

GENERATING QUALIFIED PLANS FOR MULTIPLE QUERIES IN DATA STREAM

SYSTEMS

by

Zain Ahmed Alrahmani

Submitted in partial fulfilment of the requirements

for the degree of Master of Computer Science

at

Dalhousie University

Halifax, Nova Scotia

April 2015

© Copyright by Zain Ahmed Alrahmani, 2015

 ii

TABLE OF CONTENTS

TABLE OF CONTENTS ... ii

LIST OF TABLES ... iv

LIST OF FIGURES ... v

ABSTRACT ... vi

LIST OF ABBREVIATIONS USED ... vii

ACKNOWLEDGEMENTS ... viii

CHAPTER 1 : INTRODUCTION .. 1

1.1 MULTIPLE-QUERY OPTIMIZATION IN DSMSS ... 1
1.2 QUERY ADAPTATION TECHNIQUES .. 2
1.3 PROBLEM DEFINITION ... 4
1.4 THE PROPOSED APPROACH ... 6
1.5 SUMMARY OF CONTRIBUTIONS ... 7
1.6 ASSUMPTIONS ... 8
1.7 ORGANIZATION .. 9

CHAPTER 2 : BACKGROUND AND RELATED WORK ... 10

2.1 BACKGROUND ... 10
2.1.1 Context and Environment ... 10

2.1.2 Streaming Applications.. 12

2.1.3 Window Constraints .. 14

2.1.4 Correlation Between Resource Usages in Join Methods 15

2.1.5 Cost Models .. 16

2.2 RELATED WORK ... 24
2.2.1 Join Methods ... 24

2.2.2 Processing Multiple Queries .. 26

2.2.3 Overview of Other Related Work .. 27

CHAPTER 3 : GLOBAL PLAN GENERATION ALGORITHM 31

3.1 THE ORDER OF QUERIES ... 33
3.1.1 Heaviest to Lightest: ... 35

3.1.2 Lightest to Heaviest: ... 36

3.1.3 Shared predicate technique: .. 38

 iii

3.2 INITIAL RESOURCES ALLOCATION ... 39
3.3 SUBEXPRESSION SHARING ... 41
3.4 GLOBAL PLAN GENERATION ALGORITHM ... 45
3.5 QUALIFIED SUBPLAN GENERATION ... 50

3.5.1 First Layer Algorithms (MJoin and State Selection) .. 50

3.5.2 Second Layer Algorithms (BJtree and State Removal) 54

CHAPTER 4 : EXPERIMENTAL EVALUATION ... 58

4.1 Experimental methodology .. 59

4.2 Experimentation Results .. 61

CHAPTER 5 : CONCLUSION AND FUTURE WORK .. 70

REFERENCES ... 72

APPENDIX A .. 76

 iv

LIST OF TABLES

Table 2-1 Terms in the cost models (Zhu et al., 2010): .. 18

Table 3-1 Definition of Less Than Comparator for Two (Sub)Plans 44

Table 3-2 Subroutines Accessed by Algorithm 4 ... 46

Table 4-1 Experimental Parameters .. 58

Table 4-2 CPU Costs of Basic Tuple Operations in (ms) .. 60

 v

LIST OF FIGURES

Figure 2-1 The overall system architecture adapted from (Heinz et al., 2008) 12

Figure 2-2 BJtree, MJoin, and JTree .. 16

Figure 2-3 A global plan and its subplan ... 18

Figure 2-4 Example query and Two Joins ... 20

Figure 3-1 Example of ordering queries from lightest to heaviest 37

Figure 3-2 A query and a BJtree operator ... 45

Figure 3-3 MJoin plan and a join graph ... 51

Figure 3-4 MJoin ordering and a State Selection plan .. 52

Figure 3-5 BJtree plan and State Removal .. 55

Figure 4-1 The CPU costs of the three proposed techniques 62

Figure 4-2 The memory costs of the three proposed techniques 62

Figure 4-3 CPU consumptions of the three techniques – no constraints on CPU or

memory .. 63

Figure 4-4 Memory consumptions of the three techniques – no constraints on CPU

or memory ... 64

Figure 4-5 CPU consumptions when restricting both resources 65

Figure 4-6 Memory consumptions when restricting both resources 65

Figure 4-7 CPU consumptions when restricting the memory resources. 67

Figure 4-8 Memory consumptions when restricting the memory resources. 67

Figure 4-9 CPU consumptions when restricting the CPU resources. 68

Figure 4-10 Memory consumptions when restricting the CPU resources. 68

Figure 4-11 Execution time in ms required by the two techniques 69

 vi

ABSTRACT

Because stream processing applications operate under strict time constraints, most

previous research focuses on enhancing real-time response by decreasing a single cost

function. Although such research generates an optimal or near-optimal query execution

plan under the selected cost function, either in terms of memory or CPU resources, the

generated plan may not actually qualify for real execution; that is, although it is optimal

in minimizing the chosen memory (CPU) cost function, it may exceed the available

capacity of the CPU (memory) resource. A plan is not qualified if it is optimal or near-

optimal in one resource usage, whereas it is out of bound in the other. These kinds of

plans are not viable in stream processing applications because one of the resource usages,

either CPU or memory, will hinder the system in processing queries. This thesis proposes

a technique that generates qualified global plans for multiple queries under constraints for

both CPU and memory resources by scheduling MJoin and BJtree operators while

sharing common operations and their results among queries.

 vii

LIST OF ABBREVIATIONS USED

BJtree Binary Join Tree

CPU Central Processing Unit

DSMS Data Stream Management System

JTree Join Tree of MJoins and Binary Joins

LWO Largest Window Only

MJoin Multi-Join

SWF Smallest Window First

 viii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Dr. Peter Bodorik, for his

continuous support of my research, patience, motivation, enthusiasm, and immense

knowledge. His guidance helped me throughout the research and writing of this thesis.

In addition, I would like to extend my sincerest thanks and appreciation to Dr. Vlado

Keselj and Dr. Michael McAllister for serving on my guiding committee and providing

valuable suggestions to improve the quality of my work.

 1

CHAPTER 1 : INTRODUCTION

The past several years have seen the emergence of applications that deal with data

streams, which are referred to as data stream applications. In these applications, data are

unbounded streams of values and are generated continually at very high rates. In other

words, the stream lengths are assumed to be infinite. A good example is an application

that monitors and analyzes network traffic. A network may contain thousands of nodes

that transmit data, which need to be analyzed in real time to detect critical conditions

such as congestion. In traditional database systems, query optimization is fundamental to

improving query performance. Similarly, DSMSs require query optimization (Viglas and

Naughton, 2002) (Viglas et al., 2003).

1.1 Multiple-Query Optimization in DSMSs

Optimization techniques proposed for traditional relational databases cannot be directly

applied to queries in data stream systems because of the differences between the two

systems. To illustrate, one of the differences is that DSMSs deal with continuous queries,

whereas traditional databases deal with one-time queries. Continuous queries are

persistent, which means they are issued once and remain active for some time; on the

other hand, traditional database queries are transient. Data stream systems need to keep

producing updated results continuously, unlike traditional database systems that need to

produce results only once.

 2

Another difference is that data in traditional database systems are static and are stored in

the system. Note that traditional database systems focus on generating precise answers

computed by stable query plans. On the contrary, data streams are unbounded and cannot

be stored in the systems. Therefore, some operations in DSMSs process tuples on the fly,

while other operations need to store some data in the memory for a short period of time in

order to process queries. Thus, queries in data stream systems require techniques that

process memory-resident data. Moreover, query plans need to be re-optimized during

run-time as stream arrival rates may fluctuate.

The above-mentioned points necessitate changing the optimization objective of data

stream systems from traditional database systems. Previous research on DSMSs, such as

in (Viglas et al., 2003), aim at optimizing the run-time output rate. Zhu et al. (2010) show

that CPU and memory consumptions of a query plan need to be below the available CPU

and memory resources of the system for the system to produce results at an optimal rate.

To elaborate, if the CPU cost of the plan exceeds the available CPU resources, the plan

will be unable to keep up with the incoming stream items; therefore, the system cannot

produce results at the optimal rate. Similarly, DSMSs require that the memory does not

overflow, which will negatively impact the system. Thus, the CPU and memory costs

should be considered when generating a query plan since they are precious resources in

the stream context. Such query plans are referred to as qualified plans (Zhu et al., 2010).

1.2 Query Adaptation Techniques

There are several query adaptation techniques in DSMSs. Below, some of the most

commonly used techniques in these systems are described.

 3

One of these adaptation techniques is called load shedding. Whenever the system

resources cannot keep up with the incoming streams, load shedding can be used to reduce

the workload in the system (Tatbul et al., 2003; Babcock et al., 2004; and Tatbul and

Zdonik, 2006). The main idea of load shedding is to drop some of the tuples either

randomly or based on certain criteria. Load shedding introduces the notion of

approximation in the produced results. There are some applications where all the data the

applications monitor are important; therefore, load shedding is not applicable to such

applications.

Another technique is operator re-scheduling. In this technique, systems schedule query

operators to minimize resource consumption. A scheduler of a system dynamically

chooses the next operator based on the current workload; it has to be able to choose

between different scheduling decisions based on the optimization goals (Carney et al.,

2003; Babcock et al., 2003; Babcock et al., 2004). A good example of this technique is

the eddy approach, which enables the reordering of operators in a query plan as it runs

(Avnur and Hellerstein, 2000).

Another technique is intra-operator adaptation. When stream characteristics change, a

query operator in this technique adaptively changes the way it handles streams. A good

example of this kind of operator is the XJoin operator, which has three phases (Urhan and

Franklin, 2000). In the first phase, the operator joins tuples that exist in memory, and it is

called memory-to-memory phase. In case the memory portion of the input stream is full,

the tuples are flushed to disk. In the second phase, the disk-to-memory phase, the

operator joins tuples that are in memory with others that exist on disk. The final phase is

the disk-to-disk phase, which joins tuples that are missed by the previous two phases.

 4

Query plan re-optimization is another adaptation technique used in DSMSs. Based on the

statistics of input streams, a query optimizer dynamically changes the current query plan,

and reorganizes plan operators. In other words, the shape of the plan is changed to

improve the plan efficiency (Park and Lee, 2009; Zhu et al., 2010; Park and Lee, 2012).

1.3 Problem Definition

Some research, as stated in (Zhu et al., 2010), uses query optimization strategies that are

based on either mutli-joins (MJoins) or Binary Join trees (BJtrees) and, furthermore, they

exploit positive correlations between CPU and memory. MJoin is a method that uses a

single step to join all participant streams, whereas BJtree method takes multiple steps to

join all participant streams. Note that MJoin systems reduce memory use, sometimes at

the expense of additional CPU requirements and the BJtree approach does the opposite

because it stores intermediate results. Zhu et al. (2010) proposed a technique in which

they not only use either BJtree or MJoin, but also their combinations, which is called

JTree. They also proposed a Two-Layer JTree-Finder algorithm to minimize memory and

CPU resources of a query plan. In the first layer, they produce an optimal MJoin using

Viglas et al. (2003) algorithm. If the optimal MJoin exceeds the constraints on the CPU,

they produce an optimal BJtree using Kossmann and Stocker’s (2000) algorithm. If the

optimal BJtree exceeds the constraints on the memory, they move into the second layer,

in which they modify either the optimal MJoin or BJtree to include a mixture of both

operators in one plan. Thus, they are trading off memory for improving CPU computation

and vice versa. They also discuss how to apply their algorithm to optimizing multiple

queries by allocating fixed resources to each query and then using their algorithm.

 5

However, they do not state how the resources should be allocated initially. Furthermore,

and more importantly, their focus was on the single query instance and they indicate that

further work is needed for the multi-query case along with their preliminary suggestions

on how to handle the multi-query case. Moreover, they do not discuss how the sharing of

subexpressions common to queries can be exploited to improve the efficiency and

effectiveness of processing multiple queries. We aim to explore how single query

optimization can be extended to move towards optimization of multiple queries.

The challenge in designing any continuous query system is to keep computation and the

amount of storage required to satisfy multiple continuous queries below the available

system resources. As Zhu et al. (2010) stated, trying to solve the problem by treating both

CPU and memory costs as a single cost is hard to obtain. What complicates the design of

such a singular cost function is that there is no clear relationship between CPU and

memory resources because they are in some cases positively correlated, that is when one

cost is reduced the other one is also reduced, while in other cases they have a negative

correlation (Zhu et al., 2010). Finding optimal strategy for queries that minimizes a

specific cost is NP-hard both in relational DBMSs (Sellis and Ghosh, 1990) and DSMSs

(Zhu et al., 2010).

To elaborate, the inputs of the system are queries, total available CPU and memory.

Queries are represented by join graphs wherein the vertices are input streams, each one

with an arrival rate, and edges denote join predicates between input streams together with

join selectivities, one per edge. The objective is to find a sequence of join operators that

answers queries with available CPU and memory resources. Another goal we have is to

 6

find operations that can be shared among different queries to reduce the total CPU and

memory consumption.

1.4 The Proposed Approach

The proposed approach in this thesis incorporates two different techniques that extend the

(Zhu et al., 2010) algorithm, which was developed to optimize a single query for the

optimization of multiple queries. First, qualified subplans are generated for queries by

extending the plan search space to include BJtree operators, MJoin operators, and a

mixture of both. Second, these subplans are used to produce a complete global execution

plan for multiple queries by sharing the results of common join operations in a set of

continuous queries; therefore, redundant operators are avoided. Each join operation that

appears in the queries has a sharing degree that indicates in how many queries it appears

and hence how much the operation can be reused by those queries. When forming plans,

in addition to using the actual cost of a join operation, we also use an amortized effective

cost (we refer to it as an effective cost) that is defined as the actual cost divided by its

sharing degree. It is the effective costs that we use in determining which join operation is

to be included in the global plan.

The global plan is created by optimizing queries one at a time. When a query is

optimized, the proposed method checks the global plan for any join operations that can be

used by the query. Operators, in the global plan formed thus far that can be used by the

optimized query, will be incorporated into the query plan as the results already exist.

Using this technique, some queries may use expensive operators when sharing their

results makes it a good choice across all queries. We also propose a new method that

 7

finds the order of queries in which they need to be optimized. This is beneficial because

finding the proper order of queries helps in reducing the total CPU and memory

consumption of the global plan if more operators that can be shared across queries are

chosen for the global plan.

As the algorithm in (Zhu et al., 2010) for a single query considers JTree, which may

include both MJoins and BJtrees, and also is performed under the constraint on CPU and

memory resources, we utilize it in our approach while adapting it in allocating initial

resources to each query, ensuring that common subexpressions are shared among queries

and are not recomputed, and calculating the costs of join operators when scheduling

them.

1.5 Summary of Contributions

The main contributions of the proposed approach are as follows:

- This thesis introduces a method with the aim of finding a solution to the problem

of generating a qualified global plan, which satisfies both CPU and memory

resource constraints for multiple queries by adapting MJoin and BJtree

techniques.

- The proposed approach generates a qualified global execution plan for multi-way

join queries by sharing computations and memory of common join operations of

multiple queries. Choosing join operations with smaller amortized costs forms the

qualified global plan.

- We proposed three heuristic techniques that find the order of queries based on the

similarity between queries, and the weight of queries. The order of queries is

 8

determined based on their costs, namely heaviest/largest to lightest/smallest,

lightest/smallest to heaviest/largest, and the shared predicate technique. The

shared predicate technique is superior to the other two techniques as it generates

more shared operations.

- The proposed approach efficiently pre-allocates CPU and memory resources to

each query. The allocation of the resources ensures that when there is a shortage

of one of the resources, the optimization of queries will take it into an account

when forming the plan.

1.6 Assumptions

- This thesis concentrates on tree queries with equi-join to reduce search space.

However, the problem we aim to address is still NP-hard and hence heuristics are

used.

- Queries are expressed as join graphs. Each vertex represents a stream, which is

marked by the name of the stream, and an arrival rate per unit of time. Moreover,

each edge indicates a join predicate between two input streams, and is marked by

the join selectivity. Selectivities change once a join is performed.

- In a DSMS, a monitoring component can collects statistics of input streams, such

as input rate and join selectivity. When a query is first arriving at the system, the

DSMS may predict join selectivities. As in most, if not all, work on query

optimization in relational DBMSs and DSMSs, we assume that selectivities for a

join of two streams are independent of a query. That is, the selectivity of joining

 9

two data streams (relations in relational DBMSs) R and S is the same regardless

of whether the join was issued by a query q1 or a query q2.

- We assume static optimization. That is, we perform optimization for a given set of

queries and their parameters and statistics of data streams and join selectivities.

We do not address the issues of dynamic/adaptive optimization that addresses the

problem of changes to the query and data stream changes to statistics, such as

selectivities and arrival rates, as queries are processed. Some of the approaches to

this problem, referred to as adaptive/dynamic optimization techniques, are

discussed in Chapter 2.

1.7 Organization

The remainder of this thesis is organized as follows: In Chapter 2, background and

related work are represented. Additionally, CPU and memory cost models are examined

for positive and negative correlations of both system resources. The proposed approach is

described in detail in Chapter 3, while the effectiveness of the proposed algorithm in this

thesis is highlighted using some experiments in Chapter 4. Finally, Chapter 5 concludes

this thesis.

