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ABSTRACT 

 
Because stream processing applications operate under strict time constraints, most 

previous research focuses on enhancing real-time response by decreasing a single cost 

function. Although such research generates an optimal or near-optimal query execution 

plan under the selected cost function, either in terms of memory or CPU resources, the 

generated plan may not actually qualify for real execution; that is, although it is optimal 

in minimizing the chosen memory (CPU) cost function, it may exceed the available 

capacity of the CPU (memory) resource. A plan is not qualified if it is optimal or near-

optimal in one resource usage, whereas it is out of bound in the other. These kinds of 

plans are not viable in stream processing applications because one of the resource usages, 

either CPU or memory, will hinder the system in processing queries. This thesis proposes 

a technique that generates qualified global plans for multiple queries under constraints for 

both CPU and memory resources by scheduling MJoin and BJtree operators while 

sharing common operations and their results among queries.  
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CHAPTER 1 : INTRODUCTION 
 

The past several years have seen the emergence of applications that deal with data 

streams, which are referred to as data stream applications. In these applications, data are 

unbounded streams of values and are generated continually at very high rates. In other 

words, the stream lengths are assumed to be infinite. A good example is an application 

that monitors and analyzes network traffic. A network may contain thousands of nodes 

that transmit data, which need to be analyzed in real time to detect critical conditions 

such as congestion. In traditional database systems, query optimization is fundamental to 

improving query performance. Similarly, DSMSs require query optimization (Viglas and 

Naughton, 2002) (Viglas et al., 2003).  

 

1.1 Multiple-Query Optimization in DSMSs 

Optimization techniques proposed for traditional relational databases cannot be directly 

applied to queries in data stream systems because of the differences between the two 

systems. To illustrate, one of the differences is that DSMSs deal with continuous queries, 

whereas traditional databases deal with one-time queries. Continuous queries are 

persistent, which means they are issued once and remain active for some time; on the 

other hand, traditional database queries are transient. Data stream systems need to keep 

producing updated results continuously, unlike traditional database systems that need to 

produce results only once. 
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Another difference is that data in traditional database systems are static and are stored in 

the system. Note that traditional database systems focus on generating precise answers 

computed by stable query plans. On the contrary, data streams are unbounded and cannot 

be stored in the systems. Therefore, some operations in DSMSs process tuples on the fly, 

while other operations need to store some data in the memory for a short period of time in 

order to process queries. Thus, queries in data stream systems require techniques that 

process memory-resident data. Moreover, query plans need to be re-optimized during 

run-time as stream arrival rates may fluctuate.  

The above-mentioned points necessitate changing the optimization objective of data 

stream systems from traditional database systems. Previous research on DSMSs, such as 

in (Viglas et al., 2003), aim at optimizing the run-time output rate. Zhu et al. (2010) show 

that CPU and memory consumptions of a query plan need to be below the available CPU 

and memory resources of the system for the system to produce results at an optimal rate. 

To elaborate, if the CPU cost of the plan exceeds the available CPU resources, the plan 

will be unable to keep up with the incoming stream items; therefore, the system cannot 

produce results at the optimal rate. Similarly, DSMSs require that the memory does not 

overflow, which will negatively impact the system. Thus, the CPU and memory costs 

should be considered when generating a query plan since they are precious resources in 

the stream context. Such query plans are referred to as qualified plans (Zhu et al., 2010).  

 

1.2 Query Adaptation Techniques 

There are several query adaptation techniques in DSMSs. Below, some of the most 

commonly used techniques in these systems are described. 
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One of these adaptation techniques is called load shedding. Whenever the system 

resources cannot keep up with the incoming streams, load shedding can be used to reduce 

the workload in the system (Tatbul et al., 2003; Babcock et al., 2004; and Tatbul and 

Zdonik, 2006). The main idea of load shedding is to drop some of the tuples either 

randomly or based on certain criteria. Load shedding introduces the notion of 

approximation in the produced results. There are some applications where all the data the 

applications monitor are important; therefore, load shedding is not applicable to such 

applications.  

Another technique is operator re-scheduling. In this technique, systems schedule query 

operators to minimize resource consumption. A scheduler of a system dynamically 

chooses the next operator based on the current workload; it has to be able to choose 

between different scheduling decisions based on the optimization goals (Carney et al., 

2003; Babcock et al., 2003; Babcock et al., 2004). A good example of this technique is 

the eddy approach, which enables the reordering of operators in a query plan as it runs 

(Avnur and Hellerstein, 2000). 

Another technique is intra-operator adaptation. When stream characteristics change, a 

query operator in this technique adaptively changes the way it handles streams. A good 

example of this kind of operator is the XJoin operator, which has three phases (Urhan and 

Franklin, 2000). In the first phase, the operator joins tuples that exist in memory, and it is 

called memory-to-memory phase. In case the memory portion of the input stream is full, 

the tuples are flushed to disk. In the second phase, the disk-to-memory phase, the 

operator joins tuples that are in memory with others that exist on disk. The final phase is 

the disk-to-disk phase, which joins tuples that are missed by the previous two phases.  
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Query plan re-optimization is another adaptation technique used in DSMSs. Based on the 

statistics of input streams, a query optimizer dynamically changes the current query plan, 

and reorganizes plan operators. In other words, the shape of the plan is changed to 

improve the plan efficiency (Park and Lee, 2009; Zhu et al., 2010; Park and Lee, 2012).   

 

1.3 Problem Definition 

Some research, as stated in (Zhu et al., 2010), uses query optimization strategies that are 

based on either mutli-joins (MJoins) or Binary Join trees (BJtrees) and, furthermore, they 

exploit positive correlations between CPU and memory. MJoin is a method that uses a 

single step to join all participant streams, whereas BJtree method takes multiple steps to 

join all participant streams. Note that MJoin systems reduce memory use, sometimes at 

the expense of additional CPU requirements and the BJtree approach does the opposite 

because it stores intermediate results. Zhu et al. (2010) proposed a technique in which 

they not only use either BJtree or MJoin, but also their combinations, which is called 

JTree. They also proposed a Two-Layer JTree-Finder algorithm to minimize memory and 

CPU resources of a query plan. In the first layer, they produce an optimal MJoin using 

Viglas et al. (2003) algorithm. If the optimal MJoin exceeds the constraints on the CPU, 

they produce an optimal BJtree using Kossmann and Stocker’s (2000) algorithm. If the 

optimal BJtree exceeds the constraints on the memory, they move into the second layer, 

in which they modify either the optimal MJoin or BJtree to include a mixture of both 

operators in one plan. Thus, they are trading off memory for improving CPU computation 

and vice versa. They also discuss how to apply their algorithm to optimizing multiple 

queries by allocating fixed resources to each query and then using their algorithm. 
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However, they do not state how the resources should be allocated initially. Furthermore, 

and more importantly, their focus was on the single query instance and they indicate that 

further work is needed for the multi-query case along with their preliminary suggestions 

on how to handle the multi-query case. Moreover, they do not discuss how the sharing of 

subexpressions common to queries can be exploited to improve the efficiency and 

effectiveness of processing multiple queries. We aim to explore how single query 

optimization can be extended to move towards optimization of multiple queries. 

The challenge in designing any continuous query system is to keep computation and the 

amount of storage required to satisfy multiple continuous queries below the available 

system resources. As Zhu et al. (2010) stated, trying to solve the problem by treating both 

CPU and memory costs as a single cost is hard to obtain. What complicates the design of 

such a singular cost function is that there is no clear relationship between CPU and 

memory resources because they are in some cases positively correlated, that is when one 

cost is reduced the other one is also reduced, while in other cases they have a negative 

correlation (Zhu et al., 2010). Finding optimal strategy for queries that minimizes a 

specific cost is NP-hard both in relational DBMSs (Sellis and Ghosh, 1990) and DSMSs 

(Zhu et al., 2010). 

To elaborate, the inputs of the system are queries, total available CPU and memory. 

Queries are represented by join graphs wherein the vertices are input streams, each one 

with an arrival rate, and edges denote join predicates between input streams together with 

join selectivities, one per edge. The objective is to find a sequence of join operators that 

answers queries with available CPU and memory resources. Another goal we have is to 
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find operations that can be shared among different queries to reduce the total CPU and 

memory consumption.    

 

1.4 The Proposed Approach 

The proposed approach in this thesis incorporates two different techniques that extend the 

(Zhu et al., 2010) algorithm, which was developed to optimize a single query for the 

optimization of multiple queries. First, qualified subplans are generated for queries by 

extending the plan search space to include BJtree operators, MJoin operators, and a 

mixture of both. Second, these subplans are used to produce a complete global execution 

plan for multiple queries by sharing the results of common join operations in a set of 

continuous queries; therefore, redundant operators are avoided. Each join operation that 

appears in the queries has a sharing degree that indicates in how many queries it appears 

and hence how much the operation can be reused by those queries. When forming plans, 

in addition to using the actual cost of a join operation, we also use an amortized effective 

cost (we refer to it as an effective cost) that is defined as the actual cost divided by its 

sharing degree. It is the effective costs that we use in determining which join operation is 

to be included in the global plan. 

The global plan is created by optimizing queries one at a time. When a query is 

optimized, the proposed method checks the global plan for any join operations that can be 

used by the query. Operators, in the global plan formed thus far that can be used by the 

optimized query, will be incorporated into the query plan as the results already exist. 

Using this technique, some queries may use expensive operators when sharing their 

results makes it a good choice across all queries. We also propose a new method that 
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finds the order of queries in which they need to be optimized. This is beneficial because 

finding the proper order of queries helps in reducing the total CPU and memory 

consumption of the global plan if more operators that can be shared across queries are 

chosen for the global plan.  

As the algorithm in (Zhu et al., 2010) for a single query considers JTree, which may 

include both MJoins and BJtrees, and also is performed under the constraint on CPU and 

memory resources, we utilize it in our approach while adapting it in allocating initial 

resources to each query, ensuring that common subexpressions are shared among queries 

and are not recomputed, and calculating the costs of join operators when scheduling 

them. 

 

1.5 Summary of Contributions 

The main contributions of the proposed approach are as follows: 

- This thesis introduces a method with the aim of finding a solution to the problem 

of generating a qualified global plan, which satisfies both CPU and memory 

resource constraints for multiple queries by adapting MJoin and BJtree 

techniques. 

- The proposed approach generates a qualified global execution plan for multi-way 

join queries by sharing computations and memory of common join operations of 

multiple queries. Choosing join operations with smaller amortized costs forms the 

qualified global plan.  

- We proposed three heuristic techniques that find the order of queries based on the 

similarity between queries, and the weight of queries. The order of queries is 
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determined based on their costs, namely heaviest/largest to lightest/smallest, 

lightest/smallest to heaviest/largest, and the shared predicate technique. The 

shared predicate technique is superior to the other two techniques as it generates 

more shared operations. 

- The proposed approach efficiently pre-allocates CPU and memory resources to 

each query. The allocation of the resources ensures that when there is a shortage 

of one of the resources, the optimization of queries will take it into an account 

when forming the plan. 

 

1.6 Assumptions 

- This thesis concentrates on tree queries with equi-join to reduce search space. 

However, the problem we aim to address is still NP-hard and hence heuristics are 

used. 

- Queries are expressed as join graphs. Each vertex represents a stream, which is 

marked by the name of the stream, and an arrival rate per unit of time. Moreover, 

each edge indicates a join predicate between two input streams, and is marked by 

the join selectivity. Selectivities change once a join is performed.  

- In a DSMS, a monitoring component can collects statistics of input streams, such 

as input rate and join selectivity. When a query is first arriving at the system, the 

DSMS may predict join selectivities. As in most, if not all, work on query 

optimization in relational DBMSs and DSMSs, we assume that selectivities for a 

join of two streams are independent of a query.  That is, the selectivity of joining 
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two data streams (relations in relational DBMSs) R and S is the same regardless 

of whether the join was issued by a query q1 or a query q2.  

- We assume static optimization. That is, we perform optimization for a given set of 

queries and their parameters and statistics of data streams and join selectivities.  

We do not address the issues of dynamic/adaptive optimization that addresses the 

problem of changes to the query and data stream changes to statistics, such as 

selectivities and arrival rates, as queries are processed.  Some of the approaches to 

this problem, referred to as adaptive/dynamic optimization techniques, are 

discussed in Chapter 2. 

1.7 Organization 

The remainder of this thesis is organized as follows: In Chapter 2, background and 

related work are represented. Additionally, CPU and memory cost models are examined 

for positive and negative correlations of both system resources. The proposed approach is 

described in detail in Chapter 3, while the effectiveness of the proposed algorithm in this 

thesis is highlighted using some experiments in Chapter 4. Finally, Chapter 5 concludes 

this thesis.  
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CHAPTER 2 : BACKGROUND AND RELATED WORK 
 

2.1 Background 

2.1.1 Context and Environment 

The work proposed in this thesis concentrates on streaming data that arrive continuously 

at a very high rate in a DSMS, such that the data are pushed into the system to be 

processed against a set of standing continuous queries that are registered in advance. The 

streams are unbounded sequences of data items, and each data item is associated with a 

timestamp. Furthermore, the data items may arrive in a burst or in equally spaced 

intervals. Examples of the burst fashion are network traffic streams and phone call 

records. On the other hand, an example of the second type is a pull-based system where 

the system contacts devices to retrieve data periodically. The focus of this thesis is on 

streams with a burst arrival pattern that arrive in either a centralized system or a 

distributed system. A centralized dynamic query optimization is used to generate global 

plans for multiple queries, as depicted in Figure 2-1- it is adapted from (Heinz et al., 

2008). The query registration module is the component responsible for registering the 

continuous queries. The query executor executes the query plan generated by the 

optimizer. While continuous queries are evaluated, the runtime monitoring component 

gathers statistics of join operations in the current execution plan. Moreover, it collects 

and analyses statistics of input streams, such as input rate and join selectivity. When the 

effectiveness of the current execution plan declines because the parameter values used in 

generating the current optimal plan have changed, the query optimizer is invoked to 
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generate a newly optimized plan, based on the current parameters. To illustrate, if the 

current execution plan starts consuming more CPU and/or memory resources than the 

total available system resources, the query optimizer is invoked. Finally, the system 

dynamically transfers the current plan to the new optimized plan using the plan migration 

component shown in Figure 2-1, which is another important research area in the DSMS 

field. 

Queries that are registered against streams are frequently defined in terms of sliding 

windows because of the unbounded nature of streams. The purpose of the windowing is 

to limit the scope of the join operators into something of tractable size over the lifetime of 

a query. Window constraints are explained in greater detail in section 2.1.3.  

To clarify the query types presented in this thesis, a scenario from a sensor network is 

considered. Let us assume that we have an organization that has a number of sensors to 

monitor the temperature and humidity at different locations throughout the rooms. A 

large organization may require thousands of such sensors. This scenario can be modeled 

as a system with two different types of streams, one for humidity sensors and the other 

for temperature sensors. The schema of each stream can be formed as follows: 

[locationID, value, timestamp], where locationID indicates the location of the sensor that 

generates the stream, value is the sensor reading, and timestamp identifies the time at 

which the data item is generated or entered into the system. There are two streams, one 

for temperature, stream T, and one for humidity, stream H. Queries, in this thesis, are 

SQL select statements where each query joins multiple streams. A query that 

continuously joins two streams, one generated from a temperature sensor and the other 

from a humidity sensor, within a 60-second interval can be specified as follows:    
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Query 1:  

Select *  

From Temperature T, Humidity H [Range 60 sec]  

Where T.locationID = H.locationID 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.2 Streaming Applications  

In this section, a number of data stream applications are represented not only to show the 

context of streaming data, but also to give an overview of query types that require the 

support of a DSMS.  

 

2.1.2.1 Financial Tickers 

Financial tickers contain applications that monitor tens of thousands of data streams, 

which feed from financial markets to help in making decisions. Moreover, these 

Query Executor 

Optimizer 

Query 

Registration 

Module 

Runtime 
Monitoring  

Plan 
Migration 

Figure 2-1 The overall system architecture adapted from (Heinz et al., 2008) 
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applications assist in finding correlations among all pairs of streams. An example of a 

query is to find stocks priced over $50 for the last 15 minutes.  

 

2.1.2.2 Online Auction 

Online auctions have been popular over the past decade. People from all over the world 

use them to trade goods. Online auction applications monitor prices and stream them to 

the users. An example query in an online auction is to find all auctions that closed within 

60 minutes of their opening. Another example of a continuous query is to continuously 

monitor and compute the highest bids that occur in the last 20 minutes. 

