = ∂hj

∂xi
. Thus:

h∗
∂

∂xi
=
∂hj

∂xi
∂

∂yj

The notation ∂yj

∂xi
is often used to mean ∂hj

∂xi
. Similarly:

h∗dyi =
∂yi

∂xj
dxj

Proposition 2.5.5. Let S, T be tensors, f ∈ C∞(M), and h be a diffeomorpism.

The following are true when well-defined:

1. h∗(fS + T ) = (h∗f)(h∗S) + h∗T

2. h∗(S ⊗ T ) = h∗S ⊗ h∗T

3. h∗(C(i,j) (T )) = C(i,j) (h∗T )

Similar rules apply to h∗ as well.

2.6 Flows and Lie Derivatives

Definition 2.6.1. Let p ∈ M and X ∈ X(M). An integral curve of X at p is a

smooth curve λ : IXp → M (IXp is an unknown open inteval with 0 ∈ IXp ) such that

λ(0) = p and Dλ,λ(t) = Xλ(t),∀t ∈ IXp .

Given coordinates {xi} of M , how do we find λ? Let X = X i∂i and define

X i(t) = X i(λ(t)). Also let pi = xi(p) and λi = xi ◦ λ. Thus Dλ,λ(t) = Xλ(t) =⇒
dλi

dt
(t) = X i(t). Thus we must solve the following system of n differential equations:⎧⎨⎩

dλi

dt
(t) = X i(t)

λi(0) = pi
for i = 1, . . . , n (2.9)

For the following, let IX =
⋂
p∈M IXp . Note 0 ∈ IX .
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Definition 2.6.2. Let X ∈ X(M) and t ∈ IX . The flow of X by t is a C∞ map

φXt : M → M defined by φXt (p) = λ(t) where λ is the integral curve of X at p and

given by the solution of (2.9).

Proposition 2.6.3. φXt is a diffeomorphism ∀t ∈ IX and:

1. φX0 = id

2. φXs ◦ φXt = φXs+t

3. φX−t = (φXt )
−1

We call {φXt }t∈IX a one parameter group of diffeomorphisms.

Definition 2.6.4. Let X ∈ X(M). The Lie derivative along X is a map LX :

T(r,s) (M)→ T(r,s) (M) defined by:

T ∈ T(r,s) (M) =⇒ LXT =
d

dt |t=0

(
φX−t
)
∗ T

Proposition 2.6.5. Let X ∈ X(M) and S, T be tensors of any order. The Lie

derivative satisfies the following:

1. LX(S + T ) = LX(S) + LX(T )

2. LX(S ⊗ T ) = LX(S)⊗ T + S ⊗ LX(T )

3. LX(C(i,j)(T )) = C(i,j)(LX(T ))

4. h∗(LXT ) = Lh∗X(h∗T ) for a diffeomorphism h

Some special cases:

1. For a function f ∈ C∞(M), LX(f) = X[f ].

2. For vectors X, Y ∈ X(M), LX(Y ) = [X, Y ].

3. If ω ∈ Ωp(M) and X ∈ X(M) then LXω = d(ιXω) + ιX(dω). This is known as

Cartan’s formula.
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2.7 Brief overview of Lie Groups

Definition 2.7.1. A Lie Group is a differentiable manifold G with a binary map

G× G → G, (g1, g2) ↦→ g1g2, a element e ∈ G, and a map −1 : G → G, g ↦→ g−1 that

satisfy the following:

1. (G, ·, e,−1 ) is a group where e is the identity element and −1 denotes the group

inverse.

2. For a fixed g ∈ G, the map p ↦→ pg is a diffeomorphism.

3. For a fixed g ∈ G, the map p ↦→ gp is a diffeomorphism.

4. The map −1 is a diffeomorphism.

Definition 2.7.2. Let M be a n-dimensional manifold and G be a Lie group. An

action of G on M is a map σ : G×M →M that satisfies:

1. p ∈M =⇒ σ(e, p) = p

2. p ∈M , g1, g2 ∈ G =⇒ σ(g1, σ(g2, p)) = σ(g1g2, p)

Definition 2.7.3. Let M be a n-dimensional manifold, G be a Lie group, and σ be an

action of G on M . If p ∈ M , define G(p) = {q ∈ M |∃g ∈ G such that σ(g, p) = q},
called the orbit of p by σ.

Definition 2.7.4. Let M be a n-dimensional manifold, G be a Lie group, and σ be

an action of G on M . If p ∈ M , define H(p) = {g ∈ G|σ(g, p) = p}, called the

isotropy group of p.

Theorem 2.7.5. Let M be a n-dimensional manifold, G be a Lie group, and σ be an

action of G on M . ∀p ∈M , H(p) is a subgroup of G and is a Lie group.

For the special case that G = R, we can define the following:

Definition 2.7.6. Let M be a n-dimensional manifold and σ be a group action of R
on M . The infinitesimal generator of σ is a vector field Xσ ∈ X(M) defined by:

f ∈ C∞(M), p ∈M =⇒ Xσ[f ](p) =
df(σ(t, p))

dt
|t=0 (2.10)

Note that in a local coordinate system {xa} and for ϵ > 0, σa(ϵ, p) = pa + ϵ(Xσ
p )

a +

O(ϵ2). Thus (Xσ
p )

a = dσa(ϵ,p)
dϵ
|ϵ=0.
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2.7.1 Examples

Rotations in R2: Trivially, the real numbers, R, is a Lie group with the addition op-

eration. We can define the rotation about the origin to be the map R : R×R2 → R2

by Rθ(a, b) = (a cos(θ)− b sin(θ), b cos(θ) + a sin(θ)). It is easy to show that R is an

action on R2 by R. The origin is unaffected by any rotation and thus H((0, 0)) = R.
For any other point (a, b) ̸= (0, 0), we have H((a, b)) = {2πn|n ∈ Z}. Orbits are

circles: G((a, b)) = {(c, d) ∈ R2|c2 + d2 = a2 + b2}

Translation in Rn by two fixed elements: The set R2 is a Lie group with the addition

operation (a, b) + (c, d) = (a+ c, b+ d). Pick two points p, q ∈ Rn. We can define the

translation map T : R2 × Rn → Rn by T(a,b)(x) = x + ap + bq. This map is a group

action on Rn by R2. For x ∈ Rn, the orbit G(x) is the 2D hyperplane spanned by

the elements p and q shifted by x. The isotropy group is justH(x) = {(0, 0)},∀x ∈ Rn.

Flows: For a n-dimensional manifold M and a vector field X ∈ X(M), the flow of

X can be regarded as a group action on M by R provided that IX = R. Given a

point p ∈M , the orbit G(p) is the integral curve of X at p and thus can be found by

solving (2.9). The isotropy groups will depend on the nature of X.

General Linear Groups: We define the general linear group GL(n,R) to be the set

of n× n matrices whose elements are real numbers and have a non-zero determinant

(i.e. they are invertible). It can be shown that this is a Lie group with respect to

matrix multiplication. Here are some special subgroups of GL(n,R) that are also Lie

groups:

1. Orthonormal Group O(n) = {M ∈ GL(n,R)|MTM =MMT = In}

2. Special Linear Group SL(n,R) = {M ∈ GL(n,R)|det(M) = 1}

3. Special Orthonormal Group SO(n) = O(n) ∩ SL(n,R)

We can define the group action σ : GL(n,R)×Rn → Rn by the matrix-vector multi-

plication in Linear Algebra: σ(M, p) =Mp.
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Lorentz and Poincaré Groups: This is similar to general linear groups and will be

discussed in more depth in section 3.3.

2.8 Covariant Derivatives and the Riemann Curvature Tensor

Before we continue, let us adopt a common notation for partial differentiation. Given

a coordinate system {xi} of a n-dimensional manifold M , we will now denote the

action of ∂
∂xi

with a comma followed by the index. For example, if f ∈ C∞(M), then
∂f
∂xi

= f,i and if T abdcef is some tensor then
∂Tabdc

ef

∂xi
= T abdcef,i

We would like to be able to ’differentiate’ a tensor. This can be done in Rn in a

natural way, but not for a general manifold. To see why let us look at vectors as an

example. Let X, Y ∈ X(M). Say we want to ’differentiate’ a vector field Y at p ∈M
in the direction of X. Pick a small number ϵ > 0 and let q(ϵ) ∈ M be another point

ϵ away from p in the direction of X. To calculate the ’derivative’ of Y at p along X,

we write the following:

lim
ϵ→0

Yq(ϵ) − Yp
ϵ

We can see that this expression makes no sense. The vectors Yp and Yq(ϵ) are in two

different tangent spaces.

The only way to define a ’derivative’ operator on a tensor in any manifold is to

add some extra structure to the manifold.

Definition 2.8.1. Let M be a n-dimensional manifold. An affine connection

(or connection) is a map ∇ : X(M) × T(r,s) (M) → T(r,s) (M) with the following

properties:

1. X ∈ X(M), f ∈ C∞(M) =⇒ ∇Xf = X[f ]

2. X, Y ∈ X(M), f ∈ C∞(M), T ∈ T(r,s) (M) =⇒ ∇X+fY T = ∇XT + f∇Y T

3. X ∈ X(M), S ∈ T(r,s) (M) , T ∈ T(r′,s′) (M) =⇒ ∇X(S ⊗ T ) = (∇XS) ⊗ T +

S ⊗ (∇XT )

4. X ∈ X(M), T ∈ T(r,s) (M) , i = 1, . . . r, j = 1, . . . , s =⇒ ∇XC(i,j) (T ) =

C(i,j) (∇XT )
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We call ∇XT the covariant derivative of T along X with respect to ∇.

Proposition 2.8.2. Let M be a n-dimensional manifold and ∇ be a connection.

1. X ∈ X(M), f ∈ C∞(M), T ∈ T(r,s) (M) =⇒ ∇X(fT ) = X[f ]∇XT + f∇XT

2. X, Y ∈ X(M), ω ∈ Ω1(M) =⇒ X[ω(Y )] = (∇Xω)(Y ) + ω(∇XY )

Let {xi} be a coordinate system of M . Then there exists a set of functions

Γkij ∈ C∞(M), called connection coefficients, such that ∇∂i∂j = Γkij∂k. If {ya}
is another coordinate system which induces the connection coefficients Γcab (note the

choice if indices), then using the properties of a connection:

Γcab = yc,kx
i
,ax

j
,bΓ

k
ij + yc,lx

m
,a(x

l
,b),m (2.11)

Thus connection coefficients are not the components of a type (1,2) tensor.

Let X = X i∂i ∈ X(M). Using the definition of connection coefficients:

∇∂jX =
(
X i

,j + ΓijkX
k
)
∂i (2.12)

We denote X i
;j = X i

,j + ΓijkX
k (note the semicolon). Similarly, for ω = ωidx

i, we

can use proposition 2.8.2 to show that:

∇∂jω =
(
ωi,j − Γkjiωk

)
dxi (2.13)

We denote ωi;j = ωi,j − Γkjiωk. We can generalize to any tensor. We get:

T i1i2...ir j1j2...js;k = T i1i2...ir j1j2...js;k + Γi1klT
li2...ir

j1j2...js (2.14)

+ Γi2klT
i1l...ir

j1j2...js

+ . . .