 10

CHAPTER 2 : BACKGROUND AND RELATED WORK

2.1 Background

2.1.1 Context and Environment

The work proposed in this thesis concentrates on streaming data that arrive continuously

at a very high rate in a DSMS, such that the data are pushed into the system to be

processed against a set of standing continuous queries that are registered in advance. The

streams are unbounded sequences of data items, and each data item is associated with a

timestamp. Furthermore, the data items may arrive in a burst or in equally spaced

intervals. Examples of the burst fashion are network traffic streams and phone call

records. On the other hand, an example of the second type is a pull-based system where

the system contacts devices to retrieve data periodically. The focus of this thesis is on

streams with a burst arrival pattern that arrive in either a centralized system or a

distributed system. A centralized dynamic query optimization is used to generate global

plans for multiple queries, as depicted in Figure 2-1- it is adapted from (Heinz et al.,

2008). The query registration module is the component responsible for registering the

continuous queries. The query executor executes the query plan generated by the

optimizer. While continuous queries are evaluated, the runtime monitoring component

gathers statistics of join operations in the current execution plan. Moreover, it collects

and analyses statistics of input streams, such as input rate and join selectivity. When the

effectiveness of the current execution plan declines because the parameter values used in

generating the current optimal plan have changed, the query optimizer is invoked to

 11

generate a newly optimized plan, based on the current parameters. To illustrate, if the

current execution plan starts consuming more CPU and/or memory resources than the

total available system resources, the query optimizer is invoked. Finally, the system

dynamically transfers the current plan to the new optimized plan using the plan migration

component shown in Figure 2-1, which is another important research area in the DSMS

field.

Queries that are registered against streams are frequently defined in terms of sliding

windows because of the unbounded nature of streams. The purpose of the windowing is

to limit the scope of the join operators into something of tractable size over the lifetime of

a query. Window constraints are explained in greater detail in section 2.1.3.

To clarify the query types presented in this thesis, a scenario from a sensor network is

considered. Let us assume that we have an organization that has a number of sensors to

monitor the temperature and humidity at different locations throughout the rooms. A

large organization may require thousands of such sensors. This scenario can be modeled

as a system with two different types of streams, one for humidity sensors and the other

for temperature sensors. The schema of each stream can be formed as follows:

[locationID, value, timestamp], where locationID indicates the location of the sensor that

generates the stream, value is the sensor reading, and timestamp identifies the time at

which the data item is generated or entered into the system. There are two streams, one

for temperature, stream T, and one for humidity, stream H. Queries, in this thesis, are

SQL select statements where each query joins multiple streams. A query that

continuously joins two streams, one generated from a temperature sensor and the other

from a humidity sensor, within a 60-second interval can be specified as follows:

 12

Query 1:

Select *

From Temperature T, Humidity H [Range 60 sec]

Where T.locationID = H.locationID

2.1.2 Streaming Applications

In this section, a number of data stream applications are represented not only to show the

context of streaming data, but also to give an overview of query types that require the

support of a DSMS.

2.1.2.1 Financial Tickers

Financial tickers contain applications that monitor tens of thousands of data streams,

which feed from financial markets to help in making decisions. Moreover, these

Query Executor

Optimizer

Query

Registration

Module

Runtime
Monitoring

Plan
Migration

Figure 2-1 The overall system architecture adapted from (Heinz et al., 2008)

 13

applications assist in finding correlations among all pairs of streams. An example of a

query is to find stocks priced over $50 for the last 15 minutes.

2.1.2.2 Online Auction

Online auctions have been popular over the past decade. People from all over the world

use them to trade goods. Online auction applications monitor prices and stream them to

the users. An example query in an online auction is to find all auctions that closed within

60 minutes of their opening. Another example of a continuous query is to continuously

monitor and compute the highest bids that occur in the last 20 minutes.

2.1.2.3 Sensor Networks

Sensor networks generate streams of data which can be used in monitoring applications.

These applications monitor physical or environmental conditions, such as humidity,

temperature, and pressure. An example of an application that monitors physical

conditions is an application that deals with area monitoring. In area monitoring, a number

of sensors are deployed over a specific area to trace human movement. Applications that

monitor environmental conditions include, among others, forest fire detection, power

consumption monitoring, and air pollution monitoring. An example of a query type

included in sensor networks is a query that requires aggregating sensor data scattered

over the network to monitor power consumption, and report it to a power station.

 14

2.1.2.4 Transaction Log Analysis

Applications that analyze data stored in transaction logs of Intranets, web sites, and web

search engines can provide valuable information for online searchers. Monitoring these

transaction logs is important to achieve certain goals such as finding overloaded web

servers. A query example of a web usage log is one that identifies overloaded web

servers, which assists in rerouting users to backup servers.

2.1.3 Window Constraints

The size of the states in stateful operators can grow endlessly, and we need to have size

constraints. Windows solve this problem. There are three types of window constraints:

sliding windows, fixed windows, and landmark windows. Sliding windows are windows

that have two moving endpoints (new items replace old ones). Fixed windows have two

fixed endpoints, and landmark windows have fixed and moving endpoints. Sliding

window constraints are used in this thesis. The definition of a window size has two

forms. It can be defined in terms of a time interval, in which case they are called time-

based windows. Windows belonging to the second form are called count-based windows,

where windows are defined in terms of the number of tuples. Time-based window

constraints are used in the queries represented in this thesis. In Query 1, the tuples that

arrive from T and H are joined only if they are within 60 seconds of each other.

Window constraints can be of a global or a local kind (Hammad et al., 2002). The former

is the most commonly used window constraint in which all input streams in one query

have the same window constraint (Hammad et al., 2008). For example, a query S1 ⨝ S2

⨝ S3 with a global window constraint means that WS1 = WS2 = WS3, where WSi is the size

 15

of the window of stream i and it is specified in the query predicate. Our thesis uses

queries with the global window constraints. The local window constraint, on the other

hand, is when stream operators have different window constraints.

Window sizes can be different between queries that are registered in a DSMS. To process

a join operation that is shared by multiple queries with different window sizes, there are

three different approaches that can be used, namely the largest window only (LWO), the

smallest window first (SWF), and a greedy approach based on the previous two

approaches (Hammad et al., 2003). In the LWO approach, the result of the largest

window is generated; then, the results of other windows are extracted from the largest

window. In SWF, the results of windows are produced in ascending order of window

size. In the final approach, windows are divided into groups based on their window sizes.

Groups are evaluated in ascending order of the largest window size of each group.

Thereafter, the LWO approach is used to produce the results of each group.

2.1.4 Correlation Between Resource Usages in Join Methods

The CPU and memory usage are always correlated with each other, and this correlation

can be either positive or negative. In Figure 2-2, a box indicates an intermediate state

where tuples are stored, and a circle indicates the CPU process of joining tuples. In the

BJtree method depicted in Figure 2-2 (a), the resource usages are positively correlated.

As the number of intermediate results increases, the system requires more CPU resources.

Furthermore, they have a positive correlation when using the MJoin method, which is

shown in Figure 2-2 (b). Increasing the number of stream tuples results in increasing both

CPU and memory resources. On the contrary, the JTree method utilizes the negative

 16

correlation between the CPU and memory usages. Adding intermediate states to avoid

recomputation can reduce CPU consumptions. As shown in Figure 2-2 (c), JTree is

composed of a combination of BJtree and MJoin operators. A more detailed explanation

may be found in (Zhu et al., 2010).

This thesis utilizes the positive and negative correlations between the resources usages to

generate a qualified global plan that answers multiple queries. Recall that a qualified plan

requires less CPU and memory resources than the total available system resources.

2.1.5 Cost Models

A global query plan can be represented by a graph that contains AND-nodes, OR-nodes,

and a set of edges (Park and Lee, 2012). The join operation is executed by the AND-

node, whereas the result of the join operation is maintained in the OR-node. A qualified

global plan P is composed of binary joins, MJoins, or a mixture of both, the result of

which produce an answer for each query in Q. Queries in Q are continuous queries with

equi-join predicates and each query is an SQL select statement where each query chooses

from different source streams. In other words, each query qi in Q is restricted to a

(a) Bushy BJtree

D C B A

 AB CD

(b) MJoin

D C B A

(c) JTree

C B A

ABC

D

Figure 2-2 BJtree, MJoin, and JTree

 17

conjunction of simple terms that are restricted to equality, i.e., where each term is of the

form (r.A = s.A), where r and s are streams that contain a joining attribute A. Moreover,

the size of windows between queries may differ, but the size of windows in one query is

the same for each stream referred to by the query. This type of query is called a uniform

clique window join, where all the streams in each query have the same window size

(Hammad et al., 2008).

The global plan P produces the results of all the queries included in Q. A JTree plan is

represented by a graph as shown in Figure 2-3 (a). The graph contains a set of nodes N

and an acyclic set of edges E. A part of a global execution plan for multiple queries is

referred to as a subplan as shown in Figure 2-3 (b) (Park and Lee, 2012). The nodes in the

subplan are connected, i.e., the graph is connected. An AND-node is shown as a circle,

whereas a box indicates an OR-node.

A global execution plan and all of its subplans for a set of queries have the following

properties that are adopted from Park and Lee (2012). The number of incoming edges,

and the number of outgoing edges of a specific node (ni) where ni ∈ N are defined as

follows:

Note that the number of outgoing edges of an AND-node is always equal to 1 because it

is only fed to an OR-node. This OR-node is a standard representation to hold the results.

Incoming edges of (ni) ≥ 2 if ni ∈ AND-nodes

Incoming edges of (ni) = 0 if ni ∈ OR-nodes, where ni is a base stream

Incoming edges of (ni) = 1 otherwise

Outgoing edges of (ni) = 1 if ni ∈ AND-nodes

Outgoing edges of (ni) ≥ 0 if ni ∈ OR-nodes

 18

In other words, an OR node is a results buffer. Inserting and deleting tuples from OR-

nodes require some CPU utilization.

Table 2-1 Terms in the cost models (Zhu et al., 2010):

Term Meaning

Ci Cost of inserting a tuple (ms)

Cd Cost of deleting a tuple (ms)

Cj Cost of joining two tuples (ms)

x Input rate of stream x (tuples/sec)

xy Join selectivity of a join operation on operand streams x and y

Wx Window size constraint on stream x.

|Sx| Number of tuples in state x, where |Sx| = λxWx

The total cost of a global execution plan for a number of queries is the sum of the costs of

all the join operations in the plan. The join operation is executed by the AND-node,

whereas the result of the join operation is maintained in the OR-node. The cost of

maintaining tuples in an OR-node can either be the number of tuples arrived from an

input data stream in a time unit or the number of result tuples produced by the

predecessor AND-node in a time unit. The cost of forwarding the tuple to the subsequent

(a) An example of a global plan

D C B A

 AB CDE

 E

C D E

(b) A subplan

Figure 2-3 A global plan and its subplan

 19

operation (if any) is zero. In general, a symmetric stream hash join (Viglas et al., 2003)

with a unit-time-based cost model (Kang et al., 2003) is employed. Table 2.1 describes

the terms used in the cost model. The cost of the symmetric stream hash model is

explained in sections 2.1.5.1, 2.1.5.2, and 2.1.5.3.

An AND-node may have two or more operand streams. Moreover, it continuously

receives tuples from the input streams. Whenever new tuples are received from the

operand streams, they are joined. The evaluation cost of an AND-node is the sum of the

costs of joining the newly arriving tuples of all participated streams. The cost of an AND-

node is the CPU processing of joining tuples, which will be explained in detail later in

this chapter.

An OR-node is a standard representation to hold the results. The cost of an OR-node is

the number of the result tuples that exist in the node. In other words, the cost of an OR-

node is the memory cost, which will be clarified in the following sub-sections. However,

inserting and deleting tuples from OR-nodes of the operand streams are considered when

calculating the CPU cost.

The total CPU costs of a global execution plan P is the total cost of all AND-nodes in

addition to inserting and deleting tuples from OR-nodes, whereas the total cost of the

memory in the global plan is the total size of OR-nodes in the plan.

The following subsections show the CPU and memory costs for BJtree and MJoin plans.

The CPU cost is the time the CPU needs to process all newly arrived tuples in a time unit,

whereas the memory cost is the size of all tuples the plan needs. To describe the

procedure of calculating CPU and memory costs, the example query represented as a join

graph in Figure 2-4(a) is used. Each vertex represents a stream, which is marked by the

 20

name of the stream, and an arrival rate per unit of time. Moreover, each edge indicates a

join predicate between two input streams, and is marked by the join selectivity. Given

this join graph, Figure 2-4 (b) shows the optimal plan for MJoin processing as determined

by the algorithm in (Viglas et al., 2003), whereas Figure 2-4 (c) depicts the BJtree plan

produced by the algorithm introduced in (Kossmann and Stocker, 2000).

An MJoin is a plan that joins multiple streams in a single step without having to use

multiple stages as in the case of a BJtree plan. Each input stream in the MJoin plan is

joined with other streams in a particular order, which can be determined by the MJoin

algorithm (Viglas et al., 2003). Subsections 2.1.5.1 and 2.1.5.2 show a summary of the

frequently-used cost analysis of BJtree and MJoin, respectively, as presented in (Zhu et

al., 2010).

B
(10)

A
(40)

C
(90)

(a) Join graph

A  B  C
B  A  C
C  B  A

(b) MJoin and Join Orderings

(c) BJtree

0.2 0.6 A B C

A B

C

AB

Figure 2-4 Example query and Two Joins

 21

2.1.5.1 Cost Analysis for BJtree

The CPU cost of a BJtree operation is the total cost of processing newly arrived tuples

from each input stream. For example, we have three input streams A, B, and C that we

need to join. A BJtree plan is shown in Figure 2-4 (c). When new tuples arrive from A,

first they are inserted into state A, at the cost Ci. The cost of inserting tuples from input

stream A into state A is λA * Ci . Moreover, tuples that are outside the time-frame (W) are

deleted from state A at the cost Cd, The number of tuples that need to be deleted is

equivalent to λA and that is computed as follows: λA * Cd. Then, the new tuples are joined

with the tuples that are in state B at the cost Cj, and the joined tuples are added into

intermediate state AB. Furthermore, the old tuples are deleted from state AB, and the cost

model used to compute this step is λA * λB * σAB * W * (Cj +Ci +Cd). In the following

step, the tuple from state AB is joined with the tuples that exist in state C, and the

computation of this step is λA * λB * λC * σAB * σBC * W2 * Cj. There is no need to store

the produced results, since there is no state |ABC|. In other words, there are no inserting

and deleting operations in the last step. The CPU cost for stream A in a unit time is CPUA

= (λA * Ci) + (λA * Cd) + (λA * λB * σAB * W * (Cj +Ci +Cd)) + (λA * λB * λC * σAB * σBC *

W2 * Cj). New tuples that arrive from input B follow the same steps, whereas tuples from

C are, first, inserted into state C. Subsequently, they join directly the tuples in state AB.

The CPU cost for C in a unit time is CPUC = (λC * Ci) + (λC * Cd) + (λA * λB * λC * σAB *

σBC * W2 * Cj).

The following is the total CPU cost for joining (A ⋈ B) ⋈ C.

CPUbjtree = (λA + λB + λC)(Ci + Cd) + (3 * λA * λB * λC * σAB * σBC * W2 * Cj) +(2 * λA *

λB * σAB * W * (Cj +Ci +Cd)) (2-1)

 22

The memory size is as follows:

The join order affects the size of the intermediate state. Choosing a better join ordering

decreases the memory size. If memory size is decreased, the CPU cost is reduced as well

as they are positively correlated.

2.1.5.2 Cost Analysis for MJoin

The CPU cost of the MJoin operation consists of the total cost of processing newly

arrived tuples from every input stream. For example, A, B and C are the streams we want

to join using an MJoin plan. The join ordering of each stream is shown in Figure 2-4 (b).

When new tuples arrive from A, they are inserted into state A. The tuples that are outside

the window size are deleted. The new tuples are then joined with the tuples in state B, and

the resulting tuples are joined with the tuples in state C. The CPU cost for A in a unit time

is CPUA = (λA * Ci) + (λA * Cd) + (λA * λB * σAB * W * Cj) + (λA * λB * λC * σAB * σBC *

W2 * Cj). The same process is applied to the new tuples from B and C. The following is

the total CPU costs for MJoin.

The memory size of the MJoin is as follows:

The optimal join orderings of input streams decreases the total CPU cost of an MJoin

plan (Viglas et al., 2003). Figure 2-4 (b) shows the optimal join orderings in our example.