 

2.1.2.3 Sensor Networks 

Sensor networks generate streams of data which can be used in monitoring applications. 

These applications monitor physical or environmental conditions, such as humidity, 

temperature, and pressure. An example of an application that monitors physical 

conditions is an application that deals with area monitoring. In area monitoring, a number 

of sensors are deployed over a specific area to trace human movement. Applications that 

monitor environmental conditions include, among others, forest fire detection, power 

consumption monitoring, and air pollution monitoring. An example of a query type 

included in sensor networks is a query that requires aggregating sensor data scattered 

over the network to monitor power consumption, and report it to a power station.  
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2.1.2.4 Transaction Log Analysis 

Applications that analyze data stored in transaction logs of Intranets, web sites, and web 

search engines can provide valuable information for online searchers. Monitoring these 

transaction logs is important to achieve certain goals such as finding overloaded web 

servers. A query example of a web usage log is one that identifies overloaded web 

servers, which assists in rerouting users to backup servers.  

 

2.1.3 Window Constraints 

The size of the states in stateful operators can grow endlessly, and we need to have size 

constraints. Windows solve this problem. There are three types of window constraints: 

sliding windows, fixed windows, and landmark windows. Sliding windows are windows 

that have two moving endpoints (new items replace old ones). Fixed windows have two 

fixed endpoints, and landmark windows have fixed and moving endpoints. Sliding 

window constraints are used in this thesis. The definition of a window size has two 

forms. It can be defined in terms of a time interval, in which case they are called time-

based windows. Windows belonging to the second form are called count-based windows, 

where windows are defined in terms of the number of tuples. Time-based window 

constraints are used in the queries represented in this thesis. In Query 1, the tuples that 

arrive from T and H are joined only if they are within 60 seconds of each other. 

Window constraints can be of a global or a local kind (Hammad et al., 2002). The former 

is the most commonly used window constraint in which all input streams in one query 

have the same window constraint (Hammad et al., 2008). For example, a query S1 ⨝ S2 

⨝ S3 with a global window constraint means that WS1 = WS2 = WS3, where WSi is the size 



 

 15 

of the window of stream i and it is specified in the query predicate. Our thesis uses 

queries with the global window constraints. The local window constraint, on the other 

hand, is when stream operators have different window constraints.   

Window sizes can be different between queries that are registered in a DSMS. To process 

a join operation that is shared by multiple queries with different window sizes, there are 

three different approaches that can be used, namely the largest window only (LWO), the 

smallest window first (SWF), and a greedy approach based on the previous two 

approaches (Hammad et al., 2003). In the LWO approach, the result of the largest 

window is generated; then, the results of other windows are extracted from the largest 

window. In SWF, the results of windows are produced in ascending order of window 

size. In the final approach, windows are divided into groups based on their window sizes. 

Groups are evaluated in ascending order of the largest window size of each group. 

Thereafter, the LWO approach is used to produce the results of each group. 

 

2.1.4 Correlation Between Resource Usages in Join Methods  

The CPU and memory usage are always correlated with each other, and this correlation 

can be either positive or negative. In Figure 2-2, a box indicates an intermediate state 

where tuples are stored, and a circle indicates the CPU process of joining tuples. In the 

BJtree method depicted in Figure 2-2 (a), the resource usages are positively correlated. 

As the number of intermediate results increases, the system requires more CPU resources. 

Furthermore, they have a positive correlation when using the MJoin method, which is 

shown in Figure 2-2 (b). Increasing the number of stream tuples results in increasing both 

CPU and memory resources. On the contrary, the JTree method utilizes the negative 
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correlation between the CPU and memory usages. Adding intermediate states to avoid 

recomputation can reduce CPU consumptions. As shown in Figure 2-2 (c), JTree is 

composed of a combination of BJtree and MJoin operators. A more detailed explanation 

may be found in (Zhu et al., 2010).  

This thesis utilizes the positive and negative correlations between the resources usages to 

generate a qualified global plan that answers multiple queries. Recall that a qualified plan 

requires less CPU and memory resources than the total available system resources. 

 

 

 
 

 

  
 

 
 

 
 
 
 

 
  

 

2.1.5 Cost Models  

A global query plan can be represented by a graph that contains AND-nodes, OR-nodes, 

and a set of edges (Park and Lee, 2012). The join operation is executed by the AND-

node, whereas the result of the join operation is maintained in the OR-node. A qualified 

global plan P is composed of binary joins, MJoins, or a mixture of both, the result of 

which produce an answer for each query in Q. Queries in Q are continuous queries with 

equi-join predicates and each query is an SQL select statement where each query chooses 

from different source streams. In other words, each query qi in Q is restricted to a 

(a) Bushy BJtree 

D C B A     

  

 

  AB CD 

(b) MJoin 

D C B A     

(c) JTree  

C B A    

 

 

ABC 

D 

Figure 2-2 BJtree, MJoin, and JTree 
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conjunction of simple terms that are restricted to equality, i.e., where each term is of the 

form (r.A = s.A), where r and s are streams that contain a joining attribute A. Moreover, 

the size of windows between queries may differ, but the size of windows in one query is 

the same for each stream referred to by the query. This type of query is called a uniform 

clique window join, where all the streams in each query have the same window size 

(Hammad et al., 2008).  

The global plan P produces the results of all the queries included in Q. A JTree plan is 

represented by a graph as shown in Figure 2-3 (a). The graph contains a set of nodes N 

and an acyclic set of edges E. A part of a global execution plan for multiple queries is 

referred to as a subplan as shown in Figure 2-3 (b) (Park and Lee, 2012). The nodes in the 

subplan are connected, i.e., the graph is connected. An AND-node is shown as a circle, 

whereas a box indicates an OR-node. 

A global execution plan and all of its subplans for a set of queries have the following 

properties that are adopted from Park and Lee (2012). The number of incoming edges, 

and the number of outgoing edges of a specific node (ni) where ni ∈ N are defined as 

follows: 

 

  

 

 

Note that the number of outgoing edges of an AND-node is always equal to 1 because it 

is only fed to an OR-node. This OR-node is a standard representation to hold the results. 

Incoming edges of (ni) ≥ 2 if ni ∈ AND-nodes 

Incoming edges of (ni) = 0 if ni ∈ OR-nodes, where ni is a base stream    

Incoming edges of (ni) = 1 otherwise 

Outgoing edges of  (ni) = 1 if ni ∈ AND-nodes         

Outgoing edges of  (ni) ≥ 0 if ni ∈ OR-nodes   
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In other words, an OR node is a results buffer. Inserting and deleting tuples from OR-

nodes require some CPU utilization. 

 

 

 

 

 

 

 

 

 

 
Table 2-1 Terms in the cost models (Zhu et al., 2010): 

Term Meaning  

Ci Cost of inserting a tuple (ms) 

Cd Cost of deleting a tuple (ms) 

Cj Cost of joining two tuples (ms) 

x Input rate of stream x (tuples/sec) 

xy Join selectivity of a join operation on operand streams x and y 

Wx Window size constraint on stream x. 

|Sx| Number of tuples in state x, where |Sx| = λxWx 

 

 
The total cost of a global execution plan for a number of queries is the sum of the costs of 

all the join operations in the plan. The join operation is executed by the AND-node, 

whereas the result of the join operation is maintained in the OR-node. The cost of 

maintaining tuples in an OR-node can either be the number of tuples arrived from an 

input data stream in a time unit or the number of result tuples produced by the 

predecessor AND-node in a time unit. The cost of forwarding the tuple to the subsequent 

(a) An example of a global plan 

D C B A     

 

 

  AB CDE 

 E 

C D E 

(b) A subplan 

Figure 2-3 A global plan and its subplan 
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operation (if any) is zero. In general, a symmetric stream hash join (Viglas et al., 2003) 

with a unit-time-based cost model (Kang et al., 2003) is employed. Table 2.1 describes 

the terms used in the cost model. The cost of the symmetric stream hash model is 

explained in sections 2.1.5.1, 2.1.5.2, and 2.1.5.3. 

An AND-node may have two or more operand streams. Moreover, it continuously 

receives tuples from the input streams. Whenever new tuples are received from the 

operand streams, they are joined. The evaluation cost of an AND-node is the sum of the 

costs of joining the newly arriving tuples of all participated streams. The cost of an AND-

node is the CPU processing of joining tuples, which will be explained in detail later in 

this chapter.  

An OR-node is a standard representation to hold the results. The cost of an OR-node is 

the number of the result tuples that exist in the node. In other words, the cost of an OR-

node is the memory cost, which will be clarified in the following sub-sections. However, 

inserting and deleting tuples from OR-nodes of the operand streams are considered when 

calculating the CPU cost. 

The total CPU costs of a global execution plan P is the total cost of all AND-nodes in 

addition to inserting and deleting tuples from OR-nodes, whereas the total cost of the 

memory in the global plan is the total size of OR-nodes in the plan.  

The following subsections show the CPU and memory costs for BJtree and MJoin plans. 

The CPU cost is the time the CPU needs to process all newly arrived tuples in a time unit, 

whereas the memory cost is the size of all tuples the plan needs. To describe the 

procedure of calculating CPU and memory costs, the example query represented as a join 

graph in Figure 2-4(a) is used. Each vertex represents a stream, which is marked by the 
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name of the stream, and an arrival rate per unit of time. Moreover, each edge indicates a 

join predicate between two input streams, and is marked by the join selectivity. Given 

this join graph, Figure 2-4 (b) shows the optimal plan for MJoin processing as determined 

by the algorithm in (Viglas et al., 2003), whereas Figure 2-4 (c) depicts the BJtree plan 

produced by the algorithm introduced in (Kossmann and Stocker, 2000). 

 

 

 

 

 

 

 

An MJoin is a plan that joins multiple streams in a single step without having to use 

multiple stages as in the case of a BJtree plan. Each input stream in the MJoin plan is 

joined with other streams in a particular order, which can be determined by the MJoin 

algorithm (Viglas et al., 2003). Subsections 2.1.5.1 and 2.1.5.2 show a summary of the 

frequently-used cost analysis of BJtree and MJoin, respectively, as presented in (Zhu et 

al., 2010). 

 

 

 

B 
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A 
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(90) 

(a) Join graph 

A  B  C 
B  A  C 
C  B  A  

(b) MJoin and Join Orderings 

 

(c) BJtree 
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C 

AB 

Figure 2-4 Example query and Two Joins 
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2.1.5.1 Cost Analysis for BJtree  

The CPU cost of a BJtree operation is the total cost of processing newly arrived tuples 

from each input stream. For example, we have three input streams A, B, and C that we 

need to join. A BJtree plan is shown in Figure 2-4 (c). When new tuples arrive from A, 

first they are inserted into state A, at the cost Ci. The cost of inserting tuples from input 

stream A into state A is λA * Ci . Moreover, tuples that are outside the time-frame (W) are 

deleted from state A at the cost Cd, The number of tuples that need to be deleted is 

equivalent to λA and that is computed as follows: λA * Cd. Then, the new tuples are joined 

with the tuples that are in state B at the cost Cj, and the joined tuples are added into 

intermediate state AB. Furthermore, the old tuples are deleted from state AB, and the cost 

model used to compute this step is λA * λB * σAB * W * (Cj +Ci +Cd). In the following 

step, the tuple from state AB is joined with the tuples that exist in state C, and the 

computation of this step is λA * λB * λC * σAB * σBC * W2 * Cj. There is no need to store 

the produced results, since there is no state |ABC|. In other words, there are no inserting 

and deleting operations in the last step. The CPU cost for stream A in a unit time is CPUA 

= (λA * Ci) + (λA * Cd) + (λA * λB * σAB * W * (Cj +Ci +Cd)) + (λA * λB * λC * σAB * σBC * 

W2 * Cj). New tuples that arrive from input B follow the same steps, whereas tuples from 

C are, first, inserted into state C. Subsequently, they join directly the tuples in state AB. 

The CPU cost for C in a unit time is CPUC = (λC * Ci) + (λC * Cd) + (λA * λB * λC * σAB * 

σBC * W2 * Cj). 

The following is the total CPU cost for joining (A ⋈ B) ⋈ C. 

 
 

 
 

CPUbjtree = (λA + λB + λC)(Ci + Cd) + (3 * λA * λB * λC * σAB * σBC * W2 * Cj) +(2 * λA * 

λB * σAB * W * (Cj +Ci +Cd))        (2-1)

   



 

 22 

The memory size is as follows:  

 

 

 
 

 
The join order affects the size of the intermediate state. Choosing a better join ordering 

decreases the memory size. If memory size is decreased, the CPU cost is reduced as well 

as they are positively correlated.    

 

2.1.5.2 Cost Analysis for MJoin  

The CPU cost of the MJoin operation consists of the total cost of processing newly 

arrived tuples from every input stream. For example, A, B and C are the streams we want 

to join using an MJoin plan. The join ordering of each stream is shown in Figure 2-4 (b). 

When new tuples arrive from A, they are inserted into state A. The tuples that are outside 

the window size are deleted. The new tuples are then joined with the tuples in state B, and 

the resulting tuples are joined with the tuples in state C. The CPU cost for A in a unit time 

is CPUA = (λA * Ci) + (λA * Cd) +  (λA * λB * σAB * W * Cj) + (λA * λB * λC * σAB * σBC * 

W2 * Cj). The same process is applied to the new tuples from B and C. The following is 

the total CPU costs for MJoin. 

 

 

The memory size of the MJoin is as follows: 

 

 

 

 

 

The optimal join orderings of input streams decreases the total CPU cost of an MJoin 

plan (Viglas et al., 2003). Figure 2-4 (b) shows the optimal join orderings in our example.  

MEMORYbjtree = |State A| + |State B| + |State C| + |State AB| = (λA * W) + (λB * W) + 

(λC * W) + (λA * λB * σAB W
2)       (2-2) 

    

CPUmjoin =(λA + λB + λC)(Ci + Cd) + (3 * λA * λB * λC * σAB * σBC * W2 * Cj) +(2 * λA * 

λB * σAB * W * Cj) + (λB * λC * σBC * W * Cj)     (2-3) 

MEMORYmjoin = |State A| + |State B| + |State C |= (λA * W) + (λB * W) +(λC * W) (2-4) 
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2.1.5.3 Cost Analysis for JTree 

The CPU cost of a JTree method is the total cost of processing newly arrived tuples from 

each input stream. The JTree method is a combination of BJtree and MJoin operators; 

thus, the CPU costs of a JTree method is calculated by combining equations (2-1) and (2-

3). Since we can not generate a JTree plan from the example shown in Figure 2-4, let us 

consider the JTree plan shown in Figure 2-2 (c), which is joining (A ⋈ B ⋈ C) ⋈ D. 

The reason is that the JTree plan needs at least 4 input streams to be formed.  

First, input tuples that arrive from streams A, B, and C are joined together using equation 

(2-3). The join ordering of each stream must be known a priori to calculate the CPU costs 

of an MJoin operator. Since the resulting tuples need to be stored in an intermediate state, 

the cost of inserting and deleting tuples from the new intermediate state needs to be 

considered when calculating the total CPU costs. Assume that the join ordering of each 

stream is the one shown in Figure 2-4 (b). The CPU cost for A in a unit time is CPUA = 

(λA * Ci) + (λA * Cd) +  (λA * λB * σAB * W * Cj) + (λA * λB * λC * σAB * σBC * W2 * (Cj 

+Ci +Cd)). The same process is applied to the new tuples from B and C. The resulting 

tuples are stored in state ABC. Tuples from D are first inserted into state D and then they 

join directly the tuples in state ABC. The CPU cost for D in a unit time is CPUD = (λD * 

Ci) + (λD * Cd) + (λA * λB * λC * λD * σAB * σBC * σCD * W3 * Cj). The following is the 

total CPU costs for JTree. 

