
An On-Event Based Model for Resource Constrained Scheduling of Aircraft

Heavy Maintenance Tasks

by

Elizabeth Croteau

Submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science

at

Dalhousie University

Halifax, Nova Scotia

November 2015

© Copyright by Elizabeth Croteau, 2015

ii

Dedication

To my parents, Jane & Jim, and my boyfriend, Dave, for all their patience, support, humour, and

above all – their love

iii

Table of Contents

List of Figures ... vii

List of Tables ... viii

Abstract ... ix

List of Abbreviations Used ... x

Acknowledgements... xi

Chapter 1. Introduction .. 1

1.1 Jazz Aviation & Maintenance Scheduling .. 2

1.2 Problem Structure .. 3

1.2.1 Resources ... 3

1.2.2 Routine Tasks ... 3

1.2.3 Non-Routine Tasks ... 4

1.2.4 Multiple Aircraft ... 4

1.2.5 Aircraft Configuration .. 4

Chapter 2. Literature Review .. 5

2.1 Overview of the Resource Constrained Project Scheduling Problem 5

2.1.1 RCPSP Classification ... 5

2.1.2 RCPSP Applications .. 6

2.2 RCPSP Model Types.. 6

2.2.1 Multi- vs. Single-Mode ... 7

2.2.2 Time Windows ... 7

2.2.3 Stochastic Activity Times .. 7

2.2.4 Renewable vs. Non-Renewable Resources .. 8

2.2.5 Cyclic vs. Linear .. 8

2.2.6 Pre-emptive vs. Non-pre-emptive ... 8

2.2.7 Multi-Project Management & Support .. 9

2.3 RCPSP Solving Methods ... 9

2.3.1 Exact Methods (Linear Programming) ... 9

2.3.2 Heuristic and Metaheuristic Methods ... 10

2.3.3 Constraint Programming and Satisfiability Testing .. 10

2.4 MILP Formulations ... 11

2.4.1 Formulation Notation Definitions .. 11

iv

2.4.2 Discrete Time Formulation .. 11

2.4.3 Flow-based Continuous Time Formulation .. 12

2.4.4 Event Based Formulation ... 14

2.5 MILP Formulation Metrics ... 15

2.5.1 Network Indicators .. 15

2.5.2 Resource Indicators.. 15

2.5.3 Instance Indicators ... 16

2.5.4 Indicator Evaluation of Jazz Aviation ... 16

2.6 Conclusion of Literature Review .. 17

Chapter 3. Event-based Scheduling Models ... 19

3.1 Event Formulation Notation .. 19

3.2 On/Off Event Formulation ... 19

3.2.1 On/Off Event Formulation Visualization .. 19

3.2.2 On/Off Objective & Constraints ... 21

3.2.3 On/Off Constraint Details .. 22

3.2.4 On/Off Formulation Limitations... 22

3.3 On-Only Event Formulation ... 23

3.3.1 On-Only Event Formulation Visualization .. 23

3.3.2 On-Only Additional Parameters & Variables ... 24

3.3.3 On-Only Objective & Constraints ... 24

3.3.4 On-Only Constraint Details .. 26

3.3.5 Earliest & Latest Starts ... 27

3.3.6 Z-Bounds Details .. 27

Chapter 4. Pre-processing Algorithm .. 28

4.1 Topological Sort Pseudocode ... 28

4.1.1 Node Levels & Earliest Start Time Pseudocode ... 28

4.1.2 Latest Start Time Pseudocode ... 29

4.1.3 Forward Activity Count Pseudocode .. 30

4.1.4 Reverse Activity Count Pseudocode .. 30

Chapter 5. Test Design .. 32

5.1 Small Example Problem ... 32

5.2 Test Networks .. 32

5.3 Test Activity Data ... 33

v

5.4 Test Resource Budgets ... 34

5.5 Test Instances .. 35

Chapter 6. Theoretical Results .. 37

6.1 Gap Comparison... 37

6.1.1 Gap Comparison after 600 seconds vs. 3600 seconds by Network 37

6.1.2 Gap Comparison after 600 seconds vs. 3600 seconds by Budget 40

6.1.3 Disjunction Ratio vs. Gap ... 42

6.2 Gap Improvement Analysis .. 44

6.2.1 Gap Improvement by Network .. 45

6.2.2 Gap Improvement by Budget ... 45

6.3 Objective Value Comparison .. 46

6.3.1 Objective Comparison by Network .. 46

6.3.2 Objective Comparison by Budget .. 47

6.4 Best Bound Improvement .. 48

6.5 Computational Complexity Trade-off .. 48

Chapter 7. Implementation Process at Jazz Aviation.. 50

7.1 Proposed Process ... 50

7.2 Data Requirements .. 50

7.3 Data Details .. 51

7.3.1 Prerequisites .. 51

7.3.2 Task Duration ... 51

7.3.3 Employees .. 51

7.3.4 Equipment .. 52

7.3.5 Area .. 52

7.3.6 Configuration ... 52

Chapter 8. Application & Modification to Jazz Aviation ... 53

8.1 Area Blocks ... 53

8.1.1 Area Block Example .. 54

8.2 Shadow Non-Routines ... 54

8.3 Dataset Splitting ... 55

8.4 Heuristic Implementation .. 55

8.5 Dataset Updating ... 58

vi

8.6 Implementation Results ... 58

8.7 Post-Processing .. 59

Chapter 9. Future Work & Recommendations ... 60

9.1 Academic Future Work .. 60

9.2 Recommendations for Jazz Aviation .. 61

Chapter 10. Conclusion .. 62

References……..64

Appendix A – GMPL Code .. 69

Appendix B – Test Data .. 72

Appendix C – Preprocessing Code ... 75

Appendix D – Test Network Diagrams ... 82

vii

List of Figures

Figure 1 – Current Advanced Scheduling Process .. 2

Figure 2 – Current Day-to-Day Scheduling Process ... 3

Figure 3 – On/Off Event Formulation Diagram .. 20

Figure 4 – On-Only Event Formulation Diagram .. 23

Figure 5 – Example of Activity Counts (Forward & Reverse .. 27

Figure 6 – Network 1 Initial Results by Budget .. 37

Figure 7 – Network 2 Initial Results by Budget .. 38

Figure 8 – Network 3 Initial Results by Budget .. 38

Figure 9 – Network 4 Initial Results by Budget .. 39

Figure 10 – Network 5 Initial Results by Budget .. 39

Figure 11 – Budget 1 Initial Results by Network .. 40

Figure 12 – Budget 2 Initial Results by Network .. 40

Figure 13 – Budget 3 Initial Results by Network .. 41

Figure 14 – Budget 4 Initial Results by Network .. 41

Figure 15 – Budget 5 Initial Results by Network .. 42

Figure 16 – Disjunction Ratio vs. Gap Comparison (On/Off Model) ... 43

Figure 17 – Disjunction Ratio vs. Gap Comparison (On-Only Model) ... 43

Figure 18 – Average Objective Value by Network (3600 seconds) .. 47

Figure 19 – Average Objective Value by Budget (3600 seconds) .. 47

Figure 20 – Proposed Scheduling Process ... 50

Figure 21 – Area Block Example Schedule .. 54

Figure 22 – Heuristic Implementation at Jazz Aviation ... 57

Figure 23 – Example of Node Levels (Forward) ... 76

Figure 24 – Example of Node Levels (Reverse) .. 77

Figure 25 – Diagram of Test Network 1 ... 82

Figure 26 – Diagram of Test Network 2 ... 83

Figure 27 – Diagram of Test Network 3 ... 84

Figure 28 – Diagram of Test Network 4 .. 85

Figure 29 – Diagram of Test Network 5 .. 86

viii

List of Tables

Table 1 – Synthesis of Experiments from Kone et al 2011 .. 16

Table 2 – On/Off Event Formulation Example Z-Variable Values .. 20

Table 3 – On-Only Event Formulation Example Z-Variable Values .. 24

Table 4 – Test Network Complexity Summary ... 33

Table 5 – Activity Duration & Resource Demands ... 33

Table 6 – Test Budgets ... 35

Table 7 – Budget Resource Constrainedness ... 35

Table 8 – Disjunction Ratio for Test Instances ... 36

Table 9 – Instances by Increasing Disjunction Ratio ... 36

Table 10 – Gap Improvement Results .. 44

Table 11 – Gap Improvement Results by Network .. 45

Table 12 – Absolute Gap Improvement Results by Budget ... 46

Table 13 – Average Time to best Bound by Network .. 48

Table 14 – Average Time to Best Bound by Budget ... 48

Table 15 – Data Requirements from Jazz Aviation .. 50

Table 16 – Area Block Example Data ... 54

Table 17 – Jazz Task Set 1 Implementation Results .. 58

Table 18 – Full Initial Test Results .. 72

ix

Abstract

This thesis has resulted from a joint industry project with Jazz Aviation outlines the

development of a decision tool to improve the scheduling of aircraft heavy maintenance tasks.

Given the high operating costs and strong competition, it is advantageous to minimize the time

that an aircraft spends in the maintenance bay, while also maintaining high resource utilization;

thus, it is desirable to reliably forecast the length of an aircraft "check" for a given resource

allocation. The problem is further complicated by the addition of unexpected (non-routine) tasks

during the check, as repairs and replacements discover and generate new tasks to be added to

the schedule. Therefore, the main area for improvement lies in developing an efficient sequence

for the known tasks while accommodating potential non-routine tasks. A new event-based

formulation is developed for this resource constrained project scheduling problem (RCPSP).

Several numerical experiments are conducted to compare the performance of the new model

against existing ones. Analysis of the results shows the conditions under which the new

formulation outperforms existing models. This new formulation is appropriate for large-scale

problems with a relatively high number of resources available and relatively low resource

demand.

 A three-phase approach consisting of running the new event-based model in series to

minimize the makespan of the heavy maintenance “check" of an individual aircraft while

accommodating industry requirements and computational limitations is then proposed. The

approach is used to schedule the heavy maintenance task cards on a Bombardier Q400 aircraft.

Prior to developing the main schedule, data regarding prerequisites, task duration, and task

resource requirements is run through a pre-processing phase to determine the network

structure of the problem, as well as earliest and latest possible start times for each task. Pre-

processing decreases overall computation time. In each phase, a schedule is developed using an

event-based linear programming model for a given task set. Between phases, data from the

preceding phase is used to accommodate precedence relations for the next phase. Phase 1

optimizes the scheduling of the first 90 tasks that open and inspect the aircraft, including area-

based block tasks. Phase 2 optimizes a second set of tasks, which includes modification tasks as

well as the accommodation of non-routine tasks resulting from phase 1. Phase 3 optimizes all

remaining known tasks to close and test the aircraft, as well as non-routine tasks. A post-

processing algorithm combines the results from the three phases into a single schedule.

x

List of Abbreviations Used

RCPSP Resource Constrained Project Scheduling Problem

PMRP Project Materials Requirements Planning Problem

TCTP Time/Cost Tradeoff Problem

PSP Payment Scheduling Problem

MRCPSP Multi-mode Resource Constrained Project Scheduling Problem

RCMPSP Resource Constrained Multi-Project Scheduling Problem

MILP Mixed Integer Linear Programming

LP Linear Programming

TNC Total Network Complexity

NDNC Non-Dummy Network Complexity

RF Resource Factor

RC Resource Constrainedness

DR Disjunction Ratio

PR Processing Range

FAC Forward Activity Count

RAC Reverse Activity Count

PSPLIB Project Scheduling Problem Library

NR Non-Routine Task

SNR Shadow Non-Routine

M Mechanical

S Structural

E Electrical

xi

Acknowledgements

I am eternally grateful to my supervisors, Dr. Claver Diallo & Dr. Alireza Ghasemi, for their

guidance, wisdom, and patience; I know I was not the easiest of graduate students, yet you

steered me true and unwavering, and I do not have the words to express my appreciation.

I would like to extend a heartfelt thank you to Dr. Eldon Gunn for teaching me a few of the many

tips and tricks of the optimization world, while showing me glimpses of the vast, interesting,

beautiful world of applied mathematics. If and when I return to academia, it will be because of

your inspiration, and the door you opened.

I am indebted to my friends and colleagues at Jazz Aviation for welcoming me into their

organization and teaching me everything I never thought I would know about aircraft

maintenance & aviation in general. Special thanks goes to Lisa Vad for her generosity and

mentorship, and to Bryan, Scott, Justin, & Mark for all their time spent in Meeting Room Alpha –

I’m sure the vitamin D deficiency will fade in time.

My deepest thanks to all my professors for their teachings throughout my time at Dalhousie –

especially to Dr. Corinne MacDonald, whose passion for industrial engineering shone through

my very first class and is a constant reminder of why I chose this particular path, and to Dr. Guy

Kember, whose unbridled enthusiasm for mathematics never ceases to bring a smile to my face.

I would like to express my sincere appreciation to Dr. Josh Leon, for his encouragement,

kindness, and support – which allowed me to develop all those people skills I never got to

practice in the classroom.

Lastly, to all my friends, roommates, co-conspirators, study buddies, travel companions, and

trivia team members who ever listened with feigned interest while I excitedly explained the

nuances of mathematical modelling – I owe you all a round.

1

Chapter 1. Introduction

One of the few universal constants across all types of industry is the concept of logistics;

specifically, the scheduling of a variety of items – be they physical tasks, milestone events, or

human resources – within a variety of constraints. A well-constructed schedule can be the

difference between a profit margin for a company, or a loss; the safe execution of an activity, or

an incident; the meeting of an important deadline, or a costly delay. The scheduling of

sequences of tasks according to prerequisite requirements and within resource constraints is

known as the Resource Constrained Project Scheduling Problem (RCPSP).

RCPSP is the general classification for problems which model precedence-constrained

scheduling scenarios that are subject to resource constraints. The goal of such scheduling

problems is usually to minimize the total time taken to complete the project. The resource

constraints can be limited quantities of material, time available on machines, or number of

employees. RCPSPs are inherently valuable in real-world applications; there are a wide variety of

relevant uses, from automotive production to construction management to computer memory

allocation. In this thesis, an RCPSP is used to model the optimal scheduling of aircraft

maintenance at Jazz Aviation in Halifax, Nova Scotia.

 Within the aviation industry, the scheduling of when to perform aircraft maintenance is a

remarkably trivial concern; maintenance safety margins are determined well in advance by

numerous transportation safety authorities, and the window in which an aircraft must have

maintenance performed along with the type of maintenance required is strictly defined. In

comparison, the order in which required maintenance tasks must be completed is relatively

flexible. While a preliminary schedule for these maintenance tasks is developed by the aircraft

manufacturer, these preliminary schedules are based on the capacity of the aircraft

manufacturing facility to perform maintenance; as a result, they are based on an ideal scenario

where only one aircraft is undergoing maintenance by a consistent team of employees.

The reality of aircraft maintenance environments usually includes shift-work schedules with

changing resource profiles and multiple aircraft in a hangar at any given time. Jazz Aviation’s

Heavy Maintenance facility in Halifax, Nova Scotia is such a real-world facility, requiring an

automated scheduling tool to assist with optimal sequencing of aircraft maintenance tasks. This

2

thesis presents the development of an RCPSP model and the theoretical applications of this

model, as well as the practical application and implementation at Jazz Aviation.

1.1 Jazz Aviation & Maintenance Scheduling

Jazz Aviation is one of the few companies in North America to perform their own heavy

maintenance in-house, and the only company in North America to do so with a variety of

aircraft. Heavy maintenance checks are scheduled up to 8 months in advance, in accordance

with aircraft safety regulations; the list of tasks to be performed during the maintenance checks

is also determined in advance. This list of tasks is forwarded electronically to Production Control

to be scheduled. The scheduling of the sequence of these tasks is done manually, though they

are tracked though the company database.

The scheduling of one aircraft check currently happens in two phases: the full schedule creation

and the day-to-day scheduling. The full schedule creation occurs in the weeks before an aircraft

is due to enter the hangar. The current advance scheduling process can be seen in Figure 1.

Open Microsoft
Access

Fetch Maintenance
Check Data (List of

tasks to be
performed)

Generate Excel
Spreadsheet from

Access

Reorder tasks
manually in Excel &
assign tasks to days

Print all tasks
individually,

including detailed
instructions

Organize printed
tasks in binders by

day

Place binders in slots
on wall

Figure 1 – Current Advanced Scheduling Process

The day to day scheduling happens every morning and during the day as unexpected tasks,

referred to as “non-routines”, are generated and new information is obtained. The day to day

scheduling process is:

3

Review non-routine
tasks & incomplete

tasks from the
overnight shift

Add new non-
routines to TRAX

database

Add non-routines &
incomplete tasks to

day’s binder
(remove future tasks

as necessary)

Give binder to Crew
Chief for aircraft

Figure 2 – Current Day-to-Day Scheduling Process

1.2 Problem Structure

 The basic problem is a resource-constrained project scheduling problem, which will be

expounded upon in the literature review. Jazz Aviation has a specific goal in mind: namely,

developing a scheduling tool for their Heavy Maintenance division in Halifax, Nova Scotia. A

scheduling model is needed to order tasks in a way that efficiently utilizes the resources

available, including manpower, equipment, and aircraft space available at the Jazz Heavy

Maintenance hangar. Such a model will have to account for routine tasks, non-routine tasks, and

aircraft configuration changes. In addition, the scheduling tool resulting from this model must

be implementable in Jazz’s IT infrastructure at a realistic cost level.