MEMORYbjtree = |State A| + |State B| + |State C| + |State AB| = (λA * W) + (λB * W) +

(λC * W) + (λA * λB * σAB W
2) (2-2)

CPUmjoin =(λA + λB + λC)(Ci + Cd) + (3 * λA * λB * λC * σAB * σBC * W2 * Cj) +(2 * λA *

λB * σAB * W * Cj) + (λB * λC * σBC * W * Cj) (2-3)

MEMORYmjoin = |State A| + |State B| + |State C |= (λA * W) + (λB * W) +(λC * W) (2-4)

 23

2.1.5.3 Cost Analysis for JTree

The CPU cost of a JTree method is the total cost of processing newly arrived tuples from

each input stream. The JTree method is a combination of BJtree and MJoin operators;

thus, the CPU costs of a JTree method is calculated by combining equations (2-1) and (2-

3). Since we can not generate a JTree plan from the example shown in Figure 2-4, let us

consider the JTree plan shown in Figure 2-2 (c), which is joining (A ⋈ B ⋈ C) ⋈ D.

The reason is that the JTree plan needs at least 4 input streams to be formed.

First, input tuples that arrive from streams A, B, and C are joined together using equation

(2-3). The join ordering of each stream must be known a priori to calculate the CPU costs

of an MJoin operator. Since the resulting tuples need to be stored in an intermediate state,

the cost of inserting and deleting tuples from the new intermediate state needs to be

considered when calculating the total CPU costs. Assume that the join ordering of each

stream is the one shown in Figure 2-4 (b). The CPU cost for A in a unit time is CPUA =

(λA * Ci) + (λA * Cd) + (λA * λB * σAB * W * Cj) + (λA * λB * λC * σAB * σBC * W2 * (Cj

+Ci +Cd)). The same process is applied to the new tuples from B and C. The resulting

tuples are stored in state ABC. Tuples from D are first inserted into state D and then they

join directly the tuples in state ABC. The CPU cost for D in a unit time is CPUD = (λD *

Ci) + (λD * Cd) + (λA * λB * λC * λD * σAB * σBC * σCD * W3 * Cj). The following is the

total CPU costs for JTree.

The memory size is as follows:

CPUJtree = (λA + λB + λC + λD)(Ci + Cd) + (4 * λA * λB * λC * λD * σAB * σBC * σCD * W3 *

Cj) + (3 * λA * λB * λC * σAB * σBC * W2 * (Cj +Ci +Cd)) + (2 * λA * λB * σAB * W * Cj) +

(λB * λC * σBC * W * Cj) (2-5)

MEMORYJtree = |State A| + |State B| + |State C| + |State D| + |State ABC| = (λA * W) +

(λB * W) + (λC * W) + (λD * W) + (λA * λB * λC * σAB * σBC *W3) (2-6)

 24

2.2 Related Work

The explosive growth of sensors and RFID networks and utilizing them in real-time

scenarios caused a dramatic increase in streaming data on the Internet (Sirish et al.,

2003). Therefore, there was an urgent need for systems that can process this kind of data

since streaming data are different in nature from the data in traditional databases. There

are two fundamental differences between data stream management systems and

traditional database systems. First, streaming data is infinite, whereas data is finite in

traditional systems. Streaming data does not need to be stored entirely on the systems in

contrast to data in traditional systems. The second difference is that queries in DSMSs are

persistent, which means that queries are issued once and they remain active in the system

for a long time. On the other hand, queries in DBMSs are transient. They return results

and then they become inactive. This emergence of streaming data has resulted in the

development of streaming database systems (Chen et al., 2000; Rundensteiner et al.,

2004; Abadi et al., 2005).

2.2.1 Join Methods

Join has been extensively studied in static databases since it is one of the most commonly

used operations in database systems. Viglas (2005) predicts that join will be one of the

most intensive research areas in the stream context.

The two most common methods used to execute multi-join queries over streams are

MJoin (Viglas et al.; 2003) and BJtree (Kossmann and Stocker, 2000). Both techniques

mostly use hash-based join algorithms, which were primarily introduced by DeWitt

(1984) for static databases. Wilschut and Apers (1990) introduce the symmetric hash join,

 25

which deals with the streaming nature. Urhan and Franklin (2000) provide a technique to

overcome memory overflow by introducing an efficient way to spill overflowing tuples to

disk and join them later to produce the output. Urhan and Franklin (2000) improve the

performance of the symmetric hash join algorithm proposed by Wilschut and Apers

(1990), and enhance the response time in stream contexts. The primary reason for using a

hash-based join implementation is that previous works have proven, in most cases, its

superiority over other implementation such as nested-loop join (Zhu et al., 2010). Each

join operator in a hash-based join keeps one state per input stream to store tuples for

future joins.

To process continuous queries with multiple joins, the works before (Viglas et al., 2003)

use the BJtree method, which contains binary join operations that store intermediate

results. This method requires multiple steps to join all participant streams. Since the

BJtree method stores intermediate results, it requires memory space for the storage. There

are two different types of BJtrees: linear BJtree and bushy BJtree. The inputs of a bushy

tree are intermediate results, except the leaves, which are all base streams. On the other

hand, the inputs of each join operator in linear trees are intermediate result and a base

stream. However, this is not the case for the first operator in linear trees, which joins

tuples received from base streams. For the purpose of reducing the time complexity,

some query optimizers restrict the search space to linear BJtree, which may reduce the

chance of finding a good query plan (Selinger et al., 1979). In fact, prior works have

shown that a bushy BJtree in many cases has better performance than its counterpart

(Viglas and Naughton, 2002).

 26

MJoin is the second common method used to perform joins in stream environments

(Viglas et al., 2003). Instead of requiring multiple steps to perform the join, MJoin uses a

single step to join all participant streams. When a new tuple arrives, it is joined with the

other streams in a specific order. One of the differences between BJtree and MJoin is that

MJoin does not store intermediate results as in the case of BJtree. Therefore, MJoin

requires less memory compared to the BJtree method; however, this is performed at the

expense of increasing the CPU costs. This problem of excessive recomputation of

intermediate results in MJoin was acknowledged earlier by Viglas and his colleagues

(2003) when inventing the MJoin method. However, Viglas and his colleagues (2003) do

not provide a solution to tackle this problem. They suggest that a large MJoin, which has

more than four participant streams, can be split into two MJoin operators; however, they

do not account for memory constrains/costs.

2.2.2 Processing Multiple Queries

Similar queries can be executed by sharing the computation of query plans (Chen et al.,

2000). Madden et al. (2002) suggest indexing query predicates for the purpose of

processing multiple queries.

In the first approach, similar queries share the same computation, which can be

performed by building a common query plan (Chen et al., 2000). To illustrate, continuous

queries are divided into groups based on the similarity between the queries, and each

query belonging to a group shares a common subplan with other queries in this group.

The query plan contains all operations that answer all queries. This approach is beneficial

in reducing redundant operations when dealing with multiple queries. Although some

works have been accomplished using this technique of sharing query plans (Chen et al.,

 27

2000; Park and Lee, 2012) to reduce memory or CPU cost, to the best of our knowledge

no one has tried to address the problem of generating qualified plans for multiple queries,

which is one of objectives of this thesis. Roy et al. (2000) emphasize the significance of

integrating a query plan with sharing and materializing common results. However, Roy et

al. (2000) do not consider pipelining common results to their uses without materializing

them. Dalvi et al. (2003) suggest pipelining common results without materializing them

to reduce memory usage. Not all common results can be pipelined. Dalvi et al. (2003) do

not take into account CPU processing time. In DSMSs, query plans need to be generated

as quickly as possible. Thus, the work in (Dalvi et al., 2003) is not applicable to DSMSs

since it requires considerable time to generate a plan. Park and Lee (2012) improve the

technique introduced by Dalvi et al. (2003). They make it applicable to the data stream

environment. Park and Lee’s algorithm traces a set of promising subplans when

generating a global plan for multiple queries. The BJtree method is used in their

technique to generate common subplans. The work by Park and Lee (2012) does not

consider both CPU and memory consumption and the correlation between them.

The second approach is to index query predicates and store them in a table. The attribute

values of each newly arrived tuple are extracted and matched against the available query

index to determine which queries are satisfied by the tuple (Golab and Özsu, 2003).

2.2.3 Overview of Other Related Work

The previous research dose not tackle the problem of generating qualified global plans

for multiple queries. Most previous works utilize the positive correlation between CPU

and memory usages. The works that focus on optimizing BJtree, such as in (Babu et al.,

 28

2004; Urhan and Franklin, 2000), try to minimize the memory usage by reducing the size

of intermediate results, and assume that this will reduce the CPU consumption. The

works that focus on enhancing the MJoin method, such as in (Viglas et al., 2003, Madden

et al., 2002), aim to reduce the CPU costs needed to recompute intermediate tuples

without storing any intermediate results.

There are two additional works that utilize the positive and negative correlations between

CPU and memory usages. The first work is the Adaptive Caching algorithm (Babu et al.,

2005), which optimizes join performance by considering BJtree plans, MJoin, and the

entire spectrum between them. To elaborate, the Adaptive Caching technique starts with a

single MJoin operator and then places/removes caches for specific intermediate results.

There are differences between the technique proposed in this thesis and the Adaptive

Caching technique. First, the Adaptive Caching technique does not consider solutions

with overlapping candidate caches. It restricts the problem space to a set of

nonoverlapping caches because considering overlapping caches will complicate cache

management and optimization. To illustrate, nonoverlapping caches are the ones that do

not have join operators in common. Second, the Adaptive Caching technique looks at the

operator-level. Third, the Adaptive Caching technique does not consider sharing the

results of common join operations between queries.

The other similar work is the Two-Layer JTree-Finder algorithm (Zhu et al., 2010),

which finds a qualified query plan by extending the solution space to include BJtree,

MJoin, and a mixture of both. The first layer generates, first, an MJoin plan. If the plan

requires more CPU resources than the total available resources, the first layer generates a

BJtree plan. If the plan is still not qualified, the second layer is triggered. In the second

 29

layer, a mixture of MJoin and BJtree subplans is generated to find a global plan that is

adherent to both CPU and memory resources. In case a qualified plan is not found, other

techniques, such as load shedding (Tatbul et al., 2003) and memory spilling (Urhan and

Franklin, 2000), can be used. The work in (Zhu et al., 2010) deals only with a single

query and has not yet been extended to handle multiple queries.

Regarding some of the recent works in the field, Heinze et al. (2014) set latency as the

optimization target for multiple queries in a distributed data stream system. The

optimization component of their proposed system finds reusable operators in different

queries to construct a global plan. Lohman (2014) discusses some issues that have not

been solved yet in query optimization, one of which is the problem of redundant

predicates that may appear in queries. He gives an example of two queries that differ in

only one predicate, such that the predicate is redundant, that is, it is implied/subsumed by

the other predicates. Chen et al. (2013) focus on optimizing multiple top-k-queries over

uncertain data streams, where data is incomplete, imprecise, and misleading. Techniques

that are used in multi-query optimization over data streams cannot be applied to multiple

top-k query processing over uncertain data streams because of the complex semantics of

uncertainty (Chen et al., 2013). To et al. (2017) focus mainly on managing states in data

stream systems in which they provide some solutions to overcome the issue of having

scarce memory resources. One solution is to not restrict the processing to local memories.

Large states can be stored in a distributed system for joining multiple data streams to

ensure high scalability. Arasu et al. (2016) give insight into their data stream

management system. In their system, they use load shedding when system resources

 30

overflow. They ignore the idea of producing accurate results, which is one focus of this

thesis.

 31

CHAPTER 3 : GLOBAL PLAN GENERATION ALGORITHM

One obvious way to “optimize” multiple queries is to optimize each query individually

and then check which operations across queries can be shared. Our proposed method is

heuristic and it has the following contributions:

- Determine the order in which queries should be optimized.

- Pre-allocate CPU and memory resources to each query to ensure that when there is

a shortage of one of the resources, the optimization of queries will take it into an

account when forming the plan.

- Consider sharing computations and memory of common join operations when

generating a global plan.

- Satisfy both CPU and memory resource constraints by considering MJoin

operators, Bjtree operators, and a mixture of both when forming the plan.

Our primary objective of generating a global plan is to answer multiple queries while

minimizing resource usage by using both BJtree and MJoin operators and sharing the

results of common join operations. Generating a query plan only using one type of

operators, whether they are BJtree or MJoin operators, can miss the opportunity to

generate a plan that adheres to both CPU and memory usage. Moreover, when dealing

with multiple queries, sharing computation is significant to eliminating redundant work.

Our method creates a global plan by optimizing individual queries and adding their

operators to the global plan: when optimizing a query, the proposed method checks the

global plan for any join operations that can be reused or shared by the query. In case there

are sharable global plan join operators (i.e., operators of which results can be shared by

 32

more than one query) that can be used by the query being optimized, they may be used

even if they are expensive for the query being optimized. Using this technique, one

combination of joins may be more expensive for any single query but the amortized cost

across a number of queries can make sharing to be a good choice across all queries.

Because our method optimizes each query individually, the proposed method needs to

determine the order of queries in which they need to be optimized. We propose three

techniques to find the order of queries and they are described in the following section.

Our method also allocates a fixed amount of the respective CPU and Memory resources

for each query based on the number of input streams, input rates, and join selectivity of

join operations. A global execution plan is generated by optimizing queries individually,

while searching for shared operators when creating a plan for an individual query, and

incorporating their plans into the global plan. Subsequently, the global plan will have all

subplans that are required to evaluate the set of queries. To increase the likelihood of

finding common join operations, the effective cost of a join operation is used in this

process. The effective cost of any join operation takes into account the number of queries

that can reuse the operation’s result.

In Section 3.1 we present how the order of queries used by the global plan generation

algorithm is determined. How resources are initially allocated to each query is described

in Section 3.2. Determining which join operations can be shared by multiple queries is

described in Section 3.3. Section 3.4 describes the global plan generation algorithm

without details on the generation of qualified sub-plans that are then described in Section

3.5.

 33

3.1 The Order of Queries

Our method needs to determine the order of queries before optimizing them. To order the

queries, our method exploits the similarity between queries and the weight of queries.

Each join predicate has a degree of similarity d (j,Q) that represents the number of shares

of the join j amongst the queries in Q. To determine d (j,Q) for a given predicate, we

simply examine the processed queries and count how many of them have the predicate

and thus determine the degree of similarity d (j,Q). Intuitively, for a given predicate (r.A

= s.B), where r and s are relations and r.A and s.B are the joining attributes, if d (j,Q) = 3,

then that predicate appears in three queries. If we perform the join using this predicate,

then the result of this join is shared by three queries – which is preferred to executing the

same join in evaluating each query individually. Thus, the higher the degree of similarity,

the better it is to schedule the join so that its result can be shared. However, the cost of

executing a join itself is also relevant. Higher the cost of the join itself, then its sharing

needs to be higher for it to be selected. We represent this property by the weight-measure

of a join predicate that is proportional to the cost of a join, which depends on the number

of tuples in the window that need to be joined, and hence on the arrival rates and the

number of tuples formed by the join, which depends on the predicate’s selectivity. Thus

the gaged weight of a join predicate is calculated by equation 3.1, which multiplies the

join selectivity with the arrival rates of the operand streams a and b.

In short, the heavier the weight, the more expensive the processing of the predicate. Later

in this Chapter, we use the term edge weight and it is calculated using equation 3.1.

 34

The primary objective of finding the order of queries is to reduce the total CPU and

memory consumption of the global plan. In other words, processing queries in different

orders has an impact on generation of the global plan. We explore three heuristic

techniques to find the order of queries based on their weights: heaviest/largest to

lightest/smallest, lightest/smallest to heaviest/largest, and the shared predicate technique.

The amortized weight of a join predicate, or from now on simply referred to as the weight

of a predicate, is determined by equation 3.2, which divides the weight by the degree of

similarity d(j,Q) that represents the number of shares of the join j amongst the queries in

Q.

Let Q = {q1, q2, q3, … qn} be a set of queries, where each query is represented by an

acyclic join graph. Query qi = (Vi, Ei) is comprised of a set of streams Vi V and edges Ei

as predicates (joins) between streams. Let the join selectivity of edge ej = (K, L) be σK,L,.

Moreover, the number of edges / predicates in qi is |Ei|.

Let The weight of a query qi, relative to query set

Q, is the summation of the weight of all join predicates that exist in the query and it is

calculated as follows:

Sharing of results amongst the queries is encouraged by defining the cost of a predicate to

be its weight divided by the degree of sharing. In essence, we explicitly amortize the cost

 35

of the join across all sharing in the query, which reduces the per-query cost of the

operation. Thus, when we consider the cost of any single query, the use of the shared

operator may become a low-cost option for its query plan, which means the join will

likely be selected.

The three algorithms, which determine the order of queries for the global plan generation

algorithm, are now described. Using equations (3-2) and (3-3), the algorithms calculate

the weight of a predicate appearing in a query and the weight of a query.

3.1.1 Heaviest to Lightest:

In this technique, queries are ordered from the one with the heaviest weight to the one

with lightest weight. Therefore, the heaviest queries will be processed first. As queries

are individually optimized, CPU and memory resources are allocated to their plans. This

method will ensure that queries requiring “heavy” resources are optimized first and thus

it is expected that there are resources available to process them.

One drawback of this approach is that it does not encourage generating shared operators

at an early stage. In a later stage, if there is a shortage in one of the system resources such

as memory, the system will prioritize operators with low memory consumption over

operators that can be shared by multiple queries. Therefore, this technique, in some cases,

does not fully exploit the similarity between queries. The goal here is to generate join

operations that can be shared between queries as soon as possible, so CPU and memory

resources of the shared operations are shared by the rest of the queries if possible. This is

significant when considering the pre-allocation of resources to queries, which will be

discussed in section 3.2. Algorithm 1 shows how to order queries using this approach.