+ ΓirklT
i1i2...l

j1j2...js

− Γlkj1T
i1i2...ir

lj2...js

− Γlkj2T
i1i2...ir

j1l...js

− . . .

− ΓlkjsT
i1i2...ir

j1j2...l

(2.15)
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Note that T a1a2...ar b1b2...bs;c = ya1 ,i1y
a2
,i2 . . . y

ar
,irx

j1
,b1x

j2
,b2 . . . x

js
,bsx

k
,cT

i1i2...ir
j1j2...js;k.

This can be regarded as a new (r, s+ 1) rank tensor, denoted by ∇T .

We can now describe how to compare two tensors at different points on a manifold.

This leads to a notion of the ’straightest’ possible line on a manifold.

Definition 2.8.3. Let T be a tensor and λ be a smooth curve. If ∇Dλ
T = 0 for all

points on λ, then T is parallel to λ.

Definition 2.8.4. Let p ∈M , λ be a smooth curve with λ(0) = p and Tp be a tensor

at p. The parallel transport of Tp along λ is the tensor field T that is parallel to λ

and equals Tp at p.

Definition 2.8.5. A geodesic on M is a smooth curve µ whose tangent vector is

parallel to itself (i.e. ∇DµDµ = 0).

If {xi} are coordinates of M and µi = xi ◦ µ, µ will be a geodesic if it satisfies the

following system of ODEs:

d2µi(t)

dt2
+

dµj(t)

dt

dµk(t)

dt
Γijk = 0 (2.16)

We will now define two important tensors that describe the geometric properties

of the manifold.

Definition 2.8.6. The torsion tensor is defined by T ijk = Γijk − Γikj

This tensor describes the failure of the commutativity of the affine connection. A

connection is symmetric if T ijk = 0.

Definition 2.8.7. The Riemann Curvature Tensor (or Riemann Tensor or

curvature tensor) is defined by Ri
jkl = Γilj,k − Γikj,l + ΓmljΓ

i
km − ΓmkjΓ

i
lm

This is the most important tensor in this thesis. It describes the failure of a vector to

remain the same once parallel transported along a small closed curve. It also describes

how two nearby geodesics that are initially parallel deviates from one another.
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2.9 Riemannian Geometry

Definition 2.9.1. A pseudo-Riemannian Manifold is a manifold with a rank

(0, 2) tensor g, called the metric tensor, that satisfies the following:

1. X, Y ∈ X(M) =⇒ g(X, Y ) = g(Y,X)

2. g(X, Y ) = 0 for all X ∈ X(M) =⇒ Y = 0

The components of g with respect to a coordinate system are given by gij. Prop-

erty 1 implies that gij = gji and property 2 implies that gij as a matrix is invertible.

We denote the inverse of this matrix as gij (so that gijgjk = δik). We also define

the scalar g = det(gij) ̸= 0 (the distinction between the tensor g and the scalar g is

determined by what context it is being used). Note that we can also define a rank

(2, 0) tensor g−1 that behaves like the metric tensor for 1-forms and its components

are gij. We call this new tensor the inverse metric.

The metric tensor and the inverse metric define two maps. The first is the rais-

ing operator R : T i1...ir j1...js ↦→ T i1...irj1j2...js = gj1kT i1...irkj2...js . The other is the

lowering operator L : T i1...ir j1...js ↦→ T i1...ir−1
irj1...js = girkT

i1...ir−1k
j1j2...js . Note that

R−1 = L and L−1 = R.

The reason for the name metric tensor is that it gives a notion of the distance

along a curve. If λ : I → M is a smooth function, then
∫
I

√
|gλ(t)

(
Dλ(t), Dλ(t)

)
|dt

is a metric function. We can use this formula to reparametrize with respect to the

arc-length parameter s(t) such that ds
dt

=
√
|gλ(t)

(
Dλ(t), Dλ(t)

)
|. This leads to the

arc-length notation for a metric ds2 = gijdx
idxj. We use this notation often in this

text to define a metric tensor.

A n-dimensional Riemannian manifold (M, g) is flat if there exists a coordinate

system {xi} such that gii = ±1 and gij = 0 whenever i ̸= j. In particular, we define

the Minkowski metric η to be η11 = −1, ηii = 1 for i = 2, . . . , n and ηij = 0

whenever i ̸= j. More on this metric in section 3.1.

Metric tensors induce a ’nice’ affine connection:



19

Theorem 2.9.2. Let (M, g) be a n-dimensional Riemannian manifold. There exists

a unique affine connection ∇, called the Levi-Civita connection, that satisfies:

1. ∇ is symmetric (and thus the torsion is zero.)

2. ∇g = 0

The connection coefficients of this connection are given by:

Γijk =
1

2
gil (gkl,j + gjl,k − gjk,l) (2.17)

It is convenient to define Γjkl =
1
2
(gkl,j + gjl,k − gjk,l) so that Γijk = gilΓjkl. Given

vectors X, Y ∈ X(M), property 2 implies gp(Xp, Yp) is the same for any point p ∈M .

Einstein’s theory of General Relativity requires this particular choice of connection

for reasons that will be clear later. There are other theories of gravity that require a

different connection, but we will not consider such theories in this thesis. From now

on, we will fix the connection to be the Levi-Civita connection.

In a n-dimensional Riemannian manifold with the Levi-Civita connection, only

the Riemann curvature tensor Ri
jkl describes the intrinsic geometry of the manifold.

At first glance, there are n4 independent entries, but in fact there are much less. The

curvature tensor has some nice properties when we set Rijkl = gimR
m
jkl:

Rijkl = −Rijlk (2.18)

Rijkl = −Rjikl (2.19)

Rijkl = Rklij (2.20)

In addition, we have the Bianchi identities:

Ri
jkl +Ri

klj +Ri
ljk = 0 (First Bianchi Identity) (2.21)

Ri
jkl;m +Ri

jlm;k +Ri
jmk;l = 0 (Second Bianchi Identity) (2.22)

These properties reduce the number of independent components of the Riemann ten-

sor to NRiem(n) = 1
12
n2(n2 − 1). Table 2.1 shows the the values of NRiem(n) for

n = 1, 2, 3, 4, 5. Note that NRiem(1) = 0 which means that all 1-dimensional mani-

folds are flat. NRiem(2) = 1 means that only one component of the Riemann tensor
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n NRiem(n)
1 0
2 1
3 6
4 20
5 50

Table 2.1: Table showing the number of independent components of the Riemann
tensor in a Riemannian manifold. Here n is the dimension of the manifold and
NRiem(n) =

1
12
n2(n2 − 1) is the corresponding number of independent components.

is required to describe 2-dimensional manifolds (and can be related to the Gaussian

curvature from elementary geometry). In General Relativity, n = 4 and hence there

are 20 components that must be found. In this thesis, we are interested in 5D mani-

folds and hence we are looking for 50 components.

We can define three special tensors from the Riemann tensor. The first is the

Ricci tensor Rij = Rk
ikj. This is a symmetric tensor. The second is the curvature

scalar R = gijRij and the third is the Weyl tensor (for n ≥ 4):

Cijkl = Rijkl +
1

n− 2
(Rikgjl −Rjkgil +Rjlgik −Rilgjk) (2.23)

+
R

(n− 2)(n− 1)
(gikgjl − gilgjk)

The Weyl tensor shares the same symmetric properties as the Riemann tensor in

addition of being traceless (i.e. if Ci
jkl = gimCmjkl, then C

m
mkl = Cm

jml = Cm
jkm =

0). Note that (2.23) says that the the components of the Riemann tensor can be

written in terms of the components of the Ricci and Weyl tensors.

2.10 Isometries and Killing Vectors

Definition 2.10.1. Let (M, g) and (N, ḡ) be two pseudo-Riemannian manifolds. A

map h : M → N is called an isometry if it is a diffeomorphism and h∗ḡ = g. We

say M and N are isometric if there exists such an isometry.

We are interested in the case where N =M . We say that two metrics g and ḡ on

M are equivalent if there exists an isometry h such that h∗g = ḡ.
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How to find all possible isometries of g? One way to find them is to find Killing

vectors:

Definition 2.10.2. Let (M, g) be a pseudo-Riemannian manifold. A Killing vector

is a vector ξ ∈ X(M) such that the flow of ξ by t, φξt , is an isometry ∀t ∈ R.

Proposition 2.10.3. Let (M, g) be a pseudo-Riemannian manifold. ξ ∈ X(M) is a

Killing vector if and only if Lξg = 0. With the Levi-Civita connection, we also have

the following, called the Killing equation, to hold true:

(ξ ;a)b + (ξ ;b)a = 0 (2.24)

One can use equation (2.24) to find a local basis of Killing vectors. As an example,

for the simple 2D Euclidean space (R2, δ) with Cartesian coordinates (thus ds2 =

dx2 + dy2), the set of Killing vectors are linear combinations of ∂x (translations in

the x-direction), ∂y (translations in the y-direction), and x∂y − y∂x (rotations about

the origin).

2.11 Non-Coordinate Bases

So far, we have used the coordinate basis as our local frame, but this is not the only

option available. If we have a n-dimensional pseudo-Riemannian manifold (M, g), we

define a non-coordinate basis {ea} ⊂ X(M) such that ∀p ∈M :

(ea)p = e α
a (p)(∂α)p e α

a (p) ∈ GL(n,R), (2.25)

gp((ea)p, (eb)p) = e α
a (p)e β

b (p)gαβ(p) = ηab (2.26)

We call the functions e α
a the zweibein (if n = 4, then it is called vielbeins). Their

inverse is denoted by eaα. This gives us the following relation:

gαβ = eaαe
b
βηab (2.27)

This allows us to transform any vector X ∈ X(M) as follows:

Xα = Xae α
a Xa = eaαX

α (2.28)

To transform any one-form, define {ea} to be the dual basis of {ea}. Then we can

show that ea = eaαdx
α and hence for any ω ∈ Ω1(M):

ωα = ωae
a
α ωa = e α

a ωα (2.29)
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Note that g = ηabe
a ⊗ eb. The Lie bracket [ea, eb] is not zero since {ea} is not a

coordinate frame. We denote [ea, eb] = Cc
baec.

How do the Christoffel symbols in the new non-coordinate frame relate to the

those on the ccoordinate frame? Let:

∇eaeb = Γcabec

Compare this with ∇∂α∂β = Γγαβ∂γ we get:

Γcab = ecγe
α
a ((e β

b ),α + e β
b Γγαβ) (2.30)

We can write the torsion and curvature tensors in the non-coordinate frame in terms

of the Christoffel symbols in the same frame:

T acb = Γa[bc] − Ca
bc (2.31)

Ra
bcd = Γadb,c − Γacb,d + ΓedbΓ

a
ce − ΓecbΓ

a
de − Ce

cdΓ
a
eb (2.32)

We now define the following one-forms: The first is the connection one-forms:

ωab = Γabce
c (2.33)

(Do not let the placements of the indices mislead you. These are indeed one-forms

and there are at most n2 of them.) Next is the torsion two-form:

T a = T abce
b ∧ ec (2.34)

and finally, the curvature two-form:

Ra
b = Ra

bcde
c ∧ ed (2.35)

To find the forms T a and Ra
b given the frame {ea} and the connection one-forms, we

can use the Cartan Structure equations:

T a = dea + ωab ∧ eb (2.36)

Ra
b = dωab + ωac ∧ ωcb (2.37)
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By applying the exterior derivative to (2.36) and (2.37), we obtain the non-coordinate

version of the Bianchi identities:

dT a + ωab ∧ T b = Ra
b ∧ eb (2.38a)

dRa
b + ωac ∧Rc

b −Ra
c ∧ ωcb = 0 (2.38b)

In the special case where we have the Levi-Civita connection, the torsion vanishes

and we have Ca
bc = Γabc − Γacb. We also have ωab = −ωba. (2.36) reduces to

dea = −ωab ∧ eb which can now be used to find ωab more efficiently.