The following sections detail the specific aspects of the Jazz problem that must be

accommodated by the model to ensure an accurate and relevant schedule.

1.2.1 Resources

The resources required for each task include the employees, which encompasses both

the type of employee (electrical, mechanical, or structural) and the number of

employees; the location on an aircraft (as each location has a limited amount of space

for an employee to perform a task); and the equipment required (which is restricted to

large equipment that must be shared). Items like tools are assumed to be assigned with

the employee – that is, each employee will bring all tools necessary to do the task. Items

such as parts and their availability will not be integrated into the model at this time;

however, they may be integrated into the model in the future, and the model should be

flexible enough to accommodate this possibility.

1.2.2 Routine Tasks

In Heavy Maintenance, there are numerous “routine” tasks to schedule, which are

defined by the aircraft manufacturer before the plane has even been purchased by an

airline. These tasks are listed as individual “task cards”, and stored both as physical hard

4

copy at the Heavy Maintenance location at Halifax airport, and also as digital soft copy

on Jazz Aviation’s database servers. Many of these tasks have precedence constraints

and cannot be started until the precedence tasks have been completed; this data is

usually included on the “task card”, but is not listed elsewhere – in other words,

precedence constraints cannot be known before the task card is accessed and the task

already assigned. The resources required for each task, and the duration of each task,

are also listed on these task cards; as a result, resources required and activity durations

are considered deterministic rather than stochastic.

1.2.3 Non-Routine Tasks

In addition to “routine” tasks, there are also “non-routine” tasks that are created as the

aircraft in question is undergoing maintenance. Routine tasks such as inspections will

generate “findings” – essentially, an issue that must be fixed before the aircraft can be

released from the hangar. Each finding generates a unique “non-routine” task to

address this finding and correct the defect that has been found. This thesis must address

these unexpected tasks, and incorporate them into the scheduling algorithm.

1.2.4 Multiple Aircraft

There are multiple aircraft in the hangar at any given time, each with their own unique

set of routine tasks, which will generate a unique set of non-routine tasks. Ideally, a

scheduling model will be required to not only schedule an individual aircraft, but up to

four aircraft concurrently sharing many of the resources (notably employees and

equipment). In this thesis, a model is presented for scheduling an individual aircraft

only; however, recommendations are made for future enhancement using heuristics to

decide optimal assignment of employees and equipment to aircraft.

1.2.5 Aircraft Configuration

The aircraft configuration refers to the state of the aircraft in three areas: power,

ground, and hydraulics. Tasks exist to turn power on and off at the aircraft, lift the

aircraft on and off the ground, and apply hydraulic power to the aircraft. These

configuration changes must be accommodated by the model.

5

Chapter 2. Literature Review

This section provides an overview of the Resource Constrained Project Scheduling Problem,

including relevant applications, common formulations, typical solving methods, and relevance to

the Jazz Aviation problem.

2.1 Overview of the Resource Constrained Project Scheduling Problem

The resource constrained project scheduling problem (RCPSP) is one of the most practical

mathematical modeling problems in academia today. RCPSP is a generalized form of the classic

job shop problem, and is NP-hard. While there are many variations of the RCPSP, the problem is

aptly described as “…the scheduling of project activities subject to resource and precedence

constraints, under the objective of minimizing the project makespan” [1]. Under such a

definition, where “makespan” is the total time for a project, it is easy to see why the RCPSP

problem is highly applicable; a plethora of real-world problems from manufacturing to

production to computer scheduling can be modeled using RCPSP. As a result, there are many

different types of RCPSP models. The purpose of this literature review is to provide an overview

of the existing model types and solving methods for RCPSP in the literature, evaluate these

models and methods, and identify which models and methods may be applicable to a project

scheduling problem at the Heavy Maintenance division of Jazz Aviation in Halifax, Nova Scotia.

2.1.1 RCPSP Classification

The Resource Constrained Project Scheduling Problem can be defined by both the

model type of RCPSP, which refers to the specific constraints and formulation of the

RCPSP model, and the solving method of RCPSP, which refers to the method used to

solve the RCPSP. While the solving type is typically well defined – such as linear

programming, constraint programming, or heuristic methods – the model types are

inconsistently classified, and the nomenclature is not universally applied. The majority

of the classifications used in this document have been taken from Brucker et al’s 1999

paper on notation and classifications of the RCPSP [2]. This taxonomy is mathematically

robust for the project management sphere of problems. It should be noted that this

classification scheme has been criticized for being inadequate for machine and job-shop

scheduling [3]; however, as this paper addresses a project management problem,

Brucker et al’s taxonomy is taken as adequate.

6

 2.1.2 RCPSP Applications

The potential applications for RCPSP models are numerous and significant. Any

scheduling problem with prerequisite requirements and limited resources – which is

essentially any scheduling problem of note in modern industry – is an RCPSP and can

benefit from RCPSP modelling. Specific applications include maintenance [4]; production

lines [5]; computer memory allocation [6]; construction [7]; and equipment installation

[8].

RCPSPs can also be integrated with other types of problems, such as project material

requirements planning problems (PMRP) [9]; lot sizing problems [10]; and time/cost

trade off problems (TCTP) and payment scheduling problems (PSP) [11]. Such

integrations tend to focus on new metrics for RCPSP application other than merely

makespan minimization [12].

2.2 RCPSP Model Types

Within the literature, there are multiple types of RCPSP models. As per Brucker et al [2],

common across all models is a set of activities, V, with n real activities indexed 1..n. dummy

activities 0 and n+1 index the starting event and terminating event, respectively. Each activity

has a duration denoted by pj. These activities are constrained by a set of precedence or

temporal constraints, E, as indicated by a directed graph G = (V, E). Precedence constraints are

binary pairs where (i,j) indicates that activity i is a predecessor of activity j. Temporal constraints

are given by minimum and maximum start time lags between activities, where Sj is the start

time of activity j, and if activity i is a predecessor for activity j, then Sj – Si ≥ pj. Alternatively,

dminij and dmaxij may indicate the minimum and maximum time lag between the start times of

activities i and j, where dminij is greater than or equal to pj. The time horizon is given by T,

usually divided into t periods.

Outside of the basics, models begin to diverge in terms of what is considered and how the

formulation is developed. While the vast majority focus on the objective of minimizing the

makespan of a particular schedule, some variations on the RCPSP focus on minimizing cost or

even multi-objective models [7]. More commonly, the constraints and set up of the model are

altered to accommodate variations instead. This section will present a brief overview comparing

some of the typical types of RCPSPs.

7

2.2.1 Multi- vs. Single-Mode

The most common distinction is that of multi- vs. single-mode applications. Multi-mode

scheduling, referred to as MPS [2] or MRCPSP [13], corresponds to an option for

different lengths of time for a job depending on how many resources are allocated to it

– for example, a wall can either be built in three days by one worker, or in two days by

two workers [1]. Single mode implies that the number of hours is constant related to the

number of resources – in other words, the wall can only be built in a given number of

days by a given number of workers, and the model will not consider other possibilities.

Multi-mode is typically used in machine job-shop scheduling, as different machines

make take different amounts of time to do the same task. Single-mode is typical when

the resources in question are employees. Many MRCPSPs focus on selecting a single

mode for each task, and then solving the RCPSP afterward [14].

2.2.2 Time Windows

Another variation between RCPSP models is the accommodation of time windows,

which limit the possible start and end times of each task to a predefined period. Such

formulations are referred to as PS/temp [2] or RCPSP/max [15]. The PS/temp notations

indicates the use of temporal constraints as mentioned above – that is, the time in

which an activity must occur is formulated in relation to other activities. In comparison,

the RCPSP/max model gives times when an activity must occur in relation to the time

horizon, and is more useful for modelling a delivery window or a limited availability

resource. RCPSP/max problems can be combined with other model types, such as the

multi-model problem, to create MRCPSP/max [16].

2.2.3 Stochastic Activity Times

The activity duration vector pj may also consist of stochastic activity times instead of

deterministic activity times, notated as pj = sto [2]. Whether stochastic (or “fuzzy”)

activity times should be accommodated or converted to deterministic activity time

vectors is the source of some debate, though guidelines exist for choosing when to work

with stochastic measures [17]. Most literature deals with deterministic activity times or

“defuzzifying” activity times so they may be treated as deterministic [18]. Such proactive

policies are usually relevant when the network structure is known, and the activity

durations can be modeled accurately; these policies usually result in an expected end

8

time and a minimized maximum makespan, rather than a minimum expected makespan

[19]. However, it is possible to actively accommodate uncertainty for certain types of

scheduling with limited data using possibilistic models, though this typically results in a

scheduling decision tool for short-term schedules rather than long term plans [20].

2.2.4 Renewable vs. Non-Renewable Resources

In basic RCPSP models, resources are considered renewable. These resources are

available at a pre-determined time level for each time period t [2]. In comparison, some

formulations include non-renewable resources that are “used up” during the schedule.

This can be due to these resources being consumed during set-up stages of a schedule

[21], or due to their being a limited amount of resources available over the entire

planning horizon [14]. The problem as a whole may be notated as RCPSP/CPR [22].

2.2.5 Cyclic vs. Linear

While the majority of the literature focuses on linear RCPSP, where there is a clear start

and end activities denoted as activities “0” and “n+1”, some research explores cyclic

RCPSP, where the problem continues infinitely. Common applications of cyclic RCPSP

include data-flow computations and software pipelining [23] and cyclic production shop

scenarios which are mass producing an item [6]. Cyclic RCPSPs can also be used for

continuous maintenance scheduling where there is prerequisite that some sort of

central or core precedence – such as a safety inspection requirement – must be met by

a certain point in the cycle [24]. It is typical to look at cyclic problems from the angle of

maximizing throughput rather than minimizing makespan, though this is not always the

case [25].

2.2.6 Pre-emptive vs. Non-pre-emptive

Non-pre-emptive models will not allow for an activity to be interrupted; once the

activity is scheduled, the entire duration of the activity must pass consecutively [8]. In

comparison, pre-emptive RCPSPs allow for activities to be interrupted so the resources

may be used elsewhere, and then the activity may resume after a period of time.

Models which allow pre-emption may either be modelled such that pre-emption is not

disallowed [26], or modelled by actively splitting the activities into smaller sections [8].

9

2.2.7 Multi-Project Management & Support

Lastly, RCPSPs can be used to model management of multiple projects, usually referred

to as the Resource Constrained Multi-Project Scheduling Problem (RCMPSP) [27]. An

example of this is for resource allocation across projects, such as line balancing across

production or maintenance lines; this can range from simple theoretical line balancing

[5] to more complex real-world applications in automotive manufacturing [28]. RCPSPs

can also be used to address the resource dedication problem (RDP) in multi-project

environments [29]. Another use in project management is modelling the potential

disruption of one project for the accommodation of another more urgent project,

referred to as the extended RCPSP or x-RCPSP [30]. Such x-RCPSPs may utilize priority

rules; there has been discussion on which priority rules to use for which project types

[31].

2.3 RCPSP Solving Methods

The solving methods for RCPSP fall into the same categories as the majority of operations

research problems – exact methods using linear programming, constraint programming and

satisfiability testing, and heuristic/metaheuristic methods.

2.3.1 Exact Methods (Linear Programming)

Throughout the 1970s and 1980s, much research focused on the development of MILP

models and the application of exact solving methods to scheduling problems [32]. As

exact methods have been shown to solve only small sets of tasks to optimality [13], the

focus has been not on Linear Programming methods as a whole, but on specific LP

formulations and selecting the correct formulation based on the problem at hand.

Recent work has demonstrated that“…when exact solving through a commercial solver

is involved, no formulation class dominates the other ones, and that the appropriate

formulation has to be selected depending on instance characteristics” [33]. In general,

Linear Programming models are considered the starting point of model development;

however, the limitations of exact solving methods has meant the research focus of the

1990’s through into the new century has been the development of heuristics to improve

solving time for large scale problems [27].

10

2.3.2 Heuristic and Metaheuristic Methods

Since the 1990’s, the majority of the literature has been focused on heuristic and

metaheuristic methods (see [13], [34], [35] [15], [1]). Priority rules based heuristics such

as X-pass, single pass, and multi-pass methods [34] are the basis for many heuristic and

metaheuristic methods in the literature; metaheuristic methods include simulated

annealing, tabu search, and genetic algorithms [34], and ant colony optimization and

backward-forward hybrid algorithms [36].

 The popularity of heuristics is mainly due to the computational limitations on more

exact solving methods; however, heuristics are also used to more accurately model real-

world scenarios. For example, it is possible to accommodate stochastic RCPSPs by first

developing a schedule based on deterministic data, and then add buffers via a heuristic

[37]. Another combination-type application is utilizing a powerful meta-heuristic such as

the Artificial Bee Colony to maximize the robustness and flexibility of a model [38].

2.3.3 Constraint Programming and Satisfiability Testing

Relatively new additions to the RCPSP solver field are constraint programming and

satisfiability testing, which may be combined with each other and with heuristic or

mathematical programming methods [39]. Constraint programming is a very flexible

programming language, usually reliant on logic programming in commercially available

solvers using constraints to define problems that may be solved very efficiently [40],

[41]. Satisfiability testing focuses on using Boolean statements to solve problems [42].

Constraint programming approaches convert typical RCPSP MILP models into relevant

sub-constraints that can be solved as sub-problems and slotted into the main problem

appropriately [43]. Satisfiability testing approaches typically capitalize on artificial neural

network techniques to solve RCPSPs that have been reduced to conjunctive normal form

formulations of combinatorial constraints [42]. As these two topics are complex and

diverse in their own right, the focus of this literature review is on heuristic and linear

programming methods for solving RCPSP.

11

2.4 MILP Formulations

There are three primary LP formulations: discrete time, continuous flow, and event based,

outlined comprehensively in the 2011 paper by Kone, Artigues, Lopez & Mongeau, hereafter

referred to as Kone et al [33]. These LP Formulations are outlined in this section and compared.

 2.4.1 Formulation Notation Definitions

 Constants:

 n Number of activities to be scheduled, including dummies

 H Planning Horizon

Sets:

 IP Set of precedence index pairs; (i,j) in IP means activity i must precede activity j

 R Set of resource types; denoted by r

A Set of activities; denoted by a; default 1..n where 1 is dummy start & n is

dummy end

 E Set of events; denoted by e

 Parameters:

pa Parameter for the duration of activity a

br Parameter for the budget; amount of resource r available

 da,r Parameter for resource demand; amount of resource r required by activity a

 ESa Parameter for the earliest possible start time of activity a

 LSa Parameter for the latest possible start time of activity a

2.4.2 Discrete Time Formulation

The basic discrete time formulation consists of one binary decision variable xit, which is

equal to 1 if activity i starts at time t. Modifications include if the activity i is in process

at time t. Discrete time formulations are more efficient for smaller scale problems, and

are much simpler to model; however, as they require time indexes for each scheduled

unit of time, they can grow very large very quickly, especially with large time horizons

and great variation in activity durations. For example, if one task takes 13 minutes, then

12

a time interval of one minute is logical; however, if another task takes 7 hours, this will

require 420 decision variables to accommodate. As a result, discrete time formulations

are recommended for smaller-scale problems, or problems with shorter time horizons.

The basic discrete time formulation is as follows:

Variable:

 xa,t Binary; if activity a starts at time t

Objective:

min ∑ 𝑡𝑥𝑛,𝑡

𝐿𝑆𝑛

𝑡=0

Subject to:

∑ 𝑡𝑥𝑗𝑡

𝐿𝑆𝑗

𝑡= 𝐸𝑆𝑗

≥ ∑ 𝑡𝑥𝑖𝑡 + 𝑝𝑖

𝐿𝑆𝑖

𝑡= 𝐸𝑆𝑖

 ∀(𝑖, 𝑗) ∈ 𝐼𝑃

∑ 𝑑𝑎,𝑟

𝑛

𝑎=1

∑ 𝑥𝑎,𝜏

𝑡

𝜏=𝑡−𝑝𝑎+1

≤ 𝑏𝑟 ∀𝑡 ∈ 𝐻, ∀𝑟 ∈ 𝑅

∑ 𝑥𝑎,𝑡

𝐿𝑆𝑎

𝑡=𝐸𝑆𝑎

= 1 ∀𝑎 ∈ 𝐴, 𝑎 ≠ 𝑛

𝑥1,0 = 1

𝑥𝑎,𝑡 = 0 ∀𝑎 ∈ 𝐴, 𝑎 ≠ 𝑛,

∀𝑡 ∈ 𝐻, 𝐻 < 𝐸𝑆𝑎, 𝐻 > 𝐿𝑆𝑎

𝑥𝑎,𝑡 ∈ {0,1} ∀𝑎 ∈ 𝐴, 𝑎 ≠ 𝑛, ∀𝑡 ∈ {𝐸𝑆𝑎, 𝐿𝑆𝑎}

 2.4.3 Flow-based Continuous Time Formulation

 The flow-based continuous time formulation consists of three variables: continuous

variable Si indicating the start time of activity i, binary variable xij to indicate if activity i is

13

processed before activity j, and continuous variable fijk which is equal to the quantity of

resource k that is transferred from activity i to activity j. Flow-based continuous time

formulations are most logical in machine shop environments, where the resource is

being handed off to the next activity and may process many activities at once. In a

project scheduling environment, most resources can handle being assigned to at most

one activity – employees are not seen to be concurrently working on multiple tasks

equally. As a result, this formulation is less appropriate to project scheduling. The flow-

based continuous time formulation is below.