Keep in mind that the degree of similarity that represents the number of shares of the join

 36

amongst the queries may change when a query is removed. This happens when there are

predicates shared with the removed query. Thus, after removing a query in line 8 of

Algorithm 1, the weights for queries need to be recalculated, and that is the reason why

we keep recalculating the weights for queries in each iteration of algorithm 1 (lines 3-5).

Algorithm 1 Finding_Order_of_Queries (Heaviest to Lightest)

Input: queries Q = { q1, q2, …, qn }, where each query is a Join Graph

Output: Order of queries in an Ordered_list.

1: Ordered_list = empty;

2: While (Q != null);

3: For each query q ∈ Q do

4: calculate and store query weight w(q,Q) using equation (3-3)

5: End for

6: let qlargest_index ∈ Q be the query with largest weight w(qlargest_index,Q)

7: append qlargest_index to Ordered_list;

8: remove qlargest_index from Q;

9: End while

10: Return Ordered_list

3.1.2 Lightest to Heaviest:

Unlike the first approach, queries in this technique are ordered from the one with the

lightest weight to the one with the heaviest weight. This approach has a chance to

generate operators that can be shared across queries at an early stage because it exploits

the similarity between queries to some degree. However, it may miss some opportunities

for generating operators that can be shared among queries. Figure 3-1 illustrates how

some queries may ignore sharing operators. Let us assume we have sufficient system

resources. There are three queries: query 1 has the lightest weight, query 2 has the second

lightest weight, and query 3 has the heaviest weight, which is calculated by equation 3-3.

In this example, when processing query 1, B and C are joined first because they have the

lightest weight. Then, their result is joined with stream A. If we process query 2 first, A

 37

and B are joined first because their weight is smaller than joining B and D. Thus,

processing query 2 first is more beneficial because it generates a join operation that can

be shared between two queries.

It is sometimes beneficial to process a heavier query at an early stage if its results can be

shared by other queries as shown in the example of Figure 3-1. Optimizing all heavy

queries as last may mean that resources may not be available for them. For instance,

generating query plans for all but the last query may not leave sufficient memory (CPU)

available for the last query, which may require a lot of memory (CPU) resources and thus

the global qualified plan may not be found. If that heavy query was optimized early, a

global plan may have been found. Algorithm 2 shows how to order queries using this

technique.

Algorithm 2 Finding_Order_of_Queries (Lightest to Heaviest)

Input: queries Q = { q1, q2, …, qn }, where each query is a Join Graph

Output: Order of queries in an Ordered_list.

1: Ordered_list = empty;

2: While (Q != null);

3: For each query q ∈ Q do

4: calculate and store query weight w(q,Q) using equation (3-3)

5: End for

6: let qsmallest_index ∈ Q be the query with smallest weight w(qsmallest_index,Q)

7: append qsmallest_index to Ordered_list:

8: remove qsmallest_index from Q;

9: End while

10: Return Ordered_list

Queries

1) A ⋈B⋈ C

2) A ⋈B⋈ D

3) A ⋈C⋈ D

Input rate for streams

A = 10

B = 12

C = 10

D = 30

Selectivity factor

A ⋈ B = 0.1

B ⋈ C = 0.01

B ⋈ D = 0.2

A ⋈ C = 0.9

C ⋈ D = 0.5

Figure 3-1 Example of ordering queries from lightest to heaviest

 38

3.1.3 Shared predicate technique:

In the previous two algorithms the order of queries was determined by properties of

queries, one ordering the queries from lightest to heaviest, while the other from heaviest

to lightest, where the weight of query is determined using the equation (3-3). This

technique is used to solve the issue discussed in section 3.1.2 by selecting the order of

queries not on the properties of queries, but rather on properties of predicates that queries

contain and favoring those queries that contain predicates that are shared across queries.

The method examines the join predicates that are shared between at least two queries and

chooses the one with the smallest weight. Recall that the weight of a join predicate is

calculated by dividing its weight by the degree of similarity. The heaviest query that

shares this predicate is then placed into the order of queries to be optimized. We prioritize

heaviest queries here because a poor query plan for heavy queries exhausts system

resources more than any other types of queries. Some operations that exist in the global

plan may force heavy queries to have poor query plan overall. Thus, processing heavy

queries first reduces the probability of using unwanted operations that already exist in the

global plan by those queries. After placing q1 in the order, q1 is removed from the set of

queries and the weights of the remaining queries are re-calculated using equation 3-3.

The process then repeats, the cheapest join predicate that is shared between multiple

queries is selected and the heaviest query that shares it is set to be the second query in the

order. This process will continue until all queries are placed in order. In case there is

more than one predicate with the same weight, the heaviest query that shares any one of

these predicates is chosen first. In case there does not exist shared predicate anymore, the

smallest predicate is selected and the largest query that has it is placed next. The

 39

experimental results in section 4.2 show that this technique is superior to the other two as

it generates more shared operations. Algorithm 3 shows how to order queries using this

approach. Note that a shared join predicate, sometimes referred to as a shared predicate,

is a predicate that is shared between at least two queries.

Algorithm 3 Finding_Order_of_Queries (Shared-predicate)

Input: queries Q = { q1, q2, …, qn }, where each query is a Join Graph

Output: Order of queries in an Ordered_list.

1: Ordered_list = empty;

2: While (Q != null)

3: For each query q ∈ Q do

4: For each join predicate j in each query q do

5: calculate and store join weight w(j,Q) using equation (3-2)

6: End for

7: calculate and store query weight w(q,Q) using equation (3-3)

8: End for

9: If there is shared predicate, that is shared by different queries, still exists in queries q ∈ Q do

10: Find that predicate j, over all queries q ∈ Q, such that:

 1) j has the smallest weight w(j,Q) and

 2) j is shared by at least two queries from what left

11: Find that query q ∈ Q, such that:

1) q has the predicate j and

2) weight w(q,Q) is the largest of all queries that share the predicate j

12: Else // if there is no shared predicate anymore in queries q ∈ Q

13: Find that predicate j, over all queries q ∈ Q, such that:

 j has the smallest weight w(j,Q)

14: Find that query q ∈ Q, such that:

1) q has the predicate j and

2) weight w(q,Q) is the largest of all queries

15: End If

16: append q to Ordered_list:

17: remove q from Q;

18: End while

19: Return Ordered_list

3.2 Initial Resources Allocation

When our proposed method optimizes individual queries, according to one of the

orderings of Section 3.1, each query is given an initial resource allocation of CPU and

memory that depends on the total resources available and the estimated resource

 40

allocation available for each query. This is to ensure that when there is a shortage of CPU

(memory) resource, optimization of the individual query will take this into an account

and use BJtrees (MJoins) as opposed to MJoins (BJtrees).

Algorithm 4 allocates CPU and memory resources for each query. Begin with a set of

queries Q = {q1, q2, q3, … qn}, where each is represented by an acyclic join graph. Query

qi = (Vi, Ei) with vertices Vi from the set of streams Vi V. Given edge e = (K, L) as a

predicate of qi, with K, L Vi, let the join selectivity of ej be . Let K and L denote

the arrival rates of streams K and L, respectively, in a unit time. Moreover, number of

edges / predicates in qi is |Ei|. Let Wi be the window size of input streams of the query qi.

As all arriving tuples must be processed, we base the initial allocation of CPU and

memory resources on the arrival rates and join selectivity as follows:

The allocation of resources is based, in the numerator, on the arrival rates of streams

involved in joins and on their selectivities. The denominator ensures that the total

allocation of the resource over all queries does not exceed the constraints on the resource.

Thus, the sum of resources allocated to each query equals to the total available resources.

If a join operation consumes less CPU than its allocated CPU resources, the unused CPU

resources are provided to the other operations. Similarly, memory size that is unused is

provided to the other join operations that require more memory.

 41

3.3 Subexpression Sharing

The proposed algorithm generates qualified subplans that can be shared among different

queries. Given a set of queries, there is a potential for the same join predicates to exist

across queries. It is beneficial to utilize the similarity between queries by generating

operations that are shared by queries. Therefore, this thesis introduces a sharing execution

strategy that helps in keeping the CPU and memory costs below the available system

resources.

A basic strategy is to evaluate each query individually on the incoming streams.

However, if the similarity between queries is not exploited, this strategy can perform

some redundant work as it may re-evaluate the same predicate more than once, which

increases the overall evaluation cost. Moreover, collectively optimizing queries without

sharing common join operations can negatively impact the performance of multiple query

optimization. Therefore, choosing a sharing execution strategy for a set of queries is

obviously an advantageous alternative compared to not sharing results.

To share the results of common subexpressions, the following factors should be taken

into account:

The first factor is the sharing degree, which is adopted from Park and Lee (2012). Each

join operation has a sharing degree, which indicates the reusability of the operation in the

plan. The sharing degree of a join operation Jx in plan P is calculated as follows:

S(e) is the set of queries qj that share the results of the join represented by edge e Ei .

Recall that Wj denotes the window size of input streams of the query qj. A join operation

Jx is called a sharing operation if  (Jx|P) > 1. The greater the value of a sharing degree,

 42

the more a join operation can be shared and thus eliminate re-computing the same

operation repeatedly and reducing the consumption of system resources. The main

objective here is to find join operations that can be shared by incoming queries.

The second factor is the effective cost. Instead of considering the actual cost of a join

operation, which is determined by equations (2-1) to (2-4), the effective cost is used when

generating a qualified global plan. The following equations show how to calculate the

effective cost of a sharing join operation Jx in a qualified plan P that is under

consideration.

In the above equation, in “effCostRESOURCE”, where “RESOURCE” stands for

“CPU”, if the resource is CPU, while it is “MEM” if the resource under consideration is

memory. The actualCost (jx | P) is obtained by equations (2-1) and (2-2) in Section 2.1.5,

if the operation is a BJtree, while it is obtained by Equations (2-3) and (2-4) if the join

operation is an MJoin. The effective CPU cost of a subplan sp is the summation of the

effective CPU costs of all operations in sp. Similarly, the effective memory cost of a

subplan sp is the summation of the effective memory costs of all operations in sp.

In the above equations, Nsp is a set of nodes, i.e., joins in the subplan sp. As stated before,

we will be generating a plan for a query at a time and incorporating it into a global plan.

When searching for a plan for one query, different subplans will be examined and

compared to each other to select the best one. To compare two subplans being considered

 43

in optimizing a query, we shall use equation (3-10) and Table (3-1). Let

 M … be the total memory resource available,

 Mg … be the memory consumed by the global plan g,

 C … be the total CPU resource available, and

 Cg … be the CPU resource consumed by the global plan g.

Then, the effective CPU and memory costs of sp relative to global plan g are combined as

fractions into a tuple, denoted as effCost:

Equation (3-10) defines the effective cost of a subplan sp, effCost(sp, g), as a tuple (c, m)

with 0 ≤ c, m ≤ 1, where c is the effective CPU cost of sp plus the CPU cost of the global

plan g, divided by the total CPU resource available. m is defined similarly using memory

rather than CPU cost. More abstractly, c is the fraction of total CPU consumed by sp and

global plan g, while m is the fraction of memory consumed by sp and global plan g.

When optimizing a query, an iterative process is used when choosing the next operation

to be incorporated into the query’s plan. Iterations are used to examine alternative

subplans and then choose the best one. In each iteration, the current minimum plan is

compared to a new plan under consideration, and if the new plan is better than the current

minimum plan, the new plan becomes the current minimum plan. To determine which of

two plans under consideration is better, we need to develop a relationship, which defines

when one plan is better than another.

Let sp1 and sp2 be two subplans and let effCost(sp1, g) = (c1, m1) and effCost (sp2, g) =

(c2, m2) relative to a global plan g. The comparison (effCost(sp1, g) < effCost(sp2, g)) in

Lines(14, 39) of algorithm 4 is defined in Table 3-1 as:

 44

Table 3-1 Definition of Less Than Comparator for Two (Sub)Plans

Values of m1, m2, c1, c2 Result of (effCost(sp1,g) < effCost(sp,g2)

m1 < m2 and c1 < c2 TRUE……………………. (1)

m1< m2, c1 > c2, ((c1+Cg)/C < (m1+Mg)/M) TRUE……………………. (2)

m1 > m2, c1 < c2, ((m1+Mg)/M < (c1+Cg)/C) TRUE……………………. (3)

none of the above hold FALSE…………………… (4)

Recall that C and M represent the total CPU and the total memory resources available,

respectively; Cg and Mg are CPU and memory consumed by the global plan formed thus

far, respectively. Let c2 and m2 represent the respective effective CPU and memory costs

of the current min subplan and we are considering a new subplan (with m1 and c1) and

are trying to decide whether it is better than the current min plan. Consider the conditions

in Table 3-1. The new subplan is better if (1) holds as both the CPU and memory costs of

the plan sp1 are lower than those of sp2. The new subplan is also better if (2) holds: if the

new subplan uses less memory than the current minimum subplan but uses more CPU,

and memory is scarcer than CPU, then the new subplan is better - as defined by (2). The

reasoning for the CPU is similar and is defined by (3).

The above factors are important for generating operations that can be shared by incoming

queries. If there are two or more plans that are qualified for a query, using the above

factors helps in deciding which query plan should be added to the global plan. An

important point to be considered is to share operations that already exist in the global

plan. Thus, the utilized algorithms, in our method, that generate MJoin and BJtree

operators were modified to consider the sharing. The last two subsections in this chapter

explain the utilized algorithms.

 45

3.4 Global Plan Generation Algorithm

Algorithm 4 shows the pseudo-code of generating a global qualified plan. One of the

inputs of the algorithm is queries. Each query is defined on a set of input streams and is

represented by a join graph, which contain edges E and vertices V. A BJtree operator is

generated by removing an edge e and combining two vertices. Figure 3-2 depicts a query

and a generated BJtree operator.

There are two other inputs to Algorithm 4: the total available CPU and the total available

memory. In the following section, our proposed technique is explained in more detail.

Recall that a plan P is represented by a set of nodes that are connected by a set of edges,

and a subplan SP is a subgraph of a plan such that all nodes in SP are connected. We

extend the Two-Layer JTree-Finder approach proposed in (Zhu et al., 2010) to generate a

global plan for multiple queries. The Two-Layer JTree-Finder approach of (Zhu et al.,

2010) is designed to generate qualified plans for a single query; thus, it does not consider

producing an optimized plan for multiple queries. Our proposed method generates a

global plan for multiple queries while exploiting the sharing of results of operations

across queries. Algorithm 4 uses methods/subroutines, listed in Table 3-2, that perform

specific tasks or implement algorithms, where algorithms 5, 6, and 7 are described later

in this chapter. Also, some of the algorithms are based on works in other references as

noted in the table.

B
(10)

A
(10)

(a) Join graph (b) Generating a BJtree operator

0.1

D
(80)

0.2

A B
(20)

D
(80)

0.2

B A

A B

D

Figure 3-2 A query and a BJtree operator

 46

Table 3-2 Subroutines Accessed by Algorithm 4

Subroutines Description

Finding_Order_of_Queries(Q) Implements Algorithm 3: Given a set of queries, return a sequence of

the queries that satisfies an ordering criterion as defined by

Algorithm3.

Find_MJoin_Ordering(G) From (Viglas et al., 2003). Find MJoin_Ordering takes join graph of

query qi as input and returns a subplan sp that joins all input streams in

a single step with a specific order in an MJoin and thus also

determining the specific sequence in which streams are joined within

the MJoins.

State_Selection (sp, G, P) Implements Algorithm 5. Inputs of State_Selection algorithm are a

subplan sp, join graph g and the global plan P. The output consists of a

subplan with both MJoin and binary join operators and an edge. In each

iteration of State_Selection algorithm, an edge e from G is removed to

generate a binary join operator.

Find_BJTree_Ordering (G, P) Implements Algorithm 6. Inputs are a join graph G and the global plan

P created thus far and the output is a subplan with binary join

operators.

State_Removal (sp, c, G, P, S,

min_ratio)

Implements Algorithm 7. Inputs of State_Removal algorithm are

subplan sp and its actual CPU cost c, join graph G, the global plan P, a

state S and min_ratio. The output is a subplan with both MJoin and

binary join operators.