Chapter 3

More Background

3.1 Brief Overview of General Relativity

General Relativity (GR) is currently the most accurate model of gravity we have.

It proposes that our universe can be modelled by a special kind of pseudo-Riemannian

manifold to be defined shortly. While there are theoretical reasons to suggest that

GR can not describe everything in our universe (such as the behaviour of gravity at

atomic scales), so far GR agrees with all experimental and astrophysical observational

tests within uncertainties. To understand GR, we must briefly first look at Special

Relativity (SR).

SR is a model of space, time, and the motion of particles and light when no gravity

is present. The fundamental postulates of SR are:

1. The laws of physics are the same in all frames where the observer experiences

no forces.

2. The speed of light c is the same in all frames.

This tells us that SR can be described by a flat pseudo-Riemannian manifold called

a Minkowski manifold. An observer is an inertial observer if he experiences no

forces. He can define a frame by placing rulers at 90 degree angles and hold a stop-

watch. His metric tensor will be the Minkowski metric ηab. Another inertial observer

will have a different inertial frame but his metric will still be the Minkowski metric.

Thus the two frames are related by an element of the Poincare group.

GR is modelled by a more general Lorentzian metric. A Lorentzian metric

(or a spacetime metric) is a pseudo-Riemannian manifold (M, g) where ∀p ∈ M ,

∃{xa} coordinates such that gab(p) = ηab. This means that GR reduces to SR locally.

We will refer to such manifolds as spacetime manifolds or just spacetime. If M

24
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is n-dimensional, we traditionally index components by 0, 1, 2, . . . , n − 1 instead of

1, 2, . . . , n. The 0 index is often referred as the time components and the others the

spatial components.

In this manifold, light will travel along curves with ds2 = 0 (called null curves)

and matter (with mass) will travel along any curve where ds2 < 0 at each point

along the curve. Such a curve is called a worldline or a timelike curve. If this

line is a geodesic, the matter experiences no forces other than gravity, which is now

incorporated into the structure of the manifold.

One law of physics we would like GR to be consistent with locally is the law of

conservation of energy-momentum. This law can be described by the tensor relation

T ab;b = 0 where T ab is the energy-momentum tensor. Comparing this to the Einstein

tensor, we get the Einstein-Field equations:

Gab = 8πTab + gabΛ (3.1)

where Λ is a constant, called the cosmological constant.

3.2 Event Horizons and Stationary Horizons

When we think of black holes, we imagine objects in space whose gravity is so strong

that light close to the object cannot escape its gravitational pull. We can make this

intuitive notion of a black hole more precise by looking at the properties of null curves

in the vicinity of a black hole.

Definition 3.2.1. A spacetime manifold (M, gab) contains a black hole if there exists

a region R ∈ M such that every null curve inside R never reaches spatial infinity in

its future. The boundary of such a region is called the event horizon.

(A more precise definition of black holes in terms of Penrose-Carter diagrams can be

found in [4])

In this thesis, we will only be concerned with black hole spacetimes that are

asymptotically flat or (anti)-de Sitter. We will also only be looking at stationary

black holes :
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Definition 3.2.2. A stationary spacetime is a spacetime (M, gab) with a timelike

Killing vector field (i.e, a vector field ξ such that ξaξa < 0 and Lξg = 0). A sta-

tionary horizon is a spatial submanifold N ⊂ M of a stationary spacetime that is

tangent and null to the timelike Killing vector.

In [5] it is proven that event horizons of stationary asymptotically flat black holes

must be stationary horizons, but stationary horizons are not in general event horizons.

Thus theorem B.0.1 in appendix B can be used to locate all possible candidates for

event horizons locally.

3.3 The Lorentz Group

For this section, we will first assume we are in a flat n-dimensional Minkowski manifold

(Rn, ηab). What is the set of all Killing vectors on this manifold? We need to solve

equation (2.24) with the metric ηab. This reduces to Xa,b + Xb,a = 0. One set of

solutions are the basis vectors themselves ∂a. The other set of solutions are x
i∂0+x

0∂i

for i = 1, . . . , n − 1, and xj∂i − xi∂j for 0 < i < j < n. These vectors generate the

Poincaré group:

1. Translations : x̄a = xa + va, va ∈ Rn

2. Time Reversal : x̄0 = −x0, x̄i = xi for i = 1, . . . , n− 1

3. Spatial Reversal : x̄0 = x0, x̄i = −xi for i = 1, . . . , n− 1

4. Boost : x̄0 = cosh(t)x0 − sinh(t)xk, x̄k = − sinh(t)x0 + cosh(t)xk, x̄i = xi for

t ∈ R, i = 1, . . . , n− 1 and i ̸= k.

5. Spatial Rotations : x̄0 = x0, x̄i = Λijx
j for i, j = 1, . . . , n−1 and Λij ∈ SO(n−1).

We are only interested in the isotropy group of the Poincaré group since we want to

define similar group transformations on a more general Minkowski manifold. We call

this subgroup the Lorentz group, and it consists of all of the group transformations

of the Poincaré group except for translations. We want to restrict the Lorentz group

further by not including time and spatial reversals. This new subgroup is usually
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called the restricted Lorentz group but we will simply refer to it as the Lorentz group.

We can simplify the operations of the Lorentz group on tensors if we change our

frame to one of the following special types of non-coordinate orthonormal frames.

These special frames {ea} have the property that the norm of two of the n vectors

are zero. Hence these are called null frames. We denote l and n to be the two null

vectors (so lala = 0, nana = 0, lana = 1, nala = −1) and mi for i = 2, . . . , n − 1 are

the orthonormal spatial vectors (la(mi)a = 0, na(mi)a = 0, (mi)a(mj)a = δij). In five

dimensions, the Lorentz frame transformations in this new frame are as follows:

Boost: l̄ = λl, n̄ = λ−1n, m̄i = mi (3.2)

Null Rotations about l: l̄ = l, n̄ = n+ zim
i − 1

2
zjzjl, m̄

i = mi − zil (3.3)

Null Rotations about n: l̄ = l + zim
i − 1

2
zjzjn, n̄ = n, m̄i = mi − zin (3.4)

Spatial Rotations: l̄ = l, n̄ = n, m̄i = Λijm
j where Λij ∈ SO(n− 2) (3.5)

When we move to a more general spacetime manifold, we can apply the Lorentz

transformations (equations (3.2-3.5) for n = 5) locally to find isotropies of this man-

ifold. How to do this and how it relates to finding stationary horizons is the subject

of the next few sections.

3.4 Local Equivalence of Spacetimes

Given two Riemannian manifolds (M, g) and (M̄, ḡ), how can we determine if they

are locally isometric? (i.e, whether there exists a diffeomorphism h : M → M̄ such

that h∗g = ḡ?). One way to find out if an isometry exists is to analyse the frame

transformations in a coordinate neighbourhood. [6] gives a necessary condition, which

uniquely defines a field of one-forms {ea, ωab} given by equation (2.33). Given a point

p ∈ M and a coordinate neighbourhood {U, φ = (xi)} of p, we pick an orthonormal

non-coordinate basis {ea} and then calculate the curvature two-forms using the Car-

tan Structure equations (2.36, 2.37) with T a = 0. These equations imply that the

curvature components must be locally equal.
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If we want a sufficient condition, [6] says we must take repeated exterior deriva-

tives of Ra
b until no additional functionally independent quantities arises. If the two

manifolds are locally equivalent, they must have the same number of functionally

independent invariants called the rank k. If the dimension of the manifold is n, then

k ≤ n and if k < n, Killing vector fields exist.

Since we assume our manifold is a spacetime manifold, we have the following result

[6]:

(dR)abcd = Rabcd;fe
f +Rebcdω

e
a +Raecdω

e
b +Rabedω

e
c +Rabceω

e
d (3.6)

This shows that repeated exterior differentiation of Rabcd is equivalent to repeated

covariant differentiation. Thus a metric is locally characterised by its Riemann tensor

and a finite number of covariant derivatives of the Riemann tensor. We thus denote

the set Rq by {Rabcd, Rabcd;f . . . , Rabcd;f1f2...fq} where q is the order. If p is the last

order at which a new functionally independent quantity arises, then Rp+1 = Rp. Thus

we must find Rp+1. This can be done by the Cartan algorithm.

3.5 The Cartan-Karlhede Algorithm and Cartan Invariants

We summarise the algorithm for a spactime of arbitrary dimension n from [3] and

apply it in this thesis for n = 4 in chapter 4 and n = 5 in chapter 6. A rigorous ex-

planation of the Cartan algorithm involves frame bundles, which is outside the scope

of this thesis. We want to reduce the set of nonzero invariants as much as possible by

expressing the Riemann tensor and its covariant derivatives into a canonical form and

only allow frame changes that do not change the curvature tensors. The resulting set

Rp+1 are called Cartan scalars or Cartan invariants. We will then show how to

use the invariants to find stationary horizons

We begin by putting the Weyl tensor into a canonical form. Then, if possible, we

use any residual frame freedom to put the Ricci tensor Rab = Rc
acb into a canonical

form. The Riemann tensor can be written in terms of the Weyl and Ricci tensors,

where many black hole solutions are in vacuum (which implies Rab = 0) so this way

is easier. This gives us R0. To get R1, we calculate the first covariant derivatives of

the Weyl and Ricci tensors and fix the new set of invariants. We repeat for R2, R3,
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... until no new frame freedom and functionally independent terms occur.

We state the Cartan algorithm here as presented in [3]:

1. Set the order of differentiation q to 0.

2. Calculate the derivatives of the Riemann tensor up to the qth order.

3. Find the canonical form of the Riemann tensor and its covariant derivatives.

4. Fix the frame as much as possible using this canonical form, and note the resid-

ual frame freedom (the group of allowed transformations is the linear isotropy

group Hq). The dimension of Hq is the dimension of the remaining vertical

freedom of the frame bundle.

5. Find the number tq of independent functions of space-time position in the com-

ponents of the Riemann tensor and its covariant derivatives, in the canonical

form; this is the the remaining horizontal freedom.

6. If the isotropy group and number of independent functions are the same as in

the previous step, let p+1 = q, and the algorithm terminates; if they differ (or

if q = 0), increase q by 1 and go to step 2.

We can now characterize the n-dimensional spacetime manifold by the canonical form

used, the successive isotropy group, the number of functionally independent invari-

ants at each order, and the values of the non-zero Cartan invariants. If there are tp

essential spacetime coordinates, the other n−tp coordinates can be ignored. Thus the

dimension of the isotropy group of the spacetime is s = dim(Hp), and the dimension

of the isometry group is r = s+ n− tp.