 

 

 

 

The memory size is as follows:  

 

 

CPUJtree = (λA + λB + λC + λD)(Ci + Cd) + (4 * λA * λB * λC * λD * σAB * σBC * σCD * W3 * 

Cj) + (3 * λA * λB * λC * σAB * σBC * W2 * (Cj +Ci +Cd)) + (2 * λA * λB * σAB * W * Cj) + 

(λB * λC * σBC * W * Cj)         (2-5)

   

MEMORYJtree = |State A| + |State B| + |State C| + |State D| + |State ABC| = (λA * W) + 

(λB * W) + (λC * W) + (λD * W) + (λA * λB * λC * σAB * σBC *W3)    (2-6) 
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2.2 Related Work 

The explosive growth of sensors and RFID networks and utilizing them in real-time 

scenarios caused a dramatic increase in streaming data on the Internet (Sirish et al., 

2003). Therefore, there was an urgent need for systems that can process this kind of data 

since streaming data are different in nature from the data in traditional databases. There 

are two fundamental differences between data stream management systems and 

traditional database systems. First, streaming data is infinite, whereas data is finite in 

traditional systems. Streaming data does not need to be stored entirely on the systems in 

contrast to data in traditional systems. The second difference is that queries in DSMSs are 

persistent, which means that queries are issued once and they remain active in the system 

for a long time. On the other hand, queries in DBMSs are transient. They return results 

and then they become inactive. This emergence of streaming data has resulted in the 

development of streaming database systems (Chen et al., 2000; Rundensteiner et al., 

2004; Abadi et al., 2005). 

 

2.2.1 Join Methods  

Join has been extensively studied in static databases since it is one of the most commonly 

used operations in database systems. Viglas (2005) predicts that join will be one of the 

most intensive research areas in the stream context. 

The two most common methods used to execute multi-join queries over streams are 

MJoin (Viglas et al.; 2003) and BJtree (Kossmann and Stocker, 2000). Both techniques 

mostly use hash-based join algorithms, which were primarily introduced by DeWitt 

(1984) for static databases. Wilschut and Apers (1990) introduce the symmetric hash join, 



 

 25 

which deals with the streaming nature. Urhan and Franklin (2000) provide a technique to 

overcome memory overflow by introducing an efficient way to spill overflowing tuples to 

disk and join them later to produce the output. Urhan and Franklin (2000) improve the 

performance of the symmetric hash join algorithm proposed by Wilschut and Apers 

(1990), and enhance the response time in stream contexts. The primary reason for using a 

hash-based join implementation is that previous works have proven, in most cases, its 

superiority over other implementation such as nested-loop join (Zhu et al., 2010). Each 

join operator in a hash-based join keeps one state per input stream to store tuples for 

future joins. 

To process continuous queries with multiple joins, the works before (Viglas et al., 2003) 

use the BJtree method, which contains binary join operations that store intermediate 

results. This method requires multiple steps to join all participant streams. Since the 

BJtree method stores intermediate results, it requires memory space for the storage. There 

are two different types of BJtrees: linear BJtree and bushy BJtree. The inputs of a bushy 

tree are intermediate results, except the leaves, which are all base streams. On the other 

hand, the inputs of each join operator in linear trees are intermediate result and a base 

stream. However, this is not the case for the first operator in linear trees, which joins 

tuples received from base streams. For the purpose of reducing the time complexity, 

some query optimizers restrict the search space to linear BJtree, which may reduce the 

chance of finding a good query plan (Selinger et al., 1979). In fact, prior works have 

shown that a bushy BJtree in many cases has better performance than its counterpart 

(Viglas and Naughton, 2002).  
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MJoin is the second common method used to perform joins in stream environments 

(Viglas et al., 2003). Instead of requiring multiple steps to perform the join, MJoin uses a 

single step to join all participant streams. When a new tuple arrives, it is joined with the 

other streams in a specific order. One of the differences between BJtree and MJoin is that 

MJoin does not store intermediate results as in the case of BJtree. Therefore, MJoin 

requires less memory compared to the BJtree method; however, this is performed at the 

expense of increasing the CPU costs. This problem of excessive recomputation of 

intermediate results in MJoin was acknowledged earlier by Viglas and his colleagues 

(2003) when inventing the MJoin method. However, Viglas and his colleagues (2003) do 

not provide a solution to tackle this problem. They suggest that a large MJoin, which has 

more than four participant streams, can be split into two MJoin operators; however, they 

do not account for memory constrains/costs.  

 

2.2.2 Processing Multiple Queries 

Similar queries can be executed by sharing the computation of query plans (Chen et al., 

2000). Madden et al. (2002) suggest indexing query predicates for the purpose of 

processing multiple queries.  

In the first approach, similar queries share the same computation, which can be 

performed by building a common query plan (Chen et al., 2000). To illustrate, continuous 

queries are divided into groups based on the similarity between the queries, and each 

query belonging to a group shares a common subplan with other queries in this group. 

The query plan contains all operations that answer all queries. This approach is beneficial 

in reducing redundant operations when dealing with multiple queries. Although some 

works have been accomplished using this technique of sharing query plans (Chen et al., 
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2000; Park and Lee, 2012) to reduce memory or CPU cost, to the best of our knowledge 

no one has tried to address the problem of generating qualified plans for multiple queries, 

which is one of objectives of this thesis. Roy et al. (2000) emphasize the significance of 

integrating a query plan with sharing and materializing common results. However, Roy et 

al. (2000) do not consider pipelining common results to their uses without materializing 

them. Dalvi et al. (2003) suggest pipelining common results without materializing them 

to reduce memory usage. Not all common results can be pipelined. Dalvi et al. (2003) do 

not take into account CPU processing time. In DSMSs, query plans need to be generated 

as quickly as possible. Thus, the work in (Dalvi et al., 2003) is not applicable to DSMSs 

since it requires considerable time to generate a plan. Park and Lee (2012) improve the 

technique introduced by Dalvi et al. (2003). They make it applicable to the data stream 

environment. Park and Lee’s algorithm traces a set of promising subplans when 

generating a global plan for multiple queries. The BJtree method is used in their 

technique to generate common subplans. The work by Park and Lee (2012) does not 

consider both CPU and memory consumption and the correlation between them. 

The second approach is to index query predicates and store them in a table. The attribute 

values of each newly arrived tuple are extracted and matched against the available query 

index to determine which queries are satisfied by the tuple (Golab and Özsu, 2003). 

 

2.2.3 Overview of Other Related Work  

The previous research dose not tackle the problem of generating qualified global plans 

for multiple queries. Most previous works utilize the positive correlation between CPU 

and memory usages. The works that focus on optimizing BJtree, such as in (Babu et al., 
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2004; Urhan and Franklin, 2000), try to minimize the memory usage by reducing the size 

of intermediate results, and assume that this will reduce the CPU consumption. The 

works that focus on enhancing the MJoin method, such as in (Viglas et al., 2003, Madden 

et al., 2002), aim to reduce the CPU costs needed to recompute intermediate tuples 

without storing any intermediate results.  

There are two additional works that utilize the positive and negative correlations between 

CPU and memory usages. The first work is the Adaptive Caching algorithm (Babu et al., 

2005), which optimizes join performance by considering BJtree plans, MJoin, and the 

entire spectrum between them. To elaborate, the Adaptive Caching technique starts with a 

single MJoin operator and then places/removes caches for specific intermediate results. 

There are differences between the technique proposed in this thesis and the Adaptive 

Caching technique. First, the Adaptive Caching technique does not consider solutions 

with overlapping candidate caches. It restricts the problem space to a set of 

nonoverlapping caches because considering overlapping caches will complicate cache 

management and optimization. To illustrate, nonoverlapping caches are the ones that do 

not have join operators in common. Second, the Adaptive Caching technique looks at the 

operator-level. Third, the Adaptive Caching technique does not consider sharing the 

results of common join operations between queries.  

The other similar work is the Two-Layer JTree-Finder algorithm (Zhu et al., 2010), 

which finds a qualified query plan by extending the solution space to include BJtree, 

MJoin, and a mixture of both. The first layer generates, first, an MJoin plan. If the plan 

requires more CPU resources than the total available resources, the first layer generates a 

BJtree plan. If the plan is still not qualified, the second layer is triggered. In the second 
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layer, a mixture of MJoin and BJtree subplans is generated to find a global plan that is 

adherent to both CPU and memory resources. In case a qualified plan is not found, other 

techniques, such as load shedding (Tatbul et al., 2003) and memory spilling (Urhan and 

Franklin, 2000), can be used. The work in (Zhu et al., 2010) deals only with a single 

query and has not yet been extended to handle multiple queries.  

Regarding some of the recent works in the field, Heinze et al. (2014) set latency as the 

optimization target for multiple queries in a distributed data stream system. The 

optimization component of their proposed system finds reusable operators in different 

queries to construct a global plan. Lohman (2014) discusses some issues that have not 

been solved yet in query optimization, one of which is the problem of redundant 

predicates that may appear in queries. He gives an example of two queries that differ in 

only one predicate, such that the predicate is redundant, that is, it is implied/subsumed by 

the other predicates. Chen et al. (2013) focus on optimizing multiple top-k-queries over 

uncertain data streams, where data is incomplete, imprecise, and misleading. Techniques 

that are used in multi-query optimization over data streams cannot be applied to multiple 

top-k query processing over uncertain data streams because of the complex semantics of 

uncertainty (Chen et al., 2013). To et al. (2017) focus mainly on managing states in data 

stream systems in which they provide some solutions to overcome the issue of having 

scarce memory resources. One solution is to not restrict the processing to local memories. 

Large states can be stored in a distributed system for joining multiple data streams to 

ensure high scalability. Arasu et al. (2016) give insight into their data stream 

management system. In their system, they use load shedding when system resources 
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overflow. They ignore the idea of producing accurate results, which is one focus of this 

thesis.  
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CHAPTER 3 : GLOBAL PLAN GENERATION ALGORITHM 

One obvious way to “optimize” multiple queries is to optimize each query individually 

and then check which operations across queries can be shared. Our proposed method is 

heuristic and it has the following contributions: 

- Determine the order in which queries should be optimized. 

- Pre-allocate CPU and memory resources to each query to ensure that when there is 

a shortage of one of the resources, the optimization of queries will take it into an 

account when forming the plan. 

- Consider sharing computations and memory of common join operations when 

generating a global plan. 

- Satisfy both CPU and memory resource constraints by considering MJoin 

operators, Bjtree operators, and a mixture of both when forming the plan. 

Our primary objective of generating a global plan is to answer multiple queries while 

minimizing resource usage by using both BJtree and MJoin operators and sharing the 

results of common join operations. Generating a query plan only using one type of 

operators, whether they are BJtree or MJoin operators, can miss the opportunity to 

generate a plan that adheres to both CPU and memory usage. Moreover, when dealing 

with multiple queries, sharing computation is significant to eliminating redundant work. 

Our method creates a global plan by optimizing individual queries and adding their 

operators to the global plan: when optimizing a query, the proposed method checks the 

global plan for any join operations that can be reused or shared by the query. In case there 

are sharable global plan join operators (i.e., operators of which results can be shared by 
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more than one query) that can be used by the query being optimized, they may be used 

even if they are expensive for the query being optimized. Using this technique, one 

combination of joins may be more expensive for any single query but the amortized cost 

across a number of queries can make sharing to be a good choice across all queries. 

Because our method optimizes each query individually, the proposed method needs to 

determine the order of queries in which they need to be optimized. We propose three 

techniques to find the order of queries and they are described in the following section. 

Our method also allocates a fixed amount of the respective CPU and Memory resources 

for each query based on the number of input streams, input rates, and join selectivity of 

join operations. A global execution plan is generated by optimizing queries individually, 

while searching for shared operators when creating a plan for an individual query, and 

incorporating their plans into the global plan. Subsequently, the global plan will have all 

subplans that are required to evaluate the set of queries. To increase the likelihood of 

finding common join operations, the effective cost of a join operation is used in this 

process. The effective cost of any join operation takes into account the number of queries 

that can reuse the operation’s result.  

In Section 3.1 we present how the order of queries used by the global plan generation 

algorithm is determined.  How resources are initially allocated to each query is described 

in Section 3.2. Determining which join operations can be shared by multiple queries is 

described in Section 3.3.  Section 3.4 describes the global plan generation algorithm 

without details on the generation of qualified sub-plans that are then described in Section 

3.5. 
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3.1 The Order of Queries 

Our method needs to determine the order of queries before optimizing them. To order the 

queries, our method exploits the similarity between queries and the weight of queries.  

Each join predicate has a degree of similarity d (j,Q) that represents the number of shares 

of the join j amongst the queries in Q. To determine d (j,Q) for a given predicate, we 

simply examine the processed queries and count how many of them have the predicate 

and thus determine the degree of similarity d (j,Q). Intuitively, for a given predicate (r.A 

= s.B), where r and s are relations and r.A and s.B are the joining attributes, if d (j,Q) = 3, 

then that predicate appears in three queries. If we perform the join using this predicate, 

then the result of this join is shared by three queries – which is preferred to executing the 

same join in evaluating each query individually. Thus, the higher the degree of similarity, 

the better it is to schedule the join so that its result can be shared. However, the cost of 

executing a join itself is also relevant. Higher the cost of the join itself, then its sharing 

needs to be higher for it to be selected. We represent this property by the weight-measure 

of a join predicate that is proportional to the cost of a join, which depends on the number 

of tuples in the window that need to be joined, and hence on the arrival rates and the 

number of tuples formed by the join, which depends on the predicate’s selectivity. Thus 

the gaged weight of a join predicate is calculated by equation 3.1, which multiplies the 

join selectivity with the arrival rates of the operand streams a and b.  

 

 

 

In short, the heavier the weight, the more expensive the processing of the predicate. Later 

in this Chapter, we use the term edge weight and it is calculated using equation 3.1. 
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The primary objective of finding the order of queries is to reduce the total CPU and 

memory consumption of the global plan. In other words, processing queries in different 

orders has an impact on generation of the global plan. We explore three heuristic 

techniques to find the order of queries based on their weights: heaviest/largest to 

lightest/smallest, lightest/smallest to heaviest/largest, and the shared predicate technique.  

 

 

 

 

The amortized weight of a join predicate, or from now on simply referred to as the weight 

of a predicate, is determined by equation 3.2, which divides the weight by the degree of 

similarity d(j,Q) that represents the number of shares of the join j amongst the queries in 

Q.  

Let Q = {q1, q2, q3, … qn} be a set of queries, where each query is represented by an 

acyclic join graph. Query qi = (Vi, Ei) is comprised of a set of streams Vi  V and edges Ei 

as predicates (joins) between streams. Let the join selectivity of edge ej = (K, L) be σK,L,. 

Moreover, the number of edges / predicates in qi is |Ei|.  

Let  The weight of a query qi, relative to query set 

Q, is the summation of the weight of all join predicates that exist in the query and it is 

calculated as follows:  

 

   

Sharing of results amongst the queries is encouraged by defining the cost of a predicate to 

be its weight divided by the degree of sharing. In essence, we explicitly amortize the cost 



 

 35 

of the join across all sharing in the query, which reduces the per-query cost of the 

operation. Thus, when we consider the cost of any single query, the use of the shared 

operator may become a low-cost option for its query plan, which means the join will 

likely be selected. 

The three algorithms, which determine the order of queries for the global plan generation 

algorithm, are now described. Using equations (3-2) and (3-3), the algorithms calculate 

the weight of a predicate appearing in a query and the weight of a query.  

3.1.1 Heaviest to Lightest:  

In this technique, queries are ordered from the one with the heaviest weight to the one 

with lightest weight. Therefore, the heaviest queries will be processed first. As queries 

are individually optimized, CPU and memory resources are allocated to their plans. This 

method will ensure that queries requiring “heavy” resources are optimized first and thus 

it is expected that there are resources available to process them.  

One drawback of this approach is that it does not encourage generating shared operators 

at an early stage. In a later stage, if there is a shortage in one of the system resources such 

as memory, the system will prioritize operators with low memory consumption over 

operators that can be shared by multiple queries. Therefore, this technique, in some cases, 

does not fully exploit the similarity between queries. The goal here is to generate join 

operations that can be shared between queries as soon as possible, so CPU and memory 

resources of the shared operations are shared by the rest of the queries if possible. This is 

significant when considering the pre-allocation of resources to queries, which will be 

discussed in section 3.2. Algorithm 1 shows how to order queries using this approach. 

Keep in mind that the degree of similarity that represents the number of shares of the join 
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amongst the queries may change when a query is removed. This happens when there are 

predicates shared with the removed query. Thus, after removing a query in line 8 of 

Algorithm 1, the weights for queries need to be recalculated, and that is the reason why 

we keep recalculating the weights for queries in each iteration of algorithm 1 (lines 3-5). 

 

Algorithm 1 Finding_Order_of_Queries (Heaviest to Lightest) 

Input: queries Q = { q1, q2, …, qn }, where each query is a Join Graph  

Output: Order of queries in an Ordered_list. 