CPU(sp) The actual CPU resources for subplan sp

Memory(sp) The actual memory resources for the generated subplan sp by the

adapted algorithms

Algorithm 4 The Global Plan Generation Algorithm

Input: (1) queries Q = { q1, q2, …, qn }, where each query qi is a Join Graph, over streams, with information

on input rates, selectivities, and window sizes of query streams;

 (2) CPUavail,

 (3) Memoryavail

Output: A complete qualified plan P or -1 if a global qualified plan was not found

1: Initialize Global Plan P to an empty plan;

2: Q_ordering = Finding_Order_of_Queries(Q)

3: For i = 1 to n do

4: // First Layer

5: Let Gi be the join graph of query qi, which is the i-th query in the ordering Q_ordering

 47

6: sp = Find_MJoin_Ordering(Gi)

7: If CPU(sp) ≤ allocatedCPU(qi) then

8: If Memory(sp) ≤ Memoryavail then

9: spmin
 = sp

10: E = Set of edges in Gi

11: While (E != null)

12: (sp, e) = State_Selection (sp, Gi, P)

13: If (Memory(sp) ≤ allocatedMEMORY(qi)) AND (CPU(sp) ≤ allocatedCPU(qi)) then

14: If effCost(sp, P) < effCost(spmin, P) then

15: spmin = sp

16: End if

17: End if

18: Remove e from E

19: End while

20: Else // Memory(sp) > Memoryavail – the subplan here is an MJoin subplan

21: return -1 // no MJoin subplans can be found. Thus no qualified subplans can be found

22: End if

23: Else // CPU(sp) > allocatedCPU(qi)

24: // Second Layer

25: sp = Find_BJTree_Ordering(Gi, P)

26: If Memory(sp) ≤ allocatedMEMORY(qi) then

27: If CPU (sp) ≤ CPUavail then

28: spmin = sp

29: Else // CPU (sp) > CPUavail - the subplan here is a BJtree subplan

30: return -1 // no BJtree subplans can be found. Thus no qualified subplans can be found

31: End if

32: Else // Memory(sp) > allocatedMEMORY(qi)

33: S = set of all intermediate states in subplan sp

34: min_ratio = ∞

35: For each state s ∈ S do

36: (sp, min_ratio) = State_Removal (sp, CPU(sp), Gi, P, s, min_ratio)

37: If (Memory(sp) ≤ Memoryavail) AND (CPU(sp) ≤ CPUavail) then

38: If effCost(sp, P) < effCost(spmin, P) then

39: spmin = sp

40: End if

41: End if

42: End for

 48

43: End if

44: End if

45: Insert spmin into P

46: Memoryavail = Memoryavail - Memory(spmin)

47: CPUavail = CPUavail - CPU(spmin)

48: End for

49: return P

The algorithm first determines the order of queries to be optimized and included in the

global plan. Line 2 invokes algorithm 3 described in Section 3.1.3 to determine the order

of queries. Lines 3-48 form a loop that iterates over queries in the order as defined by the

Q_ordering, which was determined in line 2. Thus, i in the loop, identifies the i-th query

in the order Q_ordering.

At the beginning, the query under consideration (query qi) is allocated a portion of the

total available resources. This is so that the subplan generation within the loop does not

produce mostly MJoins, and thus exhaust CPU resources, or binary joins, and thus

exhaust memory. For query qi, algorithm 4 produces an optimal MJoin subplan using the

MJoin-ordering algorithm (Viglas et al., 2003) in the first phase (Line: 6). If the

generated MJoin subplan does not use more CPU than is allocated to it and it does not

use more memory than is available, then it is placed as the min subplan spmin (Line: 9).

The allocated CPU cost is used to ensure that CPU resources are not exhausted (Line: 7).

Similarly, it is ensured that the subplan sp does not use more memory than is available

(Line: 8). However, since sp was found using MJoin, which is more CPU intensive and

does not use much memory, the State Selection algorithm is used to find a better subplan

(Lines: 11-19). A qualified subplan with a better effective cost, which is determined

using equation (3-10), is incorporated in the global plan (Line: 45). In case there is

 49

sufficient memory, the required CPU resources are checked and if the required CPU

resources are more than allocated, finding a qualified subplan is still feasible and hence

the second layer is triggered (Line: 24).

The second layer initially generates an optimal BJtree subplan (Line: 25). If the generated

BJtree subplan requires more CPU than is available (Line: 29), qualified subplans can no

longer be found because BJtree subplans have the least amount of CPU usage. BJtree

subplans do not require the re-computing of intermediate results since they are stored in

memory (Kossmann and Stocker, 2000). If the generated BJtree subplan requires more

memory resources than the allocated resources, the State Removal algorithm is used

(Line: 36). The State Removal algorithm may produce a qualified subplan with a better

effective cost, which is determined using equation (3-10), (Lines 35-42). min_ratio, in

lines 34 and 36, is a factor that helps in deciding whether to remove a state. Recall that a

state means an intermediate result stored in memory. The min_ratio, in Algorithm 7, is

calculated by subtracting the CPU cost of a subplan before removing a state from the

CPU cost of the subplan after removing the state, and then it divides the result with the

size of the memory saved after the state removal. Ultimately, a complete final qualified

plan is returned.

One of the most significant benefits of using the Two-Layer Framework is that early

termination can be achieved when either a qualified subplan is discovered or when the

threshold limit for the required system resources is exceeded by all generated subplans in

the first part of both layers. For example, when the required memory of the optimal

MJoin subplan is larger than the available memory resources, then a qualified subplan

can no longer be found as MJoin subplans have the least amount of memory usage. On

 50

the other hand, early termination is achieved if the required CPU resources of the

generated BJtree subplan are more than the available resources.

3.5 Qualified Subplan Generation

Searching the extended plan search space exhaustively to generate a qualified execution

plan is exponential in time complexity, which makes it not applicable to a data stream

environment even with pruning techniques (Zhu et al., 2010). Therefore, our Algorithm 4

extends the Two-Layer JTree-Finder algorithm introduced in (Zhu et al., 2010) that

generates a qualified plan for a single query in polynomial time. We adapt it so it works

on multiple queries. Our proposed algorithm utilizes four different algorithms: the MJoin-

ordering algorithm (Viglas et al., 2003), BJtree algorithm (Kossmann and Stocker, 2000),

State Selection algorithm and State Removal algorithm (Zhu et al., 2010). However, three

of them are modified, in our work, to exploit the sharing of join operators in a multi-

query environment.

3.5.1 First Layer Algorithms (MJoin and State Selection)

3.5.1.1 MJoin Ordering Algorithm

The first layer of the proposed approach triggers the MJoin-ordering algorithm that is

adopted from (Viglas et al., 2003). This algorithm generates a subplan that joins multiple

streams in a single step without storing intermediate results. When a new tuple arrives, it

joins with the other streams in a specific order. The join order is determined by

considering the input rates of each stream and join selectivity of a join operation. The

MJoin algorithm selects the next input to join if it generates the smallest number of

intermediate results. The number of intermediate results (i.e. weight) is the product of the

join selectivity and the arrival rates of the operand streams: λa * λb * σa,b. In each

 51

iteration, this algorithm selects one stream and sets it as a root. Then, the weight of other

streams is calculated to find the join sequence of the rooted stream. For each rooted

stream, the time complexity to calculate the weight of streams is O(n), where n is the

number of streams. For all rooted streams, the time complexity to find the weight of

streams is O(n2). To illustrate, consider a query over n input streams. Each input stream

needs to join with n-1 streams. In Figure 3-3(a), for example, if a tuple arrives at stream

B, it joins with tuples from stream A since joining A and B produces the smallest number

of intermediate results. The generated results then join tuples from stream D because it

produces the second smallest number of intermediate results. The time complexity for

joining streams is O(log (n)). The total time complexity to find the join ordering for each

stream is O(n log (n)), whereas finding the join sequence for all input streams has a time

complexity of O(n2 log (n)). The best MJoin ordering is the least CPU costs.

We use this algorithm without any modification because it is not affected by the existence

of operators in the global plan. This is because it generates one MJoin operator where all

input streams of a query are joined in a single step. For example, consider two queries:

the first query needs to join streams A, B and C, whereas the second query needs to join

streams A, B and D. Since the intermediate results are not stored, both queries will not

share any subplan even though both queries are partially similar. The goal here is to

B
(10)

A
(40)

C
(90)

(a) Join graph

A  B  D  C
B  A  D  C
C  B  A  D
D  B  A  C

(b) MJoin and Join Orderings

0.01

0.8 A B C

D
(80)

0.2 D

Figure 3-3 MJoin plan and a join graph

 52

reduce the CPU consumption without increasing the usage of memory resources. Figure

3-3(b) shows an optimal MJoin plan for the join graph presented in Figure 3-3(a).

3.5.1.2 State Selection Algorithm

The second algorithm, Algorithm 5 is State Selection and it is adapted from (Zhu et al.,

2010). The original algorithm was proposed to optimize a single query and thus we

needed to modify it so that the sharing of results across multiple queries would be

exploited. The inputs to this algorithm are a join graph G, which is a graph of one of the

queries originally input, the global plan P created thus far, and an MJoin subplan

generated by the MJoin ordering algorithm. The three fundamental factors that determine

which intermediate states to store are the existence of the state in the global plan, the

edge weight and the edge frequency. An intermediate state is the result of a join operation

that is stored in the memory. Each edge in G creates a binary join when it is removed. If a

result of one of the join operations already exists in the global plan, its cost is considered

to be zero for the query under consideration - thus that join will be used/adopted (Lines:

3-7 of algorithm 5). In case there are no join operations in the global plan that can be

used by the query, we use the same process that is used in (Zhu et al., 2010). The edge

A  B  D  C
B  A  D  C
C  B  A  D
D  B  A  C

(a) MJoin and Join Orderings

A B C D

A B  D  C
B A  D  C
C  B A  D
D  B A  C

(b) State Selection plan after one

iteration and the optimal MJoin

Orderings

A B

C D

Figure 3-4 MJoin ordering and a State Selection plan

 53

with the largest ratio of frequency/weight is used to identify the query’s binary operator

(Line: 9). Recall that the weight of each join predicate is determined by multiplying the

join selectivity with the arrival rates of the operand streams (λA* λB * σAB). The

frequency is determined by how many times two streams are joined after each other in

the join orderings as shown in Figure 3-4(a). Thus, a binary operator is selected either

because it already appears in the global plan or it has the highest frequency/weight ratio.

After creating a binary join operator whose output is now fed to the MJoin operator such

as in Figure 3-4 (b) (but now for an MJoin with one less input stream) we use the MJoin-

ordering algorithm from (Viglas et al., 2003) with a time complexity of O(n2 log (n))

(Lines: 5, 11 of algorithm 5). The State Selection algorithm has a time complexity of O(n

+ n2 log (n)) (Zhu et al., 2010). Figure 3-4 (b) shows a State Selection plan. Note that a

global plan P contains a set of subplans and any subplan that is an element of P can

answer a part or a whole query.

Algorithm 5 State Selection Algorithm

Input: 1) Join Graph G=(V, E) of a query.

 2) Global Plan P,

 3) Subplan sp, such that its final operation is an MJoin that produces the subplan’s result

Output: 1) Subplan SPnew

 2) Selected edge e, such that SPnew generates the same result as the given plan sp and operations of

SPnew are the same as that of sp except that a binary join is created over the output edge e

1: Let Poper be the set of operations (joins) in P

2: For e = (vx , vy) ∈ E do

3: If (exists operator o ∈Poper that joins two streams in G connected by e) then

4: Gnew = Graph G that is modified by removing edge e and coalescing vertices vx and vy into vxy;

5: SPnew = Find MJoin Ordering (Gnew);

6: Return (SPnew, e)

7: End If

 54

8: End For

9: Choose edge e = (vx , vy) ∈ E that has the max ratio of (frequency/weight)

10: Gnew = Graph G that is modified by removing edge e and coalescing vertices vx and vy into vxy;

11: SPnew = Find MJoin Ordering (Gnew);

12: Return (SPnew, e)

3.5.2 Second Layer Algorithms (BJtree and State Removal)

3.5.2.1 BJtree Algorithm

The BJtree algorithm, Algorithm 6 is triggered in our second layer. Unlike the MJoin-

ordering algorithm, this algorithm takes multiple steps to join input streams. Intermediate

results are stored when using the BJtree algorithm. To elaborate, when new tuples arrive

from an input stream, they join with the tuples from another input stream. The joined

tuples are stored in an intermediate state, and tuples in this intermediate state then join

with either tuples from a third input stream or tuples from other intermediate results.

There are two factors that determine which intermediate states to store. The first is the

existence of the state in the global plan, and the other factor is the edge weight. If an

intermediate state already exists in the global plan, that is, if the binary join under

consideration is already a part of the global plan, there is no reason to recalculate the

result. The query that is being optimized will use the results of this intermediate state, at

zero cost, as it already has been created for other queries (Lines: 4-8 of algorithm 6).

After already existing results in the global plan are incorporated into the currently

optimized query, the edge with the smallest weight is used to generate intermediate

results in each iteration (Lines: 10- 15). This algorithm has a time complexity of O(n2 log

(n)).

 55

Algorithm 6 BJtree Algorithm

Input: 1) Join Graph G=(V, E) of a query.

2) Global Plan P

Output: SPnew

1: SPnew = empty,

2: Let Poper be the set of operations (joins) in P

3: For each edge e = (vx , vy) ∈ E do

4: If (exists operation o ∈ Poper that joins two streams connected by e in G) then

5: Add the operation o to the subplan SPnew;

6: Modify G by coalescing vertices vx and vy into a vertex vxy and assigning vxy = 2 * λx * λy * ;

7: Remove e from E;

8: End if

9: End For

10: while (E != null) do

11: Let operation c be an operator that joins two streams connected by e in G;

12: Find that e = (vx , vy) ∈ E that has the smallest weight (using eq. 3-1)

13: Add the operation c to the subplan SPnew;

14: Modify G by coalescing vertices vx and vy into a vertex vxy and assigning vxy = 2 * λx * λy * ;

15: Remove e from E;

16: End while

17: Return SPnew

Figure 3-5 BJtree plan and State Removal

A  B  D
B  A  D
D  B  A

(b) State Removal plan after one
iteration and the optimal MJoin
Orderings

(a) A BJtree plan

A B D

A B

C

D

C

 56

3.5.2.2 State Removal Algorithm

The State Removal technique presented in (Zhu et al., 2010) has been adapted for use in

our second layer. The adaption deals with modifications to exploit the sharing of results

across queries. As shown in algorithm 7, the inputs to this algorithm are a join graph, the

global plan P created thus far, a subplan sp, CPU cost of sp, a selected state to be

removed, and min_ratio which helps in deciding whether or not to remove the chosen

state. To decrease the memory consumption, the State Removal algorithm eliminates

some of the existing intermediate states. Thus, it provides a trade-off between CPU and

memory resources.

There are three factors that need to be considered to remove intermediate results. The

first is whether or not the intermediate state exists in the global plan. If it already exists, it

will be used by the incoming queries as there is no additional cost in using it for this

query. In case there are no intermediate states in the global plan that can be used by the

query, we remove intermediate states by considering the other two factors as presented in

(Zhu et al., 2010). The second factor is the amount of memory saved when a state is

removed, whereas the third is the additional CPU costs required to re-compute the

intermediate results (line: 11 of algorithm 7). Figure 3-5(b) shows a step of the State

Removal technique, and Figure 3-5(a) represents the input BJtree plan. The State

Removal algorithm has a time complexity of O(n + n2 log (n)) (Zhu et al., 2010).

Algorithm 7 State Removal Algorithm

Input: 1) Join Graph G=(V, E) of a query.

2) Global Plan P.

3) subplan sp, where sp is not part of P

 57

4) CPU(sp);

5) state Sn in sp;

6) min_ratio;

Output: TheReturnedSP, min_rationew

1: SPold = sp;

2: min_ratioold = min_ratio.

3: Let Poper be the set of operations (joins) in P

4: Let op1∉ P be a join operator that produces Sn

5: Let op2 ∉ Poper be any join operator that feeds tuples to Sn

6: Let M be an MJoin with inputs as the union of inputs to op1 and to op2

7: SPnew = sp modified by replacing the inputs of op1 and of op2 with M

8: Let G’ ∈ G be a subgraph of G such that it contains those streams that are processed by M.

9: SPnew = Find_MJoin_Ordering(G’);

10: Let z be the memory saved when removing Sn from sp;

11: state_ratio = (CPU(SPnew) – CPU(sp)) / z

12: If (state_ratio < min_ratio)

13: Return SPnew, state_ratio

14: Else

15: Return SPold, min_ratioold

16: End if

 58

CHAPTER 4 : EXPERIMENTAL EVALUATION

In this section, the proposed method is evaluated to examine its effectiveness. All the

algorithms in this thesis were implemented in Java, and all the experiments were

executed on a Core 2 Duo CPU 2.4 GHz system with 10 GB RAM.

In the experiments, a set of multi-way join queries is randomly generated. For each

query, n input streams are chosen from 20 sources of streaming data (n ≤ 20). Since

equi-join queries are popular in wireless sensor networks, all queries in the experiments

are equi-join queries with (n-1) join predicates. Table 4.1 represents the parameters that

govern the experiments, and their values.

The input rate of each input stream is randomly generated over the range [10…. 100]

(tuples/s). The join selectivity of each join operation is randomly generated in the range

of [0.01, 0.2]. The window size of each query is set to be the same at 10 seconds. Input

rates and join selectivities have a uniform probability distribution over the specified

range. Values used in this experiment are typical values and they are used by other

researchers (Hammad et al., 2003) (Zhu et al., 2010) (Park and Lee, 2012).