We can compare two spacetime manifolds by comparing discrete properties such

as the sequence of isotropy groups or number of functionally independent invariants

at each order. This can be used to prove inequivalence; however this is not enough

to prove equivalence. We need both of the discrete sequences for each metric match,

so that we can compare the forms of the Cartan invariants relative to the same frame.
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For the purposes of finding stationary horizons, it is not necessary to complete the

full Cartan algorithm. Once the zeroth order is completed, we can use a generalization

of Theorem B.0.1 in appendix B presented in [2] to find the stationary horizons:

Theorem 3.5.1. Let (M, g) be a spacetime manifold with a local cohomogeneity k and

which contains a stationary horizon. Let C(1), . . . , C(k) be the functionally independent

Cartan invariants of M and assume dC(1), . . . , dC(k) is well-defined. If W = dC(1) ∧
dC(2) ∧ · · · ∧ dC(k), then at the stationary horizon:

||W ||2 ≡ 1

k!
δα1,...,αk

β1,...,βk
gβ1γ1 ...gβkγk × C(1)

;α1
...C(k)

;αk
C(1)

;γ1
...C(k)

;γk
= 0 (3.7)

Once the stationary horizons are found, we manipulate the zeroth and first order

Cartan scalars so that they also identify the same stationary horizons. If they do not,

we try to manipulate the first order Cartan invariants, then the second order and so

on until we have an invariant that identifies the stationary horizons.

3.6 Algebraic Classification of Spacetime

We would like some useful information on the Weyl and Ricci tensors if we are to

put them into canonical form at the zeroth order of the Cartan algorithm. One such

piece of information is the algebraic classification of the curvature tensor. Algebraic

classification of spacetimes has been a vital tool for studying four dimensional space-

times [6]. We only need to be concerned about the Weyl tensor’s classification if the

Ricci tensor is zero or trivial.

In 4D, there are many tools available for us to classify spacetimes algebraically

(e.g. null vectors, 2-spinors, bivectors, SPIs). Generalizations of these approaches to

higher dimensions exist [7, 8], but each approach gives a distinct classification [8, 9].

We will use the most well-studied approach [7, 10, 11]. We pick a null frame:

{l, n,mi}, i = 2, . . . , n− 1 (3.8)

thus lala = nana = 0, lana = 1, (mi)a(m
j)a = δij. We then look at the null compo-

nents of the Weyl tensor and study how they are affected by a local Lorentz boost:

ℓ ↦→ λℓ, n ↦→ λ−1n, mi ↦→ mi (3.9)
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In general, relative to the basis {θa} = {l, n,mi}, the components of an arbitrary

tensor of rank p transforms under a boost as follows:

T ′
a1a2...ap

= λba1a2...apTa1a2...ap , ba1a2...ap =
P∑
i=1

(δai0 − δai1)

where δab is the Kronecker delta. The boost weight (b.w) of the frame component

Ta1a2...ap is the value ba1,···ap .

We can use the b.w. decomposition [8, 12, 1] to classify the Weyl tensor. By the

symmetries of the Weyl tensor, components of b.w. ±4 or ±3 vanish. The remaining

components satisfy:

b.w. 2 : C i
0 0i = 0; , b.w. − 2 : C i

1 1i = 0

b.w. 1 : C010i = C j
0 ij; , b.w. − 1 : C101i = C j

1 ij

b.w. 0 : 2C0(ij)1 = C k
i jk, 2C0[ij]1 = −C01ij, 2C0101 = −Cij

ij = 2C i
0 1i.

This gives us a way to classify spacetime manifolds of arbitrary dimension [8, 12, 1].

It can be shown that this reproduces the Petrov classification for 4D spacetimes.

For a given null frame {θa} = {l, n,mi} and a tensor T , denote the boost order

bT (l) to be the largest possible boost weight of T for the frame {θa}. The boost

weight only depends on the null vector l since it is invariant under any Lorentz frame

transformation that leaves l fixed. For the Weyl tensor, |bC(l)| ≤ 2. We define a

Weyl alligned null direction (or WAND) to be a null vector such that when

used as part of a null frame, bC ≤ 1. The number of possible WANDs determine the

classification of the Weyl tensor [7, 11, 13, 14]. Define ζ = minl(bC(l)). We say that

the Weyl tensor is of type N if ζ = −2, type III if ζ = −1, II if ζ = 0, type I if

ζ = 1, and type G if ζ = 2. If, in addition to ζ = 0 there is more than one WAND,

then we denote the alignment type as D instead of II.

If we know in advance the algebraic classification of a given Weyl tensor, we can
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b.w. Constituents Weyl tensor Components

+2 Ĥij C0i0j = Ĥij

+1 n̂ij, v̂i C0ijk = 2δi[j v̂k] + n̂ l
i ϵljk

C010i = −2v̂i
0 S̄ij, w̄i, R̄ Cij

kl = 4δ
[i
[kS̄

j]
l] +

1
3
R̄δ

[i
[kδ

j]
l]

C1i0j =Mij = −1
2
S̄ij − 1

6
R̄δij − 1

2
ϵijkw̄

k

C01ij = Aij = ϵijkw̄
k

C0101 = −1
2
R̄

−1 ňij, v̌i C1ijk = 2δi[j v̌k] + ň l
i ϵljk

C101i = −2v̌i
−2 Ȟij C1i1j = Ȟij

Table 3.1: Constituent parts of the 5D Weyl tensor [1]. Here ϵijk is the alternating
Levi-Civita symbol for the three dimensional transverse space.

find the Weyl Aligned Null Directions (WANDs) using the following [3]:

lblcl[cCa]bc[dlf ] = 0← l is a WAND, at most primary type I.

lblcCabc[dle] = 0← ℓ is a WAND, at most primary type II.

lcCabc[dle] = 0← ℓ is a WAND, at most primary type III.

lcCabcd = 0← l is a WAND, at most primary type N.

When using the Cartan algorithm, we choose to use a null frame with WANDs.

This way, the Weyl tensor is simplified in this frame and it is easier to check for

isotropy. In particular, if the b.w. 0 components of the Weyl and Ricci tensor are the

only nonzero components, we can conclude that there is a boost isotropy.

Table 3.1 shows all of the b.w. components of the Weyl tensor in 5D and its smaller

constituent parts [1]. This table can help identify any possible isotropy at zeroth order

(especially spatial rotations and boosts). We can apply Lorentz transformations to

simplify the smaller constituents and put the Weyl tensor in a canonical form. Some

constituents are vectors and matrices, which give geometric information that can be

used in the Cartan algorithm.
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The 4D Kerr Metric

As a simple example to illustrate the Cartan algorithm to detect stationary horizons,

we will apply it to the 4D Kerr metric.

4.1 Kerr Metric using Cartan Invariants

We will demonstrate the Cartan algorithm by applying it to a simple example: The

four-dimensional Kerr metric in Boyer-Lindquist coordinates {t, r, θ, φ} is given by:

ds2 =

(
2Mr − r2 − a2 cos2 θ

r2 + a2 cos2 θ

)
dt2 −

(
2Mra sin2 θ

r2 + a2 cos2 θ

)
dt⊗ dφ

−
(

2Mra sin2 θ

r2 + a2 cos2 θ

)
dφ⊗ dt−

(
a2 cos2 θ − r2

2Mr − a2 − r2

)
dr2 +

(
r2 + a2 cos2 θ

)
dθ2 (4.1)

− sin2 θ (2Mra2 cos2 θ − a2 cos2 θ − r2a2 cos2 θ − 2Mra2 − a2r2 − r4)
r2 + a2 cos2 θ

dφ2

whereM is a mass parameter, and a is a rotation parameter. We will use the following

null frame:

ℓ = dt−
(
r2 + a2 cos2 θ

2Mr − a2 − r2

)
dr + a sin2 θdφ, (4.2)

n =

(
2Mr − a2 − r2

2 (r2 + a2 cos2 θ)

)
dt− 1

2
dr −

(
a sin2 θ (2Mr − a2 − r2)

2 (r2 + a2 cos2 θ)

)
dφ,

m =

(
− ı

√
2a sin θ

2 (r + ıa cos θ)

)
dt+

(√
2 (r2 + a2 cos2 θ)

2 (r + ıa cos θ)

)
dt+

(
ı
√
2(a2 + r2) sin θ

2 (r + ıa cos θ)

)
dφ,

m =

(
− ı

√
2a sin θ

2 (ıa cos θ − r)

)
dt−

(√
2 (r2 + a2 cos2 θ)

2 (ıa cos θ − r)

)
dt+

(
ı
√
2(a2 + r2) sin θ

2 (ıa cos θ − r)

)
dφ.

We begin at zeroth order. We simply calculate the Riemann tensor in the above

frame. Since we are in 4D, we can apply the Newman-Penrose (NP) spinor formalism

[2] to find the NP curvature scalars. It turns out that the Kerr black hole only has

one nonzero curvature scalar:

Ψ2 =
iM

(a cos θ + ir)3
(4.3)

33
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We can use Ψ2 to define a simpler invariant:

C0 =

(
i
1

Ψ2

) 1
3

(4.4)

and then take the real and imaginary parts of this invariant to get the following two

real valued invariants:

Re(C0) =
a cos θ

M
1
3

, Im(C0) =
r

M
1
3

(4.5)

These are functionally independent of each other. Thus t0 = 2. Since we have put

the Weyl spinor in the canonical form, which only has boost weight zero components,

we can refer to the transformation laws in chapter 7 of [6] to find the isotropy group.

Only null rotations change the form of the Weyl spinor whereas spatial rotations and

boosts do not. Thus dim(H0) = 2.

We now go to the first order of the 4D Cartan algorithm. We compute the covari-

ant derivative of the Weyl spinor. [15] gives the following components of the Weyl

spinor:

(D1Ψ)20′ :=
3M

(a cos θ + ir)4

(D1Ψ)30′ := −
3

2

√
2Ma sin θ

(a cos θ + ir)5
(4.6)

(D1Ψ)21′ :=
3

2

√
2Ma sin θ

(a cos θ − ir) (a cos θ + ir)4

(D1Ψ)31′ :=
3

2

(2Mr − a2 − r2)M
(a cos θ − ir) (a cos θ + ir)5

where D1 is used to denote the first covariant derivative. Since ρ, ρ′ = −µ, τ , and
τ ′ = −π are all non-zero, the Kerr metric is a type D vacuum spacetime in case

III of [15]. We can use the following NP curvature scalars (ρ, µ, τ, π), which can be

expressed as ratios of the first and zeroth order Cartan invariants, to fix all remaining

isotropy at first order. We follow the recommendation given in [15] by setting the

boost such that |ρ| = |ρ′| and the spatial rotations such that either τ or τ ′ is a real

number. We will fix both at r = 1 and θ′ = 0. We thus have no more isotropy

and hence dim(H1) = 0. Note that it is possible to express (4.6) locally in terms of
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(4.3) and thus we do not find any new functionally independent invariants. Therefore

t1 = 2. Since dim(H1) ̸= dim(H0), we advance to the second order.

In order to calculate the second covariant derivatives of the Weyl spinor, we refer

to formulas (4.3a′)− (4.3i′) of [15]. We obtain the following non-zero components:

(D2Ψ)(20′) (D2Ψ)(21′) (D2Ψ)(30′) (D2Ψ)(31′)

(D2Ψ)(32′) (D2Ψ)(40′) (D2Ψ)(41′) (D2Ψ)(42′)

We trivially have dim(H2) = 0 since we have fixed our isotropy at first order.