 

1: Ordered_list = empty; 

2: While (Q != null);  

3:  For each query q ∈ Q do  

4:  calculate and store query weight w(q,Q) using equation (3-3)  

5:  End for 

6:  let qlargest_index ∈ Q be the query with largest weight w(qlargest_index,Q) 

7:  append qlargest_index to Ordered_list; 

8:  remove qlargest_index from Q; 

9: End while 

10: Return Ordered_list 

 

 

3.1.2 Lightest to Heaviest: 

Unlike the first approach, queries in this technique are ordered from the one with the 

lightest weight to the one with the heaviest weight. This approach has a chance to 

generate operators that can be shared across queries at an early stage because it exploits 

the similarity between queries to some degree. However, it may miss some opportunities 

for generating operators that can be shared among queries. Figure 3-1 illustrates how 

some queries may ignore sharing operators. Let us assume we have sufficient system 

resources. There are three queries: query 1 has the lightest weight, query 2 has the second 

lightest weight, and query 3 has the heaviest weight, which is calculated by equation 3-3. 

In this example, when processing query 1, B and C are joined first because they have the 

lightest weight. Then, their result is joined with stream A. If we process query 2 first, A 
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and B are joined first because their weight is smaller than joining B and D. Thus, 

processing query 2 first is more beneficial because it generates a join operation that can 

be shared between two queries. 

  

  

 

 

 

It is sometimes beneficial to process a heavier query at an early stage if its results can be 

shared by other queries as shown in the example of Figure 3-1. Optimizing all heavy 

queries as last may mean that resources may not be available for them. For instance, 

generating query plans for all but the last query may not leave sufficient memory (CPU) 

available for the last query, which may require a lot of memory (CPU) resources and thus 

the global qualified plan may not be found. If that heavy query was optimized early, a 

global plan may have been found. Algorithm 2 shows how to order queries using this 

technique. 

Algorithm 2 Finding_Order_of_Queries (Lightest to Heaviest) 

Input: queries Q = { q1, q2, …, qn }, where each query is a Join Graph  

Output: Order of queries in an Ordered_list. 

 

1: Ordered_list = empty; 

2: While (Q != null);  

3:  For each query q ∈ Q do 

4:  calculate and store query weight w(q,Q) using equation (3-3)  

5: End for 

6:  let qsmallest_index ∈ Q be the query with smallest weight w(qsmallest_index,Q) 

7:  append qsmallest_index to Ordered_list: 

8:  remove qsmallest_index from Q; 

9: End while 

10: Return Ordered_list   

Queries 

1) A ⋈B⋈ C 

2) A ⋈B⋈ D 

3) A ⋈C⋈ D 
 

Input rate for streams 

A = 10 

B = 12 

C = 10 

D = 30 

 

Selectivity factor 

A ⋈ B = 0.1 

B ⋈ C = 0.01 

B ⋈ D = 0.2 

A ⋈ C = 0.9 

C ⋈ D = 0.5 
 

 

Figure 3-1 Example of ordering queries from lightest to heaviest 
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3.1.3 Shared predicate technique: 

In the previous two algorithms the order of queries was determined by properties of 

queries, one ordering the queries from lightest to heaviest, while the other from heaviest 

to lightest, where the weight of query is determined using the equation (3-3).  This 

technique is used to solve the issue discussed in section 3.1.2 by selecting the order of 

queries not on the properties of queries, but rather on properties of predicates that queries 

contain and favoring those queries that contain predicates that are shared across queries. 

The method examines the join predicates that are shared between at least two queries and 

chooses the one with the smallest weight. Recall that the weight of a join predicate is 

calculated by dividing its weight by the degree of similarity. The heaviest query that 

shares this predicate is then placed into the order of queries to be optimized. We prioritize 

heaviest queries here because a poor query plan for heavy queries exhausts system 

resources more than any other types of queries. Some operations that exist in the global 

plan may force heavy queries to have poor query plan overall. Thus, processing heavy 

queries first reduces the probability of using unwanted operations that already exist in the 

global plan by those queries. After placing q1 in the order, q1 is removed from the set of 

queries and the weights of the remaining queries are re-calculated using equation 3-3. 

The process then repeats, the cheapest join predicate that is shared between multiple 

queries is selected and the heaviest query that shares it is set to be the second query in the 

order. This process will continue until all queries are placed in order. In case there is 

more than one predicate with the same weight, the heaviest query that shares any one of 

these predicates is chosen first. In case there does not exist shared predicate anymore, the 

smallest predicate is selected and the largest query that has it is placed next. The 
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experimental results in section 4.2 show that this technique is superior to the other two as 

it generates more shared operations. Algorithm 3 shows how to order queries using this 

approach. Note that a shared join predicate, sometimes referred to as a shared predicate, 

is a predicate that is shared between at least two queries.  

 

Algorithm 3 Finding_Order_of_Queries (Shared-predicate) 

Input: queries Q = { q1, q2, …, qn }, where each query is a Join Graph  

Output: Order of queries in an Ordered_list. 

 

1: Ordered_list = empty; 

2: While (Q != null) 

3: For each query q ∈ Q do 

4:   For each join predicate j in each query q do 

5:    calculate and store join weight w(j,Q) using equation (3-2) 

6:   End for  

7:   calculate and store query weight w(q,Q) using equation (3-3) 

8:  End for 

9:  If there is shared predicate, that is shared by different queries, still exists in queries q ∈ Q do 

10:   Find that predicate j, over all queries q ∈ Q, such that: 

    1) j has the smallest weight w(j,Q) and 

  2) j is shared by at least two queries from what left  

11:   Find that query q ∈ Q, such that: 

1) q has the predicate j and  

2) weight w(q,Q) is the largest of all queries that share the predicate j 

12:  Else // if there is no shared predicate anymore in queries q ∈ Q 

13:   Find that predicate j, over all queries q ∈ Q, such that: 

    j has the smallest weight w(j,Q)  

14:   Find that query q ∈ Q, such that: 

1) q has the predicate j and  

2) weight w(q,Q) is the largest of all queries  

15: End If 

16:  append q to Ordered_list: 

17:  remove q from Q; 

18: End while 

19: Return Ordered_list  

 

 

3.2 Initial Resources Allocation 

When our proposed method optimizes individual queries, according to one of the 

orderings of Section 3.1, each query is given an initial resource allocation of CPU and 

memory that depends on the total resources available and the estimated resource 
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allocation available for each query. This is to ensure that when there is a shortage of CPU 

(memory) resource, optimization of the individual query will take this into an account 

and use BJtrees (MJoins) as opposed to MJoins (BJtrees).   

Algorithm 4 allocates CPU and memory resources for each query. Begin with a set of 

queries Q = {q1, q2, q3, … qn}, where each is represented by an acyclic join graph. Query 

qi = (Vi, Ei) with vertices Vi from the set of streams Vi  V.  Given edge e = (K, L) as a 

predicate of qi, with K, L  Vi, let the join selectivity of ej be . Let K and L denote 

the arrival rates of streams K and L, respectively, in a unit time. Moreover, number of 

edges / predicates in qi is |Ei|. Let Wi be the window size of input streams of the query qi. 

As all arriving tuples must be processed, we base the initial allocation of CPU and 

memory resources on the arrival rates and join selectivity as follows: 

 

 
  

 
 
The allocation of resources is based, in the numerator, on the arrival rates of streams 

involved in joins and on their selectivities. The denominator ensures that the total 

allocation of the resource over all queries does not exceed the constraints on the resource.  

Thus, the sum of resources allocated to each query equals to the total available resources. 

If a join operation consumes less CPU than its allocated CPU resources, the unused CPU 

resources are provided to the other operations. Similarly, memory size that is unused is 

provided to the other join operations that require more memory. 
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3.3 Subexpression Sharing  

The proposed algorithm generates qualified subplans that can be shared among different 

queries. Given a set of queries, there is a potential for the same join predicates to exist 

across queries. It is beneficial to utilize the similarity between queries by generating 

operations that are shared by queries. Therefore, this thesis introduces a sharing execution 

strategy that helps in keeping the CPU and memory costs below the available system 

resources.   

A basic strategy is to evaluate each query individually on the incoming streams. 

However, if the similarity between queries is not exploited, this strategy can perform 

some redundant work as it may re-evaluate the same predicate more than once, which 

increases the overall evaluation cost. Moreover, collectively optimizing queries without 

sharing common join operations can negatively impact the performance of multiple query 

optimization. Therefore, choosing a sharing execution strategy for a set of queries is 

obviously an advantageous alternative compared to not sharing results. 

To share the results of common subexpressions, the following factors should be taken 

into account: 

The first factor is the sharing degree, which is adopted from Park and Lee (2012). Each 

join operation has a sharing degree, which indicates the reusability of the operation in the 

plan. The sharing degree of a join operation Jx in plan P is calculated as follows: 

 

S(e) is the set of queries qj that share the results of the join represented by edge e  Ei . 

Recall that Wj denotes the window size of input streams of the query qj. A join operation 

Jx is called a sharing operation if  (Jx|P) > 1. The greater the value of a sharing degree, 
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the more a join operation can be shared and thus eliminate re-computing the same 

operation repeatedly and reducing the consumption of system resources. The main 

objective here is to find join operations that can be shared by incoming queries. 

The second factor is the effective cost. Instead of considering the actual cost of a join 

operation, which is determined by equations (2-1) to (2-4), the effective cost is used when 

generating a qualified global plan. The following equations show how to calculate the 

effective cost of a sharing join operation Jx in a qualified plan P that is under 

consideration.  

   

In the above equation, in “effCostRESOURCE”, where “RESOURCE” stands for 

“CPU”, if the resource is CPU, while it is “MEM” if the resource under consideration is 

memory. The actualCost (jx | P) is obtained by equations (2-1) and (2-2) in Section 2.1.5, 

if the operation is a BJtree, while it is obtained by Equations (2-3) and (2-4) if the join 

operation is an MJoin. The effective CPU cost of a subplan sp is the summation of the 

effective CPU costs of all operations in sp. Similarly, the effective memory cost of a 

subplan sp is the summation of the effective memory costs of all operations in sp.  

 

 

In the above equations, Nsp is a set of nodes, i.e., joins in the subplan sp. As stated before, 

we will be generating a plan for a query at a time and incorporating it into a global plan.  

When searching for a plan for one query, different subplans will be examined and 

compared to each other to select the best one. To compare two subplans being considered 
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in optimizing a query, we shall use equation (3-10) and Table (3-1).   Let  

  M … be the total memory resource available,  

 Mg … be the memory consumed by the global plan g, 

 C … be the total CPU resource available, and  

 Cg … be the CPU resource consumed by the global plan g. 

Then, the effective CPU and memory costs of sp relative to global plan g are combined as 

fractions into a tuple, denoted as effCost: 

 

 

Equation (3-10) defines the effective cost of a subplan sp, effCost(sp, g), as a tuple (c, m) 

with 0 ≤ c, m ≤ 1, where c is the effective CPU cost of sp plus the CPU cost of the global 

plan g, divided by the total CPU resource available. m is defined similarly using memory 

rather than CPU cost.  More abstractly, c is the fraction of total CPU consumed by sp and 

global plan g, while m is the fraction of memory consumed by sp and global plan g. 

When optimizing a query, an iterative process is used when choosing the next operation 

to be incorporated into the query’s plan. Iterations are used to examine alternative 

subplans and then choose the best one. In each iteration, the current minimum plan is 

compared to a new plan under consideration, and if the new plan is better than the current 

minimum plan, the new plan becomes the current minimum plan. To determine which of 

two plans under consideration is better, we need to develop a relationship, which defines 

when one plan is better than another.   

Let sp1 and sp2 be two subplans and let effCost(sp1, g) = (c1, m1) and effCost (sp2, g) = 

(c2, m2) relative to a global plan g. The comparison (effCost(sp1, g) < effCost(sp2, g)) in 

Lines(14, 39) of algorithm 4 is defined in Table 3-1 as: 
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Table 3-1 Definition of Less Than Comparator for Two (Sub)Plans 

Values of m1, m2, c1, c2 Result of (effCost(sp1,g) < effCost(sp,g2) 

m1 < m2 and c1 < c2 TRUE…………………….   (1) 

m1< m2, c1 > c2, ((c1+Cg)/C < (m1+Mg)/M) TRUE…………………….   (2) 

m1 > m2, c1 < c2, ((m1+Mg)/M < (c1+Cg)/C) TRUE…………………….   (3) 

none of the above hold FALSE……………………  (4) 

 

 
Recall that C and M represent the total CPU and the total memory resources available, 

respectively; Cg and Mg are CPU and memory consumed by the global plan formed thus 

far, respectively. Let c2 and m2 represent the respective effective CPU and memory costs 

of the current min subplan and we are considering a new subplan (with m1 and c1) and 

are trying to decide whether it is better than the current min plan. Consider the conditions 

in Table 3-1. The new subplan is better if (1) holds as both the CPU and memory costs of 

the plan sp1 are lower than those of sp2. The new subplan is also better if (2) holds: if the 

new subplan uses less memory than the current minimum subplan but uses more CPU, 

and memory is scarcer than CPU, then the new subplan is better - as defined by (2). The 

reasoning for the CPU is similar and is defined by (3). 

The above factors are important for generating operations that can be shared by incoming 

queries. If there are two or more plans that are qualified for a query, using the above 

factors helps in deciding which query plan should be added to the global plan. An 

important point to be considered is to share operations that already exist in the global 

plan. Thus, the utilized algorithms, in our method, that generate MJoin and BJtree 

operators were modified to consider the sharing. The last two subsections in this chapter 

explain the utilized algorithms. 
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3.4 Global Plan Generation Algorithm 

Algorithm 4 shows the pseudo-code of generating a global qualified plan. One of the 

inputs of the algorithm is queries. Each query is defined on a set of input streams and is 

represented by a join graph, which contain edges E and vertices V. A BJtree operator is 

generated by removing an edge e and combining two vertices. Figure 3-2 depicts a query 

and a generated BJtree operator. 

 

 

 

 

There are two other inputs to Algorithm 4: the total available CPU and the total available 

memory. In the following section, our proposed technique is explained in more detail.  

Recall that a plan P is represented by a set of nodes that are connected by a set of edges, 

and a subplan SP is a subgraph of a plan such that all nodes in SP are connected. We 

extend the Two-Layer JTree-Finder approach proposed in (Zhu et al., 2010) to generate a 

global plan for multiple queries. The Two-Layer JTree-Finder approach of (Zhu et al., 

2010) is designed to generate qualified plans for a single query; thus, it does not consider 

producing an optimized plan for multiple queries. Our proposed method generates a 

global plan for multiple queries while exploiting the sharing of results of operations 

across queries. Algorithm 4 uses methods/subroutines, listed in Table 3-2, that perform 

specific tasks or implement algorithms, where algorithms 5, 6, and 7 are described later 

in this chapter. Also, some of the algorithms are based on works in other references as 

noted in the table. 

B 
(10) 

A 
(10) 

(a) Join graph (b) Generating a BJtree operator 

 

0.1 

D 
(80) 

0.2 

A B 
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B A 

A B 

 

D 

Figure 3-2 A query and a BJtree operator 
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Table 3-2 Subroutines Accessed by Algorithm 4 

Subroutines Description 

Finding_Order_of_Queries(Q) Implements Algorithm 3: Given a set of queries, return a sequence of 

the queries that satisfies an ordering criterion as defined by 

Algorithm3. 

Find_MJoin_Ordering(G) From (Viglas et al., 2003). Find MJoin_Ordering takes join graph of 

query qi as input and returns a subplan sp that joins all input streams in 

a single step with a specific order in an MJoin and thus also 

determining the specific sequence in which streams are joined within 

the MJoins. 

State_Selection (sp, G, P) Implements Algorithm 5. Inputs of State_Selection algorithm are a 

subplan sp, join graph g and the global plan P. The output consists of a 

subplan with both MJoin and binary join operators and an edge. In each 

iteration of State_Selection algorithm, an edge e from G is removed to 

generate a binary join operator. 

Find_BJTree_Ordering (G, P) Implements Algorithm 6. Inputs are a join graph G and the global plan 

P created thus far and the output is a subplan with binary join 

operators.  

State_Removal (sp, c, G, P, S, 

min_ratio) 

Implements Algorithm 7. Inputs of State_Removal algorithm are 

subplan sp and its actual CPU cost c, join graph G, the global plan P, a 

state S and min_ratio. The output is a subplan with both MJoin and 

binary join operators.  