Additional Parameters:

Mij Large constant for (i,j) in A; equal to ESi - LSj

gar Amount of resource r being consumed per time period during the execution of

activity a

ğar Indicates if resource is a source or sink; equals gar except where a=0 and a=n; in

these cases, ğ0r = ğnr = br

Variables:

 sa Continuous; start time of activity a

 yi,j Sequential binary; if activity i is processed before activity a

 fi,j,r Continuous; amount of r transferred from activity i to activity j

Objective:

min 𝑠𝑛

Subject To:

𝑦𝑖,𝑗 + 𝑦𝑗,𝑖 ≤ 1 ∀(𝑖, 𝑗) ∈ 𝐴2, 𝑖 < 𝑗

𝑦𝑖,𝑘 ≥ 𝑦𝑖,𝑗 + 𝑦𝑗,𝑘 − 1 ∀(𝑖, 𝑗, 𝑘) ∈ 𝐴3

𝑠𝑗 − 𝑠𝑖 ≥ −𝑀𝑖,𝑗 + (𝑝𝑖 + 𝑀𝑖,𝑗) ∗ 𝑦𝑖,𝑗 ∀(𝑖, 𝑗) ∈ 𝐴2

14

 𝑓𝑖,𝑗,𝑟 ≤ min(ğ𝑖𝑟,ğ𝑗𝑟) 𝑦𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴2, ∀𝑟 ∈ 𝑅

 ∑ 𝑓𝑖𝑗𝑟𝑗∈𝐴 = ğ𝑖𝑟 ∀𝑖 ∈ 𝐴, ∀𝑟 ∈ 𝑅

∑ 𝑓𝑖𝑗𝑟𝑖∈𝐴 = ğ𝑗𝑟 ∀𝑗 ∈ 𝐴, ∀𝑟 ∈ 𝑅

 𝑓𝑛,0,𝑟 = 𝑏𝑟 ∀𝑟 ∈ 𝑅

 𝑦𝑖𝑗 = 1 ∀(𝑖, 𝑗) ∈ 𝐼𝑃

 𝑦𝑗𝑖 = 0 ∀(𝑖, 𝑗) ∉ 𝐼𝑃

 𝑓𝑖𝑗𝑟 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴2, ∀𝑟 ∈ 𝑅

 𝑆0 = 0

 𝐸𝑆𝑎 ≤ 𝑆𝑎 ≤ 𝐿𝑆𝑎 ∀𝑎 ∈ 𝐸

 𝑦𝑖𝑗 ∈ {0,1}

2.4.4 Event Based Formulation

The event based formulations can be either start/end based or on/off based, and are

focused on defining events in relation to the beginning of activities. The first type, the

start/end formulation, was originally proposed by Zapata et al., [44], and defines an

event a moment when an activity starts or ends. A binary xie variable determines if an

activity starts at event e, and a second binary variable yie determines if an activity ends

at event e. A continuous time variable te determines the time of event e. Start/End

formulations are shown to be less intuitive, however, and perform poorly in relation to

on/off event based formulations [33].

The on/off based formulation has been shown to be more robust than the start/end

formulation, as it consists of one binary decision variable zie, which is equal to 1 if

activity i starts or is being processed immediately after event e, along with the

continuous variable t which represents the start time of event e. In this formulation, the

number of events is exactly equal to the number of activities. It is indicated in the

literature that the on/off event model involves data preprocessing; however, this is not

detailed in the Koné et al [33].

15

2.5 MILP Formulation Metrics
Koné et al [33] summarizes the comparison of these models after running tests on PSPLIB

instances. Some of the instance indicators used include Network Complexity (denoted TNC for

“Total Network Complexity” in this thesis), Resource Factor (RF), Disjunction Ratio (DR) and

Processing Range (PR) (ibid). Other metrics used in this paper include Resource Constrainedness

(RC) [45] and Non-Dummy Network Complexity (NDNC), introduced in this thesis. These metrics

may be divided into three groups: network indicators, resource indicators, and instance

indicators.

 2.5.1 Network Indicators

Network indicators are based on the given network architecture, and describe that

architecture through a ratio of arcs to nodes. In this thesis network indicators are TNC

and NDNC. TNC is defined as the average number of precedence arcs per activity;

generally, higher network complexity decreases the difficulty of the problem [33]. NDNC

is defined as the average number of non-dummy precedence arcs per non-dummy

activity; this eliminates arcs between real activities and a dummy start or dummy end

activity. Previous work has not clearly distinguished between these two metrics, when it

is evident that the two may present very different values.

Take as an example an extreme network with n activities and n-1 total connections,

resulting in a serial configuration of activities with no decisions to be made regarding

scheduling. In this case, only two arcs are dummies – the first arc connecting the dummy

start to the first real activity, and the last arc connecting the last real activity to the

dummy end. Thus, the difference between the TNC of (n-1)/n, and the NDNC of (n-3)/(n-

2), is negligible when n is large. However, the other extreme example is a network with

no prerequisites between real activities – that is, zero non-dummy arcs. The NDNC of

such a network is 0/(n-2), or 0; however, the TNC of such a network is (2*(n-2))/n, as

there must be an arc from the dummy start to every activity, and every activity to the

dummy end. The difference in this case is significant; as a result, NDNC is introduced in

this thesis to clarify the difference between these two indicators.

2.5.2 Resource Indicators

Resource indicators are based on the resource demands and availabilities of a given

instance. RF is the average number of resources required by all activities, and is

16

therefore defined by the activities themselves via parameter da,r. In general, the higher

resource factor, the greater the difficulty of the problem [33]. RC is defined as the RF for

a given resource, divided by the resource budget [45]. As a result, RC is defined by both

parameters da,r and the available resource budget ba.

2.5.3 Instance Indicators

Instance indicators combine network and resource indicators to give a general

impression of the entire instance. DR integrates precedence and resource features and

defines cumulative instances as having a low disjunction ratio, while disjunctive

instances have a high disjunction ratio [33]. Cumulative instances are generally network-

budget combinations where it is possible to have many activities in process

simultaneously, while the solutions to disjunctive instances have very few activities in

process simultaneously. PR is defined as the ratio of the longest possible processing

time to the shortest possible processing time, with a high PR indicating a wide range of

possible durations, and a low PR indicating a small range of possible durations.

Koné et al’s 2011 paper indicates there are general trends comparing different MILP

formulations across the instance indicators. These are summarized below [33].

Table 1 – Synthesis of Experiments from Kone et al 2011

 High DR Low DR

Low PR Discrete > Flow > Event Discrete > Event > Flow

High PR Flow > Event > Discrete Event > Flow > Discrete

 2.5.4 Indicator Evaluation of Jazz Aviation

While pure data from Jazz Aviation will be evaluated at a later section in this thesis, the

general particulars of the Heavy Maintenance Scheduling Problem are known. As a

result, it is possible to evaluate qualitatively the likely instance values.

Network Complexity and Non-Dummy Network Complexity are likely to be high since

most tasks rely on the completion of previous tasks – for example, a panel must be

opened before a part is inspected; the part must be inspected before the repair is

completed; the repair must be completed before the safety check performed; and the

safety check performed before the panel is closed.

17

Resource Factor is likely to be low; most maintenance tasks are performed by one

resource only due to limited space on the aircraft. Resource constrained-ness is also

likely to be low, as there are between eight and fifteen employees assigned to each

aircraft.

Disjunction ratio is likely to be low, as the number of activities that could be scheduled

at any given moment is relatively high and the problem in general is highly cumulative.

As task durations can range from 5 minutes to over 8 hours, the processing range will be

very high.

2.6 Conclusion of Literature Review

Jazz Aviation’s scheduling problem is a linear, single-mode project scheduling problem with

deterministic activity times. As a result, existing MILP formulations are appropriate for modeling

the problem, though they will likely require heuristics to improve solving time due to the size of

the problem – Jazz Aviation will have an average of 250 routine tasks to be scheduled, as well as

up to 500 non-routine tasks which must be accounted for as well. As a result, selecting a

formulation and solving method that will accommodate such a large problem is of utmost

importance.

Ideally, a scheduling tool that solves the Jazz problem would allow for some sort of balancing

across the multiple aircraft which are pulling from a pooled set of resources – the employees

and equipment. However, to the author’s knowledge, such a problem type is not reflected in the

literature. This lack of depth of research combined with processing time restrictions leads the

author to recommend that the scheduling tool focus on scheduling one aircraft at a time, with

the number of employees assigned to a given aircraft being determined by production control

personnel. This will also allow production control to retain discretion in scheduling, which will be

invaluable for change management during the implementation phase of the project. Further

development of the model to accommodate multiple projects with pooled resources will be

recommended for future study.

While Koné et al (2011) recognizes that discrete time formulations are beneficial for low

processing time range problems, high processing time range problems are best served by both

flow based continuous time formulations and the on/off event based model. Flow-based

formulations are most appropriate when there are highly valuable resources that serve as

18

bottlenecks combined with straightforward precedence relations (such as machines in job-shop

problems); in other terms, when instances are highly disjunctive with a high DR.

The final instance indicator set, with a high PR and low DR, is likely best served by an event-

based model. As the Jazz Aviation problem definitely has a high PR and will likely have a low DR,

it may be concluded that the initial results – though presented with the caveat of caution –

indicate that an event type model should be preferred for the Jazz Aviation problem.

19

Chapter 3. Event-based Scheduling Models

An on/off event based model was selected as the base model that would be modified to

improve performance for large-scale problems such as the one at Jazz Aviation. Event-based

models have shown promise in effectively modelling large-scale problems with long time

horizons and many tasks. This section will present the formulation of the On/Off Event

formulation proposed by Koné et al, and identify shortcomings in their formulation. This thesis

will propose a new On-Only Event formulation, developed jointly with Eldon Gunn, to address

these shortcomings. Trade-off comparisons between both models are then conducted and the

results discussed.

3.1 Event Formulation Notation

The Event Formulations use the same notation as outlined in section 2.4.1, with the addition of

the following variables:

Variables

 te Continuous variable, the time of event e

 za,e Binary variable, if event e is the start of activity a

 Cmax Continuous variable, equal to the makespan

3.2 On/Off Event Formulation

The on/off event formulation defines the z variable as equal to 1 if a given activity a is in process

at or immediately after event e; as a result, for a given activity, there are multiple values of e for

which za,e can equal 1. It also means an event occurs at the start and end of each activity;

however, if the start of an activity coincides with the end of another activity, there is only one

event rather than two. The resultant number of non-zero z values is at least equal to n. A visual

representation of this definition is presented below, as well as the mathematical formulation,

and an overview of the limitations of this formulation.

 3.2.1 On/Off Event Formulation Visualization

Figure 3 shows the Gantt diagram of the solution to an example problem with 5

activities, and the resulting event times using the On/Off Event formulation.

20

Activity A

Activity B

Activity C

Activity D Activity E

t=0 t=1 t=2 t=3 t=4 t=5 t=6

e=1 e=2 e=3 e=4 e=5 e=6

Figure 3 – On/Off Event Formulation Diagram

In this example, the total number of activities is 5; the number of events is 6; and the

number of non-zero z values (za,e = 1) would be 10. Relevant z values are shown in Table

2 – On/Off Event Formulation Example Z-Variable Values.

 Table 2 – On/Off Event Formulation Example Z-Variable Values

 Activity a Event e Value

A 1 1

A 2 0

B 1 1

B 2 1

B 3 1

B 4 0

C 2 1

C 3 1

C 4 1

C 5 0

D 2 1

21

 Activity a Event e Value

D 3 0

E 4 1

E 5 1

E 6 0

3.2.2 On/Off Objective & Constraints

Objective

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝑚𝑎𝑥

Subject To

 ∑ 𝑧𝑎,𝑒 ≥ 1𝑒 ∈ 𝐸 ∀𝑎 ∈ 𝐴

 (1)

 𝐶𝑚𝑎𝑥 ≥ 𝑡𝑒 + (𝑧𝑎,𝑒 − 𝑧𝑎,𝑒−1) ∗ 𝑝𝑎 ∀𝑒 ≠ 1 ∈ 𝐸, ∀𝑎 ∈ 𝐴

 (2)

 𝑡1 = 0

 (3)

 𝑡𝑒+1 ≥ 𝑡𝑒 ∀𝑒 ≠ 𝑛 ∈ 𝐸

 (4)

 𝑡𝑒2
≥ 𝑡𝑒1

+ ((𝑧𝑎,𝑒1
− 𝑧𝑎,𝑒1−1) − (𝑧𝑎,𝑒2

− 𝑧𝑎,𝑒2−1) − 1) ∗ 𝑝𝑎

 (5) ∀(𝑒1, 𝑒2, 𝑎) ∈ {𝐸 × 𝐸 × 𝐴}, 𝑒2 > 𝑒1

∑ 𝑧𝑎,𝑓
𝑒−1
𝑓=1 ≤ 𝑒 ∗ (1 − (𝑧𝑎,𝑒 − 𝑧𝑎,𝑒−1)) ∀𝑒 ≠ 1 ∈ 𝐸

 (6)

 ∑ 𝑧𝑎,𝑓
𝑛
𝑓=𝑒 ≤ (𝑛 − 𝑒) ∗ (1 + (𝑧𝑎,𝑒 − 𝑧𝑎,𝑒−1)) ∀𝑒 ≠ 1 ∈ 𝐸

 (7)

 𝑧𝑖,𝑒 + ∑ 𝑧𝑗,𝑓
𝑒
𝑓=1 ≤ 1 + (1 − 𝑧𝑖,𝑒) ∗ 𝑒 ∀𝑒 ∈ 𝐸, ∀(𝑖, 𝑗) ∈ 𝐼𝑃

 (8)

 ∑ 𝑑𝑎,𝑟 ∗ 𝑧𝑎,𝑒
𝑛
𝑎=1 ≤ 𝑏𝑟 ∀𝑒 ∈ 𝐸, ∀𝑟 ∈ 𝑅

 (9)

 𝐸𝑆𝑎 ∗ 𝑧𝑎,𝑒 ≤ 𝑡𝑒 ∀𝑒 ∈ 𝐸, ∀𝑎 ∈ 𝐴

 (10)

 𝑡𝑒 ≤ 𝐿𝑆𝑎 ∗ (𝑧𝑎,𝑒 − 𝑧𝑎,𝑒−1) + 𝐻 ∗ (1 − 𝑧𝑎,𝑒 + 𝑧𝑎,𝑒−1) ∀𝑒 ∈ 𝐸, ∀𝑎 ∈ 𝐴

 (11)

22

𝑧𝑎,𝑒 ∈ {0,1} ∀𝑎 ∈ 𝐴, 𝑒 ∈ 𝐸

 (12)

𝑡𝑒 ≥ 0 ∀𝑒 ∈ 𝐸

 (13)

*Note: the original model includes an unnecessary constraint enforcing earliest & latest start times that is not required

when constraints 10 & 11 are modelled separately.

3.2.3 On/Off Constraint Details
The constraints are described as follows:

(1) Assigns each activity at least one event, ensuring it is scheduled

(2) Defines the makespan, Cmax, as the end of the last activity

(3) Initializes the first event to the start time of zero

(4) Ensures events happen in order

(5) Links the binary z variable to the corresponding t variable

(6) Ensures non-pre-emption from previous events

(7) Ensures non-pre-emption for future events

(8) Enforces precedence constraints

(9) Enforces resource capacity constraint

(10) Enforces earliest start times

(11) Enforces latest start times

(12) Binary z definition

(13) Continuous non-negative t definition

3.2.4 On/Off Formulation Limitations

The on/off formulation is not an intuitive one; the definition tying events to activities

means that a given activity may have more than one event for which za,e = 1. While this

simplifies the resource capacity constraints, as it is allows for summing the activities that

are on at a given event to determine resource demand, it also convolutes the

prerequisite constraints and necessitates the non-pre-emption constraints. Most

importantly, it makes it difficult to reduce the solution space by limiting which activities

may be assigned to which events; such limitations are not obvious when each activity is

assigned to multiple events.

23

3.3 On-Only Event Formulation

The on-only event formulation serves to rectify the limitations identified in the on/off

formulation by making the formulation more intuitive and easier to manipulate. The on-only

event formulation changes the definition of the z variable, so that each activity is assigned to

one event, and one event only; at this event, the activity starts. As a result, the total number of

non-zero z variables will always be equal to the number of activities, n. This definition means it

is possible to capitalize on the underlying structure of the prerequisite network to limit which

events may be assigned to the given activity, based on where the activity sits in the prerequisite

network.