Also these components are functionally dependent on (4.3) therefore t2 = 0. Since

dim(H2) ̸= dim(H1) and t2 = t1, the Cartan algorithm terminates.

We can apply theorem 3.5.1 with J1 = C0 and J2 = 2(D1Ψ)31′C
3
0/3. In order for

||dJ1∧dJ2||2 = 0, we require that r =M ±
√
M2 − a2 and r =M ±

√
M2 − a2 cos2 θ,

which are the inner event horizon and the ergosphere, respectively. The ergosphere

is not a stationary horizon. Thus theorem 3.5.1 may give extra horizons that are not

stationary.

4.2 Kerr using Scalar Polynomial Invariants

Calculations of the scalar polynomial invariants (SPIs, see appendix B) for the Kerr

metric were done in [16] where the following Invariants were defined:

I1 = CabcdCabcd

I2 = C∗abcdCabcd

I3 = Cabcd;eCabcd;e

I4 = C∗abcd;eCabcd;e (4.7)

I5 = (I1);a(I1)
;a

I6 = (I2);a(I2)
;a

I7 = (I1);a(I2)
;a
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where C∗abcd is the hodge dual of the Weyl tensor. For the Kerr metric, I1, I2, and

I3 were found to be:

I1 = −
48M2(y − r)(y + r)(r2 − 4ry + y2)(r2 + 4ry + y2)

(r2 + y2)6

I2 =
2304M2ry(r2 − 3y2)(3r2 − y2)

(r2 + y2)6
(4.8)

I3 =
720M2

(r2 + y2)9
(r4 + 4r3y − 6r2y2 − 4ry3 + y4)

(r4 − 4r3y − 6r2y2 + 4ry3 + y4)(2Mr − r2 − y2)

where y = a cos θ. [16] then defines Q1 and Q2 as follows:

Q1 =
1

3
√
3

(I21 − I22 )(I5 − I6) + 4I1I2I7

(I21 + I22 )
9
4

(4.9)

Q2 =
1

27

I5I6 − I27
(I21 + I22 )

5
2

Substituting (4.8) into (4.9), we get:

Q1 =
(r2 − a2 cos2 θ)(r2 − 2mr + a2 cos2 θ)

m(r2 + a2 cos2 θ)3/2
(4.10)

Q2 =
a2 sin2 θ(r2 − 2mr + a2)

m2(r2 + a2 cos2 θ)

Q1 vanishes at the event horizon and Q2 vanishes at the ergosphere. Hence the reason

that the authors of [16] defined Q1 and Q2

Therefore, SPI can be used to find stationary horizons. But simply calculating

contractions of the curvature tensors does not in general give invariants that vanish

at stationary horizons. One must perform algebraic manipulations of the calculated

invariants to then obtain the desired ones that do vanish at the horizons. One can

use theorem B.0.1 as a guide to know where the horizons are. SPIs also require more

computational time for more complex black hole metrics.



Chapter 5

Methods

For five-dimensional spacetimes, performing the Cartan algorithm by hand is not

feasible. We thus use Maple 2016 in order to apply the Cartan algorithm on a

computer. For each given spacetime manifold, we define its coordinates using the

’DGSetup’ command and then input the metric tensor. We then insert the WANDs

(or evaluate them if they are not known) and build a null frame from the WANDs

using the Gram-Schmidt orthogonalization algorithm. From here, depending on the

complexity of the WANDs, we can take two approaches to evaluate the Weyl and

Ricci tensors (and their derivatives) in this null frame.

5.1 Maple Frame Data

Maple has a command called ’FrameData’ that takes as input a frame and then al-

lows for direct computation of any tensors in the frame using the results from section

2.11. Thus by inserting a null frame with WANDs, the Weyl and Ricci tensors are

calculated using the Cartan structure equations (2.37) and then put in a form where

we can check for isotropy. At zeroth order, we can directly calculate the quantities in

Table 3.1 and study there properties to find any invariance under boosts and spatial

rotations. In the first three examples in chapter 6, doing so will reduce the isotropy

group to be one-dimensional.

At higher orders, in order for implementation in Maple, we can define a valence

(1,1) tensor Λaa′(t) that induces one of the ten infinitesimal Lorentz transformations

(3.2 - 3.5) with t a small arbitrary parameter (t = z for null rotations, t = λ for

boosts, and t = θ for spatial rotations). An arbitrary (0, n) tensor Ta1a2...an transforms

infinitesimally as follows:
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Ta′1a′2...a′n(t) = Ta1a2...anΛ
a1
a′1
(t)Λa2a′2

(t) . . .Λana′n(t) (5.1)

This applies in the first three examples as we have reduced the isotropy group down

to one dimension. As a computational approach, to check for any isotropies, we apply

5.1 to the Weyl and Ricci tensors and their covariant derivatives and then check if

d
dt
Ta′1a′2...a′n(t) = 0. If true, then Ta1a2...an is infinitesimally invariant with respect to

the frame transformation Λ. If this is true for the curvature tensors up to differenti-

ation order p, then Λ is part of the isotropy group of order p. In order to check for

functional independence, we use the algorithm presented in Appendix C where we

build a list of the nonzero components of the Weyl and Ricci tensors and reduce it to

a list of only functionally independent components.

One advantage of using ’FrameData’ is in its simplicity. However, depending on

the complexity of the WANDs, it can be computationally challenging. For such cases,

the zweilbeins method is recommended. We should also note that there is a Maple

package that can be used to determine isotropy directly, but it is computationally

more efficient to instead fix the curvature tensor in a canonical form with WANDs to

find isotropy (especially in 5D).

5.2 Zweibein

Instead of having Maple calculate all quantities in a given null frame, we stay in the

coordinate basis and calculate the zweibein e α
a using equation (2.25) as a valence

(1,1) tensor in Maple. We then directly compute the Weyl and Ricci tensors in the

null frame by applying:

C abcd = Cαβγδe
α
a e

β
b e

γ
c e

δ
d (5.2)

Rab = Rαβe
α
a e

β
b (5.3)

To apply these equations in Maple, we calculate the Weyl and Ricci tensors in the

coordinate frame and then repeatedly apply a tensor contraction command. We can

then check for isotropy and functional independence in a similar way to the ’Frame-

Data’ method.
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One advantage to this method is that it is computationally simpler for spacetime

metrics with complicated WANDs. However, it has problems when computing higher

order derivatives (even for simple black holes).



Chapter 6

Examples

6.1 The Singly Rotating Myers-Perry Metric

The singly rotating Myers-Perry metric can be regarded as an 5D extension of the

4D Kerr metric and was first introduced in [17]. Note that since this is a vacuum

solution, the Ricci tensor is zero. We will use the form given by [18]:

ds2 = −
√

1− x
1− y

(dt+R
√
ν(1 + y)dψ)2 +

R2

(x− y)2
[(x− 1)((1− y2)(1− νy)dψ2

(6.1)

+
dy2

(1 + y)(1− νy)
) + (1− x)2( dx2

(1− x2)(1− νx)
+ (1 + x)(1− νx)dφ2)]

[18] shows that this black hole is of type D and gives the WANDs for this metric:

L± =
1

(x2 − 1)(νy − 1)

(
νyx− y + νx+ 1− 2νy

x− y
R∂t −

√
ν∂ψ

)
(6.2)

±

√
νx− 1

(x− y)(y − 1)

(
∂x +

y2 − 1

x2 − 1
∂y

)

In order to get a null frame, we first define the following ’placeholder’ frame

{L+, L−, ∂φ, ∂y, ∂ψ} and then apply the Gram-Schmidt algorithm to turn it into an

orthonormal null frame. The WANDs are simple enough to apply the ’FrameData’

method for computing the Weyl tensor, but we also used the vielbein method as well

for comparison.

For the zeroth iteration of the Cartan algorithm, we obtain 10 nonzero components
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of the Weyl tensor:

C1010 =
(x− y)2(4νx+ ν − 3)

4(y − 1)2R2

C1043 =
1

2
C3041 = −

1

2
C4031 = −

(x− y)2
√
ν(x+ 1)(1− νx)

(y − 1)2R2

C2021 = −C3232 = C4242 = −
(x− y)2(ν + 1)

4(y − 1)2R2
(6.3)

C3031 = C4041 =
(x− y)2(2νx+ ν − 1)

4(y − 1)2R2

C4343 = −
(x− y)2(4νx+ 3ν − 1)

4(y − 1)2R2

However all of these components are functionally dependent on any two independent

components (say, for example, C1010 and C2021). Thus t0 = 2. Only components with

zero boost weight do not vanish. This is to be expected since the metric is of type D

and we used both WANDs. Spatial rotations aboutm3 do not change the components

of the Weyl tensor. To see why, consider the matrices defined by the constituents in

Table 3.1:

Mij = C1i0j =

⎛⎜⎜⎜⎝
−1

4
(x−y)2(ν−1
(y−1)2R2 0 0

0 1
4
(x−y)2(2νx+ν−1)

(y−1)2R2 −1
2

√
(1−νx)(ν)(x+1)(x−y)2

(y−1)2R2

0 1
2

√
(1−νx)(ν)(x+1)(x−y)2

(y−1)2R2
1
4
(x−y)2(2νx+ν−1)

(y−1)2R2

⎞⎟⎟⎟⎠
(6.4)

Aij = C01ij =

⎛⎜⎜⎜⎝
0 0 0

0 0

√
(1−νx)(ν)(x+1)(x−y)2

(y−1)2R2

0 −
√

(1−νx)(ν)(x+1)(x−y)2

(y−1)2R2 0

⎞⎟⎟⎟⎠ (6.5)

Sij =

⎛⎜⎜⎝
2(x−y)2(3νx+ν−2)

(y−1)2R2 0 0

0 (x−y)2(5νx+ν−4)
(y−1)2R2 0

0 0 (x−y)2(5νx+ν−4)
(y−1)2R2

⎞⎟⎟⎠ (6.6)

Since Aij = ϵijkw
k, rotations about w2 = m2 do not change Aij. And since Mij =

−1
2
Sij − 1

6
Rδij − 1

2
Aij, it follows that Mij is unaffected by spatial rotations about m3.

Therefore dim(H0) = 2.

For the first order of the Cartan algorithm, we obtain 83 nonzero components

of the first covariant derivative of the Weyl tensor. Though they are too numerous
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to list here, we note that they are all functionally dependent on the following two

components:

C1010;0 = −
3
√
2

4

(2νx+ ν − 1)(x− y)5/2
√

(1− νx)(νy − 1)(x− 1)√
ν + 1(y − 1)3R3

(6.7)

C1010;3 = −
1

2

ν(6νx+ ν − 5)(x− y)5/2
√

(x− 1)(x+ 1)(1 + y)√
ν + 1(y − 1)3R3

We have displayed C1010;0 and C1010;3 since they can be used to build a dimensionless

event horizon detecting Cartan invariant. However, these components are functionally

dependent on any two functionally independent zeroth order invariants found earlier

and thus t1 = 2. We also now lose invariance under a boost. Using (5.1), we find

that all Lorentz transformations affect Cabcd;e. Therefore dim(H1) = 0. The second

order does not introduce any new functionally independent invariant. The secondary

order Cartan invariants are important for classification of spacetime manifolds, but

are not relevant for our interests (which are to detect event horizons) and thus are

not shown. Thus t2 = 2 and dim(H2) = 0 and the algorithm terminates.