CPU(sp) The actual CPU resources for subplan sp 

Memory(sp) The actual memory resources for the generated subplan sp by the 

adapted algorithms 

 
Algorithm 4 The Global Plan Generation Algorithm 

Input: (1) queries Q = { q1, q2, …, qn }, where each query qi is a Join Graph, over streams, with information 

on input rates, selectivities, and window sizes of query streams; 

  (2) CPUavail,  

  (3) Memoryavail   

Output: A complete qualified plan P or -1 if a global qualified plan was not found 

1: Initialize Global Plan P to an empty plan; 

2: Q_ordering = Finding_Order_of_Queries(Q)  

3: For i = 1 to n do  

4: // First Layer 

5:  Let Gi be the join graph of query qi, which is the i-th query in the ordering Q_ordering 
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6:  sp = Find_MJoin_Ordering(Gi)  

7:  If CPU(sp) ≤ allocatedCPU(qi) then  

8:   If Memory(sp) ≤ Memoryavail then  

9:    spmin
  = sp  

10:    E = Set of edges in Gi 

11:    While (E != null)  

12:     (sp, e) = State_Selection (sp, Gi, P)  

13:     If (Memory(sp) ≤ allocatedMEMORY(qi)) AND (CPU(sp) ≤ allocatedCPU(qi)) then 

14:      If effCost(sp, P) < effCost(spmin, P) then  

15:       spmin = sp 

16:      End if  

17:     End if  

18:     Remove e from E   

19:    End while     

20:  Else // Memory(sp) > Memoryavail – the subplan here is an MJoin subplan 

21:    return -1 // no MJoin subplans can be found. Thus no qualified subplans can be found  

22:   End if  

23:  Else // CPU(sp) > allocatedCPU(qi)  

24:  // Second Layer 

25:   sp = Find_BJTree_Ordering(Gi, P)  

26:   If Memory(sp) ≤ allocatedMEMORY(qi)  then 

27:    If CPU (sp) ≤ CPUavail then 

28:     spmin = sp  

29:    Else // CPU (sp) > CPUavail - the subplan here is a BJtree subplan 

30:    return -1 // no BJtree subplans can be found. Thus no qualified subplans can be found 

31:    End if 

32:   Else // Memory(sp) > allocatedMEMORY(qi) 

33:   S = set of all intermediate states in subplan sp  

34:   min_ratio = ∞  

35:   For each state s ∈ S do  

36:    (sp, min_ratio) = State_Removal (sp, CPU(sp), Gi, P, s, min_ratio)  

37:    If (Memory(sp) ≤ Memoryavail) AND (CPU(sp) ≤ CPUavail) then  

38:      If effCost(sp, P) < effCost(spmin, P) then 

39:       spmin = sp 

40:      End if  

41:     End if     

42:    End for 
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43:  End if 

44:  End if 

45: Insert spmin into P 

46: Memoryavail  = Memoryavail  - Memory(spmin) 

47:  CPUavail  = CPUavail  - CPU(spmin) 

48: End for 

49: return P 

 

The algorithm first determines the order of queries to be optimized and included in the 

global plan.  Line 2 invokes algorithm 3 described in Section 3.1.3 to determine the order 

of queries.  Lines 3-48 form a loop that iterates over queries in the order as defined by the 

Q_ordering, which was determined in line 2.  Thus, i in the loop, identifies the i-th query 

in the order Q_ordering.   

At the beginning, the query under consideration (query qi) is allocated a portion of the 

total available resources. This is so that the subplan generation within the loop does not 

produce mostly MJoins, and thus exhaust CPU resources, or binary joins, and thus 

exhaust memory. For query qi, algorithm 4 produces an optimal MJoin subplan using the 

MJoin-ordering algorithm (Viglas et al., 2003) in the first phase (Line: 6). If the 

generated MJoin subplan does not use more CPU than is allocated to it and it does not 

use more memory than is available, then it is placed as the min subplan spmin (Line: 9). 

The allocated CPU cost is used to ensure that CPU resources are not exhausted (Line: 7). 

Similarly, it is ensured that the subplan sp does not use more memory than is available 

(Line: 8). However, since sp was found using MJoin, which is more CPU intensive and 

does not use much memory, the State Selection algorithm is used to find a better subplan 

(Lines: 11-19). A qualified subplan with a better effective cost, which is determined 

using equation (3-10), is incorporated in the global plan (Line: 45). In case there is 
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sufficient memory, the required CPU resources are checked and if the required CPU 

resources are more than allocated, finding a qualified subplan is still feasible and hence 

the second layer is triggered (Line: 24). 

The second layer initially generates an optimal BJtree subplan (Line: 25). If the generated 

BJtree subplan requires more CPU than is available (Line: 29), qualified subplans can no 

longer be found because BJtree subplans have the least amount of CPU usage. BJtree 

subplans do not require the re-computing of intermediate results since they are stored in 

memory (Kossmann and Stocker, 2000). If the generated BJtree subplan requires more 

memory resources than the allocated resources, the State Removal algorithm is used 

(Line: 36). The State Removal algorithm may produce a qualified subplan with a better 

effective cost, which is determined using equation (3-10), (Lines 35-42). min_ratio, in 

lines 34 and 36, is a factor that helps in deciding whether to remove a state. Recall that a 

state means an intermediate result stored in memory. The min_ratio, in Algorithm 7, is 

calculated by subtracting the CPU cost of a subplan before removing a state from the 

CPU cost of the subplan after removing the state, and then it divides the result with the 

size of the memory saved after the state removal. Ultimately, a complete final qualified 

plan is returned.  

One of the most significant benefits of using the Two-Layer Framework is that early 

termination can be achieved when either a qualified subplan is discovered or when the 

threshold limit for the required system resources is exceeded by all generated subplans in 

the first part of both layers. For example, when the required memory of the optimal 

MJoin subplan is larger than the available memory resources, then a qualified subplan 

can no longer be found as MJoin subplans have the least amount of memory usage. On 
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the other hand, early termination is achieved if the required CPU resources of the 

generated BJtree subplan are more than the available resources. 

3.5 Qualified Subplan Generation 

Searching the extended plan search space exhaustively to generate a qualified execution 

plan is exponential in time complexity, which makes it not applicable to a data stream 

environment even with pruning techniques (Zhu et al., 2010). Therefore, our Algorithm 4 

extends the Two-Layer JTree-Finder algorithm introduced in (Zhu et al., 2010) that 

generates a qualified plan for a single query in polynomial time. We adapt it so it works 

on multiple queries. Our proposed algorithm utilizes four different algorithms: the MJoin-

ordering algorithm (Viglas et al., 2003), BJtree algorithm (Kossmann and Stocker, 2000), 

State Selection algorithm and State Removal algorithm (Zhu et al., 2010). However, three 

of them are modified, in our work, to exploit the sharing of join operators in a multi-

query environment.   

3.5.1 First Layer Algorithms (MJoin and State Selection) 

3.5.1.1 MJoin Ordering Algorithm 

The first layer of the proposed approach triggers the MJoin-ordering algorithm that is 

adopted from (Viglas et al., 2003). This algorithm generates a subplan that joins multiple 

streams in a single step without storing intermediate results. When a new tuple arrives, it 

joins with the other streams in a specific order. The join order is determined by 

considering the input rates of each stream and join selectivity of a join operation. The 

MJoin algorithm selects the next input to join if it generates the smallest number of 

intermediate results. The number of intermediate results (i.e. weight) is the product of the 

join selectivity and the arrival rates of the operand streams: λa * λb * σa,b. In each 



 

 51 

iteration, this algorithm selects one stream and sets it as a root. Then, the weight of other 

streams is calculated to find the join sequence of the rooted stream. For each rooted 

stream, the time complexity to calculate the weight of streams is O(n), where n is the 

number of streams. For all rooted streams, the time complexity to find the weight of 

streams is O(n2). To illustrate, consider a query over n input streams. Each input stream 

needs to join with n-1 streams. In Figure 3-3(a), for example, if a tuple arrives at stream 

B, it joins with tuples from stream A since joining A and B produces the smallest number 

of intermediate results. The generated results then join tuples from stream D because it 

produces the second smallest number of intermediate results. The time complexity for 

joining streams is O(log (n)). The total time complexity to find the join ordering for each 

stream is O(n log (n)), whereas finding the join sequence for all input streams has a time 

complexity of O(n2 log (n)). The best MJoin ordering is the least CPU costs.  

 

 

 

 

 

We use this algorithm without any modification because it is not affected by the existence 

of operators in the global plan. This is because it generates one MJoin operator where all 

input streams of a query are joined in a single step. For example, consider two queries: 

the first query needs to join streams A, B and C, whereas the second query needs to join 

streams A, B and D. Since the intermediate results are not stored, both queries will not 

share any subplan even though both queries are partially similar. The goal here is to 
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(a) Join graph 

A  B  D  C 
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(b) MJoin and Join Orderings 
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Figure 3-3 MJoin plan and a join graph 
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reduce the CPU consumption without increasing the usage of memory resources. Figure 

3-3(b) shows an optimal MJoin plan for the join graph presented in Figure 3-3(a). 

 

 

 

 

 

 

 

3.5.1.2 State Selection Algorithm 

The second algorithm, Algorithm 5 is State Selection and it is adapted from (Zhu et al., 

2010). The original algorithm was proposed to optimize a single query and thus we 

needed to modify it so that the sharing of results across multiple queries would be 

exploited. The inputs to this algorithm are a join graph G, which is a graph of one of the 

queries originally input, the global plan P created thus far, and an MJoin subplan 

generated by the MJoin ordering algorithm. The three fundamental factors that determine 

which intermediate states to store are the existence of the state in the global plan, the 

edge weight and the edge frequency. An intermediate state is the result of a join operation 

that is stored in the memory. Each edge in G creates a binary join when it is removed. If a 

result of one of the join operations already exists in the global plan, its cost is considered 

to be zero for the query under consideration - thus that join will be used/adopted (Lines: 

3-7 of algorithm 5). In case there are no join operations in the global plan that can be 

used by the query, we use the same process that is used in (Zhu et al., 2010). The edge 

A  B  D  C 
B  A  D  C 
C  B  A  D 
D  B  A  C 

(a) MJoin and Join Orderings 

 

A B C D 

A B  D  C 
B A  D  C 
C  B A  D 
D  B A  C 

(b) State Selection plan after one 

iteration and the optimal MJoin 

Orderings 

A B 

C D 

Figure 3-4 MJoin ordering and a State Selection plan 
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with the largest ratio of frequency/weight is used to identify the query’s binary operator 

(Line: 9). Recall that the weight of each join predicate is determined by multiplying the 

join selectivity with the arrival rates of the operand streams (λA* λB * σAB). The 

frequency is determined by how many times two streams are joined after each other in 

the join orderings as shown in Figure 3-4(a). Thus, a binary operator is selected either 

because it already appears in the global plan or it has the highest frequency/weight ratio. 

After creating a binary join operator whose output is now fed to the MJoin operator such 

as in Figure 3-4 (b) (but now for an MJoin with one less input stream) we use the MJoin-

ordering algorithm from (Viglas et al., 2003) with a time complexity of O(n2 log (n)) 

(Lines: 5, 11 of algorithm 5). The State Selection algorithm has a time complexity of O(n 

+ n2 log (n)) (Zhu et al., 2010). Figure 3-4 (b) shows a State Selection plan. Note that a 

global plan P contains a set of subplans and any subplan that is an element of P can 

answer a part or a whole query. 

 

Algorithm 5 State Selection Algorithm 

Input:  1) Join Graph G=(V, E) of a query. 

  2) Global Plan P,  

  3) Subplan sp, such that its final operation is an MJoin that produces the subplan’s result  

Output: 1) Subplan SPnew  

  2) Selected edge e, such that SPnew generates the same result as the given plan sp and operations of 

SPnew are the same as that of sp except that a binary join is created over the output edge e 

1: Let Poper be the set of operations (joins) in P 

2: For e = (vx , vy ) ∈ E do 

3:  If (exists operator o ∈Poper that joins two streams in G connected by e) then 

4:   Gnew = Graph G that is modified by removing edge e and coalescing vertices vx and vy into vxy; 

5:   SPnew = Find MJoin Ordering (Gnew);  

6:   Return (SPnew, e) 

7:  End If 
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8: End For 

9: Choose edge e = (vx , vy ) ∈ E that has the max ratio of (frequency/weight)  

10: Gnew = Graph G that is modified by removing edge e and coalescing vertices vx and vy into vxy; 

11: SPnew = Find MJoin Ordering (Gnew);  

12: Return (SPnew, e) 

 

3.5.2 Second Layer Algorithms (BJtree and State Removal) 

3.5.2.1 BJtree Algorithm 

The BJtree algorithm, Algorithm 6 is triggered in our second layer. Unlike the MJoin-

ordering algorithm, this algorithm takes multiple steps to join input streams. Intermediate 

results are stored when using the BJtree algorithm. To elaborate, when new tuples arrive 

from an input stream, they join with the tuples from another input stream. The joined 

tuples are stored in an intermediate state, and tuples in this intermediate state then join 

with either tuples from a third input stream or tuples from other intermediate results. 

There are two factors that determine which intermediate states to store. The first is the 

existence of the state in the global plan, and the other factor is the edge weight. If an 

intermediate state already exists in the global plan, that is, if the binary join under 

consideration is already a part of the global plan, there is no reason to recalculate the 

result. The query that is being optimized will use the results of this intermediate state, at 

zero cost, as it already has been created for other queries (Lines: 4-8 of algorithm 6). 

After already existing results in the global plan are incorporated into the currently 

optimized query, the edge with the smallest weight is used to generate intermediate 

results in each iteration (Lines: 10- 15). This algorithm has a time complexity of O(n2 log 

(n)).  
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Algorithm 6 BJtree Algorithm 

Input: 1) Join Graph G=(V, E) of a query. 

2) Global Plan P 

Output: SPnew 

1: SPnew = empty,  

2: Let Poper be the set of operations (joins) in P 

3: For each edge e = ( vx , vy ) ∈ E do 

4:  If (exists operation o ∈ Poper that joins two streams connected by e in G) then 

5:   Add the operation o to the subplan SPnew; 

6:  Modify G by coalescing vertices vx and vy into a vertex vxy and assigning vxy = 2 * λx * λy * ; 

7:  Remove e from E;   

8:  End if 

9: End For 

10: while (E != null) do  

11:  Let operation c be an operator that joins two streams connected by e in G; 

12:  Find that e = (vx , vy ) ∈ E that has the smallest weight (using eq. 3-1) 

13:  Add the operation c to the subplan SPnew; 

14: Modify G by coalescing vertices vx and vy into a vertex vxy and assigning vxy = 2 * λx * λy * ; 

15: Remove e from E;   

16: End while 

17: Return SPnew 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-5 BJtree plan and State Removal  

A  B  D 
B  A  D 
D  B  A  

(b) State Removal plan after one 
iteration and the optimal MJoin 
Orderings 

(a) A BJtree plan 

A B D 

A B 

C 

D 

C 



 

 56 

 

3.5.2.2 State Removal Algorithm 

The State Removal technique presented in (Zhu et al., 2010) has been adapted for use in 

our second layer. The adaption deals with modifications to exploit the sharing of results 

across queries. As shown in algorithm 7, the inputs to this algorithm are a join graph, the 

global plan P created thus far, a subplan sp, CPU cost of sp, a selected state to be 

removed, and min_ratio which helps in deciding whether or not to remove the chosen 

state. To decrease the memory consumption, the State Removal algorithm eliminates 

some of the existing intermediate states. Thus, it provides a trade-off between CPU and 

memory resources. 

There are three factors that need to be considered to remove intermediate results. The 

first is whether or not the intermediate state exists in the global plan. If it already exists, it 

will be used by the incoming queries as there is no additional cost in using it for this 

query. In case there are no intermediate states in the global plan that can be used by the 

query, we remove intermediate states by considering the other two factors as presented in 

(Zhu et al., 2010). The second factor is the amount of memory saved when a state is 

removed, whereas the third is the additional CPU costs required to re-compute the 

intermediate results (line: 11 of algorithm 7). Figure 3-5(b) shows a step of the State 

Removal technique, and Figure 3-5(a) represents the input BJtree plan. The State 

Removal algorithm has a time complexity of O(n + n2 log (n)) (Zhu et al., 2010). 

 

Algorithm 7 State Removal Algorithm 

Input: 1) Join Graph G=(V, E) of a query. 