3.3.1 On-Only Event Formulation Visualization

The following diagram visualizes the variable values for the same final schedule as in

example 3.2.1.

Activity A

Activity B

Activity C

Activity D Activity E

t=0 t=1 t=2 t=3 t=4 t=5 t=6

e=1

e=2

e=3

e=4 e=5

Figure 4 – On-Only Event Formulation Diagram

24

As can be seen, for the same solution there are only 5 events rather than 6, and the

number of non-zero z variables is equal to 5 rather than 1. This is clearly shown in Table

3.

 Table 3 – On-Only Event Formulation Example Z-Variable Values

 Activity a Event e Value

A 1 1

B 2 1

C 3 1

D 4 1

E 5 1

3.3.2 On-Only Additional Parameters & Variables

Parameters:

 ActivityForwarda in A Number of activities which must be completed for activity a to

start

 ActivityReversea in A Number of activities which require activity a to be completed to

start

ZBoundse in E,a in A Binary; default if((e<=(n-ActivityReverse[a])) and

(e>ActivityForward[a])) then 1, else 0

Variables:

Cove1 in E, e2 in E binary variable which represents if the activity which starts at

event e1 overlaps with the activity which starts at event e2

Rescvr in R, e1 in E, e2 in E continuous variable, >=0, which represents number of resource

r that is required by the activity at event e1 when the activity at

event e2 starts

3.3.3 On-Only Objective & Constraints
Objective

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝑚𝑎𝑥

Subject To

Defining Constraints:

 ∑ 𝑧𝑎𝑒 = 1𝑒 ∈ 𝐸 ∀𝑎 ∈ 𝐴

 (1)

25

 ∑ 𝑧𝑎𝑒 = 1𝑎 ∈ 𝐴 ∀𝑒 ∈ 𝐸

 (2)

𝑡𝑒 ≤ 𝑡𝑒+1 ∀𝑒 ≠ 𝑛 ∈ 𝐸

 (3)

 𝑡𝑒 + ∑ (𝑧𝑎,𝑒 ∗ 𝑝𝑎)𝑎=𝑛
𝑎=1 ≤ 𝐶𝑚𝑎𝑥 ∀𝑒 ∈ 𝐸

 (4)

Start Time Constraints:

 𝑡𝑒 ≥ ∑ (𝐸𝑆𝑎 ∗ 𝑧𝑎,𝑒)𝑎=𝑛
𝑎=1 ∀𝑒 ∈ 𝐸

 (5)

𝑡𝑒 ≤ ∑ (𝐿𝑆𝑎 ∗ 𝑧𝑎,𝑒)𝑎=𝑛
𝑎=1 ∀𝑒 ∈ 𝐸

 (6)

 𝑡𝑒2
≥ 𝑡𝑒1

+ 𝑝𝑖 ∗ (𝑧𝑖,𝑒1
+ 𝑧𝑗,𝑒2

− 1) ∀𝑒1, 𝑒2 ∈ 𝐸, ∀(𝑖, 𝑗) ∈ 𝐼𝑃; 𝑒1 < 𝑒2

 (7)

Resource Constraints:

 𝑡𝑒1
+ ∑ 𝑝𝑎 ∗ 𝑧𝑎,𝑒

𝑎=𝑛
𝑎=0 ≤ 𝑡𝑒2

+ 𝐻 ∗ 𝑐𝑜𝑣𝑒1,𝑒2
 ∀𝑒1, 𝑒2 ∈ 𝐸; 𝑒1 < 𝑒2

 (8)

 𝑡𝑒1
+ ∑ 𝑝𝑎 ∗ 𝑧𝑎,𝑒

𝑎=𝑛
𝑎=0 ≥ 𝑡𝑒2

− 𝐻 ∗ (1 − 𝑐𝑜𝑣𝑒1,𝑒2
) ∀𝑒1, 𝑒2 ∈ 𝐸; 𝑒1 < 𝑒2

 (9)

 𝑟𝑒𝑠𝑐𝑣𝑟,𝑒1,𝑒2
≤ 𝑐𝑜𝑣𝑒1,𝑒2

∗ 𝑏𝑟 ∀𝑟 ∈ 𝑅, ∀𝑒1, 𝑒2 ∈ 𝐸; 𝑒1 < 𝑒2

 (10)

𝑟𝑒𝑠𝑐𝑣𝑟,𝑒1,𝑒2
≥ ∑ 𝑑𝑎,𝑟 ∗ (𝑐𝑜𝑣𝑒1,𝑒2

+ 𝑧𝑎,𝑒1
− 1)𝑎=𝑛

𝑎=0 ∀𝑟 ∈ 𝑅, ∀𝑒1, 𝑒2 ∈ 𝐸; 𝑒1 < 𝑒2

 (11)

𝑟𝑒𝑠𝑐𝑣𝑟,𝑒1,𝑒2
≤ − ∑ 𝑑𝑎,𝑟 ∗ (𝑐𝑜𝑣𝑒1,𝑒2

− 𝑧𝑎,𝑒1
− 1)𝑎=𝑛

𝑎=0 ∀𝑟 ∈ 𝑅, ∀𝑒1, 𝑒2 ∈ 𝐸; 𝑒1 < 𝑒2

 (12)

𝑏𝑟 ≥ ∑ 𝑑𝑎,𝑟 ∗ 𝑧𝑎,𝑒
𝑎=𝑛
𝑎=0 + ∑ 𝑟𝑒𝑠𝑐𝑣𝑟,𝑓,𝑒

𝑓<𝑒
𝑓=1 ∀𝑟 ∈ 𝑅, ∀𝑒 ∈ 𝐸

 (13)

𝑧𝑎,𝑒 ∈ {0,1} ∀𝑎 ∈ 𝐴, 𝑒 ∈ 𝐸

 (14)

𝑡𝑒 ≥ 0 ∀𝑒 ∈ 𝐸

 (15)

26

𝐶𝑚𝑎𝑥 ≥ 0

 (16)

𝑐𝑜𝑣𝑒1,𝑒2 ∈ {0,1} ∀𝑒1 ∈ 𝐸, 𝑒2 ∈ 𝐸

 (17)

𝑟𝑒𝑠𝑐𝑜𝑣𝑟,𝑒1,𝑒2 ≥ 0 ∀𝑟 ∈ 𝑅, 𝑒1 ∈ 𝐸, 𝑒2 ∈ 𝐸

 (18)

 3.3.4 On-Only Constraint Details

The on-only constraints are described as follows:

(1) Assigns each activity to exactly one event

(2) Assigns each event to exactly one activity

(3) Ensures events happen in order

(4) Defines the makespan, Cmax, as the end time of the last scheduled activity

(5) Enforces earliest start times

(6) Enforces latest start times

(7) Enforces precedence constraints

(8) Defines coverage variable as equal to 1 if two activities overlap

(9) Defines coverage variable as equal to 1 if two activities overlap

(10) Limits value of resource coverage variable

(11) Defines resource coverage variable as amount of resource in use by overlapping

activity

(12) Defines resource coverage variable as amount of resource in use by overlapping

activity

(13) Enforces budget constraint

(14) Binary z definition

(15) Continuous non-negative t definition

(16) Continuous non-negative Cmax definition

(17) Binary cov definition

(18) Continuous non-negative rescov definition

27

3.3.5 Earliest & Latest Starts

The earliest and latest possible start times were calculated based on the network

prerequisite structure; an earliest possible start time for an activity is equal to the sum

of the durations of the critical path of activities required before the given activity can

start. Complementarily, the latest possible start time is equal to the maximum time

horizon minus the sum of the durations of the critical path of activities which are

dependent upon the given activity finishing, including the duration of the given activity.

3.3.6 Z-Bounds Details

Z-Bounds are used to limit the solution space by limiting the number of z variables which

can be equal to 1, by defining some values of z as equal to zero. The model capitalizes

on the network architecture to limit the possible events that can be assigned to

activities. Originally, the intention was to use activity counts up to a given node;

however, it became apparent that a more efficient way to reduce the solution space

would be to count the number of activities required for a given activity to start (the

forward activity count, FAC) and the number of activities dependent on a given activity

(the reverse activity count, RAC). Examples of these may be seen in Figure 5. These

activity counts could then be used to set the Z-Bounds as tight as possible. As per the

example, Activity 9 has FAC = 3. This means Activity 9 cannot be assigned events 1, 2, or

3; that is, events ≤ FAC. Complimentarily, the RAC for Activity 9 is 4, and Activity 9

cannot be assigned events 12, 11, 10, or 9; or events > n-RAC, where n is the total

number of activities.

2
FAC: 5

RAC: 4

3
FAC: 1

RAC: 10

4
FAC: 5

RAC: 3

5
FAC: 10

RAC: 1

6
FAC: 3

RAC: 5

7
FAC: 2

RAC: 5

8
FAC: 2

RAC: 8

9
FAC: 3

RAC: 4

10
FAC: 9

RAC: 2

11
FAC: 4

RAC: 3

7

3

3
5

6

4

5

4 3

5

1 120

5

7

Figure 5 – Example of Activity Counts (Forward & Reverse

28

Chapter 4. Pre-processing Algorithm

The On-Only model requires data that is not included in the raw data set obtained from Jazz

Aviation for implementation, but is rather the result of processing the raw data to draw out

embedded information. This information includes the earliest and latest start times for a given

activity, as well as information about the network architecture, such as where a given activity is

in relation to other activities as defined in section 3.3.5. To determine this information, a pre-

processing algorithm was written in C programming language for this paper, and converted to

C# for implementation at Jazz Aviation.

While activity counts are easily discernable through visual inspection, it is surprisingly difficult to

determine this information computationally. The pre-processing code makes use of a basic

topological sort algorithm which is then modified with iterative sub-algorithms to determine the

earliest start times, latest start times, and activity counts. While there are numerous topological

sort algorithms available online, none took the inputs in the formats that were already available

and being used for the On-Only model proposed in this thesis; as a result, the pre-processing

code was entirely written by the author. An explanation of this code may be found in Appendix

C.

4.1 Topological Sort Pseudocode

The data used for the pre-processing algorithm was the list of prerequisite pairs and the list of

activities with their durations for a total of two input files. The pre-processing code outputs

three files: earliest start times for each activity, latest start times for each activity, and the

activity counts for each activity.

4.1.1 Node Levels & Earliest Start Time Pseudocode

 The simplified pseudocode to find node levels and earliest start times is as follows:

 A= set of Activities

E(i) = earliest start time of activity i

F(i) = earliest finish time of activity i

D(i) = duration of activity i

N(i) = nodelevel of activity i

P(j) = {I} where I is list of prerequisites to j, or 0 if no prerequisites

nLevel = current node level

29

1) For i ∈ A, set E(i) = 0 and F(i) = 0

2) Set nlevel = 1

3) If P(i) = 0, set N(i) = nlevel and F(i) = D(i)

4) For all i with N(i) = nlevel

a. For all j ∈ A

i. If P(j) includes i, set N(j) = nlevel+1

ii. If E(j) < F(i), set E(j) = F(i) and set F(j) = F(i) + D(j)

b. nlevel = nlevel + 1

5) Repeat step 4 until there are zero N(i) with current nlevel. Save (current
nlevel – 1) as MaxNode.

4.1.2 Latest Start Time Pseudocode

 The simplified pseudocode to find latest start times is as follows:

 A= set of Activities

L(i) = latest start time of activity i

F(i) = latest finish time of activity i

D(i) = duration of activity i

N(i) = nodelevel of activity i

S(i) = {J} where J is list of successors to i, or 0 if no successors

nLevel = current node level

1) For i ∈ A, set L(i) = (Time Horizon – D(i))

2) Set nlevel = maxNode

3) If S(i) = 0, set N(i) = nlevel

4) For all j with N(j) = nlevel

a. For all i ∈ A

i. If S(i) includes j, set N(i) = nlevel-1

ii. If L(i) > L(j) – D(i), set L(i) = L(j) – D(i)

b. nlevel = nlevel - 1

5) Repeat step 4 until nlevel = 0.

30

 4.1.3 Forward Activity Count Pseudocode

The simplified pseudocode to find forward activity counts is as follows:

 A= set of Activities

 C(i) = if Activity i has been counted

 R(i) = if Activity i is pending prerequisite counting

 FAC(i) = Forward Activity Count for activity i

P(j) = {I} where I is a list of prerequisites to j, or 0 if no prerequisites

1) For i ∈ A, set FAC(i) = 0, set R(i) = FALSE, and C(i) = FALSE

2) For each j ∈ A

a. P(j) = I, for all i ∈ I

i. If C(i) = FALSE, then set R(i) = TRUE, C(i) = TRUE and FAC(j) =

FAC(j) + 1

b. For all i where R(i) = TRUE

i. P(i) = I, for all r ∈ I

1. If C(r) = FALSE, then set R(r) = TRUE, C(r) = TRUE and

FAC(j) = FAC(j) + 1

c. Repeat 2.b until every C(r) = TRUE

d. For i ∈ A, set R(i) = FALSE, and C(i) = FALSE

 4.1.4 Reverse Activity Count Pseudocode

The simplified pseudocode to find reverse activity counts is as follows:

 A= set of Activities

 C(i) = if Activity i has been counted

 R(i) = if Activity i is pending successor counting

 RAC(i) = Reverse Activity Count for activity i

S(i) = {J} where J is a list of successors to i, or 0 if no successors

3) For j ∈ A, set RAC(j) = 0, set R(j) = FALSE, and C(j) = FALSE

4) For each i ∈ A

a. S(i) = J, for all j ∈ J

i. If C(j) = FALSE, then set R(j) = TRUE, C(j) = TRUE and RAC(i) =

RAC(i) + 1

b. For all j where R(j) = TRUE

31

i. S(j) = J, for all r ∈ J

1. If C(r) = FALSE, then set R(r) = TRUE, C(r) = TRUE and

RAC(i) = RAC(i) + 1

c. Repeat 2.b until every C(r) = TRUE

d. For i ∈ A, set R(j) = FALSE, and C(j) = FALSE

32

Chapter 5. Test Design

As this model is being developed for a specific application – heavy maintenance scheduling at

Jazz Aviation – the true relevant test is the implementation of the model to that end. However,

from an academic standpoint, there was a desire to examine the relationship between network

complexity and resource constraints. Project Scheduling Library (PSPLIB) instances are the

typical benchmark [46]; however, the instances follow specific rules that are not always

indicative of a real-world application. For example, PSPLIB problems typically have each activity

demanding a known quantity of a single resource type, rather than multiple resource types, and

their precedence relationships are randomly generated rather than following a known “typical

project” network type. Essentially, PSPLIB networks are statistically generated based on known

parameters, rather than known networks which can then be statistically measured by known

parameters.

As a result, while the PSPLIB is essential for measuring benchmark problems across academic

research, they tend to fall short of approximating real world applications. To accurately assess

the performance of the on-only event model against the on/off event model, five networks and

five budgets were developed to represent the type of problem these models were intended for.

A total of 25 instances were generated and their details are outlined in this section.

5.1 Small Example Problem

The initial testing between the On/Off and On-Only models was performed against the example

problem from Koné et al [33]. The diagram for this problem may be found in Figure 5; the

problem consists of 10 real and 2 dummy activities. When this 12-activity example problem is

modelled in GMPL and solved using the application GUSEK, both the On/Off and On-Only

models solve to optimality quickly; the On/Off model solves in 0.2 seconds while the On-Only

model solves in 0.0 seconds. As a result, a larger problem set was deemed necessary to truly

evaluate differences in model performance. This resulted in the development of the 32-activity

test networks.

5.2 Test Networks

All test networks were designed for 30 real activities and 2 dummies, for a total of 32 activities

with varying degrees of interconnectivity. This degree of interconnectivity is measured by two

metrics: total network complexity (TNC) and non-dummy network complexity (NDNC), as

33

outlined in section 2.5.1. The summary of networks may be seen in Table 4. Visual

representations of the networks are shown in Appendix D.

Table 4 – Test Network Complexity Summary

Network 1 2 3 4 5

All arcs 36 42 48 54 60

Non-dummy arcs 32 37 43 49 54

TNC 1.125 1.3125 1.5 1.6875 1.875

NDNC 1.067 1.233 1.433 1.633 1.800

5.3 Test Activity Data

Across each network, the activity data remains constant – that is, the duration and resource

demands of a given activity is the same for each network. Activity durations were randomly

assigned between 1 and 30 units of time. To most appropriately approximate real-world

scenarios, each activity was randomly assigned resource demands, with different upper limits on

the amount of each resource that could be seized by the activity. This was especially relevant

given that Jazz’s activities have multiple resource demands, rather than simply one resource

being seized by any given activity as in the PSPLIB problem sets. The activity durations and

resource demands are in Table 5, with the Resource Factor (as outlined in section 2.5.2) at the

end. The overall processing ratio (PR) for this set of activities is 30/1, or 30.