Define J1 = CabcdC
abdc and J2 = CabcdC

abefCcd
ef . Using Theorem 3.5.1 with

W = dJ1 ∧ dJ2, we get:

||W ||2(y − 1)24R24 = 2592ν2(1 + y)(x+ 1)(x− 1)2(1− νx)(1− νy)(x− y)22(ν + 1)3

(8ν2x2 + 8ν2x+ 3ν2 − 8νx− 2ν + 3)2 (6.8)

There are many solutions to ||W ||2 = 0. However, the only solutions that are sta-

tionary horizons are x = 1/ν and y = 1/ν. Note that C1010;0 already detects both

horizons. We get similar results when using SPIs. We could define J1 and J2 using

the Weyl tensor in the original coordinate basis and then find ||W ||2 to use theorem

B.0.1. We get the same ||W ||2 as in (6.8) and thus get the same horizon x = y = 1/ν.

However, the evaluation of J1 and J2 are much more difficult as the Weyl tensor is

more complicated in the coordinate basis.
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6.2 Kerr-NUTT-(Anti)-de Sitter Metric

The Kerr-NUTT-Ads metric is also of type D. Referring to [19], we will use the metric:

ds2 =
dx2

Q1

+
dy2

Q2

+Q1

(
dψ0 + y2dψ1

)2
+Q2

(
dψ0 + x2dψ1

)2
(6.9)

+
c0
x2y2

[
dψ0 +

(
x2 + y2

)
dψ1 + x2y2dψ2

]2
where Q1 = X1/ (y

2 − x2), Q2 = X2/ [x
2 − y2], X1 = c1x

2 + c2x
4 − c0/x2 − 2b1, and

X2 = c1y
2 + c2y

4 + c0/y
2− 2b2.. c0, c1, c2, b1, b2 are free parameters, which are related

to the rotation parameters a1, a2, the mass and NUT parameters M1,M2, and the

cosmological constant parameter g as follows:

c0 = −a21a22
c1 = 1 + g2(a21 + a22) (6.10)

c2 = −g2

bµ =
1

2
(a21 + a22 + a21a

2
2g

2)−Mµ, µ = 1, 2

Note that this metric is Wick-rotated and thus the null vectors are complex. However

the components of the curvature tensor and its covariant derivative are still real-

valued.

First define an orthonormal frame:

e0 =
dx√
Q1

e1 =
dy√
Q2

e2 =
√
Q1

(
dψ0 + y2dψ1

)
(6.11)

e3 =
√
Q4

(
dψ0 + x2dψ1

)
e4 =

√
c

xy

[
dψ0 +

(
x2 + y2

)
dψ1 + x2y2dψ2

]
Then, according to [20] and [13] the frame with the twoWANDs are simply {n, l,m2,m3,m4},
where

n = i√
2Q2

(e1 + ie3), l = −i
√

Q2

2
(e1 − ie3),

m2 = e0,m3 = e2,m4 = e4.
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We will use the ’FrameData’ method for this metric. Using this frame, we get the

following non-zero components of the Weyl tensor:

C1010 =
2(x2 + 3y2)(b1 − b2)
(x− y)3(x+ y)3

C1032 =
1

2
C2031 =

8ixy(b1 − b2)
(x− y)3(x+ y)3

C2021 = C3031 =
2(x2 + y2)(b1 − b2)
(x− y)3(x+ y)3

(6.12)

C3232 = −
2(3x2 + y2)(b1 − b2)
(x− y)3(x+ y)3

C4041 = −C4242 = −C4343 =
2(b1 − b2)

(x− y)2(x+ y)2

Any of the above components are functionally dependent on a choice of two compo-

nents. Thus t0 = 2. All components are of boost weight zero and they do not change

under a rotation about m5. To see why, either we can use (5.1) or note the following

matrices as defined by Table 3.1

Mij = C1i0j =

⎛⎜⎜⎝
2(x2+y2)(b1−b2)
(x−y)3(x+y)3

−4ixy(b1−b2)
(x−y)3(x+y)3 0

4ixy(b1−b2)
(x−y)3(x+y)3

2(x2+y2)(b1−b2)
(x−y)3(x+y)3 0

0 0 −2(b1−b2)
(x−y)3(x+y)3

⎞⎟⎟⎠ (6.13)

Aij = C01ij =

⎛⎜⎜⎝
0 8ixy(b1−b2)

(x−y)3(x+y)3 0
−8ixy(b1−b2)
(x−y)3(x+y)3 0 0

0 0 0

⎞⎟⎟⎠ (6.14)

Sij =

⎛⎜⎜⎝
8(x2+4y2)(b1−b2)
(x−y)3(x+y)3 0 0

0 8(x2+4y2)(b1−b2)
(x−y)3(x+y)3 0

0 0 16(x2+2y2)(b1−b2)
(x−y)3(x+y)3

⎞⎟⎟⎠ (6.15)

Since Aij = ϵijkw
k, rotations about w4 = m4 do not change Aij. And since Mij =

−1
2
Sij − 1

6
Rδij − 1

2
Aij, it follows that Mij is unaffected by spatial rotations about m5.

Thus dim(H0) = 2.

At first iteration, we have 105 components, but they are functionally dependent

on the chosen two at zeroth order. Thus t1 = 2. The following invariant detects an

event horizon at X2 = 0:

C1010;0 = −
12i
√
2(b1 − b2)yX2(x

2 + y2)

(x+ y)5(x− y)5
(6.16)
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We lose independence under a boost and rotation about m5 (this can be verifyed by

(5.1)), by setting C0101;1 = 1 and C1212;4 = 0. Therefore dim(H1) = 0. The algorithm

would carry on for one more iteration, since t1 = t2 = 2 and dim H1 = dim H2 = 0.

However, we will omit these details.

Define J1 = CabcdC
abdc and J2 = CabcdC

abefCcd
ef . Using Theorem 3.5.1 with

W = dJ1 ∧ dJ2, we get:

||W ||2 = 44530220924928x2y2X1X2(b1 − b2)10

(x− y)30(x+ y)30
(6.17)

We detect the stationary horizon when X1 = 0 or X2 = 0, which are sixth degree

polynomial equations in terms of x and y, respectively. Note that C1010;0 already

detects the horizon X2 = 0. Like in the case of the singly rotating Myers-Perry

metric, ||W ||2 can be found using SPIs, but the form of the Weyl tensor in the

coordinate basis make it computationally more difficult to find ||W ||2 in this manner.

6.3 Reissner-Nordström-(Anti)-de Sitter Metric

From [21] the metric for the 5D Reissner-Nordström-(Anti)-de Sitter spacetime is:

ds2 = f(r)dt2 +
dr2

f(r)
+ r2dS3 (6.18)

where dS3 is the line element for the unit 3-sphere and f(r) is the function

f(r) = 1− 2M

r2
− 2Λr2

12
− Q2

r4
. (6.19)

We use the following orthonormal frame:

e0 =
√
f(r)dt, e1 =

√
dr
f(r)

,

e2 = rdθ, e3 = r sin(θ)dφ, e4 = r sin(θ) sin(φ)dω; (6.20)

from which we build the null frame:

l = 1√
2
(e0 + e1), n = 1√

2
(e0 − e1)

m2 = e2,m3 = e3,m4 = e4. (6.21)

In this frame, l and n are WANDs. Thus the metric is of type D and hence the

curvature tensor is invariant under a boost. Note that this metric is not a vacuum
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spacetime. Therefore, we must compute both the Weyl and Ricci tensors. The

simplicity of the metric allows us to use the ’FrameData’ method. The nonzero

components are:

R01 =
2(Λr6−6Q2)

3r6
, Rii =

2(Λr6+3Q2)
3r6

, i = 2, 3, 4 (6.22)

C0101 = 3C0i1i = −3Cijij = 3
2
4Mr2−5Q2

r6
, i, j = 2, 3, 4, i ̸= j. (6.23)

We can show that all these terms are functionally dependent on just R01. Thus t0 = 1.

Referring to table 3.1, we find that the matrix Aij is zero and Mij is diagonal with

Mii = C0i1j. We conclude that the Weyl tensor is also invariant under all three spatial

rotations. A simple calculation shows that this is also true for the Ricci tensor, Thus

dim H0 = 4.

Continuing the Cartan algorithm, we compute the covariant derivative of the Ricci

and Weyl tensor:

R01;0 = −4R0i;i =
8Q2

8Mr2−15Q2 , R01;1 = −4R1i;i = −6(8Mr2−15Q2)6r4f(r)Q2

r18

C0101;0 = −3C0i1i;0 = 3Cijij;0 = 1,

C0101;1 = 3C0i1i;1 = −3Cijij;1 = −3
4
(8Mr2−15Q2)6r4f(r)

r18
, (6.24)

C010i;i = −2C0iij;j = −2
3

4Mr2−5Q2

8Mr2−15Q2

C011i;i = 2C1iij;j =
(8Mr2−15Q2)6r4f(r)(4Mr2−5Q2)

r18

We lose invariance under a boost, however the spatial rotations are still in the

isotropy group. Hence dim H1 = 3. Also all of these terms are a function of R01

and hence t1 = 1. At second order, it can be shown that dim H2 = dim H1 = 3 and

t2 = t1 = 1 and therefore the algorithm terminates. We will omit the nonzero second

order Cartan invariants.

To apply theorem 3.5.1, we simply use J = CabcdC
abcd. We get:

||J||2 = 32

3r30
(−2r4 + 12Mr2 + 15Q2)2 (6.25)

(−2r4 + 24Mr2 + 45Q2)2(r6Λ− 6r4 + 12Mr4 + 6Q2)
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We thus find three candidates for stationary horizons: −2r4 + 12Mr2 + 15Q2 = 0,

−2r4 + 24Mr2 + 45Q2 = 0, and r6Λ − 6r4 + 12Mr4 + 6Q2 = 0 (or f(r) = 0). The

stationary horizon is f(r) = 0. Many of the Cartan invariants found, such as R01;1,

detect this horizon. Finding the SPI that detects stationary horizons in this example

takes less time than doing the same in the last two examples thanks to the symmetries

in the Reissner-Nordström-(Anti)-de Sitter metric. But using Cartan invariants is still

more efficient.

6.4 The Singly Rotating Black Ring (Static) Metric

The rotating black ring metric was discovered by [22]. However, we will refer to the

form of the metric given by [18]:

ds2 = −F (x)
F (y)

(
dt+R

√
λν (1 + y) dψ

)2
+

R2

(x− y)2

[
−F (x)

(
G(y)dψ2 +

F (y)

G(y)
dy2
)
+ F (y)2

(
dx2

G(x)
+
G(x)

F (x)
dφ2

)]
(6.26)

where F (ξ) = 1 − λξ and G(ξ) = (1 − ξ2)(1 − νξ). Note that this metric reduces

to Myers-Perry when λ = 1. This metric is of type Ii. The WANDs of the rotating

black ring are much more complicated to find and beyond the scope of this thesis.