2) Global Plan P.  

3) subplan sp, where sp is not part of P  
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4) CPU(sp);  

5) state Sn in sp; 

6) min_ratio;  

Output: TheReturnedSP, min_rationew 

1: SPold = sp;  

2: min_ratioold = min_ratio. 

3: Let Poper be the set of operations (joins) in P 

4: Let op1∉ P be a join operator that produces Sn  

5: Let op2 ∉ Poper be any join operator that feeds tuples to Sn  

6: Let M be an MJoin with inputs as the union of inputs to op1 and to op2 

7: SPnew = sp modified by replacing the inputs of op1 and of op2 with M 

8: Let G’ ∈ G be a subgraph of G such that it contains those streams that are processed by M. 

9: SPnew = Find_MJoin_Ordering(G’);   

10: Let z be the memory saved when removing Sn from sp; 

11: state_ratio = (CPU(SPnew) – CPU(sp)) / z 

12: If (state_ratio < min_ratio)  

13:  Return SPnew, state_ratio 

14: Else 

15:  Return SPold, min_ratioold 

16: End if 
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CHAPTER 4 : EXPERIMENTAL EVALUATION  

 

In this section, the proposed method is evaluated to examine its effectiveness. All the 

algorithms in this thesis were implemented in Java, and all the experiments were 

executed on a Core 2 Duo CPU 2.4 GHz system with 10 GB RAM.  

In the experiments, a set of multi-way join queries is randomly generated. For each 

query, n input streams are chosen from 20 sources of streaming data (n ≤ 20).  Since 

equi-join queries are popular in wireless sensor networks, all queries in the experiments 

are equi-join queries with (n-1) join predicates. Table 4.1 represents the parameters that 

govern the experiments, and their values. 

The input rate of each input stream is randomly generated over the range [10…. 100] 

(tuples/s). The join selectivity of each join operation is randomly generated in the range 

of [0.01, 0.2]. The window size of each query is set to be the same at 10 seconds. Input 

rates and join selectivities have a uniform probability distribution over the specified 

range. Values used in this experiment are typical values and they are used by other 

researchers (Hammad et al., 2003) (Zhu et al., 2010) (Park and Lee, 2012). 

 

Table 4-1 Experimental Parameters 

Parameters Values 

Number of join predicates in each query 3, 5, 7, 9 

Number of queries  10 

Number of streams n 20 
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4.1 Experimental methodology 

The objective of this experimentation is to evaluate the proposed method by comparing it 

to the performance of the Two-Layer JTree-Finder approach proposed in (Zhu et al., 

2010). To optimize multiple queries, Zhu et al suggest that we first need to allocate 

resources to each query and then directly apply their Two-Layer JTree-Finder algorithm 

to each query. Each query is independently optimized by their algorithm without the 

sharing of results of common join operators - we refer to their optimization as the naïve 

approach since it was not designed for multiple queries. Moreover, we also compare our 

method with this naïve approach when the join operations are shared in the naïve 

approach - we refer to it as the Shared Naïve approach. Furthermore, we also evaluate our 

method that finds the order of queries in this chapter. 

We compare the CPU and memory resource requirements for plans generated by our 

method, the naïve approach, and the naïve approach that shares operators under four 

different scenarios that vary in terms of the constraints on the CPU and memory 

resources. We also report on the execution delay to generate the plans. The second layer 

of the Two-Layer JTree-Finder approach will only be triggered if the first layer does not 

generate a qualified plan. To illustrate, Zhu et al., stated in their work that, " If the first 

layer is unable to return a qualified plan yet does not determine the in-feasibility of the 

problem, the second-layer is triggered to explore the jtree search space" (Zhu et al., 2010, 

p. 21). We use the Two-Layer JTree-Finder technique in the experiments in the same way 

that it is proposed.   

The experimental sets are: 1) A data stream system has sufficient CPU and memory 

resources to execute the proposed method and the Two-Layer JTree-Finder algorithm, 2) 
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there are constraints on both CPU and memory, 3) memory resources are restricted and 

CPU is configured to be sufficient for executing any approach, 4) the CPU resources are 

limited while having sufficient memory. When there are constraints on both CPU and 

memory, both the naïve approaches and our technique utilize the negative correlation 

between CPU and memory to find qualified plans. 

Because the Two-Layer JTree-Finder approach only generates the local execution plan of 

each query individually, the time required to generate all the local plans of all the queries 

consecutively is measured.  

There are a number of scenarios for which all queries cannot be processed due to 

exceeding resources. One scenario is to increase the number of queries with decreasing 

system resources. Moreover, increasing the arrival rates of input stream can result in 

exceeding system resources. Having high join selectivity, also, will increase the 

probability of exceeding resources. 

To calculate the CPU costs, this thesis uses the same costs as the CAPE engine 

(Rundensteiner et al., 2004), which are measured also in (Zhu et al., 2010). Table 4.2 

shows the average CPU costs of the basic tuple operations, namely joining (Cj), inserting 

(Ci), and deleting (Cd) operations in this engine, which are computed in milliseconds.  

 

Table 4-2  CPU Costs of Basic Tuple Operations in (ms) 

Cj Ci Cd 

2.2 × 10−3 2.0 × 10−4 2.0 × 10−4 
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4.1.1 Sharing Ratio 

When multiple queries are processed, there is a chance that there is some similarity 

between them. The level of sharing between queries is referred to as the sharing ratio and 

it can be calculated as follows (Park and Lee, 2012): 

SR(Q) =   

J(Q) denotes all distinct join predicates presented in queries Q. Moreover, ξ(Ji) denotes 

the sharing degree of a join operation which is calculated using equation (3-6). Q(Ji) 

denotes the set of queries that have the join predicate Ji. As the sharing ratio increases, 

the chance of there being shared join operators increases. In our experiments, we generate 

queries with 0.6 sharing ratio since this ratio is used in Park and Lee’s research (2012). 

 

4.2 Experimentation Results 

4.2.1 Query Ordering 

In the first experiment, we evaluate our method that generates the order of queries. Five 

join queries with 5 join predicates are used to find the best method that generates the 

order of queries. For each query, 6 input streams are chosen from 12 sources of streaming 

data. In this experiment, there are constraints on both CPU and memory. Figure 4-1 

shows the CPU costs of the three proposed techniques: heaviest to lightest, lightest to 

heaviest, and the shared predicate technique, whereas Figure 4-2 shows the memory 

costs.  

The shared predicate method consumes less CPU and memory resources than the other 

two methods as shown in Figures 4-1 and 4-2. This is because the shared predicate 
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method takes into consideration the costs of join predicates inside queries, and it tries to 

find join operations that can be shared between all possible queries. In some cases, it may 

occur that the heaviest to lightest query technique requires the same or slightly more 

CPU/memory than the shared predicate technique. This happens when heaviest queries 

happen to have multiple join operations shared among different queries. 

 

Figure 4-1 The CPU costs of the three proposed techniques 

 

 

Figure 4-2 The memory costs of the three proposed techniques 

Since the shared predicate technique is superior to the other two techniques, we use this 

technique in the rest of the experiments.  
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4.2.2 No Constraints on Resources 

When a data stream system has more CPU and memory resources than it needs, the Naïve 

approach only generates MJoin plans for individual queries because the MJoin algorithm 

is the first encountered algorithm in its first layer. Our shared technique keeps searching 

for subplans that share join operations among different queries. Thus, subplans with 

smaller effective costs are generated, and they could be BJtree, MJoin or a mixture of 

both. Figure 4-3 shows the CPU costs of executing the plan of our technique, the Naïve 

approach, and the Shared naïve approach. Since all queries generated by the Two-Layer 

JTree-Finder approach have MJoin plans, both naïve approaches consume more CPU 

resources than our proposed approach. However, our proposed approach requires more 

memory than the both naïve approaches as shown in Figure 4-4. This is because our 

technique produces BJtree operators that can be shared among queries. In case we limit 

the memory resources, our method will mostly generate MJoin plans. 

 

Figure 4-3 CPU consumptions of the three techniques – no constraints on CPU or memory 
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Figure 4-4 Memory consumptions of the three techniques – no constraints on CPU or memory 

 

4.2.3 Both Resources Restricted 

In the experiment set 2, the naïve approach uses either the State Selection algorithm or 

the State Removal algorithm to find a qualified plan. As shown in Figure 4-5, the CPU 

costs of our global plan are less than the CPU consumption of the plans generated by both 

naïve approaches. This is because our method searches for and exploits sharing in its 

optimization. Query plans sometimes include operators that are expensive for the query, 

but when amortized over a number of queries they are efficient. In contrast, the Naïve 

approach optimizes each query individually without sharing. The Shared naïve approach 

also first optimizes queries individually, but sharing is also facilitated by forming a global 

plan, from individual query plans, while not re-computing joins redundantly; thus it 

misses the situations where one combination of joins may be expensive for a single query 

but very beneficial across queries. Figure 4-6 shows the memory consumption of the 

three approaches. Plans generated by our method require less memory than the plans 
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produced by both naïve approaches. This is because our method generates less 

intermediate states compared to the other two approaches. 

 

 

Figure 4-5 CPU consumptions when restricting both resources 

 

 

Figure 4-6 Memory consumptions when restricting both resources 

 
 



 

 66 

4.2.4 Constraints on Memory Resources 

In the experiment set 3, when memory resources are restricted and CPU is configured to 

be sufficient for executing any approach, all techniques act similarly to some extent. 

Most of the operations generated are MJoin because CPU resources are unlimited.   

Nevertheless, our shared technique sometimes generates a few BJtree operations, and that 

explains the reason for it consuming slightly more memory and less CPU resources 

compared to the naïve approach that shares operators as shown in Figure 4-7. All three 

techniques do not exceed the restricted resources that are assigned in the experiments. 

However, if we force our shared technique to generate plans that have the least possible 

amount of memory, then our technique will act the same as the naïve approach that shares 

operators.  

When multiple queries overlap in the required data stream source, queries in the shared 

techniques access the same incoming stream state. In the Naïve approach, the queries do 

not access the same incoming stream states. In other words, each query has a state for 

each incoming stream source, even though some of the states may exist in the memory 

for another query. Therefore, the naïve approach consumes more memory compared to 

the two shared techniques. If the states of incoming streams are shared in the Two-Layer 

JTree-Finder technique, its memory usage will be almost the same level as for the Shared 

naïve approach. Figure 4-8 shows the memory usage. 
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Figure 4-7 CPU consumptions when restricting the memory resources. 

 

Figure 4-8 Memory consumptions when restricting the memory resources. 

 

4.2.5 Constraints on CPU Resources 

In the experiment set 4, when the CPU resources are limited while having sufficient 

memory, the naïve approaches always generate BJtree plans for queries. Similarly, our 

global plan generation technique will only produce BJtree operators. The CPU costs of 

the three techniques are shown in Figure 4-9. Our shared technique consumes less CPU 

resources than the naïve approach that shares operators. Moreover, as the number of join 

predicates increases, the two naïve approaches require more memory space than our 
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proposed method as shown in Figure 4-10. The three techniques do not exceed the 

restricted resources that are assigned in the experiments. 

 

Figure 4-9 CPU consumptions when restricting the CPU resources. 

 

 

Figure 4-10 Memory consumptions when restricting the CPU resources. 

 
4.2.6 Optimization Delays 
 
In the next experiment, the execution delay (optimization delay) of the naïve approaches 

and our proposed method to generate the plans is measured. Ten join queries with 2, 4, 8, 
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and 16 join predicates are used to generate plans using the two techniques. When having 

sufficient resources, the shared approach requires more time than the JTree-Finder 

because our shared technique keeps searching for join operations that can be shared 

among queries. On the other hand, the naïve approach returns the first qualified plan it 

encounters. Similarly, when one or both CPU and memory resources are limited, our 

shared approach requires more time to generate the global plan. Figure 4-11 shows the 

execution delay for both techniques. Both resources are limited when queries with 16 join 

predicates are evaluated. The CPU is restricted when queries with 8 join predicates are 

evaluated. However, queries with 4 join predicates are evaluated when the memory is 

limited. When we have sufficient CPU and memory, we evaluate queries with 2 join 

predicates.   

 

 

Figure 4-11 Execution time in ms required by the two techniques 
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CHAPTER 5 : CONCLUSION AND FUTURE WORK 
 

In data stream applications, a set of multi-way join queries is registered to be processed in 

a continuous manner. A query execution plan needs to be adhered to both CPU and 

memory resource constraints because one of these resources being out of bound hinders 

processing incoming streams in a data stream system. The two basic methods used to 

execute queries over streams are BJtree and MJoin plans. The former consumes more 

memory resources than the latter, whereas the latter requires more CPU resources than 

the former. A third method to execute queries over streams is called JTree, which 

combines the BJtree and MJoin techniques. There is a trade-off between memory and 

CPU consumptions when using the JTree method. 

This thesis introduces a technique that generates a qualified global plan for multi-join 

queries. It utilizes the BJtree, MJoin, and the JTree methods to produce plans. Our 

method creates the global plan by optimizing individual queries and adding their 

operators to the global plan: when optimizing a query, the proposed method checks the 

global plan for any join operations that can be reused or shared by the query. Moreover, 

our method allocates system resources to each query before processing it. This is to 

ensure that when there is a shortage of the CPU (memory) resource, optimization of the 

individual query will take it into account to use BJtrees (MJoins) as opposed to MJoins 

(BJtrees). Because our method optimizes each query individually, we proposed three new 

techniques to find the order of queries in which they need to be processed.   

For future work, one avenue is to study and address challenges when trying to generate 

qualified plans for a distributed data stream system. Another avenue for future work is to 
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consider monitoring statistics of all previously executed join operations to estimate their 

current execution costs and the correlation between CPU and memory. This can be very 

helpful because it may reduce the time of generating query plans.  
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APPENDIX A 
 
A.1 Query Order Experiment 
 
5 join predicates For the data stream: 1: 

The Input Rate is:29 
For the data stream: 2: 
The Input Rate is:40 
For the data stream: 3: 
The Input Rate is:18 
For the data stream: 4: 
The Input Rate is:34 
For the data stream: 5: 
The Input Rate is:91 
For the data stream: 6: 
The Input Rate is:79 
For the data stream: 7: 
The Input Rate is:43 
For the data stream: 8: 
The Input Rate is:84 
For the data stream: 9: 
The Input Rate is:60 
For the data stream: 10: 
The Input Rate is:43 
For the data stream: 11: 
The Input Rate is:57 
For the data stream: 12: 
The Input Rate is:75 

For (1,2), the selectivity 
factor is:0.11 
For (2,3), the selectivity 
factor is:0.19 
For (1,4), the selectivity 
factor is:0.15 
For (4,5), the selectivity 
factor is:0.19 
For (5,6), the selectivity 
factor is:0.03 
For (4,7), the selectivity 
factor is:0.06 
For (7,8), the selectivity 
factor is:0.16 
For (5,9), the selectivity 
factor is:0.14 
For (9,10), the selectivity 
factor is:0.12 
For (4,11), the selectivity 
factor is:0.19 
For (9,12), the selectivity 
factor is:0.11 

 
A.2 Resource Consumption Without Constraints on CPU or memory 
 
3 join predicates For the data stream: 1: 

The Input Rate is:69 
For the data stream: 2: 
The Input Rate is:28 
For the data stream: 3: 
The Input Rate is:31 
For the data stream: 4: 
The Input Rate is:26 
For the data stream: 5: 
The Input Rate is:96 
For the data stream: 6: 
The Input Rate is:60 
For the data stream: 7: 

For (1,2), the selectivity 
factor is:0.2 
For (2,3), the selectivity 
factor is:0.09 
For (2,4), the selectivity 
factor is:0.13 
For (4,5), the selectivity 
factor is:0.09 
For (5,6), the selectivity 
factor is:0.17 
For (4,7), the selectivity 
factor is:0.18 
For (7,8), the selectivity 
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The Input Rate is:42 
For the data stream: 8: 
The Input Rate is:50 
For the data stream: 9: 
The Input Rate is:30 
For the data stream: 10: 
The Input Rate is:32 
For the data stream: 11: 
The Input Rate is:61 
For the data stream: 12: 
The Input Rate is:11 
For the data stream: 13: 
The Input Rate is:17 
For the data stream: 14: 
The Input Rate is:90 
For the data stream: 15: 
The Input Rate is:96 
For the data stream: 16: 
The Input Rate is:36 
For the data stream: 17: 
The Input Rate is:83 
For the data stream: 18: 
The Input Rate is:28 
For the data stream: 19: 
The Input Rate is:44 
For the data stream: 20: 
The Input Rate is:12 

factor is:0.09 
For (6,9), the selectivity 
factor is:0.2 
For (6,10), the selectivity 
factor is:0.1 
For (6,11), the selectivity 
factor is:0.17 
For (9,12), the selectivity 
factor is:0.19 
For (11,13), the selectivity 
factor is:0.2 
For (12,14), the selectivity 
factor is:0.16 
For (5,15), the selectivity 
factor is:0.08 
For (10,16), the selectivity 
factor is:0.04 
For (10,17), the selectivity 
factor is:0.18 
For (1,18), the selectivity 
factor is:0.12 
For (3,19), the selectivity 
factor is:0.02 
For (14,20), the selectivity 
factor is:0.13 