Table 5 – Activity Duration & Resource Demands

Activity Duration R1 R2 R3 R4

1 0 0 0 0 0

2 26 5 11 2 1

3 13 20 17 11 9

4 13 11 17 6 9

5 21 19 13 8 5

6 21 14 16 6 2

7 9 15 12 0 3

8 28 3 2 5 6

9 16 20 12 11 7

10 14 0 11 7 4

34

Activity Duration R1 R2 R3 R4

11 10 18 16 1 4

12 24 4 6 13 1

13 5 17 6 13 4

14 24 2 2 10 5

15 13 11 2 11 7

16 30 3 7 5 4

17 24 15 5 8 4

18 30 4 0 1 2

19 16 18 1 5 3

20 15 11 13 7 4

21 10 13 4 11 9

22 15 16 0 0 6

23 22 6 7 2 1

24 27 0 5 7 5

25 20 15 1 8 3

26 25 7 11 1 3

27 1 7 0 3 2

28 8 1 10 5 5

29 5 7 15 5 4

30 17 4 0 9 1

31 17 3 7 1 9

32 0 0 0 0 0

RF N/A 9.03 7.16 5.69 4.13

5.4 Test Resource Budgets

Lastly, test budgets were created ranging from highly resource constrained (Budget 1) to

relatively unconstrained (Budget 5). The highly constrained budget consisted of the same

resource availabilities as the maximum demand, while the relatively unconstrained budget

consisted of twice the maximum resource demand. The budgets are shown in Table 6.

35

Table 6 – Test Budgets

 Budget 1 2 3 4 5 Unconstrained

Resource

R1 20 25 30 35 40 289

R2 17 21 25 29 34 229

R3 13 17 20 23 26 182

R4 10 12 15 18 20 132

 Total 60 75 90 105 120 832

The test budgets are measured by their resource constrainedness (RC); as outlined in section

2.5.2, this is equal to the resource factor seen in the final row of Table 5, divided by the available

amount of that resource for each budget. The summary of resource constrainedness by

resource is seen below in Table 7.

Table 7 – Budget Resource Constrainedness

Resource Constrainedness Budget 1 Budget 2 Budget 3 Budget 4 Budget 5

Resource 1 0.452 0.361 0.301 0.258 0.226

Resource 2 0.421 0.341 0.286 0.247 0.21

Resource 3 0.438 0.335 0.284 0.247 0.219

Resource 4 0.413 0.344 0.275 0.229 0.206

Budget Average 0.431 0.345 0.287 0.245 0.215

This table shows numerically how Budget 1 is the most resource constrained, while Budget 5 is

the least.

5.5 Test Instances

A total of 25 unique test instances were generated by applying the 5 budgets across each of the

5 networks. As outlined in section 2.5.3, it is possible to compare these instances in relation to

each other using a disjunction ratio (DR) combining both network and budget metrics. The lower

the disjunction ratio, the more cumulative the network – that is, the less resource constrained,

and the less network complex. The higher the disjunction ratio, the more disjunctive the

network – that is, the greater resource constrained, and the greater network complex. For these

test instances, DR is calculated by multiplying the Total Network Complexity by the Resource

Constrainedness. The results are shown in Table 8 below.

36

Table 8 – Disjunction Ratio for Test Instances

 Budget 1 2 3 4 5

Network TNC vs RC 0.431 0.345 0.287 0.245 0.215

1 1.125 0.485 0.388 0.323 0.276 0.242

2 1.3125 0.566 0.453 0.377 0.322 0.282

3 1.5 0.647 0.518 0.431 0.368 0.323

4 1.6875 0.727 0.582 0.484 0.413 0.363

5 1.875 0.808 0.647 0.538 0.459 0.403

The instances are presented in Table 9 in order from the lowest DR to the highest DR.

 Table 9 – Instances by Increasing Disjunction Ratio

Instance DR

N1, B5 0.242

N1, B4 0.276

N2, B5 0.282

N2, B4 0.322

N1, B3 0.323

N3, B5 0.323

N4, B5 0.363

N3, B4 0.368

N2, B3 0.377

N1, B2 0.388

N5, B5 0.403

N4, B4 0.413

N3, B3 0.431

N2, B2 0.453

N5, B4 0.459

N4, B3 0.484

N1, B1 0.485

N3, B2 0.518

N5, B3 0.538

N2, B1 0.566

N4, B2 0.582

N5, B2 0.647

N3, B1 0.647

N4, B1 0.727

N5, B1 0.808

37

Chapter 6. Theoretical Results

Each of the 25 instances – each of the 5 networks across each of the 5 budgets – were tested

using both the On/Off and On-Only models. They were tested on a 2013 Lenovo W530 running

64 bit Windows 8.1 with 16 GB RAM. The optimizer used was Gurobi version 5.6.3 under

academic license.

6.1 Gap Comparison

Initial testing used a 20% heuristics parameter, with the MIPFocus parameter set to balance

between finding new solutions and proving optimality. The time limit was 3600 seconds, with

the percent gap – defined as the percentage difference between the best bound and found

optimal at a given time – was recorded after 600 seconds, and again after the optimizer

confirmed optimality or concluded after 3600 seconds. Full results may be found in Appendix B,

and are displayed graphically in sections 6.1.1 and 6.1.2.

6.1.1 Gap Comparison after 600 seconds vs. 3600 seconds by Network

Figure 6 – Network 1 Initial Results by Budget

5
1

.3
%

4
4

.1
%

3
0

.7
%

3
0

.7
%

2
0

.7
%

1
9

.2
%

8
.9

%

8
.9

%

0
.0

%

0
.0

%

4
6

.8
%

4
5

.3
%

3
0

.3
%

2
8

.9
%

1
9

.5
%

1
8

.3
%

4
.9

%

4
.5

%

2
.3

%

0
.0

%

6 0 0 3 6 0 0 6 0 0 3 6 0 0 6 0 0 3 6 0 0 6 0 0 3 6 0 0 6 0 0 3 6 0 0

B U D G E T 1 B U D G E T 2 B U D G E T 3 B U D G E T 4 B U D G E T 5

NETWORK 1

Gap On/Off Gap On-Only

38

Figure 7 – Network 2 Initial Results by Budget

Figure 8 – Network 3 Initial Results by Budget

5
0

.4
%

5
0

.4
%

3
9

.5
%

3
9

.5
%

2
9

.9
%

2
9

.9
%

3
7

.6
%

2
8

.4
%

1
1

.9
%

1
1

.0
%

5
1

.1
%

4
9

.3
%

4
0

.5
%

4
0

.5
%

3
5

.3
%

2
9

.9
%

2
1

.6
%

2
1

.6
%

1
1

.0
%

1
1

.0
%

6 0 0 3 6 0 0 6 0 0 3 6 0 0 6 0 0 3 6 0 0 6 0 0 3 6 0 0 6 0 0 3 6 0 0

B U D G E T 1 B U D G E T 2 B U D G E T 3 B U D G E T 4 B U D G E T 5

NETWORK 2

Gap On/Off Gap On-Only

5
1

.3
%

2
8

.8
%

3
6

.3
%

3
6

.3
%

3
3

.3
%

2
4

.7
%

2
4

.8
%

2
4

.8
%

1
5

.5
%

7
.9

%

4
8

.8
%

4
8

.8
%

3
7

.2
%

3
6

.7
%

2
4

.1
%

2
4

.1
%

1
7

.0
%

1
7

.0
%

1
1

.4
%

6
.5

%

6 0 0 3 6 0 0 6 0 0 3 6 0 0 6 0 0 3 6 0 0 6 0 0 3 6 0 0 6 0 0 3 6 0 0

B U D G E T 1 B U D G E T 2 B U D G E T 3 B U D G E T 4 B U D G E T 5

NETWORK 3

Gap On/Off Gap On-Only

39

Figure 9 – Network 4 Initial Results by Budget

Figure 10 – Network 5 Initial Results by Budget

8
6

.2
%

6
0

.9
%

6
1

.0
%

5
8

.0
%

3
9

.9
%

3
9

.1
%

3
5

.1
%

3
3

.2
%

1
9

.9
%

1
8

.0
%

6
2

.7
%

5
1

.0
%

5
1

.2
%

4
7

.9
%

4
0

.4
%

3
8

.6
%

3
3

.2
%

3
0

.1
%

2
2

.2
%

1
6

.5
%

6 0 0 3 6 0 0 6 0 0 3 6 0 0 6 0 0 3 6 0 0 6 0 0 3 6 0 0 6 0 0 3 6 0 0

B U D G E T 1 B U D G E T 2 B U D G E T 3 B U D G E T 4 B U D G E T 5

NETWORK 4

Gap On/Off Gap On-Only

5
2

.4
%

5
2

.6
%

4
8

.6
%

3
8

.0
%

2
6

.2
%

2
2

.4
% 2

7
.2

%

2
4

.0
%

2
0

.3
%

1
9

.2
%

5
1

.1
%

5
1

.1
%

3
7

.0
%

3
7

.0
%

2
5

.1
%

2
5

.1
%

1
7

.4
%

1
6

.0
%

1
1

.0
%

1
1

.0
%

6 0 0 3 6 0 0 6 0 0 3 6 0 0 6 0 0 3 6 0 0 6 0 0 3 6 0 0 6 0 0 3 6 0 0

B U D G E T 1 B U D G E T 2 B U D G E T 3 B U D G E T 4 B U D G E T 5

NETWORK 5

Gap On/Off Gap On-Only

40

 6.1.2 Gap Comparison after 600 seconds vs. 3600 seconds by Budget

Figure 11 – Budget 1 Initial Results by Network

Figure 12 – Budget 2 Initial Results by Network

5
1

.3
%

4
4

.1
% 5
0

.4
%

5
0

.4
%

5
1

.3
%

2
8

.8
%

8
6

.2
%

6
0

.9
%

5
2

.4
%

5
2

.6
%

4
6

.8
%

4
5

.3
%

5
1

.1
%

4
9

.3
%

4
8

.8
%

4
8

.8
%

6
2

.7
%

5
1

.0
%

5
1

.1
%

5
1

.1
%

6 0 0 3 6 0 0 6 0 0 3 6 0 0 6 0 0 3 6 0 0 6 0 0 3 6 0 0 6 0 0 3 6 0 0

N E T W O R K 1 N E T W O R K 2 N E T W O R K 3 N E T W O R K 4 N E T W O R K 5

BUDGET 1

Gap On/Off Gap On-Only
3

0
.7

%

3
0

.7
%

3
9

.5
%

3
9

.5
%

3
6

.3
%

3
6

.3
%

6
1

.0
%

5
8

.0
%

4
8

.6
%

3
8

.0
%

3
0

.3
%

2
8

.9
%

4
0

.5
%

4
0

.5
%

3
7

.2
%

3
6

.7
%

5
1

.2
%

4
7

.9
%

3
7

.0
%

3
7

.0
%

6 0 0 3 6 0 0 6 0 0 3 6 0 0 6 0 0 3 6 0 0 6 0 0 3 6 0 0 6 0 0 3 6 0 0

N E T W O R K 1 N E T W O R K 2 N E T W O R K 3 N E T W O R K 4 N E T W O R K 5

BUDGET 2

Gap On/Off Gap On-Only

41

Figure 13 – Budget 3 Initial Results by Network

Figure 14 – Budget 4 Initial Results by Network

2
0

.7
%

1
9

.2
%

2
9

.9
%

2
9

.9
% 3
3

.3
%

2
4

.7
%

3
9

.9
%

3
9

.1
%

2
6

.2
%

2
2

.4
%

1
9

.5
%

1
8

.3
%

3
5

.3
%

2
9

.9
%

2
4

.1
%

2
4

.1
%

4
0

.4
%

3
8

.6
%

2
5

.1
%

2
5

.1
%

6 0 0 3 6 0 0 6 0 0 3 6 0 0 6 0 0 3 6 0 0 6 0 0 3 6 0 0 6 0 0 3 6 0 0

N E T W O R K 1 N E T W O R K 2 N E T W O R K 3 N E T W O R K 4 N E T W O R K 5

BUDGET 3

Gap On/Off Gap On-Only

8
.9

%

8
.9

%

3
7

.6
%

2
8

.4
%

2
4

.8
%

2
4

.8
%

3
5

.1
%

3
3

.2
%

2
0

.3
%

1
9

.2
%

4
.9

%

4
.5

%

2
1

.6
%

2
1

.6
%

1
7

.0
%

1
7

.0
%

3
3

.2
%

3
0

.1
%

1
1

.0
%

1
1

.0
%

6 0 0 3 6 0 0 6 0 0 3 6 0 0 6 0 0 3 6 0 0 6 0 0 3 6 0 0 6 0 0 3 6 0 0

N E T W O R K 1 N E T W O R K 2 N E T W O R K 3 N E T W O R K 4 N E T W O R K 5

BUDGET 4

Gap On/Off Gap On-Only

42

Figure 15 – Budget 5 Initial Results by Network

 6.1.3 Disjunction Ratio vs. Gap

The results from the above instances were reordered to follow the increasing

disjunction ratio shown in Table 9. The percent gap after 600 and 3600 seconds were

then graphed against the increasing DR for each model, and trend lines determined. The

results are shown in figures 16 and 17 below, and clearly show that the gap after both

600 and 3600 seconds can be clearly predicted by the disjunction ratio; as the DR

increases, so does the gap, indicating that the instances become more intractable as the

DR increases.

0
.0

%

0
.0

%

3
7

.6
%

2
8

.4
%

1
5

.5
%

7
.9

%

1
9

.9
%

1
8

.0
%

2
0

.3
%

1
9

.2
%

2
.3

%

0
.0

%

2
1

.6
%

2
1

.6
%

1
1

.4
%

6
.5

%

2
2

.2
%

1
6

.5
%

1
1

.0
%

1
1

.0
%

6 0 0 3 6 0 0 6 0 0 3 6 0 0 6 0 0 3 6 0 0 6 0 0 3 6 0 0 6 0 0 3 6 0 0

N E T W O R K 1 N E T W O R K 2 N E T W O R K 3 N E T W O R K 4 N E T W O R K 5

BUDGET 5

Gap On/Off Gap On-Only

43

Figure 16 – Disjunction Ratio vs. Gap Comparison (On/Off Model)

Figure 17 – Disjunction Ratio vs. Gap Comparison (On-Only Model)

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

N1,
B5

N1,
B4

N2,
B5

N2,
B4

N1,
B3

N3,
B5

N4,
B5

N3,
B4

N2,
B3

N1,
B2

N5,
B5

N4,
B4

N3,
B3

N2,
B2

N5,
B4

N4,
B3

N1,
B1

N3,
B2

N5,
B3

N2,
B1

N4,
B2

N5,
B2

N3,
B1

N4,
B1

N5,
B1

Disjunction Ratio vs. Gap Comparison (On/Off Model)

Disjunction Ratio Gap after 600s Gap after 3600s

Linear (Disjunction Ratio) Linear (Gap after 600s) Linear (Gap after 3600s)

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

N1,
B5

N1,
B4

N2,
B5

N2,
B4

N1,
B3

N3,
B5

N4,
B5

N3,
B4

N2,
B3

N1,
B2

N5,
B5

N4,
B4

N3,
B3

N2,
B2

N5,
B4

N4,
B3

N1,
B1

N3,
B2

N5,
B3

N2,
B1

N4,
B2

N5,
B2

N3,
B1

N4,
B1

N5,
B1

Disjunction Ratio vs. Gap Comparison (On-Only Model)

Disjunction Ratio Gap after 600s Gap after 3600s

Linear (Disjunction Ratio) Linear (Gap after 600s) Linear (Gap after 3600s)

44

6.2 Gap Improvement Analysis

As an overall trend, it can be remarked that the On-Only model reduces the gap more quickly

than the On/Off model; the On-Only model had a smaller gap than the On/Off model in 72% of

instances. In absolute numbers, the average gap improvement can be used to compare the

results of the On/Off model vs the On-Only model in one metric.

The gap improvement is the difference between the gap for the on/off model, and the gap for

the on-only model, as represented by Gapon – Gapon/off. A positive improvement means the on-

only model performed better than the on/off model. The full results of these improvements can

be seen in Table 10 – Gap Improvement Results below.

Table 10 – Gap Improvement Results

Network Budget Gap Improvement (600 s) Gap Improvement (3600 s)

1 1 4.5% -1.2%

1 2 0.4% 1.8%

1 3 1.2% 0.9%

1 4 4.1% 4.5%

1 5 -2.3% 0.0%

2 1 -0.7% 1.1%

2 2 -1.0% -1.0%

2 3 -5.4% 0.0%

2 4 16.0% 6.8%

2 5 0.9% 0.0%

3 1 2.5% -20.0%

3 2 -0.9% -0.4%

3 3 9.2% 0.6%

3 4 7.8% 7.8%

3 5 4.1% 1.4%

4 1 23.5% 9.9%

4 2 9.8% 10.1%

4 3 -0.5% 0.5%

4 4 1.9% 3.1%

4 5 -2.3% 1.5%

5 1 1.3% 1.5%

5 2 11.6% 1.0%

5 3 1.1% -2.7%

5 4 9.8% 8.0%

5 5 9.3% 8.2%

45

 6.2.1 Gap Improvement by Network

When the results from Table 10 are averaged by network, a trend emerges as can be

seen in shown in Table 11 – Gap Improvement Results by Network.