However, [18] gives a procedure where we denote a null vector la = (α, β, γ, δ, ϵ) and

then use the following equations to solve for α, β, γ, δ, and ϵ:

lal
a = 0 (6.27)

lblcl[eCa]
bc
[d
lf ] = 0 (6.28)

[18] obtained a set of polynomials in terns of α, β, γ, δ, and ϵ in which we can solve

and store in Maple. Due to the computational complexity of the WANDs, we resort

to the zweibein method to compute the Weyl tensor. The components of the Weyl

tensor are also large and are thus not presented in this thesis.
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For illustration here, we will only consider the static case ν = 0. In this case,

ϵ = 0 and β and γ are related by [18]:

λ(x2 − 1)(λx− 1)2γ2 + λ(y2 − 1)(λy − 1)(λx− 1)β2

+ λβγ{λ(x+ y)
[
λx(xy − 1) + 1− x2

]
+ (x− y)2(2− λ2) (6.29)

+ 2(λx− 1) + 2xy(1− λy)}

α and δ are then given by:

α2 =
R2y(λy − 1)2 [γ(λx− 1) + β(1− λy)]

(x− y)2(λx− 1)(y2 − 1)
(6.30)

δ2 =
β(1− λx) [γ(x2 − 1) + β(1− y2)]

(y2 − 1)(x2 − 1)2
(6.31)

Without loss of generality, we can set β = 1 and use (6.29) to solve for γ. We then

use (6.30) and (6.31) to find α and δ. Let L = (α, 1, γ, δ, 0) and N = (α, 1, γ,−δ, 0).
By choosing a null frame with l ∼ L and n ∼ N , we find that all components of the

Weyl tensor with b.w. ±2 are zero. This confirms that the static black ring is of type

Ii.

Comparing our results with Table 3.1, in our case the matrix Aij is zero and the

matrixMij is diagonal. So at first glance it seems that the Weyl tensor has significant

rotation isotropy. However the spatial rotations affect the forms of C010i and C101i and

we can choose rotations so that C0102 = −C1012, C0103 = C1013, and C0104 = C1014 = 0.

Hence there is no isotropy. Thus dim(H0) = 0 and t0 = 2. The Cartan algorithm

thus terminates at the first order.

As before, we define J1 = CabcdC
abcd and J2 = CabcdC

abefCcd
ef . We then calculate

||W ||2 = ||dJ1∧dJ2||2 = 0. The result is too complex to explicitly show here, but the
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solutions to ||W ||2 = 0 are:

x = y (6.32)

x = 1 (6.33)

y = 1 (6.34)

y =∞ (6.35)

0 = 2λ4x5y − λ4x4y2 − 2λ4x4 − λ4x2y2 − 2λ3x5 − 5λ3x4y + 4λ3x3y2 − λ4x2 + λ4y2

+7λ3x3 + 3λ3x2y + λ3xy2 + 8L2x4 − 5λ2x2y2 + 2λ3x− 2λ3y − 9λ2x2 − 4λ2xy

−2λ2y2 − 11λx3 + 7λx2y + 3λxy2 + 4λx+ 5λy + 6x2 − 6xy − 2 (6.36)

0 = 2λx2y − λxy2 + λx− 2λy − 2x2 + y2 + 1 (6.37)

These thus identify the possible candidates for stationary horizons. The correct hori-

zon is y =∞. This is equivalent the Myers-Perry example when ν →∞.

The method using SPIs to locate the stationary horizon actually give the same

answer in almost the same amount of computation time in this example. Thus there

is no advantage in using either SPIs or Cartan invariants to locate stationary horizons

in this example.
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Conclusion

We find that the 5D Cartan algorithm combined with Theorem 3.5.1 and the alge-

braic classification of the Weyl tensor by its b.w. decomposition is a very effective

way to find and detect the candidates for stationary horizon of 5D black holes. For

more complex black holes, the computations of the WANDs and the corresponding

components of the Weyl tensor in this frame can be challenging. We have used Maple

2016 to perform our calculations. Further exploration is required to determine if

computations of the 5D Cartan algorithm are more efficient using other computer

software or by using the ’GRTensor’ package for Maple 13. Further exploration is

also required to determine if any other algebraic classifications mentioned in section

3.6 give simpler results for finding stationary horizons.

The method for finding event horizons can be extended to higher dimensions, but

the computations become even more challenging. Every time the dimension increases

by one, there is more isotropy to take into account. For example, for 6D spacetimes,

the Lorentz group is 21 dimensional. The Cartan algorithm does apply to any dimen-

sion and the algebraic classification of the Weyl tensor by its b.w. decomposition has

a simple extension.

We would also like to look at a procedure for finding event horizons of non-

stationary black holes. The methods in this thesis could be used to find approximate

locations of quasi-stationary horizons, but theorem 3.5.1 does not work for more

general event horizons.
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Appendix A

Tensors

For this section, we will assume that V , is a vector space of dimension n. Recall that

if W is also a vector space, then Lin(V,W ) is the vector space of all linear functions

from V to W . In particular, we define the space V ∗ = Lin(V,R) the dual space of V .

Given an (ordered) basis {va} ⊂ V , there exists a unique basis {θa} ⊂ V ∗, called the

dual basis, such that θa(vb) = δab . The double dual of V is V ∗∗ = Lin(V ∗,R). Since

V is of finite dimension, the double dual isomorphism theorem says that there is a

natural isomorphism from V ∗∗ to V and hence we can assume that V ∗∗ = V .

Definition A.0.1. A rank (r, s) tensor is a map T :
∏r

i=0 V
∗ ×

∏s
i=0 V → R with

linearity in each argument. The set of rank (r, s) tensors is denoted as T(r,s) (V ). We

also define T(0,0) (V ) = R for reasons that will be clear shortly.

Some special cases:

� T(0,1) (V ) = V ∗.

� By the double dual isomorphism theorem, T(1,0) (V ) = V .

� T(1,1) (V ) is isomorphic to Lin(V ∗, V ∗). To see why, note that if ω ∈ V ∗ and

T ∈ T(1,1) (V ), we have a new map ωT ∈ V ∗ def by ωT : v ↦→ T (ω, v). By the

double dual isomorphism, we can similarly show that T(1,1) (V ) is isomorphic to

Lin(V, V ).

We will now define six operations on tensors. Note that the first two operations

tells us that T(r,s) (V ) is a vector space.

Addition of Tensors : If S, T ∈ T(r,s) (V ), we define S + T ∈ T(r,s) (V ) by (S +

T )(ω1, . . . ωr, u1, . . . us) = S(ω1, . . . ωr, u1, . . . us)+T (ω
1, . . . ωr, u1, . . . us) where ω

1, . . . ωr ∈
V ∗ and u1, . . . us ∈ V .
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Scalar Multiplication: If T ∈ T(r,s) (V ) and a ∈ R, we define aT ∈ T(r,s) (V ) by

(aT )(ω1, . . . ωr, u1, . . . us) = aT (ω1, . . . ωr, u1, . . . us) where ω
1, . . . ωr ∈ V ∗ and u1, . . . us ∈

V .

Tensor Product : If S ∈ T(r,s) (V ) and T ∈ T(r′,s′) (V ), we define S⊗T ∈ T(r+r′,s+s′) (V )

by:

(S ⊗ T )(ω1, . . . , ωr, ω̄1, . . . , ω̄r
′
, u1, . . . , us, ū1, . . . , ūs′)

= S(ω1, . . . , ωr, u1, . . . , us)T (ω̄
1, . . . , ω̄r

′
, ū1, . . . , ūs′)

where ω1, . . . ωr, ω̄1, . . . , ω̄r
′ ∈ V ∗ and u1, . . . us, ū1, . . . , ūs′ ∈ V . Note that a⊗T = aT

for any a ∈ R.

Proposition A.0.2. Let S, T, U be tensors of any rank and a ∈ R. The following

are true when well-defined:

1. (S + T )⊗ U = S ⊗ U + T ⊗ U

2. S ⊗ (T + U) = S ⊗ T + S ⊗ U

3. (aS)⊗ T = S ⊗ (aT ) = a(S ⊗ T )

4. (S ⊗ T )⊗ U = S ⊗ (T ⊗ U) (Tensor Product is associative)

Property 4 of proposition A.0.2 gives us the freedom to write the tensor product

of multiple tensors T1, . . . , Tn as T1 ⊗ T2 ⊗ · · · ⊗ Tn without parentheses. Note that

tensor products are NOT in general commutative (i.e. S ⊗ T ̸= T ⊗ S).

We can use tensor products to generate a basis for T(r,s) (V ).

Theorem A.0.3. Let {va} ⊂ V be a basis and {θa} ⊂ V ∗ the dual basis. Then

{vi1 ⊗ · · · ⊗ vir ⊗ θj1 ⊗ · · · ⊗ θjs} is a basis of T(r,s) (V ). Hence dim(T(r,s) (V )) = nr+s.

Proof. First, lets us check for linear independence. Assume that 0 = Ai1...ir j1...jsvi1 ⊗
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· · · ⊗ vir ⊗ θj1 ⊗ · · · ⊗ θjs . Then:

0 = 0(θk1 , . . . , θkr , vl1 , . . . , vls)

= (Ai1...ir j1...jsvi1 ⊗ · · · ⊗ vir ⊗ θj1 ⊗ · · · ⊗ θjs)(θk1 , . . . , θkr , vl1 , . . . , vls)

= Ai1...ir j1...jsθ
k1(vi1) . . . θ

kr(vir)θ
j1(vl1) . . . θ

js(vls)

= Ai1...ir j1...jsδ
k1
i1
. . . δkrir δ

j1
l1
. . . δjsls

0 = Ak1...kr l1...ls

Now check that {vi1 ⊗ · · · ⊗ vir ⊗ θj1 ⊗ · · · ⊗ θjs} spans T(r,s) (V ). Let T ∈ T(r,s) (V ).