5 join predicates For the data stream: 1: 
The Input Rate is:30 
For the data stream: 2: 
The Input Rate is:77 
For the data stream: 3: 
The Input Rate is:73 
For the data stream: 4: 
The Input Rate is:19 
For the data stream: 5: 
The Input Rate is:94 
For the data stream: 6: 
The Input Rate is:100 
For the data stream: 7: 
The Input Rate is:86 
For the data stream: 8: 
The Input Rate is:23 
For the data stream: 9: 
The Input Rate is:71 

For (1,2), the selectivity 
factor is:0.01 
For (1,3), the selectivity 
factor is:0.05 
For (1,4), the selectivity 
factor is:0.04 
For (1,5), the selectivity 
factor is:0.02 
For (3,6), the selectivity 
factor is:0.01 
For (4,7), the selectivity 
factor is:0.2 
For (3,8), the selectivity 
factor is:0.15 
For (8,9), the selectivity 
factor is:0.06 
For (9,10), the selectivity 
factor is:0.14 
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For the data stream: 10: 
The Input Rate is:11 
For the data stream: 11: 
The Input Rate is:52 
For the data stream: 12: 
The Input Rate is:80 
For the data stream: 13: 
The Input Rate is:64 
For the data stream: 14: 
The Input Rate is:65 
For the data stream: 15: 
The Input Rate is:15 
For the data stream: 16: 
The Input Rate is:31 
For the data stream: 17: 
The Input Rate is:32 
For the data stream: 18: 
The Input Rate is:40 
For the data stream: 19: 
The Input Rate is:89 
For the data stream: 20: 
The Input Rate is:77 

For (7,11), the selectivity 
factor is:0.08 
For (5,12), the selectivity 
factor is:0.15 
For (8,13), the selectivity 
factor is:0.14 
For (9,14), the selectivity 
factor is:0.12 
For (4,15), the selectivity 
factor is:0.16 
For (7,16), the selectivity 
factor is:0.15 
For (15,17), the selectivity 
factor is:0.13 
For (9,18), the selectivity 
factor is:0.17 
For (10,19), the selectivity 
factor is:0.17 
For (14,20), the selectivity 
factor is:0.18 

7 join predicates For the data stream: 1: 
The Input Rate is:78 
For the data stream: 2: 
The Input Rate is:33 
For the data stream: 3: 
The Input Rate is:15 
For the data stream: 4: 
The Input Rate is:89 
For the data stream: 5: 
The Input Rate is:58 
For the data stream: 6: 
The Input Rate is:63 
For the data stream: 7: 
The Input Rate is:46 
For the data stream: 8: 
The Input Rate is:53 
For the data stream: 9: 
The Input Rate is:78 
For the data stream: 10: 
The Input Rate is:91 
For the data stream: 11: 
The Input Rate is:97 
For the data stream: 12: 

For (1,2), the selectivity 
factor is:0.13 
For (1,3), the selectivity 
factor is:0.18 
For (3,4), the selectivity 
factor is:0.03 
For (1,5), the selectivity 
factor is:0.11 
For (4,6), the selectivity 
factor is:0.17 
For (4,7), the selectivity 
factor is:0.17 
For (3,8), the selectivity 
factor is:0.17 
For (6,9), the selectivity 
factor is:0.03 
For (2,10), the selectivity 
factor is:0.01 
For (3,11), the selectivity 
factor is:0.03 
For (9,12), the selectivity 
factor is:0.17 
For (2,13), the selectivity 
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The Input Rate is:81 
For the data stream: 13: 
The Input Rate is:29 
For the data stream: 14: 
The Input Rate is:40 
For the data stream: 15: 
The Input Rate is:94 
For the data stream: 16: 
The Input Rate is:58 
For the data stream: 17: 
The Input Rate is:50 
For the data stream: 18: 
The Input Rate is:39 
For the data stream: 19: 
The Input Rate is:30 
For the data stream: 20: 
The Input Rate is:89 

factor is:0.19 
For (7,14), the selectivity 
factor is:0.11 
For (14,15), the selectivity 
factor is:0.18 
For (8,16), the selectivity 
factor is:0.17 
For (13,17), the selectivity 
factor is:0.02 
For (1,18), the selectivity 
factor is:0.01 
For (14,19), the selectivity 
factor is:0.17 
For (19,20), the selectivity 
factor is:0.05 

9 join predicate For the data stream: 1: 
The Input Rate is:84 
For the data stream: 2: 
The Input Rate is:37 
For the data stream: 3: 
The Input Rate is:57 
For the data stream: 4: 
The Input Rate is:68 
For the data stream: 5: 
The Input Rate is:33 
For the data stream: 6: 
The Input Rate is:87 
For the data stream: 7: 
The Input Rate is:13 
For the data stream: 8: 
The Input Rate is:63 
For the data stream: 9: 
The Input Rate is:76 
For the data stream: 10: 
The Input Rate is:17 
For the data stream: 11: 
The Input Rate is:44 
For the data stream: 12: 
The Input Rate is:23 
For the data stream: 13: 
The Input Rate is:77 
For the data stream: 14: 
The Input Rate is:87 

For (1,2), the selectivity 
factor is:0.04 
For (2,3), the selectivity 
factor is:0.03 
For (3,4), the selectivity 
factor is:0.11 
For (2,5), the selectivity 
factor is:0.16 
For (5,6), the selectivity 
factor is:0.17 
For (3,7), the selectivity 
factor is:0.05 
For (1,8), the selectivity 
factor is:0.04 
For (1,9), the selectivity 
factor is:0.14 
For (8,10), the selectivity 
factor is:0.07 
For (1,11), the selectivity 
factor is:0.1 
For (8,12), the selectivity 
factor is:0.01 
For (5,13), the selectivity 
factor is:0.1 
For (1,14), the selectivity 
factor is:0.01 
For (3,15), the selectivity 
factor is:0.06 
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For the data stream: 15: 
The Input Rate is:82 
For the data stream: 16: 
The Input Rate is:81 
For the data stream: 17: 
The Input Rate is:43 
For the data stream: 18: 
The Input Rate is:76 
For the data stream: 19: 
The Input Rate is:48 
For the data stream: 20: 
The Input Rate is:53 

For (8,16), the selectivity 
factor is:0.17 
For (2,17), the selectivity 
factor is:0.09 
For (6,18), the selectivity 
factor is:0.01 
For (12,19), the selectivity 
factor is:0.12 
For (12,20), the selectivity 
factor is:0.08 

 
A.3 Resource Consumption With Constraints on both CPU and memory 
 
3 join predicates For the data stream: 1: 

The Input Rate is:50 
For the data stream: 2: 
The Input Rate is:84 
For the data stream: 3: 
The Input Rate is:21 
For the data stream: 4: 
The Input Rate is:89 
For the data stream: 5: 
The Input Rate is:41 
For the data stream: 6: 
The Input Rate is:34 
For the data stream: 7: 
The Input Rate is:65 
For the data stream: 8: 
The Input Rate is:61 
For the data stream: 9: 
The Input Rate is:39 
For the data stream: 10: 
The Input Rate is:18 
For the data stream: 11: 
The Input Rate is:67 
For the data stream: 12: 
The Input Rate is:47 
For the data stream: 13: 
The Input Rate is:83 
For the data stream: 14: 
The Input Rate is:68 
For the data stream: 15: 
The Input Rate is:38 

For (1,2), the selectivity 
factor is:0.16 
For (2,3), the selectivity 
factor is:0.2 
For (1,4), the selectivity 
factor is:0.18 
For (4,5), the selectivity 
factor is:0.2 
For (5,6), the selectivity 
factor is:0.02 
For (1,7), the selectivity 
factor is:0.11 
For (1,8), the selectivity 
factor is:0.16 
For (6,9), the selectivity 
factor is:0.07 
For (9,10), the selectivity 
factor is:0.14 
For (1,11), the selectivity 
factor is:0.09 
For (8,12), the selectivity 
factor is:0.02 
For (6,13), the selectivity 
factor is:0.03 
For (12,14), the selectivity 
factor is:0.05 
For (3,15), the selectivity 
factor is:0.01 
For (6,16), the selectivity 
factor is:0.05 
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For the data stream: 16: 
The Input Rate is:58 
For the data stream: 17: 
The Input Rate is:48 
For the data stream: 18: 
The Input Rate is:50 
For the data stream: 19: 
The Input Rate is:82 
For the data stream: 20: 
The Input Rate is:91 

For (14,17), the selectivity 
factor is:0.01 
For (17,18), the selectivity 
factor is:0.11 
For (12,19), the selectivity 
factor is:0.16 
For (5,20), the selectivity 
factor is:0.08 

5 join predicates For the data stream: 1: 
The Input Rate is:15 
For the data stream: 2: 
The Input Rate is:57 
For the data stream: 3: 
The Input Rate is:38 
For the data stream: 4: 
The Input Rate is:23 
For the data stream: 5: 
The Input Rate is:90 
For the data stream: 6: 
The Input Rate is:61 
For the data stream: 7: 
The Input Rate is:95 
For the data stream: 8: 
The Input Rate is:51 
For the data stream: 9: 
The Input Rate is:54 
For the data stream: 10: 
The Input Rate is:36 
For the data stream: 11: 
The Input Rate is:15 
For the data stream: 12: 
The Input Rate is:26 
For the data stream: 13: 
The Input Rate is:90 
For the data stream: 14: 
The Input Rate is:97 
For the data stream: 15: 
The Input Rate is:57 
For the data stream: 16: 
The Input Rate is:43 
For the data stream: 17: 
The Input Rate is:32 
For the data stream: 18: 

For (1,2), the selectivity 
factor is:0.01 
For (2,3), the selectivity 
factor is:0.11 
For (1,4), the selectivity 
factor is:0.18 
For (3,5), the selectivity 
factor is:0.08 
For (2,6), the selectivity 
factor is:0.19 
For (6,7), the selectivity 
factor is:0.09 
For (7,8), the selectivity 
factor is:0.02 
For (6,9), the selectivity 
factor is:0.11 
For (7,10), the selectivity 
factor is:0.06 
For (8,11), the selectivity 
factor is:0.05 
For (11,12), the selectivity 
factor is:0.18 
For (6,13), the selectivity 
factor is:0.04 
For (7,14), the selectivity 
factor is:0.11 
For (7,15), the selectivity 
factor is:0.03 
For (5,16), the selectivity 
factor is:0.09 
For (15,17), the selectivity 
factor is:0.19 
For (13,18), the selectivity 
factor is:0.17 
For (8,19), the selectivity 
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The Input Rate is:92 
For the data stream: 19: 
The Input Rate is:15 
For the data stream: 20: 
The Input Rate is:45 

factor is:0.11 
For (2,20), the selectivity 
factor is:0.04 

7 join predicates  For the data stream: 1: 
The Input Rate is:10 
For the data stream: 2: 
The Input Rate is:42 
For the data stream: 3: 
The Input Rate is:33 
For the data stream: 4: 
The Input Rate is:52 
For the data stream: 5: 
The Input Rate is:19 
For the data stream: 6: 
The Input Rate is:31 
For the data stream: 7: 
The Input Rate is:76 
For the data stream: 8: 
The Input Rate is:78 
For the data stream: 9: 
The Input Rate is:77 
For the data stream: 10: 
The Input Rate is:51 
For the data stream: 11: 
The Input Rate is:86 
For the data stream: 12: 
The Input Rate is:60 
For the data stream: 13: 
The Input Rate is:96 
For the data stream: 14: 
The Input Rate is:42 
For the data stream: 15: 
The Input Rate is:28 
For the data stream: 16: 
The Input Rate is:20 
For the data stream: 17: 
The Input Rate is:61 
For the data stream: 18: 
The Input Rate is:50 
For the data stream: 19: 
The Input Rate is:98 
For the data stream: 20: 
The Input Rate is:72 

For (1,2), the selectivity 
factor is:0.15 
For (1,3), the selectivity 
factor is:0.12 
For (1,4), the selectivity 
factor is:0.06 
For (3,5), the selectivity 
factor is:0.11 
For (5,6), the selectivity 
factor is:0.1 
For (5,7), the selectivity 
factor is:0.09 
For (2,8), the selectivity 
factor is:0.18 
For (2,9), the selectivity 
factor is:0.15 
For (2,10), the selectivity 
factor is:0.17 
For (10,11), the selectivity 
factor is:0.03 
For (8,12), the selectivity 
factor is:0.17 
For (12,13), the selectivity 
factor is:0.11 
For (3,14), the selectivity 
factor is:0.06 
For (5,15), the selectivity 
factor is:0.05 
For (2,16), the selectivity 
factor is:0.2 
For (12,17), the selectivity 
factor is:0.1 
For (16,18), the selectivity 
factor is:0.16 
For (14,19), the selectivity 
factor is:0.1 
For (12,20), the selectivity 
factor is:0.18 
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9 join predicates  For the data stream: 1: 
The Input Rate is:16 
For the data stream: 2: 
The Input Rate is:18 
For the data stream: 3: 
The Input Rate is:16 
For the data stream: 4: 
The Input Rate is:23 
For the data stream: 5: 
The Input Rate is:85 
For the data stream: 6: 
The Input Rate is:16 
For the data stream: 7: 
The Input Rate is:22 
For the data stream: 8: 
The Input Rate is:44 
For the data stream: 9: 
The Input Rate is:34 
For the data stream: 10: 
The Input Rate is:65 
For the data stream: 11: 
The Input Rate is:76 
For the data stream: 12: 
The Input Rate is:85 
For the data stream: 13: 
The Input Rate is:86 
For the data stream: 14: 
The Input Rate is:57 
For the data stream: 15: 
The Input Rate is:68 
For the data stream: 16: 
The Input Rate is:86 
For the data stream: 17: 
The Input Rate is:62 
For the data stream: 18: 
The Input Rate is:78 
For the data stream: 19: 
The Input Rate is:72 
For the data stream: 20: 
The Input Rate is:46 

For (1,2), the selectivity 
factor is:0.08 
For (1,3), the selectivity 
factor is:0.15 
For (1,4), the selectivity 
factor is:0.16 
For (2,5), the selectivity 
factor is:0.13 
For (4,6), the selectivity 
factor is:0.09 
For (5,7), the selectivity 
factor is:0.02 
For (4,8), the selectivity 
factor is:0.1 
For (8,9), the selectivity 
factor is:0.12 
For (4,10), the selectivity 
factor is:0.14 
For (4,11), the selectivity 
factor is:0.06 
For (11,12), the selectivity 
factor is:0.12 
For (1,13), the selectivity 
factor is:0.04 
For (1,14), the selectivity 
factor is:0.17 
For (6,15), the selectivity 
factor is:0.09 
For (9,16), the selectivity 
factor is:0.18 
For (16,17), the selectivity 
factor is:0.16 
For (11,18), the selectivity 
factor is:0.05 
For (4,19), the selectivity 
factor is:0.12 
For (5,20), the selectivity 
factor is:0.12 

 
A.4 CPU and Memory Consumption When Restricting Memory Resources 
 
3 join predicates For the data stream: 1: 

The Input Rate is:12 
For (1,2), the selectivity 
factor is:0.01 
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For the data stream: 2: 
The Input Rate is:96 
For the data stream: 3: 
The Input Rate is:25 
For the data stream: 4: 
The Input Rate is:74 
For the data stream: 5: 
The Input Rate is:74 
For the data stream: 6: 
The Input Rate is:44 
For the data stream: 7: 
The Input Rate is:27 
For the data stream: 8: 
The Input Rate is:71 
For the data stream: 9: 
The Input Rate is:30 
For the data stream: 10: 
The Input Rate is:39 
For the data stream: 11: 
The Input Rate is:13 
For the data stream: 12: 
The Input Rate is:22 
For the data stream: 13: 
The Input Rate is:42 
For the data stream: 14: 
The Input Rate is:81 
For the data stream: 15: 
The Input Rate is:32 
For the data stream: 16: 
The Input Rate is:57 
For the data stream: 17: 
The Input Rate is:29 
For the data stream: 18: 
The Input Rate is:23 
For the data stream: 19: 
The Input Rate is:49 
For the data stream: 20: 
The Input Rate is:30 