 Table 11 – Gap Improvement Results by Network

Summary Gap Improvement

Network 600 s 3600 s

1 1.57% 1.20%

2 1.96% 1.38%

3 4.54% -2.12%

4 4.54% 3.33%

5 6.62% 3.20%

There is a general trend of positive improvement of the on-only model over the on/off

model, which increases as network complexity increases. This improvement is also more

pronounced over shorter computation times; that is, the on-only model finds a better

solution sooner than the on/off model. However, the on/off model closes the gap as the

model is allowed to continue running. The only exception to this trend is network 3; this

can be attributed to outliers in the data from network 3, budget 1. This also highlights

the importance of resource constrainedness in solve time.

 6.2.2 Gap Improvement by Budget

Similar to the network comparison, when comparing by budget it is possible to see clear

improvement by the on-only model over the on/off model; however, the trend is not as

pronounced as when viewed by network. The data in Table 10 can be averaged by

budget to give Table 12 – Absolute Gap Improvement Results by Budget below. While in

general there is an improvement by budget, there is no definite trend line connecting

resource constrainedness to degree of improvement by the on-only model over the

on/off model.

46

 Table 12 – Absolute Gap Improvement Results by Budget

Summary Gap Improvement

Budget 600 s 3600 s

1 6.2% -1.7%

2 4.0% 2.3%

3 1.1% -0.1%

4 7.9% 6.0%

5 1.9% 2.2%

It is thus possible to conclude that it is more difficult to determine trends based on

network complexity across a given budget than to predict instance tractability based on

budget across a given network. Indeed, while previous results indicate that budget can

predict the performance of a given network, it does not appear that the corollary is

demonstrable.

6.3 Objective Value Comparison

The final objective value, representing the makespan of the schedule, was only proven in the

case of one network-budget combination – network 1, budget 5. This is unsurprising, as this

instance consisted of the simplest network with the lowest degree of resource constrainedness,

and the resultant lowest disjunction ratio. However, the objective after 3600 seconds may be

compared between the On/Off model and the On-Only model.

 6.3.1 Objective Comparison by Network

As with the gap comparison by Network, there is general improvement by the On-Only

model over the On/Off model; however, this improvement is marginal, no more than 2%

over the On/Off result. These results may be seen in Figure 18 – Average Objective

Value by Network (3600 seconds).

47

Figure 18 – Average Objective Value by Network (3600 seconds)

6.3.2 Objective Comparison by Budget

Similarly to the gap comparison by budget, the On-Only model makes small

improvements over the On/Off model. Again, these improvements average no more

than 2% over the On/Off result. This can be seen in Figure 19 – Average Objective Value

by Budget (3600 seconds).

Figure 19 – Average Objective Value by Budget (3600 seconds)

2
8

1
.2

2
6

6
.4

2
6

6

2
4

4
.4

2
8

4
.8

2
7

8
.4

2
6

6
.2

2
6

5

2
3

9
.4

2
8

2
.4

N E T W O R K 1 N E T W O R K 2 N E T W O R K 3 N E T W O R K 4 N E T W O R K 5

AVERAGE OBJECTIVE VALUE BY NETWORK
(3600 SECONDS)

On/Off On-Only

3
7

2
.8

2
9

6
.6

2
4

8
.2

2
2

4
.8

2
0

0
.4

3
7

0
.6

2
9

3

2
4

8
.4

2
2

0
.4

1
9

9

B U D G E T 1 B U D G E T 2 B U D G E T 3 B U D G E T 4 B U D G E T 5

AVERAGE OBJECTIVE VALUE BY BUDGET
(3600 SECONDS)

On/Off On-Only

48

6.4 Best Bound Improvement

The main area of improvement of the on-only model over the on/off model lies in the time to

best bound. The average time to best bound comparison by network may be found in Table 13 –

Average Time to Best Bound by Network.

Table 13 – Average Time to best Bound by Network

Summary Average Time to Best Bound (s)

Network On/Off On-Only

1 298 7

2 911 2

3 796 1

4 683 9

5 416 5

Similarly dramatic results are seen when comparing the average times to best bound by budget

as seen in Table 14 – Average Time to Best Bound by Budget.

Table 14 – Average Time to Best Bound by Budget

Summary Average Time to Best Bound (s)

Budget On/Off On-Only

1 847 7

2 389 6

3 674 5

4 977 3

5 217 3

6.5 Computational Complexity Trade-off

 Initial testing has, as expected, made apparent the computational limits of such large-scale

problems. There is a trade-off for the on-only formulation between the size of the linear

program generated, and the solve time in the optimizer.

An increase in the number of constraints – most notably, the increase in the number of

iterations of the prerequisite constraint, which increases geometrically with the addition of

more prerequisite pairs to the index pair set – results in a large linear program file very quickly.

However, the perquisite constraints also serve to increase the accuracy and efficiency of the Z-

bounds; the more arcs between non-dummy activities, the fewer event-to-activity

49

combinations, and thus fewer potential feasible solutions for the optimizer to analyze. As a

result, as the number of prerequisite pairs increases, the time and memory required to compile

the linear program increases, but the time for the optimizer to solve the linear program

decreases.

The corollary to this is also true; fewer prerequisite pairs result in much smaller linear program

files, which are easier to compile. However, this also decreases the efficacy of the Z-bounds by

allowing for a larger solution space and thus a greater amount of options for the optimizer to

consider. Accordingly, as the number of prerequisite pairs decreases, the time and memory

required to compile the linear program decreases, but the time for the optimizer to solve the

linear program increases.

Striking a balance between these two aspects is critical to the applicability and usability of the

on-only event formulation; if the number of prerequisite pairs is too large, the memory available

may be insufficient to generate the linear program file. In this case, the advantage of decreasing

the optimizer solve time is irrelevant as the linear program cannot be built. Therefore, for each

compiler there is a threshold number of prerequisite pairs after which the on-event model is

inappropriate.

50

Chapter 7. Implementation Process at Jazz Aviation

The implementation of the on-event model at Jazz as a heavy maintenance scheduling tool was

part of a major information technology infrastructure project designed to increase utilization of

existing IT programs and decrease reliance on unreliable workarounds. As this model was

chosen to meet Jazz Aviation’s needs, the implementation and use of this model also stemmed

from Jazz Aviation’s requirements. This section outlines the proposed implementation process

and the data required by Jazz Aviation for implementation. For confidentiality purposes, further

details are not included in this thesis.

7.1 Proposed Process

After the implantation of a heavy scheduling tool, the scheduling process will be done

automatically. The new process will be:

Figure 20 – Proposed Scheduling Process

Note that this will be done every day between 5:30 am and 6:30 am. As a result, the data from

the night shift must be complete by 5:30 am every day for the model to run correctly.

Production control will assign employees to aircraft based on shifts, and will schedule both the

day and night shifts in the morning. In the future, the night shift may be scheduled later in the

day for increased accuracy.

7.2 Data Requirements

The data from Jazz for the model is outlined below.

Table 15 – Data Requirements from Jazz Aviation

Data Details Status TRAX

Prerequisites Pairs of prerequisites

for tasks

Employee

knowledge

Data confirmation &

entry required

Task duration Length of task From task card;

accuracy uncertain

Available

Open Production
Control Module

Choose first aircraft
to schedule

Assign employees to
aircraft

Run Single-Aircraft
Model

Generate Schedule
Repeat for

Remaining Aircraft

51

Data Details Status TRAX

Employees Employees (number

and type) for task

From task card Available

Equipment Large equipment for

task

From task card Available; uncertain if

queryable

Location Location on aircraft

for task

From task card Fields available to be

populated

Configuration Power on/off Blocks

on/off Hydraulics

on/off

Will be

accommodated

through

prerequisites

Fields available to be

populated

7.3 Data Details

The detailed explanation for the data requirements is summarized below.

7.3.1 Prerequisites

The general prerequisites for a Q400 were initially determined during a workout in

November 2013. This data was a useful starting point for the full prerequisite list. To

confirm the accuracy and fullness of this data, a new workout was scheduled for late

2014, which allowed for the determination of a more detailed prerequisite list. During

the spring of 2015, these prerequisites were divided based on the Task Sets to which the

tasks belonged, which will be discussed in section 8.3.

7.3.2 Task Duration

This data is available from the task cards to be queried. As the task is completed and

items on the task card are signed off, the remaining task duration must be determined

by summing the durations of the remaining items. This is to accommodate items on task

cards taking longer than expected.

7.3.3 Employees

The type of employee and number required is easily accessible from the task card. The

production control specialists will assign to each aircraft the number of employees of

52

each type available to work on that aircraft before generating the schedule each day

(for example, Bay 3 has 14 “M” type employees, 5 “S”, and 2 “E” available for the day

shift). Currently, task cards do not hold information about specializations for employee

types; that is, whether or not a certain certification is required. As a result, this

information will not be considered by the scheduling tool. In the future, the model can

accommodate this information as it becomes available.

7.3.4 Equipment

As there is a minimal amount of large equipment, such as hydraulic carts, these will be

assigned to the aircraft based on the production control specialist’s knowledge of where

the aircraft is in a given point of a check. A drop-down list of which equipment is

available will be provided in the web interface.

7.3.5 Area

On each task card, the aircraft is divided into zones. To increase the efficiency and

decrease the run time of the model, the zones were grouped into areas, such as cockpit,

tail, interior fuselage, left wing above, right wing below, etc. These areas have capacities

assigned to them. On the task cards, a field called “Area” has been populated.

7.3.6 Configuration

To accommodate the configuration of the aircraft, task cards will be created that reflect

physical changes to the aircraft, such as “Aircraft On Blocks” and “Aircraft Power Off”.

These task cards will include manpower demands, location requirements, and durations,

like other task cards. They will be the prerequisites for the necessary tasks – for

example, “Aircraft Power Off” will be a prerequisite for any task that requires power off,

which will in turn be prerequisites for the task “Aircraft Power On”.

53

Chapter 8. Application & Modification to Jazz Aviation

The on-event model that has been developed in this paper is appropriate for large scale, real-

world applications such as the Jazz Aviation; however, computational limitations necessitated

reducing the size of the problem from 250 routine tasks, plus unknown non-routine tasks, down

to smaller datasets averaging 100 tasks. The unknown non-routine tasks also needed to be

accommodated in the original schedule before they were known. This was accomplished in

three ways:

1) Grouping inspections by area type;

2) Using historical data to generate “shadow” non-routines as placeholders; and

3) Dividing the given dataset into three sections, each small enough to be optimized

Once this was completed, a heuristic implementation process was developed, with iterative

coding between the optimization of smaller datasets. In addition, production requirements for

safety and change management resulted in data manipulation to fully capture the situation at

Jazz Aviation. As mentioned in section 7, production control requires the model be run not only

to generate an initial schedule before the aircraft arrives at the hangar, but also daily, with

updated information about completed tasks. These completed tasks must also be

accommodated in the implementation.

8.1 Area Blocks

To reduce the number of tasks, it was concluded that grouping inspection-type tasks by area on

the aircraft would not only reduce the number of tasks at hand, but also serve to minimize

movement between areas by employees. The aggregation of such tasks results in a “block” task,

which the model treats as one individual task, but in reality contains anywhere from 4 to 15

individual tasks. The information about this aggregate block is stored on the Jazz Aviation

database server and re-integrated into the schedule after optimization is complete.

The determination of the area blocks was done by Jazz Aviation employees through a series of

Kaizen events. This was to properly capture atypical situations, as well as determine how many

resources to assign to each area block. For all area opens and inspections, only “M” type

employees are required; this results in the area blocks only seizing M-type employees. The

following example clearly demonstrates the benefit of such an aggregation.

54

 8.1.1 Area Block Example

For zone 100 on the sample aircraft, there are 6 tasks as shown in Table 16. The

prerequisite constraints, as with most intra-zone inspections, are minimal; activity 5

precedes activity 1, and activity 1 precedes activity 6.

 Table 16 – Area Block Example Data

Activity Employees Duration (min)

1 1 75

2 2 60

3 4 150

4 1 90

5 1 30

6 2 60

Visual manipulation of these activities within the two precedence constraints results in

the following area block schedule shown in Figure 21.

Figure 21 – Area Block Example Schedule

This area block for zone 100 can now be used as a single activity requiring 5 resources

for a 210 minutes.

8.2 Shadow Non-Routines

To accommodate the uncertainty of non-routines, shadow non-routines, or SNRs, were

calculated from historical data by averaging the amount of non-routine work generated by each

routine task, referred to as a “parent routine task”. The average duration of a non-routine task

generated by a parent non-routine is then assigned to an SNR task which serves as a placeholder

for the potential “real” non-routine tasks which has yet to be generated. The SNR has the parent

Activity 5
30 min, 1 resource

Activity 1
75 min, 1 resource

Activity 2
60 min, 2 resources

Activity 3
150 min, 4 resources

Activity 4
90 min, 1 resources

Activity 6
60 min, 2 resources

55

routine task as a prerequisite. Once the parent routine task is completed, the SNR will be

deleted from the model dataset, as either there will be a real non-routine entered into the

dataset which will take the place of the SNR, or there will be no further work required due to

the parent task, and therefore none to schedule.

8.3 Dataset Splitting

To further reduce the size of the datasets to be optimized, the full list of tasks was divided into

three Task Sets.

 Task Set 1 contains routine tasks that fall under the “pre-open”, “open” and

“inspect” categories. Examples would include tasks such as removing fuel from the

aircraft; washing the aircraft; or removing panels from a given section. It also

contains the area block tasks and the few non-“M” type inspection tasks.

 Task Set 2 contains the shadow non-routines for Task Set 1, and the tasks that are

neither “open/inspection” nor “close/test” category tasks. These tasks are typically

modifications, such as “modification to existing Longeron”, which are done once in

an aircraft’s lifecycle.

 Task Set 3 contains the shadow non-routines for Task Set 2, as well as the “close”,

“functional test” and “operations test” category tasks. Examples would include

testing the hydraulic system; refueling the aircraft; or the flight test. As the model is

compiled daily, this dataset includes the real non-routines that are generated

throughout the heavy maintenance check.

The benefit of this task set splitting also extends to reducing the number of prerequisites and

therefore the size of the compiled linear program model, as mentioned in section 6.5. As the

prerequisites between datasets must be accommodated through the heuristic implementation,

there are fewer prerequisites within each dataset which decreases the size of the optimization

model at each phase.

8.4 Heuristic Implementation

The implementation at Jazz Aviation must accommodate the three datasets, but also connect

these datasets together accurately. As a result, in between these three optimization phases,

iterative coding in C# is used to enforce precedence constraints between data sets.

56

Figure 22 shows the process, including the “midprocessing” steps which enforce prerequisite

constraints between datasets. The midprocessing pulls from a separate prerequisite list that

documents prerequisites between datasets, and takes the scheduled end time of a task from the

previous Task Set, and assigns that as the “earliest possible start” time of the successor in the

next Task Set. As a result, precedence relations are accommodated outside of the model.

57

Optimize Task Set 1
Pre-open & inspects (70)

Area-block M-Open & Inspects (12)
E & S Open & Inspects (8)

Optimize Task Set 2
Task Set 1 Shadow NRs (55+12)

Remaining Non-Close/Run/Fun-Ops
Routines (35)

Optimize Task Set 3
Closes, Runs, Fun/Ops (60)

Real NRs As Generated

Mid-Processing
Assign End Time of

Routines in Task Set 1,
as Earliest Start of

corresponding Shadow
NRs in Task Set 2

Mid-Processing
Assign End time of

Shadow NRs for
Routines w/successors
in Task Set 3 as Earliest

Start of those
successors

Pre-Processing
Determine Node

Levels, Earliest Starts,
Latest Starts for Task
Set 1, Task Set 2, &

Task Set 3

Post-Processing
Create Gantt Chart

Figure 22 – Heuristic Implementation at Jazz Aviation

58

8.5 Dataset Updating

Lastly, as the model will be run daily, the datasets must be continually updated each morning.

The new datasets delete completed tasks and their shadow non-routines, and add in real non-

routines. This breaks the precedence constraints between the completed task and successors so

successors may be scheduled as soon as possible. Once a Task Set is 80% completed, the tasks

remaining in that task set are moved to the next Task Set and the number of optimization

phases reduces by 1. Thus, as the maintenance check continues, the schedule becomes more

accurate and quicker to generate.

8.6 Implementation Results

The results of the implementation at Jazz Aviation are not completed, but highly promising. Due

to the sheer size of the time horizon of the heavy maintenance problem, solving to sufficient

optimality is not only acceptable, but preferred over solving to true optimization. When this

“sufficiently optimal” level is considered, results are truly optimistic. Task Set 1 consisted of 72

tasks with 21 resource types, 80 resources, and 137 prerequisite pairs. This task set has a Total

Network Complexity of 1.9 – slightly higher than network 5 – and a Resource Constrainedness of

0.0286 – much lower than any of the test budgets, as expected. The resulting disjunction ratio is

0.05434, which is very low. Task Set 1 was solved using Gurobi version 5.6.3. The best bound of

1741 minutes was found in 17 seconds. Results are shown in Table 17.