Table 4-1 Experimental Parameters

Parameters Values

Number of join predicates in each query 3, 5, 7, 9

Number of queries 10

Number of streams n 20

 59

4.1 Experimental methodology

The objective of this experimentation is to evaluate the proposed method by comparing it

to the performance of the Two-Layer JTree-Finder approach proposed in (Zhu et al.,

2010). To optimize multiple queries, Zhu et al suggest that we first need to allocate

resources to each query and then directly apply their Two-Layer JTree-Finder algorithm

to each query. Each query is independently optimized by their algorithm without the

sharing of results of common join operators - we refer to their optimization as the naïve

approach since it was not designed for multiple queries. Moreover, we also compare our

method with this naïve approach when the join operations are shared in the naïve

approach - we refer to it as the Shared Naïve approach. Furthermore, we also evaluate our

method that finds the order of queries in this chapter.

We compare the CPU and memory resource requirements for plans generated by our

method, the naïve approach, and the naïve approach that shares operators under four

different scenarios that vary in terms of the constraints on the CPU and memory

resources. We also report on the execution delay to generate the plans. The second layer

of the Two-Layer JTree-Finder approach will only be triggered if the first layer does not

generate a qualified plan. To illustrate, Zhu et al., stated in their work that, " If the first

layer is unable to return a qualified plan yet does not determine the in-feasibility of the

problem, the second-layer is triggered to explore the jtree search space" (Zhu et al., 2010,

p. 21). We use the Two-Layer JTree-Finder technique in the experiments in the same way

that it is proposed.

The experimental sets are: 1) A data stream system has sufficient CPU and memory

resources to execute the proposed method and the Two-Layer JTree-Finder algorithm, 2)

 60

there are constraints on both CPU and memory, 3) memory resources are restricted and

CPU is configured to be sufficient for executing any approach, 4) the CPU resources are

limited while having sufficient memory. When there are constraints on both CPU and

memory, both the naïve approaches and our technique utilize the negative correlation

between CPU and memory to find qualified plans.

Because the Two-Layer JTree-Finder approach only generates the local execution plan of

each query individually, the time required to generate all the local plans of all the queries

consecutively is measured.

There are a number of scenarios for which all queries cannot be processed due to

exceeding resources. One scenario is to increase the number of queries with decreasing

system resources. Moreover, increasing the arrival rates of input stream can result in

exceeding system resources. Having high join selectivity, also, will increase the

probability of exceeding resources.

To calculate the CPU costs, this thesis uses the same costs as the CAPE engine

(Rundensteiner et al., 2004), which are measured also in (Zhu et al., 2010). Table 4.2

shows the average CPU costs of the basic tuple operations, namely joining (Cj), inserting

(Ci), and deleting (Cd) operations in this engine, which are computed in milliseconds.

Table 4-2 CPU Costs of Basic Tuple Operations in (ms)

Cj Ci Cd

2.2 × 10−3 2.0 × 10−4 2.0 × 10−4

 61

4.1.1 Sharing Ratio

When multiple queries are processed, there is a chance that there is some similarity

between them. The level of sharing between queries is referred to as the sharing ratio and

it can be calculated as follows (Park and Lee, 2012):

SR(Q) =

J(Q) denotes all distinct join predicates presented in queries Q. Moreover, ξ(Ji) denotes

the sharing degree of a join operation which is calculated using equation (3-6). Q(Ji)

denotes the set of queries that have the join predicate Ji. As the sharing ratio increases,

the chance of there being shared join operators increases. In our experiments, we generate

queries with 0.6 sharing ratio since this ratio is used in Park and Lee’s research (2012).

4.2 Experimentation Results

4.2.1 Query Ordering

In the first experiment, we evaluate our method that generates the order of queries. Five

join queries with 5 join predicates are used to find the best method that generates the

order of queries. For each query, 6 input streams are chosen from 12 sources of streaming

data. In this experiment, there are constraints on both CPU and memory. Figure 4-1

shows the CPU costs of the three proposed techniques: heaviest to lightest, lightest to

heaviest, and the shared predicate technique, whereas Figure 4-2 shows the memory

costs.

The shared predicate method consumes less CPU and memory resources than the other

two methods as shown in Figures 4-1 and 4-2. This is because the shared predicate

 62

method takes into consideration the costs of join predicates inside queries, and it tries to

find join operations that can be shared between all possible queries. In some cases, it may

occur that the heaviest to lightest query technique requires the same or slightly more

CPU/memory than the shared predicate technique. This happens when heaviest queries

happen to have multiple join operations shared among different queries.

Figure 4-1 The CPU costs of the three proposed techniques

Figure 4-2 The memory costs of the three proposed techniques

Since the shared predicate technique is superior to the other two techniques, we use this

technique in the rest of the experiments.

 63

4.2.2 No Constraints on Resources

When a data stream system has more CPU and memory resources than it needs, the Naïve

approach only generates MJoin plans for individual queries because the MJoin algorithm

is the first encountered algorithm in its first layer. Our shared technique keeps searching

for subplans that share join operations among different queries. Thus, subplans with

smaller effective costs are generated, and they could be BJtree, MJoin or a mixture of

both. Figure 4-3 shows the CPU costs of executing the plan of our technique, the Naïve

approach, and the Shared naïve approach. Since all queries generated by the Two-Layer

JTree-Finder approach have MJoin plans, both naïve approaches consume more CPU

resources than our proposed approach. However, our proposed approach requires more

memory than the both naïve approaches as shown in Figure 4-4. This is because our

technique produces BJtree operators that can be shared among queries. In case we limit

the memory resources, our method will mostly generate MJoin plans.

Figure 4-3 CPU consumptions of the three techniques – no constraints on CPU or memory

 64

Figure 4-4 Memory consumptions of the three techniques – no constraints on CPU or memory

4.2.3 Both Resources Restricted

In the experiment set 2, the naïve approach uses either the State Selection algorithm or

the State Removal algorithm to find a qualified plan. As shown in Figure 4-5, the CPU

costs of our global plan are less than the CPU consumption of the plans generated by both

naïve approaches. This is because our method searches for and exploits sharing in its

optimization. Query plans sometimes include operators that are expensive for the query,

but when amortized over a number of queries they are efficient. In contrast, the Naïve

approach optimizes each query individually without sharing. The Shared naïve approach

also first optimizes queries individually, but sharing is also facilitated by forming a global

plan, from individual query plans, while not re-computing joins redundantly; thus it

misses the situations where one combination of joins may be expensive for a single query

but very beneficial across queries. Figure 4-6 shows the memory consumption of the

three approaches. Plans generated by our method require less memory than the plans

 65

produced by both naïve approaches. This is because our method generates less

intermediate states compared to the other two approaches.

Figure 4-5 CPU consumptions when restricting both resources

Figure 4-6 Memory consumptions when restricting both resources

 66

4.2.4 Constraints on Memory Resources

In the experiment set 3, when memory resources are restricted and CPU is configured to

be sufficient for executing any approach, all techniques act similarly to some extent.

Most of the operations generated are MJoin because CPU resources are unlimited.

Nevertheless, our shared technique sometimes generates a few BJtree operations, and that

explains the reason for it consuming slightly more memory and less CPU resources

compared to the naïve approach that shares operators as shown in Figure 4-7. All three

techniques do not exceed the restricted resources that are assigned in the experiments.

However, if we force our shared technique to generate plans that have the least possible

amount of memory, then our technique will act the same as the naïve approach that shares

operators.

When multiple queries overlap in the required data stream source, queries in the shared

techniques access the same incoming stream state. In the Naïve approach, the queries do

not access the same incoming stream states. In other words, each query has a state for

each incoming stream source, even though some of the states may exist in the memory

for another query. Therefore, the naïve approach consumes more memory compared to

the two shared techniques. If the states of incoming streams are shared in the Two-Layer

JTree-Finder technique, its memory usage will be almost the same level as for the Shared

naïve approach. Figure 4-8 shows the memory usage.

 67

Figure 4-7 CPU consumptions when restricting the memory resources.

Figure 4-8 Memory consumptions when restricting the memory resources.

4.2.5 Constraints on CPU Resources

In the experiment set 4, when the CPU resources are limited while having sufficient

memory, the naïve approaches always generate BJtree plans for queries. Similarly, our

global plan generation technique will only produce BJtree operators. The CPU costs of

the three techniques are shown in Figure 4-9. Our shared technique consumes less CPU

resources than the naïve approach that shares operators. Moreover, as the number of join

predicates increases, the two naïve approaches require more memory space than our

 68

proposed method as shown in Figure 4-10. The three techniques do not exceed the

restricted resources that are assigned in the experiments.

Figure 4-9 CPU consumptions when restricting the CPU resources.

Figure 4-10 Memory consumptions when restricting the CPU resources.

4.2.6 Optimization Delays

In the next experiment, the execution delay (optimization delay) of the naïve approaches

and our proposed method to generate the plans is measured. Ten join queries with 2, 4, 8,

 69

and 16 join predicates are used to generate plans using the two techniques. When having

sufficient resources, the shared approach requires more time than the JTree-Finder

because our shared technique keeps searching for join operations that can be shared

among queries. On the other hand, the naïve approach returns the first qualified plan it

encounters. Similarly, when one or both CPU and memory resources are limited, our

shared approach requires more time to generate the global plan. Figure 4-11 shows the

execution delay for both techniques. Both resources are limited when queries with 16 join

predicates are evaluated. The CPU is restricted when queries with 8 join predicates are

evaluated. However, queries with 4 join predicates are evaluated when the memory is

limited. When we have sufficient CPU and memory, we evaluate queries with 2 join

predicates.

Figure 4-11 Execution time in ms required by the two techniques

 70

CHAPTER 5 : CONCLUSION AND FUTURE WORK

In data stream applications, a set of multi-way join queries is registered to be processed in

a continuous manner. A query execution plan needs to be adhered to both CPU and

memory resource constraints because one of these resources being out of bound hinders

processing incoming streams in a data stream system. The two basic methods used to

execute queries over streams are BJtree and MJoin plans. The former consumes more

memory resources than the latter, whereas the latter requires more CPU resources than

the former. A third method to execute queries over streams is called JTree, which

combines the BJtree and MJoin techniques. There is a trade-off between memory and

CPU consumptions when using the JTree method.

This thesis introduces a technique that generates a qualified global plan for multi-join

queries. It utilizes the BJtree, MJoin, and the JTree methods to produce plans. Our

method creates the global plan by optimizing individual queries and adding their

operators to the global plan: when optimizing a query, the proposed method checks the

global plan for any join operations that can be reused or shared by the query. Moreover,

our method allocates system resources to each query before processing it. This is to

ensure that when there is a shortage of the CPU (memory) resource, optimization of the

individual query will take it into account to use BJtrees (MJoins) as opposed to MJoins

(BJtrees). Because our method optimizes each query individually, we proposed three new

techniques to find the order of queries in which they need to be processed.

For future work, one avenue is to study and address challenges when trying to generate

qualified plans for a distributed data stream system. Another avenue for future work is to

 71

consider monitoring statistics of all previously executed join operations to estimate their

current execution costs and the correlation between CPU and memory. This can be very

helpful because it may reduce the time of generating query plans.

 72

REFERENCES

Abadi, D. J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang, J. H., ...

& Zdonik, S. B. (2005, January). The Design of the Borealis Stream Processing Engine.

In CIDR (Vol. 5, pp. 277-289).

Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M., Ito, K., ... & Widom, J.

(2016). Stream: The stanford data stream management system. In Data Stream

Management (pp. 317-336). Springer Berlin Heidelberg.

Avnur, R., & Hellerstein, J. M. (2000, May). Eddies: Continuously adaptive query

processing. In ACM SIGMoD Record (Vol. 29, No. 2, pp. 261-272). ACM.

Babcock, B., Babu, S., Datar, M., Motwani, R., & Thomas, D. (2004). Operator

scheduling in data stream systems. The VLDB Journal—The International Journal on

Very Large Data Bases, 13(4), 333-353.

Babcock, B., Babu, S., Motwani, R., & Datar, M. (2003, June). Chain: Operator

scheduling for memory minimization in data stream systems. In Proceedings of the 2003

ACM SIGMOD international conference on Management of data (pp. 253-264). ACM.

Babcock, B., Datar, M., & Motwani, R. (2004, March). Load shedding for aggregation

queries over data streams. In Data Engineering, 2004. Proceedings. 20th International

Conference on (pp. 350-361). IEEE.

Babu, S., Motwani, R., Munagala, K., Nishizawa, I., & Widom, J. (2004, June). Adaptive

ordering of pipelined stream filters. In Proceedings of the 2004 ACM SIGMOD

international conference on Management of data (pp. 407-418). ACM.

Babu, S., Munagala, K., Widom, J., & Motwani, R. (2005, April). Adaptive caching for

continuous queries. In Data Engineering, 2005. ICDE 2005. Proceedings. 21st

International Conference on (pp. 118-129). IEEE.

Carney, D., Çetintemel, U., Rasin, A., Zdonik, S., Cherniack, M., & Stonebraker, M.

(2003, September). Operator scheduling in a data stream manager. In Proceedings of the

29th international conference on Very large data bases-Volume 29 (pp. 838-849). VLDB

Endowment.

Chen, J., DeWitt, D. J., Tian, F., & Wang, Y. (2000, May). NiagaraCQ: A scalable

continuous query system for internet databases. In ACM SIGMOD Record (Vol. 29, No.

2, pp. 379-390). ACM.

 73

Chen, T., Chen, L., Ozsu, M. T., & Xiao, N. (2013). Optimizing multi-top-k queries over

uncertain data streams. Knowledge and Data Engineering, IEEE Transactions on, 25(8),

1814-1829.

Dalvi, N. N., Sanghai, S. K., Roy, P., & Sudarshan, S. (2003). Pipelining in multi-query

optimization. Journal of Computer and System Sciences, 66(4), 728-762.

DeWitt, D. J., Katz, R. H., Olken, F., Shapiro, L. D., Stonebraker, M. R., & Wood, D. A.

(1984). Implementation techniques for main memory database systems (Vol. 14, No. 2,

pp. 1-8). ACM.

Golab, L., & Özsu, M. T. (2003). Issues in data stream management. ACM Sigmod

Record, 32(2), 5-14.

Hammad, M. A., Aref, W. G., & Elmagarmid, A. K. (2002). Joining multiple data

streams with window constraints.

Hammad, M. A., Aref, W. G., & Elmagarmid, A. K. (2008). Query processing of multi-

way stream window joins. The VLDB Journal—The International Journal on Very Large

Data Bases, 17(3), 469-488.

Hammad, M. A., Franklin, M. J., Aref, W. G., & Elmagarmid, A. K. (2003, September).

Scheduling for shared window joins over data streams. In Proceedings of the 29th

international conference on Very large data bases-Volume 29 (pp. 297-308). VLDB

Endowment.

Heinz, C., Kramer, J., Riemenschneider, T., & Seeger, B. (2008, April). Toward

simulation-based optimization in data stream management systems. In Data Engineering,

2008. ICDE 2008. IEEE 24th International Conference on (pp. 1580-1583). IEEE.

Heinze, T., Jerzak, Z., Hackenbroich, G., & Fetzer, C. (2014, May). Latency-aware

elastic scaling for distributed data stream processing systems. In Proceedings of the 8th

ACM International Conference on Distributed Event-Based Systems (pp. 13-22). ACM.

Kang, J., Naughton, J. F., & Viglas, S. D. (2003, March). Evaluating window joins over

unbounded streams. In Data Engineering, 2003. Proceedings. 19th International

Conference on (pp. 341-352). IEEE.

Kossmann, D., & Stocker, K. (2000). Iterative dynamic programming: a new class of

query optimization algorithms. ACM Transactions on Database Systems (TODS), 25(1),

43-82.

Lohman, G. M. (2014, April). Is query optimization a’solved’problem. In Proc.

Workshop on Database Query Optimization (p. 13). Oregon Graduate Center Comp. Sci.

Tech. Rep.

 74

Madden, S., Shah, M., Hellerstein, J. M., & Raman, V. (2002, June). Continuously

adaptive continuous queries over streams. In Proceedings of the 2002 ACM SIGMOD

international conference on Management of data (pp. 49-60). ACM.

Park, H. K., & Lee, W. S. (2009). Adaptive continuous query reoptimization over data

streams. IEICE transactions on information and systems, 92(7), 1421-1428.

Park, H. K., & Lee, W. S. (2012). Adaptive optimization for multiple continuous queries.

Data & Knowledge Engineering, 71(1), 29-46.

Roy, P., Seshadri, S., Sudarshan, S., & Bhobe, S. (2000). Efficient and extensible

algorithms for multi query optimization. ACM SIGMOD Record, 29(2), 249-260.

Rundensteiner, E. A., Ding, L., Sutherland, T., Zhu, Y., Pielech, B., & Mehta, N. (2004,

August). Cape: Continuous query engine with heterogeneous-grained adaptivity. In

Proceedings of the Thirtieth international conference on Very large data bases-Volume

30 (pp. 1353-1356). VLDB Endowment.

Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie, R. A., & Price, T. G. (1979,

May). Access path selection in a relational database management system. In Proceedings

of the 1979 ACM SIGMOD international conference on Management of data (pp. 23-34).

ACM.

Sellis, T., & Ghosh, S. (1990). On the multiple-query optimization problem. IEEE

Transactions on Knowledge and Data Engineering, 2(2), 262-266.