For (1,3), the selectivity 
factor is:0.08 
For (2,4), the selectivity 
factor is:0.15 
For (1,5), the selectivity 
factor is:0.02 
For (2,6), the selectivity 
factor is:0.11 
For (4,7), the selectivity 
factor is:0.09 
For (1,8), the selectivity 
factor is:0.12 
For (4,9), the selectivity 
factor is:0.18 
For (1,10), the selectivity 
factor is:0.06 
For (7,11), the selectivity 
factor is:0.05 
For (2,12), the selectivity 
factor is:0.11 
For (1,13), the selectivity 
factor is:0.02 
For (6,14), the selectivity 
factor is:0.18 
For (6,15), the selectivity 
factor is:0.17 
For (3,16), the selectivity 
factor is:0.02 
For (1,17), the selectivity 
factor is:0.02 
For (4,18), the selectivity 
factor is:0.19 
For (8,19), the selectivity 
factor is:0.13 
For (18,20), the selectivity 
factor is:0.06 

5 join predicates For the data stream: 1: 
The Input Rate is:92 
For the data stream: 2: 
The Input Rate is:23 
For the data stream: 3: 
The Input Rate is:71 
For the data stream: 4: 

For (1,2), the selectivity 
factor is:0.16 
For (2,3), the selectivity 
factor is:0.15 
For (2,4), the selectivity 
factor is:0.07 
For (2,5), the selectivity 
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The Input Rate is:18 
For the data stream: 5: 
The Input Rate is:50 
For the data stream: 6: 
The Input Rate is:29 
For the data stream: 7: 
The Input Rate is:46 
For the data stream: 8: 
The Input Rate is:57 
For the data stream: 9: 
The Input Rate is:98 
For the data stream: 10: 
The Input Rate is:99 
For the data stream: 11: 
The Input Rate is:80 
For the data stream: 12: 
The Input Rate is:50 
For the data stream: 13: 
The Input Rate is:79 
For the data stream: 14: 
The Input Rate is:78 
For the data stream: 15: 
The Input Rate is:56 
For the data stream: 16: 
The Input Rate is:51 
For the data stream: 17: 
The Input Rate is:30 
For the data stream: 18: 
The Input Rate is:72 
For the data stream: 19: 
The Input Rate is:12 
For the data stream: 20: 
The Input Rate is:17 

factor is:0.13 
For (3,6), the selectivity 
factor is:0.16 
For (5,7), the selectivity 
factor is:0.07 
For (5,8), the selectivity 
factor is:0.01 
For (8,9), the selectivity 
factor is:0.02 
For (6,10), the selectivity 
factor is:0.07 
For (3,11), the selectivity 
factor is:0.2 
For (5,12), the selectivity 
factor is:0.04 
For (3,13), the selectivity 
factor is:0.08 
For (3,14), the selectivity 
factor is:0.04 
For (4,15), the selectivity 
factor is:0.04 
For (7,16), the selectivity 
factor is:0.13 
For (5,17), the selectivity 
factor is:0.14 
For (4,18), the selectivity 
factor is:0.17 
For (5,19), the selectivity 
factor is:0.02 
For (16,20), the selectivity 
factor is:0.07 

7 join predicates  For the data stream: 1: 
The Input Rate is:43 
For the data stream: 2: 
The Input Rate is:41 
For the data stream: 3: 
The Input Rate is:32 
For the data stream: 4: 
The Input Rate is:27 
For the data stream: 5: 
The Input Rate is:77 
For the data stream: 6: 
The Input Rate is:24 

For (1,2), the selectivity 
factor is:0.17 
For (2,3), the selectivity 
factor is:0.16 
For (2,4), the selectivity 
factor is:0.04 
For (2,5), the selectivity 
factor is:0.19 
For (3,6), the selectivity 
factor is:0.11 
For (1,7), the selectivity 
factor is:0.04 
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For the data stream: 7: 
The Input Rate is:76 
For the data stream: 8: 
The Input Rate is:14 
For the data stream: 9: 
The Input Rate is:95 
For the data stream: 10: 
The Input Rate is:77 
For the data stream: 11: 
The Input Rate is:35 
For the data stream: 12: 
The Input Rate is:53 
For the data stream: 13: 
The Input Rate is:92 
For the data stream: 14: 
The Input Rate is:13 
For the data stream: 15: 
The Input Rate is:100 
For the data stream: 16: 
The Input Rate is:54 
For the data stream: 17: 
The Input Rate is:34 
For the data stream: 18: 
The Input Rate is:58 
For the data stream: 19: 
The Input Rate is:49 
For the data stream: 20: 
The Input Rate is:33 

For (3,8), the selectivity 
factor is:0.12 
For (7,9), the selectivity 
factor is:0.1 
For (4,10), the selectivity 
factor is:0.04 
For (4,11), the selectivity 
factor is:0.03 
For (5,12), the selectivity 
factor is:0.02 
For (4,13), the selectivity 
factor is:0.11 
For (3,14), the selectivity 
factor is:0.05 
For (6,15), the selectivity 
factor is:0.13 
For (9,16), the selectivity 
factor is:0.19 
For (11,17), the selectivity 
factor is:0.09 
For (17,18), the selectivity 
factor is:0.06 
For (13,19), the selectivity 
factor is:0.03 
For (12,20), the selectivity 
factor is:0.14 

9 join predicates  For the data stream: 1: 
The Input Rate is:46 
For the data stream: 2: 
The Input Rate is:14 
For the data stream: 3: 
The Input Rate is:22 
For the data stream: 4: 
The Input Rate is:31 
For the data stream: 5: 
The Input Rate is:35 
For the data stream: 6: 
The Input Rate is:80 
For the data stream: 7: 
The Input Rate is:48 
For the data stream: 8: 
The Input Rate is:52 
For the data stream: 9: 

For (1,2), the selectivity 
factor is:0.02 
For (2,3), the selectivity 
factor is:0.06 
For (3,4), the selectivity 
factor is:0.02 
For (2,5), the selectivity 
factor is:0.01 
For (1,6), the selectivity 
factor is:0.1 
For (6,7), the selectivity 
factor is:0.16 
For (6,8), the selectivity 
factor is:0.04 
For (1,9), the selectivity 
factor is:0.07 
For (8,10), the selectivity 
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The Input Rate is:80 
For the data stream: 10: 
The Input Rate is:52 
For the data stream: 11: 
The Input Rate is:19 
For the data stream: 12: 
The Input Rate is:49 
For the data stream: 13: 
The Input Rate is:85 
For the data stream: 14: 
The Input Rate is:54 
For the data stream: 15: 
The Input Rate is:42 
For the data stream: 16: 
The Input Rate is:99 
For the data stream: 17: 
The Input Rate is:71 
For the data stream: 18: 
The Input Rate is:94 
For the data stream: 19: 
The Input Rate is:40 
For the data stream: 20: 
The Input Rate is:15 
 

factor is:0.13 
For (5,11), the selectivity 
factor is:0.15 
For (3,12), the selectivity 
factor is:0.09 
For (3,13), the selectivity 
factor is:0.01 
For (6,14), the selectivity 
factor is:0.12 
For (8,15), the selectivity 
factor is:0.02 
For (7,16), the selectivity 
factor is:0.11 
For (7,17), the selectivity 
factor is:0.11 
For (2,18), the selectivity 
factor is:0.15 
For (3,19), the selectivity 
factor is:0.08 
For (8,20), the selectivity 
factor is:0.01 

 
A.5 CPU and Memory Consumption When Restricting CPU Resources  
 
3 join predicates For the data stream: 1: 

The Input Rate is:93 
For the data stream: 2: 
The Input Rate is:14 
For the data stream: 3: 
The Input Rate is:70 
For the data stream: 4: 
The Input Rate is:48 
For the data stream: 5: 
The Input Rate is:62 
For the data stream: 6: 
The Input Rate is:11 
For the data stream: 7: 
The Input Rate is:72 
For the data stream: 8: 
The Input Rate is:25 
For the data stream: 9: 
The Input Rate is:66 

For (1,2), the selectivity 
factor is:0.18 
For (1,3), the selectivity 
factor is:0.18 
For (1,4), the selectivity 
factor is:0.01 
For (1,5), the selectivity 
factor is:0.19 
For (4,6), the selectivity 
factor is:0.1 
For (6,7), the selectivity 
factor is:0.16 
For (6,8), the selectivity 
factor is:0.16 
For (2,9), the selectivity 
factor is:0.03 
For (6,10), the selectivity 
factor is:0.2 
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For the data stream: 10: 
The Input Rate is:58 
For the data stream: 11: 
The Input Rate is:81 
For the data stream: 12: 
The Input Rate is:32 
For the data stream: 13: 
The Input Rate is:19 
For the data stream: 14: 
The Input Rate is:65 
For the data stream: 15: 
The Input Rate is:80 
For the data stream: 16: 
The Input Rate is:84 
For the data stream: 17: 
The Input Rate is:87 
For the data stream: 18: 
The Input Rate is:42 
For the data stream: 19: 
The Input Rate is:95 
For the data stream: 20: 
The Input Rate is:28 

For (9,11), the selectivity 
factor is:0.16 
For (9,12), the selectivity 
factor is:0.08 
For (7,13), the selectivity 
factor is:0.01 
For (4,14), the selectivity 
factor is:0.17 
For (10,15), the selectivity 
factor is:0.05 
For (10,16), the selectivity 
factor is:0.02 
For (15,17), the selectivity 
factor is:0.01 
For (15,18), the selectivity 
factor is:0.08 
For (4,19), the selectivity 
factor is:0.11 
For (14,20), the selectivity 
factor is:0.17 

5 join predicates For the data stream: 1: 
The Input Rate is:95 
For the data stream: 2: 
The Input Rate is:59 
For the data stream: 3: 
The Input Rate is:41 
For the data stream: 4: 
The Input Rate is:33 
For the data stream: 5: 
The Input Rate is:19 
For the data stream: 6: 
The Input Rate is:48 
For the data stream: 7: 
The Input Rate is:90 
For the data stream: 8: 
The Input Rate is:58 
For the data stream: 9: 
The Input Rate is:15 
For the data stream: 10: 
The Input Rate is:99 
For the data stream: 11: 
The Input Rate is:88 
For the data stream: 12: 

For (1,2), the selectivity 
factor is:0.12 
For (2,3), the selectivity 
factor is:0.12 
For (2,4), the selectivity 
factor is:0.03 
For (2,5), the selectivity 
factor is:0.17 
For (2,6), the selectivity 
factor is:0.18 
For (5,7), the selectivity 
factor is:0.13 
For (3,8), the selectivity 
factor is:0.04 
For (5,9), the selectivity 
factor is:0.05 
For (3,10), the selectivity 
factor is:0.2 
For (3,11), the selectivity 
factor is:0.07 
For (3,12), the selectivity 
factor is:0.17 
For (2,13), the selectivity 
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The Input Rate is:99 
For the data stream: 13: 
The Input Rate is:10 
For the data stream: 14: 
The Input Rate is:18 
For the data stream: 15: 
The Input Rate is:78 
For the data stream: 16: 
The Input Rate is:99 
For the data stream: 17: 
The Input Rate is:23 
For the data stream: 18: 
The Input Rate is:65 
For the data stream: 19: 
The Input Rate is:83 
For the data stream: 20: 
The Input Rate is:26 

factor is:0.13 
For (6,14), the selectivity 
factor is:0.17 
For (4,15), the selectivity 
factor is:0.04 
For (1,16), the selectivity 
factor is:0.01 
For (2,17), the selectivity 
factor is:0.16 
For (9,18), the selectivity 
factor is:0.18 
For (17,19), the selectivity 
factor is:0.01 
For (10,20), the selectivity 
factor is:0.08 

7 join predicates For the data stream: 1: 
The Input Rate is:80 
For the data stream: 2: 
The Input Rate is:28 
For the data stream: 3: 
The Input Rate is:94 
For the data stream: 4: 
The Input Rate is:51 
For the data stream: 5: 
The Input Rate is:11 
For the data stream: 6: 
The Input Rate is:92 
For the data stream: 7: 
The Input Rate is:14 
For the data stream: 8: 
The Input Rate is:31 
For the data stream: 9: 
The Input Rate is:50 
For the data stream: 10: 
The Input Rate is:37 
For the data stream: 11: 
The Input Rate is:56 
For the data stream: 12: 
The Input Rate is:80 
For the data stream: 13: 
The Input Rate is:31 
For the data stream: 14: 
The Input Rate is:67 

For (1,2), the selectivity 
factor is:0.14 
For (1,3), the selectivity 
factor is:0.12 
For (2,4), the selectivity 
factor is:0.02 
For (3,5), the selectivity 
factor is:0.01 
For (2,6), the selectivity 
factor is:0.1 
For (3,7), the selectivity 
factor is:0.15 
For (5,8), the selectivity 
factor is:0.01 
For (8,9), the selectivity 
factor is:0.2 
For (4,10), the selectivity 
factor is:0.09 
For (7,11), the selectivity 
factor is:0.09 
For (9,12), the selectivity 
factor is:0.1 
For (5,13), the selectivity 
factor is:0.19 
For (10,14), the selectivity 
factor is:0.05 
For (3,15), the selectivity 
factor is:0.18 
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For the data stream: 15: 
The Input Rate is:42 
For the data stream: 16: 
The Input Rate is:53 
For the data stream: 17: 
The Input Rate is:53 
For the data stream: 18: 
The Input Rate is:29 
For the data stream: 19: 
The Input Rate is:58 
For the data stream: 20: 
The Input Rate is:15 

For (10,16), the selectivity 
factor is:0.05 
For (1,17), the selectivity 
factor is:0.03 
For (4,18), the selectivity 
factor is:0.13 
For (16,19), the selectivity 
factor is:0.2 
For (14,20), the selectivity 
factor is:0.03 

9 join predicates For the data stream: 1: 
The Input Rate is:99 
For the data stream: 2: 
The Input Rate is:12 
For the data stream: 3: 
The Input Rate is:31 
For the data stream: 4: 
The Input Rate is:20 
For the data stream: 5: 
The Input Rate is:57 
For the data stream: 6: 
The Input Rate is:85 
For the data stream: 7: 
The Input Rate is:39 
For the data stream: 8: 
The Input Rate is:48 
For the data stream: 9: 
The Input Rate is:65 
For the data stream: 10: 
The Input Rate is:98 
For the data stream: 11: 
The Input Rate is:58 
For the data stream: 12: 
The Input Rate is:32 
For the data stream: 13: 
The Input Rate is:71 
For the data stream: 14: 
The Input Rate is:34 
For the data stream: 15: 
The Input Rate is:60 
For the data stream: 16: 
The Input Rate is:24 
For the data stream: 17: 

For (1,2), the selectivity 
factor is:0.18 
For (2,3), the selectivity 
factor is:0.02 
For (3,4), the selectivity 
factor is:0.2 
For (4,5), the selectivity 
factor is:0.15 
For (1,6), the selectivity 
factor is:0.07 
For (4,7), the selectivity 
factor is:0.03 
For (7,8), the selectivity 
factor is:0.07 
For (5,9), the selectivity 
factor is:0.03 
For (2,10), the selectivity 
factor is:0.2 
For (3,11), the selectivity 
factor is:0.13 
For (10,12), the selectivity 
factor is:0.02 
For (2,13), the selectivity 
factor is:0.04 
For (12,14), the selectivity 
factor is:0.06 
For (1,15), the selectivity 
factor is:0.1 
For (12,16), the selectivity 
factor is:0.18 
For (9,17), the selectivity 
factor is:0.19 
For (1,18), the selectivity 
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The Input Rate is:90 
For the data stream: 18: 
The Input Rate is:15 
For the data stream: 19: 
The Input Rate is:60 
For the data stream: 20: 
The Input Rate is:17 

factor is:0.01 
For (11,19), the selectivity 
factor is:0.17 
For (13,20), the selectivity 
factor is:0.04 

 