Table 17 – Jazz Task Set 1 Implementation Results

Incumbent (minutes) Gap (percentage) Time (seconds) Time (minutes)

2140 18.60% 229 3.8

1960 11.20% 231 3.9

1849 5.84% 253 4.2

1839 5.33% 257 4.3

1821 4.39% 323 5.4

1809 3.76% 512 8.5

1763 1.25% 791 13.2

1762 1.19% 953 15.9

1759 1.02% 1111 18.5

1757 0.91% 1188 19.8

59

Remarkably, the given Task Set is solved to within 95% optimal in under 6 minutes, and to within

99% optimal in under 20 minutes. As the differences between these solutions is small –

approximately 1 hour difference in the makespan – Jazz Aviation can find sufficiently good

solutions for their datasets within a highly reasonable time frame.

Since Task Sets 2 and 3 are of similar size to Task Set 1, it is reasonable to assume that Task Sets

2 and 3 will, when the data collection is completed, solve to sufficiently close to optimal in

similar time periods. Mid-processing is expected to take a similar computer time as pre-

processing, which is near-instantaneous. As a result, the entire process is expected to take less

than one hour to solve to 99% optimality (not including sub-optimal conditions introduced by

the heuristic implementation).

8.7 Post-Processing

The final step for Jazz Aviation will be converting the results from each optimize phase to a

visualization in the form of a Gantt chart. This chart will effectively stitch together the results of

each optimization to create strings of work for each resource. The Gantt chart is being

integrated with existing IT infrastructure to take advantage of existing functionality within the

Jazz Aviation database.

60

Chapter 9. Future Work & Recommendations

The on-only event based RCPSP formulation shows promise for large-scale applications in

general, and has been proven to be effective and useful for the Jazz Aviation situation in

particular. There is still opportunity, as always, for improvement both academically and in the

practical implementation moving forward.

9.1 Academic Future Work

The obvious extension of the on-only formulation would be to accommodate existing variations

of the RCPSP, such as the multi-mode formulation and RCPSP/Max time windows formulation.

As the on-only event based model is most useful for large, real-world problems, accommodating

varying resource profiles would be a rich area for future development; this could include defined

resource schedules and renewable vs. non-renewable resources, as well as consumption and

production of resources – highly applicable in manufacturing environments.

In addition to these more general areas of improvement, further development of maintenance

specific applications would also be beneficial. This includes developing a “resource change

penalty matrix”, which assigns a time value for moving between certain areas – between the

cockpit and the wings of an aircraft, for example. This change in resource usage – seizing space

on the wing compared to space in the cockpit – requires time as the employee must obtain and

don fall arrest and personal protective equipment. Modelling this reality more fully could impact

large-scale projects significantly.

The complexity trade-off couple also be examined in more detail, with the goal of

mathematically determining the optimal point where the number of prerequisites is large

enough to reduce the solve time of the model, but still small enough to generate the model in a

realistic amount of time under existing technological limitations. Additions to the PSPLIB with

instances that more closely approximate real-world examples in maintenance, production, and

construction would also be beneficial for those in academia whose work spans the theoretical

and the practically applicable

Lastly, the current model accommodates uncertainty with static averages based on historical

data – the predictive “shadow non-routines”. A model that accommodated fuzzy or

unpredictable activities and resource demands stochastically would be an interesting area of

research.

61

9.2 Recommendations for Jazz Aviation

As with most industry implementation strategies, data management and validation as well as

user acceptance testing is still required at Jazz Aviation; this is in progress and will likely be

achieved in the coming months.

In the short term, numerous small improvements would also benefit Jazz Aviation, and are easily

implementable in a company with such a robust culture of continuous improvement. One such

improvement would be allowing production control supervisors to assign parts information to

tasks by overriding the preprocessed earliest start time of a task with the arrival date of a

relevant part or specialty tool, so that the model does not schedule the task until the part is

available. Jazz Aviation could also continuously update the calculations for shadow NRs with

new data as it becomes available so as to increase the predictive capacity of the model.

In the longer term, a tool that balances hangar resources between multiple aircraft would be

ideal, whether this is achieved by a heuristic assigning resources between each aircraft and the

on-only event model being run multiple times, or by modifying the on-only model to

accommodate multiple aircraft implicitly.

62

Chapter 10. Conclusion

RCPSPs are a highly researched, highly applicable set of problems with a large variety of model

types, solving methods, and practical applications. This thesis address the area of event-based

models, demonstrating that the on-only model proposed in this thesis generally improves upon

the solving ability of the existing on/off model. The on-only model is more intuitive and easier to

manipulate than the on/off model; as a result, it is heavily improved by preprocessing to find

bounds on the binary z decision variable. This model is appropriate for large scale, highly

interconnected problems with relatively unconstrained resources, i.e. problems with high

disjunction ratios.

A significant contribution of the On-Only model to the body of research, though, is clearly the

best bound solve time; the development of the preprocessing code to provide a mathematical

representation of activity location within a network, and the resultant capitalization on this data

has resulted in a robust and accurate model for finding the best bound very quickly. While the

model may not quickly find the solution that results in this best bound, knowing the best

possible objective value is of great importance to large-scale scheduling problems in general and

Jazz Aviation in specific.

The implementation results also prove that real-world scenarios are far more tractable than

theoretical experiments – even when those experiments have been designed to approximate

real-world scenarios. Neither event models found optimal solutions within an hour for the

majority of 32 activity test instances, yet the On-Only event model was able to solve the real

Jazz Aviation problem, with 72 tasks, to 99% optimality in just 20 minutes. While an exciting

result, it does highlight the insufficiency of current test cases for predicting the true usefulness

of existing models in industrial applications.

This specific implementation accommodates the complexities of the situation at Jazz Aviation,

and was developed with the ultimate goal of practical usability for the company. This resulted in

modifications to the model to accommodate data uncertainties, as well as the use of a heuristic

implementation process. Combined, these modifications drastically reduce the solve time for

the overall scheduling process at Jazz Aviation by taking the initial schedule generation from 4 or

5 days to under an hour. The tool also allows for up-to-date daily scheduling which utilizes the

existing IT infrastructure at Jazz Aviation to its full capacity.

63

As implementation is currently in progress and Jazz Aviation stakeholders are highly satisfied

with the tool, this thesis has met its goal for not only contributing to the body of knowledge in

the area of RCPSPs, but also meeting the requirements of those who will be affected by this

model every day.

64

References

[1] F. E. D. &. W. H. Deblaere, "Reactive Scheduling in the Multi-Mode RCPSP," Computers &

Operations Research, pp. 63-74, 2011.

[2] P. Brucker, A. Drexl, R. Mohring, K. Neumann and E. Pesch, "Resource-constrained project

scheduling: Notation, classification, models, and methods," European Journal of

Operational Research, pp. 3-41, 1999.

[3] W. Herroelen, E. Demeulemeester and B. De Reyck, "A note on the paper “Resource-

constrained project scheduling: Notation, classification, models and methods” by Brucker

et al.," European Journal of Operational Research, pp. 679-688, 2001.

[4] F. Marmier, C. Varnier and N. Zerhouni, "Proactive, dynamic and multi-criteria scheduling

of maintenance activities," International Journal of Production Research, pp. 2185-2201,

2009.

[5] A. Sprecher, "A competitive branch-and-bound algorithm for the simple assembly line

balancing problem," International Journal of Production Research, pp. 1787-1816, 1999.

[6] A. Bonfietti, M. Lombardi, L. Benini and M. Milano, "A Constraint Based Approach to Cyclic

RCPSP," in Lecture Notes in Computer Science, Berlin, Springer, 2011, pp. 130-144.

[7] G. Fernando and D. Ramirez Rios, "Multi-objective Optimization of the Resource

Constrained Project Scheduling Problem (RCPSP)," International Journal of Computer

Science & Applications, 2013.

[8] J. Cheng, J. Fowler, K. Kempf and S. Mason, "Multi-mode resource-constrained project

scheduling problems with non-preemptive activity splitting," Computers & Operations

Research, pp. 275-287, 2015.

[9] H. Neng Chiu and D. Maw Tsai, "An integer linear programming model and a modified

branch and bound algorithm for the project material requirements planning problem,"

Journal of Information and Optimization Sciences, pp. 151-196, 2003.

[10] H. Stadtler, "Multilevel capacitated lot-sizing and resource-constrained project scheduling:

an integrating perspective," International Journal of Production Research, pp. 5253-5270,

2005.

[11] O. Icmeli, S. Selcuk Erenguc and C. J. Zappe, "Project Scheduling Problems: A Survey,"

International Journal of Operations & Production Management, pp. 80-91, 1993.

65

[12] I. Cohen and M. Iluz, "When cost–effective design strategies are not enough: Evidence

from an experimental study on the role of redundant goals," Omega, pp. 99-111, 2015.

[13] R. Kolisch and A. Drexl, "Local search for nonpreemptive mult-mode resource constrained

project scheduling," IIE Transactions, pp. 987-999, 1997.

[14] J. Coelho and M. Vanhoucke, "Multi-mode resource-constrained project scheduling using

RCPSP and SAT solvers," European Journal of Operations Research, pp. 73-82, 2011.

[15] A. Oddi and R. Rasconi, "Iterative Flattening Search on RCPSP/max Problems: Recent

Developments," pp. 99-115, 2009.

[16] F. Ballestine, A. Barrios and . V. Valls, "Looking for the best modes helps solving the

MRCPSP/max," International Journal of Production Research, pp. 813-827, 2013.

[17] F. Ballestin, "When it is worthwhile to work with the stochastic RCPSP?," Journal of

Scheduling, pp. 153-166, 2007.

[18] T. Bhaskar, M. N. Pal and A. K. Pal, "A heuristic method for RCPSP with fuzzy activity

times," European Journal of Operational Research, pp. 57-66, 2011.

[19] F. Deblaere, E. Demeulemeester and W. Herroelen, "Proactive policies for the stochastic

resource-constrained project scheduling problem," European Journal of Operational

Research, pp. 308-316, 2011.

[20] M. Masmoudi and A. Hait, "Fuzzy uncertainty modelling for project planning: application

to helicopter maintenance," International Journal of Production Research, pp. 3594-3611,

2012.

[21] H. Okubo, T. Miyamoto, S. Yoshida and K. Mori, "Project scheduling under partially

renewable resources and resource consumption during setup operations," Computers &

Industrial Engineering, pp. 91-99, 2015.

[22] O. Kone, C. Artigues, P. Lopez and M. Mongeau, "Comparison of mixed-integer linear

programming models for the resource-constrained project scheduling problem with

consumption and production of resources," Flexible Services and Manufacturing Journal,

pp. 25-47, 2013.

[23] F. Gasperoni and U. Schwiegelshohn, "Generating close to optimum loop schedules on

parallel processors," Parallel Process Lett, pp. 291-403, 1994.

[24] Z. Hanzalek and C. Hanen, "The impact of core precedences in a cyclic RCPSP with

precedence delays," Journal of Scheduling, pp. 275-284, 2015.

66

[25] B. Dupont de Dinechin and A. Munier Kordon, "Converging to periodic schedules for cyclic

scheduling problems with resources and deadlines," Computers and Operations Research,

pp. 227-236, 2014.

[26] V. Van Peteghem and M. Vanhoucke, "A genetic algorithm for the preemptive and non-

preemptive multi-mode resource-constrained project scheduling problem," European

Journal of Operations Research, pp. 409-418, 2010.

[27] F. Villafañez, A. Lopez-Paredes and J. Pajares, "From the RCPSP to the DRCMPSP:

Methodological Foundations," in Proceedings of the International Conference on Artificial

Intelligence, Las Vegas, 2014.

[28] N. Grangeon, P. Leclaire and S. Norre, "Heuristics for the re-balancing of a vehicle

assembly line," International Journal of Production Research, pp. 6609-6628, 2011.

[29] U. Beşikci, U. Bilge and G. Ulusoy, "Resource dedication problem in a multi-project

environment," Flexible Services and Manufacturing Journal, pp. 206-229, 2013.

[30] J. Kuster, D. Jannach and G. Friedrich, "Extending the RCPSP for modeling and solving

disruption management problems," Applied Intelligence, pp. 234-253, 2009.

[31] E. Vazquez, M. Calvo and P. Ordonez, "Learning process on priority rules to solve the

RCMPSP," Journal of Intelligent Manufacturing, pp. 123-138, 2015.

[32] J. Blazewicz, J. K. Lenstra and A. H. G. Rinnooy Kan, "Scheduling subject to resource

constraints: classification and complexity," Discrete Applied Mathematics, pp. 11-24, 1983.

[33] O. Kone, C. Artigues, P. Lopez and M. Mongeau, "Event-based MILP models for resource-

constrained project scheduling problems," Computers & Operations Research, pp. 3-13,

2011.

[34] R. Kolisch and S. Hartmann, "Experimental evaluation of state-of-the-art heuristics for the

resource constrained project scheduling problem," European Journal of Operational

Research, pp. 394-407, 2000.

[35] R. Kolisch and S. Hartmann, "Experimental investigation of heuristics for resource-

constrained project scheduling: An update," European Journal of Operational Research, pp.

23-37, 2006.

[36] B. P. Rao and K. M. Chaitanya, "Resource Constrained Project Scheduling Problems - A

Review Article," International Journal of Science and Research, pp. 1509-1512, 2013.

67

[37] M. B. Aryanezhad and B. Ashtiani, "Preemptive resource constrained project scheduling

problem with uncertain resource availabilities: Investigate worth of proactive strategies,"

in Industrial Engineering and Engineering Management (IEEM), Macao, 2010.

[38] A. H.-L. Chen, Y.-C. Liang and J. D. Padilla, "An Entropy-Based Upper Bound Methodology

for Robust Predictive Multi-Mode RCPSP Schedules," Entropy, pp. 5032-5067, 2014.

[39] A. Schutt, T. Feydy, P. J. Stuckey and M. G. Wallace, "Solving the Resource Constrained

Project Scheduling Problem with Generalized Precedences by Lazy Clause Generation,"

2010.

[40] T. Fruhwirth and S. Abdennadher, Essentials of Constraint Programming, Springer-Verlag,

2003.

[41] W.-J. van Hoeve, "Introduction to Constraint Programming," 24 September 2012. [Online].

Available:

http://www.andrew.cmu.edu/user/vanhoeve/summerschool/slides/introduction_1up.pdf.

[42] A. Horbach, "A Boolean satisfiability approach to the resource-constrained project

scheduling problem," Annals of Operations Research, pp. 89-107, 2010.

[43] O. Liess and P. Michelon, "A constraint programming approach for the resource-

constrained project scheduling problem," Annals of Operations Research, pp. 25-36, 2008.

[44] J. Zapata, B. Hodge and G. Reklaitis , "The multimode resource constrained multiproject

scheduling problem: alternative formulations," AIChE Journal, pp. 2101-2119, 2008.

[45] G. M. Kopanos, T. S. Kyriakidis and M. C. Georgiadis, "New continuous-time and discrete-

time mathematical formulations for resource-constrained project scheduling problems,"

Computers and Chemical Engineering, pp. 96-106, 2014.

[46] R. Kolisch, "PSPLIB - A project scheduling problem library," European Journal of Operations

Research, vol. 96, no. 1, pp. 205-216, 1997.

[47] T. Berthold, S. Heinz, M. E. Lubbecke, R. H. Mohring and J. Schulz, "A Constraint Integer

Programming Approach for Resource-Constrained Project Scheduling," in Lecture Notes in

Computer Science, Berlin, Springer, 2010, pp. 313-317.

[48] G. Brandinu and N. Trautmann, "Sequential selection and heuristic scheduling of multiple

resource-constrained projects," 13th International Conference on Project Management

and Scheduling, pp. 102-105, 2012.

68

[49] F. Deblaere, E. Demeulemeester and W. Herroelen, "Reactive scheduling in the multi-

mode RCPSP," Computers & Operations Research, pp. 63-74, 2011.

[50] R. Kolisch, A. Sprecher and A. Drexl, "Characterization and Generation of a General Class of

Resource Constrained Project Scheduling Problems," Management Science, vol. 41, no. 10,

pp. 1693-1703, 1995.

69

Appendix A – GMPL Code

The following is the GMPL code, which was developed in GUSEK. The model represents the 12-

activity example problem from Koné et al [33].