Sirish, C., Owen, C., Amol, D., Wei, H., Sailesh, K., Samuel, M., ... & Frederick, R.

(2003). TelegraphCQ: Continuous dataflow processing for an uncertain world. CIDR'03.

Tatbul, N., Çetintemel, U., Zdonik, S., Cherniack, M., & Stonebraker, M. (2003,

September). Load shedding in a data stream manager. In Proceedings of the 29th

international conference on Very large data bases-Volume 29 (pp. 309-320). VLDB

Endowment.

Tatbul, N., & Zdonik, S. (2006, September). Window-aware load shedding for

aggregation queries over data streams. In Proceedings of the 32nd international

conference on Very large data bases (pp. 799-810). VLDB Endowment.

To, Q. C., Soto, J., & Markl, V. (2017). A Survey of State Management in Big Data

Processing Systems. arXiv preprint arXiv:1702.01596.

Urhan, T., & Franklin, M. J. (2000). Xjoin: A reactively-scheduled pipelined join

operatorý. Bulletin of the Technical Committee on, 27.

Viglas, S. D., & Naughton, J. F. (2002, June). Rate-based query optimization for

streaming information sources. In Proceedings of the 2002 ACM SIGMOD international

conference on Management of data (pp. 37-48). ACM.

 75

Viglas, S. D., Naughton, J. F., & Burger, J. (2003, September). Maximizing the output

rate of multi-way join queries over streaming information sources. In Proceedings of the

29th international conference on Very large data bases-Volume 29 (pp. 285-296). VLDB

Endowment.

Viglas, S. D. (2005). Query Execution and Optimization. In Stream Data Management

(pp. 15-33). Springer US.

Wilschut, A. N., & Apers, P. M. (1990). Pipelining in Query Executions.

Zhu, Y., Raghavan, V., & Rundensteiner, E. A. (2010). A new look at generating multi-

join continuous query plans: A qualified plan generation problem. Data & Knowledge

Engineering, 69(5), 424-443.

 76

APPENDIX A

A.1 Query Order Experiment

5 join predicates For the data stream: 1:

The Input Rate is:29
For the data stream: 2:
The Input Rate is:40
For the data stream: 3:
The Input Rate is:18
For the data stream: 4:
The Input Rate is:34
For the data stream: 5:
The Input Rate is:91
For the data stream: 6:
The Input Rate is:79
For the data stream: 7:
The Input Rate is:43
For the data stream: 8:
The Input Rate is:84
For the data stream: 9:
The Input Rate is:60
For the data stream: 10:
The Input Rate is:43
For the data stream: 11:
The Input Rate is:57
For the data stream: 12:
The Input Rate is:75

For (1,2), the selectivity
factor is:0.11
For (2,3), the selectivity
factor is:0.19
For (1,4), the selectivity
factor is:0.15
For (4,5), the selectivity
factor is:0.19
For (5,6), the selectivity
factor is:0.03
For (4,7), the selectivity
factor is:0.06
For (7,8), the selectivity
factor is:0.16
For (5,9), the selectivity
factor is:0.14
For (9,10), the selectivity
factor is:0.12
For (4,11), the selectivity
factor is:0.19
For (9,12), the selectivity
factor is:0.11

A.2 Resource Consumption Without Constraints on CPU or memory

3 join predicates For the data stream: 1:

The Input Rate is:69
For the data stream: 2:
The Input Rate is:28
For the data stream: 3:
The Input Rate is:31
For the data stream: 4:
The Input Rate is:26
For the data stream: 5:
The Input Rate is:96
For the data stream: 6:
The Input Rate is:60
For the data stream: 7:

For (1,2), the selectivity
factor is:0.2
For (2,3), the selectivity
factor is:0.09
For (2,4), the selectivity
factor is:0.13
For (4,5), the selectivity
factor is:0.09
For (5,6), the selectivity
factor is:0.17
For (4,7), the selectivity
factor is:0.18
For (7,8), the selectivity

 77

The Input Rate is:42
For the data stream: 8:
The Input Rate is:50
For the data stream: 9:
The Input Rate is:30
For the data stream: 10:
The Input Rate is:32
For the data stream: 11:
The Input Rate is:61
For the data stream: 12:
The Input Rate is:11
For the data stream: 13:
The Input Rate is:17
For the data stream: 14:
The Input Rate is:90
For the data stream: 15:
The Input Rate is:96
For the data stream: 16:
The Input Rate is:36
For the data stream: 17:
The Input Rate is:83
For the data stream: 18:
The Input Rate is:28
For the data stream: 19:
The Input Rate is:44
For the data stream: 20:
The Input Rate is:12

factor is:0.09
For (6,9), the selectivity
factor is:0.2
For (6,10), the selectivity
factor is:0.1
For (6,11), the selectivity
factor is:0.17
For (9,12), the selectivity
factor is:0.19
For (11,13), the selectivity
factor is:0.2
For (12,14), the selectivity
factor is:0.16
For (5,15), the selectivity
factor is:0.08
For (10,16), the selectivity
factor is:0.04
For (10,17), the selectivity
factor is:0.18
For (1,18), the selectivity
factor is:0.12
For (3,19), the selectivity
factor is:0.02
For (14,20), the selectivity
factor is:0.13

5 join predicates For the data stream: 1:
The Input Rate is:30
For the data stream: 2:
The Input Rate is:77
For the data stream: 3:
The Input Rate is:73
For the data stream: 4:
The Input Rate is:19
For the data stream: 5:
The Input Rate is:94
For the data stream: 6:
The Input Rate is:100
For the data stream: 7:
The Input Rate is:86
For the data stream: 8:
The Input Rate is:23
For the data stream: 9:
The Input Rate is:71

For (1,2), the selectivity
factor is:0.01
For (1,3), the selectivity
factor is:0.05
For (1,4), the selectivity
factor is:0.04
For (1,5), the selectivity
factor is:0.02
For (3,6), the selectivity
factor is:0.01
For (4,7), the selectivity
factor is:0.2
For (3,8), the selectivity
factor is:0.15
For (8,9), the selectivity
factor is:0.06
For (9,10), the selectivity
factor is:0.14

 78

For the data stream: 10:
The Input Rate is:11
For the data stream: 11:
The Input Rate is:52
For the data stream: 12:
The Input Rate is:80
For the data stream: 13:
The Input Rate is:64
For the data stream: 14:
The Input Rate is:65
For the data stream: 15:
The Input Rate is:15
For the data stream: 16:
The Input Rate is:31
For the data stream: 17:
The Input Rate is:32
For the data stream: 18:
The Input Rate is:40
For the data stream: 19:
The Input Rate is:89
For the data stream: 20:
The Input Rate is:77

For (7,11), the selectivity
factor is:0.08
For (5,12), the selectivity
factor is:0.15
For (8,13), the selectivity
factor is:0.14
For (9,14), the selectivity
factor is:0.12
For (4,15), the selectivity
factor is:0.16
For (7,16), the selectivity
factor is:0.15
For (15,17), the selectivity
factor is:0.13
For (9,18), the selectivity
factor is:0.17
For (10,19), the selectivity
factor is:0.17
For (14,20), the selectivity
factor is:0.18

7 join predicates For the data stream: 1:
The Input Rate is:78
For the data stream: 2:
The Input Rate is:33
For the data stream: 3:
The Input Rate is:15
For the data stream: 4:
The Input Rate is:89
For the data stream: 5:
The Input Rate is:58
For the data stream: 6:
The Input Rate is:63
For the data stream: 7:
The Input Rate is:46
For the data stream: 8:
The Input Rate is:53
For the data stream: 9:
The Input Rate is:78
For the data stream: 10:
The Input Rate is:91
For the data stream: 11:
The Input Rate is:97
For the data stream: 12:

For (1,2), the selectivity
factor is:0.13
For (1,3), the selectivity
factor is:0.18
For (3,4), the selectivity
factor is:0.03
For (1,5), the selectivity
factor is:0.11
For (4,6), the selectivity
factor is:0.17
For (4,7), the selectivity
factor is:0.17
For (3,8), the selectivity
factor is:0.17
For (6,9), the selectivity
factor is:0.03
For (2,10), the selectivity
factor is:0.01
For (3,11), the selectivity
factor is:0.03
For (9,12), the selectivity
factor is:0.17
For (2,13), the selectivity

 79

The Input Rate is:81
For the data stream: 13:
The Input Rate is:29
For the data stream: 14:
The Input Rate is:40
For the data stream: 15:
The Input Rate is:94
For the data stream: 16:
The Input Rate is:58
For the data stream: 17:
The Input Rate is:50
For the data stream: 18:
The Input Rate is:39
For the data stream: 19:
The Input Rate is:30
For the data stream: 20:
The Input Rate is:89

factor is:0.19
For (7,14), the selectivity
factor is:0.11
For (14,15), the selectivity
factor is:0.18
For (8,16), the selectivity
factor is:0.17
For (13,17), the selectivity
factor is:0.02
For (1,18), the selectivity
factor is:0.01
For (14,19), the selectivity
factor is:0.17
For (19,20), the selectivity
factor is:0.05

9 join predicate For the data stream: 1:
The Input Rate is:84
For the data stream: 2:
The Input Rate is:37
For the data stream: 3:
The Input Rate is:57
For the data stream: 4:
The Input Rate is:68
For the data stream: 5:
The Input Rate is:33
For the data stream: 6:
The Input Rate is:87
For the data stream: 7:
The Input Rate is:13
For the data stream: 8:
The Input Rate is:63
For the data stream: 9:
The Input Rate is:76
For the data stream: 10:
The Input Rate is:17
For the data stream: 11:
The Input Rate is:44
For the data stream: 12:
The Input Rate is:23
For the data stream: 13:
The Input Rate is:77
For the data stream: 14:
The Input Rate is:87

For (1,2), the selectivity
factor is:0.04
For (2,3), the selectivity
factor is:0.03
For (3,4), the selectivity
factor is:0.11
For (2,5), the selectivity
factor is:0.16
For (5,6), the selectivity
factor is:0.17
For (3,7), the selectivity
factor is:0.05
For (1,8), the selectivity
factor is:0.04
For (1,9), the selectivity
factor is:0.14
For (8,10), the selectivity
factor is:0.07
For (1,11), the selectivity
factor is:0.1
For (8,12), the selectivity
factor is:0.01
For (5,13), the selectivity
factor is:0.1
For (1,14), the selectivity
factor is:0.01
For (3,15), the selectivity
factor is:0.06

 80

For the data stream: 15:
The Input Rate is:82
For the data stream: 16:
The Input Rate is:81
For the data stream: 17:
The Input Rate is:43
For the data stream: 18:
The Input Rate is:76
For the data stream: 19:
The Input Rate is:48
For the data stream: 20:
The Input Rate is:53

For (8,16), the selectivity
factor is:0.17
For (2,17), the selectivity
factor is:0.09
For (6,18), the selectivity
factor is:0.01
For (12,19), the selectivity
factor is:0.12
For (12,20), the selectivity
factor is:0.08

A.3 Resource Consumption With Constraints on both CPU and memory

3 join predicates For the data stream: 1:

The Input Rate is:50
For the data stream: 2:
The Input Rate is:84
For the data stream: 3:
The Input Rate is:21
For the data stream: 4:
The Input Rate is:89
For the data stream: 5:
The Input Rate is:41
For the data stream: 6:
The Input Rate is:34
For the data stream: 7:
The Input Rate is:65
For the data stream: 8:
The Input Rate is:61
For the data stream: 9:
The Input Rate is:39
For the data stream: 10:
The Input Rate is:18
For the data stream: 11:
The Input Rate is:67
For the data stream: 12:
The Input Rate is:47
For the data stream: 13:
The Input Rate is:83
For the data stream: 14:
The Input Rate is:68
For the data stream: 15:
The Input Rate is:38

For (1,2), the selectivity
factor is:0.16
For (2,3), the selectivity
factor is:0.2
For (1,4), the selectivity
factor is:0.18
For (4,5), the selectivity
factor is:0.2
For (5,6), the selectivity
factor is:0.02
For (1,7), the selectivity
factor is:0.11
For (1,8), the selectivity
factor is:0.16
For (6,9), the selectivity
factor is:0.07
For (9,10), the selectivity
factor is:0.14
For (1,11), the selectivity
factor is:0.09
For (8,12), the selectivity
factor is:0.02
For (6,13), the selectivity
factor is:0.03
For (12,14), the selectivity
factor is:0.05
For (3,15), the selectivity
factor is:0.01
For (6,16), the selectivity
factor is:0.05

 81

For the data stream: 16:
The Input Rate is:58
For the data stream: 17:
The Input Rate is:48
For the data stream: 18:
The Input Rate is:50
For the data stream: 19:
The Input Rate is:82
For the data stream: 20:
The Input Rate is:91

For (14,17), the selectivity
factor is:0.01
For (17,18), the selectivity
factor is:0.11
For (12,19), the selectivity
factor is:0.16
For (5,20), the selectivity
factor is:0.08

5 join predicates For the data stream: 1:
The Input Rate is:15
For the data stream: 2:
The Input Rate is:57
For the data stream: 3:
The Input Rate is:38
For the data stream: 4:
The Input Rate is:23
For the data stream: 5:
The Input Rate is:90
For the data stream: 6:
The Input Rate is:61
For the data stream: 7:
The Input Rate is:95
For the data stream: 8:
The Input Rate is:51
For the data stream: 9:
The Input Rate is:54
For the data stream: 10:
The Input Rate is:36
For the data stream: 11:
The Input Rate is:15
For the data stream: 12:
The Input Rate is:26
For the data stream: 13:
The Input Rate is:90
For the data stream: 14:
The Input Rate is:97
For the data stream: 15:
The Input Rate is:57
For the data stream: 16:
The Input Rate is:43
For the data stream: 17:
The Input Rate is:32
For the data stream: 18:

For (1,2), the selectivity
factor is:0.01
For (2,3), the selectivity
factor is:0.11
For (1,4), the selectivity
factor is:0.18
For (3,5), the selectivity
factor is:0.08
For (2,6), the selectivity
factor is:0.19
For (6,7), the selectivity
factor is:0.09
For (7,8), the selectivity
factor is:0.02
For (6,9), the selectivity
factor is:0.11
For (7,10), the selectivity
factor is:0.06
For (8,11), the selectivity
factor is:0.05
For (11,12), the selectivity
factor is:0.18
For (6,13), the selectivity
factor is:0.04
For (7,14), the selectivity
factor is:0.11
For (7,15), the selectivity
factor is:0.03
For (5,16), the selectivity
factor is:0.09
For (15,17), the selectivity
factor is:0.19
For (13,18), the selectivity
factor is:0.17
For (8,19), the selectivity

 82

The Input Rate is:92
For the data stream: 19:
The Input Rate is:15
For the data stream: 20:
The Input Rate is:45

factor is:0.11
For (2,20), the selectivity
factor is:0.04

7 join predicates For the data stream: 1:
The Input Rate is:10
For the data stream: 2:
The Input Rate is:42
For the data stream: 3:
The Input Rate is:33
For the data stream: 4:
The Input Rate is:52
For the data stream: 5:
The Input Rate is:19
For the data stream: 6:
The Input Rate is:31
For the data stream: 7:
The Input Rate is:76
For the data stream: 8:
The Input Rate is:78
For the data stream: 9:
The Input Rate is:77
For the data stream: 10:
The Input Rate is:51
For the data stream: 11:
The Input Rate is:86
For the data stream: 12:
The Input Rate is:60
For the data stream: 13:
The Input Rate is:96
For the data stream: 14:
The Input Rate is:42
For the data stream: 15:
The Input Rate is:28
For the data stream: 16:
The Input Rate is:20
For the data stream: 17:
The Input Rate is:61
For the data stream: 18:
The Input Rate is:50
For the data stream: 19:
The Input Rate is:98
For the data stream: 20:
The Input Rate is:72

For (1,2), the selectivity
factor is:0.15
For (1,3), the selectivity
factor is:0.12
For (1,4), the selectivity
factor is:0.06
For (3,5), the selectivity
factor is:0.11
For (5,6), the selectivity
factor is:0.1
For (5,7), the selectivity
factor is:0.09
For (2,8), the selectivity
factor is:0.18
For (2,9), the selectivity
factor is:0.15
For (2,10), the selectivity
factor is:0.17
For (10,11), the selectivity
factor is:0.03
For (8,12), the selectivity
factor is:0.17
For (12,13), the selectivity
factor is:0.11
For (3,14), the selectivity
factor is:0.06
For (5,15), the selectivity
factor is:0.05
For (2,16), the selectivity
factor is:0.2
For (12,17), the selectivity
factor is:0.1
For (16,18), the selectivity
factor is:0.16
For (14,19), the selectivity
factor is:0.1
For (12,20), the selectivity
factor is:0.18