Define: T i1...ir j1...js = T (θi1 , . . . , θir , vj1 , . . . , vjs), called the components of T relative

to {va}. Claim:

T = T i1...ir j1...jsvi1 ⊗ · · · ⊗ vir ⊗ θj1 ⊗ · · · ⊗ θjs

Verifying this claim is easy. Simply evaluate T at one of the basis:

T k1...kr l1...ls = T (θk1 , . . . , θkr , vl1 , . . . , vls)

= (T i1...ir j1...jsvi1 ⊗ · · · ⊗ vir ⊗ θj1 ⊗ · · · ⊗ θjs)((θk1 , . . . , θkr , vl1 , . . . , vls)

= T i1...ir j1...jsδ
k1
i1
. . . δkrir δ

j1
l1
. . . δjsls

= T k1...kr l1...ls

Thus a tensor is uniquely defined by specifying its components relative to a basis

in V . If T i1...ir j1...js and T k1...kr l1...ls are the components of a tensor T ∈ T(r,s) (V )

relative to bases {va} and {v̄a} respectively and v̄b = Aabva, then:

T k1...kr l1...ls = T i1...ir j1...jsA
k1
i1
. . . Akrir (A

−1)j1l1 . . . (A
−1)jsls

For this reason, in physics and relativity, tensors are identified by their components

relative to a given basis. In this text, we will often do so as well. We can express the

previous three tensor operations in terms of the components relative to a given basis

of V :

� Addition: (S + T )i1...ir j1...js = Si1...ir j1...js + T i1...ir j1...js
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� Scalar Multiplication: (aT )i1...ir j1...js = aT i1...ir j1...js

� Tensor Product : (S ⊗ T )i1...irk1...kr′ j1...jsl1...ls′ = Si1...ir j1...jsT
k1...kr′ l1...ls′

Contraction: It is easiest to define a contraction relative to a basis of V , and then

show that it is a basis-independent operation. Let {va} ⊂ V be a basis, T ∈ T(r,s) (V ),

i = 1, . . . , r, and j = 1, . . . , s. We define C(i,j) (T ) ∈ T(r−1,s−1) (V ) by:

C(i,j) (T )(ω
1, . . . ωi−1, ωi+1, . . . ωr, u1, . . . , uj−1, uj+1, . . . , us)

= T (ω1, . . . ωi−1, θk, ωi+1, . . . ωr, u1, . . . , uj−1, vk, uj+1, . . . , us)

where ω1, . . . ωi−1, ωi+1, . . . ωr ∈ V ∗ and u1, . . . , uj−1, uj+1, . . . , us ∈ V . Now let {v̄a} ∈
V be another basis and {θ̄a} be its dual. Let v̄b = Aabva and thus θ̄b = (A−1)abθ

a. Then:

T (ω1, . . . ωi−1, θ̄b, ωi+1, . . . ωr, u1, . . . , uj−1, v̄b, uj+1, . . . , us)

= T (ω1, . . . ωi−1, (A−1)ba′θ
a′ , ωi+1, . . . ωr, u1, . . . , uj−1, A

a
bva, uj+1, . . . , us)

= (A−1)ba′A
a
bT (ω

1, . . . ωi−1, θa
′
, ωi+1, . . . ωr, u1, . . . , uj−1, va, uj+1, . . . , us)

= δaa′T (ω
1, . . . ωi−1, θa

′
, ωi+1, . . . ωr, u1, . . . , uj−1, va, uj+1, . . . , us)

= T (ω1, . . . ωi−1, θa, ωi+1, . . . ωr, u1, . . . , uj−1, va, uj+1, . . . , us)

= C(i,j) (T ) (ω
1, . . . ωi−1, ωi+1, . . . ωr, u1, . . . , uj−1, uj+1, . . . , us)

Thus contractions are independent of the basis used. The components of a contraction

relative to a given basis are:

(C(α,β) (T ))
i1...iα−1iα+1...ir

j1...jβ−1jβ+1...js
= T i1...iα−1γiα+1...ir

j1...jβ−1γjβ+1...js

Note that if A ∈ T(1,1) (V ), then C(1,1) (A) ∈ T(0,0) (V ) with the components given by

Akk. This is why T(0,0) (V ) = R.

Proposition A.0.4. Let S, T ∈ T(r,s) (V ), a ∈ R, i = 1, . . . , r, and j = 1, . . . , s.

Then C(i,j) (aS + T ) = aC(i,j) (S) + C(i,j) (T ).

Using tensor products and contractions, we can make sense of what it means to

contract two tensors together. For example, if Aabc and B
de
fgh are the components of
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two tensors, then AaαβB
βb
cdα are the components of the tensor C(3,1)

(
C(2,4) (A⊗B)

)
.

A consequence of this is the following: If u = uava ∈ V and ω = ωaθ
a ∈ V ∗, then

ω(u) = uaωa = C(1,1) (u⊗ θ). Thus evaluating ω at u is a special case of a contraction

of tensors.

Symmetrization: Recall from algebra that a permutation of n elements is an element

of the set Sn = {τ : {1, . . . , n} → {1, . . . , n}|τ is a bijection}. If i, j = 1, . . . , n and

i ̸= j, define a transposition of n elements (i, j) ∈ Sn by:

(i, j)(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
j , x = i

i , x = j

x , otherwise

Every permutation of n can be written as a finite composition of transpositions of n

elements. This composition is not unique but the number of compositions will always

be an even or odd number. Thus we can define for any τ ∈ Sn:

sign(τ) =

⎧⎨⎩1 , τ is a composition of an even number of transpositions

−1 , τ is a composition of an odd number of transpositions

We can now define the symmetrisation of a tensor. Let T ∈ T(0,r) (V ). We define

S̃T ∈ T(0,r) (V ) by ((S̃T )(u1, . . . ur) =
1
r!

∑
τ∈Sr

T (uτ(1), . . . uτ(r)). We use the following

notation to denote the components:

T (i1...ir) = (S̃T )i1...ir =
1

r!

∑
τ∈Sr

T iτ(1)...iτ(r)

We can of course define a symmertrization on some of the indices and on tensors of

arbitrary order. This is easiest to define using components. As an example, if T abdde

is a tensor, then T a(bc)de means 1
2
(T abcde + T acbde).

Antisymmetrization: If T ∈ T(0,r) (V ), let ÃT ∈ T(0,r) (V ) by ((ÃT )(u1, . . . ur) =

1
r!

∑
τ∈Sr

sign(τ)T (uτ(1), . . . uτ(r)). We use the following notation to denote the com-

ponents:

T [i1...ir] = (ÃT )i1...ir =
1

r!

∑
τ∈Sr

sign(τ)T iτ(1)...iτ(r)
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We can define the antisymmetrisation of an arbitrary tensor in a similar way to the

symmetrisation and we can choose to only apply the antisymmetrisation on some of

the indices.

Proposition A.0.5. Let T, T ′ be tensors and a ∈ R. The following are true when

well-defined:

1. S̃(aT + T ′) = aS̃T + S̃T ′

2. Ã(aT + T ′) = aÃT + ÃT ′

3. S̃(S̃T ) = S̃T

4. Ã(ÃT ) = ÃT

5. S̃(ÃT ) = Ã(S̃T ) = 0

A tensor T is called totally-symmetric if S̃T = T and totally-antisymmetric

if ÃT = T .

For T ∈ T(0,2) (V ), we can represent the components of T as an n×n matrix (n is

the dimension of the vector space V ). Denote this matrix as [Tij] where Tij are the

components relative to some basis in V . If S̃T = T , then Tij = Tji and hence [Tij]

is a symmetric matrix. Simmilarly, if ÃT = T , then Tij = −Tji and hence [Tij] is a

skew-symmetric matrix and hence the diagonal entries are zero.



Appendix B

Scalar Polynomial Invariants

In 1869, Christoffel showed that any scalar function on a n-dimensional Riemannian

(or pseudo-Riemannian) manifold (M, g) constructed from the metric g must be a

function of Rabcd, Rabcd;e and higher order covariant derivatives [23]. The simplest

of such scalar functions are scalar polynomial invariants. The scalar polynomial

invariance (or SPI) of a given spacetime metric g is the set of functions generated

by operations on (contractions of) the curvature tensors (such as the Riemann or the

Weyl tensors) such as RabR
ab, CabcdC

abefCcd
ef , Rab;cR

ab;c, Cabcd;eC
abcd;e, etc.

Let M be of dimension n. The number of functionally independent SPIs is n.

However, the number of algebraically independent SPIs (i.e; SPIs not satisfying any

polynomial relation) constructed from the metric and its derivatives up to order p is

[23]:

N(n, p) =

⎧⎨⎩0 if p = 0 or 1

n(n+1)(n+p)!
2n!p!

− (n+p+1)!
(n−1)!(p+1)!

+ n if p ≥ 2
(B.1)

SPIs can be used to find the event horizon of a black hole. [24] provides a formula

that can be used to calculate a new SPI, W , from the wedge product of n gradients

of functionally independent SPIs (where n is the local cohomogeneity of the metric).

The norm of W will vanish at the stationary horizons.

Theorem B.0.1. Let (M, g) be a spacetime manifold with a local cohomogeneity n

and contains a stationary horizon. Let S(i), i = 1, ..., n be the functionally independent

SPIs of M and dS(i) is well-defined. If W = dS(1) ∧ dS(2) ∧ · · · ∧ dS(n), then at the

stationary horizon:

||W ||2 ≡ 1

n!
δα1,...,αn

β1,...,βn
gβ1γ1 ...gβnγn × S(1)

;α1
...S(n)

;αn
S(1)
;γ1
...S(n)

;γn = 0 (B.2)

SPIs are a good way to find the event horizons of a black hole since they are con-

ceptually simple. However they do not necessarily uniquely characterize the spacetime

57



58

[25] and, more importantly, they are a challenge to compute (even for computers).

Unless the spacetime metric is very simple or the dimension is small, finding event

horizons using SPIs is not feasible since the SPIs can be very large polynomials.

Therefore, we resort to Cartan invariants, found by applying the Cartan algorithm.



Appendix C

Test for Functional Independence

Before we discuss functional dependence, we need a preliminary fact:

Theorem C.0.1. Let V be a n-dim vector space and let θ1, . . . , θr ∈ V ∗ (r ≤ n).

Then θ1, . . . , θr are linearly dependent if and only if θ1 ∧ · · · ∧ θr = 0.

Proof. (⇒) Assume, without loss of generality, that θ1 =
∑r

i=2 a
iθi. Then θ1 ∧ · · · ∧

θr = a2θ2 ∧ θ2 ∧ · · · ∧ θr + · · ·+ arθr ∧ θ2 ∧ · · · ∧ θr = 0 + · · ·+ 0 = 0.

(⇐) We will prove the converse by proving that if θ1, . . . , θr are linearly independent

then θ1 ∧ · · · ∧ θr ̸= 0. Since V ∗ is of dimension n, we can find θr+1, . . . , θn such that

{θ1, . . . , θn} ⊂ V ∗ is a basis. Thus S = {θi1 ∧· · ·∧θir}0<i1<i2<···<ir≤n ⊂ Ω1(V ) a basis.

But θ1 ∧ · · · ∧ θr ∈ S thus θ1 ∧ · · · ∧ θr ̸= 0.

We define local functional dependence as follows:

Definition C.0.2. Let M be a n-dimensional manifold and p ∈ M . We say that a

collection of r functions f 1, . . . , f r ∈ C∞(M) are functionally dependent near

p if there exist a open neighborhood p ∈ U ⊂ M and a map H : Rr → R such that

∀q ∈ U , H(f 1(q), . . . , f r(q)) = 0. If no such map H exists, we say that f 1, . . . , f r are

functionally independent.

The following theorem informs us that local functional dependence of a set of functions

is related to the local linear dependence of their differentials. The proof can be found

in [26]:

Theorem C.0.3. Let M be a n-dimensional manifold, p ∈ M , and f 1, . . . , f r ∈
C∞(M). Then f 1, . . . , f r are functionally dependent near p if and only if (df 1)p, . . . (df

r)p

are linearly dependent.

We can combine the two above theorems into one:
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Theorem C.0.4. Let M be a n-dimensional manifold, p ∈ M , and f 1, . . . , f r ∈
C∞(M). Then f 1, . . . , f r are functionally dependent near p if and only if df 1 ∧ · · · ∧
df r = 0 at p.

Say you are given a list of smooth functions g1, . . . , gr ∈ C∞(M) and you want to

reduce the list to only include functionally independent functions at any point p ∈M .

Define an empty list S and add g1 to S. Then check if dg1∧dg2 = 0. If false, include

g2 into S. Then check if (∧f∈Sdf)∧ dg3 = 0. If false, include g3 into S. Repeat until

all functions are considered. To summarize:

1. Insert g1 into S.

2. For i from 2 to r do:

(a) Evaluate ω = ∧f∈Sdf

(b) If ω ∧ dgi = 0, insert gi into S.

end do.
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