#On-Only Event Model

param A := 12; #Max number of Activities is set as A, including dummies

param R := 2; #Number of resource types

param T := 49; #Max Time Horizon

set Activities, default{1..A}; #list of activities

set Events, default{1..A}; #list of events

set IP within Activities cross Activities; #list of precedence index pairs

set Resources, default{1..R}; #list of resource types

param Duration{a in Activities}; #duration of activity a

param Budget{r in Resources}; #budget of resource type r

param Demand{a in Activities, r in Resources}; #demand of resource r needed by

activity a

param ES{a in Activities}; #earlist start of activity a

param LS{a in Activities}; #latest start of activity a

param ActivityFront{a in Activities}; #number of activities required for activity a to start

param ActivityReverse{a in Activities}; #number of activities dependent on activity a
param zBounds{e in Events, a in Activities}, default if((e<=(A-

ActivityReverse[a])) and (e>ActivityFront[a])) then 1 else 0;

var t{e in Events}, >= 0; #continous time of event e

var z{e in Events, a in Activities}, binary <= zBounds[e,a]; #binary; if activity a

starts at event e

var Cmax, >= 0; #continuous makespan variable

var cov{e1 in Events, e2 in Events: e1<e2}, binary; #binary, if activity at event 1

overlaps activity at event 2

var rescv{r in Resources, e1 in Events, e2 in Events: e1<e2}, >=0; #continous,

number of resource r in use by event 1's activity at event 2

minimize makespan: Cmax;

s.t. One_Do_Activities{a in Activities}: sum{e in Events} z[e,a] = 1;

s.t. Two_Do_Events{e in Events}: sum{a in Activities} z[e,a] = 1;

s.t. Three_EventsIncreasing{e in Events: e<A}: t[e] <=t[e+1];

s.t. Four_EarlyStart{e in Events}: t[e] >= sum{a in Activities}(ES[a]*z[e,a]);

s.t. Five_LateStart{e in Events}: t[e] <= sum{a in Activities}(LS[a]*z[e,a]);

s.t. Six_Precedence{e1 in Events, e2 in Events, (i,j) in IP: e1<e2 }: t[e2]>=

t[e1] + Duration[i]*(z[e1,i] +z[e2,j]-1);

s.t. Seven_SetCov1{e1 in Events, e2 in Events: e1<e2}: t[e1] + sum{a in

Activities}(Duration[a]*z[e1,a]) <= t[e2] + T*cov[e1,e2];

70

s.t. Eight_SetCov2{e1 in Events, e2 in Events: e1<e2}: t[e1] + sum{a in

Activities}(Duration[a]*z[e1,a]) >= t[e2] - T*(1 - cov[e1,e2]);

s.t. Nine_BoundResCov{r in Resources, e1 in Events, e2 in Events: e1<e2}:

rescv[r,e1,e2] <= cov[e1,e2]*Budget[r];

s.t. Ten_SetResCov1{r in Resources, e1 in Events, e2 in Events: e1<e2}:

rescv[r,e1,e2] >= sum{a in Activities}(Demand[a,r]*(cov[e1,e2]+z[e1,a]-1));

s.t. Eleven_SetResCov2{r in Resources, e1 in Events, e2 in Events: e1<e2}:

rescv[r,e1,e2] <= -sum{a in Activities}(Demand[a,r]*(cov[e1,e2]-z[e1,a]-1));

s.t. Twelve_ResourceConstraint{r in Resources, e in Events}: Budget[r] >= sum{a

in Activities}(Demand[a,r]*z[e,a]) + sum{e1 in Events: e1<e} rescv[r,e1,e];

s.t. Thirteen_CMaxCalc{e in Events}: Cmax>= t[e] + sum{a in Activities}

z[e,a]*Duration[a];

solve;

display Cmax;

printf "Event Activity Resources 1 Resource 2 \n";

printf "------------- ----------- ------------ -----------\n";

printf{e in Events, a in Activities: z[e,a] != 0}: "%13s %11s %11g

%11g \n", e,a,Demand[a,1], Demand[a,2];

printf "Times t[e] \n ";

printf {e in Events}: "%13s %11g \n", e,t[e];

printf "e a zBounds[e,a] \n";

printf "------------- ----------- ------------ \n";

printf{e in Events, a in Activities: zBounds[e,a] != 0}: "%13s %11s %11g

\n", e,a,zBounds[e,a];

data;

set IP :=

(1,3),(2,4),(3,7),(3,8),(4,5),(4,10),(5,12),(6,2),(7,2),(8,6),(8,9),(9,11),(10,

5),(11,10); #index pair of precedents

param Duration :=

1 0

2 7

3 3

4 5

5 5

6 6

7 4

8 5

9 4

10 3

11 7

12 0;

param Budget :=

1 3

2 3;

param Demand: 1 2 :=

1 0 0

2 0 2

3 2 1

4 3 3

71

5 3 2

6 2 1

7 1 0

8 1 3

9 1 1

10 1 1

11 3 1

12 0 0;

param : ActivityFront ActivityReverse :=

1 0 11

2 5 4

3 1 10

4 6 3

5 10 1

6 3 5

7 2 5

8 2 8

9 3 4

10 9 2

11 4 3

12 11 0;

param ES :=

1 0

2 14

3 0

4 21

5 29

6 8

7 3

8 3

9 8

10 26

11 12

12 34;

param LS :=

1 15

2 29

3 15

4 36

5 44

6 23

7 25

8 18

9 30

10 41

11 34

12 49;

end;

72

Appendix B – Test Data

Table 18 – Full Initial Test Results

Version Network Budget Heuristic Gap at

600 s

Obj Best

Bound

Time BB

Found

Gap at

End

Time

On/Off 1 1 0.2 51.3% 383 214 778 44.1% 3600

On/Off 1 2 0.2 30.7% 309 214 215 30.7% 3600

On/Off 1 3 0.2 20.7% 265 214 220 19.2% 3600

On/Off 1 4 0.2 8.9% 235 214 220 8.9% 3600

On/Off 1 5 0.2 0.0% 214 214 55 0.0% 58

On/Off 2 1 0.2 50.4% 359 178 259 50.4% 3600

On/Off 2 2 0.2 39.5% 294 178 185 39.5% 3600

On/Off 2 3 0.2 29.9% 254 178 715 29.9% 3600

On/Off 2 4 0.2 37.6% 225 161 3195 28.4% 3600

On/Off 2 5 0.2 11.9% 200 178 200 11.0% 3600

On/Off 3 1 0.2 51.3% 363 186 243 28.8% 3600

On/Off 3 2 0.2 36.3% 292 186 266 36.3% 3600

On/Off 3 3 0.2 33.3% 247 186 1906 24.7% 3600

On/Off 3 4 0.2 24.8% 226 170 1225 24.8% 3600

On/Off 3 5 0.2 15.5% 202 186 340 7.9% 3600

On/Off 4 1 0.2 86.2% 350 137 2862 60.9% 3600

On/Off 4 2 0.2 61.0% 275 115.5 430 58.0% 3600

On/Off 4 3 0.2 39.9% 225 137 27 39.1% 3600

On/Off 4 4 0.2 35.1% 205 137 43 33.2% 3600

On/Off 4 5 0.2 19.9% 167 137 53 18.0% 3600

On/Off 5 1 0.2 52.4% 409 194 95 52.6% 3600

On/Off 5 2 0.2 48.6% 313 194 850 38.0% 3600

On/Off 5 3 0.2 26.2% 250 194 500 22.4% 3600

On/Off 5 4 0.2 27.2% 233 177 200 24.0% 3600

On/Off 5 5 0.2 20.3% 219 177 435 19.2% 3600

On-

Only

1 1 0.2 46.8% 391 214 11 45.3% 3600

73

Version Network Budget Heuristic Gap at

600 s

Obj Best

Bound

Time BB

Found

Gap at

End

Time

On-

Only

1 2 0.2 30.3% 301 214 12 28.9% 3600

On-

Only

1 3 0.2 19.5% 262 214 11 18.3% 3600

On-

Only

1 4 0.2 4.9% 224 214 0 4.5% 3600

On-

Only

1 5 0.2 2.3% 214 214 0 0.0% 1042

On-

Only

2 1 0.2 51.1% 351 178 4 49.3% 3600

On-

Only

2 2 0.2 40.5% 299 178 4 40.5% 3600

On-

Only

2 3 0.2 35.3% 254 178 1 29.9% 3600

On-

Only

2 4 0.2 21.6% 227 178 3 21.6% 3600

On-

Only

2 5 0.2 11.0% 200 178 0 11.0% 3600

On-

Only

3 1 0.2 48.8% 363 186 1 48.8% 3600

On-

Only

3 2 0.2 37.2% 294 186 1 36.7% 3600

On-

Only

3 3 0.2 24.1% 245 186 1 24.1% 3600

On-

Only

3 4 0.2 17.0% 224 186 1 17.0% 3600

On-

Only

3 5 0.2 11.4% 199 186 1 6.5% 3600

74

Version Network Budget Heuristic Gap at

600 s

Obj Best

Bound

Time BB

Found

Gap at

End

Time

On-

Only

4 1 0.2 62.7% 351 137 14 51.0% 3600

On-

Only

4 2 0.2 51.2% 263 137 7 47.9% 3600

On-

Only

4 3 0.2 40.4% 223 137 8 38.6% 3600

On-

Only

4 4 0.2 33.2% 196 137 6 30.1% 3600

On-

Only

4 5 0.2 22.2% 164 137 9 16.5% 3600

On-

Only

5 1 0.2 51.1% 397 194 5 51.1% 3600

On-

Only

5 2 0.2 37.0% 308 194 5 37.0% 3600

On-

Only

5 3 0.2 25.1% 258 194 6 25.1% 3600

On-

Only

5 4 0.2 17.4% 231 194 4 16.0% 3600

On-

Only

5 5 0.2 11.0% 218 194 4 11.0% 3600

75

Appendix C – Preprocessing Code

This appendix explains, in detail, the preprocessing code developed for this paper.

The code begins by initializing an array of durations (dur_array), where dur_array[i] corresponds

to the duration of activity i+1, and an array of prerequisites (prereq_array), where

prereq_array[i][0] stores a predecessor and prereq_array[i][1] stores a successor. The maximum

time horizon is found as well and stored as maxLate. Initialization commands are seen below in

Code Capture 1.

Code Capture 1 – Pre-processing Code Initialization Commands, lines 41 -66

Topological Sort

The first step to determine the general structure of the network was to build a basic topological

sort code that could be built up to determine the earliest start times, latest start times, and

activity counts. A topological sort is generally used in computer science to determine a feasible

order of activities in a network – not an optimal order, but rather a list of activities that does not

violate any precedence constraints.

At the time of developing the topological sort, node levels were being used to create the Z-

Bounds parameter values in the On-Only model. It was later determined that activity counts

would be able to limit the solution space further than node levels. However, node levels were

still used for the basic topological sort and to determine the earliest and latest start times.

76

The node levels are defined as the number of levels deep into the network where an activity is

located based on a string of activities that comes before it. This can be visualized most

effectively in Figure 23. In the figure, nodes are represented by the circles at the bottom of the

sample network diagram, and color-coded to the corresponding activity. For example, activity

10 is at node level 7 because the longest string of activities leading up to activity 10 is six

activities long {1, 3, 8, 6, 2, 4}. By using the node levels, it is possible to create a topological sort

that will give a single-dimension array that does not violate any precedence constraints; from

the following sample network, the topological sort would return {1, 3, 8, 7, 9, 6, 11, 2, 4, 10, 5,

12}.

2

3

4

5

6

7

8

9 1011

7

3

3

5

6

4

5

4 3

5

2 3 4 5 6 7 8

1 120

5

1 9

7

Figure 23 – Example of Node Levels (Forward)

Similarly, it is possible to build node levels in reverse – that is, what is the longest string of

activities that is dependent on a given activity. As can be seen in Figure 24, the reverse node

levels changes the position of some activities. In more complex networks, these shifts are even

larger. For the reverse topological sort, an order that would not violate precedence constraints

would be {1, 3, 8, 6, 7, 9, 2, 11, 4, 10, 5, 12}. While very similar to the forward topological sort,

activities that could be done in parallel are switched.

77

2

3

4

56

7

8 9

10

11

73

3

56

4

5 4

3

5

8 7 6 5 4 3 2

1

12

0

5

9 1

7

Figure 24 – Example of Node Levels (Reverse)

Earliest Start Times

Earliest start times were found in conjunction with the node levels and the topological sort. The

algorithm begins by initializing all activities as having no predecessors (Code Capture 2, lines 68

to 70), and then sorting through the list of prerequisite pairs to assign a pred_exists value of 1 to

any task that is in the “successor” column (Code Capture 2, lines 72 to 75). This isolates the

starting task, which has no prerequisites as the only task with a pred_exists value of ‘0’. This

starting task is assigned a node level of 1, and an earliest start time in the ES_array of ‘0’ (Code

Capture 2, lines 77 to 82).

Code Capture 2 – Pre-processing Code, lines 67-82

Once the first node level has been initialized, a while-loop is started that will keep running as

long as predecessors exist to be explored. This can be seen in Code Capture 3, lines 84-120. The

algorithm resets all predecessors existing for a given activity to ‘0’ (Code Capture 3, lines 86-88).

Then it goes through all activities, and if it finds an activity at the given forward node level, it

78

goes through the prerequisite pairs to find if that activity has a successor. If it does, then the

successor is assigned a pred_exists value of ‘1’ (Code Capture 3, line 95). Lastly, if the duration

of the predecessor activity being checked, plus the earliest start time of the predecessor activity,

is greater than the earliest start time of the successor that has been found for that activity (Code

Capture 3, line 97), then the earliest start time of the successor is set to the duration of the

predecessor activity added to the earliest start time of the predecessor activity (line 98).

After the for loop in Code Capture 3 lines 90-103 has been executed, all successors that were

found for activities at the current node level have a pred_exists value of 1. The current node

level (stored at FnodeLevel) is increased by 1, and these successors are assigned the new node

level (Code Capture 3, lines 106-110). Then, the indicator predsExist is initialized to ‘0’ (line 112),

and the pred_exists array is checked. If there are any successors left to check, predsExist is set to

‘1’, and the while-loop repeats with the next node level. Once all activities have been checked

and earliest start times assigned, the predsExist value will remain at ‘0’, and the while-loop will

exit. This ends the topological sort for node levels and earliest start times.

Code Capture 3 – Pre-processing Code, lines 84-121

Latest Start Times

The latest start times topological sort works similarly to the earliest start times, except starting

with the tasks that have no successors, and therefore checking for predecessors instead of

successors. Code Capture 4 is comparable to Code Capture 2, as it initializes the suc_exists array

to no successors existing, identifies tasks with successors, then assigns tasks with no successors

79

the maximum node level and a latest start time of the time horizon (stored at maxLate), minus

the duration of that activity.

Code Capture 4 – Pre-processing Code, lines 167-182

Similarly, Code Capture 5 is comparable to Code Capture 3; a while-loop finds activities at each

node starting at the maxNode, and finds predecessors for these activities, assigns them a node

level one less than the current node level, and checks if the latest start time should be updated.

Once there are no more predecessors, the network has been mapped, and the while-loop exits.

Code Capture 5 – Pre-processing Code, lines 184-222

Activity Counts

Originally, the code counted the number of activities in the network at a given node. This was

meant to reduce the solution space through the use of Z-Bounds; however, as mentioned in

section 3.2.5, the Z-Bounds were changed to be dependent on activity counts.

80

To find the activity counts from the preprocessing code proved trickier than expected; no

algorithms could be easily found to mimic the process. An iterative, rather than a recursive,

algorithm was desired so as to limit issues with data handling and passing pointers through the

code. The resulting algorithm may be seen in Code Capture 6.

The for-loop (lines 239-269) initializes a “prime” activity, indicated by “m”. For a given prime,

the found and pending arrays are initialized to zero, with the exception of the prime activity

which is pending exploration. A while-loop (lines 246-268) is then used to run through all the

activities leading up to the prime activity. Any “pending” activities are searched for predecessors

through the prereq_array (line 251). If a predecessor is found, then the algorithm checks if this

predecessor has been found before (line 252). If the predecessor has not been found before, it is

deemed to be pending (line 253) and found (line 254), and the forward activity count for the

prime activity is increased (line 255). The successor activity that was originally found is now no

longer pending (line 260). If there are no more activities pending, all activities that are required

for the prime activity have been found, and the while-loop exits, which causes the for-loop to

move to the next prime activity.

Code Capture 6 – Pre-processing Code, lines 236-269

The reverse activity counts are found in a similar fashion as seen in Code Capture 7. This time,

the while-loop checks for successors rather than predecessors, and counts the number of

successors required for the given prime activity.

81

Code Capture 7 – Pre-processing Code, lines 273-303

82

Appendix D – Test Network Diagrams

1

2

3

4

5

6

7 12

8

10

11

9

15

13

14

2016

17

18

19

21

2322

24

25

26 27

28

29

30

31 32

Figure 25 – Diagram of Test Network 1

8
2

83

1

2

3

4

5

6

7

12

8

10

11

9

15

13

14

2016

17

18

19

21

23

22

24

25

26

27

28 29

30

31

32

Figure 26 – Diagram of Test Network 2

8
3

84

1

2

3

4

5

6

7

128

10

11

9 15

13

14 20

16

17

18

19 21

22

23

24

25

26

27

28

29

30

31

32

Figure 27 – Diagram of Test Network 3

8
4

85

1

2

3

4

5

6

7

12

8

10

11

9 15

13

14

20

16

17

18

19

21

22

23

24

25

26

27

28

29

30

31

32

Figure 28 – Diagram of Test Network 4

8
5

86

1

2

3

4

5

6

7

8

9

10

11

12

15

13

14

20

16

17

18

19

21

22

23

24

25

26

27

28

29

30

31

32

Figure 29 – Diagram of Test Network 5

8
6