 83

9 join predicates For the data stream: 1:
The Input Rate is:16
For the data stream: 2:
The Input Rate is:18
For the data stream: 3:
The Input Rate is:16
For the data stream: 4:
The Input Rate is:23
For the data stream: 5:
The Input Rate is:85
For the data stream: 6:
The Input Rate is:16
For the data stream: 7:
The Input Rate is:22
For the data stream: 8:
The Input Rate is:44
For the data stream: 9:
The Input Rate is:34
For the data stream: 10:
The Input Rate is:65
For the data stream: 11:
The Input Rate is:76
For the data stream: 12:
The Input Rate is:85
For the data stream: 13:
The Input Rate is:86
For the data stream: 14:
The Input Rate is:57
For the data stream: 15:
The Input Rate is:68
For the data stream: 16:
The Input Rate is:86
For the data stream: 17:
The Input Rate is:62
For the data stream: 18:
The Input Rate is:78
For the data stream: 19:
The Input Rate is:72
For the data stream: 20:
The Input Rate is:46

For (1,2), the selectivity
factor is:0.08
For (1,3), the selectivity
factor is:0.15
For (1,4), the selectivity
factor is:0.16
For (2,5), the selectivity
factor is:0.13
For (4,6), the selectivity
factor is:0.09
For (5,7), the selectivity
factor is:0.02
For (4,8), the selectivity
factor is:0.1
For (8,9), the selectivity
factor is:0.12
For (4,10), the selectivity
factor is:0.14
For (4,11), the selectivity
factor is:0.06
For (11,12), the selectivity
factor is:0.12
For (1,13), the selectivity
factor is:0.04
For (1,14), the selectivity
factor is:0.17
For (6,15), the selectivity
factor is:0.09
For (9,16), the selectivity
factor is:0.18
For (16,17), the selectivity
factor is:0.16
For (11,18), the selectivity
factor is:0.05
For (4,19), the selectivity
factor is:0.12
For (5,20), the selectivity
factor is:0.12

A.4 CPU and Memory Consumption When Restricting Memory Resources

3 join predicates For the data stream: 1:

The Input Rate is:12
For (1,2), the selectivity
factor is:0.01

 84

For the data stream: 2:
The Input Rate is:96
For the data stream: 3:
The Input Rate is:25
For the data stream: 4:
The Input Rate is:74
For the data stream: 5:
The Input Rate is:74
For the data stream: 6:
The Input Rate is:44
For the data stream: 7:
The Input Rate is:27
For the data stream: 8:
The Input Rate is:71
For the data stream: 9:
The Input Rate is:30
For the data stream: 10:
The Input Rate is:39
For the data stream: 11:
The Input Rate is:13
For the data stream: 12:
The Input Rate is:22
For the data stream: 13:
The Input Rate is:42
For the data stream: 14:
The Input Rate is:81
For the data stream: 15:
The Input Rate is:32
For the data stream: 16:
The Input Rate is:57
For the data stream: 17:
The Input Rate is:29
For the data stream: 18:
The Input Rate is:23
For the data stream: 19:
The Input Rate is:49
For the data stream: 20:
The Input Rate is:30

For (1,3), the selectivity
factor is:0.08
For (2,4), the selectivity
factor is:0.15
For (1,5), the selectivity
factor is:0.02
For (2,6), the selectivity
factor is:0.11
For (4,7), the selectivity
factor is:0.09
For (1,8), the selectivity
factor is:0.12
For (4,9), the selectivity
factor is:0.18
For (1,10), the selectivity
factor is:0.06
For (7,11), the selectivity
factor is:0.05
For (2,12), the selectivity
factor is:0.11
For (1,13), the selectivity
factor is:0.02
For (6,14), the selectivity
factor is:0.18
For (6,15), the selectivity
factor is:0.17
For (3,16), the selectivity
factor is:0.02
For (1,17), the selectivity
factor is:0.02
For (4,18), the selectivity
factor is:0.19
For (8,19), the selectivity
factor is:0.13
For (18,20), the selectivity
factor is:0.06

5 join predicates For the data stream: 1:
The Input Rate is:92
For the data stream: 2:
The Input Rate is:23
For the data stream: 3:
The Input Rate is:71
For the data stream: 4:

For (1,2), the selectivity
factor is:0.16
For (2,3), the selectivity
factor is:0.15
For (2,4), the selectivity
factor is:0.07
For (2,5), the selectivity

 85

The Input Rate is:18
For the data stream: 5:
The Input Rate is:50
For the data stream: 6:
The Input Rate is:29
For the data stream: 7:
The Input Rate is:46
For the data stream: 8:
The Input Rate is:57
For the data stream: 9:
The Input Rate is:98
For the data stream: 10:
The Input Rate is:99
For the data stream: 11:
The Input Rate is:80
For the data stream: 12:
The Input Rate is:50
For the data stream: 13:
The Input Rate is:79
For the data stream: 14:
The Input Rate is:78
For the data stream: 15:
The Input Rate is:56
For the data stream: 16:
The Input Rate is:51
For the data stream: 17:
The Input Rate is:30
For the data stream: 18:
The Input Rate is:72
For the data stream: 19:
The Input Rate is:12
For the data stream: 20:
The Input Rate is:17

factor is:0.13
For (3,6), the selectivity
factor is:0.16
For (5,7), the selectivity
factor is:0.07
For (5,8), the selectivity
factor is:0.01
For (8,9), the selectivity
factor is:0.02
For (6,10), the selectivity
factor is:0.07
For (3,11), the selectivity
factor is:0.2
For (5,12), the selectivity
factor is:0.04
For (3,13), the selectivity
factor is:0.08
For (3,14), the selectivity
factor is:0.04
For (4,15), the selectivity
factor is:0.04
For (7,16), the selectivity
factor is:0.13
For (5,17), the selectivity
factor is:0.14
For (4,18), the selectivity
factor is:0.17
For (5,19), the selectivity
factor is:0.02
For (16,20), the selectivity
factor is:0.07

7 join predicates For the data stream: 1:
The Input Rate is:43
For the data stream: 2:
The Input Rate is:41
For the data stream: 3:
The Input Rate is:32
For the data stream: 4:
The Input Rate is:27
For the data stream: 5:
The Input Rate is:77
For the data stream: 6:
The Input Rate is:24

For (1,2), the selectivity
factor is:0.17
For (2,3), the selectivity
factor is:0.16
For (2,4), the selectivity
factor is:0.04
For (2,5), the selectivity
factor is:0.19
For (3,6), the selectivity
factor is:0.11
For (1,7), the selectivity
factor is:0.04

 86

For the data stream: 7:
The Input Rate is:76
For the data stream: 8:
The Input Rate is:14
For the data stream: 9:
The Input Rate is:95
For the data stream: 10:
The Input Rate is:77
For the data stream: 11:
The Input Rate is:35
For the data stream: 12:
The Input Rate is:53
For the data stream: 13:
The Input Rate is:92
For the data stream: 14:
The Input Rate is:13
For the data stream: 15:
The Input Rate is:100
For the data stream: 16:
The Input Rate is:54
For the data stream: 17:
The Input Rate is:34
For the data stream: 18:
The Input Rate is:58
For the data stream: 19:
The Input Rate is:49
For the data stream: 20:
The Input Rate is:33

For (3,8), the selectivity
factor is:0.12
For (7,9), the selectivity
factor is:0.1
For (4,10), the selectivity
factor is:0.04
For (4,11), the selectivity
factor is:0.03
For (5,12), the selectivity
factor is:0.02
For (4,13), the selectivity
factor is:0.11
For (3,14), the selectivity
factor is:0.05
For (6,15), the selectivity
factor is:0.13
For (9,16), the selectivity
factor is:0.19
For (11,17), the selectivity
factor is:0.09
For (17,18), the selectivity
factor is:0.06
For (13,19), the selectivity
factor is:0.03
For (12,20), the selectivity
factor is:0.14

9 join predicates For the data stream: 1:
The Input Rate is:46
For the data stream: 2:
The Input Rate is:14
For the data stream: 3:
The Input Rate is:22
For the data stream: 4:
The Input Rate is:31
For the data stream: 5:
The Input Rate is:35
For the data stream: 6:
The Input Rate is:80
For the data stream: 7:
The Input Rate is:48
For the data stream: 8:
The Input Rate is:52
For the data stream: 9:

For (1,2), the selectivity
factor is:0.02
For (2,3), the selectivity
factor is:0.06
For (3,4), the selectivity
factor is:0.02
For (2,5), the selectivity
factor is:0.01
For (1,6), the selectivity
factor is:0.1
For (6,7), the selectivity
factor is:0.16
For (6,8), the selectivity
factor is:0.04
For (1,9), the selectivity
factor is:0.07
For (8,10), the selectivity

 87

The Input Rate is:80
For the data stream: 10:
The Input Rate is:52
For the data stream: 11:
The Input Rate is:19
For the data stream: 12:
The Input Rate is:49
For the data stream: 13:
The Input Rate is:85
For the data stream: 14:
The Input Rate is:54
For the data stream: 15:
The Input Rate is:42
For the data stream: 16:
The Input Rate is:99
For the data stream: 17:
The Input Rate is:71
For the data stream: 18:
The Input Rate is:94
For the data stream: 19:
The Input Rate is:40
For the data stream: 20:
The Input Rate is:15

factor is:0.13
For (5,11), the selectivity
factor is:0.15
For (3,12), the selectivity
factor is:0.09
For (3,13), the selectivity
factor is:0.01
For (6,14), the selectivity
factor is:0.12
For (8,15), the selectivity
factor is:0.02
For (7,16), the selectivity
factor is:0.11
For (7,17), the selectivity
factor is:0.11
For (2,18), the selectivity
factor is:0.15
For (3,19), the selectivity
factor is:0.08
For (8,20), the selectivity
factor is:0.01

A.5 CPU and Memory Consumption When Restricting CPU Resources

3 join predicates For the data stream: 1:

The Input Rate is:93
For the data stream: 2:
The Input Rate is:14
For the data stream: 3:
The Input Rate is:70
For the data stream: 4:
The Input Rate is:48
For the data stream: 5:
The Input Rate is:62
For the data stream: 6:
The Input Rate is:11
For the data stream: 7:
The Input Rate is:72
For the data stream: 8:
The Input Rate is:25
For the data stream: 9:
The Input Rate is:66

For (1,2), the selectivity
factor is:0.18
For (1,3), the selectivity
factor is:0.18
For (1,4), the selectivity
factor is:0.01
For (1,5), the selectivity
factor is:0.19
For (4,6), the selectivity
factor is:0.1
For (6,7), the selectivity
factor is:0.16
For (6,8), the selectivity
factor is:0.16
For (2,9), the selectivity
factor is:0.03
For (6,10), the selectivity
factor is:0.2

 88

For the data stream: 10:
The Input Rate is:58
For the data stream: 11:
The Input Rate is:81
For the data stream: 12:
The Input Rate is:32
For the data stream: 13:
The Input Rate is:19
For the data stream: 14:
The Input Rate is:65
For the data stream: 15:
The Input Rate is:80
For the data stream: 16:
The Input Rate is:84
For the data stream: 17:
The Input Rate is:87
For the data stream: 18:
The Input Rate is:42
For the data stream: 19:
The Input Rate is:95
For the data stream: 20:
The Input Rate is:28

For (9,11), the selectivity
factor is:0.16
For (9,12), the selectivity
factor is:0.08
For (7,13), the selectivity
factor is:0.01
For (4,14), the selectivity
factor is:0.17
For (10,15), the selectivity
factor is:0.05
For (10,16), the selectivity
factor is:0.02
For (15,17), the selectivity
factor is:0.01
For (15,18), the selectivity
factor is:0.08
For (4,19), the selectivity
factor is:0.11
For (14,20), the selectivity
factor is:0.17

5 join predicates For the data stream: 1:
The Input Rate is:95
For the data stream: 2:
The Input Rate is:59
For the data stream: 3:
The Input Rate is:41
For the data stream: 4:
The Input Rate is:33
For the data stream: 5:
The Input Rate is:19
For the data stream: 6:
The Input Rate is:48
For the data stream: 7:
The Input Rate is:90
For the data stream: 8:
The Input Rate is:58
For the data stream: 9:
The Input Rate is:15
For the data stream: 10:
The Input Rate is:99
For the data stream: 11:
The Input Rate is:88
For the data stream: 12:

For (1,2), the selectivity
factor is:0.12
For (2,3), the selectivity
factor is:0.12
For (2,4), the selectivity
factor is:0.03
For (2,5), the selectivity
factor is:0.17
For (2,6), the selectivity
factor is:0.18
For (5,7), the selectivity
factor is:0.13
For (3,8), the selectivity
factor is:0.04
For (5,9), the selectivity
factor is:0.05
For (3,10), the selectivity
factor is:0.2
For (3,11), the selectivity
factor is:0.07
For (3,12), the selectivity
factor is:0.17
For (2,13), the selectivity

 89

The Input Rate is:99
For the data stream: 13:
The Input Rate is:10
For the data stream: 14:
The Input Rate is:18
For the data stream: 15:
The Input Rate is:78
For the data stream: 16:
The Input Rate is:99
For the data stream: 17:
The Input Rate is:23
For the data stream: 18:
The Input Rate is:65
For the data stream: 19:
The Input Rate is:83
For the data stream: 20:
The Input Rate is:26

factor is:0.13
For (6,14), the selectivity
factor is:0.17
For (4,15), the selectivity
factor is:0.04
For (1,16), the selectivity
factor is:0.01
For (2,17), the selectivity
factor is:0.16
For (9,18), the selectivity
factor is:0.18
For (17,19), the selectivity
factor is:0.01
For (10,20), the selectivity
factor is:0.08

7 join predicates For the data stream: 1:
The Input Rate is:80
For the data stream: 2:
The Input Rate is:28
For the data stream: 3:
The Input Rate is:94
For the data stream: 4:
The Input Rate is:51
For the data stream: 5:
The Input Rate is:11
For the data stream: 6:
The Input Rate is:92
For the data stream: 7:
The Input Rate is:14
For the data stream: 8:
The Input Rate is:31
For the data stream: 9:
The Input Rate is:50
For the data stream: 10:
The Input Rate is:37
For the data stream: 11:
The Input Rate is:56
For the data stream: 12:
The Input Rate is:80
For the data stream: 13:
The Input Rate is:31
For the data stream: 14:
The Input Rate is:67

For (1,2), the selectivity
factor is:0.14
For (1,3), the selectivity
factor is:0.12
For (2,4), the selectivity
factor is:0.02
For (3,5), the selectivity
factor is:0.01
For (2,6), the selectivity
factor is:0.1
For (3,7), the selectivity
factor is:0.15
For (5,8), the selectivity
factor is:0.01
For (8,9), the selectivity
factor is:0.2
For (4,10), the selectivity
factor is:0.09
For (7,11), the selectivity
factor is:0.09
For (9,12), the selectivity
factor is:0.1
For (5,13), the selectivity
factor is:0.19
For (10,14), the selectivity
factor is:0.05
For (3,15), the selectivity
factor is:0.18

 90

For the data stream: 15:
The Input Rate is:42
For the data stream: 16:
The Input Rate is:53
For the data stream: 17:
The Input Rate is:53
For the data stream: 18:
The Input Rate is:29
For the data stream: 19:
The Input Rate is:58
For the data stream: 20:
The Input Rate is:15

For (10,16), the selectivity
factor is:0.05
For (1,17), the selectivity
factor is:0.03
For (4,18), the selectivity
factor is:0.13
For (16,19), the selectivity
factor is:0.2
For (14,20), the selectivity
factor is:0.03

9 join predicates For the data stream: 1:
The Input Rate is:99
For the data stream: 2:
The Input Rate is:12
For the data stream: 3:
The Input Rate is:31
For the data stream: 4:
The Input Rate is:20
For the data stream: 5:
The Input Rate is:57
For the data stream: 6:
The Input Rate is:85
For the data stream: 7:
The Input Rate is:39
For the data stream: 8:
The Input Rate is:48
For the data stream: 9:
The Input Rate is:65
For the data stream: 10:
The Input Rate is:98
For the data stream: 11:
The Input Rate is:58
For the data stream: 12:
The Input Rate is:32
For the data stream: 13:
The Input Rate is:71
For the data stream: 14:
The Input Rate is:34
For the data stream: 15:
The Input Rate is:60
For the data stream: 16:
The Input Rate is:24
For the data stream: 17:

For (1,2), the selectivity
factor is:0.18
For (2,3), the selectivity
factor is:0.02
For (3,4), the selectivity
factor is:0.2
For (4,5), the selectivity
factor is:0.15
For (1,6), the selectivity
factor is:0.07
For (4,7), the selectivity
factor is:0.03
For (7,8), the selectivity
factor is:0.07
For (5,9), the selectivity
factor is:0.03
For (2,10), the selectivity
factor is:0.2
For (3,11), the selectivity
factor is:0.13
For (10,12), the selectivity
factor is:0.02
For (2,13), the selectivity
factor is:0.04
For (12,14), the selectivity
factor is:0.06
For (1,15), the selectivity
factor is:0.1
For (12,16), the selectivity
factor is:0.18
For (9,17), the selectivity
factor is:0.19
For (1,18), the selectivity

 91

The Input Rate is:90
For the data stream: 18:
The Input Rate is:15
For the data stream: 19:
The Input Rate is:60
For the data stream: 20:
The Input Rate is:17

factor is:0.01
For (11,19), the selectivity
factor is:0.17
For (13,20), the selectivity
factor is:0.04

